Kennedy/Jenks Consultants

200 S.W. Market Street, Suite 500 Portland, Oregon 97201-5715 503-295-4911 503-295-4901 (Fax)

Remedial Action Report Former Strebor Site

9 March 2007

Prepared for

Tetra Pak Materials 1616 West 31st Street Vancouver, Washington 98660-1201

K/J Project No. 016066.11

Table of Contents

List of Tables			ii
List of Figures.			ii
List of Append	ices		ii
List of Abbrevia	ations		iii
Section 1:	Intro	oduction	1-1
	1.1 1.2	Background Remedial Action Objectives	
Section 2:	Pre-	excavation Activities	2-1
	2.1 2.2	Health and Safety Plan Utility Locating	
Section 3:	Soil	Removal, Backfill, and Site Restoration	3-1
	3.1 3.2	Excavation Activities 3.1.1 Soil Management and Disposal 3.1.2 Confirmation Soil Sampling Methods 3.1.3 Backfill 3-2 Equipment Decontamination	3-1 3-1
Section 4:	Sum	mary of Soil Confirmation Sample Results	4-1
	4.1 4.2	Summary of Analytical Results Data Quality	
Section 5:	Sum	mary of Groundwater Monitoring	5-1
	5.1 5.2	Groundwater Monitoring Activities Groundwater Monitoring Results	
Section 6:	Futu	re Activities	6-1
Section 7:	Sum	mary and Recommendations	7-1
	7.1 7.2	Summary Recommendations	7-1 7-1
Section 8:	Refe	erences	8-1

List of Tables

- 1 Dioxin Concentrations and Toxicity Equivalent Concentrations in Confirmation Soil Samples
- 2 Water Level Measurements
- 3 Summary of Groundwater Analytical Results

List of Figures

- 1 Vicinity Map
- 2 Site Plan
- 3 Soil Removal Excavation and Confirmation Soil Sample Locations

List of Appendices

- A Photographs of Site Work
- B Transportation and Disposal Receipts
- C Analytical Laboratory Reports
- D Imported Material Weight Certificates

List of Abbreviations

COC = chemicals of concernFS = feasibility study HASP = Health and Safety Plan HpCDD = Heptachlorodibenzo-p-dioxin HpCDF = Heptachlorodibenzofuran HxCDD = Hexachlorodibenzo-p-dioxin HxCDF = Hexachlorodibenzofuran $\mu g/I = micrograms per liter$ mg/kg = milligrams per kilogram msl = mean sea level MTCA = Model Toxics Control Act NFA = No Further Action OCDD = Octachlorodibenzo-*p*-dioxin OCDF = Octachlorodibenzofuran PCP = pentachlorophenol pg/g = picograms per gramPeCDD = Pentachlorodibenzo-p-dioxin PeCDF = Pentachlorodibenzofuran PQL = Practical Quantitation Limit RA = risk assessment RI = remedial investigation SAP = Sampling and Analysis Plan STL = Severn Trent Laboratories, Inc. TCDD = Tetrachlorodibenzo-p-dioxin TCDF = Tetrachlorodibenzofuran TEC = Toxicity Equivalent Concentration TEF = Toxicity Equivalency Factor

Kennedy/Jenks Consultants (Kennedy/Jenks) has prepared this Remedial Action Report on behalf of Tetra Pak Materials for the removal of the rail spur and of dioxin-impacted soils along the rail spur at the Former Strebor Site (Site) located in Vancouver, WA (Figure 1). The removal activities within the study area were completed in accordance with the Remedial Action Work Plan – Former Strebor Site (Work Plan) (Kennedy/Jenks 2006). Washington Department of Ecology (Ecology) generally approved of the Work Plan during a meeting between Kennedy/Jenks and Mr. Scott Rose of Ecology on 11 September 2006. Mr. Rose also conducted a follow-up Site visit during the remedial action activities.

1.1 Background

The Site is located on approximately 3.7 acres in the lowland valley of the Columbia River at an elevation of approximately 50 feet above mean sea level (msl). A vicinity map is included as Figure 1 and the general Site layout is shown on Figure 2. The Site is located at 3125 Thompson Avenue in Vancouver, Washington in the SW ¼, of the NE ¼ of Section 21, Township 2 North, Range 1 East. There is one structure on the property, a 14,000-square foot (approximate) building constructed in 1974. Land use in the vicinity of the Site is commercial, industrial, and residential.

Prior to 1974, the Site was undeveloped rural land and was owned by the former Burlington Northern Railroad, now the BNSF Railway Company, (Shannon and Wilson, 1989). Roberts Consolidated Industries constructed a facility on the Site in 1974 to formulate wood treatment products. Roberts Consolidated Industries closed the facility in March 1986 (Bay West 1988). The property went through a series of property transfers between 1987 and 1989, when Tetra Pak purchased the property.

Until 1986, Site operations consisted primarily of receiving raw material, and mixing, packaging and storing of wood-treating solutions. Raw material was delivered to the Site by trucks, tanker trucks, and rail tanker cars (Shannon and Wilson 1989). The railroad spur on the east side of the facility was primarily used for receiving bulk shipments of petroleum hydrocarbon-based raw materials such as naphtha and mineral spirits (Bay West 1988) used as carriers for the wood preservatives.

The Site is zoned commercial/industrial. Tetra Pak uses the existing building for office space, maintenance activities, storage of parts and equipment, and certain photolithographic (label making) processes. The former tank farm area is paved and used as a temporary storage area for pallets and miscellaneous equipment and employee parking.

Kennedy/Jenks Consultants performed a Remedial Investigation, Risk Assessment, and Feasibility Study (RI/RA/FS) from 2003 to 2004. These investigations identified PCP and dioxin and furan congeners (dioxin) as chemicals of concern (COC) in soil at certain locations at the Site, and PCP as a COC in groundwater at the Site (Kennedy/Jenks 2004).

1.2 Remedial Action Objectives

The purpose of the remedial action was to remove the rail spur on Site to allow access for the removal of as much soil that contained PCP or dioxin at or above Model Toxics Control Act (MTCA) Method B cleanup levels (cleanup levels) as practicable without causing structural damage to the existing building. Although the land use at the site is zoned commercial/industrial, cleanup levels protective of unrestricted land use were used due to the proximity of residential areas to the Site and since the Site does not qualify for the use of soil cleanup levels for industrial properties under MTCA, as defined in Washington Administrative Code (WAC) 173-340-745.

The objective of the remedial action is to fulfill the requirements to receive an Ecology No Further Action (NFA) determination for the Site.

The following sections describe activities performed prior to the commencement of removal actions.

2.1 Health and Safety Plan

Kennedy/Jenks prepared a project-specific Health and Safety Plan (HASP) covering each field task for the scope of work. The HASP was provided to Kennedy/Jenks field personnel for review prior to initiating field activities. The organization of safety procedures was established based on an analysis of potential hazards associated with the anticipated field activities, and personnel protection measures were selected in response to these risks. In addition, Terra Hydr, Inc. (Contractor) performed work in accordance with their corporate in-house HASP procedures.

2.2 Utility Locating

Underground utilities in the vicinity of the anticipated excavation locations were marked by Locates Down Under, Inc. with spray paint. In addition, the Northwest Utility Notification Center was contacted to identify public underground utilities.

This section describes the excavation of areas identified in the Work Plan (Kennedy/Jenks 2006) and methods used in the field to transport and dispose of impacted material. Photographs referencing Site features and construction practices pertaining to the remedial action are included in Appendix A.

Transportation and disposal receipts and truck logs for the offsite transportation and disposal of impacted material are included as Appendix B.

Laboratory analytical reports, case narratives and chain-of-custody documentation are included in Appendix C.

Imported Material Weight Certificates are included in Appendix D.

3.1 Excavation Activities

The Contractor completed the excavation activities in the areas identified in the Work Plan (Kennedy/Jenks 2006), which are illustrated on Figure 3. Excavation and removal activities were conducted in September 2006. Approximately 320 lineal feet of rail spur was removed (see Photograph 1). In the area beneath and around the rail spur, excavations continued below ground surface (bgs) to depths ranging from approximately 2 to 6 feet bgs. Excavation depths were established based on results of Geoprobe[®] soil samples collected in April 2002 (Kennedy/Jenks 2004). Groundwater was not encountered during excavation.

The edges of the excavation at the northeast corner of the building were sloped with a 1:1 sidewall, with extra care given around the toe of the building footing, as advised by the geotechnical consultant, Ash Creek Associates, Inc. This sloping was required to maintain structural integrity of the Strebor building during excavation activities. The excavation area is shown in Photograph 2.

Excavated soils were loaded directly into trucks and manifested for offsite disposal. During this remedial action, approximately 74 cubic yards (approximately 104 tons) of soil and debris were removed for offsite disposal. Additional detail is provided below.

3.1.1 Soil Management and Disposal

Soils were loaded directly onto trucks and transported offsite for disposal. Soils removed during the remedial action were previously characterized as non-hazardous waste and transported to Waste Management Company's Hillsboro Landfill, a permitted Class D landfill, for disposal.

3.1.2 Confirmation Soil Sampling Methods

A total of 4 "grab" samples were collected in the limits of the excavation. Locations of the confirmation samples are shown on Figure 3 and in Photographs 3 and 4. The soil samples were placed in a chilled ice chest for transport under chain-of-custody to Severn Trent

Laboratories, Inc. (STL), in Sacramento, California for laboratory analysis of PCP and dioxins using EPA Methods 8270C and 1613, respectively, with a standard (15-day) turnaround time. Laboratory analytical reports, case narratives and chain-of-custody documentation are included in Appendix C.

3.1.3 Backfill

The excavations were backfilled with approximately 126 tons of imported, clean, coarse-grained fill material. The Contractor backfilled the excavations to pre-existing grades and compacted the material using a vibratory drum roller. Excavations were graded to facilitate stormwater and precipitation runoff (see Photograph 5).

3.2 Equipment Decontamination

Equipment was swept of loose debris to prevent tracking of materials onto the roadway. Because the soils were determined to be non-hazardous solid waste, additional decontamination procedures were not deemed necessary in accordance with the HASP. This section presents the analytical results for laboratory testing of confirmation soil samples for residual concentrations of PCP and dioxin following excavation. Table 1 presents a summary of detected compounds in confirmation soil samples collected during the remedial action. In accordance with WAC 173-340-708(8)(d)(ii), the concentrations of individual dioxin compounds were multiplied by their respective toxicity equivalency factors (TEFs) and summed, to estimate a total 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (2,3,7,8-TCDD) toxicity equivalent concentration (TEC) for each sample. These total 2,3,7,8-TCDD TECs are compared to the MTCA Method B cleanup level for 2,3,7,8-TCDD (6.67 picograms per gram [pg/g]) (Ecology 2007). The total 2,3,7,8-TCDD TECs that exceed the MTCA Method B cleanup level are in bold.

4.1 Summary of Analytical Results

A total of four confirmation soil samples were collected from within the limits of the excavations to establish residual PCP and dioxin levels. The calculated total 2,3,7,8-TCDD TECs ranged from 14.22 pg/g (sample CF-2-4) to 597.57 pg/g (sample CF3-3) and exceeded the MTCA Method B cleanup levels. PCP was not detected above the practical quantitation level (PQL) in any of the confirmation soil samples collected. The highest PQL for the analysis of PCP in confirmation samples (2.1 milligrams per kilogram [mg/kg]) did not exceed the MTCA Method B cleanup level of 8.3 mg/kg.

4.2 Data Quality

Concentrations of the compound octachlorodibenzo-*p*-dioxin (OCDD) was estimated in three out of the four confirmation soil samples (CF-1-3, CF-2-4, and CF-3-3), because the detected concentrations exceeded the calibration range of the laboratory equipment. The concentrations of 1,2,3,4,6,7,8-heptachlorodibenzo-*p*-dioxin (1,2,3,4,6,7,8-HpCDD) in confirmation sample CS-1-3 and 1,2,3,4,6,7,8-heptachlorodibenzofuran (1,2,3,4,6,7,8-HpCDF) in confirmation sample CF-3-3 were also estimated due to result concentrations exceeding the calibration range.

Five results were estimated by STL because the result concentration was less than the reporting limit (1,2,3,4,7,8,9-HpCDF and 1,2,3,4,7,8-hexachlorodibenzofuran [1,2,3,4,7,8-HxCDF]) in confirmation sample CF-1-3; 1,2,3,4,7,8,9-HpCDF in confirmation sample CF-2-4; 1,2,3,7,8-pentachlorodibenzo-*p*-dioxin (1,2,3,7,8-PeCDD) in confirmation sample CF-3-3; and 2,3,4,6,7,8-HxCDF in confirmation sample CS-1-3).

Based on a review of the laboratory report, it is our opinion that the analytical data are of acceptable quality for their intended use and meet the data quality objectives established in the Sampling and Analyses Plan (SAP) (Kennedy/Jenks 2001).

Semiannual groundwater monitoring activities were completed in July and December 2006. Activities and results are summarized below.

5.1 Groundwater Monitoring Activities

Depth to groundwater was measured in six on-site monitoring wells (MW-1 to MW-3, MW-5, MW-6, and MW-8) using an electronic water-level indicator on 6 July and 28 December 2006. Water level measurements from the July and December 2006 groundwater monitoring events are presented in Table 2. Monitoring well locations are shown on Figure 2.

Groundwater samples were collected from 5 of the 6 wells using dedicated bailers. The casing in monitoring well MW-3 is bent, so the groundwater samples from MW-3 were collected using a Waterra inertial lift pump and dedicated tubing. Samples were submitted under chain of custody protocol to STL in Tacoma, Washington for analysis of PCP, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol, using EPA Method 8270C.

5.2 Groundwater Monitoring Results

In July 2006, PCP was detected above the PQL in the groundwater sample collected from monitoring well MW-1, at a concentration of 1.2 micrograms per liter (μ g/l), slightly above the MTCA Method B cleanup level of 0.73 μ g/l. PCP was also detected at an estimated concentration (0.16 μ g/l) below the PQL in the groundwater sample collected from monitoring well MW-6. 2,3,5,6-Tetrachlorophenol was detected at an estimated concentration (0.078 μ g/l) below the PQL in the groundwater sample collected from monitoring well MW-6. 2,3,5,6-Tetrachlorophenol was detected at an estimated concentration (0.078 μ g/l) below the PQL in the groundwater sample collected from monitoring well MW-1. No other compounds were detected in groundwater samples collected in July 2006.

In December 2006, PCP was detected at a concentration (0.68 μ g/l) above the PQL in the groundwater sample collected from monitoring well MW-1. PCP was also detected at an estimated concentration below the PQLs in the groundwater samples collected from monitoring wells MW-2, MW-3, MW-6, and MW-8. These estimated PCP concentrations ranged from 0.13 μ g/l (MW-3) to 0.21 μ g/l (MW-6). 2,3,4,6-Tetrachlorophenol and 2,3,5,6-tetrachlorophenol were detected at estimated concentrations below PQLs in the groundwater sample collected from monitoring well MW-1, at concentrations of 0.033 μ g/l and 0.044 μ g/l, respectively. No other compounds were detected in groundwater samples collected in December 2006. None of the compounds detected above the PQL were above their respective MTCA Method B cleanup level.

Data from the July and December 2006 groundwater monitoring events are summarized in Table 3. Laboratory data reports are included in Appendix C.

Kennedy/Jenks Consultants will complete two rounds of semi-annual groundwater monitoring in 2007 (July and December). Monitoring wells MW-1 to MW-3, MW-5, MW-6, and MW-8 will be sampled for PCP, 2,4,6-trichlorophenol, 2,5,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol for laboratory analysis by EPA Method 8270C. Samples will be collected using dedicated bailers or Wattera inertial lift pump and dedicated tubing. Samples will be submitted under chain of custody protocol to Test America Laboratories located in Tacoma, Washington.

