Appendix A

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

August 22, 2012

Mr. EJ Piliaris, General Manager Hardel Mutual Plywood, Inc. PO Box 540 Chehalis, WA 98532

RE: Satisfaction of Agreed Order No. DE 4108: Hardel Mutual Plywood, FS #75128579

This letter is to notify Hardel Mutual Plywood, Inc. that the above referenced Order has been satisfied under Chapter 173-340 WAC, the Model Toxics Control Act (MTCA), for the above site located at 1210 West Bay Drive NW, Olympia, WA.

As you are aware, the Washington State Department of Ecology (Ecology) has overseen the investigation, remedial activities, and groundwater monitoring that has taken place at the Hardel Mutual Plywood Site located at 1210 West Bay Drive in Olympia, WA. The remedial activities have taken place under an Agreed Order with Ecology (No. DE 4108), and in accordance with the tasks specified in the Cleanup Action Plan of 2012.

Under the Agreed Order, soil cleanup activities included:

- Removing and crushing concrete building foundations.
- Removing contaminated soil and filling the areas with clean soil and then one foot of clean recycled crushed concrete.
- Pumping and treating groundwater from areas where soil was removed.
- Removing free-floating contaminants.
- Sampling soil to make sure all contaminated soil was removed.

In addition, post-cleanup groundwater monitoring was performed for one year to confirm MTCA cleanup levels had been achieved.

Ecology issued a Fact Sheet dated March, 2012, stating preliminary approval of the remedial action for the site, subject to a 30-day public comment period regarding the completion of the site cleanup and removal from the Hazardous Sites List. Only one comment was received by Ecology during the comment period, which ended April 20, 2012.

Mr. EJ Piliaris August 22, 2012 Page 2

This completes the remedial action requirements of Agreed Order #DE 4108, and therefore no additional remedial action is necessary at this site unless new or different information becomes known.

Ecology will update its database to reflect this determination. This site will not appear in future publications of the Hazardous Sites List. However, please note that because your actions were not conducted under a consent decree with Ecology, this letter is written pursuant to RCW 70.105D.030(1)(j) and does not constitute a settlement by the state under RCW 70.105D.040(4) and is not binding on Ecology.

Please call me at (360) 407-7115, or email Guy Barrett at Gbar461@ecy.wa.gov, if you have any questions.

Sincerely,

Rebecca S. Lawson, P.E., LHG

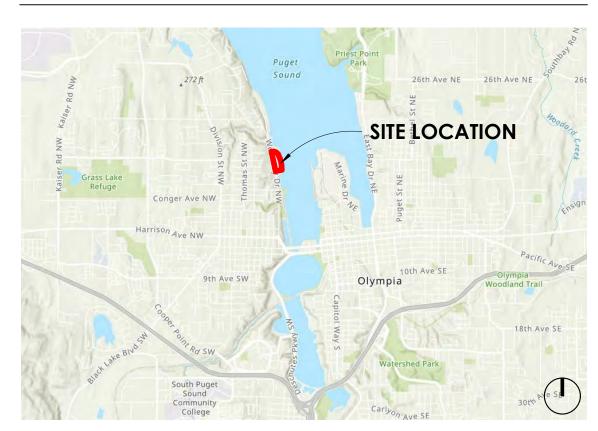
Regional Section Manager

Southwest Regional Office

Toxics Cleanup Program

RSL/GB/ksc:Hardel AO Satisfaction

By certified mail: (7009 3410 0000 1273 0104)


cc: Suzanne Dudziak, Greylock Consulting, LLC

David J. Wild, Hardel Mutual Plywood, Inc.

Katherine Scott, Ecology

Appendix B

VICINITY MAP - SITE LOCATION

SITE LEGEND CONTEXT 100'

---- DASHED LINE INDICATES BUILDING ABOVE, TYPICAL.

FOOTPRINT OF PROJECT STRUCTURE

EXISTING ADJACENT BUILDINGS

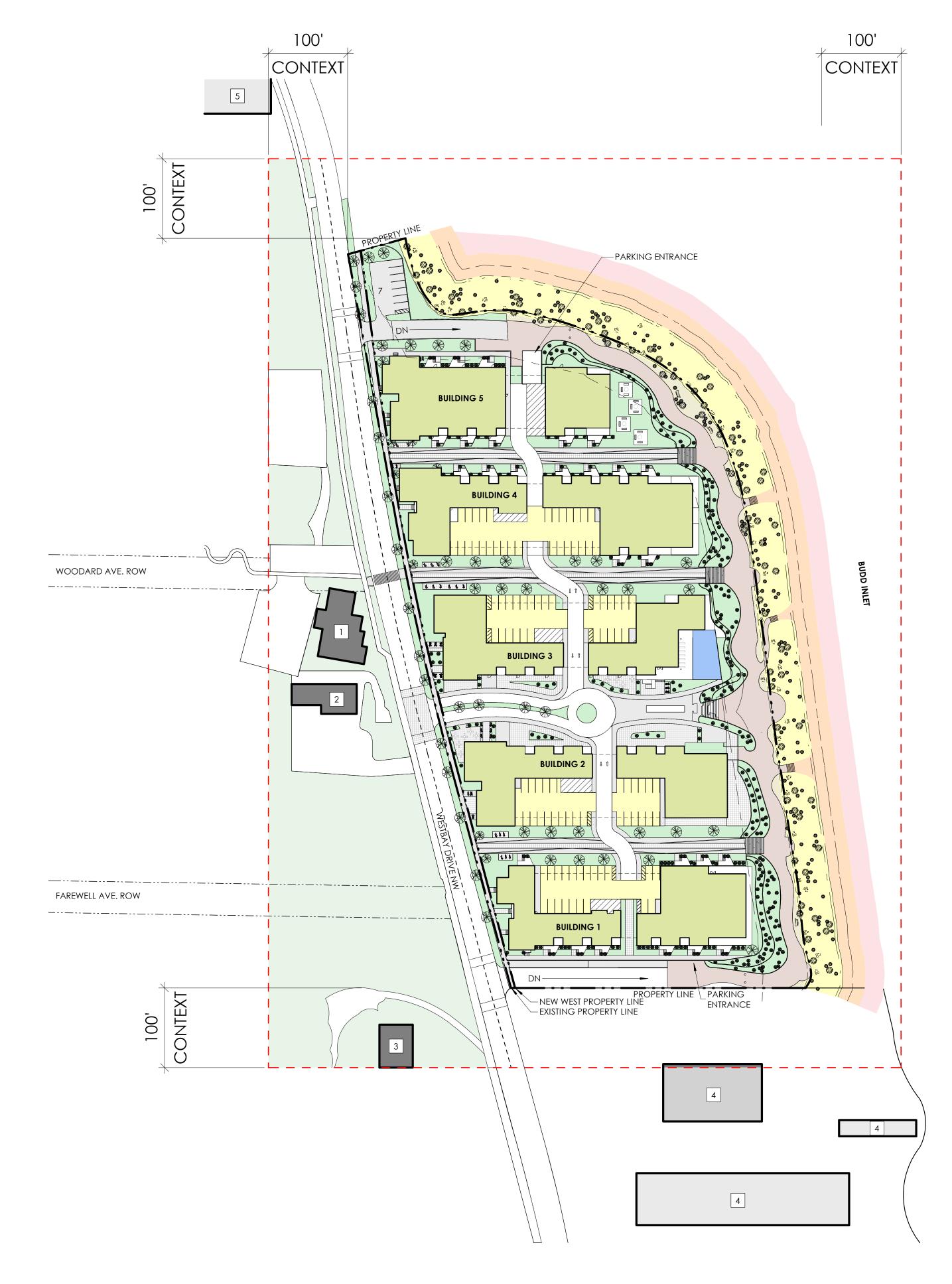
NEW LANDSCAPE (PERVIOUS) - SEE LANDSCAPE DRAWINGS FOR ADDITIONAL INFORMATION

EXISTING LANDSCAPE

NEW ASPHALT HARDSCAPE (IMPERVIOUS)

NEW CONCRETE HARDSCAPE (IMPERVIOUS)

EXISTING SIDEWALK & ROADS

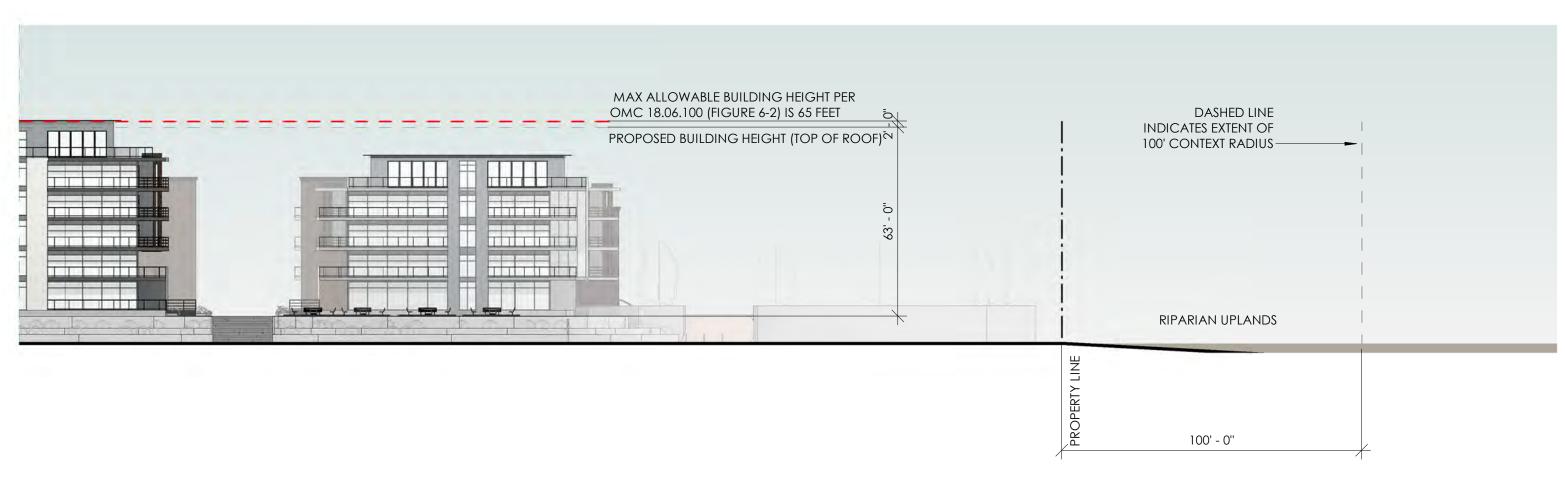

PHILIP KRATZ LAW OFFICE

SUNSET INSURANCE

PRIVATE RESIDENCE

ADJACENT ABANDONED STRUCTURES

CREDIT RESOURCES OF WASHINGTON & DWS INVESTMENTS



NORTH ELEVATION - 100' CONTEXT

1/32" = 1'-0"

2 EAST ELEVATION - 100' CONTEXT A

3 EAST ELEVATION - 100' CONTEXT B

1 SOUTH ELEVATION - 100' CONTEXT

WEST ELEVATION - 100' CONTEXT A

1/32" = 1'-0"

LOOKING NORTHEAST TOWARDS OLYMPIC MOUNTAINS

LOOKING NORTHWEST TOWARDS EXISTING OFFICE BUILDING

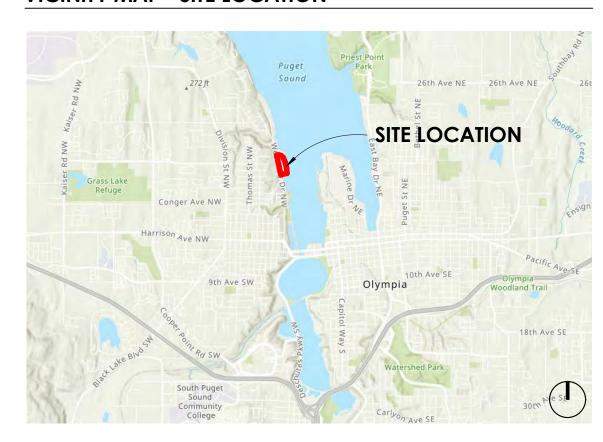
EXISTING ADJACENT ABANDONED STRUCTURE LOCATED SOUTH OF SITE

LOOKING WEST TOWARDS EXISTING OFFICE BUILDINGS

EXISTING ADJACENT ABANDONED STRUCTURE LOCATED SOUTH OF SITE

LOOKING SOUTHEAST TOWARDS DOWNTOWN & CAPITOL DOME

LOOKING SOUTHWEST TOWARDS EXISTING RESIDENCE


VIEW FROM WOODARD AVE NW DRIVEWAY

CONTEXT IMAGES WEST BAY YARDS WEST BAY DRIVE | OLYMPIA, WA

VICINITY MAP - SITE LOCATION

SITE INFORMATION

PARCEL NO. 72600200100 & 91013100000 **ZONING:** UW (URBAN WATERFRONT) LOT AREA: 7.00 ACRES (355 SF)

SITE ADDRESS: 1210 WEST BAY DRIVE NW OLYMPIA, WA 09502

ABBREVIATION LEGAL: SCHNEIDER LOT 1 BLK 2 LESS S 200F TGW PT HURD DLC DAF: COM SE COR DLC W 95F N18-14W 2.215 CH; E 20F; N16-53W 140.5 F; W 47.5F; N10-45W 120F; W 130F; N10--45W 60F; E 120F; N10-

EXISTING SITE:

PROVIDED

TOTAL SITE AREA: 353,006 SF TOTAL LANDSCAPE AREA: TOTAL HARD SURFACE COVERAGE: 353,006 SF

PROPOSED SITE: PROPOSED BUILDING FOOTPRINT (IMPERVIOUS): 111,812 SF PROPOSED PARKING AREA (PLAZA LEVEL, IMPERVIOUS): 62,087 SF

> BUILDING FOOTPRINT/LOT AREA < 60% 111,812 SF/421,144 SF = 32 % < 60% = OK

LANDSCAPE AREA (PERVIOUS): LOT OCCUPANCY:

VIEW PROTECTION CORRIDOR VIEW PROTECTION PER OMC 18.06.100.ciii AND HEIGHT RESTRICTIONS TOTAL HORIZONTAL DISTANCE ALONG WEST BAY DRIVE = VIEW BLOCKAGE AND HEIGHT INCREASES

INCLUDED WATERFRONT TRAIL INCLUDED WATERFRONT PARK 55% VIEW BLOCKAGE = 30% REQUIRED OPENNESS=

507' 276' 310' ALLOWABLE HEIGHT INCREASE= 62' NO + 2 STORIES

BUILDING INFORMATION

BUILDING	AREA	UNITS	COMMERCIAL
1	121,329 SF	88	O SF
2	146,985 SF	91	8,970 SF
3	153,170 SF	94	2,255 SF
4	178,509 SF	125	O SF
5	115,568 SF	80	O SF
TOTAL	715,561 SF	478	11,225 SF

OLYMPIA

SITE PLAN

WEST BAY DRIVE | OLYMPIA, WA SCHEMATIC DESIGN | 06/01/21

PARKING SUMMARY

VEHICLE REQUIREMENTS PER OMC18.38.100

VEHICLE REQUIREMENTS PER OMC18.38.100	
PHASE 1:	
OFF STREET PARKING SPACES REQUIRED PER OMC TABLE 18.38.100 (11,225 SF)RESTAURANT/CAFE @ 10 PER 1,000 SF = (25) STUDIOS x 1 = (160) MULTIFAMILY DWELLING x 1.5 = TOTAL SPACES REQUIRED =	112 SPACES 25 SPACES 240 SPACES 377 SPACES
VEHICLE PARKING PROPOSED OFF STREET PARKING LOWER LEVEL = OFF STREET PARKING PLAZA LEVEL = TOTAL SPACES PROVIDED =	265 SPACES 115 SPACES 380 SPACES
30% OF ALL SPACES CAN BE COMPACT REQUIRED (MAXIMUM) 805 x 0.30 = PROVIDED =	113 SPACES 114 SPACES
ACCESSIBLE PARKING REQUIRED (OMC18.38.120) REQUIRED (2% OF ALL SPACES PER 501-1,000) = PROVIDED =	8 SPACES 10 SPACES
5% OF ALL SPACES SHALL BE ELECTRICAL VEHICLE SPACES= REQUIRED = PROVIDED =	19 SPACES 19 SPACES
LONG TERM BICYCLE STORAGE REQUIREMENTS (OMC 18.38.TABLE38.01) (25) STUDIOS @ 0 STORAGE SPACE PER UNIT= (160) MULTIFAMILY DWELLING UNITS @ 1 STORAGE SPACE PER UNIT = TOTAL FOR ALL THE SPACES PROVIDED =	0 SPACES 160 SPACES 160 SPACES
SHORT TERM BICYCLE STORAGE REQUIREMENTS 2 MIN (OMC 18.38.TABLE38.01) (25) STUDIOS @ 1/10 UNIT= (160) MULTIFAMILY DWELLING UNITS @ 1/10 UNIT = TOTAL FOR ALL THE SPACES PROVIDED =	3 SPACES 16 SPACES 19 SPACES
PHASE 2:	
OFF STREET PARKING SPACES REQUIRED PER OMC TABLE 18.38.100 (32) STUDIOS x 1 = (173) MULTIFAMILY DWELLING x 1.5 = TOTAL SPACES REQUIRED =	32 SPACES 260 SPACES 292 SPACES
VEHICLE PARKING PROPOSED OFF STREET PARKING LOWER LEVEL = OFF STREET PARKING PLAZA LEVEL = TOTAL SPACES PROVIDED =	300 SPACES 0 SPACES 300 SPACES
30% OF ALL SPACES CAN BE COMPACT REQUIRED (MAXIMUM) 292 x 0.30 = PROVIDED =	88 SPACES 90 SPACES
ACCESSIBLE PARKING REQUIRED (OMC18.38.120) REQUIRED (2% OF ALL SPACES PER 501-1,000) = PROVIDED =	6 SPACES 10 SPACES
5% OF ALL SPACES SHALL BE ELECTRICAL VEHICLE SPACES= REQUIRED = PROVIDED =	15 SPACES 15 SPACES
LONG TERM BICYCLE STORAGE REQUIREMENTS (OMC 18.38.TABLE38.01) (32) STUDIOS @ 0 STORAGE SPACE PER UNIT= (173) MULTIFAMILY DWELLING UNITS @ 1 STORAGE SPACE PER UNIT = TOTAL FOR ALL THE SPACES PROVIDED =	0 SPACES 173 SPACES 173 SPACES
SHORT TERM BICYCLE STORAGE REQUIREMENTS 2 MIN (OMC 18.38.TABLE38.01) (32) STUDIOS @ 1/10 UNIT= (173) MULTIFAMILY DWELLING UNITS @ 1/10 UNIT = TOTAL FOR ALL THE SPACES PROVIDED =	3 SPACES 17 SPACES 20 SPACES
PHASE 3:	
OFF STREET PARKING SPACES REQUIRED PER OMC TABLE 18.38.100 (15) STUDIOS x 1 = (73) MULTIFAMILY DWELLING x 1.5 = TOTAL SPACES REQUIRED =	15 SPACES 110 SPACES 125 SPACES
VEHICLE PARKING PROPOSED OFF STREET PARKING LOWER LEVEL = OFF STREET PARKING PLAZA LEVEL = TOTAL SPACES PROVIDED =	125 SPACES 0 SPACES 125 SPACES
30% OF ALL SPACES CAN BE COMPACT REQUIRED (MAXIMUM) 125 x 0.30 = PROVIDED =	38 SPACES 38 SPACES
ACCESSIBLE PARKING REQUIRED (OMC18.38.120) REQUIRED (2% OF ALL SPACES PER 501-1,000) = PROVIDED =	3 SPACES 8 SPACES
5% OF ALL SPACES SHALL BE ELECTRICAL VEHICLE SPACES= REQUIRED = PROVIDED =	6 SPACES 6 SPACES

0 SPACES

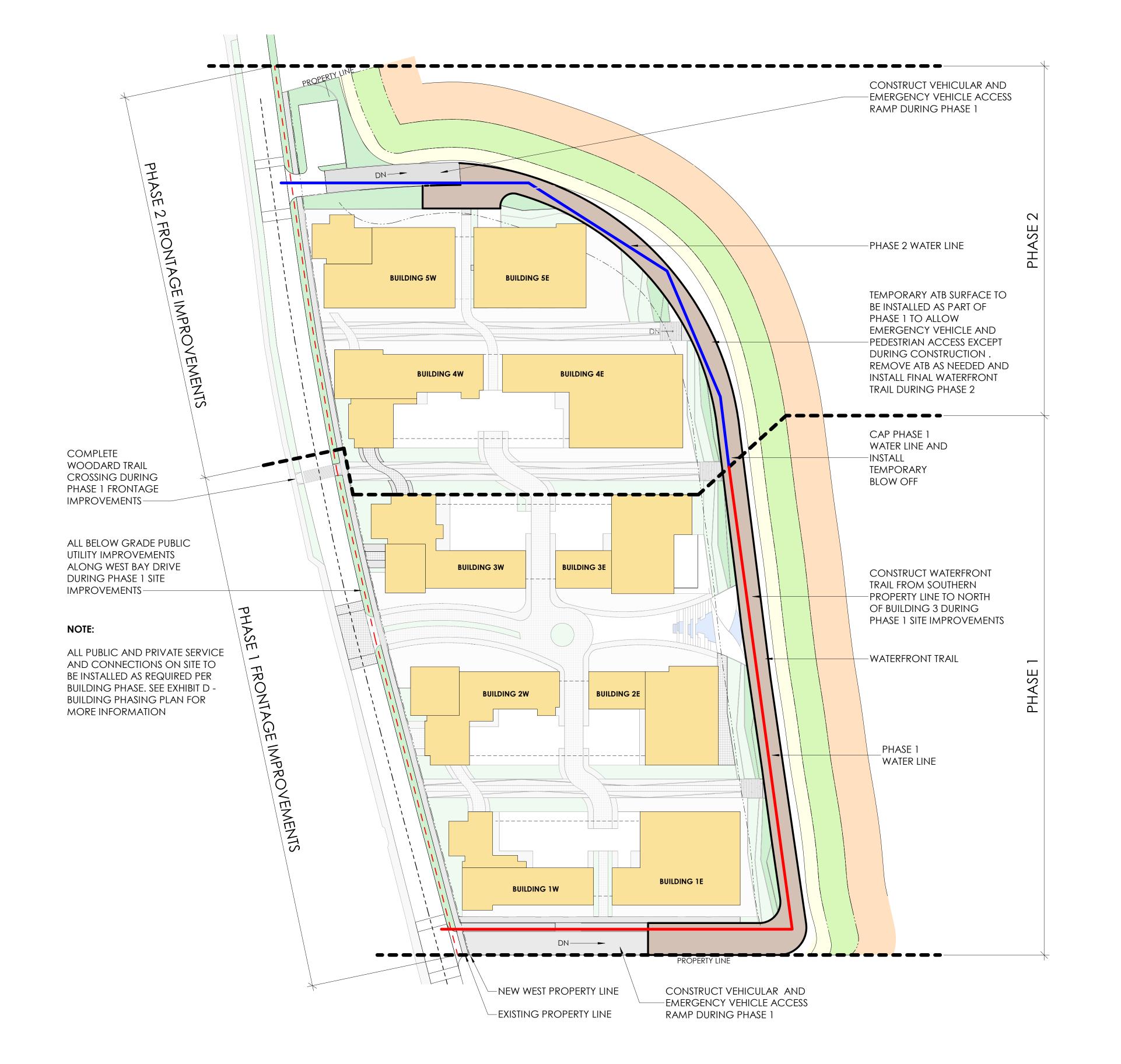
73 SPACES 73 SPACES

2 SPACES 7 SPACES 9 SPACES

LONG TERM BICYCLE STORAGE REQUIREMENTS (OMC 18.38.TABLE38.01)

(73) MULTIFAMILY DWELLING UNITS @ 1 STORAGE SPACE PER UNIT =

SHORT TERM BICYCLE STORAGE REQUIREMENTS 2 MIN (OMC 18.38.TABLE38.01)


(15) STUDIOS @ 0 STORAGE SPACE PER UNIT=

(73) MULTIFAMILY DWELLING UNITS @ 1/10 UNIT =

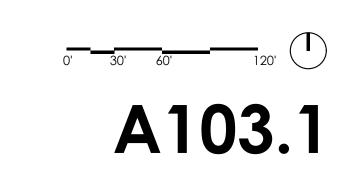
TOTAL FOR ALL THE SPACES PROVIDED =

TOTAL FOR ALL THE SPACES PROVIDED =

(15) STUDIOS @ 1/10 UNIT=

PHASE 2 NARRATIVE

- 1. CONSTRUCTION OF REMAINING SHORELINE IMPROVEMENTS ALONG PROJECT BOUNDARY
- 2. CONSTRUCTION OF REMAINING FRONTAGE IMPROVEMENTS
- 3. CONSTRUCTION OF REQUIRED PUBLIC UTILITY INFRASTRUCTURE RELATED TO IMPROVEMENTS FOR BUILDINGS 4 (4W AND 4E) AND 5 (5W AND 5E).


SHORELINE PHASING

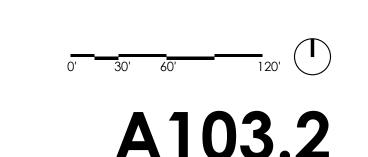
- 1. ENVIRONMENTAL PERMITS FOR SHORELINE RESTORATION WILL BE SUBMITTED FOR BOTH PHASE 1 AND PHASE 2 SIMULTANEOUSLY
- 2. NO CONSTRUCTION WILL OCCUR PRIOR TO APPROVAL OF ENVIRONMENTAL PERMITS FOR SHORELINE RESTORATION
- 3. SHORELINE RESTORATION WILL OCCUR IN TWO PHASES AS NOTED IN THE SITE PHASING DRAWING ON THIS SHEET
- 4. UPON APPROVAL OF ENVIRONMENTAL PERMITS FOR SHORELINE RESTORATION CONSTRUCTION OF SITE AND BUILDING IMPROVEMENTS FOR PHASE 1 WILL COMMENCE.
- 5. UPON COMPLETION OF PHASE 1 SHORELINE RESTORATION AND PHASE 1 SITE AND BUILDING IMPROVEMENTS PHASE 2 SHORELINE RESTORATION AND PHASE 2 SITE AND BUILDING IMPROVEMENTS WILL COMMENCE.

PHASE 1 NARRATIVE

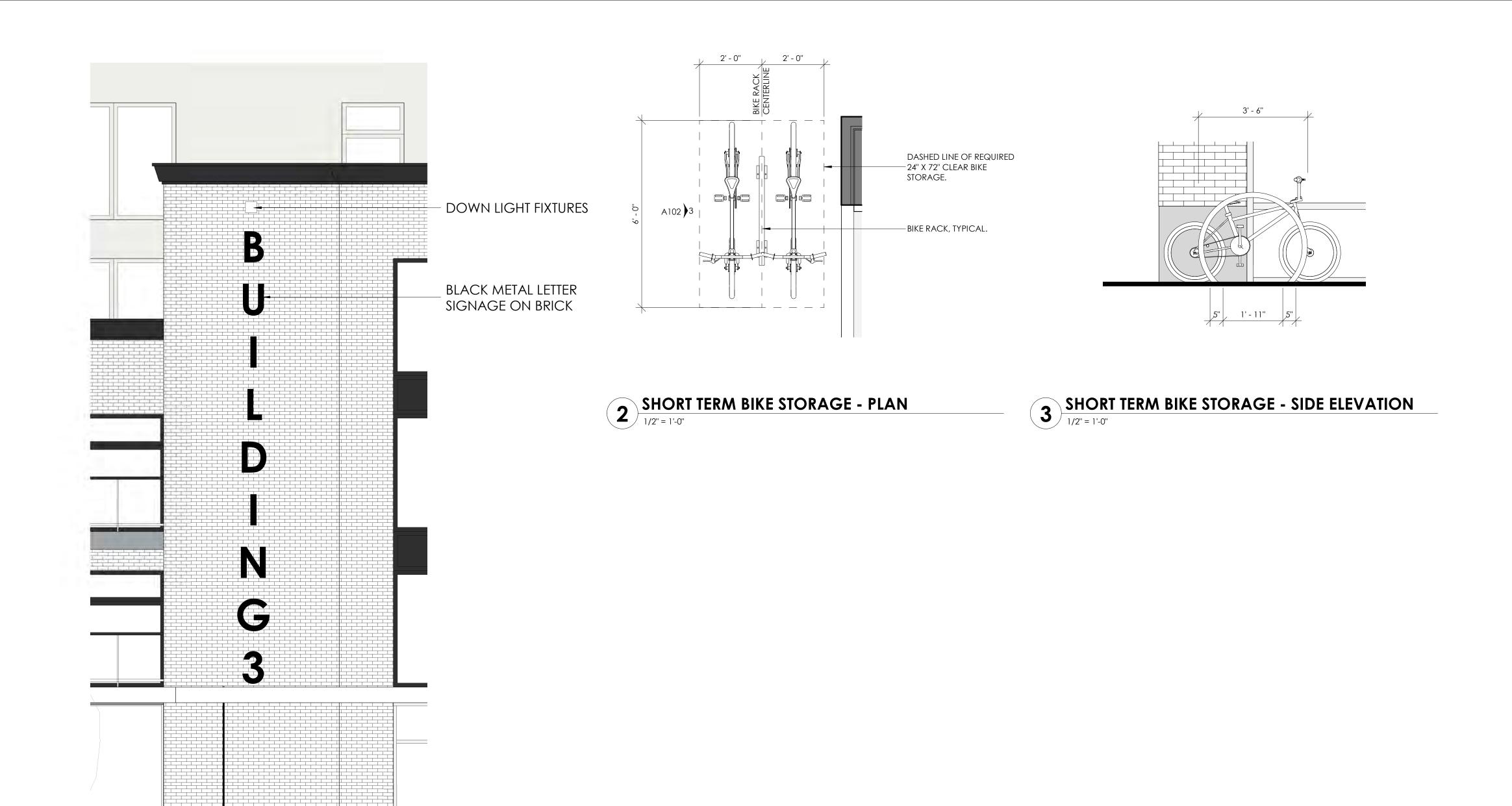
- 1. CONSTRUCTION OF FRONTAGE IMPROVEMENTS ALONG WEST BAY DRIVE SOUTHERN PROPERTY BOUNDARY TO THE NORTH OF THE WOODARD TRAIL PEDESTRIAN CROSSING.
- CONSTRUCT BELOW GRADE UTILITY IMPROVEMENTS ALONG WEST BAY DRIVE ALONG THE ENTIRETY OF WESTERN PROPERTY BOUNDARY.
- 3. CONSTRUCTION OF SHORELINE ENHANCEMENTS FROM SOUTHERN PROPERTY LINE TO NORTHERN EXTENT OF PHASE 1
- 4. CONSTRUCTION OF WATERFRONT TRAIL ALONG SOUTH, EAST, AND NORTHERN PROPERTY
- 5. CONSTRUCTION OF WATER LINE TO THE NORTHERN EXTENT OF PHASE 1
- 6. CONSTRUCTION OF ASSOCIATED PUBLIC UTILITY INFRASTRUCTURE RELATED TO IMRPOVEMENTS FOR BUILDINGS 2 (2W AND 2E) AND 3 (3W AND 3E) AND FUTURE CONSTRUCTION OF BUILDING 1 (1W AND 1E).

PHASE 2 NARRATIVE

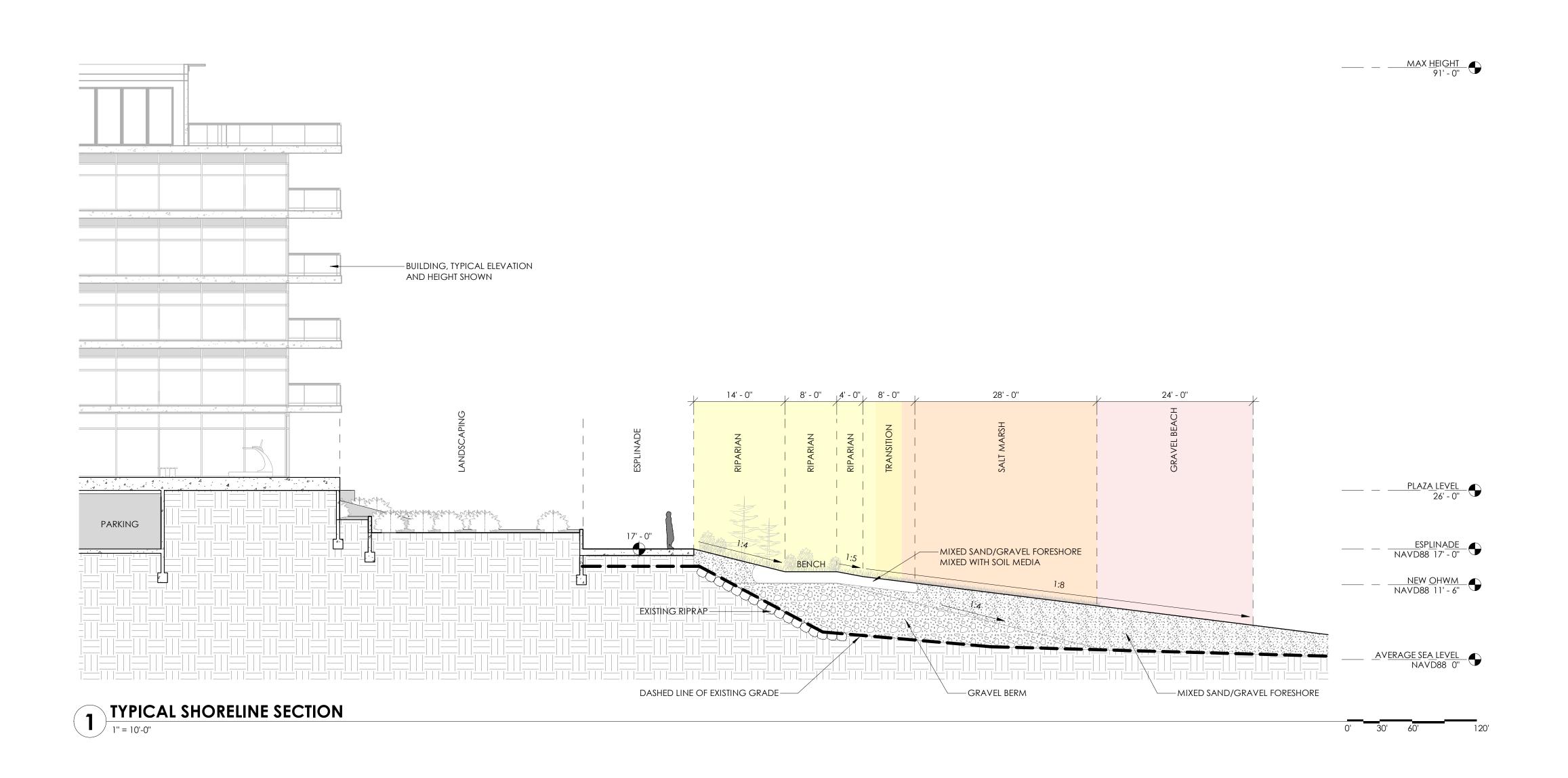
- 1. CONSTRUCTION OF PLAZA LEVEL FROM NORTH OF BUILDING 3 (3W AND 3E)
- 2. CONSTRUCTION OF BUILDING 4 (4E AND 4W), BUILDING 5 (5E AND 5W)
- 3. CONSTRUCTION OF PARKING LEVEL BELOW BUILDING 4 (4E AND 4W) AND BUILDING 5 (5E AND 5W)
- 4, CONSTRUCTION OF ADJACENT SITE AND PLAZA LANDSCAPING, HARDSCAPING AND PEDESTRIAN AMENITIES

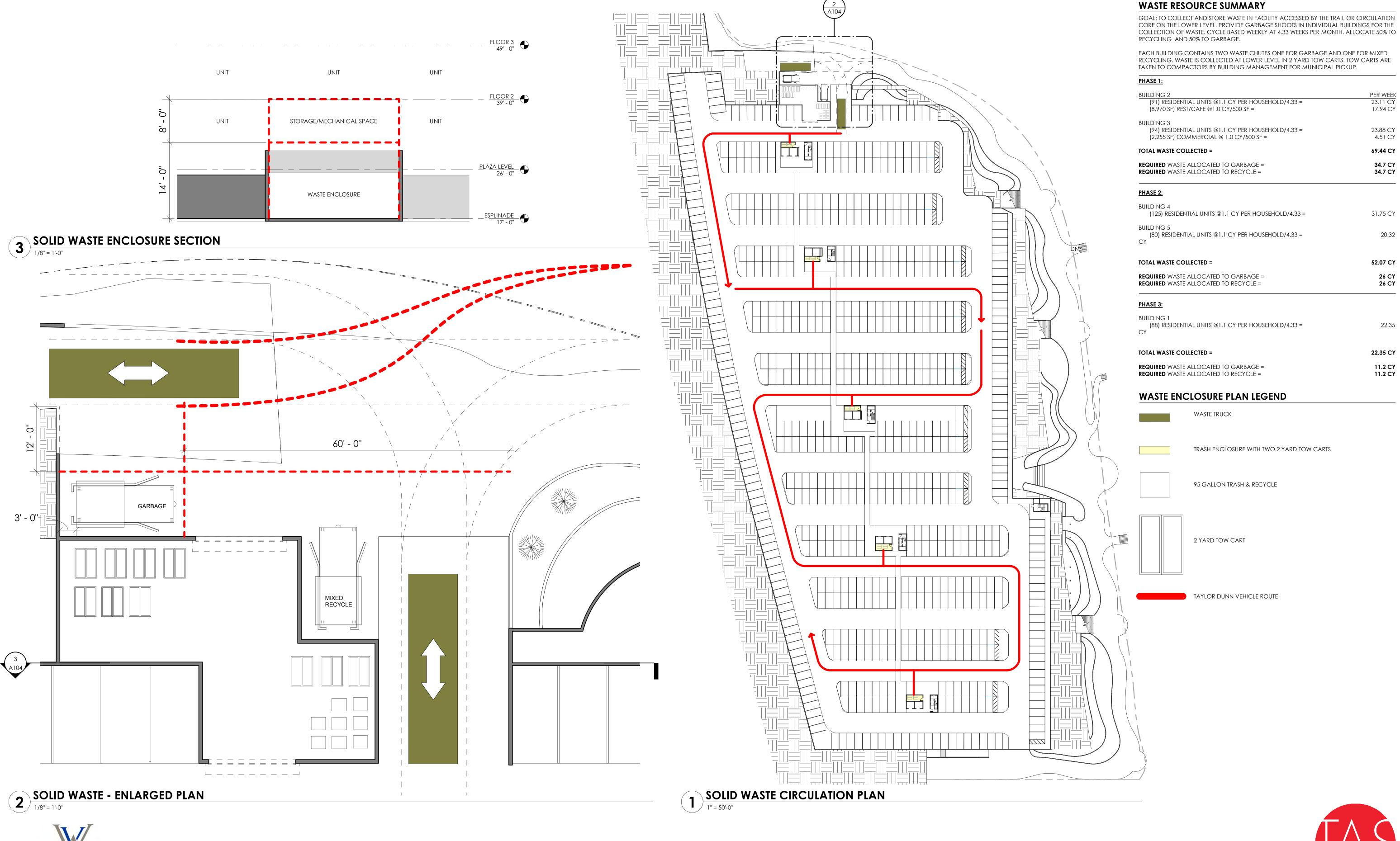

PHASE 1 NARRATIVE

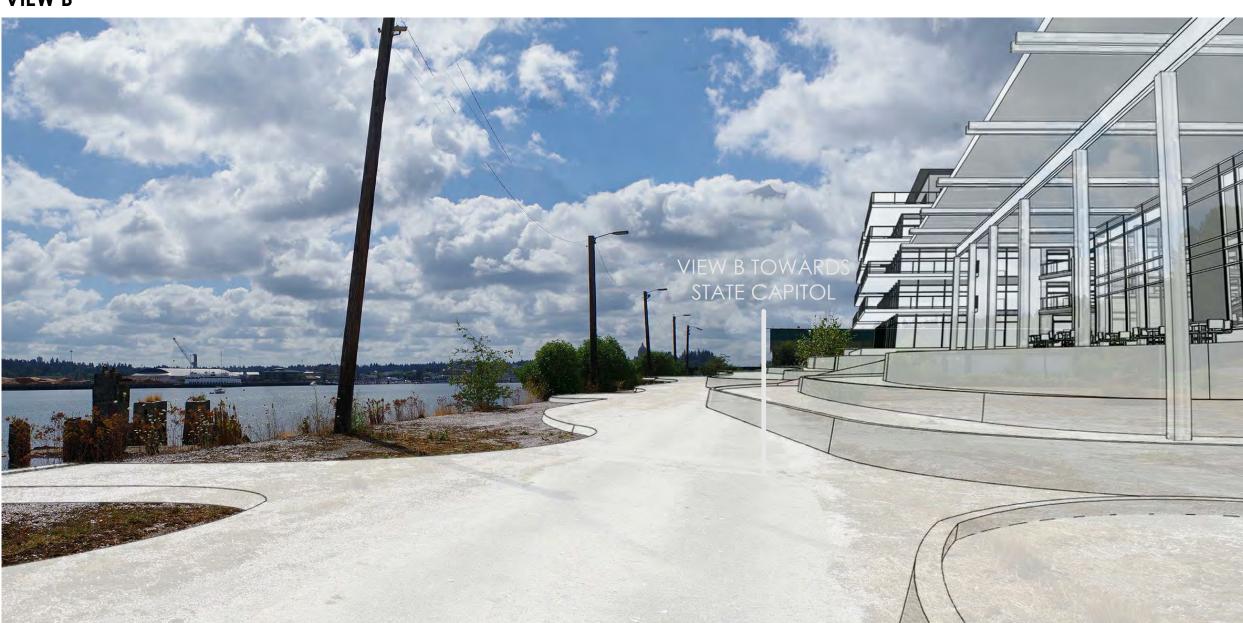
- 1. CONSTRUCTION OF PLAZA LEVEL FROM SOUTH OF BUILDING 2 (2W AND 2E) TO THE NORTH OF BUILDING 3 (3W AND 3E)
- CONSTRUCTION OF BUILDING 2 (2E AND 2W) AND BUILDING 3 (3E AND 3W)
 CONSTRUCTION OF PARKING LEVEL BELOW BUILDING 2 (2W AND 2E) AND 3 (3W AND 3E)
- 4. CONSTRUCTION OF ADJACENT SITE AND PLAZA LANDSCAPING, HARDSCAPING AND PEDESTRIAN AMENITIES
- 5. CONSTRUCT SOLID WASTE FACILITIES ADJACENT TO NORTHERN VEHICULAR RAMP. INTERNAL SOLID WASTE MANAGEMENT BY OWNER.
- 6. EMERGENCY VEHICLE ACCESS CONSTRUCTED DURING PHASE 1 AND MAINTAINED THROUGHOUT CONSECUTIVE PHASES


PHASE 3 NARRATIVE

- CONSTRUCTION OF PLAZA LEVEL FROM SOUTH OF BUILDING 2 (2W AND 2E)
 TO THE SOUTH PROPERTY LINE
- 2. CONSTRUCTION OF BUILDING 1 (1W AND 1E)
- 3. CONSTRUCTION OF PARKING LEVEL BELOW BUILDING 1 (1W AND 1E)
- 4, CONSTRUCTION OF ADJACENT SITE AND PLAZA LANDSCAPING,
- HARDSCAPING AND PEDESTRIAN AMENITIES







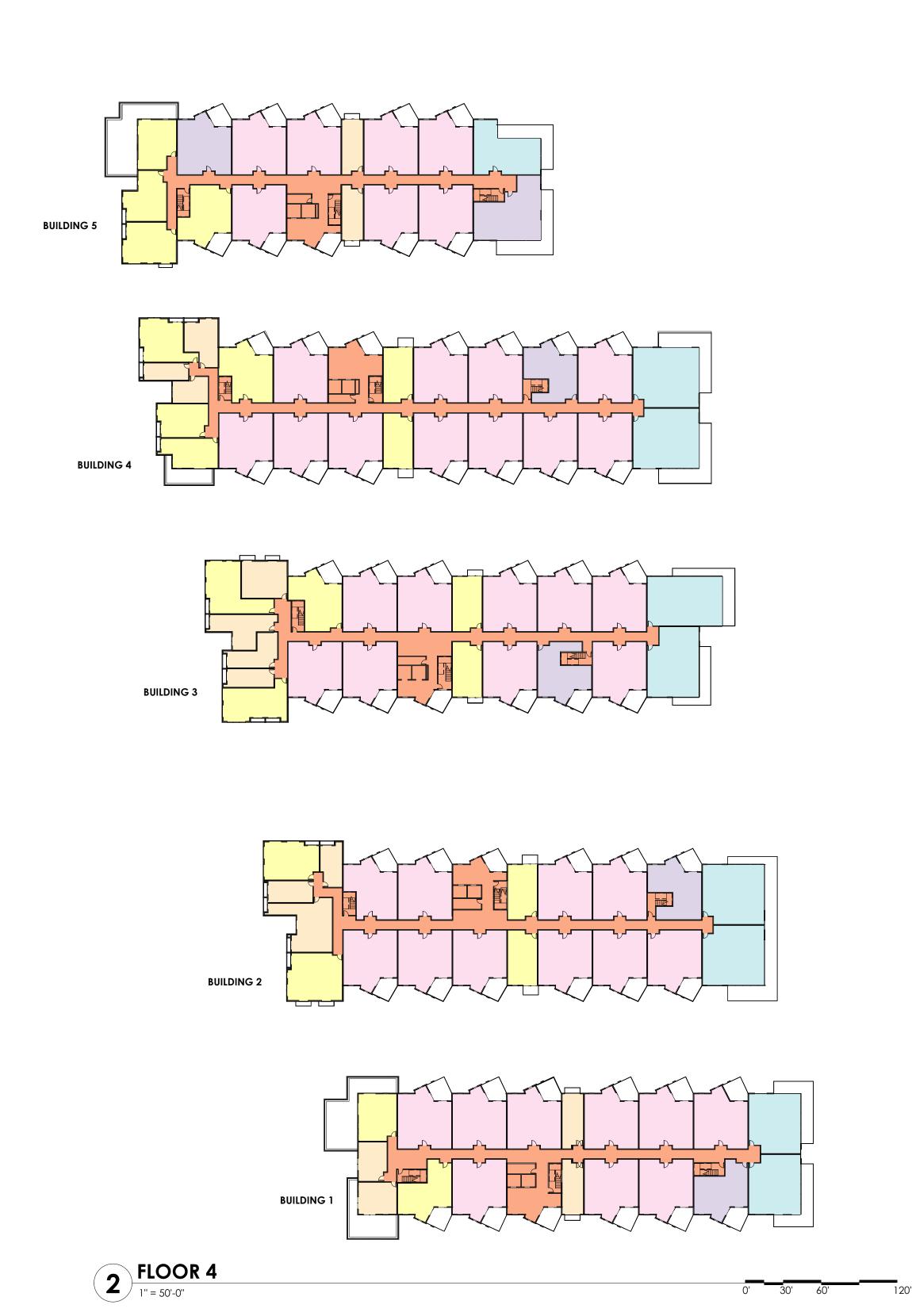
ROOM LEGEND

1x1 2X2 L

2x2 S
3x3

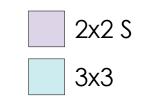
COMMERCIAL

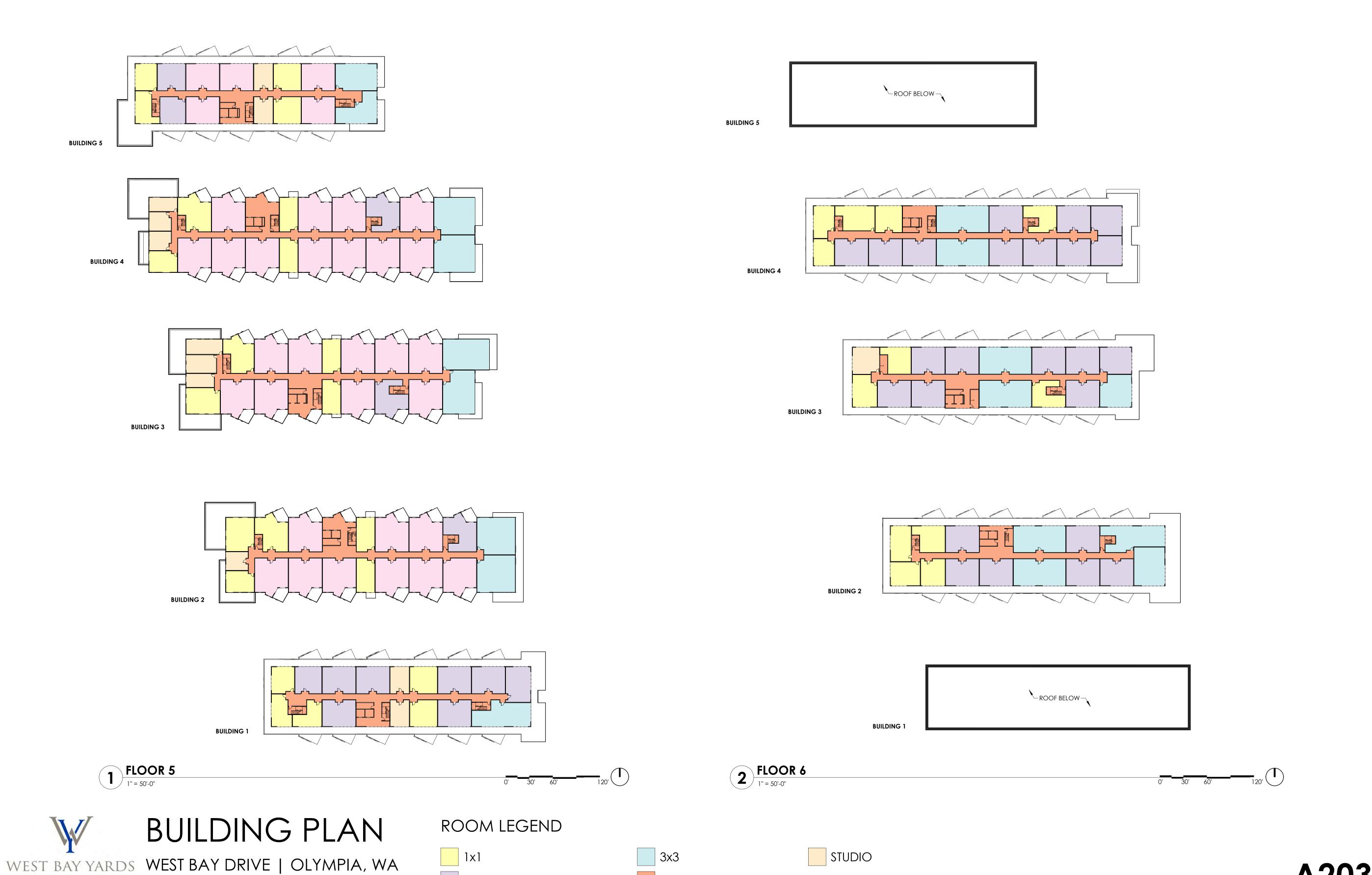
GYM


LOBBY

RESTAURANT

STUDIO





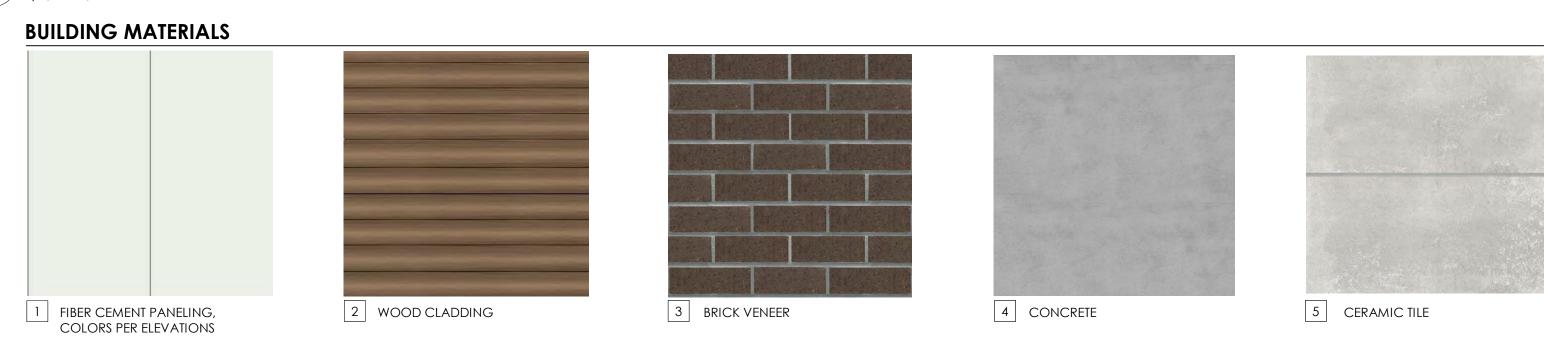
COMMON

2x2 S

LUXURY WATERFRONT LIVING

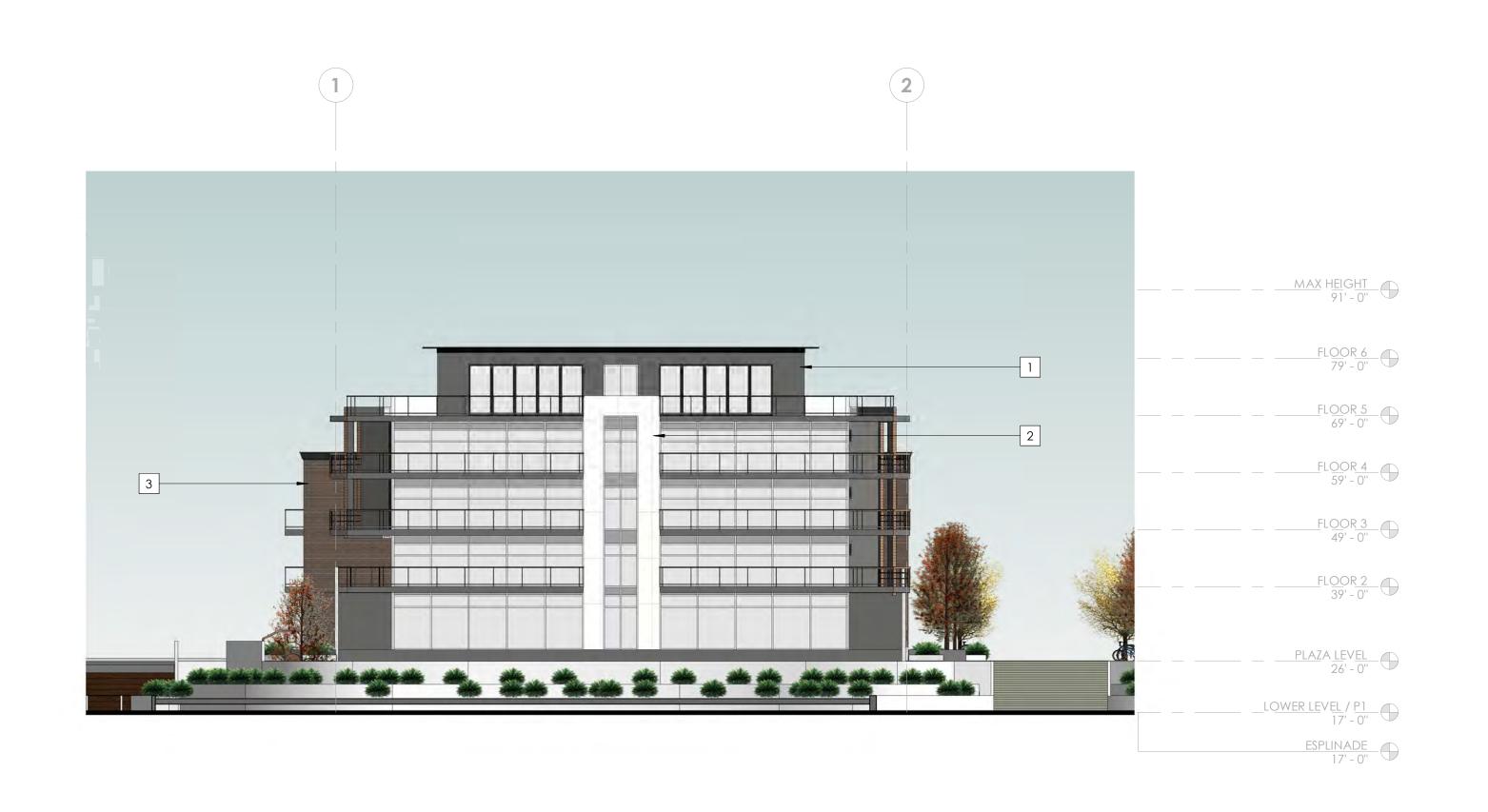
OLYMPIA

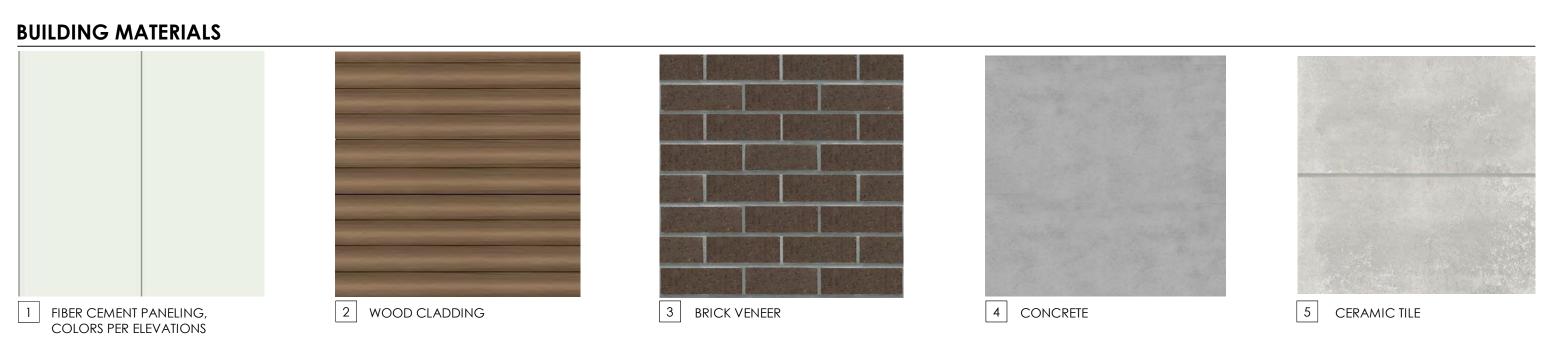
SCHEMATIC DESIGN | 06/01/21



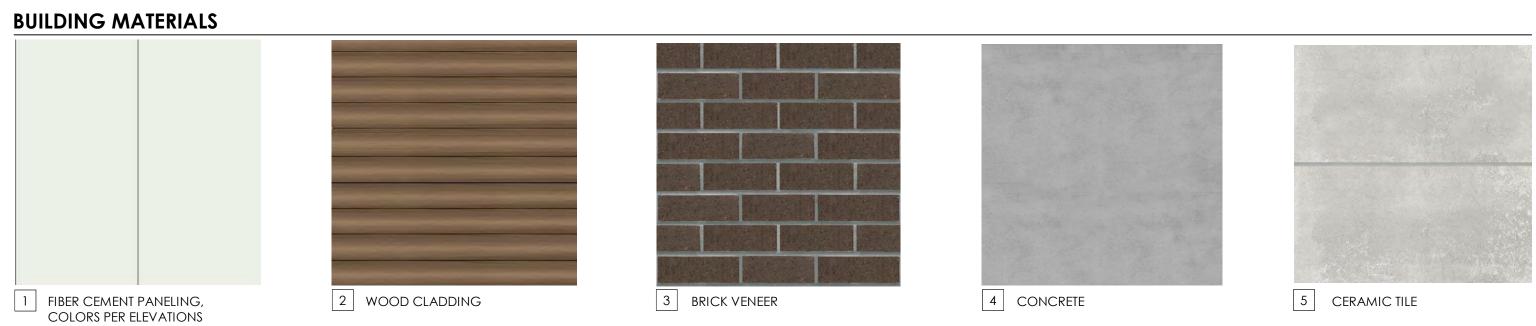
NORTH ELEVATION - BUILDING 1

1/16" = 1'-0"


2 SOUTH ELEVATION - BUILDING 1


BUILDING ELEVATIONS - BUILDING 1

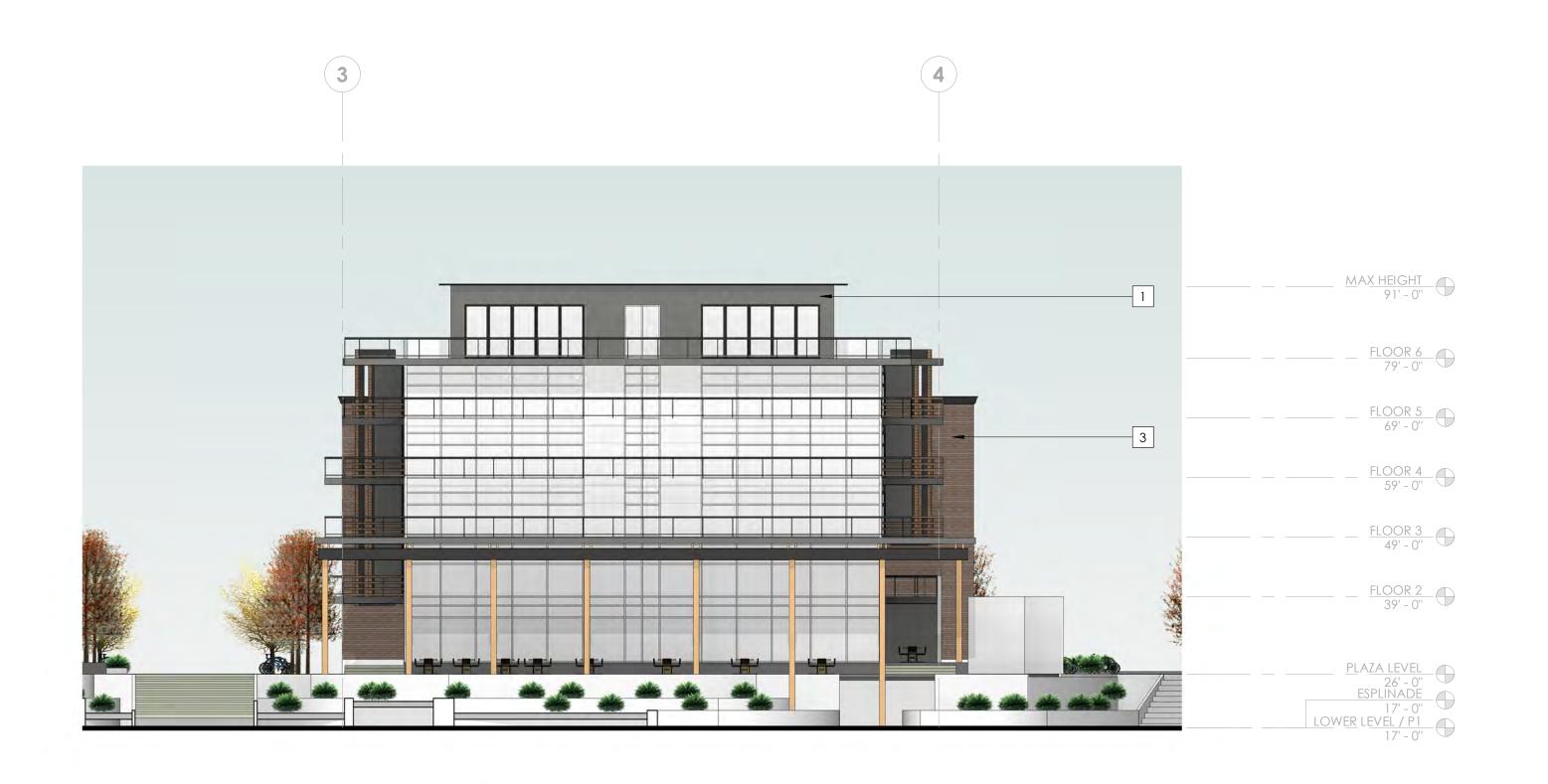
BUILDING ELEVATIONS - BUILDING 1


SOUTH ELEVATION - BUILDING 2

1/16" = 1'-0"

NORTH ELEVATION - BUILDING 2

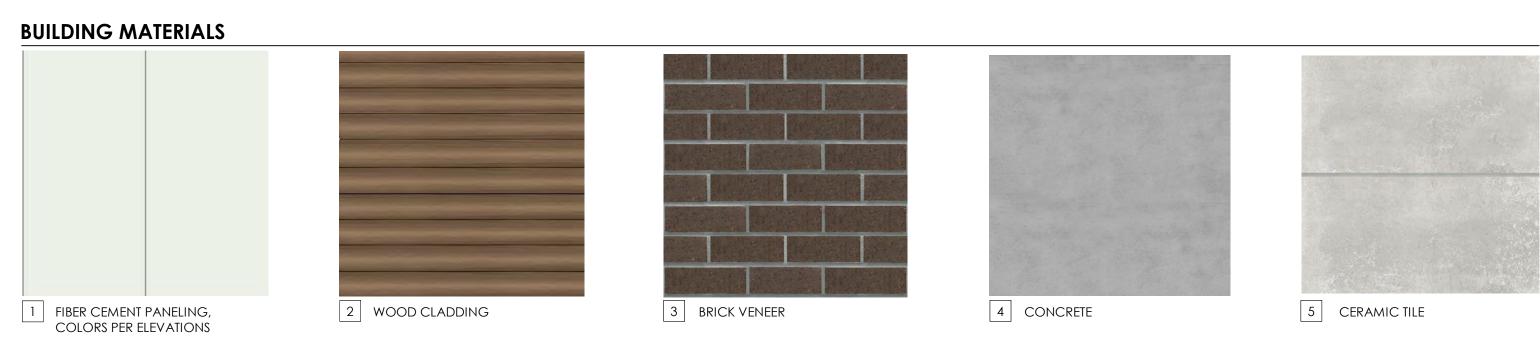
1/16" = 1'-0"



BUILDING ELEVATIONS - BUILDING 2

WEST BAY YARDS WEST BAY DRIVE | OLYMPIA, WA

LUXURY WATERFRONT LIVING
OLYMPIA SCHEMATIC DESIGN | 06/01/21



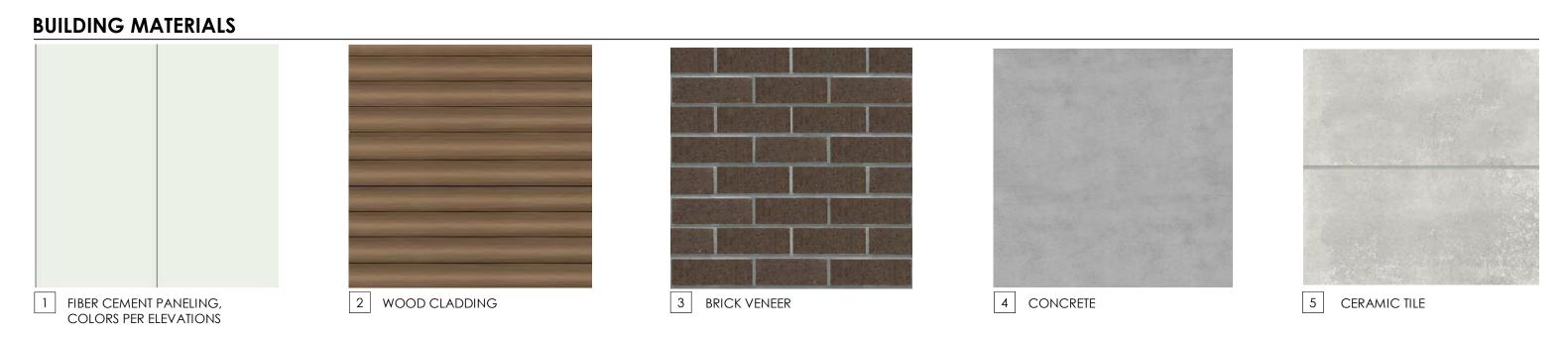
WEST ELEVATION - BUILDING 2

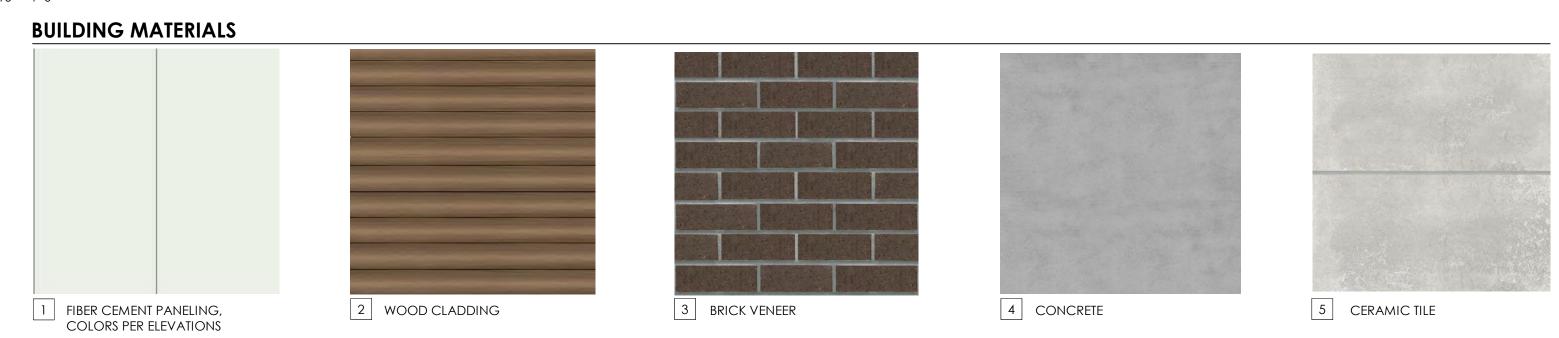
1/16" = 1'-0"

BUILDING ELEVATIONS - BUILDING 2

2 NORTH ELEVATION - BUILDING 3

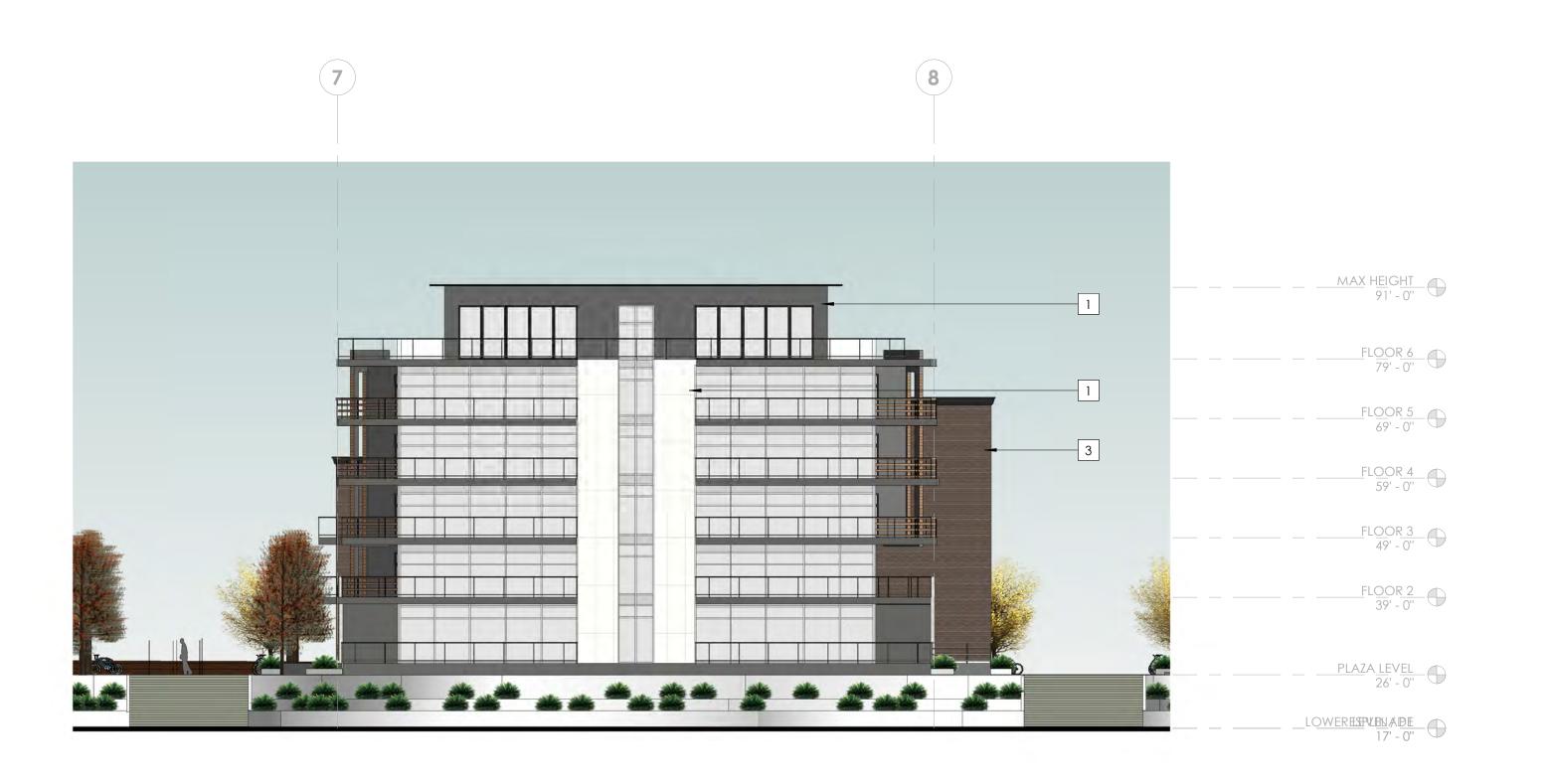
BUILDING ELEVATIONS - BUILDING 3



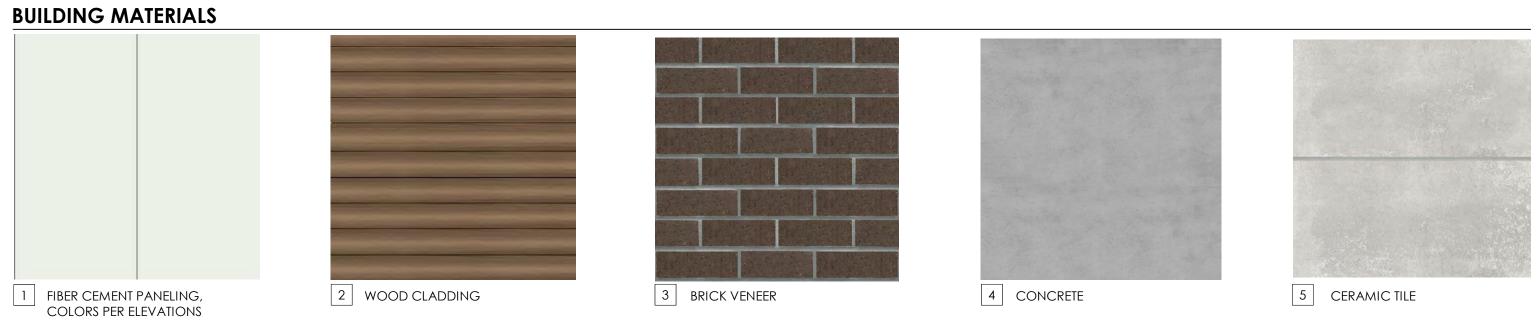

BUILDING ELEVATIONS - BUILDING 3

NORTH ELEVATION - BUILDING 4 1/16" = 1'-0"

2 SOUTH ELEVATION - BUILDING 4



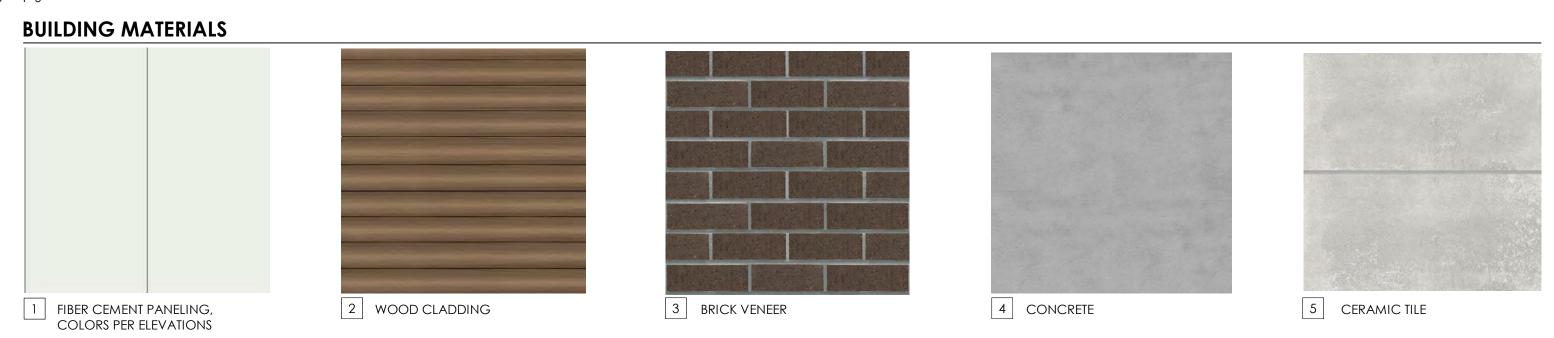
BUILDING ELEVATIONS - BUILDING 4



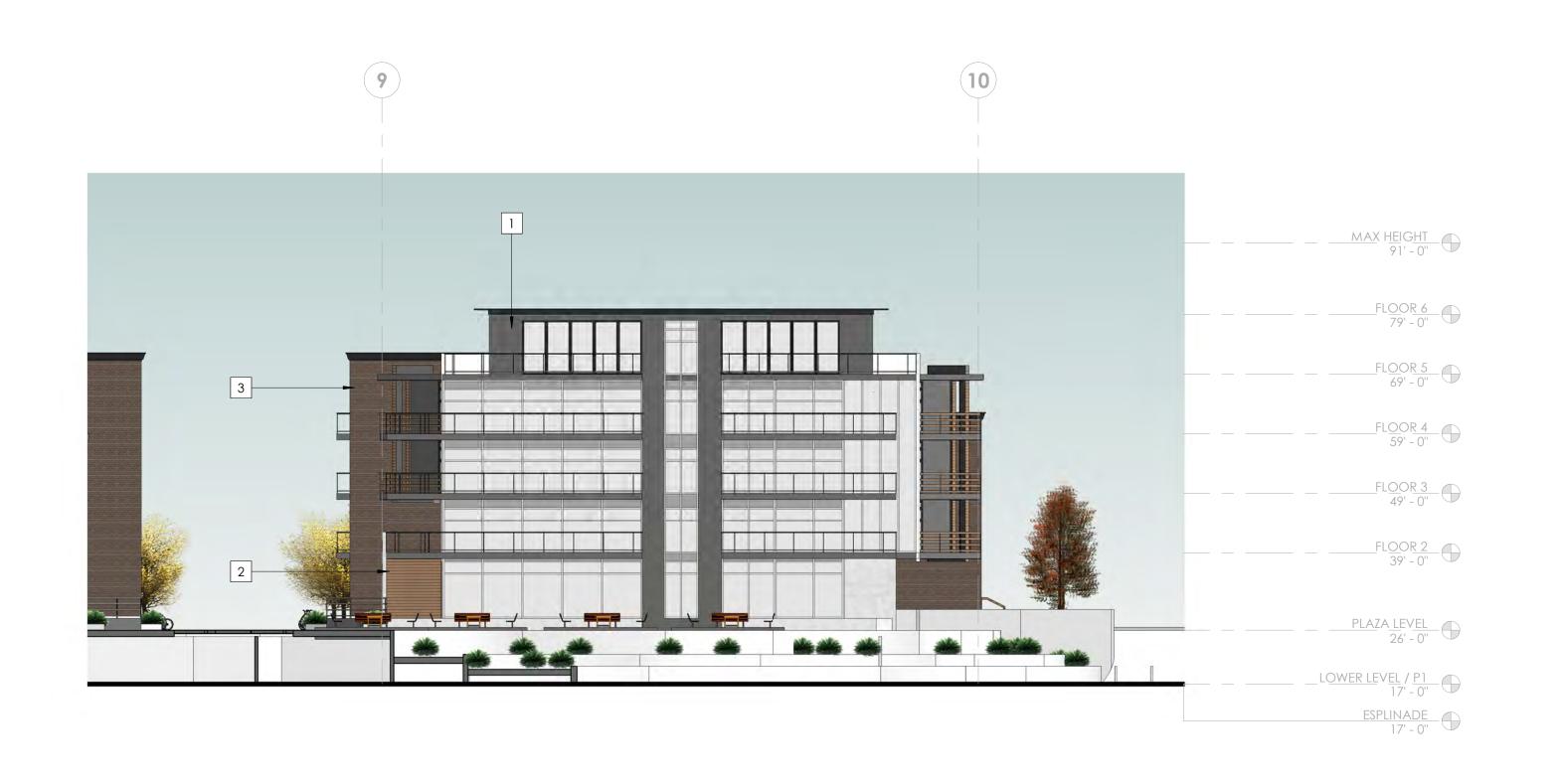
WEST ELEVATION - BUILDING 4

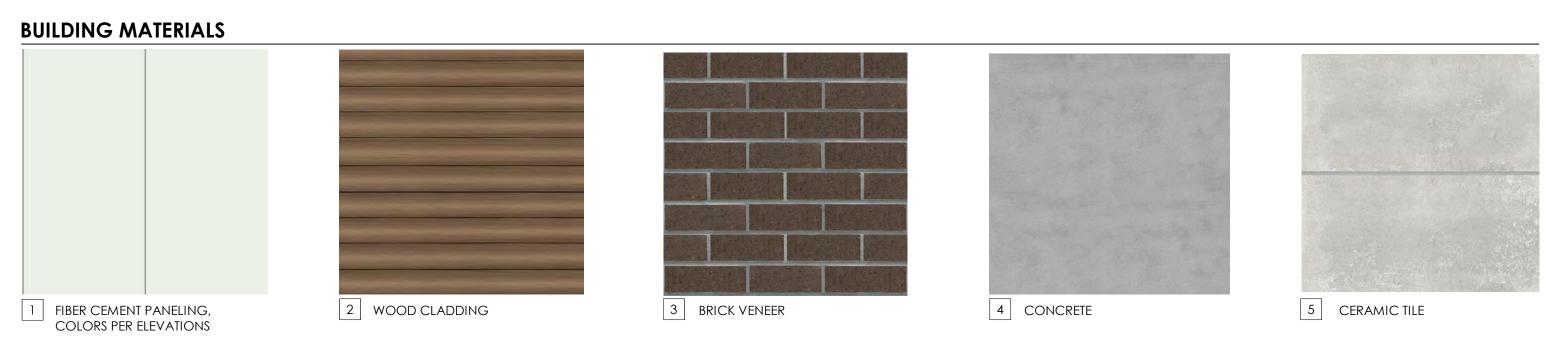
1/16" = 1'-0"

BUILDING ELEVATIONS - BUILDING 4

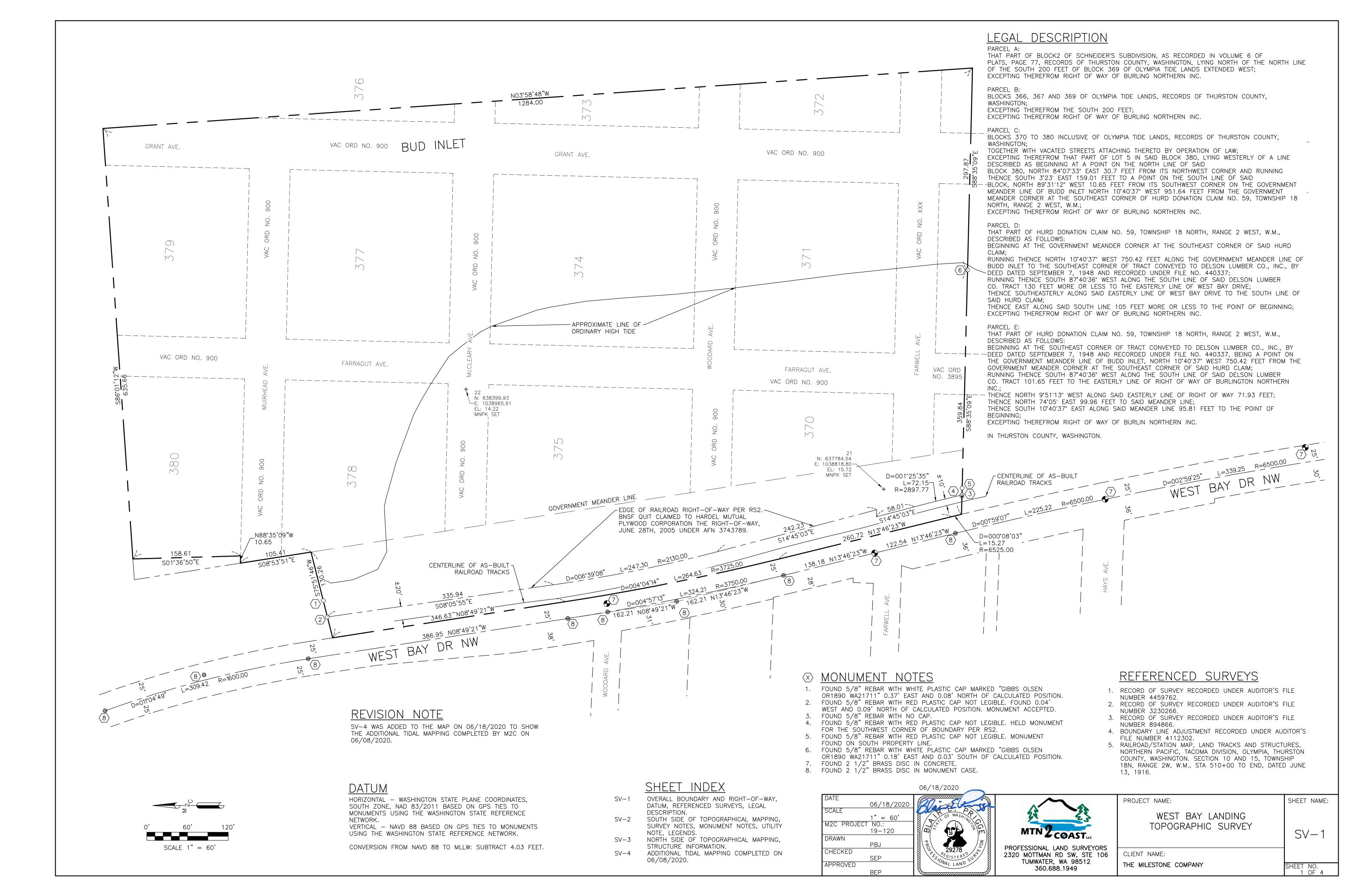


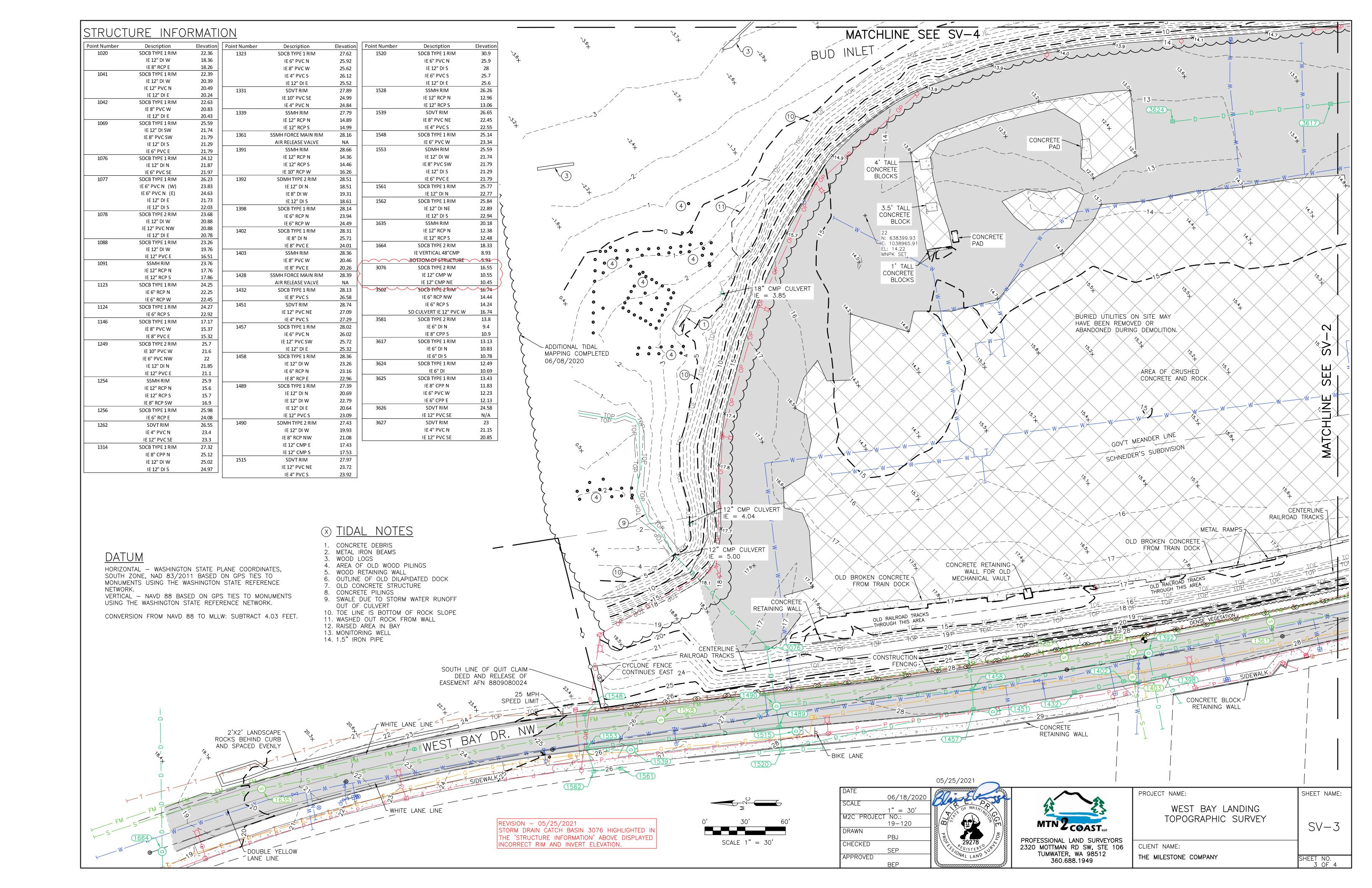
NORTH ELEVATION - BUILDING 5 1/16" = 1'-0"

