

USTs N-1, 2, 3, 4, 25, and 26 Site-Specific Summary Report Addendum Port of Tacoma UST Remediation Program Tacoma, Washington

Prepared for Port of Tacoma

April 5, 2012 17581-00

USTs N-1, 2, 3, 4, 25, and 26 Site-Specific Summary Report Addendum Port of Tacoma UST Remediation Program Tacoma, Washington

Prepared for Port of Tacoma

April 5, 2012 17581-00

Prepared by Hart Crowser, Inc.

11-|| ///

Phil Cordell, GIT Senior Staff Geologist

May C. Mut

Mary Mitchener Sr. Regulatory Specialist

Willi B. abali

Will Abercrombie Principal

1700 Westlake Avenue North, Suite 200 Seattle, Washington 98109-6212 Fax 206.328.5581 Tel 206.324.9530

CONTENTS	<u>Page</u>
1.0 INTRODUCTION	1
2.0 PROJECT BACKGROUND	2
3.0 GEOLOGY AND HYDROGEOLOGY	2
4.0 SUMMARY OF 2011 INVESTIGATION ACTIVITIES	3
<i>4.1 Test Pit Investigation 4.2 Groundwater Monitoring Well Investigation 4.3 Soil and Groundwater Investigation 2010</i>	3 5 6
5.0 SUMMARY AND RECOMMENDATIONS	8
6.0 REFERENCES	9

TABLES

1	Analytical Results	for Nearby So	oil Samples	(Hart Crowser	2009)
---	--------------------	---------------	-------------	---------------	-------

- 2 Analytical Results for Detected Constituents in Nearby Groundwater Samples (Hart Crowser, 2009a)
- 3 UST Program Analytical Results for Detected Constituents in Soil Samples, USTs N-1, 2, 3, 4, 25, and 26
- 4 UST Program Analytical Results for Detected Constituents in Groundwater Samples, USTs N-1, 2, 3, 4, 25, and 26
- 5 Semivolatiles Analytical Results for Soil Sample in Test Pit 4
- 6 USTs N-1, 2, 3, 4, 25, 26 Groundwater Elevation

FIGURES

- 1 Vicinity Map
- 2 Area Map and Historical Exploration Locations
- 3 Site Plan USTs N-1, 2, 3, 4, 25, 26
- 4 December 2011 Groundwater Contour Map
- 5 2010 and 2011Soil Sample Data
- 6 2010 and 2011Groundwater Sample Data

CONTENTS (Continued)

APPENDIX A TEST PIT AND DIRECT PUSH-PROBE EXPLORATION LOGS

APPENDIX B CHEMICAL DATA QUALITY REVIEW AND LABORATORY REPORTS

UST N-1, 2, 3, 4, 25, 26 SITE-SPECIFIC SUMMARY REPORT ADDENDUM PORT OF TACOMA UST REMEDIATION PROGRAM TACOMA, WASHINGTON

1.0 INTRODUCTION

Hart Crowser has prepared this addendum to the Site-Specific Summary Report (SSR, Hart Crowser 2011) dated February 3, 2011, which was completed as part of the Port of Tacoma's (Port's) Underground Storage Tank (UST) Remediation Program. This addendum adds data collected in September and November 2011, and provides updated conclusions regarding the possible UST locations.

Refer to the documents listed in Section 6 (References) for details on previous investigations and additional site information. The Port's UST Remediation Program is focused on the northern end of the Blair-Hylebos Peninsula, north of East 11th Street, in Tacoma, Washington (Figure 1).

The overall goal of this investigation has been to test for the presence of contamination in soil and groundwater related to six 25,000-gallon USTs reportedly placed by the Navy in the 1940s to support a local steam plant. The six USTs in this cluster, USTs N-1, 2, 3, 4, 25, 26 (Figure 2), were reported to contain fuel oil.

The 2010 portion of this investigation was completed under a Site-Specific Sampling and Analysis Plan (SSAP) (Hart Crowser 2010b) that was supplemented by the Area-Wide Sampling and Analysis Plan (AWSAP) (Hart Crowser 2010a). An SSAP Addendum (Hart Crowser 2010c) was created for the 2011 portion of this investigation.

The test pit explorations, push probe borings, and groundwater monitoring wells are formally assigned the sample identification labels: HC-N12342526-TP-X, HC-N12342526-X, and HC-N12342526-X- GW, respectively. For the ease of reading, the "N12342626" portion of the sample identification has been removed on our figures and in the text of this report. The letters "TP" denote Test Pit samples, "MW" denotes groundwater monitoring well samples, and "Probe" denotes soil or groundwater collected from a push probe location.

2.0 PROJECT BACKGROUND

The 2010 push probe investigation concluded that petroleum-related contamination above Method A screening levels for industrial sites was observed in site soil and groundwater. Chlorinated volatile organic compounds were also identified but were attributed to the Occidental Chemical Corporation (OCC) contamination.

There are no records that indicate the subject tanks have been removed, and no records that indicate that the tanks have been used since the Washington State Underground Storage Tank Regulations (Chapter 173-360 WAC) were developed in 1989. If the tanks remain in-place, it is unlikely that they were closed to meet today's standards. Given the density of field sampling and the proximity of numerous utilities throughout the suspected location of the USTs, it is unlikely that the six subject tanks are present in the locations shown on the Navy drawings.

During this investigation one UST was encountered. However, the tank that was encountered is likely smaller than the subject tanks according to Navy records and based on field observations. The tank measured approximately 6.5 feet in diameter. In order for a cylindrical, 6.5-foot-diameter tank to have a 25,000 gallon capacity, it would have to be approximately 100 feet long. This UST remains in place.

Tables at the end of the text present pertinent soil and groundwater data from the site and immediate vicinity. For comparison purposes, analytical results from one soil and groundwater sample from a 2009 Hart Crowser Site Characterization Report (Hart Crowser 2009) conducted near the subject tanks are presented in Tables 1 and 2. Summary soil and groundwater data from the 2010 push probe investigation and this field work are presented in Tables 3 through 6.

As seen on Figure 2, the site is located within the areal extent of contamination from historical operations at the adjacent OCC property.

3.0 GEOLOGY AND HYDROGEOLOGY

Test pits and direct push probes indicate that soil conditions are similar to those described in the SSR.

On December 29, 2011, groundwater was encountered at approximately 8.5 to 9.5 feet bgs. Groundwater elevation data is provided in Table 6. Based on these data, groundwater appears to flow generally to project northeast toward Commencement Bay (Figure 4) with a gradient of 0.002 ft/ft.

4.0 SUMMARY OF 2011 INVESTIGATION ACTIVITIES

During the 2011 sampling event, four test pit explorations were completed around the perimeter of the presumed UST locations and one test pit was completed within the area of the suspected UST locations to determine if the tanks are present. Three groundwater monitoring wells were installed, developed, and sampled. Locations of test pit explorations and groundwater monitoring wells from the 2011 investigation are shown on Figure 3.

4.1 Test Pit Investigation

Green Earthworks, Inc. of Tacoma, Washington, completed five test pit explorations, HC-TP-1 through HC-TP-5 on September 28 and 29, 2011. Before this subsurface investigation, we contacted One-Call to locate utilities in the public right-of-way and contracted with a private utility locating company to locate potential utilities on private property.

The test pits were located to aid in the delineation of the lateral extent of previously identified contamination and as a tool to evaluate whether any of the six USTs remained in place. The test pits were extended to approximately 9.5 feet below ground surface (bgs). The exploration locations are shown on Figure 3 and test pit logs are provided in Appendix A.

After the soil samples were collected, the test pit locations were backfilled with clean soil from an off-site source. Investigation-derived waste soil was stored in roll-off boxes on site, until laboratory tests established the waste designation; the soil was properly disposed at Waste Management in Oregon.

Soil Sampling

Hart Crowser collected soil samples from the test pits at 4-foot-depth intervals and field screened the samples using a sheen test. Field indications of petroleum contamination were observed in test pits HC-TP-4 and HC-TP-5. There were no indications of petroleum hydrocarbon-impacted soil in the three other test pits. A total of six soil samples were collected, one from each test pit and an additional sample was collected from HC-TP-4-1 at approximately 2 feet bgs to evaluate fill material with abundant debris including brick, wire, pipe, and concrete. The material was encountered at 1 to 3 feet bgs only at this test pit location. Based on field observations, this sample was submitted for additional analyses for extended semivolatile organic compounds. The remaining soil samples were collected from the zone spanning the approximate groundwater table where the petroleum impacts were observed.

Soil samples were submitted to Onsite Environmental Inc. (OnSite) of Redmond, Washington, for chemical analysis of diesel- and oil-range petroleum hydrocarbons by NWTPH-Dx; gasoline-range petroleum hydrocarbons by NWTPH-Gx; volatiles by EPA Method 8260B; polycyclic aromatic hydrocarbons by EPA Method 8270D/SIM and total lead by EPA Method 6010B. One soil sample from HC-TP-4-1 was also analyzed for RCRA 8 metals by EPA Method 6010B and the full suite of semivolatile organic compounds by EPA Method 8270D/SIM.

Soil Analytical Results

Chromium was detected in soil sample HC-TP-4-1 at 29 mg/kg, which is above the MTCA Method A industrial soil screening level for chromium VI (19 mg/kg) but well below the MTCA Method A industrial soil screening level for chromium III (2,000 mg/kg). Based on our understanding of the site, there is no indication that chromium VI was a constituent of concern at the site; therefore, the chromium III screening level is appropriate. All other metals were below the MTCA Method A screening levels for industrial properties.

The semivolatile organic compound analytical results from the soil sample collected at 2 feet bgs from pit location HC-TP-4-1 are presented in Table 5. No semivolatile organic compounds (SVOCs) were detected in this soil sample.

Polycyclic aromatic hydrocarbons (PAHs) were present in soil samples HC-TP-3-2, HC-4-2, and HC-5-2. Total carcinogenic PAHs (cPAHs) equivalents were calculated according to the procedures in WAC 173-340-708(8). The toxicity equivalency factor for HC-TP-3-2, HC-TP4-2, and HC-TP-5-2 for total cPAHs were calculated to be 0.075, 0.015, and 0.051 mg/kg, respectively, which are well below the MTCA Method A screening level for industrial properties for benzo(a)pyrene toxicity equivalency factor of 2 mg/kg.

All petroleum-range hydrocarbons and VOCs were below MTCA Method A screening levels for industrial properties or were below method detection limits.

Soil sample analytical results for the test pit samples are summarized in Tables 3 and 5 and shown on Figure 5. The results of the review of chemical data quality and laboratory reports are provided in Appendix B.

4.2 Groundwater Monitoring Well Investigation

On October 6, 2011, ESN Northwest, Inc. of Olympia, Washington, completed four push probe borings (Probe HC-5 through Probe HC-8) to install 1-inch groundwater monitoring wells. Before this subsurface investigation, we contacted One-Call to locate utilities in the public right-of-way and contracted with a private utility locating company to locate potential utilities on private property.

A likely UST was encountered in soil boring Probe HC-5 approximately 1.5 feet bgs. The presumed tank was sounded, and measured approximately 6.5 feet in diameter. The tank was filled with what appeared to be a petroleum-like product. This soil probe was immediately abandoned and no well was completed. The tank was patched in the field using a steel drill bit of the same approximate circumference that made the hole, and was grouted using a quicksetting concrete patch. Because of the underground utilities and aboveground structures, an additional soil probe was not attempted in this area.

During drilling, Hart Crowser collected continuous soil samples from each of the three remaining soil probes at 4-foot-depth intervals, and field screened the samples using a PID and sheen test. There were no indications of contamination observed in any of the completed soil probes. Soil samples were not submitted to the laboratory for analysis.

Probe HC-6 through Probe HC-8 were completed as 1-inch groundwater monitoring wells. These wells are designated HC-MW-6 through HC-MW-8 on Figures 3 through 6 and sample analytical results are presented in Table 4. The three wells were installed to project north, south and east of the presumed locations of USTs N-1, 2, 3, 4, 25, and 26.

Each soil probe was extended to a depth of approximately 13 feet bgs and the wells were installed with 5-foot screens to approximately 13 feet bgs. The exploration locations are shown on Figure 3 through 6 and push probe logs are provided in Appendix A. The wells were developed on October 12, 2011, using a bailer and peristaltic pump.

Investigation-derived waste soil from the soil probes and water from well development was stored until laboratory tests established the waste designation; the soil and water were properly disposed of at Waste Management in Oregon.

On November 10, 2011, groundwater samples were collected from each of the three monitoring wells. Groundwater samples were submitted to OnSite for chemical analysis. Each groundwater sample was analyzed for diesel- and oil-range petroleum hydrocarbons by NWTPH-Dx; gasoline-range petroleum hydrocarbons by NWTPH-Gx; dissolved and total metals by EPA 200.8 and 7470, VOCs by EPA Method 8260B, and EDB by EPA Method 8011.

Groundwater Analytical Results

Petroleum hydrocarbons were not detected in the three groundwater monitoring well samples submitted for analysis. The only constituents that exceeded screening levels were arsenic and vinyl chloride. All other concentrations were either below detection limits or below MTCA Method A groundwater screening levels as well as below screening values based on the groundwater to surface water pathway.

Groundwater sample results from HC-MW-7 indicated the presence of total and dissolved arsenic at concentrations of 7.5 and 6 ug/l, respectively. The MTCA Method A screening level for arsenic is 5 ug/l and the groundwater to surface water discharge protection value is 0.14 ug/L. Groundwater samples from wells HC-MW-6, HC-MW-7, and HC-MW-8 contained vinyl chloride at 19 ug/l, 200 ug/l, and 630 ug/l, respectively, exceeding both the MTCA Method A groundwater screening level of 0.2 ug/l and screening level established for protection of surface water of 2.4 ug/l. This UST location is within the OCC chlorinated solvent plume footprint, as noted earlier, and the vinyl chloride detections are likely attributed to historical operations at the OCC property.

Groundwater sample analytical results are summarized in Table 4 and shown on Figure 6. The results of the review of chemical data quality and laboratory reports are provided in Appendix B.

4.3 Soil and Groundwater Investigation 2010

A summary of the results from the 2010 field investigation is provided below (complete data and sampling methodology is provided in Hart Crowser 2010). Four direct push probes were completed along the perimeter of the suspected tanks, one on each side of the estimated former UST locations (Probe HC-1 through Probe HC-4). Groundwater samples were collected from temporary

3-foot miniwells installed in each of the four shallow push probe explorations, Probe HC-1 through Probe HC-4. One sample from each location was submitted for chemical analysis of diesel-, oil-, gasoline-range petroleum hydrocarbons, and BETX.

Soil Results

Five soil samples were collected and submitted for analysis (two samples from Probe HC-3). Petroleum hydrocarbon soil sample results from the direct push probe investigation were either not detected or were below applicable screening levels in four out of five samples except in soil from Probe HC-4. Results from Probe HC-4 were reported to contain diesel- and oil- range petroleum hydrocarbons at 22,000 mg/kg and 25,000 mg/kg, respectively, exceeding MTCA Method A Industrial screening levels of 2,000 mg/kg. BETX was also detected in the sample; however, the benzene concentration of 0.14 mg/kg was the only compound detected above its screening level (0.03 mg/kg).

The analytical results for the direct push probe soil samples collected in 2010 are summarized in Table 3.

Groundwater Results

No evidence of petroleum-related contamination was observed during field screening of the purge water collected from the two shallow push probe explorations Probe HC-2 and Probe HC-3. Diesel-, oil-, gasoline-range petroleum hydrocarbons, and BETX were not detected above applicable analytical detection limits in these groundwater samples.

A slight to moderate sheen was observed during field screening of purge water from push probe exploration Probe HC-1. The groundwater sample from this exploration contained diesel- and oil-range petroleum hydrocarbons at 530 ug/L and 1800 ug/L respectively, exceeding the MTCA Method A groundwater screening level of 500 ug/L for both hydrocarbon ranges.

An oily product was observed during field screening of purge water from push probe exploration HC-4. Groundwater from this exploration contained benzene at 16 ug/L, above the MTCA Method A groundwater screening level of 5 ug/L but was below the screening value for protection of surface water (51 ug/L). Diesel- and oil-and gasoline range petroleum hydrocarbons were also detected at 1500 ug/L, 670 ug/L, and 950 ug/L, respectively, above applicable MTCA Method A screening levels. The Method A criteria for petroleum hydrocarbons are based on the protection of drinking water and are used as a screening level.

The analytical results for the direct push probe groundwater samples are summarized in Table 4.

5.0 SUMMARY AND RECOMMENDATIONS

Soil sample analytical data from one exploration location (Probe HC-4) contained petroleum-related hydrocarbon concentrations that exceed MTCA Method A industrial screening levels. Groundwater analytical results indicate the presence of VOCs that are likely related to historical operations at the OCC property in the three installed monitoring wells. Groundwater analytical results for two of the push probe samples contained constituents associated with petroleum that exceed screening levels developed for drinking water.

An abandoned, unregistered UST was discovered during the field investigation. Based on field observations, this tank contains petroleum product but is not large enough to be one of the six bunker fuel tanks shown on historical Navy drawings (i.e., not one of the N1, 2, 3, 4, 25 or 26 tanks). This UST is about 15 feet project west of Probe HC-4 where petroleum hydrocarbons above screening levels were identified. Despite being in close proximity, the field crew reported the material encountered in the soil appeared different than the oily product found in the tank.

Depending on its age and its usage, the discovered UST may not be regulated under current UST regulations. However, state and local regulators have the authority to require that unregulated USTs be closed per the regulations, if a current or potential threat to human health or the environment exists. The presence of petroleum in the tank will require the tank to be cleaned and emptied. The presence of petroleum in soil near the tank may prompt state or local UST regulators to require that the tank be closed under current UST regulations, unless a UST assessment can demonstrate that the discovered UST is not the source of the petroleum in soil at Probe HC-4. Alternatively, the Port may consider closing the UST per the regulations regardless of regulatory status.

If closure is undertaken, a UST site assessment should be conducted in accordance with Ecology regulations and Tacoma Pierce County Health Department guidance.

6.0 REFERENCES

Conestoga-Rovers & Associates (CRA) 2008. Preliminary Draft Site Characterization Report. Prepared for Occidental Chemical Corporation, March 2008.

Ecology 2007a. Model Toxics Control Act (MTCA) cleanup regulation, Chapter 173-340 WAC.

Ecology 2007b. Underground Storage Tank Regulations, Chapter 173-360 WAC.

Ecology 2008. State of Washington Administrative Code on Minimum Standards for Construction and Maintenance of Wells, Chapter 173-160 WAC.

GeoEngineers 2008. Final Dredge Material Characterization Report Blair-Hylebos Terminal Redevelopment Project, Port of Tacoma, Washington. Prepared for The US Army Corps of Engineers, Seattle District. November 24, 2008.

Hart Crowser 2009. Environmental Site Characterization Data Report, Proposed Terminal Development, Port of Tacoma, Washington. Prepared for Port of Tacoma. February 27, 2009.

Hart Crowser 2010a. Area-Wide Sampling and Analysis Plan. Port of Tacoma UST Remediation Program Sampling, Tacoma, Washington. Prepared for the Port of Tacoma. April 27, 2010.

Hart Crowser 2010b. UST N-1,2,3,4,25,26 Site-Specific Sampling and Analysis Plan. Port of Tacoma UST Remediation Program Sampling, Tacoma, Washington. Prepared for the Port of Tacoma. May 28, 2010.

Hart Crowser 2010c. UST N-1,2,3,4,25,26 Site-Specific Sampling and Analysis Plan. Port of Tacoma UST Remediation Program Sampling, Tacoma, Washington. Prepared for the Port of Tacoma. September 23, 2011.

Hart Crowser 2011. UST N-1,2,3,4,25,26 Site-Specific Summary Report. Port of Tacoma UST Remediation Program Sampling, Tacoma, Washington. Prepared for the Port of Tacoma. February 3, 2011.

L:\Jobs\1758100\Phase 21 N-1,2,3,4,25,26\Summary Report\Addendum\Final\UST N-12342526 Summary Report Addendum.doc

Table 1 - Analytical Results for Nearby Soil Samples (Hart Crowser 2009)

Sample ID	MTCA	HC08-EP107
Sampling Date	Method A	10/01/08
Depth in Feet	Industrial	2.5 to 4
	Screening Level	
Metals in mg/kg		
Arsenic	20	5 U
Cadmium	2	0.2 U
Chromium		12.1
Copper		13.1
Lead	1,000	5
Mercury	2	0.05 U
Nickel		8
Zinc		30
TPH in mg/kg		
Diesel-Range Hydrocarbons	2,000	6.4
Motor Oil-Range Hydrocarbons	2,000	37
Gasoline-Range Hydrocarbons	100/30 ^a	6.8
PCBs in ug/kg		
Aroclor 1016		32 U
Aroclor 1221		32 U
Aroclor 1232		32 U
Aroclor 1242		32 U
Aroclor 1248		32 U
Aroclor 1254		32 U
Aroclor 1260		32 U
Total PCBs	10,000	32 U

Notes:

Blank entry indicates no applicable MTCA Method A Industrial criteria established or sample not analyzed for specific analyte.

U: Not detected at reporting limit indicated.

J: Estimated value.

9 Bold, boxed entry indicates concentration exceeds MTCA screening criteria.

^a 100 mg/kg when no benzene present, 30 mg/kg when benzene present.

Table 2 - Analytical Results for Detected Constituents in Nearby Groundwater Samples (Hart Crowser 2009)

Sample ID	МТСА	GW Values	HC08-EP107
Sampling Date	Method A	Protective of	10/01/08
Screen Interval in Feet	Industrial	Surface Water	10.75 to 11.75
	Screening Level	(C)	
pH ^(a)			6.81
TPH in mg/L			
Diesel-Range Hydrocarbons	0.5		0.34
Motor Oil-Range Hydrocarbons	0.5		0.5 U
Gasoline-Range Hydrocarbons	0.8/1 ^(b)		0.25 U
Metals in ug/L			
Arsenic	5	0.14	50 U
Cadmium	5	8.8	2 U
Chromium	50	50	29
Copper		2.4	30
Lead	15	8.1	20 U
Mercury	2	0.025	0.1 U
Nickel		4600	20
Zinc		81	40
Volatiles in ug/L			
1,2-Dichlorobenzene			0.3
4-Isopropyltoluene			3.2
Benzene	5	51	0.3
cis-1,2-Dichloroethene			11
o-Xylene			0.2
Tetrachloroethene	5	3.3	0.3
trans-1,2-Dichloroethene		1000	6.2
Trichloroethene	5	30	0.5
Vinyl Chloride	0.2	2.4	190

Notes:

U = Not detected at reporting limit indicated.

Bold, boxed entry indicates concentration exceeds MTCA Method A screening criteria.

Shaded entry indicates concentration exceeds surface water protection criteria.

Reporting limits that exceed screening criteria are in italics.

Blank indicates sample not analyzed for specific analyte or no criteria available.

(a) pH measured in the field at the time of sample collection.

(b) 0.8 mg/L when benzene present, 1 mg/L when no benzene present.

(c) Surface water screening levels were selected using the most conservative numbers based on protection of human health and the environment. Screening levels were derived from the National Toxics Rule (40 CFR 131); Section 304 of the Clean Water Act; Chapter 173-201A WAC, as presented in the CLARC database.