Analytical data received from the lab will be reviewed for acceptable quality for their intended use and meet the data quality objectives established in the SAP.

Results of the 2007 groundwater monitoring activities will be submitted to Ecology in a brief letter report.

7.1 Summary

Tetra Pak undertook the remedial action to remove surface and subsurface soils identified by previous investigations to contain elevated concentrations of PCP and dioxin. A total of 104 tons of PCP and dioxin-containing soil was removed from the Site.

A total of four "grab" confirmation soil samples were collected from within the limits of the excavations during the remedial action. The excavations were backfilled with clean, imported, coarse-grained fill material.

Confirmation samples collected from the excavated soil areas indicate that residual concentrations of dioxin exceed MTCA Method B cleanup level for 2,3,7,8-TCDD. PCP was not detected above the analytical method PQL in any of the confirmation soil samples.

Results of groundwater sampling activities completed in 2006 indicate low levels of PCP in monitoring wells MW-1 and MW-6. The concentration of PCP detected in the sample collected from MW-1 in July 2006 (1.2 μ g/l) slightly exceeded the MTCA Method B cleanup level of 0.73 μ g/l. Laboratory detection limits continue to be well below the established MTCA Method B cleanup levels. Results reported in 2006 were consistent with those reported in previous groundwater sampling events.

7.2 Recommendations

Based on the results of the RI/RA/FS; the remedial actions; and continued and planned industrial activities at the Site, Kennedy/Jenks recommends the following actions:

- Implement institutional controls (deed restrictions) to address residual chemicals that remain above MTCA cleanup levels for soils beneath the building. Include the adjacent former rail spur area in the deed restriction. Limit potential future groundwater usage to non-potable uses only.
- Continue with semi-annual groundwater monitoring through the end of 2007. If groundwater concentrations of the chemicals listed in Section 6 remain consistent with levels detected previously, Kennedy/Jenks will recommend that groundwater monitoring be discontinued.

- Bay West 1988. *Remedial Investigation Report for Strebor, Inc.* Bay West Environmental Services. December 1988.
- Kennedy/Jenks. 2001. Remedial Investigation/Risk Assessment/Feasibility Study Work Plan for Former Strebor Facility. Kennedy/Jenks Consultants. December 2001
- Kennedy/Jenks. 2004. Remedial Investigation, Risk Assessment, and Feasibility Study Report (RI/RA/FS Report) – Former Strebor Facility – Tetra Pak Materials. Kennedy/Jenks Consultants. August 2004.
- Kennedy/Jenks. 2006. *Remedial Action Work Plan Former Strebor Site*. Kennedy/Jenks Consultants. 12 September 2006.
- Shannon & Wilson 1989. Environmental Site Assessment, Strebor Site, Vancouver, Washington. Shannon & Wilson, Inc., July 1989.

Washington Department of Ecology. 2007. Cleanup Levels and Risk Calculations (CLARC) Information System. Accessed on 7 March 2007.

Tables

				Detection			2,3,7,8-TCDD
Sample	Date Congener	Result		Limit ^(a)	Units	TEF ^(b)	TEC ^(c)
CF-1-3	9/27/2006 1,2,3,4,6,7,8-HpCDD ^(d)	570			pg/g ^(e)	0.01	5.7
	1,2,3,4,6,7,8-HpCDF ^(f)	69			pg/g	0.01	0.69
	1,2,3,4,7,8,9-HpCDF	5.0	J ^(g)		pg/g	0.01	0.05
	1,2,3,4,7,8-HxCDD ^(h)	ND ⁽ⁱ⁾		1.2	pg/g	0.1	
	1,2,3,4,7,8-HxCDF ^(j)	3.5	J	1.2	pg/g	0.1	0.35
	1,2,3,6,7,8-HxCDD	24			pg/g	0.1	2.4
	1,2,3,6,7,8-HxCDF	ND		1.3	pg/g	0.1	
	1,2,3,7,8,9-HxCDD	ND		2.8	pg/g	0.1	
	1,2,3,7,8,9-HxCDF	ND	G ^(k)	5.2	pg/g	0.1	
	1,2,3,7,8-PeCDD ^(I)	ND		1.4	pg/g	0.5	
	1,2,3,7,8-PeCDF ^(m)	ND		1.7	pg/g	0.05	
	2,3,4,6,7,8-HxCDF	ND		1.2	pg/g	0.1	
	2,3,4,7,8-PeCDF	ND		1.2	pg/g	0.5	
	2,3,7,8-TCDD	ND		0.74	pg/g	1	
	2,3,7,8-TCDF ⁽ⁿ⁾	0.96	J, JA ^(o)		pg/g	0.1	0.096
	OCDD ^(p)	5000	E ^(q)		pg/g	0.001	5
	OCDF ^(r)	470	-		pg/g	0.001	0.47
	Adjusted Total				P9/9	0.001	14.756
CF-2-4	9/27/2006 1,2,3,4,6,7,8-HpCDD	440			pg/g	0.01	4.4
01 2 4	1,2,3,4,6,7,8-HpCDF	40			pg/g	0.01	0.4
	1,2,3,4,7,8,9-HpCDF	6.0	J		pg/g	0.01	0.06
	1,2,3,4,7,8-HxCDD	ND	0	1.4	pg/g	0.1	0.00
	1,2,3,4,7,8-HxCDF	ND		2.2	pg/g pg/g	0.1	
	1,2,3,6,7,8-HxCDD	8.3		2.2	pg/g pg/g	0.1	0.83
	1,2,3,6,7,8-HxCDF	ND		1.4	pg/g	0.1	0.00
	1,2,3,7,8,9-HxCDD	ND		2.7	pg/g pg/g	0.1	
	1,2,3,7,8,9-HxCDF	ND		0.32	pg/g pg/g	0.1	
	1,2,3,7,8-PeCDD	ND		0.67	pg/g pg/g	0.5	
	1,2,3,7,8-PeCDF	ND		0.38	pg/g pg/g	0.05	
	2,3,4,6,7,8-HxCDF	ND		0.63	pg/g pg/g	0.00	
	2,3,4,7,8-PeCDF	ND		0.46	pg/g	0.5	
	2,3,7,8-TCDD	ND		0.35	pg/g pg/g	1	
	2,3,7,8-TCDF	ND		0.35	pg/g pg/g	0.1	
	OCDD	8200	Е	0.00	pg/g	0.001	8.2
	OCDF	330	-		pg/g	0.001	0.33
	Adjusted Total				P9/9	0.001	14.22
CF-3-3	9/27/2006 1,2,3,4,6,7,8-HpCDD	26000	D ^(s)		pg/g	0.01	260
51 0 0	1,2,3,4,6,7,8-HpCDF	3100	Ē		pg/g	0.01	31
	1,2,3,4,7,8,9-HpCDF	290	-		pg/g	0.01	2.9
	1,2,3,4,7,8-HxCDD	17			pg/g	0.1	1.7
	1,2,3,4,7,8-HxCDF	68			pg/g	0.1	6.8
	1,2,3,6,7,8-HxCDD	640			pg/g	0.1	64
	1,2,3,6,7,8-HxCDF	28			pg/g	0.1	2.8
	1,2,3,7,8,9-HxCDD	52			pg/g	0.1	5.2
	1,2,3,7,8,9-HxCDF	ND		2.3	pg/g	0.1	0.2
	1,2,3,7,8-PeCDD	4.5	J	2.0	pg/g	0.5	2.25
	1,2,3,7,8-PeCDF	11	U		pg/g	0.05	0.55
	2,3,4,6,7,8-HxCDF	13			pg/g	0.1	1.3
	2,3,4,7,8-PeCDF	7.2			pg/g	0.5	3.6
	2,3,7,8-TCDD	ND		1.0	pg/g pg/g	1	0.0
	2,3,7,8-TCDF	4.7		1.0	pg/g pg/g	0.1	0.47
	OCDD	190000	D,E		pg/g pg/g	0.001	190
	OCDF	25000	D,L D		pg/g pg/g	0.001	25
	Adjusted Total		U		P9/9	0.001	597.57
CS-1-3	9/27/2006 1,2,3,4,6,7,8-HpCDD	7700	E		na/a	0.01	77
00-1-0	9/27/2006 1,2,3,4,6,7,8-ПрСDD 1,2,3,4,6,7,8-ПрСDF	700	E		pg/g	0.01	7
	1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	700 96			pg/g pg/g	0.01	0.96

Table 1: Dioxin Concentrations and Toxicity EquivalentConcentrations in Confirmation Soil Samples

Remedial Action Report - Former Strebor Facility - TetraPak Inc.

Table 1: Dioxin Concentrations and Toxicity EquivalentConcentrations in Confirmation Soil Samples

Sample	Date	Congener	Result		Detection Limit ^(a)	Units	TEF ^(b)	2,3,7,8-TCDD TEC ^(c)
-		1,2,3,4,7,8-HxCDD	10			pg/g	0.1	1
		1,2,3,4,7,8-HxCDF	20			pg/g	0.1	2
		1,2,3,6,7,8-HxCDD	130			pg/g	0.1	13
		1,2,3,6,7,8-HxCDF	13			pg/g	0.1	1.3
		1,2,3,7,8,9-HxCDD	28			pg/g	0.1	2.8
		1,2,3,7,8,9-HxCDF	ND		0.62	pg/g	0.1	
		1,2,3,7,8-PeCDD	ND		3.5	pg/g	0.5	
		1,2,3,7,8-PeCDF	ND		2.0	pg/g	0.05	
		2,3,4,6,7,8-HxCDF	5.3	J		pg/g	0.1	0.53
		2,3,4,7,8-PeCDF	ND		1.3	pg/g	0.5	
		2,3,7,8-TCDD	ND		0.58	pg/g	1	
		2,3,7,8-TCDF	ND		0.33	pg/g	0.1	
		OCDD	70000	D		pg/g	0.001	70
		OCDF	5900	D		pg/g	0.001	5.9
		Adjusted To	otal					181.49
	MTCA	A Method B Cleanup Leve	el ^(t)					6.67

Notes:

(a) Detection limit listed for congeners reported as non-detect.

(b) 2,3,7,8-TCDD TEF = 2,3,7,8-Tetrachlorodibenzo-*p*-dioxin (2,3,7,8-TCDD) toxicity equivalency factor (TEF). 2,3,7,8-TCDD TEFs obtained from Washington Department of Ecology (Ecology) Cleanup Levels and Risk Calculations (CLARC) Information System Notes titled "Assessing the Carcinogenic Risk of Mixtures using Toxicity Equivalence Factors" (Ecology 2007).

(c) TEC = toxicity equivalent concentration.

(d) HpCDD = Heptachlorodibenzo-p-dioxin.

(e) pg/g = picograms per gram.

(f) HpCDF = Heptachlorodibenzofuran.

(g) J = Estimated result. Result is less than reporting limit.

(h) HxCDD = Hexachlorodibenzo-p-dioxin.

(i) ND = not detected above the PQL.

(j) HxCDF = Hexachlorodibenzofuran.

(k) G = Elevated reporting limit. The reporting limit is elevated due to matrix interference.

(I) PeCDD = Pentachlorodibenzo-*p*-dioxin.

(m) PeCDF = Pentachlorodibenzofuran.

(n) TCDF = Tetrachlorodibenzofuran.

(o) JA = The analyte was positively identified, but the quantitation is an estimate.

(p) OCDD = Octachlorodibenzo-p-dioxin.

(q) E = Estimated result. Result concentration exceeds the calibration range.

(r) OCDF = Octachlorodibenzofuran.

(s) D = Result was obtained from the analysis of dilution.

(t) Model Toxics Control Act Method B Cleanup Level for unrestricted land use,

in accordance with WAC 173-340-703.

Total TECs greater than the MTCA Method B Cleanup Level for 2,3,7,8-TCDD are shown in **bold**.

Well	Date	TOC elevation (ft msl) ^(a)	Total Well Depth (ft)	Depth to Water (ft) ^(b)	Water Elevation (ft msl) ^(c)
MW-1	02/19/02	54.40	50.05	48.62	5.78
	02/27/02			47.73	6.67
	03/25/02			48.78	5.62
	04/18/02		49.94	43.55	10.85
	05/28/02			45.70	8.70
	08/19/02			49.45	4.95
	11/18/02		50.18	49.64	4.76
	02/25/03		50.18	48.23	6.17
	07/06/06		51.00	48.27	6.13
	12/28/06			45.36	9.04
MW-2	10/08/01	51.44	50.05	48.10	3.34
	02/19/02			45.73	5.71
	02/27/02			44.72	6.72
	03/25/02			45.80	5.64
	04/18/02		49.91	40.55	10.89
	05/28/02			42.78	8.66
	08/19/02			46.55	4.89
	11/18/02		50.12	46.73	4.71
	02/25/03		50.11	45.32	6.12
	07/06/06		50.5	45.35	6.09
	12/28/06			42.37	9.07
MW-3	10/08/01	53.38	54.88	50.28	3.10
	02/19/02			47.53	5.85
	02/27/02			46.70	6.68
	03/25/02			47.79	5.59
	04/18/02		54.72	42.78	10.60
	05/28/02			44.68	8.70
	08/19/02			48.43	4.95
	11/18/02		54.90	48.63	4.75
	02/24/03		54.99	47.23	6.15
	07/06/06		55.50	47.28	6.10
	12/28/06			44.37	9.01
MW-5	10/08/01	51.17	50.18	48.05	3.12
	02/19/02			45.52	5.65
	02/27/02			44.42	6.75
	03/25/02			45.50	5.67
	04/18/02		50.05	40.24	10.93
	05/28/02			42.46	8.71
	08/19/02			46.25	4.92
	11/18/02		50.28	46.42	4.75
	02/25/03		50.29	45.02	6.15
	07/06/06		50	45.02	6.15
	12/28/06			42.07	9.10

Table 2: Water Level Measurements

Table 2: Water Level Measurements

Well	Date	TOC elevation (ft msl) ^(a)	Total Well Depth (ft)	Depth to Water (ft) ^(b)	Water Elevation (ft msl) ^(c)
MW-6	04/18/02	49.94	53.71	38.92	11.02
	05/28/02			41.45	8.49
	08/19/02			44.92	5.02
	11/18/02		52.88	45.10	4.84
	02/24/03		53.89	43.73	6.21
	07/06/06		54.5	43.75	6.19
	12/28/06			40.81	9.13
MW-7	08/07/02	49.76	54.55	44.39	5.37
	08/19/02		54.55	44.80	4.96
	11/18/02		54.22	44.97	4.79
	02/25/03		54.53	43.55	6.21
MW-8	02/25/03	48.42	54.45	42.18	6.24
	07/06/06		55	42.22	6.20
	12/28/06			39.32	9.10

Notes:

(a) Top of casing (TOC) elevations reported in feet (ft) above mean sea level (msl).

(b) Depth to water measured in feet below ground surface.

(c) Water elevation calculated as the difference between the TOC elevation and the depth to water.