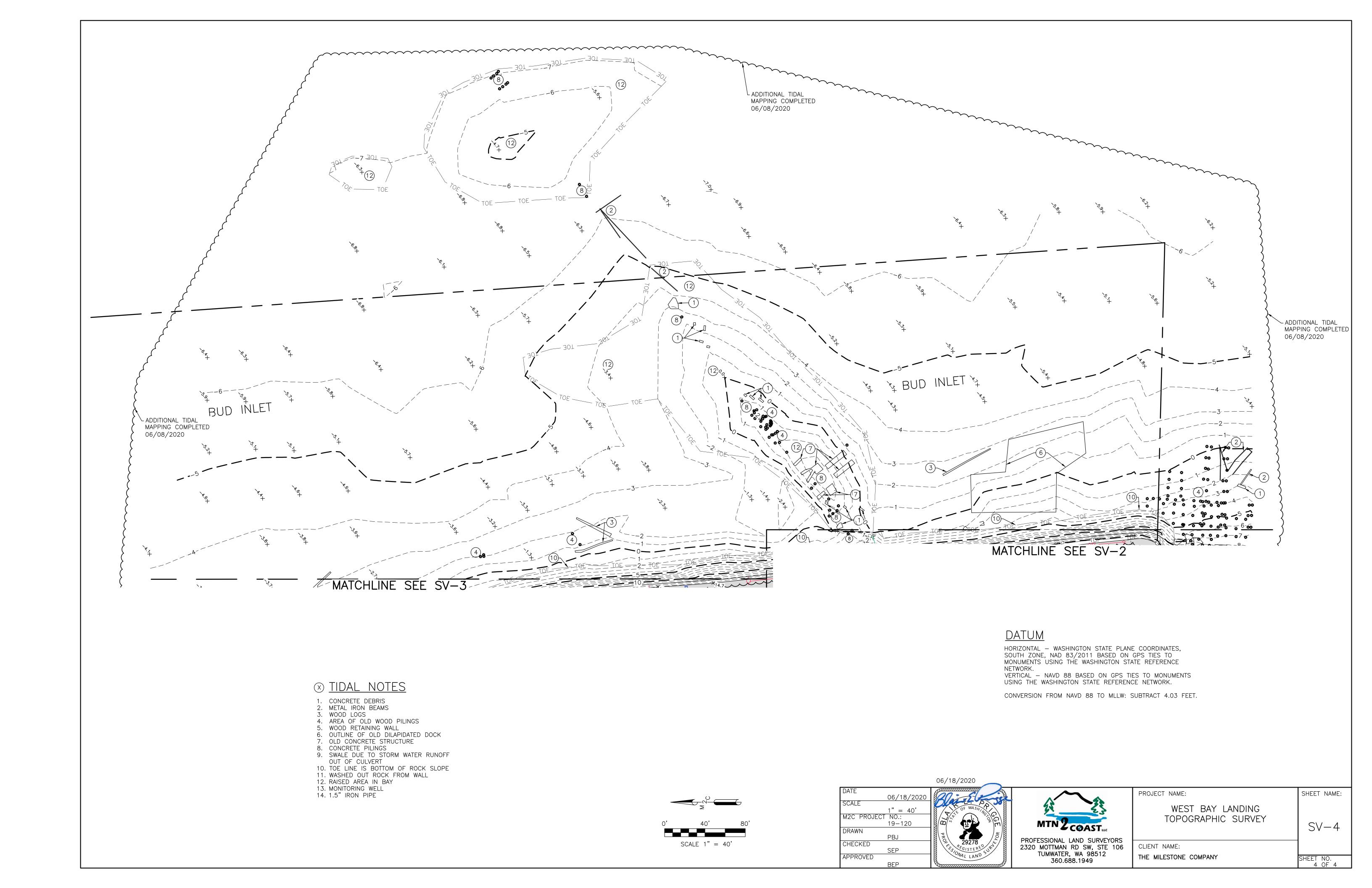



BUILDING ELEVATIONS - BUILDING 5

BUILDING ELEVATIONS - BUILDING 5







Appendix C

Appendix D

PROJECT: Hardel Olympia, WA				Log of B1					
BORIN	BORING LOCATION: B1				GROUND S	GROUND SURFACE ELEVATION AND DATUM:			
DRILL	DRILLING CONTRACTOR: ESN				DATE STARTED: DATE F 6/3/20 6/3/		DATE FINISHED: 6/3/20		
DRILL	DRILLING METHOD: Geoprobe				TOTAL DEPTH (ft.): MEASU		MEASURING POINT: Ground Surface		
DRILL	DRILLING EQUIPMENT: Truck-mount				DEPTH TO WATER:	DURING:	AFTER:		
LOGG	LOGGED BY:			SCREEN IN	11.94 NTERVAL:	BOREHOLE BACKFILL:			
	Joel Hecker/Melisa Kegans			10-15' Bentonite					
DEPTH (feet)	Sample No.	Sample	ES Litho.	PID Reading	DESCRIPTION	BORING REMARKS	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS		
1-				0.0	FILL - Fine to Coarse SAND with gravel, light brown, moist		1— 2—		
3-	0320	0000	0.0	FILL - GRAVEL with sand, gray, moist		3-			
5-	SO-B1-4-5-060320		01.7	1.7			5— 6—		Casing: 1-inch diameter
7-	-			0.0	FILL - SILTY SAND with gravel, dark gray, moist.	Decreasing gravel with depth, increasing moisture with depth	7		schedule 40 PVC casing Screen: 1-inch
9-	-			0.0			9-		diameter schedule 40, 0.010 slot size, PVC screen
10-			°0				10-		
11-	-		0.0	0.0		_	11-		
12-	-						12-		
13-	-			0.0	FILL - SILTY GRAVEL with sand, gray, moist-to-wet	No odors or staining noted in soil column	13-		
14-	_						14-		
15 PIO	NEE	R Te	chno	0.0 logies	Corporation		15	***** *****	Page 1 of 1

PROJI	ECT:				Hardel Olympia, WA			Log of	B2
BORIN	IG LO	CATIC	N:		B2		GROUND S	SURFACE ELEVATIO	ON AND DATUM:
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE STAI	RTED: 6/3/20	DATE FINISHED: 6/3/20
DRILL	ING N	1ETHC	D:		Geoprobe		TOTAL DE	PTH (ft.):	MEASURING POINT: Ground Surface
DRILL	ING E	QUIPN	ИENT	: 7	 Fruck-mount		DEPTH TO	DURING:	AFTER:
LOGG	ED B	Y:					WATER:	3.73	BOREHOLE BACKFILL:
				el Hed	cker/Melisa Kegans		;	3-8'	Bentonite
DEPTH (feet)	Sample No.	Samble Sample	ES Litho.	PID Reading	DESCRIPTION	BORING REMARKS			RUCTION DETAILS ILLING REMARKS
0 1- 2- 3- 4- 5- 6- 7- 8-	SO-B2-2-4-060320			0.8	FILL - Fine to Coarse SAND with gravel, gray, moist FILL - CLAYEY SAND with trace wood, trace brick,	Hydrocarbon odor at 2-4' No staining noted in soil column	0 1- 2- 3- 4- 5- 6- 7- 8- 9-		Casing: 1-inch diameter schedule 40 PVC casing Screen: 1-inch diameter schedule 40, 0.010 slot size, PVC screen
9-				0.0	SILT with sand and clay, dark brown, wet		9-		
	NEE	R Te	chno	logie	S Corporation		10		Page 1 of 1

PROJE	ECT:				Hardel Olympia, WA			Log o	f B3	
BORIN	IG LO	CATIO	N:		В3		GROUNE	SURFACE ELEVAT	TION AND DATUM:	
DRILLI	ING C	ONTR	ACTO	R:	ESN		DATE ST	ARTED: 6/3/20	DATE FINISHED: 6/3/20	
DRILLI	ING M	1ETHO	D:		Geoprobe		TOTAL DEPTH (ft.): MEASURING POINT: 15 Ground Surface			
DRILLI	ING E	QUIPN	/ENT:	Т	ruck-mount		DEPTH TO DURING: AFTER:			
LOGG	ED B	Y:					SCREEN	R: 3.25 I INTERVAL:	BOREHOLE BACKFILL:	
				l Hed	ker/Melisa Kegans			3-8'	Bentonite	
DEPTH (feet)	Sample No.	Samble	Citho.	PID Reading	DESCRIPTION	BORING REMARKS			STRUCTION DETAILS RILLING REMARKS	
0	-		80808080		CRUSHED CONCRETE		0			
1— 2— 3—	SO-B3-2-3-060320			0.0	FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, light brown, moist-to-wet		1— 2— 3—			
4				0.0	FILL - SILT, trace wood, gray, wet	No odors or staining noted in soil column	4- 5- 6- 7- 8- 9- 10-		Casing: 1-inch diameter schedule 40 PVC casing Screen: 1-inch diameter schedule 40, 0.010 slot size, PVC screen	
11				0.0			11-			
13-				0.0	WOOD		13-			
15	NEE	R Ted	chnol	0.0 ogies	s Corporation		15		Page 1 of 1	

PROJE	ECT:				Hardel Olympia, WA			Log	of B4	
BORIN	NG LO	CATIC	N:		B4		GROUND	SURFACE ELEV	ATION AND DATUM:	
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE STA	ARTED: 6/3/20	DATE FINISHED: 6/3/20	
DRILL	ING M	1ETHO	D:		Geoprobe		TOTAL DEPTH (ft.): MEASURING POINT: Ground Surface			
DRILL	ING E	QUIPN	/ENT:	Т	ruck-mount		DEPTH TO DURING: AFTER:			
LOGG	ED B	Y:	Joe	el Hec	sker/Melisa Kegans		WATER: ~10 6.2 SCREEN INTERVAL: BOREHOLE BACKFILL: 7-12' Bentonite			
DEPTH (feet)		Sample JAMA	Litho.	PID Reading	DESCRIPTION	BORING REMARKS			NSTRUCTION DETAILS DRILLING REMARKS	
0			000		GRAVEL		0			
1-	3-060320			0.0	FILL - Fine to Coarse SAND with gravel, light brown, moist	No odors noted in soil column	1-			
3-	SO-B4-1-3-060320			0.0	FILL - CLAYEY SILT, trace wood, brown-gray		3-			
5-				0.0			5-		Casing: 1-inch diameter schedule 40 PVC casing	
6-						Increasing wood with depth	6-		Screen: 1-inch	
7-				0.0			7-		diameter schedule 40, 0.010 slot size, PVC	
8-	-				POSSIBLE FILL - SILT, trace wood, gray, wet		8-		screen	
9-				0.0			9-			
10-						Refusal at 12' in concrete	10-			
11-	4-11-12-060320			0.0			11-			
12 PIO	L-À	R Ted	chno	logies	s Corporation		12		Page 1 of 1	

PROJI	ECT:				Hardel Olympia, WA			Log of	B5		
BORIN	IG LO	CATIO	N:		B5		GROUND	SURFACE ELEVATIO	ON AND DATUM:		
DRILL	ING C	ONTRA	ACTO	PR:	ESN		DATE STA	ARTED: 6/3/20	DATE FINISHED: 6/3/20		
DRILL	ING M	1ETHO[D:		Geoprobe		TOTAL DEPTH (ft.): MEASURING POINT:				
DRILL	ING E	QUIPM	ENT:	Т	ruck-mount		DEPTH TO DURING: AFTER:				
LOGG	ED B	Y:					WATER:	4.7 INTERVAL:	BOREHOLE BACKFILL:		
				l Hed	ker/Melisa Kegans			3-8'	Bentonite		
DEPTH (feet)	Sample No.	Samble	S Fitho.	PID Reading	DESCRIPTION	BORING REMARKS			RUCTION DETAILS ILLING REMARKS		
0					ASPHALT		0				
1-				0.0	FILL - Fine to Coarse SAND with gravel, gray, moist		1-				
3-	30320			0.0			3-				
4-	SO-B5-3-4-060320		0.		FILL - Fine to Coarse SAND with gravel, trace brick, gray and brown, moist		4-		Casing: 1-inch diameter schedule 40 PVC		
5-		0.00		0.0			5-		Screen: 1-inch diameter		
6-		0.000			Fine SILTY SAND, trace	No odors or	6-		schedule 40, 0.010 slot size, PVC screen		
7-				0.0	shells, gray, wet	staining noted in soil column	7-				
8-			0 0 1 1 0 0				8-				
9-			· · · · ·	0.0	SILT, gray, wet		9-				
10	NFF	R Tec	hnol	onies	s Corporation		10		Page 1 of 1		

PROJ	ECT:				Hardel Olympia, WA			Log of	f B6	
BORIN	NG LC	CATION	1 :		B6		GROUND	SURFACE ELEVAT	TON AND DATUM:	
DRILL	.ING C	CONTRA	СТО	R:	ESN		DATE STA	RTED: 6/3/20	DATE FINISHED: 6/3/20	
DRILL	ING N	NETHOD):		Geoprobe		TOTAL DEPTH (ft.): MEASURING POINT: Ground Surface			
DRILL	ING E	QUIPMI	ENT:	Т	ruck-mount		DEPTH TO DURING: AFTER: 4.3			
LOGG	SED B		Joe	l Hec	sker/Melisa Kegans		SCREEN I	NTERVAL: 3-8'	BOREHOLE BACKFILL: Bentonite	
DEPTH (feet)		Samble		PID Reading	DESCRIPTION	BORING REMARKS			STRUCTION DETAILS RILLING REMARKS	
0				-	ASPHALT		0			
1-	_			0.0	FILL - Fine to Coarse SAND		1-			
2-	. 0				with gravel, light brown, moist		2-			
3-	SO-B6-3-4-060320			0.0	FILL - CLAY with wood, brown		3-		Casing: 1-inch diameter	
5-	-			0.0			5-		schedule 40 PVC casing Screen: 1-inch diameter	
6-	-						6-		schedule 40, 0.010 slot size, PVC screen	
7-	_			0.0	Fine SILTY SAND, trace shells, gray, wet	No odors or staining noted in soil column	7-			
8-	_						8-			
9-	_			0.0			9-			
10 PIO	NEF	R Tecl	nnol	ogies	s Corporation		10		Page 1 of 1	
10			101	Jyles	, 00100101011				1 age 1 of 1	

PROJ	ECT:				Hardel Olympia, WA			Log o	f B7		
BORIN	NG LO	CATIO	N:		В7		GROUND	SURFACE ELEVAT	TION AND DA	ATUM:	
DRILL				R:	ESN Geoprobe		DATE STARTED: 6/3/20 TOTAL DEPTH (ft.): 10 DATE FINISHED: 6/3/20 MEASURING POINT: Ground Surface				
DRILL	ING E	QUIPM	/ENT:	т	ruck-mount		DEPTH TO		AFTER:	u Suriace	
LOGG	ED B	Y:					SCREEN	: 6 INTERVAL:	BOREHO	DLE BACKFILL:	
				el Hec	ker/Melisa Kegans				Bentor	nite	
DEPTH (feet)	Sample No.	Samble Samble	ES Titho.	PID Reading	DESCRIPTION	BORING REMARKS		WELL CONS AND/OR D	STRUCTION RILLING RE		
0 -							0 -				
1-	-			0.0	FILL - SAND with gravel, light brown, moist		1-				
2-	-						2-				
3-	320			0.0			3-				
4-	SO-B7-3-5-060320				FILL - CLAYEY SAND with wood, trace brick, brown, moist		4-				
5-	00			0.0			5-			No temporary well installed	
6-	-						6-				
7-				0.0	FILL - SILTY SAND, dark	No odors or staining noted	7-				
8-	-				brown, moist	in soil column	8-				
9-	- -			0.0			9-				
10			. — . —		O		10			D	
110	NFF	K led	cnno	ogies	s Corporation					Page 1 of 1	

PROJ	ECT:				Hardel Olympia, WA			Log o	f B8	
BORIN	NG LO	CATIC	N:		B8		GROUN	D SURFACE ELEVAT	TON AND DA	ATUM:
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE S	TARTED: 6/3/20	DATE FIN 6/3/20	NISHED:
DRILL	ING M	1ETHC	D:		Geoprobe		TOTAL DEPTH (ft.): MEASURING POINT:			
DRILL	ING E	QUIPN	ЛENT:	т	ruck-mount		DEPTH TO DURING: AFTER:			d Surface
LOGG	ED BY	γ.			Tuok mount		SCREE	R: 4 N INTERVAL:	BOREHO	DLE BACKFILL:
		•	Joe	l Hed	ker/Melisa Kegans		OUT LEE		Bentor	
DEPTH (feet)	Sample No.	Samble	Citho.	PID Reading	DESCRIPTION	BORING REMARKS		WELL CONS AND/OR D	STRUCTION RILLING RE	
0 1- 2- 3- 4- 5- 6- 7- 8- 9-	SO-B8-4-5-060320			0.0	FILL - SILTY CLAY, gray-brown FILL - WOOD with silty clay, brown FILL - SANDY CLAY with wood, brown	No odors or staining noted in soil column	0 1- 2- 3- 4- 5- 6- 7- 8- 9-			No temporary well installed
	NEE	R Te	chnol	ogies	S Corporation	1	10			Page 1 of 1

BORING LOCATION: B9 CROUND SURFACE ELEVATION AND DATUM: DRILLING CONTRACTOR: ESN CREEN CANADAM CONTRACTOR: DRILLING METHOD: Geoprobe DRILLING EQUIPMENT: Truck-mount LOGGED BY: SAMPLES DESCRIPTION BORING REMARKS DESCRIPTION BORING REMARKS WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS O FILL - Fine to Coarse SAND, brown, moist DRILL - SILTY SAND with gravel, brown-gray, SAND with gravel, brown-gray, SAND with gravel, brown-gray, Sanding noted DATE FINISHED: GRAVEL DURING: WARTER 3 AFTER: SCREEN INTERVAL: BORRHOLE BACKFILL: Bentonite WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS NO dors or SAND with gravel, brown-gray, staining noted	PROJI	ECT:				Hardel Olympia, WA			Log of	В9	
DRILLING METHOD: Geoprobe DRILLING EQUIPMENT: Truck-mount DEPTH TO WATER: SCREEN INTERVAL: Bentonite WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS O DESCRIPTION BORING REMARKS WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS O FILL - Fine to Coarse SAND, brown, moist D No temporary well installed	BORIN	IG LO	CATIO	ON:				GROUN	D SURFACE ELEVATIO	ON AND DA	TUM:
DRILLING EQUIPMENT: Truck-mount DEPTH TO WATER: LOGGED BY: SCREEN INTERVAL: BOREHOLE BACKFILL: Bentonite SAMPLES SAMPLES SCREEN INTERVAL: Bentonite SAMPLES SAMPLES SAMPLES SAMPLES SCREEN INTERVAL: Bentonite AND/OR DRILLING REMARKS SAMPLES SAM	DRILL	ING C	ONTF	RACTO	PR:	ESN			6/3/20	6/3/20)
DRILLING EQUIPMENT: Truck-mount DEPTH TO WATER: DURING: 3 AFTER:	DRILL	ING M	1ETHC	DD:		Geoprobe		` '			
SAMPLES SAMPLES DESCRIPTION BORING REMARKS SCREEN INTERVAL: Bentonite	DRILL	ING E	QUIP	MENT:	т	ruck-mount		DEPTH	TO DURING:	AFTER:	2 0411400
SAMPLES A D D D DESCRIPTION BORING REMARKS WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS O D DESCRIPTION 1 O O D DESCRIPTION FILL - Fine to Coarse SAND, brown, moist 2 -	LOGG	ED BY	Y:	Joe	el Hec	ker/Melisa Kegans				BOREHO	
GRAVEL 0 1- 1- 0.0 FILL - Fine to Coarse SAND, brown, moist 2- 3- 4- 5- 0.0 No temporary well installed	_	S	SAMPL			<u> </u>				Donitor	
1	DEPTH (feet)	Sample No.	Sample	Litho.	PID Reading	DESCRIPTION	BORING REMARKS				
2-	0					GRAVEL		0			
2-	1-				0.0			1-			
4- 4- 5- No temporary well installed	2-					FILL - Fine to Coarse SAND, brown, moist		2-			
5- Solution of the second of t	3-			.0.	0.0			3-			
well installed	4-							4-			
6- 00 POSSIBLE FILL - SILTY No odors or staining noted staining no	5-				0.0			5-			No temporary well installed
φ ///	6-	-7-060320						6-			
7- Short of the solid column 7-	7-	SO-B9-6			0.0	wet	in soil column	7-			
8- 8- 8-	8-							8-			
	9-				0.0			9-			
10 10 10 PIONEER Technologies Corporation Page 1 of 1		NEE	D Ta		logica	Corporation		10			Page 1 of 1

PROJE	ECT:				Hardel Olympia, WA			Log of	f B10
BORIN	IG LO	CATIC	DN:		B10		GROUND S	SURFACE ELEVAT	ION AND DATUM:
DRILL	ING C	ONTR	RACTO	R:	ESN		DATE STA	RTED: 6/3/20	DATE FINISHED: 6/3/20
DRILL	ING M	ETHC	D:		Geoprobe		TOTAL DE	PTH (ft.): 6	MEASURING POINT: Ground Surface
DRILL	ING E	QUIPI	MENT:	Т	ruck-mount		DEPTH TO WATER:	<u> </u>	AFTER:
LOGG	ED BY	' :	Joe	l Hed	cker/Melisa Kegans		SCREEN II		BOREHOLE BACKFILL: See SVP Construction
_		AMPL	ES	D					
DEPTH (feet)	Sample No.	Sample	Litho.	PID Reading	DESCRIPTION	BORING REMARKS			STRUCTION DETAILS RILLING REMARKS
1				0.1	FILL - SILTY SAND with gravel, trace wood, brown, moist		1-		Soil Vapor Probe Construction: 0.25-inch diameter nylon tubing from 0-2.5' Screen: 1-inch diameter schedule 40, 0.010 slot size, PVC screen from 2.5-3' Backfill:
3-	No sample collected			0.6	FILL - CLAYEY SAND with gravel, gray moist		3-		Hydrated bentonite chips from 0-2'; Well sand from 2-3.5'; Bentonite chips from 3.5-6'
5-				0.0	SILTY SAND with gravel, gray, moist-to-wet	No odors or staining noted in soil column	5-		
	NEF	R Te	chno	ogies	S Corporation	J			Page 1 of 1

BORING LOCATION: B11 GROUND SURFACE ELEVATION AND DATUM: DRILLING CONTRACTOR: ESN DATE STARTED: 6/3/20 6/3/20 6/3/20 DRILLING METHOD: Geoprobe TOTAL DEPTH (ft.): MEASURING POINT: Ground Surface DRILLING EQUIPMENT: Truck-mount DEPTH TO WATER: 3.5 LOGGED BY: SCREEN INTERVAL: 2-2.5' See SVP Construction WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS O Soil Vapor Probe	PROJECT:		Hardel Olympia, WA			Log of	B11
DRILLING METHOD: Geoprobe Geoprobe TOTAL DEPTH If:: MASSURING POINT: Ground Surface AFTER: 3.5 SCREEN NTERVAL: See SVP Construction Total Depth If:: MELL CONSTRUCTION DETAILS SORING REMARKS WELL CONSTRUCTION DETAILS ANDIOR DRILLING REMARKS O DESCRIPTION BORING REMARKS O WELL CONSTRUCTION DETAILS ANDIOR DRILLING REMARKS Soil Vapor Probe Construction 1 -	BORING LOCATION	ON:			GROUNI	O SURFACE ELEVATI	ON AND DATUM:
DRILLING METHOD: Geoprobe TOTAL DEPTH (II): Geogram MEASURING POINT: Geogram Surface Ground Surface DEFIT TO NATE: SCREEN INTERVAL: See SVP Construction E. SAMPLES SAMPLES DESCRIPTION SORING REMARKS SORING REMARKS WELL CONSTRUCTION DETAILS ANDIOR DRILLING REMARKS Soil Vapor Probe Construction 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	DRILLING CONTR	RACTOR:	ESN		DATE ST		DATE FINISHED: 6/3/20
DRILLING EQUIPMENT: Truck-mount Depth to Depth t	DRILLING METHO	DD:	Geoprobe		TOTAL [MEASURING POINT:	
LOGGED BY: Construction Constru	DRILLING EQUIP	MENT:	Truck-mount			TO DURING:	AFTER:
SAMPLES SAMP	LOGGED BY:						
Description		Joel He	ecker/Melisa Kegans				See SVP Construction
O Soil Vapor Probe Construction 0.25-inch diameter nylon tubing from 0.2' Screen: 1-inch diameter schedule 40, 0.010 slot size, PVC screen from 2-2.5' Backfill: Hydrated bentonite chips from 0.1.5'; Well sand from 1.5'; Well sand from 1.5'; Well sand from 1.5'; Well sand from 3.6' 4-		Litho. SH PID	DESCRIPTION				
6 PIONEER Technologies Corporation Page 1 of 1	0	0.0	FILL - SAND with gravel, brown, moist	staining noted	1- 2- 3- 5-		Probe Construction: 0.25-inch diameter nylon tubing from 0-2' Screen: 1-inch diameter schedule 40, 0.010 slot size, PVC screen from 2-2.5' Backfill: Hydrated bentonite chips from 0-1.5'; Well sand from 1.5-3'; Bentonite chips from

PROJI	ECT:				Hardel Olympia, WA				Log of	f B12	
BORIN	IG LO	CATIC	DN:		B12		GROU	ND SUF	RFACE ELEVAT	ION AND DA	ATUM:
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE	STARTE	ED: 6/3/20	DATE FIN 6/3/20	NISHED:
DRILL	ING M	ETHO	D:		Geoprobe		TOTAL	DEPTH		MEASUR	ING POINT: d Surface
DRILL	ING E	QUIPN	MENT:	. 7	 Fruck-mount		DEPTH	1 TO	DURING:	AFTER:	d Odnace
LOGG	ED BY	' :					WAT	ER:	3.22 ERVAL:	BOREHO	DLE BACKFILL:
				l He	cker/Melisa Kegans					Bentor	nite
DEPTH (feet)	Sample No.	Sample N	Citho.	PID Reading	DESCRIPTION	BORING REMARKS			WELL CONS	STRUCTION RILLING RE	
0	ιχ	Š		ш.	DESCRIPTION	KLIVIATO	0		AND/OR DI	NILLING INL	WAITE
					CRUSHED CONCRETE		_				
2-	No sample collected			0.0	FILL - Fine to Coarse SAND with gravel, gray, moist		2-				No temporary well installed
5-	No sample			0.0	FILL - CLAY with wood debris, brown Fine SILTY SAND, gray, wet	No odors or staining noted in soil column	5-				No SVP set due to shallow groundwater level
6	NEC) Ta	obna	ogia	Corporation		6				Dogo 4 of 4
LIO	NEE	< IE	cnnol	ogie	s Corporation						Page 1 of 1

PROJE	ECT:	Ha	ard	el :	Supplemental Ph	ase II ESA	Log of B101/MW101
BORIN	IG LO	CATIC	N:	В	101/MW101		GROUND SURFACE ELEVATION AND DATUM:
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE STARTED: DATE FINISHED: 8/20/2020
DRILL	ING M	IETHO	D: [Direct	Push/Hollow-Stem Augers for	Monitoring Well	TOTAL DEPTH (ft.): MEASURING POINT: 20 Ground Surface
DRILL	ING E	QUIPN			300 Combo Rig		DEPTH TO DURING: AFTER: WATER: 15.2
LOGG							SCREEN INTERVAL: BOREHOLE BACKFILL:
					loel Hecker		3.0-18.0 See Below
DEPTH (feet)	Sample No.	Samble Samble	Citho.	PID Reading	DESCRIPTION	BORING REMARKS	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
0_	2020	////	000		FILL - GRAVEL AND ASPHALT		0 Cover
1- 2- 3-	SO-B101-0.5-3-082020			0.0	FILL - Fine to Coarse SAND with gravel, brown, moist		Cement Bentonite Casing
4- 5-	S			0.0	CONCRETE		Screen 4- 5- Sand End Cap
6— 7— 8— 9—		,	シストランド・ドイントランド・ドイン・バー・ドイン・バー・ドイン・バー・アイン・バー・アイン・バー・アイン・バー・アイン・バー・アイン・アイン・アイン・アイン・アイン・アイン・アイン・アイン・アイン・アイン	0.0	CLAYEY SILT, trace wood, gray	No odors or staining noted in soil column	Cover: 8-inch diameter, flush-mount steel well cover Cement: Portland cement concrete Bentonite: Hydrated granular bentonit (beneath cement); Hydrated bentonite pellets (beneath sand backfill) Casing: 2-inch diameter schedule
10-				0.0	Fine to Coarse GRAVEL with sand, gray, moist		40 PVC casing Screen: 2-inch diameter schedule 40, 0.010 slot size, PVC screen
12- 13-				0.0	WOOD and CLAYEY SAND, brown		12-
14-							14-
15-				0.0			15—
16-					WOOD, wet		16-
17-				0.0			17-
18-							18-
19-				0.0	CLAYEY SILT, gray		19-
20	NIC C.			0 == ! -	Cornoration		20 Page 4 of 4
PIO	INEE	K IE	nnol	ogies	S Corporation		Page 1 of 1

PROJE	ECT:	Ha	ard	el :	Supplemental Pha Olympia, WA	ase II ESA	Log of B102/MW102				
BORIN	IG LO	CATIC	N:	В	102/MW102		GROUND SURFACE ELEVATION AND DATUM:				
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE STARTED: DATE FINISHED: 8/20/2020				
DRILL	ING M	1ETHO	D: [Direct	Push/Hollow-Stem Augers for I	Monitoring Well	TOTAL DEPTH (ft.): MEASURING POINT: 20 Ground Surface				
DRILL	ING E	QUIPN	/ENT:	DT78	800 Combo Rig		DEPTH TO DURING: AFTER: WATER: 4.52				
LOGG							SCREEN INTERVAL: BOREHOLE BACKFILL:				
		AMDI	FC		Joel Hecker		3.1-13.1 See Below				
DEPTH (feet)	Sample No.	Samble	Litho.	PID Reading	DESCRIPTION	BORING REMARKS	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS				
0	-		202020		ASPHALT		0 🔘 💻 .				
1-	20			0.0	FILL - GRAVEL with Fine to Coarse sand, trace concrete, gray, moist		1— Cover Cement				
2- 3- 4- 5- 6- 7-	SO-B102-5-7-082020 SO-B102-2-4-082020			1.1	FILL - CLAYEY SAND, trace brick, trace wood, dark-brown, moist	No odors or staining noted in soil column	Bentonite Casing Screen Sand End Cap Cover: 8-inch diameter, flush-mount steel well cover				
8- 9-	S		×> x> x> x>		FILL - SILTY CLAY/CLAYEY SILT, gray		8 Cement: Portland cement concrete Bentonite: Hydrated granular bentonit (beneath cement); Hydrated bentonite pellets (beneath sand backfill) Casing: 2-inch diameter schedule				
10-				0.0	FILL - GRAVEL with silt and sand, gray, wet		40 PVC casing Screen: 2-inch diameter schedule 40, 0.010 slot size, PVC screen				
12-							12-				
14-						Wood was not	14-				
15-					WOOD, wet	screened with a PID	15—				
16-							16-				
17-							17-				
-							18-				
18— - 19—					Fine SILTY SAND, trace shells, gray, wet		19-				
20			• :- :		O a marking		20				
PIO	NEE	K Tec	chnol	ogies	S Corporation		Page 1 of 1				

PROJE	ECT:	103/MW103							
BORIN	IG LO	CATION:	В	Olympia, WA 3103/MW103		GROUND SURFACE ELEVATION AND DATUM:			ND DATUM:
DRILL	ING C	ONTRACT	OR:	ESN		DATE STAF	RTED: 8/20/2020		TE FINISHED: 20/2020
DRILL	ING M	METHOD:	Direct	t Push/Hollow-Stem Augers for I	Monitoring Well	TOTAL DEF	PTH (ft.):	I	ASURING POINT: round Surface
DRILL	ING E	QUIPMEN	r: DT7	800 Combo Rig		DEPTH TO WATER:	DURING: 3.92	AF	ΓΕR:
LOGG	ED B	Y:	,	Joel Hecker		SCREEN IN			REHOLE BACKFILL: ee Below
DEPTH (feet)	Sample No.	Sample Sample Litho.	PID Reading	DESCRIPTION	BORING REMARKS				TION DETAILS G REMARKS
0_		gagage	<u>.</u>	CRUSHED CONCRETE		0	\otimes		
2-	SO-B103-1-3-082020		0.0	FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, brown, moist		2-			Cover Cement Bentonite Casing
3-	-OS	× -×- × ×	0.0			3-		{	Screen Sand
5-		× × × × ×				5-		0.000	End Cap
6- 7- 8-			0.0	FILL - SILTY CLAY/CLAYEY SILT, gray	No odors or staining noted in soil column	6- 7- 8-		steel well co Cement: Po Bentonite:	ortland cement concrete Hydrated granular bentonite
9-		× × × × ×				9-		pellets (ber Casing: 2-i 40 PVC cas	ement); Hydrated bentonite leath sand backfill) nch diameter schedule sing nch diameter schedule
10-		×	<u> </u>	FILL - Fine to Coarse SAND with gravel, brown, wet		10-		40, 0.010 s	lot size, PVC screen
11-			0.0		-	11-			
12-						12-			
13-						13-			
14-				FILL - WOOD and CLAYEY SAND, trace ceramics, brown, wet	Wood was not screened with a PID	14-			
15-			0.0			15			
16-						16-			
17-		.0:	0.0			17-			
18-			· . 	Fine SILTY SAND, trace		18-			
19-		0.10	0.0	shells, trace wood, gray, wet		19			
20 PIO	NEE	R Techno		s Corporation		20			Dago 1 of 1
LIO	INEE	K recnno	ologies	S Corporation					Page 1 of 1

PROJE	ECT:	На	ard	el :	Supplemental Pha	ase II ESA	Log of B104/MW104
BORIN	IG LO	CATIC	DN:	В	104/MW104		GROUND SURFACE ELEVATION AND DATUM:
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE STARTED: DATE FINISHED: 8/20/2020
DRILL	ING M	1ETHO	D: [Direct	Push/Hollow-Stem Augers for	Monitoring Well	TOTAL DEPTH (ft.): MEASURING POINT: 20 Ground Surface
DRILL	ING E	QUIPN			300 Combo Rig		DEPTH TO DURING: AFTER:
LOGG							WATER: 8.63 SCREEN INTERVAL: BOREHOLE BACKFILL:
				J	oel Hecker		3.2-13.2 See Below
DEPTH (feet)	Sample No.	Sample	ES Litho.	PID Reading	DESCRIPTION	BORING REMARKS	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
0_			000		GRAVEL		0 🔘 💆 _
1- 2- 3-	SO-B104-1-3-082020			0.0	FILL - Fine to Coarse SAND with gravel, trace asphalt, trace concrete, light-brown, moist	No odors or staining noted in soil column	Cover Cement Bentonite Casing
4- 5-	OS			0.0	FILL - LEAN CLAY, gray		Screen Sand End Cap
6				0.0	FILL - SILT, gray	Saturated wood seams from 9-10' and 12-12.5'	Cover: 8-inch diameter, flush-mount steel well cover Cement: Portland cement concrete Bentonite: Hydrated granular bentonite (beneath cement); Hydrated bentonite pellets (beneath sand backfill) Casing: 2-inch diameter schedule 40 PVC casing Screen: 2-inch diameter schedule 40, 0.010 slot size, PVC screen
15— - 16—					FILL - WOOD	Wood was not screened with a PID	15—
17— -				0.0	Fine SILTY SAND with shells,		17-
18-			0.10.		trace wood, gray, wet		18-
19-			· · · · · · ·	0.0			19-
20							20
PIO	NEE	R Ted	chnol	ogies	Corporation		Page 1 of 1

PROJE	ECT:	На	ard	el S	Supplemental Pha Olympia, WA	ase II ESA			Log o	of B105	j
BORIN	IG LO	CATIC	N:		B105		GROUN	D SUR	FACE ELEVA	TION AND DA	ATUM:
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE S	TARTE 8/2	D: 0/2020	DATE FIN 8/20/20	
DRILL	ING M	IETHO	D:	[Direct Push		TOTAL I	DEPTH 10			ING POINT: d Surface
DRILL	ING E	QUIPN	/ENT:		Geoprobe		DEPTH	то	DURING:	AFTER:	u Suriace
LOGG	ED BY	v ·			Собробо		WATE SCREE!		5.2 RVAL:	BOREHO	DLE BACKFILL:
				J	loel Hecker		JOINEL	NA	IVAL.	Bentor	
Ŧ_		AMPL	ES	БL							
DEPTH (feet)	Sample No.	Sample	Litho.	PID Reading	DESCRIPTION	BORING REMARKS				ISTRUCTION DRILLING RE	
0			0000		ASPHALT		0				
-			° , ° ,	_	AGGREGATE BASE		_				
1-				0.0			1-				
					FILL - Fine to Coarse SAND, light brown, moist	Wood at 3.5'					
-							_				
2-		///	<u> </u>	-			2-				
_	2020		·:								
	SO-B105-2-4-082020		°0								
3-	105-2			0.0			3-				
-	30-B		· —				_				
4-			_ ، _ ;::				4-				
-			· · · · · · · · · · · · · · · · · · ·								
5-			`	0.0	Fine SILTY SAND, increasing	No odors or	5—				
_					shell content with depth, gray, moist to wet	staining noted in soil column	_				
6-			۔ ، . <u> </u>				6-				
-			<u> </u>								
7-			°: -: °: -:	0.0			7-				
)								
			. <u> </u>								
8-			°: :-: •⁄:				8-				
-			·— .								
9-				0.0			9-				
9-				0.0	SILT, gray, wet		9-				
-											
10	\ \				O a marking		10				
PIO	NEE	K led	cnnol	ogies	Corporation						Page 1 of 1

BORING LOCATION: B106 GROUND SURFACE ELEVATION AND DATUM DRILLING CONTRACTOR: ESN DATE STARTED: 8/20/2020 B/20/2020 B/20/2020 DRILLING METHOD: Direct Push DIrect Push DEPTH TO WATER: BOREHOLE B. NA DESCRIPTION BORING WELL CONSTRUCTION DETA AND/OR DRILLING REMARKS O CRUSHED CONCRETE DATE FINISHE 8/20/2020 DEPTH TO UNING: NA BORING NA WELL CONSTRUCTION DETA AND/OR DRILLING REMARK O CRUSHED CONCRETE 1— 2—				
DRILLING METHOD: Direct Push Direct Push Direct Push DEPTH TO WATER: SCREEN INTERVAL: BORREHOLE BY Bentonite SAMPLES SOME SOME SOME SOME SOME SOME SOME SOME	GROUND SURFACE ELEVATION AND DATUM:			
Direct Push Boring Remarks Direct Push Boring Remarks Direct Push Boring Remarks Direct Push Direct Push Boring Remarks Direct Push Direct Push Boring Remarks O Direct Push Boring Remarks O O Direct Push Direct Push Boring Remarks O Direct Push Boring Remarks O O Direct Push Boring Remarks O O Direct Push Boring Remarks O Direct Push Boring Remarks O O Direct Push Boring Remarks O Direct Push Boring Remarks O Direct Push Boring Remarks O D D D D D D D D D D D D	ED:			
DRILLING EQUIPMENT: Geoprobe Depth to Water: Buring: SCREEN INTERVAL: Borehole B. NA Bentonite				
LOGGED BY: Joel Hecker SCREEN INTERVAL: NA BOREHOLE B. Bentonite SAMPLES SOM DESCRIPTION BORING REMARKS O CRUSHED CONCRETE 1- O CRUSHED CONCRETE 1- O The state of the state				
SAMPLES SAMPLES O O CRUSHED CONCRETE 1- CRUSHED CONCRETE 1- SAMPLES O CRUSHED CONCRETE 1- SAMPLES O CRUSHED CONCRETE 1- CRUSHED CONCRETE	BACKFILL:			
DESCRIPTION BORING REMARKS O CRUSHED CONCRETE 1- CRUSHED CONCRETE 1- O O CRUSHED CONCRETE 1- O O CRUSHED CONCRETE 1- O O CRUSHED CONCRETE				
0				
No odors or				
3- O.0 FILL - Fine to Coarse SILTY SAND, dark brown, moist Sand dark brown, moist A- 4- 4- 4- 4- 4- 4- 4- 4- 4-				
5 0.0 0.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
CONCRETE				
6-				
Fine to Coarse SAND, trace organics, dark brown, moist				
7— 99				
8- 900 000 000 000 000 000 000 000 000 00				
9— 0.0 Fine SILTY SAND with shells, trace wood, gray, wet				
10 10 10 10 10 10 10 10	Page 1 of 1			

PROJI	ECT:	Ha	ard	el	Supplemental Ph Olympia, WA	ase II ESA		Log o	f B107	
BORIN	NG LC	CATIC	DN:		B107		GROUND SURFACE ELEVATION AND DATUM:			
DRILL	ING C	ONTR	RACTO	R:	ESN		DATE STA	RTED: 8/20/2020	DATE FINISHED: 8/20/2020	
DRILL	ING N	ИЕТНС	D:	ı	Direct Push		TOTAL DE	PTH (ft.):	MEASURING POINT: Ground Surface	
DRILL	ING E	QUIPN	MENT:		Geoprobe		DEPTH TO		AFTER:	
LOGG	FD B	γ.					WATER:	3.8	BOREHOLE BACKFILL:	
		•			Joel Hecker		1	NA	Bentonite	
DEPTH (feet)	Sample No.	Samble Lambde	Citho.	PID Reading	DESCRIPTION	BORING REMARKS			STRUCTION DETAILS PRILLING REMARKS	
0			6464646 6464646 6464646		CRUSHED CONCRETE		0			
-										
1-				0.0			1-			
_										
						No. of				
2-					FILL - Fine to Coarse SAND, trace silt, light brown, moist	No odors or staining noted	2-			
-	82020				, , , , , , , , , , , , , , , , , , ,	in soil column				
3-	-2-4-0			0.0			3-			
	SO-B107-2-4-082020									
=	SO									
4-		///	××		FILL - SILTY LEAN CLAY,		4-			
-			-×		dark bown	_				
5-				0.0			5—			
_			0.: :(FILL - Fine to Coarse SILTY					
_			0 0 :		SAND, trace concrete, trace gravel, brown and gray, moist					
6-) 		to wet		6-			
-			0.1							
7-				0.0			7-			
_										
8-							8-			
-					ORGANIC CLAY and WOOD, dark brown					
9-				0.0			9-			
J				3.0						
-										
10 DIO	NE-	D Ta	obna!	ogia	S Corporation		10		Page 1 of 1	

BORING LOCATION: B2-C STOLEN B2-C STOLEN B2-C STOLEN B2-C STOLEN B2-C	PROJE	ECT:	На	ard	el :	Supplemental Ph	ase II ESA		Log of	B2-C		
Second	BORIN	IG LO	CATIC	ON:		· ·		GROUND SURFACE ELEVATION AND DATUM:				
15 Ground Surface	DRILL	ING C	ONTR	RACTO	R:	ESN		DATE STA				
Derivation Der	DRILL	ING M	IETHC	D:	[Direct Push		TOTAL DE				
COGGED BY: Joel Hecker SCREEN INTERVAL: Bentonite	DRILL	ING E	QUIP	MENT:		Geoprobe			DURING:	AFTER:		
SAMPLE S	LOGG	ED B	Y:									
Description Bornic Remarks Well construction details Andror Drilling Remarks Sheen on soil Sheen o					_	Joel Hecker			NA	Bentonite		
0	DEPTH (feet)				PID Reading	DESCRIPTION						
2 -	0							0				
2 -	1-				0.0			1—				
2-	-						No odors or					
3 -	2-						staining noted	2-				
4- 5- 6- 7- 0.0 FILL - CLAYEY SAND with wood, brown, moist to wet 9-9.75' 7- 8- 9- 10- 0.0 SILTY GRAVEL with wood, gray, wet 11- 12- 13- 14- WOOD, wet	-				0.0							
5- 6- 7- 8- 8- 8- 9- 9- 10- 00 Siltry GRAVEL with wood, gray, wet 13- 14- WOOD, wet 5- 6- 5- 6- 8- 8- 9- 10- 10- 11- 12- 13- 14- WOOD, wet	3-				0.0			3				
6- 7- 8- 8- 9- 9- 10- 10- 11- 12- 13- 14- WOOD, wet FILL - CLAYEY SAND with wood, brown, moist to wet Sheen on soil 9-9-75' 7- 8- 9- 9- 10- 10- 11- 12- 13- 14- WOOD, wet	4-							4-				
6- 7- 8- 8- 9- 9- 10- 10- 11- 12- 13- 14- WOOD, wet FILL - CLAYEY SAND with wood, brown, moist to wet Sheen on soil 9-9-75' 7- 8- 9- 9- 10- 10- 11- 12- 13- 14- WOOD, wet	-											
7— 8— 9— 10— 88— 10— 10— 11— 12— 13— 14— WOOD, wet	5-				0.0			5—				
7— 8— 9— 10— 88— 10— 10— 11— 12— 13— 14— WOOD, wet	6-							6-				
7- 8- 8- 9- 10- 10- 12- 13- 14- WOOD, wet	_											
9	7-				0.0			7—				
9	-							-				
11- 12- 13- 14- WOOD, wet	8-	2020						8-				
11- 12- 13- 14- WOOD, wet	9-	.10-08			3.6			9—				
11- 12- 13- 14- WOOD, wet	-	C-8.5-										
11- 12- 13- 14- WOOD, wet	10-	O-B2-	////					10-				
12- SILTY GRAVEL with wood, gray, wet 12- 13- 13- 14- WOOD, wet	-	S										
12—	11-				0.0							
13- 14- WOOD, wet	12-							12-				
14—	-											
WOOD, wet	13-				0.0			13-				
WOOD, wet	11							14-				
	14-					WOOD, wet		14				
PIONEER Technologies Corporation Page 1 of 1	15 BIO	NET!	D Ta	obna!	ogica			15		Dogg 4 of 4		

PROJI	ECT:	На	ard	lel	Supplemental Pha	ase II ESA		Log of	B2-N
BORIN	IG LO	CATIC	ON:		B2-N		GROUND SURFACE ELEVATION AND DATUM:		
DRILL	ING C	ONTR	RACTO	DR:	ESN		DATE S	TARTED: 8/20/2020	DATE FINISHED: 8/20/2020
DRILL	ING N	1ETHC	DD:		Direct Push		TOTAL I	DEPTH (ft.): 10	MEASURING POINT: Ground Surface
DRILL	ING E	QUIPI	MENT	:	Geoprobe		DEPTH	TO DURING:	AFTER:
LOGG	ED B	Y:			'		WATE SCREE!	R: 4.51 N INTERVAL:	BOREHOLE BACKFILL:
					Joel Hecker			NA	Bentonite
DEPTH (feet)	Sample No.	Samble	ES Pitho.	PID Reading	DESCRIPTION	BORING REMARKS			RUCTION DETAILS LLING REMARKS
0			0000		ASPHALT		0		
-					FILL - GRAVEL with sand, gray, moist		_		
1-			000	0.0	9.2.),		1-		
_									
					WOOD with clayey sand,	No staining			
2-					brown, moist	noted in soil column	2-		
-							-		
3-			· · · · · ·	0.0		_	3-		
_	2020			-					
1	2-N-3-5-082020								
4-	32-N-3				FILL - Fine to Coarse CLAYEY SAND, gray, wet		4-		
-	SO-B;				7.5 77		_		
5-				0.0			5—		
-							_		
6-							6-		
				3					
7-						Organic	7-		
_						swampy odor noted from 5.5-10'			
8-					WOOD, brown and black, wet	Wood was not	8-		
						screened with			
-						5			
9-				3			9-		
_				3					
10							10		
PIO	NEE	R Te	chno	logie	s Corporation				Page 1 of 1

PROJ	ECT:	На	ard	lel :	Supplemental Pha Olympia, WA	ase II ESA		Log of	B2-E
BORIN	NG LO	CATIC	N:		B2-E		GROUND SURFACE ELEVATION AND DATUM:		
DRILL	ING C	ONTR	ACTO	PR:	ESN		DATE S	STARTED: 8/20/2020	DATE FINISHED: 8/20/2020
DRILL	ING M	1ETHO	D:	ſ	Direct Push		TOTAL	DEPTH (ft.): 10	MEASURING POINT: Ground Surface
DRILL	ING E	QUIPN	/ENT	:	Geoprobe		DEPTH	TO DURING:	AFTER:
LOGG	ED B	Y:			•		SCREE	ER: 5 EN INTERVAL:	BOREHOLE BACKFILL:
					Joel Hecker			NA	Bentonite
DEPTH (feet)	Sample No.	Samble Samble	ES	PID Reading	DESCRIPTION	BORING REMARKS			RUCTION DETAILS LLING REMARKS
0							0		
-	1								
1-	1			0.0			1-		
_	-				FILL - Fine to Coarse SAND with gravel, gray, moist		_		
2-					mar graver, gray, molec		2-		
_									
-	1								
3-				0.0		_	3-		
-	70						_		
4-	3-5.5-082020					No staining	4-		
					FILL - Fine to Coarse CLAYEY SAND, brown, moist to wet	noted in soil column			
-	SO-B2-E-					Column			
5-	SS			0.0			5—		
-	-						_		
6-	-				FILL - WOOD, wet	Wood was not screened with	6-		
_						PID			
7-	1		×> -×>	0.0		-	7-		
-	-		×> ×> x>				-		
8-			x x> x				8-		
_			x x x		FILL - WOOD and SILTY	Organic swampy odor			
			X/ X X X		CLAY, black, wet	noted from 7-10'			
9-	1		×>	0.0			9-		
-	-		×> x>						
10	NICE	D Ta	×> x> >	logis	Corporation		10		Dame 4 - £4
PIO	INEE	K 160	ا١١٦٥	iogies	s Corporation				Page 1 of 1

PROJE	ECT:	Ha	ard	el	Supplemental Ph	ase II ESA		Log o	of B2-S
BORIN	IG LO	CATIC	N:		B2-S		GROUND SURFACE ELEVATION AND DATUM:		
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE START 8/	ED: 20/2020	DATE FINISHED: 8/20/2020
DRILL	ING M	IETHO	D:	I	Direct Push		TOTAL DEPT	TH (ft.):	MEASURING POINT: Ground Surface
DRILL	ING E	QUIPN	ΛΕΝΤ:		Geoprobe		DEPTH TO WATER:	DURING:	AFTER:
LOGG	ED BY	/ :			<u> </u>		SCREEN INT	4.12 ERVAL:	BOREHOLE BACKFILL:
					Joel Hecker		N/	A	Bentonite
DEPTH (feet)	Sample No.	Sample NAMA	Litho.	PID Reading	DESCRIPTION	BORING			ISTRUCTION DETAILS DRILLING REMARKS
0	SS	Š	 ∷∷::	<u> </u>	DESCRIF HON	REMARKS	0	AND/OR L	DRILLING REWARKS
1				0.0	FILL - Fine to Coarse SAND with gravel, gray, moist	No staining noted in soil column	1-		
3					WOOD	Wood was not screened with PID	3- 4- 5-		
6-				0.0	FILL - CLAYEY SAND with wood, brown, moist		6- 7-		
9-	SO-B2-S-8-10-082020	R Tec	chnol	0.0	SILTY GRAVEL, black, wet	Organic swampy odor noted from 8-10'	9-		Page 1 of 1

PROJI	ECT:	На	ard	lel :	Supplemental Pha	ase II ESA		Log o	of B2-W
BORIN	IG LO	CATIC	N:		B2-W		GROUND SURFACE ELEVATION AND DATUM:		
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE START 8/	ED: 20/2020	DATE FINISHED: 8/20/2020
DRILL	ING M	1ETHO	D:	I	Direct Push		TOTAL DEPT	TH (ft.):	MEASURING POINT: Ground Surface
DRILL	ING E	QUIPN	MENT:	:	Geoprobe		DEPTH TO WATER:	DURING:	AFTER:
LOGG	ED B	Y:					SCREEN INT	ERVAL:	BOREHOLE BACKFILL:
		NA NA DI	F0		Joel Hecker		N.	A 	Bentonite
DEPTH (feet)	Sample No.	Samble Sample	Litho.	PID Reading	DESCRIPTION	BORING REMARKS			ISTRUCTION DETAILS DRILLING REMARKS
0							0		
-							-		
1-				0.0			1—		
_									
2-					FILL - Fine to Coarse SAND	No odors or staining noted	2-		
					with gravel, gray, moist	in soil column			
-									
3-				0.0			3—		
-							-		
4-							4-		
_					FILL - CLAYEY SAND, dark				
_					brown		_		
5-				0.9			5—		
-			 .0						
6-			7101				6-		
-). . .						
7-	20	///	 		FILL - Fine to Coarse SILTY SAND, some clay, brown and		7—		
	-0820		0 0 .	1.9	gray, moist to wet				
	SO-B2-W-7-8.5-082020) . . . ;	1.8					
8-	'-B2-W						8-		
_	SO	///					-		
9-			<u>. </u>	0.0			9-		
_					LEAN CLAY with silt, gray				
10							10		
PIO	NEE	R Ted	chnol	logies	s Corporation				Page 1 of 1

BORING LOCATION: B201 DRILLING CONTRACTOR: ESN DATE STARTED: 01/17/21 01/17/21 01/17/21 DRILLING METHOD: Direct Push Direct Push DIRECT Push DIRECT Push DIRECT Push DIRECT Push DURING: Ground Surface DEPTH TO Ground Surface DEPTH TO WATER: 5' LOGGED BY: SCREEN INTERVAL: BOREHOLE BACKFILL: Bentonite SAMPLES DESCRIPTION BORING REMARKS DESCRIPTION BORING REMARKS DESCRIPTION ASPHALT DIRECT Push DURING: AFTER: SCREEN INTERVAL: BOREHOLE BACKFILL: Bentonite WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS AND/OR DRILLING REMARKS DIRECT Push Total Depth (t): MEASURING POINT: 10 Ground Surface DEPTH TO WATER: 5' SCREEN INTERVAL: BOREHOLE BACKFILL: Bentonite WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS AND/OR DRILLING REMARKS DIRECT PUSH TO THE VALUE OF THE VAL	PROJE	ECT:				Hardel Olympia, WA			Log of	B201	
DRILLING METHOD: Direct Push Direct Push DRILLING EQUIPMENT: Geoprobe DEPTH TO WATER: DEPTH (TILL) Ground Surface DEPTH TO WATER: SCREEN INTERVAL: NA BOREHOLE BACKFILL: Bentonite BORING REMARKS DESCRIPTION ASPHALT DESCRIPTION BORING REMARKS DESCRIPTION ASPHALT DESCRIPTION DESCRIPTION BORING REMARKS DESCRIPTION ASPHALT DESCRIPTION DESCRIPT	BORIN	IG LO	CATIC	N:				GROUND SURFACE ELEVATION AND DATUM:			
DRILLING METHOD: Direct Push Double Ground Surface DEPTH TO WATER: WATER: WATER: SCREEN INTERVAL: BOREHOLE BACKFILL: Bentonite DESCRIPTION DESCRIPTION BORING REMARKS DESCRIPTION DE	DRILL	ING C	ONTR	ACTO	R:	ESN		DATE	STARTED: 01/7/21		
DRILLING EQUIPMENT: Geoprobe DEPTH TO WATER: 5' AFTER:	DRILL	ING M	ETHO	D:	ı	Direct Push		TOTAL	DEPTH (ft.):	MEASURING POINT:	
LOGGED BY: Joel Hecker SCREEN INTERVAL: NA BOREHOLE BACKFILL: Bentonite WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS 0 ASPHALT 0 1- 2- FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, gray, moist	DRILL	ING E	QUIPN	MENT:	<u> </u>	Geoprobe			TO DURING:	AFTER:	
DESCRIPTION BORING REMARKS WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS O ASPHALT O FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, gray, moist	LOGG	ED BY	' :			Joel Hecker			EN INTERVAL:	BOREHOLE BACKFILL:	
1— 0.0 1— 2— 2— FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, gray, moist	DEPTH (feet)			ES .	PID Reading	DESCRIPTION					
2— FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, gray, moist	0					ASPHALT		0			
2— FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, gray, moist								-			
FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, gray, moist	1-				0.0			1-			
FILL - Fine to Coarse SAND with gravel, trace brick, trace concrete, gray, moist								_			
with gravel, trace brick, trace concrete, gray, moist	2-							2-			
concrete, gray, moist								_			
	3-				0.0	concrete, gray, moist		3-			
					0.0						
	4-	p						4-			
5- solution soluti	_	ollecte						_			
5— O O O O O O O O O O O O O O O O O O O	5-	mple C		0000	0.0			5-			
		No Sa						_			
	6-			0000				6-			
Fine to Coarse SILTY Stains noted in ORANGE with conductors was							stains noted in	_			
	7-				0.0	The state of the s	soil column	7-			
				000							
8- 8-	გ <u>—</u> 			·				გ—			
	-			·		E. OILTY CAND		-			
9— 0.0 Fine SILTY SAND, trace shells, gray, wet	9-			0.00.	0.0			9-			
	_							=			
10 10 PIONEER Technologies Corporation Page 1 of 1		NEE	R Τ _Φ	chnol	logies	s Corporation		10		Page 1 o	

PROJ	ECT:				Hardel Olympia, WA			Log of	B202			
BORIN	IG LO	CATIC	N:		B202		GROUNI	SURFACE ELEVATION 3.5'	ON AND DATUM:			
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE ST		DATE FINISHED: 01/7/21			
DRILL	Direct Push TOTAL DEPTH (ft.): MEASURI 10 Ground											
DRILL	Geoprobe DEPTH TO DURING: AFTER: Wat Surface 3.5'											
LOGG	ED BY	BOREHOLE BACKFILL:										
	OGGED BY: Joel Hecker SCREEN INTERVAL: NA Benton											
F fi		AMPL <u>o</u>		D Jing								
DEPTH (feet)	Sample No.	Sample	Litho.	PID Reading	DESCRIPTION	BORING REMARKS			RUCTION DETAILS LLING REMARKS			
0					CRUSHED CONCRETE		0					
-					FILL - Fine to Coarse GRAVEL	Sheen on						
1-				1.2	with sand, gray, wet	saturated soil	1-					
_			0000									
2-							2-					
_												
_					WOOD							
3-							3-					
-												
4-							4-					
	21											
5-	-0107			30.8	FILL - Fine to Coarse SAND with gravel, trace wood, gray,	Strong hydrocarbon	5—					
-)2-5-6				wet	odor 3-7'	-					
6-	SO-B202-5-6-010721		:::: ::::	20.2			6-					
_	U)				FILL - SANDY CLAY, some							
-			7,1	0.4	silt, brown		7					
7-			. O	9.1			7-					
-												
8-			; — ; — ; — ;				8-					
_			 		Fine to Coarse SILTY SAND							
9-				3.5	with shells, gray, wet		9-					
9			0.10.	3.3			9					
-			· · · · · · · · · · · · · · · · · · ·									
10 PIO	 NEE	l R Ted	í⊝∷ chnol	logies	s Corporation		10		Page 1 of 1			

PROJ	ECT:				Hardel Olympia, WA			Log of	B203/MW105
BORIN	NG LO	CATIC	DN:	B	203/MW105		GROUNI	O SURFACE ELEVATI	ON AND DATUM:
DRILL)D·		ESN Push/Hollow-Stem Augers for I	Monitoring Well	DATE ST	TARTED: 1/7/21 DEPTH (ft.): 20	DATE FINISHED: 1/7/21 MEASURING POINT: Ground Surface
DRILL	ING E	QUIPN			800 Combo Rig		DEPTH 1	TO DURING:	AFTER:
LOGG	OGGED BY: Joel Hecker							NINTERVAL: 3.0-18.0	BOREHOLE BACKFILL: See Well Construction
DEPTH (feet)	Sample No.	Sample H		PID Reading	DESCRIPTION	BORING REMARKS			TRUCTION DETAILS RILLING REMARKS
0			SSSSSSSS		ASPHALT		0		0
1- 2-				0.0	FILL - Fine to Coarse SAND with gravel, gray and brown, moist	No odors or staining noted in soil column	1— 2—		Cover Cement Bentonite Casing
3-			0000	0.0		-	3-		Screen
5-				0.0	FILL - GRAVEL with seams of clayey sand and clay, trace		4— 5—		Sand End Cap
6- - 7-	-			0.0	wood, trace brick, brown and gray, moist-to-wet		6— 7—	steel	or: 8-inch diameter, flush-mount well cover ent: Portland cement concrete
8-	eq						8-	Bent (bene pellet	onite: Hydrated granular bentonite eath cement); Hydrated bentonite is (beneath sand backfill) ng: 2-inch diameter schedule
9-	Collect			0.0			9-	40 PV Scree	vC casing en: 2-inch diameter schedule .010 slot size, PVC screen
10-	Sample			0.0			10-		
12-	8			0.0	SILTY GRAVEL, gray, wet		12-		
13-				0.0	, 5		13-		
14-	-						14—		
15-	-		.0.	0.0			15—		
16-	-						16-		
17-				0.0	SILTY SAND and GRAVEL,		17-		
18-					gray, wet		18-		
19-)				19-		
20 PIO	NEEF	R Te	ارب chnol	ogies	s Corporation		20	<u> </u>	Page 1 of 1

PROJI	ECT:				Hardel Olympia, WA			Log o	of B204
BORIN	NG LO	CATIC	DN:		B204		GROUND S	SURFACE ELEVA	TION AND DATUM:
DRILL	ING C	CONTR	RACTO	R:	ESN		DATE STAF	RTED: 01/7/21	DATE FINISHED: 01/7/21
DRILL	ING N	ИЕТНС	DD:	[Direct Push		TOTAL DEF	PTH (ft.):	MEASURING POINT: Ground Surface
DRILL	ING E	QUIPI	MENT:		Geoprobe		DEPTH TO WATER:		AFTER:
LOGG	ED B	Y:		J	loel Hecker		SCREEN IN		BOREHOLE BACKFILL: Bentonite
DEPTH (feet)	Sample No.	Samble	ES Litho.	PID Reading	DESCRIPTION	BORING REMARKS			STRUCTION DETAILS DRILLING REMARKS
0					ASPHALT		0		
1-	-			0.0	FILL - Fine to Coarse SAND		1-		
2-	-				with gravel, trace brick, trace concrete, gray and brown, moist		2-		
3-	-			0.0	FILL - SANDY CLAY with gravel, brown	No odors or stains noted in soil column	3-		
5-	-	///		0.3			5-		
-	-7-010721				Fine to Coarse SAND with gravel, some silt, gray, moist-to-wet				
6-	SO-B204-5-7-010721						6-		
7-				0.5			7—		
8-					Fine SILTY SAND with shells, gray, wet		8-		
9-	-		° - : ° 0 : : : : : : : : : : : : : : : : : :	0.0	ORGANIC CLAY, dark brown	_	9-		
10 PIO	NEE	R Te	chno	logies	s Corporation		10		Page 1 of 1

PROJ	ECT:				Hardel Olympia, WA				Log	j of	B205	5/MW106
BORIN	NG LO	CATIO	ON:	В	205/MW106		GROUNI	D SURF	ACE EL	EVATIO	N AND D	ATUM:
DRILL	ING C	ONTF	RACTO	DR:	ESN		DATE ST	TARTED:	: '/21		DATE FI 1/7/2	NISHED:
DRILL	ING M	IETHO	OD: I	Direct	: Push/Hollow-Stem Augers fo	r Monitoring Well	TOTAL D	DEPTH (f	ft.):			RING POINT: d Surface
DRILL	ING E	QUIP	MENT	DT78	800 Combo Rig		DEPTH T	TO DL	JRING: 4.75'		AFTER:	
LOGG	ED BY	/ :			Joel Hecker		SCREEN 3		VAL:			OLE BACKFILL: /ell Construction
I	1	AMPL	ES	БL								
DEPTH (feet)	Sample No.	Sample	Litho.	PID Reading	DESCRIPTION	BORING REMARKS					RUCTION LING RE	DETAILS MARKS
0			200000		ASPHALT		0_	\bowtie	\otimes		Cover	
1-				0.0			1-			X	Ceme	
2-					FILL - Fine to Coarse SAND with gravel, trace brick, trace	No odors or staining noted	2-			Z	Bento	
3-				0.0	concrete, gray and brown, moist	in soil column	3-				Casin	_
4-	-						4-				Scree Sand	n
5-	-			0.0			5-				End C	ар
6-							6-					
7-	-			0.0			7-					ameter, flush-mount
-	-			0.0						Cemen Bentor	nite: Hydr	d cement concrete ated granular bentonite
8-	þ						8-			pellets	(beneath	;); Hydrated bentonite sand backfill) liameter schedule
9-	Sample Collected			0.0			9-			40 PVC Screen	casing: 2-inch d	liameter schedule
10-	mple (10-			40, 0.0	IU SIOL SIZ	e, PVC screen
11-	No Sa			0.0			11-					
12-	-			-	SILT, occasional saturated sand seams, gray, wet		12-					
13-				0.0	Sand Scams, gray, wet		13-					
14-							14-					
15-	-			0.0			15—					
16-				-			16-					
17-				0.0			17—					
-				0.0			_					
18-							18-					
19-	-						19-					
20 PIO	NEE	R Te	chno	logies	s Corporation		20	1////	////			Page 1 of 1

PROJ	ECT:				Hardel Olympia, WA			Log of	MW107		
BORIN	IG LO	CATIC	DN:		MW107		GROUND S	SURFACE ELEVATION 10.5	ON AND DATUM:		
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE STAF		DATE FINISHED: 4/22/21		
DRILL	ING M	ETHC	D:	Holl	ow Stem Augers		TOTAL DEF	PTH (ft.): 20	MEASURING POINT: Ground Surface		
DRILL	ING E	QUIPN	MENT:		300 Combo Rig		DEPTH TO WATER:		AFTER: 10.5		
LOGGED BY: SCREEN INTERVAL: BOREHOLE BACKFILL: 4.0-16.0 See Well Construction											
_	S	AMPL	ES						GGG VVGII GGIIGII GGIIGII		
DEPTH (feet)	Sample No.	Sample	Litho.	PID Reading	DESCRIPTION	BORING REMARKS			RUCTION DETAILS LLING REMARKS		
0_			××		Asphalt FILL - Fine to Coarse SAND		0]	X X -	Cover		
1-			-x xx	0.0	with gravel, gray, moist		1-		Cement		
2-			×× -×				2-	₩ ₩ ⊭	Bentonite Casing		
3-			×× ×× ××	0.0			3-		Screen		
-			×× -×× ×	0.0			-		Sand End Cap		
4-			×× x x x				4-				
5-			×× ××	0.0	FILL - SILTY CLAY, trace wood, trace gravel, gray		5-	steel well Cement:	-inch diameter, flush-mount cover Portland cement concrete e: Hydrated granular bentonite		
6-			×× ×× ××				6-	(beneath pellets (b	e- rrydrated gardial between the cement); Hydrated bentonite eneath sand backfill) 1-inch diameter schedule		
7-			×× ××	0.0			7-	40 PVC o Screen:	asing 1-inch diameter schedule slot size, PVC screen		
8-			×× ×× ××				8-				
9-	ected		×× x x	0.0			9-				
10-	Sample Collected		××				10-				
11-	No Sam		S	0.0			11-				
12-	_				Fine SILTY SAND with shells,	No odors or	12-				
13-				0.0	gray, wet	staining noted in soil column	13-				
14-							14-				
15-			.0.	0.0			15—				
16-							16-				
17-				0.0	SILT, gray, wet	Seam of silty gravel 17-17.25'	17-				
18-				-			18-				
10 -				0.0	Fine to Coarse SILTY SAND		19-				
20				0.0	with gravel, gray, wet		20				
	NEE	R Te	chnol	ogies	S Corporation		ZU		Page 1 of 1		

DRING LOCATION: PZ101 CROUND SURFACE ELEVATION AND DATUM: 4.5 RILLING CONTRACTOR: ESN DATE STARTED: 4/22/21 A/22/21 DATE FINISHED: 4/22/21 A/22/21 DATE FINISHED: 4/22/21 A/22/21 DATE STARTED: 4/22/21 A/22/21 MEASURING POINT: Ground Surface DEPTH (It.): MEASURING POINT: Ground Surface DEPTH (IT.): MEASURING POINT: Ground Surface DEPTH (IT.): AFTER: 4.5 SCREEN TREVAL: See Well Construction BORING REMARKS DESCRIPTION BORING REMARKS O DESCRIPTION BORING REMARKS O DESCRIPTION BORING REMARKS O Cover 1- Cover: 8-inch diameter, flush-mount steeler well constructed benching perfect (chears) and backfully constructed benching perfect to the chear of the c	PROJECT:				Hardel Olympia, WA		Log of PZ101
DATE STARTED. 4/2/2/1 AVEZIZA AVEZIZA	BORING LO	CATION:	:				
Direct Push 15 Ground Surface	DRILLING C	ONTRAC	CTOR	! :	ESN		DATE STARTED: DATE FINISHED:
RILLING EQUIPMENT: DT7800 Combo Rig DEPTH TO WATER: 4.5 SCREEN INTERVAL: BOREHOLE BACKFILL: See Well Construction SAMPLES SAMPLES DESCRIPTION	DRILLING N	METHOD:			Direct Push		
SCREEN INTERVAL: 2.4-12.4 BOREHOLE BACKFILL: See Well Construction WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS O Cover Cement Bentonite Cover Cement Bentonite Cover Cement Bentonite Cover Cement Bentonite Cover Cement Cover Cover Cement Cover Co	DRILLING E	QUIPME	NT: C	T78	800 Combo Rig		DEPTH TO DURING: AFTER:
SAMPLES O O O O O O O O O	LOGGED B						SCREEN INTERVAL: BOREHOLE BACKFILL:
BORING REMARKS O				J	oel Hecker	T	2.4-12.4 See Well Construction
O Cover Cement Bentonite Casing Screen Sand End Cap FILL - Fine to Coarse gravel with SAND, gray, moist-to-wet The company moist-to-wet Cover: 8-inch diameter, flush-mount steel well cover Cement: Portland cement concrete Bentonite Cover: 8-inch diameter, flush-mount steel well cover Cement: Portland cement concrete Bentonite Cover: 8-inch diameter, flush-mount steel well cover Cement: Purland cement concrete Cement: Purland cement concrete Bentonite Cover: 8-inch diameter, flush-mount steel well cover Cement: Purland cement concrete C			<u>.</u>	ding			
0	(fee Samp	Samp	Litho	Read	DESCRIPTION		
11— 2— 3— 4— SILTY CLAYEY SAND with wood, brown, wet SILTY CLAYEY SAND with wood, brown, wet 11— 12— 13— 14— 15— 15— 16— 11— 11— 12— 11— 12— 13— 14— 15— 15— 15— 16— 16— 16— 16— 16— 16— 16— 16— 16— 16	0			0.0 0.0 0.0 -	Fine to Coarse SILTY SAND with shells, gray, wet SILTY CLAYEY SAND with wood, brown, wet	staining noted	Cover Cement Bentonite Casing Screen Sand End Cap Cover: 8-inch diameter, flush-mount steel well cover Cement: Portland cement concrete Bentonite: Hydrated granular bentonite (beneath cement); Hydrated bentonite pellets (beneath sand backfill) Casing: 1-inch diameter schedule 40 PVC casing Screen: 1-inch diameter schedule 40, 0.010 slot size, PVC screen 10- 11- 12- 13- 14- 15
5		×-			Corporation		

DORING LOCATION: PZ102 SROUND SURFACE ELEVATION AND DATUM: 2.7	PROJECT:			Hardel Olympia, WA		Log of PZ102
DRILLING CONTRACTOR ESN DATE STATE 4722/21 4	BORING LOCA	ATION:				
Direct Push DRILLING EQUIPMENT: DT7800 Combo Rig DRILLING EQUIPMENT: DT7800 Combo Rig DEPTH TO DURNG: 4 PTER 2.7 SCREEN INTERVAL: Screen WELL CONSTRUCTION DETAILS ANDORD DRILLING REMARKS DESCRIPTION BORING REMARKS WELL CONSTRUCTION DETAILS ANDORD DRILLING REMARKS O 1	DRILLING CON	NTRACTO	R:	ESN		DATE STARTED: DATE FINISHED:
DRILLING EQUIPMENT: DT7800 Combo Rig DEPTH TO DURING, WATER: 4 2.7 SCREEN INTERVAL: See Well Construction SAMPLES SAMPLES OF SEE SEED OF SEE SEED OF SEED O	DRILLING MET	THOD:		Direct Push		
LOGGED BY: Joel Hecker SCREEN INTERVAL: See Well Construction SAMPLES SAMPLES SEE SAMPLES SEE SAMPLES SEE SAMPLES SEE SEE SEE SEE SEE SEE SEE SEE SEE S	DRILLING EQU	UIPMENT:	DT78	300 Combo Rig		DEPTH TO DURING: AFTER:
SAMPLES O 1 -				<u> </u>		
BORING REMARKS WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS O			J	loel Hecker		2.7-12.7 See Well Construction
Cover Cove			Jing			
Cover Cove	(fee Sampl No.	Sampl Litho.	PIE	DESCRIPTION		
15 15 PIONEER Technologies Corporation Page 1 of 1	1— 2— 3— 4— 5— 6— 7— 8— 8— No Samble Collected 11— 12— 13— 14— 15—		0.0	SAND with gravel, gray, moist-to-wet FILL - SILTY CLAY, gray FILL - CLAYEY SAND with wood, brown, wet WOOD	staining noted	Cover Cement Bentonite Casing Screen Sand End Cap Cover: 8-inch diameter, flush-mount steel well cover Cement: Portland cement concrete Bentonite: Hydrated granular bentonite (beneath cement); Hydrated bentonite pellets (beneath sand backfill) Casing: 1-inch diameter schedule 40 PVC casing Screen: 1-inch diameter schedule 40, 0.010 slot size, PVC screen 11- 12- 13- 14- 15

PROJE	ECT:				Hardel Olympia, WA		Log of PZ103					
BORIN	IG LO	CATION	l:		PZ103		GROUND SURFACE ELEVATION AND DATUM: 2.5					
DRILL	NG C	ONTRA	СТО	R:	ESN		DATE STARTED: DATE FINISHED: 4/22/21					
DRILL	NG M	ETHOD	:		Direct Push		TOTAL DEPTH (ft.): MEASURING POINT: 15 Ground Surface					
DRILL	NG E	QUIPME	ENT:	DT78	300 Combo Rig		DEPTH TO DURING: AFTER:					
	WATER: 3 2.5											
T .		AMPLES	S	g								
DEPTH (feet)	Sample No.	Sample	Litho.	PID Reading	DESCRIPTION	BORING REMARKS	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS					
0 1- 2- 3- 4- 5- 6- 7- 8-	No Sample Collected			0.0	FILL - Fine to Coarse SAND with gravel, gray, moist-to-wet	No odors or staining noted in soil column	Cover Cement Bentonite Casing Screen Sand End Cap Cover: 8-inch diameter, flush-mount steel well cover Cement: Portland cement concrete Bentonite: Hydrated granular bentonite (beneath cement); Hydrated bentonite pellets (beneath sand backfill) Casing: 1-inch diameter schedule 40 PVC casing Screen: 1-inch diameter schedule 40, 0.010 slot size, PVC screen					
9- 10- 11- 12- 13- 14-				0.0	Fine SILTY SAND with shells, gray, wet		9- 10- 11- 12- 13- 14-					
15				0.0	Ground WOOD fibers		15					
	NEEF				Corporation	1	Page 1 of 1					

Appendix E

June 2020 Phase II ESA

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957

July 8, 2020

Joel Hecker Pioneer Technologies Corporation 5205 Corporate Center Ct SE, Suite C Lacey, WA 98503

Dear Mr. Hecker:

Please find enclosed the analytical data report for the Hardel Site Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

Libby Environmen	tal, Ir	ic.		CI	nain	of Cu	stody	Reco	rd					www.Libby	Environmental.com
3322 South Bay Road NE		360-352-2				Doto	06/00	1200				Dago:	1		of 2
		360-352-4	154		•					4.0		Page:			OI
Client: Proneer Technology		0	1 5 5				ct Manager:								
Address: 5205 Corpora	te Cert					Projec	ct Name: (ardel	717						
City: Lacey		State:	Zip:	98503			ion: 1210		bay	טה				Olymp	
Phone: 360-828-3739		Fax:				Collec	ctor: SH /	MK				Date o	f Coll	ection: 1	13
Client Project # Hardel	SHE					Email	hecke	700	72 bi	onee	r. ca	M		, ,	, ,
Sample Number	Depth	Time	Sample Type	Container Type	157	26 20 10 10 10 10 10 10 10 10 10 10 10 10 10			\$ 5 %	2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 10 10	19951	A	Field	Notes
16W-BI-0603	10-15	1400	Greso	nut iple	X	XX	Ĭ V		X		V				dissolved
2GW-B2-0603	3-8	1300	(Horepic	1	1			11		î		1		FILLA
3 GW - B3 - 0603	3-8	1210			++				+++				1		1
4 GW-84-0603	7-12	1110			+++								\top		
5 GN - B5 - 0603	3-8	1000			+++										
6 GW-B6-0803	7-8	915							1		1				
7 GW- B6-0603-e1	3-8	915	1		1	X	X		X		X.		\top		L
8 Trip Dlank 0603	-	-		1	X										
93-B1-4-5-0603	4-5	1340			X	X	X		X	X				Sample s	potentially impact
105-132-2-4-0603	2-4	1230			1		1			I		Ø			potentially impart
115-13-2-3-0603	2-3	1130								-		(X)			
125-84-1-3-0603	1-3	1030												Sta T.	AT
135-84-1-3-0603-0	1-3	1030			1					1				Added	6-11-2020
145-11-12-0603	11-12	1645			X	1	V		V	X				per Joe	l via email.
155-B5-3-4-0603	3-4	0920			X	X	X		X	1	X			1	
16 5- B6-3-4-0603	3-4	0845			X	X	X		X		X				
175-37-3-5-0603	3-5	1600			X	X	X	1.4	X		X.				
Rejinquished by:		6/3	Date / Time 1712 Date / Time	Received by:	- El	lez	6/3/20-	Date / Time	Good	Sample Condition?	7	eipt Y) N		emarks:	H-0,G,+H0
Relinquished by:			Date / Time	received by				Date / Tille	-	r Temp. le Temp.		°C	- 1		
Relinquished by:			Date / Time	Received by:	-			Date / Time	+	Number of					1
LEGAL ACTION CLAUSE: In the event of default of pay										ntainers			T	AT: 24HR	48HR 5-DA'

Libby Environmen	tal, In	C.		Cl	nair	0	f C	ust	ody	y R	eco	rd							www.Lib	obyEnv	ironmental.c	com
3322 South Bay Road NE		360-352-2					Data	. (012							Dog	0.	7	- 11	of	2	
		360-352-4	154				Date	3.	0/3	,	7.0	1	11.	1		ray	e			OI		\neg
Client: Plunear tech	norvagi	S				Project Manager: Toel Hecker Project Name: Hardel									-							
Address:		wa								H	woul	1										-
City:		State:	Zip:				Loca	ation:								City,						_
Phone: 360-928-3779	Phone: 360-928-3779 Fax:							ector								Date	of C	Collec	ction:	6/3		
Client Project #	Client Project #							ail: h	eck	eri	@ US	PI	4000	ain								
Sample Number	Depth	Time	Sample Type	Container Type	/3	200	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	od die	2100 / 876 67 / 876	0 1 H		24/28/2		Q RH QQ	10/10/10/10/10/10/10/10/10/10/10/10/10/1	a do	8270 0C		Fic	eld No	ites	
			Grab	multiple	X		X			X				X		8			Std	TA	T	
19-89-4-5-0603 25-89-6-7-0603	6-7	1640	L	1	X		X			X				X							-11-2020	
3																					via email	
4																			1			
5																						
6																						
7																						
8																						
9												T										
10																						
11																						
12																						
13												T										
14																						
15																						
16																						
17																						
Relinquished by:	1	0/3	1710	Received by:	y l	Sle	Y	6/3	120		ate Kr im ate / Tim	e C	Sal Good Cor Gooler Te	mp.		The real Property lies	N °C	Ren	narks:	Ned	4PH-0,	to
Relinquished by:			Date / Time	Received by:						Da	ate / Tim			nber of				TA	T: 24H	HR 4	8HR 5-D	AY
LEGAL ACTION CLAUSE: In the event of default of payr	ment and/or failur	e to pay, Client a	grees to pay the cos	ts of collection including	court cost	s and rea	asonable	attorney	fees to b	e determ	nined by a co	ourt of	law.						Distribution:	White -	Lab, Yellow - Orig	inator

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	S-B1-4-5-	S-B1-4-5-	S-B2-2-4-	S-B3-2-3-	S-B4-1-3-
		Blank	0603	0603 Dup	0603	0603	0603
Date Sampled	Reporting	N/A	6/3/2020	6/3/2020	6/3/2020	6/3/2020	6/3/2020
Date Analyzed	Limits	6/5/2020	6/5/2020	6/5/2020	6/5/2020	6/5/2020	6/5/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	0.34	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.03	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	0.33	nd	nd
Total Xylenes	0.03	nd	nd	nd	2.5	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	S-B1-4-5-	S-B1-4-5-	S-B2-2-4-	S-B3-2-3-	S-B4-1-3-
		Blank	0603	0603 Dup	0603	0603	0603
Date Sampled	Reporting	N/A	6/3/2020	6/3/2020	6/3/2020	6/3/2020	6/3/2020
Date Analyzed	Limits	6/5/2020	6/5/2020	6/5/2020	6/5/2020	6/5/2020	6/5/2020
•	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	0.56	nd	nd
1,2,3-Trichloropropane	0.03	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	0.95	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	3.6	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	10	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	1.3	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.02	nd	nd	nd	1.4	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	1.4	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalene	0.05	nd	nd	nd	3.3	nd	nd
1,2,3-Trichlorobenzene	0.10	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		104	92	101	96	107	102
1,2-Dichloroethane-d4		110	81	107	113	110	91
Toluene-d8		103	101	102	102	100	103
4-Bromofluorobenzene		93	83	85	106	83	91

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		S-B4-1-3-	S-B4-11-12-	S-B5-3-4-	S-B6-3-4-	S-B7-3-5-	S-B8-4-5-
		0603-01	0603	0603	0603	0603	0603
Date Sampled	Reporting	6/3/2020	6/3/2020	6/3/2020	6/3/2020	6/3/2020	6/3/2020
Date Analyzed	Limits	6/5/2020	6/5/2020	6/5/2020	6/5/2020	6/5/2020	6/5/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.03	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		S-B4-1-3-	S-B4-11-12-	S-B5-3-4-	S-B6-3-4-	S-B7-3-5-	S-B8-4-5-
•		0603-01	0603	0603	0603	0603	0603
Date Sampled	Reporting	6/3/2020	6/3/2020	6/3/2020	6/3/2020	6/3/2020	6/3/2020
Date Analyzed	Limits	6/5/2020	6/5/2020	6/5/2020	6/5/2020	6/5/2020	6/5/2020
-	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.03	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	0.049	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	0.036	0.17	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalene	0.05	nd	nd	nd	nd	0.27	nd
1,2,3-Trichlorobenzene	0.10	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		105	106	106	110	101	105
1,2-Dichloroethane-d4		98	104	95	112	88	98
Toluene-d8		102	103	101	102	103	100
4-Bromofluorobenzene		95	94	95	94	88	92

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		S-B9-6-7-	S-B9-6-7-
r		0603	0603 Dup
Date Sampled	Reporting	6/3/2020	6/3/2020
Date Analyzed	Limits	6/5/2020	6/5/2020
y	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd
Chloromethane	0.06	nd	nd
Vinyl chloride	0.02	nd	nd
Bromomethane	0.09	nd	nd
Chloroethane	0.06	nd	nd
Trichlorofluoromethane	0.05	nd	nd
1,1-Dichloroethene	0.05	nd	nd
Methylene chloride	0.02	nd	nd
Methyl <i>tert</i> - Butyl Ether (MTBE)	0.05	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd
1,1-Dichloroethane	0.03	nd	nd
2,2-Dichloropropane	0.05	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd
Chloroform	0.02	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd
Carbon tetrachloride	0.03	nd	nd
1,1-Dichloropropene	0.02	nd	nd
Benzene	0.02	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd
Trichloroethene (TCE)	0.03	nd	nd
1,2-Dichloropropane	0.02	nd	nd
Dibromomethane	0.04	nd	nd
Bromodichloromethane	0.02	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd
Toluene	0.03	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd
1,3-Dichloropropane	0.05	nd	nd
Dibromochloromethane	0.03	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd
Chlorobenzene	0.02	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd
Ethylbenzene	0.03	nd	nd
Total Xylenes	0.03	nd	nd
Styrene	0.02	nd	nd

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		S-B9-6-7-	S-B9-6-7-	
1		0603	0603 Dup	
Date Sampled	Reporting	6/3/2020	6/3/2020	
Date Analyzed	Limits	6/5/2020	6/5/2020	
•	(mg/kg)	(mg/kg)	(mg/kg)	
Bromoform	0.03	nd	nd	
Isopropylbenzene	0.08	nd	nd	
1,2,3-Trichloropropane	0.03	nd	nd	
Bromobenzene	0.03	nd	nd	
1,1,2,2-Tetrachloroethane	0.03	nd	nd	
n-Propylbenzene	0.02	nd	nd	
2-Chlorotoluene	0.02	nd	nd	
4-Chlorotoluene	0.02	nd	nd	
1,3,5-Trimethylbenzene	0.02	nd	nd	
tert-Butylbenzene	0.02	nd	nd	
1,2,4-Trimethylbenzene	0.02	nd	nd	
sec-Butylbenzene	0.02	nd	nd	
1,3-Dichlorobenzene	0.03	nd	nd	
p-Isopropyltoluene	0.02	nd	nd	
1,4-Dichlorobenzene	0.03	nd	nd	
1,2-Dichlorobenzene	0.03	nd	nd	
n-Butylbenzene	0.02	nd	nd	
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	
1,2,4-Trichlorolbenzene	0.05	nd	nd	
Hexachloro-1,3-butadiene	0.10	nd	nd	
Naphthalene	0.05	nd	nd	
1,2,3-Trichlorobenzene	0.10	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		103	102	
1,2-Dichloroethane-d4		98	98	
Toluene-d8		99	101	
4-Bromofluorobenzene		86	84	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	GW-B1-	GW-B2-	GW-B3-	GW-B4-	GW-B4-
		Blank	0603	0603	0603	0603	0603 Dup
Date Sampled	Reporting	N/A	6/3/2020	6/3/2020	6/3/2020	6/3/2020	6/3/2020
Date Analyzed	Limits	6/4/2020	6/4/2020	6/4/2020	6/4/2020	6/4/2020	6/4/2020
	$(\mu g/L)$						
Dichlorodifluoromethane	2.0	nd	nd	nd	nd	nd	nd
Chloromethane	2.0	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.2	nd	nd	nd	nd	nd	nd
Bromomethane	2.0	nd	nd	nd	nd	nd	nd
Chloroethane	2.0	nd	nd	6.0	nd	nd	nd
Trichlorofluoromethane	2.0	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	2.0	nd	nd	nd	nd	nd	nd
Methylene chloride	1.0	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	2.0	nd	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Chloroform	1.0	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	1.0	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
Benzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd	nd	nd	nd	nd	nd
Dibromomethane	1.0	nd	nd	nd	nd	nd	nd
Bromodichloromethane	1.0	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
Toluene	1.0	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd	nd	nd	nd	nd	nd
Dibromochloromethane	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	0.096	nd	nd
Chlorobenzene	1.0	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd	nd	nd	nd
Styrene	1.0	nd	nd	nd	nd	nd	nd

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	GW-B1-	GW-B2-	GW-B3-	GW-B4-	GW-B4-
-		Blank	0603	0603	0603	0603	0603 Dup
Date Sampled	Reporting	N/A	6/3/2020	6/3/2020	6/3/2020	6/3/2020	6/3/2020
Date Analyzed	Limits	6/4/2020	6/4/2020	6/4/2020	6/4/2020	6/4/2020	6/4/2020
·	$(\mu g/L)$						
Bromoform	1.0	nd	nd	nd	nd	nd	nd
Isopropylbenzene	4.0	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd	nd	nd	nd	nd	nd
Bromobenzene	1.0	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd
n-Propylbenzene	1.0	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	1.0	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	1.0	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd	nd	1.1	nd	nd	nd
tert-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd	nd	3.2	nd	nd	nd
sec-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	1.0	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
n-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	2.0	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	5.0	nd	nd	nd	nd	nd	nd
Naphthalene	5.0	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	5.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		103	103	101	101	101	104
1,2-Dichloroethane-d4		102	106	95	93	95	101
Toluene-d8		101	101	96	101	102	100
4-Bromofluorobenzene		88	90	78	86	88	87

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		GW-B5-	GW-B6-	GW-B6-	Trip Blank	
		0603	0603	0603-01	0603	
Date Sampled	Reporting	6/3/2020	6/3/2020	6/3/2020	6/3/2020	
Date Analyzed	Limits	6/4/2020	6/4/2020	6/4/2020	6/4/2020	
Ž	$(\mu g/L)$					
Dichlorodifluoromethane	2.0	nd	nd	nd	nd	
Chloromethane	2.0	nd	nd	nd	nd	
Vinyl chloride	0.2	nd	nd	nd	nd	
Bromomethane	2.0	nd	nd	nd	nd	
Chloroethane	2.0	nd	nd	nd	nd	
Trichlorofluoromethane	2.0	nd	nd	nd	nd	
1,1-Dichloroethene	2.0	nd	nd	nd	nd	
Methylene chloride	1.0	nd	nd	nd	nd	
Methyl tert- Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	
trans -1,2-Dichloroethene	1.0	nd	nd	nd	nd	
1,1-Dichloroethane	1.0	nd	nd	nd	nd	
2,2-Dichloropropane	2.0	nd	nd	nd	nd	
cis -1,2-Dichloroethene	1.0	nd	nd	nd	nd	
Chloroform	1.0	nd	nd	nd	nd	
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	
Carbon tetrachloride	1.0	nd	nd	nd	nd	
1,1-Dichloropropene	1.0	nd	nd	nd	nd	
Benzene	1.0	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	
Trichloroethene (TCE)	0.4	0.55	0.44	0.58	nd	
1,2-Dichloropropane	1.0	nd	nd	nd	nd	
Dibromomethane	1.0	nd	nd	nd	nd	
Bromodichloromethane	1.0	nd	nd	nd	nd	
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	
Toluene	1.0	nd	nd	nd	nd	
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	3.4	nd	nd	nd	
1,3-Dichloropropane	1.0	nd	nd	nd	nd	
Dibromochloromethane	1.0	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	0.13	0.096	nd	
Chlorobenzene	1.0	nd	nd	nd	nd	
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	nd	
Ethylbenzene	1.0	nd	nd	nd	nd	
Total Xylenes	2.0	nd	nd	nd	nd	
Styrene	1.0	nd	nd	nd	nd	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		GW-B5-	GW-B6-	GW-B6-	Trip Blank	
		0603	0603	0603-01	0603	
Date Sampled	Reporting	6/3/2020	6/3/2020	6/3/2020	6/3/2020	
Date Analyzed	Limits	6/4/2020	6/4/2020	6/4/2020	6/4/2020	
	$(\mu g/L)$					
Bromoform	1.0	nd	nd	nd	nd	
Isopropylbenzene	4.0	nd	nd	nd	nd	
1,2,3-Trichloropropane	1.0	nd	nd	nd	nd	
Bromobenzene	1.0	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	
n-Propylbenzene	1.0	nd	nd	nd	nd	
2-Chlorotoluene	1.0	nd	nd	nd	nd	
4-Chlorotoluene	1.0	nd	nd	nd	nd	
1,3,5-Trimethylbenzene	1.0	nd	nd	nd	nd	
tert-Butylbenzene	1.0	nd	nd	nd	nd	
1,2,4-Trimethylbenzene	1.0	nd	nd	nd	nd	
sec-Butylbenzene	1.0	nd	nd	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	
p-Isopropyltoluene	1.0	nd	nd	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	
n-Butylbenzene	1.0	nd	nd	nd	nd	
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	nd	nd	
1,2,4-Trichlorolbenzene	2.0	nd	nd	nd	nd	
Hexachloro-1,3-butadiene	5.0	nd	nd	nd	nd	
Naphthalene	5.0	nd	nd	nd	nd	
1,2,3-Trichlorobenzene	5.0	nd	nd	nd	nd	
Surrogate Recovery						
Dibromofluoromethane		99	102	101	104	
1,2-Dichloroethane-d4		90	104	94	103	
Toluene-d8		104	104	105	94	
4-Bromofluorobenzene		85	83	81	79	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Gasoline by NWTPH-Gx in Soil

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	6/5/2020	103%	nd
S-B1-4-5-0603	6/5/2020	101%	nd
S-B1-4-5-0603 Dup	6/5/2020	102%	nd
S-B2-2-4-0603	6/5/2020	102%	190
S-B3-2-3-0603	6/5/2020	100%	nd
S-B4-1-3-0603	6/5/2020	103%	nd
S-B4-1-3-0603-01	6/5/2020	102%	nd
S-B4-11-12-0603	6/5/2020	103%	nd
S-B5-3-4-0603	6/5/2020	101%	nd
S-B6-3-4-0603	6/5/2020	102%	nd
S-B7-3-5-0603	6/5/2020	103%	nd
S-B8-4-5-0603	6/5/2020	100%	nd
S-B9-6-7-0603	6/5/2020	99%	nd
S-B9-6-7-0603 Dup	6/5/2020	101%	nd
Practical Quantitation Limit			10

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Gasoline by NWTPH-Gx in Water

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	$(\mu g/L)$
Method Blank	6/4/2020	101%	nd
GW-B1-0603	6/4/2020	101%	nd
GW-B2-0603	6/4/2020	96%	nd
GW-B3-0603	6/4/2020	101%	nd
GW-B4-0603	6/4/2020	102%	nd
GW-B4-0603 Dup	6/4/2020	100%	nd
GW-B5-0603	6/4/2020	104%	nd
GW-B6-0603	6/4/2020	104%	nd
GW-B6-0603-01	6/4/2020	105%	nd
Practical Quantitation Limit			100

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Diesel & Oil by NWTPH-Dx/Dx Extended in Soil

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	6/4/2020	118%	nd	nd
Method Blank	6/9/2020	124%	nd	nd
S-B1-4-5-0603	6/4/2020	119%	nd	2600
S-B2-2-4-0603	6/4/2020	int	41000	1500
S-B3-2-3-0603	6/4/2020	108%	nd	3300
S-B4-1-3-0603	6/9/2020	124%	nd	450
S-B4-1-3-0603 Dup	6/9/2020	123%	nd	640
S-B4-1-3-0603-01	6/9/2020	113%	nd	560
S-B4-11-12-0603	6/4/2020	106%	nd	420
S-B5-3-4-0603	6/4/2020	121%	nd	nd
S-B6-3-4-0603	6/4/2020	98%	nd	nd
S-B6-3-4-0603 Dup	6/4/2020	108%	nd	nd
S-B7-3-5-0603	6/4/2020	126%	nd	430
S-B8-4-5-0603	6/4/2020	123%	nd	nd
S-B9-6-7-0603	6/4/2020	112%	nd	nd
Practical Quantitation Limit			50	250

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Diesel & Oil by NWTPH-Dx/Dx Extended in Water

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	$(\mu g/L)$	$(\mu g/L)$
Method Blank	6/5/2020	97%	nd	nd
GW-B1-0603	6/5/2020	99%	nd	nd
GW-B2-0603	6/5/2020	90%	nd	nd
GW-B3-0603	6/5/2020	95%	nd	nd
GW-B4-0603	6/5/2020	112%	nd	nd
GW-B5-0603	6/5/2020	93%	nd	nd
GW-B6-0603	6/5/2020	101%	nd	nd
GW-B6-0603-01	6/5/2020	89%	nd	nd
GW-B6-0603-01 Dup	6/5/2020	103%	nd	nd
Practical Quantitation Limit			200	400

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Total Metals by EPA Method 7010 Series in Soil

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	6/9/2020	nd	nd	nd	nd
S-B1-4-5-0603	6/9/2020	38	nd	14	6.5
S-B2-2-4-0603	6/9/2020	16	nd	37	10
S-B3-2-3-0603	6/9/2020	nd	nd	12	7.3
S-B4-1-3-0603	6/9/2020	12	nd	10	6.9
S-B4-1-3-0603-01	6/9/2020	8.2	nd	18	9.0
S-B4-11-12-0603	6/9/2020	9.2	nd	24	nd
S-B5-3-4-0603	6/9/2020	nd	nd	23	7.0
S-B6-3-4-0603	6/9/2020	7.2	nd	13	nd
S-B7-3-5-0603	6/9/2020	11	nd	20	8.2
S-B8-4-5-0603	6/9/2020	nd	nd	10	8.8
S-B8-4-5-0603 Dup	6/9/2020	nd	nd	11	9.6
S-B9-6-7-0603	6/9/2020	nd	nd	6.7	nd
Practical Quantitation Li	mit	5.0	0.5	5.0	5.0

[&]quot;nd" Indicates not detected at the listed detection limits.