Sample Location	MTCA	Probe HC-1	Probe HC-2	Probe HC-3
Sample ID	Method A	HC-N12342526-1-S3/4	HC-N12342526-2-S3	HC-N12342526-3-S1
Sampling Date	Industrial	9/24/2010	9/24/2010	9/24/2010
Sample Depth in Feet	Screening Level	10 to 12	8 to 10	1 to 3
	g			
TPH in mg/kg				
Diesel Range Organics	2000	31 U	33 U	46
Lube Oil	2000	62 U	65 U	98
Gasoline Range Organics	100/30 ^a	6.1 U	7.4 U	5 U
Metals in mg/kg				
Arsenic	20			
Barium				
Cadmium	2.0			
Chromium	19/2000 ^b			
Lead	1000			
Mercury	2.0			
Selenium				
Silver				
BTEX in mg/kg				
Benzene	0.03	0.02 U	0.02 U	0.02 U
Ethylbenzene	6.0	0.061 U	0.074 U	0.05 U
m, p-Xylene	9.0	0.061 U	0.074 U	0.05 U
o-Xylene	9.0	0.061 U	0.074 U	0.05 U
Toluene	7.0	0.061 U	0.074 U	0.05 U
Volatiles in mg/kg				
Acetone				
Carbon Disulfide				
Cis-1,2-Dichloroethene				
Tetrachloroethene	0.05			
Semivolatiles (SIM) in mg/kg				
Acenaphthene				
Anthracene				
Benzo(ghi)perylene				
Fluoranthene				
Fluorene				
Phenanthrene				
Pyrene				
cPAHs in mg/kg				
Benz[a]anthracene				
Benzo(a)pyrene	2.0			
Benzo(b)fluoranthene				
Benzo(j,k)fluoranthene				
Chrysene				
Dibenzo(a,h)anthracene				
Indeno(1,2,3-cd)pyrene				
Total cPAHs B[a]P TEF ^c	2.0			

Sample Location	MTCA	Probe HC-3	Probe HC-4	HC-TP-1
Sample ID	Method A	HC-N12342526-3-S4	HC-N12342526-4-S3	HC-N12342526-TP-1-2
Sampling Date	Industrial	9/24/2010	9/24/2010	9/29/2011
Sample Depth in Feet	Screening Level	12 to 14	10 to 12	8.5 to 9.5
TPH in mg/kg	5			
Diesel Range Organics	2000	30 U	22000	34 U
Lube Oil	2000	60 U	25000	68 U
	100/30 ^a			
Gasoline Range Organics Metals in mg/kg	100/30	6 U	6.6 U	7.5 U
Arsenic	20			
Barium	20			
Cadmium	2.0			
	19/2000 ^b			
Chromium				0.0.11
Lead	1000			6.8 U
Mercury	2.0			
Selenium				
Silver				
BTEX in mg/kg	0.00	0.00.11	0.11	0.0040.11
Benzene	0.03	0.02 U	0.14	0.0013 U
Ethylbenzene	6.0	0.06 U	1.5	0.0013 U
m, p-Xylene	9.0	0.06 U	0.85	0.0026 U
o-Xylene	9.0	0.06 U	6.6 U	0.0013 U
Toluene	7.0	0.06 U	0.089	0.0064 U
Volatiles in mg/kg				0.0004.11
Acetone				0.0064 U
Carbon Disulfide				0.0023
Cis-1,2-Dichloroethene				0.0013 U
Tetrachloroethene	0.05			0.0013 U
Semivolatiles (SIM) in mg/kg				
Acenaphthene				0.009 U
Anthracene				0.009 U
Benzo(ghi)perylene				0.009 U
Fluoranthene				0.009 U
Fluorene				0.009 U
Phenanthrene				0.009 U
Pyrene				0.009 U
cPAHs in mg/kg				
Benz[a]anthracene				0.009 U
Benzo(a)pyrene	2.0			0.009 U
Benzo(b)fluoranthene				0.009 U
Benzo(j,k)fluoranthene				0.009 U
Chrysene				0.009 U
Dibenzo(a,h)anthracene				0.009 U
Indeno(1,2,3-cd)pyrene				0.009 U
Total cPAHs B[a]P TEF ^c	2.0			ND

Sample Location	MTCA	HC-TP-2	HC-TP-3	HC-TP-4
Sample ID	Method A	HC-N12342526-TP-2-2	HC-N12342526-TP-3-2	HC-N12342526-TP-4-1
Sampling Date	Industrial	9/29/2011	9/29/2011	9/28/2011
Sample Depth in Feet	Screening Level	8.5 to 9.5	8.5 to 9.5	2 to 3
TPH in mg/kg	0000	35 U	26 U	27 U
Diesel Range Organics	2000			_
Lube Oil	2000	69 U	160	54 U
Gasoline Range Organics	100/30 ^a	9 U	5.7 U	5.8 U
Metals in mg/kg				
Arsenic	20			11 U
Barium				43
Cadmium	2.0			0.54 U
Chromium	19/2000 ^b			29
Lead	1000	6.9 U	16	5.4 U
Mercury	2.0			0.27 U
Selenium				11 U
Silver				0.54 U
BTEX in mg/kg				
Benzene	0.03	0.0014 U	0.0013 U	0.0011 U
Ethylbenzene	6.0	0.0014 U	0.0013 U	0.0011 U
m, p-Xylene	9.0	0.0027 U	0.0025 U	0.0022 U
o-Xylene	9.0	0.0014 U	0.0013 U	0.0011 U
Toluene	7.0	0.0068 U	0.0064 U	0.0056 U
Volatiles in mg/kg				
Acetone		0.0068 U	0.0064 U	0.0056 U
Carbon Disulfide		0.0014 U	0.0013 U	0.0011 U
Cis-1,2-Dichloroethene		0.0014 U	0.0013 U	0.0011 U
Tetrachloroethene	0.05	0.0014 U	0.0033	0.0011 U
Semivolatiles (SIM) in mg/kg				
Acenaphthene		0.0092 U	0.007 U	0.0072 U
Anthracene		0.0092 U	0.007 U	0.0072 U
Benzo(ghi)perylene		0.0092 U	0.053	0.0072 U
Fluoranthene		0.0092 U	0.032	0.0072 U
Fluorene		0.0092 U	0.007 U	0.0072 U
Phenanthrene		0.0092 U	0.011	0.0072 U
Pyrene		0.0092 U	0.032	0.0072 U
cPAHs in mg/kg				
Benz[a]anthracene		0.0092 U	0.026	0.0072 U
Benzo(a)pyrene	2.0	0.0092 U	0.057	0.0072 U
Benzo(b)fluoranthene		0.0092 U	0.052	0.0072 U
Benzo(j,k)fluoranthene		0.0092 U	0.041	0.0072 U
Chrysene		0.0092 U	0.031	0.0072 U
Dibenzo(a,h)anthracene		0.0092 U	0.012	0.0072 U
Indeno(1,2,3-cd)pyrene		0.0092 U	0.042	0.0072 U
Total cPAHs B[a]P TEF ^c	2.0	ND	0.075	ND

Sample Location	MTCA	HC-TP-4	HC-TP-5
Sample ID	Method A	HC-N12342526-TP-4-2	HC-N12342526-TP-5-2
Sampling Date	Screening	9/28/2011	9/28/2011
Sample Depth in Feet	Level	8.5 to 9.5	8.5 to 9.5
TPH in mg/kg			
Diesel Range Organics	2000	30 U	38
Lube Oil	2000	59 U	100
Gasoline Range Organics	100/30 ^a	6.6 U	6.5 U
Metals in mg/kg			
Arsenic	20		
Barium			
Cadmium	2		
Chromium	19/2000 [°]		
Lead	1000	5.9 U	11
Mercury	2		
Selenium			
Silver			
BTEX in mg/kg			
Benzene	0.03	0.0011 U	0.0011 U
Ethylbenzene	6	0.0011 U	0.0011 U
m, p-Xylene	9	0.0022 U	0.0023 U
o-Xylene	9	0.0011 U	0.0011 U
Toluene	7	0.0056 U	0.0057 U
Volatiles in mg/kg			
Acetone		0.0056 U	0.02
Carbon Disulfide		0.0011 U	0.0011 U
Cis-1,2-Dichloroethene		0.0011 U	0.0035
Tetrachloroethene	0.05	0.0011 U	0.0011 U
Semivolatiles (SIM) in mg/kg			
Acenaphthene		0.0079 U	0.011
Anthracene		0.0079 U	0.018
Benzo(ghi)perylene		0.015	0.027
Fluoranthene		0.019	0.063
Fluorene		0.0079 U	0.0079
Phenanthrene		0.015	0.034
Pyrene		0.026	0.13
cPAHs in mg/kg			
Benz[a]anthracene		0.012	0.043
Benzo(a)pyrene	2.0	0.012	0.039
Benzo(b)fluoranthene		0.01	0.03
Benzo(j,k)fluoranthene		0.008	0.024
Chrysene		0.014	0.061
Dibenzo(a,h)anthracene		0.0079 U	0.0079 U
Indeno(1,2,3-cd)pyrene		0.0079 U	0.017
Total cPAHs B[a]P TEF ^c	2.0	0.015	0.051

Notes:

U = Not detected at the reporting limit indicated.

a) 100 mg/kg when no benzene present, 30 mg/kg when benzene present.

Bold boxed entry indicates concentration exceeds MTCA Method A screening level for industrial land use. Blank entry indicates no applicable MTCA criteria established or sample not analyzed for specific analyte.

b) 19 as Chromium VI/2000 as Chromium III.

c) Calculated total carcinogenic PAH equivalent for benzo(a)pyrene per procedures in WAC 173-340-708(8).

Sheet 1 of 2

Sample Location	MTCA	GW Values	Probe HC-1	Probe HC-2	Probe HC-3	Probe HC-4
Sample ID	Screening	Protective of	HC-N12342526-1 GW	HC-N12342526-2 GW	HC-N12342526-3 GW	HC-N12342526-4-GW
Sampling Date	Level	Surface	9/24/2010	9/24/2010	9/24/2010	9/24/2010
Screen Interval in Feet	Method A ^c	Water ^a	11 to 14	9 to 12	12 to 15	10 to 13
TPH in ug/L [°]						
Diesel Range Organics	500		530	260 U	260 U	1500
Lube Oil	500		1800	420 U	420 U	670
Gasoline Range Organics	800/1,000 ^a		100 U	100 U	100 U	950
Dissolved Metals in ug/L						
Arsenic	5	0.14				
Cadmium	5	8.8				
Chromium	50	50				
Lead	15	8.1				
Mercury	2	0.025				
Total Metals in ug/L						
Arsenic	5	0.14				
Cadmium	5	8.8				
Chromium	50	50				
Lead	15	8.1				
Mercury	2	0.025				
BTEX in ug/L						
Benzene	5	51	1 U	1 U	1 U	16
Ethylbenzene	700	2100	1 U	1 U	1 U	26
m, p-Xylene	1000		1 U	1 U	1 U	6.9
o-Xylene	1000		1 U	1 U	1 U	7.4
Total Xylenes	1000	15000	1 U	1 U	1 U	14.3
Toluene	1000	15000	1 U	1 U	1 U	1.5
Volatiles in ug/L						
Cis-1,2-Dichloroethene						
Trans-1,2-Dichloroethene		10000				
Trichloroethene	5	30				
Vinyl Chloride	0.2	2.4				

Sheet 2 of 2

Sample Location	MTCA	GW Values	HC-MW-6	HC-MW-7	HC-MW-8
Sample ID	Screening	Protective of	HC-N12342526-6	HC-N12342526-7	HC-N12342526-8
Sampling Date	Level	Surface	11/10/2011	11/10/2011	11/10/2011
Screen Interval in Feet	Method A ^c	Water ^a			
TPH in ug/L ^v					
Diesel Range Organics	500		260 U	260 U	260 U
Lube Oil	500		410 U	410 U	410 U
Gasoline Range Organics	800/1,000 ^a		100 U	100 U	100 U
Dissolved Metals in ug/L					
Arsenic	5	0.14	3 U	6	3 U
Cadmium	5	8.8	4 U	4 U	4 U
Chromium	50	50	10 U	10 U	10 U
Lead	15	8.1	1 U	1 U	1 U
Mercury	2	0.025	0.5 U	0.5 U	0.5 U
Total Metals in ug/L					
Arsenic	5	0.14	3.3 U	7.5	3.3 U
Cadmium	5	8.8	4.4 U	4.4 U	4.4 U
Chromium	50	50	11 U	11 U	11 U
Lead	15	8.1	1.1 U	1.1 U	1.1 U
Mercury	2	0.025	0.5 U	0.5 U	0.5 U
BTEX in ug/L					
Benzene	5	51	0.41	1 U	4 U
Ethylbenzene	700	2100	0.2 U	1 U	4 U
m, p-Xylene	1000				
o-Xylene	1000				
Total Xylenes	1000	15000	0.4 U	2 U	8 U
Toluene	1000	15000	1 U	5 U	20 U
Volatiles in ug/L					
Cis-1,2-Dichloroethene			2.8	15	14
Trans-1,2-Dichloroethene		10000	1.4	9.7	4 U
Trichloroethene	5	30	0.3	3.3	4.7
Vinyl Chloride	0.2	2.4	19	200	630

U = Not detected at the reporting limit indicated.

a) 800 ug/L when benzene present, 1,000 ug/L when no benzene present.

Bold boxed entry indicates concentration exceeds MTCA Method A screening level.

Shaded entry indicates concentration exceeds surface water protection criteria.

Blank entry indicates no applicable criteria established or sample not analyzed for specific analyte.

Reporting limits that exceed screening criteria are in italics.

b) There are no screening levels for surface water criteria for TPH, so Method A values for protection of drinking water are provided as screening levels.

c) Method A values are based on protection of drinking water.

d) Surface water screening levels were selected using the most conservative numbers based on protection of human health and the environment.

Screening levels were derived from the National Toxics rule (40 CFR 131); Section 304 of the Clean Water Act; Chapter 173-201A WAC, as presented in the CLARC database.

Table 5 - Semivolatiles Analytical Results for Soil Sample in Test Pit 4

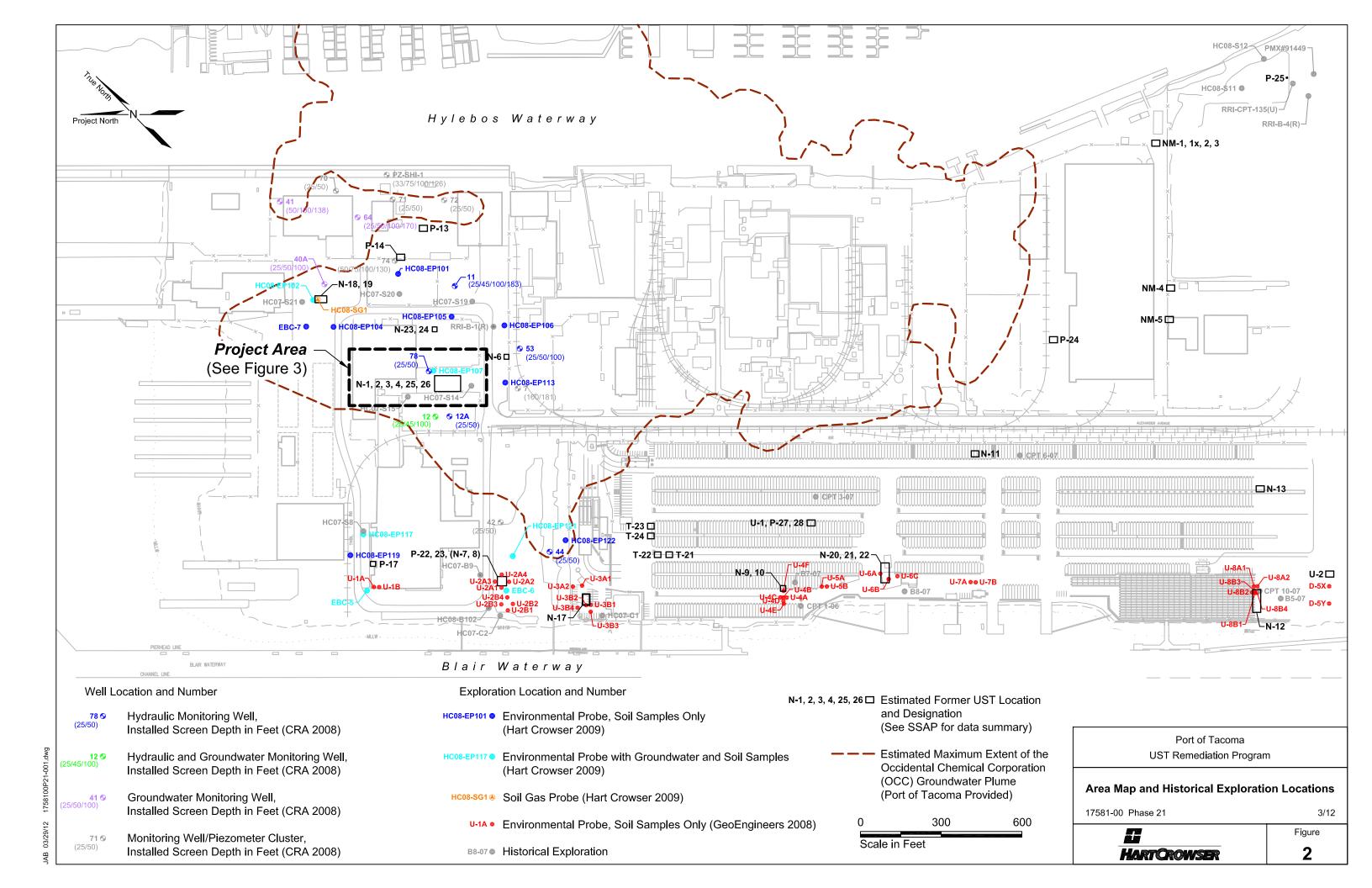
Sample Locations	HC-TP-4
	HC-N12342526-TP-4-1
Sample ID	
Sampling Date	9/28/2011
	Extended SVOCs
Semivolatiles in mg/kg	0.000.11
N-Nitrosodiphenylamine	0.036 U
Pyridine	0.36 U
Phenol	0.036 U
Aniline	0.036 U
Bis(2-Chloroethyl)ether	0.036 U
2-Chlorophenol	0.036 U
1,3-Dichlorobenzene	0.036 U
1,4-Dichlorobenzene	0.036 U
Benzyl alcohol	0.036 U
1,2-Dichlorobenzene	0.036 U
2-Methylphenol (o-cresol)	0.036 U
Bis(2-Chloroisopropyl)ether	0.036 U
3+4-Methylphenol(m,p-cresol)	0.036 U
N-Nitroso-di-n-propylamine	0.036 U
Hexachloroethane	0.036 U
Nitrobenzene	0.036 U
Isophorone	0.036 U
2-Nitrophenol	0.036 U
2,4-Dimethylphenol	0.36 U
Bis(2-Chloroethoxy)methane	0.036 U
2-4-Dichlorophenol	0.036 U
1,2,4-Trichlorobenzene	0.036 U
Naphthalene	0.0072 U
4-Chloroaniline	0.036 U
Hexachlorobutadiene	0.036 U
4-Chloro-3-methylphenol	0.036 U
2-Methylnaphthalene	0.0072 U
1-Methylnaphthalene	0.0072 U
Hexachlorocyclopentadiene	0.036 U
2,4,6-Trichlorophenol	0.036 U
2-3-Dichloroaniline	0.036 U
2,4,5-Trichlorophenol	0.036 U
2-Chloronaphthalene	0.036 U
2-Nitroaniline	0.036 U
1,4-Dinitrobenzene	0.036 U
Dimethylphthalate	0.036 U
1,3-Dinitrobenzene	0.036 U
2,6-Dinitrotoluene	0.036 U
1,2-Dinitrobenzene	0.036 U
Acenaphthylene	0.0072 U
3-Nitroaniline	0.036 U
2,4-Dinitrophenol	0.030 U
Acenaphthene	0.18 U
4-Nitrophenol	0.036 U
	0.000 0

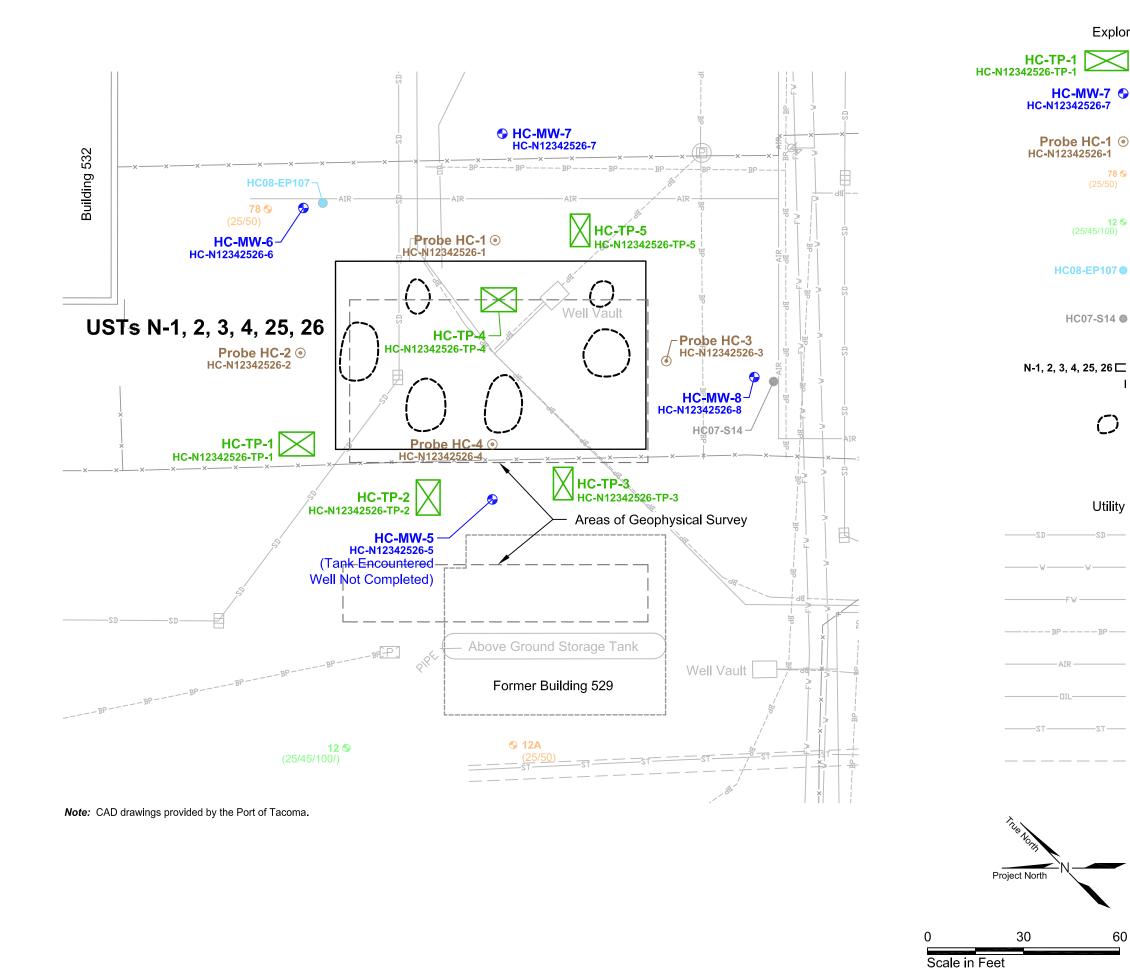
Table 5 - Semivolatiles Analytical Results for Soil Sample in Test Pit 4

Sample Locations	HC-TP-4
Sample ID	HC-N12342526-TP-4-1
Sampling Date	9/28/2011
	Extended SVOCs
2,4-Dinitrotoluene	0.036 U
Dibenzofuran	0.036 U
2,3,5,6-Tetrachlorophenol	0.036 U
2,3,4,6-Tetrachlorophenol	0.036 U
Diethylphthalate	0.18 U
4-Chlorophenylphenylether	0.036 U
4-Nitroaniline	0.036 U
Fluorene	0.0072 U
4,6-Dinitro-2-methylphenol	0.18 U
N-Nitrosodiphenylamine	0.036 U
1,2-Diphenylhydrazine	0.036 U
4-Bromophenylphenylether	0.036 U
Hexachlorobenzene	0.036 U
Pentachlorophenol	0.18 U
Phenanthrene	0.0072 U
Anthracene	0.0072 U
Carbazole	0.036 U
Di-n-butylphthalate	0.36 U
Fluoranthene	0.0072 U
Benzidine	0.36 U
Pyrene	0.0072 U
Butylbenzylphthalate	0.36 U
Bis-2-Ethylhexyladipate	0.036 U
3,3'-Dichlorobenzidine	0.36 U
Bis(2-Ethylhexyl)phthalate	0.18 U
Di-n-octylphthalate	0.036 U
Benzo(ghi)perylene	0.0072 U
cPAHs in mg/kg	
Benzo(a)anthracene	0.0072 U
Benzo(a)pyrene	0.0072 U
Benzo(b)fluoranthene	0.0072 U
Benzo(j,k)fluoranthene	0.0072 U
Chrysene	0.0072 U
Dibenzo(a,h)anthracene	0.0072 U
Indeno(1,2,3-cd)pyrene	0.0072 U

U = Not detected at the reporting limit indicated.