		Semivolatile Organic Compounds (μg/I) ^(a,b)								
Monitoring Well Number	Date Sampled	Pentachlorophenol	2,3,4,6 Tetrachlorophenol	2,3,5,6 Tetrachlorophenol	2,4,5 Trichlorophenol	2,4,6 Trichlorophenol				
MW-1	04/19/02	<0.8 ^(c)	NA ^(d)	NA	NA	NA				
	08/21/02	1.48	NA	NA	<0.8	<0.8				
	11/19/02	1.67	NA	NA	<1.6	<1.6				
	02/25/03	<0.19	NA	NA	<0.19	<0.19				
	07/06/06	1.2	<0.10	0.078 J ^(e)	<0.051	<0.083				
	12/28/06	0.68	0.033 J	0.044 J	<0.0083	< 0.0097				
MW-2	04/18/02	<0.8	NA	NA	NA	NA				
	08/21/02	<0.8	NA	NA	<0.8	<0.8				
	11/19/02	<0.8	NA	NA	<0.8	<0.8				
	02/25/03	<0.19	NA	NA	<0.19	<0.19				
	07/06/06	<0.11	<0.11	<0.056	< 0.055	<0.089				
	12/28/06	0.15 J	<0.0089	<0.019	<0.0091	<0.011				
MW-3	04/18/02	<0.8	NA	NA	NA	NA				
	08/20/02	<0.8	NA	NA	<0.8	<0.8				
	11/18/02	<0.8	NA	NA	<1.6	<1.6				
	02/24/03	0.254	NA	NA	<0.189	<0.189				
	07/06/06	<0.11	<0.11	<0.055	<0.054	<0.087				
	12/28/06	0.13 J	<0.0081	<0.018	<0.0083	<0.0098				
MW-5	04/19/02	<0.8	NA	NA	NA	NA				
	08/21/02	<0.8	NA	NA	<0.8	<0.8				
	11/19/02	<0.8	NA	NA	<1.6	<1.6				
	02/25/03	<0.189	NA	NA	<0.189	<0.189				
	07/06/06	<0.11	<0.11	<0.053	<0.052	<0.083				
	12/28/06	<0.013	<0.0081	<0.018	<0.0083	<0.0098				
MW-6	04/18/02	<0.8	NA	NA	NA	NA				
	08/20/02	<0.813	NA	NA	<0.813	<0.813				
	11/18/02	<0.8	NA	NA	<1.6	<1.6				
	02/24/03	<0.19	NA	NA	<0.19	<0.19				
	07/06/06	0.16 J	<0.12	<0.059	<0.058	<0.092				
	12/28/06	0.21 J	<0.0083	<0.018	<0.0085	<0.01				
MW-7	08/07/02	0.412 J	NA	NA	<0.8	<0.8				
	08/20/02	0.347 J	NA	NA	<0.8	<0.8				
	11/19/02	7.58	NA	NA	<1.6	<1.6				
	02/25/03	<0.191	NA	NA	<0.191	<0.191				

Table 3: Summary of Groundwater Analytical Results for Monitoring Wells

Table 3: Summary of Groundwater Analytical Results for Monitoring Wells

		Semivolatile Organic Compounds (μg/l) ^(a,b)								
Monitoring Well Number	Date Sampled	Pentachlorophenol		2,3,5,6 Tetrachlorophenol		2,4,6 Trichlorophenol				
MW-8	02/25/03	<0.189	NA	NA	<0.189	<0.189				
	07/06/06	<0.11	<0.11	<0.055	<0.054	<0.087				
	12/28/06	0.16 J	<0.0081	<0.018	<0.0083	<0.0098				
MTCA Method B	Cleanup Level ^(f)	0.73	480	NL ^(g)	1,800	4				

Notes:

(a) Results are reported in micrograms per liter (μ g/l).

(b) Samples were analyzed for selected semivolatile organic compounds by EPA Method 8270C.

(c) "<" denotes analyte was not detected above the indicated detection limit.

(d) NA = not analyzed.

(e) J denotes positively identified, but numerical value is an estimated quantity.

(f) MTCA Method B Groundwater Cleanup Level. Washington Department of Ecology (Ecology) Cleanup Levels and Risk Calculations (CLARC) Information System (Ecology 2007).

(g) NL = not listed in the CLARC Information System.

Bold values indicate positive laboratory detection above the Method B Groundwater Cleanup Level.

Figures

Kennedy/Jenks Consultants

TETRA PAK FORMER STREBOR SITE

VICINITY MAP

K/J 016066.11/P01SK001

FIGURE 1

LEGEND

- STORMWATER DRYWELLS Ο
- STORMWATER CATCH BASIN
- APPROXIMATE SITE BOUNDARY
- FORMER RAILROAD SPUR
- $\mathbf{\Phi}^{MW-1}$ MONITORING WELL LOCATION
- APPROXIMATE AREA OF REMOVAL ACTIVITIES

NOTE: ALL LOCATIONS APPROXIMATE.

REFERENCE: SITE PLAN PROVIDED BY TETRA PAK

♦ MW-8

Kennedy/Jenks Consultants

tetra pak FORMER STREBOR SITE

SITE PLAN

K/J 016066.11/P02SK002

FIGURE 2

RR TIE TRACK	
FIGURE 3 SOIL REMOVAL EXCAVATION AND CONFIRMATION	FILE NAME 016066-3 JOB NO. 016066.11 DATE AUGUST 2006 SHEET
SOIL SAMPLE LOCATIONS	3

Appendix A

Photographs of Site Work

Photograph 1:

Rail spur removal

Photograph 2:

Excavation area, south end of former rail spur, adjacent to Strebor building.

Photograph 3:

Excavation area, north end of Strebor building (looking south), with approximate sample locations.

Photograph 4:

Excavation area, north end of rail spur (looking north), with approximate sample locations. MW-1 is upper left of photograph.

Photograph 5:

Finished grading after backfill and compaction (looking south).

Appendix B

Transportation and Disposal Receipts

Driver's Signature

generation of

WASTE MANAGEMENT

Hillsboro Landfill, Inc 3205 SE Minter Bridge Hillsboro, DR, 97123 Ph: (503)-640-9427 Original Ticket# 1011881

24600

16

12.30

Ticket Date	TETRAPAK Tet 09/27/2006 Credit Accou		Carrier Vehicle# Container	WEST (125	COAST	MARINE	WEST Volu		Marini	Ē
Manual Ticket			Driver							
Hauling Ticke	t#		Check#							1
Route			Billing #	090	2464					
State Waste C	ode		Gen EPA I	D						
lanifest	na									
Destination		• .	Grid					•		
P O	10182									
Profile	10182 (Conta	minated Soil)								
Generator	168-TETRAPAK	Tetra Pak		,						
Time		Scale	Operator		Inbou	ind G	r055		56560	1ь
In 09/27/2 0	06 13:43:03	Inbound 1	BML			T.	are		31960	16

Conments

Out

09/27/2006 14:02:48

Consumer Comments? We want to know. Please call.

MANUAL WT

Prod	luct	LD%	Qty	UOM	Rate	Тах	Amount	Origin
1 2	Cont Soil Pet-RGC- EVL-Env Fee Lg.	100 100	12.30 1	Tons Load	33.65 4.00	16.61	\$413.90	

٩

BML

Jor & Der en 403WM

Total Tax \$16.61 Total Ticket \$434.51

٠.

Net

Tons

Ø

	Hillsbord 3205 SE t Hillsbord Ph: (503)	Minter B o, OR, 9	ridge 7123	•		Origina Ticket#	1 1011839 V
	06	ed Soil)	Vehi Cont Driv Chec Bill	cle# 110 ainer er doug k# ing # 000 EPA ID	COAST MAR)2464	INE WEST COA Volume	ST MARINE
Time In 09/27/2006 14:16: Out 09/27/2006 14:32: Comments		und 1	Operat BML tmm	or	Inbound	Gross Tare Net Tons	55500 lb 32960 lb 22540 lb 11.27
Consumer C	omments?	We want	to know.	Please ca	11.		
Product	LD%	Qty	UOM	Rate	Tax	Amount	Origin
1 Cont Soil Pet-RGC 2 EVL-Env Fee Lg.	- 100 100	11.27 1	Tons Load	33.65 4.00	15.21	\$379.24 \$4.00	Clark Clark

-

Total Tax Total Ticket

Driver's Signature

403WM

6

\$15.21 \$398.45

	Hillsboro Landfill, Therma 3205 SE Minter Bridge Hillsboro, OR, 97123 Ph: (503)-640-9427		riginal icket# 1011908 🖌
Customer Name TETRAPA Ticket Date 09/27/2 Payment Type Credit Manual Ticket# Hauling Ticket# Route State Waste Code Manifest na Destination PO 10182 Profile 10182 (0	006 Vehicle# Account Container	keith 0002464	ST COAST MARINE olume
Generator 168-TET Time In 09/27/2006 14:29 Out 09/27/2006 14:52 Comments	RAPAK Tetra Pak Scale Operator :41 Inbound 2 bml	Inbound Gros Tare Net Tons	48800 1b 27180 1b

Product		LD%	Qty	UOM	Rate	Тах	Amount	Origin
1	Cont Soil Pet-RGC-	100	13.59	Tons	33.65	18.35	\$457.30	CLARK
2	EVL-Env Fee Lg.	100	1	Load	4.00		\$4.00	CLARK

Jut

Driver's Signature

•

Total Tax *\$18.35* Total Ticket \$479.65

ً

	° ु भ	205 SE illsbor	o Landfi Minter B o, OR, 9)-640-94	ll, Inc ridge 7123	КМ 005		Origina Ticket#	1011936 🗸
Customer Name Ticket Date Payment Type Manual Ticket Hauling Ticke Route State Waste C Manifest Destination PO Profile Generator	09/27/2006 Credit Acc # et#	ount taminat	ed Soil)	Ve Co Dr Ch Bi Ge	hicle# 138 ntainer iver eck#	COAST MAR 02464	INE WEST COA Volume	IST MARINE
	006 15:17:54 006 15:47:18		und 1	Oper tan tan	rator	Inbound	Gross Tare Net Tons	61500 lb 38040 lb 23460 lb 11.73
C Product	Consumer Com	@ents?	We want Qty	to kno UOM	w. Please ca Rate	all. Tax	Amount	Origin
	l Pet-RGC- Fee Lg.			Tons Load	33.65 4.00	15.84	\$394,71 \$4.00	CLARK CLARK

Driver's Signature 4 403WM

Total Tax \$15.84 Total Ticket \$414.55

8
	3205 SE Hillsbor Ph: (503	ro Landfi Mintei B ro, OR, 9 3)-640-94	Midge 7123	•		Origina Ticket#	1012088
Payment Type Crea Manual Ticket# Hauling Ticket# Route State Waste Code Manifest na Destination PO 1010 Profile 1010	28/2006 Jit Account	ed Soil)	Vehi Cont Dric Chec Bill	icle# 133 ;ainer ver ck# ling # 000 EPA ID	COAST MAR)2464	INE WEST COA Volume	AST MARINE
Tine In 09/28/2006 10 Out 09/28/2006 10 Comments		le Jund 2 Jound	Operat bnl sdn	or	Inbound	Gross Tare Net Tons	42780 lb 31640 lb 11140 lb 5.57
Consur Product	ner Comments? LD%	We want Oty	to know. UOM	Please ca Rate	Tax	Amount	Origin
1 Cont Soil Pet 2 EVL-Env Fee L		5.57 1	Tons Load	33.65 4.00	7.52	\$187.43 \$4.00	CLARK CLARK

Driver's Signature 403WM

Total Tax Total Ticket \$7.52 \$198.95

ᢙ

nurvei a orñi	narm e	
---------------	--------	--

WASTE MANAGEMENT	Hillsboro Landfi 3205 SE Minter B Hillsboro, OR, 9 Ph: (503)-640-94	ridge 7123		Origin Ticke	nal t# 1013963	V
Customer Name TETRAPA Ticket Date 10/04/2 Payment Type Credit Manual Ticket# Hauling Ticket# Route State Waste Code Manifest NA Destination	006	Carrier Vehicle# Container Driver Check# Billing # Gen EPA II Grid	WEST COAST MAR 143 kathy 0002464	INE WEST C(Volume		E
PO 10182 Profile 10182 (Operator too bol	Inbound	Gross Tare Net Tons	41560 33120 8440	1b 1b 1b 4.22

Comments

Consumer Comments? We want to know. Please call.

Prod	luct	LD%	Qty	UOM	Rate	Тах	Amount	Origin
1 2	Cont Soil Pet-RGC- EVL-Env Fee Lg.	100 100	4.22 1	Tons Load	 33.65 4.00	5.70	\$142.00 \$4.00	CLARK CLARK

Achilly

Total Tax	\$5.70
Total Ticket	\$151.70

⊕

- -

	Hillsboro Landfi 3205 SE Minter B Hillsboro, OR, 9 Ph: (503)-640-94	9ridge- ~~~~~ 97123		Origina Ticket#	¹ 1011760 🗸
	D 6	Vehicle# 101 Container Driver KEI Check# Billing # 00 Gen EPA ID Grid		INE WEST COA Volume	ST MARINE
Time In 09/27/2006 10:57: Out 09/27/2006 11:41: Comments		Operator SDM sdm	Inbound	Gross Tare Net Tons	99920 16 45300 16 54620 16 27.31
Consumer C	ooments? We want	; to know. Please	call.		
Product	LD% Qty	UOM Rate	Тах	Amount	Origin
1 Cont Soil Pet-RGC 2 EVL-Env Fee Lg.	- 100 27.31 100 1	Tons 33.65 Load 4.00	36.87	\$918.98 \$4.00	CLARK CLARK

Total Tax

Total Ticket

\$36.87 \$959.85

۲

Driver's Signature

403WM

	3205 SE Hillsbo	ro Landfi Minter ^{se} ro, OR, S 3)-640-94	ridge 7123	361-2	0	Origina Ticket‡	1 1011804 /
Customer Name TETRAPAK Ticket Date 09/27/200 Payment Type Credit Ad Manual Ticket# Hauling Ticket# Route State Waste Code Manifest NA Destination PO 10182 Profile 10182 (Co Generator 168-TETRA	06 ccount ontaminal	ed Soil)	Veh Con Dri Che Bil Gen Gri	icle# 110 tainer ver ck# ling # 000 EPA ID	COAST MAR 02464	INE WEST COP Volume	NST MARINE
Time In 09/27/2006 11:58:5 Out 09/27/2006 12:49:1 Comments		ale bund 1 bound	Opera SDM bml	tor	Inbound	Gross Tare Net Tons	75220 lb 38800 lb 36420 lb 18.21
Consumer Co Product	LD%	We want Oty	to know UOM	. Please ca Rate	Tax	Amount	Owinin
1 Cont Soil Pet-RGC-			Tons	33.65	24.58	\$612, 77	Origin CLARK

1 Load

4.00

Driver's Signature

EVL-Env Fee Lg.