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Total Mercury by EPA Method 7471 in Soil

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	6/9/2020	nd
S-B1-4-5-0603	6/9/2020	nd
S-B2-2-4-0603	6/9/2020	nd
S-B3-2-3-0603	6/9/2020	nd
S-B4-1-3-0603	6/9/2020	nd
S-B4-1-3-0603-01	6/9/2020	nd
S-B4-11-12-0603	6/9/2020	nd
S-B5-3-4-0603	6/9/2020	nd
S-B6-3-4-0603	6/9/2020	nd
S-B7-3-5-0603	6/9/2020	nd
S-B8-4-5-0603	6/9/2020	nd
S-B8-4-5-0603 Dup	6/9/2020	nd
S-B9-6-7-0603	6/9/2020	nd
Practical Quantitation Limit		0.5

[&]quot;nd" Indicates not detected at the listed detection limits.

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Total Metals by EPA Method 7010 Series in Water

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Method Blank	6/9/2020	nd	nd	nd	nd
GW-B1-0603	6/9/2020	nd	nd	nd	nd
GW-B2-0603	6/9/2020	nd	nd	nd	nd
GW-B3-0603	6/9/2020	nd	nd	11	nd
GW-B4-0603	6/9/2020	nd	nd	nd	nd
GW-B5-0603	6/9/2020	nd	nd	nd	nd
GW-B6-0603	6/9/2020	nd	nd	nd	11
GW-B6-0603-01	6/9/2020	nd	nd	nd	9.9
GW-B6-0603-01 Dup	6/9/2020	nd	nd	nd	8.5
Practical Quantitation Li	mit	5.0	0.5	5.0	3.0

[&]quot;nd" Indicates not detected at the listed detection limits.

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Data - Volatile Organic Compounds by EPA 8260D in Soil

	Matrix Sp	oike Sample Id	lentification:	S-B9-6-7-06	03			
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery	(01)	Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	1
Dichlorodifluoromethane	0.25	0.18	0.19	74	76	3.2	65-135	
Chloromethane	0.25	0.21	0.22	86	88	2.8	65-135	
Vinyl chloride	0.25	0.27	0.27	106	110	3.0	65-135	
Bromomethane	0.25	0.26	0.25	102	100	2.4	65-135	
Chloroethane	0.25	0.23	0.071	92	28	105.3	65-135	R, S
Trichlorofluoromethane	0.25	0.30	0.056	121	22	137.4	65-135	R, S
1,1-Dichloroethene	0.25	0.33	0.31	132	122	7.9	65-135	
Methylene chloride	0.25	0.33	0.32	131	129	1.2	65-135	
Methyl tert- Butyl Ether (MTBE)	0.25	0.25	0.32	99	129	26.7	65-135	
trans -1,2-Dichloroethene	0.25	0.32	0.32	129	128	0.9	65-135	
1,1-Dichloroethane	0.25	0.31	0.34	125	134	7.4	65-135	
2,2-Dichloropropane	0.25	0.32	0.34	128	135	4.9	65-135	
cis-1,2-Dichloroethene	0.25	0.22	0.24	86	98	12.2	65-135	
Chloroform	0.25	0.30	0.33	118	132	10.9	65-135	
1,1,1-Trichloroethane (TCA)	0.25	0.31	0.33	124	132	6.3	65-135	
Carbon tetrachloride	0.25	0.31	0.33	124	131	5.3	65-135	
1,1-Dichloropropene	0.25	0.22	0.24	86	95	9.3	65-135	
Benzene	0.25	0.26	0.29	105	117	10.8	65-135	
1,2-Dichloroethane (EDC)	0.25	0.21	0.27	84	109	25.7	65-135	
Trichloroethene (TCE)	0.25	0.24	0.26	95	104	9.3	65-135	
1,2-Dichloropropane	0.25	0.25	0.29	99	116	16.0	65-135	
Dibromomethane	0.25	0.18	0.23	71	92	26.0	65-135	
Bromodichloromethane	0.25	0.26	0.31	105	122	14.8	65-135	
cis-1,3-Dichloropropene	0.25	0.17	0.22	68	89	27.0	65-135	
Toluene	0.25	0.26	0.28	105	114	8.1	65-135	
Trans-1,3-Dichloropropene	0.25	0.17	0.20	68	79	15.8	65-135	
1,1,2-Trichloroethane	0.25	0.21	0.23	82	91	10.1	65-135	
Tetrachloroethene (PCE)	0.25	0.22	0.21	88	83	5.2	65-135	
1,3-Dichloropropane	0.25	0.17	0.20	68	80	15.6	65-135	
Dibromochloromethane	0.25	0.20	0.22	80	87	8.6	65-135	
1,2-Dibromoethane (EDB)	0.25	0.16	0.20	66	78	17.8	65-135	
Chlorobenzene	0.25	0.26	0.25	105	102	3.5	65-135	
Ethylbenzene	0.25	0.26	0.20	105	80	27.7	65-135	
1,1,1,2-Tetrachloroethane	0.25	0.30	0.29	120	118	2.4	65-135	
Total Xylenes	0.25	0.74	0.70	98	93	4.9	65-135	
Styrene	0.75	0.74	0.70	86	84	2.4	65-135	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Data - Volatile Organic Compounds by EPA 8260D in Soil

	Matrix Sp	oike Sample Id	lentification:	S-B9-6-7-06	03			
	Spiked Conc. (mg/kg)	MS Response (mg/kg)	MSD Response (mg/kg)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Bromoform	0.25	0.17	0.19	68	74	9.0	65-135	
Isopropylbenzene	0.25	0.25	0.23	99	92	8.0	65-135	
1,1,2,2-Tetrachloroethane	0.25	0.18	0.23	70	91	26.3	65-135	
Bromobenzene	0.25	0.19	0.22	76	88	15.2	65-135	
n-Propylbenzene	0.25	0.26	0.27	104	109	4.5	65-135	
1,2,3-Trichloropropane	0.25	0.20	0.22	78	88	12.5	65-135	
2-Chlorotoluene	0.25	0.24	0.26	96	102	6.9	65-135	
1,3,5-Trimethylbenzene	0.25	0.25	0.27	101	108	6.5	65-135	
4-Chlorotoluene	0.25	0.23	0.25	90	102	11.7	65-135	
ert-Butylbenzene	0.25	0.23	0.23	90	93	3.1	65-135	
1,2,4-Trimethylbenzene	0.25	0.25	0.27	99	107	8.2	65-135	
sec-Butylbenzene	0.25	0.25	0.26	102	104	2.7	65-135	
Isopropyltoluene	0.25	0.23	0.24	92	95	3.4	65-135	
1,3-Dichlorobenzene	0.25	0.21	0.24	84	94	11.2	65-135	
1,4-Dichlorobenzene	0.25	0.21	0.25	86	100	15.5	65-135	
n-Butylbenzene	0.25	0.25	0.26	102	104	2.7	65-135	
1,2-Dichlorobenzene	0.25	0.17	0.21	69	85	20.7	65-135	
1,2-Dibromo-3-Chloropropane	0.25	0.22	0.25	87	99	12.9	65-135	
1,2,4-Trichlorolbenzene	0.25	0.17	0.19	67	76	12.4	65-135	
Hexachloro-1,3-butadiene	0.25	0.25	0.23	98	92	5.9	65-135	
Naphthalene	0.25	0.17	0.17	70	67	4.1	65-135	
1,2,3-Trichlorobenzene	0.25	0.17	0.17	68	70	1.7	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				100	103		65-135	
1,2-Dichloroethane-d4				98	110		65-135	
Toluene-d8				108	107		65-135	
4-Bromofluorobenzene				109	95		65-135	

ACCEPTABLE RPD IS 35%

[&]quot;R" High relative percent difference observed.

[&]quot;S" Spike recovery outside accepted recovery limits.

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	0.1.1	T CC	1.00	LOC	Ditt
	Spiked Conc.	LCS	LCS	LCS	Data
	(mg/kg)	Response (mg/kg)	Recovery (%)	Recovery Limits (%)	Flag
Dichlorodifluoromethane	0.25	0.21	85	80-120	
Chloromethane	0.25	0.29	116	80-120	
Vinyl chloride	0.25	0.21	82	80-120	
Bromomethane	0.25	0.25	100	80-120	
Chloroethane	0.25	0.21	82	80-120	
Trichlorofluoromethane	0.25	0.24	94	80-120	
1,1-Dichloroethene	0.25	0.24	97	80-120	
Methylene chloride	0.25	0.25	99	80-120	
Methyl <i>tert</i> - Butyl Ether (MTBE)	0.25	0.23	92	80-120	
trans -1,2-Dichloroethene	0.25	0.24	97	80-120	
1,1-Dichloroethane	0.25	0.23	91	80-120	
2,2-Dichloropropane	0.25	0.29	115	80-120	
cis -1,2-Dichloroethene	0.25	0.27	110	80-120	
Chloroform	0.25	0.27	106	80-120	
1,1,1-Trichloroethane (TCA)	0.25	0.28	110	80-120	
Carbon tetrachloride	0.25	0.28	110	80-120	
1,1-Dichloropropene	0.25	0.22	90	80-120	
Benzene	0.25	0.25	102	80-120	
1,2-Dichloroethane (EDC)	0.25	0.23	92	80-120	
Trichloroethene (TCE)	0.25	0.23	92	80-120	
1,2-Dichloropropane	0.25	0.24	98	80-120	
Dibromomethane	0.25	0.23	92	80-120	
Bromodichloromethane	0.25	0.26	105	80-120	
cis-1,3-Dichloropropene	0.25	0.22	86	80-120	
Toluene	0.25	0.25	100	80-120	
Trans-1,3-Dichloropropene	0.25	0.22	86	80-120	
1,1,2-Trichloroethane	0.25	0.26	102	80-120	
Tetrachloroethene (PCE)	0.25	0.21	85	80-120	
1,3-Dichloropropane	0.25	0.22	87	80-120	
Dibromochloromethane	0.25	0.24	95	80-120	
1,2-Dibromoethane (EDB)	0.25	0.222	89	80-120	
Chlorobenzene	0.25	0.25	98	80-120	
Ethylbenzene	0.25	0.24	95	80-120	
1,1,2-Tetrachloroethane	0.25	0.28	111	80-120	
Total Xylenes	0.75	0.71	95	80-120	
Styrene	0.25	0.22	88	80-120	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Bromoform	0.25	0.23	93	80-120	
Isopropylbenzene	0.25	0.24	97	80-120	
1,1,2,2-Tetrachloroethane	0.25	0.25	101	80-120	
Bromobenzene	0.25	0.22	89	80-120	
n-Propylbenzene	0.25	0.26	103	80-120	
1,2,3-Trichloropropane	0.25	0.27	107	80-120	
2-Chlorotoluene	0.25	0.25	100	80-120	
1,3,5-Trimethylbenzene	0.25	0.29	114	80-120	
4-Chlorotoluene	0.25	0.28	112	80-120	
tert-Butylbenzene	0.25	0.24	98	80-120	
1,2,4-Trimethylbenzene	0.25	0.29	116	80-120	
sec-Butylbenzene	0.25	0.29	118	80-120	
Isopropyltoluene	0.25	0.30	120	80-120	
1,3-Dichlorobenzene	0.25	0.24	94	80-120	
1,4-Dichlorobenzene	0.25	0.24	94	80-120	
n-Butylbenzene	0.25	0.27	107	80-120	
1,2-Dichlorobenzene	0.25	0.23	91	80-120	
1,2-Dibromo-3-Chloropropane	0.25	0.21	84	80-120	
1,2,4-Trichlorolbenzene	0.25	0.25	101	80-120	
Hexachloro-1,3-butadiene	0.25	0.28	113	80-120	
Naphthalene	0.25	0.26	105	80-120	
1,2,3-Trichlorobenzene	0.25	0.23	92	80-120	
Surrogate Recovery					
Dibromofluoromethane			101	65-135	
1,2-Dichloroethane-d4			96	65-135	
Toluene-d8			107	65-135	
4-Bromofluorobenzene			98	65-135	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

CCV 6-4-2020

	Spiked	CCV	CCV	CCV	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Dichlorodifluoromethane	0.50	0.41	81	80-120	
Chloromethane	0.50	0.41	81	80-120	
Vinyl chloride	0.50	0.47	94	80-120	
Bromomethane	0.50	0.45	90	80-120	
Chloroethane	0.50	0.56	112	80-120	
Trichlorofluoromethane	0.50	0.58	116	80-120	
1,1-Dichloroethene	0.50	0.59	118	80-120	
Methylene chloride	0.50	0.53	106	80-120	
Methyl tert-Butyl Ether (MTBE)	0.50	0.42	84	80-120	
trans -1,2-Dichloroethene	0.50	0.46	93	80-120	
1,1-Dichloroethane	0.50	0.57	113	80-120	
2,2-Dichloropropane	0.50	0.56	111	80-120	
cis-1,2-Dichloroethene	0.50	0.44	88	80-120	
Chloroform	0.50	0.52	104	80-120	
1,1,1-Trichloroethane (TCA)	0.50	0.56	111	80-120	
Carbon tetrachloride	0.50	0.58	116	80-120	
1,1-Dichloropropene	0.50	0.48	95	80-120	
Benzene	0.50	0.52	103	80-120	
1,2-Dichloroethane (EDC)	0.50	0.45	91	80-120	
Trichloroethene (TCE)	0.50	0.47	94	80-120	
,2-Dichloropropane	0.50	0.50	100	80-120	
Dibromomethane	0.50	0.42	84	80-120	
Bromodichloromethane	0.50	0.53	106	80-120	
ris-1,3-Dichloropropene	0.50	0.46	91	80-120	
Toluene	0.50	0.54	108	80-120	
Γrans-1,3-Dichloropropene	0.50	0.42	83	80-120	
1,1,2-Trichloroethane	0.50	0.44	88	80-120	
Tetrachloroethene (PCE)	0.50	0.43	86	80-120	
1,3-Dichloropropane	0.50	0.42	84	80-120	
Dibromochloromethane	0.50	0.45	90	80-120	
1,2-Dibromoethane (EDB)	0.50	0.450	90	80-120	
Chlorobenzene	0.50	0.40	80	80-120	
Ethylbenzene	0.50	0.51	101	80-120	
1,1,1,2-Tetrachloroethane	0.50	0.53	105	80-120	
Total Xylenes	1.50	1.57	105	80-120	
Styrene	0.50	0.48	95	80-120	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

CCV 6-4-2020

	Spiked	CCV	CCV	CCV	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Bromoform	0.50	0.43	85	80-120	
Isopropylbenzene	0.50	0.53	106	80-120	
1,1,2,2-Tetrachloroethane	0.50	0.44	88	80-120	
Bromobenzene	0.50	0.42	84	80-120	
n-Propylbenzene	0.50	0.55	110	80-120	
1,2,3-Trichloropropane	0.50	0.55	109	80-120	
2-Chlorotoluene	0.50	0.52	104	80-120	
1,3,5-Trimethylbenzene	0.50	0.53	107	80-120	
4-Chlorotoluene	0.50	0.45	90	80-120	
tert-Butylbenzene	0.50	0.51	101	80-120	
1,2,4-Trimethylbenzene	0.50	0.53	106	80-120	
sec-Butylbenzene	0.50	0.57	114	80-120	
Isopropyltoluene	0.50	0.51	103	80-120	
1,3-Dichlorobenzene	0.50	0.46	93	80-120	
1,4-Dichlorobenzene	0.50	0.47	93	80-120	
n-Butylbenzene	0.50	0.55	110	80-120	
1,2-Dichlorobenzene	0.50	0.43	86	80-120	
1,2-Dibromo-3-Chloropropane	0.50	0.52	104	80-120	
1,2,4-Trichlorolbenzene	0.50	0.41	83	80-120	
Hexachloro-1,3-butadiene	0.50	0.49	99	80-120	
Naphthalene	0.50	0.48	95	80-120	
1,2,3-Trichlorobenzene	0.50	0.41	82	80-120	
Surrogate Recovery					
Dibromofluoromethane			97	65-135	
1,2-Dichloroethane-d4			101	65-135	
Toluene-d8			108	65-135	
4-Bromofluorobenzene			101	65-135	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Data - Volatile Organic Compounds by EPA 8260D in Water

Matrix Spike Sample Identification: GW-B2-0603								
	Spiked Conc.	MS Response	MSD Response	MS Recovery	MSD Recovery	RPD	Limits Recovery	Data Flag
	(µg/L)	(µg/L)	(μg/L)	(%)	(%)	(%)	(%)	1 145
Dichlorodifluoromethane	5.0	3.3	3.7	65	74	12.9	65-135	
Chloromethane	5.0	4.2	4.0	84	80	4.9	65-135	
Vinyl chloride	5.0	5.5	5.1	110	101	8.5	65-135	
Bromomethane	5.0	5.8	6.8	116	135	15.1	65-135	
Chloroethane	5.0	6.4	5.1	128	102	22.6	65-135	
Trichlorofluoromethane	5.0	6.2	6.4	124	128	3.2	65-135	
1,1-Dichloroethene	5.0	6.3	6.7	126	134	6.2	65-135	
Methylene chloride	5.0	5.9	6.4	118	128	8.1	65-135	
Methyl <i>tert</i> - Butyl Ether (MTBE)	5.0	5.7	4.8	113	96	16.3	65-135	
trans -1,2-Dichloroethene	5.0	5.9	6.7	118	134	12.7	65-135	
1,1-Dichloroethane	5.0	6.2	6.7	124	134	7.8	65-135	
2,2-Dichloropropane	5.0	5.6	5.3	112	106	5.5	65-135	
cis-1,2-Dichloroethene	5.0	4.1	4.1	82	82	0.0	65-135	
Chloroform	5.0	5.6	5.3	113	106	6.2	65-135	
1,1,1-Trichloroethane (TCA)	5.0	6.2	5.9	124	118	5.3	65-135	
Carbon tetrachloride	5.0	6.5	6.0	130	120	7.8	65-135	
1,1-Dichloropropene	5.0	4.4	4.3	89	86	3.2	65-135	
Benzene	5.0	5.2	5.1	104	102	1.9	65-135	
1,2-Dichloroethane (EDC)	5.0	4.9	4.3	99	86	13.9	65-135	
Trichloroethene (TCE)	5.0	4.7	4.6	94	92	2.2	65-135	
1,2-Dichloropropane	5.0	4.8	4.6	96	92	4.3	65-135	
Dibromomethane	5.0	4.1	3.6	82	72	13.0	65-135	
Bromodichloromethane	5.0	5.3	4.9	106	98	7.8	65-135	
cis-1,3-Dichloropropene	5.0	3.5	3.3	70	66	5.9	65-135	
Toluene	5.0	4.9	4.9	98	98	0.0	65-135	
Trans-1,3-Dichloropropene	5.0	3.6	3.3	72	65	9.6	65-135	
1,1,2-Trichloroethane	5.0	5.0	4.2	100	84	17.4	65-135	
Tetrachloroethene (PCE)	5.0	4.4	4.2	88	84	4.7	65-135	
1,3-Dichloropropane	5.0	4.2	3.6	84	72	15.4	65-135	
Dibromochloromethane	5.0	4.7	4.0	94	80	16.1	65-135	
1,2-Dibromoethane (EDB)	5.0	4.0	3.4	80	68	15.6	65-135	
Chlorobenzene	5.0	5.0	4.8	100	96	4.1	65-135	
Ethylbenzene	5.0	5.1	5.0	102	100	2.0	65-135	
1,1,1,2-Tetrachloroethane	5.0	5.8	5.5	116	110	5.3	65-135	
Total Xylenes	15.0	14.9	14.9	99	99	0.0	65-135	
Styrene	5.0	4.1	4.0	82	80	2.5	65-135	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Data - Volatile Organic Compounds by EPA 8260D in Water

	Matrix Spike Sample Identification: GW-B2-0603								
	Spiked Conc. (µg/L)	MS Response (μg/L)	MSD Response (µg/L)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag	
Bromoform	5.0	4.1	3.5	82	70	15.8	65-135		
Isopropylbenzene	5.0	4.5	4.6	90	92	2.2	65-135		
1,1,2,2-Tetrachloroethane	5.0	5.4	4.8	108	96	11.8	65-135		
Bromobenzene	5.0	4.5	4.4	90	87	3.4	65-135		
n-Propylbenzene	5.0	6.1	6.1	122	122	0.0	65-135		
1,2,3-Trichloropropane	5.0	5.0	4.5	100	90	10.5	65-135		
2-Chlorotoluene	5.0	5.7	5.6	114	112	1.8	65-135		
1,3,5-Trimethylbenzene	5.0	5.7	6.0	114	120	5.1	65-135		
4-Chlorotoluene	5.0	5.0	4.9	100	98	2.0	65-135		
tert-Butylbenzene	5.0	5.0	5.1	100	102	2.0	65-135		
1,2,4-Trimethylbenzene	5.0	6.5	6.8	130	136	4.3	65-135	S	
sec-Butylbenzene	5.0	5.8	6.2	116	124	6.3	65-135		
Isopropyltoluene	5.0	5.9	6.4	118	128	8.1	65-135		
1,3-Dichlorobenzene	5.0	4.9	4.9	98	98	0.0	65-135		
1,4-Dichlorobenzene	5.0	5.0	5.1	100	102	2.0	65-135		
n-Butylbenzene	5.0	6.3	6.5	126	130	3.1	65-135		
1,2-Dichlorobenzene	5.0	4.5	4.4	90	88	2.2	65-135		
1,2-Dibromo-3-Chloropropane	5.0	3.5	4.1	70	82	15.8	65-135		
1,2,4-Trichlorolbenzene	5.0	4.2	4.5	84	90	6.9	65-135		
Hexachloro-1,3-butadiene	5.0	4.7	5.1	94	102	8.2	65-135		
Naphthalene	5.0	5.5	5.8	110	117	6.0	65-135		
1,2,3-Trichlorobenzene	5.0	3.9	4.7	78	95	19.4	65-135		
Surrogate Recovery (%)				MS	MSD				
Dibromofluoromethane				102	99		65-135		
1,2-Dichloroethane-d4				109	98		65-135		
Toluene-d8				99	103		65-135		
4-Bromofluorobenzene				85	86		65-135		

[&]quot;S" Spike recovery outside accepted recovery limits.

ACCEPTABLE RPD IS 35%

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	conc. (μg/L)	(µg/L)	(%)	Limits (%)	rag
Dichlorodifluoromethane	5.0	4.2	84	80-120	
Chloromethane	5.0	4.2	84	80-120	
Vinyl chloride	5.0	5.0	100	80-120	
Bromomethane	5.0	4.9	98	80-120	
Chloroethane	5.0	5.9	118	80-120	
Trichlorofluoromethane	5.0	5.8	116	80-120	
1,1-Dichloroethene	5.0	5.9	118	80-120	
Methylene chloride	5.0	5.7	114	80-120	
Methyl <i>tert</i> - Butyl Ether (MTBE)	5.0	4.0	80	80-120	
trans -1,2-Dichloroethene	5.0	5.9	118	80-120	
1,1-Dichloroethane	5.0	5.3	106	80-120	
2,2-Dichloropropane	5.0	5.3	106	80-120	
cis -1,2-Dichloroethene	5.0	4.1	82	80-120	
Chloroform	5.0	4.9	98	80-120	
1,1,1-Trichloroethane (TCA)	5.0	5.3	106	80-120	
Carbon tetrachloride	5.0	5.7	114	80-120	
1,1-Dichloropropene	5.0	4.6	92	80-120	
Benzene	5.0	4.9	98	80-120	
1,2-Dichloroethane (EDC)	5.0	4.6	92	80-120	
Trichloroethene (TCE)	5.0	4.6	92	80-120	
1,2-Dichloropropane	5.0	4.4	88	80-120	
Dibromomethane	5.0	4.8	96	80-120	
Bromodichloromethane	5.0	4.6	92	80-120	
cis-1,3-Dichloropropene	5.0	5.2	104	80-120	
Toluene	5.0	4.9	98	80-120	
Trans-1,3-Dichloropropene	5.0	4.0	80	80-120	
1,1,2-Trichloroethane	5.0	4.2	84	80-120	
Tetrachloroethene (PCE)	5.0	5.0	100	80-120	
1,3-Dichloropropane	5.0	4.0	80	80-120	
Dibromochloromethane	5.0	4.4	88	80-120	
1,2-Dibromoethane (EDB)	5.0	4.7	94	80-120	
Chlorobenzene	5.0	5.2	104	80-120	
Ethylbenzene	5.0	5.3	106	80-120	
1,1,1,2-Tetrachloroethane	5.0	5.7	114	80-120	
Total Xylenes	15.0	15.9	106	80-120	
Styrene	5.0	4.6	92	80-120	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	$(\mu g/L)$	$(\mu g/L)$	(%)	Limits (%)	•
Bromoform	5.0	4.0	80	80-120	
Isopropylbenzene	5.0	5.3	106	80-120	
1,1,2,2-Tetrachloroethane	5.0	4.7	94	80-120	
Bromobenzene	5.0	4.9	98	80-120	
n-Propylbenzene	5.0	6.0	120	80-120	
1,2,3-Trichloropropane	5.0	4.4	88	80-120	
2-Chlorotoluene	5.0	5.7	114	80-120	
1,3,5-Trimethylbenzene	5.0	5.9	118	80-120	
4-Chlorotoluene	5.0	5.5	110	80-120	
tert-Butylbenzene	5.0	5.5	110	80-120	
1,2,4-Trimethylbenzene	5.0	5.6	112	80-120	
sec-Butylbenzene	5.0	5.6	112	80-120	
Isopropyltoluene	5.0	5.6	112	80-120	
1,3-Dichlorobenzene	5.0	5.3	106	80-120	
1,4-Dichlorobenzene	5.0	5.5	110	80-120	
n-Butylbenzene	5.0	5.7	114	80-120	
1,2-Dichlorobenzene	5.0	5.0	100	80-120	
1,2-Dibromo-3-Chloropropane	5.0	4.4	88	80-120	
1,2,4-Trichlorolbenzene	5.0	5.0	100	80-120	
Hexachloro-1,3-butadiene	5.0	5.0	99	80-120	
Naphthalene	5.0	5.2	103	80-120	
1,2,3-Trichlorobenzene	5.0	5.4	108	80-120	
Surrogate Recovery					
Dibromofluoromethane			92	65-135	
1,2-Dichloroethane-d4			100	65-135	
Toluene-d8			101	65-135	
4-Bromofluorobenzene			106	65-135	

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

CCV 6-4-2020

	Spiked	CCV	CCV	CCV
	Conc.	Response	Recovery	Recovery
	$(\mu g/L)$	$(\mu g/L)$	(%)	Limits (%)
Dichlorodifluoromethane	10.0	8.0	80	80-120
Chloromethane	10.0	8.0	80	80-120
SIM Vinyl chloride	10.0	8.1	81	80-120
Vinyl chloride	10.0	9.2	92	80-120
Bromomethane	10.0	11.2	112	80-120
Chloroethane	10.0	10.9	109	80-120
Trichlorofluoromethane	10.0	10.9	109	80-120
1,1-Dichloroethene	10.0	10.9	109	80-120
Methylene chloride	10.0	9.8	98	80-120
Methyl tert- Butyl Ether (MTBE)	10.0	8.8	88	80-120
trans -1,2-Dichloroethene	10.0	9.0	90	80-120
1,1-Dichloroethane	10.0	9.8	98	80-120
2,2-Dichloropropane	10.0	9.8	98	80-120
cis-1,2-Dichloroethene	10.0	8.2	82	80-120
Chloroform	10.0	9.2	92	80-120
1,1,1-Trichloroethane (TCA)	10.0	9.9	99	80-120
Carbon tetrachloride	10.0	10.4	104	80-120
1,1-Dichloropropene	10.0	9.0	90	80-120
Benzene	10.0	9.6	96	80-120
1,2-Dichloroethane (EDC)	10.0	8.7	87	80-120
SIM Trichloroethene (TCE)	10.0	9.5	95	80-120
Trichloroethene (TCE)	10.0	8.5	85	80-120
1,2-Dichloropropane	10.0	8.9	89	80-120
Dibromomethane	10.0	8.1	81	80-120
Bromodichloromethane	10.0	9.2	92	80-120
cis-1,3-Dichloropropene	10.0	8.1	81	80-120
Toluene	10.0	9.8	98	80-120
Trans-1,3-Dichloropropene	10.0	8.1	81	80-120
1,1,2-Trichloroethane	10.0	8.2	82	80-120
Tetrachloroethene (PCE)	10.0	9.2	92	80-120
1,3-Dichloropropane	10.0	8.1	81	80-120
Dibromochloromethane	10.0	8.7	87	80-120
SIM 1,2-Dibromoethane (EDB)	10.0	8.8	88	80-120
1,2-Dibromoethane (EDB)	10.0	8.1	81	80-120
Chlorobenzene	10.0	9.5	95	80-120
Ethylbenzene	10.0	9.8	98	80-120
1,1,1,2-Tetrachloroethane	10.0	10.3	103	80-120
Total Xylenes	30.0	30.2	101	80-120
Styrene	10.0	8.8	88	80-120

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

CCV 6-4-2020

	Spiked	CCV	CCV	CCV
	Conc.	Response	Recovery	Recovery
	$(\mu g/L)$	$(\mu g/L)$	(%)	Limits (%)
Bromoform	10.0	8.1	81	80-120
Isopropylbenzene	10.0	9.8	98	80-120
1,1,2,2-Tetrachloroethane	10.0	10.1	101	80-120
Bromobenzene	10.0	10.5	105	80-120
n-Propylbenzene	10.0	11.3	113	80-120
1,2,3-Trichloropropane	10.0	9.7	97	80-120
2-Chlorotoluene	10.0	11.9	119	80-120
1,3,5-Trimethylbenzene	10.0	11.9	119	80-120
4-Chlorotoluene	10.0	11.8	118	80-120
tert-Butylbenzene	10.0	11.9	119	80-120
1,2,4-Trimethylbenzene	10.0	12.0	120	80-120
sec-Butylbenzene	10.0	11.1	111	80-120
Isopropyltoluene	10.0	11.8	118	80-120
1,3-Dichlorobenzene	10.0	11.0	110	80-120
1,4-Dichlorobenzene	10.0	11.0	110	80-120
n-Butylbenzene	10.0	11.9	119	80-120
1,2-Dichlorobenzene	10.0	10.1	101	80-120
1,2-Dibromo-3-Chloropropane	10.0	11.6	116	80-120
1,2,4-Trichlorolbenzene	10.0	8.9	89	80-120
Hexachloro-1,3-butadiene	10.0	10.8	108	80-120
Naphthalene	10.0	9.9	99	80-120
1,2,3-Trichlorobenzene	10.0	8.6	86	80-120
Surrogate Recovery				
Dibromofluoromethane			93	65-135
1,2-Dichloroethane-d4			90	65-135
Toluene-d8			106	65-135
4-Bromofluorobenzene			91	65-135

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Gasoline by NWTPH-Gx in Soil

Sample	Date	Gasoline	Gasoline	CCV Recovery Limits
Number	Analyzed	(mg/kg)	(% Recovery)	(%)
12.5 ppm LCS	6/5/2020	14	112%	70-130%
12.5 ppm LCSD	6/5/2020	13	104%	70-130%
RPD			7%	30%
Practical Quantitation Limit		10		

CCV Gasoline by NWTPH-Gx in Soil

Sample	Date	Gasoline	CCV	CCV Recovery Limits
Number	Analyzed	(mg/kg)	(%)	(%)
50 ppm CCV	6/5/2020	40.5	81%	80-120%
Practical Quantitation Limit		10		

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Gasoline by NWTPH-Gx in Water

Sample	Date	Gasoline	Gasoline	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(% Recovery)	(%)
500 ppb LCS	6/4/2020	415	83%	70-130%
500 ppb LCSD	6/4/2020	429	86%	70-130%
RPD			4%	30%
Practical Quantitation Limit		100		

CCV Gasoline by NWTPH-Gx in Water

Sample	Date	Gasoline	CCV	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(%)	(%)
1000 ppb CCV	6/4/2020	831	83%	80-120%
Practical Quantitation Limit		100		

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Diesel by NWTPH-Dx in Soil

Sample	Date	Diesel	Diesel	CCV Recovery Limits
Number	Analyzed	(mg/kg)	(% Recovery)	(%)
100 ppm LCS 060420	6/4/2020	89	89%	70-130%
100 ppm LCSD 060420	6/4/2020	86	86%	70-130%
RPD			3%	30%
100 ppm LCS 060920	6/9/2020	83	83%	70-130%
100 ppm LCSD 060920	6/9/2020	108	108%	70-130%
RPD			26%	30%
Practical Quantitation Limit		50		

CCV Diesel by NWTPH-Dx in Soil

Sample	Date	Diesel	CCV	CCV Recovery Limits
Number	Analyzed	(mg/kg)	(%)	(%)
CCV Jamaica FID 1 500 ppm	6/4/2020	555	111%	85-115%
CCV Jamaica FID 2 500 ppm	6/4/2020	569	114%	85-115%
	- 10 10 0 0 0	40=	1000	0.7.44.704
CCV Jamaica FID 1 500 ppm	6/9/2020	497	100%	85-115%
Practical Quantitation Limit		50		
Transmit & amount on Films				

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Diesel by NWTPH-Dx in Water

Sample	Date	Diesel	Diesel	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(% Recovery)	(%)
400 ppb LCS 060520	6/5/2020	367	92%	70-130%
400 ppb LCSD 060520	6/5/2020	405	101%	70-130%
RPD			9%	30%
Practical Quantitation Limit		50		

CCV Diesel by NWTPH-Dx in Water

Sample	Date	Diesel	CCV	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(%)	(%)
CCV Elmer FID 1 500 ppm	6/5/2020	502	100%	85-115%
CCV Elmer FID 2 500 ppm	6/5/2020	545	109%	85-115%
		~-		
Practical Quantitation Limit		50		

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Total Metals by EPA Method 7010 Series in Soil

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS 060520	6/9/2020	115%	97%	117%	101%
L200604-5 MS	6/9/2020	115%	113%	104%	84%
L200604-5 MSD	6/9/2020	116%	116%	105%	91%
RPD	6/9/2020	1%	3%	1%	8%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

QA/QC Total Metals by EPA Method 7010 Series in Soil

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Spike Concentration		1.00	0.50	0.50	2.50
LCS 060520	6/9/2020	1.15	0.483	0.584	2.53
Spike Concentration		1.0	0.5	0.5	1.0
L200604-5 MS	6/9/2020	1.15	0.557	0.520	0.84
L200604-5 MSD	6/9/2020	1.16	0.580	0.525	0.91
RPD	6/9/2020	1%	4%	1%	8%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

CCV Total Metals by EPA Method 7010 Series in Soil

Sample	Date	Lead	Cadmium	Chromium (mg/kg)	Arsenic
Number	Analyzed	(mg/kg)	(mg/kg)		(mg/kg)
Spike Concentration	Tillary 20a	2.5	0.5	0.5	10
CCV 6-9-20	6/9/2020	2.35	0.490	0.540	9.40
CCV Recovery %		94%	98%	108%	94%
CCB		nd	nd	nd	nd
CCV 6-9-20-B	6/9/2020	2.73	0.462	0.495	9.9
CCV Recovery %		109%	92%	99%	99%
CCB-B		nd	nd	nd	nd

CCV Recovery Limits %: 90-110%

HARDEL SITE PROJECT
Pioneer Technologies
Olympia, Washington
Libby Project # L200603-7

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Total Mercury by EPA Method 7471 in Soil

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS 060520	6/9/2020	102%
L200604-5 MS	6/9/2020	90%
L200604-5 MSD	6/9/2020	90%
RPD	6/9/2020	0%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 80%-120%

ACCEPTABLE RECOVERY LIMITS FOR LCS: 80%-120%

ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

QA/QC Total Mercury by EPA Method 7471 in Soil

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Spike Concentration		2.00
LCS 060520	6/9/2020	2.04
L200604-5 MS	6/9/2020	1.79
L200604-5 MSD	6/9/2020	1.79
RPD	6/9/2020	0%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 80%-120%

ACCEPTABLE RECOVERY LIMITS FOR LCS: 80%-120%

ACCEPTABLE RPD IS 20%

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

CCV Total Mercury by EPA Method 7471 in Soil

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Spike Concentration		5.0
CCV 6-9-20 CCV Recovery % CCB	6/9/2020	4.67 93% nd
CCV 6-9-20-B CCV Recovery % CCB-B	6/9/2020	4.67 93% nd

ACCEPTABLE RECOVERY LIMITS FOR CCV: 80%-120%

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Total Metals by EPA Method 7010 Series in Water

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS 060920	6/9/2020	114%	94%	92%	106%
GW-B6-0603-01 MS	6/9/2020	106%	93%	107%	94%
GW-B6-0603-01 MSD	6/9/2020	110%	92%	105%	95%
RPD	6/9/2020	4%	1%	2%	1%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125%

ACCEPTABLE RECOVERY LIMITS FOR LCS: 80%-120%

ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

QA/QC Total Metals by EPA Method 7010 Series in Water

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Spike Concentration		20	10	10	50
LCS 060920	6/9/2020	22.8	9.4	9.2	52.9
GW-B6-0603-01 MS	6/9/2020	21.2	9.3	10.7	46.9
GW-B6-0603-01 MSD	6/9/2020	21.9	9.2	10.5	47.4
RPD	6/9/2020	3%	1%	2%	1%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125%

ACCEPTABLE RECOVERY LIMITS FOR LCS: 80%-120%

ACCEPTABLE RPD IS 20%

HARDEL SITE PROJECT Pioneer Technologies Olympia, Washington Libby Project # L200603-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

CCV Total Metals by EPA Method 7010 Series in Water

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Spike Concentration		50	10	10	50
CCV 6-9-20 CCV Recovery % CCB	6/4/2020	52 104% nd	9.7 97% nd	10.6 106% nd	204 102% nd

ACCEPTABLE RECOVERY LIMITS FOR CCV: 90%-110%

HARDEL SITE PROJECT Pioneer Technologies Libby Project # L200603-7 Date Received 6/3/2020 Time Received 5:10 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KE

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	V	Yes	☐ No		
2. How was the sample delivered?	√	Hand Delivered	☐ Picked Up		Shipped
<u>Log In</u>					
3. Cooler or Shipping Container is present.	V	Yes	☐ No		□ N/A
4. Cooler or Shipping Container is in good condition.	√	Yes	☐ No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ No		□ N/A
6. Was an attempt made to cool the samples?	J	Yes	□ No		□ N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.9	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		1.8	°C		
9. Did all containers arrive in good condition (unbroken)?	√	Yes	☐ No		
10. Is it clear what analyses were requested?	√	Yes	☐ No		
11. Did container labels match Chain of Custody?	V	Yes	□ No		
12. Are matrices correctly identified on Chain of Custody?	J	Yes	□ No		
13. Are correct containers used for the analysis indicated?	J	Yes	□ No		
14. Is there sufficient sample volume for indicated analysis?	√	Yes	☐ No		
15. Were all containers properly preserved per each analysis?	J	Yes	☐ No		
16. Were VOA vials collected correctly (no headspace)?	V	Yes	☐ No		□ N/A
17. Were all holding times able to be met?	V	Yes	☐ No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes	☐ No		✓ N/A
Person Notified:				Date:	
By Whom:			•	Via:	
Regarding:					
19. Comments.					
	_				

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: Hardel Site

Work Order Number: 2006085

July 02, 2020

Attention Kodey Eley:

Fremont Analytical, Inc. received 18 sample(s) on 6/4/2020 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH
Mercury by EPA Method 245.1
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)
Sample Moisture (Percent Moisture)
Semi-Volatile Organic Compounds by EPA Method 8270
Total Metals by EPA Method 200.8
Total Metals by EPA Method 6020B
Total Organic Carbon by EPA 9060

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 07/02/2020

CLIENT: Libby Environmental Work Order Sample Summary

Project: Hardel Site Work Order: 2006085

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2006085-001	GW-B1-0603	06/03/2020 2:00 PM	06/04/2020 12:24 PM
2006085-002	GW-B2-0603	06/03/2020 1:00 PM	06/04/2020 12:24 PM
2006085-003	GW-B3-0603	06/03/2020 12:10 PM	06/04/2020 12:24 PM
2006085-004	GW-B4-0603	06/03/2020 11:10 AM	06/04/2020 12:24 PM
2006085-005	GW-B5-0603	06/03/2020 10:00 AM	06/04/2020 12:24 PM
2006085-006	GW-B6-0603	06/03/2020 9:15 AM	06/04/2020 12:24 PM
2006085-007	GW-B6-0603-01	06/03/2020 9:15 AM	06/04/2020 12:24 PM
2006085-008	S-B1-4-5-0603	06/03/2020 1:40 PM	06/04/2020 12:24 PM
2006085-009	S-B2-2-4-0603	06/03/2020 12:30 PM	06/04/2020 12:24 PM
2006085-010	S-B3-2-3-0603	06/03/2020 11:30 PM	06/04/2020 12:24 PM
2006085-011	S-B4-1-3-0603	06/03/2020 10:30 AM	06/04/2020 12:24 PM
2006085-012	S-B4-1-3-0603-01	06/03/2020 10:30 AM	06/04/2020 12:24 PM
2006085-013	S-B4-11-12-0603	06/03/2020 10:45 AM	06/04/2020 12:24 PM
2006085-014	S-B5-3-4-0603	06/03/2020 9:20 AM	06/04/2020 12:24 PM
2006085-015	S-B6-3-4-0603	06/03/2020 8:45 AM	06/04/2020 12:24 PM
2006085-016	S-B7-3-5-0603	06/03/2020 4:00 PM	06/04/2020 12:24 PM
2006085-017	S-B8-4-5-0603	06/03/2020 4:20 PM	06/04/2020 12:24 PM
2006085-018	S-B9-6-7-0603	06/03/2020 4:40 PM	06/04/2020 12:24 PM

Case Narrative

WO#: **2006085**Date: **7/2/2020**

CLIENT: Libby Environmental

Project: Hardel Site

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

7/2/2020: Revision 2 includes addition of Level 2b data package.

Revision v1

Qualifiers & Acronyms

WO#: **2006085**

Date Reported: 7/2/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Revision v1

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 2:00:00 PM

Project: Hardel Site

Lab ID: 2006085-001 **Matrix:** Water

Client Sample ID: GW-B1-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Semi-Volatile Organic Compound	Semi-Volatile Organic Compounds by EPA Method 8270 Batch ID: 28620 Analyst: SB							
Phenol	2.10	1.98		ug/l	1	6/45/2020 5:40:26 DM		
2-Chlorophenol	2.10 ND	0.991		μg/L	1 1	6/15/2020 5:10:36 PM 6/15/2020 5:10:36 PM		
•	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND	0.991		μg/L		6/15/2020 5:10:36 PM		
1,2-Dichlorobenzene	ND	0.991		μg/L	1 1	6/15/2020 5:10:36 PM		
Benzyl alcohol	ND	0.991	Q	μg/L μg/L	1	6/15/2020 5:10:36 PM		
•	ND	1.98	Q		1	6/15/2020 5:10:36 PM		
Bis(2-chloroethyl) ether	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
2-Methylphenol (o-cresol) Hexachloroethane	ND ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
N-Nitrosodi-n-propylamine	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
	1.48	0.991	Q	μg/L	1	6/15/2020 5:10:36 PM		
3&4-Methylphenol (m, p-cresol)	ND	1.98	Q	μg/L	1	6/15/2020 5:10:36 PM		
Nitrobenzene	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
Isophorone	ND	1.98		μg/L		6/15/2020 5:10:36 PM		
2-Nitrophenol	ND ND			μg/L	1			
2,4-Dimethylphenol		0.991		μg/L	1	6/15/2020 5:10:36 PM		
Bis(2-chloroethoxy)methane	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
2,4-Dichlorophenol	ND	1.98		μg/L	1	6/15/2020 5:10:36 PM		
1,2,4-Trichlorobenzene	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
Naphthalene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM		
4-Chloroaniline	ND	4.95		μg/L	1	6/15/2020 5:10:36 PM		
Hexachlorobutadiene	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
4-Chloro-3-methylphenol	ND	4.95		μg/L	1	6/15/2020 5:10:36 PM		
2-Methylnaphthalene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM		
1-Methylnaphthalene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM		
Hexachlorocyclopentadiene	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
2,4,6-Trichlorophenol	ND	1.98		μg/L	1	6/15/2020 5:10:36 PM		
2,4,5-Trichlorophenol	ND	1.98		μg/L	1	6/15/2020 5:10:36 PM		
2-Chloronaphthalene	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
2-Nitroaniline	ND	4.95		μg/L	1	6/15/2020 5:10:36 PM		
Acenaphthene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM		
Dimethylphthalate	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
2,6-Dinitrotoluene	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
Acenaphthylene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM		
2,4-Dinitrophenol	ND	1.98		μg/L	1	6/15/2020 5:10:36 PM		
Dibenzofuran	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
2,4-Dinitrotoluene	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		
4-Nitrophenol	ND	4.95	Q*	μg/L	1	6/15/2020 5:10:36 PM		
Fluorene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM		
4-Chlorophenyl phenyl ether	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM		

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 2:00:00 PM

Project: Hardel Site

Lab ID: 2006085-001 **Matrix:** Water

Client Sample ID: GW-B1-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	ınds by EPA Me	ethod 8270		Bato	h ID: 28	620 Analyst: SB
Diethylphthalate	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM
4,6-Dinitro-2-methylphenol	ND	4.95		μg/L	1	6/15/2020 5:10:36 PM
4-Bromophenyl phenyl ether	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM
Hexachlorobenzene	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM
Pentachlorophenol	ND	1.98		μg/L	1	6/15/2020 5:10:36 PM
Phenanthrene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Anthracene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Carbazole	ND	4.95		μg/L	1	6/15/2020 5:10:36 PM
Di-n-butyl phthalate	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM
Fluoranthene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Pyrene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Benzyl Butylphthalate	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM
bis(2-Ethylhexyl)adipate	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM
Benz(a)anthracene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Chrysene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Bis(2-ethylhexyl) phthalate	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM
Di-n-octyl phthalate	ND	0.991		μg/L	1	6/15/2020 5:10:36 PM
Benzo(b)fluoranthene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Benzo(k)fluoranthene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Benzo(a)pyrene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Indeno(1,2,3-cd)pyrene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Dibenz(a,h)anthracene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Benzo(g,h,i)perylene	ND	0.495		μg/L	1	6/15/2020 5:10:36 PM
Surr: 2,4,6-Tribromophenol	143	24.7 - 176		%Rec	1	6/15/2020 5:10:36 PM
Surr: 2-Fluorobiphenyl	121	54.8 - 148		%Rec	1	6/15/2020 5:10:36 PM
Surr: Nitrobenzene-d5	116	40.8 - 151		%Rec	1	6/15/2020 5:10:36 PM
Surr: Phenol-d6	38.3	5 - 116		%Rec	1	6/15/2020 5:10:36 PM
Surr: p-Terphenyl	60.3	51.7 - 162		%Rec	1	6/15/2020 5:10:36 PM

^{* -} Flagged value is not within established control limits.

Mercury by EPA Method 245.1			Batch	ID: 286	25 Analyst: WF
Mercury	ND	0.100	μg/L	1	6/11/2020 5:56:41 PM
Total Metals by EPA Method 200.8			Batch	ID: 285	80 Analyst: CO
Barium	125	2.50	μg/L	1	6/8/2020 2:59:46 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 2:00:00 PM

Project: Hardel Site

Lab ID: 2006085-001 **Matrix:** Water

Client Sample ID: GW-B1-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 200.8				Batcl	h ID: 2858	0 Analyst: CO
Selenium Silver	ND ND	5.00 0.250		μg/L μg/L	1 1	6/8/2020 2:59:46 PM 6/8/2020 2:59:46 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 1:00:00 PM

Project: Hardel Site

Lab ID: 2006085-002 **Matrix:** Water

Client Sample ID: GW-B2-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compound	s by EPA Metl	hod 8270		Bato	h ID: 28	620 Analyst: SB
Phenol	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
2-Chlorophenol	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
1,3-Dichlorobenzene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
1,4-Dichlorobenzene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
1,2-Dichlorobenzene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Benzyl alcohol	ND	0.998	Q	μg/L	1	6/15/2020 5:55:37 PM
Bis(2-chloroethyl) ether	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
2-Methylphenol (o-cresol)	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Hexachloroethane	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
N-Nitrosodi-n-propylamine	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
3&4-Methylphenol (m, p-cresol)	ND	0.998	Q	μg/L	1	6/15/2020 5:55:37 PM
Nitrobenzene	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
Isophorone	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
2-Nitrophenol	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
2,4-Dimethylphenol	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Bis(2-chloroethoxy)methane	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
2,4-Dichlorophenol	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
1,2,4-Trichlorobenzene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Naphthalene	1.28	0.499		μg/L	1	6/15/2020 5:55:37 PM
4-Chloroaniline	ND	4.99		μg/L	1	6/15/2020 5:55:37 PM
Hexachlorobutadiene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
4-Chloro-3-methylphenol	ND	4.99		μg/L	1	6/15/2020 5:55:37 PM
2-Methylnaphthalene	4.60	0.499		μg/L	1	6/15/2020 5:55:37 PM
1-Methylnaphthalene	6.16	0.499		μg/L	1	6/15/2020 5:55:37 PM
Hexachlorocyclopentadiene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
2,4,6-Trichlorophenol	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
2,4,5-Trichlorophenol	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
2-Chloronaphthalene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
2-Nitroaniline	ND	4.99		μg/L	1	6/15/2020 5:55:37 PM
Acenaphthene	0.699	0.499		μg/L	1	6/15/2020 5:55:37 PM
Dimethylphthalate	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
2,6-Dinitrotoluene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Acenaphthylene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
2,4-Dinitrophenol	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
Dibenzofuran	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
2,4-Dinitrotoluene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
4-Nitrophenol	ND	4.99	Q*	μg/L	1	6/15/2020 5:55:37 PM
Fluorene	0.726	0.499		μg/L	1	6/15/2020 5:55:37 PM
4-Chlorophenyl phenyl ether	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 1:00:00 PM

Project: Hardel Site

Lab ID: 2006085-002 **Matrix:** Water

Client Sample ID: GW-B2-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	ınds by EPA Me	ethod 8270		Bato	h ID: 2	8620 Analyst: SB
Diethylphthalate	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
4,6-Dinitro-2-methylphenol	ND	4.99		μg/L	1	6/15/2020 5:55:37 PM
4-Bromophenyl phenyl ether	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Hexachlorobenzene	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Pentachlorophenol	ND	2.00		μg/L	1	6/15/2020 5:55:37 PM
Phenanthrene	0.880	0.499		μg/L	1	6/15/2020 5:55:37 PM
Anthracene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Carbazole	ND	4.99		μg/L	1	6/15/2020 5:55:37 PM
Di-n-butyl phthalate	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Fluoranthene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Pyrene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Benzyl Butylphthalate	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
bis(2-Ethylhexyl)adipate	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Benz(a)anthracene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Chrysene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Bis(2-ethylhexyl) phthalate	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Di-n-octyl phthalate	ND	0.998		μg/L	1	6/15/2020 5:55:37 PM
Benzo(b)fluoranthene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Benzo(k)fluoranthene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Benzo(a)pyrene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Indeno(1,2,3-cd)pyrene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Dibenz(a,h)anthracene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Benzo(g,h,i)perylene	ND	0.499		μg/L	1	6/15/2020 5:55:37 PM
Surr: 2,4,6-Tribromophenol	147	24.7 - 176		%Rec	1	6/15/2020 5:55:37 PM
Surr: 2-Fluorobiphenyl	131	54.8 - 148		%Rec	1	6/15/2020 5:55:37 PM
Surr: Nitrobenzene-d5	122	40.8 - 151		%Rec	1	6/15/2020 5:55:37 PM
Surr: Phenol-d6	41.5	5 - 116		%Rec	1	6/15/2020 5:55:37 PM
Surr: p-Terphenyl	119	51.7 - 162		%Rec	1	6/15/2020 5:55:37 PM
NOTES:						

^{* -} Flagged value is not within established control limits.

Mercury by EPA Method 245.1			Batch	ID: 286	Analyst: WF
Mercury	ND	0.100	μg/L	1	6/11/2020 6:03:30 PM
Total Metals by EPA Method 200.8			Batch	ID: 285	Analyst: CO
Barium	56.4	2.50	μg/L	1	6/8/2020 3:10:55 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 1:00:00 PM

Project: Hardel Site

Lab ID: 2006085-002 **Matrix:** Water

Client Sample ID: GW-B2-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 200.8				Batcl	h ID: 285	80 Analyst: CO
Selenium	ND	5.00		μg/L	1	6/8/2020 3:10:55 PM
Silver	ND	0.250		μg/L	1	6/9/2020 12:48:34 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 12:10:00 PM

Project: Hardel Site

Lab ID: 2006085-003 **Matrix:** Water

Client Sample ID: GW-B3-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compounds	s by EPA Metl	nod 8270		Batc	h ID: 28	620 Analyst: SB
Phenol	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
2-Chlorophenol	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
1,3-Dichlorobenzene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
1,4-Dichlorobenzene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
1,2-Dichlorobenzene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Benzyl alcohol	ND	0.989	Q	μg/L	1	6/15/2020 6:18:12 PM
Bis(2-chloroethyl) ether	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
2-Methylphenol (o-cresol)	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Hexachloroethane	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
N-Nitrosodi-n-propylamine	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
3&4-Methylphenol (m, p-cresol)	ND	0.989	Q	μg/L	1	6/15/2020 6:18:12 PM
Nitrobenzene	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
Isophorone	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
2-Nitrophenol	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
2,4-Dimethylphenol	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Bis(2-chloroethoxy)methane	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
2,4-Dichlorophenol	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
1,2,4-Trichlorobenzene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Naphthalene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
4-Chloroaniline	ND	4.94		μg/L	1	6/15/2020 6:18:12 PM
Hexachlorobutadiene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
4-Chloro-3-methylphenol	ND	4.94		μg/L	1	6/15/2020 6:18:12 PM
2-Methylnaphthalene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
1-Methylnaphthalene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Hexachlorocyclopentadiene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
2,4,6-Trichlorophenol	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
2,4,5-Trichlorophenol	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
2-Chloronaphthalene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
2-Nitroaniline	ND	4.94		μg/L	1	6/15/2020 6:18:12 PM
Acenaphthene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Dimethylphthalate	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
2,6-Dinitrotoluene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Acenaphthylene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
2,4-Dinitrophenol	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
Dibenzofuran	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
2,4-Dinitrotoluene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
4-Nitrophenol	ND	4.94	Q*	μg/L	1	6/15/2020 6:18:12 PM
Fluorene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
4-Chlorophenyl phenyl ether	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 12:10:00 PM

Project: Hardel Site

Lab ID: 2006085-003 **Matrix:** Water

Client Sample ID: GW-B3-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	ınds by EPA Me	ethod 8270		Bato	h ID: 2	28620 Analyst: SB
Diethylphthalate	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
4,6-Dinitro-2-methylphenol	ND	4.94		μg/L	1	6/15/2020 6:18:12 PM
4-Bromophenyl phenyl ether	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Hexachlorobenzene	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Pentachlorophenol	ND	1.98		μg/L	1	6/15/2020 6:18:12 PM
Phenanthrene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Anthracene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Carbazole	ND	4.94		μg/L	1	6/15/2020 6:18:12 PM
Di-n-butyl phthalate	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Fluoranthene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Pyrene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Benzyl Butylphthalate	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
bis(2-Ethylhexyl)adipate	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Benz(a)anthracene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Chrysene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Bis(2-ethylhexyl) phthalate	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Di-n-octyl phthalate	ND	0.989		μg/L	1	6/15/2020 6:18:12 PM
Benzo(b)fluoranthene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Benzo(k)fluoranthene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Benzo(a)pyrene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Indeno(1,2,3-cd)pyrene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Dibenz(a,h)anthracene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Benzo(g,h,i)perylene	ND	0.494		μg/L	1	6/15/2020 6:18:12 PM
Surr: 2,4,6-Tribromophenol	133	24.7 - 176		%Rec	1	6/15/2020 6:18:12 PM
Surr: 2-Fluorobiphenyl	106	54.8 - 148		%Rec	1	6/15/2020 6:18:12 PM
Surr: Nitrobenzene-d5	92.3	40.8 - 151		%Rec	1	6/15/2020 6:18:12 PM
Surr: Phenol-d6	32.6	5 - 116		%Rec	1	6/15/2020 6:18:12 PM
Surr: p-Terphenyl	131	51.7 - 162		%Rec	1	6/15/2020 6:18:12 PM
NOTES:						

^{* -} Flagged value is not within established control limits.

Mercury by EPA Method 245.1			Batch	ID: 286	25 Analyst: WF
Mercury	ND	0.100	μg/L	1	6/11/2020 6:05:11 PM
Total Metals by EPA Method 200.8			Batch	ID: 285	Analyst: CO
Barium	178	2.50	μg/L	1	6/8/2020 3:16:29 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 12:10:00 PM

Project: Hardel Site

Lab ID: 2006085-003 **Matrix:** Water

Client Sample ID: GW-B3-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 200.8				Batcl	h ID: 2858	30 Analyst: CO
Selenium	ND	5.00		μg/L	1	6/8/2020 3:16:29 PM
Silver	ND	0.250		μg/L	1	6/8/2020 3:16:29 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 11:10:00 AM

Project: Hardel Site

Lab ID: 2006085-004 **Matrix:** Water

Client Sample ID: GW-B4-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compoun	ds by EPA Metl	nod 8270		Bato	h ID: 28	620 Analyst: SB
Dhamal	ND	2.00		/1	4	C/4 E/0000 C: 40: 40 DM
Phenol	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
2-Chlorophenol	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
1,3-Dichlorobenzene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
1,4-Dichlorobenzene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
1,2-Dichlorobenzene	ND	0.999	•	μg/L	1	6/15/2020 6:40:42 PM
Benzyl alcohol	ND	0.999	Q	μg/L	1	6/15/2020 6:40:42 PM
Bis(2-chloroethyl) ether	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
2-Methylphenol (o-cresol)	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Hexachloroethane	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
N-Nitrosodi-n-propylamine	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
3&4-Methylphenol (m, p-cresol)	ND	0.999	Q	μg/L	1	6/15/2020 6:40:42 PM
Nitrobenzene	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
Isophorone	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
2-Nitrophenol	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
2,4-Dimethylphenol	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Bis(2-chloroethoxy)methane	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
2,4-Dichlorophenol	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
1,2,4-Trichlorobenzene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Naphthalene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
4-Chloroaniline	ND	4.99		μg/L	1	6/15/2020 6:40:42 PM
Hexachlorobutadiene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
4-Chloro-3-methylphenol	ND	4.99		μg/L	1	6/15/2020 6:40:42 PM
2-Methylnaphthalene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
1-Methylnaphthalene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Hexachlorocyclopentadiene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
2,4,6-Trichlorophenol	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
2,4,5-Trichlorophenol	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
2-Chloronaphthalene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
2-Nitroaniline	ND	4.99		μg/L	1	6/15/2020 6:40:42 PM
Acenaphthene	1.22	0.499		μg/L	1	6/15/2020 6:40:42 PM
Dimethylphthalate	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
2,6-Dinitrotoluene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Acenaphthylene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
2,4-Dinitrophenol	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
Dibenzofuran	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
2,4-Dinitrotoluene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
4-Nitrophenol	ND	4.99	Q*	μg/L	1	6/15/2020 6:40:42 PM
Fluorene	ND	0.499	•	μg/L	1	6/15/2020 6:40:42 PM
		0.400		μ9/∟		J/ 1J/2J2J U.TU.T2 1 IVI

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 11:10:00 AM

Project: Hardel Site

Lab ID: 2006085-004 **Matrix:** Water

Client Sample ID: GW-B4-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	ınds by EPA Me	ethod 8270		Bato	ch ID: 28	3620 Analyst: SB
Diethylphthalate	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
4,6-Dinitro-2-methylphenol	ND	4.99		μg/L	1	6/15/2020 6:40:42 PM
4-Bromophenyl phenyl ether	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Hexachlorobenzene	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Pentachlorophenol	ND	2.00		μg/L	1	6/15/2020 6:40:42 PM
Phenanthrene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Anthracene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Carbazole	ND	4.99		μg/L	1	6/15/2020 6:40:42 PM
Di-n-butyl phthalate	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Fluoranthene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Pyrene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Benzyl Butylphthalate	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
bis(2-Ethylhexyl)adipate	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Benz(a)anthracene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Chrysene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Bis(2-ethylhexyl) phthalate	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Di-n-octyl phthalate	ND	0.999		μg/L	1	6/15/2020 6:40:42 PM
Benzo(b)fluoranthene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Benzo(k)fluoranthene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Benzo(a)pyrene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Indeno(1,2,3-cd)pyrene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Dibenz(a,h)anthracene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Benzo(g,h,i)perylene	ND	0.499		μg/L	1	6/15/2020 6:40:42 PM
Surr: 2,4,6-Tribromophenol	137	24.7 - 176		%Rec	1	6/15/2020 6:40:42 PM
Surr: 2-Fluorobiphenyl	130	54.8 - 148		%Rec	1	6/15/2020 6:40:42 PM
Surr: Nitrobenzene-d5	118	40.8 - 151		%Rec	1	6/15/2020 6:40:42 PM
Surr: Phenol-d6	39.8	5 - 116		%Rec	1	6/15/2020 6:40:42 PM
Surr: p-Terphenyl	145	51.7 - 162		%Rec	1	6/15/2020 6:40:42 PM
NOTES:						

^{* -} Flagged value is not within established control limits.

Mercury by EPA Method 245.1			Batch	n ID: 286	625 Analyst: WF
Mercury	ND	0.100	μg/L	1	6/11/2020 6:06:52 PM
Total Metals by EPA Method 200.8			Batch	n ID: 28	580 Analyst: CO
Barium	65.0	2.50	μg/L	1	6/8/2020 3:43:01 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 11:10:00 AM

Project: Hardel Site

Lab ID: 2006085-004 **Matrix:** Water

Client Sample ID: GW-B4-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 200.8				Batcl	n ID: 2858	0 Analyst: CO
Selenium Silver	ND ND	5.00 0.250		μg/L μg/L	1 1	6/8/2020 3:43:01 PM 6/8/2020 3:43:01 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 10:00:00 AM

Project: Hardel Site

Lab ID: 2006085-005 **Matrix:** Water

Client Sample ID: GW-B5-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	nds by EPA Meth	nod 8270		Batc	h ID: 28	620 Analyst: SB
Phenol	ND	2.00		μg/L	1	6/15/2020 7:03:09 PM
2-Chlorophenol	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
1,3-Dichlorobenzene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
1,4-Dichlorobenzene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
1,2-Dichlorobenzene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Benzyl alcohol	ND	0.999	Q	μg/L	1	6/15/2020 7:03:09 PM
Bis(2-chloroethyl) ether	ND	2.00		μg/L	1	6/15/2020 7:03:09 PM
2-Methylphenol (o-cresol)	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Hexachloroethane	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
N-Nitrosodi-n-propylamine	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
3&4-Methylphenol (m, p-cresol)	ND	0.999	Q	μg/L	1	6/15/2020 7:03:09 PM
Nitrobenzene	ND	2.00	_	μg/L	1	6/15/2020 7:03:09 PM
Isophorone	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
2-Nitrophenol	ND	2.00		μg/L	1	6/15/2020 7:03:09 PM
2,4-Dimethylphenol	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Bis(2-chloroethoxy)methane	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
2,4-Dichlorophenol	ND	2.00		μg/L	1	6/15/2020 7:03:09 PM
1,2,4-Trichlorobenzene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Naphthalene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
4-Chloroaniline	ND	4.99		μg/L	1	6/15/2020 7:03:09 PM
Hexachlorobutadiene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
4-Chloro-3-methylphenol	ND	4.99		μg/L	1	6/15/2020 7:03:09 PM
2-Methylnaphthalene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
1-Methylnaphthalene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Hexachlorocyclopentadiene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
2,4,6-Trichlorophenol	ND	2.00		μg/L	1	6/15/2020 7:03:09 PM
2,4,5-Trichlorophenol	ND	2.00		μg/L	1	6/15/2020 7:03:09 PM
2-Chloronaphthalene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
2-Nitroaniline	ND	4.99		μg/L	1	6/15/2020 7:03:09 PM
Acenaphthene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Dimethylphthalate	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
2,6-Dinitrotoluene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Acenaphthylene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
2,4-Dinitrophenol	ND	2.00		μg/L	1	6/15/2020 7:03:09 PM
Dibenzofuran	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
2,4-Dinitrotoluene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
4-Nitrophenol	ND	4.99	Q*	μg/L	1	6/15/2020 7:03:09 PM
Fluorene	ND	0.499	•	μg/L	1	6/15/2020 7:03:09 PM
4-Chlorophenyl phenyl ether	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 10:00:00 AM

Project: Hardel Site

Lab ID: 2006085-005 **Matrix:** Water

Client Sample ID: GW-B5-0603

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	nds by EPA Me	ethod 8270		Bato	h ID: 28	620 Analyst: SB
Diethylphthalate	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
4,6-Dinitro-2-methylphenol	ND	4.99		μg/L	1	6/15/2020 7:03:09 PM
4-Bromophenyl phenyl ether	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Hexachlorobenzene	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Pentachlorophenol	ND	2.00		μg/L	1	6/15/2020 7:03:09 PM
Phenanthrene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Anthracene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Carbazole	ND	4.99		μg/L	1	6/15/2020 7:03:09 PM
Di-n-butyl phthalate	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Fluoranthene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Pyrene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Benzyl Butylphthalate	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
bis(2-Ethylhexyl)adipate	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Benz(a)anthracene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Chrysene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Bis(2-ethylhexyl) phthalate	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Di-n-octyl phthalate	ND	0.999		μg/L	1	6/15/2020 7:03:09 PM
Benzo(b)fluoranthene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Benzo(k)fluoranthene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Benzo(a)pyrene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Indeno(1,2,3-cd)pyrene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Dibenz(a,h)anthracene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Benzo(g,h,i)perylene	ND	0.499		μg/L	1	6/15/2020 7:03:09 PM
Surr: 2,4,6-Tribromophenol	139	24.7 - 176		%Rec	1	6/15/2020 7:03:09 PM
Surr: 2-Fluorobiphenyl	121	54.8 - 148		%Rec	1	6/15/2020 7:03:09 PM
Surr: Nitrobenzene-d5	105	40.8 - 151		%Rec	1	6/15/2020 7:03:09 PM
Surr: Phenol-d6	37.7	5 - 116		%Rec	1	6/15/2020 7:03:09 PM
Surr: p-Terphenyl	141	51.7 - 162		%Rec	1	6/15/2020 7:03:09 PM

^{* -} Flagged value is not within established control limits.

Mercury by EPA Method 245.1			Batch	ID: 286	25 Analyst: WF
Mercury	ND	0.100	μg/L	1	6/11/2020 6:08:34 PM
Total Metals by EPA Method 200.8			Batch	ID: 285	80 Analyst: CO
Barium	8.87	2.50	μg/L	1	6/8/2020 3:48:35 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 10:00:00 AM

Project: Hardel Site

Lab ID: 2006085-005 **Matrix:** Water

Client Sample ID: GW-B5-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 200.8				Batcl	h ID: 285	580 Analyst: CO
Selenium	ND	5.00		μg/L	1	6/8/2020 3:48:35 PM
Silver	ND	0.250		μg/L	1	6/8/2020 3:48:35 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 9:15:00 AM

Project: Hardel Site

Lab ID: 2006085-006 **Matrix:** Water

Client Sample ID: GW-B6-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compound	s by EPA Metl	nod 8270		Bato	h ID: 28	620 Analyst: SB
8.	ND	4.00		,		0/45/0000 7.05 40 504
Phenol	ND	1.98		μg/L "	1	6/15/2020 7:25:43 PM
2-Chlorophenol	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
1,3-Dichlorobenzene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
1,4-Dichlorobenzene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
1,2-Dichlorobenzene	ND	0.992	_	μg/L	1	6/15/2020 7:25:43 PM
Benzyl alcohol	ND	0.992	Q	μg/L	1	6/15/2020 7:25:43 PM
Bis(2-chloroethyl) ether	ND	1.98		μg/L	1	6/15/2020 7:25:43 PM
2-Methylphenol (o-cresol)	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Hexachloroethane	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
N-Nitrosodi-n-propylamine	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
3&4-Methylphenol (m, p-cresol)	ND	0.992	Q	μg/L	1	6/15/2020 7:25:43 PM
Nitrobenzene	ND	1.98		μg/L	1	6/15/2020 7:25:43 PM
Isophorone	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
2-Nitrophenol	ND	1.98		μg/L	1	6/15/2020 7:25:43 PM
2,4-Dimethylphenol	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Bis(2-chloroethoxy)methane	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
2,4-Dichlorophenol	ND	1.98		μg/L	1	6/15/2020 7:25:43 PM
1,2,4-Trichlorobenzene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Naphthalene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
4-Chloroaniline	ND	4.96		μg/L	1	6/15/2020 7:25:43 PM
Hexachlorobutadiene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
4-Chloro-3-methylphenol	ND	4.96		μg/L	1	6/15/2020 7:25:43 PM
2-Methylnaphthalene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
1-Methylnaphthalene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Hexachlorocyclopentadiene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
2,4,6-Trichlorophenol	ND	1.98		μg/L	1	6/15/2020 7:25:43 PM
2,4,5-Trichlorophenol	ND	1.98		μg/L	1	6/15/2020 7:25:43 PM
2-Chloronaphthalene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
2-Nitroaniline	ND	4.96		μg/L	1	6/15/2020 7:25:43 PM
Acenaphthene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Dimethylphthalate	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
2,6-Dinitrotoluene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Acenaphthylene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
2,4-Dinitrophenol	ND	1.98		μg/L	1	6/15/2020 7:25:43 PM
Dibenzofuran	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
2,4-Dinitrotoluene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
4-Nitrophenol	ND	4.96	Q*	μg/L	1	6/15/2020 7:25:43 PM
Fluorene	ND	0.496	-	μg/L	1	6/15/2020 7:25:43 PM
4-Chlorophenyl phenyl ether	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
				r- 3' -	-	

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 9:15:00 AM

Project: Hardel Site

Lab ID: 2006085-006 **Matrix:** Water

Client Sample ID: GW-B6-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	unds by EPA Me	ethod 8270		Bato	ch ID: 28	3620 Analyst: SB
Diethylphthalate	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
4,6-Dinitro-2-methylphenol	ND	4.96		μg/L	1	6/15/2020 7:25:43 PM
4-Bromophenyl phenyl ether	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Hexachlorobenzene	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Pentachlorophenol	ND	1.98		μg/L	1	6/15/2020 7:25:43 PM
Phenanthrene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Anthracene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Carbazole	ND	4.96		μg/L	1	6/15/2020 7:25:43 PM
Di-n-butyl phthalate	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Fluoranthene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Pyrene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Benzyl Butylphthalate	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
bis(2-Ethylhexyl)adipate	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Benz(a)anthracene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Chrysene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Bis(2-ethylhexyl) phthalate	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Di-n-octyl phthalate	ND	0.992		μg/L	1	6/15/2020 7:25:43 PM
Benzo(b)fluoranthene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Benzo(k)fluoranthene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Benzo(a)pyrene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Indeno(1,2,3-cd)pyrene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Dibenz(a,h)anthracene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Benzo(g,h,i)perylene	ND	0.496		μg/L	1	6/15/2020 7:25:43 PM
Surr: 2,4,6-Tribromophenol	131	24.7 - 176		%Rec	1	6/15/2020 7:25:43 PM
Surr: 2-Fluorobiphenyl	111	54.8 - 148		%Rec	1	6/15/2020 7:25:43 PM
Surr: Nitrobenzene-d5	101	40.8 - 151		%Rec	1	6/15/2020 7:25:43 PM
Surr: Phenol-d6	35.1	5 - 116		%Rec	1	6/15/2020 7:25:43 PM
Surr: p-Terphenyl	134	51.7 - 162		%Rec	1	6/15/2020 7:25:43 PM
NOTES:					•	

^{* -} Flagged value is not within established control limits.

Mercury by EPA Method 245.1			Batch	1D: 286	Analyst: WF
Mercury	ND	0.100	μg/L	1	6/11/2020 6:15:10 PM
Total Metals by EPA Method 200.8			Batch	n ID: 285	Analyst: CO
Barium	8.46	2.50	μg/L	1	6/8/2020 3:54:09 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 9:15:00 AM

Project: Hardel Site

Lab ID: 2006085-006 **Matrix:** Water

Client Sample ID: GW-B6-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 200.8				Batcl	n ID: 285	Analyst: CO
Selenium	ND	5.00		μg/L	1	6/8/2020 3:54:09 PM
Silver	ND	0.250		μg/L	1	6/8/2020 3:54:09 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 9:15:00 AM

Project: Hardel Site

Lab ID: 2006085-007 **Matrix:** Water

Client Sample ID: GW-B6-0603-01

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	nds by EPA Metl	nod 8270		Batc	h ID: 28	620 Analyst: SB
Phenol	ND	1.98		ug/l	1	6/15/2020 7:48:16 PM
2-Chlorophenol	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
1,3-Dichlorobenzene	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
1,4-Dichlorobenzene	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
1,2-Dichlorobenzene	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
Benzyl alcohol	ND	0.990	Q	μg/L	1	6/15/2020 7:48:16 PM
Bis(2-chloroethyl) ether	ND	1.98	Q	μg/L	1	6/15/2020 7:48:16 PM
2-Methylphenol (o-cresol)	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
Hexachloroethane	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
N-Nitrosodi-n-propylamine	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
3&4-Methylphenol (m, p-cresol)	ND	0.990	Q	μg/L μg/L	1	6/15/2020 7:48:16 PM
Nitrobenzene	ND	1.98	Q	μg/L	1	6/15/2020 7:48:16 PM
Isophorone	ND	0.990			1	6/15/2020 7:48:16 PM
2-Nitrophenol	ND	1.98		μg/L	1	6/15/2020 7:48:16 PM
2,4-Dimethylphenol	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
Bis(2-chloroethoxy)methane	ND ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
2,4-Dichlorophenol	ND ND	1.98		μg/L μg/L	1	6/15/2020 7:48:16 PM
1,2,4-Trichlorobenzene	ND ND	0.990		. •	1	6/15/2020 7:48:16 PM
Naphthalene	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
4-Chloroaniline	ND	4.95			1	6/15/2020 7:48:16 PM
Hexachlorobutadiene	ND ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
4-Chloro-3-methylphenol	ND	4.95		μg/L	1	6/15/2020 7:48:16 PM
2-Methylnaphthalene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
1-Methylnaphthalene	ND	0.495		μg/L μg/L	1	6/15/2020 7:48:16 PM
Hexachlorocyclopentadiene	ND ND	0.493			1	6/15/2020 7:48:16 PM
2,4,6-Trichlorophenol	ND	1.98		μg/L	1	6/15/2020 7:48:16 PM
2,4,5-Trichlorophenol	ND	1.98		μg/L	1	6/15/2020 7:48:16 PM
2-Chloronaphthalene	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
2-Nitroaniline	ND ND	4.95		μg/L μg/L	1	6/15/2020 7:48:16 PM
Acenaphthene	ND ND	0.495		μg/L μg/L	1	6/15/2020 7:48:16 PM
Dimethylphthalate	ND	0.493		μg/L μg/L	1	6/15/2020 7:48:16 PM
2,6-Dinitrotoluene	ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
Acenaphthylene	ND	0.495		μg/L μg/L	1	6/15/2020 7:48:16 PM
2,4-Dinitrophenol	ND ND	1.98		μg/L μg/L	1	6/15/2020 7:48:16 PM
Dibenzofuran	ND ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
2,4-Dinitrotoluene	ND ND	0.990		μg/L μg/L	1	6/15/2020 7:48:16 PM
	ND ND		O*			6/15/2020 7:48:16 PM
4-Nitrophenol Fluorene	ND ND	4.95 0.495	Q*	μg/L	1	6/15/2020 7:48:16 PM
		0.495		μg/L	1	
4-Chlorophenyl phenyl ether	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM

Work Order: 2006085 Date Reported: 7/2/2020

Client: Libby Environmental Collection Date: 6/3/2020 9:15:00 AM

Project: Hardel Site

Lab ID: 2006085-007 Matrix: Water

Client Sample ID: GW-B6-0603-01

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	ınds by EPA Me	ethod 8270		Bato	h ID:	28620 Analyst: SB
Diethylphthalate	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
4,6-Dinitro-2-methylphenol	ND	4.95		μg/L	1	6/15/2020 7:48:16 PM
4-Bromophenyl phenyl ether	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
Hexachlorobenzene	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
Pentachlorophenol	ND	1.98		μg/L	1	6/15/2020 7:48:16 PM
Phenanthrene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Anthracene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Carbazole	ND	4.95		μg/L	1	6/15/2020 7:48:16 PM
Di-n-butyl phthalate	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
Fluoranthene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Pyrene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Benzyl Butylphthalate	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
bis(2-Ethylhexyl)adipate	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
Benz(a)anthracene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Chrysene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Bis(2-ethylhexyl) phthalate	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
Di-n-octyl phthalate	ND	0.990		μg/L	1	6/15/2020 7:48:16 PM
Benzo(b)fluoranthene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Benzo(k)fluoranthene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Benzo(a)pyrene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Indeno(1,2,3-cd)pyrene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Dibenz(a,h)anthracene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Benzo(g,h,i)perylene	ND	0.495		μg/L	1	6/15/2020 7:48:16 PM
Surr: 2,4,6-Tribromophenol	141	24.7 - 176		%Rec	1	6/15/2020 7:48:16 PM
Surr: 2-Fluorobiphenyl	121	54.8 - 148		%Rec	1	6/15/2020 7:48:16 PM
Surr: Nitrobenzene-d5	117	40.8 - 151		%Rec	1	6/15/2020 7:48:16 PM
Surr: Phenol-d6	38.5	5 - 116		%Rec	1	6/15/2020 7:48:16 PM
Surr: p-Terphenyl	147	51.7 - 162		%Rec	1	6/15/2020 7:48:16 PM
NOTEO						

^{* -} Flagged value is not within established control limits.