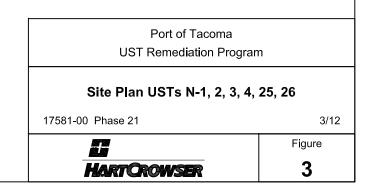
Table 6 - UST N-1, 2, 3, 4, 25, 26 Groundwater Elevation

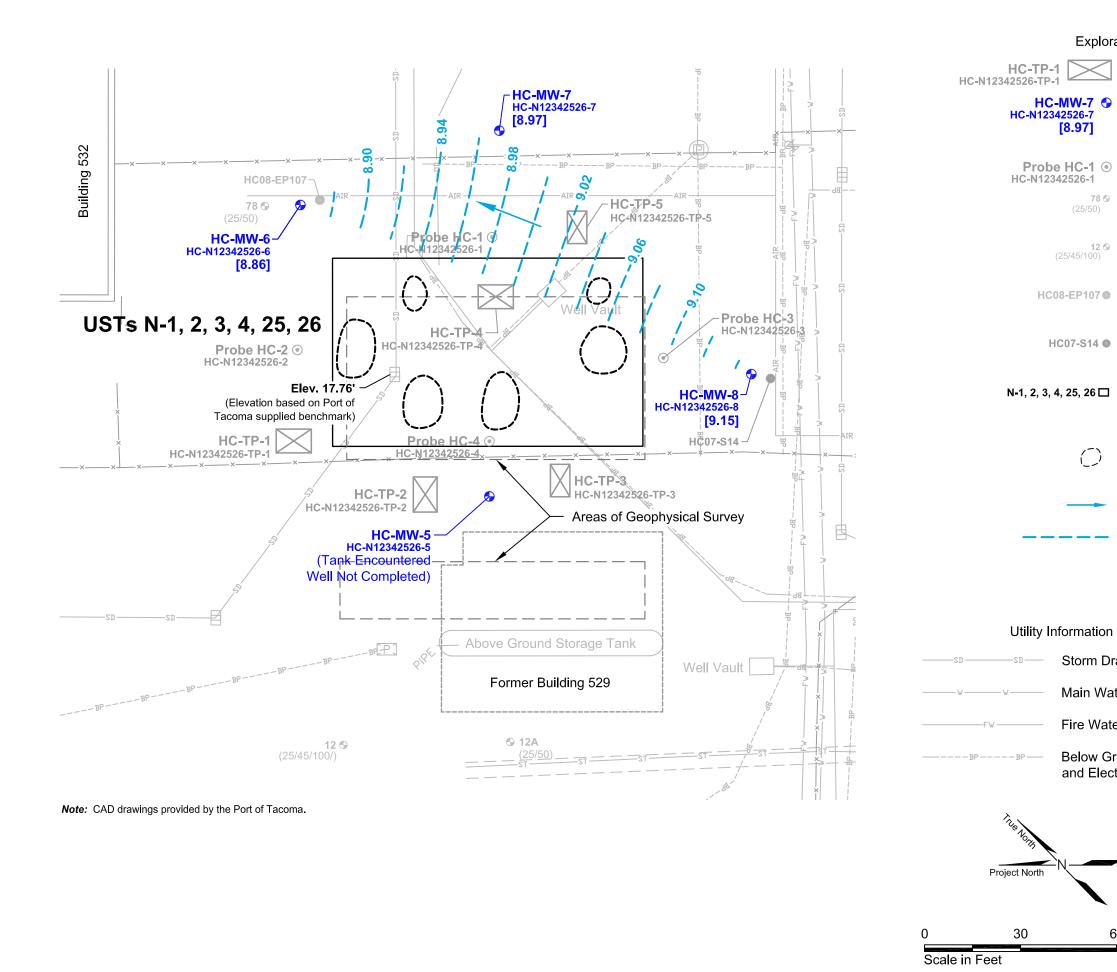

Groundwater Monitoring Well	Date Measured	Casing Elevation (ft)	Depth to Water (ft)	Groundwater Elevation (ft)
HC-MW-6	12/29/2011	17.19	8.33	8.86
HC-MW-7	12/29/2011	18.31	9.34	8.97
HC-MW-8	12/29/2011	18.06	8.91	9.15


Note:

Groundwater elevation measurements for these three wells were taken between 11:45 AM and 12:00 PM. Vertical datum = MLLW

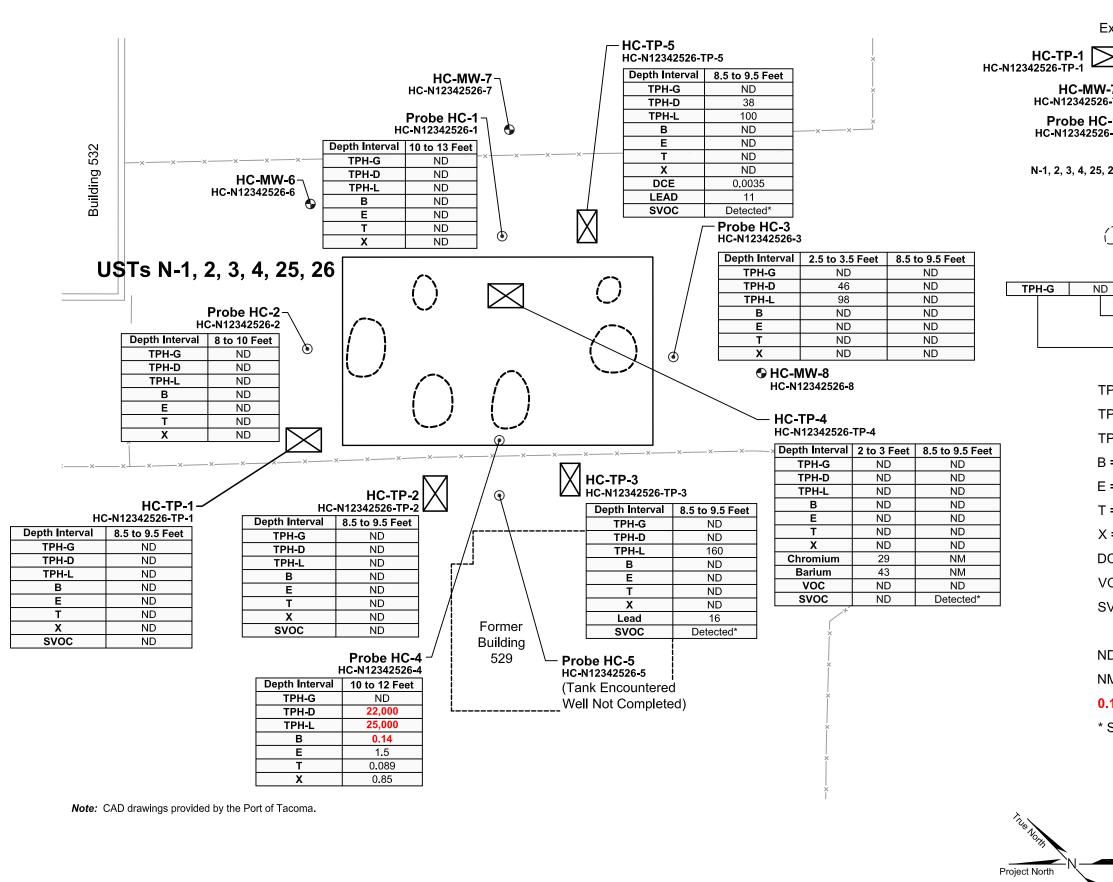
EAL 03/21/12 1758100P21-007.dwg





Explora	tion Location and Number
\triangleleft	2011 Hart Crowser Test Pit Exploration
- 7 🕤 6-7	2011 Hart Crowser Groundwater Monitoring Well (Installed with Push Probes)
; -1 ⊙ 6-1	2010 Hart Crowser Direct-Push Probe Exploration
78 🚱 5/50)	Hydraulic Monitoring Well, Installed Screen Depth in Feet (CRA 2008)
12 🚱 /100)	Hydraulic and Groundwater Monitoring Well, Installed Screen Depth in Feet (CRA 2008)
107 🔵	Environmental Probe with Groundwater and Soil Samples (Hart Crowser 2009)
S14 🌑	Historical Exploration
26 ⊏ I	Possible UST Location and Designation based on Port of Tacoma and GeoEngineers provided information
\bigcirc	Possible UST Location based on Geophysical Investigation

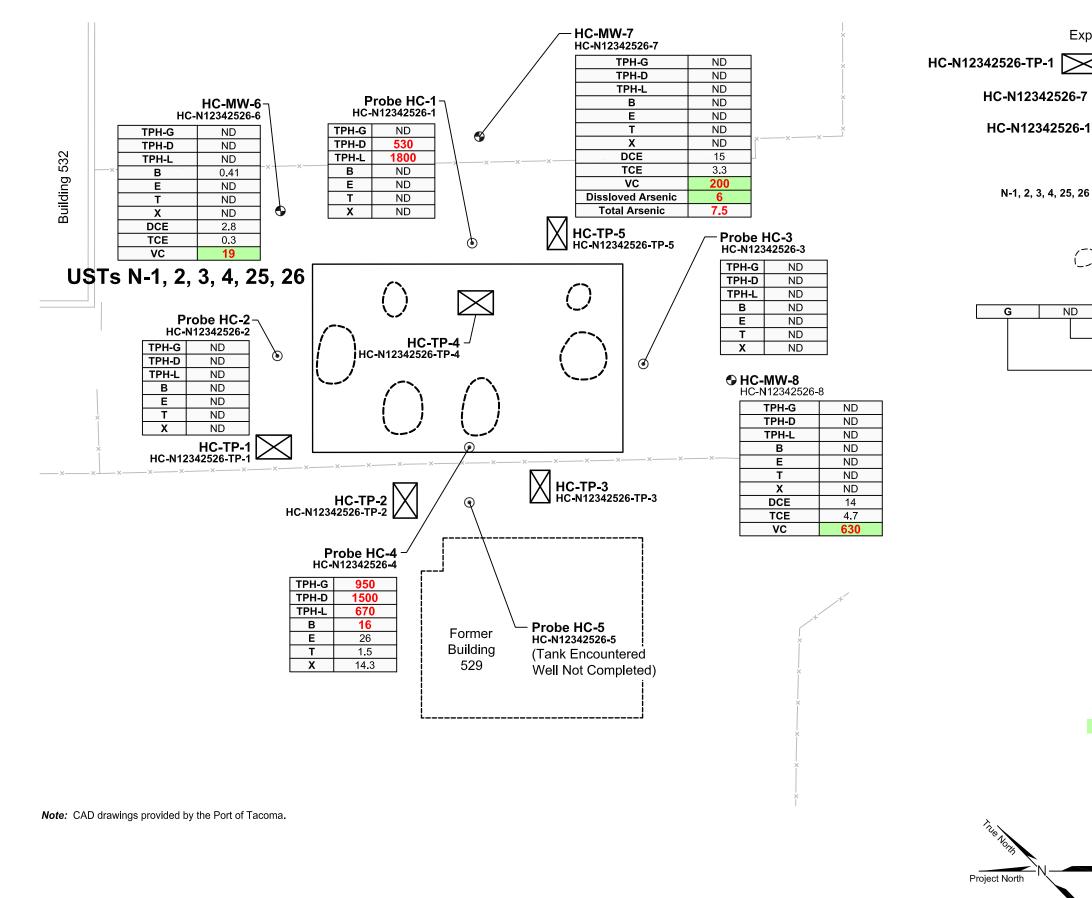
Utility Information


- Storm Drain
- Main Water Line
- Fire Water Line
- Below Ground Power and Electrical Line
- Air Line
- Oil Line
- Steam Line
- Utilidor

Exploration Location and Number

\Box	2011 Hart Crowser Test Pit Exploration								
•		2011 Hart Crowser Groundwater Monitoring Well Groundwater Elevation December 29, 2011, in Feet)							
۲	2010 Har	art Crowser Direct-Push Probe Exploration							
0	•	ic Monitoring Well, I Screen Depth in Feet (CRA 2008)							
9	-	lic and Groundwater Monitoring Well, d Screen Depth in Feet (CRA 2008)							
•		Environmental Probe with Groundwater and Soil Samples (Hart Crowser 2009)							
۲	Historical Exploration								
	Possible UST Location and Designation based on Port of Tacoma and GeoEngineers provided information								
)	Possible UST Location based on Geophysical Investigation								
	Inferred Groundwater Flow Direction								
_	Inferred Groundwater Contour								
on									
Dra	Drain — Air Li				— Air Lii	ne			
Vate	Vater Line ————————————————————————————————————				ne				
/ater	Line		ST -	ST		n Line			
Ground Power — — — — — — Utilidor ectrical Line									
	Port of Tacoma								
×	UST Remediation Program								
	December 2011 Groundwater Contour Map								
- 60		17581-0	0 Phase 2	1		3/12			
	' 					Figure			
			HART	Trows	ER	4			

0 30 Scale in Feet


xplorati	ion Location and Number	
$\overline{\langle}$	2011 Hart Crowser Test Pit Exploration	
	2011 Hart Crowser Groundwater Monitoring W	/ell
-7	-	
-1 ⊙ ⊡1	2010 Hart Crowser Direct-Push Probe Explora	ITION
	Possible UST Location and Designation based of Tacoma and GeoEngineers provided information	l on Port
	Possible UST Location based on Geophysical Investigation	
	Sampled Value in mg/kg	
	Constituent Name	
	Gasoline	
	Diesel	
	Lube Oil	
= Benz	zene	
= Ethyl	lbenzene	
= Tolue		
= Xylei	ne	
	IS 1,2,-Dichloroethene	
OC = V	olatile Organic Compounds	
VOC =	Semi-volatile Organic Compounds	
	t Detected	
	t Measured	
	old value exceeds Method A Industrial Screeni	ng Lovola
	were detected. See Table 3 for concentration	•
30008	were detected. See Table 5 for concentration	15
	Port of Tacoma UST Remediation Program	
	2010 and 2011 Soil Sample	 Data
60	17581-00 Phase 21	3/12

HARTCROWSER

Figure

5

This page is intentionally left blank for double-sided printing.

Scale in Feet

0

30

xploration L	ocation and Number									
2011	Hart Crowser Test Pit Exploration									
7 🚱 2011	11 Hart Crowser Groundwater Monitoring Well									
	Hart Crowser Direct-Push Probe Explor ndwater Grab Sample	ation								
of Ta	ible UST Location and Designation base coma and GeoEngineers ded information	ed on Port								
	ible UST Location based on physical Investigation									
—— Sam	pled Value in ug/L									
Cons	stituent Name									
TPH-G =										
TPH-D =										
TPH-L = I										
B = Benze										
E = Ethyll										
T = Tolue										
X = Xylen										
	S 1,2,-Dichloroethene									
	chloroethene									
vC = viny	/I Chloride									
ND = Not	Detected									
0.67 = Bo	Id value exceeds Method A Screening Le	evels								
	aded denotes value exceed screening c									
	protection of surface water									
	Port of Tacoma UST Remediation Program	n								
	2010 to 2011 Groundwater San	-								
60	17581-00 Phase 21	3/12 Figure								
	Li HartCrowser	6								
	i Bari anyi yen									

This page is intentionally left blank for double-sided printing.

APPENDIX A TEST PIT AND GROUNDWATER MONITORING WELL EXPLORATION LOGS This page is intentionally left blank for double-sided printing.

Key to Exploration Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on the

logs. SAND or GRAVEL Density	Standard Penetration Resistance (N in Blows/Foot		SILT or CLAY Consistency		ndard etratio istance lows/F	n Shé ∌(N) in T		
Very loose	0 to 4	Ver	y soft	0	to 2		<0.12	25
Loose	4 to 10	Sof	ťt	2	to 4	0.12	5 to	0.25
Medium dense	10 to 30	Me	dium stif	f 4	to 8	0.2	5 to	0.5
Dense	30 to 50	Stif	f	8	to 15	0.	5 to	1.0
Very dense	>50	Ver	y stiff	15	to 30	1.	0 to	2.0
		Har	d	:	>30		>2.0)
Sampling Test	Symbols							
🔀 1.5" I.D. Split S	ipoon	🕅 G	rab (Jar)		3.	0" I.D. Sp	lit Sp	oon .
Shelby Tube (F	ushed)	Z Ba	ig					
Cuttings		Co	ore Run					
	SOIL CL	ASSIF	ICATIC	N CHA	R T			
			SYM	BOLS	1	TYPIC	AL	
	DIVISIONS		GRAPH	LETTER		DESCRIP	TION	s
GRA	/EL GRA			GW		GRADED GRAV		

FINES AND GRAVELLY SOILS POORLY-GRADED GRAVELS. GRAVEL - SAND MIXTURES, LITTLE OR NO FINES (LITTLE OR NO FINES GP COARSE GRAINED GRAVELS WITH FINES SILTY GRAVELS, GRAVEL - SAND -SILT MIXTURES GM MORE THAN 50% OF COARSE FRACTION

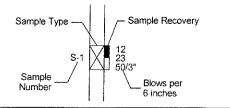
1	I FRACTION	1	Kally	1	
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML.	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE SILTS AND CLAYS		LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIC	HLY ORGANIC S	DILS	ليلير علير ا عليم ع	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

Moisture

Dry Little perceptible moisture Damp Some perceptible moisture, likely below optimum Moist Likely near optimum moisture content Wet Much perceptible moisture, likely above optimum

Minor Constituents	Estimated Percentage
Trace	<5
Slightly (clayey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 - 50

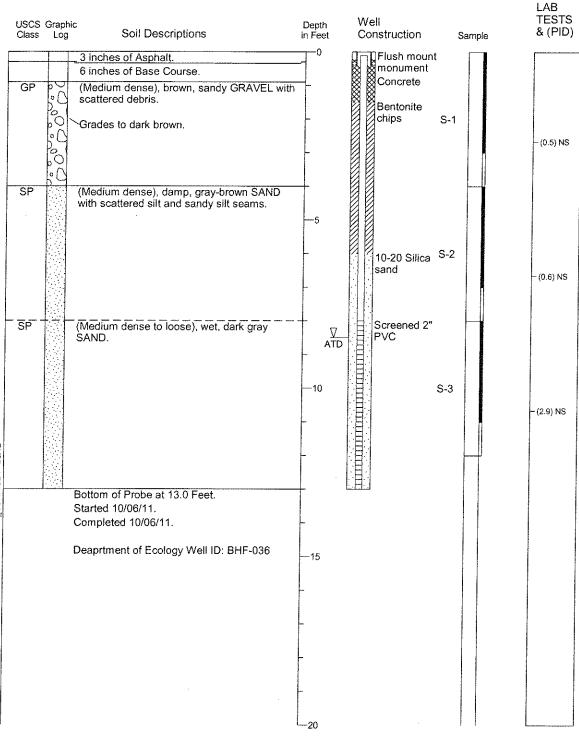
Laboratory Test Symbols


GS	Grain Size Classification
CN	Consolidation
UU	Unconsolidated Undrained Triaxial
CU	Consolidated Undrained Triaxial
CD	Consolidated Drained Triaxial
QU	Unconfined Compression
DS	Direct Shear
К	Permeability
PP	Pocket Penetrometer
	Approximate Compressive Strength in TSF
ΤV	Torvane
	Approximate Shear Strength in TSF
CBR	California Bearing Ratio
MD	Moisture Density Relationship
AL	Atterberg Limits
	Water Content in Percent
	Liquid Limit Natural Plastic Limit
PID	Photoionization Detector Reading
CA	Chemical Analysis
DT	In Situ Density in PCF
-	

OT Tests by Others

Groundwater Indicators

- Δ. Groundwater Level on Date or (ATD) At Time of Drilling
- ę Groundwater Seepage (Test Pits)



NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Push Probe Log HC-N12342526-6

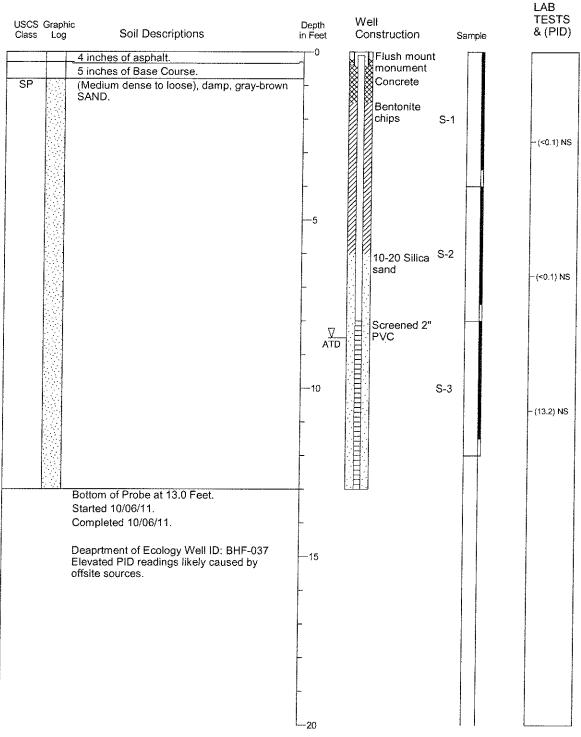
Location: N 47.2804526 E -122.4085753 Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS 1984 Vertical Datum: MLLW Top of Well Casing Elevation: 17.19 Feet Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: P. Cordell Reviewed By: C. Rust

PUSH PROBE LOG-ENV 1758100-21-PP-OCT-11.GPJ HC_CORP.GDT 1/5/12

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise


- supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated is at time of drilling (ATD) or for data specified. Level may yer
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Push Probe Log HC-N12342526-7

Location: N 47.2803827 E -122.408327 Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS 1984 Vertical Datum: MLLW Top of Well Casing Elevation: 18.31 Feet Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: P. Cordell Reviewed By: C. Rust

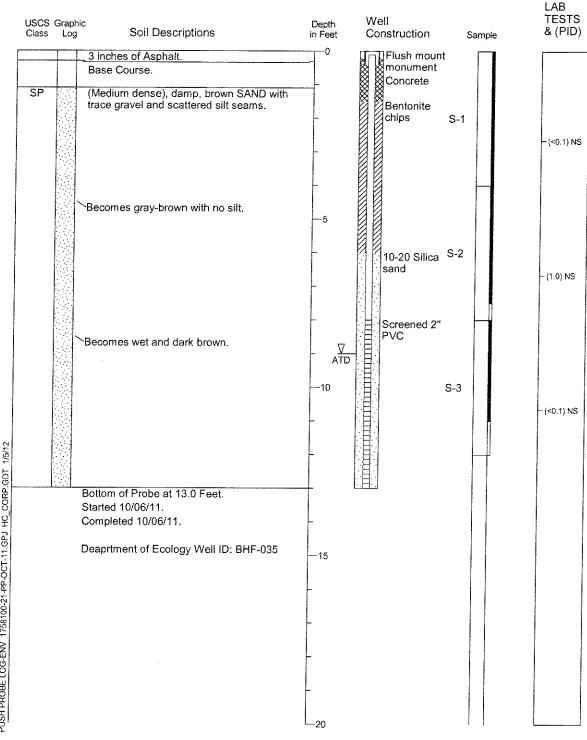
1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

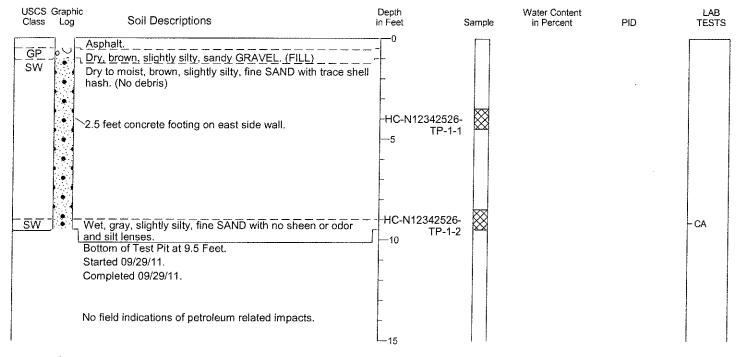

5. NS = No Sheen; SS = Slight Sheen; MS = Moderate Sheen; HS = Heavy Sheen

Push Probe Log HC-N12342526-8

Location: N 47.2800841 E -122.4083042 Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS 1984 Vertical Datum: MLLW Top of Well Casing Elevation: 18.06 Feet

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: P. Cordell Reviewed By: C. Rust

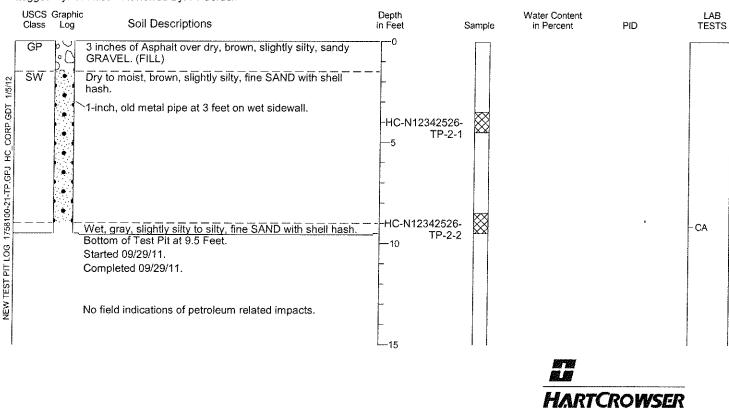
1. Refer to Figure A-1 for explanation of descriptions and symbols.


- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise
- supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time
- 5. NS = No Sheen; SS = Slight Sheen; MS = Moderate Sheen; HS = Heavy Sheen

Test Pit Log HC-N12342526-TP-1

Location: N 47.280328 E -122.408731

Approximate Ground Surface Elevation: 17.5 Feet Logged By: C. Rust Reviewed By: P. Cordell Horizontal Datum: WGS 1984 Vertical Datum: MLLW


Test Pit Log HC-N12342526-TP-2

Location: N 47.280178 E -122.408704 Approximate Ground Surface Elevation: 17.5 Feet Logged By: C. Rust Reviewed By: P. Cordell Horizontal Datum: WGS 1984 Vertical Datum: MLLW

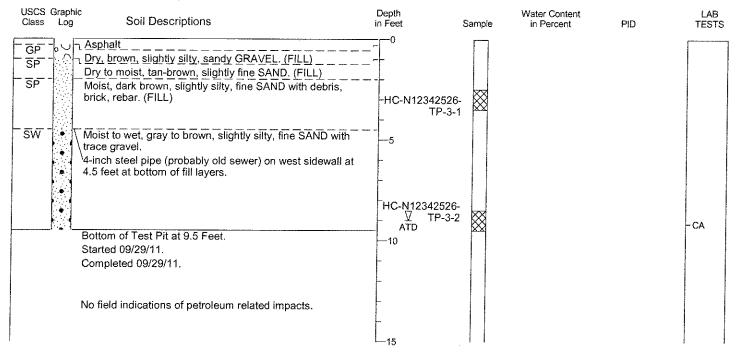
17581-00

Figure A-5

9/11

1. Refer to Figure A-1 for explanation of descriptions and symbols.

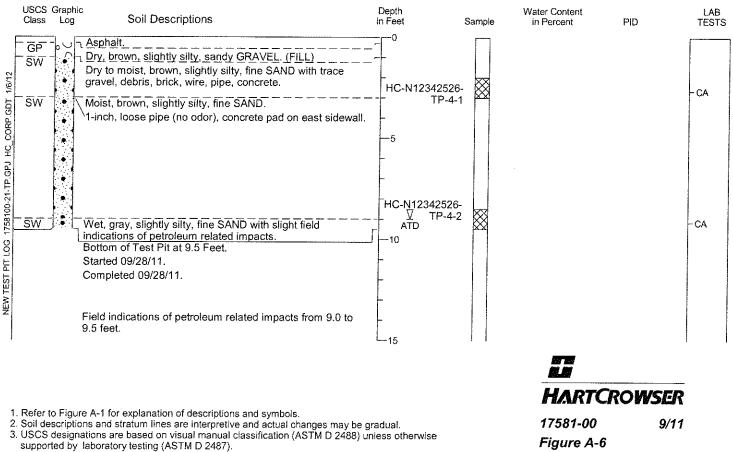
2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.


 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.