100

Total Tax \$24.58 Total Ticket \$641.35

\$4.00 CLARK

2

8

Appendix C

Analytical Laboratory Reports

ANALYTICAL REPORT

Job Number: 580-2999-1

Job Description: Tetra Pak

For: Kennedy/Jenks Consultants 200 Market Street Suite 500 Portland, OR 97201

Attention: Deonne Knill

Hanbon

Heather Curbow Project Mgmt. Assistant hcurbow@stl-inc.com 07/18/2006 Revision: 1

Project Manager: Darla Powell

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

METHOD SUMMARY

Client: Kennedy/Jenks Consultants

Descript	tion	Lab Location	Method	Preparation Method
Matrix:	Water			
	tile Compounds by Gas Chromatography/Mass etry (GC/MS)	STL-SEA	SW846 82700	2
	Separatory Funnel Liquid-Liquid Extraction	STL-SEA		SW846 3510C

LAB REFERENCES:

STL-SEA = STL-Seattle

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Kennedy/Jenks Consultants

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
580-2999-1	MW-1	Water	07/06/2006 1145	07/07/2006 0815
580-2999-2	MW-2	Water	07/06/2006 1015	07/07/2006 0815
580-2999-3	MW-3	Water	07/06/2006 1215	07/07/2006 0815
580-2999-4	MW-5	Water	07/06/2006 0945	07/07/2006 0815
580-2999-5	MW-6	Water	07/06/2006 1115	07/07/2006 0815
580-2999-6	MW-8	Water	07/06/2006 1045	07/07/2006 0815

Client: Kennedy/Jenks Consultants

Client Sample ID): MW-1				
Lab Sample ID:	580-2999-1			Date Sampled:	07/06/2006 1145
Client Matrix:	Water			Date Received:	07/07/2006 0815
827	0C Semivolatile Compou	unds by Gas Chromatography/	Mass Spectro	metry (GC/MS)	
Method:	8270C	Analysis Batch: 580-8900	Instr	ument ID: SEA	A002
Preparation:	3510C	Prep Batch: 580-8702	Lab	File ID: ATO	6398.D
Dilution:	1.0		Initia	I Weight/Volume:	1030 mL
Date Analyzed:	07/12/2006 1600		Fina	I Weight/Volume:	1 mL
Date Prepared:	07/10/2006 0820		Injec	tion Volume:	
Analyte		Result (ug/L)	Qualifier	MDL	RL
	bl	Result (ug/L) 1.2	Qualifier	MDL 0.10	RL 0.34
Pentachloropheno			Qualifier U		
Pentachloropheno 2,4,6-Trichlorophe	enol	1.2		0.10	0.34
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe	enol enol	1.2 0.083	U	0.10 0.083	0.34 0.29
Analyte Pentachlorophene 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	enol enol rophenol	1.2 0.083 0.051	U U	0.10 0.083 0.051	0.34 0.29 0.19
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	1.2 0.083 0.051 0.10	U U U	0.10 0.083 0.051 0.10 0.052	0.34 0.29 0.19 0.34
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	enol enol rophenol	1.2 0.083 0.051 0.10 0.078	U U U	0.10 0.083 0.051 0.10 0.052	0.34 0.29 0.19 0.34 0.19 nce Limits
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	1.2 0.083 0.051 0.10 0.078 %Rec	U U U	0.10 0.083 0.051 0.10 0.052 Accepta	0.34 0.29 0.19 0.34 0.19 nce Limits

Client: Kennedy/Jenks Consultants

Client Sample ID	D: MW-2				
Lab Sample ID:	580-2999-2			Date Sampled:	07/06/2006 1015
Client Matrix:	Water			Date Received:	07/07/2006 0815
827	0C Semivolatile Compo	unds by Gas Chromatography/	Mass Spectro	metry (GC/MS)	
Method:	8270C	Analysis Batch: 580-8900	Instr	ument ID: SE	EA002
Preparation:	3510C	Prep Batch: 580-8702	Lab	File ID: A1	-06399.D
Dilution:	1.0		Initia	I Weight/Volume	e: 960 mL
Date Analyzed:	07/12/2006 1627		Final	l Weight/Volume	e: 1 mL
Date Prepared:	07/10/2006 0820		Injec	tion Volume:	
Analyte		Result (ug/L)	Qualifier	MDL	RL
-	ol	Result (ug/L) 0.11	Qualifier U	MDL 0.11	RL 0.36
Pentachloropheno					
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe	enol enol	0.11	U	0.11	0.36
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.11 0.089	U U U U	0.11 0.089	0.36 0.31
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.11 0.089 0.055	U U U	0.11 0.089 0.055	0.36 0.31 0.21
Analyte Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	0.11 0.089 0.055 0.11	U U U U	0.11 0.089 0.055 0.11 0.056	0.36 0.31 0.21 0.36
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	enol enol rophenol	0.11 0.089 0.055 0.11 0.056	U U U U	0.11 0.089 0.055 0.11 0.056	0.36 0.31 0.21 0.36 0.21 ance Limits
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	0.11 0.089 0.055 0.11 0.056 %Rec	U U U U	0.11 0.089 0.055 0.11 0.056 Accept	0.36 0.31 0.21 0.36 0.21 ance Limits 20

Client: Kennedy/Jenks Consultants

Client Sample ID): MW-3				
Lab Sample ID:	580-2999-3			Date Sampled:	07/06/2006 1215
Client Matrix:	Water			Date Received:	07/07/2006 0815
827	0C Semivolatile Compou	unds by Gas Chromatography/	Mass Spectro	metry (GC/MS)	
Method:	8270C	Analysis Batch: 580-8900	Instr	ument ID: SEA	4002
Preparation:	3510C	Prep Batch: 580-8702			6400.D
Dilution:	1.0			I Weight/Volume:	
Date Analyzed:	07/12/2006 1655			I Weight/Volume:	1 mL
Date Prepared:	07/10/2006 0820		Injec	tion Volume:	
Analyte		Result (ug/L)	Qualifier	MDL	RL
	DI	Result (ug/L) 0.11	Qualifier U	MDL 0.11	RL 0.36
Pentachloropheno					
Pentachloropheno 2,4,6-Trichlorophe	enol	0.11	U	0.11	0.36
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe	enol enol	0.11 0.087	U U	0.11 0.087	0.36 0.31
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.11 0.087 0.054	U U U	0.11 0.087 0.054	0.36 0.31 0.21
Analyte Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	0.11 0.087 0.054 0.11	U U U U	0.11 0.087 0.054 0.11 0.055	0.36 0.31 0.21 0.36
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	enol enol rophenol	0.11 0.087 0.054 0.11 0.055	U U U U	0.11 0.087 0.054 0.11 0.055	0.36 0.31 0.21 0.36 0.21 nce Limits
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	0.11 0.087 0.054 0.11 0.055 %Rec	U U U U	0.11 0.087 0.054 0.11 0.055 Acceptar	0.36 0.31 0.21 0.36 0.21 nce Limits

Client: Kennedy/Jenks Consultants

Client Sample ID	: MW-5				
Lab Sample ID: Client Matrix:	580-2999-4 Water			Date Sampled: Date Received:	07/06/2006 0945 07/07/2006 0815
8270	C Semivolatile Compo	unds by Gas Chromatography/	Mass Spectro	metry (GC/MS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3510C 1.0 07/12/2006 1722 07/10/2006 0820	Analysis Batch: 580-8900 Prep Batch: 580-8702	Lab Initia Fina	ument ID: SEA File ID: ATO Il Weight/Volume: I Weight/Volume: tion Volume:	6401.D 1020 mL
Analyte		Result (ug/L)	Qualifier	MDL	RL
Pentachloropheno		0.11	Qualifier U	0.11	0.34
Pentachloropheno 2,4,6-Trichlorophe	nol	0.11 0.083		0.11 0.083	0.34 0.29
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe	nol nol	0.11 0.083 0.052	U U U	0.11 0.083 0.052	0.34 0.29 0.20
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachloro	nol nol ophenol	0.11 0.083 0.052 0.11	U U U U	0.11 0.083 0.052 0.11	0.34 0.29 0.20 0.34
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachloro	nol nol ophenol	0.11 0.083 0.052	U U U	0.11 0.083 0.052	0.34 0.29 0.20
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachloro	nol nol ophenol	0.11 0.083 0.052 0.11	U U U U	0.11 0.083 0.052 0.11 0.053	0.34 0.29 0.20 0.34
Analyte Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachloro 2,3,5,6-Tetrachloro Surrogate 2-Fluorophenol	nol nol ophenol	0.11 0.083 0.052 0.11 0.053	U U U U	0.11 0.083 0.052 0.11 0.053	0.34 0.29 0.20 0.34 0.20 nce Limits
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachloro 2,3,5,6-Tetrachloro Surrogate	nol nol ophenol	0.11 0.083 0.052 0.11 0.053 %Rec	U U U U	0.11 0.083 0.052 0.11 0.053 Acceptar	0.34 0.29 0.20 0.34 0.20 nce Limits 0

Client: Kennedy/Jenks Consultants

Client Sample ID): MW-6				
Lab Sample ID:	580-2999-5			Date Sampled:	07/06/2006 1115
Client Matrix:	Water			Date Received:	07/07/2006 0815
8270	0C Semivolatile Compou	unds by Gas Chromatography/	Mass Spectro	metry (GC/MS)	
Method:	8270C	Analysis Batch: 580-8900	Instr	ument ID: SEA	002
Preparation:	3510C	Prep Batch: 580-8702	Lab	File ID: ATC	6402.D
Dilution:	1.0		Initia	I Weight/Volume:	920 mL
Date Analyzed:	07/12/2006 1750		Fina	Weight/Volume:	1 mL
Date Prepared:	07/10/2006 0820		Injec	tion Volume:	
Analyte		Result (ug/L)	Qualifier	MDL	RL
Pentachlorophenc		0.16	J	0.12	0.38
2,4,6-Trichlorophe		0.092	U	0.092	0.33
		0.002	0	0.002	
· · · · ·	nol	0.058	U	0.058	0.22
2,4,5-Trichlorophe		0.058 0.12	U U	0.058 0.12	0.22 0.38
2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	ophenol		-		
2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	ophenol	0.12	U	0.12 0.059	0.38
2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	ophenol	0.12 0.059	U	0.12 0.059	0.38 0.22 nce Limits
2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	ophenol	0.12 0.059 %Rec	U	0.12 0.059 Accepta	0.38 0.22 nce Limits 0

Client: Kennedy/Jenks Consultants

Client Sample ID	D: MW-8				
Lab Sample ID:	580-2999-6			Date Sampled:	07/06/2006 1045
Client Matrix:	Water			Date Received:	07/07/2006 0815
827	0C Semivolatile Compo	unds by Gas Chromatography	/Mass Spectro	metry (GC/MS)	
Method:	8270C	Analysis Batch: 580-8900	Instr	ument ID: SEA	002
Preparation:	3510C	Prep Batch: 580-8702	Lab	File ID: AT0	6403.D
Dilution:	1.0		Initia	al Weight/Volume:	980 mL
Date Analyzed:	07/12/2006 1817		Fina	I Weight/Volume:	1 mL
Date Prepared:	07/10/2006 0820		Injec	ction Volume:	
Analyte		Result (ug/L)	Qualifier	MDL	RL
-	ol	0.11	Qualifier U	MDL 0.11	RL 0.36
Pentachlorophenc					
Pentachlorophenc 2,4,6-Trichlorophe	enol	0.11	U	0.11	0.36
Pentachlorophenc 2,4,6-Trichlorophe 2,4,5-Trichlorophe	enol enol	0.11 0.087	U U	0.11 0.087	0.36 0.31
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.11 0.087 0.054	U U U	0.11 0.087 0.054	0.36 0.31 0.20
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.11 0.087 0.054 0.11	U U U U	0.11 0.087 0.054 0.11 0.055	0.36 0.31 0.20 0.36
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	0.11 0.087 0.054 0.11 0.055	U U U U	0.11 0.087 0.054 0.11 0.055	0.36 0.31 0.20 0.36 0.20 nce Limits
Analyte Pentachlorophenc 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate 2-Fluorophenol Phenol-d5	enol enol rophenol	0.11 0.087 0.054 0.11 0.055 %Rec	U U U U	0.11 0.087 0.054 0.11 0.055 Acceptar	0.36 0.31 0.20 0.36 0.20 nce Limits 0

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Kennedy/Jenks Consultants

Method Blank - Batch: 580-8702

Lab Sample ID: MB 580-8702/1-A

1.0 Date Analyzed: 07/12/2006 1410

Date Prepared: 07/10/2006 0820

Client Matrix: Water

Dilution:

Method: 8270C
Preparation: 3510C

Instrument ID: SEA002 Lab File ID: AT06394.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:

Analyte	Result	Qual	MDL	RL
Pentachlorophenol	0.11	U	0.11	0.35
2,4,6-Trichlorophenol	0.085	U	0.085	0.30
2,4,5-Trichlorophenol	0.053	U	0.053	0.20
2,3,4,6-Tetrachlorophenol	0.11	U	0.11	0.35
2,3,5,6-Tetrachlorophenol	0.054	U	0.054	0.20
Surrogate	% Rec		Acceptance Limits	i
2-Fluorophenol	40	10 - 120		
Phenol-d5	24		10 - 102	
2,4,6-Tribromophenol	85		29 - 151	

Analysis Batch: 580-8900

Prep Batch: 580-8702

Units: ug/L

Quality Control Results

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Kennedy/Jenks Consultants

Quality Control Results

Job Number: 580-2999-1

Laboratory Cor Laboratory Cor		/ Report - Batch: 580-8702	Method: 8270C Preparation: 3510C
LCS Lab Sample I Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: LCS 580-8702/2-A Water 1.0 07/12/2006 1438 07/10/2006 0820	Analysis Batch: 580-8900 Prep Batch: 580-8702 Units: ug/L	Instrument ID: SEA002 Lab File ID: AT06395.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCSD 580-8702/3-A Water 1.0 07/12/2006 1505 07/10/2006 0820	Analysis Batch: 580-8900 Prep Batch: 580-8702 Units:ug/L	Instrument ID: SEA002 Lab File ID: AT06396.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:

	9	6 Rec.			
Analyte	LCS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qual
Pentachlorophenol	77	82	10 - 160	6	67
2,4,6-Trichlorophenol	88	88	20 - 150	1	50
2,4,5-Trichlorophenol	87	87	20 - 150	0	50
2,3,4,6-Tetrachlorophenol	83	85	50 - 150	2	50
2,3,5,6-Tetrachlorophenol	86	87	50 - 150	1	50
Surrogate	L	CS % Rec	LCSD %	Rec	Acceptance Limits
2-Fluorophenol	3	6	39		10 - 120
Phenol-d5	2	2	24		10 - 102
2,4,6-Tribromophenol	9	9	99		29 - 151

Method: 8270C

Page 11 of 14

DATA REPORTING QUALIFIERS

Client: Kennedy/Jenks Consultants

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Chain of Custody Record	STL Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.stl-inc.com		SEVERN TRENT	
Kennedy/Jenks(OUSUHAND Project Manager	e knill	los-	Chain of Custody Number 26037
200 SW Market St. 5	off. 500	ax Number	Lab Number 1 P	Page of 1
City City City City Code	7.201 Becky Ba	Lab Contact	Analysis (Attach list if more space is needed)	
	WA Carrier Way			Special Instructions/
Contract/Purchase Order/Quote No.		Containers &		Conditions of Receipt
	Date Time Sed. Soli Soli	нови ивон ивон ног нос нисі нисі нисі нисі		
F 1-mm				Please NN
e~mu	1, Iois X N			these samples
S-MM	X X Sici V			with low leved
S - MW Pag	Dats X D			<u></u>
D) - (MM 1				
8-MW of		X XX		
14				
Cooler Cooler Temp: Possible Hazard Identification	d Identification I Clammable Skin Irritant Doison B	ison B Unknown C Return To Client	CDisposal By Lab	(A fee may be assessed if samples are retained longer than 1 month)
und Time Required (business days) tours	15 Days X1 Other Der and) Requirements (Spe	U	
1. Relinquished By PMMA	2246 15 Time 1300	1. Received By	An	Date Date Time 7/7/04
2. Relinquished By	Date	2. Received By	D	Date
3. Relinquished By	Date	3. Received By		Date Time
Comments				

DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field Copy

STL8274-580 (12/02)

.