Mercury by EPA Method 245.1			Batch	n ID: 286	625 Analyst: WF
Mercury	ND	0.100	μg/L	1	6/11/2020 6:16:52 PM
Total Metals by EPA Method 200.8			Batch	n ID: 28	580 Analyst: CO
Barium	10.3	2.50	μg/L	1	6/8/2020 3:59:43 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 9:15:00 AM

Project: Hardel Site

Lab ID: 2006085-007 **Matrix:** Water

Client Sample ID: GW-B6-0603-01

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 200.8				Batc	h ID: 285	80 Analyst: CO
Selenium	ND	5.00		μg/L	1	6/8/2020 3:59:43 PM
Silver	ND	0.250		μg/L	1	6/8/2020 3:59:43 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 1:40:00 PM

Project: Hardel Site

Lab ID: 2006085-008 **Matrix:** Soil

Client Sample ID: S-B1-4-5-0603

Analyses	Result	RL	Quai	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 28	581 Analyst: SB
Naphthalene	ND	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
2-Methylnaphthalene	ND	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
1-Methylnaphthalene	ND	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Acenaphthylene	ND	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Acenaphthene	ND	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Fluorene	ND	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Phenanthrene	69.2	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Anthracene	89.4	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Fluoranthene	665	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Pyrene	927	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Benz(a)anthracene	184	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Chrysene	265	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Benzo(b)fluoranthene	252	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Benzo(k)fluoranthene	121	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Benzo(a)pyrene	155	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Indeno(1,2,3-cd)pyrene	61.8	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Dibenz(a,h)anthracene	54.2	45.5		μg/Kg-dry	1	6/8/2020 8:29:30 PM
Benzo(g,h,i)perylene	48.5	45.5	Q	μg/Kg-dry	1	6/8/2020 8:29:30 PM
Surr: 2-Fluorobiphenyl	72.2	6.91 - 127		%Rec	1	6/8/2020 8:29:30 PM
Surr: Terphenyl-d14 (surr)	122	32.9 - 153		%Rec	1	6/8/2020 8:29:30 PM
,						

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B			Batch ID:	28586 Analyst: CO
Barium	86.8	0.426	mg/Kg-dry 1	6/10/2020 12:25:00 PM
Selenium	1.09	0.426	mg/Kg-dry 1	6/9/2020 5:47:03 PM
Silver	0.129	0.0851	mg/Kg-dry 1	6/9/2020 5:47:03 PM
Sample Moisture (Percent Moisture)			Batch ID:	R59697 Analyst: SBM
Percent Moisture	12.4	0.500	wt% 1	6/9/2020 2:48:41 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 12:30:00 PM

Project: Hardel Site

Lab ID: 2006085-009 **Matrix:** Soil

Client Sample ID: S-B2-2-4-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocar	bons by NWEF	<u>PH</u>		Batch	1D: 28	8677 Analyst: DW
Aliphatic Hydrocarbon (C8-C10)	52.3	24.2	*	mg/Kg-dry	1	6/23/2020 11:50:00 PM
Aliphatic Hydrocarbon (C10-C12)	383	12.1	*	mg/Kg-dry	1	6/23/2020 11:50:00 PM
Aliphatic Hydrocarbon (C12-C16)	1,880	60.4	D	mg/Kg-dry	5	6/24/2020 4:19:00 PM
Aliphatic Hydrocarbon (C16-C21)	1,390	60.4	D	mg/Kg-dry	5	6/24/2020 4:19:00 PM
Aliphatic Hydrocarbon (C21-C34)	1,180	60.4	D	mg/Kg-dry	5	6/24/2020 4:19:00 PM
Aromatic Hydrocarbon (C8-C10)	22.6	12.1	*Q	mg/Kg-dry	1	6/23/2020 4:28:00 PM
Aromatic Hydrocarbon (C10-C12)	72.9	12.1		mg/Kg-dry	1	6/23/2020 4:28:00 PM
Aromatic Hydrocarbon (C12-C16)	540	12.1		mg/Kg-dry	1	6/23/2020 4:28:00 PM
Aromatic Hydrocarbon (C16-C21)	958	12.1		mg/Kg-dry	1	6/23/2020 4:28:00 PM
Aromatic Hydrocarbon (C21-C34)	316	12.1		mg/Kg-dry	1	6/23/2020 4:28:00 PM
Surr: 1-Chlorooctadecane	70.1	60 - 140		%Rec	1	6/23/2020 11:50:00 PM
Surr: o-Terphenyl	72.6	60 - 140		%Rec	1	6/23/2020 4:28:00 PM

^{* -} Flagged value is not within established control limits.

Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	ID: 28	581 Analyst: SB
Naphthalene	3,640	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
2-Methylnaphthalene	22,500	532	D	μg/Kg-dry	10	6/9/2020 11:13:17 AM
1-Methylnaphthalene	26,400	532	D	μg/Kg-dry	10	6/9/2020 11:13:17 AM
Acenaphthylene	ND	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Acenaphthene	4,810	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Fluorene	6,100	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Phenanthrene	16,900	532	D	μg/Kg-dry	10	6/9/2020 11:13:17 AM
Anthracene	1,450	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Fluoranthene	918	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Pyrene	1,650	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Benz(a)anthracene	83.4	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Chrysene	141	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Benzo(b)fluoranthene	62.2	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Benzo(k)fluoranthene	ND	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Benzo(a)pyrene	ND	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Indeno(1,2,3-cd)pyrene	ND	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Dibenz(a,h)anthracene	ND	53.2		μg/Kg-dry	1	6/8/2020 8:51:45 PM
Benzo(g,h,i)perylene	ND	53.2	Q	μg/Kg-dry	1	6/8/2020 8:51:45 PM
Surr: 2-Fluorobiphenyl	103	6.91 - 127		%Rec	1	6/8/2020 8:51:45 PM
Surr: Terphenyl-d14 (surr)	113	32.9 - 153		%Rec	1	6/8/2020 8:51:45 PM

Q - Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+- 20%)

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 12:30:00 PM

Project: Hardel Site

Lab ID: 2006085-009 **Matrix:** Soil

Client Sample ID: S-B2-2-4-0603

Analyses Result RL Qual Units DF Date Analyzed

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Batch ID: 28581

Analyst: SB

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B

Batch ID: 28586

Analyst: CO

Barium 294 5.42 mg/Kg-dry 10 6/10/2020 3:46:25 PM Selenium 0.999 0.542 mg/Kg-dry 6/9/2020 5:52:36 PM 1 Silver 0.391 0.108 mg/Kg-dry 6/9/2020 5:52:36 PM 1

Sample Moisture (Percent Moisture)

Batch ID: R59697

Analyst: SBM

Percent Moisture 27.3 0.500 wt% 1 6/9/2020 2:48:41 PM

Revision v1

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 11:30:00 PM

Project: Hardel Site

Lab ID: 2006085-010 **Matrix:** Soil

Client Sample ID: S-B3-2-3-0603

Result	RL	Qual	Units	DF	Date Analyzed
ons by NWEPH	Ī		Batch	1D: 2	28677 Analyst: DW
ND	18.3	*	mg/Kg-dry	1	6/24/2020 5:48:00 PM
ND	9.16	*	mg/Kg-dry	1	6/24/2020 5:48:00 PM
ND	9.16		mg/Kg-dry	1	6/24/2020 5:48:00 PM
19.4	9.16		mg/Kg-dry	1	6/24/2020 5:48:00 PM
527	9.16		mg/Kg-dry	1	6/24/2020 5:48:00 PM
ND	9.16	*Q	mg/Kg-dry	1	6/23/2020 7:25:00 PM
ND	9.16		mg/Kg-dry	1	6/23/2020 7:25:00 PM
ND	9.16		mg/Kg-dry	1	6/23/2020 7:25:00 PM
29.7	9.16		mg/Kg-dry	1	6/23/2020 7:25:00 PM
470	9.16		mg/Kg-dry	1	6/23/2020 7:25:00 PM
62.9	60 - 140		%Rec	1	6/24/2020 5:48:00 PM
61.8	60 - 140		%Rec	1	6/23/2020 7:25:00 PM
	ND ND 19.4 527 ND ND ND ND 470 62.9	ND 18.3 ND 9.16 ND 9.16 19.4 9.16 527 9.16 ND 9.16 ND 9.16 ND 9.16 ND 9.16 ND 9.16 470 9.16 62.9 60 - 140	ND 18.3 * ND 9.16 * ND 9.16 19.4 9.16 527 9.16 ND 9.16 ND 9.16 ND 9.16 ND 9.16 ND 9.16 29.7 9.16 470 9.16 62.9 60 - 140	ND 18.3 * mg/Kg-dry ND 9.16 * mg/Kg-dry ND 9.16 * mg/Kg-dry ND 9.16 mg/Kg-dry 19.4 9.16 mg/Kg-dry 527 9.16 mg/Kg-dry ND 9.16 *Q mg/Kg-dry ND 9.16 mg/Kg-dry ND 9.16 mg/Kg-dry 29.7 9.16 mg/Kg-dry 470 9.16 mg/Kg-dry 62.9 60 - 140 %Rec	ND 18.3 * mg/Kg-dry 1 ND 9.16 * mg/Kg-dry 1 ND 9.16 mg/Kg-dry 1 ND 9.16 mg/Kg-dry 1 19.4 9.16 mg/Kg-dry 1 527 9.16 mg/Kg-dry 1 ND 9.16 *Q mg/Kg-dry 1 ND 9.16 mg/Kg-dry 1 ND 9.16 mg/Kg-dry 1 29.7 9.16 mg/Kg-dry 1 470 9.16 mg/Kg-dry 1 62.9 60 - 140 %Rec 1

^{* -} Flagged value is not within established control limits.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batch ID:	28581	Analyst: SB
Naphthalene	ND	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
2-Methylnaphthalene	ND	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
1-Methylnaphthalene	ND	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Acenaphthylene	ND	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Acenaphthene	ND	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Fluorene	ND	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Phenanthrene	83.4	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Anthracene	ND	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Fluoranthene	349	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Pyrene	353	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Benz(a)anthracene	120	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Chrysene	172	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Benzo(b)fluoranthene	150	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Benzo(k)fluoranthene	83.2	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Benzo(a)pyrene	110	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Indeno(1,2,3-cd)pyrene	ND	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Dibenz(a,h)anthracene	45.5	40.7	μί	g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Benzo(g,h,i)perylene	ND	40.7	Q µ(g/Kg-dry 1	6/8	3/2020 9:13:55 PM
Surr: 2-Fluorobiphenyl	89.4	6.91 - 127		%Rec 1	6/8	3/2020 9:13:55 PM
Surr: Terphenyl-d14 (surr)	117	32.9 - 153		%Rec 1	6/8	8/2020 9:13:55 PM

Q - Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+/- 20%)

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 11:30:00 PM

Project: Hardel Site

Lab ID: 2006085-010 **Matrix:** Soil

Client Sample ID: S-B3-2-3-0603

Analyses Result RL Qual Units DF Date Analyzed

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Batch ID: 28581

Analyst: SB

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B

Batch ID: 28613

Analyst: CO

Barium 56.7 0.421 mg/Kg-dry 1 6/10/2020 4:23:55 PM Selenium 0.799 0.421 mg/Kg-dry 6/10/2020 4:23:55 PM 1 Silver ND 0.0842 mg/Kg-dry 6/10/2020 4:23:55 PM

Sample Moisture (Percent Moisture)

Batch ID: R59697

Analyst: SBM

Percent Moisture 7.24 0.500 wt% 1 6/9/2020 2:48:41 PM

Revision v1

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 10:30:00 AM

Project: Hardel Site

Lab ID: 2006085-011 **Matrix:** Soil

Client Sample ID: S-B4-1-3-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 28	581 Analyst: SB
Naphthalene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
2-Methylnaphthalene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
1-Methylnaphthalene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Acenaphthylene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Acenaphthene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Fluorene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Phenanthrene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Anthracene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Fluoranthene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Pyrene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Benz(a)anthracene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Chrysene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Benzo(b)fluoranthene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Benzo(k)fluoranthene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Benzo(a)pyrene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Indeno(1,2,3-cd)pyrene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Dibenz(a,h)anthracene	ND	38.2		μg/Kg-dry	1	6/8/2020 9:36:06 PM
Benzo(g,h,i)perylene	ND	38.2	Q	μg/Kg-dry	1	6/8/2020 9:36:06 PM
Surr: 2-Fluorobiphenyl	68.2	6.91 - 127		%Rec	1	6/8/2020 9:36:06 PM
Surr: Terphenyl-d14 (surr)	112	32.9 - 153		%Rec	1	6/8/2020 9:36:06 PM
NOTES.						

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B			Batch ID: 2	28613 Analyst: CO
Barium	80.3	0.390	mg/Kg-dry 1	6/10/2020 4:57:19 PM
Selenium	1.28	0.390	mg/Kg-dry 1	6/10/2020 4:57:19 PM
Silver	ND	0.0780	mg/Kg-dry 1	6/10/2020 4:57:19 PM
Sample Moisture (Percent Moisture)	1		Batch ID: F	R59697 Analyst: SBM
Percent Moisture	6.41	0.500	wt% 1	6/9/2020 2:48:41 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 10:30:00 AM

Project: Hardel Site

Lab ID: 2006085-012 **Matrix:** Soil

Client Sample ID: S-B4-1-3-0603-01

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	n ID: 28	581 Analyst: SB
Naphthalene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
2-Methylnaphthalene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
1-Methylnaphthalene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Acenaphthylene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Acenaphthene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Fluorene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Phenanthrene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Anthracene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Fluoranthene	114	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Pyrene	107	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Benz(a)anthracene	109	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Chrysene	109	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Benzo(b)fluoranthene	71.4	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Benzo(k)fluoranthene	66.9	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Benzo(a)pyrene	68.3	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Indeno(1,2,3-cd)pyrene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Dibenz(a,h)anthracene	ND	38.4		μg/Kg-dry	1	6/8/2020 9:58:21 PM
Benzo(g,h,i)perylene	ND	38.4	Q	μg/Kg-dry	1	6/8/2020 9:58:21 PM
Surr: 2-Fluorobiphenyl	80.5	6.91 - 127		%Rec	1	6/8/2020 9:58:21 PM
Surr: Terphenyl-d14 (surr)	116	32.9 - 153		%Rec	1	6/8/2020 9:58:21 PM
NOTES:						

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B			Batch ID:	28613 Analyst: CO
Barium	63.8	0.425	mg/Kg-dry 1	6/10/2020 5:02:53 PM
Selenium	0.932	0.425	mg/Kg-dry 1	6/10/2020 5:02:53 PM
Silver	ND	0.0851	mg/Kg-dry 1	6/10/2020 5:02:53 PM
Sample Moisture (Percent Moisture)			Batch ID:	R59697 Analyst: SBM
Percent Moisture	8.15	0.500	wt% 1	6/9/2020 2:48:41 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 10:45:00 AM

Project: Hardel Site

Lab ID: 2006085-013 **Matrix:** Soil

Client Sample ID: S-B4-11-12-0603

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 28	8581 Analyst: SB
Naphthalene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
2-Methylnaphthalene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
1-Methylnaphthalene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Acenaphthylene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Acenaphthene	58.9	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Fluorene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Phenanthrene	61.7	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Anthracene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Fluoranthene	148	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Pyrene	123	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Benz(a)anthracene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Chrysene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Benzo(b)fluoranthene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Benzo(k)fluoranthene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Benzo(a)pyrene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Indeno(1,2,3-cd)pyrene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Dibenz(a,h)anthracene	ND	44.0		μg/Kg-dry	1	6/8/2020 10:20:31 PM
Benzo(g,h,i)perylene	ND	44.0	Q	μg/Kg-dry	1	6/8/2020 10:20:31 PM
Surr: 2-Fluorobiphenyl	58.3	6.91 - 127		%Rec	1	6/8/2020 10:20:31 PM
Surr: Terphenyl-d14 (surr)	116	32.9 - 153		%Rec	1	6/8/2020 10:20:31 PM
NOTES:						
Q - Indicates an analyte with a contin	uing calibration that	does not meet e	stablished	acceptance c	riteria	
Total Metals by EPA Method 6	<u>020B</u>			Batch	n ID: 28	Analyst: CO
Barium	41.8	0.430		mg/Kg-dry	1	6/10/2020 5:19:37 PM
Selenium	0.846	0.430		mg/Kg-dry	1	6/10/2020 5:19:37 PM

ND

15.1

Revision v1

Silver

Percent Moisture

Sample Moisture (Percent Moisture)

6/10/2020 5:19:37 PM

6/9/2020 2:48:41 PM

Analyst: SBM

0.0860

0.500

mg/Kg-dry

wt%

Batch ID: R59697

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 9:20:00 AM

Project: Hardel Site

Lab ID: 2006085-014 **Matrix:** Soil

Client Sample ID: S-B5-3-4-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compound	ds by EPA Meth	od 8270		Batch	n ID: 28	605 Analyst: SB
Phenol	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Bis(2-chloroethyl) ether	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2-Chlorophenol	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
1,3-Dichlorobenzene	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
1,4-Dichlorobenzene	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
1,2-Dichlorobenzene	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Benzyl alcohol	ND	108	Q	μg/Kg-dry	1	6/12/2020 12:13:02 PM
2-Methylphenol (o-cresol)	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Hexachloroethane	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
N-Nitrosodi-n-propylamine	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
3&4-Methylphenol (m, p-cresol)	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Nitrobenzene	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Isophorone	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2-Nitrophenol	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2,4-Dimethylphenol	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Bis(2-chloroethoxy)methane	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2,4-Dichlorophenol	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
1,2,4-Trichlorobenzene	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Naphthalene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
4-Chloroaniline	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Hexachlorobutadiene	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
4-Chloro-3-methylphenol	ND	217		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2-Methylnaphthalene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
1-Methylnaphthalene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Hexachlorocyclopentadiene	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2,4,6-Trichlorophenol	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2,4,5-Trichlorophenol	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2-Chloronaphthalene	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2-Nitroaniline	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Acenaphthene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Dimethylphthalate	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2,6-Dinitrotoluene	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Acenaphthylene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2,4-Dinitrophenol	ND	569		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Dibenzofuran	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
2,4-Dinitrotoluene	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
4-Nitrophenol	ND	542		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Fluorene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
4-Chlorophenyl phenyl ether	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM

Work Order: 2006085 Date Reported: 7/2/2020

Date Analyzed

Client: Libby Environmental Collection Date: 6/3/2020 9:20:00 AM

RL

Qual

Units

DF

Project: Hardel Site

Analyses

Lab ID: 2006085-014 Matrix: Soil

Result

Client Sample ID: S-B5-3-4-0603

anary 303	Nesun	11.	Quai	Onits	<u> </u>	Date Analyzed
Semi-Volatile Organic Compou	ınds by EPA Me	ethod 8270		Batch	n ID:	28605 Analyst: SB
Diethylphthalate	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
4,6-Dinitro-2-methylphenol	ND	217		μg/Kg-dry	1	6/12/2020 12:13:02 PM
4-Bromophenyl phenyl ether	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Hexachlorobenzene	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Pentachlorophenol	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Phenanthrene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Anthracene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Carbazole	ND	81.3		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Di-n-butylphthalate	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Fluoranthene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Pyrene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Butyl Benzylphthalate	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
bis(2-Ethylhexyl)adipate	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Benz(a)anthracene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Chrysene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
bis (2-Ethylhexyl) phthalate	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Di-n-octyl phthalate	ND	108		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Benzo(b)fluoranthene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Benzo(k)fluoranthene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Benzo(a)pyrene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Indeno(1,2,3-cd)pyrene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Dibenz(a,h)anthracene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Benzo(g,h,i)perylene	ND	54.2		μg/Kg-dry	1	6/12/2020 12:13:02 PM
Surr: 2,4,6-Tribromophenol	91.7	5 - 139		%Rec	1	6/12/2020 12:13:02 PM
Surr: 2-Fluorobiphenyl	72.1	5 - 131		%Rec	1	6/12/2020 12:13:02 PM
Surr: Nitrobenzene-d5	58.5	5 - 123		%Rec	1	6/12/2020 12:13:02 PM
Surr: Phenol-d6	78.3	5 - 129		%Rec	1	6/12/2020 12:13:02 PM
Surr: p-Terphenyl	109	13.8 - 140		%Rec	1	6/12/2020 12:13:02 PM
NOTES:						

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B			Batch	ID: 28	8613 Analyst: CO
Barium	87.5	0.452	mg/Kg-dry	1	6/10/2020 5:25:11 PM
Selenium	1.23	0.452	mg/Kg-dry	1	6/10/2020 5:25:11 PM
Silver	ND	0.0904	mg/Kg-dry	1	6/10/2020 5:25:11 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 9:20:00 AM

Project: Hardel Site

Lab ID: 2006085-014 **Matrix:** Soil

Client Sample ID: S-B5-3-4-0603

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Batch ID: R59697 Analyst: SBM

Percent Moisture 19.8 0.500 wt% 1 6/9/2020 2:48:41 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 8:45:00 AM

Project: Hardel Site

Lab ID: 2006085-015 **Matrix:** Soil

Client Sample ID: S-B6-3-4-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compound	ds by EPA Meth	od 8270		Batch	n ID: 28	605 Analyst: SB
Phenol	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Bis(2-chloroethyl) ether	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2-Chlorophenol	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
1,3-Dichlorobenzene	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
1,4-Dichlorobenzene	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
1,2-Dichlorobenzene	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Benzyl alcohol	ND	116	Q	μg/Kg-dry	1	6/12/2020 12:35:24 PM
2-Methylphenol (o-cresol)	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Hexachloroethane	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
N-Nitrosodi-n-propylamine	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
3&4-Methylphenol (m, p-cresol)	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Nitrobenzene	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Isophorone	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2-Nitrophenol	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2,4-Dimethylphenol	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Bis(2-chloroethoxy)methane	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2,4-Dichlorophenol	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
1,2,4-Trichlorobenzene	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Naphthalene	316	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
4-Chloroaniline	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Hexachlorobutadiene	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
4-Chloro-3-methylphenol	ND	231		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2-Methylnaphthalene	135	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
1-Methylnaphthalene	69.4	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Hexachlorocyclopentadiene	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2,4,6-Trichlorophenol	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2,4,5-Trichlorophenol	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2-Chloronaphthalene	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2-Nitroaniline	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Acenaphthene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Dimethylphthalate	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2,6-Dinitrotoluene	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Acenaphthylene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2,4-Dinitrophenol	ND	607		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Dibenzofuran	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
2,4-Dinitrotoluene	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
4-Nitrophenol	ND	578		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Fluorene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
4-Chlorophenyl phenyl ether	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 8:45:00 AM

Project: Hardel Site

Lab ID: 2006085-015 **Matrix:** Soil

Client Sample ID: S-B6-3-4-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	ınds by EPA Me	ethod 8270		Batch	ı ID:	28605 Analyst: SB
Diethylphthalate	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
4,6-Dinitro-2-methylphenol	ND	231		μg/Kg-dry	1	6/12/2020 12:35:24 PM
4-Bromophenyl phenyl ether	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Hexachlorobenzene	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Pentachlorophenol	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Phenanthrene	77.3	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Anthracene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Carbazole	ND	86.7		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Di-n-butylphthalate	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Fluoranthene	80.1	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Pyrene	75.6	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Butyl Benzylphthalate	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
bis(2-Ethylhexyl)adipate	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Benz(a)anthracene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Chrysene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
bis (2-Ethylhexyl) phthalate	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Di-n-octyl phthalate	ND	116		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Benzo(b)fluoranthene	107	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Benzo(k)fluoranthene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Benzo(a)pyrene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Indeno(1,2,3-cd)pyrene	65.3	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Dibenz(a,h)anthracene	ND	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Benzo(g,h,i)perylene	82.8	57.8		μg/Kg-dry	1	6/12/2020 12:35:24 PM
Surr: 2,4,6-Tribromophenol	96.9	5 - 139		%Rec	1	6/12/2020 12:35:24 PM
Surr: 2-Fluorobiphenyl	74.8	5 - 131		%Rec	1	6/12/2020 12:35:24 PM
Surr: Nitrobenzene-d5	55.1	5 - 123		%Rec	1	6/12/2020 12:35:24 PM
Surr: Phenol-d6	65.3	5 - 129		%Rec	1	6/12/2020 12:35:24 PM
Surr: p-Terphenyl	119	13.8 - 140		%Rec	1	6/12/2020 12:35:24 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6	<u> 6020B</u>		Batch	ID: 28	3613	Analyst: CO
Barium	120	0.457	mg/Kg-dry	1	6/10/	2020 5:30:45 PM
Selenium	0.750	0.457	mg/Kg-dry	1	6/10/	2020 5:30:45 PM
Silver	ND	0.0913	mg/Kg-dry	1	6/10/	2020 5:30:45 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 8:45:00 AM

Project: Hardel Site

Lab ID: 2006085-015 **Matrix:** Soil

Client Sample ID: S-B6-3-4-0603

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Batch ID: R59697 Analyst: SBM

Percent Moisture 14.4 0.500 wt% 1 6/9/2020 2:48:41 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 4:00:00 PM

Project: Hardel Site

Lab ID: 2006085-016 **Matrix:** Soil

Client Sample ID: S-B7-3-5-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed O5 Analyst: SB			
Semi-Volatile Organic Compou	nds by EPA Meth	od 8270		Batch	n ID: 28	605 Analyst: SB			
Dhanal	ND	445		ua/Ka da	4	6/12/2020 2:04:57 PM			
Phenol	ND ND	115 115		μg/Kg-dry	1 1	6/12/2020 2:04:57 PM			
Bis(2-chloroethyl) ether	ND ND			μg/Kg-dry					
2-Chlorophenol	ND ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM 6/12/2020 2:04:57 PM			
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	86.4 86.4		μg/Kg-dry	1 1				
•	ND ND	86.4		μg/Kg-dry		6/12/2020 2:04:57 PM 6/12/2020 2:04:57 PM			
1,2-Dichlorobenzene			0	μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Benzyl alcohol	ND	115	Q	μg/Kg-dry	1				
2-Methylphenol (o-cresol)	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Hexachloroethane	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
N-Nitrosodi-n-propylamine	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
3&4-Methylphenol (m, p-cresol)	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Nitrobenzene	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Isophorone	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2-Nitrophenol	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2,4-Dimethylphenol	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Bis(2-chloroethoxy)methane	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2,4-Dichlorophenol	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
1,2,4-Trichlorobenzene	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Naphthalene	111	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
4-Chloroaniline	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Hexachlorobutadiene	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
4-Chloro-3-methylphenol	ND	230		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2-Methylnaphthalene	ND	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
1-Methylnaphthalene	ND	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Hexachlorocyclopentadiene	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2,4,6-Trichlorophenol	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2,4,5-Trichlorophenol	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2-Chloronaphthalene	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2-Nitroaniline	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Acenaphthene	ND	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Dimethylphthalate	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2,6-Dinitrotoluene	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Acenaphthylene	155	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2,4-Dinitrophenol	ND	605		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Dibenzofuran	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
2,4-Dinitrotoluene	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
4-Nitrophenol	ND	576		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
Fluorene	ND	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM			
4-Chlorophenyl phenyl ether	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM			

Revision v1

Work Order: 2006085 Date Reported: 7/2/2020

Libby Environmental Collection Date: 6/3/2020 4:00:00 PM Client:

Project: Hardel Site

Lab ID: 2006085-016 Matrix: Soil

Client Sample ID: S-B7-3-5-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	unds by EPA Me	ethod 8270		Batch	n ID: 2	28605 Analyst: SB
Diethylphthalate	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM
4,6-Dinitro-2-methylphenol	ND	230		μg/Kg-dry	1	6/12/2020 2:04:57 PM
4-Bromophenyl phenyl ether	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Hexachlorobenzene	ND	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Pentachlorophenol	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Phenanthrene	126	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Anthracene	282	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Carbazole	98.8	86.4		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Di-n-butylphthalate	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Fluoranthene	242	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Pyrene	283	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Butyl Benzylphthalate	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM
bis(2-Ethylhexyl)adipate	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Benz(a)anthracene	180	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Chrysene	440	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
bis (2-Ethylhexyl) phthalate	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Di-n-octyl phthalate	ND	115		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Benzo(b)fluoranthene	487	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Benzo(k)fluoranthene	347	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Benzo(a)pyrene	396	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Indeno(1,2,3-cd)pyrene	398	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Dibenz(a,h)anthracene	168	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Benzo(g,h,i)perylene	546	57.6		μg/Kg-dry	1	6/12/2020 2:04:57 PM
Surr: 2,4,6-Tribromophenol	113	5 - 139		%Rec	1	6/12/2020 2:04:57 PM
Surr: 2-Fluorobiphenyl	78.7	5 - 131		%Rec	1	6/12/2020 2:04:57 PM
Surr: Nitrobenzene-d5	67.9	5 - 123		%Rec	1	6/12/2020 2:04:57 PM
Surr: Phenol-d6	83.7	5 - 129		%Rec	1	6/12/2020 2:04:57 PM
Surr: p-Terphenyl	117	13.8 - 140		%Rec	1	6/12/2020 2:04:57 PM
NOTES:						

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B			Batch	ID: 28	613	Analyst: CO
Barium	103	0.488	mg/Kg-dry	1	6/10/	/2020 5:36:19 PM
Selenium	1.08	0.488	mg/Kg-dry	1	6/10/	/2020 5:36:19 PM
Silver	ND	0.0976	ma/Ka-drv	1	6/10/	/2020 5:36:19 PM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 4:00:00 PM

Project: Hardel Site

Lab ID: 2006085-016 **Matrix:** Soil

Client Sample ID: S-B7-3-5-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Sample Moisture (Percent Moi	sture)			Batc	h ID: R	59697 Analyst: SBM
Percent Moisture	20.6	0.500		wt%	1	6/9/2020 2:48:41 PM
Total Organic Carbon by EPA	9060			Batc	h ID: 28	695 Analyst: SS
Total Organic Carbon	3.36	0.0750		%-dry	1	6/18/2020 11:36:00 AM

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 4:20:00 PM

Project: Hardel Site

Lab ID: 2006085-017 **Matrix:** Soil

Client Sample ID: S-B8-4-5-0603

Analyses	Result	RL	Units	DF	Da	Date Analyzed		
Polyaromatic Hydrocarbons b	y EPA Method 8	270 (SIM)		Batch	n ID:	28595	Analyst: SB	
Naphthalene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
2-Methylnaphthalene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
1-Methylnaphthalene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Acenaphthylene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Acenaphthene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Fluorene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Phenanthrene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Anthracene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Fluoranthene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Pyrene	109	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Benz(a)anthracene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Chrysene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Benzo(b)fluoranthene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Benzo(k)fluoranthene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Benzo(a)pyrene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Indeno(1,2,3-cd)pyrene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Dibenz(a,h)anthracene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Benzo(g,h,i)perylene	ND	43.8		μg/Kg-dry	1	6/11/	2020 1:50:18 AM	
Surr: 2-Fluorobiphenyl	63.1	6.91 - 127		%Rec	1	6/11/	2020 1:50:18 AM	
Surr: Terphenyl-d14 (surr)	108	32.9 - 153		%Rec	1	6/11/	2020 1:50:18 AM	
Sample Moisture (Percent Moi	sture)			Batch	n ID:	R59697	Analyst: SBM	
Percent Moisture	11.6	0.500		wt%	1	6/9/2	020 2:48:41 PM	

Work Order: **2006085**Date Reported: **7/2/2020**

Client: Libby Environmental Collection Date: 6/3/2020 4:40:00 PM

Project: Hardel Site

Lab ID: 2006085-018 **Matrix:** Soil

Client Sample ID: S-B9-6-7-0603

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Polyaromatic Hydrocarbons by	y EPA Method 8	270 (SIM)		Batch	n ID:	28595 Analyst: SB		
Naphthalene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
2-Methylnaphthalene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
1-Methylnaphthalene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Acenaphthylene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Acenaphthene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Fluorene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Phenanthrene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Anthracene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Fluoranthene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Pyrene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Benz(a)anthracene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Chrysene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Benzo(b)fluoranthene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Benzo(k)fluoranthene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Benzo(a)pyrene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Indeno(1,2,3-cd)pyrene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Dibenz(a,h)anthracene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Benzo(g,h,i)perylene	ND	38.2		μg/Kg-dry	1	6/11/2020 2:12:36 AM		
Surr: 2-Fluorobiphenyl	59.0	6.91 - 127		%Rec	1	6/11/2020 2:12:36 AM		
Surr: Terphenyl-d14 (surr)	100	32.9 - 153		%Rec	1	6/11/2020 2:12:36 AM		
Sample Moisture (Percent Moi	sture)			Batch	n ID:	R59697 Analyst: SBM		
Percent Moisture	9.51	0.500		wt%	1	6/9/2020 2:48:41 PM		

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Site								Total Orga	anic Carb	on by EP	A 906
Sample ID: CCV-28695A	SampType: CCV			Units: %-dry		Prep Date	e: 6/17/202	0	RunNo: 59 9	933	
Client ID: CCV	Batch ID: 28695					Analysis Date	e: 6/17/202	0	SeqNo: 119	99575	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	1.06	0.0750	1.000	0	106	90	110				
Sample ID: MB-28695	SampType: MBLK			Units: %-dry		Prep Date	e: 6/17/202	0	RunNo: 59 9	933	
Client ID: MBLKS	Batch ID: 28695					Analysis Date	e: 6/17/202	0	SeqNo: 119	99576	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.0750									
Sample ID: LCS-28695	SampType: LCS			Units: %-dry		Prep Date	e: 6/17/202	0	RunNo: 59 9	933	
Client ID: LCSS	Batch ID: 28695					Analysis Date	e: 6/17/202	0	SeqNo: 119	9577	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	1.07	0.0750	1.000	0	107	80	120				
Sample ID: 2006085-016ADUP	SampType: DUP			Units: %-dry		Prep Date	e: 6/17/202	0	RunNo: 59 9	933	
Client ID: S-B7-3-5-0603	Batch ID: 28695					Analysis Date	e: 6/17/202	0	SeqNo: 119	99579	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon NOTES:	1.94	0.0750						3.363	53.9	20	R
R - High RPD due to suspected	sample inhomogeneity. T	he method is	s in control as	indicated by the Lab	oratory Co	ontrol Sample	(LCS).				
Sample ID: 2006085-016AMS	SampType: MS			Units: %-dry		Prep Date	e: 6/17/202	0	RunNo: 59 9	933	
Client ID: S-B7-3-5-0603	Batch ID: 28695					Analysis Date	e: 6/17/202	0	SeqNo: 119	9580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Total Organic Carbon	3.04	0.0750	1.000	3.363	-31.9	75	125				S

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Organic Carbon by EPA 9060

Project: Hardel Site								Total Orga	anic Carbo	on by EP	A 9060
Sample ID: 2006085-016AMSD	SampType: MSD			Units: %-dry		Prep Date	e: 6/17/20	20	RunNo: 599	33	
Client ID: S-B7-3-5-0603	Batch ID: 28695					Analysis Date	e: 6/17/20	20	SeqNo: 119	9581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon NOTES: S - Outlying spike recovery(ies)	3.36	0.0750	1.000	3.363	-0.700	75	125	3.044	9.75	20	S
Sample ID: CCV-28695B	SampType: CCV	,		Units: %-dry	9		e: 6/17/20	20	RunNo: 59 9)33	
Client ID: CCV	Batch ID: 28695			·		Analysis Date	e: 6/17/20	20	SeqNo: 119	9585	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	1.05	0.0750	1.000	0	105	90	110				
Sample ID: CCB-28695B	SampType: CCB			Units: %-dry		Prep Date	e: 6/17/20	20	RunNo: 59 9)33	
Client ID: CCB	Batch ID: 28695					Analysis Date	e: 6/17/20	20	SeqNo: 119	9586	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.0750									
Sample ID: CCV-28695C	SampType: CCV			Units: %-dry		Prep Date	e: 6/18/20	20	RunNo: 59 9)33	
Client ID: CCV	Batch ID: 28695					Analysis Date	e: 6/18/20	20	SeqNo: 119	9587	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	1.03	0.0750	1.000	0	103	90	110				
Sample ID: CCB-28695C	SampType: CCB			Units: %-dry		Prep Date	e: 6/18/20	20	RunNo: 59 9)33	
Client ID: CCB	Batch ID: 28695					Analysis Date	e: 6/18/20	20	SeqNo: 119	9588	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.0750									

Hardel Site

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Organic Carbon by EPA 9060

Sample ID: CCV-28695D SampType: CCV Units: %-dry Prep Date: 6/18/2020 Run	D: CCV-28695D SampType:	CCV Units: %	%-dry Prep Date: 6/18/2	2020 RunNo: 5993
---	-------------------------	--------------	-------------------------	------------------

Client ID: CCV Batch ID: 28695 Analysis Date: 6/18/2020 SeqNo: 1199590

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 1.06 0.0750 1.000 0 106 90 110

Sample ID: CCB-28695D SampType: CCB Units: %-dry Prep Date: 6/18/2020 RunNo: 59933

Client ID: **CCB** Batch ID: **28695** Analysis Date: **6/18/2020** SeqNo: **1199591**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon ND 0.0750

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 200.8

Project:	Hardel Site								Total Met	tals by EP	A Method	200.8
Sample ID: ICB	-28580	SampType: ICB			Units: µg/L		Prep Da	te: 6/8/202	20	RunNo: 596	571	
Client ID: ICB		Batch ID: 28580					Analysis Da	ite: 6/8/202	20	SeqNo: 119	93773	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium		ND	2.50									
Selenium		ND	5.00									
Silver		ND	0.250									

Sample ID: ICV-28580	SampType: ICV			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	71	
Client ID: ICV	Batch ID: 28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3775	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	101	2.50	100.0	0	101	90	110				
Selenium	24.0	5.00	25.00	0	95.9	90	110				
Silver	5.32	0.250	5.000	0	106	90	110				

Sample ID: CCV-28580A	SampType: CCV			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	71	
Client ID: CCV	Batch ID: 28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3776	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	97.4	2.50	100.0	0	97.4	85	115				
Selenium	24.9	5.00	25.00	0	99.5	85	115				
Silver	5.44	0.250	5.000	0	109	85	115				

Sample ID: CCB-28580A	SampType: CCB		Units: μg/L	Prep Date: 6/8/2020	RunNo: 59671
Client ID: CCB	Batch ID: 28580			Analysis Date: 6/8/2020	SeqNo: 1193777
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Barium	ND	2.50
Selenium	ND	5.00
Silver	ND	0.250

Work Order: 2006085

Silver

QC SUMMARY REPORT

CLIENT: Libby Environmental

ND

0.250

Total Metals by EPA Method 200.8

Project:	Hardel Site									Total Met	tals by EP	A Method	200.8
Sample ID: MB-	28580	SampType	MBLK			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	571	
Client ID: MBL	.KW	Batch ID:	28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3778	
Analyte		i	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			ND	2.50									
Selenium			ND	5.00									

Sample ID: LCS-28580	SampType: LCS			Units: µg/L		Prep Dat	e: 6/8/202	0	RunNo: 596	71	
Client ID: LCSW	Batch ID: 28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3779	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	104	2.50	100.0	0	104	85	115				
Selenium	10.1	5.00	10.00	0	101	85	115				
Silver	5.49	0.250	5.000	0	110	85	115				

Sample ID: 2006087-001CDUP Client ID: BATCH	SampType: DUP Batch ID: 28580			Units: µg/L		Prep Da Analysis Da	te: 6/8/202 te: 6/8/202		RunNo: 596 SeqNo: 119		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	4.05	2.50						4.523	11.0	30	
Selenium	ND	5.00						0		30	
Silver	ND	0.250						0		30	

Sample ID: 2006087-001CMSD	SampType: MSD			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	71	
Client ID: BATCH	Batch ID: 28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3783	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	501	2.50	500.0	4.523	99.4	70	130	531.6	5.87	30	
Selenium	49.1	5.00	50.00	0	98.2	70	130	49.89	1.60	30	
Silver	26.1	0.250	25.00	0	104	70	130	29.78	13.3	30	

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project:	Hardel Site									Total Met	tals by EP	A Method	d 200
Sample ID: C	CV-28580B	SampType	e: CCV			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	571	
Client ID: C	CV	Batch ID:	28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3788	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			101	2.50	100.0	0	101	85	115				
Selenium			24.7	5.00	25.00	0	99.0	85	115				
Silver			5.66	0.250	5.000	0	113	85	115				
Sample ID: C	CB-28580B	SampType	e: CCB			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	571	
Client ID: C	СВ	Batch ID:	28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3789	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			ND	2.50									
Selenium			ND	5.00									
Silver			ND	0.250									
Sample ID: 20	006087-001CMS	SampType	e: MS			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	571	
Client ID: B	ATCH	Batch ID:	28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3898	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			532	2.50	500.0	4.523	105	70	130				
Selenium			49.9	5.00	50.00	0	99.8	70	130				
Sample ID: C	CV-28580C1	SampTyp	e: CCV			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	571	
Client ID: C	cv	Batch ID:	28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3901	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			106	2.50	100.0	0	106	85	115				
Selenium			24.9	5.00	25.00	0	99.7	85	115				
Silver			6.23	0.250	5.000	0	125	85	115				S
NOTES:													

S - Outlying spike recovery observed (high bias). Detections will be qualified with a Q.

Hardel Site

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

Qual

CLIENT: Libby Environmental

Total Metals by EPA Method 200.8

Sample ID: CCB-28580C	SampType: CCB		Units: µg/L	Prep I	Date: 6/8/2020	RunNo: 59671
Client ID: CCB	Batch ID: 28580			Analysis I	Date: 6/8/2020	SeqNo: 1193903
Analyte	Result	RL SP	V value SPK Ref Val	%REC LowLim	it HighLimit RPD Ref Val	%RPD RPDLimit (

 Barium
 ND
 2.50

 Selenium
 ND
 5.00

 Silver
 ND
 0.250

Sample ID: CCV-28580D	SampType: CCV			Units: µg/L		Prep Dat	e: 6/8/202	0	RunNo: 596	571	
Client ID: CCV	Batch ID: 28580					Analysis Da	te: 6/8/202	0	SeqNo: 119	3988	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	112	2.50	100.0	0	112	85	115				
Selenium	25.6	5.00	25.00	0	103	85	115				
Silver	6.43	0.250	5.000	0	129	85	115				S
NOTES:											

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Sample ID: CCB-28580D	SampType: CCB			Units: µg/L		Prep Dat	te: 6/8/2020		RunNo: 596	71	
Client ID: CCB	Batch ID: 28580					Analysis Dat	te: 6/8/2020		SeqNo: 119	3989	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPI	Ref Val	%RPD	RPDLimit	Qual
Barium	ND	2.50									

Barium	ND	2.50
Selenium	ND	5.00
Silver	ND	0.250

Sample ID: ICB-28580A	SampType: ICB		Units: µg/L	Prep Date:	6/9/2020	RunNo: 59671	
Client ID: ICB	Batch ID: 28580			Analysis Date:	6/9/2020	SeqNo: 1194300	
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit Qual	

Barium	ND	2.50
Selenium	ND	5.00
Silver	ND	0.250

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project:	Hardel Site									Total Met	als by EP	A Method	200.8
Sample ID: ICV-	-28580A	SampType	e: ICV			Units: µg/L		Prep Dat	e: 6/9/202	0	RunNo: 59 6	671	
Client ID: ICV		Batch ID:	28580					Analysis Dat	e: 6/9/202	0	SeqNo: 119	94302	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			100	2.50	100.0	0	100	90	110				
Selenium			24.4	5.00	25.00	0	97.5	90	110				
Silver			4.97	0.250	5.000	0	99.5	90	110				
Sample ID: 2006	6087-001CMS	SampType	e: MS			Units: µg/L		Prep Dat	e: 6/8/202	0	RunNo: 59	671	
Client ID: BAT	СН	Batch ID:	28580					Analysis Dat	e: 6/9/202	0	SeqNo: 119	94303	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver			22.7	0.250	25.00	0	90.8	70	130				
Sample ID: CCV	/-28580E	SampType	e: CCV			Units: µg/L		Prep Dat	e: 6/9/202	0	RunNo: 59 0	671	
Client ID: CCV	,	Batch ID:	28580					Analysis Dat	e: 6/9/202	0	SeqNo: 119	94305	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			102	2.50	100.0	0	102	85	115				
Selenium			24.7	5.00	25.00	0	98.9	85	115				
							30.3	00	110				
Silver			4.80	0.250	5.000	0	96.0	85	115				
Sample ID: CCE	3-28580E	SampType		0.250	5.000	0 Units: µg/L		85		0	RunNo: 59 0		
		SampType Batch ID:	e: CCB	0.250	5.000		96.0	85	115 e: 6/9/202		RunNo: 59 0 SeqNo: 11 9		
Sample ID: CCE		Batch ID:	e: CCB	0.250 RL			96.0	85 Prep Dat Analysis Dat	115 e: 6/9/202 e: 6/9/202		SeqNo: 119		Qual
Sample ID: CCE		Batch ID:	e: CCB 28580			Units: µg/L	96.0	85 Prep Dat Analysis Dat	115 e: 6/9/202 e: 6/9/202	0	SeqNo: 119	94306	Qual
Sample ID: CCE Client ID: CCE Analyte		Batch ID:	e: CCB 28580 Result	RL		Units: µg/L	96.0	85 Prep Dat Analysis Dat	115 e: 6/9/202 e: 6/9/202	0	SeqNo: 119	94306	Qual

Work Order: 2006085

CLIENT: Libby Environmental

QC SUMMARY REPORT

Mercury by EPA Method 245.1

Project: Harde	l Site					Merc	ury by EPA Method	1 245.1
Sample ID: ICB-28625	SampType: ICB			Units: µg/L	Prep Date	6/11/2020	RunNo: 59776	
Client ID: ICB	Batch ID: 28625				Analysis Date	6/11/2020	SeqNo: 1196238	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.100						
Sample ID: ICV-28625	SampType: ICV			Units: µg/L	Prep Date	: 6/11/2020	RunNo: 59776	
Client ID: ICV	Batch ID: 28625				Analysis Date	6/11/2020	SeqNo: 1196240	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	2.40	0.100	2.500	0	96.0 95	105		
Sample ID: MB-28625	SampType: MBLK			Units: µg/L	Prep Date	: 6/10/2020	RunNo: 59776	
Client ID: MBLKW	Batch ID: 28625				Analysis Date	: 6/11/2020	SeqNo: 1196241	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.100						
Sample ID: LCS-28625	SampType: LCS			Units: µg/L	Prep Date	: 6/10/2020	RunNo: 59776	
Client ID: LCSW	Batch ID: 28625				Analysis Date	6/11/2020	SeqNo: 1196242	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	2.26	0.100	2.500	0	90.4 85	115		
Sample ID: 2006085-001B E	DUP SampType: DUP			Units: µg/L	Prep Date	: 6/10/2020	RunNo: 59776	
Client ID: GW-B1-0603	Batch ID: 28625				Analysis Date	6/11/2020	SeqNo: 1196244	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.100				0	20	

Hardel Site

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Mercury by EPA Method 245.1

Sample ID: 2006085-001BMS	SampType: MS			Units: µg/L		Prep Da	te: 6/10/20	20	RunNo: 597	76	
Client ID: GW-B1-0603	Batch ID: 28625					Analysis Da	te: 6/11/20	20	SeqNo: 119	6245	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	1.17	0.100	2.500	0.05900	44.4	70	130				S

NOTES:

Project:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2006085-001BMSD	SampType: MSD			Units: µg/L		Prep Da	te: 6/10/20	20	RunNo: 597	776	
Client ID: GW-B1-0603	Batch ID: 28625					Analysis Da	te: 6/11/20	20	SeqNo: 119	96246	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury NOTES:	1.15	0.100	2.500	0.05900	43.6	70	130	1.170	1.72	20	S

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect

S - Outlying spike recovery(le		0.0 pe			g a pooc				
Sample ID: CCV-28625A	SampType: CCV			Units: µg/L		Prep Da	te: 6/11/2020	RunNo: 59776	
Client ID: CCV	Batch ID: 28625					Analysis Da	te: 6/11/2020	SeqNo: 1196251	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	2.32	0.100	2.500	0	92.8	90	110		
Sample ID: CCB-28625A	SampType: CCB			Units: µg/L		Prep Da	te: 6/11/2020	RunNo: 59776	
Client ID: CCB	Batch ID: 28625					Analysis Da	te: 6/11/2020	SeqNo: 1196252	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.100							
Sample ID: CCV-28625B	SampType: CCV			Units: µg/L		Prep Da	te: 6/11/2020	RunNo: 59776	
Client ID: CCV	Batch ID: 28625					Analysis Da	te: 6/11/2020	SeqNo: 1196263	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	2.56	0.100	2.500	0	102	90	110		

Hardel Site

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Mercury by EPA Method 245.1

Sample ID: CCB-28625B

SampType: CCB Units: µg/L

RL

Prep Date: 6/11/2020

RunNo: 59776

Client ID: CCB

Batch ID: 28625

Result

Analysis Date: 6/11/2020

SeqNo: 1196264

Analyte

Project:

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Mercury

ND 0.100

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Project:	Hardel Site									Total Mote	alo by El A		00202
Sample ID: ICB-2	8586	SampType:	ICB			Units: µg/L		Prep Da	te: 6/9/202	20	RunNo: 597	700	
Client ID: ICB		Batch ID:	28586					Analysis Da	te: 6/9/202	20	SeqNo: 119	4518	
Analyte		R	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			ND	5.00									
Selenium			ND	5.00									
Silver			ND	1.00									

Sample ID: ICV-28586	SampType: ICV			Units: µg/L		Prep Dat	te: 6/9/202	0	RunNo: 597	00	
Client ID: ICV	Batch ID: 28586 Result RL					Analysis Da	te: 6/9/202	0	SeqNo: 119	4520	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	100	5.00	100.0	0	100	90	110				
Selenium	24.4	5.00	25.00	0	97.5	90	110				
Silver	4.97	1.00	5.000	0	99.5	90	110				

Sample ID: CCV-28586A	SampType: CCV			Units: µg/L		Prep Da	te: 6/9/202	0	RunNo: 597	00	
Client ID: CCV	Batch ID: 28586					Analysis Da	te: 6/9/202	0	SeqNo: 119	4523	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	106	5.00	100.0	0	106	90	110				
Selenium	24.3	5.00	25.00	0	97.2	90	110				
Silver	4.98	1.00	5.000	0	99.7	90	110				

Sample ID: CCB-28586A	SampType: CCB		Units: µg/L	Prep Date: 6/9/2020	RunNo: 59700
Client ID: CCB	Batch ID: 28586			Analysis Date: 6/9/2020	SeqNo: 1194525
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Work Order: 2006085

Silver

QC SUMMARY REPORT

CLIENT: Libby Environmental

ND

0.0769

Total Metals by EPA Method 6020B

Project:	Hardel Site									Total Meta	als by EPA	Method	6020B
Sample ID: MB-	28586	SampType	MBLK			Units: mg/Kg		Prep Date	e: 6/8/202	20	RunNo: 597	00	
Client ID: MBI	LKS	Batch ID:	28586					Analysis Dat	e: 6/9/202	20	SeqNo: 119	4527	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			ND	0.385									
Selenium			ND	0.385									

Sample ID: LCS-28586	SampType: LCS			Units: mg/Kg		Prep Dat	te: 6/8/202	0	RunNo: 597	00	
Client ID: LCSS	Batch ID: 28586					Analysis Da	te: 6/9/202	0	SeqNo: 119	4529	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	44.5	0.397	39.68	0	112	80	120				
Selenium	3.81	0.397	3.968	0	96.0	80	120				
Silver	10.2	0.0794	9.921	0	102	80	120				

Sample ID: 2006058-016ADUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 6/8/202	0	RunNo: 597	700	
Client ID: BATCH	Batch ID: 28586					Analysis Da	te: 6/9/202	0	SeqNo: 119	4533	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	79.2	0.404						83.97	5.84	20	
Selenium	1.49	0.404						1.579	5.48	20	
Silver	ND	0.0809						0.1057	41.9	20	

Sample ID: 2006058-016AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 6/8/202	0	RunNo: 597	'00	
Client ID: BATCH	Batch ID: 28586					Analysis Da	te: 6/9/202	0	SeqNo: 119	4537	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	127	0.407	40.74	83.97	106	75	125				
Selenium	5.17	0.407	4.074	1.579	88.1	75	125				
Silver	8.79	0.0815	10.19	0.1057	85.2	75	125				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project:	Hardel Site									Total Meta	als by EPA	Method	6020I
Sample ID: 200	06058-016AMSD	SampType	: MSD			Units: mg/Kg	j-dry	Prep Date	e: 6/8/202	0	RunNo: 597	700	
Client ID: BA	тсн	Batch ID:	28586					Analysis Date	e: 6/9/202	0	SeqNo: 119	4539	
Analyte		1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			126	0.426	42.64	83.97	97.7	75	125	127.0	1.07	20	
Selenium			5.77	0.426	4.264	1.579	98.3	75	125	5.169	11.0	20	
Silver			8.96	0.0853	10.66	0.1057	83.1	75	125	8.788	1.99	20	
Sample ID: CC	V-28586B	SampType	: CCV			Units: µg/L		Prep Date	e: 6/9/202	0	RunNo: 597	700	
Client ID: CC	:V	Batch ID:	28586					Analysis Date	e: 6/9/202	0	SeqNo: 119	4545	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			108	5.00	100.0	0	108	90	110				
Selenium			25.9	5.00	25.00	0	103	90	110				
Silver			5.10	1.00	5.000	0	102	90	110				
Sample ID: CC	:B-28586B	SampType	: CCB			Units: µg/L		Prep Date	e: 6/9/202	0	RunNo: 597	700	
Client ID: CC	В	Batch ID:	28586					Analysis Date	e: 6/9/202	0	SeqNo: 119	4546	
Analyte		1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			ND	5.00									
Selenium			ND	5.00									
Silver			ND	1.00									
Sample ID: CC	V-28586C	SampType	: CCV			Units: µg/L		Prep Date	e: 6/9/202	0	RunNo: 597	700	
Client ID: CC	:v	Batch ID:	28586					Analysis Date	e: 6/9/202	0	SeqNo: 119	4758	
Analyte		1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			109	5.00	100.0	0	109	90	110				
Selenium			25.3	5.00	25.00	0	101	90	110				
Silver			5.42	1.00	5.000	0	108	90	110				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Project: Hardel S	ite							Total Meta	als by EPA	Method	6020
Sample ID: CCB-28586C	SampType: CCB			Units: µg/L		Prep Dat	e: 6/9/202 0)	RunNo: 597	700	
Client ID: CCB	Batch ID: 28586					Analysis Dat	e: 6/9/202 0)	SeqNo: 119	4759	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	ND	5.00									
Selenium	ND	5.00									
Silver	ND	1.00									
Sample ID: CCV-28586D	SampType: CCV			Units: µg/L		Prep Dat	e: 6/9/202 0)	RunNo: 597	700	
Client ID: CCV	Batch ID: 28586					Analysis Dat	e: 6/9/202 0)	SeqNo: 119	4767	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	112	5.00	100.0	0	112	90	110				S
Selenium	24.7	5.00	25.00	0	98.7	90	110				
Silver	5.43	1.00	5.000	0	109	90	110				
Sample ID: CCB-28586D	SampType: CCB			Units: µg/L		Prep Dat	e: 6/9/202 0)	RunNo: 597	700	
Client ID: CCB	Batch ID: 28586					Analysis Dat	e: 6/9/202 0)	SeqNo: 119	4768	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	ND	5.00									
Selenium	ND	5.00									
Silver	ND	1.00									
Sample ID: ICB-28586A	SampType: ICB			Units: µg/L		Prep Dat	e: 6/10/20 2	20	RunNo: 597	700	
Client ID: ICB	Batch ID: 28586					Analysis Dat	e: 6/10/20 2	20	SeqNo: 119	5074	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	ND	5.00									
Selenium	ND	5.00									
Silver	ND	1.00									

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

•	ito							Total Meta	als by EPA	Method	60201
Project: Hardel Si Sample ID: ICB-28613	SampType: ICB			Units: μg/L		Pren Da	te: 6/10/2 0		RunNo: 597		
Client ID: ICB	Batch ID: 28613			Orito. pg/L		Analysis Dat			SeqNo: 119		
		ъ.	0014	051/5 / / /		-					
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	ND	5.00									
Selenium	ND	5.00									
Silver	ND	1.00									
Sample ID: ICB-28613	SampType: ICB			Units: µg/L		Prep Da	te: 6/10/20)20	RunNo: 598	366	
Client ID: ICB	Batch ID: 28613					Analysis Dat	te: 6/10/2 0)20	SeqNo: 119	8269	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	ND	1.00									
Sample ID: ICV-28586A	SampType: ICV			Units: µg/L		Prep Da	te: 6/10/20)20	RunNo: 597	700	
Client ID: ICV	Batch ID: 28586					Analysis Dat	te: 6/10/2 0)20	SeqNo: 119	95076	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	99.8	5.00	100.0	0	99.8	90	110				
Selenium	23.4	5.00	25.00	0	93.5	90	110				
Silver	5.06	1.00	5.000	0	101	90	110				
Sample ID: ICV-28613	SampType: ICV			Units: µg/L		Prep Da	te: 6/10/20)20	RunNo: 597	768	
Client ID: ICV	Batch ID: 28613					Analysis Dat	te: 6/10/2 0)20	SeqNo: 119	95994	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	99.8	5.00	100.0	0	99.8	90	110				
Selenium	23.4	5.00	25.00	0	93.5	90	110				
Silver	4.99	1.00	5.000	0	99.8	90	110				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Project: Hardel Si	ite						Total Met	als by EPA	Method	6020
Sample ID: ICV-28613	SampType: ICV			Units: µg/L		Prep Date	6/10/2020	RunNo: 598	66	
Client ID: ICV	Batch ID: 28613					Analysis Date	6/10/2020	SeqNo: 119	8271	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Silver	5.06	1.00	5.000	0	101	90	110			
Sample ID: CCV-28586E	SampType: CCV			Units: µg/L		Prep Date	6/10/2020	RunNo: 597	00	
Client ID: CCV	Batch ID: 28586					Analysis Date	6/10/2020	SeqNo: 119	5085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Barium	101	5.00	100.0	0	101	90	110			
Selenium	25.0	5.00	25.00	0	99.8	90	110			
Silver	5.16	1.00	5.000	0	103	90	110			
Sample ID: CCB-28586E	SampType: CCB			Units: µg/L		Prep Date	6/10/2020	RunNo: 597	00	
Client ID: CCB	Batch ID: 28586					Analysis Date	6/10/2020	SeqNo: 119	5086	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Barium	ND	5.00								
Selenium	ND	5.00								
Silver	ND	1.00								
Sample ID: CCV-28586F	SampType: CCV			Units: µg/L		Prep Date	6/10/2020	RunNo: 597	00	
Client ID: CCV	Batch ID: 28586					Analysis Date	6/10/2020	SeqNo: 119	5968	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Barium	109	5.00	100.0	0	109	90	110			
Selenium	24.9	5.00	25.00	0	99.6	90	110			
Silver	6.18	1.00	5.000	0	124	90	110			S

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Hardel Site

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Sample ID: CCB-28586F	SampType: CCB			Units: µg/L	Prep Date: 6/10/2020	RunNo: 59700
Client ID: CCB	Batch ID: 28586				Analysis Date: 6/10/2020	SeqNo: 1195969
Analyte	Result	RL	SPK value	SPK Ref Val	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	ND	5.00				

 Selenium
 ND
 5.00

 Silver
 ND
 1.00

Sample ID: CCV-28586G	SampType: CCV			Units: µg/L		Prep Da	te: 6/10/20	20	RunNo: 597	700	
Client ID: CCV	Batch ID: 28586					Analysis Da	te: 6/10/20	20	SeqNo: 119	5971	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	108	5.00	100.0	0	108	90	110				
Selenium	24.8	5.00	25.00	0	99.2	90	110				
Silver	5.96	1.00	5.000	0	119	90	110				S

NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Sample ID: CCV-28613A	SampType: CCV			Units: µg/L		Prep Da	te: 6/10/20	20	RunNo: 597	'68	
Client ID: CCV	Batch ID: 28613					Analysis Da	te: 6/10/20	20	SeqNo: 119	5997	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	108	5.00	100.0	0	108	90	110				
Selenium	24.8	5.00	25.00	0	99.2	90	110				
Silver	5.09	1.00	5.000	0	102	90	110				

Sample ID: CCV-28613A	SampType: CCV			Units: µg/L		Prep Dat	te: 6/10/20 2	20	RunNo: 598	666	
Client ID: CCV	Batch ID: 28613					Analysis Dat	te: 6/10/20 2	20	SeqNo: 119	8274	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	5.96	1.00	5.000	0	119	90	110				S

S - Outlying spike recovery observed (high bias). Detections will be qualified with a *.

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Si	ite				Total Meta	Is by EPA Method 6020
Sample ID: CCB-28586G	SampType: CCB			Units: µg/L	Prep Date: 6/10/2020	RunNo: 59700
Client ID: CCB	Batch ID: 28586				Analysis Date: 6/10/2020	SeqNo: 1195972
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	ND	5.00				
Selenium	ND	5.00				
Silver	ND	1.00				
Sample ID: CCB-28613A	SampType: CCB			Units: µg/L	Prep Date: 6/10/2020	RunNo: 59768
Client ID: CCB	Batch ID: 28613				Analysis Date: 6/10/2020	SeqNo: 1195998
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	ND	5.00				
Selenium	ND	5.00				
Silver	ND	1.00				
Sample ID: CCB-28613A	SampType: CCB			Units: µg/L	Prep Date: 6/10/2020	RunNo: 59866
Client ID: CCB	Batch ID: 28613				Analysis Date: 6/10/2020	SeqNo: 1198275
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver	ND	1.00				
Sample ID: MB-28613	SampType: MBLK			Units: mg/Kg	Prep Date: 6/10/2020	RunNo: 59768
Client ID: MBLKS	Batch ID: 28613				Analysis Date: 6/10/2020	SeqNo: 1195999
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	ND	0.370				
Selenium	ND	0.370				
Silver	ND	0.0741				

Hardel Site

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Sample ID: MB-28613 SampType: MBLK Units: mg/Kg Prep Date: 6/10/2020 RunNo: 59866

Client ID: MBLKS Batch ID: 28613 Analysis Date: 6/10/2020 SeqNo: 1198276

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Silver ND 0.0741

Sample ID: LCS-28613	SampType: LCS			Units: mg/Kg		Prep Dat	e: 6/10/20	20	RunNo: 597	68	
Client ID: LCSS	Batch ID: 28613					Analysis Dat	te: 6/10/20	20	SeqNo: 119	6000	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	43.0	0.368	36.76	0	117	80	120				
Selenium	3.69	0.368	3.676	0	100	80	120				
Silver	8.07	0.0735	9.191	0	87.8	80	120				

Sample ID: LCS-28613	SampType: LCS			Units: mg/Kg		Prep Date	e: 6/10/20	20	RunNo: 598	66	
Client ID: LCSS	Batch ID: 28613					Analysis Dat	e: 6/10/20	20	SeqNo: 119	8277	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	11.2	0.0735	9.191	0	122	80	120				S

NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Sample ID: 2006085-010ADUP	SampType: DUP			Units: mg/K	(g-dry	Prep Da	te: 6/10/20	20	RunNo: 597	768	
Client ID: S-B3-2-3-0603	Batch ID: 28613					Analysis Da	te: 6/10/20	20	SeqNo: 119	6002	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	36.9	0.428						56.74	42.4	20	R
Selenium	0.724	0.428						0.7990	9.85	20	
Silver	ND	0.0856						0.2565	163	20	R

R - High RPD observed. The method is in control as indicated by the LCS.

Hardel Site

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Sample ID: 2006085-010ADUP SampType: DUP Units: mg/Kg-dry Prep Date: 6/10/2020 RunNo: 59866

Client ID: S-B3-2-3-0603 Batch ID: 28613 Analysis Date: 6/10/2020 SeqNo: 1198279

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Silver ND 0.0856 0 20

Sample ID: 2006085-010AMS	SampType: MS			Units: mg/	/Kg-dry	Prep Da	te: 6/10/20	20	RunNo: 597	768	
Client ID: S-B3-2-3-0603	Batch ID: 28613					Analysis Da	te: 6/10/20	20	SeqNo: 119	6004	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	110	0.415	41.46	56.74	129	75	125				S
Selenium	5.10	0.415	4.146	0.7990	104	75	125				
Silver	7.60	0.0829	10.37	0.2565	70.8	75	125				S

NOTES:

Project:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2006085-010AMS SampType: MS Units: mg/Kg-dry Prep Date: 6/10/2020 6/10/2020 RunNo: 59866 Client ID: S-B3-2-3-0603 Batch ID: 28613 Analysis Date: 6/10/2020 Analysis Date: 6/10/2020 SeqNo: 119826 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD Ref					866						
Client ID: S-B3-2-3-0603	3 Batch ID: 28613			Analysis Date: 6/10/2020				SeqNo: 119			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	12.8	0.0829	10.37	0.07470	122	75	125				E

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 2006085-010AMSD	SampType: MSD			Units: mg/Kg-dry		Prep Date: 6/10/2020			RunNo: 597		
Client ID: S-B3-2-3-0603	Batch ID: 28613					Analysis Da	te: 6/10/20	20	SeqNo: 119	6005	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	139	0.411	41.15	56.74	200	75	125	110.2	23.1	20	RS
Selenium	5.08	0.411	4.115	0.7990	104	75	125	5.097	0.347	20	
Silver	7.80	0.0823	10.29	0.2565	73.4	75	125	7.596	2.71	20	S

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed. The method is in control as indicated by the LCS.

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Project: Hardel Site

Sample ID:	2006085-010AMSD	SampType: MSD	Units: mg/Kg-dry	Prep Date: 6	6/10/2020	RunNo: 59866
Client ID:	S-B3-2-3-0603	Batch ID: 28613		Analysis Date: 6	6/10/2020	SeqNo: 1198282

Analyte RL SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Result %REC Silver 10.3 0.0823 10.29 0.07470 99.6 75 125 12.77 21.2 20 ER

NOTES:

R - High RPD observed. The method is in control as indicated by the LCS.

E - Estimated value. The amount exceeds the linear working range of the instrument.

		SampType: PDS		Units: mg/k	Units: mg/Kg-dry Prep Date			20	RunNo: 597			
Dient ID: S-B3-2-3-0603 Batch ID: 28613				Analysis Date: 6/10/2020 SeqNo:						1196006		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Barium	248	0.421	50.0	135	113	75	125					
Silver	1.60	0.0842	2.11	0.256	63.8	75	125				S	

NOTES:

S - Spike recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Sample ID: CCV-28613B	SampType: CCV			Units: µg/L	Prep Date: 6/10/2020				RunNo: 59768		
Client ID: CCV	Batch ID: 28613				Analysis Date: 6/10/2020				SeqNo: 1196009		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	104	5.00	100.0	0	104	90	110				
Selenium	24.4	5.00	25.00	0	97.8	90	110				
Silver	5.15	1.00	5.000	0	103	90	110				

Sample ID: CCV-28613B	SampType: CCV			Units: µg/L	Prep Date: 6/10/2020			RunNo: 59866			
Client ID: CCV	Batch ID: 28613					Analysis Da	te: 6/10/20 2	20	SeqNo: 119	8286	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	6.12	1.00	5.000	0	122	90	110				S

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Si	ite							Total Meta	als by EPA	Method	6020F
Sample ID: CCB-28613B	SampType: CCB			Units: µg/L		Prep Dat	te: 6/10/2	020	RunNo: 597	768	
Client ID: CCB	Batch ID: 28613					Analysis Da	te: 6/10/2	020	SeqNo: 119	96010	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	ND	5.00									
Selenium	ND	5.00									
Silver	ND	1.00									
Sample ID: CCB-28613B	SampType: CCB			Units: µg/L		Prep Dat	te: 6/10/2	020	RunNo: 598	366	
Client ID: CCB	Batch ID: 28613					Analysis Da	te: 6/10/2	020	SeqNo: 119	8287	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	ND	1.00									
Sample ID: CCV-28613C	SampType: CCV			Units: µg/L		Prep Dat	te: 6/10/2	020	RunNo: 59 7	768	
Client ID: CCV	Batch ID: 28613					Analysis Da	te: 6/10/2	020	SeqNo: 119	96021	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	99.7	5.00	100.0	0	99.7	90	110				
Selenium	25.4	5.00	25.00	0	102	90	110				
Silver	4.77	1.00	5.000	0	95.3	90	110				
Sample ID: CCB-28613C	SampType: CCB			Units: µg/L		Prep Dat	te: 6/10/2	020	RunNo: 597	768	
Client ID: CCB	Batch ID: 28613					Analysis Da	te: 6/10/2	020	SeqNo: 119	96022	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	ND	5.00									
Selenium	ND	5.00									
Silver	ND	1.00									

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Project:	Hardel Site

Sample ID: CCV-28613D	SampType: CCV			Units: µg/L		Prep Da	te: 6/10/20	20	RunNo: 597	768	
Client ID: CCV	Batch ID: 28613					Analysis Da	te: 6/10/20	20	SeqNo: 119	6030	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	103	5.00	100.0	0	103	90	110				
Selenium	25.3	5.00	25.00	0	101	90	110				
Silver	5.11	1.00	5.000	0	102	90	110				

Sample ID: CCB-28613D	SampType: CCB			Units: µg/L		Prep Dat	te: 6/10/20	20	RunNo: 597	68	
Client ID: CCB	Batch ID: 28613					Analysis Dat	te: 6/10/20	20	SeqNo: 119	6031	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Barium	ND	5.00
Selenium	ND	5.00
Silver	ND	1.00

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: ARO-CCV-28677A	SampType: CCV	Units: mg/Kg			Prep Date: 6/23/2020				RunNo: 600		
Client ID: CCV	Batch ID: 28677					Analysis Dat	te: 6/23/20 2	20	SeqNo: 120	3096	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	174	10.0	200.0	0	86.9	80	120				Q
Aromatic Hydrocarbon (C10-C12)	96.2	10.0	100.0	0	96.2	80	120				
Aromatic Hydrocarbon (C12-C16)	99.2	10.0	100.0	0	99.2	80	120				
Aromatic Hydrocarbon (C16-C21)	102	10.0	100.0	0	102	80	120				
Aromatic Hydrocarbon (C21-C34)	108	10.0	100.0	0	108	80	120				
Surr: 1-Chlorooctadecane	39.9		40.00		99.8	60	140				
Surr: o-Terphenyl	39.7		40.00		99.3	60	140				
NOTES:											

Q - Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+- 20%)

Sample ID: MB-28677	SampType: MBLK			Units: mg/Kg		Prep Da	te: 6/16/2 0)20	RunNo: 600	93	
Client ID: MBLKS	Batch ID: 28677					Analysis Da	te: 6/23/2 0)20	SeqNo: 120	3100	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	10.0									*Q
Aromatic Hydrocarbon (C10-C12)	ND	10.0									
Aromatic Hydrocarbon (C12-C16)	ND	10.0									
Aromatic Hydrocarbon (C16-C21)	ND	10.0									
Aromatic Hydrocarbon (C21-C34)	ND	10.0									
Surr: o-Terphenyl	79.8		100.0		79.8	60	140				
NOTES.											

NOTES:

Q - Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+- 20%)

^{* -} Flagged value is not within established control limits.

Sample ID: LCS-28677	SampType: LCS			Units: mg/Kg		Prep Dat	te: 6/16/20 2	20	RunNo: 600	93	
Client ID: LCSS	Batch ID: 28677					Analysis Da	te: 6/23/20 2	20	SeqNo: 120	3099	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	89.4	10.0	250.0	0	35.7	70	130				SQ
Aromatic Hydrocarbon (C10-C12)	88.2	10.0	125.0	0	70.6	70	130				
Aromatic Hydrocarbon (C12-C16)	99.5	10.0	125.0	0	79.6	70	130				
Aromatic Hydrocarbon (C16-C21)	124	10.0	125.0	0	99.1	70	130				

Fremont

Hardel Site

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Extractable Petroleum Hydrocarbons by NWEPH

Commis ID: 1 00 00077	Cama T. may 1 00					Dran Da	0/4.0/00		Durable: 000		
Sample ID: LCS-28677	SampType: LCS			Units: mg/Kg		Prep Da	te: 6/16/20	20	RunNo: 600	193	
Client ID: LCSS	Batch ID: 28677					Analysis Da	te: 6/23/20	20	SeqNo: 120	3099	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C21-C34)	115	10.0	125.0	0	92.3	70	130				
Surr: o-Terphenyl	77.8		100.0		77.8	60	140				

NOTES:

Project:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Q - Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+- 20%)

Sample ID: 2006085-009ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	e: 6/16/20	20	RunNo: 600	93	
Client ID: S-B2-2-4-0603	Batch ID: 28677					Analysis Dat	e: 6/23/20	20	SeqNo: 120	3098	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	12.2						22.57	140	25	R*Q
Aromatic Hydrocarbon (C10-C12)	53.0	12.2						72.88	31.7	25	R
Aromatic Hydrocarbon (C12-C16)	404	12.2						540.5	28.8	25	R
Aromatic Hydrocarbon (C16-C21)	751	12.2						957.6	24.1	25	
Aromatic Hydrocarbon (C21-C34)	179	12.2						315.9	55.6	25	R
Surr: o-Terphenyl	84.8		121.9		69.6	60	140		0		

NOTES:

R - High RPD due to suspected sample inhomogeneity.

Q - Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+- 20%)

* - Flagged value is not within established control limits.

Sample ID: 2006085-009AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 6/16/20	20	RunNo: 600	93	
Client ID: S-B2-2-4-0603	Batch ID: 28677					Analysis Da	te: 6/23/20	20	SeqNo: 120	3101	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	120	11.6	290.0	22.57	33.7	70	130				SQ
Aromatic Hydrocarbon (C10-C12)	139	11.6	145.0	72.88	45.6	70	130				S
Aromatic Hydrocarbon (C12-C16)	507	11.6	145.0	540.5	-23.1	70	130				S
Aromatic Hydrocarbon (C16-C21)	833	11.6	145.0	957.6	-85.9	70	130				S
Aromatic Hydrocarbon (C21-C34)	298	11.6	145.0	315.9	-12.6	70	130				S
Surr: o-Terphenyl	76.7		116.0		66.1	60	140				

Fremont Analvtical

Hardel Site

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: 2006085-009AMS

SampType: MS

Units: mg/Kg-dry

Prep Date: 6/16/2020

RunNo: 60093

Result

Analysis Date: 6/23/2020

SeqNo: 1203101

Client ID: S-B2-2-4-0603

28677 Batch ID:

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

NOTES:

Analyte

Project:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

RL

S - Outlying spike recovery observed (low bias).

Q - Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+- 20%)

Sample ID: 2006085-009AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Da	te: 6/16/20	20	RunNo: 600	93	
Client ID: S-B2-2-4-0603	Batch ID: 28677					Analysis Da	te: 6/23/20	20	SeqNo: 120	3102	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	103	13.1	326.3	22.57	24.8	70	130	120.3	15.2	30	SQ
Aromatic Hydrocarbon (C10-C12)	91.5	13.1	163.2	72.88	11.4	70	130	139.0	41.2	30	RS
Aromatic Hydrocarbon (C12-C16)	235	13.1	163.2	540.5	-187	70	130	507.0	73.3	30	RS
Aromatic Hydrocarbon (C16-C21)	373	13.1	163.2	957.6	-358	70	130	833.0	76.2	30	RS
Aromatic Hydrocarbon (C21-C34)	218	13.1	163.2	315.9	-59.7	70	130	297.6	30.7	30	RS
Surr: o-Terphenyl	67.4		130.5		51.6	60	140		0		S

NOTES:

- S Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.
- R High RPD due to suspected sample inhomogeneity.
- Q Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+- 20%)
- S Outlying surrogate recovery(ies) observed.

Sample ID: ARO-CCV-28677B	SampType: CCV			Units: mg/Kg		Prep Da	te: 6/23/20	20	RunNo: 600	93	
Client ID: CCV	Batch ID: 28677					Analysis Da	te: 6/23/20	20	SeqNo: 120	3097	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	163	10.0	200.0	0	81.6	80	120				Q
Aromatic Hydrocarbon (C10-C12)	94.0	10.0	100.0	0	94.0	80	120				
Aromatic Hydrocarbon (C12-C16)	95.6	10.0	100.0	0	95.6	80	120				
Aromatic Hydrocarbon (C16-C21)	99.3	10.0	100.0	0	99.3	80	120				
Aromatic Hydrocarbon (C21-C34)	110	10.0	100.0	0	110	80	120				
Surr: 1-Chlorooctadecane	35.0		40.00		87.4	60	140				
Surr: o-Terphenyl	35.6		40.00		89.0	60	140				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Extractable Petroleum Hydrocarbons by NWEPH

Project: Hardel Site

Sample ID: ARO-CCV-28677B SampType: CCV Units: mg/Kg Prep Date: 6/23/2020 RunNo: 60093

Client ID: CCV Batch ID: 28677 Analysis Date: 6/23/2020 SeqNo: 1203097

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Q - Indicates a hydrocarbon range where the low calibration point read back at a level outside the acceptance criteria (+- 20%)

Sample ID: ALI-CCV-28677A Client ID: CCV	SampType: CCV Batch ID: 28677		Units: mg/Kg Prep Date: 6/23/2020 Analysis Date: 6/23/2020						RunNo: 600 SeqNo: 120		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	176	20.0	200.0	0	88.2	80	120				
Aliphatic Hydrocarbon (C10-C12)	90.7	10.0	100.0	0	90.7	80	120				
Aliphatic Hydrocarbon (C12-C16)	105	10.0	100.0	0	105	80	120				
Aliphatic Hydrocarbon (C16-C21)	84.4	10.0	100.0	0	84.4	80	120				
Aliphatic Hydrocarbon (C21-C34)	108	10.0	100.0	0	108	80	120				
Surr: 1-Chlorooctadecane	34.6		40.00		86.6	60	140				
Surr: o-Terphenyl	35.0		40.00		87.5	60	140				

Sample ID: MB-28677	SampType: MBLK			Units: mg/Kg		Prep Da	te: 6/16/2 0)20	RunNo: 600	93	
Client ID: MBLKS	Batch ID: 28677					Analysis Da	te: 6/23/20)20	SeqNo: 120	3109	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	20.0									*
Aliphatic Hydrocarbon (C10-C12)	ND	10.0									*
Aliphatic Hydrocarbon (C12-C16)	ND	10.0									
Aliphatic Hydrocarbon (C16-C21)	ND	10.0									
Aliphatic Hydrocarbon (C21-C34)	ND	10.0									
Surr: 1-Chlorooctadecane	74.8		100.0		74.8	60	140				

NOTES:

^{* -} Flagged value is not within established control limits.

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: LCS-28677	SampType: LCS					Prep Da	te: 6/16/20	20	RunNo: 600	093	
Client ID: LCSS	Batch ID: 28677					Analysis Da	te: 6/23/20	20	SeqNo: 120	03108	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	74.7	20.0	250.0	0	29.9	70	130				S
Aliphatic Hydrocarbon (C10-C12)	65.7	10.0	125.0	0	52.5	70	130				S
Aliphatic Hydrocarbon (C12-C16)	110	10.0	125.0	0	88.1	70	130				
Aliphatic Hydrocarbon (C16-C21)	109	10.0	125.0	0	87.5	70	130				
Aliphatic Hydrocarbon (C21-C34)	147	10.0	125.0	0	117	70	130				
Surr: 1-Chlorooctadecane NOTES:	78.0		100.0		78.0	60	140				

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Sample ID: 2006085-009ADUP	SampType: DUP	Units: mg/Kg-dry			Prep Date: 6/16/2020			RunNo: 600			
Client ID: S-B2-2-4-0603	Batch ID: 28677					Analysis Da	te: 6/24/20	20	SeqNo: 120	3107	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	27.9	24.4						52.32	61.0	25	R*
Aliphatic Hydrocarbon (C10-C12)	222	12.2						383.2	53.2	25	R*
Aliphatic Hydrocarbon (C12-C16)	1,250	12.2						1,902	41.2	25	RE
Aliphatic Hydrocarbon (C16-C21)	1,000	12.2						1,477	38.2	25	R
Aliphatic Hydrocarbon (C21-C34)	1,280	12.2						1,954	41.9	25	RE
Surr: 1-Chlorooctadecane	84.6		121.9		69.4	60	140		0		

NOTES:

R - High RPD due to high analyte concentration. In this range, high RPD's may be expected.

E - Estimated value. The amount exceeds the linear working range of the instrument.

* - Flagged value is not within established control limits.

Sample ID: 2006085-009AMS	SampType: MS				Kg-dry	Prep Da	te: 6/16/20	20	RunNo: 600		
Client ID: S-B2-2-4-0603	Batch ID: 28677					Analysis Da	te: 6/24/20	20	SeqNo: 120	3110	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	115	23.2	290.0	52.32	21.7	70	130				S
Aliphatic Hydrocarbon (C10-C12)	355	11.6	145.0	383.2	-19.7	70	130				S
Aliphatic Hydrocarbon (C12-C16)	1,630	11.6	145.0	1,902	-190	70	130				SE
Aliphatic Hydrocarbon (C16-C21)	1,300	11.6	145.0	1,477	-120	70	130				SE

Revision v1 Page 73 of 137

Work Order: 2006085

QC SUMMARY REPORT

RunNo: 60093

CLIENT: Libby Environmental

Hardel Site

Extractable Petroleum Hydrocarbons by NWEPH

Prep Date: 6/24/2020

Sample ID: 2006085-009AMS				Units: mg/k	(g-dry	Prep Da	te: 6/16/20	20	RunNo: 60093		
Client ID: S-B2-2-4-0603	Batch ID: 28677			Analysis Date: 6/24/2020					SeqNo: 1203110		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C21-C34) Surr: 1-Chlorooctadecane	1,190 76.7	11.6	145.0 116.0	1,954	-527 66.1	70 60	130 140				SE

Units: ma/Ka

NOTES:

Sample ID: ALI-CCV-28677B

Aliphatic Hydrocarbon (C16-C21)

Aliphatic Hydrocarbon (C21-C34)

Surr: 1-Chlorooctadecane

Surr: o-Terphenyl

Project:

SampType: CCV

95.8

110

36.9

37.4

10.0

10.0

100.0

100.0

40.00

40.00

Campic ID. ALI-OCV-20077B	Camp Type. CCV			Ormo. Ing/itg		i iop bu	. U/Z-//ZU	20	11011110. 000	,,,,	
Client ID: CCV	Batch ID: 28677					Analysis Da	te: 6/24/20	20	SeqNo: 120	03106	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	183	20.0	200.0	0	91.5	80	120				
Aliphatic Hydrocarbon (C10-C12)	94.7	10.0	100.0	0	94.7	80	120				
Aliphatic Hydrocarbon (C12-C16)	103	10.0	100.0	0	103	80	120				
Aliphatic Hydrocarbon (C16-C21)	88.2	10.0	100.0	0	88.2	80	120				
Aliphatic Hydrocarbon (C21-C34)	115	10.0	100.0	0	115	80	120				
Surr: 1-Chlorooctadecane	35.4		40.00		88.6	60	140				
Surr: o-Terphenyl	35.5		40.00		88.6	60	140				
Sample ID: ALI-CCV-28677C	SampType: CCV			Units: mg/Kg		Prep Da	te: 6/24/20	20	RunNo: 600	093	
Client ID: CCV	Batch ID: 28677					Analysis Da	te: 6/24/20	20	SeqNo: 120	03230	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	194	20.0	200.0	0	96.8	80	120				
Aliphatic Hydrocarbon (C10-C12)	88.2	10.0	100.0	0	88.2	80	120				
Aliphatic Hydrocarbon (C12-C16)	93.1	10.0	100.0	0	93.1	80	120				

0

0

95.8

110

92.3

93.4

80

80

60

60

120

120

140

140

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

E - Estimated value. The amount exceeds the linear working range of the instrument.

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: 2006085-009AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 6/16/20	20	RunNo: 600	93	
Client ID: S-B2-2-4-0603	Batch ID: 28677		Analysis Date: 6/24/20					20	SeqNo: 120	3233	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	97.6	26.1	326.3	52.32	13.9	70	130	115.2	16.5	30	S
Aliphatic Hydrocarbon (C10-C12)	169	13.1	163.2	383.2	-131	70	130	354.5	70.7	30	RS
Aliphatic Hydrocarbon (C12-C16)	617	13.1	163.2	1,902	-788	70	130	1,627	90.0	30	RS
Aliphatic Hydrocarbon (C16-C21)	529	13.1	163.2	1,477	-581	70	130	1,303	84.5	30	RS
Aliphatic Hydrocarbon (C21-C34)	732	13.1	163.2	1,954	-749	70	130	1,189	47.6	30	RS
Surr: 1-Chlorooctadecane	75.4		130.5		57.7	60	140		0		S

NOTES:

Project:

- S Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.
- S Outlying surrogate recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.
- R High RPD due to high analyte concentration. In this range, high RPD's may be expected.