Test Pit Log HC-N12342526-TP-3

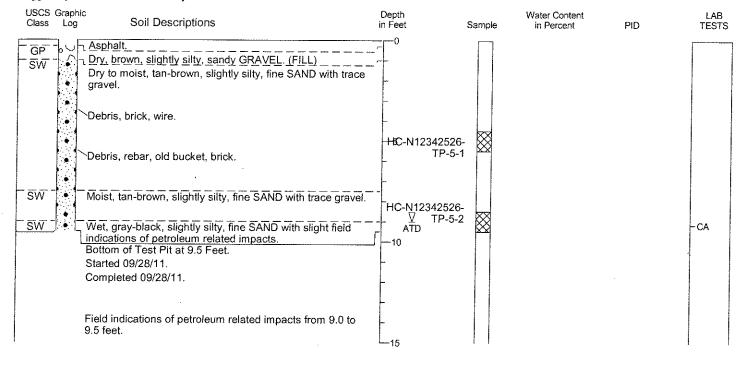
Location: N 47.280118 E -122.408528


Approximate Ground Surface Elevation: 17.5 Feet Logged By: C. Rust Reviewed By: P. Cordell Horizontal Datum: WGS 1984 Vertical Datum: MLLW

Test Pit Log HC-N12342526-TP-4

Location: N 47.280295 E -122.408437 Approximate Ground Surface Elevation: 17.5 Feet Logged By: C. Rust Reviewed By: P. Cordell

Horizontal Datum: WGS 1984 Vertical Datum: MLLW



4. Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.

Test Pit Log HC-N12342526-TP-5

Location: N 47.280279 E -122.408327 Approximate Ground Surface Elevation: 17.5 Feet Logged By: C. Rust Reviewed By: P. Cordell

Horizontal Datum: WGS 1984 Vertical Datum: MLLW

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.

This page is intentionally left blank for double-sided printing.

APPENDIX B CHEMICAL DATA QUALITY REVIEW AND LABORATORY REPORTS

This page is intentionally left blank for double-sided printing.

APPENDIX B CHEMICAL DATA QUALITY REVIEW AND LABORATORY REPORTS FOR 2011 INVESTIGATION

Chemical Data Quality Review for USTs N-1, 2, 3, 4, 5, 25, and 26

Based on field conditions observed when test pits were excavated, it was determined that the only petroleum-related impacts were observed at the zone spanning the groundwater elevation. Six soil samples were collected from test pits, one from each test pit and an additional sample collected from HC-TP-4 from 2 to 3 feet bgs on September 28 and 29, 2011. Three groundwater samples were collected on November 10, 2011. The samples were submitted to OnSite Environmental Inc., of Redmond, Washington, for chemical analysis. The sample results were reported as Laboratory Reference Nos. 1109-198, 1109-213, and 1111-082.

Six of the soil samples were analyzed for one or more of the following:

- Gasoline-range organics by Washington State Department of Ecology (Ecology) method NWTPH-Gx;
- Diesel and lube oil-range organics by Ecology method NWTPH-Dx with Acid/Silica Gel Cleanup;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Total metals (lead, arsenic, barium, cadmium, chromium, selenium, and silver) by EPA Method 6010B;
- Total mercury by EPA Method 7471A;
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D-SIM; and
- Semivolatile organic compounds (SVOCs) by EPA Method 8270D.

The water samples were analyzed for the following:

- Gasoline-range organics by Washington State Department of Ecology (Ecology) method NWTPH-Gx;
- Diesel and lube oil-range organics by Ecology method NWTPH-Dx with Acid/Silica Gel Cleanup;

- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Total metals (arsenic, cadmium, chromium, and lead) by EPA Method 200.8;
- Total mercury by EPA Method 7470A;
- Dissolved metals (arsenic, cadmium, chromium, and lead) by EPA Method 300.8;
- Dissolved mercury by EPA Method 7470A; and
- Ethylene dibromide (EDB) by EPA Method 8011.

Quality assurance/quality control (QA/QC) reviews of laboratory procedures were performed on an ongoing basis by the laboratory. Hart Crowser performed the data review, using laboratory quality control results summary sheets, to ensure they met data quality objectives for the project. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample (LCS) recoveries (when provided);
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries;
- Laboratory duplicate relative percent differences (RPDs); and
- Reporting limits (RL).

The data were determined to be acceptable for use without qualification. Full laboratory results are presented at the end of this report. Results of the data review follows.

Soil

Gasoline by NWTPH-Gx

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

Diesel and Lube Oil by NWTPH-Dx

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within

method control limits. Laboratory duplicate RPDs were within control limits or not applicable when the sample and duplicate were non-detect.

VOCs by EPA 8260B

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits.

Total Metals by EPA 6010B

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. MS recoveries were within method control limits.

Laboratory duplicate RPDs were within method control limits with the following exception:

The laboratory duplicate RPD for lead exceeded the method control limits. As the sample and duplicate results were less than five times the reporting limits, sample results were not qualified.

Total Mercury by EPA 7471A

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. MS recoveries were within method control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

PAHs by EPA 8270D-SIM

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits.

SVOCs by EPA 8270D

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate and MS recoveries were within laboratory control limits.

Percent Moisture

The required holding times were met.

Water

Gasoline by NWTPH-Gx

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

Diesel and Lube Oil by NWTPH-Dx

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within method control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

VOCs by EPA 8260B

The required holding times were met. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits.

Samples HC-N12342526-8 and HC-N12342526-7 were analyzed at dilutions due to high levels of target analytes. Reporting limits were elevated due to sample dilutions.

Total Metals by EPA 200.8

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. MS recoveries were within method control limits. The laboratory duplicate RPD fell within method control limits or was not applicable when the sample and duplicate were non-detect.

Total Mercury by EPA 7470A

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. MS recoveries were within method control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

Dissolved Metals by EPA 200.8

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. MS recoveries were within method control limits. The laboratory duplicate RPD fell within method control limits or was not applicable when the sample and duplicate were non-detect.

Dissolved Mercury by EPA 7470A

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. MS recoveries were within method control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

EDB by EPA 8011

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits.

L:\Jobs\1758100\Phase 21 N-1,2,3,4,25,26\Summary Report\Addendum\Final\UST N-12342526 Summary Report Addendum.doc

This page is intentionally left blank for double-sided printing.

LABORATORY REPORTS

This page is intentionally left blank for double-sided printing.

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 13, 2011

Ross Stainsby Hart Crowser, Inc. 1700 Westlake Avenue North, Suite 200 Seattle, WA 98109-3056

Re: Analytical Data for Project 17581-00 21 Laboratory Reference No. 1109-198

Dear Ross:

Enclosed are the analytical results and associated quality control data for samples submitted on September 29, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 13, 2011 Samples Submitted: September 29, 2011 Laboratory Reference: 1109-198 Project: 17581-00 21

Case Narrative

Samples were collected on September 28, 2011 and received by the laboratory on September 29, 2011. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx and Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-4-1					
Laboratory ID:	09-198-01					
Gasoline	ND	5.8	NWTPH-Gx	10-3-11	10-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	68-124				
Client ID:	HC-N12342526-TP-4-2					
Laboratory ID:	09-198-02					
Gasoline	ND	6.6	NWTPH-Gx	10-3-11	10-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	68-124				
Client ID:	HC-N12342526-TP-5-2					
Laboratory ID:	09-198-04					
Gasoline	ND	6.5	NWTPH-Gx	10-3-11	10-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Date	Date	•	
Analyte	Result	PQL	Method		Prepared	Analyzed		Flags
METHOD BLANK								
Laboratory ID:	MB1003S2							
Gasoline	ND	5.0	NWT	「PH-Gx	10-3-11	10-3-1	1	
Surrogate:	Percent Recovery	Control Limit	ts					
Fluorobenzene	103	68-124						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09-212-04							

	ORIG	DUP								
Gasoline	ND	ND	NA	NA	Ν	IA	NA	NA	30	
Surrogate: Fluorobenzene					95	97	68-124			

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

• • •	.	501		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-4-1					
Laboratory ID:	09-198-01					
Diesel Range Organics	ND	27	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	54	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	HC-N12342526-TP-4-2					
Laboratory ID:	09-198-02					
Diesel Range Organics	ND	30	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	59	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	HC-N12342526-TP-5-2					
Laboratory ID:	09-198-04					
Diesel Range Organics	38	30	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil	100	59	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				

5

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Dat	е	
Analyte	Result	PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK							
Laboratory ID:	MB1006S3						
Diesel Range Organics	ND	25	NWTPH-Dx	10-6-11	10-6-	11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-6-11	10-6-	·11	
Surrogate:	Percent Recove	ry Control Limits					
o-Terphenyl	99	50-150					
			Percent	Recovery		RPD	
Analyte	Resul	t	Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	09-198-	01					
	ORIG [OUP					
Diesel Range Organics	ND	ND			NA	NA	
Lube Oil Range Organics	ND	ND			NA	NA	
Surrogate:							
o-Terphenyl			109 113	3 50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-4-1					
Laboratory ID:	09-198-01					
Dichlorodifluoromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloromethane	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Vinyl Chloride	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromomethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloroethane	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Trichlorofluoromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Acetone	ND	0.0056	EPA 8260	10-4-11	10-4-11	
lodomethane	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Carbon Disulfide	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methylene Chloride	ND	0.0056	EPA 8260	10-4-11	10-4-11	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Vinyl Acetate	ND	0.0056	EPA 8260	10-4-11	10-4-11	
2,2-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Butanone	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Bromochloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloroform	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Carbon Tetrachloride	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloropropene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Benzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Trichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Dibromomethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromodichloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Chloroethyl Vinyl Ether	ND	0.0056	EPA 8260	10-4-11	10-4-11	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methyl Isobutyl Ketone	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Toluene	ND	0.0056	EPA 8260	10-4-11	10-4-11	
(trans) 1,3-Dichloropropen		0.0011	EPA 8260	10-4-11	10-4-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1,2,3-Trichlorobenzene

Dibromofluoromethane

4-Bromofluorobenzene

Surrogate:

Toluene-d8

	D	501		Date	Date	_
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-4-1					
Laboratory ID:	09-198-01	0.0044	ED4 0000	40.4.44	40.4.44	
1,1,2-Trichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Tetrachloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Hexanone	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Dibromochloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Ethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
m,p-Xylene	ND	0.0022	EPA 8260	10-4-11	10-4-11	
o-Xylene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Styrene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromoform	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Isopropylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
n-Propylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Chlorotoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
4-Chlorotoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
tert-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
sec-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
p-Isopropyltoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
n-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dibromo-3-chloropropane	e ND	0.0056	EPA 8260	10-4-11	10-4-11	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Hexachlorobutadiene	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Naphthalene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
- T						

VOLATILES by EPA 8260B page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

0.0011

Control Limits

63-127

65-129

55-121

EPA 8260

10-4-11

10-4-11

ND

74

91

96

Percent Recovery

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

onits. hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-4-2					
Laboratory ID:	09-198-02					
Dichlorodifluoromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloromethane	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Vinyl Chloride	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromomethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloroethane	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Trichlorofluoromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Acetone	ND	0.0056	EPA 8260	10-4-11	10-4-11	
lodomethane	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Carbon Disulfide	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methylene Chloride	ND	0.0056	EPA 8260	10-4-11	10-4-11	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Vinyl Acetate	ND	0.0056	EPA 8260	10-4-11	10-4-11	
2,2-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Butanone	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Bromochloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloroform	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Carbon Tetrachloride	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloropropene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Benzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Trichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Dibromomethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromodichloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Chloroethyl Vinyl Ether	ND	0.0056	EPA 8260	10-4-11	10-4-11	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methyl Isobutyl Ketone	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Toluene	ND	0.0056	EPA 8260	10-4-11	10-4-11	
(trans) 1,3-Dichloropropen		0.0011	EPA 8260	10-4-11	10-4-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4-Bromofluorobenzene

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-4-2					
Laboratory ID:	09-198-02					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Tetrachloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Hexanone	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Dibromochloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Ethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
m,p-Xylene	ND	0.0022	EPA 8260	10-4-11	10-4-11	
o-Xylene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Styrene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromoform	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Isopropylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
n-Propylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Chlorotoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
4-Chlorotoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
tert-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
sec-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
p-Isopropyltoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
n-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dibromo-3-chloropropane	e ND	0.0056	EPA 8260	10-4-11	10-4-11	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Hexachlorobutadiene	ND	0.0056	EPA 8260	10-4-11	10-4-11	
Naphthalene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	76	63-127				
Toluene-d8	93	65-129				
1 Due we offere we have a set	00	FF 404				

VOLATILES by EPA 8260B page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

96

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-5-2					
Laboratory ID:	09-198-04					
Dichlorodifluoromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloromethane	ND	0.0057	EPA 8260	10-4-11	10-4-11	
Vinyl Chloride	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromomethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloroethane	ND	0.0057	EPA 8260	10-4-11	10-4-11	
Trichlorofluoromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Acetone	0.020	0.0057	EPA 8260	10-4-11	10-4-11	
lodomethane	ND	0.0057	EPA 8260	10-4-11	10-4-11	
Carbon Disulfide	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methylene Chloride	ND	0.0057	EPA 8260	10-4-11	10-4-11	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Vinyl Acetate	ND	0.0057	EPA 8260	10-4-11	10-4-11	
2,2-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
(cis) 1,2-Dichloroethene	0.0035	0.0011	EPA 8260	10-4-11	10-4-11	
2-Butanone	ND	0.0057	EPA 8260	10-4-11	10-4-11	
Bromochloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chloroform	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Carbon Tetrachloride	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1-Dichloropropene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Benzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Trichloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Dibromomethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromodichloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Chloroethyl Vinyl Ether	ND	0.0057	EPA 8260	10-4-11	10-4-11	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Methyl Isobutyl Ketone	ND	0.0057	EPA 8260	10-4-11	10-4-11	
Toluene	ND	0.0057	EPA 8260	10-4-11	10-4-11	
(trans) 1,3-Dichloropropene	e ND	0.0011	EPA 8260	10-4-11	10-4-11	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-5-2					
Laboratory ID:	09-198-04					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Tetrachloroethene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3-Dichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Hexanone	ND	0.0057	EPA 8260	10-4-11	10-4-11	
Dibromochloromethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Chlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Ethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
m,p-Xylene	ND	0.0023	EPA 8260	10-4-11	10-4-11	
o-Xylene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Styrene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromoform	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Isopropylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Bromobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
n-Propylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
2-Chlorotoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
4-Chlorotoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
tert-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
sec-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
p-Isopropyltoluene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
n-Butylbenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dibromo-3-chloropropane	e ND	0.0057	EPA 8260	10-4-11	10-4-11	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Hexachlorobutadiene	ND	0.0057	EPA 8260	10-4-11	10-4-11	
Naphthalene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	72	63-127				
Toluene-d8	85	65-129				
4-Bromofluorobenzene	94	55-121				
	01	00 IL I				

VOLATILES by EPA 8260B page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Dato

Dato

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

Analyta	Desult	DOI	Mathad	Date	Date	Flore
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1004S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Chloromethane	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Bromomethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Chloroethane	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Acetone	ND	0.0050	EPA 8260	10-4-11	10-4-11	
lodomethane	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Carbon Disulfide	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Methylene Chloride	ND	0.0050	EPA 8260	10-4-11	10-4-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Vinyl Acetate	ND	0.0050	EPA 8260	10-4-11	10-4-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
2-Butanone	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Chloroform	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Benzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Trichloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Dibromomethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Bromodichloromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260	10-4-11	10-4-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Toluene	ND	0.0050	EPA 8260	10-4-11	10-4-11	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260	10-4-11	10-4-11	

13

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1004S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
2-Hexanone	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Ethylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
m,p-Xylene	ND	0.0020	EPA 8260	10-4-11	10-4-11	
o-Xylene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Styrene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Bromoform	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Isopropylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Bromobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
n-Propylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
p-lsopropyltoluene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
n-Butylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dibromo-3-chloropropane		0.0050	EPA 8260	10-4-11	10-4-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Naphthalene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	74	63-127				
Toluene-d8	87	65-129				
4-Bromofluorobenzene	97	55-121				
	31	55-121				

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10)04S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0482	0.0548	0.0500	0.0500	96	110	70-130	13	19	
Benzene	0.0416	0.0426	0.0500	0.0500	83	85	70-125	2	15	
Trichloroethene	0.0453	0.0472	0.0500	0.0500	91	94	70-122	4	14	
Toluene	0.0458	0.0439	0.0500	0.0500	92	88	73-120	4	16	
Chlorobenzene	0.0521	0.0490	0.0500	0.0500	104	98	74-109	6	12	
Surrogate:										
Dibromofluoromethane)				69	79	63-127			
Toluene-d8					80	81	65-129			
4-Bromofluorobenzene	9				90	87	55-121			

TOTAL LEAD EPA 6010B

Matrix: Units:	Soil mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-198-02					
Client ID:	HC-N12342526-TP-4-2					
Lead	ND	5.9	6010B	10-6-11	10-6-11	
Lab ID:	09-198-04					
Client ID:	HC-N12342526-TP-5-2					
Lead	11	5.9	6010B	10-6-11	10-6-11	

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	10-6-11 10-6-11		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID:	MB1006S2		
Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	10-6-11
Date Analyzed:	10-6-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-213-06

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	15.3	19.1	22	5.0	С

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	10-6-11
Date Analyzed:	10-6-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-213-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	270	102	277	105	3	

19

SEMIVOLATILES by EPA 8270D/SIM page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	HC-N12342526-TP-4-1	FUL	Method	Flepaleu	Analyzeu	Flays
Laboratory ID:	09-198-01					
-Aboratory ID. n-Nitrosodimethylamine	<u>ND</u>	0.036	EPA 8270	10-5-11	10-6-11	
Pyridine	ND	0.030	EPA 8270	10-5-11	10-6-11	
Phenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
Aniline	ND	0.036	EPA 8270	10-5-11	10-6-11	
bis(2-Chloroethyl)ether	ND	0.036	EPA 8270	10-5-11	10-6-11	
2-Chlorophenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
1,3-Dichlorobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
1,4-Dichlorobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
Benzyl alcohol	ND	0.036	EPA 8270	10-5-11	10-6-11	
1,2-Dichlorobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
2-Methylphenol (o-Cresol)	ND	0.036	EPA 8270	10-5-11	10-6-11	
bis(2-Chloroisopropyl)ether	ND	0.036	EPA 8270	10-5-11	10-6-11	
(3+4)-Methylphenol (m,p-Creso		0.036	EPA 8270	10-5-11	10-6-11	
n-Nitroso-di-n-propylamine	ND ND	0.036	EPA 8270	10-5-11	10-6-11	
Hexachloroethane	ND	0.036	EPA 8270	10-5-11	10-6-11	
Nitrobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
sophorone	ND	0.036	EPA 8270	10-5-11	10-6-11	
2-Nitrophenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
2,4-Dimethylphenol	ND	0.36	EPA 8270	10-5-11	10-6-11	
bis(2-Chloroethoxy)methane		0.036	EPA 8270	10-5-11	10-6-11	
2,4-Dichlorophenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
1,2,4-Trichlorobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
Naphthalene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
4-Chloroaniline	ND	0.036	EPA 8270	10-5-11	10-6-11	
Hexachlorobutadiene	ND	0.036	EPA 8270	10-5-11	10-6-11	
4-Chloro-3-methylphenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
2-Methylnaphthalene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
I-Methylnaphthalene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Hexachlorocyclopentadiene	ND	0.036	EPA 8270	10-5-11	10-6-11	
2,4,6-Trichlorophenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
2,3-Dichloroaniline	ND	0.036	EPA 8270	10-5-11	10-6-11	
2,4,5-Trichlorophenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
2-Chloronaphthalene	ND	0.036	EPA 8270	10-5-11	10-6-11	
2-Nitroaniline	ND	0.036	EPA 8270	10-5-11	10-6-11	
1,4-Dinitrobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
Dimethylphthalate	ND	0.036	EPA 8270	10-5-11	10-6-11	
1,3-Dinitrobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
2,6-Dinitrotoluene	ND	0.036	EPA 8270	10-5-11	10-6-11	
1,2-Dinitrobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
Acenaphthylene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
3-Nitroaniline	ND	0.036	EPA 8270	10-5-11	10-6-11	

20

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-4-1					
Laboratory ID:	09-198-01					
2,4-Dinitrophenol	ND	0.18	EPA 8270	10-5-11	10-6-11	
Acenaphthene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
4-Nitrophenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
2,4-Dinitrotoluene	ND	0.036	EPA 8270	10-5-11	10-6-11	
Dibenzofuran	ND	0.036	EPA 8270	10-5-11	10-6-11	
2,3,5,6-Tetrachlorophenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
2,3,4,6-Tetrachlorophenol	ND	0.036	EPA 8270	10-5-11	10-6-11	
Diethylphthalate	ND	0.18	EPA 8270	10-5-11	10-6-11	
4-Chlorophenyl-phenylethe	r ND	0.036	EPA 8270	10-5-11	10-6-11	
4-Nitroaniline	ND	0.036	EPA 8270	10-5-11	10-6-11	
Fluorene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
4,6-Dinitro-2-methylphenol	ND	0.18	EPA 8270	10-5-11	10-6-11	
n-Nitrosodiphenylamine	ND	0.036	EPA 8270	10-5-11	10-6-11	
1,2-Diphenylhydrazine	ND	0.036	EPA 8270	10-5-11	10-6-11	
4-Bromophenyl-phenylethe	r ND	0.036	EPA 8270	10-5-11	10-6-11	
Hexachlorobenzene	ND	0.036	EPA 8270	10-5-11	10-6-11	
Pentachlorophenol	ND	0.18	EPA 8270	10-5-11	10-6-11	
Phenanthrene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Anthracene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Carbazole	ND	0.036	EPA 8270	10-5-11	10-6-11	
Di-n-butylphthalate	ND	0.36	EPA 8270	10-5-11	10-6-11	
Fluoranthene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Benzidine	ND	0.36	EPA 8270	10-5-11	10-6-11	
Pyrene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Butylbenzylphthalate	ND	0.36	EPA 8270	10-5-11	10-6-11	
bis-2-Ethylhexyladipate	ND	0.036	EPA 8270	10-5-11	10-6-11	
3,3'-Dichlorobenzidine	ND	0.36	EPA 8270	10-5-11	10-6-11	
Benzo[a]anthracene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Chrysene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
bis(2-Ethylhexyl)phthalate	ND	0.18	EPA 8270	10-5-11	10-6-11	
Di-n-octylphthalate	ND	0.036	EPA 8270	10-5-11	10-6-11	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Benzo(j,k)fluoranthene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[a]pyrene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Indeno[1,2,3-cd]pyrene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[g,h,i]perylene	ND	0.0072	EPA 8270/SIM	10-5-11	10-6-11	

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Control Limits

30 - 97

40 - 104

35 - 102

44 - 97

41 - 110

53 - 107

Percent Recovery

75

81

79

76

79

84

Surrogate: 2-Fluorophenol

Phenol-d6 Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/Kg

A 1		501		Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1005S2					
n-Nitrosodimethylamine	ND	0.033	EPA 8270	10-5-11	10-5-11	
Pyridine	ND	0.33	EPA 8270	10-5-11	10-5-11	
Phenol	ND	0.033	EPA 8270	10-5-11	10-5-11	
Aniline	ND	0.033	EPA 8270	10-5-11	10-5-11	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	10-5-11	10-5-11	
2-Chlorophenol	ND	0.033	EPA 8270	10-5-11	10-5-11	
1,3-Dichlorobenzene	ND	0.033	EPA 8270	10-5-11	10-5-11	
1,4-Dichlorobenzene	ND	0.033	EPA 8270	10-5-11	10-5-11	
Benzyl alcohol	ND	0.033	EPA 8270	10-5-11	10-5-11	
1,2-Dichlorobenzene	ND	0.033	EPA 8270	10-5-11	10-5-11	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	10-5-11	10-5-11	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270	10-5-11	10-5-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	10-5-11	10-5-11	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	10-5-11	10-5-11	
Hexachloroethane	ND	0.033	EPA 8270	10-5-11	10-5-11	
Nitrobenzene	ND	0.033	EPA 8270	10-5-11	10-5-11	
sophorone	ND	0.033	EPA 8270	10-5-11	10-5-11	
2-Nitrophenol	ND	0.033	EPA 8270	10-5-11	10-5-11	
2,4-Dimethylphenol	ND	0.33	EPA 8270	10-5-11	10-5-11	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	10-5-11	10-5-11	
2,4-Dichlorophenol	ND	0.033	EPA 8270	10-5-11	10-5-11	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	10-5-11	10-5-11	
Naphthalene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
4-Chloroaniline	ND	0.0007	EPA 8270/310	10-5-11	10-5-11	
Hexachlorobutadiene	ND	0.033	EPA 8270	10-5-11	10-5-11	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	10-5-11	10-5-11	
2-Methylnaphthalene	ND	0.0055	EPA 8270/SIM	10-5-11	10-6-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Hexachlorocyclopentadiene	ND	0.0087	EPA 8270/Silvi EPA 8270	10-5-11	10-5-11	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270 EPA 8270	10-5-11	10-5-11	
2,4,6-michlorophenol	ND	0.033	EPA 8270 EPA 8270	10-5-11	10-5-11	
2,3-Dichlorophenol	ND	0.033	EPA 8270 EPA 8270	10-5-11	10-5-11	
2,4,5-michiorophenol 2-Chloronaphthalene	ND	0.033	EPA 8270 EPA 8270	10-5-11	10-5-11	
2-Onioronaprilinaiene	ND	0.033	EPA 8270 EPA 8270	10-5-11	10-5-11	
	ND	0.033	EPA 8270 EPA 8270	10-5-11	10-5-11	
1,4-Dinitrobenzene	ND	0.033		10-5-11		
Dimethylphthalate	ND		EPA 8270		10-5-11	
1,3-Dinitrobenzene		0.033	EPA 8270	10-5-11	10-5-11	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	10-5-11	10-5-11	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	10-5-11	10-5-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
3-Nitroaniline	ND	0.033	EPA 8270	10-5-11	10-5-11	