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Kennedy/Jenks Consultants

Job Number: 580-2999-1

Login Number: 2999

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

SEVERN TRENT **STL**

ANALYTICAL REPORT

Job Number: 580-4614-1

Job Description: Tetra Pak

For: Kennedy/Jenks Consultants 200 Market Street Suite 500 Portland, OR 97201

Attention: Deonne Knill

Katie Downie Project Manager II kdownie@stl-inc.com 01/08/2007

Project Manager: Katie Downie

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

SAMPLE SUMMARY

Client: Kennedy/Jenks Consultants

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
580-4614-1	MW-1	Water	12/28/2006 1120	12/29/2006 1000
580-4614-2	MW-2	Water	12/28/2006 1445	12/29/2006 1000
580-4614-3	MW-3	Water	12/28/2006 0940	12/29/2006 1000
580-4614-4	MW-5	Water	12/28/2006 1400	12/29/2006 1000
580-4614-5	MW-6	Water	12/28/2006 1210	12/29/2006 1000
580-4614-6	MW-8	Water	12/28/2006 1030	12/29/2006 1000

Client: Kennedy/Jenks Consultants

Client Sample ID): MW-1				
Lab Sample ID:	580-4614-1			Date Sampled: 1	2/28/2006 1120
Client Matrix:	Water			Date Received: 1	2/29/2006 1000
827	0C Semivolatile Compou	Inds by Gas Chromatography/	Mass Spectro	metry (GC/MS)	
Method:	8270C	Analysis Batch: 580-14530	Instr	rument ID: SEA0	02
Preparation:	3510C	Prep Batch: 580-14399	Lab	File ID: AT068	374.D
Dilution:	1.0		Initia	al Weight/Volume:	1030 mL
Date Analyzed:	01/03/2007 0945		Fina	al Weight/Volume:	1 mL
Date Prepared:	01/02/2007 1057		Injec	ction Volume:	
Analyte		Result (ug/L)	Qualifier	MDL	-
,		Result (ug/L)	Qualifier	IVIDE	RL
	ol	0.68	Qualifier	0.013	0.34
Pentachloropheno			U		
Pentachloropheno 2,4,6-Trichlorophe	enol	0.68		0.013	0.34
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe	enol enol	0.68 0.0097	U	0.013 0.0097	0.34 0.29
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.68 0.0097 0.0083	UUU	0.013 0.0097 0.0083	0.34 0.29 0.19
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.68 0.0097 0.0083 0.033	U U J	0.013 0.0097 0.0083 0.0081	0.34 0.29 0.19 0.34 0.19
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	enol enol rophenol	0.68 0.0097 0.0083 0.033 0.044	U U J	0.013 0.0097 0.0083 0.0081 0.017	0.34 0.29 0.19 0.34 0.19
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	0.68 0.0097 0.0083 0.033 0.044 %Rec	U U J	0.013 0.0097 0.0083 0.0081 0.017 Acceptanc	0.34 0.29 0.19 0.34 0.19

Client: Kennedy/Jenks Consultants

Client Sample ID): MW-2				
Lab Sample ID: Client Matrix:	580-4614-2 Water				2/28/2006 1445 2/29/2006 1000
827	0C Semivolatile Compou	Inds by Gas Chromatography/	lass Spec	trometry (GC/MS)	
Method: 8270C Preparation: 3510C Dilution: 1.0 Date Analyzed: 01/03/2007 1012 Date Prepared: 01/02/2007 1057		Analysis Batch: 580-14530 Prep Batch: 580-14399	L Ir F	Instrument ID: SEA002 Lab File ID: AT06875.D Initial Weight/Volume: 935 mL Final Weight/Volume: 1 mL Injection Volume:	
Analyte		Result (ug/L)	Qualifier	MDL	RL
Pentachloropheno	bl	0.15	J	0.014	0.37
2,4,6-Trichlorophe		0.011	U	0.011	0.32
2,4,5-Trichlorophe		0.0091	U	0.0091	0.21
2,3,4,6-Tetrachlor	•	0.0089	U	0.0089	0.37
2,3,5,6-Tetrachlorophenol		0.019	U 0.019 0.21		0.21
Surrogate		%Rec	Acceptance Limits		e Limits
2-Fluorophenol		47		10 - 120	
Phenol-d5		27		10 - 102	
2,4,6-Tribromophe	enol	115		29 - 151	

Client: Kennedy/Jenks Consultants

Client Sample ID	D: MW-3				
Lab Sample ID:	580-4614-3			Date Sampled:	12/28/2006 0940
Client Matrix:	Water			Date Received:	12/29/2006 1000
827	0C Semivolatile Compou	unds by Gas Chromatography/I	Mass Spectro	metry (GC/MS)	
		Analysis Batch: 580-14530	Instrument ID: SEA002		
Preparation:	3510C	Prep Batch: 580-14399	Lab	File ID: AT06	6876.D
Dilution:	1.0		Initia	al Weight/Volume:	1020 mL
Date Analyzed:	01/03/2007 1040		Fina	I Weight/Volume:	1 mL
Date Prepared:	01/02/2007 1057		Injection Volume:		
Apolyto			Qualifian		
Analyte		Result (ug/L)	Qualifier	MDL	RL
-	ol	0.13	J	0.013	RL 0.34
Pentachloropheno					
2,4,6-Trichlorophe	enol	0.13	J	0.013	0.34
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe	enol enol	0.13 0.0098	J U	0.013 0.0098	0.34 0.29
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.13 0.0098 0.0083	J U U	0.013 0.0098 0.0083	0.34 0.29 0.20
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.13 0.0098 0.0083 0.0081	J U U U	0.013 0.0098 0.0083 0.0081	0.34 0.29 0.20 0.34 0.20
Pentachloropheno 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	enol enol rophenol	0.13 0.0098 0.0083 0.0081 0.018	J U U U	0.013 0.0098 0.0083 0.0081 0.018	0.34 0.29 0.20 0.34 0.20 ce Limits
Pentachlorophenc 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	0.13 0.0098 0.0083 0.0081 0.018 %Rec	J U U U	0.013 0.0098 0.0083 0.0081 0.018 Acceptan	0.34 0.29 0.20 0.34 0.20 ce Limits

Client: Kennedy/Jenks Consultants

Client Sample ID	D: MW-5				
Lab Sample ID:	580-4614-4			Date Sampled: 1	2/28/2006 1400
Client Matrix:	Water			Date Received: 1	2/29/2006 1000
827	0C Semivolatile Compou	inds by Gas Chromatography/M	lass Spectro	metry (GC/MS)	
Method:	8270C	Analysis Batch: 580-14530	Inst	rument ID: SEA0	02
Preparation:	3510C	Prep Batch: 580-14399	Lab	File ID: AT068	377.D
Dilution:	1.0		Initia	al Weight/Volume:	1025 mL
Date Analyzed:	01/03/2007 1107		Fina	al Weight/Volume:	1 mL
Date Prepared:	01/02/2007 1057		Inje	ction Volume:	
Analyte		Result (ug/L)	Qualifier	MDL	RL
Pentachloropheno	ol	0.013	U	0.013	0.34
2,4,6-Trichlorophe		0.0098	Ū	0.0098	0.29
2,4,5-Trichlorophe	enol	0.0083	U	0.0083	0.20
2,3,4,6-Tetrachlorophenol		0.0081	U	0.0081	0.34
2,3,4,6-1 etrachlor	ophonol				
		0.018	U	0.018	0.20
		0.018 %Rec	U	0.018 Acceptanc	••
2,3,5,6-Tetrachlor			U		••
2,3,5,6-Tetrachlor Surrogate		%Rec	U	Acceptanc	••

Client: Kennedy/Jenks Consultants

Client Sample ID): MW-6				
Lab Sample ID:	580-4614-5			Date Sampled: 12	2/28/2006 1210
Client Matrix:	Water			Date Received: 12	2/29/2006 1000
827	0C Semivolatile Compou	unds by Gas Chromatography/M	lass Spectro	metry (GC/MS)	
Method: 8270C		Analysis Batch: 580-14530	Instrument ID: SEA002		
Preparation:	3510C	Prep Batch: 580-14399	Lab	File ID: AT068	380.D
Dilution:	1.0		Initia	I Weight/Volume:	1000 mL
Date Analyzed:	01/03/2007 1237		Fina	I Weight/Volume:	1 mL
Date Prepared:	01/02/2007 1057		Injection Volume:		
Analyte		Result (ug/L)	Qualifier	MDL	RL
Pentachloropheno	bl	0.21	J	0.013	0.35
2,4,6-Trichlorophe	enol	0.010	U	0.010	0.30
2,4,5-Trichlorophenol		0.0085	U	0.0085	0.20
2,4,5-Trichlorophe					
•		0.0083	U	0.0083	0.35
2,3,4,6-Tetrachlor	ophenol	0.0083 0.018	U U	0.0083 0.018	0.35 0.20
2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	ophenol		-		0.20
2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	ophenol	0.018	-	0.018	0.20
2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	ophenol	0.018 %Rec	-	0.018 Acceptanc	0.20

Client: Kennedy/Jenks Consultants

Client Sample ID): MW-8					
Lab Sample ID:	580-4614-6			Date Sampled: 1	2/28/2006 1030	
Client Matrix:	Water			Date Received: 1	2/29/2006 1000	
827	0C Semivolatile Compou	unds by Gas Chromatography/l	Mass Spectro	ometry (GC/MS)		
Method: 8270C		Analysis Batch: 580-14530	Inst	Instrument ID: SEA002		
Preparation:	3510C	Prep Batch: 580-14399	Lab	File ID: AT068	381.D	
Dilution:	1.0		Initi	al Weight/Volume:	1020 mL	
Date Analyzed:	01/03/2007 1304		Fina	al Weight/Volume:	1 mL	
Date Prepared:	01/02/2007 1057		Injection Volume:			
Analyte		Result (ug/L)	Qualifier	MDL	RL	
Pentachlorophenc	ol	0.16	J	0.013	0.34	
		0.16 0.0098	J U	0.013 0.0098	0.34 0.29	
	enol					
2,4,6-Trichlorophe 2,4,5-Trichlorophe	enol enol	0.0098	U	0.0098	0.29	
2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.0098 0.0083	U U	0.0098 0.0083	0.29 0.20	
2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor	enol enol rophenol	0.0098 0.0083 0.0081	U U U	0.0098 0.0083 0.0081	0.29 0.20 0.34 0.20	
2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor	enol enol rophenol	0.0098 0.0083 0.0081 0.018	U U U	0.0098 0.0083 0.0081 0.018	0.29 0.20 0.34 0.20	
2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,3,4,6-Tetrachlor 2,3,5,6-Tetrachlor Surrogate	enol enol rophenol	0.0098 0.0083 0.0081 0.018 %Rec	U U U	0.0098 0.0083 0.0081 0.018 Acceptanc	0.29 0.20 0.34 0.20	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Page 9 of 13

Client: Kennedy/Jenks Consultants

Method Blank - Batch: 580-14399

Lab Sample ID: MB 580-14399/1-AA

1.0

Date Analyzed: 01/03/2007 1359

Date Prepared: 01/02/2007 1057

Client Matrix: Water

Dilution:

Method: 8270C Preparation: 3510C

Instrument ID: SEA002 Lab File ID: AT06883.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:

Analyte	Result	Qual	MDL	RL
Pentachlorophenol	0.013	U	0.013	0.35
2,4,6-Trichlorophenol	0.010	U	0.010	0.30
2,4,5-Trichlorophenol	0.0085	U	0.0085	0.20
2,3,4,6-Tetrachlorophenol	0.0083	U	0.0083	0.35
2,3,5,6-Tetrachlorophenol	0.018	U	0.018	0.20
Surrogate	% Rec		Acceptance Limits	
2-Fluorophenol	51		10 - 120	
Phenol-d5	31		10 - 102	
2,4,6-Tribromophenol	107		29 - 151	

Analysis Batch: 580-14530

Prep Batch: 580-14399

Units: ug/L

Quality Control Results

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Kennedy/Jenks Consultants

Quality Control Results

Job Number: 580-4614-1

Lab Control Sp Lab Control Sp		Report - Batch: 580-14399	Method: 8270C Preparation: 3510C
LCS Lab Sample I Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: LCS 580-14399/2-AA Water 1.0 01/03/2007 0851 01/02/2007 1057	Analysis Batch: 580-14530 Prep Batch: 580-14399 Units: ug/L	Instrument ID: SEA002 Lab File ID: AT06872.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCSD 580-14399/3-AA Water 1.0 01/03/2007 0918 01/02/2007 1057	Analysis Batch: 580-14530 Prep Batch: 580-14399 Units: ug/L	Instrument ID: SEA002 Lab File ID: AT06873.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume:

	9	6 Rec.			
Analyte	LCS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qual
Pentachlorophenol	90	95	40 - 115	6	67
2,4,6-Trichlorophenol	92	97	50 - 115	5	50
2,4,5-Trichlorophenol	91	93	50 - 110	2	50
2,3,4,6-Tetrachlorophenol	93	95	50 - 150	2	50
2,3,5,6-Tetrachlorophenol	96	96	50 - 150	0	50
Surrogate	L	CS % Rec	LCSD %	Rec	Acceptance Limits
2-Fluorophenol	4	5	50		10 - 120
Phenol-d5	2	8	30		10 - 102
2,4,6-Tribromophenol	1	20	119		29 - 151

Page 10 of 13

DATA REPORTING QUALIFIERS

Client: Kennedy/Jenks Consultants

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

0
-
œ
N
7
4
ப்
č
0
\square
ĮΩ,
6
Σ

DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field Copy

Chain of Custody Record	STL S 5755 Tacorr Tel. 22 Fax 29 WWW.s	STL Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.stl-inc.com		· · ·	S E V E R N T R E N T		S	
Sennedy Jewks (pusulfants Pr	Project Manager	knill		Date 13/28/00	Chain	Chain of Custody Number	4
harket S		Telephone Number (Area Code)/Fax Number SO3 - 295 - 4911	- 4911	ff	Lab Number Lab Number	Page	8	of
Aland State Zi	ົ້	Site Contact Realey BIDS ROW	Lab Contact	heri heri heri	Analysis (Attach list if more space is needed)	_		
Vancou		rrier/Waybill Number		bop ophe			Special Ins	Special Instructions/
Contract/Purchase Order/Quote No.		Matrix	Containers & Preservatives	acl act			Conditions	Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Date Time	Air Aqueous Sed. Soil	Unpres. H2SO4 HNO3 HCI NaOH	Znac/ NaOH Pevel Teta Trìc				
MW-1	1201120	X		XXX			lease	20
R WW		ν Χ		XXX			these	samples
MW-3	940			XXX		Ĺ	M MIM	ow level 13
NW-S	1400	X					defeat	of
MW-6	0161 /	0 X						12
MW-8	0501		····	XXX				Page
		· · · · · · · · · · · · · · · · · · ·						
Cooler Possible Hazard	Possible Hazard Identification	Skin Irritant	🗌 Poison B 🔲 Unkriown	Sample Disposal	Anchive For	(/ Months a	(A fee may be assessed if sample are retained longer than 1 month)	(A fee may be assessed if samples are retained longer than 1 month)
ound Time Required (business days) tours 148 Hours 15 Days	15 bays	Standard (Der QC Requirements (Specify)	s (Specify)				
id By		Date 128/06 The	1. Received By				Date	Time
2. Relinquished By	Date		2. Received By				Date	Time
3. Relinquished By	Date	te Time	3. Received By			Da	Date	Time
Comments								

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Kennedy/Jenks Consultants

Job Number: 580-4614-1

Login Number: 4614

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

STL Sacramento 880 Riverside Parkway West Sacramento, CA 95605

Tel: 916 373 5600 Fax: 916 372 1059 www.stl-inc.com

STL SACRAMENTO PROJECT NUMBER: G6I280238 PO/CONTRACT:

Deonne Knill Kennedy/Jenks Consultants 200 SW Market Street Suite 500 Portland, OR 97201

Dear Mr. Knill,

October 18, 2006

This report contains the analytical results for the samples received under chain of custody by STL Sacramento on September 28, 2006. These samples are associated with your Tetrapak, Vancouver WA project.

The test results in this report meet all NELAC requirements for parameters that accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The case narrative is an integral part of this report.

If you have any questions, please feel free to call me at (916) 374-4442.