Sample ID: ALI-CCV-28677D Client ID: CCV	SampType: CCV Batch ID: 28677			Units: mg/Kg	Analysis Date: 6/24/2020				RunNo: 600 SeqNo: 120		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	196	20.0	200.0	0	98.2	80	120				
Aliphatic Hydrocarbon (C10-C12)	100	10.0	100.0	0	100	80	120				
Aliphatic Hydrocarbon (C12-C16)	101	10.0	100.0	0	101	80	120				
Aliphatic Hydrocarbon (C16-C21)	101	10.0	100.0	0	101	80	120				
Aliphatic Hydrocarbon (C21-C34)	111	10.0	100.0	0	111	80	120				
Surr: 1-Chlorooctadecane	39.0		40.00		97.4	60	140				
Surr: o-Terphenyl	38.0		40.00		95.1	60	140				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Site					Ро	lyaromat	ic Hydr	ocarbons b	y EPA Me	thod 827	0 (SIM)
Sample ID: PAH ICB	SampType: ICB			Units: µg/L		Prep Dat	te: 6/4/202	20	RunNo: 596	660	
Client ID: ICB	Batch ID: 28581					Analysis Dat	te: 6/4/202	20	SeqNo: 119	3487	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	40.0									
2-Methylnaphthalene	ND	40.0									
1-Methylnaphthalene	ND	40.0									
Acenaphthylene	ND	40.0									
Acenaphthene	ND	40.0									
Fluorene	ND	40.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	40.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	40.0									
Benzo(k)fluoranthene	ND	40.0									
Benzo(a)pyrene	ND	40.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Benzo(g,h,i)perylene	ND	40.0									
Surr: 2-Fluorobiphenyl	652		500.0		130	50.4	142				
Surr: Terphenyl-d14 (surr)	634		500.0		127	48.8	157				

Sample ID: PAH ICV	SampType: ICV	SampType: ICV			Units: µg/L Prep Date: 6/4/2020			0	RunNo: 59660			
Client ID: ICV	Batch ID: 28581					Analysis Da	te: 6/4/202	0	SeqNo: 119	3488		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene	999	40.0	1,000	0	99.9	70	130					
2-Methylnaphthalene	1,010	40.0	1,000	0	101	70	130					
1-Methylnaphthalene	1,000	40.0	1,000	0	100	70	130					
Acenaphthylene	982	40.0	1,000	0	98.2	70	130					
Acenaphthene	996	40.0	1,000	0	99.6	70	130					

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Sample ID: PAH ICV	SampType: ICV			Units: µg/L		Prep Da	te: 6/4/202	0	RunNo: 596	660	
Client ID: ICV	Batch ID: 28581					Analysis Da	te: 6/4/202	0	SeqNo: 119	3488	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	1,020	40.0	1,000	0	102	70	130				
Phenanthrene	1,050	40.0	1,000	0	105	70	130				
Anthracene	1,010	40.0	1,000	0	101	70	130				
Fluoranthene	992	40.0	1,000	0	99.2	70	130				
Pyrene	1,000	40.0	1,000	0	100	70	130				
Benz(a)anthracene	1,060	40.0	1,000	0	106	70	130				
Chrysene	1,060	40.0	1,000	0	106	70	130				
Benzo(b)fluoranthene	1,130	40.0	1,000	0	113	70	130				
Benzo(k)fluoranthene	1,030	40.0	1,000	0	103	70	130				
Benzo(a)pyrene	1,070	40.0	1,000	0	107	70	130				
Indeno(1,2,3-cd)pyrene	1,040	40.0	1,000	0	104	70	130				
Dibenz(a,h)anthracene	1,040	40.0	1,000	0	104	70	130				
Benzo(g,h,i)perylene	1,040	40.0	1,000	0	104	70	130				
Surr: 2-Fluorobiphenyl	682		500.0		136	69.5	150				
Surr: Terphenyl-d14 (surr)	694		500.0		139	71.6	145				
Sample ID: CCV-28581	SampType: CCV			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	81	
Client ID: CCV	Batch ID: 28581					Analysis Da	te: 6/8/202	0	SeqNo: 119	3943	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	894	40.0	1,000	0	89.4	80	120				
2-Methylnaphthalene	892	40.0	1,000	0	89.2	80	120				
1-Methylnaphthalene	901	40.0	1,000	0	90.1	80	120				
Acenaphthylene	861	40.0	1,000	0	86.1	80	120				
Acenaphthene	874	40.0	1,000	0	87.4	80	120				
Fluorene	900	40.0	1,000	0	90.0	80	120				
Phenanthrene	947	40.0	1,000	0	94.7	80	120				
Anthracene	898	40.0	1,000	0	89.8	80	120				
Fluoranthene	906	40.0	1,000	0	90.6	80	120				
Pyrene	910	40.0	1,000	0	91.0	80	120				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: CCV-28581	SampType: CCV			Units: µg/L		Prep Dat	te: 6/8/202	0	RunNo: 596	81	
Client ID: CCV	Batch ID: 28581					Analysis Dat	te: 6/8/202 0	0	SeqNo: 119	3943	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benz(a)anthracene	958	40.0	1,000	0	95.8	80	120				
Chrysene	947	40.0	1,000	0	94.7	80	120				
Benzo(b)fluoranthene	927	40.0	1,000	0	92.7	80	120				
Benzo(k)fluoranthene	980	40.0	1,000	0	98.0	80	120				
Benzo(a)pyrene	925	40.0	1,000	0	92.5	80	120				
Indeno(1,2,3-cd)pyrene	979	40.0	1,000	0	97.9	80	120				
Dibenz(a,h)anthracene	1,010	40.0	1,000	0	101	80	120				
Benzo(g,h,i)perylene	945	40.0	1,000	0	94.5	80	120				
Surr: 2-Fluorobiphenyl	434		500.0		86.8	69.5	150				
Surr: Terphenyl-d14 (surr)	437		500.0		87.4	71.6	145				
Sample ID: MB-28581	SampType: MBLK			Units: µg/Kg		Prep Dat	te: 6/8/202	0	RunNo: 596	81	
Client ID: MBLKS	Batch ID: 28581					Analysis Dat	te: 6/8/202	0	SeqNo: 119	3944	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Naphthalene	ND	40.0									
2-Methylnaphthalene	ND	40.0									
1-Methylnaphthalene	ND	40.0									
Acenaphthylene	ND	40.0									
Acenaphthene	ND	40.0									
Fluorene	ND	40.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	40.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	40.0									
Benzo(k)fluoranthene	ND	40.0									
Benzo(a)pyrene	ND	40.0									

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: MB-28581	SampType: MBLK					Prep Dat	te: 6/8/202	0	RunNo: 596	81	
Client ID: MBLKS	Batch ID: 28581			Analysis Date: 6/8/2020					SeqNo: 119	3944	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Benzo(g,h,i)perylene	ND	40.0									
Surr: 2-Fluorobiphenyl	286		500.0		57.3	6.91	127				
Surr: Terphenyl-d14 (surr)	477		500.0		95.3	32.9	153				

Sample ID: LCS-28581	SampType: LCS	•	•	Units: µg/Kg			0	RunNo: 596	81	•	
Client ID: LCSS	Batch ID: 28581					Analysis Da	te: 6/8/202	0	SeqNo: 119	3945	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	597	40.0	1,000	0	59.7	47.3	136				
2-Methylnaphthalene	615	40.0	1,000	0	61.5	48.6	142				
1-Methylnaphthalene	610	40.0	1,000	0	61.0	51	140				
Acenaphthylene	603	40.0	1,000	0	60.3	47.5	137				
Acenaphthene	615	40.0	1,000	0	61.5	49.1	138				
Fluorene	629	40.0	1,000	0	62.9	49.3	137				
Phenanthrene	650	40.0	1,000	0	65.0	45.5	139				
Anthracene	621	40.0	1,000	0	62.1	44	139				
Fluoranthene	632	40.0	1,000	0	63.2	48.7	144				
Pyrene	644	40.0	1,000	0	64.4	47.9	143				
Benz(a)anthracene	685	40.0	1,000	0	68.5	49.8	143				
Chrysene	665	40.0	1,000	0	66.5	47.1	144				
Benzo(b)fluoranthene	694	40.0	1,000	0	69.4	44.6	150				
Benzo(k)fluoranthene	656	40.0	1,000	0	65.6	47.5	148				
Benzo(a)pyrene	646	40.0	1,000	0	64.6	45	149				
Indeno(1,2,3-cd)pyrene	678	40.0	1,000	0	67.8	41.4	146				
Dibenz(a,h)anthracene	705	40.0	1,000	0	70.5	43.4	145				
Benzo(g,h,i)perylene	660	40.0	1,000	0	66.0	42.7	144				
Surr: 2-Fluorobiphenyl	347		500.0		69.3	6.91	127				
Surr: Terphenyl-d14 (surr)	421		500.0		84.1	32.9	153				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: **LCS-28581** SampType: **LCS** Units: **µg/Kg** Prep Date: **6/8/2020** RunNo: **59681**

Client ID: LCSS Batch ID: 28581 Analysis Date: 6/8/2020 SeqNo: 1193945

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: 2006084-005ADUP	SampType: DUP			Units: µg/K	(g-dry	Prep Dat	e: 6/8/20 2	20	RunNo: 596	81	
Client ID: BATCH	Batch ID: 28581					Analysis Da	e: 6/8/20 2	20	SeqNo: 119	4351	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	42.6						0		30	
2-Methylnaphthalene	ND	42.6						0		30	
1-Methylnaphthalene	ND	42.6						0		30	
Acenaphthylene	ND	42.6						0		30	
Acenaphthene	ND	42.6						0		30	
Fluorene	ND	42.6						0		30	
Phenanthrene	ND	42.6						0		30	
Anthracene	ND	42.6						0		30	
Fluoranthene	ND	42.6						0		30	
Pyrene	ND	42.6						0		30	
Benz(a)anthracene	ND	42.6						0		30	
Chrysene	ND	42.6						0		30	
Benzo(b)fluoranthene	ND	42.6						0		30	
Benzo(k)fluoranthene	ND	42.6						0		30	
Benzo(a)pyrene	ND	42.6						0		30	
Indeno(1,2,3-cd)pyrene	ND	42.6						0		30	
Dibenz(a,h)anthracene	ND	42.6						0		30	
Benzo(g,h,i)perylene	ND	42.6						0		30	
Surr: 2-Fluorobiphenyl	267		533.0		50.0	6.91	127		0		
Surr: Terphenyl-d14 (surr)	640		533.0		120	32.9	153		0		

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: 2006084-005AMS	SampType: MS				.g-dry	Prep Da	ate: 6/8/202	20	RunNo: 596	 381	
Client ID: BATCH	Batch ID: 28581					Analysis Da	ate: 6/8/202	20	SeqNo: 119	94353	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	764	43.5	1,086	0	70.3	33	123				
2-Methylnaphthalene	855	43.5	1,086	0	78.7	38.9	128				
1-Methylnaphthalene	849	43.5	1,086	0	78.1	36.2	129				
Acenaphthylene	867	43.5	1,086	0	79.8	39	132				
Acenaphthene	873	43.5	1,086	0	80.3	39.5	124				
Fluorene	907	43.5	1,086	0	83.5	38.5	128				
Phenanthrene	948	43.5	1,086	0	87.3	34.1	130				
Anthracene	917	43.5	1,086	0	84.4	38.8	128				
Fluoranthene	926	43.5	1,086	0	85.3	38.6	136				
Pyrene	935	43.5	1,086	0	86.0	37.8	134				
Benz(a)anthracene	1,020	43.5	1,086	0	94.2	35.9	142				
Chrysene	946	43.5	1,086	0	87.0	36.7	131				
Benzo(b)fluoranthene	993	43.5	1,086	0	91.4	35	141				
Benzo(k)fluoranthene	987	43.5	1,086	0	90.8	35.9	136				
Benzo(a)pyrene	1,000	43.5	1,086	0	92.5	31.2	142				
Indeno(1,2,3-cd)pyrene	981	43.5	1,086	0	90.3	29.1	133				
Dibenz(a,h)anthracene	1,020	43.5	1,086	0	93.9	31.3	132				
Benzo(g,h,i)perylene	926	43.5	1,086	0	85.3	30.2	128				
Surr: 2-Fluorobiphenyl	529		543.2		97.3	6.91	127				
Surr: Terphenyl-d14 (surr)	625		543.2		115	32.9	153				

Sample ID: 2006084-005AMSD	SampType: MSD	Units: µg/Kg			•				RunNo: 596		
Client ID: BATCH	Batch ID: 28581			Analysis Date: 6/8/2020					SeqNo: 119	4354	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	740	39.2	979.6	0	75.6	33	123	763.8	3.14	30	
2-Methylnaphthalene	798	39.2	979.6	0	81.5	38.9	128	855.2	6.91	30	
1-Methylnaphthalene	791	39.2	979.6	0	80.7	36.2	129	849.1	7.11	30	
Acenaphthylene	791	39.2	979.6	0	80.7	39	132	866.5	9.15	30	
Acenaphthene	798	39.2	979.6	0	81.5	39.5	124	872.5	8.88	30	

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Site					Po	olyaromat	ic Hydro	ocarbons b	y EPA Mei	nod 8270	o (Sin
Sample ID: 2006084-005AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Dat	e: 6/8/202	0	RunNo: 596	81	
Client ID: BATCH	Batch ID: 28581					Analysis Dat	e: 6/8/202	0	SeqNo: 119	4354	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	832	39.2	979.6	0	85.0	38.5	128	906.7	8.53	30	
Phenanthrene	871	39.2	979.6	0	88.9	34.1	130	948.0	8.43	30	
Anthracene	842	39.2	979.6	0	86.0	38.8	128	916.9	8.48	30	
Fluoranthene	846	39.2	979.6	0	86.4	38.6	136	926.5	9.07	30	
Pyrene	862	39.2	979.6	0	88.0	37.8	134	934.7	8.05	30	
Benz(a)anthracene	952	39.2	979.6	0	97.1	35.9	142	1,023	7.26	30	
Chrysene	892	39.2	979.6	0	91.1	36.7	131	945.8	5.81	30	
Benzo(b)fluoranthene	979	39.2	979.6	0	99.9	35	141	993.3	1.49	30	
Benzo(k)fluoranthene	859	39.2	979.6	0	87.7	35.9	136	986.7	13.8	30	
Benzo(a)pyrene	911	39.2	979.6	0	93.0	31.2	142	1,005	9.78	30	
Indeno(1,2,3-cd)pyrene	897	39.2	979.6	0	91.6	29.1	133	980.6	8.86	30	
Dibenz(a,h)anthracene	931	39.2	979.6	0	95.0	31.3	132	1,020	9.19	30	
Benzo(g,h,i)perylene	843	39.2	979.6	0	86.0	30.2	128	926.4	9.46	30	
Surr: 2-Fluorobiphenyl	438		489.8		89.5	6.91	127		0		
Surr: Terphenyl-d14 (surr)	577		489.8		118	32.9	153		0		

Sample ID: QCS-28581A	SampType: QCS			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	81	
Client ID: BATCH	Batch ID: 28581					Analysis Da	te: 6/8/202	0	SeqNo: 119	4355	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	893	40.0	1,000	0	89.3	50	150				
2-Methylnaphthalene	900	40.0	1,000	0	90.0	50	150				
1-Methylnaphthalene	907	40.0	1,000	0	90.7	50	150				
Acenaphthylene	865	40.0	1,000	0	86.5	50	150				
Acenaphthene	877	40.0	1,000	0	87.7	50	150				
Fluorene	892	40.0	1,000	0	89.2	50	150				
Phenanthrene	933	40.0	1,000	0	93.3	50	150				
Anthracene	904	40.0	1,000	0	90.4	50	150				
Fluoranthene	909	40.0	1,000	0	90.9	50	150				
Pyrene	916	40.0	1,000	0	91.6	50	150				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Site	е				Ро	lyaromati	ic Hydro	ocarbons b	y EPA Mef	thod 827	0 (SIM)
Sample ID: QCS-28581A	SampType: QCS			Units: µg/L		Prep Date	e: 6/8/202 0	.0	RunNo: 596	681	
Client ID: BATCH	Batch ID: 28581					Analysis Date	e: 6/8/202	.0	SeqNo: 119	94355	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	1,010	40.0	1,000	0	101	50	150				
Chrysene	928	40.0	1,000	0	92.8	50	150				
Benzo(b)fluoranthene	935	40.0	1,000	0	93.5	50	150				
Benzo(k)fluoranthene	988	40.0	1,000	0	98.8	50	150				
Benzo(a)pyrene	981	40.0	1,000	0	98.1	50	150				
Indeno(1,2,3-cd)pyrene	954	40.0	1,000	0	95.4	50	150				
Dibenz(a,h)anthracene	992	40.0	1,000	0	99.2	50	150				
Benzo(g,h,i)perylene	894	40.0	1,000	0	89.4	50	150				
Surr: 2-Fluorobiphenyl	434		500.0		86.8	50	150				
Surr: Terphenyl-d14 (surr)	458		500.0		91.6	50	150				
Sample ID: CCV-28581B	SampType: CCV			Units: µg/L		Prep Date	e: 6/8/2020	± 0	RunNo: 59 6	681	
Client ID: CCV	Batch ID: 28581					Analysis Date	o. 6/8/202	20	SeaNo: 110	0/356	

Sample ID: CCV-28581B	SampType: CCV			Units: µg/L				0	RunNo: 596	81	
Client ID: CCV	Batch ID: 28581					Analysis Dat	te: 6/8/202	0	SeqNo: 119	94356	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	885	40.0	1,000	0	88.5	80	120				
2-Methylnaphthalene	898	40.0	1,000	0	89.8	80	120				
1-Methylnaphthalene	900	40.0	1,000	0	90.0	80	120				
Acenaphthylene	867	40.0	1,000	0	86.7	80	120				
Acenaphthene	869	40.0	1,000	0	86.9	80	120				
Fluorene	889	40.0	1,000	0	88.9	80	120				
Phenanthrene	923	40.0	1,000	0	92.3	80	120				
Anthracene	888	40.0	1,000	0	88.8	80	120				
Fluoranthene	904	40.0	1,000	0	90.4	80	120				
Pyrene	911	40.0	1,000	0	91.1	80	120				
Benz(a)anthracene	1,010	40.0	1,000	0	101	80	120				
Chrysene	924	40.0	1,000	0	92.4	80	120				
Benzo(b)fluoranthene	965	40.0	1,000	0	96.5	80	120				
Benzo(k)fluoranthene	955	40.0	1,000	0	95.5	80	120				
Benzo(a)pyrene	950	40.0	1,000	0	95.0	80	120				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: CCV-28581B	SampType: CCV	SampType: CCV				Prep Da	te: 6/8/202	20	RunNo: 59681		
Client ID: CCV	Batch ID: 28581			Analysis Date: 6/8/2020				20	SeqNo: 119	94356	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	956	40.0	1,000	0	95.6	80	120				
Dibenz(a,h)anthracene	998	40.0	1,000	0	99.8	80	120				
Benzo(g,h,i)perylene	893	40.0	1,000	0	89.3	80	120				
Surr: 2-Fluorobiphenyl	433		500.0		86.6	69.5	150				
Surr: Terphenyl-d14 (surr)	460		500.0		91.9	71.6	145				

Sample ID: QCS-28581B	SampType: QCS			Units: µg/L		Prep Da	te: 6/8/202	0	RunNo: 596	81	
Client ID: BATCH	Batch ID: 28581					Analysis Da	te: 6/8/202	0	SeqNo: 119	94370	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	889	40.0	1,000	0	88.9	50	150				
2-Methylnaphthalene	906	40.0	1,000	0	90.6	50	150				
1-Methylnaphthalene	912	40.0	1,000	0	91.2	50	150				
Acenaphthylene	894	40.0	1,000	0	89.4	50	150				
Acenaphthene	894	40.0	1,000	0	89.4	50	150				
Fluorene	914	40.0	1,000	0	91.4	50	150				
Phenanthrene	925	40.0	1,000	0	92.5	50	150				
Anthracene	914	40.0	1,000	0	91.4	50	150				
Fluoranthene	943	40.0	1,000	0	94.3	50	150				
Pyrene	947	40.0	1,000	0	94.7	50	150				
Benz(a)anthracene	984	40.0	1,000	0	98.4	50	150				
Chrysene	905	40.0	1,000	0	90.5	50	150				
Benzo(b)fluoranthene	798	40.0	1,000	0	79.8	50	150				
Benzo(k)fluoranthene	746	40.0	1,000	0	74.6	50	150				
Benzo(a)pyrene	688	40.0	1,000	0	68.8	50	150				
Indeno(1,2,3-cd)pyrene	573	40.0	1,000	0	57.3	50	150				
Dibenz(a,h)anthracene	628	40.0	1,000	0	62.8	50	150				
Benzo(g,h,i)perylene	452	40.0	1,000	0	45.2	50	150				S
Surr: 2-Fluorobiphenyl	440		500.0		87.9	50	150				
Surr: Terphenyl-d14 (surr)	473		500.0		94.6	50	150				

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

 Sample ID: QCS-28581B
 SampType: QCS
 Units: μg/L
 Prep Date: 6/8/2020
 RunNo: 59681

Client ID: **BATCH** Batch ID: **28581** Analysis Date: **6/8/2020** SeqNo: **1194370**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Project:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a Q.

Sample ID: CCV-28581C	SampType: CCV			Units: µg/L		Prep Da	te: 6/9/202	0	RunNo: 596	S81	
Client ID: CCV	Batch ID: 28581					Analysis Da	te: 6/9/202	0	SeqNo: 119	94371	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	894	40.0	1,000	0	89.4	80	120				
2-Methylnaphthalene	900	40.0	1,000	0	90.0	80	120				
1-Methylnaphthalene	908	40.0	1,000	0	90.8	80	120				
Acenaphthylene	871	40.0	1,000	0	87.1	80	120				
Acenaphthene	882	40.0	1,000	0	88.2	80	120				
Fluorene	895	40.0	1,000	0	89.5	80	120				
Phenanthrene	939	40.0	1,000	0	93.9	80	120				
Anthracene	879	40.0	1,000	0	87.9	80	120				
Fluoranthene	870	40.0	1,000	0	87.0	80	120				
Pyrene	866	40.0	1,000	0	86.6	80	120				
Benz(a)anthracene	593	40.0	1,000	0	59.3	80	120				S
Chrysene	930	40.0	1,000	0	93.0	80	120				
Benzo(b)fluoranthene	764	40.0	1,000	0	76.4	80	120				S
Benzo(k)fluoranthene	663	40.0	1,000	0	66.3	80	120				S
Benzo(a)pyrene	585	40.0	1,000	0	58.5	80	120				S
Indeno(1,2,3-cd)pyrene	605	40.0	1,000	0	60.5	80	120				SI
Dibenz(a,h)anthracene	599	40.0	1,000	0	59.9	80	120				SI
Benzo(g,h,i)perylene	616	40.0	1,000	0	61.6	80	120				SI
Surr: 2-Fluorobiphenyl	438		500.0		87.7	69.5	150				
Surr: Terphenyl-d14 (surr)	410		500.0		82.0	71.6	145				

NOTES:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a Q.

I - Indicates an analyte with an internal standard that does not meet established acceptance criteria.

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Site	e				Po	lyaromat	ic Hydro	carbons by	y EPA Met	:hod 8270	0 (SII
Sample ID: QCS-28581C	SampType: QCS			Units: µg/L		Prep Dat	e: 6/9/202	0	RunNo: 596	81	
Client ID: BATCH	Batch ID: 28581					Analysis Dat	e: 6/9/202	0	SeqNo: 119	4373	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	884	40.0	1,000	0	88.4	50	150				
2-Methylnaphthalene	890	40.0	1,000	0	89.0	50	150				
1-Methylnaphthalene	901	40.0	1,000	0	90.1	50	150				
Acenaphthylene	860	40.0	1,000	0	86.0	50	150				
Acenaphthene	874	40.0	1,000	0	87.4	50	150				
Fluorene	884	40.0	1,000	0	88.4	50	150				
Phenanthrene	923	40.0	1,000	0	92.3	50	150				
Anthracene	865	40.0	1,000	0	86.5	50	150				
Fluoranthene	866	40.0	1,000	0	86.6	50	150				
Pyrene	859	40.0	1,000	0	85.9	50	150				
Benz(a)anthracene	609	40.0	1,000	0	60.9	50	150				
Chrysene	911	40.0	1,000	0	91.1	50	150				
Benzo(b)fluoranthene	763	40.0	1,000	0	76.3	50	150				
Benzo(k)fluoranthene	680	40.0	1,000	0	68.0	50	150				
Benzo(a)pyrene	654	40.0	1,000	0	65.4	50	150				
ndeno(1,2,3-cd)pyrene	694	40.0	1,000	0	69.4	50	150				
Dibenz(a,h)anthracene	683	40.0	1,000	0	68.3	50	150				
Benzo(g,h,i)perylene	724	40.0	1,000	0	72.4	50	150				
Surr: 2-Fluorobiphenyl	434		500.0		86.9	50	150				
Surr: Terphenyl-d14 (surr)	415		500.0		82.9	50	150				
Sample ID: PAH ICV	SampType: ICV			Units: µg/L		Prep Dat	e: 6/10/20	20	RunNo: 597	35	
Client ID: ICV	Batch ID: 28595					Analysis Dat	e: 6/10/20	20	SeqNo: 119	5467	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	894	40.0	1,000	0	89.4	70	130				
2-Methylnaphthalene	893	40.0	1,000	0	89.3	70	130				
1-Methylnaphthalene	888	40.0	1,000	0	88.8	70	130				
Acenaphthylene	868	40.0	1,000	0	86.8	70	130				
Acenaphthene	885	40.0	1,000	0	88.5	70	130				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: PAH ICV	SampType:	ICV			Units: µg/L		Prep Da	te: 6/10/20	20	RunNo: 597	'35	
Client ID: ICV	Batch ID:	28595					Analysis Da	te: 6/10/20	20	SeqNo: 119	5467	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Fluorene		882	40.0	1,000	0	88.2	70	130				
Phenanthrene		888	40.0	1,000	0	88.8	70	130				
Anthracene		840	40.0	1,000	0	84.0	70	130				
Fluoranthene		822	40.0	1,000	0	82.2	70	130				
Pyrene		834	40.0	1,000	0	83.4	70	130				
Benz(a)anthracene		895	40.0	1,000	0	89.5	70	130				
Chrysene		974	40.0	1,000	0	97.4	70	130				
Benzo(b)fluoranthene		975	40.0	1,000	0	97.5	70	130				
Benzo(k)fluoranthene		929	40.0	1,000	0	92.9	70	130				
Benzo(a)pyrene		942	40.0	1,000	0	94.2	70	130				
Indeno(1,2,3-cd)pyrene		967	40.0	1,000	0	96.7	70	130				
Dibenz(a,h)anthracene	1	,020	40.0	1,000	0	102	70	130				
Benzo(g,h,i)perylene		976	40.0	1,000	0	97.6	70	130				
Surr: 2-Fluorobiphenyl		557		500.0		111	69.5	150				
Surr: Terphenyl-d14 (surr)		517		500.0		103	71.6	145				
Sample ID: PAH ICB	SampType:	ICB			Units: µg/L		Prep Da	te: 6/10/2 0	20	RunNo: 597	'35	
Client ID: ICB	Batch ID:	28595					Analysis Da	te: 6/10/2 0	20	SeqNo: 119	5468	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Naphthalene		ND	40.0									
2-Methylnaphthalene		ND	40.0									
1-Methylnaphthalene		ND	40.0									
Acenaphthylene		ND	40.0									
Acenaphthene		ND	40.0									
Fluorene		ND	40.0									
Phenanthrene		ND	40.0									
Anthracene		ND	40.0									
Fluoranthene		ND	40.0									
Pyrene		ND	40.0									

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project:	lardel Site						Ро	lyaroma	tic Hydro	ocarbons b	y EPA Me	thod 8270	O (SIM)
Sample ID: PAH ICB	Sa	ampType:	ICB			Units: µg/L		Prep Da	te: 6/10/2 0	20	RunNo: 59 7	735	
Client ID: ICB	Ва	atch ID:	28595					Analysis Da	te: 6/10/20	20	SeqNo: 119	95468	
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene			ND	40.0									
Chrysene			ND	40.0									
Benzo(b)fluoranthene			ND	40.0									
Benzo(k)fluoranthene			ND	40.0									
Benzo(a)pyrene			ND	40.0									
Indeno(1,2,3-cd)pyren	е	8	31.5	40.0									
Dibenz(a,h)anthracene	е		103	40.0									
Benzo(g,h,i)perylene		(58.2	40.0									
Surr: 2-Fluorobiphe	nyl		500		500.0		100	50.4	142				
Surr: Terphenyl-d14	4 (surr)		457		500.0		91.5	48.8	157				

Sample ID: CCV-28595	SampType: CCV			Units: µg/L		Prep Date	e: 6/10/20	20	RunNo: 597	35	
Client ID: CCV	Batch ID: 28595					Analysis Date	e: 6/10/20	20	SeqNo: 119	5469	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	947	40.0	1,000	0	94.7	80	120				
2-Methylnaphthalene	954	40.0	1,000	0	95.4	80	120				
1-Methylnaphthalene	967	40.0	1,000	0	96.7	80	120				
Acenaphthylene	934	40.0	1,000	0	93.4	80	120				
Acenaphthene	950	40.0	1,000	0	95.0	80	120				
Fluorene	959	40.0	1,000	0	95.9	80	120				
Phenanthrene	984	40.0	1,000	0	98.4	80	120				
Anthracene	935	40.0	1,000	0	93.5	80	120				
Fluoranthene	924	40.0	1,000	0	92.4	80	120				
Pyrene	936	40.0	1,000	0	93.6	80	120				
Benz(a)anthracene	1,020	40.0	1,000	0	102	80	120				
Chrysene	994	40.0	1,000	0	99.4	80	120				
Benzo(b)fluoranthene	1,080	40.0	1,000	0	108	80	120				
Benzo(k)fluoranthene	884	40.0	1,000	0	88.4	80	120				
Benzo(a)pyrene	1,010	40.0	1,000	0	101	80	120				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Harde	el Site				Po	lyaroma	tic Hydro	ocarbons by	y EPA Met	:hod 8270	O (SIM)
Sample ID: CCV-28595	SampType: CCV			Units: µg/L		Prep Da	te: 6/10/20	20	RunNo: 597	35	
Client ID: CCV	Batch ID: 28595	;				Analysis Da	te: 6/10/20	20	SeqNo: 119	5469	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	1,010	40.0	1,000	0	101	80	120				
Dibenz(a,h)anthracene	1,110	40.0	1,000	0	111	80	120				
Benzo(g,h,i)perylene	1,010	40.0	1,000	0	101	80	120				
Surr: 2-Fluorobiphenyl	472		500.0		94.4	69.5	150				
Surr: Terphenyl-d14 (sur	rr) 458		500.0		91.6	71.6	145				

Sample ID: LCS-28595	SampType: LCS			Units: µg/Kg		Prep Da	te: 6/9/2020	RunNo: 59735
Client ID: LCSS	Batch ID: 28595					Analysis Da	te: 6/10/2020	SeqNo: 1195471
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	%RPD RPDLimit Qual
Naphthalene	808	40.0	1,000	0	80.8	47.3	136	
2-Methylnaphthalene	819	40.0	1,000	0	81.9	48.6	142	
1-Methylnaphthalene	820	40.0	1,000	0	82.0	51	140	
Acenaphthylene	807	40.0	1,000	0	80.7	47.5	137	
Acenaphthene	828	40.0	1,000	0	82.8	49.1	138	
Fluorene	840	40.0	1,000	0	84.0	49.3	137	
Phenanthrene	856	40.0	1,000	0	85.6	45.5	139	
Anthracene	801	40.0	1,000	0	80.1	44	139	
Fluoranthene	797	40.0	1,000	0	79.7	48.7	144	
Pyrene	815	40.0	1,000	0	81.5	47.9	143	
Benz(a)anthracene	871	40.0	1,000	0	87.1	49.8	143	
Chrysene	861	40.0	1,000	0	86.1	47.1	144	
Benzo(b)fluoranthene	928	40.0	1,000	0	92.8	44.6	150	
Benzo(k)fluoranthene	819	40.0	1,000	0	81.9	47.5	148	
Benzo(a)pyrene	865	40.0	1,000	0	86.5	45	149	
Indeno(1,2,3-cd)pyrene	865	40.0	1,000	0	86.5	41.4	146	
Dibenz(a,h)anthracene	878	40.0	1,000	0	87.8	43.4	145	
Benzo(g,h,i)perylene	879	40.0	1,000	0	87.9	42.7	144	
Surr: 2-Fluorobiphenyl	504		500.0		101	6.91	127	
Surr: Terphenyl-d14 (surr)	599		500.0		120	32.9	153	

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-28595 SampType: LCS Units: μg/Kg Prep Date: 6/9/2020 RunNo: 59735

Client ID: LCSS Batch ID: 28595 Analysis Date: 6/10/2020 SeqNo: 1195471

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: 2006123-002ADUP	SampType: DUP			Units: µg/l	Kg-dry	Prep Dat	te: 6/9/202	20	RunNo: 597	35	
Client ID: BATCH	Batch ID: 28595					Analysis Da	te: 6/11/2 0	20	SeqNo: 119	5551	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	44.7						0		30	
2-Methylnaphthalene	ND	44.7						0		30	
1-Methylnaphthalene	ND	44.7						0		30	
Acenaphthylene	ND	44.7						0		30	
Acenaphthene	ND	44.7						0		30	
Fluorene	ND	44.7						0		30	
Phenanthrene	ND	44.7						0		30	
Anthracene	ND	44.7						0		30	
Fluoranthene	ND	44.7						0		30	
Pyrene	ND	44.7						0		30	
Benz(a)anthracene	ND	44.7						0		30	
Chrysene	ND	44.7						0		30	
Benzo(b)fluoranthene	ND	44.7						0		30	
Benzo(k)fluoranthene	ND	44.7						0		30	
Benzo(a)pyrene	ND	44.7						0		30	
Indeno(1,2,3-cd)pyrene	ND	44.7						0		30	
Dibenz(a,h)anthracene	ND	44.7						0		30	
Benzo(g,h,i)perylene	ND	44.7						0		30	
Surr: 2-Fluorobiphenyl	892		1,116		79.9	6.91	127		0		
Surr: Terphenyl-d14 (surr)	1,230		1,116		110	32.9	153		0		

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Site					Po	olyaroma	tic Hydr	ocarbons b	y EPA Me	hod 827	O (SIM)
Sample ID: 2006123-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 6/9/202	20	RunNo: 597	'35	
Client ID: BATCH	Batch ID: 28595					Analysis Da	te: 6/11/2 0	20	SeqNo: 119	5552	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	814	45.1	1,129	0	72.1	33	123				
2-Methylnaphthalene	845	45.1	1,129	0	74.9	38.9	128				
1-Methylnaphthalene	853	45.1	1,129	0	75.5	36.2	129				
Acenaphthylene	858	45.1	1,129	0	76.0	39	132				
Acenaphthene	867	45.1	1,129	0	76.8	39.5	124				
Fluorene	874	45.1	1,129	0	77.4	38.5	128				
Phenanthrene	883	45.1	1,129	0	78.2	34.1	130				
Anthracene	856	45.1	1,129	0	75.8	38.8	128				
Fluoranthene	880	45.1	1,129	0	77.9	38.6	136				
Pyrene	894	45.1	1,129	8.740	78.4	37.8	134				
Benz(a)anthracene	1,050	45.1	1,129	0	93.1	35.9	142				
Chrysene	885	45.1	1,129	0	78.4	36.7	131				
Benzo(b)fluoranthene	1,130	45.1	1,129	0	99.9	35	141				
Benzo(k)fluoranthene	868	45.1	1,129	0	76.9	35.9	136				
Benzo(a)pyrene	985	45.1	1,129	0	87.3	31.2	142				
Indeno(1,2,3-cd)pyrene	932	45.1	1,129	0	82.5	29.1	133				
Dibenz(a,h)anthracene	922	45.1	1,129	0	81.7	31.3	132				
Benzo(g,h,i)perylene	1,030	45.1	1,129	0	90.8	30.2	128				
Surr: 2-Fluorobiphenyl	504		564.3		89.4	6.91	127				
Surr: Terphenyl-d14 (surr)	629		564.3		111	32.9	153				

Sample ID: 2006123-002AMSD	SampType: MSD			Units: µg/Kg	-dry	Prep Da	te: 6/9/202	0	RunNo: 597	'35	
Client ID: BATCH	Batch ID: 28595					Analysis Da	te: 6/11/20	20	SeqNo: 119	5553	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	656	39.1	977.4	0	67.1	33	123	814.3	21.6	30	
2-Methylnaphthalene	698	39.1	977.4	0	71.4	38.9	128	845.3	19.1	30	
1-Methylnaphthalene	705	39.1	977.4	0	72.1	36.2	129	852.7	19.0	30	
Acenaphthylene	713	39.1	977.4	0	73.0	39	132	858.0	18.5	30	
Acenaphthene	723	39.1	977.4	0	74.0	39.5	124	866.7	18.1	30	

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: 2006123-002AMSD	SampType: MSD			Units: µg/Kg-	dry	Prep Da	te: 6/9/202	0	RunNo: 597	735	
Client ID: BATCH	Batch ID: 28595					Analysis Da	te: 6/11/20	20	SeqNo: 119	95553	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	728	39.1	977.4	0	74.5	38.5	128	874.2	18.2	30	
Phenanthrene	742	39.1	977.4	0	75.9	34.1	130	882.9	17.4	30	
Anthracene	722	39.1	977.4	0	73.9	38.8	128	855.7	16.9	30	
Fluoranthene	727	39.1	977.4	0	74.4	38.6	136	879.5	18.9	30	
Pyrene	753	39.1	977.4	8.740	76.2	37.8	134	894.1	17.1	30	
Benz(a)anthracene	907	39.1	977.4	0	92.8	35.9	142	1,051	14.7	30	
Chrysene	737	39.1	977.4	0	75.4	36.7	131	884.5	18.2	30	
Benzo(b)fluoranthene	957	39.1	977.4	0	97.9	35	141	1,128	16.5	30	
Benzo(k)fluoranthene	780	39.1	977.4	0	79.9	35.9	136	868.2	10.6	30	
Benzo(a)pyrene	873	39.1	977.4	0	89.3	31.2	142	985.1	12.1	30	
Indeno(1,2,3-cd)pyrene	823	39.1	977.4	0	84.2	29.1	133	931.6	12.4	30	
Dibenz(a,h)anthracene	807	39.1	977.4	0	82.6	31.3	132	921.6	13.3	30	
Benzo(g,h,i)perylene	920	39.1	977.4	0	94.1	30.2	128	1,025	10.9	30	
Surr: 2-Fluorobiphenyl	424		488.7		86.7	6.91	127		0		
Surr: Terphenyl-d14 (surr)	523		488.7		107	32.9	153		0		
Sample ID: MB-28595	SampType: MBLK			Units: µg/Kg		Prep Da	te: 6/9/202	0	RunNo: 597	735	
Client ID: MBLKS	Batch ID: 28595					Analysis Da			SeqNo: 119	95556	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	40.0									
2-Methylnaphthalene	ND	40.0									
1-Methylnaphthalene	ND	40.0									
Acenaphthylene	ND	40.0									
Acenaphthene	ND	40.0									
Fluorene	ND	40.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
•											

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Site)				Po	olyaromatio	c Hydrocarbons	by EPA Method 8270) (SIM)
Sample ID: MB-28595	SampType: MBLK			Units: µg/Kg		Prep Date:	6/9/2020	RunNo: 59735	
Client ID: MBLKS	Batch ID: 28595					Analysis Date:	6/11/2020	SeqNo: 1195556	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benz(a)anthracene	ND	40.0							
Chrysene	ND	40.0							
Benzo(b)fluoranthene	ND	40.0							
Benzo(k)fluoranthene	ND	40.0							
Benzo(a)pyrene	ND	40.0							
Indeno(1,2,3-cd)pyrene	ND	40.0							
Dibenz(a,h)anthracene	ND	40.0							
Benzo(g,h,i)perylene	ND	40.0							
Surr: 2-Fluorobiphenyl	902		1,000		90.2	6.91	127		
Surr: Terphenyl-d14 (surr)	1,280		1,000		128	32.9	153		
Sample ID: QCS-28595	SampType: QCS			Units: µg/L		Prep Date:	6/11/2020	RunNo: 59735	
Client ID: BATCH	Batch ID: 28595					Analysis Date:	6/11/2020	SeqNo: 1195559	

Sample ID: QCS-28595	SampType: QCS			Units: µg/L		Prep Da	te: 6/11/20	20	RunNo: 597	'35	
Client ID: BATCH	Batch ID: 28595					Analysis Da	te: 6/11/20	20	SeqNo: 119	5559	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	958	40.0	1,000	0	95.8	50	150				
2-Methylnaphthalene	971	40.0	1,000	0	97.1	50	150				
1-Methylnaphthalene	992	40.0	1,000	0	99.2	50	150				
Acenaphthylene	974	40.0	1,000	0	97.4	50	150				
Acenaphthene	981	40.0	1,000	0	98.1	50	150				
Fluorene	988	40.0	1,000	0	98.8	50	150				
Phenanthrene	976	40.0	1,000	0	97.6	50	150				
Anthracene	952	40.0	1,000	0	95.2	50	150				
Fluoranthene	981	40.0	1,000	0	98.1	50	150				
Pyrene	993	40.0	1,000	0	99.3	50	150				
Benz(a)anthracene	1,210	40.0	1,000	0	121	50	150				
Chrysene	1,020	40.0	1,000	0	102	50	150				
Benzo(b)fluoranthene	1,110	40.0	1,000	0	111	50	150				
Benzo(k)fluoranthene	1,150	40.0	1,000	0	115	50	150				
Benzo(a)pyrene	1,130	40.0	1,000	0	113	50	150				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: QCS-28595	SampType: QCS				Prep Da	te: 6/11/20	20	RunNo: 597				
Client ID: BATCH	Batch ID: 28595			Analysis Date: 6/11/2020						SeqNo: 1195559		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Indeno(1,2,3-cd)pyrene	1,030	40.0	1,000	0	103	50	150					
Dibenz(a,h)anthracene	1,030	40.0	1,000	0	103	50	150					
Benzo(g,h,i)perylene	1,060	40.0	1,000	0	106	50	150					
Surr: 2-Fluorobiphenyl	484		500.0		96.8	50	150					
Surr: Terphenyl-d14 (surr)	475		500.0		95.0	50	150					

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: CAL MIDPOINT	SampType: CCV			Units: µg/L		Prep Da	te: 6/3/202	20	RunNo: 598	307	
Client ID: CCV	Batch ID: 28605					Analysis Da	te: 6/3/202	.0	SeqNo: 119	96792	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	966	100	1,000	0	96.6	80	120				
Bis(2-chloroethyl) ether	959	100	1,000	0	95.9	80	120				
2-Chlorophenol	976	100	1,000	0	97.6	80	120				
1,3-Dichlorobenzene	1,010	75.0	1,000	0	101	80	120				
1,4-Dichlorobenzene	925	75.0	1,000	0	92.5	80	120				
1,2-Dichlorobenzene	945	75.0	1,000	0	94.5	80	120				
Benzyl alcohol	970	100	1,000	0	97.0	80	120				
2-Methylphenol (o-cresol)	1,010	100	1,000	0	101	80	120				
Hexachloroethane	1,070	100	1,000	0	107	80	120				
N-Nitrosodi-n-propylamine	978	100	1,000	0	97.8	80	120				
3&4-Methylphenol (m, p-cresol)	979	100	1,000	0	97.9	80	120				
Nitrobenzene	992	100	1,000	0	99.2	80	120				
Isophorone	981	100	1,000	0	98.1	80	120				
2-Nitrophenol	1,020	100	1,000	0	102	80	120				
2,4-Dimethylphenol	964	100	1,000	0	96.4	80	120				
Bis(2-chloroethoxy)methane	955	75.0	1,000	0	95.5	80	120				
2,4-Dichlorophenol	982	100	1,000	0	98.2	80	120				
1,2,4-Trichlorobenzene	971	75.0	1,000	0	97.1	80	120				
Naphthalene	1,030	50.0	1,000	0	103	80	120				
4-Chloroaniline	985	75.0	1,000	0	98.5	80	120				
Hexachlorobutadiene	1,020	75.0	1,000	0	102	80	120				
4-Chloro-3-methylphenol	950	200	1,000	0	95.0	80	120				
2-Methylnaphthalene	967	50.0	1,000	0	96.7	80	120				
1-Methylnaphthalene	967	50.0	1,000	0	96.7	80	120				
Hexachlorocyclopentadiene	965	100	1,000	0	96.5	80	120				
2,4,6-Trichlorophenol	1,050	100	1,000	0	105	80	120				
2,4,5-Trichlorophenol	952	100	1,000	0	95.2	80	120				
2-Chloronaphthalene	964	75.0	1,000	0	96.4	80	120				
2-Nitroaniline	990	100	1,000	0	99.0	80	120				
Acenaphthene	1,090	50.0	1,000	0	109	80	120				
Dimethylphthalate	977	100	1,000	0	97.7	80	120				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: CAL MIDPOINT	SampType: CCV			Units: µg/L		Prep Da	te: 6/3/202	20	RunNo: 598	307	
Client ID: CCV	Batch ID: 28605					Analysis Da	te: 6/3/202	20	SeqNo: 119	96792	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,6-Dinitrotoluene	893	100	1,000	0	89.3	80	120				
Acenaphthylene	986	50.0	1,000	0	98.6	80	120				
2,4-Dinitrophenol	2,020	525	2,000	0	101	80	120				
Dibenzofuran	951	75.0	1,000	0	95.1	80	120				
2,4-Dinitrotoluene	1,000	100	1,000	0	100	80	120				
4-Nitrophenol	978	500	1,000	0	97.8	80	120				
Fluorene	1,010	50.0	1,000	0	101	80	120				
4-Chlorophenyl phenyl ether	871	75.0	1,000	0	87.1	80	120				
Diethylphthalate	1,010	100	1,000	0	101	80	120				
4,6-Dinitro-2-methylphenol	1,050	200	1,000	0	105	80	120				
4-Bromophenyl phenyl ether	1,020	75.0	1,000	0	102	80	120				
Hexachlorobenzene	1,000	75.0	1,000	0	100	80	120				
Pentachlorophenol	943	100	1,000	0	94.3	80	120				
Phenanthrene	968	50.0	1,000	0	96.8	80	120				
Anthracene	1,010	50.0	1,000	0	101	80	120				
Carbazole	981	75.0	1,000	0	98.1	80	120				
Di-n-butylphthalate	1,010	100	1,000	0	101	80	120				
Fluoranthene	1,010	50.0	1,000	0	101	80	120				
Pyrene	1,050	50.0	1,000	0	105	80	120				
Butyl Benzylphthalate	995	100	1,000	0	99.5	80	120				
bis(2-Ethylhexyl)adipate	985	100	1,000	0	98.5	80	120				
Benz(a)anthracene	989	50.0	1,000	0	98.9	80	120				
Chrysene	1,000	50.0	1,000	0	100	80	120				
bis (2-Ethylhexyl) phthalate	983	100	1,000	0	98.3	80	120				
Di-n-octyl phthalate	1,030	100	1,000	0	103	80	120				
Benzo(b)fluoranthene	1,010	50.0	1,000	0	101	80	120				
Benzo(k)fluoranthene	962	50.0	1,000	0	96.2	80	120				
Benzo(a)pyrene	1,010	50.0	1,000	0	101	80	120				
Indeno(1,2,3-cd)pyrene	986	50.0	1,000	0	98.6	80	120				
Dibenz(a,h)anthracene	1,020	50.0	1,000	0	102	80	120				
Benzo(g,h,i)perylene	1,000	50.0	1,000	0	100	80	120				

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Site							e Organ	iic Compou	ilius by Li	A Metho	u 021
Sample ID: CAL MIDPOINT	SampType: CCV			Units: µg/L		Prep Da	te: 6/3/202	20	RunNo: 598	307	
Client ID: CCV	Batch ID: 28605					Analysis Da	te: 6/3/202	.0	SeqNo: 119	6792	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	1,060		1,000		106	65.9	141				
Surr: 2-Fluorobiphenyl	485		500.0		97.1	73.1	130				
Surr: Nitrobenzene-d5	485		500.0		96.9	77.9	122				
Surr: Phenol-d6	884		1,000		88.4	78.9	117				
Surr: p-Terphenyl	494		500.0		98.9	71.7	131				
Sample ID: SEMI ICB	SampType: ICB			Units: µg/L		Prep Da	te: 6/3/202	20	RunNo: 595	i85	
Client ID: ICB	Batch ID: 28605					Analysis Da	te: 6/3/202	20	SeqNo: 119	1657	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	ND	100									
Bis(2-chloroethyl) ether	ND	100									
2-Chlorophenol	ND	100									
1,3-Dichlorobenzene	ND	75.0									
1,4-Dichlorobenzene	ND	75.0									
1,2-Dichlorobenzene	ND	75.0									
Benzyl alcohol	ND	100									
2-Methylphenol (o-cresol)	ND	100									
Hexachloroethane	ND	100									
N-Nitrosodi-n-propylamine	ND	100									
3&4-Methylphenol (m, p-cresol)	ND	100									
Nitrobenzene	ND	100									
Isophorone	ND	100									
2-Nitrophenol	ND	100									
2,4-Dimethylphenol	ND	100									
Bis(2-chloroethoxy)methane	ND	75.0									
2,4-Dichlorophenol	ND	100									
1,2,4-Trichlorobenzene	ND	75.0									
Naphthalene	ND	50.0									
4-Chloroaniline	ND	75.0									

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Sample ID: SEMI ICB	SampType: ICB			Units: µg/L		Prep Da	ate: 6/3/202	! 0	RunNo: 595	i85	
Client ID: ICB	Batch ID: 28605					Analysis Da	ate: 6/3/202	! 0	SeqNo: 119	11657	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	75.0									
4-Chloro-3-methylphenol	ND	200									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Hexachlorocyclopentadiene	ND	100									
2,4,6-Trichlorophenol	ND	100									
2,4,5-Trichlorophenol	ND	100									
2-Chloronaphthalene	ND	75.0									
2-Nitroaniline	ND	100									
Acenaphthene	ND	50.0									
Dimethylphthalate	ND	100									
2,6-Dinitrotoluene	ND	100									
Acenaphthylene	ND	50.0									
2,4-Dinitrophenol	ND	525									
Dibenzofuran	ND	75.0									
2,4-Dinitrotoluene	ND	100									
4-Nitrophenol	ND	500									
Fluorene	ND	50.0									
4-Chlorophenyl phenyl ether	ND	75.0									
Diethylphthalate	ND	100									
4,6-Dinitro-2-methylphenol	ND	200									
4-Bromophenyl phenyl ether	ND	75.0									
Hexachlorobenzene	ND	75.0									
Pentachlorophenol	ND	100									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Carbazole	ND	75.0									
Di-n-butylphthalate	ND	100									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Butyl Benzylphthalate	ND	100									
									-		<u> 98 ∩f</u>

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Sample ID: SEMI ICB	SampType: ICB			Units: µg/L		Prep Da	ite: 6/3/202	20	RunNo: 595	585	
Client ID: ICB	Batch ID: 28605					Analysis Da	ite: 6/3/202	20	SeqNo: 119	91657	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
bis(2-Ethylhexyl)adipate	ND	100									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
bis (2-Ethylhexyl) phthalate	ND	100									
Di-n-octyl phthalate	ND	100									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2,4,6-Tribromophenol	1,290		1,000		129	10	164				
Surr: 2-Fluorobiphenyl	658		500.0		132	15.1	147				
Surr: Nitrobenzene-d5	658		500.0		132	5	148				
Surr: Phenol-d6	1,230		1,000		123	12.1	141				
Surr: p-Terphenyl	707		500.0		141	20.8	159				
Sample ID: SEMI ICV	SampType: ICV			Units: µg/L		Prep Da	ite: 6/3/202	20	RunNo: 595	585	
Client ID: ICV	Batch ID: 28605					Analysis Da	ite: 6/3/202	20	SeqNo: 119	91658	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	983	100	1,000	0	98.3	70	130				
Bis(2-chloroethyl) ether	972	100	1,000	0	97.2	70	130				
2-Chlorophenol	988	100	1,000	0	98.8	70	130				
1,3-Dichlorobenzene	945	75.0	1,000	0	94.5	70	130				
1,4-Dichlorobenzene	908	75.0	1,000	0	90.8	70	130				
1,2-Dichlorobenzene	986	75.0	1,000	0	98.6	70	130				
Benzyl alcohol	1,080	100	1,000	0	108	70	130				
2-Methylphenol (o-cresol)	1,000	100	1,000	0	100	70	130				
Hexachloroethane	942	100	1,000	0	94.2	70	130				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: SEMI ICV	SampType: ICV			Units: µg/L		Prep Da	te: 6/3/202	20	RunNo: 595	585	
Client ID: ICV	Batch ID: 28605					Analysis Da	te: 6/3/202	20	SeqNo: 119	1658	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
N-Nitrosodi-n-propylamine	1,040	100	1,000	0	104	70	130				
3&4-Methylphenol (m, p-cresol)	989	100	1,000	0	98.9	70	130				
Nitrobenzene	970	100	1,000	0	97.0	70	130				
Isophorone	997	100	1,000	0	99.7	70	130				
2-Nitrophenol	1,060	100	1,000	0	106	70	130				
2,4-Dimethylphenol	1,060	100	1,000	0	106	70	130				
Bis(2-chloroethoxy)methane	978	75.0	1,000	0	97.8	70	130				
2,4-Dichlorophenol	1,020	100	1,000	0	102	70	130				
1,2,4-Trichlorobenzene	968	75.0	1,000	0	96.8	70	130				
Naphthalene	1,030	50.0	1,000	0	103	70	130				
4-Chloroaniline	1,050	75.0	1,000	0	105	70	130				
Hexachlorobutadiene	1,010	75.0	1,000	0	101	70	130				
4-Chloro-3-methylphenol	1,030	200	1,000	0	103	70	130				
2-Methylnaphthalene	980	50.0	1,000	0	98.0	70	130				
1-Methylnaphthalene	1,020	50.0	1,000	0	102	70	130				
Hexachlorocyclopentadiene	1,100	100	1,000	0	110	70	130				
2,4,6-Trichlorophenol	1,010	100	1,000	0	101	70	130				
2,4,5-Trichlorophenol	1,010	100	1,000	0	101	70	130				
2-Chloronaphthalene	1,050	75.0	1,000	0	105	70	130				
2-Nitroaniline	1,050	100	1,000	0	105	70	130				
Acenaphthene	1,040	50.0	1,000	0	104	70	130				
Dimethylphthalate	1,070	100	1,000	0	107	70	130				
2,6-Dinitrotoluene	1,090	100	1,000	0	109	70	130				
Acenaphthylene	1,000	50.0	1,000	0	100	70	130				
2,4-Dinitrophenol	2,260	525	2,000	0	113	70	130				
Dibenzofuran	981	75.0	1,000	0	98.1	70	130				
2,4-Dinitrotoluene	1,060	100	1,000	0	106	70	130				
4-Nitrophenol	1,110	500	1,000	0	111	70	130				
Fluorene	1,030	50.0	1,000	0	103	70	130				
4-Chlorophenyl phenyl ether	1,040	75.0	1,000	0	104	70	130				
Diethylphthalate	1,030	100	1,000	0	103	70	130				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: SEMI ICV	SampType: ICV			Units: µg/L		Prep Dat	te: 6/3/202 0	0	RunNo: 595	i85	
Client ID: ICV	Batch ID: 28605					Analysis Dat	te: 6/3/202	0	SeqNo: 119	11658	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4,6-Dinitro-2-methylphenol	1,040	200	1,000	0	104	70	130				
4-Bromophenyl phenyl ether	1,010	75.0	1,000	0	101	70	130				
Hexachlorobenzene	1,060	75.0	1,000	0	106	70	130				
Pentachlorophenol	996	100	1,000	0	99.6	70	130				
Phenanthrene	1,030	50.0	1,000	0	103	70	130				
Anthracene	1,050	50.0	1,000	0	105	70	130				
Carbazole	1,040	75.0	1,000	0	104	70	130				
Di-n-butylphthalate	1,030	100	1,000	0	103	70	130				
Fluoranthene	1,010	50.0	1,000	0	101	70	130				
Pyrene	1,000	50.0	1,000	0	100	70	130				
Butyl Benzylphthalate	1,020	100	1,000	0	102	70	130				
bis(2-Ethylhexyl)adipate	1,060	100	1,000	0	106	70	130				
Benz(a)anthracene	1,040	50.0	1,000	0	104	70	130				
Chrysene	1,010	50.0	1,000	0	101	70	130				
bis (2-Ethylhexyl) phthalate	1,050	100	1,000	0	105	70	130				
Di-n-octyl phthalate	1,050	100	1,000	0	105	70	130				
Benzo(b)fluoranthene	937	50.0	1,000	0	93.7	70	130				
Benzo(k)fluoranthene	1,170	50.0	1,000	0	117	70	130				
Benzo(a)pyrene	1,010	50.0	1,000	0	101	70	130				
Indeno(1,2,3-cd)pyrene	1,040	50.0	1,000	0	104	70	130				
Dibenz(a,h)anthracene	1,070	50.0	1,000	0	107	70	130				
Benzo(g,h,i)perylene	1,090	50.0	1,000	0	109	70	130				
Surr: 2,4,6-Tribromophenol	1,490		1,000		149	65.9	141				S
Surr: 2-Fluorobiphenyl	714		500.0		143	73.1	130				S
Surr: Nitrobenzene-d5	683		500.0		137	77.9	122				S
Surr: Phenol-d6	1,310		1,000		131	78.9	117				S
Surr: p-Terphenyl	732		500.0		146	71.7	131				S

NOTES:

S - Outlying surrogate recovery(ies) observed.

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: CCV-28605	SampType: CCV			Units: µg/L		Prep Da	te: 6/12/20	20	RunNo: 598	307	
Client ID: CCV	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	96781	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	914	100	1,000	0	91.4	80	120				
Bis(2-chloroethyl) ether	899	100	1,000	0	89.9	80	120				
2-Chlorophenol	879	100	1,000	0	87.9	80	120				
1,3-Dichlorobenzene	939	75.0	1,000	0	93.9	80	120				
1,4-Dichlorobenzene	936	75.0	1,000	0	93.6	80	120				
1,2-Dichlorobenzene	909	75.0	1,000	0	90.9	80	120				
Benzyl alcohol	713	100	1,000	0	71.3	80	120				S
2-Methylphenol (o-cresol)	871	100	1,000	0	87.1	80	120				
Hexachloroethane	1,000	100	1,000	0	100	80	120				
N-Nitrosodi-n-propylamine	944	100	1,000	0	94.4	80	120				
3&4-Methylphenol (m, p-cresol)	840	100	1,000	0	84.0	80	120				
Nitrobenzene	880	100	1,000	0	88.0	80	120				
Isophorone	879	100	1,000	0	87.9	80	120				
2-Nitrophenol	887	100	1,000	0	88.7	80	120				
2,4-Dimethylphenol	927	100	1,000	0	92.7	80	120				
Bis(2-chloroethoxy)methane	882	75.0	1,000	0	88.2	80	120				
2,4-Dichlorophenol	845	100	1,000	0	84.5	80	120				
1,2,4-Trichlorobenzene	970	75.0	1,000	0	97.0	80	120				
Naphthalene	881	50.0	1,000	0	88.1	80	120				
4-Chloroaniline	833	75.0	1,000	0	83.3	80	120				
Hexachlorobutadiene	880	75.0	1,000	0	88.0	80	120				
4-Chloro-3-methylphenol	920	200	1,000	0	92.0	80	120				
2-Methylnaphthalene	881	50.0	1,000	0	88.1	80	120				
1-Methylnaphthalene	920	50.0	1,000	0	92.0	80	120				
Hexachlorocyclopentadiene	966	100	1,000	0	96.6	80	120				
2,4,6-Trichlorophenol	900	100	1,000	0	90.0	80	120				
2,4,5-Trichlorophenol	877	100	1,000	0	87.7	80	120				
2-Chloronaphthalene	973	75.0	1,000	0	97.3	80	120				
2-Nitroaniline	894	100	1,000	0	89.4	80	120				
Acenaphthene	956	50.0	1,000	0	95.6	80	120				
Dimethylphthalate	883	100	1,000	0	88.3	80	120				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: CCV-28605	SampType: CCV			Units: µg/L		Prep Da	te: 6/12/20	20	RunNo: 598	307	
Client ID: CCV	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	96781	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,6-Dinitrotoluene	870	100	1,000	0	87.0	80	120				
Acenaphthylene	922	50.0	1,000	0	92.2	80	120				
2,4-Dinitrophenol	1,800	525	2,000	0	90.1	80	120				
Dibenzofuran	850	75.0	1,000	0	85.0	80	120				
2,4-Dinitrotoluene	854	100	1,000	0	85.4	80	120				
4-Nitrophenol	800	500	1,000	0	80.0	80	120				
Fluorene	890	50.0	1,000	0	89.0	80	120				
4-Chlorophenyl phenyl ether	823	75.0	1,000	0	82.3	80	120				
Diethylphthalate	893	100	1,000	0	89.3	80	120				
4,6-Dinitro-2-methylphenol	939	200	1,000	0	93.9	80	120				
4-Bromophenyl phenyl ether	905	75.0	1,000	0	90.5	80	120				
Hexachlorobenzene	884	75.0	1,000	0	88.4	80	120				
Pentachlorophenol	947	100	1,000	0	94.7	80	120				
Phenanthrene	934	50.0	1,000	0	93.4	80	120				
Anthracene	909	50.0	1,000	0	90.9	80	120				
Carbazole	909	75.0	1,000	0	90.9	80	120				
Di-n-butylphthalate	928	100	1,000	0	92.8	80	120				
Fluoranthene	952	50.0	1,000	0	95.2	80	120				
Pyrene	938	50.0	1,000	0	93.8	80	120				
Butyl Benzylphthalate	936	100	1,000	0	93.6	80	120				
bis(2-Ethylhexyl)adipate	942	100	1,000	0	94.2	80	120				
Benz(a)anthracene	922	50.0	1,000	0	92.2	80	120				
Chrysene	927	50.0	1,000	0	92.7	80	120				
bis (2-Ethylhexyl) phthalate	885	100	1,000	0	88.5	80	120				
Di-n-octyl phthalate	897	100	1,000	0	89.7	80	120				
Benzo(b)fluoranthene	980	50.0	1,000	0	98.0	80	120				
Benzo(k)fluoranthene	862	50.0	1,000	0	86.2	80	120				
Benzo(a)pyrene	925	50.0	1,000	0	92.5	80	120				
Indeno(1,2,3-cd)pyrene	959	50.0	1,000	0	95.9	80	120				
Dibenz(a,h)anthracene	1,040	50.0	1,000	0	104	80	120				
Benzo(g,h,i)perylene	943	50.0	1,000	0	94.3	80	120				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: CCV-28605	SampType: CCV	Units: µg/L Prep Date: 6/12/2020					20	RunNo: 59807			
Client ID: CCV	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	96781	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	1,040		1,000		104	65.9	141				
Surr: 2-Fluorobiphenyl	486		500.0		97.1	73.1	130				
Surr: Nitrobenzene-d5	515		500.0		103	77.9	122				
Surr: Phenol-d6	968		1,000		96.8	78.9	117				
Surr: p-Terphenyl NOTES:	483		500.0		96.5	71.7	131				

S - Outlying QC recoveries were observed. More than 80% of the target analytes were within method acceptance criteria.

Sample ID: MB-28605	SampType: MBLK			Units: µg/Kg		Prep Da	ate: 6/9/20 2	20	RunNo: 598	307	
Client ID: MBLKS	Batch ID: 28605					Analysis Da	ate: 6/12/2 0)20	SeqNo: 119	96782	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	ND	100									
Bis(2-chloroethyl) ether	ND	100									
2-Chlorophenol	ND	100									
1,3-Dichlorobenzene	ND	75.0									
1,4-Dichlorobenzene	ND	75.0									
1,2-Dichlorobenzene	ND	75.0									
Benzyl alcohol	ND	100									Q
2-Methylphenol (o-cresol)	ND	100									
Hexachloroethane	ND	100									
N-Nitrosodi-n-propylamine	ND	100									
3&4-Methylphenol (m, p-cresol)	ND	100									
Nitrobenzene	ND	100									
Isophorone	ND	100									
2-Nitrophenol	ND	100									
2,4-Dimethylphenol	ND	100									
Bis(2-chloroethoxy)methane	ND	75.0									
2,4-Dichlorophenol	ND	100									
1,2,4-Trichlorobenzene	ND	75.0									

S - Outlying spike recovery observed (low bias). Samples will be qualified with a Q.

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Analyste Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD & PDLimit Qual Naphthalene ND 50.0 4-Chloron-liftne ND 75.0 4-Chloron-liftne ND 75.0 4-Chloron-liftne ND 50.0 2-Methylaphthalene ND 50.0 2-Methylaphthalene ND 50.0 100 2-Methylaphthalene ND 50.0 100 2-A6-Trichilorocyclopentadiene ND 100 2-A6-Trichilorocyclopentadiene ND 100 2-Chloronaphthalene ND 75.0 2-Chloronaphthalene ND 100 3-Chloronaphthalene ND 75.0 3-Chloronaphthalene ND 100 3	Sample ID: MB-28605	SampType: MBLK			Units: µg/Kg		Prep Da	ite: 6/9/202	20	RunNo: 598	307	
Naphthalene ND 50.0 4-Chloroaniline ND 75.0 Hexachlorobutadiene ND 75.0 -Chloroa-methylphenol ND 50.0 -Methylnaphthalene ND 100 -2-Geritolrophenol ND 100 -2-Geritolrophenol ND 100 -2-Chloronaphthalene ND 75.0 -2-Chloronaphthalene ND 75.0 -2-Nitroaniline ND 100 -2-Chloronaphthalene ND 50.0 -Methylphthalete ND 75.0 -Methylphthalete ND 75.0 -Methylphthalete ND 100 -Methylphthalete ND 75.0 -Methylphthalete ND 75.0 -Methylphthalete ND 100 -Methy	Client ID: MBLKS	Batch ID: 28605					Analysis Da	ite: 6/12/20	020	SeqNo: 119	6782	
4-Chloroaniline ND 75.0 Hexachlorobutadiene ND 75.0 4-Chloro-3-methylphenol ND 50.0 2-Methylnaphthalene ND 50.0 1-Methylnaphthalene ND 100 2-4,6-Trichlorophenol ND 100 2-4,6-Trichlorophenol ND 100 2-Chloronaphthalene ND 75.0 2-Chloronaphthalene ND 100 2-Chloronaphthalene ND 100 2-Chloronaphthalene ND 100 2-Romanthene ND 100 2-Romanthene ND 100 2-Romanthene ND 100 2-Romanthene ND 50.0 4-Nitrophenol ND	Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobutadiene ND 75.0 4-Chioro-3-methylphenol ND 200 2-Medhylnaphthalene ND 50.0 1-Methylnaphthalene ND 50.0 Hexachlorocyclopentadiene ND 100 2,4,5-Trichlorophenol ND 100 2,4,5-Trichlorophenol ND 100 2-Chiorophthalene ND 75.0 2-Kitroaniline ND 100 Acenaphthene ND 50.0 Dimethylphthalate ND 100 Acenaphthylene ND 50.0 2,4-Dinitrothuene ND 55.0 2,4-Dinitrotoluene ND 75.0 4-Nitrophenol ND 50.0 4-Nitrophenol ND 50.0 4-Chiorophenyl phenyl ether ND 75.0 Diethylphthalate ND 75.0 Diethylphthalate ND 75.0 Hexachlorophenol ND 75.0 Penaathrene ND 50.0 An	Naphthalene	ND	50.0									
4-Chloro-3-methylphenol ND 50.0 2-Methylnaphthalene ND 50.0 Hexachlorocyclopentadiene ND 100 2-4,6-Trichlorophenol ND 100 2-4,6-Trichlorophenol ND 100 2-2,6-Trichlorophenol ND 100 2-Chloronaphthalene ND 75.0 2-Chloronaphthalene ND 100 2-Chloronaphthalene ND 50.0 Dimethylphthalate ND 100 2-Chloronaphthalene ND 50.0 Dimethylphthalate ND 100 2-Chlorophenol ND 50.0 Dimethylphthalate ND 50.0 2-4-Dinitrotoluene ND 50.0 2-4-Dinitrotoluene ND 50.0 2-4-Dinitrotoluene ND 100 4-Nitrophenol ND 50.0 2-4-Dinitrotoluene ND 100 4-Nitrophenol ND 50.0 1-Nitrophenol ND 75.0 1-Nitro	4-Chloroaniline	ND	75.0									
2-Methylnaphthalene ND 50.0 1-Methylnaphthalene ND 50.0 Hexachlorocyclopentadiene ND 100 2,4,6-Trichlorophenol ND 100 2,4,5-Trichlorophenol ND 100 2-Chloronaphthalene ND 100 2-Printroduline ND 100 Acenaphthene ND 50.0 Dimethylphthalate ND 100 2,6-Dinitrodulene ND 50.0 2,4-Dinitrodulene ND 50.0 2,4-Dinitrodulene ND 50.0 2,4-Dinitrodulene ND 50.0 4-Nitrophenol ND 50.0 1-Invitrodulene ND 50.0 4-Nitrophenol ND 50.0 1-Uorene ND 50.0 4-Chlorophenyl phenyl ether ND 50.0 1-Europhylphenol ND 20.0 4-Bromophenyl phenyl ether ND 75.0 Pentachlorophenol ND 50.0 <td< td=""><td>Hexachlorobutadiene</td><td>ND</td><td>75.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Hexachlorobutadiene	ND	75.0									
1-Methylnaphthalene ND 50.0 Hexachlorocyclopentadiene ND 100 2.4.6-Trichlorophenol ND 100 2.4.5-Trichlorophenol ND 100 2.4.5-Trichlorophenol ND 75.0 2.4hirtoaniline ND 75.0 2.hirtoaniline ND 100 Acenaphthalene ND 50.0 Dimethylphthalate ND 100 2.6-Dinitrotoluene ND 100 2.6-Dinitrotoluene ND 100 2.6-Dinitrotoluene ND 50.0 Dimethylphthalate ND 100 2.4-Dinitrotoluene ND 50.0 2.4-Dinitrotoluene ND 50.0 2.4-Dinitrotoluene ND 50.0 10benzofuran ND 50.0 10benzofuran ND 50.0 11benzofuran ND 50.0 11benzofuran ND 50.0 11benzofuran ND 50.0 11benzofuran ND 75.0 11benzofurane ND 75.0 12benzofurane ND 75.0 12be	4-Chloro-3-methylphenol	ND	200									
Hexachlorocyclopentadiene ND 100 2.4,6-Trichlorophenol ND 100 2.4,6-Trichlorophenol ND 100 2-Chironaphthalene ND 75.0 2-Nitroanline ND 100 Acenaphthene ND 100 Dimethylphthalate ND 100 2,6-Dinitrotoluene ND 50.0 Acenaphthylene ND 50.0 2,4-Dinitrotoluene ND 55.0 Acenaphthylene ND 75.0 2,4-Dinitrotoluene ND 500 4-Nitrophenol ND 500 Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 4-Chloritor2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole<	2-Methylnaphthalene	ND	50.0									
2,4,6-Trichlorophenol ND 100 2,4,5-Trichlorophenol ND 100 2-Chloronaphthalene ND 100 2-Nitroaniline ND 100 Acenaphthene ND 50.0 Dimethylphthalate ND 100 Acenaphthylene ND 50.0 2,4-Dinitrotholune ND 50.0 2,4-Dinitrotholune ND 55.0 2,4-Dinitrotholune ND 100 4-Nitrophenol ND 50.0 2,4-Dinitrothylphenol ND 50.0 4-Nitrophenol ND 50.0 Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4-Bromophenyl phenyl ether ND 75.0 Pentachlorophenol ND 75.0 Pentachlorophenol ND 75.0 Pentachlorophenol ND 50.0 Anthracene ND 50.0 Carbazole	1-Methylnaphthalene	ND	50.0									
2,4,5-Trichlorophenol ND 100 2-Chloronaphthalene ND 75.0 2-Nitroaniline ND 100 Acenaphthene ND 50.0 Dimethylphthalate ND 100 2,6-Dinitrotoluene ND 100 Acenaphthylene ND 50.0 2,4-Dinitrophenol ND 525 Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 50.0 4-Chiorophenyl phenyl ether ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 75.0 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 75.0 Pentachlorophenol ND 75.0 Phenanthrene ND 75.0 Pentachlorophenol ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylph	Hexachlorocyclopentadiene	ND	100									
2-Chloronaphthalene ND 75.0 2-Nitroanliline ND 100 Acenaphthene ND 50.0 Dimethylphthalate ND 100 2,6-Dinitrotoluene ND 100 Coephitylene ND 50.0 2,4-Dinitrophenol ND 525 Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 1-Nitrophenol ND 500 1-Nitrophenol ND 500 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4-G-Dinitro-2-methylphenol ND 200 4-Bernophenyl phenyl ether ND 75.0 Pentachlorophenol ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 75.0 Pentachlorophenol ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Diethylphthalate ND 50.0 Carbazole ND 75.0 Diethylphthalate ND 75.0 Diethylphthalate ND 75.0 Diethylphthalate ND 75.0	2,4,6-Trichlorophenol	ND	100									
2-Nitroaniline ND 100 Acenaphthene ND 50.0 Dimethylphthalate ND 100 2,6-Dinitrotoluene ND 100 Acenaphthylene ND 50.0 2,4-Dinitrophenol ND 525 Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4-Bomorphenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 75.0 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 75.0	2,4,5-Trichlorophenol	ND	100									
Acenaphthene ND 50.0 Dimethylphthalate ND 100 2,6-Dinitrotoluene ND 100 Acenaphthylene ND 50.0 2,4-Dinitrophenol ND 525 Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 Fluorene ND 75.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 75.0 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 50.0	2-Chloronaphthalene	ND	75.0									
Dimethylphthalate ND 100 2,6-Dinitrotoluene ND 100 Acenaphthylene ND 50.0 2,4-Dinitrophenol ND 525 Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 Fluorene ND 75.0 9-Ethylphthalate ND 75.0 9-Ethylphthalate ND 100 4-G-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 75.0 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 50.0	2-Nitroaniline	ND	100									
2,6-Dinitrotoluene ND 100 Acenaphthylene ND 50.0 2,4-Dinitrophenol ND 525 Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4,6-Dinitro-2-methylphenol ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 75.0 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 75.0	Acenaphthene	ND	50.0									
Acenaphthylene ND 50.0 2,4-Dinitrophenol ND 525 Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 Huorene ND 75.0 Hothorophenyl phenyl ether ND 100 4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 75.0 Pentachlorophenol ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 50.0	Dimethylphthalate	ND	100									
2,4-Dinitrophenol ND 525 Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	2,6-Dinitrotoluene	ND	100									
Dibenzofuran ND 75.0 2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	Acenaphthylene	ND	50.0									
2,4-Dinitrotoluene ND 100 4-Nitrophenol ND 500 Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	2,4-Dinitrophenol	ND	525									
4-Nitrophenol ND 500 Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	Dibenzofuran	ND	75.0									
Fluorene ND 50.0 4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	2,4-Dinitrotoluene	ND	100									
4-Chlorophenyl phenyl ether ND 75.0 Diethylphthalate ND 100 4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	4-Nitrophenol	ND	500									
Diethylphthalate ND 100 4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	Fluorene	ND	50.0									
4,6-Dinitro-2-methylphenol ND 200 4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	4-Chlorophenyl phenyl ether	ND	75.0									
4-Bromophenyl phenyl ether ND 75.0 Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	Diethylphthalate	ND	100									
Hexachlorobenzene ND 75.0 Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	4,6-Dinitro-2-methylphenol	ND	200									
Pentachlorophenol ND 100 Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	4-Bromophenyl phenyl ether	ND	75.0									
Phenanthrene ND 50.0 Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	Hexachlorobenzene	ND	75.0									
Anthracene ND 50.0 Carbazole ND 75.0 Di-n-butylphthalate ND 100	Pentachlorophenol	ND	100									
Carbazole ND 75.0 Di-n-butylphthalate ND 100	Phenanthrene	ND	50.0									
Di-n-butylphthalate ND 100	Anthracene	ND	50.0									
• •	Carbazole	ND	75.0									
Fluoranthene ND 50.0	Di-n-butylphthalate	ND	100									
	Fluoranthene	ND	50.0									

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: MB-28605	SampType: MBLK			Units: µg/Kg		Prep Dat	te: 6/9/202	0	RunNo: 598	07	
Client ID: MBLKS	Batch ID: 28605					Analysis Dat	te: 6/12/20	20	SeqNo: 119	16782	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene	ND	50.0									
Butyl Benzylphthalate	ND	100									
bis(2-Ethylhexyl)adipate	ND	100									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
bis (2-Ethylhexyl) phthalate	ND	100									
Di-n-octyl phthalate	ND	100									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2,4,6-Tribromophenol	693		1,000		69.3	5	139				
Surr: 2-Fluorobiphenyl	381		500.0		76.2	5	131				
Surr: Nitrobenzene-d5	205		500.0		41.0	5	123				
Surr: Phenol-d6	923		1,000		92.3	5	129				
Surr: p-Terphenyl	676		500.0		135	13.8	140				
NOTES:											

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: LCS-28605	SampType: LCS			Units: µg/Kg		Prep Da	te: 6/9/202	0	RunNo: 598	807	
Client ID: LCSS	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	6783	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	771	100	1,000	0	77.1	36	137				
Bis(2-chloroethyl) ether	737	100	1,000	0	73.7	39	132				
2-Chlorophenol	732	100	1,000	0	73.2	44.1	138				
1,3-Dichlorobenzene	675	75.0	1,000	0	67.5	43.9	123				
1,4-Dichlorobenzene	697	75.0	1,000	0	69.7	48	120				
1,2-Dichlorobenzene	698	75.0	1,000	0	69.8	44.9	124				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: LCS-28605	SampType: LCS			Units: µg/Kg		Prep Da	te: 6/9/202	0	RunNo: 598	307	
Client ID: LCSS	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	96783	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzyl alcohol	591	100	1,000	0	59.1	5	190				
2-Methylphenol (o-cresol)	746	100	1,000	0	74.6	39.8	136				
Hexachloroethane	704	100	1,000	0	70.4	37.2	129				
N-Nitrosodi-n-propylamine	815	100	1,000	0	81.5	37.6	146				
3&4-Methylphenol (m, p-cresol)	718	100	1,000	0	71.8	45.4	133				
Nitrobenzene	709	100	1,000	0	70.9	36.4	135				
Isophorone	779	100	1,000	0	77.9	42.2	138				
2-Nitrophenol	752	100	1,000	0	75.2	57.6	133				
2,4-Dimethylphenol	785	100	1,000	0	78.5	45.5	129				
Bis(2-chloroethoxy)methane	726	75.0	1,000	0	72.6	44.7	135				
2,4-Dichlorophenol	740	100	1,000	0	74.0	50.2	140				
1,2,4-Trichlorobenzene	773	75.0	1,000	0	77.3	47.6	136				
Naphthalene	790	50.0	1,000	0	79.0	48	138				
4-Chloroaniline	655	75.0	1,000	0	65.5	48.5	127				
Hexachlorobutadiene	730	75.0	1,000	0	73.0	44.6	137				
4-Chloro-3-methylphenol	705	200	1,000	0	70.5	44.1	149				
2-Methylnaphthalene	716	50.0	1,000	0	71.6	50.1	137				
1-Methylnaphthalene	728	50.0	1,000	0	72.8	53.8	129				
Hexachlorocyclopentadiene	719	100	1,000	0	71.9	6.89	161				
2,4,6-Trichlorophenol	593	100	1,000	0	59.3	48.1	137				
2,4,5-Trichlorophenol	760	100	1,000	0	76.0	45.8	146				
2-Chloronaphthalene	760	75.0	1,000	0	76.0	49.7	140				
2-Nitroaniline	711	100	1,000	0	71.1	46.3	141				
Acenaphthene	769	50.0	1,000	0	76.9	51.1	139				
Dimethylphthalate	769	100	1,000	0	76.9	56	129				
2,6-Dinitrotoluene	767	100	1,000	0	76.7	61	137				
Acenaphthylene	760	50.0	1,000	0	76.0	49.6	134				
2,4-Dinitrophenol	371	525	2,000	0	18.5	5	80.3				
Dibenzofuran	734	75.0	1,000	0	73.4	50.4	141				
2,4-Dinitrotoluene	789	100	1,000	0	78.9	61.8	134				
4-Nitrophenol	520	500	1,000	0	52.0	23	137				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: LCS-28605	SampType: LCS			Units: µg/Kg		Prep Da	te: 6/9/202	0	RunNo: 598	307	
Client ID: LCSS	Batch ID: 28605					Analysis Da	te: 6/12/2 0	20	SeqNo: 119	6783	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	805	50.0	1,000	0	80.5	49.6	142				
4-Chlorophenyl phenyl ether	791	75.0	1,000	0	79.1	52.5	137				
Diethylphthalate	797	100	1,000	0	79.7	57.7	135				
4,6-Dinitro-2-methylphenol	323	200	1,000	0	32.3	5	103				
4-Bromophenyl phenyl ether	703	75.0	1,000	0	70.3	48.2	141				
Hexachlorobenzene	784	75.0	1,000	0	78.4	54.1	136				
Pentachlorophenol	180	100	1,000	0	18.0	5	140				
Phenanthrene	780	50.0	1,000	0	78.0	51.5	135				
Anthracene	805	50.0	1,000	0	80.5	46.6	137				
Carbazole	770	75.0	1,000	0	77.0	48.2	136				
Di-n-butylphthalate	785	100	1,000	0	78.5	58.6	131				
Fluoranthene	795	50.0	1,000	0	79.5	48.7	133				
Pyrene	814	50.0	1,000	0	81.4	48.8	134				
Butyl Benzylphthalate	768	100	1,000	0	76.8	49.4	147				
bis(2-Ethylhexyl)adipate	757	100	1,000	0	75.7	45.5	151				
Benz(a)anthracene	770	50.0	1,000	0	77.0	55.6	134				
Chrysene	794	50.0	1,000	0	79.4	47.4	144				
bis (2-Ethylhexyl) phthalate	716	100	1,000	0	71.6	49.4	152				
Di-n-octyl phthalate	752	100	1,000	0	75.2	45.5	148				
Benzo(b)fluoranthene	805	50.0	1,000	0	80.5	44.7	150				
Benzo(k)fluoranthene	894	50.0	1,000	0	89.4	44.3	143				
Benzo(a)pyrene	766	50.0	1,000	0	76.6	60.5	136				
Indeno(1,2,3-cd)pyrene	810	50.0	1,000	0	81.0	49.5	141				
Dibenz(a,h)anthracene	884	50.0	1,000	0	88.4	48.7	138				
Benzo(g,h,i)perylene	870	50.0	1,000	0	87.0	51.4	137				
Surr: 2,4,6-Tribromophenol	1,150		1,000		115	5	139				
Surr: 2-Fluorobiphenyl	492		500.0		98.5	5	131				
Surr: Nitrobenzene-d5	322		500.0		64.4	5	123				
Surr: Phenol-d6	938		1,000		93.8	5	129				
Surr: p-Terphenyl	687		500.0		137	13.8	140				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2006085-015ADUP	SampType: DUP			Units: μg/Κο	g-dry	Prep Da	ite: 6/9/202	20	RunNo: 598	307	
Client ID: S-B6-3-4-0603	Batch ID: 28605					Analysis Da	ite: 6/12/2 0	20	SeqNo: 119	96787	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	ND	116						0		50	
Bis(2-chloroethyl) ether	ND	116						0		50	
2-Chlorophenol	ND	116						0		50	
1,3-Dichlorobenzene	ND	87.1						0		50	
1,4-Dichlorobenzene	ND	87.1						0		50	
1,2-Dichlorobenzene	ND	87.1						0		50	
Benzyl alcohol	ND	116						0		50	Q
2-Methylphenol (o-cresol)	ND	116						0		50	
Hexachloroethane	ND	116						0		50	
N-Nitrosodi-n-propylamine	153	116						0	200	50	
3&4-Methylphenol (m, p-cresol)	ND	116						0		50	
Nitrobenzene	ND	116						0		50	
Isophorone	ND	116						0		50	
2-Nitrophenol	ND	116						0		50	
2,4-Dimethylphenol	ND	116						0		50	
Bis(2-chloroethoxy)methane	ND	87.1						0		50	
2,4-Dichlorophenol	ND	116						0		50	
1,2,4-Trichlorobenzene	ND	87.1						0		50	
Naphthalene	286	58.1						315.7	9.70	50	
4-Chloroaniline	ND	87.1						0		50	
Hexachlorobutadiene	ND	87.1						0		50	
4-Chloro-3-methylphenol	ND	232						0		50	
2-Methylnaphthalene	102	58.1						135.3	27.7	50	
1-Methylnaphthalene	75.2	58.1						69.43	8.04	50	
Hexachlorocyclopentadiene	ND	116						0		50	
2,4,6-Trichlorophenol	ND	116						0		50	
2,4,5-Trichlorophenol	ND	116						0		50	
2-Chloronaphthalene	ND	87.1						0		50	
2-Nitroaniline	ND	116						0		50	
Acenaphthene	ND	58.1						0		50	
Dimethylphthalate	ND	116						0		50	
D. Maria A										Page	109 വ

Revision v1 Page 109 of 137

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2006085-015ADUP	SampType: DUP			Units: µg/Kg	g-dry	Prep Da	ite: 6/9/202	0	RunNo: 598	307	
Client ID: S-B6-3-4-0603	Batch ID: 28605					Analysis Da	ite: 6/12/20	20	SeqNo: 119	6787	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
2,6-Dinitrotoluene	ND	116						0		50	
Acenaphthylene	ND	58.1						0		50	
2,4-Dinitrophenol	ND	610						0		50	
Dibenzofuran	ND	87.1						0		50	
2,4-Dinitrotoluene	ND	116						0		50	
4-Nitrophenol	ND	581						0		50	
Fluorene	ND	58.1						0		50	
4-Chlorophenyl phenyl ether	ND	87.1						0		50	
Diethylphthalate	ND	116						0		50	
4,6-Dinitro-2-methylphenol	ND	232						0		50	
4-Bromophenyl phenyl ether	ND	87.1						0		50	
Hexachlorobenzene	ND	87.1						0		50	
Pentachlorophenol	ND	116						0		50	
Phenanthrene	75.5	58.1						77.29	2.36	50	
Anthracene	ND	58.1						0		50	
Carbazole	ND	87.1						0		50	
Di-n-butylphthalate	ND	116						0		50	
Fluoranthene	88.0	58.1						80.13	9.34	50	
Pyrene	78.8	58.1						75.56	4.19	50	
Butyl Benzylphthalate	ND	116						0		50	
bis(2-Ethylhexyl)adipate	ND	116						0		50	
Benz(a)anthracene	ND	58.1						0		50	
Chrysene	71.7	58.1						0	200	50	
bis (2-Ethylhexyl) phthalate	ND	116						0		50	
Di-n-octyl phthalate	ND	116						0		50	
Benzo(b)fluoranthene	92.1	58.1						107.1	15.1	50	
Benzo(k)fluoranthene	ND	58.1						0		50	
Benzo(a)pyrene	ND	58.1						0		50	
Indeno(1,2,3-cd)pyrene	ND	58.1						65.26	24.9	50	
Dibenz(a,h)anthracene	ND	58.1						0		50	
Benzo(g,h,i)perylene	83.8	58.1						82.81	1.24	50	
										Page	110 0

Revision v1 Page 110 of 137

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2006085-015ADUP	SampType: DUP			Units: µg/K	(g-dry	Prep Da	te: 6/9/202	20	RunNo: 598	307	
Client ID: S-B6-3-4-0603	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	96787	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	1,210		1,162		104	5	139		0		
Surr: 2-Fluorobiphenyl	541		580.9		93.1	5	131		0		
Surr: Nitrobenzene-d5	429		580.9		73.8	5	123		0		
Surr: Phenol-d6	891		1,162		76.7	5	129		0		
Surr: p-Terphenyl NOTES:	654		580.9		113	13.8	140		0		

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: 2006085-015AMS	SampType: MS			Units: µg/K	(g-dry	Prep Da	te: 6/9/202	0	RunNo: 598	307	
Client ID: S-B6-3-4-0603	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	6788	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	563	98.0	979.7	0	57.5	27	113				
Bis(2-chloroethyl) ether	586	98.0	979.7	0	59.8	19.7	113				
2-Chlorophenol	542	98.0	979.7	0	55.4	24.7	118				
1,3-Dichlorobenzene	474	73.5	979.7	0	48.4	20.6	99.9				
1,4-Dichlorobenzene	383	73.5	979.7	0	39.1	22.6	101				
1,2-Dichlorobenzene	451	73.5	979.7	0	46.0	26.2	103				
Benzyl alcohol	391	98.0	979.7	0	39.9	5	169				
2-Methylphenol (o-cresol)	587	98.0	979.7	0	59.9	23.3	122				
Hexachloroethane	441	98.0	979.7	0	45.0	16.9	100				
N-Nitrosodi-n-propylamine	627	98.0	979.7	0	64.0	25.6	131				
3&4-Methylphenol (m, p-cresol)	502	98.0	979.7	0	51.2	27.9	118				
Nitrobenzene	532	98.0	979.7	0	54.3	23	121				
Isophorone	603	98.0	979.7	0	61.5	26.8	128				
2-Nitrophenol	535	98.0	979.7	100.3	44.3	34.6	130				
2,4-Dimethylphenol	427	98.0	979.7	0	43.6	13.4	129				
Bis(2-chloroethoxy)methane	549	73.5	979.7	0	56.1	30.3	119				
2,4-Dichlorophenol	545	98.0	979.7	0	55.7	27	133				
1,2,4-Trichlorobenzene	544	73.5	979.7	0	55.6	32.1	120				
Naphthalene	630	49.0	979.7	315.7	32.1	24.7	126				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: 2006085-015AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 6/9/202	20	RunNo: 598	307	
Client ID: S-B6-3-4-0603	Batch ID: 28605					Analysis Da	te: 6/12/2 0	20	SeqNo: 119	6788	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Chloroaniline	438	73.5	979.7	0	44.8	10.9	114				
Hexachlorobutadiene	534	73.5	979.7	0	54.5	32.4	113				
4-Chloro-3-methylphenol	555	196	979.7	0	56.7	28.7	135				
2-Methylnaphthalene	601	49.0	979.7	135.3	47.5	31.1	125				
1-Methylnaphthalene	578	49.0	979.7	69.43	51.9	29.6	125				
Hexachlorocyclopentadiene	440	98.0	979.7	0	44.9	5	117				
2,4,6-Trichlorophenol	526	98.0	979.7	0	53.7	31	125				
2,4,5-Trichlorophenol	546	98.0	979.7	0	55.7	28.7	130				
2-Chloronaphthalene	585	73.5	979.7	0	59.8	37.2	121				
2-Nitroaniline	548	98.0	979.7	0	55.9	19.5	145				
Acenaphthene	588	49.0	979.7	0	60.1	34.2	128				
Dimethylphthalate	613	98.0	979.7	0	62.5	25.5	125				
2,6-Dinitrotoluene	666	98.0	979.7	0	68.0	41.4	127				
Acenaphthylene	604	49.0	979.7	0	61.6	34.5	121				
2,4-Dinitrophenol	148	514	1,959	0	7.55	5	74.3				
Dibenzofuran	565	73.5	979.7	0	57.6	30.8	128				
2,4-Dinitrotoluene	521	98.0	979.7	0	53.2	35.8	132				
4-Nitrophenol	407	490	979.7	0	41.6	5	152				
Fluorene	591	49.0	979.7	0	60.3	34.4	127				
4-Chlorophenyl phenyl ether	545	73.5	979.7	0	55.7	37.4	121				
Diethylphthalate	630	98.0	979.7	0	64.3	36	131				
4,6-Dinitro-2-methylphenol	215	196	979.7	0	22.0	5	109				
4-Bromophenyl phenyl ether	589	73.5	979.7	0	60.1	36.7	121				
Hexachlorobenzene	580	73.5	979.7	0	59.2	34.4	127				
Pentachlorophenol	441	98.0	979.7	0	45.1	5	149				
Phenanthrene	616	49.0	979.7	77.29	55.0	30.6	128				
Anthracene	621	49.0	979.7	28.09	60.5	30.5	124				
Carbazole	572	73.5	979.7	0	58.4	28.8	128				
Di-n-butylphthalate	640	98.0	979.7	0	65.3	36.1	132				
Fluoranthene	622	49.0	979.7	80.13	55.3	30.9	125				
Pyrene	623	49.0	979.7	75.56	55.9	31	125				

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Sample ID: 2006085-015AMS	SampType: N	ıs		Units: µg/	/Kg-dry	Prep Dat	e: 6/9/202	0	RunNo: 598	307	
Client ID: S-B6-3-4-0603	Batch ID: 2	8605				Analysis Dat	e: 6/12/20	20	SeqNo: 119	6788	
Analyte	Res	sult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Butyl Benzylphthalate	6	79 98.0	979.7	0	69.3	35.1	138				
bis(2-Ethylhexyl)adipate	6	98.0	979.7	0	69.3	36.5	136				
Benz(a)anthracene	6	14 49.0	979.7	0	62.7	18.4	142				
Chrysene	5	82 49.0	979.7	0	59.4	27.4	134				
bis (2-Ethylhexyl) phthalate	6	98.0	979.7	0	62.4	38.6	144				
Di-n-octyl phthalate	6	98.0	979.7	0	67.3	37.1	145				
Benzo(b)fluoranthene	6	49.0	979.7	107.1	55.9	33.5	134				
Benzo(k)fluoranthene	6	38 49.0	979.7	46.67	60.3	14	133				
Benzo(a)pyrene	5	84 49.0	979.7	0	59.6	28.9	142				
Indeno(1,2,3-cd)pyrene	6	605 49.0	979.7	65.26	55.1	25.6	130				
Dibenz(a,h)anthracene	6	84 49.0	979.7	0	69.8	27.9	126				
Benzo(g,h,i)perylene	6	33 49.0	979.7	82.81	56.1	23.9	125				
Surr: 2,4,6-Tribromophenol	9	28	979.7		94.7	5	139				
Surr: 2-Fluorobiphenyl	3	97	489.8		81.1	5	131				
Surr: Nitrobenzene-d5	3	33	489.8		67.9	5	123				
Surr: Phenol-d6	7	64	979.7		78.0	5	129				
Surr: p-Terphenyl	5	02	489.8		102	13.8	140				

Sample ID: 2006085-015AMSD	SampType: MSD			Units: µg/Kg	-dry	Prep Da	te: 6/9/202	0	RunNo: 598	807	
Client ID: S-B6-3-4-0603	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	6789	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	637	107	1,074	0	59.3	27	113	563.4	12.3	50	
Bis(2-chloroethyl) ether	640	107	1,074	0	59.5	19.7	113	586.3	8.70	50	
2-Chlorophenol	619	107	1,074	0	57.6	24.7	118	542.3	13.2	50	
1,3-Dichlorobenzene	539	80.6	1,074	0	50.2	20.6	99.9	473.9	12.8	50	
1,4-Dichlorobenzene	530	80.6	1,074	0	49.4	22.6	101	383.1	32.2	50	R
1,2-Dichlorobenzene	573	80.6	1,074	0	53.3	26.2	103	450.9	23.8	50	
Benzyl alcohol	391	107	1,074	0	36.4	5	169	391.1	0.0911	50	
2-Methylphenol (o-cresol)	609	107	1,074	0	56.7	23.3	122	587.2	3.60	50	

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: 2006085-015AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	ite: 6/9/202	20	RunNo: 598	307	
Client ID: S-B6-3-4-0603	Batch ID: 28605					Analysis Da	ite: 6/12/2 0	20	SeqNo: 119	96789	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachloroethane	566	107	1,074	0	52.7	16.9	100	441.3	24.7	50	R
N-Nitrosodi-n-propylamine	812	107	1,074	0	75.6	25.6	131	627.0	25.8	50	
3&4-Methylphenol (m, p-cresol)	605	107	1,074	0	56.3	27.9	118	502.0	18.5	50	
Nitrobenzene	590	107	1,074	0	54.9	23	121	531.8	10.3	50	
Isophorone	706	107	1,074	0	65.7	26.8	128	602.7	15.7	50	
2-Nitrophenol	664	107	1,074	100.3	52.5	34.6	130	534.6	21.6	50	R
2,4-Dimethylphenol	464	107	1,074	0	43.2	13.4	129	426.8	8.44	50	
Bis(2-chloroethoxy)methane	671	80.6	1,074	0	62.4	30.3	119	549.2	19.9	50	
2,4-Dichlorophenol	628	107	1,074	0	58.5	27	133	545.4	14.1	50	
1,2,4-Trichlorobenzene	719	80.6	1,074	0	66.9	32.1	120	544.3	27.6	50	
Naphthalene	820	53.7	1,074	315.7	46.9	24.7	126	629.9	26.2	50	
4-Chloroaniline	443	80.6	1,074	0	41.3	10.9	114	438.4	1.13	50	
Hexachlorobutadiene	615	80.6	1,074	0	57.2	32.4	113	534.1	14.0	50	
4-Chloro-3-methylphenol	671	215	1,074	0	62.5	28.7	135	555.5	18.9	50	
2-Methylnaphthalene	733	53.7	1,074	135.3	55.6	31.1	125	600.9	19.8	50	
1-Methylnaphthalene	704	53.7	1,074	69.43	59.1	29.6	125	577.6	19.7	50	
Hexachlorocyclopentadiene	550	107	1,074	0	51.2	5	117	439.6	22.3	50	R
2,4,6-Trichlorophenol	616	107	1,074	0	57.4	31	125	525.7	15.9	50	
2,4,5-Trichlorophenol	535	107	1,074	0	49.8	28.7	130	545.9	2.00	50	
2-Chloronaphthalene	684	80.6	1,074	0	63.7	37.2	121	585.5	15.5	50	
2-Nitroaniline	636	107	1,074	0	59.2	19.5	145	547.8	14.9	50	
Acenaphthene	671	53.7	1,074	0	62.4	34.2	128	588.4	13.1	50	
Dimethylphthalate	733	107	1,074	0	68.3	25.5	125	612.8	17.9	50	
2,6-Dinitrotoluene	759	107	1,074	0	70.7	41.4	127	666.0	13.1	50	
Acenaphthylene	723	53.7	1,074	0	67.3	34.5	121	604.0	18.0	50	
2,4-Dinitrophenol	676	564	2,148	0	31.5	5	74.3	147.9	128	50	
Dibenzofuran	713	80.6	1,074	0	66.4	30.8	128	564.6	23.2	50	
2,4-Dinitrotoluene	820	107	1,074	0	76.3	35.8	132	521.0	44.5	50	R
4-Nitrophenol	675	537	1,074	0	62.8	5	152	407.1	49.5	50	
Fluorene	757	53.7	1,074	0	70.5	34.4	127	591.2	24.6	50	
4-Chlorophenyl phenyl ether	703	80.6	1,074	0	65.4	37.4	121	545.5	25.2	50	

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2006085-015AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 6/9/202	0	RunNo: 598	307	
Client ID: S-B6-3-4-0603	Batch ID: 28605					Analysis Da	ite: 6/12/20	20	SeqNo: 119	6789	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diethylphthalate	793	107	1,074	0	73.8	36	131	629.9	22.9	50	
4,6-Dinitro-2-methylphenol	707	215	1,074	0	65.8	5	109	215.3	107	50	R
4-Bromophenyl phenyl ether	759	80.6	1,074	0	70.7	36.7	121	589.1	25.2	50	
Hexachlorobenzene	758	80.6	1,074	0	70.6	34.4	127	580.4	26.6	50	
Pentachlorophenol	513	107	1,074	0	47.8	5	149	441.5	15.1	50	
Phenanthrene	794	53.7	1,074	77.29	66.8	30.6	128	616.1	25.3	50	
Anthracene	823	53.7	1,074	28.09	74.0	30.5	124	621.3	27.9	50	
Carbazole	806	80.6	1,074	0	75.0	28.8	128	571.7	34.0	50	
Di-n-butylphthalate	807	107	1,074	0	75.2	36.1	132	639.6	23.2	50	
Fluoranthene	846	53.7	1,074	80.13	71.3	30.9	125	622.3	30.5	50	
Pyrene	838	53.7	1,074	75.56	71.0	31	125	622.8	29.4	50	
Butyl Benzylphthalate	900	107	1,074	0	83.8	35.1	138	678.6	28.1	50	
bis(2-Ethylhexyl)adipate	948	107	1,074	0	88.2	36.5	136	679.3	33.0	50	
Benz(a)anthracene	795	53.7	1,074	0	74.0	18.4	142	614.1	25.7	50	
Chrysene	765	53.7	1,074	0	71.2	27.4	134	581.7	27.3	50	
bis (2-Ethylhexyl) phthalate	798	107	1,074	0	74.3	38.6	144	611.1	26.5	50	
Di-n-octyl phthalate	865	107	1,074	0	80.5	37.1	145	659.6	27.0	50	
Benzo(b)fluoranthene	811	53.7	1,074	107.1	65.5	33.5	134	654.6	21.3	50	
Benzo(k)fluoranthene	679	53.7	1,074	46.67	58.9	14	133	637.6	6.28	50	
Benzo(a)pyrene	758	53.7	1,074	0	70.6	28.9	142	584.2	25.9	50	
Indeno(1,2,3-cd)pyrene	673	53.7	1,074	65.26	56.6	25.6	130	605.3	10.6	50	
Dibenz(a,h)anthracene	785	53.7	1,074	0	73.1	27.9	126	684.1	13.8	50	
Benzo(g,h,i)perylene	713	53.7	1,074	82.81	58.7	23.9	125	632.6	12.0	50	
Surr: 2,4,6-Tribromophenol	1,150		1,074		107	5	139		0		
Surr: 2-Fluorobiphenyl	484		537.1		90.1	5	131		0		
Surr: Nitrobenzene-d5	436		537.1		81.2	5	123		0		
Surr: Phenol-d6	915		1,074		85.2	5	129		0		
Surr: p-Terphenyl	633		537.1		118	13.8	140		0		
NOTES:											

R - High RPD observed, spike recovery is within range.