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyto	Nooun	· ~~	metriou	Ticparcu	Analyzeu	1 1495
Laboratory ID:	MB1005S2					
2,4-Dinitrophenol	ND	0.17	EPA 8270	10-5-11	10-5-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
4-Nitrophenol	ND	0.033	EPA 8270	10-5-11	10-5-11	
2,4-Dinitrotoluene	ND	0.033	EPA 8270	10-5-11	10-5-11	
Dibenzofuran	ND	0.033	EPA 8270	10-5-11	10-5-11	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270	10-5-11	10-5-11	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270	10-5-11	10-5-11	
Diethylphthalate	ND	0.17	EPA 8270	10-5-11	10-5-11	
4-Chlorophenyl-phenylether	ND	0.033	EPA 8270	10-5-11	10-5-11	
4-Nitroaniline	ND	0.033	EPA 8270	10-5-11	10-5-11	
Fluorene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270	10-5-11	10-5-11	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270	10-5-11	10-5-11	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270	10-5-11	10-5-11	
4-Bromophenyl-phenylether		0.033	EPA 8270	10-5-11	10-5-11	
Hexachlorobenzene	ND	0.033	EPA 8270	10-5-11	10-5-11	
Pentachlorophenol	ND	0.17	EPA 8270	10-5-11	10-5-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Carbazole	ND	0.033	EPA 8270	10-5-11	10-5-11	
Di-n-butylphthalate	ND	0.33	EPA 8270	10-5-11	10-5-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Benzidine	ND	0.33	EPA 8270	10-5-11	10-5-11	
Pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Butylbenzylphthalate	ND	0.33	EPA 8270	10-5-11	10-5-11	
bis-2-Ethylhexyladipate	ND	0.033	EPA 8270	10-5-11	10-5-11	
3,3'-Dichlorobenzidine	ND	0.33	EPA 8270	10-5-11	10-5-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Chrysene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270	10-5-11	10-5-11	
Di-n-octylphthalate	ND	0.033	EPA 8270	10-5-11	10-5-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits		10 0-11	10 0-11	
2-Fluorophenol	56	30 - 97				
Phenol-d6	63	30 - 97 40 - 104				
Nitrobenzene-d5	61	40 - 104 35 - 102				
2-Fluorobiphenyl	56	44 - 97				
2,4,6-Tribromophenol	57	44 - 97 41 - 110				
Terphenyl-d14	76	53 - 107				
i eipiieiiyi-u i 4	70	55-107				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SEMIVOLATILES by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-0	03-04									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	0.862	0.922	1.33	1.33	ND	65	69	41 - 106	7	29	
2-Chlorophenol	0.890	0.989	1.33	1.33	ND	67	74	43 - 104	11	36	
1,4-Dichlorobenzene	0.381	0.437	0.667	0.667	ND	57	66	25 - 94	14	40	
n-Nitroso-di-n-propylamine	0.487	0.512	0.667	0.667	ND	73	77	40 - 100	5	34	
1,2,4-Trichlorobenzene	0.386	0.420	0.667	0.667	ND	58	63	39 - 86	8	34	
4-Chloro-3-methylphenol	1.10	1.08	1.33	1.33	ND	83	81	60 - 102	2	25	
Acenaphthene	0.533	0.537	0.667	0.667	ND	80	81	54 - 94	1	23	
4-Nitrophenol	1.18	1.18	1.33	1.33	ND	89	89	30 - 133	0	25	
2,4-Dinitrotoluene	0.568	0.578	0.667	0.667	ND	85	87	46 - 107	2	26	
Pentachlorophenol	1.16	1.04	1.33	1.33	ND	87	78	54 - 111	11	29	
Pyrene	0.616	0.611	0.667	0.667	0.150	70	69	54 - 108	1	21	
Surrogate:											
2-Fluorophenol						56	63	30 - 97			
Phenol-d6						64	67	40 - 104			
Nitrobenzene-d5						62	69	35 - 102			
2-Fluorobiphenyl						71	70	44 - 97			
2,4,6-Tribromophenol						74	72	41 - 110			
Terphenyl-d14						78	77	53 - 107			

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil					
Units:	mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-198-01 HC-N12342526-TP-4-1					
Arsenic	ND	11	6010B	10-7-11	10-11-11	
Barium	43	2.7	6010B	10-7-11	10-11-11	
Cadmium	ND	0.54	6010B	10-7-11	10-11-11	
Chromium	29	0.54	6010B	10-7-11	10-11-11	
Lead	ND	5.4	6010B	10-7-11	10-11-11	
Mercury	ND	0.27	7471A	10-5-11	10-5-11	
Selenium	ND	11	6010B	10-7-11	10-11-11	
Silver	ND	0.54	6010B	10-7-11	10-11-11	

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	10-7-11
Date Analyzed:	10-11-11
Matrix:	Soil
Units:	mg/kg (ppm)
Lab ID:	MB1007S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	10-5-11 10-5-11		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID:	MB1005S2		
Analyte	Method	Result	PQL
Mercury	7471A	ND	0.25

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	10-7-11
Date Analyzed:	10-11-11

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-198-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Analyte	Result	Result	N D		T lags
Arsenic	ND	ND	NA	10	
Barium	39.7	43.8	10	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	27.0	25.1	7	0.50	
Lead	ND	ND	NA	5.0	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted:10-5-11Date Analyzed:10-5-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-003-04

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.25	

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	10-7-11
Date Analyzed:	10-11-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-198-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	95.1	95	94.1	94	1	ge
Barium	100	143	104	138	98	4	
Cadmium	50.0	49.0	98	48.4	97	1	
Chromium	100	119	92	114	87	4	
Lead	250	247	99	244	97	1	
Selenium	100	92.9	93	91.2	91	2	
Silver	25.0	21.9	88	21.4	86	2	

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted:	10-5-11
Date Analyzed:	10-5-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-003-04

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.500	0.430	86	0.442	88	3	

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-4-2					
Laboratory ID:	09-198-02					
Naphthalene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
2-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
1-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Acenaphthylene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Acenaphthene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Fluorene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Phenanthrene	0.015	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Anthracene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Fluoranthene	0.019	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Pyrene	0.026	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[a]anthracene	0.012	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Chrysene	0.014	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[b]fluoranthene	0.010	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo(j,k)fluoranthene	0.0080	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[a]pyrene	0.012	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[g,h,i]perylene	0.015	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	43 - 109				
Pyrene-d10	97	38 - 128				
Terphenyl-d14	90	33 - 119				

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-5-2					
Laboratory ID:	09-198-04					
Naphthalene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
2-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
1-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Acenaphthylene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Acenaphthene	0.011	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Fluorene	0.0079	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Phenanthrene	0.034	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Anthracene	0.018	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Fluoranthene	0.063	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Pyrene	0.13	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[a]anthracene	0.043	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Chrysene	0.061	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[b]fluoranthene	0.030	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo(j,k)fluoranthene	0.024	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[a]pyrene	0.039	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Indeno(1,2,3-c,d)pyrene	0.017	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[g,h,i]perylene	0.027	0.0079	EPA 8270/SIM	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	100	43 - 109				
Pyrene-d10	98	38 - 128				
Terphenyl-d14	92	33 - 119				

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1005S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Fluorene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Chrysene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	43 - 109				
Pyrene-d10	83	38 - 128				
Terphenyl-d14	90	33 - 119				

34

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

	Percent		cent	Recovery		RPD				
Analyte	Re	sult	Spike	Level	Rece	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	05S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0648	0.0647	0.0833	0.0833	78	78	43 - 108	0	27	
Acenaphthylene	0.0732	0.0744	0.0833	0.0833	88	89	52 - 120	2	21	
Acenaphthene	0.0731	0.0743	0.0833	0.0833	88	89	59 - 113	2	17	
Fluorene	0.0739	0.0768	0.0833	0.0833	89	92	64 - 117	4	14	
Phenanthrene	0.0759	0.0795	0.0833	0.0833	91	95	67 - 112	5	12	
Anthracene	0.0696	0.0739	0.0833	0.0833	84	89	59 - 110	6	16	
Fluoranthene	0.0854	0.0883	0.0833	0.0833	103	106	68 - 120	3	15	
Pyrene	0.0830	0.0857	0.0833	0.0833	100	103	66 - 121	3	17	
Benzo[a]anthracene	0.0741	0.0762	0.0833	0.0833	89	91	63 - 114	3	12	
Chrysene	0.0794	0.0812	0.0833	0.0833	95	97	67 - 118	2	12	
Benzo[b]fluoranthene	0.0793	0.0829	0.0833	0.0833	95	100	58 - 125	4	20	
Benzo(j,k)fluoranthene	0.0782	0.0830	0.0833	0.0833	94	100	42 - 134	6	26	
Benzo[a]pyrene	0.0611	0.0671	0.0833	0.0833	73	81	55 - 111	9	19	
Indeno(1,2,3-c,d)pyrene	0.0759	0.0781	0.0833	0.0833	91	94	60 - 125	3	20	
Dibenz[a,h]anthracene	0.0774	0.0792	0.0833	0.0833	93	95	62 - 125	2	19	
Benzo[g,h,i]perylene	0.0768	0.0803	0.0833	0.0833	92	96	61 - 124	4	19	
Surrogate:										
2-Fluorobiphenyl					89	91	43 - 109			
Pyrene-d10					97	100	38 - 128			
Terphenyl-d14					98	99	33 - 119			

35

% MOISTURE

Date Analyzed: 10-3-11

Client ID	Lab ID	% Moisture
HC-N12342526-TP-4-1	09-198-01	7
HC-N12342526-TP-4-2	09-198-02	16
HC-N12342526-TP-5-2	09-198-04	15

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

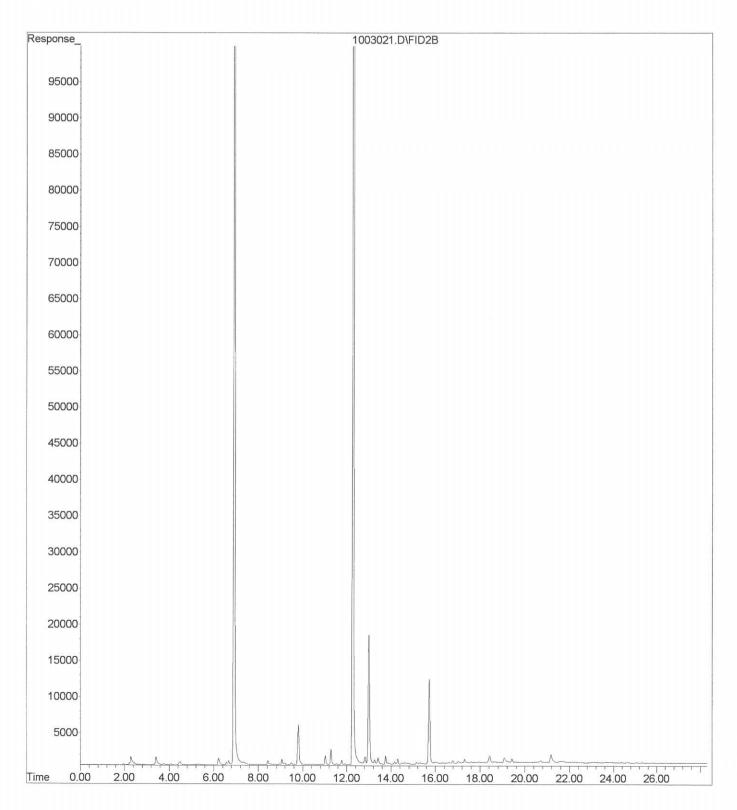
V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

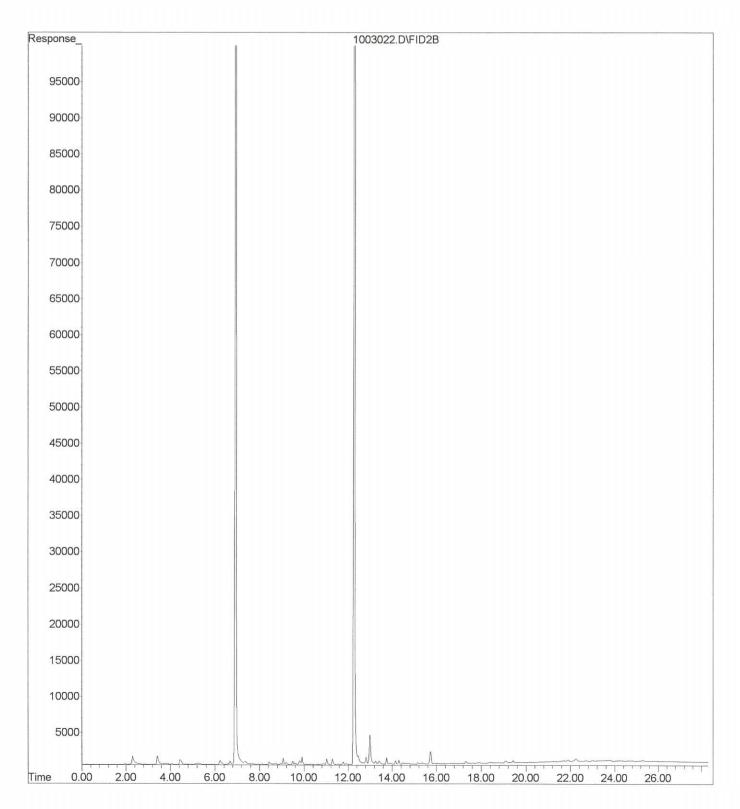
X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

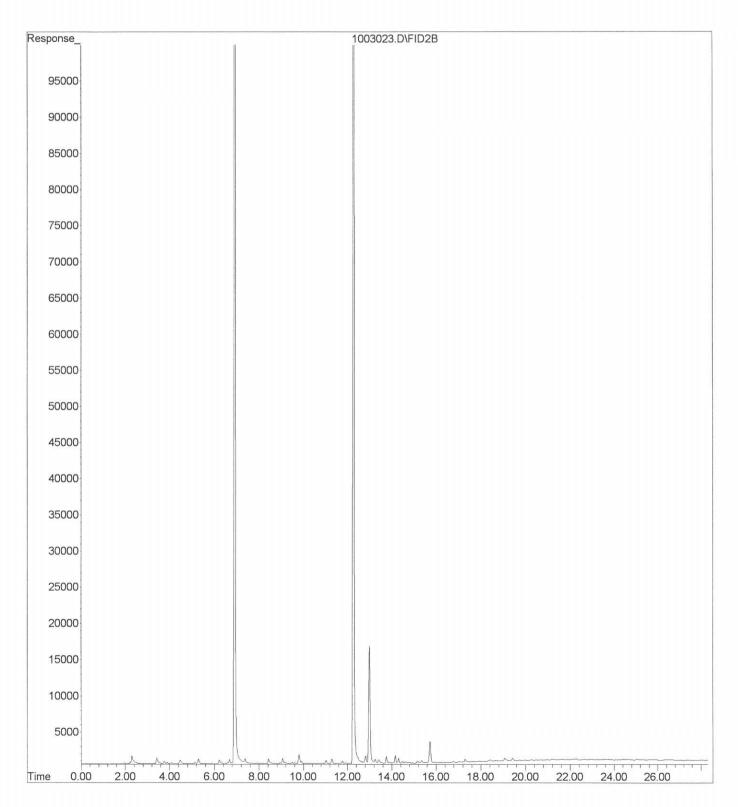
Ζ-

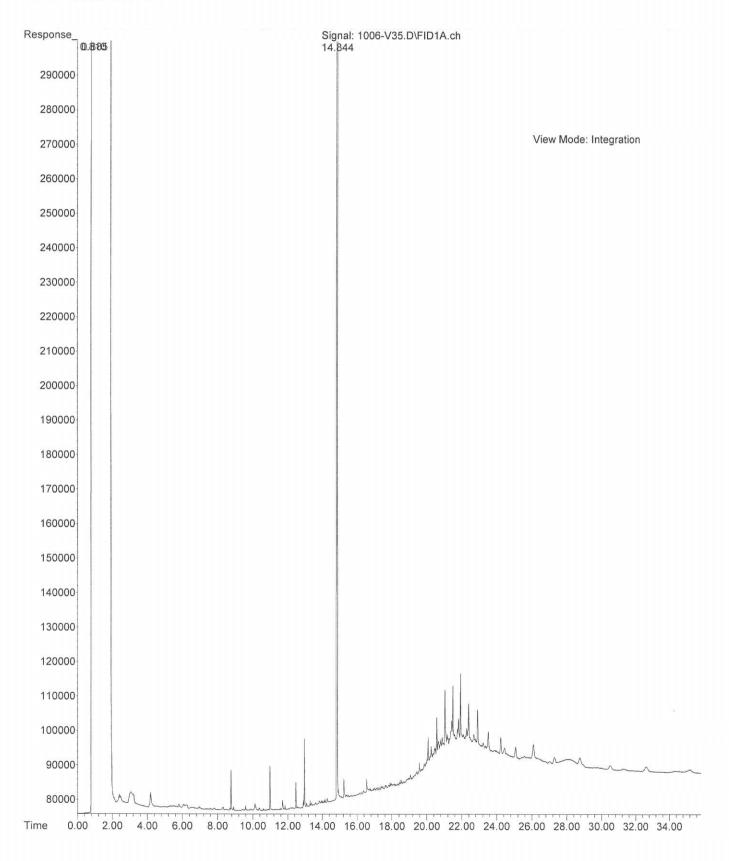

ND - Not Detected at PQL

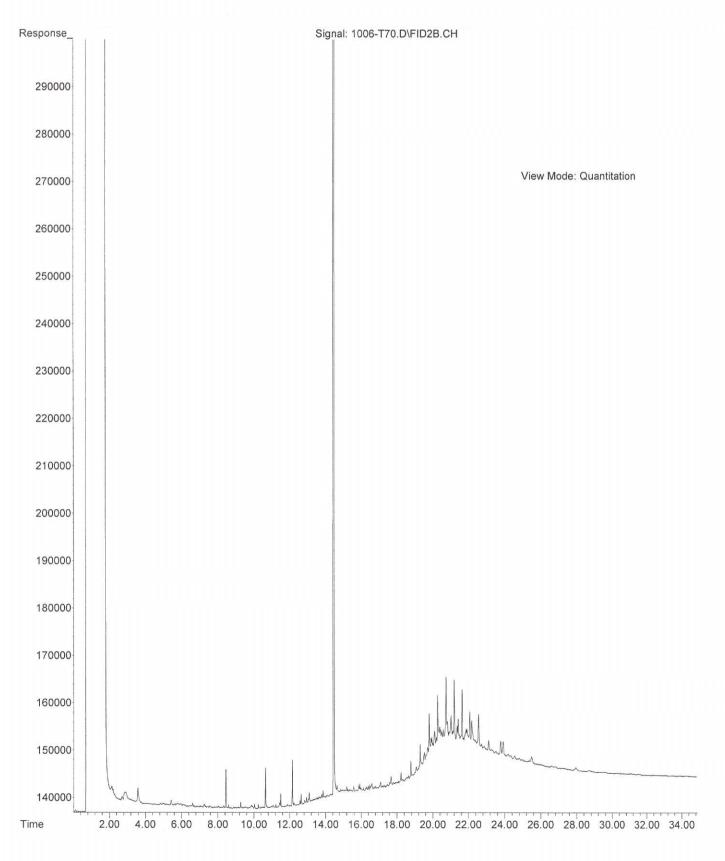
PQL - Practical Quantitation Limit


RPD - Relative Percent Difference

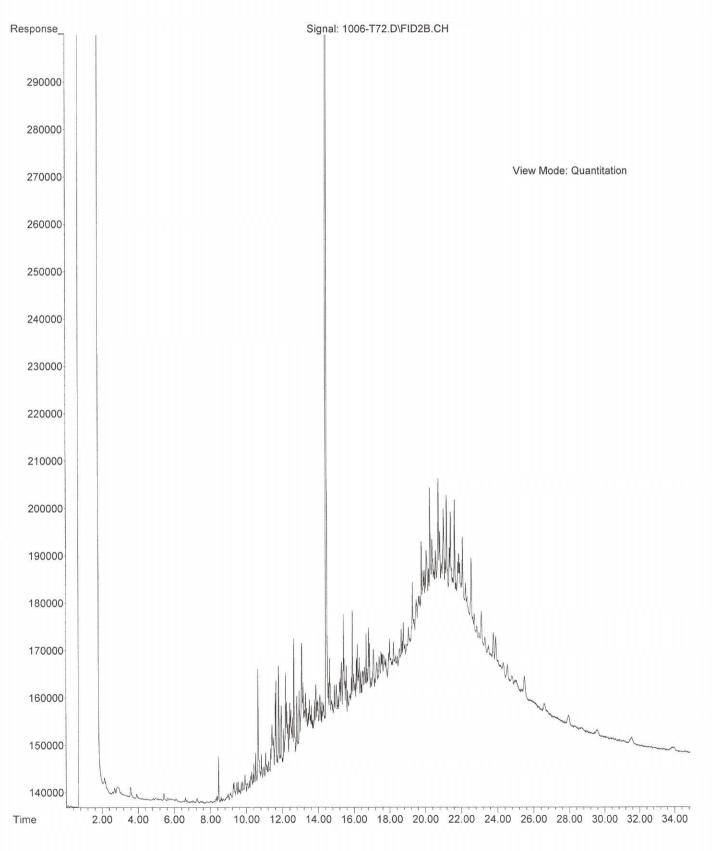
White and Yellow Copies to Lab Pink to Project Manager Lab to Return White Copy to Hart Crowser		SIGNATURE SIGNATURE PRINT NAME TIME	RELINQUISHED BY DATE RECEIVED BY DATE	COMPANY / C 655 COMPANY / C 655 COMPANY	Filler Alba III	q вү "			H-NIA342536-TP-5-1		1 HE-MIZZHZZZG-TP-1-1 9/28/11 1555 5012	LAB NO. SAMPLE ID DESCRIPTION DATE TIME MATRIX	SAMPLED BY:	HART CROWSER CONTACT		Sample Custody Record	7
Hart Crowser Gold to Sample Custodian	for Other Contract Requirements		COOLER NO .: STORAGE LOCATION:	8 II	HAN SAMPER	SPECIAL SHIPMENT HANDLING OR		CO CO CO CO			I O Strand I A		NUTPH NUTPH BET VOC Lea SVOC PCRA PAHS	-6x -0x - s d s 827 827	REQUEST	OF Z HARTCROWSER	
	72 HOURS OTHER	1 -		IVES INO IVES INO TEMPERATURE SHIPMENT METHOD: INAND	SAMPLE RECEIPT INFORMATION CUSTODY SEALS:	TOTAL NUMBER OF CONTAINERS		<i>b</i>	9	N	5		NO. OF	CONTAIL OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS	VERS	1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581	Hart Crowser, Inc.