Sincerely,

Pravani Pillay Project Manager

TABLE OF CONTENTS

STL SACRAMENTO PROJECT NUMBER G61280238

Case Narrative

STL Sacramento Quality Assurance Program

Sample Description Information

Chain of Custody Documentation

SOLID, 8270C, Pentachlorophenol only Samples: 1, 2, 3, 4 Sample Data Sheets Method Blank Reports Laboratory QC Reports

SOLID, 1613B, Dioxins/Furans, 17 isomers Samples: 1, 2, 3, 4 Sample Data Sheets Method Blank Reports Laboratory QC Reports

CASE NARRATIVE

STL SACRAMENTO PROJECT NUMBER G61280238

SOLID, 8270C, Pentachlorophenol only

Sample(s): 1, 2, 3, 4

The matrix spike/matrix spike duplicate (MS/MSD) analyzed with this batch had the relative percent difference for pentachlorophenol outside of control limits. The recoveries for this analyte in the MS/MSD and in the laboratory control sample (LCS) were within control limits. Also the MS/MSD was performed on another client's sample. Therefore the data is reported with no further action.

SOLID, 1613B, Dioxins/Furans, 17 isomers

Sample(s): 1

The 2,3,7,8-TCDF confirmation analysis was performed on October 10, 2006 at 12:45. The result has a CON flag to indicate this.

The "JA" flag indicates that due to matrix interference the ion ratio is outside QC limits. The result has been qualified as "positively identified but estimated quantitation" because the quantitation is based on theoretical ratios.

The 1,2,3,7,8,9-HxCDF had an elevated reporting limit due to matrix interference. Therefore the data has been G flagged.

Sample(s): 3

The 2,3,7,8-TCDF confirmation analysis was performed on October 10, 2006 at 13:22. The result has a CON flag to indicate this.

Several isomers have been reported from the 20x dilution of the sample since these isomers saturated the detector on the analysis of the 1x dilution. The D flag indicates this. The analysis was performed on October 10, 2006 at 15:38.

Sample(s): 4

Several isomers have been reported from the 20x dilution of the sample since these isomers saturated the detector on the analysis of the 1x dilution. The D flag indicates this. The analysis was performed on October 10, 2006 at 14:57.

Sample(s): 1, 2, 3, 4

The concentrations of several isomers in these samples exceeded the upper quantitation level of the initial calibration curve, but the peaks did not saturate the instrument detector. Historical data indicates that for the isotope dilution method, dilution and re-injection will not produce significantly different results from those reported with the E flag.

CASE NARRATIVE

STL SACRAMENTO PROJECT NUMBER G61280238

There were no anomalies associated with this project.

STL Sacramento Certifications/Accreditations

Certifying State	Certificate #	Certifying State	Certificate #
Alaska	UST-055	Oregon*	CA 200005
Arizona	AZ0616	Pennsylvania	68-1272
Arkansas	04-067-0	South Carolina	87014002
California*	01119CA	Texas	TX 270-2004A
Colorado	NA	Utah*	QUAN1
Connecticut	PH-0691	Virginia	00178
Florida*	E87570	Washington	C087
Georgia	960	West Virginia	9930C, 334
Hawaii	NA	Wisconsin	998204680
Louisiana*	01944	NFESC	NA
Michigan	9947	USACE	NA
Nevada	CA44	USDA Foreign Plant	37-82605
New Jersey*	CA005	USDA Foreign Soil	S-46613
New York*	11666		

*NELAP accredited. A more detailed parameter list is available upon request. Update 1/27/05

STL

VERN

QC Parameter Definitions

QC Batch: The QC batch consists of a set of up to 20 field samples that behave similarly (i.e., same matrix) and are processed using the same procedures, reagents, and standards at the same time.

Method Blank: An analytical control consisting of all reagents, which may include internal standards and surrogates, and is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background contamination.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD): An aliquot of blank matrix spiked with known amounts of representative target analytes. The LCS (and LCSD as required) is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects. If an LCSD is performed, it may also be used to evaluate the precision of the process.

Duplicate Sample (DU): Different aliquots of the same sample are analyzed to evaluate the precision of an analysis.

Surrogates: Organic compounds not expected to be detected in field samples, which behave similarly to target analytes. These are added to every sample within a batch at a known concentration to determine the efficiency of the sample preparation and analytical process.

Matrix Spike and Matrix Spike Duplicate (MS/MSD): An MS is an aliquot of a matrix fortified with known quantities of specific compounds and subjected to an entire analytical procedure in order to indicate the appropriateness of the method for a particular matrix. The percent recovery for the respective compound(s) is then calculated. The MSD is a second aliquot of the same matrix as the matrix spike, also spiked, in order to determine the precision of the method.

Isotope Dilution: For isotope dilution methods, isotopically labeled analogs (internal standards) of the native target analytes are spiked into the sample at time of extraction. These internal standards are used for quantitation, and monitor and correct for matrix effects. Since matrix effects on method performance can be judged by the recovery of these analogs, there is little added benefit of performing MS/MSD for these methods. MS/MSD are only performed for client or QAPP requirements.

Control Limits: The reported control limits are either based on laboratory historical data, method requirements, or project data quality objectives. The control limits represent the estimated uncertainty of the test results.

Sample Summary G6I280238

<u>WO#</u>	Sample #	Client Sample ID	Sampling Date	Received Date
JE8RR	1	CF-1-3	9/27/2006 09:00 A	M9/28/2006 09:00 AM
JE8RT	2	CF-2-4	9/27/2006 10:00 A	M9/28/2006 09:00 AM
JE8RV	3	CF-3-3	9/27/2006 11:30 A	M9/28/2006 09:00 AM
JE8RW	4	CS-1-3	9/27/2006 12:00 PI	M 9/28/2006 09:00 AM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight

Chain of Custody Becord						SEVERN TRENT	R N Y T	STL	· •	-		
	·					Severn Trent Laboratories, Inc.	Irent L	aborat	ories, II	<u>ಲ</u>		
Client Kennerku / Souths		Project Ma	Manager	Ew.				Date 9127	7/06	0	Chain of Custody Number 295683	0 0 0 0
		Telephone	Telephone Number (Area Code)/Fax Num てつろ) 29 5 49 01	ode)/Fax Nu	irtber			Lab Num	mbër		Page	of 1
City Car Han, A State Zip Code	20 10	Site Conta	Sile Contact	Lab Contact	Lab Contact			Analysis (A	Analysis (Attach list if more space is needed)			
ocation (State)		CarrierMa	ybill Number			792 	<u> 19</u>				Special	nstructions/
Contract/Purchage Order/Okole No.			Matrix		Containers & Preservatives		SH]				Condition	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Sodi Suceous	⊧OS2H Uubies:	HO®N IOH EONH	HOEN	X07 223					
5-1-2)	4127	0100	X	X		X	Х					
H-2-12	V	1000	×	×		X	K				۰۰ ^۱	
rr-3-3		1130	×	×		<u>ز</u> ک	X	5	RECENSA ED	60 jo 12 23 000	VDROX	
1-2-1-3	Υ	1700	X	X		X	X					
									SED	2 8 200	09	
										N/N		
n mmable	Deison B	Unknown	Sample Disposal		Disposal By Lab	b 🗌 Archive For	ive For	Months		lay be assess an 1 month)	(A fee may be assessed if samples are retained longer than 1 month)	etained
equired 7 Days 14 D	21 Da	Cither,	X Other Stander		OC Requirements (Specify)	Š			1			
Lelan Shan	an KI	5 9/27	AL Time		1. Received By	end	Kr	Ň			Phase bie	Time TUP
1 14 m				5.7	2. Received By	•						Time .
3. Relinquished By		Date	Time	3.5	3. Received By	1					Date	Time
Comments												

DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy

STL Sacramento (916) 373 - 5600 · · ·

SEVE		LOT RECEIPT CHECKLIST STL Sacramento
	nnedy /Jenks	PM RP LOG # 41322
LOT# (QUANTIMS ID)	467280238 QUOTE#	_PM_PP_LOG # #72435_LOCATION_WSP
	9/28/06	initials Date
DELIVERED BY	FEDEX CA OVERNIGHT AIRBORNE GOLDENSTATE UPS BAX GLOBAL STL COURIER COURIERS ON DEN OTHER OTHER	
CUSTODY SEAL #(S) SHIPPPING CONTAIN TEMPERTURE RECOR	TUS \square INTACT \square BROKEN \square N/A <u>797642</u> , <u>797652</u> IER(S) \square STL \square CLIENT \square N/A RD (IN °C) IR 1 \square 3 \square \square 07 295683	A
SAMPLE TEMPERAT	NK Observed: <u>NA</u> Corrected: URE <u>5</u> 7 Average: <u>5</u> Corrected	d Average: 5
ph measured		
LABELED BY LABELS CHECKED BY PEER REVIEW	(·····
SHORT HOLD TEST N	WETC	PLE RECEIVING
	d of filter/preserve via verbal & emai	
COMPLETE SHIPM	MENT RECEIVED IN GOOD CONDITION WITH EMPERATURES, CONTAINERS, PRESERVATIV	
🗌 Clouseau	TEMPERATURE EXCEEDED (2 °C -	-6 °CI" ZN/A
		D COOLING AGENTS USED
Notes:&		edand peterned. These
Were	Disposed.	

*1 Acceptable temperature range for State of Wisconsin samples is <u>4</u>°C. **G6i280238**EAVE NO SPACES BLANK. USE "N/A" IF NOT AP<u>BLCABLE</u> INITIAL AND DATE ALL "N/A" ENTRIES.

SEVEI	2 N		C			•								e Lo			πιο	ry		
SEVEI TREN	ŢŢ			L		in the second			1	Lot ID:	4	6I	28	102	38					
. (л	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	1				$\overline{}$	$\overline{}$		$\overline{}$	/					\square	\square		\square		\square	
VOA*		$ \leftarrow$	<	F>	\sim	17	< >	\sim								\square			\square	
VOAh*		\vdash	\vdash	K-	K-	<u> </u>	<u> </u>	<		F		<	[ř –	[[·	[
AGB		<u> </u>	<u> </u>					·								<u> </u>				
AGBs			ļ	<u> </u>			 						<u> </u>	<u> </u>			1		1	1
250AGB		ļ			<u> </u>	· ·	<u> </u>						<u></u>					1		1
250AGBs		ļ	<u> </u>		 	_	<u> </u>					 	1	<u> </u>		1	1		1	1
250AGBn			_	<u> </u>		<u> </u>	<u> </u>	<u>}</u>					1				1	1	-	-
500AGB		ļ	<u></u>		ļ												+		+	-
AGJ		ļ	<u> </u>	ļ				ļ								<u> </u>	-		-	
500AGJ								_	ļ							-			+	
250AGJ	1	1	1	1				<u> </u>		_		<u> </u>	<u> </u>	<u> </u>	<u> </u>	┨────	+			
125AGJ		ĺ	Ĺ						ļ		ļ							+		
CGJ		1						ļ		_	ļ				+			. -		
500CGJ								<u> </u>		_	<u> </u>	<u> </u>				4				
250CGJ				l		_					ļ		·	<u> </u>						
125CGJ	1					_						ļ		<u> </u>						
PJ	1										ļ	. <u> </u>	_							
PJn	1	-	1	-	1															
500PJ				1									<u> </u>						<u>_</u>	
500PJn		-			1														_	
500PJna	1				1						<u> </u>									
500PJzn/na		-	-	-		~						_		_						
250PJ	_															_				
250PJn											1					_				
250PJna				-	-		-													
250PJzn/na	-			-					1										_	
Acetate Tube																				
"CT	-																			
Encore																				
Folder/filter			-																	
PUF								_												
Petri/Filter											1									
XAD Trap					-															
										1										
Ziploc									+		-									
			3	4	5	6	7	8	9	10	1 11	1 12	2 13	3 14	4 15	5 10	6 1	7 1	8 1	9 20
h = hydrochl	1 Ioric a	icid 4	s = su	lfuric	acid	na =					1	c acid	1	zn = 7	zinc a	cetate		-		

Bottle Lot Inventory

Number of VOAs with air bubbles present / total number of VOA's

QA-185 3/05 EM Page 2

SOLID, 8270C, Pentachlorophenol only

Client Sample ID: CF-1-3

GC/MS Semivolatiles

Lot-Sample #:	G6I280238-001	Work Order #:	JE8RR1AD	Matrix:	SOLID
Date Sampled:		Date Received:			
Prep Date:	10/05/06	Analysis Date:	10/13/06		
Prep Batch #:	6278349				
Dilution Factor:	1				
<pre>% Moisture:</pre>	18	Method:	SW846 8270C		

PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL	
Pentachlorophenol	ND	1900	ug/kg	800	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		·	
2-Chlorophenol-d4	64	(37 - 98)			
1,2-Dichlorobenzene-d4	51	(23 - 103)			
2-Fluorobiphenyl	92	(43 - 110)			
2-Fluorophenol	52	(30 - 93)			
Nitrobenzene-d5	63	(37 - 93)			
Phenol-d5	64	(41 - 100)			
Terphenyl-d14	108	(40 - 165)			
2,4,6-Tribromophenol	88	(33 - 125)	ł		

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: CF-2-4

GC/MS Semivolatiles

Lot-Sample #: G6I280	238-002 Work Order #:	JE8RT1AD	Matrix: S	SOLID
Date Sampled: 09/27/	06 Date Received:	09/28/06		
Prep Date: 10/05/	06 Analysis Date:	10/13/06		
Prep Batch #: 627834	9			
Dilution Factor: 1				
% Moisture: 25	Method	SW846 8270C		

Method.....: SW846 8270C

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	2100	ug/kg	880
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
2-Chlorophenol-d4	62	(37 - 98)		
1,2-Dichlorobenzene-d4	44	(23 - 103)		
2-Fluorobiphenyl	61	(43 - 110)		
2-Fluorophenol	50	(30 - 93)		
Nitrobenzene-d5	62	(37 - 93)		
Phenol-d5	61	(41 - 100)		
Terphenyl-d14	106	(40 - 165)		
2,4,6-Tribromophenol	52	(33 - 125)		

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

į

Client Sample ID: CF-3-3

GC/MS Semivolatiles

Lot-Sample #:	G6I280238-003	Work Order #: JE8RV1AD	Matrix	SOLID
Date Sampled:	09/27/06	Date Received: 09/28/06		
Prep Date:	10/05/06	Analysis Date: 10/13/06		
Prep Batch #:	6278349			
Dilution Factor:	1			
<pre>% Moisture:</pre>	22	Method: SW846 8270C	<i>.</i> .	