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: QCS-28605	SampType: QCS			Units: µg/L		Prep Da	te: 6/12/20	20	RunNo: 598	307	
Client ID: BATCH	Batch ID: 28605					Analysis Da	te: 6/12/2 0	20	SeqNo: 119	96791	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	893	100	1,000	0	89.3	50	150				
Bis(2-chloroethyl) ether	969	100	1,000	0	96.9	50	150				
2-Chlorophenol	884	100	1,000	0	88.4	50	150				
1,3-Dichlorobenzene	932	75.0	1,000	0	93.2	50	150				
1,4-Dichlorobenzene	919	75.0	1,000	0	91.9	50	150				
1,2-Dichlorobenzene	854	75.0	1,000	0	85.4	50	150				
Benzyl alcohol	615	100	1,000	0	61.5	50	150				
2-Methylphenol (o-cresol)	974	100	1,000	0	97.4	50	150				
Hexachloroethane	969	100	1,000	0	96.9	50	150				
N-Nitrosodi-n-propylamine	950	100	1,000	0	95.0	50	150				
3&4-Methylphenol (m, p-cresol)	866	100	1,000	0	86.6	50	150				
Nitrobenzene	862	100	1,000	0	86.2	50	150				
Isophorone	922	100	1,000	0	92.2	50	150				
2-Nitrophenol	989	100	1,000	0	98.9	50	150				
2,4-Dimethylphenol	929	100	1,000	0	92.9	50	150				
Bis(2-chloroethoxy)methane	887	75.0	1,000	0	88.7	50	150				
2,4-Dichlorophenol	979	100	1,000	0	97.9	50	150				
1,2,4-Trichlorobenzene	891	75.0	1,000	0	89.1	50	150				
Naphthalene	892	50.0	1,000	0	89.2	50	150				
4-Chloroaniline	793	75.0	1,000	0	79.3	50	150				
Hexachlorobutadiene	897	75.0	1,000	0	89.7	50	150				
4-Chloro-3-methylphenol	904	200	1,000	0	90.4	50	150				
2-Methylnaphthalene	917	50.0	1,000	0	91.7	50	150				
1-Methylnaphthalene	924	50.0	1,000	0	92.4	50	150				
Hexachlorocyclopentadiene	692	100	1,000	0	69.2	50	150				
2,4,6-Trichlorophenol	870	100	1,000	0	87.0	50	150				
2,4,5-Trichlorophenol	917	100	1,000	0	91.7	50	150				
2-Chloronaphthalene	957	75.0	1,000	0	95.7	50	150				
2-Nitroaniline	939	100	1,000	0	93.9	50	150				
Acenaphthene	902	50.0	1,000	0	90.2	50	150				
Dimethylphthalate	969	100	1,000	0	96.9	50	150				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: QCS-28605	SampType: QCS			Units: µg/L	μg/L Prep Date: 6/12/2020 Analysis Date: 6/12/2020			20	RunNo: 598	307	
Client ID: BATCH	Batch ID: 28605					Analysis Da	te: 6/12/20	20	SeqNo: 119	96791	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,6-Dinitrotoluene	878	100	1,000	0	87.8	50	150				
Acenaphthylene	917	50.0	1,000	0	91.7	50	150				
2,4-Dinitrophenol	1,020	525	2,000	0	51.2	50	150				
Dibenzofuran	867	75.0	1,000	0	86.7	50	150				
2,4-Dinitrotoluene	1,020	100	1,000	0	102	50	150				
4-Nitrophenol	735	500	1,000	0	73.5	50	150				
Fluorene	921	50.0	1,000	0	92.1	50	150				
4-Chlorophenyl phenyl ether	877	75.0	1,000	0	87.7	50	150				
Diethylphthalate	941	100	1,000	0	94.1	50	150				
4,6-Dinitro-2-methylphenol	680	200	1,000	0	68.0	50	150				
4-Bromophenyl phenyl ether	931	75.0	1,000	0	93.1	50	150				
Hexachlorobenzene	971	75.0	1,000	0	97.1	50	150				
Pentachlorophenol	907	100	1,000	0	90.7	50	150				
Phenanthrene	955	50.0	1,000	0	95.5	50	150				
Anthracene	930	50.0	1,000	0	93.0	50	150				
Carbazole	931	75.0	1,000	0	93.1	50	150				
Di-n-butylphthalate	958	100	1,000	0	95.8	50	150				
Fluoranthene	967	50.0	1,000	0	96.7	50	150				
Pyrene	986	50.0	1,000	0	98.6	50	150				
Butyl Benzylphthalate	981	100	1,000	0	98.1	50	150				
bis(2-Ethylhexyl)adipate	1,030	100	1,000	0	103	50	150				
Benz(a)anthracene	943	50.0	1,000	0	94.3	50	150				
Chrysene	969	50.0	1,000	0	96.9	50	150				
bis (2-Ethylhexyl) phthalate	978	100	1,000	0	97.8	50	150				
Di-n-octyl phthalate	1,030	100	1,000	0	103	50	150				
Benzo(b)fluoranthene	1,020	50.0	1,000	0	102	50	150				
Benzo(k)fluoranthene	935	50.0	1,000	0	93.5	50	150				
Benzo(a)pyrene	982	50.0	1,000	0	98.2	50	150				
Indeno(1,2,3-cd)pyrene	971	50.0	1,000	0	97.1	50	150				
Dibenz(a,h)anthracene	1,040	50.0	1,000	0	104	50	150				
Benzo(g,h,i)perylene	916	50.0	1,000	0	91.6	50	150				

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: QCS-28605	SampType: QCS	SampType: QCS Units: µg/				Prep Da	te: 6/12/20)20	RunNo: 59807		
Client ID: BATCH	Batch ID: 28605			Analysis Date: 6/12/2020			SeqNo: 119	96791			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	1,070		1,000		107	50	150				
Surr: 2-Fluorobiphenyl	433		500.0		86.6	50	150				
Surr: Nitrobenzene-d5	435		500.0		87.0	50	150				
Surr: Phenol-d6	914		1,000		91.4	50	150				
Surr: p-Terphenyl	463		500.0		92.5	50	150				

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: CCV-28620	SampType: CCV			Units: μg/L		Prep Dat	te: 6/15/20	20	RunNo: 599	939	
Client ID: CCV	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	9701	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	909	2.00	1,000	0	90.9	80	120				
2-Chlorophenol	880	1.00	1,000	0	88.0	80	120				
1,3-Dichlorobenzene	950	1.00	1,000	0	95.0	80	120				
1,4-Dichlorobenzene	858	1.00	1,000	0	85.8	80	120				
1,2-Dichlorobenzene	866	1.00	1,000	0	86.6	80	120				
Benzyl alcohol	315	1.00	1,000	0	31.5	80	120				S
Bis(2-chloroethyl) ether	920	2.00	1,000	0	92.0	80	120				
2-Methylphenol (o-cresol)	865	1.00	1,000	0	86.5	80	120				
Hexachloroethane	984	1.00	1,000	0	98.4	80	120				
N-Nitrosodi-n-propylamine	1,060	1.00	1,000	0	106	80	120				
3&4-Methylphenol (m, p-cresol)	769	1.00	1,000	0	76.9	80	120				S
Nitrobenzene	850	2.00	1,000	0	85.0	80	120				
Isophorone	882	1.00	1,000	0	88.2	80	120				
2-Nitrophenol	984	2.00	1,000	0	98.4	80	120				
2,4-Dimethylphenol	883	1.00	1,000	0	88.3	80	120				
Bis(2-chloroethoxy)methane	870	1.00	1,000	0	87.0	80	120				
2,4-Dichlorophenol	888	2.00	1,000	0	88.8	80	120				
1,2,4-Trichlorobenzene	904	1.00	1,000	0	90.4	80	120				
Naphthalene	917	0.500	1,000	0	91.7	80	120				
4-Chloroaniline	839	5.00	1,000	0	83.9	80	120				
Hexachlorobutadiene	894	1.00	1,000	0	89.4	80	120				
4-Chloro-3-methylphenol	925	5.00	1,000	0	92.5	80	120				
2-Methylnaphthalene	920	0.500	1,000	0	92.0	80	120				
1-Methylnaphthalene	896	0.500	1,000	0	89.6	80	120				
Hexachlorocyclopentadiene	1,010	1.00	1,000	0	101	80	120				
2,4,6-Trichlorophenol	842	2.00	1,000	0	84.2	80	120				
2,4,5-Trichlorophenol	862	2.00	1,000	0	86.2	80	120				
2-Chloronaphthalene	907	1.00	1,000	0	90.7	80	120				
2-Nitroaniline	911	5.00	1,000	0	91.1	80	120				
Acenaphthene	866	0.500	1,000	0	86.6	80	120				
Acchaphinene											

Revision v1 Page 119 of 137

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: CCV-28620	SampType: CCV			Units: µg/L		Prep Da	te: 6/15/20	20	RunNo: 599	939	
Client ID: CCV	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	99701	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,6-Dinitrotoluene	836	1.00	1,000	0	83.6	80	120				
Acenaphthylene	911	0.500	1,000	0	91.1	80	120				
2,4-Dinitrophenol	2,200	2.00	2,000	0	110	80	120				
Dibenzofuran	859	1.00	1,000	0	85.9	80	120				
2,4-Dinitrotoluene	914	1.00	1,000	0	91.4	80	120				
4-Nitrophenol	713	5.00	1,000	0	71.3	80	120				S
Fluorene	872	0.500	1,000	0	87.2	80	120				
4-Chlorophenyl phenyl ether	806	1.00	1,000	0	80.6	80	120				
Diethylphthalate	896	1.00	1,000	0	89.6	80	120				
4,6-Dinitro-2-methylphenol	1,150	5.00	1,000	0	115	80	120				
4-Bromophenyl phenyl ether	903	1.00	1,000	0	90.3	80	120				
Hexachlorobenzene	879	1.00	1,000	0	87.9	80	120				
Pentachlorophenol	836	2.00	1,000	0	83.6	80	120				
Phenanthrene	907	0.500	1,000	0	90.7	80	120				
Anthracene	938	0.500	1,000	0	93.8	80	120				
Carbazole	913	5.00	1,000	0	91.3	80	120				
Di-n-butyl phthalate	933	1.00	1,000	0	93.3	80	120				
Fluoranthene	934	0.500	1,000	0	93.4	80	120				
Pyrene	960	0.500	1,000	0	96.0	80	120				
Benzyl Butylphthalate	972	1.00	1,000	0	97.2	80	120				
bis(2-Ethylhexyl)adipate	1,020	1.00	1,000	0	102	80	120				
Benz(a)anthracene	900	0.500	1,000	0	90.0	80	120				
Chrysene	909	0.500	1,000	0	90.9	80	120				
Bis(2-ethylhexyl) phthalate	902	1.00	1,000	0	90.2	80	120				
Di-n-octyl phthalate	957	1.00	1,000	0	95.7	80	120				
Benzo(b)fluoranthene	865	0.500	1,000	0	86.5	80	120				
Benzo(k)fluoranthene	932	0.500	1,000	0	93.2	80	120				
Benzo(a)pyrene	962	0.500	1,000	0	96.2	80	120				
Indeno(1,2,3-cd)pyrene	941	0.500	1,000	0	94.1	80	120				
Dibenz(a,h)anthracene	1,000	0.500	1,000	0	100	80	120				
Benzo(g,h,i)perylene	861	0.500	1,000	0	86.1	80	120				
			•			_					

Revision v1 Page 120 of 137

Fremont

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: CCV-28620	SampType: CCV		Units: μg/L Prep Date: 6/15/2020			RunNo: 59939				
Client ID: CCV	Batch ID: 28620				Analysis Date: 6/15/2020			SeqNo: 11 9	99701	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	1,060		1,000		106	64.4	148			
Surr: 2-Fluorobiphenyl	475		500.0		94.9	83.8	122			
Surr: Nitrobenzene-d5	521		500.0		104	78.1	122			
Surr: Phenol-d6	930		1,000		93.0	72.7	127			
Surr: p-Terphenyl	465		500.0		92.9	77.2	127			
NOTES:										

NOTES:

Project:

S - Outlying QC recoveries were observed. More than 80% of the target analytes were within method acceptance criteria.

Sample ID: MB-28620	SampType: MBLK			Units: μg/L			20	RunNo: 599	39		
Client ID: MBLKW	Batch ID: 28620					Analysis Da	ite: 6/15/20	20	SeqNo: 119	9702	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	ND	1.99									
2-Chlorophenol	ND	0.996									
1,3-Dichlorobenzene	ND	0.996									
1,4-Dichlorobenzene	ND	0.996									
1,2-Dichlorobenzene	ND	0.996									
Benzyl alcohol	ND	0.996									Q
Bis(2-chloroethyl) ether	ND	1.99									
2-Methylphenol (o-cresol)	ND	0.996									
Hexachloroethane	ND	0.996									
N-Nitrosodi-n-propylamine	ND	0.996									
3&4-Methylphenol (m, p-cresol)	ND	0.996									Q
Nitrobenzene	ND	1.99									
Isophorone	ND	0.996									
2-Nitrophenol	ND	1.99									
2,4-Dimethylphenol	ND	0.996									
Bis(2-chloroethoxy)methane	ND	0.996									
2,4-Dichlorophenol	ND	1.99									
1,2,4-Trichlorobenzene	ND	0.996									

Revision v1 Page 121 of 137

S - Outlying spike recovery observed (low bias). Samples will be qualified with a $\ensuremath{\mathsf{Q}}$.

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: MB-28620	SampType: MBLK			Units: μg/L		Prep Da	ate: 6/10/20	20	RunNo: 59 9	939	
Client ID: MBLKW	Batch ID: 28620					Analysis Da	ate: 6/15/20	20	SeqNo: 11 9	99702	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.498									
4-Chloroaniline	ND	4.98									
Hexachlorobutadiene	ND	0.996									
4-Chloro-3-methylphenol	ND	4.98									
2-Methylnaphthalene	ND	0.498									
1-Methylnaphthalene	ND	0.498									
Hexachlorocyclopentadiene	ND	0.996									
2,4,6-Trichlorophenol	ND	1.99									
2,4,5-Trichlorophenol	ND	1.99									
2-Chloronaphthalene	ND	0.996									
2-Nitroaniline	ND	4.98									
Acenaphthene	ND	0.498									
Dimethylphthalate	ND	0.996									
2,6-Dinitrotoluene	ND	0.996									
Acenaphthylene	ND	0.498									
2,4-Dinitrophenol	ND	1.99									
Dibenzofuran	ND	0.996									
2,4-Dinitrotoluene	ND	0.996									
4-Nitrophenol	ND	4.98									Q*
Fluorene	ND	0.498									
4-Chlorophenyl phenyl ether	ND	0.996									
Diethylphthalate	ND	0.996									
4,6-Dinitro-2-methylphenol	ND	4.98									
4-Bromophenyl phenyl ether	ND	0.996									
Hexachlorobenzene	ND	0.996									
Pentachlorophenol	ND	1.99									
Phenanthrene	ND	0.498									
Anthracene	ND	0.498									
Carbazole	ND	4.98									
Di-n-butyl phthalate	ND	0.996									
Fluoranthene	ND	0.498									
Povision v1						Pa	age 122 of	137			

Revision v1 Page 122 of 137

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: MB-28620	SampType: MBLK			Units: μg/L		Prep Dat	te: 6/10/20	20	RunNo: 599	139	
Client ID: MBLKW	Batch ID: 28620					Analysis Dat	te: 6/15/20	20	SeqNo: 119	19702	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene	ND	0.498									
Benzyl Butylphthalate	ND	0.996									
bis(2-Ethylhexyl)adipate	ND	0.996									
Benz(a)anthracene	ND	0.498									
Chrysene	ND	0.498									
Bis(2-ethylhexyl) phthalate	ND	0.996									
Di-n-octyl phthalate	ND	0.996									
Benzo(b)fluoranthene	ND	0.498									
Benzo(k)fluoranthene	ND	0.498									
Benzo(a)pyrene	ND	0.498									
Indeno(1,2,3-cd)pyrene	ND	0.498									
Dibenz(a,h)anthracene	ND	0.498									
Benzo(g,h,i)perylene	ND	0.498									
Surr: 2,4,6-Tribromophenol	4.73		3.983		119	24.7	176				
Surr: 2-Fluorobiphenyl	2.25		1.991		113	54.8	148				
Surr: Nitrobenzene-d5	1.91		1.991		95.8	40.8	151				
Surr: Phenol-d6	1.32		3.983		33.1	5	116				
Surr: p-Terphenyl	2.85		1.991		143	51.7	162				
NOTES:											

^{* -} Flagged value is not within established control limits.

Sample ID: LCS-28620	SampType: LCS			Units: μg/L Prep Date: 6/10/2020					RunNo: 599		
Client ID: LCSW	Batch ID: 28620				Analysis Date: 6/15/2020				SeqNo: 119	99703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	1.06	1.98	3.969	0	26.7	13.5	49				
2-Chlorophenol	2.26	0.992	3.969	0	56.8	35.1	95.1				
1,3-Dichlorobenzene	2.56	0.992	3.969	0	64.6	44.7	96.2				
1,4-Dichlorobenzene	2.57	0.992	3.969	0	64.7	43.5	98.6				
1,2-Dichlorobenzene	2.62	0.992	3.969	0	65.9	45.1	101				

Page 123 of 137 Revision v1

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: LCS-28620	SampType: LCS			Units: μg/L		Prep Da	te: 6/10/20	20	RunNo: 599	939	
Client ID: LCSW	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	9703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzyl alcohol	1.13	0.992	3.969	0	28.5	5	110				
Bis(2-chloroethyl) ether	3.01	1.98	3.969	0	75.7	39.6	122				
2-Methylphenol (o-cresol)	2.21	0.992	3.969	0	55.6	23.8	98.2				
Hexachloroethane	2.69	0.992	3.969	0	67.8	39	101				
N-Nitrosodi-n-propylamine	3.30	0.992	3.969	0	83.0	48.5	135				
3&4-Methylphenol (m, p-cresol)	1.90	0.992	3.969	0	47.8	21	87.2				
Nitrobenzene	2.86	1.98	3.969	0	72.1	47.7	123				
Isophorone	3.24	0.992	3.969	0	81.7	51.7	134				
2-Nitrophenol	2.87	1.98	3.969	0	72.3	38.5	124				
2,4-Dimethylphenol	2.99	0.992	3.969	0	75.3	39.2	114				
Bis(2-chloroethoxy)methane	3.04	0.992	3.969	0	76.5	49	128				
2,4-Dichlorophenol	2.77	1.98	3.969	0	69.7	38.3	124				
1,2,4-Trichlorobenzene	2.77	0.992	3.969	0	69.8	45	108				
Naphthalene	2.98	0.496	3.969	0	75.0	49.5	113				
4-Chloroaniline	2.49	4.96	3.969	0	62.6	35.7	117				
Hexachlorobutadiene	2.62	0.992	3.969	0	66.0	37	108				
4-Chloro-3-methylphenol	2.84	4.96	3.969	0	71.4	40.9	119				
2-Methylnaphthalene	3.04	0.496	3.969	0	76.5	49.1	118				
1-Methylnaphthalene	3.08	0.496	3.969	0	77.7	47.3	119				
Hexachlorocyclopentadiene	3.25	0.992	3.969	0	82.0	10.5	137				
2,4,6-Trichlorophenol	3.24	1.98	3.969	0	81.6	35.4	134				
2,4,5-Trichlorophenol	3.09	1.98	3.969	0	78.0	34.6	133				
2-Chloronaphthalene	3.21	0.992	3.969	0	80.9	50	119				
2-Nitroaniline	3.10	4.96	3.969	0	78.0	60.2	137				
Acenaphthene	3.31	0.496	3.969	0	83.4	48.7	127				
Dimethylphthalate	3.45	0.992	3.969	0	86.8	46.1	140				
2,6-Dinitrotoluene	3.52	0.992	3.969	0	88.6	61.9	136				
Acenaphthylene	3.28	0.496	3.969	0	82.6	50.1	124				
2,4-Dinitrophenol	5.61	1.98	7.937	0	70.7	5	120				
Dibenzofuran	3.16	0.992	3.969	0	79.7	52.9	129				
2,4-Dinitrotoluene	3.38	0.992	3.969	0	85.1	59.1	139				

Revision v1 Page 124 of 137

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Project: Hardel Site				H-h-h-		ni-Volati		-	DN		
Sample ID: LCS-28620	SampType: LCS			Units: µg/L		•	te: 6/10/20		RunNo: 599		
Client ID: LCSW	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	9703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Nitrophenol	0.979	4.96	3.969	0	24.7	48.3	123				S
Fluorene	3.55	0.496	3.969	0	89.6	53.6	132				
4-Chlorophenyl phenyl ether	3.25	0.992	3.969	0	81.9	50.2	131				
Diethylphthalate	3.57	0.992	3.969	0	90.0	57.4	139				
4,6-Dinitro-2-methylphenol	3.78	4.96	3.969	0	95.3	5	161				
4-Bromophenyl phenyl ether	3.45	0.992	3.969	0	86.9	46	136				
Hexachlorobenzene	3.56	0.992	3.969	0	89.7	42.1	138				
Pentachlorophenol	3.18	1.98	3.969	0	80.0	5	163				
Phenanthrene	3.48	0.496	3.969	0	87.7	56.8	130				
Anthracene	3.37	0.496	3.969	0	84.9	43.2	130				
Carbazole	3.64	4.96	3.969	0	91.8	53.2	141				
Di-n-butyl phthalate	3.55	0.992	3.969	0	89.5	53.1	155				
Fluoranthene	3.59	0.496	3.969	0	90.5	49.9	138				
Pyrene	3.61	0.496	3.969	0	91.0	48.5	139				
Benzyl Butylphthalate	3.71	0.992	3.969	0	93.4	52.7	157				
bis(2-Ethylhexyl)adipate	3.08	0.992	3.969	0	77.6	37.2	142				
Benz(a)anthracene	3.58	0.496	3.969	0	90.2	47.6	141				
Chrysene	3.46	0.496	3.969	0	87.2	52.5	135				
Bis(2-ethylhexyl) phthalate	2.61	0.992	3.969	0	65.9	43.2	136				
Di-n-octyl phthalate	2.70	0.992	3.969	0	68.1	30.9	146				
Benzo(b)fluoranthene	3.26	0.496	3.969	0	82.0	43.5	146				
Benzo(k)fluoranthene	3.31	0.496	3.969	0	83.3	47.8	132				
Benzo(a)pyrene	3.02	0.496	3.969	0	76.2	41.5	137				
Indeno(1,2,3-cd)pyrene	2.98	0.496	3.969	0	75.0	46.6	125				
Dibenz(a,h)anthracene	3.09	0.496	3.969	0	77.9	45.1	124				
Benzo(g,h,i)perylene	2.98	0.496	3.969	0	75.0	40	131				
Surr: 2,4,6-Tribromophenol	6.10		3.969		154	24.7	176				
Surr: 2-Fluorobiphenyl	2.62		1.984		132	54.8	148				
Surr: Nitrobenzene-d5	2.27		1.984		114	40.8	151				
Surr: Phenol-d6	1.36		3.969		34.3	5	116				
Surr: p-Terphenyl	3.04		1.984		153	51.7	162				

Page 125 of 137 Revision v1

Hardel Site

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

 Sample ID: LCS-28620
 SampType: LCS
 Units: μg/L
 Prep Date: 6/10/2020
 6/10/2020
 RunNo: 59939

Client ID: **LCSW** Batch ID: **28620** Analysis Date: **6/15/2020** SeqNo: **1199703**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Project:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Sample ID: LCSD-28620	SampType: LCSD			Units: µg/L		Prep Da	te: 6/10/20	20	RunNo: 599	39	
Client ID: LCSW02	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	9704	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	1.01	1.97	3.948	0	25.6	13.5	49	1.058	4.41	30	
2-Chlorophenol	2.36	0.987	3.948	0	59.7	35.1	95.1	2.256	4.46	30	
1,3-Dichlorobenzene	2.73	0.987	3.948	0	69.1	44.7	96.2	2.564	6.14	30	
1,4-Dichlorobenzene	2.49	0.987	3.948	0	63.1	43.5	98.6	2.567	3.04	30	
1,2-Dichlorobenzene	2.65	0.987	3.948	0	67.1	45.1	101	2.616	1.20	30	
Benzyl alcohol	1.36	0.987	3.948	0	34.4	5	110	1.132	18.1	30	
Bis(2-chloroethyl) ether	3.03	1.97	3.948	0	76.8	39.6	122	3.006	0.835	30	
2-Methylphenol (o-cresol)	2.06	0.987	3.948	0	52.3	23.8	98.2	2.207	6.70	30	
Hexachloroethane	2.80	0.987	3.948	0	71.0	39	101	2.690	4.09	30	
N-Nitrosodi-n-propylamine	3.19	0.987	3.948	0	80.9	48.5	135	3.295	3.10	30	
3&4-Methylphenol (m, p-cresol)	1.81	0.987	3.948	0	45.9	21	87.2	1.897	4.65	30	
Nitrobenzene	3.00	1.97	3.948	0	76.0	47.7	123	2.862	4.74	30	
Isophorone	3.20	0.987	3.948	0	81.1	51.7	134	3.241	1.21	30	
2-Nitrophenol	2.78	1.97	3.948	0	70.4	38.5	124	2.867	3.16	30	
2,4-Dimethylphenol	3.01	0.987	3.948	0	76.1	39.2	114	2.987	0.630	30	
Bis(2-chloroethoxy)methane	3.07	0.987	3.948	0	77.8	49	128	3.037	1.12	30	
2,4-Dichlorophenol	2.73	1.97	3.948	0	69.1	38.3	124	2.765	1.34	30	
1,2,4-Trichlorobenzene	2.74	0.987	3.948	0	69.3	45	108	2.769	1.21	30	
Naphthalene	2.98	0.493	3.948	0	75.5	49.5	113	2.976	0.135	30	
4-Chloroaniline	2.34	4.93	3.948	0	59.3	35.7	117	2.486	6.07	30	
Hexachlorobutadiene	2.56	0.987	3.948	0	64.7	37	108	2.621	2.53	30	
4-Chloro-3-methylphenol	2.92	4.93	3.948	0	74.0	40.9	119	2.836	2.98	30	
2-Methylnaphthalene	2.98	0.493	3.948	0	75.6	49.1	118	3.036	1.71	30	
1-Methylnaphthalene	2.89	0.493	3.948	0	73.1	47.3	119	3.083	6.55	30	

Revision v1 Page 126 of 137

Work Order: 2006085

CLIENT: Libby Environmental

Project: Hardel Site

QC SUMMARY REPORT

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: LCSD-28620	SampType: LCSD			Units: μg/L		Prep Da	te: 6/10/20	20	RunNo: 599	939	
Client ID: LCSW02	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	9704	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorocyclopentadiene	3.20	0.987	3.948	0	81.2	10.5	137	3.255	1.57	30	
2,4,6-Trichlorophenol	2.89	1.97	3.948	0	73.3	35.4	134	3.239	11.2	30	
2,4,5-Trichlorophenol	3.04	1.97	3.948	0	77.0	34.6	133	3.095	1.79	30	
2-Chloronaphthalene	3.12	0.987	3.948	0	78.9	50	119	3.209	2.95	30	
2-Nitroaniline	3.17	4.93	3.948	0	80.2	60.2	137	3.097	2.21	30	
Acenaphthene	3.19	0.493	3.948	0	80.8	48.7	127	3.310	3.67	30	
Dimethylphthalate	3.23	0.987	3.948	0	81.9	46.1	140	3.446	6.35	30	
2,6-Dinitrotoluene	3.17	0.987	3.948	0	80.3	61.9	136	3.516	10.3	30	
Acenaphthylene	3.11	0.493	3.948	0	78.8	50.1	124	3.277	5.16	30	
2,4-Dinitrophenol	3.89	1.97	7.896	0	49.3	5	120	5.614	36.2	30	
Dibenzofuran	3.01	0.987	3.948	0	76.2	52.9	129	3.163	4.97	30	
2,4-Dinitrotoluene	3.20	0.987	3.948	0	81.0	59.1	139	3.378	5.46	30	
4-Nitrophenol	0.808	4.93	3.948	0	20.5	48.3	123	0.9793	19.1	30	S
Fluorene	3.12	0.493	3.948	0	79.0	53.6	132	3.554	13.0	30	
4-Chlorophenyl phenyl ether	3.12	0.987	3.948	0	78.9	50.2	131	3.250	4.23	30	
Diethylphthalate	3.11	0.987	3.948	0	78.8	57.4	139	3.571	13.8	30	
4,6-Dinitro-2-methylphenol	3.10	4.93	3.948	0	78.4	5	161	3.782	20.0	30	
4-Bromophenyl phenyl ether	3.09	0.987	3.948	0	78.2	46	136	3.450	11.1	30	
Hexachlorobenzene	3.25	0.987	3.948	0	82.4	42.1	138	3.559	9.04	30	
Pentachlorophenol	2.69	1.97	3.948	0	68.2	5	163	3.177	16.5	30	
Phenanthrene	3.05	0.493	3.948	0	77.3	56.8	130	3.482	13.2	30	
Anthracene	2.90	0.493	3.948	0	73.5	43.2	130	3.368	14.9	30	
Carbazole	2.99	4.93	3.948	0	75.8	53.2	141	3.644	19.7	30	
Di-n-butyl phthalate	3.17	0.987	3.948	0	80.4	53.1	155	3.553	11.3	30	
Fluoranthene	3.10	0.493	3.948	0	78.6	49.9	138	3.593	14.6	30	
Pyrene	3.20	0.493	3.948	0	81.1	48.5	139	3.611	12.0	30	
Benzyl Butylphthalate	3.19	0.987	3.948	0	80.8	52.7	157	3.706	15.0	30	
bis(2-Ethylhexyl)adipate	2.48	0.987	3.948	0	62.7	37.2	142	3.078	21.7	30	
Benz(a)anthracene	3.04	0.493	3.948	0	77.1	47.6	141	3.579	16.2	30	
Chrysene	3.10	0.493	3.948	0	78.6	52.5	135	3.461	10.9	30	
Bis(2-ethylhexyl) phthalate	2.42	0.987	3.948	0	61.4	43.2	136	2.614	7.54	30	
						n_	00 127 of	407			

Revision v1 Page 127 of 137

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: LCSD-28620	SampType: LCSD	Units: μg/L Prep Date: 6/10/2020					20	RunNo: 59 9	939		
Client ID: LCSW02	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	99704	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Di-n-octyl phthalate	2.45	0.987	3.948	0	62.1	30.9	146	2.704	9.87	30	
Benzo(b)fluoranthene	2.95	0.493	3.948	0	74.7	43.5	146	3.256	9.90	30	
Benzo(k)fluoranthene	2.89	0.493	3.948	0	73.2	47.8	132	3.306	13.5	30	
Benzo(a)pyrene	2.75	0.493	3.948	0	69.5	41.5	137	3.025	9.69	30	
Indeno(1,2,3-cd)pyrene	2.85	0.493	3.948	0	72.3	46.6	125	2.977	4.23	30	
Dibenz(a,h)anthracene	2.83	0.493	3.948	0	71.7	45.1	124	3.090	8.80	30	
Benzo(g,h,i)perylene	2.73	0.493	3.948	0	69.0	40	131	2.976	8.79	30	
Surr: 2,4,6-Tribromophenol	4.72		3.948		120	24.7	176		0		
Surr: 2-Fluorobiphenyl	2.21		1.974		112	54.8	148		0		
Surr: Nitrobenzene-d5	2.13		1.974		108	40.8	151		0		
Surr: Phenol-d6	1.26		3.948		32.0	5	116		0		
Surr: p-Terphenyl	2.33		1.974		118	51.7	162		0		
NOTES:											

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Sample ID: 2006085-001ADUP	SampType:	DUP			Units: µg/L		Prep Da	te: 6/10/2 0)20	RunNo: 59 9	939	
Client ID: GW-B1-0603	Batch ID:	28620					Analysis Da	ite: 6/15/20)20	SeqNo: 119	99706	
Analyte	R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol		2.46	2.10						2.104	15.8	50	
2-Chlorophenol		ND	1.05						0	0	50	
1,3-Dichlorobenzene		ND	1.05						0.1099	17.9	50	
1,4-Dichlorobenzene		ND	1.05						0	0	50	
1,2-Dichlorobenzene		ND	1.05						0	0	50	
Benzyl alcohol		ND	1.05						0	0	50	Q
Bis(2-chloroethyl) ether		ND	2.10						0	0	50	
2-Methylphenol (o-cresol)		ND	1.05						0	0	50	
Hexachloroethane		ND	1.05						0	0	50	
N-Nitrosodi-n-propylamine		ND	1.05						0	0	50	
3&4-Methylphenol (m, p-cresol)		1.63	1.05						1.475	10.1	50	Q
Nitrobenzene		ND	2.10						0	0	50	

Revision v1 Page 128 of 137

Hardel Site

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2006085-001ADUP	SampType: DUP			Units: μg/L		Prep Da	ate: 6/10/20	20	RunNo: 59 9	939	
Client ID: GW-B1-0603	Batch ID: 28620					Analysis Da	ate: 6/15/20	20	SeqNo: 11 !	99706	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isophorone	ND	1.05						0	0	50	
2-Nitrophenol	ND	2.10						0	0	50	
2,4-Dimethylphenol	ND	1.05						0	0	50	
Bis(2-chloroethoxy)methane	ND	1.05						0	0	50	
2,4-Dichlorophenol	ND	2.10						0.04215	63.7	50	
1,2,4-Trichlorobenzene	ND	1.05						0	0	50	
Naphthalene	ND	0.526						0	0	50	
4-Chloroaniline	ND	5.26						0	0	50	
Hexachlorobutadiene	ND	1.05						0	0	50	
4-Chloro-3-methylphenol	ND	5.26						0	0	50	
2-Methylnaphthalene	ND	0.526						0	0	50	
1-Methylnaphthalene	ND	0.526						0	0	50	
Hexachlorocyclopentadiene	ND	1.05						0	0	50	
2,4,6-Trichlorophenol	ND	2.10						0	0	50	
2,4,5-Trichlorophenol	ND	2.10						0	0	50	
2-Chloronaphthalene	ND	1.05						0	0	50	
2-Nitroaniline	ND	5.26						0.5666	35.6	50	
Acenaphthene	ND	0.526						0	0	50	
Dimethylphthalate	ND	1.05						0	0	50	
2,6-Dinitrotoluene	ND	1.05						0	0	50	
Acenaphthylene	ND	0.526						0	0	50	
2,4-Dinitrophenol	ND	2.10						0	0	50	
Dibenzofuran	ND	1.05						0	0	50	
2,4-Dinitrotoluene	ND	1.05						0	0	50	
4-Nitrophenol	ND	5.26						0	0	50	Q*
Fluorene	ND	0.526						0.2829	19.6	50	
4-Chlorophenyl phenyl ether	ND	1.05						0	0	50	
Diethylphthalate	ND	1.05						0.07966	27.1	50	
4,6-Dinitro-2-methylphenol	ND	5.26						0	0	50	
4-Bromophenyl phenyl ether	ND	1.05						0	0	50	
Hexachlorobenzene	ND	1.05						0	0	50	
						Dr	ane 129 n	127			

Revision v1 Page 129 of 137

Date: 7/2/2020

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2006085-001ADUP	SampType: DUP			Units: μg/L		Prep Da	te: 6/10/2 0	20	RunNo: 599	939	
Client ID: GW-B1-0603	Batch ID: 28620					Analysis Da	te: 6/15/2 0	20	SeqNo: 119	99706	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	ND	2.10						0	0	50	
Phenanthrene	ND	0.526						0.3668	17.2	50	
Anthracene	ND	0.526						0.03340	31.9	50	
Carbazole	ND	5.26						0	0	50	
Di-n-butyl phthalate	ND	1.05						0.09002	22.9	50	
Fluoranthene	ND	0.526						0	200	50	
Pyrene	ND	0.526						0.04992	9.14	50	
Benzyl Butylphthalate	ND	1.05						0	0	50	
bis(2-Ethylhexyl)adipate	ND	1.05						0	0	50	
Benz(a)anthracene	ND	0.526						0	0	50	
Chrysene	ND	0.526						0	0	50	
Bis(2-ethylhexyl) phthalate	ND	1.05						0.1236	77.0	50	
Di-n-octyl phthalate	ND	1.05						0	0	50	
Benzo(b)fluoranthene	ND	0.526						0	0	50	
Benzo(k)fluoranthene	ND	0.526						0	0	50	
Benzo(a)pyrene	ND	0.526						0	0	50	
Indeno(1,2,3-cd)pyrene	ND	0.526						0	0	50	
Dibenz(a,h)anthracene	ND	0.526						0	0	50	
Benzo(g,h,i)perylene	ND	0.526						0	0	50	
Surr: 2,4,6-Tribromophenol	5.61		4.210		133	24.7	176		0		
Surr: 2-Fluorobiphenyl	2.37		2.105		113	54.8	148		0		
Surr: Nitrobenzene-d5	2.55		2.105		121	40.8	151		0		
Surr: Phenol-d6	1.78		4.210		42.4	5	116		0		
Surr: p-Terphenyl	1.29		2.105		61.3	51.7	162		0		

NOTES:

Revision v1 Page 130 of 137

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

^{* -} Flagged value is not within established control limits.

Hardel Site

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: QCS-28620	SampType: QCS			Units: μg/L		Prep Da	te: 6/15/20	20	RunNo: 599	39	
Client ID: BATCH	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	9713	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	925	2.00	1,000	0	92.5	50	150				
2-Chlorophenol	886	1.00	1,000	0	88.6	50	150				
1,3-Dichlorobenzene	858	1.00	1,000	0	85.8	50	150				
1,4-Dichlorobenzene	896	1.00	1,000	0	89.6	50	150				
1,2-Dichlorobenzene	868	1.00	1,000	0	86.8	50	150				
Benzyl alcohol	234	1.00	1,000	0	23.4	50	150				S
Bis(2-chloroethyl) ether	872	2.00	1,000	0	87.2	50	150				
2-Methylphenol (o-cresol)	973	1.00	1,000	0	97.3	50	150				
Hexachloroethane	993	1.00	1,000	0	99.3	50	150				
N-Nitrosodi-n-propylamine	932	1.00	1,000	0	93.2	50	150				
3&4-Methylphenol (m, p-cresol)	900	1.00	1,000	0	90.0	50	150				
Nitrobenzene	837	2.00	1,000	0	83.7	50	150				
Isophorone	901	1.00	1,000	0	90.1	50	150				
2-Nitrophenol	909	2.00	1,000	0	90.9	50	150				
2,4-Dimethylphenol	941	1.00	1,000	0	94.1	50	150				
Bis(2-chloroethoxy)methane	861	1.00	1,000	0	86.1	50	150				
2,4-Dichlorophenol	843	2.00	1,000	0	84.3	50	150				
1,2,4-Trichlorobenzene	904	1.00	1,000	0	90.4	50	150				
Naphthalene	871	0.500	1,000	0	87.1	50	150				
4-Chloroaniline	780	5.00	1,000	0	78.0	50	150				
Hexachlorobutadiene	848	1.00	1,000	0	84.8	50	150				
4-Chloro-3-methylphenol	884	5.00	1,000	0	88.4	50	150				
2-Methylnaphthalene	903	0.500	1,000	0	90.3	50	150				
1-Methylnaphthalene	909	0.500	1,000	0	90.9	50	150				
Hexachlorocyclopentadiene	1,030	1.00	1,000	0	103	50	150				
2,4,6-Trichlorophenol	857	2.00	1,000	0	85.7	50	150				
2,4,5-Trichlorophenol	853	2.00	1,000	0	85.3	50	150				
2-Chloronaphthalene	938	1.00	1,000	0	93.8	50	150				
2-Nitroaniline	928	5.00	1,000	0	92.8	50	150				
Acenaphthene	883	0.500	1,000	0	88.3	50	150				
Dimethylphthalate	911	1.00	1,000	0	91.1	50	150				
			,	-							

Revision v1 Page 131 of 137

Work Order: 2006085

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Hardel Site

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: QCS-28620	SampType: QCS			Units: μg/L		Prep Da	te: 6/15/20	20	RunNo: 599	139	
Client ID: BATCH	Batch ID: 28620					Analysis Da	te: 6/15/20	20	SeqNo: 119	9713	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,6-Dinitrotoluene	951	1.00	1,000	0	95.1	50	150				
Acenaphthylene	899	0.500	1,000	0	89.9	50	150				
2,4-Dinitrophenol	2,010	2.00	2,000	0	101	50	150				
Dibenzofuran	840	1.00	1,000	0	84.0	50	150				
2,4-Dinitrotoluene	917	1.00	1,000	0	91.7	50	150				
4-Nitrophenol	690	5.00	1,000	0	69.0	50	150				
Fluorene	900	0.500	1,000	0	90.0	50	150				
4-Chlorophenyl phenyl ether	811	1.00	1,000	0	81.1	50	150				
Diethylphthalate	916	1.00	1,000	0	91.6	50	150				
4,6-Dinitro-2-methylphenol	988	5.00	1,000	0	98.8	50	150				
4-Bromophenyl phenyl ether	848	1.00	1,000	0	84.8	50	150				
Hexachlorobenzene	950	1.00	1,000	0	95.0	50	150				
Pentachlorophenol	946	2.00	1,000	0	94.6	50	150				
Phenanthrene	852	0.500	1,000	0	85.2	50	150				
Anthracene	911	0.500	1,000	0	91.1	50	150				
Carbazole	830	5.00	1,000	0	83.0	50	150				
Di-n-butyl phthalate	912	1.00	1,000	0	91.2	50	150				
Fluoranthene	937	0.500	1,000	0	93.7	50	150				
Pyrene	965	0.500	1,000	0	96.5	50	150				
Benzyl Butylphthalate	985	1.00	1,000	0	98.5	50	150				
bis(2-Ethylhexyl)adipate	949	1.00	1,000	0	94.9	50	150				
Benz(a)anthracene	968	0.500	1,000	0	96.8	50	150				
Chrysene	886	0.500	1,000	0	88.6	50	150				
Bis(2-ethylhexyl) phthalate	884	1.00	1,000	0	88.4	50	150				
Di-n-octyl phthalate	947	1.00	1,000	0	94.7	50	150				
Benzo(b)fluoranthene	941	0.500	1,000	0	94.1	50	150				
Benzo(k)fluoranthene	839	0.500	1,000	0	83.9	50	150				
Benzo(a)pyrene	880	0.500	1,000	0	88.0	50	150				
Indeno(1,2,3-cd)pyrene	895	0.500	1,000	0	89.5	50	150				
Dibenz(a,h)anthracene	967	0.500	1,000	0	96.7	50	150				
Benzo(g,h,i)perylene	861	0.500	1,000	0	86.1	50	150				
,								4.0-			

Revision v1 Page 132 of 137

Date: 7/2/2020

Work Order: 2006085

QC SUMMARY REPORT

CLIENT: Libby Environmental

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: QCS-28620	SampType: QCS			Units: μg/L Prep Date: 6/15/2020				RunNo: 59939						
Client ID: BATCH	Batch ID: 28620					Analysis Date: 6/15/2020				SeqNo: 1199713				
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Surr: 2,4,6-Tribromophenol	1,110		1,000		111	50	150							
Surr: 2-Fluorobiphenyl	467		500.0		93.5	50	150							
Surr: Nitrobenzene-d5	526		500.0		105	50	150							
Surr: Phenol-d6	929		1,000		92.9	50	150							
Surr: p-Terphenyl	463		500.0		92.6	50	150							

NOTES:

Project:

Revision v1 Page 133 of 137

S - Outlying spike recovery observed (low bias). Samples will be qualified with a Q.

S - Outlying QC recoveries were observed. More than 80% of the target analytes were within method acceptance criteria.

Sample Log-In Check List

Client Name: LIBBY	Work Order Numb		
Logged by: Carissa True	Date Received:	6/4/2020 1	2:24:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗸	No \square	Not Present
2. How was the sample delivered?	Client		
<u>Log In</u>			
3. Coolers are present?	Yes 🗸	No 🗌	na 🗆
4. Shipping container/cooler in good condition?	Yes <u>✔</u>	No 🗀	_
Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes 🗌	No 📙	Not Present ✓
6. Was an attempt made to cool the samples?	Yes 🗸	No \square	na 🗆
7. Were all items received at a temperature of >2°C to 6°C *	Yes 🗹	No 🗆	na 🗆
8. Sample(s) in proper container(s)?	Yes 🗸	No 🗆	
9. Sufficient sample volume for indicated test(s)?	Yes 🗸	No \square	
10. Are samples properly preserved?	Yes 🗸	No \square	
11. Was preservative added to bottles?	Yes	No 🗸	NA 🗆
12. Is there headspace in the VOA vials?	Yes	No \square	NA 🗹
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗸	No \square	
14. Does paperwork match bottle labels?	Yes 🗹	No \square	
15. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No \square	
16. Is it clear what analyses were requested?	Yes 🗸	No \square	
17. Were all holding times able to be met?	Yes 🗹	No 🗌	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this order?	Yes	No \square	NA 🗹
Person Notified: Date:			
By Whom: Via:	eMail Pho	one 🗌 Fax [In Person
Regarding:			
Client Instructions:			
19. Additional remarks:			

Item Information

Item #	Temp ⁰C
Cooler 1	4.8
Cooler 2	2.3
Sample 1	3.6
Sample 2	2.9

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Libby Environme				CI	nain	or Cl	istoa	y Ke	cor	20060	85			www.Libby	Environr	nental.com
3322 South Bay Road NE Olympia, WA 98506		360-352- : 360-352-				Date:	6/41	20			Р	age:	1	ľ,	of	λ
Client: Libby Environmen							ct Manaç		dey	Eley						of 137
Address: See above							ct Name									o O
City:		State:	Zip	15		Locat					С	ity, Sta	ate: 0	Olympia, U	Na	Page 135 (
Phone:		Colle	ctor: SH	/MK					Collection: 6/3/20 B							
Client Project # L200603	1-7						libby		mai	com						<u> </u>
Sample Number	Depth	Time	Sample Type	Container Type	150	//	200	1881)	//	1/2/2	10/10/ xt/2010/	10800	Hor Ho	Field	Notes	
1 GW-B1-6603	10-15	1400	Grad	Amber/Poly							XX	NX				
2 GW-B2-0603	3-8	1300										CX				
3 GW-B3-0603	3-8	1210										KX	5			
4 GW-B-1-0603	7-12	1110										CX				
5 GW-B5-0603	3-8	1000										X X				
6 GW-B6-0603	3-8	915										K X				
7GW-B6-0603-01	3-8	915		1							7 7	< x				
8																
9																
10																
11																
12																
13																
14																
15																
16																
17																
Relinguished by:	6/4/2	0		Received by	W	0/	4/20	Date /	4	Sample Good Condition?		N	Rem	narks: andord	TA	
Relinquished by:			Date / Time	Received by:				Date /	Time	Cooler Temp. Sample Temp.		°C	-			
Relinquished by:			Date / Time	Received by:				Date /	Time	Total Number of Containers			TAT	Γ: 24HR	48HR	5-DAY
ECAL ACTION CLAUSE: In the quant of default of on	umant and/or failu	m to one Client	agrees to new the con	ets of collection including	court costs and	reneonable m	Nornay fano to t	o daterminad h	ic a count	of Inw				Distribution: Wh		

Libby Environmental, Inc.						CI	nair	0	f C	ust	od	y R	eco	rd	1	W	100	95	27						
3322 South Bay Road NE Olympia, WA 98506		360-352-4 360-352-4							Date	6	141	120						Page		2		of	2		
Client: Libby Environmer			3.572										ode	4 E	ley							-	37		
Address: See above												Har											of 1		
City:		State:		Zip:						ation:								Citv.	State	e: Oli	ambia	, Wa	136		
Phone:		Fax:									SH	MK											Ge		
Client Project # L200603-7 Email: liblyen @ gmail.com										1			MI E	0110011		<i></i>	- G								
Sample Number	Depth	Time	1107	mple /pe	Cont	ainer pe	/35	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	/	//	100/	18	9	/	//	7,	10/10/10 MARIO 20	1000	2000	SALKY ELANKY	Field	1 Notes			
15-BI-4-5-0603	4-5	1340	Soil		402	po				Ť			Ť			X		X			1 1010	1110100			
25-B2-2-41-0603	2-4	1230	1		1									\top		X		X		\rightarrow					
35-B3-2-3-0603		1130			\Box						1			\top		X		X		\neg					
45-B4-1-3-0601	1-3	1030														X		X							
55-84-1-3-0603-01	1-3	1030									\Box			\top		×		X							
65-B4-11-12-0603	11-12	1045							W. V.						1	X		X					, a		
75-B5-3-41-0603	3-4	920															X	X							
85-B6-3-4-0603	3-4	0845	П											T			x	X							
95-B7-3-5-0603	3-5	1600															X	X							
105-88-4-5-0603	4-5	1620												T		X									
115-P9-6-7-0603	6-7	1640	J	_	1	/										X									
12																									
13																									
14																									
15						1																			
16																									
17				,				0	- 1																
Relinquished by: Thoday Elly Relinquished by:	44.	20		(Receive	170		0	4	20		14	2 / Time	Go	Sar od Con oler Te	dition?	Rec	Y 1	N C	S+a	rks: under	d Ti	AT .		
The second second				e e in tale distantes								1000 PM		-	mple Te				C.						
Relinquished by:			Date	/ Time	Receive	d by:	3		The state of the s		kas luis	Date	e / Time		tal Num Contair					TAT:	24HR	48HF	R 5-DAY		

Libby Environmer			GOW.	Ch	nain	of Cu	istod	ly R	eco	rd	200	060	185		:V	www.Libb	yEnviror	imental.com
3322 South Bay Road NE Olympia, WA 98506		360-352-2 360-352-4				Date:	6/4	120					Page	3	2		of	2
Client Libby Environme	NO DE					Proje	ct Mana	ger (Lode	y El	ey							
Address See above						Project Manager Kodey Eley Project Name Hardel Site												
City		State:	Zip:			Locat							City.	Stat	e Ol	ympia	, Wa	
Phone:			Colle	ctor SH	/MK	5							tion: 6)			
Phone: Fax: Client Project # L200603-7							Email libbyen @ gmail.com Add ons by cer 6/11 per S.C											
THE PARTY OF THE P	Depth	Time	Sample Type	Container Type	(8)		21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5			\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		800 80 E		red &	Salk Oth		d Notes	
15-B1-4-5-0603	H-5	1340	Soil	402		Y	-V/->				X		X					
25-B2-2-41-0603	2-4	1230	1	1						+	X		X	X				
35-B3-2-3-0603	2-3	1130					-				X		X	X				
45-B4-1-3-0601	1-3	1030									X	_	X					
55-B4-1-3-0603-01	1-3	1030									×		X					
65-B-1-11-12-0603	11-12	1045									×		X					
75-35-3-4-0603	3-4	920										X	-					
85-B6-3-4-0603	3-4	0845	101									X						
95-B7-3-5-0603	3-5	1600								1		X	X		X			
105-88-4-5-0603	4-5	1620									X							
115-P9-6-7-0603	6-7	1640	1	1							X	(
12	1	1.2																
13																		
14																		
15				8														
16																		
17						1												
Pholey Elex	4/4/	20		Received by		14	20	14	ale Tyr	Goo	Sampl d Conditio		ceip Y	N C		arks: evnds	nd T	AT
Relinquished by			Date / Time	Received by.				:13	ato / Tifr		er Temp.			°C				
Relinquished by:			Date / Time	Received by				D	ate-7 Tex	_	il Number	of						
			Transport of the same from	ante of collection rechalter	Tarkin Share 4	at reasonable	afficients flags to	rt De White/D	resport for a co	_	Containers				TAT			R 5-DAY

DATA SET for Review -- **Deliverable Requirements**

Extractable Petroleum Hydrocarbons Analysis by NWTPH-EPH

Fremont Analytical Work Order No. 2006085

Libby Environmental

Project Name: Hardel Site

Project No. L200603-7

This Data contains the following:

- Analytical Sequence Summary for Work Order 2006085
- Calibration Information for Work Order 2006085

Injection Log

Directory: C:\GC20\DATA\2020\200623

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1 2 3 4 5 6 7 8 9 10	100 99 1 8 2 3 4 5 6 7	062301.d 062302.d 062303.d 062304.d 062305.d 062306.d 062307.d 062308.d 062309.d 062310.d	1. 1. 1. 1. 1. 1. 1. 1.	CO ARO-CCV-28677A MB-28677 2004010-020A LCS-28677 2006085-009A 2006085-009ADUP 2006085-009AMS 2006085-009AMSD 2006085-010A	CCV O-EPH-S CCV O-EPH-W MBLK O-EPH-W MBLK O-EPH-S LCS O-EPH-S SAMP O-EPH-S DUP O-EPH-S MS O-EPH-S MSD O-EPH-S SAMP O-EPH-S	23 Jun 2020 12:47 23 Jun 2020 13:31 23 Jun 2020 14:15 23 Jun 2020 14:59 23 Jun 2020 15:43 23 Jun 2020 16:28 23 Jun 2020 17:12 23 Jun 2020 17:57 23 Jun 2020 18:41 23 Jun 2020 19:25
11 12 13 14 15 16 17 18 19 20	100 99 98 9 10 11 12 13 14 15	062311.d 062312.d 062313.d 062314.d 062315.d 062316.d 062317.d 062318.d 062319.d 062320.d	1. 1. 1. 1. 1. 1. 1. 1.	CO ARO-CCV-28677B ALI-CCV-28677A MB-28677 LCS-28677 2006085-009A 2006085-009ADUP 2006085-009AMS 2006085-009AMSD 2006085-010A	CCV O-EPH-S CCV O-EPH-S CCV O-EPH-S MBLK O-EPH-S LCS O-EPH-S SAMP O-EPH-S DUP O-EPH-S MS O-EPH-S MSD O-EPH-S SAMP O-EPH-S	23 Jun 2020 20:10 23 Jun 2020 20:54 23 Jun 2020 21:38 23 Jun 2020 22:22 23 Jun 2020 23:50 24 Jun 2020 00:34 24 Jun 2020 01:18 24 Jun 2020 02:02 24 Jun 2020 02:45
21 22 23 24 25 26 27 28	98 100 100 100 100 100	062321.d 062322.d 062323.d 062324.d 062325.d 062326.d 062327.d 062328.d	1. 1. 1. 1. 1. 1.	CO ALI-CCV-28677B CO CO CO CO CO	SAMP O-EPH-S CCV O-EPH-S CCV O-EPH-S CCV O-EPH-S CCV O-EPH-S CCV O-EPH-S CCV O-EPH-S	24 Jun 2020 03:29 24 Jun 2020 04:12 24 Jun 2020 04:56 24 Jun 2020 05:40 24 Jun 2020 06:23 24 Jun 2020 07:50 24 Jun 2020 08:34

Injection Log

Directory: C:\GC20\DATA\2020\200624

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	100	062401.d	1.	CO	CCV O-EPH-S	24 Jun 2020 14:07
2	98	062402.d	1.	ALI-CCV-28677C	CCV O-EPH-S	24 Jun 2020 14:51
3	10	062403.d	1.	LCS-28677	LCS O-EPH-S	24 Jun 2020 15:35
4	17	062404.d	1.	2006085-009A 5X	SAMP O-EPH-S	24 Jun 2020 16:19
5	14	062405.d	1.	2006085-009AMSD	MSD O-EPH-S	24 Jun 2020 17:03
6	15	062406.d	1.	2006085-010A	SAMP O-EPH-S	24 Jun 2020 17:48
7	100	062407.d	1.	CO	SAMP O-EPH-S	24 Jun 2020 18:32
8	98	062408.d	1.	ALI-CCV-28677D	CCV O-EPH-S	24 Jun 2020 19:17
9	100	062409.d	1.	CO	CCV O-EPH-S	24 Jun 2020 20:01
10	100	062410.d	1.	CO	CCV O-EPH-S	24 Jun 2020 20:45
11	100	062411.d	1.	CO	CCV O-EPH-S	24 Jun 2020 21:29
12	100	062412.d	1.	CO	CCV O-EPH-S	24 Jun 2020 22:13
13	100	062413.d	1.	CO	CCV O-EPH-S	24 Jun 2020 22:57
14	100	062414.d	1.	CO	CCV O-EPH-S	24 Jun 2020 23:41

Calibration

Calibration Report GC #20

Method : C:\GC20\METHODS\QUANT METHODS\AL190610.M (Chemstation Integrator)

Title :

Last Update : Mon Jun 10 12:42:03 2019

Response via : Initial Calibration

Calibration Files

1 = 060504 2 = 060505 3 = 060506 4 = 060507 5 = 060508

6 = 060509 7 = 060510 8 = 060511

С	Compound	Fit	Constant	Linear	Quad	RSD/Cf
2) S o 3) H A 4) H A 5) H A 6) H A	Chlorooctadecane D-Terphenyl Aliphatic (C8-C10) Aliphatic (C10-C12) Aliphatic (C12-C16) Aliphatic (C16-C21)	Lin Lin Lin Lin Lin Lin Lin	1.6534 e4 1.0119 e4 1.3575 e4 3.1285 e4	1.4341 e3		0.993 0.993 1.000 1.000 0.999 0.998 0.992

AL190610.M Tue Jun 11 10:17:28 2019

Calibration Report GC #20

Method : C:\GC20\METHODS\QUANT METHODS\AR190610.M (Chemstation Integrator)

Title

Last Update : Tue Jun 11 10:00:22 2019

Response via : Initial Calibration

Calibration Files

1 =060517 2 =060518 3 =060519 4 =060520 5 =060521 6 =060522 7 =060523 8 =060524

	Compound	Fit	Constant	Linear	Quad	RSD/Cf
1) S 2) S 3) H 4) H 5) H 6) H 7) H	1-Chlorooctadecane o-Terphenyl Aromatic (C8-C10) Aromatic (C10-C12) Aromatic (C12-C16) Aromatic (C16-C21) Aromatic (C21-C34)	Lin Lin Lin Lin Lin Lin	4.8603 e3 8.5564 e3 2.4940 e4	1.2152 e3 1.2048 e3 1.2600 e3		1.000 1.000 0.999 0.999 0.999 0.998 0.992

AR190610.M Tue Jun 11 10:16:05 2019

EPH Calibration

Aliphatic

Aromatic

Date/Time: 6519 11:00

5,000 ppm (CAL): 21619

5,000 ppm (CAL): 21621

Analyst: $\begin{tabular}{c} $\mathcal{P}Mw \end{tabular}$

10,000 ppm (SS): 21181

10,000 ppm (SS): 20860

Surrogate: 21708

Matrix: HEXANE 4292

Matrix: Mecl₂ 43

4336

Spike Type	Spike Conc. (ppb)	Surr Conc. (ppb)	Spike (uL)	Surr (uL)	Remove (uL)	Final Vol. (uL)	Comments
Aliphatic	10	4	2	1	3	1000	
	20	8	4	2	6 .	1000	
	50	20	10	5	15	1000	
	100	40	20	10	30	1000	
	200	100	40	25	65	1000	
	500	200	10	5	15	100*	*Use insert
	1000	400	20	10	30	100*	*Use insert
	2000	800	40	20	60	100*	*Use insert
	ICB	40		10	10	1000	
	ICV (100)	40	10 (SS)	10	20	1000	
Aromatic	10	4	2	1	3	1000	
	20	8	4	2	6	1000	
		produces in proposition 20 periodic sector constitution in the constitution of the con	ing gyd y sillig dan dan ghaighdig girigh. Bar a'i gan chairgeach ann gholy sin d'y y a'i y a' ggailt ain a Bhach O'ir arl a Chrìomh	5 : 1 · · · · · · · · · · · · · · · · · ·	ingini engangan ang ang 18 mang mga mga mga mga Mga mga mga mga mga mga mga mga mga mga m	######################################	Bellada por a chian di tra di tra Bellada por a chian di tra
	100	40	20	10	30	1000	
,	200	100	40	25	65	1000	
	500	200	10	5	15	100*	*Use insert
	1000	400	20	10	30	100*	*Use insert
	2000	800	40	20	60	100*	*Use insert
	ICB	40	-	10	10	1000	
	ICV (100)	40	10 (SS)	10	. 20	1000	

Response Factor Report GC #20

Method : C:\GC20\METHODS\QUANT METHODS\AR-RFCAL.M (Chemstation Integrator)
Title :

Title

Last Update : Wed Jun 10 13:15:43 2020

Calibration Files

1	=060517.D	2	=060518.D	3	=060519.D
4	=060520.D	5	=060521.D	6	=060522.D

2) S o-Terphenyl 1.454 1.43 3) H Aromatic (C8-C10) 3.700 2.16 4) H Aromatic (C10-C12) 1.663 1.44 5) H Aromatic (C12-C16) 2.025 1.64 6) H Aromatic (C16-C21) 3.218 2.95	0 0.991 0.992 3 1.313 1.306 2 1.542 1.409 1 1.352 1.325 3 1.440 1.493 10 1.976 1.623 16 1.796 1.435	5 1.315 9 1.291 5 1.186 1 1.320 1 1.462	1.403 1.202 1.143 1.226 1.314	1.371 E3 1.725 E3 1.319 E3 1.462 E3 1.904 E3	3.90 4.13 49.71 12.88 18.25 40.07 57.43

(#) = Out of Range ### Number of calibration levels exceeded format ###

AR-RFCAL.M Thu Jul 02 13:49:47 2020

DATA SET for Review -- **Deliverable Requirements**

Mercury Analysis by EPA 245.1

Fremont Analytical Work Order No. 2006085

Libby Environmental

Project Name: Hardel Site

Project No. L200603-7

This Data contains the following:

- Analytical Sequence Summary for Work Order 2006085
- Calibration Information for Work Order 2006085

Calibration

Report Generated By Teledyne Leeman QuickTrace

Analyst: lab

Worksheet file: C:\Users\Public\Documents\Teledyne CETAC\QuickTrace\Worksheets\061120WATER C.wszf

Creation Date: 6/11/2020 5:30:37 PM

Comment:

Results

Sample Name			Туре	Date/Tir	me	Conc (ug/L)	μAbs	%RSD	Residual Flags	% Recovery	y
Calibration Blank			STD	06/11/20	05:33:30 pm	(0.000	-71	20.99		N/A	
Replica	ites	-93.0	-64.5	-68.5	-59.2							
Standard #1 (0.1	ug/L)		STD	06/11/20	05:35:11 pm	(0.100	2096	0.63	13.32%	N/A	
Replica	ites	2111.4	2080.5	2090.3	2100.0							
Standard #2 (0.5	ug/L)		STD	06/11/20	05:36:53 pm	(0.500	10899	0.37	14.74%	N/A	
Replica	ites	10854.2	10875.3	10940.0	10925.0							
Standard #3 (1.0	ug/L)		STD	06/11/20	05:38:35 pm		1.000	21151	0.46	10.98%	N/A	
Replica	ites	21029.9	21118.7	21197.0	21256.5							
Standard #4 (2.5	ug/L)		STD	06/11/20	05:41:57 pm	2	2.500	49151	0.41	2.97%	N/A	
Replica	ites	48908.5	49087.3	49230.3	49378.3							
Standard #5 (5.0	ug/L)		STD	06/11/20	05:43:40 pm	Į	5.000	94262	2.27	-1.33%	N/A	
Replica	ites	91521.5	93729.0	95365.2	96431.7							
Calibration Equation: R2: SEE: Flags:	0.99	9819 4.7130	x + -71.310 RSE:	13.24%		0,000 0,000 0,000 0,000 0,000	•		•			
						Ö	1	2 Conce	ntration	3 4 (ug/L)	5	
ICB			ICB	06/11/20	05:45:24 pm	-(0.004	-157	7.96		N/A	
Replica	ites	-155.0	-148.9	-165.1	-158.9							
ICV LL			CRD	L 06/11/20	05:47:06 pm	(0.109	2013	2.60		109.02	
Replica	ites	2061.3	2050.5	1998.5	1943.2							
ICV			ICV	06/11/20	05:51:38 pm	2	2.400	45848	0.73		96.06	
Replica	ites	45478.4	45700.1	45961.9	46251.9							
MB-28625			MB	06/11/20	05:53:19 pm	(0.016	240	4.16	Z	N/A	
Replica	ites	230.6	243.3	256.8	229.1							
LCS-28625			LCS	06/11/20	05:55:00 pm	2	2.260	43116	0.32		90.34	
Replica	ites	42943.5	43096.8	43152.8	43272.0							
2006085-001B			UNK	06/11/20) 05:56:41 pm	(0.059	1047	4.01		N/A	
Replica	ites	1107.9	1049.0	1027.0	1003.3							
 2006085-001BDL	JP		UNK	06/11/20) 05:58:23 pm	(0.023	364	4.09		N/A	
Replica		344.0	385.1	356.4	370.9							
6/11/2020 6:40:1	7 PM				061120WAT	ER C.ws	zf				Pag	e 1 of 3

Sample Name		Турс	Date/Time	Conc (ug/L)	μΑυσ	/onod nesi	dual Flags % Hecovery
2006085-001BMS		UNK	06/11/20 06:00:05 pm	1.170	22314	0.14	N/A
Replicates	22357.9	22301.4	22311.9 22285.4				
2006085-001BMSD		UNK	06/11/20 06:01:48 pm	1.150	21871	0.09	N/A
Replicates	21894.4	21880.5	21858.5 21849.3				
2006085-002B		UNK	06/11/20 06:03:30 pm	0.011	146	3.29	N/A
Replicates	144.2	144.0	155.5 138.5				
2006085-003B		UNK	06/11/20 06:05:11 pm	0.032	533	3.51	N/A
Replicates	536.7	555.6	504.4 535.4				
2006085-004B		UNK	06/11/20 06:06:52 pm	0.029	481	4.03	N/A
Replicates	484.0	511.0	465.8 462.5				
2006085-005B		UNK	06/11/20 06:08:34 pm	0.029	483	1.82	N/A
Replicates	492.4	478.9	470.9 490.4				
CCV		CCV	06/11/20 06:11:47 pm	2.320	44297	0.83	92.81
Replicates	43851.0	44163.0	44490.2 44684.0				
CCB		CCB	06/11/20 06:13:28 pm	-0.001	-88	97.82	N/A
Replicates	-83.8	-112.5	-77.7 -78.5				
2006085-006B		UNK	06/11/20 06:15:10 pm	0.035	588	2.22	N/A
Replicates	572.6	584.2	585.9 607.7				
2006085-007B		UNK	06/11/20 06:16:52 pm	0.027	437	3.31	N/A
Replicates	431.3	431.4	423.7 461.7				
2006094-001E		UNK	06/11/20 06:18:34 pm	0.036	616	1.98	N/A
Replicates	600.8	613.7	617.2 633.9				
2006098-001A		UNK	06/11/20 06:20:16 pm	0.006	43	4.36	N/A
Replicates	40.6	49.2	38.2 45.9				
2006102-001A		UNK	06/11/20 06:21:57 pm	0.034	578	1.97	N/A
Replicates	583.4	588.8	559.5 579.3				
2006114-001A		UNK	06/11/20 06:23:39 pm	0.024	386	1.77	N/A
Replicates	389.9	374.9	384.4 393.4				
2006114-002A		UNK	06/11/20 06:25:20 pm	0.028	457	5.21	N/A
Replicates	450.3	480.5	477.0 421.3				
2006126-001A		UNK	06/11/20 06:27:02 pm	0.005	22	9.38	N/A
Replicates	24.9	8.5	26.5 26.3				
2006126-002A		UNK	06/11/20 06:28:44 pm	0.003	-12	38.15	N/A
Replicates	-26.2	-36.1	8.6 6.4				
2006169-001D		UNK	06/11/20 06:30:26 pm	0.023	371	8.29	N/A
Replicates	422.9	355.3	338.3 367.3				
CCV		CCV	06/11/20 06:35:01 pm	2.560	48790	0.39	102.21
Replicates	48542.2	48746.9	48879.9 48990.1				

Sample Name

Туре

Date/Time

Conc (ug/L)

μAbs %RSD Residual Flags % Recovery

6/11/2020 6:40:17 PM 061120WATER C.wszf Page 2 of 3

Sample	e Name		Туре	Date/Tir	ne	Conc (ug/L)	μAbs	%RSD Res	idual Flags % Recovery
CCB			CCB	06/11/20	06:36:43 pm	0.013	167	30.72	N/A
	Replicates	63.8	171.9	201.2	232.4				

Calibration Set Tube Lot# 2070/4981

Analysis: Mercury Water Calibration

Date/Time: OG/11/20

Analyst:

Water Matrix:

Analytical Run: 59776

Curve	Concentration	Suggested Spike Amount	Acutal Spike Amount,	Spike Standard	Initial Volume	Used Vol.	Conc. Sulfuric Acid, mL	Conc. Nitric Acid, mL	Permanganate, mL	Persulfate, mL	Hydroxylamine, mt
Standard 0	0 μg/L	0 μL	0.0	CALSTOLL	50 mL		1.6	0.8	4.8	2.6	1.9
Standard 1	0.1 μg/L	50 μL	0.052	1	50 mL		1	- 1	1	1	1
Standard 2	0.5 μg/L	250 μL	0.264		50 mL						
Standard 3	1 μg/L	500 μL	0.522		50 mL						
Standard 4	2.5 μg/L	1.25 mL	1,266		50 mL						
Standard 5	5 μg/L	2.5 mL	2.554		50 mL						
ICB	0 μg/L	0 μL			50 mL						
ICV LL	0.1 μg/L	50 μL		~	50 mL						
ICV	2.5 μg/L	1.25 mL	1.265	1 CUSTOCK	50 mL		J	1	1	1	4

Recommended Volume

1.D #

Potassium Permanganate: 4.8 mL Potassium Persulfate: 2.6 mL Hydroxylamine Sulfate: 1.9 mL

Sulfuric Acid:

1.6 mL

Nitric Acid: 0.8 mL Balance ID:

Standard 4 used for:

CH STOCK > 0.5 m of 22604 (50 m) f = 100 ppb ICU STOCK > 0.5 m of 23127 (50 m) f = 100 ppb

Signature: NM

Mercury Water Calibration Benchsheet v1.1

Pipettet29

Page 1 of 1

Official Approval: 7/7/16

6/11/20

DATA SET for Review -- Deliverable Requirements

PAH Analysis by EPA 8270 SIM

Fremont Analytical Work Order No. 2006085

Libby Environmental

Project Name: Hardel Site

Project No. L200603-7

This Data contains the following:

- Analytical Sequence Summary for Work Order 2006085
- Calibration Information for Work Order 2006085
- Tune Information for Work Order 2006085

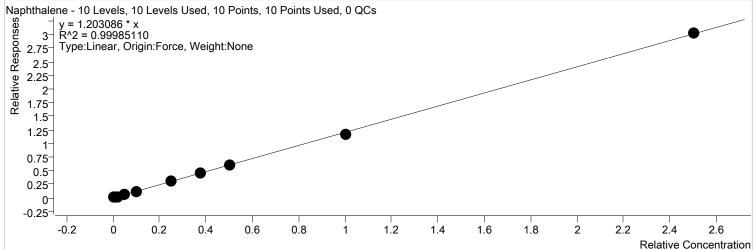
SampleName	MiscInfo	Vial	Multiplier	Injection Ti	me
1) 060801.D CO		2	1.000	08 Jun 2020	07:47 am
2) 060802.D TUNE		1	1.000	08 Jun 2020	08:09 am
3) 060803.D CCV-		2	1.000	08 Jun 2020	08:31 am
4) 060804.D MB-28581		56	1.000	08 Jun 2020	01:02 pm
5) 060805.D LCS-28581			1.000	08 Jun 2020	01:24 pm
6) 060806.D 2005095-006A			1.000	08 Jun 2020	01:46 pm
7) 060807.D 2005114-007A		59	1.000	08 Jun 2020	02:09 pm
8) 060808.D 2005114-011A		60	1.000	08 Jun 2020	02:31 pm
9) 060809.D 2005114-012A		61	1.000	08 Jun 2020	02:54 pm
10) 060810.D 2005160-002A		62	1.000	08 Jun 2020	03:16 pm
11) 060811.D 2005192-041A		63	1.000	08 Jun 2020	03:38 pm
 12) 060812.D 2006084-005A		64	1.000	08 Jun 2020	04:01 pm
 13) 060813.D 2006084-005ADUP		65	1.000	08 Jun 2020	04:23 pm
14) 060814.D 2006084-005AMS				08 Jun 2020	
15) 060815.D 2006084-005AMSD		67	1.000	08 Jun 2020	
16) 060816.D QCS-28581A		2	1.000	08 Jun 2020	05:30 pm
17) 060817.D CCV-28581B		2	1.000	08 Jun 2020	05:53 pm
 18) 060818.D 2006076-001A		68	1.000	08 Jun 2020	06:15 pm
 19) 060819.D 2006076-002A		69		08 Jun 2020	
20) 060820.D 2006084-001A		70	1.000	08 Jun 2020	07:00 pm
21) 060821.D 2006084-002A		71		08 Jun 2020	

22) 060822.D 2006084-003A	72	1.000	08	Jun	2020	07:44	pm
23) 060823.D 2006084-004A	73	1.000	08	Jun	2020	08:07	pm
24) 060824.D 2006085-008A	74	1.000	08	Jun	2020	08:29	pm
25) 060825.D 2006085-009A	75	1.000	08	Jun	2020	08:51	pm
26) 060826.D 2006085-010A	76	1.000	08	Jun	2020	09:13	pm
27) 060827.D 2006085-011A	77	1.000	08	Jun	2020	09:36	pm
28) 060828.D 2006085-012A	78	1.000	08	Jun	2020	09:58	pm
29) 060829.D 2006085-013A	79	1.000	08	Jun	2020	10:20	pm
30) 060830.D 2006104-001A	80	1.000	08	Jun	2020	10:42	pm
31) 060831.D QCS-28581B	2	1.000	08	Jun	2020	11:04	pm
32) 060901.D CO	2	1.000	09	Jun	2020	08:37	am
33) 060902.D TUNE	1	1.000	09	Jun	2020	08:59	am
34) 060903.D CCV-	2	1.000	09	Jun	2020	09:21	am
35) 060904.D SEMI CHECK NEW INT	4					10:10	am
36) 060905.D 2006085-009A 10X	10		09				am
37) 060912.D QCS-	2	1.000	09	Jun	2020	01:59	pm

Vial	Multiplier	Injection Time	
	0.000	N/A	
2	1.000	10 Jun 2020 08:56	am
			am
		10 Jun 2020 10:51	am
1	1.000	10 Jun 2020 11:13	am
		10 Jun 2020 11:36	am
12	1.000	10 Jun 2020 11:58	am
13	1.000	10 Jun 2020 12:21	pm
14	1.000	10 Jun 2020 12:54	pm
		10 Jun 2020 01:17	pm
16		10 Jun 2020 01:39	pm
	1.000	10 Jun 2020 02:02	pm
	1.000	10 Jun 2020 02:25	pm
	1.000	10 Jun 2020 02:47	pm
20	1.000	10 Jun 2020 03:10	
21	1.000	10 Jun 2020 03:33	pm
22	1.000	10 Jun 2020 03:55 j	pm
21	1.000	10 Jun 2020 04:18 j	pm
2	1.000	10 Jun 2020 04:41	pm
76	1.000	10 Jun 2020 05:04	pm
77	1.000	10 Jun 2020 05:26 j	pm
	2	0.000 2 1.000 2 1.000 1 1.000 1 1.000 11 1.000 12 1.000 13 1.000 14 1.000 15 1.000 16 1.000 17 1.000 18 1.000 20 1.000 21 1.000 21 1.000 21 1.000 21 1.000 76 1.000	1 1.000 10 Jun 2020 11:13 11 1.000 10 Jun 2020 11:36 12 1.000 10 Jun 2020 11:58 13 1.000 10 Jun 2020 12:21 14 1.000 10 Jun 2020 12:54 15 1.000 10 Jun 2020 01:17 16 1.000 10 Jun 2020 01:39 17 1.000 10 Jun 2020 02:02

	1044.D		56 of 403					
 44) 061 MB-2859	1043.D	76	1.000	11	Jun	2020	04:49	am
43) 061 2005309		99	1.000	11	Jun	2020	04:26	am
 42) 061 2005309	1041.D 9-017A	98	1.000	11	Jun	2020	04:04	am
41) 063		96	1.000	11	Jun	2020	03:42	am
40) 061 2006123	1039.D	95	1.000	11	Jun	2020	03:19	am
39) 061 2006123	1038.D	9 4	1.000	11	Jun	2020	02:57	am
38) 061 2006123	1037.D	93	1.000	11	Jun	2020	02:34	am
37) 061 2006085	1036.D	92	1.000	11	Jun	2020	02:12	am
36) 061 2006085	1035.D	91	1.000	11	Jun	2020	01:50	am
35) 061 2006123			1.000					am
34) 061 2006123		88	1.000	11	Jun	2020	01:05	am
33) 061 2006123		87	1.000	11	Jun	2020	12:43	am
32) 061 2006123		86	1.000	11	Jun	2020	12:20	am
31) 061 2006123		85 	1.000	10	Jun	2020	11:58	pm
30) 061 2006123		84	1.000	10	Jun	2020	11:36	pm
29) 061 2006123		83	1.000	10	Jun	2020	11:13	pm
28) 061 2006123		81	1.000	10	Jun	2020	10:51	pm
27) 061 2006123		80	1.000	10	Jun	2020	10:28	pm
26) 061 2006123		79	1.000	10	Jun	2020	07:20	pm
25) 061 2006123		78	1.000	10	Jun	2020	06:57	pm
24) 061 2006123		97	1.000	10	Jun	2020	06:34	pm
23) 061 2006123		90	1.000	10	Jun	2020	06:12	pm
22) 061 2006123		82	1.000	10	Jun	2020	05:49	pm