File : X:\BTEX\DARYL\DATA\D111003\1003021.D
Operator :
Acquired : 4 Oct 2011 1:31 using AcqMethod 110630B.M
Instrument : Daryl
Sample Name: 09-198-01s
Misc Info : V2-26-24
Vial Number: 21


File : X:\BTEX\DARYL\DATA\D111003\1003022.D
Operator :
Acquired : 4 Oct 2011 2:04 using AcqMethod 110630B.M
Instrument : Daryl
Sample Name: 09-198-02s
Misc Info : V2-26-24
Vial Number: 22


File : X:\BTEX\DARYL\DATA\D111003\1003023.D
Operator :
Acquired : 4 Oct 2011 2:38 using AcqMethod 110630B.M
Instrument : Daryl
Sample Name: 09-198-04s
Misc Info : V2-26-24
Vial Number: 23




File :C:\msdchem\2\DATA\V111006\1006-V35.D
Operator :
Acquired : 7 Oct 2011 8:45 using AcqMethod V110914F.M
Instrument : VIGO
Sample Name: 09-198-01
Misc Info :
Vial Number: 35

File :C:\msdchem\1\DATA\T111006.SEC\1006-T70.D
Operator : ZT
Acquired : 07 Oct 2011 2:49 using AcqMethod T110816F.M
Instrument : Teri
Sample Name: 09-198-02
Misc Info :
Vial Number: 70

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 11, 2011

Ross Stainsby Hart Crowser, Inc. 1700 Westlake Avenue North, Suite 200 Seattle, WA 98109-3056

Re: Analytical Data for Project 17581-00 21 Laboratory Reference No. 1109-213

Dear Ross:

Enclosed are the analytical results and associated quality control data for samples submitted on September 30, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 29, 2011 and received by the laboratory on September 30, 2011. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx and Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

			Date	Date		
Result	PQL	Method	Prepared	Analyzed	Flags	
HC-N12342526-TP-1-2						
09-213-02						
ND	7.5	NWTPH-Gx	10-3-11	10-3-11		
Percent Recovery	Control Limits					
106	68-124					
HC-N12342526-TP-2-2						
09-213-04						
ND	9.0	NWTPH-Gx	10-3-11	10-3-11		
Percent Recovery	Control Limits					
102	68-124					
HC-N12342526-TP-3-2						
09-213-06						
ND	5.7	NWTPH-Gx	10-3-11	10-3-11		
Percent Recovery	Control Limits					
100	68-124					
	HC-N12342526-TP-1-2 09-213-02 ND Percent Recovery 106 HC-N12342526-TP-2-2 09-213-04 ND Percent Recovery 102 HC-N12342526-TP-3-2 09-213-06 ND Percent Recovery	HC-N12342526-TP-1-2 09-213-02 ND 7.5 Percent Recovery Control Limits 106 68-124 HC-N12342526-TP-2-2 99-213-04 09-213-04 9.0 Percent Recovery Control Limits 102 68-124 HC-N12342526-TP-3-2 Control Limits 09-213-04 68-124 HC-N12342526-TP-3-2 Control Limits 09-213-06 5.7 Percent Recovery Control Limits	HC-N12342526-TP-1-2 09-213-02 ND 7.5 NWTPH-Gx Percent Recovery Control Limits 68-124 HC-N12342526-TP-2-2 09-213-04 NWTPH-Gx Percent Recovery Control Limits 106 ND 9.0 NWTPH-Gx Percent Recovery Control Limits 102 102 68-124 102 HC-N12342526-TP-3-2 68-124 102 Percent Recovery Control Limits 102 102 68-124 102 HC-N12342526-TP-3-2 09-213-06 103 ND 5.7 NWTPH-Gx Percent Recovery Control Limits 104	Result PQL Method Prepared HC-N12342526-TP-1-2 09-213-02	Result PQL Method Prepared Analyzed HC-N12342526-TP-1-2 09-213-02 <	

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Date	Date	•	
Analyte	Result	PQL	Ме	ethod	Prepared	Analyzed		Flags
METHOD BLANK								
Laboratory ID:	MB1003S2							
Gasoline	ND	5.0	NWT	TPH-Gx	10-3-11	10-3-11		
Surrogate:	Percent Recovery	Control Limit	ts					
Fluorobenzene	103	68-124						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09-212-04							

	00 -									
	ORIG	DUP								
Gasoline	ND	ND	NA	NA	NA		NA	NA	30	
Surrogate:					05					
Fluorobenzene					95	97	68-124			

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

0 0 1 1				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-1-2					
Laboratory ID:	09-213-02					
Diesel Range Organics	ND	34	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	68	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	HC-N12342526-TP-2-2					
Laboratory ID:	09-213-04					
Diesel Range Organics	ND	35	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	69	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	HC-N12342526-TP-3-2					
Laboratory ID:	09-213-06					
Diesel Range Organics	ND	26	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil	160	53	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				

5

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Dat Analy		Flags
METHOD BLANK	Result		metriou	riopulou	Anary	200	Tiago
Laboratory ID:	MB1006S3						
Diesel Range Organics	ND	25	NWTPH-Dx	10-6-11	10-6-	·11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-6-11	10-6-	11	
Surrogate:	Percent Recover	y Control Limits					
o-Terphenyl	99	50-150					
			Percent	Recovery		RPD	
Analyte	Result		Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	09-213-0)6					
	ORIG D	UP					
Diesel Range Organics	ND N	ND			NA	NA	
Lube Oil	153 1	23			22	NA	
Surrogate:							
- T- m la - m d				50 450			

o-Terphenyl

115 110 50-150

6

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-1-2					
Laboratory ID:	09-213-02					
Dichlorodifluoromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Chloromethane	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Vinyl Chloride	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Bromomethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Chloroethane	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Trichlorofluoromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Acetone	ND	0.0064	EPA 8260	10-4-11	10-4-11	
lodomethane	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Carbon Disulfide	0.0023	0.0013	EPA 8260	10-4-11	10-4-11	
Methylene Chloride	ND	0.0064	EPA 8260	10-4-11	10-4-11	
(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Vinyl Acetate	ND	0.0064	EPA 8260	10-4-11	10-4-11	
2,2-Dichloropropane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
2-Butanone	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Bromochloromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Chloroform	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1-Dichloropropene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Benzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Trichloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dichloropropane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Dibromomethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Bromodichloromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
2-Chloroethyl Vinyl Ether	ND	0.0064	EPA 8260	10-4-11	10-4-11	
(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Methyl Isobutyl Ketone	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Toluene	ND	0.0064	EPA 8260	10-4-11	10-4-11	
(trans) 1,3-Dichloropropene		0.0013	EPA 8260	10-4-11	10-4-11	

1,2,3-Trichlorobenzene

Dibromofluoromethane

4-Bromofluorobenzene

Surrogate:

Toluene-d8

	D	501		Date	Date	_
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-1-2					
Laboratory ID:	09-213-02	0.0040	ED4 0000	40.4.44	40.4.44	
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Tetrachloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
2-Hexanone	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Dibromochloromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Chlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Ethylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
m,p-Xylene	ND	0.0026	EPA 8260	10-4-11	10-4-11	
o-Xylene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Styrene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Bromoform	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Isopropylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Bromobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
n-Propylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
tert-Butylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2,4-Trimethylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
sec-Butylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
p-Isopropyltoluene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
n-Butylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dibromo-3-chloropropane	e ND	0.0064	EPA 8260	10-4-11	10-4-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Hexachlorobutadiene	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Naphthalene	ND	0.0013	EPA 8260	10-4-11	10-4-11	

VOLATILES by EPA 8260B page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

0.0013

Control Limits

63-127

65-129

55-121

EPA 8260

10-4-11

10-4-11

ND

71

89

98

Percent Recovery

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

onits. hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-2-2					
Laboratory ID:	09-213-04					
Dichlorodifluoromethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Chloromethane	ND	0.0068	EPA 8260	10-4-11	10-4-11	
Vinyl Chloride	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Bromomethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Chloroethane	ND	0.0068	EPA 8260	10-4-11	10-4-11	
Trichlorofluoromethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Acetone	ND	0.0068	EPA 8260	10-4-11	10-4-11	
lodomethane	ND	0.0068	EPA 8260	10-4-11	10-4-11	
Carbon Disulfide	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Methylene Chloride	ND	0.0068	EPA 8260	10-4-11	10-4-11	
(trans) 1,2-Dichloroethene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Methyl t-Butyl Ether	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Vinyl Acetate	ND	0.0068	EPA 8260	10-4-11	10-4-11	
2,2-Dichloropropane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
(cis) 1,2-Dichloroethene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
2-Butanone	ND	0.0068	EPA 8260	10-4-11	10-4-11	
Bromochloromethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Chloroform	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Carbon Tetrachloride	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,1-Dichloropropene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Benzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Trichloroethene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,2-Dichloropropane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Dibromomethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Bromodichloromethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
2-Chloroethyl Vinyl Ether	ND	0.0068	EPA 8260	10-4-11	10-4-11	
(cis) 1,3-Dichloropropene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Methyl Isobutyl Ketone	ND	0.0068	EPA 8260	10-4-11	10-4-11	
Toluene	ND	0.0068	EPA 8260	10-4-11	10-4-11	
(trans) 1,3-Dichloropropen		0.0014	EPA 8260	10-4-11	10-4-11	

4-Bromofluorobenzene

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-2-2					
Laboratory ID:	09-213-04					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Tetrachloroethene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,3-Dichloropropane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
2-Hexanone	ND	0.0068	EPA 8260	10-4-11	10-4-11	
Dibromochloromethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Chlorobenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Ethylbenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
m,p-Xylene	ND	0.0027	EPA 8260	10-4-11	10-4-11	
o-Xylene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Styrene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Bromoform	ND	0.0014	EPA 8260	10-4-11	10-4-11	
sopropylbenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Bromobenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,1,2,2-Tetrachloroethane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichloropropane	ND	0.0014	EPA 8260	10-4-11	10-4-11	
n-Propylbenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
2-Chlorotoluene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
4-Chlorotoluene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,3,5-Trimethylbenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
ert-Butylbenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,2,4-Trimethylbenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
sec-Butylbenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,3-Dichlorobenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
o-Isopropyltoluene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,4-Dichlorobenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,2-Dichlorobenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
n-Butylbenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
,2-Dibromo-3-chloropropane	e ND	0.0068	EPA 8260	10-4-11	10-4-11	
1,2,4-Trichlorobenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Hexachlorobutadiene	ND	0.0068	EPA 8260	10-4-11	10-4-11	
Naphthalene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichlorobenzene	ND	0.0014	EPA 8260	10-4-11	10-4-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	75	63-127				
Toluene-d8	89	65-129				

VOLATILES by EPA 8260B page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

97

Dato

Dato

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-3-2					
Laboratory ID:	09-213-06					
Dichlorodifluoromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Chloromethane	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Vinyl Chloride	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Bromomethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Chloroethane	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Trichlorofluoromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Acetone	ND	0.0064	EPA 8260	10-4-11	10-4-11	
lodomethane	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Carbon Disulfide	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Methylene Chloride	ND	0.0064	EPA 8260	10-4-11	10-4-11	
(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Vinyl Acetate	ND	0.0064	EPA 8260	10-4-11	10-4-11	
2,2-Dichloropropane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
2-Butanone	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Bromochloromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Chloroform	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1-Dichloropropene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Benzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Trichloroethene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dichloropropane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Dibromomethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Bromodichloromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
2-Chloroethyl Vinyl Ether	ND	0.0064	EPA 8260	10-4-11	10-4-11	
(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Methyl Isobutyl Ketone	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Toluene	ND	0.0064	EPA 8260	10-4-11	10-4-11	
(trans) 1,3-Dichloropropene	e ND	0.0013	EPA 8260	10-4-11	10-4-11	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-3-2					
Laboratory ID:	09-213-06					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Tetrachloroethene	0.0033	0.0013	EPA 8260	10-4-11	10-4-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
2-Hexanone	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Dibromochloromethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Chlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Ethylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
m,p-Xylene	ND	0.0025	EPA 8260	10-4-11	10-4-11	
o-Xylene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Styrene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Bromoform	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Isopropylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Bromobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	10-4-11	10-4-11	
n-Propylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
tert-Butylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2,4-Trimethylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
sec-Butylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
p-Isopropyltoluene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
n-Butylbenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2-Dibromo-3-chloropropane	e ND	0.0064	EPA 8260	10-4-11	10-4-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Hexachlorobutadiene	ND	0.0064	EPA 8260	10-4-11	10-4-11	
Naphthalene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	10-4-11	10-4-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	75	63-127				
Toluene-d8	96	65-129				
4-Bromofluorobenzene	97	55-121				

VOLATILES by EPA 8260B page 2 of 2

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

Analyta	Decult	DOI	Mathad	Date	Date	Flore
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1004S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Chloromethane	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Bromomethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Chloroethane	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Acetone	ND	0.0050	EPA 8260	10-4-11	10-4-11	
lodomethane	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Carbon Disulfide	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Methylene Chloride	ND	0.0050	EPA 8260	10-4-11	10-4-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Vinyl Acetate	ND	0.0050	EPA 8260	10-4-11	10-4-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
2-Butanone	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Chloroform	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Benzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Trichloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Dibromomethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Bromodichloromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260	10-4-11	10-4-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Toluene	ND	0.0050	EPA 8260	10-4-11	10-4-11	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260	10-4-11	10-4-11	

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1004S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
2-Hexanone	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Ethylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
m,p-Xylene	ND	0.0020	EPA 8260	10-4-11	10-4-11	
o-Xylene	ND	0.0020	EPA 8260 EPA 8260	10-4-11	10-4-11	
Styrene	ND	0.0010	EPA 8260 EPA 8260	10-4-11	10-4-11	
Bromoform	ND	0.0010		10-4-11	10-4-11	
	ND		EPA 8260			
sopropylbenzene		0.0010	EPA 8260	10-4-11	10-4-11	
Bromobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
n-Propylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
ert-Butylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
I,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
o-Isopropyltoluene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
n-Butylbenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
l,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260	10-4-11	10-4-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	10-4-11	10-4-11	
Naphthalene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	74	63-127				
Toluene-d8	87	65-129				
4-Bromofluorobenzene	97	55-121				

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10)04S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0482	0.0548	0.0500	0.0500	96	110	70-130	13	19	
Benzene	0.0416	0.0426	0.0500	0.0500	83	85	70-125	2	15	
Trichloroethene	0.0453	0.0472	0.0500	0.0500	91	94	70-122	4	14	
Toluene	0.0458	0.0439	0.0500	0.0500	92	88	73-120	4	16	
Chlorobenzene	0.0521	0.0490	0.0500	0.0500	104	98	74-109	6	12	
Surrogate:										
Dibromofluoromethane)				69	79	63-127			
Toluene-d8					80	81	65-129			
4-Bromofluorobenzene)				90	87	55-121			

TOTAL LEAD EPA 6010B

Matrix: Units:	Soil mg/kg (ppm)					
Units.	ing/kg (ppin)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-213-02 HC-N12342526-TP-1-2					
Lead	ND	6.8	6010B	10-6-11	10-6-11	
Lab ID: Client ID:	09-213-04 HC-N12342526-TP-2-2					
Lead	ND	6.9	6010B	10-6-11	10-6-11	
Lab ID: Client ID:	09-213-06 HC-N12342526-TP-3-2					
Lead	16	5.3	6010B	10-6-11	10-6-11	

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	10-6-11 10-6-11		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID:	MB1006S2		
Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	10-6-11
Date Analyzed:	10-6-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-213-06

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	15.3	19.1	22	5.0	С

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	10-6-11
Date Analyzed:	10-6-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-213-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	270	102	277	105	3	

19

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-1-2					
Laboratory ID:	09-213-02					
Naphthalene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
2-Methylnaphthalene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
1-Methylnaphthalene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Acenaphthylene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Acenaphthene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Fluorene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Phenanthrene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Anthracene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Fluoranthene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Pyrene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[a]anthracene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Chrysene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[b]fluoranthene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Benzo(j,k)fluoranthene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[a]pyrene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Dibenz[a,h]anthracene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Benzo[g,h,i]perylene	ND	0.0090	EPA 8270/SIM	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	43 - 109				
Pyrene-d10	97	38 - 128				
Terphenyl-d14	93	33 - 119				

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-2-2					
Laboratory ID:	09-213-04					
Naphthalene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
2-Methylnaphthalene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
1-Methylnaphthalene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Acenaphthylene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Acenaphthene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Fluorene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Phenanthrene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Anthracene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Fluoranthene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Pyrene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Benzo[a]anthracene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Chrysene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Benzo[a]pyrene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0092	EPA 8270/SIM	10-5-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	43 - 109				
Pyrene-d10	84	38 - 128				
Terphenyl-d14	83	33 - 119				

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-TP-3-2					
Laboratory ID:	09-213-06					
Naphthalene	ND	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
2-Methylnaphthalene	ND	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
1-Methylnaphthalene	ND	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Acenaphthylene	ND	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Acenaphthene	ND	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Fluorene	ND	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Phenanthrene	0.011	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Anthracene	ND	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Fluoranthene	0.032	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Pyrene	0.032	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Benzo[a]anthracene	0.026	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Chrysene	0.031	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Benzo[b]fluoranthene	0.052	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Benzo(j,k)fluoranthene	0.041	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Benzo[a]pyrene	0.057	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	0.042	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Dibenz[a,h]anthracene	0.012	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Benzo[g,h,i]perylene	0.053	0.0070	EPA 8270/SIM	10-5-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	43 - 109				
Pyrene-d10	91	38 - 128				
Terphenyl-d14	87	33 - 119				

22

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

onno. mg/ng				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1005S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Fluorene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Chrysene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	43 - 109				
Pyrene-d10	83	38 - 128				
Terphenyl-d14	90	33 - 119				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody,

and is intended only for the use of the individual or company to whom it is addressed.

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

onno. mg/rtg					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Spike Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	05S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0648	0.0647	0.0833	0.0833	78	78	43 - 108	0	27	
Acenaphthylene	0.0732	0.0744	0.0833	0.0833	88	89	52 - 120	2	21	
Acenaphthene	0.0731	0.0743	0.0833	0.0833	88	89	59 - 113	2	17	
Fluorene	0.0739	0.0768	0.0833	0.0833	89	92	64 - 117	4	14	
Phenanthrene	0.0759	0.0795	0.0833	0.0833	91	95	67 - 112	5	12	
Anthracene	0.0696	0.0739	0.0833	0.0833	84	89	59 - 110	6	16	
Fluoranthene	0.0854	0.0883	0.0833	0.0833	103	106	68 - 120	3	15	
Pyrene	0.0830	0.0857	0.0833	0.0833	100	103	66 - 121	3	17	
Benzo[a]anthracene	0.0741	0.0762	0.0833	0.0833	89	91	63 - 114	3	12	
Chrysene	0.0794	0.0812	0.0833	0.0833	95	97	67 - 118	2	12	
Benzo[b]fluoranthene	0.0793	0.0829	0.0833	0.0833	95	100	58 - 125	4	20	
Benzo(j,k)fluoranthene	0.0782	0.0830	0.0833	0.0833	94	100	42 - 134	6	26	
Benzo[a]pyrene	0.0611	0.0671	0.0833	0.0833	73	81	55 - 111	9	19	
Indeno(1,2,3-c,d)pyrene	0.0759	0.0781	0.0833	0.0833	91	94	60 - 125	3	20	
Dibenz[a,h]anthracene	0.0774	0.0792	0.0833	0.0833	93	95	62 - 125	2	19	
Benzo[g,h,i]perylene	0.0768	0.0803	0.0833	0.0833	92	96	61 - 124	4	19	
Surrogate:										
2-Fluorobiphenyl					89	91	43 - 109			
Pyrene-d10					97	100	38 - 128			
Terphenyl-d14					98	99	33 - 119			

% MOISTURE

Date Analyzed:	10-3-11		
Client ID		Lab ID	% Moisture
HC-N12342526-TP-1-2		09-213-02	26
HC-N12342526-TP-2-2		09-213-04	28
HC-N12342526-TP-3-2		09-213-06	5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

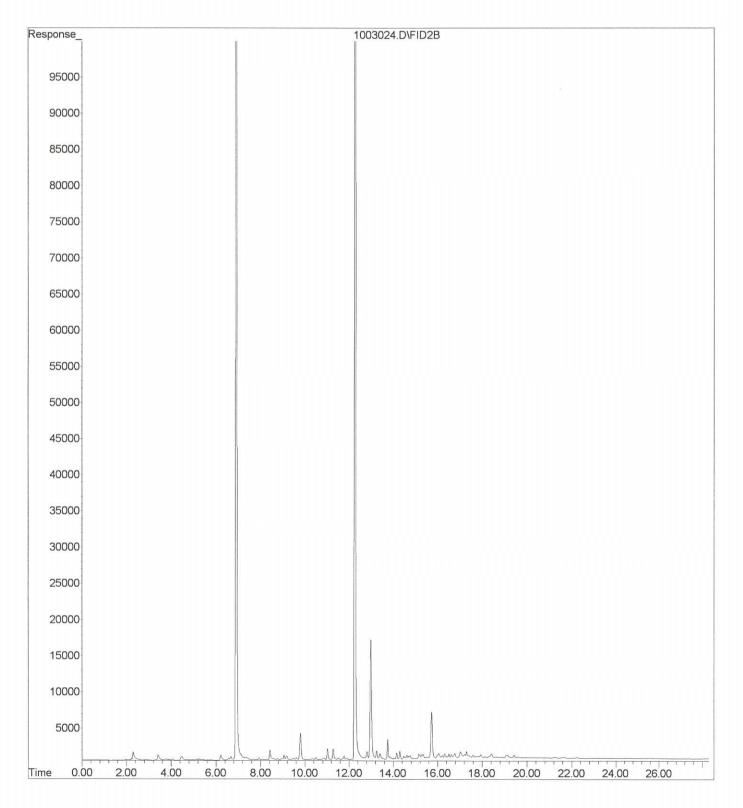
V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

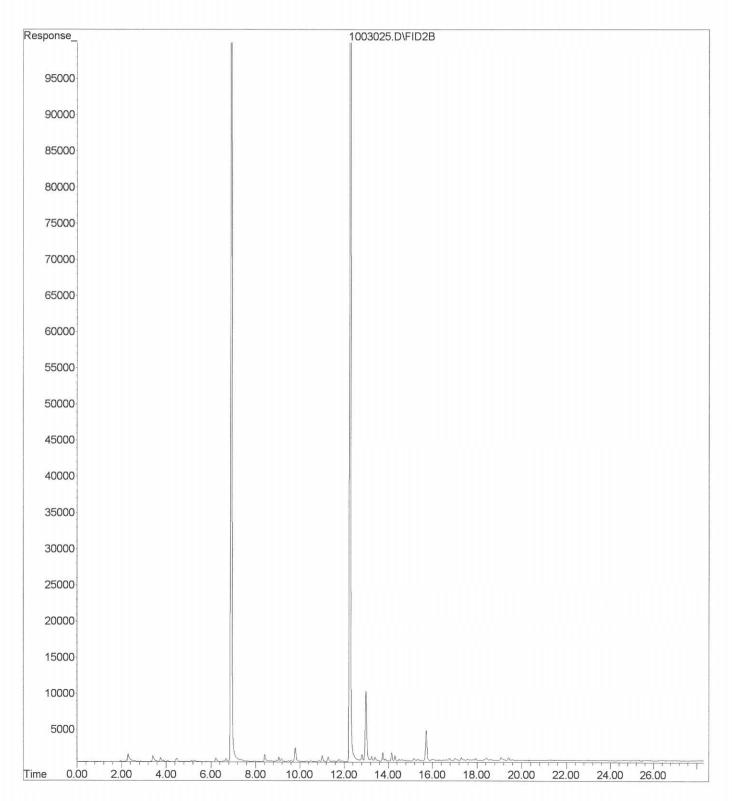
X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