Method.....: SW846 8270C

	REPORTING		
RESULT	LIMIT	UNITS	MDL
ND	2100	ug/kg	850
PERCENT	RECOVERY		
RECOVERY	LIMITS	_	
65	(37 - 98)		
51	(23 - 103)		
64	(43 - 110)		
55	(30 - 93)	l -	
62	(37 - 93)	1	
63	(41 - 100)	•	
94	(40 - 165)	•	
49	(33 - 125)	•	
	ND PERCENT RECOVERY 65 51 64 55 62 63 94	RESULT LIMIT ND 2100 PERCENT RECOVERY RECOVERY LIMITS 65 (37 - 98) 51 (23 - 103) 64 (43 - 110) 55 (30 - 93) 62 (37 - 98) 63 (41 - 100) 94 (40 - 165)	RESULT LIMIT UNITS ND 2100 ug/kg PERCENT RECOVERY LIMITS 65 (37 - 98) 51 51 (23 - 103) 64 64 (43 - 110) 55 55 (37 - 93) 63 63 (41 - 100) 94

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: CS-1-3

GC/MS Semivolatiles

Lot-Sample #:	G6I280238-004	Work Order #:	JE8RW1AD	Matrix:	SOLID
Date Sampled:	09/27/06	Date Received:	09/28/06		
Prep Date:	10/05/06	Analysis Date:	10/13/06		
Prep Batch #:	6278349				
Dilution Factor:	1				
<pre>% Moisture:</pre>	22	Method:	SW846 8270C		

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	2100	ug/kg	850
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
2-Chlorophenol-d4	62	(37 - 98)	-	
1,2-Dichlorobenzene-d4	52	(23 - 103)		
2-Fluorobiphenyl	65	(43 - 110)		
2-Fluorophenol	52	(30 - 93)		
Nitrobenzene-d5	63	(37 - 93)		
Phenol-d5	61	(41 - 100)		
Terphenyl-d14	102	(40 - 165)		
2,4,6-Tribromophenol	53	(33 - 125)		

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

QC DATA ASSOCIATION SUMMARY

G61280238

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	SOLID	SW846 8270C		6278349	6278226
002	SOLID	SW846 8270C		6278349	6278226
003	SOLID	SW846 8270C		6278349	6278226
004	SOLID	SW846 8270C		6278349	6278226

METHOD BLANK REPORT

GC/MS Semivolatiles

Client Lot #:	G6I280238	Work Order #:	JFP7P1AA	Matrix: SOLID
MB Lot-Sample #:	G6J050000-349			
		Prep Date:	10/05/06	
Analysis Date:	10/13/06	Prep Batch #:	6278349	
Dilution Factor:	1			

		REPORTING	
PARAMETER	RESULT	LIMIT UNITS	METHOD
Pentachlorophenol	ND	1600 ug/kg	SW846 8270C
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
2-Chlorophenol-d4	70	(37 - 98)	
1,2-Dichlorobenzene-d4	78	(23 - 103)	
2-Fluorobiphenyl	74	(43 - 110)	
2-Fluorophenol	57	(30 - 93)	
Nitrobenzene-d5	83	(37 - 93)	
Phenol-d5	66	(41 - 100)	
Terphenyl-d14	104	(40 - 165)	
2,4,6-Tribromophenol	62	(33 - 125)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Semivolatiles

Client Lot #:	G61280238	Work Order #:	JFP7P1AC	Matrix:	SOLID
LCS Lot-Sample#:					
Prep Date:		Analysis Date:	10/13/06		
Prep Batch #:					
Dilution Factor:	1				

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	METHOD
Pentachlorophenol	3330	2060	ug/kg	62	SW846 8270C
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS	-	
2-Chlorophenol-d4		81	(37 - 98)		
1,2-Dichlorobenzene-d4		75	(23 - 103)		
2-Fluorobiphenyl		87	(43 - 110)		
2-Fluorophenol		62	(30 - 93)		
Nitrobenzene-d5		83	(37 - 93)		
Phenol-d5		74	(41 - 100)		
Terphenyl-d14		112	(40 - 165)		
2,4,6-Tribromophenol		88	(33 - 125)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

1. 1.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

.

GC/MS Semivolatiles

Client Lot #:	G61280238	Work Order #:	JFP7P1AC	Matrix:	SOLID
LCS Lot-Sample#:	G6J050000-349				
Prep Date:	10/05/06	Analysis Date:	10/13/06		
Prep Batch #:	6278349				
Dilution Factor:	1				

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD
Pentachlorophenol	62	(46 - 122)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
2-Chlorophenol-d4		81	(37 - 98)
1,2-Dichlorobenzene-d4		75	(23 - 103)
2-Fluorobiphenyl		87	(43 - 110)
2-Fluorophenol		62	(30 - 93)
Nitrobenzene-d5		83	(37 - 93)
Phenol-d5		74	(41 - 100)
Terphenyl-d14		112	(40 - 165)
2,4,6-Tribromophenol		88	(33 - 125)

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Semivolatiles

Client Lot #:	G6I280238	Work Order #:	JFKP41AK-MS	Matrix:	SOLID
MS Lot-Sample #:	G6J030279-001		JFKP41AL-MSD		
Date Sampled:	09/29/06	Date Received:	10/03/06		
Prep Date:	10/05/06	Analysis Date:	10/16/06		
Prep Batch #:	6278349				
Dilution Factor:	1	<pre>% Moisture;</pre>	0.0		

SAMPLE	SPIKE	MEASRD		Ę	ER	CNT			
AMOUNT	AMT	AMOUNT	UNITS	F	EC	VRY	RPD	METHO	<u>ک</u>
ND	3330	1860	ug/kg	5	6			SW846	8270C
ND	3330	2370	ug/kg	7	1	р	24	SW846	8270C
	PI	ERCENT		RECO	VE	RY			
	R	ECOVERY		LIMI	TS				
	5	3		(37	-	98)			
	70	0		(37	-	98)			
	5:	2		(23	-	103)		
	б.	3 .		(23	-	103)		
	5	1		(43	~	110)		
	6	7		(43	-	110)		
	4	9		(30		93)			
	63	3		(30	-	93)			
	5	0	-	(37	-	93)			
	. 5	9		(37	-	93)			
	5	B		(41	-	100)		
	6	7		(41		100)		
	5	6		(40		165)		
				-			-		
				-			-		
				•					
	AMOUNT ND	AMOUNT AMT ND 3330 ND 3330 PJ R1 51 52 63 53 64 53 64 53 65 55 65 55 65 55 65 55 55 65 55 5	AMOUNT AMT AMOUNT ND 3330 1860 ND 3330 2370 PERCENT RECOVERY 58 70 52 63 51 67 49 63 50 59 58 67 58 70 52 63 51 67 49 63 50 59 58 67 58 67 49 63 50 59 58 67 59 58 67 59 58 67 56 73 90 90 90	AMOUNT AMT AMOUNT UNITS ND 3330 1860 ug/kg ND 3330 2370 ug/kg PERCENT RECOVERY 58 70 52 63 51 67 49 63 50 59 58 67 58 70 52 63 70 52 63 63 51 67 63 50 59 58 67 56 73 73 73	AMOUNT AMT AMOUNT UNITS F ND 3330 1860 ug/kg 5 ND 3330 2370 ug/kg 7 PERCENT RECOVERY LIMI 58 (37) 70 (37) 52 (23) 63 (23) 51 (43) 67 (43) 49 (30) 63 (37) 559 (37) 58 (41) 67 (41) 56 (40) 73 (40) 90 (33)	AMOUNT AMT AMOUNT UNITS REC ND 3330 1860 ug/kg 56 ND 3330 2370 ug/kg 71 PERCENT RECOVERY LIMITS 100 58 (37 - 70) (37 - 70) 70 70 52 (23 - 70) 100 - 700 100 - 700 51 (43 - 70) 100 - 700	AMOUNT AMT AMOUNT UNITS RECVRY ND 3330 1860 ug/kg 56 ND 3330 2370 ug/kg 71 p PERCENT RECOVERY LIMITS 103 58 (37 - 98) 52 (23 - 103) 51 (43 - 110) 63 103 51 (43 - 110) 67 (43 - 110) 63 (30 - 93) 53 63 (30 - 93) 559 (37 - 93) 59 (37 - 93) 59 58 (41 - 100) 56 (40 - 165) 73 90 (33 - 125) 103 100 100	AMOUNT AMT AMOUNT UNITS RECVRY RPD ND 3330 1860 ug/kg 56 71 p 24 ND 3330 2370 ug/kg 71 p 24 PERCENT RECOVERY LIMITS 100 3330 2370 100 3330 2370 24 PERCENT RECOVERY LIMITS 100 3330 330 330 330 330 330 330 330 3330 330 330 330 330 330 3330 330 3330 330 330 330 330 3330 330 3330 330 330 330 3330 330 3330 330 3330 330 330 3330 330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330 3330	AMOUNT AMT AMOUNT UNITS RECVRY RPD METHON ND 3330 2370 ug/kg 56 SW846 ND 3330 2370 ug/kg 71 p 24 SW846 ND 3330 2370 ug/kg 71 p 24 SW846 PERCENT RECOVERY LIMITS 58 (37 - 98) 52 (23 - 103) 70 (37 - 98) 52 (23 - 103) 51 (43 - 110) 63 (23 - 103) 51 (43 - 110) 67 (41 - 100) 49 (30 - 93) 50 (37 - 93) 59 (37 - 93) 59 (37 - 93) 59 (37 - 93) 59 (37 - 93) 59 (37 - 93) 58 (41 - 100) 67 (41 - 100) 67 (41 - 100) 56 (40 - 165) 73 (40 - 165) 90

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Semivolatiles

Client Lot #: (G6I280238	Work Order #:	JFKP41AK-MS	Matrix:	SOLID
MS Lot-Sample #: (GGJ030279-001		JFKP41AL-MSD		
Date Sampled: (09/29/06	Date Received:	10/03/06		
Prep Date:	10/05/06	Analysis Date:	10/16/06		
Prep Batch #: @	6278349				
Dilution Factor:	1	<pre>% Moisture:</pre>	0.0		

PARAMETER Pentachlorophenol	PERCENT RECOVERY 56 71 p	RECOVERY LIMITS (46 - 122) (46 - 122)	<u>RPD</u>	RPD LIMITS (0-20)	METHOD SW846 8270C SW846 8270C
		PERCENT		RECOVERY	
SURROGATE	_	RECOVERY		LIMITS	Winds .
2-Chlorophenol-d4		58		(37 - 98)	
		70		(37 - 98)	
1,2-Dichlorobenzene-d4		52		(23 - 103)
		63		(23 - 103)
2-Fluorobiphenyl		51		(43 - 110)
		67		(43 - 110)
2-Fluorophenol		49		(30 - 93)	
		63		(30 - 93)	
Nitrobenzene-d5		50		(37 - 93)	
		59		(37 - 93)	
Phenol-d5		58		(41 - 100)
		67		(41 - 100)
Terphenyl-d14		56		(40 - 165	>
~ ~		73		(40 - 165)
2,4,6-Tribromophenol		90		(33 - 125)
••••		110		(33 - 125)
					-

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

SOLID, 1613B, Dioxins/Furans, 17 isomers

Client Sample ID: CF-1-3

Trace Level Organic Compounds

Matrix..... SOLID

Lot-Sample #: G6I280238-00 Date Sampled: 09/27/06	01 Work Order #: JE8RR1AC Date Received: 09/28/06
Prep Date: 10/05/06	Analysis Date: 10/09/06
Prep Batch #: 6278525	
Dilution Factor: 1	
% Moisture: 18	

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>.</u>
		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.74	ba\a	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	1.4	ba\a	EPA-5 1613B
1,2,3,4,7,8-HxCDD	ND	1.2	ba\a	EPA-5 1613B
1,2,3,6,7,8-HxCDD	24		ba\a	EPA-5 1613B
1,2,3,7,8,9-HxCDD	ND	2.8	ba\a	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	570		ba\a	EPA-5 1613B
OCDD	5000 B		pg/g	EPA-5 1613B
2,3,7,8-TCDF	0.96 J, JA, CON		ba\a	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	1.7	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	1.2	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	3.5 J		ba\a	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	1.3	ba\a	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	1.2	ba\a	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND G	5.2	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	69		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	5.0 J		pg/g	BPA-5 1613B
OCDF	470		bà\à	EPA-5 1613B

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	66	(25 - 164)
13C-1,2,3,7,8-PeCDD	75	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	75	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	73	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	63	(23 - 140)
13C-OCDD	63	(17 - 157)
13C-2,3,7,8-TCDF	71	(24 - 169)
13C-1,2,3,7,8-PeCDF	68	(24 - 185)
13C-2,3,4,7,8-PeCDF	67	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	69	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	71	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	77	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	61	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	64	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	67	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	65	(35 - 197)

(Continued on next page)

#### Client Sample ID: CF-1-3

Trace Level Organic Compounds

Lot-Sample #...: G6I280238-001 Work Order #...: JE8RRIAC

Matrix....: SOLID

#### NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

J Estimated result. Result is less than the reporting limit.

JA The analyte was positively identified, but the quantitation is an estimate.

CON Confirmation analysis.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Client Sample ID: CF-2-4

#### Trace Level Organic Compounds

Lot-Sample #: G6I280238-002 Date Sampled: 09/27/06	Work Order #: JE8RT1AC Date Received: 09/28/06
Prep Date: 10/05/06	Analysis Date: 10/10/06
Prep Batch #: 6278525	
Dilution Factor: 1	
<pre>% Moisture: 25</pre>	

Matrix.....: SOLID

.

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.35	ba\a	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.67	ba\a	EPA-5 1613B
1,2,3,4,7,8-HxCDD	ND	1.4	ba\a	EPA-5 1613B
1,2,3,6,7,8-HxCDD	8.3		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	ND	2.7	ba\a	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	440		pg/g	BPA-5 1613B
OCDD	8200 E		pg/g	EPA-5 1613B
2,3,7,8-TCDF	ND .	0.35	ba\a	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.38	ba\a	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	0.46	ba\a	EPA-5 1613B
1,2,3,4,7,8-HxCDF	ND	2.2	ba\a	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	1.4	ba\a	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.63	ba\a	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.32	bd\d	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	40		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	6.0 J		ba\a	EPA-5 1613B
OCDF	330		ba\a	EPA-5 1613B
	PERCENT	RECOVERY		N.

	PERCENT	RECOVERI
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	65	(25 - 164)
13C-1,2,3,7,8-PeCDD	74	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	69	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	64	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	70	(23 - 140)
13C-OCDD	80	(17 - 157)
13C-2,3,7,8-TCDF	60	(24 - 169)
13C-1,2,3,7,8-PeCDF	63	(24 - 185)
13C-2,3,4,7,8-PeCDF	57	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	59	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	67	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	70	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	66	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	74	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	56	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	65	(35 - 197)

~

(Continued on next page)

#### Client Sample ID: CF-2-4

Trace Level Organic Compounds

Lot-Sample #...: G6I280238-002 Work Order #...: JE8RT1AC

Matrix....: SOLID

#### NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

J Estimated result. Result is less than the reporting limit.

#### Client Sample ID: CF-3-3

#### Trace Level Organic Compounds

Lot-Sample #...: G6I280238-003 Work Order #...: JE8RV1AC Date Sampled...: 09/27/06 Prep Date....: 10/05/06 Prep Batch #...: 6278525 Dilution Factor: 1 **% Moisture....:** 22

Date Received..: 09/28/06 Analysis Date..: 10/09/06 Matrix..... SOLID

		DETECTION	,	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	1.0	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	4.5 J		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	17		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	640		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	52		bà\à	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	26000 D		ba\a	EPA-5 1613B
OCDD	190000 D,E		pa/a	EPA-5 1613B
2,3,7,8-TCDF	4.7 CON		ba\a	EPA-5 1613B
1,2,3,7,8-PeCDF	11		ba/a	EPA-5 1613B
2,3,4,7,8-PeCDF	7.2		ba\a	EPA-5 1613B
1,2,3,4,7,8-HxCDF	68		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	28		ba\a	EPA-5 1613B
2,3,4,6,7,8-HxCDF	1.3		ba\a	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	2.3	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	3100 B		ba\a	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	290		pg/g	EPA-5 1613B
OCDF	25000 D		ba\a	EPA-5 1613B
	PERCENT	RECOVERY		
INTERNAL STANDARDS	RECOVERY	LIMITS	_	
13C-2,3,7,8-TCDD	65	(25 - 164	)	
13C-1,2,3,7,8-PeCDD	65	(25 - 181	•	
13C-1,2,3,4,7,8-HxCDD	53	(32 - 141	)	
13C-1,2,3,6,7,8-HxCDD	56	(28 - 130	•	
13C-1,2,3,4,6,7,8-HpCDD	63	(23 - 140	)	
13C-OCDD	67	(17 - 157	)	
13C-2,3,7,8-TCDF	70	(24 - 169	)	
13C-1,2,3,7,8-PeCDF	64	(24 - 185	)	
13C-2,3,4,7,8-PeCDF	63	(21 - 178	)	
13C-1,2,3,6,7,8-HxCDF	52	(26 - 123	)	
13C-2,3,4,6,7,8-HxCDF	53	(28 - 136	)	
13C-1,2,3,7,8,9-HxCDF	63	(29 - 147	)	
13C-1,2,3,4,6,7,8-HpCDF	53	(28 - 143	)	·
13C-1,2,3,4,7,8,9-HpCDF	59	(26 - 138	)	
13C-1,2,3,4,7,8-HxCDF	50	(26 - 152	)	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
37Cl4-2,3,7,8-TCDD	68	(35 - 197	)	

(Continued on next page)

#### Client Sample ID: CF-3-3

Trace Level Organic Compounds

Lot-Sample #...: G6I280238-003 Work Order #...: JE8RV1AC

Matrix..... SOLID

#### NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

D Result was obtained from the analysis of a dilution.