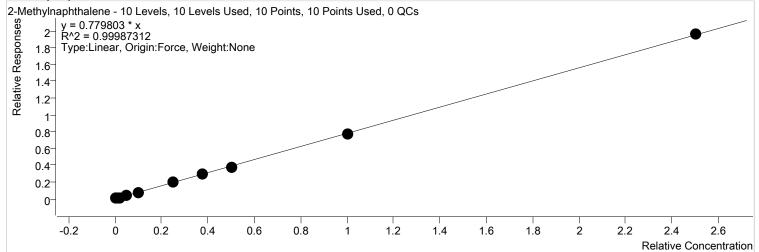
2006123-010A	82	1.000	11 Jun 2020	05:11 am
46) 061045.D 2006123-018A	90	1.000	11 Jun 2020	05:33 am
47) 061047.D QCS-28595	2	1.000	11 Jun 2020	05:56 am
48) 061048.D TUNE	1	1.000	11 Jun 2020	06:18 am
49) 061049.D CCV-EXT-28585	3	1.000	11 Jun 2020	06:40 am



Calibration

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:37 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

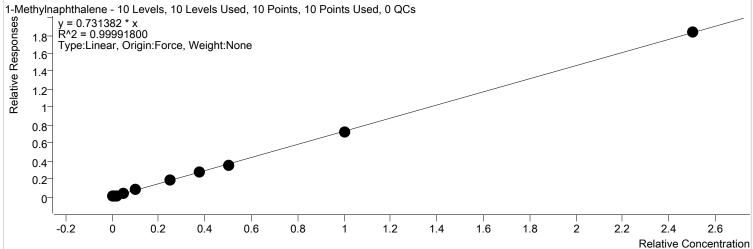
Naphthalene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	625	10.0000	1.5443
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1108	20.0000	1.4010
D:\GC-21\Data\060320\060333.D	Calibration	3	х	2055	40.0000	1.2291
D:\GC-21\Data\060320\060334.D	Calibration	4	x	4916	100.0000	1.2198
D:\GC-21\Data\060320\060335.D	Calibration	5	x	10067	200.0000	1.2453
D:\GC-21\Data\060320\060336.D	Calibration	6	х	24980	500.0000	1.2121
D:\GC-21\Data\060320\060337.D	Calibration	7	x	36967	750.0000	1.1872
D:\GC-21\Data\060320\060338.D	Calibration	8	x	52707	1000.0000	1.2188
D:\GC-21\Data\060320\060339.D	Calibration	9	х	100421	2000.0000	1.1728
D:\GC-21\Data\060320\060340.D	Calibration	10	x	253311	5000.0000	1.2075

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

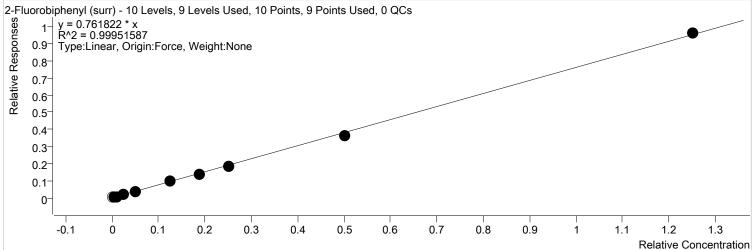
2-Methylnaphthalene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	406	10.0000	1.0028
D:\GC-21\Data\060320\060332.D	Calibration	2	x	734	20.0000	0.9277
D:\GC-21\Data\060320\060333.D	Calibration	3	X	1352	40.0000	0.8087
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3211	100.0000	0.7966
D:\GC-21\Data\060320\060335.D	Calibration	5	x	6596	200.0000	0.8159
D:\GC-21\Data\060320\060336.D	Calibration	6	X	16410	500.0000	0.7962
D:\GC-21\Data\060320\060337.D	Calibration	7	х	24234	750.0000	0.7783
D:\GC-21\Data\060320\060338.D	Calibration	8	x	32844	1000.0000	0.7595
D:\GC-21\Data\060320\060339.D	Calibration	9	х	65489	2000.0000	0.7649
D:\GC-21\Data\060320\060340.D	Calibration	10	х	164220	5000.0000	0.7828

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

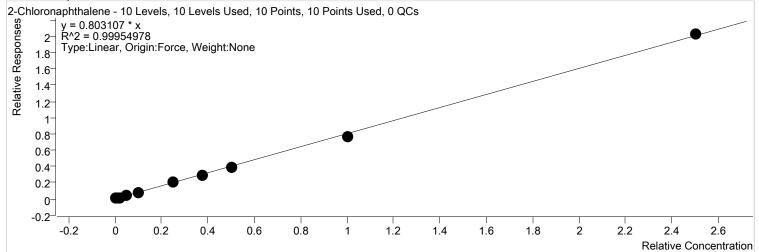
1-Methylnaphthalene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	388	10.0000	0.9579
D:\GC-21\Data\060320\060332.D	Calibration	2	x	704	20.0000	0.8901
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1290	40.0000	0.7714
D:\GC-21\Data\060320\060334.D	Calibration	4	x	3048	100.0000	0.7564
D:\GC-21\Data\060320\060335.D	Calibration	5	x	6293	200.0000	0.7784
D:\GC-21\Data\060320\060336.D	Calibration	6	х	15532	500.0000	0.7536
D:\GC-21\Data\060320\060337.D	Calibration	7	x	22968	750.0000	0.7376
D:\GC-21\Data\060320\060338.D	Calibration	8	х	31053	1000.0000	0.7181
D:\GC-21\Data\060320\060339.D	Calibration	9	х	61729	2000.0000	0.7209
D:\GC-21\Data\060320\060340.D	Calibration	10	x	153799	5000.0000	0.7331

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

2-Fluorobiphenyl (surr)

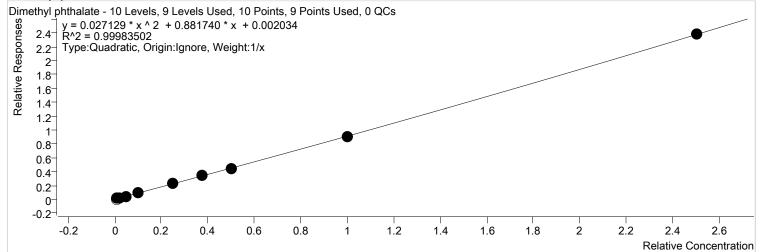


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1		199	5.0000	0.9837
D:\GC-21\Data\060320\060332.D	Calibration	2	x	356	10.0000	0.9005
D:\GC-21\Data\060320\060333.D	Calibration	3	x	658	20.0000	0.7874
D:\GC-21\Data\060320\060334.D	Calibration	4	х	1558	50.0000	0.7734
D:\GC-21\Data\060320\060335.D	Calibration	5	x	3189	100.0000	0.7891
D:\GC-21\Data\060320\060336.D	Calibration	6	x	7819	250.0000	0.7588
D:\GC-21\Data\060320\060337.D	Calibration	7	х	11578	375.0000	0.7437
D:\GC-21\Data\060320\060338.D	Calibration	8	x	15647	500.0000	0.7236
D:\GC-21\Data\060320\060339.D	Calibration	9	x	31416	1000.0000	0.7338
D:\GC-21\Data\060320\060340.D	Calibration	10	х	80580	2500.0000	0.7682

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

2-Chloronaphthalene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	414	10.0000	1.0228
D:\GC-21\Data\060320\060332.D	Calibration	2	x	744	20.0000	0.9405
D:\GC-21\Data\060320\060333.D	Calibration	3	X	1376	40.0000	0.8230
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3261	100.0000	0.8091
D:\GC-21\Data\060320\060335.D	Calibration	5	x	6702	200.0000	0.8291
D:\GC-21\Data\060320\060336.D	Calibration	6	х	16506	500.0000	0.8009
D:\GC-21\Data\060320\060337.D	Calibration	7	х	24524	750.0000	0.7876
D:\GC-21\Data\060320\060338.D	Calibration	8	x	33036	1000.0000	0.7639
D:\GC-21\Data\060320\060339.D	Calibration	9	х	66227	2000.0000	0.7735
D:\GC-21\Data\060320\060340.D	Calibration	10	x	169870	5000.0000	0.8097

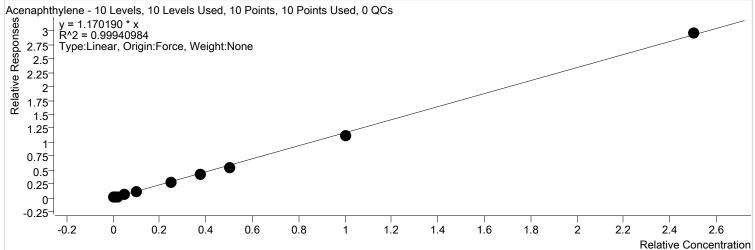

 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:38 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

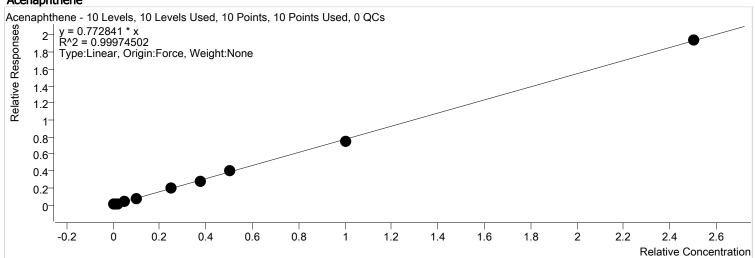
Dimethyl phthalate



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1		481	10.0000	1.1896
D:\GC-21\Data\060320\060332.D	Calibration	2	х	860	20.0000	1.0867
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1562	40.0000	0.9343
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3705	100.0000	0.9194
D:\GC-21\Data\060320\060335.D	Calibration	5	х	7655	200.0000	0.9470
D:\GC-21\Data\060320\060336.D	Calibration	6	х	19014	500.0000	0.9226
D:\GC-21\Data\060320\060337.D	Calibration	7	х	28179	750.0000	0.9049
D:\GC-21\Data\060320\060338.D	Calibration	8	х	38134	1000.0000	0.8818
D:\GC-21\Data\060320\060339.D	Calibration	9	х	77408	2000.0000	0.9041
D:\GC-21\Data\060320\060340.D	Calibration	10	x	199647	5000.0000	0.9517

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

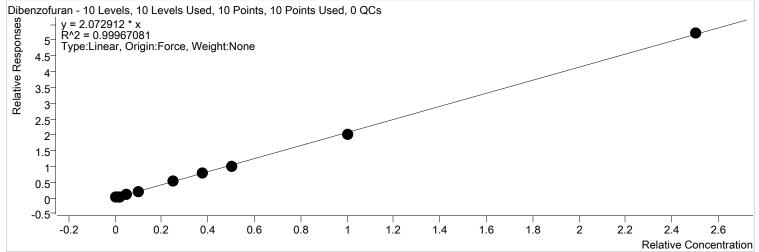
Acenaphthylene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	600	10.0000	1.4821
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1057	20.0000	1.3356
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1942	40.0000	1.1614
D:\GC-21\Data\060320\060334.D	Calibration	4	x	4563	100.0000	1.1322
D:\GC-21\Data\060320\060335.D	Calibration	5	x	9438	200.0000	1.1675
D:\GC-21\Data\060320\060336.D	Calibration	6	х	23633	500.0000	1.1467
D:\GC-21\Data\060320\060337.D	Calibration	7	x	35388	750.0000	1.1365
D:\GC-21\Data\060320\060338.D	Calibration	8	x	47370	1000.0000	1.0954
D:\GC-21\Data\060320\060339.D	Calibration	9	х	96338	2000.0000	1.1251
D:\GC-21\Data\060320\060340.D	Calibration	10	x	247838	5000.0000	1.1814

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

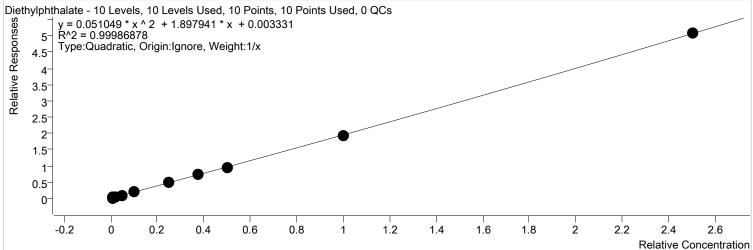
Acenaphthene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	398	10.0000	0.9830
D:\GC-21\Data\060320\060332.D	Calibration	2	x	722	20.0000	0.9125
D:\GC-21\Data\060320\060333.D	Calibration	3	x	1322	40.0000	0.7906
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3141	100.0000	0.7794
D:\GC-21\Data\060320\060335.D	Calibration	5	x	6444	200.0000	0.7971
D:\GC-21\Data\060320\060336.D	Calibration	6	x	15845	500.0000	0.7688
D:\GC-21\Data\060320\060337.D	Calibration	7	x	23455	750.0000	0.7532
D:\GC-21\Data\060320\060338.D	Calibration	8	x	34919	1000.0000	0.8075
D:\GC-21\Data\060320\060339.D	Calibration	9	x	64409	2000.0000	0.7522
D:\GC-21\Data\060320\060340.D	Calibration	10	х	162622	5000.0000	0.7752

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

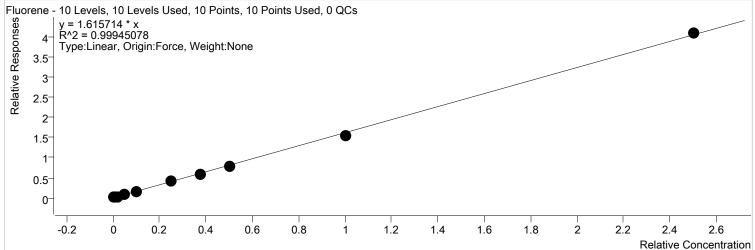
Dibenzofuran



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	Х	548	10.0000	2.6993
D:\GC-21\Data\060320\060332.D	Calibration	2	x	995	20.0000	2.5431
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1800	40.0000	2.1419
D:\GC-21\Data\060320\060334.D	Calibration	4	Х	4255	100.0000	2.1250
D:\GC-21\Data\060320\060335.D	Calibration	5	x	8699	200.0000	2.1493
D:\GC-21\Data\060320\060336.D	Calibration	6	х	21606	500.0000	2.1039
D:\GC-21\Data\060320\060337.D	Calibration	7	Х	32031	750.0000	2.0712
D:\GC-21\Data\060320\060338.D	Calibration	8	х	43294	1000.0000	2.0282
D:\GC-21\Data\060320\060339.D	Calibration	9	х	86556	2000.0000	1.9964
D:\GC-21\Data\060320\060340.D	Calibration	10	х	220001	5000.0000	2.0865

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

Diethylphthalate

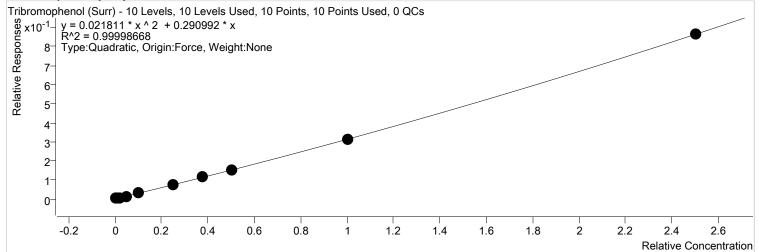


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	511	10.0000	2.5156
D:\GC-21\Data\060320\060332.D	Calibration	2	x	890	20.0000	2.2754
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1663	40.0000	1.9790
D:\GC-21\Data\060320\060334.D	Calibration	4	x	3919	100.0000	1.9568
D:\GC-21\Data\060320\060335.D	Calibration	5	x	8116	200.0000	2.0053
D:\GC-21\Data\060320\060336.D	Calibration	6	х	20292	500.0000	1.9760
D:\GC-21\Data\060320\060337.D	Calibration	7	x	30054	750.0000	1.9433
D:\GC-21\Data\060320\060338.D	Calibration	8	х	40930	1000.0000	1.9175
D:\GC-21\Data\060320\060339.D	Calibration	9	x	83433	2000.0000	1.9244
D:\GC-21\Data\060320\060340.D	Calibration	10	x	214133	5000.0000	2.0309

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

Fluorene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	413	10.0000	2.0351
D:\GC-21\Data\060320\060332.D	Calibration	2	x	746	20.0000	1.9084
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1347	40.0000	1.6031
D:\GC-21\Data\060320\060334.D	Calibration	4	x	3245	100.0000	1.6205
D:\GC-21\Data\060320\060335.D	Calibration	5	x	6666	200.0000	1.6472
D:\GC-21\Data\060320\060336.D	Calibration	6	х	16557	500.0000	1.6123
D:\GC-21\Data\060320\060337.D	Calibration	7	x	24632	750.0000	1.5928
D:\GC-21\Data\060320\060338.D	Calibration	8	х	33107	1000.0000	1.5510
D:\GC-21\Data\060320\060339.D	Calibration	9	x	66893	2000.0000	1.5429
D:\GC-21\Data\060320\060340.D	Calibration	10	x	171914	5000.0000	1.6305

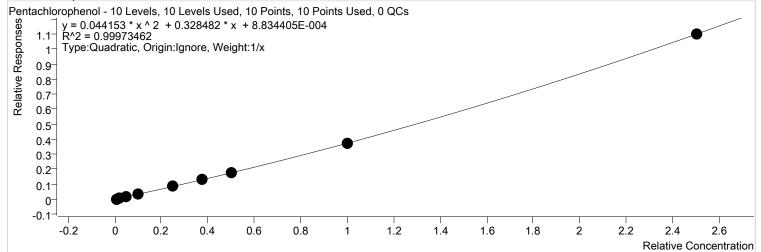

 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:38 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

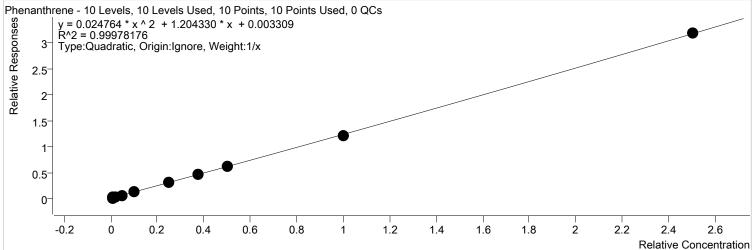
Tribromophenol (Surr)



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	77	10.0000	0.3811
D:\GC-21\Data\060320\060332.D	Calibration	2	x	132	20.0000	0.3384
D:\GC-21\Data\060320\060333.D	Calibration	3	X	247	40.0000	0.2939
D:\GC-21\Data\060320\060334.D	Calibration	4	X	589	100.0000	0.2941
D:\GC-21\Data\060320\060335.D	Calibration	5	x	1207	200.0000	0.2983
D:\GC-21\Data\060320\060336.D	Calibration	6	x	3109	500.0000	0.3028
D:\GC-21\Data\060320\060337.D	Calibration	7	X	4691	750.0000	0.3033
D:\GC-21\Data\060320\060338.D	Calibration	8	x	6454	1000.0000	0.3023
D:\GC-21\Data\060320\060339.D	Calibration	9	Х	13490	2000.0000	0.3111
D:\GC-21\Data\060320\060340.D	Calibration	10	х	36440	5000.0000	0.3456

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

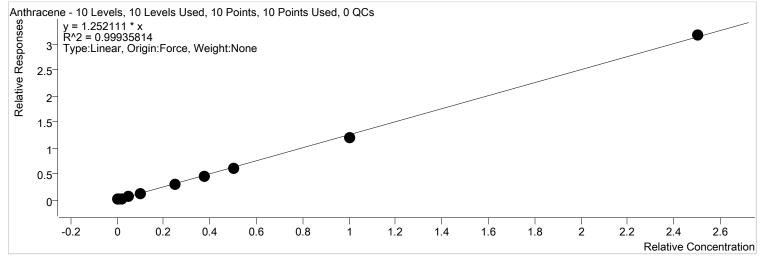
Pentachlorophenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	125	10.0000	0.6161
D:\GC-21\Data\060320\060332.D	Calibration	2	x	154	20.0000	0.3948
D:\GC-21\Data\060320\060333.D	Calibration	3	x	264	40.0000	0.3137
D:\GC-21\Data\060320\060334.D	Calibration	4	х	638	100.0000	0.3187
D:\GC-21\Data\060320\060335.D	Calibration	5	x	1355	200.0000	0.3347
D:\GC-21\Data\060320\060336.D	Calibration	6	x	3559	500.0000	0.3466
D:\GC-21\Data\060320\060337.D	Calibration	7	х	5420	750.0000	0.3505
D:\GC-21\Data\060320\060338.D	Calibration	8	x	7524	1000.0000	0.3525
D:\GC-21\Data\060320\060339.D	Calibration	9	х	16276	2000.0000	0.3754
D:\GC-21\Data\060320\060340.D	Calibration	10	х	46270	5000.0000	0.4388

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

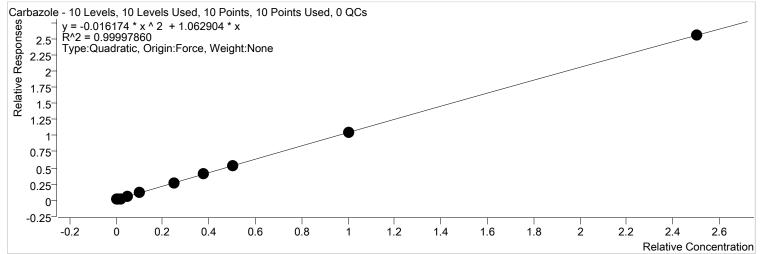
Phenanthrene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	643	10.0000	1.7866
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1104	20.0000	1.5983
D:\GC-21\Data\060320\060333.D	Calibration	3	X	1964	40.0000	1.3126
D:\GC-21\Data\060320\060334.D	Calibration	4	х	4515	100.0000	1.2679
D:\GC-21\Data\060320\060335.D	Calibration	5	x	9260	200.0000	1.2966
D:\GC-21\Data\060320\060336.D	Calibration	6	х	23067	500.0000	1.2495
D:\GC-21\Data\060320\060337.D	Calibration	7	х	34037	750.0000	1.2435
D:\GC-21\Data\060320\060338.D	Calibration	8	х	46415	1000.0000	1.2214
D:\GC-21\Data\060320\060339.D	Calibration	9	х	94128	2000.0000	1.2056
D:\GC-21\Data\060320\060340.D	Calibration	10	х	243362	5000.0000	1.2711

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

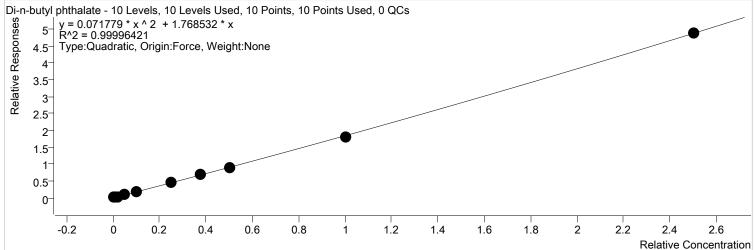
Anthracene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	558	10.0000	1.5514
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1002	20.0000	1.4501
D:\GC-21\Data\060320\060333.D	Calibration	3	x	1871	40.0000	1.2501
D:\GC-21\Data\060320\060334.D	Calibration	4	X	4355	100.0000	1.2230
D:\GC-21\Data\060320\060335.D	Calibration	5	x	9046	200.0000	1.2666
D:\GC-21\Data\060320\060336.D	Calibration	6	x	22590	500.0000	1.2236
D:\GC-21\Data\060320\060337.D	Calibration	7	X	33791	750.0000	1.2345
D:\GC-21\Data\060320\060338.D	Calibration	8	x	45521	1000.0000	1.1979
D:\GC-21\Data\060320\060339.D	Calibration	9	X	93028	2000.0000	1.1915
D:\GC-21\Data\060320\060340.D	Calibration	10	х	242123	5000.0000	1.2646

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

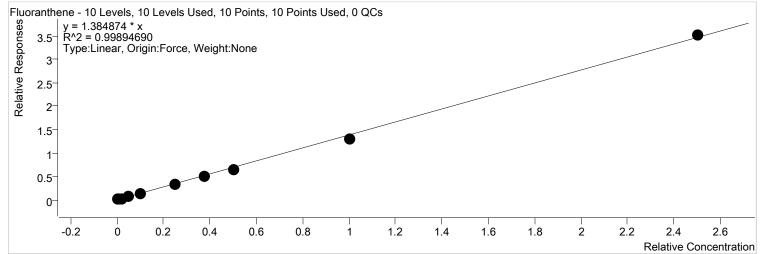
Carbazole



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	504	10.0000	1.4017
D:\GC-21\Data\060320\060332.D	Calibration	2	х	896	20.0000	1.2963
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1589	40.0000	1.0618
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3749	100.0000	1.0528
D:\GC-21\Data\060320\060335.D	Calibration	5	х	7751	200.0000	1.0854
D:\GC-21\Data\060320\060336.D	Calibration	6	х	19738	500.0000	1.0692
D:\GC-21\Data\060320\060337.D	Calibration	7	х	29556	750.0000	1.0798
D:\GC-21\Data\060320\060338.D	Calibration	8	х	39938	1000.0000	1.0510
D:\GC-21\Data\060320\060339.D	Calibration	9	х	81359	2000.0000	1.0421
D:\GC-21\Data\060320\060340.D	Calibration	10	x	195804	5000.0000	1.0227

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

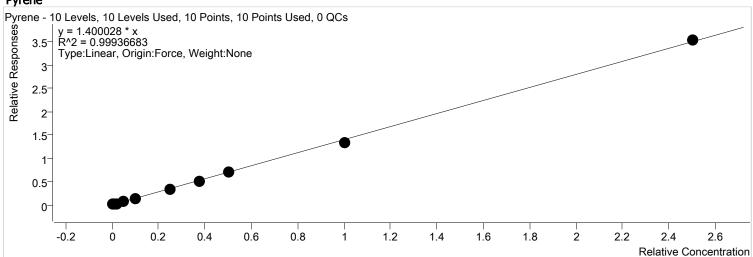
Di-n-butyl phthalate



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	817	10.0000	2.2728
D:\GC-21\Data\060320\060332.D	Calibration	2	х	1434	20.0000	2.0753
D:\GC-21\Data\060320\060333.D	Calibration	3	x	2643	40.0000	1.7661
D:\GC-21\Data\060320\060334.D	Calibration	4	х	6292	100.0000	1.7670
D:\GC-21\Data\060320\060335.D	Calibration	5	x	13004	200.0000	1.8209
D:\GC-21\Data\060320\060336.D	Calibration	6	х	33568	500.0000	1.8183
D:\GC-21\Data\060320\060337.D	Calibration	7	х	50444	750.0000	1.8429
D:\GC-21\Data\060320\060338.D	Calibration	8	х	68972	1000.0000	1.8150
D:\GC-21\Data\060320\060339.D	Calibration	9	х	142375	2000.0000	1.8236
D:\GC-21\Data\060320\060340.D	Calibration	10	x	373104	5000.0000	1.9488

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

Fluoranthene

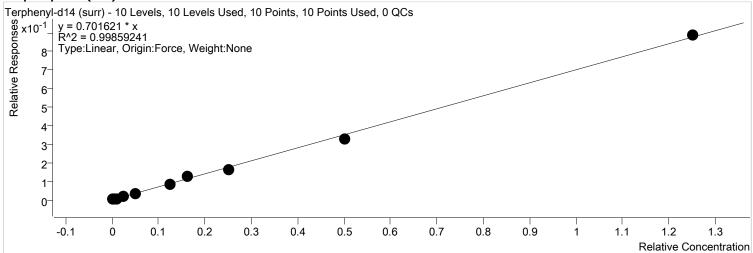


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	624	10.0000	1.7342
D:\GC-21\Data\060320\060332.D	Calibration	2	х	1093	20.0000	1.5818
D:\GC-21\Data\060320\060333.D	Calibration	3	х	2012	40.0000	1.3446
D:\GC-21\Data\060320\060334.D	Calibration	4	х	4760	100.0000	1.3368
D:\GC-21\Data\060320\060335.D	Calibration	5	х	9856	200.0000	1.3801
D:\GC-21\Data\060320\060336.D	Calibration	6	х	24856	500.0000	1.3464
D:\GC-21\Data\060320\060337.D	Calibration	7	х	36690	750.0000	1.3405
D:\GC-21\Data\060320\060338.D	Calibration	8	х	50004	1000.0000	1.3159
D:\GC-21\Data\060320\060339.D	Calibration	9	х	101377	2000.0000	1.2985
D:\GC-21\Data\060320\060340.D	Calibration	10	х	268588	5000.0000	1.4029

D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin **Batch Path Analysis Time** 6/8/2020 10:54:41 AM **Analyst Name** FA\lab Report Time 6/8/2020 10:58:38 AM Reporter Name lab Last Calib Update 6/8/2020 10:54:04 AM **Batch State** Processed

Pyrene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	652	10.0000	1.8130
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1123	20.0000	1.6252
D:\GC-21\Data\060320\060333.D	Calibration	3	X	2031	40.0000	1.3567
D:\GC-21\Data\060320\060334.D	Calibration	4	х	4819	100.0000	1.3533
D:\GC-21\Data\060320\060335.D	Calibration	5	x	9938	200.0000	1.3916
D:\GC-21\Data\060320\060336.D	Calibration	6	х	25105	500.0000	1.3598
D:\GC-21\Data\060320\060337.D	Calibration	7	х	37405	750.0000	1.3666
D:\GC-21\Data\060320\060338.D	Calibration	8	х	54315	1000.0000	1.4293
D:\GC-21\Data\060320\060339.D	Calibration	9	х	103570	2000.0000	1.3266
D:\GC-21\Data\060320\060340.D	Calibration	10	х	270298	5000.0000	1.4118


 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

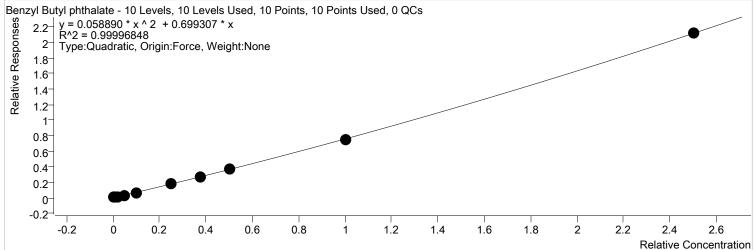
 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:38 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

Terphenyl-d14 (surr)

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	167	5.0000	0.9279
D:\GC-21\Data\060320\060332.D	Calibration	2	х	288	10.0000	0.8327
D:\GC-21\Data\060320\060333.D	Calibration	3	х	512	20.0000	0.6845
D:\GC-21\Data\060320\060334.D	Calibration	4	х	1220	50.0000	0.6854
D:\GC-21\Data\060320\060335.D	Calibration	5	х	2500	100.0000	0.7001
D:\GC-21\Data\060320\060336.D	Calibration	6	х	6250	250.0000	0.6771
D:\GC-21\Data\060320\060337.D	Calibration	7	х	9331	325.0000	0.7867
D:\GC-21\Data\060320\060338.D	Calibration	8	х	12636	500.0000	0.6650
D:\GC-21\Data\060320\060339.D	Calibration	9	х	25537	1000.0000	0.6542
D:\GC-21\Data\060320\060340.D	Calibration	10	х	67918	2500.0000	0.7095


 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

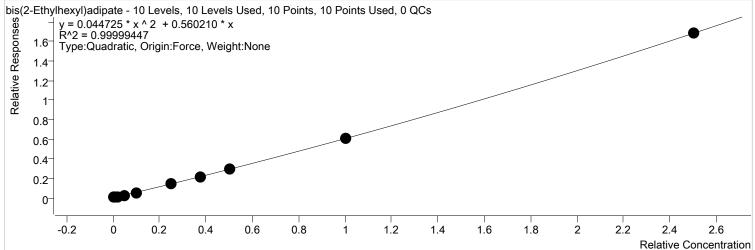
 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:38 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

Benzyl Butyl phthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	Х	347	10.0000	0.9643
D:\GC-21\Data\060320\060332.D	Calibration	2	x	588	20.0000	0.8515
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1027	40.0000	0.6861
D:\GC-21\Data\060320\060334.D	Calibration	4	Х	2404	100.0000	0.6753
D:\GC-21\Data\060320\060335.D	Calibration	5	x	5059	200.0000	0.7084
D:\GC-21\Data\060320\060336.D	Calibration	6	х	13069	500.0000	0.7079
D:\GC-21\Data\060320\060337.D	Calibration	7	х	20254	750.0000	0.7400
D:\GC-21\Data\060320\060338.D	Calibration	8	х	28062	1000.0000	0.7385
D:\GC-21\Data\060320\060339.D	Calibration	9	х	58702	2000.0000	0.7519
D:\GC-21\Data\060320\060340.D	Calibration	10	x	162126	5000.0000	0.8468


 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

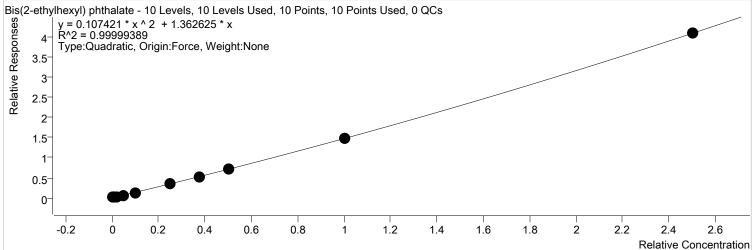
 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:38 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

bis(2-Ethylhexyl)adipate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	264	10.0000	0.7338
D:\GC-21\Data\060320\060332.D	Calibration	2	x	459	20.0000	0.6639
D:\GC-21\Data\060320\060333.D	Calibration	3	x	764	40.0000	0.5107
D:\GC-21\Data\060320\060334.D	Calibration	4	х	1845	100.0000	0.5180
D:\GC-21\Data\060320\060335.D	Calibration	5	x	3936	200.0000	0.5511
D:\GC-21\Data\060320\060336.D	Calibration	6	X	10420	500.0000	0.5644
D:\GC-21\Data\060320\060337.D	Calibration	7	х	15829	750.0000	0.5783
D:\GC-21\Data\060320\060338.D	Calibration	8	x	22183	1000.0000	0.5837
D:\GC-21\Data\060320\060339.D	Calibration	9	Х	47262	2000.0000	0.6053
D:\GC-21\Data\060320\060340.D	Calibration	10	х	128657	5000.0000	0.6720


 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

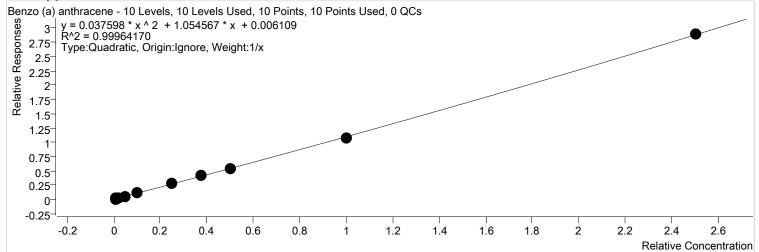
 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:38 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

Bis(2-ethylhexyl) phthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	408	10.0000	1.4984
D:\GC-21\Data\060320\060332.D	Calibration	2	x	734	20.0000	1.4285
D:\GC-21\Data\060320\060333.D	Calibration	3	x	1377	40.0000	1.2256
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3385	100.0000	1.2682
D:\GC-21\Data\060320\060335.D	Calibration	5	x	7310	200.0000	1.3464
D:\GC-21\Data\060320\060336.D	Calibration	6	x	19337	500.0000	1.3711
D:\GC-21\Data\060320\060337.D	Calibration	7	х	29678	750.0000	1.4107
D:\GC-21\Data\060320\060338.D	Calibration	8	x	41574	1000.0000	1.4240
D:\GC-21\Data\060320\060339.D	Calibration	9	х	87241	2000.0000	1.4686
D:\GC-21\Data\060320\060340.D	Calibration	10	х	235986	5000.0000	1.6312

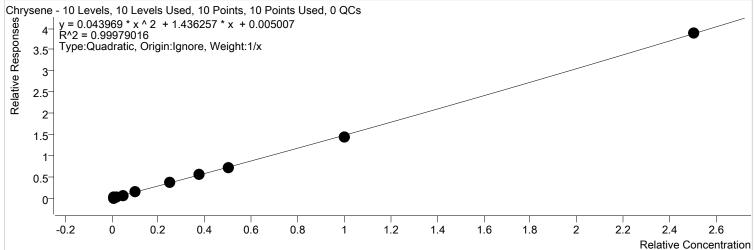

 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:38 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

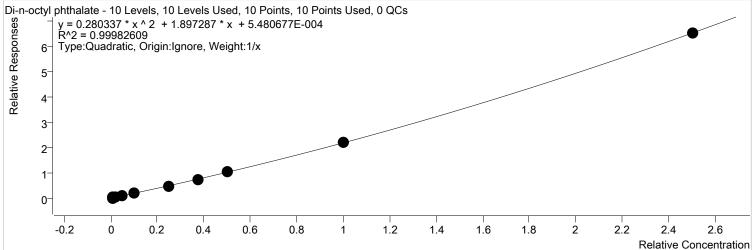
Benzo (a) anthracene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	860	10.0000	2.3910
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1131	20.0000	1.6368
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1881	40.0000	1.2568
D:\GC-21\Data\060320\060334.D	Calibration	4	х	4044	100.0000	1.1357
D:\GC-21\Data\060320\060335.D	Calibration	5	x	8123	200.0000	1.1374
D:\GC-21\Data\060320\060336.D	Calibration	6	х	20640	500.0000	1.1180
D:\GC-21\Data\060320\060337.D	Calibration	7	х	30548	750.0000	1.1160
D:\GC-21\Data\060320\060338.D	Calibration	8	x	41649	1000.0000	1.0960
D:\GC-21\Data\060320\060339.D	Calibration	9	х	83331	2000.0000	1.0673
D:\GC-21\Data\060320\060340.D	Calibration	10	x	221044	5000.0000	1.1545

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

Chrysene

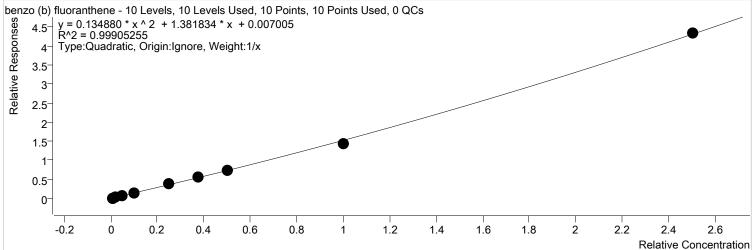


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	672	10.0000	2.4669
D:\GC-21\Data\060320\060332.D	Calibration	2	х	978	20.0000	1.9043
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1817	40.0000	1.6174
D:\GC-21\Data\060320\060334.D	Calibration	4	х	4070	100.0000	1.5250
D:\GC-21\Data\060320\060335.D	Calibration	5	х	8384	200.0000	1.5442
D:\GC-21\Data\060320\060336.D	Calibration	6	x	21171	500.0000	1.5012
D:\GC-21\Data\060320\060337.D	Calibration	7	х	31543	750.0000	1.4994
D:\GC-21\Data\060320\060338.D	Calibration	8	x	42720	1000.0000	1.4633
D:\GC-21\Data\060320\060339.D	Calibration	9	х	86339	2000.0000	1.4534
D:\GC-21\Data\060320\060340.D	Calibration	10	х	224573	5000.0000	1.5523

Batch PathD:\GC-21\Data\060320\QuantResults\PAH CAL.batch.binAnalysis Time6/8/2020 10:54:41 AMAnalyst NameFA\labReport Time6/8/2020 10:58:38 AMReporter NamelabLast Calib Update6/8/2020 10:54:04 AMBatch StateProcessed

Di-n-octyl phthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	636	10.0000	2.3358
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1057	20.0000	2.0574
D:\GC-21\Data\060320\060333.D	Calibration	3	x	1933	40.0000	1.7210
D:\GC-21\Data\060320\060334.D	Calibration	4	х	4710	100.0000	1.7648
D:\GC-21\Data\060320\060335.D	Calibration	5	x	10097	200.0000	1.8597
D:\GC-21\Data\060320\060336.D	Calibration	6	х	27383	500.0000	1.9417
D:\GC-21\Data\060320\060337.D	Calibration	7	x	42111	750.0000	2.0017
D:\GC-21\Data\060320\060338.D	Calibration	8	x	59891	1000.0000	2.0514
D:\GC-21\Data\060320\060339.D	Calibration	9	х	131165	2000.0000	2.2080
D:\GC-21\Data\060320\060340.D	Calibration	10	х	375213	5000.0000	2.5936

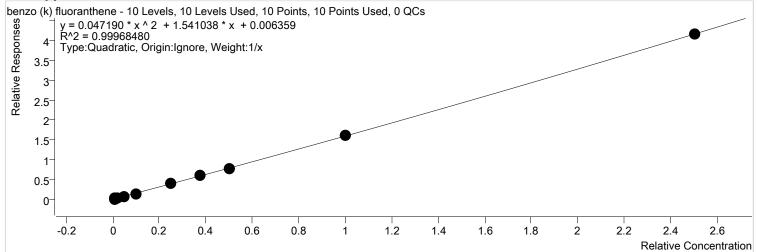

 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:38 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

benzo (b) fluoranthene

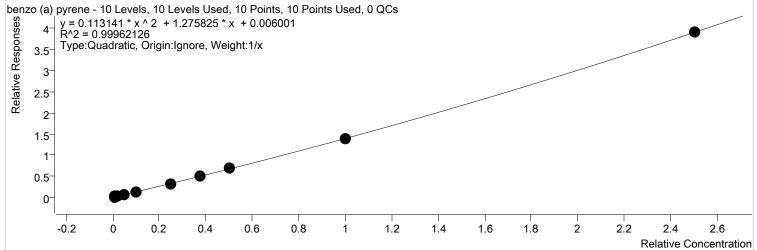


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	802	10.0000	2.9442
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1003	20.0000	1.9531
D:\GC-21\Data\060320\060333.D	Calibration	3	x	1709	40.0000	1.5214
D:\GC-21\Data\060320\060334.D	Calibration	4	х	4092	100.0000	1.5331
D:\GC-21\Data\060320\060335.D	Calibration	5	x	8521	200.0000	1.5695
D:\GC-21\Data\060320\060336.D	Calibration	6	x	21221	500.0000	1.5047
D:\GC-21\Data\060320\060337.D	Calibration	7	х	31898	750.0000	1.5162
D:\GC-21\Data\060320\060338.D	Calibration	8	x	43203	1000.0000	1.4798
D:\GC-21\Data\060320\060339.D	Calibration	9	х	85903	2000.0000	1.4460
D:\GC-21\Data\060320\060340.D	Calibration	10	х	250477	5000.0000	1.7314

D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin **Batch Path Analysis Time** 6/8/2020 10:54:41 AM **Analyst Name** FA\lab Report Time 6/8/2020 10:58:39 AM Reporter Name lab Last Calib Update **Batch State** 6/8/2020 10:54:04 AM Processed

benzo (k) fluoranthene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	845	10.0000	3.1006
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1129	20.0000	2.1985
D:\GC-21\Data\060320\060333.D	Calibration	3	X	2018	40.0000	1.7964
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3866	100.0000	1.4485
D:\GC-21\Data\060320\060335.D	Calibration	5	x	8421	200.0000	1.5510
D:\GC-21\Data\060320\060336.D	Calibration	6	X	22232	500.0000	1.5764
D:\GC-21\Data\060320\060337.D	Calibration	7	х	33711	750.0000	1.6024
D:\GC-21\Data\060320\060338.D	Calibration	8	x	46047	1000.0000	1.5772
D:\GC-21\Data\060320\060339.D	Calibration	9	Х	95526	2000.0000	1.6080
D:\GC-21\Data\060320\060340.D	Calibration	10	х	240009	5000.0000	1.6590


 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

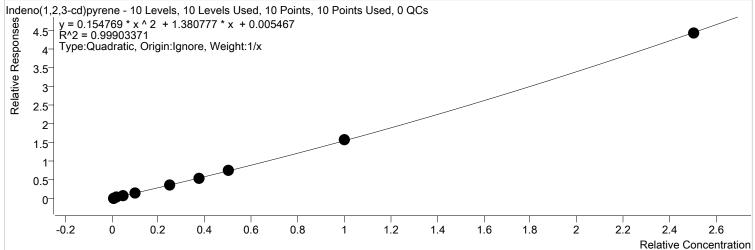
 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:39 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

benzo (a) pyrene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	752	10.0000	2.7593
D:\GC-21\Data\060320\060332.D	Calibration	2	х	986	20.0000	1.9195
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1534	40.0000	1.3657
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3406	100.0000	1.2763
D:\GC-21\Data\060320\060335.D	Calibration	5	х	7159	200.0000	1.3186
D:\GC-21\Data\060320\060336.D	Calibration	6	х	18522	500.0000	1.3133
D:\GC-21\Data\060320\060337.D	Calibration	7	х	29084	750.0000	1.3825
D:\GC-21\Data\060320\060338.D	Calibration	8	x	39961	1000.0000	1.3688
D:\GC-21\Data\060320\060339.D	Calibration	9	х	81827	2000.0000	1.3774
D:\GC-21\Data\060320\060340.D	Calibration	10	х	225985	5000.0000	1.5621


 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

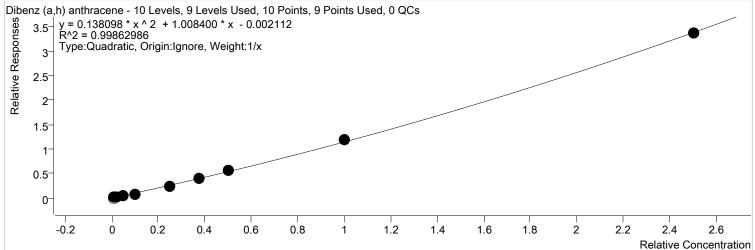
 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:39 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

Indeno(1,2,3-cd)pyrene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	х	921	10.0000	3.1385
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1091	20.0000	1.9501
D:\GC-21\Data\060320\060333.D	Calibration	3	х	1622	40.0000	1.3214
D:\GC-21\Data\060320\060334.D	Calibration	4	х	3661	100.0000	1.2612
D:\GC-21\Data\060320\060335.D	Calibration	5	x	7886	200.0000	1.3184
D:\GC-21\Data\060320\060336.D	Calibration	6	х	21539	500.0000	1.3951
D:\GC-21\Data\060320\060337.D	Calibration	7	x	33775	750.0000	1.4595
D:\GC-21\Data\060320\060338.D	Calibration	8	х	48182	1000.0000	1.4927
D:\GC-21\Data\060320\060339.D	Calibration	9	х	104620	2000.0000	1.5851
D:\GC-21\Data\060320\060340.D	Calibration	10	x	290866	5000.0000	1.7625


 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

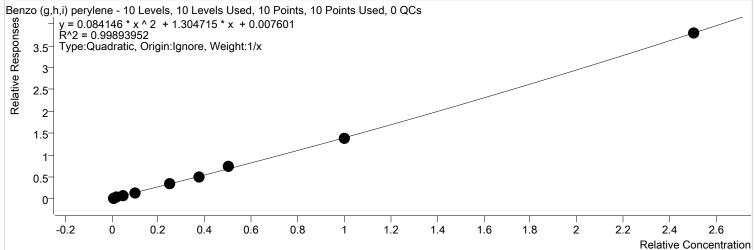
 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:39 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

Dibenz (a,h) anthracene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1		0	10.0000	0.0000
D:\GC-21\Data\060320\060332.D	Calibration	2	x	681	20.0000	1.2165
D:\GC-21\Data\060320\060333.D	Calibration	3	X	1031	40.0000	0.8394
D:\GC-21\Data\060320\060334.D	Calibration	4	Х	2238	100.0000	0.7709
D:\GC-21\Data\060320\060335.D	Calibration	5	x	5081	200.0000	0.8494
D:\GC-21\Data\060320\060336.D	Calibration	6	х	15022	500.0000	0.9730
D:\GC-21\Data\060320\060337.D	Calibration	7	Х	24194	750.0000	1.0455
D:\GC-21\Data\060320\060338.D	Calibration	8	x	36067	1000.0000	1.1174
D:\GC-21\Data\060320\060339.D	Calibration	9	х	77805	2000.0000	1.1788
D:\GC-21\Data\060320\060340.D	Calibration	10	х	222236	5000.0000	1.3467


 Batch Path
 D:\GC-21\Data\060320\QuantResults\PAH CAL.batch.bin

 Analysis Time
 6/8/2020 10:54:41 AM
 Analyst Name
 FA\lab

 Report Time
 6/8/2020 10:58:39 AM
 Reporter Name
 lab

 Last Calib Update
 6/8/2020 10:54:04 AM
 Batch State
 Processed

Benzo (g,h,i) perylene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060331.D	Calibration	1	Х	967	10.0000	3.2959
D:\GC-21\Data\060320\060332.D	Calibration	2	x	1168	20.0000	2.0882
D:\GC-21\Data\060320\060333.D	Calibration	3	X	1763	40.0000	1.4360
D:\GC-21\Data\060320\060334.D	Calibration	4	Х	3736	100.0000	1.2871
D:\GC-21\Data\060320\060335.D	Calibration	5	x	7733	200.0000	1.2929
D:\GC-21\Data\060320\060336.D	Calibration	6	х	20253	500.0000	1.3119
D:\GC-21\Data\060320\060337.D	Calibration	7	х	30972	750.0000	1.3383
D:\GC-21\Data\060320\060338.D	Calibration	8	x	47083	1000.0000	1.4587
D:\GC-21\Data\060320\060339.D	Calibration	9	х	91866	2000.0000	1.3919
D:\GC-21\Data\060320\060340.D	Calibration	10	х	250194	5000.0000	1.5161

Kryn Madian

Semivolatile Calibration

Analyst: Sum Belman

Cal		ICV		
8270 Megamix:	23298	8270 Megamix:	23297	
2,4-DNP:	23446	2,4-DNP:	23305	
Benzoic Acid:	23303	Benzoic Acid:	23302	

8270 Surrogate:

23454/237(2

1s 23709

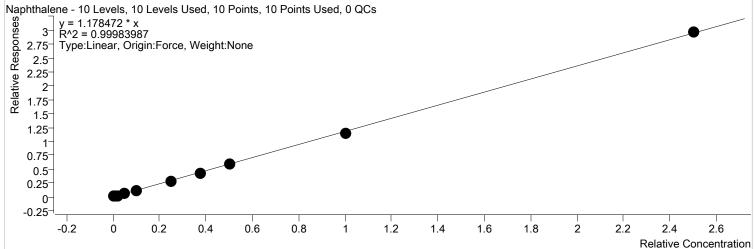
	Spike Conc. (ppb)	BN/Acid Surr Conc. (ppb)	2° Spike (uL)	B/N Surr (uL)	Internal Standard (uL)	Remove (uL)	Final Vol. (mL)	Comments
61	10	10/5	1		10	11	1	
	20	20/10	2		10	12	1	
	40	40/20	4		10	14	. 1	
	100	100/50	10		10	20	1	
	200	200/100	20	AND 1600	10	30	1	
	500	500/250	40-50		10	60	1	
	750	750/375	75 %	514	10	85	1	
	1000	1000/500	100 ຶ		10	110	1	
	2000	2000/1000	200		10	210	1	
	5000	5000/2500	500		10	510	1	
	. ICB	1000/500		1	10	11	1	4.
22	ICV (1000 ppb)	1000/500	100 (2° SS)	1	10	110 if		
٠.						8m 51	1.10	

		1 1 1 1		y ',	15/10
	Mega Mix (uL)	2,4-DNP (uL)	Benzoic Acid (uL)	8270 Surr (uL)	Final Volume (mL)
2° Intermediate (cal)	100	100	100	100	10
2° Intermediate (SS)	50	50	50	50	5

Signature and Date:

Signature: EM

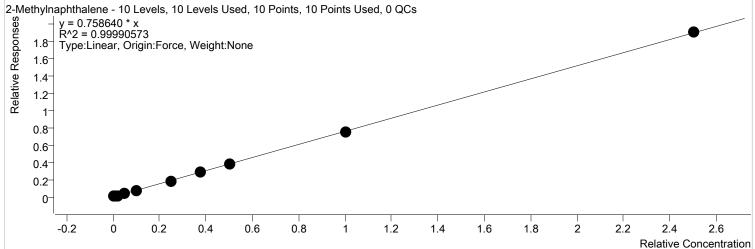
700 Building Calibration Template - SVOC v1.1


1 of 1

Official Approval: 11/14/2019

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:10 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

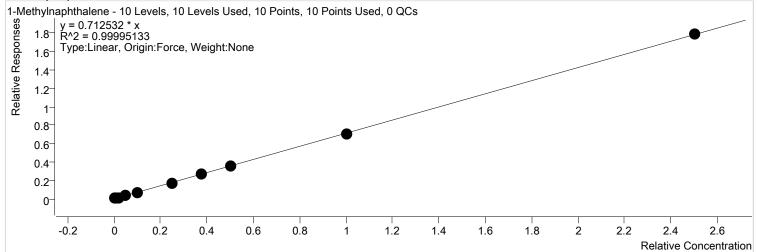
Naphthalene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	638	10.0000	1.3260
D:\GC-21\Data\061020\061006.D	Calibration	2	х	1214	20.0000	1.2985
D:\GC-21\Data\061020\061007.D	Calibration	3	X	2323	40.0000	1.2376
D:\GC-21\Data\061020\061008.D	Calibration	4	х	5525	100.0000	1.1504
D:\GC-21\Data\061020\061009.D	Calibration	5	х	11726	200.0000	1.1632
D:\GC-21\Data\061020\061010.D	Calibration	6	х	27183	500.0000	1.1207
D:\GC-21\Data\061020\061011.D	Calibration	7	х	41920	750.0000	1.1604
D:\GC-21\Data\061020\061012.D	Calibration	8	x	56639	1000.0000	1.1724
D:\GC-21\Data\061020\061013.D	Calibration	9	х	114022	2000.0000	1.1513
D:\GC-21\Data\061020\061014.D	Calibration	10	х	283981	5000.0000	1.1841

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

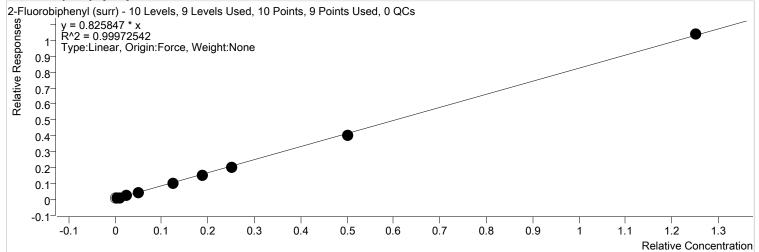
2-Methylnaphthalene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	383	10.0000	0.7955
D:\GC-21\Data\061020\061006.D	Calibration	2	х	770	20.0000	0.8233
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1480	40.0000	0.7882
D:\GC-21\Data\061020\061008.D	Calibration	4	х	3492	100.0000	0.7271
D:\GC-21\Data\061020\061009.D	Calibration	5	х	7531	200.0000	0.7471
D:\GC-21\Data\061020\061010.D	Calibration	6	х	17507	500.0000	0.7218
D:\GC-21\Data\061020\061011.D	Calibration	7	х	27068	750.0000	0.7493
D:\GC-21\Data\061020\061012.D	Calibration	8	х	36613	1000.0000	0.7579
D:\GC-21\Data\061020\061013.D	Calibration	9	х	73922	2000.0000	0.7464
D:\GC-21\Data\061020\061014.D	Calibration	10	х	182570	5000.0000	0.7612

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

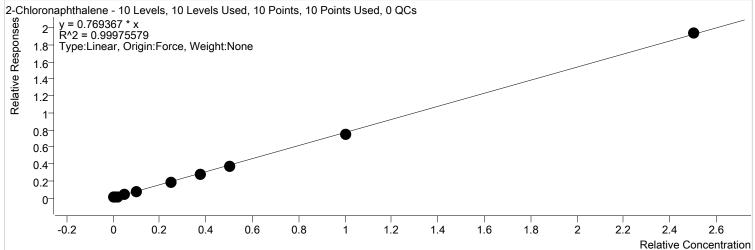
1-Methylnaphthalene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	392	10.0000	0.8147
D:\GC-21\Data\061020\061006.D	Calibration	2	x	753	20.0000	0.8057
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1446	40.0000	0.7700
D:\GC-21\Data\061020\061008.D	Calibration	4	x	3403	100.0000	0.7087
D:\GC-21\Data\061020\061009.D	Calibration	5	x	7259	200.0000	0.7201
D:\GC-21\Data\061020\061010.D	Calibration	6	х	16762	500.0000	0.6911
D:\GC-21\Data\061020\061011.D	Calibration	7	x	25843	750.0000	0.7154
D:\GC-21\Data\061020\061012.D	Calibration	8	х	34780	1000.0000	0.7199
D:\GC-21\Data\061020\061013.D	Calibration	9	х	69699	2000.0000	0.7037
D:\GC-21\Data\061020\061014.D	Calibration	10	x	171187	5000.0000	0.7138

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

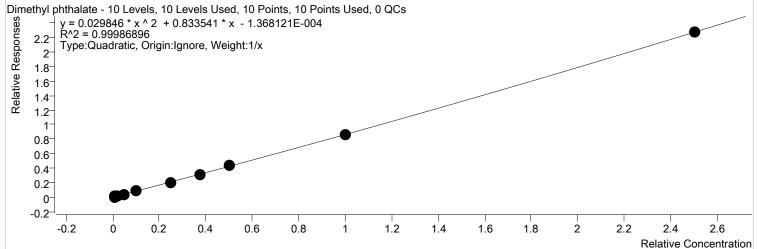
2-Fluorobiphenyl (surr)



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1		207	5.0000	0.8600
D:\GC-21\Data\061020\061006.D	Calibration	2	x	416	10.0000	0.8900
D:\GC-21\Data\061020\061007.D	Calibration	3	х	833	20.0000	0.8871
D:\GC-21\Data\061020\061008.D	Calibration	4	x	1922	50.0000	0.8004
D:\GC-21\Data\061020\061009.D	Calibration	5	х	4073	100.0000	0.8082
D:\GC-21\Data\061020\061010.D	Calibration	6	х	9483	250.0000	0.7819
D:\GC-21\Data\061020\061011.D	Calibration	7	х	14573	375.0000	0.8068
D:\GC-21\Data\061020\061012.D	Calibration	8	х	19553	500.0000	0.8095
D:\GC-21\Data\061020\061013.D	Calibration	9	x	39733	1000.0000	0.8023
D:\GC-21\Data\061020\061014.D	Calibration	10	x	99670	2500.0000	0.8312

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

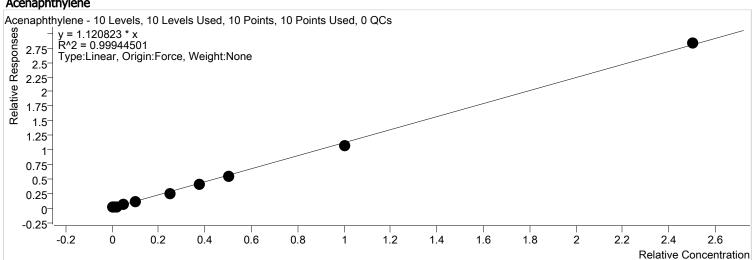
2-Chloronaphthalene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	387	10.0000	0.8054
D:\GC-21\Data\061020\061006.D	Calibration	2	x	779	20.0000	0.8332
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1507	40.0000	0.8029
D:\GC-21\Data\061020\061008.D	Calibration	4	х	3507	100.0000	0.7302
D:\GC-21\Data\061020\061009.D	Calibration	5	x	7519	200.0000	0.7459
D:\GC-21\Data\061020\061010.D	Calibration	6	х	17614	500.0000	0.7262
D:\GC-21\Data\061020\061011.D	Calibration	7	х	27256	750.0000	0.7545
D:\GC-21\Data\061020\061012.D	Calibration	8	х	36456	1000.0000	0.7546
D:\GC-21\Data\061020\061013.D	Calibration	9	х	74133	2000.0000	0.7485
D:\GC-21\Data\061020\061014.D	Calibration	10	x	185656	5000.0000	0.7741

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

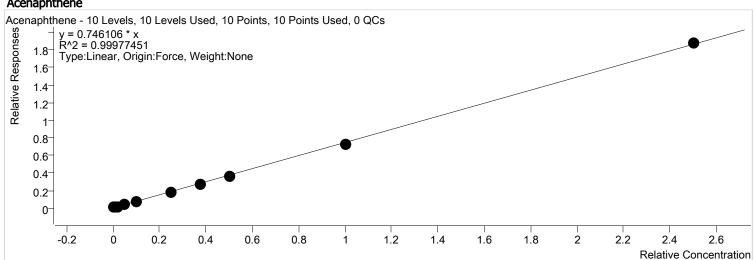
Dimethyl phthalate



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	395	10.0000	0.8216
D:\GC-21\Data\061020\061006.D	Calibration	2	x	793	20.0000	0.8484
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1585	40.0000	0.8441
D:\GC-21\Data\061020\061008.D	Calibration	4	х	3793	100.0000	0.7899
D:\GC-21\Data\061020\061009.D	Calibration	5	x	8307	200.0000	0.8241
D:\GC-21\Data\061020\061010.D	Calibration	6	х	19684	500.0000	0.8116
D:\GC-21\Data\061020\061011.D	Calibration	7	х	30694	750.0000	0.8497
D:\GC-21\Data\061020\061012.D	Calibration	8	x	41746	1000.0000	0.8641
D:\GC-21\Data\061020\061013.D	Calibration	9	х	85645	2000.0000	0.8647
D:\GC-21\Data\061020\061014.D	Calibration	10	x	217630	5000.0000	0.9074

D:\GC-21\Data\061020\QuantResults\pah sim windows.batch.bin **Batch Path Analysis Time** 6/10/2020 6:40:51 PM **Analyst Name** FA\lab Report Time 6/10/2020 6:41:11 PM Reporter Name lab Last Calib Update **Batch State** 6/10/2020 3:55:11 PM Processed

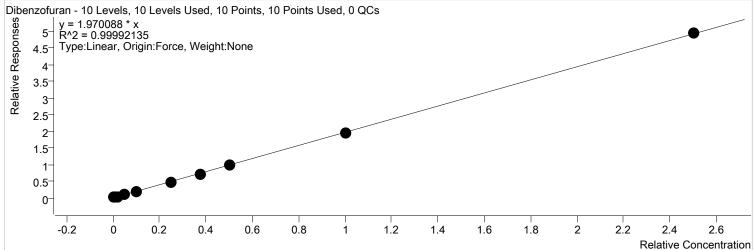
Acenaphthylene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	569	10.0000	1.1839
D:\GC-21\Data\061020\061006.D	Calibration	2	x	1073	20.0000	1.1475
D:\GC-21\Data\061020\061007.D	Calibration	3	х	2079	40.0000	1.1075
D:\GC-21\Data\061020\061008.D	Calibration	4	x	4935	100.0000	1.0276
D:\GC-21\Data\061020\061009.D	Calibration	5	х	10562	200.0000	1.0478
D:\GC-21\Data\061020\061010.D	Calibration	6	х	24765	500.0000	1.0210
D:\GC-21\Data\061020\061011.D	Calibration	7	х	38620	750.0000	1.0691
D:\GC-21\Data\061020\061012.D	Calibration	8	x	52373	1000.0000	1.0841
D:\GC-21\Data\061020\061013.D	Calibration	9	х	106889	2000.0000	1.0792
D:\GC-21\Data\061020\061014.D	Calibration	10	х	271313	5000.0000	1.1313

D:\GC-21\Data\061020\QuantResults\pah sim windows.batch.bin **Batch Path Analysis Time** 6/10/2020 6:40:51 PM **Analyst Name** FA\lab Reporter Name Report Time 6/10/2020 6:41:11 PM lab Last Calib Update **Batch State** 6/10/2020 3:55:11 PM Processed

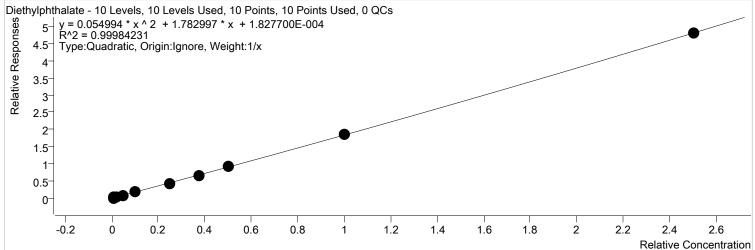
Acenaphthene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	404	10.0000	0.8403
D:\GC-21\Data\061020\061006.D	Calibration	2	х	772	20.0000	0.8258
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1487	40.0000	0.7922
D:\GC-21\Data\061020\061008.D	Calibration	4	х	3413	100.0000	0.7107
D:\GC-21\Data\061020\061009.D	Calibration	5	х	7396	200.0000	0.7337
D:\GC-21\Data\061020\061010.D	Calibration	6	x	17054	500.0000	0.7031
D:\GC-21\Data\061020\061011.D	Calibration	7	х	26565	750.0000	0.7354
D:\GC-21\Data\061020\061012.D	Calibration	8	x	35 4 23	1000.0000	0.7332
D:\GC-21\Data\061020\061013.D	Calibration	9	х	71951	2000.0000	0.7265
D:\GC-21\Data\061020\061014.D	Calibration	10	х	179985	5000.0000	0.7505

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

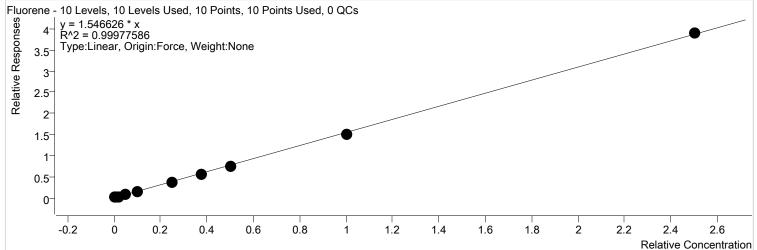
Dibenzofuran



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	512	10.0000	2.1542
D:\GC-21\Data\061020\061006.D	Calibration	2	x	994	20.0000	2.1623
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1932	40.0000	2.0604
D:\GC-21\Data\061020\061008.D	Calibration	4	x	4488	100.0000	1.8898
D:\GC-21\Data\061020\061009.D	Calibration	5	x	9738	200.0000	1.9450
D:\GC-21\Data\061020\061010.D	Calibration	6	х	22663	500.0000	1.8913
D:\GC-21\Data\061020\061011.D	Calibration	7	x	35069	750.0000	1.9322
D:\GC-21\Data\061020\061012.D	Calibration	8	х	47012	1000.0000	1.9550
D:\GC-21\Data\061020\061013.D	Calibration	9	x	95617	2000.0000	1.9434
D:\GC-21\Data\061020\061014.D	Calibration	10	x	237027	5000.0000	1.9767

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

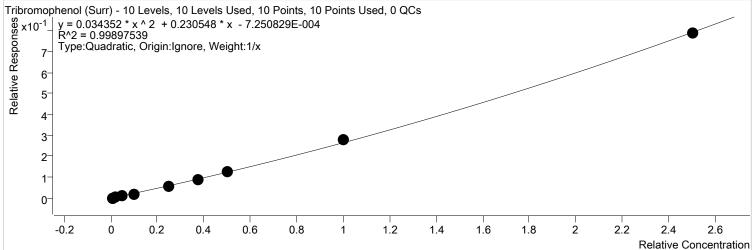
Diethylphthalate



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	439	10.0000	1.8482
D:\GC-21\Data\061020\061006.D	Calibration	2	x	875	20.0000	1.9032
D:\GC-21\Data\061020\061007.D	Calibration	3	x	1712	40.0000	1.8252
D:\GC-21\Data\061020\061008.D	Calibration	4	х	4032	100.0000	1.6977
D:\GC-21\Data\061020\061009.D	Calibration	5	x	8729	200.0000	1.7434
D:\GC-21\Data\061020\061010.D	Calibration	6	X	20838	500.0000	1.7390
D:\GC-21\Data\061020\061011.D	Calibration	7	х	32553	750.0000	1.7935
D:\GC-21\Data\061020\061012.D	Calibration	8	x	44256	1000.0000	1.8404
D:\GC-21\Data\061020\061013.D	Calibration	9	X	91416	2000.0000	1.8580
D:\GC-21\Data\061020\061014.D	Calibration	10	х	229889	5000.0000	1.9171

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

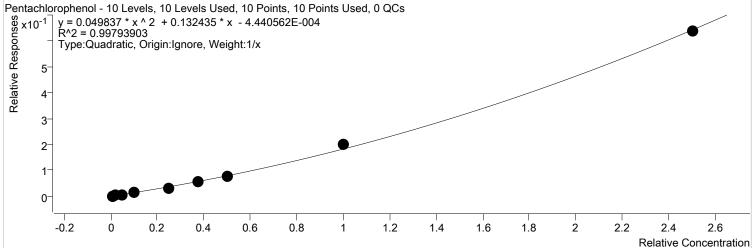
Fluorene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	394	10.0000	1.6588
D:\GC-21\Data\061020\061006.D	Calibration	2	x	745	20.0000	1.6206
D:\GC-21\Data\061020\061007.D	Calibration	3	X	1496	40.0000	1.5956
D:\GC-21\Data\061020\061008.D	Calibration	4	X	3457	100.0000	1.4555
D:\GC-21\Data\061020\061009.D	Calibration	5	x	7404	200.0000	1.4787
D:\GC-21\Data\061020\061010.D	Calibration	6	x	17430	500.0000	1.4546
D:\GC-21\Data\061020\061011.D	Calibration	7	X	26937	750.0000	1.4841
D:\GC-21\Data\061020\061012.D	Calibration	8	x	36467	1000.0000	1.5165
D:\GC-21\Data\061020\061013.D	Calibration	9	X	74495	2000.0000	1.5141
D:\GC-21\Data\061020\061014.D	Calibration	10	х	186525	5000.0000	1.5555

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

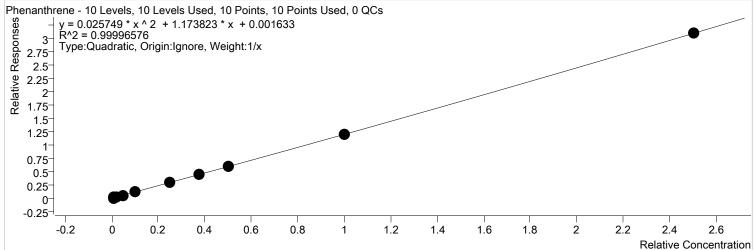
Tribromophenol (Surr)



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	37	10.0000	0.1565
D:\GC-21\Data\061020\061006.D	Calibration	2	х	78	20.0000	0.1704
D:\GC-21\Data\061020\061007.D	Calibration	3	х	167	40.0000	0.1777
D:\GC-21\Data\061020\061008.D	Calibration	4	х	426	100.0000	0.1795
D:\GC-21\Data\061020\061009.D	Calibration	5	x	1034	200.0000	0.2064
D:\GC-21\Data\061020\061010.D	Calibration	6	х	2595	500.0000	0.2166
D:\GC-21\Data\061020\061011.D	Calibration	7	х	4389	750.0000	0.2418
D:\GC-21\Data\061020\061012.D	Calibration	8	х	5979	1000.0000	0.2487
D:\GC-21\Data\061020\061013.D	Calibration	9	х	13576	2000.0000	0.2759
D:\GC-21\Data\061020\061014.D	Calibration	10	х	37701	5000.0000	0.3144

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

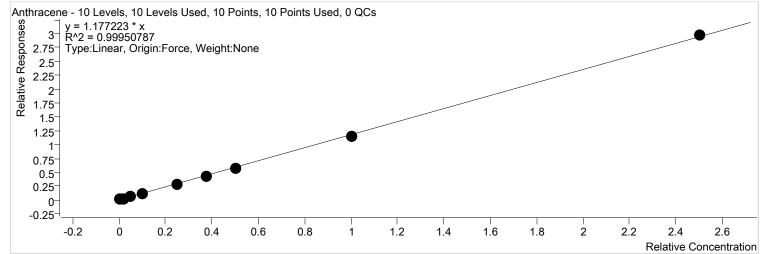
Pentachlorophenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	24	10.0000	0.1026
D:\GC-21\Data\061020\061006.D	Calibration	2	x	49	20.0000	0.1057
D:\GC-21\Data\061020\061007.D	Calibration	3	X	87	40.0000	0.0928
D:\GC-21\Data\061020\061008.D	Calibration	4	х	223	100.0000	0.0939
D:\GC-21\Data\061020\061009.D	Calibration	5	x	595	200.0000	0.1188
D:\GC-21\Data\061020\061010.D	Calibration	6	х	1500	500.0000	0.1252
D:\GC-21\Data\061020\061011.D	Calibration	7	х	2683	750.0000	0.1478
D:\GC-21\Data\061020\061012.D	Calibration	8	x	3641	1000.0000	0.1514
D:\GC-21\Data\061020\061013.D	Calibration	9	х	9730	2000.0000	0.1978
D:\GC-21\Data\061020\061014.D	Calibration	10	x	30550	5000.0000	0.2548

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

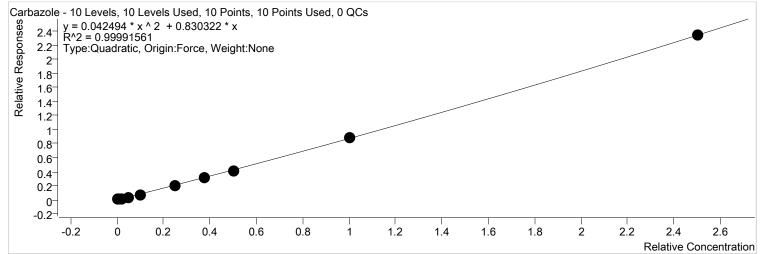
Phenanthrene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	572	10.0000	1.4692
D:\GC-21\Data\061020\061006.D	Calibration	2	x	967	20.0000	1.2828
D:\GC-21\Data\061020\061007.D	Calibration	3	х	2088	40.0000	1.3252
D:\GC-21\Data\061020\061008.D	Calibration	4	х	4794	100.0000	1.2171
D:\GC-21\Data\061020\061009.D	Calibration	5	x	9989	200.0000	1.2054
D:\GC-21\Data\061020\061010.D	Calibration	6	х	23611	500.0000	1.1844
D:\GC-21\Data\061020\061011.D	Calibration	7	x	36032	750.0000	1.1810
D:\GC-21\Data\061020\061012.D	Calibration	8	x	49268	1000.0000	1.1984
D:\GC-21\Data\061020\061013.D	Calibration	9	х	100676	2000.0000	1.1962
D:\GC-21\Data\061020\061014.D	Calibration	10	x	255138	5000.0000	1.2395

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

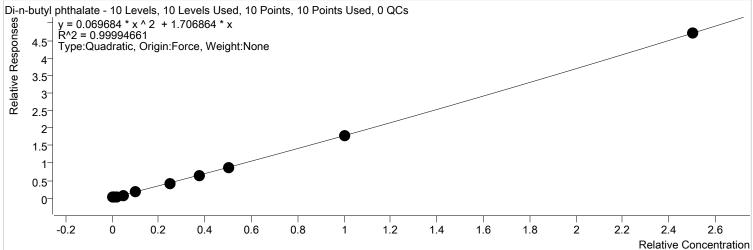
Anthracene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	485	10.0000	1.2460
D:\GC-21\Data\061020\061006.D	Calibration	2	x	972	20.0000	1.2890
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1876	40.0000	1.1906
D:\GC-21\Data\061020\061008.D	Calibration	4	x	4221	100.0000	1.0717
D:\GC-21\Data\061020\061009.D	Calibration	5	х	9141	200.0000	1.1031
D:\GC-21\Data\061020\061010.D	Calibration	6	х	22225	500.0000	1.1149
D:\GC-21\Data\061020\061011.D	Calibration	7	x	34151	750.0000	1.1194
D:\GC-21\Data\061020\061012.D	Calibration	8	х	46071	1000.0000	1.1206
D:\GC-21\Data\061020\061013.D	Calibration	9	x	95869	2000.0000	1.1391
D:\GC-21\Data\061020\061014.D	Calibration	10	х	244477	5000.0000	1.1877

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

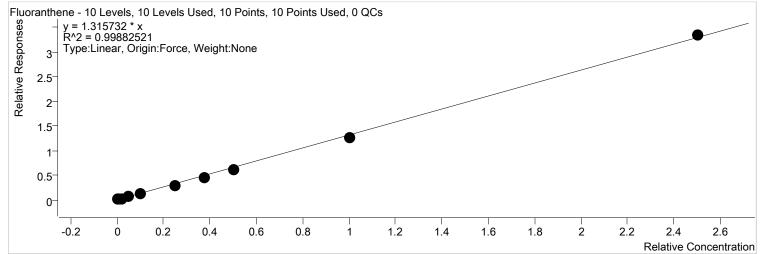
Carbazole



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	349	10.0000	0.8966
D:\GC-21\Data\061020\061006.D	Calibration	2	x	662	20.0000	0.8776
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1300	40.0000	0.8251
D:\GC-21\Data\061020\061008.D	Calibration	4	x	2991	100.0000	0.7595
D:\GC-21\Data\061020\061009.D	Calibration	5	х	6510	200.0000	0.7856
D:\GC-21\Data\061020\061010.D	Calibration	6	x	16087	500.0000	0.8070
D:\GC-21\Data\061020\061011.D	Calibration	7	х	25192	750.0000	0.8258
D:\GC-21\Data\061020\061012.D	Calibration	8	x	34409	1000.0000	0.8370
D:\GC-21\Data\061020\061013.D	Calibration	9	х	74571	2000.0000	0.8860
D:\GC-21\Data\061020\061014.D	Calibration	10	x	192658	5000.0000	0.9359

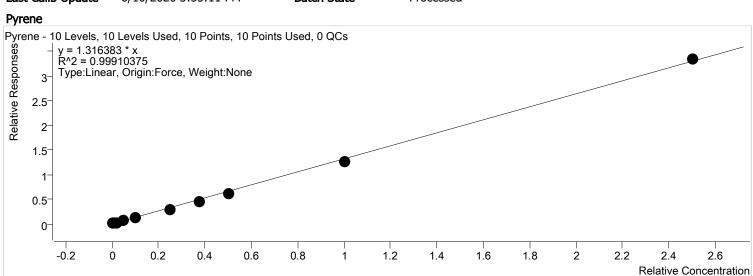
Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

Di-n-butyl phthalate



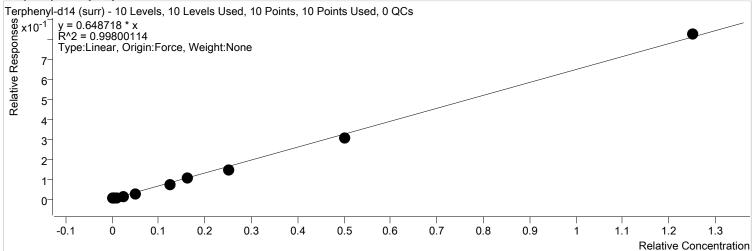
Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	694	10.0000	1.7831
D:\GC-21\Data\061020\061006.D	Calibration	2	х	1328	20.0000	1.7616
D:\GC-21\Data\061020\061007.D	Calibration	3	х	2615	40.0000	1.6595
D:\GC-21\Data\061020\061008.D	Calibration	4	х	6070	100.0000	1.5412
D:\GC-21\Data\061020\061009.D	Calibration	5	х	13454	200.0000	1.6235
D:\GC-21\Data\061020\061010.D	Calibration	6	х	32880	500.0000	1.6494
D:\GC-21\Data\061020\061011.D	Calibration	7	х	51918	750.0000	1.7018
D:\GC-21\Data\061020\061012.D	Calibration	8	х	71205	1000.0000	1.7320
D:\GC-21\Data\061020\061013.D	Calibration	9	х	151089	2000.0000	1.7952
D:\GC-21\Data\061020\061014.D	Calibration	10	х	387020	5000.0000	1.8801

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed


Fluoranthene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	545	10.0000	1.3998
D:\GC-21\Data\061020\061006.D	Calibration	2	x	1014	20.0000	1.3457
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1964	40.0000	1.2463
D:\GC-21\Data\061020\061008.D	Calibration	4	х	4619	100.0000	1.1728
D:\GC-21\Data\061020\061009.D	Calibration	5	x	9855	200.0000	1.1892
D:\GC-21\Data\061020\061010.D	Calibration	6	х	23468	500.0000	1.1772
D:\GC-21\Data\061020\061011.D	Calibration	7	х	36831	750.0000	1.2072
D:\GC-21\Data\061020\061012.D	Calibration	8	x	50038	1000.0000	1.2171
D:\GC-21\Data\061020\061013.D	Calibration	9	х	105582	2000.0000	1.2545
D:\GC-21\Data\061020\061014.D	Calibration	10	х	274509	5000.0000	1.3336

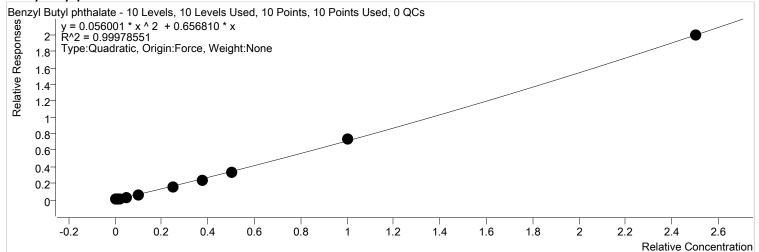
D:\GC-21\Data\061020\QuantResults\pah sim windows.batch.bin **Batch Path Analysis Time** 6/10/2020 6:40:51 PM **Analyst Name** FA\lab Report Time 6/10/2020 6:41:11 PM **Reporter Name** lab Last Calib Update 6/10/2020 3:55:11 PM **Batch State** Processed



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	554	10.0000	1.4233
D:\GC-21\Data\061020\061006.D	Calibration	2	x	1008	20.0000	1.3378
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1982	40.0000	1.2581
D:\GC-21\Data\061020\061008.D	Calibration	4	х	4622	100.0000	1.1736
D:\GC-21\Data\061020\061009.D	Calibration	5	x	10018	200.0000	1.2089
D:\GC-21\Data\061020\061010.D	Calibration	6	х	23616	500.0000	1.1846
D:\GC-21\Data\061020\061011.D	Calibration	7	х	37217	750.0000	1.2199
D:\GC-21\Data\061020\061012.D	Calibration	8	x	50255	1000.0000	1.2224
D:\GC-21\Data\061020\061013.D	Calibration	9	х	106718	2000.0000	1.2680
D:\GC-21\Data\061020\061014.D	Calibration	10	x	274105	5000.0000	1.3316

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

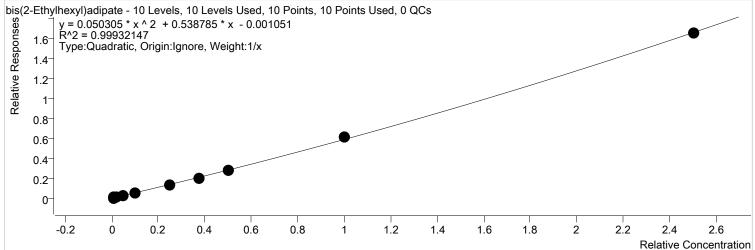
Terphenyl-d14 (surr)



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	122	5.0000	0.6249
D:\GC-21\Data\061020\061006.D	Calibration	2	х	237	10.0000	0.6285
D:\GC-21\Data\061020\061007.D	Calibration	3	х	477	20.0000	0.6056
D:\GC-21\Data\061020\061008.D	Calibration	4	x	1045	50.0000	0.5306
D:\GC-21\Data\061020\061009.D	Calibration	5	x	2294	100.0000	0.5537
D:\GC-21\Data\061020\061010.D	Calibration	6	х	5544	250.0000	0.5562
D:\GC-21\Data\061020\061011.D	Calibration	7	x	8646	325.0000	0.6540
D:\GC-21\Data\061020\061012.D	Calibration	8	x	11786	500.0000	0.5733
D:\GC-21\Data\061020\061013.D	Calibration	9	х	25491	1000.0000	0.6058
D:\GC-21\Data\061020\061014.D	Calibration	10	х	67892	2500.0000	0.6596

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

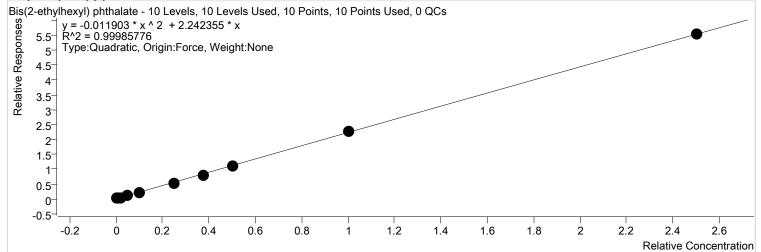
Benzyl Butyl phthalate



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	234	10.0000	0.6021
D:\GC-21\Data\061020\061006.D	Calibration	2	x	440	20.0000	0.5842
D:\GC-21\Data\061020\061007.D	Calibration	3	x	963	40.0000	0.6114
D:\GC-21\Data\061020\061008.D	Calibration	4	х	2213	100.0000	0.5618
D:\GC-21\Data\061020\061009.D	Calibration	5	x	4911	200.0000	0.5927
D:\GC-21\Data\061020\061010.D	Calibration	6	х	12333	500.0000	0.6186
D:\GC-21\Data\061020\061011.D	Calibration	7	x	19643	750.0000	0.6438
D:\GC-21\Data\061020\061012.D	Calibration	8	x	27681	1000.0000	0.6733
D:\GC-21\Data\061020\061013.D	Calibration	9	х	61428	2000.0000	0.7299
D:\GC-21\Data\061020\061014.D	Calibration	10	х	163850	5000.0000	0.7960

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

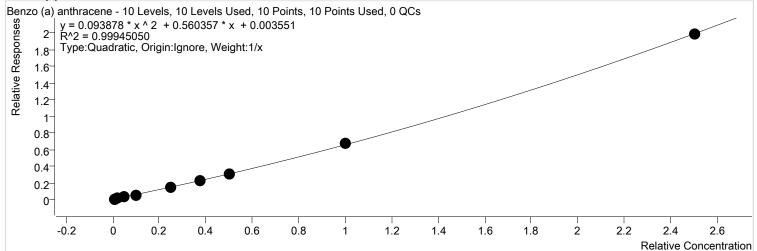
bis(2-Ethylhexyl)adipate



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	131	10.0000	0.3357
D:\GC-21\Data\061020\061006.D	Calibration	2	x	401	20.0000	0.5322
D:\GC-21\Data\061020\061007.D	Calibration	3	x	783	40.0000	0.4967
D:\GC-21\Data\061020\061008.D	Calibration	4	х	1821	100.0000	0.4623
D:\GC-21\Data\061020\061009.D	Calibration	5	x	4065	200.0000	0.4906
D:\GC-21\Data\061020\061010.D	Calibration	6	х	10369	500.0000	0.5202
D:\GC-21\Data\061020\061011.D	Calibration	7	x	16642	750.0000	0.5455
D:\GC-21\Data\061020\061012.D	Calibration	8	x	23225	1000.0000	0.5649
D:\GC-21\Data\061020\061013.D	Calibration	9	х	51395	2000.0000	0.6107
D:\GC-21\Data\061020\061014.D	Calibration	10	х	136054	5000.0000	0.6610

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

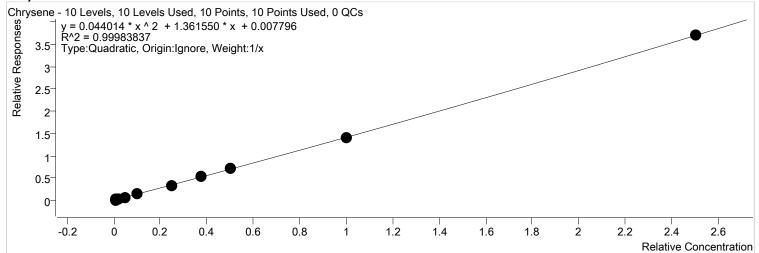
Bis(2-ethylhexyl) phthalate



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	353	10.0000	2.1439
D:\GC-21\Data\061020\061006.D	Calibration	2	x	658	20.0000	2.1169
D:\GC-21\Data\061020\061007.D	Calibration	3	X	1388	40.0000	2.1037
D:\GC-21\Data\061020\061008.D	Calibration	4	х	3247	100.0000	1.9518
D:\GC-21\Data\061020\061009.D	Calibration	5	x	7362	200.0000	2.0877
D:\GC-21\Data\061020\061010.D	Calibration	6	х	18676	500.0000	2.1379
D:\GC-21\Data\061020\061011.D	Calibration	7	х	29805	750.0000	2.1398
D:\GC-21\Data\061020\061012.D	Calibration	8	x	41895	1000.0000	2.2270
D:\GC-21\Data\061020\061013.D	Calibration	9	х	92823	2000.0000	2.2664
D:\GC-21\Data\061020\061014.D	Calibration	10	x	243873	5000.0000	2.2108