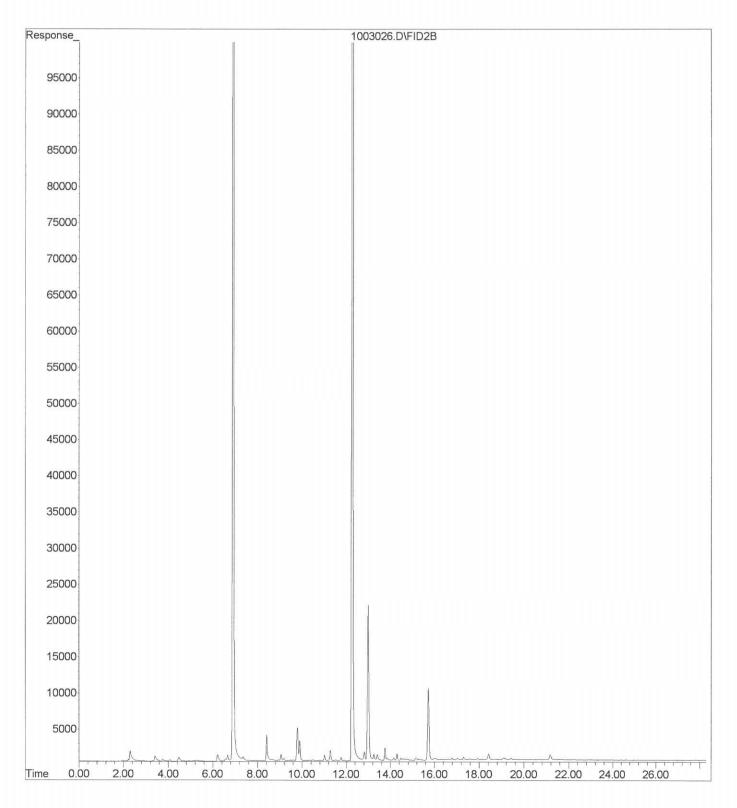
Ζ-

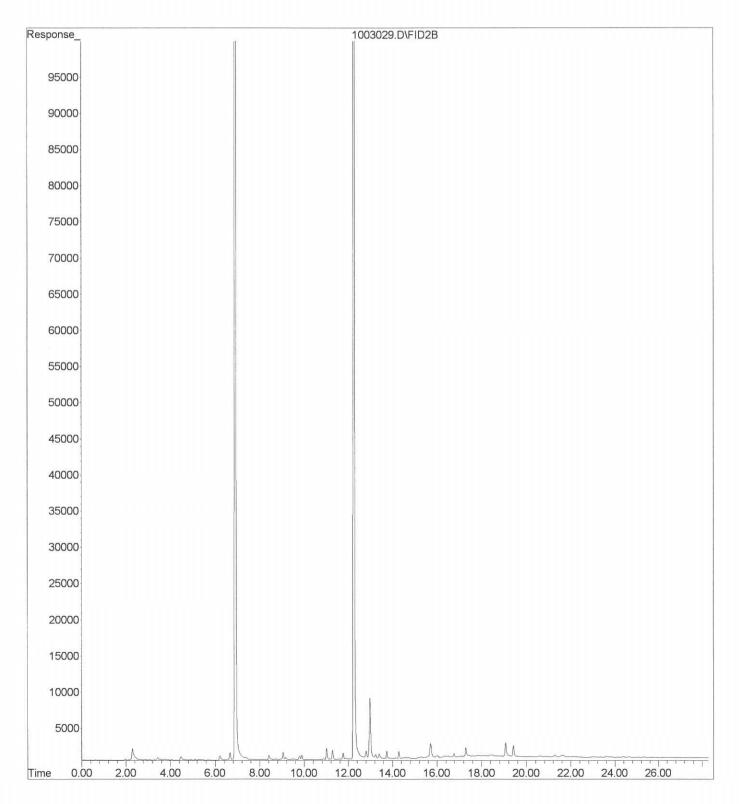

ND - Not Detected at PQL

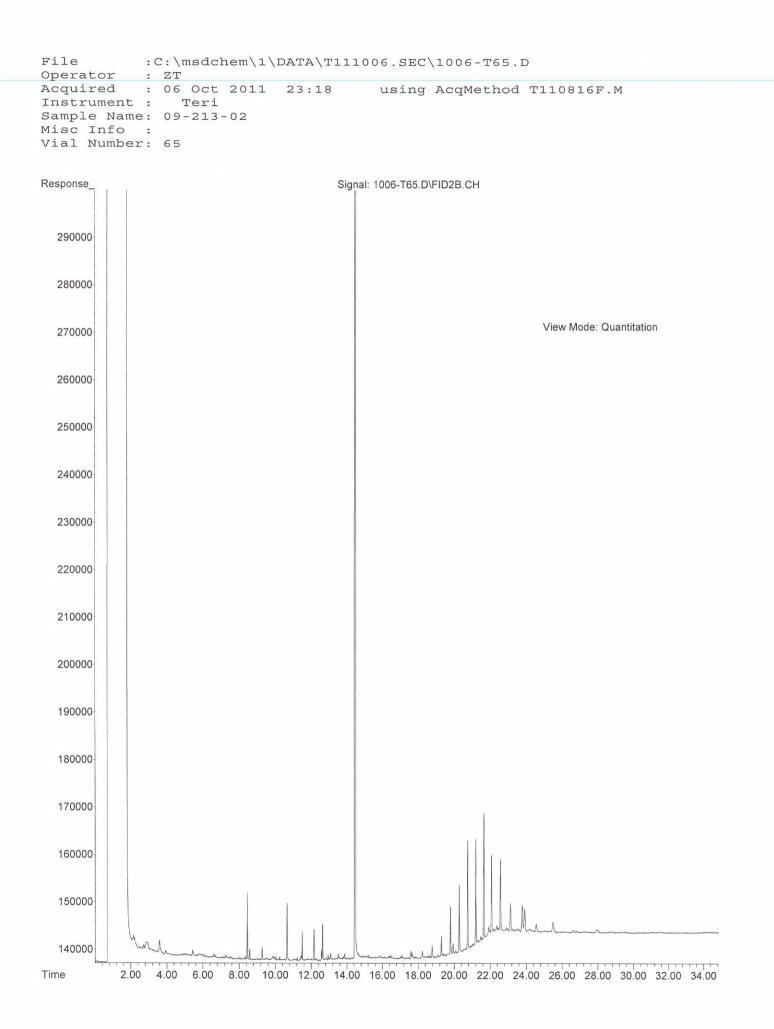
PQL - Practical Quantitation Limit

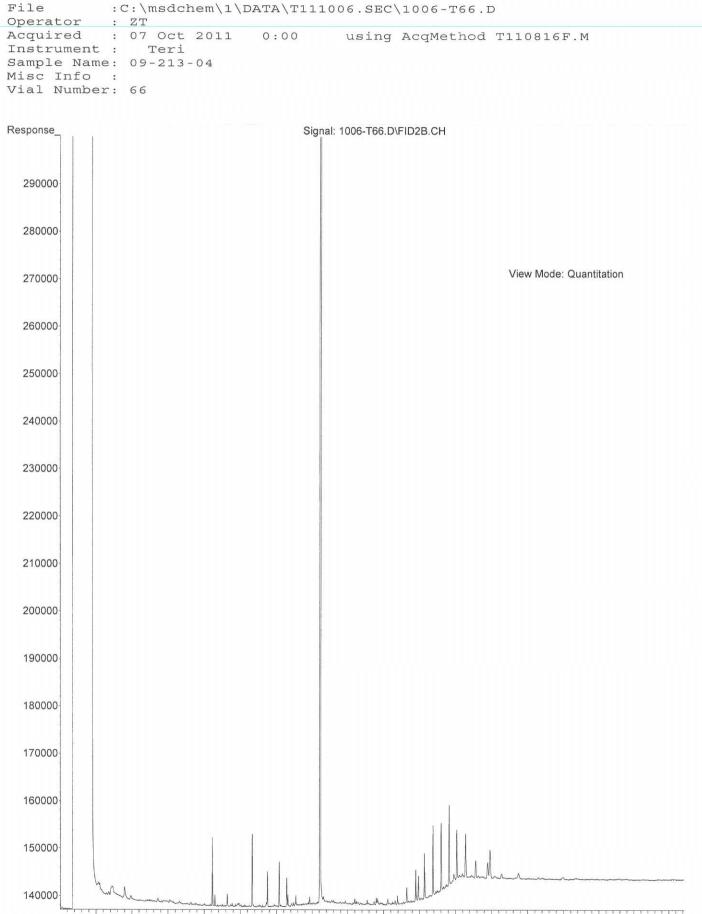

RPD - Relative Percent Difference

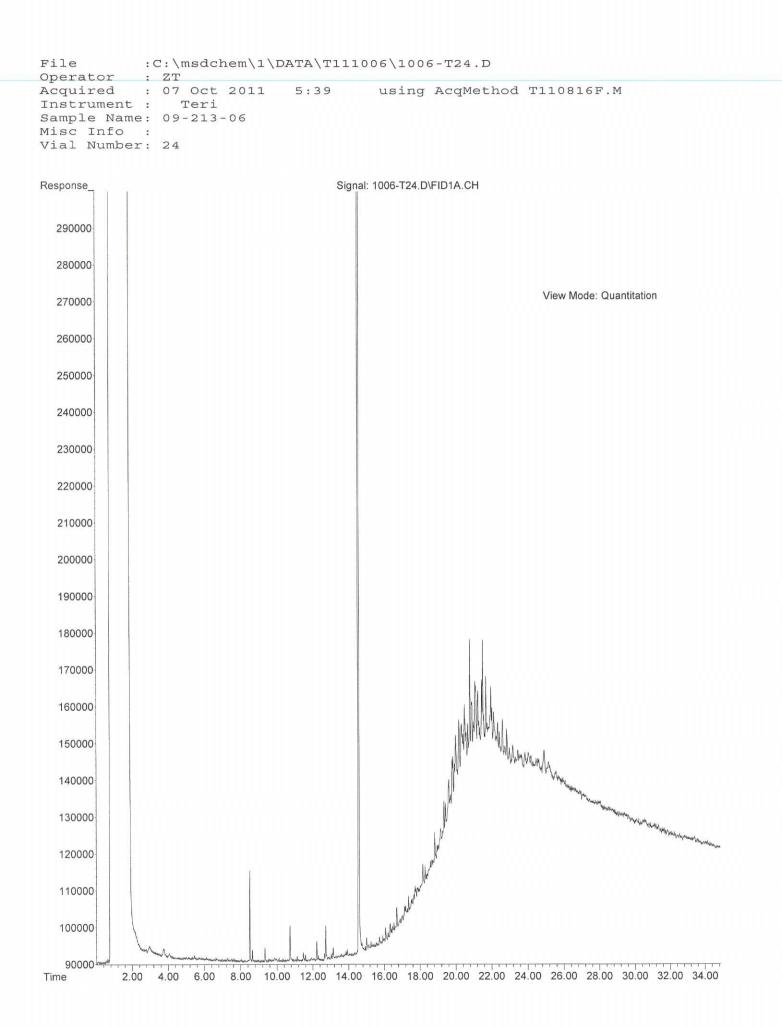
		Cold to Comple Custodian	Hart Crowser	Lah to Return White Copy to Hart Crowser	Lah to Return	lananer	Pink to Project Manager	White and Yellow Copies to Lab	≤٢
		er Contract Requirements	for Oth			COMPANY		COMPANY	
		b Work Order No.	See Lab			RINT NAME		PRINT NAME	
				TIME		IGNATURE	TIME	SIGNATURE	
	STORAGE LOCATIO	R NO.:	COOLE						
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		DATE	~	RECEIVED B	DATE F	RELINQUISHED BY	
	and the	10	\bigotimes	00	5	OMPANY	929	COMPANY H	6
GO	S	1	10	C	sound he	RINTMAME	TIME	RAPHAME D	
SAM		GE REQUIREMENTS:		gpol.	2	ATURF	9/30/11		N
30	OR	L SHIPMENT HANDLING	SPECIA	DATE		RECEIVED B	DATE	RELINQUISTED BY	
5	0	COS	C D	4	1140	<i>₹</i>	36-79-3-2	6 HC-NI23425	
S				-	1135		26-78-3-1	5 HC-W23425	1
19	R	COC	R C		1030		26-78-20	4 the-10123425,	
9		6 6 7			bas		6-TP-2-1		
5	C	COCO	R		900	_	36-17-1-2		
S		• •	*	,	1 853	1/195/1	1-1-4	1 HC-NIDASYAS	
				MATRIX	TIME	DATE	DESCRIPTION	LAB NO. SAMPLE ID	
N	010	V	Na VUT				P		
0. OF	ma	UC eau	тРн -Рн		00	MANS	R	C. Rust	
CON	56	5	6					HART CROWSER CONTAC	
NTAIN	Hur		×	26	2342		15T Progen		
ERS		REQUESTED AN				MBER		17581-00	
	TCROWSE	HINR					DNSITE		l SS
	09-213		FZ	5		ord	ody Rec	ample Cust	5
		Image: Internal of the second state	REQUESTED ANALYSIS REQUESTED ANALYSIS REQUES	REQUESTED ANALYSIS REQUESTED ANALYSIS REQUES	Image: Second	Image: Solution of the contract requirements Requested and the contract requirements Requested and the contract requirements Image: Solution of the contract requirements Image: Solution of the contract requirements Image: Solution of the contract requirements Image: Solution of the contract requirements	Image: Set Lab Work Order No. Image: Set Lab Work Order No. Image: Set Lab Work Order No. Image: Set Lab Work Order No.	Image: Set Lab Work Order No. Image: Set Lab Work Order No. Image: Set Lab Work Order No. Image: Set Lab Work Order No.	ONSETTE Image: Constances Image: Constances


File :	X:\BTEX\DARYL\DATA\D111003\1003024.D
Operator :	
Acquired :	4 Oct 2011 3:11 using AcqMethod 110630B.M
Instrument :	
Sample Name:	09-213-02s
Misc Info :	V2-26-24
Vial Number:	24


File : X:\BTEX\DARYL\DATA\D111003\1003025.D
Operator :
Acquired : 4 Oct 2011 3:44 using AcqMethod 110630B.M
Instrument : Daryl
Sample Name: 09-213-04s
Misc Info : V2-26-24
Vial Number: 25




File :	X:\BTEX\DARYL\DATA\D111003\1003026.D
Operator :	
Acquired :	4 Oct 2011 4:18 using AcqMethod 110630B.M
Instrument :	Daryl
Sample Name:	09-213-06s
Misc Info :	V2-26-24
Vial Number:	26


File :	X:\BTEX\DARYL\DATA\D111003\1003029.D
Operator :	
Acquired :	4 Oct 2011 5:58 using AcqMethod 110630B.M
Instrument :	Daryl
Sample Name:	09-182-04s
Misc Info :	V2-26-24
Vial Number:	29

Time 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 22, 2011

Ross Stainsby Hart Crowser, Inc. 1700 Westlake Avenue North, Suite 200 Seattle, WA 98109-3056

Re: Analytical Data for Project 17581-00 phase 21 Laboratory Reference No. 1111-082

Dear Ross:

Enclosed are the analytical results and associated quality control data for samples submitted on November 11, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: November 22, 2011 Samples Submitted: November 11, 2011 Laboratory Reference: 1111-082 Project: 17581-00 phase 21

Case Narrative

Samples were collected on November 10, 2011 and received by the laboratory on November 11, 2011. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-6					
Laboratory ID:	11-082-01					
Gasoline	ND	100	NWTPH-Gx	11-15-11	11-15-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	73-121				
Client ID:	HC-N12342526-7					
Laboratory ID:	11-082-02					
Gasoline	ND	100	NWTPH-Gx	11-15-11	11-15-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	73-121				
Client ID:	HC-N12342526-8					
Laboratory ID:	11-082-03					
Gasoline	ND	100	NWTPH-Gx	11-15-11	11-15-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	73-121				

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1115W1					
Gasoline	ND	100	NWTPH-Gx	11-15-11	11-15-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	73-121				
		-	_			
		S	ource Percer	nt Recovery	RPD)

					000100	1 010	CIII	Recovery			
Analyte	Res	sult	Spike	Level	Result	Recov	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	11-08	32-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		NA	4	NA	NA	30	
Surrogate:											
Fluorobenzene						101	98	73-121			

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-6					
Laboratory ID:	11-082-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	11-14-11	11-14-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	11-14-11	11-14-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
	110 1400 40500 7					
Client ID:	HC-N12342526-7					
Laboratory ID:	11-082-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	11-14-11	11-14-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	11-14-11	11-14-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	HC-N12342526-8					
Laboratory ID:	11-082-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	11-14-11	11-14-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	11-14-11	11-14-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

					Date	Dat		
Analyte	Result		PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK								
Laboratory ID:	MB1114W1							
Diesel Range Organics	ND		0.25	NWTPH-Dx	11-14-11	11-14	-11	
Lube Oil Range Organics	ND		0.40	NWTPH-Dx	11-14-11	11-14	-11	
Surrogate:	Percent Recov	rery	Control Limits					
o-Terphenyl	87		50-150					
				Percent	Recovery		RPD	
Analyte	Resu	ılt		Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	11-080)-01						
	ORIG	DUF)					
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
, ,								

o-Terphenyl

91 96 50-150

VOLATILES by EPA 8260B Page 1 of 2

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-6					
Laboratory ID:	11-082-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Chloromethane	ND	1.0	EPA 8260	11-16-11	11-16-11	
Vinyl Chloride	19	0.20	EPA 8260	11-16-11	11-16-11	
Bromomethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Chloroethane	ND	1.0	EPA 8260	11-16-11	11-16-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Acetone	ND	5.0	EPA 8260	11-16-11	11-16-11	
lodomethane	ND	1.0	EPA 8260	11-16-11	11-16-11	
Carbon Disulfide	ND	0.20	EPA 8260	11-16-11	11-16-11	
Methylene Chloride	ND	1.0	EPA 8260	11-16-11	11-16-11	
(trans) 1,2-Dichloroethene	1.4	0.20	EPA 8260	11-16-11	11-16-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Vinyl Acetate	ND	2.0	EPA 8260	11-16-11	11-16-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	11-16-11	11-16-11	
(cis) 1,2-Dichloroethene	2.8	0.20	EPA 8260	11-16-11	11-16-11	
2-Butanone	ND	5.0	EPA 8260	11-16-11	11-16-11	
Bromochloromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Chloroform	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Benzene	0.41	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Trichloroethene	0.30	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Dibromomethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Bromodichloromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	11-16-11	11-16-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	11-16-11	11-16-11	
Toluene	ND	1.0	EPA 8260	11-16-11	11-16-11	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260	11-16-11	11-16-11	

Analyte Result PQL Method Prepared Analyzed Flags Client ID: HC-N12342526-6 Laboratory ID: 11-082-01 11-082-01 11-16-11 <td< th=""><th></th><th></th><th></th><th></th><th>Date</th><th>Date</th><th></th></td<>					Date	Date	
Laboratory ID: 11-082-01 1,1,2-Trichloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 2-Hexanone ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromoethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane <			PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 Tatrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichloropopane ND 0.20 EPA 8260 11-16-11 11-16-11 2-Hexanone ND 2.0 EPA 8260 11-16-11 11-16-11 1,2-Dibromochloromethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1-2-Dibromochlane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1-2-Dibromochlane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1-16-11 11-16-11 11-16-11 11-16-11 11-16-11 11-16-11 1,2-Dibromoethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1-16-11 11-16-11 11-16-11 11-16-11 11-16-11 11-16-11 mp-Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobarzene ND 0.20 EPA 8260 11-16-1	Client ID:						
Tetrachloroethene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 Dibromochloromethane ND 0.20 EPA 8260 11-16-11 11-16-11 1.1.10-Dibromoethane ND 0.20 EPA 8260 11-16-11 11-16-11 1.1.1.2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1.1.1.2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 type ND 0.20 EPA 8260 11-16-11 11-16-11 type ND 0.20 EPA 8260 11-16-11 11-16-11 type ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 stopropylenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1.2.3-Trichoropropane ND 0.20 EPA 8260 11-16-11 11-	Laboratory ID:	11-082-01					
1,3-Dichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 2-Hexanone ND 2.0 EPA 8260 11-16-11 11-16-11 Dibromochloromethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromoethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 m,p-Xylene ND 0.40 EPA 8260 11-16-11 11-16-11 m,p-Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2.2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2.2-Tircholoropropane ND 0.20 E	1,1,2-Trichloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
2-Hexanone ND 2.0 EPA 8260 11-16-11 11-16-11 Dibromochloromethane ND 0.20 EPA 8260 11-16-11 11-16-11 12-Dibromoethane ND 0.20 EPA 8260 11-16-11 11-16-11 12-Dibromoethane ND 0.20 EPA 8260 11-16-11 11-16-11 11.12-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 ethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 oxylene ND 0.40 EPA 8260 11-16-11 11-16-11 oxylene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 11.2.2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 11.2.3-Trichoropropane ND 0.20 EPA 8260 11-16-11 11-16	Tetrachloroethene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Dibromochloromethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromoethane ND 0.20 EPA 8260 11-16-11 11-16-11 Chlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Lin,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 Ethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 m,p-Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11	1,3-Dichloropropane	ND	0.20	EPA 8260	11-16-11	11-16-11	
1.2-Dibromoethane ND 0.20 EPA 8260 11-16-11 11-16-11 Chlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 thylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 m,p-Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 oxylene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromoform ND 0.20 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Tichloropropane ND 0.20 EPA 8260	2-Hexanone	ND	2.0	EPA 8260	11-16-11	11-16-11	
Chlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 Ethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 ethylbenzene ND 0.40 EPA 8260 11-16-11 11-16-11 o-Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromoform ND 1.0 EPA 8260 11-16-11 11-16-11 Isopropylenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Isopropylenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,2-Tetrachoroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropopane ND 0.20 EPA 8260 11-16-11 11-	Dibromochloromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 Ethylbenzene ND 0.40 EPA 8260 11-16-11 11-16-11 m,p-Xylene ND 0.40 EPA 8260 11-16-11 11-16-11 c-Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,2-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 <td>1,2-Dibromoethane</td> <td>ND</td> <td>0.20</td> <td>EPA 8260</td> <td>11-16-11</td> <td>11-16-11</td> <td></td>	1,2-Dibromoethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Ethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 m.p-Xylene ND 0.40 EPA 8260 11-16-11 11-16-11 o-Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromoform ND 1.0 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 -Proylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11	Chlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
m.p. Xylene ND 0.40 EPA 8260 11-16-11 11-16-11 c.Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromoform ND 1.0 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 -Propylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-	1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
o-Xylene ND 0.20 EPA 8260 11-16-11 11-16-11 Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromoform ND 1.0 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16	Ethylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Styrene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromoform ND 1.0 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-1	m,p-Xylene	ND	0.40	EPA 8260	11-16-11	11-16-11	
Bromoform ND 1.0 EPA 8260 11-16-11 11-16-11 Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 -Propylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 4-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 1	o-Xylene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Isopropylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 4-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260	Styrene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Bromobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 3-5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA	Bromoform	ND	1.0	EPA 8260	11-16-11	11-16-11	
1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 n-Propylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 4-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND	Isopropylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2,3-Trichloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 n-Propylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 4-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND </td <td>Bromobenzene</td> <td>ND</td> <td>0.20</td> <td>EPA 8260</td> <td>11-16-11</td> <td>11-16-11</td> <td></td>	Bromobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
n-Propylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 4-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260	1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
2-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 4-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 E	1,2,3-Trichloropropane	ND	0.20	EPA 8260	11-16-11	11-16-11	
4-Chlorotoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 tert-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Diblorob-3-chloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene <td>n-Propylbenzene</td> <td>ND</td> <td>0.20</td> <td>EPA 8260</td> <td>11-16-11</td> <td>11-16-11</td> <td></td>	n-Propylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,3,5-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 tert-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 sec-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene	2-Chlorotoluene	ND	0.20	EPA 8260	11-16-11	11-16-11	
tert-ButylbenzeneND0.20EPA 826011-16-1111-16-111,2,4-TrimethylbenzeneND0.20EPA 826011-16-1111-16-11sec-ButylbenzeneND0.20EPA 826011-16-1111-16-111,3-DichlorobenzeneND0.20EPA 826011-16-1111-16-11p-IsopropyltolueneND0.20EPA 826011-16-1111-16-111,4-DichlorobenzeneND0.20EPA 826011-16-1111-16-111,2-DichlorobenzeneND0.20EPA 826011-16-1111-16-111,2-DichlorobenzeneND0.20EPA 826011-16-1111-16-111,2-DichlorobenzeneND0.20EPA 826011-16-1111-16-111,2-Dibromo-3-chloropropaneND1.0EPA 826011-16-1111-16-111,2,4-TrichlorobenzeneND0.20EPA 826011-16-1111-16-111,2,4-TrichlorobenzeneND0.20EPA 826011-16-1111-16-111,2,3-TrichlorobenzeneND0.20EPA 826011-16-1111-16-111,2,3-TrichlorobenzeneND0.20EPA 826011-16-1111-16-111,2,3-TrichlorobenzeneND0.20EPA 826011-16-1111-16-111,2,3-TrichlorobenzeneND0.20EPA 826011-16-1111-16-111,2,3-TrichlorobenzeneND0.20EPA 826011-16-1111-16-111,2,3-TrichlorobenzeneND0.20EPA 826011-16-1111-16-11 <td>4-Chlorotoluene</td> <td>ND</td> <td>0.20</td> <td>EPA 8260</td> <td>11-16-11</td> <td>11-16-11</td> <td></td>	4-Chlorotoluene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2,4-Trimethylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 sec-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 p-Isopropyltoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene	1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
sec-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 p-Isopropyltoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20	tert-Butylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,3-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 p-Isopropyltoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: <td< td=""><td>1,2,4-Trimethylbenzene</td><td>ND</td><td>0.20</td><td>EPA 8260</td><td>11-16-11</td><td>11-16-11</td><td></td></td<>	1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
p-Isopropyltoluene ND 0.20 EPA 8260 11-16-11 11-16-11 1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 n-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Hexachlorobutadiene ND 0.20 EPA 8260 11-16-11 11-16-11 Naphthalene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: Percent Recovery Control Limits In-16-11 11-16-11 In-16-11 Dibromofluoromethane 90 68-120	sec-Butylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,4-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 n-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Hexachlorobutadiene ND 0.20 EPA 8260 11-16-11 11-16-11 Naphthalene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: Percent Recovery Control Limits Internet	1,3-Dichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 n-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Hexachlorobutadiene ND 0.20 EPA 8260 11-16-11 11-16-11 Naphthalene ND 1.0 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: Percent Recovery Control Limits Intervention Intervention Intervention Dibromofluoromethane 90 68-120 Intervention Intervention Intervention Toluene-d8 83 73-120 Intervention Intervention Intervention	p-Isopropyltoluene	ND	0.20	EPA 8260	11-16-11	11-16-11	
n-Butylbenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Hexachlorobutadiene ND 0.20 EPA 8260 11-16-11 11-16-11 Naphthalene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: Percent Recovery Control Limits Vontrol Limits Vontrol Limits Vontrol Limits Dibromofluoromethane 90 68-120 Vontrol Limits Vontrol Limits Vontrol Limits Vontrol Limits Toluene-d8 83 73-120 Vontrol Limits Vontrol Limits Vontrol Limits	1,4-Dichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260 11-16-11 11-16-11 1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Hexachlorobutadiene ND 0.20 EPA 8260 11-16-11 11-16-11 Naphthalene ND 1.0 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 90 68-120 Toluene-d8 83 73-120 57-120 57-120 57-120	1,2-Dichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2,4-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Hexachlorobutadiene ND 0.20 EPA 8260 11-16-11 11-16-11 Naphthalene ND 1.0 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: Percent Recovery Control Limits Vertex 100 Vertex 100 Vertex 100 Dibromofluoromethane 90 68-120 Vertex 100 Vertex 100 Vertex 100 Toluene-d8 83 73-120 Vertex 100 Vertex 100 Vertex 100	n-Butylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Hexachlorobutadiene ND 0.20 EPA 8260 11-16-11 11-16-11 Naphthalene ND 1.0 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 90 68-120 Toluene-d8 83 73-120	1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260	11-16-11	11-16-11	
Naphthalene ND 1.0 EPA 8260 11-16-11 11-16-11 1,2,3-Trichlorobenzene ND 0.20 EPA 8260 11-16-11 11-16-11 Surrogate: Percent Recovery Control Limits Voltable Voltable Voltable Dibromofluoromethane 90 68-120 Voltable Voltable Voltable Toluene-d8 83 73-120 Voltable Voltable Voltable	1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2,3-TrichlorobenzeneND0.20EPA 826011-16-1111-16-11Surrogate:Percent RecoveryControl LimitsDibromofluoromethane9068-120Toluene-d88373-120	Hexachlorobutadiene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2,3-TrichlorobenzeneND0.20EPA 826011-16-1111-16-11Surrogate:Percent RecoveryControl LimitsDibromofluoromethane9068-120Toluene-d88373-120	Naphthalene	ND	1.0	EPA 8260	11-16-11	11-16-11	
Surrogate:Percent RecoveryControl LimitsDibromofluoromethane9068-120Toluene-d88373-120	•	ND	0.20	EPA 8260			
Dibromofluoromethane9068-120Toluene-d88373-120		Percent Recovery					
Toluene-d8 83 73-120	-	-					
	Toluene-d8						
	4-Bromofluorobenzene						