E Estimated result. Result concentration exceeds the calibration range.

CON Confirmation analysis.

#### Client Sample ID: CS-1-3

# Trace Level Organic Compounds

Matrix..... SOLID

Lot-Sample #: G6I280238-004	Work Order #: JE8RW1AC
Date Sampled: 09/27/06	Date Received: 09/28/06
Prep Date: 10/05/06	Analysis Date: 10/09/06
Prep Batch #: 6278525	
Dilution Factor: 1	· · · · · · · · · · · · · · · · · · ·
<b>% Moisture:</b> 22	

		DETECTIO	N	•
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.58	ba\a	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	3.5	ba\a	EPA-5 1613B
1,2,3,4,7,8-HxCDD	10		ba\a	BPA-5 1613B
1,2,3,6,7,8-HxCDD	130		ba\a	EPA-5 1613B
1,2,3,7,8,9-HxCDD	28		ba\a	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	7700 E		ba\a	EPA-5 1613B
OCDD	70000 D		ba\a	EPA-5 1613B
2,3,7,8-TCDF	ND	0.33	ba\a	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	2.0	bà\à	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	1.3	ba\a	EPA-5 1613B
1,2,3,4,7,8-HxCDF	20		pg/g	BPA-5 1613B
1,2,3,6,7,8-HxCDF	13		bà\à	EPA-5 1613B
2,3,4,6,7,8-HxCDF	5.3 J		ba\a	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.62	ba\a	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	700		pa/a	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	96		ba\a	EPA-5 1613B
OCDF	5900 D		ba\a	EPA-5 1613B

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	85	(25 - 164)
13C-1,2,3,7,8-PeCDD	80	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	62	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	69	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	80	(23 - 140)
13C-OCDD	67	(17 - 157)
13C-2,3,7,8-TCDF	90	(24 - 169)
13C-1,2,3,7,8-PeCDF	81	(24 - 185)
13C-2,3,4,7,8-PeCDF	76	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	65	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	70	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	88	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	69	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	79	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	59	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37Cl4-2,3,7,8-TCDD	85	(35 - 197)

(Continued on next page)

#### Client Sample ID: CS-1-3

Trace Level Organic Compounds

Lot-Sample #...: G61280238-004 Work Order #...: JE8RW1AC

Matrix..... SOLID

#### NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

D Result was obtained from the analysis of a dilution.

J Estimated result. Result is less than the reporting limit.

# QC DATA ASSOCIATION SUMMARY

#### G61280238

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
0.07		EPA-5 1613B		6278525	
001	SOLID				6271302
	SOLID	ASTM D 2216-90		6271509	
	SOLID	SW846 8270C		6278349	6278226
002	SOLID	EPA-5 1613B		6278525	
002	· · · · · · · ·			6271509	6271302
	SOLID	ASTM D 2216-90			
	SOLID	SW846 8270C		6278349	6278226
003	SOLID	EPA-5 1613B		6278525	
005				6271509	6271302
	SOLID	ASTM D 2216-90			
	SOLID	SW846 8270C		6278349	6278226
004	SOLID	EPA-5 1613B		6278525	
004				6271509	6271302
	SOLID	ASTM D 2216-90			
	SOLID	SW846 8270C		6278349	6278226

#### METHOD BLANK REPORT

# Trace Level Organic Compounds

۸.

Client Lot #: G6I280238 MB Lot-Sample #: G6J050000-525	Work Order #: JFR3JIAA	Matrix SOLID
	Prep Date: 10/05/06	
Analysis Date: 10/09/06	Prep Batch #: 6278525	

Analysis Date..: 10/09/06 Dilution Factor: 1

		DETECTI	ON	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.44	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.83	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	ND	0.50	ba\a	EPA-5 1613B
1,2,3,6,7,8-HxCDD	ND	0.48	ba\a	EPA-5 1613B
1,2,3,7,8,9-HxCDD	ND	0.46	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	ND	0.55	pg/g	EPA-5 1613B
OCDD	ND	2.7	pg/g	EPA-5 1613B
2,3,7,8-TCDF	ND	0.30	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.48	ba\a	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	0.56	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	ND	0.32	ba\a	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.27	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.25	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.26	ba\a	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	ND	0.31	pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.40	pg/g	EPA-5 1613B
OCDF	ND	0.61	ba\a	EPA-5 1613B
INTERNAL STANDARDS 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	65 67 56 62 66 60 71 68 62 63 64	(25 - 1) (25 - 1) (32 - 1) (28 - 1) (23 - 1) (17 - 1) (24 - 1) (24 - 1) (24 - 1) (21 - 1) (26 - 1) (28 - 1) (29 - 1)	81) 41) 30) 40) 57) 69) 85) 78) 23) 36)	
13C-1,2,3,7,8,9-HxCDF	. 72	•	•	
13C-1,2,3,4,6,7,8-HpCDF	65	(28 - 1		
13C-1,2,3,4,7,8,9-HpCDF	67	(26 - 1)	-	
13C-1,2,3,4,7,8-HxCDF	56	(26 - 1	.52]	
SURROGATE	PERCENT RECOVERY	RECOVER LIMITS (35 - 1		
37C14-2,3,7,8-TCDD	74	(22 - 1	- 27 7 7	

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

# LABORATORY CONTROL SAMPLE DATA REPORT

# Trace Level Organic Compounds

Client Lot #: LCS Lot-Sample#:			er #:	JFR3J1AC	Matrix	SOLID
Prep Date: Prep Batch #:	10/05/06 6278525		Date:	10/09/06		
Dilution Factor:	<b>Т</b> .	o D T W D	አመንስ ርግ		DEBGENI	

· ·	SPIKE AMOUNT	MEASURED	UNITS	PERCENT RECOVERY	METHOD
PARAMETER	20.0	22.0	<u>pa/a</u>	110	EPA-5 1613B
2,3,7,8-TCDD					EPA-5 1613B
1,2,3,7,8-PeCDD	100	111	ba\a	111	
1,2,3,4,7,8-HxCDD	100	114	pg/g	114	EPA-5 1613B
1,2,3,6,7,8-HxCDD	100	115	pg/g	115	EPA-5 1613B
1,2,3,7,8,9-HxCDD	100	120	ba\a	120	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	100	113	pg/g	113	EPA-5 1613B
OCDD	200	244	pg/g	122	BPA-5 1613B
2,3,7,8-TCDF	20.0	21.2	pg/g	106	BPA-5 1613B
1,2,3,7,8-PeCDF	100	114	pg/g	114	EPA-5 1613B
2,3,4,7,8-PeCDF	100	119	ba\a	119	EPA-5 1613B
1,2,3,4,7,8-HxCDF	100	111	ba\a	111	BPA-5 1613B
1,2,3,6,7,8-HxCDF	100	114	ba\a	114	EPA-5 1613B
2,3,4,6,7,8-HxCDF	100	115	pg/g	115	EPA-5 1613B
1,2,3,7,8,9-HxCDF	100	113	pg/g	113	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	100	114	pg/g	114	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	100	113	pg/g	113	EPA-5 1613B
OCDF	200	240	ba\a	120	EPA-5 1613B

(Continued on next page)

# LABORATORY CONTROL SAMPLE DATA REPORT

# Trace Level Organic Compounds

Client Lot #...: G61280238Work Order #...: JFR3J1ACMatrix......: SOLIDLCS Lot-Sample#: G6J050000-525

	PERCENT	RECOVERY
INTERNAL STANDARD	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	(25 - 164)
13C-1,2,3,7,8-PeCDD	83	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	78	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	83	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	85	(23 - 140)
13C-OCDD	76	(17 - 157)
13C-2,3,7,8-TCDF	90	(24 - 169)
13C-1,2,3,7,8-PeCDF	83	(24 - 185)
13C-2,3,4,7,8-PeCDF	82	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	84	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	84	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	94	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	87	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	87	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	78	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	81.	(35 - 197)

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

#### LABORATORY CONTROL SAMPLE EVALUATION REPORT

#### Trace Level Organic Compounds

Client Lot #:	G6I280238	Work Order #:	JFR3J1AC	Matrix
LCS Lot-Sample#:				
Prep Date	10/05/06	Analysis Date:	10/09/06	
Prep Batch #:	6278525			
Dilution Factor:	1			

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
2,3,7,8-TCDD	110	(67 - 158)	BPA-5 1613B
1,2,3,7,8-PeCDD	111	(70 - 142)	EPA-5 1613B
1,2,3,4,7,8-HxCDD	114	(70 - 164)	BPA-5 1613B
1,2,3,6,7,8-HxCDD	115	(76 - 134)	EPA-5 1613B
1,2,3,7,8,9-HxCDD	120	(64 - 162)	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	113	(70 - 140)	EPA-5 1613B
OCDD	122	(78 - 144)	EPA-5 1613B
2,3,7,8-TCDF	106	(75 - 158)	EPA-5 1613B
1,2,3,7,8-PeCDF	114	(80 - 134)	EPA-5 1613B
2,3,4,7,8-PeCDF	119	(68 - 160)	EPA-5 1613B
1,2,3,4,7,8-HxCDF	111	(72 - 134)	EPA-5 1613B
1,2,3,6,7,8-HxCDF	114	(84 - 130)	EPA-5 1613B
2,3,4,6,7,8-HxCDF	115	(70 - 156)	EPA-5 1613B
1,2,3,7,8,9-HxCDF	113	(78 - 130)	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	114	(82 - 122)	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	113	(78 - 138)	EPA-5 1613B
OCDF	120	(63 - 170)	EPA-5 1613B

(Continued on next page)

..: SOLID

# LABORATORY CONTROL SAMPLE EVALUATION REPORT

#### Trace Level Organic Compounds

Work Order #...: JFR3J1AC Client Lot #...: G6I280238 LCS Lot-Sample#: G6J050000-525

Matrix..... SOLID

	PERCENT	RECOVERY
INTERNAL STANDARD	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	(25 - 164)
13C-1,2,3,7,8-PeCDD	83	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	78	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	83	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	85	(23 - 140)
13C-OCDD	76	(17 - 157)
13C-2,3,7,8-TCDF	90	(24 - 169)
13C-1,2,3,7,8-PeCDF	83	(24 - 185)
13C-2,3,4,7,8-PeCDF	82	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	84	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	84	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	94	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	87	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	87	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	78	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	81	(35 - 197)

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

# Appendix D

Imported Material Weight Certificates

i

;

		Table 1				
	Off Site ]	Disposal = Invoiced di	rectly to Terra	Hydr from Hills	boro Landfi	11
Date	Description	Destination	Permit	Ticket Number	Quantity	Costs
9-27-06	PCS	Hillsboro Landfill	10182	1011881	12.30 ton	\$434.51
9-27-06	PCS	Hillsboro Landfill	10182	1011908	13.59 ton	\$479.65
9-27-06	PCS	Hillsboro Landfill	10182	1011760	27.31 ton	\$959.85
9-27-06	PCS	Hillsboro Landfill	10182	1011899	11.27 ton	\$398.45
9-27-06	PCS	Hillsboro Landfill	10182	1011804	18.21 ton	\$641.35
9-27-06	PCS	Hillsboro Landfill	10182	1011936	11.73 ton	\$414.55
9-28-06	PCS	Hillsboro Landfill	10182	1012088	05.57 ton	\$198.95
10-04-06		Hillsboro Landfill	10182	1013963	04.22 ton	\$151.70
		line in the second s	Total	Delivered	104.20 ton	\$3,679.0

Table 2							
Fill material transported to site = Invoiced to Terra Hydr by WCMCI							
Date			Quanity	Cost			
9-27-06	1 1/4 Base Agrregate	412259	11.76 ton	\$157.16			
9-27-06	1 1/4 Base Agrregate	412265	09.29 ton	\$124.15			
9-27-06	1 1/4 Base Agrregate	412269	10.11 ton	\$135.10			
9-27-06	1 1/4 Base Agrregate	412280	12.23 ton	\$163,44			
9-27-06	1 1/4 Base Agrregate	412283	10.26 ton	\$137.11			
9-27-06	1 1/4 Base Agrregate	412286	09.86 ton	\$131.78			
9-27-06	1 1/4 Base Agrregate	412293	10.55 ton	\$140.99			
9-27-06	1 1/4 Base Agrregate	41,2300	09.87 ton	\$131.89			
9-27-06	1 1/4 Base Agrregate	412302	10.48 ton	\$140.06			
9-27-06	1 1/4 Base Agrregate	412305	10.47 ton	\$139.92			
9-27-06	1 1/4 Base Agrregate	412306	09.65 ton	\$128.96			
9-28-06	Fill Sand	412326	11.83 ton	\$91.92			
			126.36 ton	\$1,622.4			

External; Tetra Pak	Loads To Internal: No information was found.	<b>Ticket Dat Ticket ID</b> 9/27/2006 1011804 9/27/2006 1011804 9/27/2006 1011881 9/27/2006 1011899 9/27/2006 1011908 9/27/2006 1011908 9/28/2006 1012088 10/4/2006 1012088 10/4/2006 1013963 Mat. Tol. 8 Cutst. Tol. 8 Tickef Tata 8	Customer Summar Criteria: 06/01/2006 Business Unit Nam Customer Name: T User: DT Operation Type: All Date: Oct 27 2086,
œ	Loads ion was fou	E Ticket ID 1011760 1011881 1011881 1011899 1011899 1011895 1012088 1012088 8 8 8 8 8 8	Summar 6/01/2006 Unit Name Name: TI Name: All 27 2086, -
104.20	Tons Ind.	<b>Customer</b> Tetra Pak Tetra Pak Tetra Pak Tetra Pak Tetra Pak Tetra Pak Tetra Pak	Gustomer Summary Report (legal) Criteria: 06/01/2006 f2:00 AM to 10/27/20 Business Unit Name: Hillsboro Landfill, I Customer Name: TETRAPAK(Tetra Pak ) User: DT Operation Type: All Date: Oct 27 2086, 11:31:56 AM
		r Generator Profile 168-TETR/10182 168-TETR/10182 168-TETR/10182 168-TETR/10182 168-TETR/10182 168-TETR/10182 168-TETR/10182	Customer Summary Report (legal) Criteria: 06/01/2006 12:00 AM to 10/27/2006 11:59 PM Business Unit Name: Hillsboro Landfill, Inc Customer Name: TETRAPAK(Tetra Pak ) User: DT Operation Type: All Date: Oct 27 2086, 11:31:56 AM
		Material Origin Cont Soil P CLARK Cont Soil P CLARK	PM
		TON TON TON TON	
		<b>Rf. Qfy</b> 27.31 18.21 13.59 104.2 104.2	
		· · ·	

5036483942