VOLATILES by EPA 8260B Page 2 of 2

VOLATILES by EPA 8260B Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-7					
Laboratory ID:	11-082-02					
Dichlorodifluoromethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Chloromethane	ND	5.0	EPA 8260	11-15-11	11-15-11	
Vinyl Chloride	200	1.0	EPA 8260	11-15-11	11-15-11	
Bromomethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Chloroethane	ND	5.0	EPA 8260	11-15-11	11-15-11	
Trichlorofluoromethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
1,1-Dichloroethene	ND	1.0	EPA 8260	11-15-11	11-15-11	
Acetone	ND	25	EPA 8260	11-15-11	11-15-11	
lodomethane	ND	5.0	EPA 8260	11-15-11	11-15-11	
Carbon Disulfide	ND	1.0	EPA 8260	11-15-11	11-15-11	
Methylene Chloride	ND	5.0	EPA 8260	11-15-11	11-15-11	
(trans) 1,2-Dichloroethene	9.7	1.0	EPA 8260	11-15-11	11-15-11	
Methyl t-Butyl Ether	ND	1.0	EPA 8260	11-15-11	11-15-11	
1,1-Dichloroethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Vinyl Acetate	ND	10	EPA 8260	11-15-11	11-15-11	
2,2-Dichloropropane	ND	1.0	EPA 8260	11-15-11	11-15-11	
(cis) 1,2-Dichloroethene	15	1.0	EPA 8260	11-15-11	11-15-11	
2-Butanone	ND	25	EPA 8260	11-15-11	11-15-11	
Bromochloromethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Chloroform	ND	1.0	EPA 8260	11-15-11	11-15-11	
1,1,1-Trichloroethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Carbon Tetrachloride	ND	1.0	EPA 8260	11-15-11	11-15-11	
1,1-Dichloropropene	ND	1.0	EPA 8260	11-15-11	11-15-11	
Benzene	ND	1.0	EPA 8260	11-15-11	11-15-11	
1,2-Dichloroethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Trichloroethene	3.3	1.0	EPA 8260	11-15-11	11-15-11	
1,2-Dichloropropane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Dibromomethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Bromodichloromethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
2-Chloroethyl Vinyl Ether	ND	5.0	EPA 8260	11-15-11	11-15-11	
(cis) 1,3-Dichloropropene	ND	1.0	EPA 8260	11-15-11	11-15-11	
Methyl Isobutyl Ketone	ND	10	EPA 8260	11-15-11	11-15-11	
Toluene	ND	5.0	EPA 8260	11-15-11	11-15-11	
(trans) 1,3-Dichloropropene	e ND	1.0	EPA 8260	11-15-11	11-15-11	

9

VOL	VOLATILES by EPA 8260B Page 2 of 2						
Posult	POL	Mathad	Date				

Client ID:HC-N1234Laboratory ID:11-0821,1,2-TrichloroethaneNDTetrachloroetheneND1,3-DichloropropaneND2-HexanoneNDDibromochloromethaneND1,2-DibromoethaneND1,1,1,2-TetrachloroethaneND1,1,1,2-TetrachloroethaneND1,1,1,2-TetrachloroethaneNDEthylbenzeneNDo-XyleneNDBromoformNDIsopropylbenzeneND1,1,2,2-TetrachloroethaneNDBromoformNDIsopropylbenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneND2-ChlorotolueneND4-ChlorotolueneND	2-02 1.0 1.0	EPA 8260 EPA 8260	11-15-11	11-15-11	
1,1,2-TrichloroethaneNDTetrachloroetheneND1,3-DichloropropaneND2-HexanoneNDDibromochloromethaneND1,2-DibromoethaneNDChlorobenzeneND1,1,1,2-TetrachloroethaneNDEthylbenzeneNDo-XyleneNDStyreneNDBromoformNDIsopropylbenzeneND1,1,2,2-TetrachloroethaneNDDispropylbenzeneNDStyreneNDPromobenzeneNDIsopropylbenzeneND1,2,3-TrichloropropaneND2-ChlorotolueneND	1.0 1.0			11-15-11	
TetrachloroetheneND1,3-DichloropropaneND2-HexanoneNDDibromochloromethaneND1,2-DibromoethaneND1,2-DibromoethaneNDChlorobenzeneND1,1,1,2-TetrachloroethaneNDEthylbenzeneNDm,p-XyleneNDStyreneNDBromoformNDIsopropylbenzeneND1,1,2,2-TetrachloroethaneNDn-PropylbenzeneND2-ChlorotolueneND	1.0			11-15-11	
1,3-DichloropropaneND2-HexanoneNDDibromochloromethaneND1,2-DibromoethaneND1,2-DibromoethaneND1,1,1,2-TetrachloroethaneND1,1,1,2-TetrachloroethaneNDEthylbenzeneNDm,p-XyleneNDStyreneNDBromoformNDIsopropylbenzeneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneND2-ChlorotolueneND		EPA 8260		11 10-11	
2-HexanoneNDDibromochloromethaneND1,2-DibromoethaneNDChlorobenzeneND1,1,1,2-TetrachloroethaneNDEthylbenzeneNDm,p-XyleneNDo-XyleneNDBromoformNDIsopropylbenzeneNDgromobenzeneND1,1,2,2-TetrachloroethaneNDIsopropylbenzeneNDn,p-XyleneNDStyreneNDBromoformNDIsopropylbenzeneND1,2,3-TrichloropropaneND2-ChlorotolueneND	1.0		11-15-11	11-15-11	
DibromochloromethaneND1,2-DibromoethaneNDChlorobenzeneND1,1,1,2-TetrachloroethaneNDEthylbenzeneNDm,p-XyleneNDo-XyleneNDStyreneNDBromoformNDIsopropylbenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneND2-ChlorotolueneND		EPA 8260	11-15-11	11-15-11	
1,2-DibromoethaneNDChlorobenzeneND1,1,1,2-TetrachloroethaneNDEthylbenzeneNDm,p-XyleneNDo-XyleneNDStyreneNDBromoformNDIsopropylbenzeneND9.7,2,2-TetrachloroethaneND1,2,3-TrichloropropaneND2-ChlorotolueneND	10	EPA 8260	11-15-11	11-15-11	
ChlorobenzeneND1,1,1,2-TetrachloroethaneNDEthylbenzeneNDm,p-XyleneNDo-XyleneNDStyreneNDBromoformNDIsopropylbenzeneNDBromobenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneND2-ChlorotolueneND	1.0	EPA 8260	11-15-11	11-15-11	
1,1,1,2-TetrachloroethaneNDEthylbenzeneNDm,p-XyleneNDo-XyleneNDStyreneNDBromoformNDIsopropylbenzeneND9.7,2,2-TetrachloroethaneND1,2,3-TrichloropropaneND2-ChlorotolueneND	1.0	EPA 8260	11-15-11	11-15-11	
EthylbenzeneNDm,p-XyleneNDo-XyleneNDStyreneNDBromoformNDIsopropylbenzeneNDBromobenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneNDn-PropylbenzeneND2-ChlorotolueneND	1.0	EPA 8260	11-15-11	11-15-11	
m,p-Xylene ND o-Xylene ND Styrene ND Bromoform ND Isopropylbenzene ND 1,1,2,2-Tetrachloroethane ND 1,2,3-Trichloropropane ND 2-Chlorotoluene ND	1.0	EPA 8260	11-15-11	11-15-11	
o-XyleneNDStyreneNDBromoformNDIsopropylbenzeneNDBromobenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneNDn-PropylbenzeneND2-ChlorotolueneND	1.0	EPA 8260	11-15-11	11-15-11	
StyreneNDBromoformNDIsopropylbenzeneNDBromobenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneNDn-PropylbenzeneND2-ChlorotolueneND	2.0	EPA 8260	11-15-11	11-15-11	
BromoformNDIsopropylbenzeneNDBromobenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneNDn-PropylbenzeneND2-ChlorotolueneND	1.0	EPA 8260	11-15-11	11-15-11	
IsopropylbenzeneNDBromobenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneNDn-PropylbenzeneND2-ChlorotolueneND	1.0	EPA 8260	11-15-11	11-15-11	
BromobenzeneND1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneNDn-PropylbenzeneND2-ChlorotolueneND	5.0	EPA 8260	11-15-11	11-15-11	
1,1,2,2-TetrachloroethaneND1,2,3-TrichloropropaneNDn-PropylbenzeneND2-ChlorotolueneND	1.0	EPA 8260	11-15-11	11-15-11	
1,2,3-TrichloropropaneNDn-PropylbenzeneND2-ChlorotolueneND	1.0	EPA 8260	11-15-11	11-15-11	
n-Propylbenzene ND 2-Chlorotoluene ND	1.0	EPA 8260	11-15-11	11-15-11	
2-Chlorotoluene ND	1.0	EPA 8260	11-15-11	11-15-11	
	1.0	EPA 8260	11-15-11	11-15-11	
A-Chlorotoluene ND	1.0	EPA 8260	11-15-11	11-15-11	
	1.0	EPA 8260	11-15-11	11-15-11	
1,3,5-Trimethylbenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
tert-Butylbenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
1,2,4-Trimethylbenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
sec-Butylbenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
1,3-Dichlorobenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
p-Isopropyltoluene ND	1.0	EPA 8260	11-15-11	11-15-11	
1,4-Dichlorobenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
1,2-Dichlorobenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
n-Butylbenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
1,2-Dibromo-3-chloropropane ND	5.0	EPA 8260	11-15-11	11-15-11	
1,2,4-Trichlorobenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
Hexachlorobutadiene ND	1.0	EPA 8260	11-15-11	11-15-11	
Naphthalene ND	5.0	EPA 8260	11-15-11	11-15-11	
1,2,3-Trichlorobenzene ND	1.0	EPA 8260	11-15-11	11-15-11	
Surrogate: Percent Re	covery Control Limi	its			
Dibromofluoromethane 91	68-120				
Toluene-d8 83					
4-Bromofluorobenzene 80	73-120				

Date

VOLATILES by EPA 8260B Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-8					
Laboratory ID:	11-082-03					
Dichlorodifluoromethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Chloromethane	ND	20	EPA 8260	11-15-11	11-15-11	
Vinyl Chloride	630	4.0	EPA 8260	11-15-11	11-15-11	
Bromomethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Chloroethane	ND	20	EPA 8260	11-15-11	11-15-11	
Trichlorofluoromethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,1-Dichloroethene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Acetone	ND	100	EPA 8260	11-15-11	11-15-11	
lodomethane	ND	20	EPA 8260	11-15-11	11-15-11	
Carbon Disulfide	ND	4.0	EPA 8260	11-15-11	11-15-11	
Methylene Chloride	ND	20	EPA 8260	11-15-11	11-15-11	
(trans) 1,2-Dichloroethene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Methyl t-Butyl Ether	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,1-Dichloroethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Vinyl Acetate	ND	40	EPA 8260	11-15-11	11-15-11	
2,2-Dichloropropane	ND	4.0	EPA 8260	11-15-11	11-15-11	
(cis) 1,2-Dichloroethene	14	4.0	EPA 8260	11-15-11	11-15-11	
2-Butanone	ND	100	EPA 8260	11-15-11	11-15-11	
Bromochloromethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Chloroform	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,1,1-Trichloroethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Carbon Tetrachloride	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,1-Dichloropropene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Benzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,2-Dichloroethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Trichloroethene	4.7	4.0	EPA 8260	11-15-11	11-15-11	
1,2-Dichloropropane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Dibromomethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Bromodichloromethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
2-Chloroethyl Vinyl Ether	ND	20	EPA 8260	11-15-11	11-15-11	
(cis) 1,3-Dichloropropene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Methyl Isobutyl Ketone	ND	40	EPA 8260	11-15-11	11-15-11	
Toluene	ND	20	EPA 8260	11-15-11	11-15-11	
(trans) 1,3-Dichloropropene	e ND	4.0	EPA 8260	11-15-11	11-15-11	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-8					
Laboratory ID:	11-082-03					
1,1,2-Trichloroethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Tetrachloroethene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,3-Dichloropropane	ND	4.0	EPA 8260	11-15-11	11-15-11	
2-Hexanone	ND	40	EPA 8260	11-15-11	11-15-11	
Dibromochloromethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,2-Dibromoethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Chlorobenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,1,1,2-Tetrachloroethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
Ethylbenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
m,p-Xylene	ND	8.0	EPA 8260	11-15-11	11-15-11	
o-Xylene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Styrene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Bromoform	ND	20	EPA 8260	11-15-11	11-15-11	
Isopropylbenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Bromobenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,1,2,2-Tetrachloroethane	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,2,3-Trichloropropane	ND	4.0	EPA 8260	11-15-11	11-15-11	
n-Propylbenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
2-Chlorotoluene	ND	4.0	EPA 8260	11-15-11	11-15-11	
4-Chlorotoluene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,3,5-Trimethylbenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
tert-Butylbenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,2,4-Trimethylbenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
sec-Butylbenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,3-Dichlorobenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
p-Isopropyltoluene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,4-Dichlorobenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,2-Dichlorobenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
n-Butylbenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
1,2-Dibromo-3-chloropropane	ND	20	EPA 8260	11-15-11	11-15-11	
1,2,4-Trichlorobenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Hexachlorobutadiene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Naphthalene	ND	20	EPA 8260	11-15-11	11-15-11	
1,2,3-Trichlorobenzene	ND	4.0	EPA 8260	11-15-11	11-15-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	83	68-120				
Toluene-d8	81	73-120				

VOLATILES by EPA 8260B Page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

65-120

77

4-Bromofluorobenzene

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Water Units: ug/L

		501	.	Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1115W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Chloromethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Vinyl Chloride	ND	0.20	EPA 8260	11-15-11	11-15-11	
Bromomethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Chloroethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	11-15-11	11-15-11	
Acetone	ND	5.0	EPA 8260	11-15-11	11-15-11	
lodomethane	ND	1.0	EPA 8260	11-15-11	11-15-11	
Carbon Disulfide	ND	0.20	EPA 8260	11-15-11	11-15-11	
Methylene Chloride	ND	1.0	EPA 8260	11-15-11	11-15-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	11-15-11	11-15-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Vinyl Acetate	ND	2.0	EPA 8260	11-15-11	11-15-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	11-15-11	11-15-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	11-15-11	11-15-11	
2-Butanone	ND	5.0	EPA 8260	11-15-11	11-15-11	
Bromochloromethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Chloroform	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	11-15-11	11-15-11	
Benzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Trichloroethene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Dibromomethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Bromodichloromethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	11-15-11	11-15-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	11-15-11	11-15-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	11-15-11	11-15-11	
Toluene	ND	1.0	EPA 8260	11-15-11	11-15-11	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260	11-15-11	11-15-11	

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Lakanatan (D)						
Laboratory ID:	MB1115W1	0.00				
1,1,2-Trichloroethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Tetrachloroethene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	11-15-11	11-15-11	
2-Hexanone	ND	2.0	EPA 8260	11-15-11	11-15-11	
Dibromochloromethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Chlorobenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
Ethylbenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
m,p-Xylene	ND	0.40	EPA 8260	11-15-11	11-15-11	
o-Xylene	ND	0.20	EPA 8260	11-15-11	11-15-11	
Styrene	ND	0.20	EPA 8260	11-15-11	11-15-11	
Bromoform	ND	1.0	EPA 8260	11-15-11	11-15-11	
Isopropylbenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
Bromobenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	11-15-11	11-15-11	
n-Propylbenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
2-Chlorotoluene	ND	0.20	EPA 8260	11-15-11	11-15-11	
4-Chlorotoluene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
tert-Butylbenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
sec-Butylbenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
p-lsopropyltoluene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
n-Butylbenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	11-15-11	11-15-11	
	ND					
1,2,4-Trichlorobenzene Hexachlorobutadiene		0.20	EPA 8260 EPA 8260	11-15-11 11 15 11	11-15-11 11 15 11	
	ND	0.20		11-15-11	11-15-11	
Naphthalene	ND	1.0	EPA 8260	11-15-11	11-15-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	11-15-11	11-15-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	84	68-120				
Toluene-d8	82	73-120				
4-Bromofluorobenzene	78	65-120				

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1116W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Chloromethane	ND	1.0	EPA 8260	11-16-11	11-16-11	
Vinyl Chloride	ND	0.20	EPA 8260	11-16-11	11-16-11	
Bromomethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Chloroethane	ND	1.0	EPA 8260	11-16-11	11-16-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Acetone	ND	5.0	EPA 8260	11-16-11	11-16-11	
lodomethane	ND	1.0	EPA 8260	11-16-11	11-16-11	
Carbon Disulfide	ND	0.20	EPA 8260	11-16-11	11-16-11	
Methylene Chloride	ND	1.0	EPA 8260	11-16-11	11-16-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Vinyl Acetate	ND	2.0	EPA 8260	11-16-11	11-16-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	11-16-11	11-16-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	11-16-11	11-16-11	
2-Butanone	ND	5.0	EPA 8260	11-16-11	11-16-11	
Bromochloromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Chloroform	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Benzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Trichloroethene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Dibromomethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Bromodichloromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	11-16-11	11-16-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	11-16-11	11-16-11	
Toluene	ND	1.0	EPA 8260	11-16-11	11-16-11	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260	11-16-11	11-16-11	

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Lakanatan (D)						
Laboratory ID:	MB1116W1	0.00		44 40 44	44.40.44	
1,1,2-Trichloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Tetrachloroethene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	11-16-11	11-16-11	
2-Hexanone	ND	2.0	EPA 8260	11-16-11	11-16-11	
Dibromochloromethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Chlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
Ethylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
m,p-Xylene	ND	0.40	EPA 8260	11-16-11	11-16-11	
o-Xylene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Styrene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Bromoform	ND	1.0	EPA 8260	11-16-11	11-16-11	
Isopropylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Bromobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	11-16-11	11-16-11	
n-Propylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
2-Chlorotoluene	ND	0.20	EPA 8260	11-16-11	11-16-11	
4-Chlorotoluene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
tert-Butylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
sec-Butylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
p-lsopropyltoluene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
n-Butylbenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260 EPA 8260	11-16-11	11-16-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Naphthalene	ND	1.0	EPA 8260	11-16-11	11-16-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	11-16-11	11-16-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-120				
Toluene-d8	87	73-120				
4-Bromofluorobenzene	82	65-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

16

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Reco	Recovery Limi		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB11 ⁻	15W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	11.9	12.1	10.0	10.0	119	121	70-130	2	11	
Benzene	9.73	10.3	10.0	10.0	97	103	75-123	6	8	
Trichloroethene	10.1	10.5	10.0	10.0	101	105	80-113	4	9	
Toluene	9.70	10.4	10.0	10.0	97	104	80-113	7	8	
Chlorobenzene	10.1	10.1	10.0	10.0	101	101	80-111	0	8	
Surrogate:										
Dibromofluoromethane					85	87	68-120			
Toluene-d8					82	82	73-120			
4-Bromofluorobenzene					78	77	65-120			

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB11 ⁻	16W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	12.8	12.1	10.0	10.0	128	121	70-130	6	11	
Benzene	10.7	11.0	10.0	10.0	107	110	75-123	3	8	
Trichloroethene	10.3	10.4	10.0	10.0	103	104	80-113	1	9	
Toluene	10.3	10.5	10.0	10.0	103	105	80-113	2	8	
Chlorobenzene	10.2	10.1	10.0	10.0	102	101	80-111	1	8	
Surrogate:										
Dibromofluoromethane					93	88	68-120			
Toluene-d8					88	82	73-120			
4-Bromofluorobenzene					79	76	65-120			

TOTAL METALS EPA 200.8/7470A

Matrix:	Water
Units:	ug/L (ppb)

				Date	Date	
Analyte Result	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	11-082-01					
Client ID:	HC-N12342526-6					
Arsenic	ND	3.3	200.8	11-16-11	11-16-11	
Cadmium	ND	4.4	200.8	11-16-11	11-16-11	
Chromium	ND	11	200.8	11-16-11	11-16-11	
Lead	ND	1.1	200.8	11-16-11	11-16-11	
Mercury	ND	0.50	7470A	11-16-11	11-16-11	

Lab ID: Client ID:	11-082-02 HC-N12342526-7					
Arsenic	7.5	3.3	200.8	11-16-11	11-17-11	
Cadmium	ND	4.4	200.8	11-16-11	11-16-11	
Chromium	ND	11	200.8	11-16-11	11-16-11	
Lead	ND	1.1	200.8	11-16-11	11-16-11	
Mercury	ND	0.50	7470A	11-16-11	11-16-11	

Lab ID: Client ID:	11-082-03 HC-N12342526-8					
Arsenic	ND	3.3	200.8	11-16-11	11-16-11	
Cadmium	ND	4.4	200.8	11-16-11	11-16-11	
Chromium	ND	11	200.8	11-16-11	11-16-11	
Lead	ND	1.1	200.8	11-16-11	11-16-11	
Mercury	ND	0.50	7470A	11-16-11	11-16-11	

TOTAL METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Extracted:	11-16-11
Date Analyzed:	11-16-11
Matrix:	Water
Units:	ug/L (ppb)

Lab ID: MB1116WM1&MB1116W1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	ND	11
Lead	200.8	ND	1.1
Mercury	7470A	ND	0.50

TOTAL METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Extracted:	11-16-11
Date Analyzed:	11-16-11

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 11-048-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	4.98	5.79	15	3.3	
Cadmium	ND	ND	NA	4.4	
Chromium	ND	ND	NA	11	
Lead	ND	ND	NA	1.1	
Mercury	ND	ND	NA	0.50	

TOTAL METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Extracted:	11-16-11
Date Analyzed:	11-16-11

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 11-048-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	111	116	100	118	102	2	
Cadmium	111	104	93	105	95	2	
Chromium	111	110	99	106	96	4	
Lead	111	105	95	107	96	2	
Mercury	6.25	4.89	78	4.92	79	1	

DISSOLVED METALS EPA 200.8/7470A

Matrix:	Water
Units:	ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	11-082-01 HC-N12342526-6					
Arsenic	ND	3.0	200.8	11-11-11	11-16-11	
Cadmium	ND	4.0	200.8	11-11-11	11-16-11	
Chromium	ND	10	200.8	11-11-11	11-16-11	
Lead	ND	1.0	200.8	11-11-11	11-16-11	
Mercury	ND	0.50	7470A	11-11-11	11-16-11	

Lab ID: Client ID:	11-082-02 HC-N12342526-7					
Arsenic	6.0	3.0	200.8	11-11-11	11-17-11	
Cadmium	ND	4.0	200.8	11-11-11	11-16-11	
Chromium	ND	10	200.8	11-11-11	11-16-11	
Lead	ND	1.0	200.8	11-11-11	11-16-11	
Mercury	ND	0.50	7470A	11-11-11	11-16-11	

Lab ID: Client ID:	11-082-03 HC-N12342526-8				
Arsenic	ND	3.0	200.8	11-11-11	11-16-11
Cadmium	ND	4.0	200.8	11-11-11	11-16-11
Chromium	ND	10	200.8	11-11-11	11-16-11
Lead	ND	1.0	200.8	11-11-11	11-16-11
Mercury	ND	0.50	7470A	11-11-11	11-16-11

DISSOLVED METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Filtered:	11-11-11			
Date Analyzed:	11-16-11			
Matrix:	Water			
Units:	ug/L (ppb)			
Lab ID:	MB1111F1			

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.50

DISSOLVED METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Filtered:	11-11-11
Date Analyzed:	11-16-11

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 11-048-01

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	8.57	8.02	7	3.0	
Cadmium	ND	ND	NA	4.0	
Chromium	27.6	33.1	18	10	
Lead	ND	ND	NA	1.0	
Mercury	ND	ND	NA	0.50	

DISSOLVED METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Filtered:	11-11-11
Date Analyzed:	11-16-11

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 11-048-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	240	116	234	112	3	
Cadmium	200	198	99	193	96	3	
Chromium	200	218	95	209	91	4	
Lead	200	196	98	193	96	2	
Mercury	6.25	5.26	84	5.43	87	3	

EDB by EPA 8011

Matrix: Water Units: ug/L (ppb)

				Date	Date			
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags		
Client ID:	HC-N12342526-6							
Laboratory ID:	11-082-01							
EDB	ND	0.0096	EPA 8011	11-22-11	11-22-11			
Surrogate:	Percent Recovery	Control Limits						
TCMX	100	31-144						
Client ID:	HC-N12342526-7							
Laboratory ID:	11-082-02							
EDB	ND	0.0096	EPA 8011	11-22-11	11-22-11			
Surrogate:	Percent Recovery	Control Limits						
ТСМХ	93	31-144						
Client ID:	HC-N12342526-8							
Laboratory ID:	11-082-03							
EDB	ND	0.0095	EPA 8011	11-22-11	11-22-11			
Surrogate:	Percent Recovery	Control Limits						
TCMX	82	31-144						

EDB by EPA 8011 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

	PQL	Result	Analyte
			METHOD BLANK
		MB1122W1	Laboratory ID:
	0.010	ND	EDB
3	Control Limits	Percent Recovery	Surrogate:
	31-144	110	TCMX
	31-144	110	ТСМХ
		0.010 Control Lin	MB1122W1 ND 0.010 Percent Recovery Control Lin

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB1122W1										
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.103	0.107	0.100	0.100	N/A	103	107	78-122	4	8	
Surrogate:											
TCMX						124	109	31-144			

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature			3 HC-NIZ342526-8	2 HC- KI2342526-7	1 4C- N123425260 - 6		Jesse Qredon	Poss Stainsby	Porject Name: Port of Tacoma: UST remediction	17581-00 phase 21	Hart Crowser	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite Environmental Inc.
Reviewed/Date					350	Hert Courser	Company			1 1532 - 116	1 16:32 16	1.1	Date Time No. of Sampled Sampled Matrix Cont.	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request	Chain of Custody
					11/11/11 1150	11/11/11 18:50	Date Time			XXX	XXX	XXX	NWTP NWTP NWTP Volatile	H-Dx es 8260	TEX		5	18,5	x	Laboratory Num	istody
Chromatograms with final report	8 40-1 Vot w/ #C/	2 1 L Amber wint	2 SOUND Amber of HCI	source bit vit	each sample consists at	2 total coolers in	Comments/Special Instructions					X	Semiv. (with k PAHs PCBs Organo Organo Chlorir Total F Total N TCLP	olatiles bw-level 8270D/9 8082 bochlorin pphosph nated Ar RCRA M ATCA M Metals oil and	8270D PAHs SIM (Io orus Pr cid Hei letals grease	/SIM) w-level) icides 8/ esticides rbicides	D81A 8270D/ 8151A			mber: 11-082	Page of
		ANALTSUS	POTENTIAL	(ONTAINES	REPULAININS	Hour							% Mo								TF