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

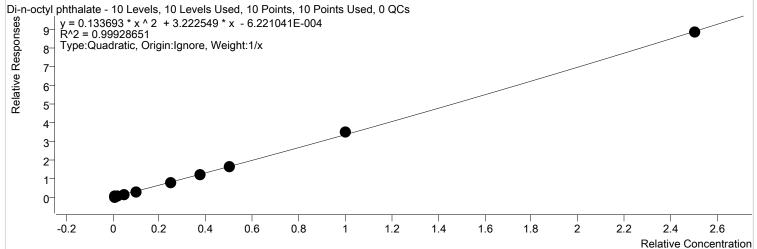
Benzo (a) anthracene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	555	10.0000	1.4258
D:\GC-21\Data\061020\061006.D	Calibration	2	x	689	20.0000	0.9140
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1119	40.0000	0.7102
D:\GC-21\Data\061020\061008.D	Calibration	4	x	2174	100.0000	0.5520
D:\GC-21\Data\061020\061009.D	Calibration	5	x	4790	200.0000	0.5780
D:\GC-21\Data\061020\061010.D	Calibration	6	х	11159	500.0000	0.5598
D:\GC-21\Data\061020\061011.D	Calibration	7	x	18521	750.0000	0.6071
D:\GC-21\Data\061020\061012.D	Calibration	8	х	25680	1000.0000	0.6246
D:\GC-21\Data\061020\061013.D	Calibration	9	х	56825	2000.0000	0.6752
D:\GC-21\Data\061020\061014.D	Calibration	10	x	163379	5000.0000	0.7937

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

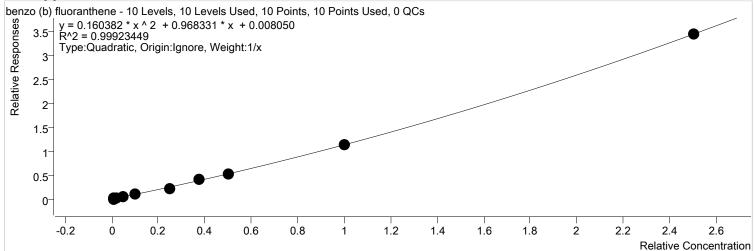
Chrysene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	484	10.0000	2.9394
D:\GC-21\Data\061020\061006.D	Calibration	2	x	635	20.0000	2.0439
D:\GC-21\Data\061020\061007.D	Calibration	3	х	1199	40.0000	1.8174
D:\GC-21\Data\061020\061008.D	Calibration	4	х	2509	100.0000	1.5080
D:\GC-21\Data\061020\061009.D	Calibration	5	х	5205	200.0000	1.4761
D:\GC-21\Data\061020\061010.D	Calibration	6	х	11934	500.0000	1.3661
D:\GC-21\Data\061020\061011.D	Calibration	7	х	19904	750.0000	1.4290
D:\GC-21\Data\061020\061012.D	Calibration	8	х	26663	1000.0000	1.4173
D:\GC-21\Data\061020\061013.D	Calibration	9	х	57113	2000.0000	1.3945
D:\GC-21\Data\061020\061014.D	Calibration	10	х	162887	5000.0000	1.4766

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

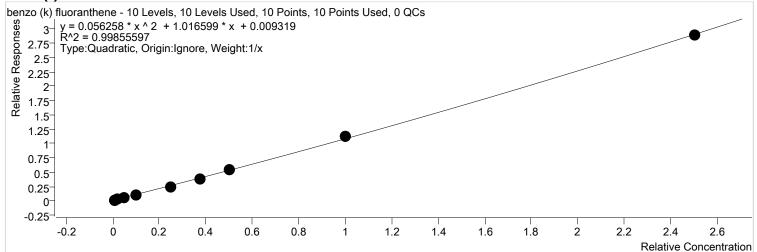
Di-n-octyl phthalate



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	564	10.0000	3.4259
D:\GC-21\Data\061020\061006.D	Calibration	2	x	1090	20.0000	3.5090
D:\GC-21\Data\061020\061007.D	Calibration	3	X	2089	40.0000	3.1663
D:\GC-21\Data\061020\061008.D	Calibration	4	х	4763	100.0000	2.8624
D:\GC-21\Data\061020\061009.D	Calibration	5	x	10601	200.0000	3.0064
D:\GC-21\Data\061020\061010.D	Calibration	6	х	27424	500.0000	3.1392
D:\GC-21\Data\061020\061011.D	Calibration	7	х	44287	750.0000	3.1795
D:\GC-21\Data\061020\061012.D	Calibration	8	х	62250	1000.0000	3.3089
D:\GC-21\Data\061020\061013.D	Calibration	9	х	142948	2000.0000	3.4903
D:\GC-21\Data\061020\061014.D	Calibration	10	x	390256	5000.0000	3.5378

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

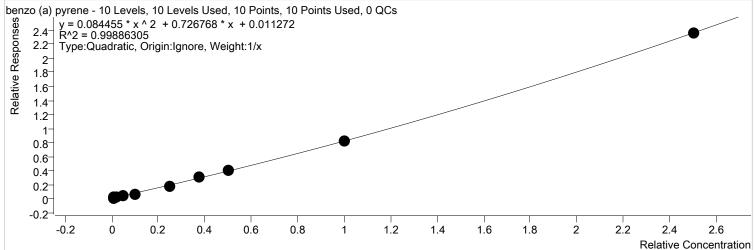
benzo (b) fluoranthene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	x	430	10.0000	2.6115
D:\GC-21\Data\061020\061006.D	Calibration	2	x	610	20.0000	1.9634
D:\GC-21\Data\061020\061007.D	Calibration	3	x	836	40.0000	1.2672
D:\GC-21\Data\061020\061008.D	Calibration	4	х	1725	100.0000	1.0368
D:\GC-21\Data\061020\061009.D	Calibration	5	x	3756	200.0000	1.0651
D:\GC-21\Data\061020\061010.D	Calibration	6	x	8271	500.0000	0.9468
D:\GC-21\Data\061020\061011.D	Calibration	7	x	15662	750.0000	1.1244
D:\GC-21\Data\061020\061012.D	Calibration	8	x	20169	1000.0000	1.0721
D:\GC-21\Data\061020\061013.D	Calibration	9	х	46513	2000.0000	1.1357
D:\GC-21\Data\061020\061014.D	Calibration	10	x	151309	5000.0000	1.3717

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

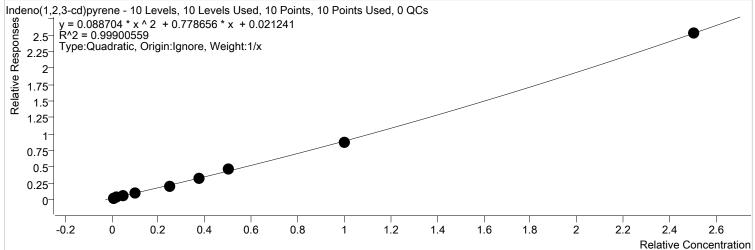
benzo (k) fluoranthene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	516	10.0000	3.1317
D:\GC-21\Data\061020\061006.D	Calibration	2	x	569	20.0000	1.8299
D:\GC-21\Data\061020\061007.D	Calibration	3	X	973	40.0000	1.4753
D:\GC-21\Data\061020\061008.D	Calibration	4	X	1955	100.0000	1.1749
D:\GC-21\Data\061020\061009.D	Calibration	5	x	3912	200.0000	1.1094
D:\GC-21\Data\061020\061010.D	Calibration	6	x	8099	500.0000	0.9271
D:\GC-21\Data\061020\061011.D	Calibration	7	X	14522	750.0000	1.0426
D:\GC-21\Data\061020\061012.D	Calibration	8	x	20761	1000.0000	1.1036
D:\GC-21\Data\061020\061013.D	Calibration	9	Х	45970	2000.0000	1.1224
D:\GC-21\Data\061020\061014.D	Calibration	10	х	127385	5000.0000	1.1548

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

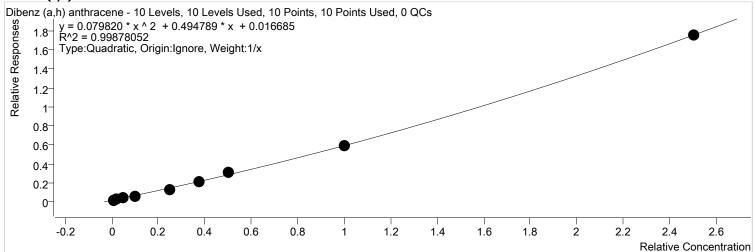
benzo (a) pyrene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	505	10.0000	3.0663
D:\GC-21\Data\061020\061006.D	Calibration	2	x	585	20.0000	1.8815
D:\GC-21\Data\061020\061007.D	Calibration	3	х	865	40.0000	1.3104
D:\GC-21\Data\061020\061008.D	Calibration	4	x	1565	100.0000	0.9406
D:\GC-21\Data\061020\061009.D	Calibration	5	x	2641	200.0000	0.7490
D:\GC-21\Data\061020\061010.D	Calibration	6	х	6186	500.0000	0.7081
D:\GC-21\Data\061020\061011.D	Calibration	7	x	11339	750.0000	0.8140
D:\GC-21\Data\061020\061012.D	Calibration	8	х	15635	1000.0000	0.8311
D:\GC-21\Data\061020\061013.D	Calibration	9	х	33983	2000.0000	0.8298
D:\GC-21\Data\061020\061014.D	Calibration	10	x	103702	5000.0000	0.9401

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

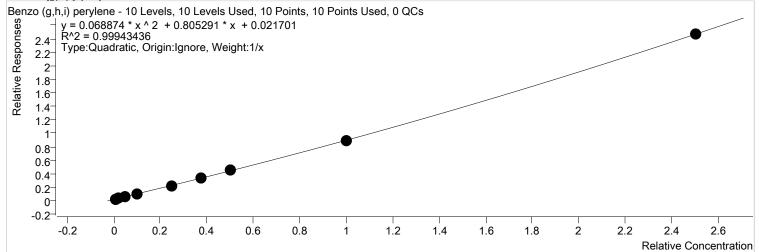
Indeno(1,2,3-cd)pyrene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	677	10.0000	5.2261
D:\GC-21\Data\061020\061006.D	Calibration	2	x	702	20.0000	2.8046
D:\GC-21\Data\061020\061007.D	Calibration	3	X	895	40.0000	1.7444
D:\GC-21\Data\061020\061008.D	Calibration	4	x	1570	100.0000	1.1825
D:\GC-21\Data\061020\061009.D	Calibration	5	x	2887	200.0000	1.0523
D:\GC-21\Data\061020\061010.D	Calibration	6	x	5519	500.0000	0.8074
D:\GC-21\Data\061020\061011.D	Calibration	7	x	10146	750.0000	0.8801
D:\GC-21\Data\061020\061012.D	Calibration	8	x	13867	1000.0000	0.9172
D:\GC-21\Data\061020\061013.D	Calibration	9	Х	29179	2000.0000	0.8743
D:\GC-21\Data\061020\061014.D	Calibration	10	х	93264	5000.0000	1.0096

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

Dibenz (a,h) anthracene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	х	524	10.0000	4.0388
D:\GC-21\Data\061020\061006.D	Calibration	2	x	518	20.0000	2.0697
D:\GC-21\Data\061020\061007.D	Calibration	3	x	646	40.0000	1.2579
D:\GC-21\Data\061020\061008.D	Calibration	4	х	1138	100.0000	0.8567
D:\GC-21\Data\061020\061009.D	Calibration	5	x	1669	200.0000	0.6083
D:\GC-21\Data\061020\061010.D	Calibration	6	x	3649	500.0000	0.5339
D:\GC-21\Data\061020\061011.D	Calibration	7	x	6679	750.0000	0.5794
D:\GC-21\Data\061020\061012.D	Calibration	8	x	9188	1000.0000	0.6077
D:\GC-21\Data\061020\061013.D	Calibration	9	x	19603	2000.0000	0.5874
D:\GC-21\Data\061020\061014.D	Calibration	10	х	64701	5000.0000	0.7004

Batch PathD:\GC-21\Data\061020\QuantResults\pah sim windows.batch.binAnalysis Time6/10/2020 6:40:51 PMAnalyst NameFA\labReport Time6/10/2020 6:41:11 PMReporter NamelabLast Calib Update6/10/2020 3:55:11 PMBatch StateProcessed

Benzo (g,h,i) perylene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\061020\061005.D	Calibration	1	Х	693	10.0000	5.3437
D:\GC-21\Data\061020\061006.D	Calibration	2	x	744	20.0000	2.9718
D:\GC-21\Data\061020\061007.D	Calibration	3	х	922	40.0000	1.7966
D:\GC-21\Data\061020\061008.D	Calibration	4	х	1515	100.0000	1.1412
D:\GC-21\Data\061020\061009.D	Calibration	5	х	2835	200.0000	1.0330
D:\GC-21\Data\061020\061010.D	Calibration	6	х	5869	500.0000	0.8586
D:\GC-21\Data\061020\061011.D	Calibration	7	х	10590	750.0000	0.9187
D:\GC-21\Data\061020\061012.D	Calibration	8	x	13727	1000.0000	0.9080
D:\GC-21\Data\061020\061013.D	Calibration	9	х	29763	2000.0000	0.8918
D:\GC-21\Data\061020\061014.D	Calibration	10	х	91056	5000.0000	0.9857

Date: 00/09/20
Analyst: Sam Bærman
MeCl2: 2083/4997

8270 Megamix : ეგკომ	8270 Megamix:	22265-001.4
Cal	l IC	V

8270 Surrogate: 23% 42

		<u>_</u> 3,	H ()	
1		 		
١	S:			

Spike Conc. (ppb)	BN/Acid Surr Conc. (ppb) 5/2・5	2° Spike (uL)	B/N Surr (uL)	Internal Standard (uL) _{[0}	Remove (uL)	Final Vol. (mL)	Comments
10 10	10/5	1		10	11	1	
13 20	20/10	2		10	12	1	
\& 40	40/20	4		10	14	1	
رح 100	100/50	10		10	20	1	
ių 200	200/100	20	/	10	30	1	
√÷ 500	500/250	81041940-50		10	60	1	
ტ 750	750/375	75		10	85	1	
(4 1000	1000/500	100		10	110	1	
10 2000	2000/1000	200		10	210	1	
い 5000	5000/2500	500		10	510	1	
W ICB	1000/500		1	10	11	1	
ICV (1000 ppb)	1000/500	1 00 (2° SS)!		10	-110 -	1	

		80411	
	Mega Mix (uL)	8270 Surr (uL)	Final Volume (mL)
2° Intermediate (cal)	100	100	10
2° Intermediate (SS)		50	5

11 800 419

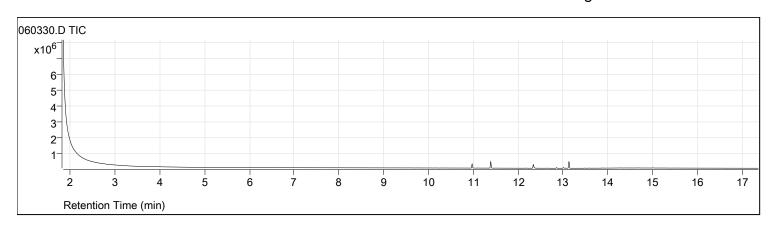
Signature and Date:

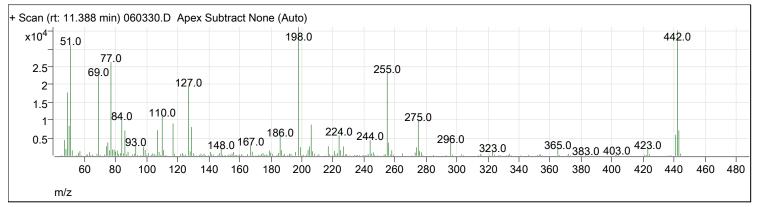
Signature: EM

700 Building Calibration Template - PAH v1.1

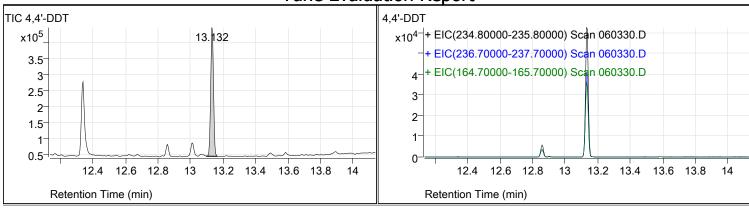
1 of 1

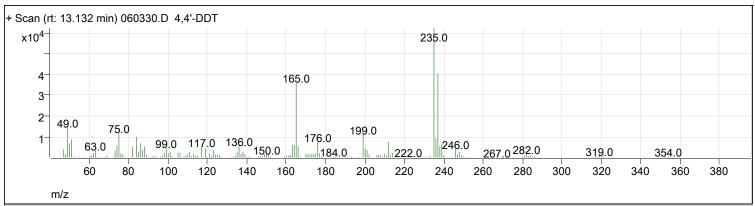
Official Approval: 11/14/2019

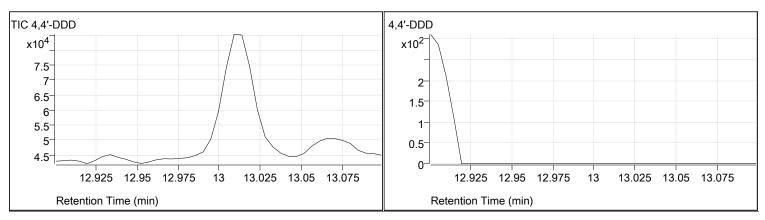

Tunes

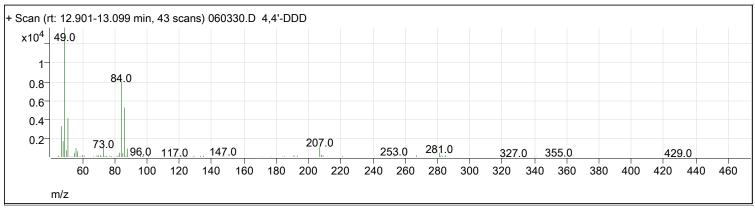

Data Path: D:\GC-21\Data\060320\060330.D

Acq on: 6/3/2020 8:26:22 PM

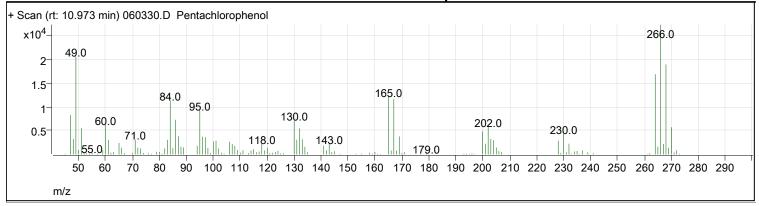

Operator: SNB
Sample: TUNE
Inst Name: GC-21
ALS Vial: 1

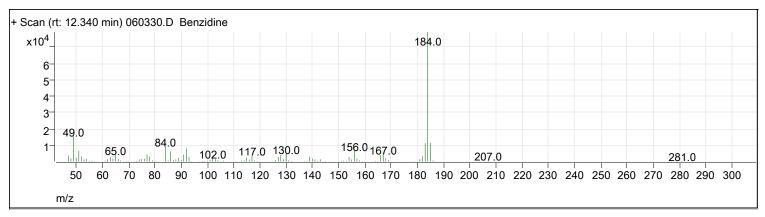

Method: D:\MassHunter\Methods\Quant\DFTPPwBreak&TailingGC218270E.m





Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	2.4	536	Fail
70	69	0	2	1.1	250	Pass
197	198	0	2	0.0	0	Pass
198	198	100	100	100.0	36136	Pass
199	198	5	9	6.6	2393	Pass
365	198	1	100	5.3	1918	Pass
441	443	1E-10	150	82.9	5922	Pass
442	442	100	100	100.0	35144	Pass
443	442	15	24	20.3	7140	Pass
69	69	100	100	100.0	22392	Pass

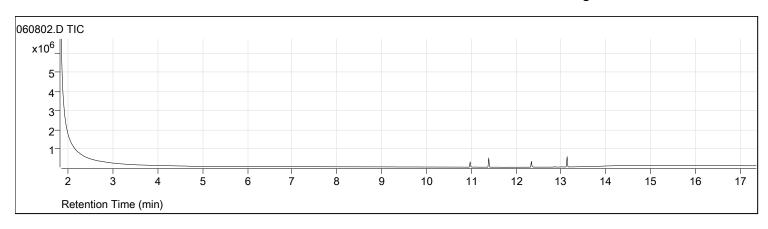


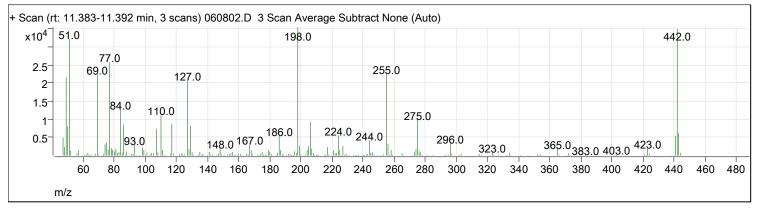


Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	13.137	13.132	479583	0.0	Pass
4,4'-DDD	13.000	0.000	0		

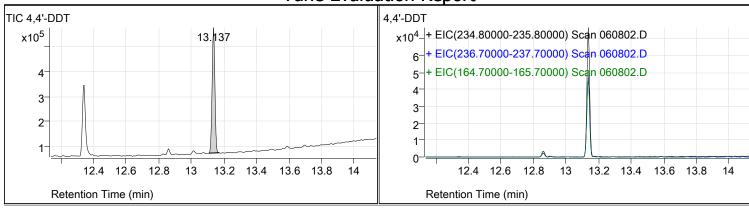
Generated: 2:51:45 PM 6/4/2020

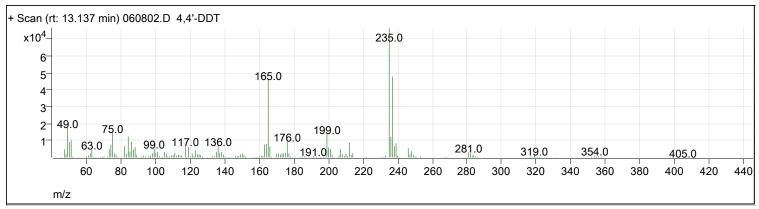
Compound Name	Expected RT	Observed RT	Tailing Factor	PGF	Pass/Fail
Pentachlorophenol	10.900	10.973	0.9	70.1	Pass
Benzidine	12.400	12.340	1.4	61.8	Pass

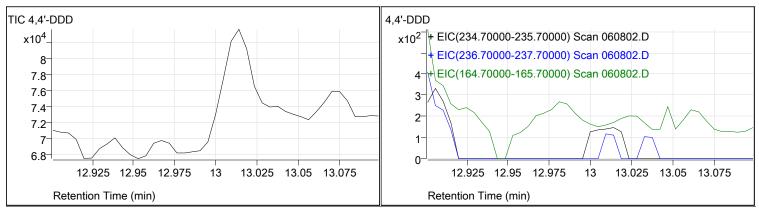

Generated: 2:51:45 PM 6/4/2020

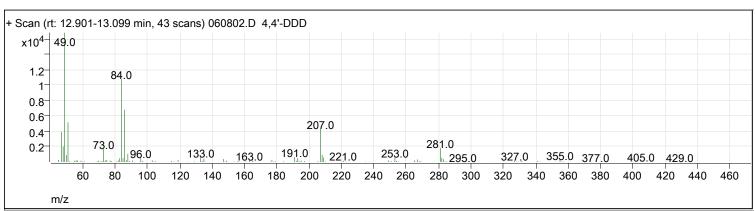

Data Path: D:\GC-21\Data\060820\060802.D

Acq on: 6/8/2020 8:09:44 AM

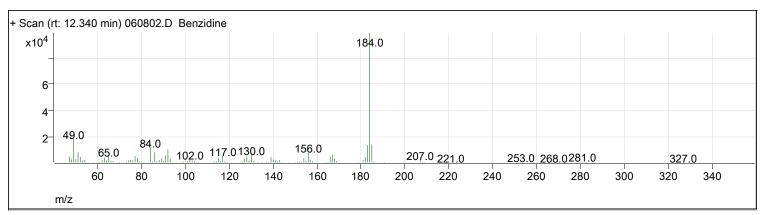

Operator: **SNB** Sample: **TUNE** Inst Name: GC-21 ALS Vial: 1


D:\MassHunter\Methods\Quant\DFTPPwBreak&TailingGC218270E.m Method:





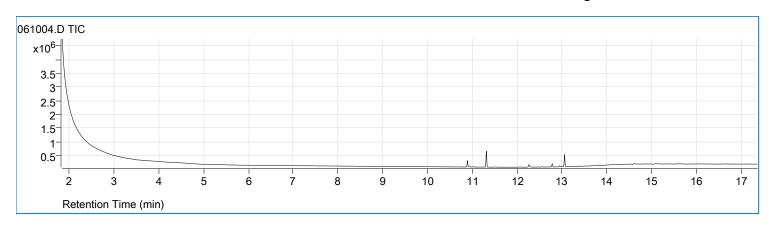
Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	2.2	501	Fail
70	69	0	2	1.3	299	Pass
197	198	0	2	1.9	672	Pass
198	198	100	100	100.0	35488	Pass
199	198	5	9	7.6	2690	Pass
365	198	1	100	5.1	1819	Pass
441	443	1E-10	150	88.1	5501	Pass
442	442	100	100	100.0	34976	Pass
443	442	15	24	17.8	6242	Pass
69	69	100	100	100.0	22461	Pass

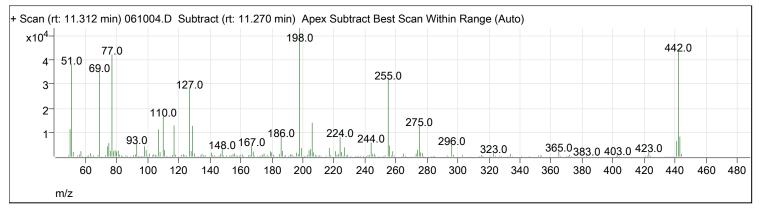


Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	13.137	13.137	587854	0.0	Pass
4,4'-DDD	13.000	0.000	0		

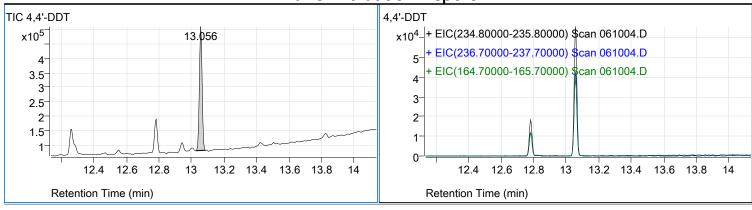
Generated: 2:34:15 PM 6/8/2020

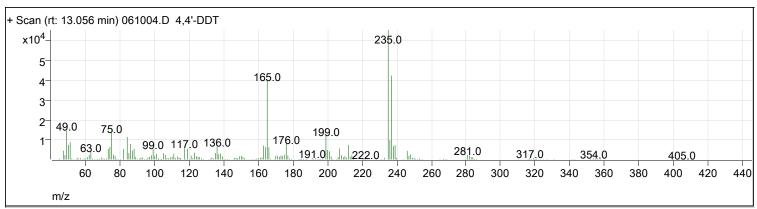
Compound Name	Expected RT	Observed RT	Tailing Factor	PGF	Pass/Fail
Pentachlorophenol	10.900	10.973	1.0	2.4	Pass
Benzidine	12.400	12.340	1.2	2.2	Pass

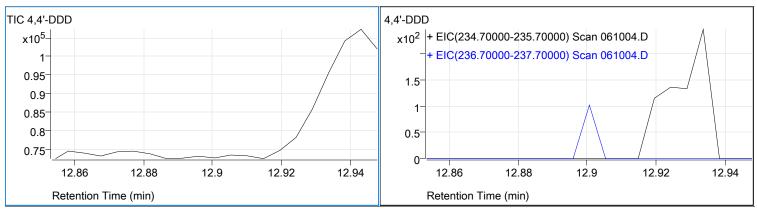

Generated: 2:34:15 PM 6/8/2020

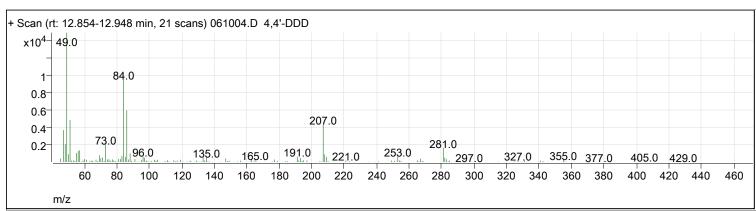

Data Path: D:\GC-21\Data\061020\061004.D

Acq on: 6/10/2020 11:13:42 AM

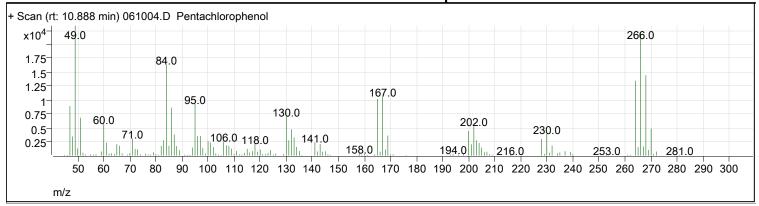

Operator: SNB
Sample: TUNE
Inst Name: GC-21
ALS Vial: 1

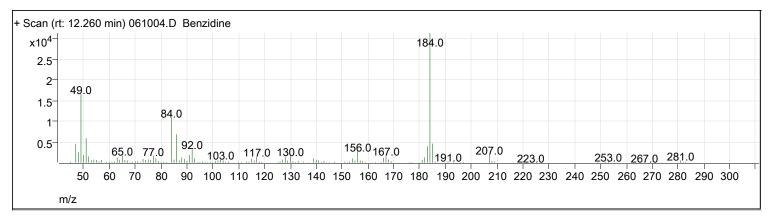

Method: D:\MassHunter\Methods\Quant\DFTPPwBreak&TailingGC218270E.m





Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	1.9	664	Pass
70	69	0	2	0.5	185	Pass
197	198	0	2	2.0	1051	Pass
198	198	100	100	100.0	53232	Pass
199	198	5	9	6.6	3494	Pass
365	198	1	100	3.8	2034	Pass
441	443	1E-10	150	78.2	6504	Pass
442	442	100	100	100.0	43512	Pass
443	442	15	24	19.1	8313	Pass
69	69	100	100	100.0	34982	Pass





Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	13.137	13.056	503120	0.0	Pass
4,4'-DDD	12.900	0.000	0		

Generated: 1:20:36 PM 6/10/2020

Compound Name	Expected RT	Observed RT	Tailing Factor	PGF	Pass/Fail
Pentachlorophenol	10.900	10.888	1.4	3.8	Pass
Benzidine	12.400	12.260	2.5	3.0	Fail

DATA SET for Review -- **Deliverable Requirements**

Semivolatiles Analysis by EPA 8270

Fremont Analytical Work Order No. 2006085

Libby Environmental

Project Name: Hardel Site

Project No. L200603-7

This Data contains the following:

- Analytical Sequence Summary for Work Order 2006085
- Calibration Information for Work Order 2006085
- Tune Information for Work Order 2006085

SampleName	MiscInfo	Vial	Multiplier	Injection Ti	me
1) 061201.D CO		2	1.000	12 Jun 2020	08:46 am
2) 061202.D TUNE		1	1.000	12 Jun 2020	09:57 am
3) 061203.D CCV-28605		2	1.000	12 Jun 2020	10:19 am
4) 061204.D CCV-28601		4	1.000	12 Jun 2020	10:44 am
5) 061205.D MB-28605		101	1.000	12 Jun 2020	11:05 am
6) 061206.D LCS-28605		102	1.000	12 Jun 2020	11:28 am
 7) 061207.D 2006077-001A		103	1.000	12 Jun 2020	11:50 am
 8) 061208.D 2006085-014A		104	1.000	12 Jun 2020	12:13 pm
9) 061209.D 2006085-015A		105	1.000	12 Jun 2020	12:35 pm
 10) 061210.D 2006085-015ADUP		106	1.000	12 Jun 2020	12:57 pm
 11) 061211.D 2006085-015AMS		107	1.000	12 Jun 2020	01:20 pm
 12) 061212.D 2006085-015AMSD		108	1.000	12 Jun 2020	01:42 pm
 13) 061213.D 2006085-016A		109	1.000	12 Jun 2020	02:04 pm
14) 061214.D QCS-28605		2 2	1.000	12 Jun 2020	02:27 pm

SampleName	MiscInfo	Vial	Multiplier	Injection Time	
1) 061501.D CO		2	1.000	15 Jun 2020 09:33	am
2) 061502.D TUNE		1	1.000	15 Jun 2020 09:55	am
3) 061503.D CCV-CHECK		2	1.000	15 Jun 2020 10:18	am
4) 061504.D CCV-EXT-28620		3	1.000	15 Jun 2020 11:08	am
5) 061505.D MB-28620		11	1.000	15 Jun 2020 11:38	am
6) 061506.D LCS2-28620		27	1.000	15 Jun 2020 12:08	pm
7) 061507.D 2004011-036A		22	1.000	15 Jun 2020 12:38	pm
 8) 061508.D MDL 2 EXT-50 PPB		23	1.000	15 Jun 2020 01:08	pm
 9) 061509.D MDL 2 EXT-100 PPB		24	1.000	15 Jun 2020 01:38	pm
 10) 061510.D PAH CHECK		2	1.000	15 Jun 2020 02:09	pm
 11) 061511.D MDL 2 EXT-500 PPB			1.000	15 Jun 2020 02:31	pm
12) 061512.D MDL 2 EXT-1000 PPB		26	1.000	15 Jun 2020 03:01	pm
 13) 061513.D QCS-EXT-28620		3	1.000	15 Jun 2020 03:31	pm
14) 061514.D			1.000	15 Jun 2020 04:02	pm
15) 061515.D LCS-28620		12	1.000	15 Jun 2020 04:25	
16) 061516.D LCSD-28620		13	1.000	15 Jun 2020 04:47	pm
17) 061517.D 2006085-001A		14	1.000	15 Jun 2020 05:10	pm
18) 061518.D 2006085-001ADUP		15	1.000	15 Jun 2020 05:33	pm
19) 061519.D 2006085-002A		16	1.000	15 Jun 2020 05:55	pm
20) 061520.D 2006085-003A		17	1.000	15 Jun 2020 06:18	pm
21) 061521.D 2006085-004A		18	1.000	15 Jun 2020 06:40	pm
		rage	231 UI 4U3		

22) 061522.D 2006085-005A	19	1.000	15 Jun 2020	07:03 pm
23) 061523.D 2006085-006A	20	1.000	15 Jun 2020	07:25 pm
24) 061524.D 2006085-007A	21	1.000	15 Jun 2020	07:48 pm
25) 061525.D QCS-28620	2	1.000	15 Jun 2020	08:10 pm

Calibration

Initial Calibration Report

460		
	Agilent Tec	chnologie

<u></u>	sthad Dath	1.\CC 21\Mathad	al Owent Mat	hada\CEMI	IIIIIIIII	Calibrati	он керо	1 (45	gnone roomnorogroo
		:\GC-21\Method	s\Quant Met	noas/SEMI									
		EMI_060420.m	-0220\O+	Dlk-\ CEM:	T CAL	L							
):\GC-21\Data\06		Results\SEM.	I CAL.Datch.i	DIN							
	•	/4/2020 10:23:3	4 AM					4ee D	ata Tima		المرمالة	at Hadata Tir	
		ration Files	00/060310 D						ate-Time	284		st Update Ti	
1		C-21\Data\06032							20 3:55:09 F			0 10:23:34 A	
2		C-21\Data\06032							20 4:17:50 F			0 10:23:34 A	
3		C-21\Data\06032							20 4:40:31 F			0 10:23:34 A	
4	•	C-21\Data\06032	•						20 5:03:07 F			0 10:23:34 A	
5		C-21\Data\06032							20 5:25:43 F			0 10:23:34 A	
6	•	C-21\Data\06032							20 5:48:25 F			0 10:23:34 A	
7		C-21\Data\06032							20 6:11:02 F			0 10:23:34 A	
8 9		C-21\Data\06032							20 6:33:33 F			0 10:23:34 A	
9 10		C-21\Data\06032 C-21\Data\06032							20 6:56:06 F 20 7:18:37 F			0 10:23:34 A 0 10:23:34 A	
10	D.\G	C-21 (Data (00032	20\000327.D					0/3/20	20 /.10.3/ 1	111	0/4/202	0 10.23.3 4 P	M*I
Co	mpound	1	2	3	4	5	6	7	8	9	10	Avg RF	%RSD
Ι	1,4-Dichlorobenz-d4(IS)							ISTD					
Т	Pyridine	1.6776	1.6942	1.4551	1.1705	1.1320	1.2763	1.0514	1.0521	0.9902	1.1792	1.2678	20.212
Т	N-nitrosodimethylamine		2.2024	1.5336	1.1385	1.1523	1.0319	0.9646	1.0073	0.9661	1.0208	1.2241	33.240
S	2-Fluorophenol (surr)	1.0227	1.3043	1.4864	1.2149	1.3270	1.2656	1.1837	1.2009	1.2324	1.3109	1.2549	9.521
S	Phenol-d6 (surr)	2.3994	1.7390	1.8661	1.4247	1.6505	1.5761	1.5342	1.4365	1.6157	1.6372	1.6879	16.738
Т	Phenol	1.9410	2.4983	1.6400	2.1319	1.9748	2.0646	2.0023	1.9385	2.0469	2.0943	2.0333	10.464
Т	Aniline	2.5324	3.3691	2.2861	2.5059	2.2577	2.3372	2.2451	2.2336	2.1947	2.3408	2.4303	14.341
Т	Bis(2-chloroethyl) ether	1.4112	1.8658	1.3242	1.4405	1.5887	1.4865	1.3375	1.3102	1.3498	1.4277	1.4542	11.539
Т	2-Chlorophenol		2.4125	1.4333	1.6212	1.5841	1.4198	1.4073	1.4096	1.5050	1.5512	1.5938	19.910
Т	1,3-Dichlorobenzene	1.1352	1.4170	1.9193	1.5556	1.5505	1.5861	1.5114	1.5820	1.5973	1.6408	1.5495	12.552
Т	1,4-Dichlorobenzene	2.4568	2.1920	1.4206	1.6811	1.7519	1.8218	1.5540	1.5338	1.6087	1.6711	1.7692	18.082
Т	Benzyl alcohol	1.4374	1.3147	0.9802	0.9947	0.9801	1.0103	0.8971	0.8867	0.9107	0.9850	1.0397	17.768
Т	1,2-Dichlorobenzene	2.2105	1.3199	1.4510	1.3719	1.6364	1.5913	1.5039	1.4679	1.4886	1.5681	1.5609	15.862
Т	2-Methylphenol (o-cresol)	2.2285	1.2737	1.1646	1.1217	1.1643	1.1898	1.1488	1.1809	1.1893	1.2869	1.2948	25.648
Т	2,2'-oxybis(1-chloropropar	ne)	0.6905	0.3262	0.4609	0.4408	0.4710	0.4796	0.4255	0.4576	0.4898	0.4713	20.245
Т	3+4-Methylphenol	1.9830	2.0775	1.3994	1.5202	1.4567	1.5695	1.4950	1.4907	1.5774	1.6387	1.6208	14.001
Т	N-Nitrosodipropylamine	4.4694	2.9535	1.7131	1.2314	1.3022	1.3445	1.2566	1.2569	1.3580	1.3890	1.8275	58.224
Т	Hexachloroethane		1.0562	0.5466	0.7275	0.6845	0.7214	0.7099	0.7915	0.7476	0.7846	0.7522	17.911
S	Nitrobenzene-d5 (surr)		2.1491	2.8840	1.9533	1.7746	1.9407	1.6043	1.6148	1.6319	1.7466	1.9221	21.055
Т	Nitrobenzene	2.7113	2.4041	1.8897	2.0510	2.0178	1.9906	1.9612	1.9276	1.9545	2.0115	2.0919	12.433
Т	Isophorone	9.7067	5.6031	3.5863	3.7876	3.4461	3.3467	3.4258	3.2770	3.4036	3.4847	4.3068	46.836
Т	2-Nitrophenol	0.2934	0.5644	0.4992	0.7107	0.6588	0.6991	0.6145	0.6710	0.6700	0.7845	0.6166	22.451
Т	2,4-Dimethylphenol	1.6216	1.7644	1.7385	1.4096	1.5664	1.55 4 0	1.5521	1.4665	1.5427	1.5965	1.5812	6.865
Т	Benzoic Acid		0.0759	0.2213	0.4117	0.5578	0.6255	0.5938	0.6335	0.7350	0.9265	0.5312	48.880
T	Bis(2-chloroethoxy)metha	ne 3.4324	2.5386	1.6907	2.0202	1.9042	1.9195	1.9456	1.7820	1.8852	1.9521	2.1071	24.533

Page 1 of 6 Page 240 of 403 Generated at 10:25 AM on 6/4/2020

					Initial	Calibrati	on Repo	ort				A	gilent Technologies
T	2,4-Dichlorophenol	0.6114	0.7942	1.1168	1.0712	1.2495	1.1123	1.0540	1.0776	1.1128	1.1966	1.0396	18.462
Т	1,2,4-Trichlorobenzene	1.1650	1.5393	0.9005	1.2759	1.2915	1.2340	1.2251	1.1700	1.2322	1.3046	1.2338	12.770
I	Naphthalene-d8 (IS)							ISTD					
Т	Naphthalene	1.6247	1.1840	1.1767	0.9771	1.1098	1.1101	1.0924	1.1081	1.0551	1.0609	1.1499	15.403
Т	4-Chloroanaline	0.6971	0.3185	0.4206	0.4264	0.4722	0.4435	0.4119	0.4117	0.4096	0.4125	0.4424	22.053
Т	Hexachlorobutadiene	0.1479	0.2114	0.2085	0.1583	0.2308	0.2016	0.1929	0.2001	0.1892	0.1972	0.1938	12.629
Т	4-Chloro-3-methylphenol	0.4057	0.3500	0.2899	0.3384	0.3712	0.3371	0.3125	0.3105	0.3411	0.3605	0.3417	9.715
Т	2-Methylnaphthalene	1.0815	0.7518	0.6864	0.6916	0.7369	0.7134	0.7330	0.6990	0.7254	0.7041	0.7523	15.628
Т	1-Methylnaphthalene	0.5503	0.8138	0.6745	0.6965	0.7085	0.6709	0.6572	0.6497	0.6807	0.6663	0.6768	9.531
Т	Hexachlorocyclopentadiene		0.2241	0.1967	0.1528	0.1869	0.1502	0.1769	0.1621	0.1769	0.1929	0.1800	13.031
Т	2,4,6-Trichlorophenol		0.1820	0.2589	0.2134	0.2180	0.1910	0.1770	0.2050	0.1948	0.2012	0.2046	11.933
Т	2,4,5-Trichlorophenol		0.1539	0.2589	0.2246	0.2342	0.1916	0.2141	0.1965	0.2095	0.2112	0.2105	13.917
S	2-Fluorobiphenyl (surr)	0.2812	0.5698	0.5739	0.6986	0.6476	0.6920	0.6403	0.6299	0.6426	0.6462	0.6022	19.968
Т	2-Chloronaphthalene	1.0499	0.6745	0.6382	0.6268	0.6926	0.6437	0.6024	0.5929	0.6229	0.6404	0.6784	19.734
Т	2-Nitroanaline	0.3244	0.3041	0.3446	0.2578	0.2914	0.2524	0.2568	0.2606	0.2722	0.2884	0.2853	11.006
Т	1,4-Dinitrobenzene		0.1117	0.0916	0.1144	0.1367	0.1524	0.1356	0.1492	0.1510	0.1677	0.1345	17.983
Т	Dimethyl phthalate	0.9322	0.9095	0.8129	0.7357	0.7835	0.7924	0.7368	0.7254	0.7381	0.7653	0.7932	9.231
Т	1,3-Dinitrobenzene		0.0827	0.1275	0.0815	0.1307	0.0981	0.1007	0.1053	0.1030	0.1157	0.1050	16.491
Т	2,6-Dinitrotoluene		0.1462	0.1762	0.1726	0.1768	0.1532	0.1638	0.1431	0.1719	0.1738	0.1642	8.102
T	Acenaphthylene	1.4830	1.0346	1.0667	0.9468	1.0389	0.9984	0.9715	0.9687	0.9957	1.0139	1.0518	14.812
T	1,2-Dinitrobenzene	2000	2.00.0	0.0346	0.0621	0.0648	0.0758	0.0710	0.0655	0.0757	0.0797	0.0662	21.429
T	3-Nitroaniline	0.2522	0.2066	0.1616	0.1405	0.1661	0.1538	0.1631	0.1638	0.1631	0.1597	0.1731	18.737
T	Acenaphthene	0.7837	0.9617	0.8462	0.7285	0.6721	0.7029	0.7043	0.7499	0.6779	0.6846	0.7512	12.192
			0.0027	0.0.02						0.07.7	0.00.0	001_	
1 T	Acenaphthene-d10 (IS)			0.0160				ISTD		0.1010	0.1200	0.0740	40.006
T	2,4-Dinitrophenol			0.0160	0.0295	0.0776	0.0724	0.0773	0.0870	0.1019	0.1306	0.0740	49.806
T	4-Nitrophenol	2 2065	2.0475	0.1314	0.1084	0.1220	0.1937	0.1980	0.1981	0.2303	0.2663	0.1810	30.723
T	Dibenzofuran	2.2865	2.0475	1.5352	1.7854	1.8655	1.6720	1.7218	1.6561	1.6092	1.7667	1.7946	12.501
T	2,4-Dinitrotoluene	0.2798	0.3161	0.3639	0.3681	0.3680	0.3490	0.3826	0.3851	0.4073	0.4607	0.3681	13.278
T	2,3,4,6-Tetrachlorophenol		0.3217	0.3518	0.3139	0.3598	0.2854	0.3236	0.3070	0.3158	0.3566	0.3262	7.685
T	2,3,5,6-Tetrachlorophenol		0.3575	0.3442	0.2515	0.3598	0.2872	0.3328	0.3175	0.3241	0.3752	0.3278	11.837
T	Diethylphthalate	2.2830	1.7913	1.5593	1.6601	1.5926	1.5339	1.5108	1.5267	1.4986	1.6542	1.6610	14.219
Т	4-Chlorophenyl phenyl ether	0.5933	0.9224	0.8590	0.7254	0.6498	0.6409	0.6611	0.5868	0.6242	0.6856	0.6949	16.111
Т	Fluorene	2.2467	1.4717	1.2398	1.4773	1.4266	1.3860	1.3809	1.3425	1.2824	1.4145	1.4668	19.384
Т	4-Nitroaniline		0.2777	0.3176	0.5104	0.4260	0.4358	0.4392	0.4264	0.3776	0.2727	0.3871	21.094
Т	4,6-Dinitro-2-methylphenol			0.0778	0.0855	0.1178	0.1162	0.1207	0.1329	0.1373	0.1968	0.1231	29.583
Т	Diphenylamine	1.4803	1.4173	1.2962	1.0147	1.1618	1.1438	1.1468	1.0864	1.1130	1.1916	1.2052	12.280
Т	Azobenzene	3.0757	2.7930	2.3399	2.0442	2.1187	2.0990	2.1561	2.0276	2.0862	2.2549	2.2995	15.394
S	Tribromophenol (Surr)		0.1560	0.1080	0.1849	0.2243	0.2178	0.2242	0.2366	0.2234	0.2723	0.2053	23.731
Т	4-Bromophenyl phenyl ether	0.4953	0.2561	0.5038	0.3946	0.4579	0.4167	0.4125	0.4128	0.4079	0.4418	0.4199	16.341
Т	Hexachlorobenzene	0.3180	0.6884	0.5559	0.5837	0.5684	0.5661	0.5205	0.5082	0.5059	0.5408	0.5356	17.308
T	Pentachlorophenol		0.1628	0.1240	0.2346	0.2496	0.2737	0.2478	0.2361	0.2612	0.3026	0.2325	23.852

Page 2 of 6 Page 241 of 403 Generated at 10:25 AM on 6/4/2020

Ι	Phenanthrene-d10 (IS)							ISTD					
Т	Phenanthrene	1.5782	1.2169	1.1819	1.1638	1.1614	1.1776	1.0733	1.0318	1.0357	1.1025	1.1723	13.340
Т	Anthracene	1.5782	1.2227	1.0881	1.1086	1.1303	1.1389	1.0599	1.0827	1.0760	1.1269	1.1612	13.220
Т	Carbazole	1.4991	1.3803	0.7995	0.9658	1.0448	1.0129	0.8752	0.9024	0.9071	0.8826	1.0270	22.428
Т	Di-n-butyl phthalate	1.8004	1.9657	1.5189	1.4996	1.5812	1.4476	1.4144	1.4623	1. 4 679	1.5822	1.57 4 0	11.177
Т	Fluoranthene	1.7091	1.2237	1.0876	1.0363	1.17 4 6	1.0777	1.1263	1.1142	1.1072	1.1741	1.1831	16.284
Т	Pyrene	1.1217	1.4471	0.9933	1.1366	1.2070	1.1310	1.1151	1.1865	1.1150	1.1730	1.1626	9.937
S	p-Terphenyl	1.1732	0.7762	0.8714	0.8352	0.8636	0.8599	0.8572	0.8142	0.8052	0.8955	0.8752	12.630
Т	Benzyl Butyl phthalate	0.7306	0.6875	0.5215	0.5919	0.5818	0.6156	0.6040	0.5917	0.5986	0.6644	0.6188	9.671
Т	bis(2-Ethylhexyl)adipate	0.7304	0.4565	0.6155	0.5730	0.5201	0.5579	0.5337	0.5262	0.5424	0.6029	0.5659	12.9 4 0
Т	Benzo (a) anthracene	1.4403	1.3604	1.1064	1.0084	0.9248	0.9798	0.9599	0.9254	0.9202	0.9615	1.0587	17.860
Ι	Chrysene-d12 (IS)							ISTD					
Т	Bis(2-ethylhexyl) phthalate	2.6584	1.8496	1.1418	1.2510	1.2155	1.1304	1.1062	1.0750	1.0933	1.1821	1.3703	36.939
Т	Chrysene	1.7589	1.3629	1.3101	1.3118	1.2710	1.1939	1.2332	1.1994	1.1629	1.1949	1.2999	13.357
Т	Di-n-octyl phthalate	2.3397	1.5516	1.6102	1.5359	1.5607	1.6024	1.5872	1.7098	1.7241	1.9126	1.7134	14.454
Т	benzo (b) fluoranthene	2.9506	1.5918	1.2912	1.0650	1.0420	1.1655	1.1219	1.1090	1.1110	1.2369	1.3685	42.263
Т	benzo (k) fluoranthene	2.8516	2.0883	1.5894	1.4373	1.4344	1.3184	1.5257	1.2971	1.2910	1.2875	1.6121	30.857
Т	benzo (a) pyrene	2.0944	1.2292	1.2195	1.2673	1.3247	1.0435	1.0704	1.1131	1.1000	1.1564	1.2619	24.264
Ι	Perylene-d12 (IS)							ISTD					
Т	Indeno(1,2,3-cd)pyrene	1.1733	0.8638	0.7958	1.0224	1.1125	1.1520	1.1894	1.1610	1.2398	1.3689	1.1079	15.504
Т	Dibenz (a,h) anthracene		0.1646	0.5199	0.7375	0.8651	0.7467	0.9025	0.9009	0.9300	1.1139	0.7646	36.353
Т	Benzo (g,h,i) perylene	0.9777	0.8670	0.9366	0.9507	1.0755	1.0233	1.0765	1.0565	1.0659	1.1716	1.0201	8.624

(RedFont and #) = Outlier Flag; (I) = Internal Standard; (T) = Target; (S) = Surrogate; (M) = Matrix Spike

Compounds with Curve fitting not using Avg Response Factor:

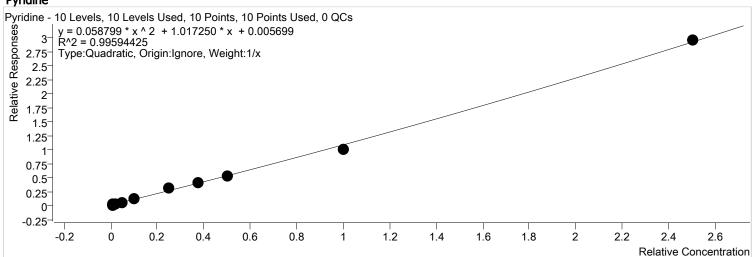
Co	mpound	Curve Fit	Curve Fit Formula	Curve Fit R2
T	Pyridine	Quadratic	$y = 0.058799 * x ^ 2 + 1.017250 * x + 0.005699$	0.995944
Т	N-nitrosodimethylamine	Quadratic	$y = 0.026889 * x ^ 2 + 0.946165 * x + 0.012483$	0.999557
S	2-Fluorophenol (surr)	Linear	y = 1.294438 * x	0.998963
S	Phenol-d6 (surr)	Linear	y = 1.625484 * x	0.999215
Т	Phenol	Quadratic	y = 0.043296 * x ^ 2 + 1.986692 * x	0.999919
Т	Aniline	Quadratic	$y = 0.053129 * x ^ 2 + 2.197483 * x + 0.005313$	0.999323
Т	Bis(2-chloroethyl) ether	Quadratic	y = 0.029628 * x ^ 2 + 1.346751 * x + 0.002390	0.998503
Т	2-Chlorophenol	Quadratic	y = 0.061156 * x ^ 2 + 1.398882 * x + 0.007683	0.999296
Т	1,3-Dichlorobenzene	Quadratic	y = 0.033730 * x ^ 2 + 1.556764 * x	0.999957
Т	1,4-Dichlorobenzene	Linear	y = 1.657741 * x	0.999284
Т	Benzyl alcohol	Quadratic	$y = 0.036148 * x ^ 2 + 0.889917 * x + 0.003394$	0.999058
Т	1,2-Dichlorobenzene	Linear	y = 1.553565 * x	0.999394
Т	2-Methylphenol (o-cresol)	Quadratic	$y = 0.063345 * x ^ 2 + 1.126990 * x + 0.003522$	0.999658
Т	2,2'-oxybis(1-chloropropane)	Quadratic	$y = 0.019761 * x ^ 2 + 0.439407 * x + 0.001011$	0.998391
Т	3+4-Methylphenol	Quadratic	$y = 0.061412 * x ^ 2 + 1.486934 * x + 0.002675$	0.999593
Т	N-Nitrosodipropylamine	Quadratic	$y = 0.067126 * x ^ 2 + 1.222346 * x + 0.014686$	0.998604
Т	Hexachloroethane	Quadratic	$y = 0.023286 * x ^ 2 + 0.726864 * x + 6.112337E-004$	0.998622
S	Nitrobenzene-d5 (surr)	Quadratic	$y = 0.093921 * x ^ 2 + 1.615993 * x + 0.006655$	0.997171
Т	Nitrobenzene	Quadratic	$y = 0.033698 * x ^ 2 + 1.926883 * x$	0.999976
Т	Isophorone	Quadratic	$y = 0.096170 * x ^ 2 + 3.239425 * x + 0.026177$	0.999363
Т	2-Nitrophenol	Quadratic	$y = 0.060254 * x ^ 2 + 0.631348 * x - 0.001122$	0.998931
Т	2,4-Dimethylphenol	Quadratic	$y = 0.038022 * x ^ 2 + 1.500172 * x + 0.001609$	0.999629
Т	Benzoic Acid	Quadratic	$y = 0.068358 * x ^ 2 + 0.588839 * x - 0.012368$	0.999596
Т	Bis(2-chloroethoxy)methane	Quadratic	$y = 0.047377 * x ^ 2 + 1.830138 * x + 0.006515$	0.999297
Т	2,4-Dichlorophenol	Quadratic	$y = 0.047004 * x ^ 2 + 1.077116 * x - 0.001541$	0.999184
Т	1,2,4-Trichlorobenzene	Quadratic	$y = 0.049128 * x ^ 2 + 1.181671 * x$	0.999924
Т	Naphthalene	Quadratic	$y = -0.007920 * x ^ 2 + 1.079974 * x$	0.999886
Т	4-Chloroanaline	Quadratic	$y = -0.002614 * x ^ 2 + 0.417729 * x + 6.651353E-004$	0.998910
Т	Hexachlorobutadiene	Quadratic	$y = 2.204945E-004 * x ^ 2 + 0.195830 * x - 5.487966E-005$	0.998422
Т	4-Chloro-3-methylphenol	Quadratic	$y = 0.017127 * x ^ 2 + 0.317746 * x + 4.027627E-004$	0.998978
Т	2-Methylnaphthalene	Quadratic	$y = -0.009171 * x ^ 2 + 0.727347 * x$	0.999917
Т	1-Methylnaphthalene	Quadratic	$y = -0.002688 * x ^ 2 + 0.673418 * x$	0.999886
Т	Hexachlorocyclopentadiene	Quadratic	$y = 0.013046 * x ^ 2 + 0.160386 * x + 5.968139E-004$	0.998740
Т	2,4,6-Trichlorophenol	Quadratic	$y = 0.003701 * x ^ 2 + 0.191582 * x + 5.219279E-004$	0.998285
Т	2,4,5-Trichlorophenol	Quadratic	$y = 0.002571 * x ^ 2 + 0.204705 * x + 2.098610E-004$	0.998411
S	2-Fluorobiphenyl (surr)	Quadratic	$y = -0.006195 * x ^ 2 + 0.652985 * x - 6.318496E-004$	0.999424
Т	2-Chloronaphthalene	Quadratic	$y = 0.013963 * x ^ 2 + 0.604467 * x + 0.001724$	0.999325
Т	2-Nitroanaline	Quadratic	$y = 0.013112 * x ^ 2 + 0.255589 * x + 5.990773E-004$	0.999395
Т	1,4-Dinitrobenzene	Quadratic	$y = 0.010525 * x ^ 2 + 0.141574 * x - 6.022889E-004$	0.999194

		IIIIIIai	Calibration Report	/ Agricult recumeregies
Т	Dimethyl phthalate	Quadratic	$y = 0.011791 * x ^ 2 + 0.733635 * x + 0.001381$	0.999587
Т	1,3-Dinitrobenzene	Quadratic	$y = 0.006294 * x ^ 2 + 0.099553 * x + 9.980415E-005$	0.997367
Т	2,6-Dinitrotoluene	Quadratic	$y = 0.007100 * x ^ 2 + 0.156610 * x + 1.783658E-004$	0.997764
Т	Acenaphthylene	Quadratic	$y = 0.017483 * x ^ 2 + 0.969929 * x + 0.001884$	0.999799
Т	1,2-Dinitrobenzene	Quadratic	$y = 0.003552 * x ^ 2 + 0.071195 * x - 6.354522E-004$	0.998658
Т	3-Nitroaniline	Quadratic	$y = -2.908526E-004 * x ^ 2 + 0.160746 * x + 3.193466E-004$	0.999378
Т	Acenaphthene	Linear	y = 0.686395 * x	0.999530
Т	2,4-Dinitrophenol	Quadratic	$y = 0.010576 * x ^ 2 + 0.078756 * x - 0.003091$	0.998797
Т	4-Nitrophenol	Quadratic	$y = 0.030099 * x ^ 2 + 0.193417 * x - 0.002701$	0.998053
Т	Dibenzofuran	Linear	y = 1.741278 * x	0.998563
Т	2,4-Dinitrotoluene	Quadratic	$y = 0.038582 * x ^ 2 + 0.364999 * x - 3.972339E-004$	0.999783
Т	2,3,4,6-Tetrachlorophenol	Quadratic	$y = 0.023134 * x ^ 2 + 0.297628 * x + 7.673635E-004$	0.998913
Т	2,3,5,6-Tetrachlorophenol	Quadratic	$y = 0.029541 * x ^ 2 + 0.300464 * x + 5.461504E-004$	0.998576
Т	Diethylphthalate	Quadratic	$y = 0.072520 * x ^ 2 + 1.465590 * x + 0.004116$	0.999655
Т	4-Chlorophenyl phenyl ether	Linear	y = 0.673624 * x	0.997863
Т	Fluorene	Quadratic	$y = 0.039867 * x ^ 2 + 1.305077 * x + 0.003655$	0.998909
Т	4-Nitroaniline	Quadratic	$y = -0.076870 * x ^ 2 + 0.464536 * x - 0.001726$	0.998919
Т	4,6-Dinitro-2-methylphenol	Quadratic	$y = 0.034926 * x ^ 2 + 0.109116 * x - 6.148887E-004$	0.999291
Т	Diphenylamine	Quadratic	$y = 0.044612 * x ^ 2 + 1.079468 * x$	0.999891
Т	Azobenzene	Quadratic	$y = 0.093121 * x ^ 2 + 2.015532 * x + 0.006132$	0.999709
S	Tribromophenol (Surr)	Quadratic	$y = 0.022923 * x ^ 2 + 0.214008 * x - 9.933265E-004$	0.998674
Т	4-Bromophenyl phenyl ether	Quadratic	$y = 0.017975 * x ^ 2 + 0.396588 * x$	0.999878
Т	Hexachlorobenzene	Quadratic	$y = 0.016110 * x ^ 2 + 0.499983 * x$	0.999715
Т	Pentachlorophenol	Quadratic	$y = 0.024446 * x ^ 2 + 0.241098 * x - 0.001026$	0.998611
Т	Phenanthrene	Quadratic	$y = 0.017535 * x ^ 2 + 1.051689 * x + 0.002876$	0.998876
Т	Anthracene	Quadratic	$y = 0.026984 * x ^ 2 + 1.058892 * x$	0.999921
Т	Carbazole	Quadratic	$y = -0.016934 * x ^ 2 + 0.922704 * x + 0.002882$	0.998521
Т	Di-n-butyl phthalate	Quadratic	$y = 0.066731 * x ^ 2 + 1.411769 * x + 0.003336$	0.999690
Т	Fluoranthene	Quadratic	$y = 0.036183 * x ^ 2 + 1.081563 * x + 0.002156$	0.999680
Т	Pyrene	Quadratic	$y = 0.023568 * x ^ 2 + 1.113219 * x$	0.999791
S	p-Terphenyl	Quadratic	$y = 0.069827 * x ^ 2 + 0.803165 * x + 7.076872E-004$	0.999191
Т	Benzyl Butyl phthalate	Quadratic	$y = 0.034538 * x ^ 2 + 0.576174 * x + 6.656123E-004$	0.999664
Т	bis(2-Ethylhexyl)adipate	Quadratic	$y = 0.034105 * x ^ 2 + 0.515987 * x + 8.580964E-004$	0.999531
Т	Bis(2-ethylhexyl) phthalate	Quadratic	$y = 0.049105 * x ^ 2 + 1.053680 * x + 0.007512$	0.999431
Т	Benzo (a) anthracene	Quadratic	$y = 0.014397 * x ^ 2 + 0.921588 * x + 0.003338$	0.999651
Т	Chrysene	Quadratic	$y = -6.669929E-005 * x ^ 2 + 1.190104 * x + 0.002816$	0.999682
T	Di-n-octyl phthalate	Quadratic	$y = 0.125403 * x ^ 2 + 1.599186 * x$	0.999941
T	benzo (b) fluoranthene	Quadratic	$y = 0.073744 * x ^ 2 + 1.048207 * x + 0.007302$	0.999183
T	benzo (k) fluoranthene	Quadratic	$y = -0.026074 * x ^ 2 + 1.345526 * x + 0.007155$	0.998119
Т	benzo (a) pyrene	Quadratic	$y = 0.031754 * x ^ 2 + 1.073479 * x + 0.004438$	0.998795
Т	Indeno(1,2,3-cd)pyrene	Quadratic	$y = 0.094896 * x ^ 2 + 1.134224 * x - 0.001845$	0.999607
Т	Dibenz (a,h) anthracene	Quadratic	$y = 0.110977 * x ^ 2 + 0.837859 * x - 0.006276$	0.999183

T Benzo (g,h,i) perylene

Quadratic

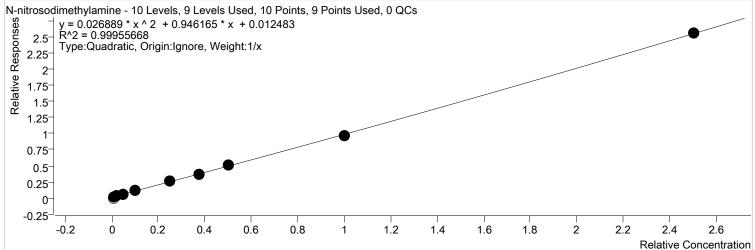
 $y = 0.057960 * x ^ 2 + 1.025213 * x - 8.447227E-004$


0.999766

(RedFont and #) = Outlier Flag; (I) = Internal Standard; (T) = Target; (S) = Surrogate; (M) = Matrix Spike

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:42 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

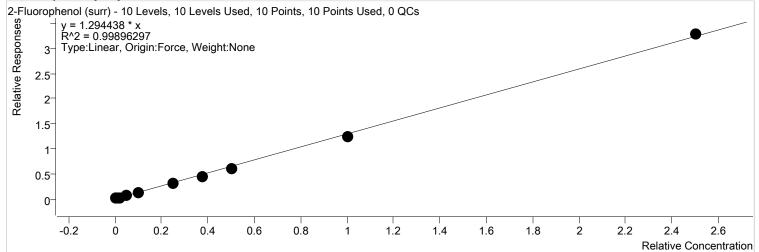
Pyridine



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	181	10.0000	1.6776
D:\GC-21\Data\060320\060319.D	Calibration	2	x	360	20.0000	1.6942
D:\GC-21\Data\060320\060320.D	Calibration	3	х	665	40.0000	1.4551
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1348	100.0000	1.1705
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2633	200.0000	1.1320
D:\GC-21\Data\060320\060323.D	Calibration	6	х	7274	500.0000	1.2763
D:\GC-21\Data\060320\060324.D	Calibration	7	x	9661	750.0000	1.0514
D:\GC-21\Data\060320\060325.D	Calibration	8	х	12605	1000.0000	1.0521
D:\GC-21\Data\060320\060326.D	Calibration	9	х	23264	2000.0000	0.9902
D:\GC-21\Data\060320\060327.D	Calibration	10	x	66885	5000.0000	1.1792

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:43 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

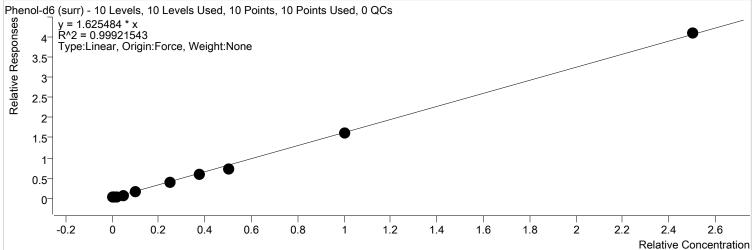
N-nitrosodimethylamine



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		0	10.0000	0.0000
D:\GC-21\Data\060320\060319.D	Calibration	2	х	468	20.0000	2.2024
D:\GC-21\Data\060320\060320.D	Calibration	3	x	701	40.0000	1.5336
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1312	100.0000	1.1385
D:\GC-21\Data\060320\060322.D	Calibration	5	х	2680	200.0000	1.1523
D:\GC-21\Data\060320\060323.D	Calibration	6	x	5881	500.0000	1.0319
D:\GC-21\Data\060320\060324.D	Calibration	7	х	8864	750.0000	0.9646
D:\GC-21\Data\060320\060325.D	Calibration	8	x	12068	1000.0000	1.0073
D:\GC-21\Data\060320\060326.D	Calibration	9	х	22696	2000.0000	0.9661
D:\GC-21\Data\060320\060327.D	Calibration	10	х	57900	5000.0000	1.0208

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:43 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

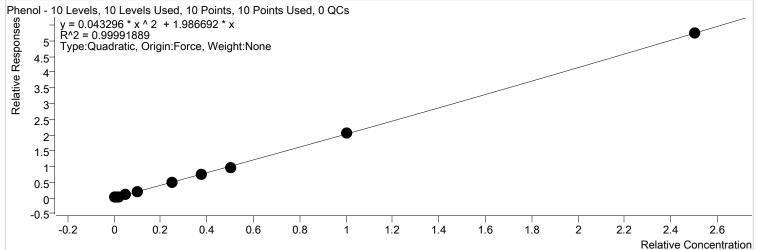
2-Fluorophenol (surr)



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	110	10.0000	1.0227
D:\GC-21\Data\060320\060319.D	Calibration	2	x	277	20.0000	1.3043
D:\GC-21\Data\060320\060320.D	Calibration	3	х	680	40.0000	1.4864
D:\GC-21\Data\060320\060321.D	Calibration	4	x	1400	100.0000	1.2149
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3086	200.0000	1.3270
D:\GC-21\Data\060320\060323.D	Calibration	6	х	7213	500.0000	1.2656
D:\GC-21\Data\060320\060324.D	Calibration	7	x	10876	750.0000	1.1837
D:\GC-21\Data\060320\060325.D	Calibration	8	х	14387	1000.0000	1.2009
D:\GC-21\Data\060320\060326.D	Calibration	9	х	28953	2000.0000	1.2324
D:\GC-21\Data\060320\060327.D	Calibration	10	x	74355	5000.0000	1.3109

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

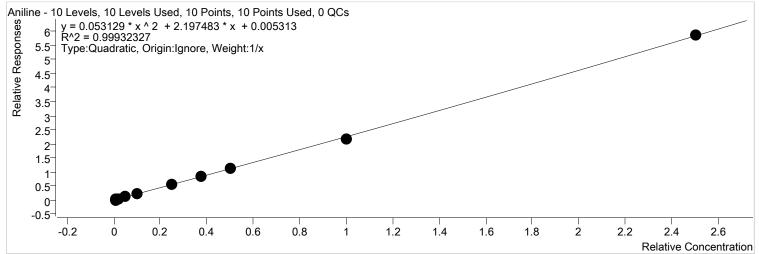
Phenol-d6 (surr)



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	259	10.0000	2.3994
D:\GC-21\Data\060320\060319.D	Calibration	2	x	370	20.0000	1.7390
D:\GC-21\Data\060320\060320.D	Calibration	3	x	853	40.0000	1.8661
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1641	100.0000	1.4247
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3838	200.0000	1.6505
D:\GC-21\Data\060320\060323.D	Calibration	6	x	8983	500.0000	1.5761
D:\GC-21\Data\060320\060324.D	Calibration	7	х	14097	750.0000	1.5342
D:\GC-21\Data\060320\060325.D	Calibration	8	x	17210	1000.0000	1.4365
D:\GC-21\Data\060320\060326.D	Calibration	9	x	37957	2000.0000	1.6157
D:\GC-21\Data\060320\060327.D	Calibration	10	х	92865	5000.0000	1.6372

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Phenol

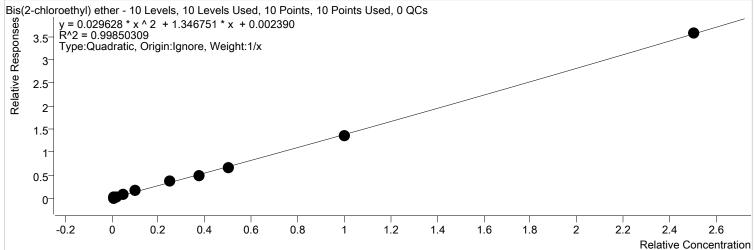


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	209	10.0000	1.9410
D:\GC-21\Data\060320\060319.D	Calibration	2	x	531	20.0000	2.4983
D:\GC-21\Data\060320\060320.D	Calibration	3	X	750	40.0000	1.6400
D:\GC-21\Data\060320\060321.D	Calibration	4	х	2456	100.0000	2.1319
D:\GC-21\Data\060320\060322.D	Calibration	5	x	4592	200.0000	1.9748
D:\GC-21\Data\060320\060323.D	Calibration	6	X	11768	500.0000	2.0646
D:\GC-21\Data\060320\060324.D	Calibration	7	х	18398	750.0000	2.0023
D:\GC-21\Data\060320\060325.D	Calibration	8	x	23225	1000.0000	1.9385
D:\GC-21\Data\060320\060326.D	Calibration	9	Х	48089	2000.0000	2.0469
D:\GC-21\Data\060320\060327.D	Calibration	10	х	118796	5000.0000	2.0943

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Aniline

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	273	10.0000	2.5324
D:\GC-21\Data\060320\060319.D	Calibration	2	х	716	20.0000	3.3691
D:\GC-21\Data\060320\060320.D	Calibration	3	x	1045	40.0000	2.2861
D:\GC-21\Data\060320\060321.D	Calibration	4	х	2887	100.0000	2.5059
D:\GC-21\Data\060320\060322.D	Calibration	5	x	5250	200.0000	2.2577
D:\GC-21\Data\060320\060323.D	Calibration	6	х	13322	500.0000	2.3372
D:\GC-21\Data\060320\060324.D	Calibration	7	х	20629	750.0000	2.2451
D:\GC-21\Data\060320\060325.D	Calibration	8	х	26760	1000.0000	2.2336
D:\GC-21\Data\060320\060326.D	Calibration	9	х	51562	2000.0000	2.1947
D:\GC-21\Data\060320\060327.D	Calibration	10	x	132778	5000.0000	2.3408

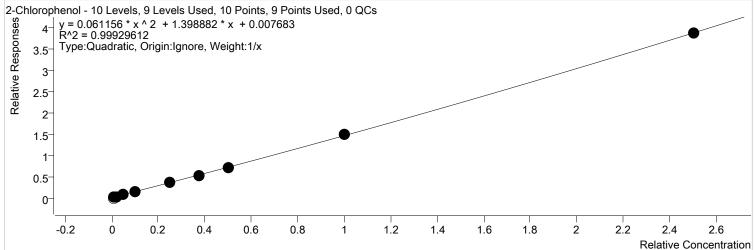

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

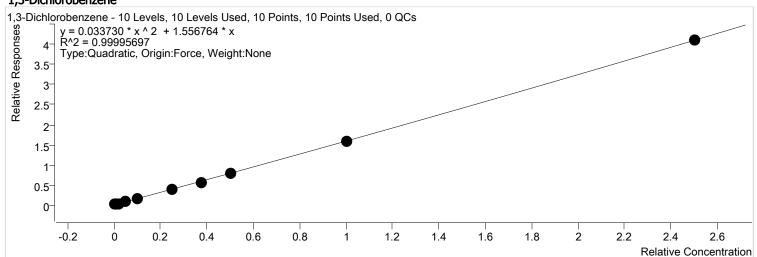
Bis(2-chloroethyl) ether



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	152	10.0000	1.4112
D:\GC-21\Data\060320\060319.D	Calibration	2	x	397	20.0000	1.8658
D:\GC-21\Data\060320\060320.D	Calibration	3	х	605	40.0000	1.3242
D:\GC-21\Data\060320\060321.D	Calibration	4	x	1660	100.0000	1.4405
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3695	200.0000	1.5887
D:\GC-21\Data\060320\060323.D	Calibration	6	х	8473	500.0000	1.4865
D:\GC-21\Data\060320\060324.D	Calibration	7	x	12290	750.0000	1.3375
D:\GC-21\Data\060320\060325.D	Calibration	8	х	15697	1000.0000	1.3102
D:\GC-21\Data\060320\060326.D	Calibration	9	х	31711	2000.0000	1.3498
D:\GC-21\Data\060320\060327.D	Calibration	10	x	80982	5000.0000	1.4277

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

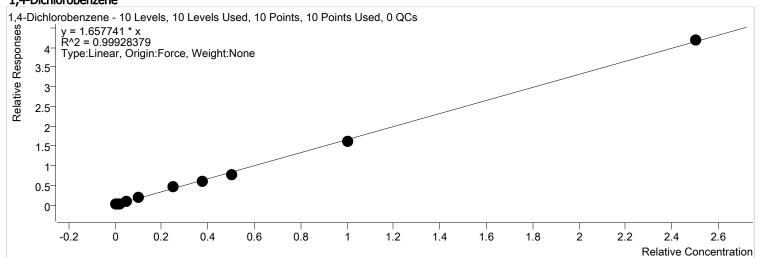
2-Chlorophenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		0	10.0000	0.0000
D:\GC-21\Data\060320\060319.D	Calibration	2	x	513	20.0000	2.4125
D:\GC-21\Data\060320\060320.D	Calibration	3	X	655	40.0000	1.4333
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1868	100.0000	1.6212
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3684	200.0000	1.5841
D:\GC-21\Data\060320\060323.D	Calibration	6	X	8093	500.0000	1.4198
D:\GC-21\Data\060320\060324.D	Calibration	7	х	12931	750.0000	1.4073
D:\GC-21\Data\060320\060325.D	Calibration	8	x	16889	1000.0000	1.4096
D:\GC-21\Data\060320\060326.D	Calibration	9	х	35357	2000.0000	1.5050
D:\GC-21\Data\060320\060327.D	Calibration	10	х	87986	5000.0000	1.5512

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

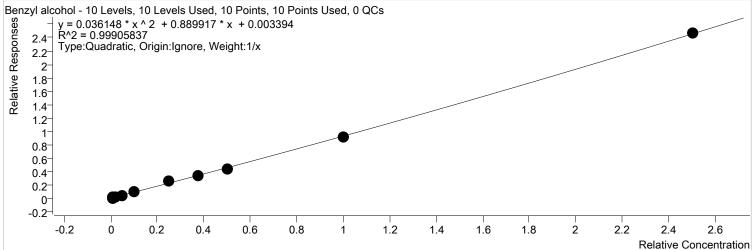
1,3-Dichlorobenzene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	122	10.0000	1.1352
D:\GC-21\Data\060320\060319.D	Calibration	2	x	301	20.0000	1.4170
D:\GC-21\Data\060320\060320.D	Calibration	3	х	877	40.0000	1.9193
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1792	100.0000	1.5556
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3606	200.0000	1.5505
D:\GC-21\Data\060320\060323.D	Calibration	6	х	9040	500.0000	1.5861
D:\GC-21\Data\060320\060324.D	Calibration	7	х	13887	750.0000	1.5114
D:\GC-21\Data\060320\060325.D	Calibration	8	x	18954	1000.0000	1.5820
D:\GC-21\Data\060320\060326.D	Calibration	9	х	37525	2000.0000	1.5973
D:\GC-21\Data\060320\060327.D	Calibration	10	x	93068	5000.0000	1.6408

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

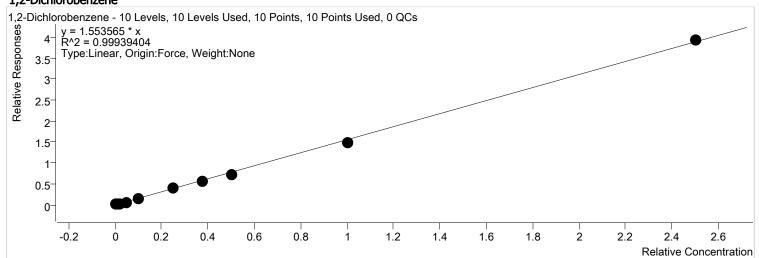
1,4-Dichlorobenzene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	265	10.0000	2.4568
D:\GC-21\Data\060320\060319.D	Calibration	2	x	466	20.0000	2.1920
D:\GC-21\Data\060320\060320.D	Calibration	3	х	649	40.0000	1.4206
D:\GC-21\Data\060320\060321.D	Calibration	4	x	1937	100.0000	1.6811
D:\GC-21\Data\060320\060322.D	Calibration	5	x	4074	200.0000	1.7519
D:\GC-21\Data\060320\060323.D	Calibration	6	х	10384	500.0000	1.8218
D:\GC-21\Data\060320\060324.D	Calibration	7	x	14279	750.0000	1.5540
D:\GC-21\Data\060320\060325.D	Calibration	8	x	18376	1000.0000	1.5338
D:\GC-21\Data\060320\060326.D	Calibration	9	х	37794	2000.0000	1.6087
D:\GC-21\Data\060320\060327.D	Calibration	10	х	94788	5000.0000	1.6711

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Benzyl alcohol

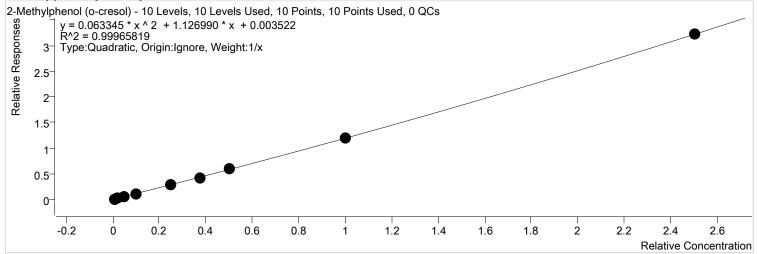


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	155	10.0000	1.4374
D:\GC-21\Data\060320\060319.D	Calibration	2	x	279	20.0000	1.3147
D:\GC-21\Data\060320\060320.D	Calibration	3	х	448	40.0000	0.9802
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1146	100.0000	0.9947
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2279	200.0000	0.9801
D:\GC-21\Data\060320\060323.D	Calibration	6	х	5759	500.0000	1.0103
D:\GC-21\Data\060320\060324.D	Calibration	7	х	8243	750.0000	0.8971
D:\GC-21\Data\060320\060325.D	Calibration	8	x	10624	1000.0000	0.8867
D:\GC-21\Data\060320\060326.D	Calibration	9	х	21396	2000.0000	0.9107
D:\GC-21\Data\060320\060327.D	Calibration	10	x	55874	5000.0000	0.9850

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

1,2-Dichlorobenzene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	238	10.0000	2.2105
D:\GC-21\Data\060320\060319.D	Calibration	2	х	281	20.0000	1.3199
D:\GC-21\Data\060320\060320.D	Calibration	3	х	663	40.0000	1.4510
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1581	100.0000	1.3719
D:\GC-21\Data\060320\060322.D	Calibration	5	х	3805	200.0000	1.6364
D:\GC-21\Data\060320\060323.D	Calibration	6	х	9070	500.0000	1.5913
D:\GC-21\Data\060320\060324.D	Calibration	7	х	13819	750.0000	1.5039
D:\GC-21\Data\060320\060325.D	Calibration	8	х	17586	1000.0000	1.4679
D:\GC-21\Data\060320\060326.D	Calibration	9	х	34972	2000.0000	1.4886
D:\GC-21\Data\060320\060327.D	Calibration	10	х	88945	5000.0000	1.5681


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

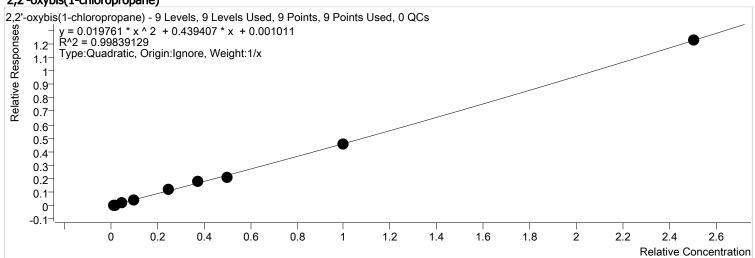
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

2-Methylphenol (o-cresol)

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	240	10.0000	2.2285
D:\GC-21\Data\060320\060319.D	Calibration	2	x	271	20.0000	1.2737
D:\GC-21\Data\060320\060320.D	Calibration	3	x	532	40.0000	1.1646
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1292	100.0000	1.1217
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2708	200.0000	1.1643
D:\GC-21\Data\060320\060323.D	Calibration	6	х	6782	500.0000	1.1898
D:\GC-21\Data\060320\060324.D	Calibration	7	x	10556	750.0000	1.1488
D:\GC-21\Data\060320\060325.D	Calibration	8	x	14148	1000.0000	1.1809
D:\GC-21\Data\060320\060326.D	Calibration	9	x	27940	2000.0000	1.1893
D:\GC-21\Data\060320\060327.D	Calibration	10	х	72994	5000.0000	1.2869

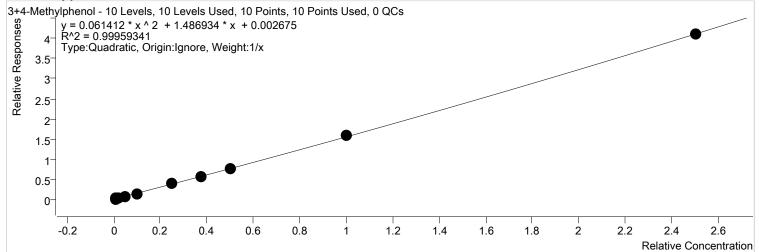

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

2,2'-oxybis(1-chloropropane)

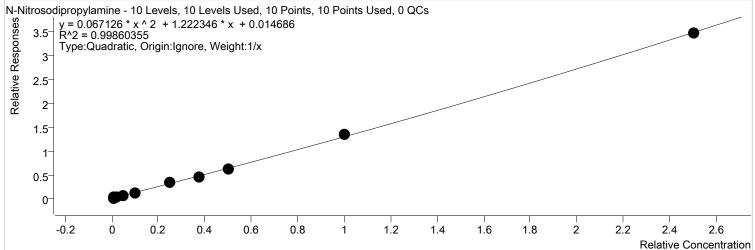


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	х	147	20.0000	0.6905
D:\GC-21\Data\060320\060320.D	Calibration	3	x	149	40.0000	0.3262
D:\GC-21\Data\060320\060321.D	Calibration	4	х	531	100.0000	0.4609
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1025	200.0000	0.4408
D:\GC-21\Data\060320\060323.D	Calibration	6	х	2685	500.0000	0.4710
D:\GC-21\Data\060320\060324.D	Calibration	7	x	4406	750.0000	0.4796
D:\GC-21\Data\060320\060325.D	Calibration	8	х	5097	1000.0000	0.4255
D:\GC-21\Data\060320\060326.D	Calibration	9	х	10750	2000.0000	0.4576
D:\GC-21\Data\060320\060327.D	Calibration	10	х	27782	5000.0000	0.4898

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

3+4-Methylphenol

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	214	10.0000	1.9830
D:\GC-21\Data\060320\060319.D	Calibration	2	х	442	20.0000	2.0775
D:\GC-21\Data\060320\060320.D	Calibration	3	х	640	40.0000	1.3994
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1751	100.0000	1.5202
D:\GC-21\Data\060320\060322.D	Calibration	5	х	3388	200.0000	1.4567
D:\GC-21\Data\060320\060323.D	Calibration	6	х	8946	500.0000	1.5695
D:\GC-21\Data\060320\060324.D	Calibration	7	х	13737	750.0000	1.4950
D:\GC-21\Data\060320\060325.D	Calibration	8	х	17860	1000.0000	1.4907
D:\GC-21\Data\060320\060326.D	Calibration	9	х	37059	2000.0000	1.5774
D:\GC-21\Data\060320\060327.D	Calibration	10	х	92949	5000.0000	1.6387


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

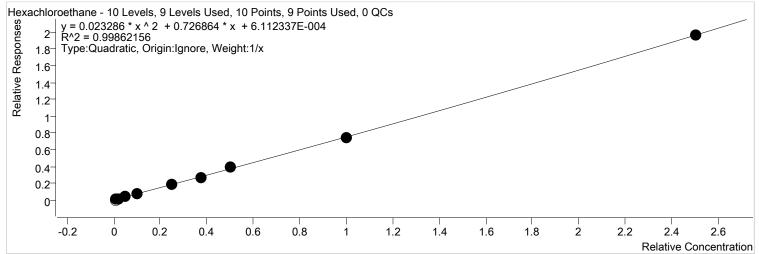
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

N-Nitrosodipropylamine

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	482	10.0000	4.4694
D:\GC-21\Data\060320\060319.D	Calibration	2	х	628	20.0000	2.9535
D:\GC-21\Data\060320\060320.D	Calibration	3	X	783	40.0000	1.7131
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1419	100.0000	1.2314
D:\GC-21\Data\060320\060322.D	Calibration	5	х	3028	200.0000	1.3022
D:\GC-21\Data\060320\060323.D	Calibration	6	x	7663	500.0000	1.3445
D:\GC-21\Data\060320\060324.D	Calibration	7	х	11547	750.0000	1.2566
D:\GC-21\Data\060320\060325.D	Calibration	8	х	15059	1000.0000	1.2569
D:\GC-21\Data\060320\060326.D	Calibration	9	х	31904	2000.0000	1.3580
D:\GC-21\Data\060320\060327.D	Calibration	10	х	78788	5000.0000	1.3890


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

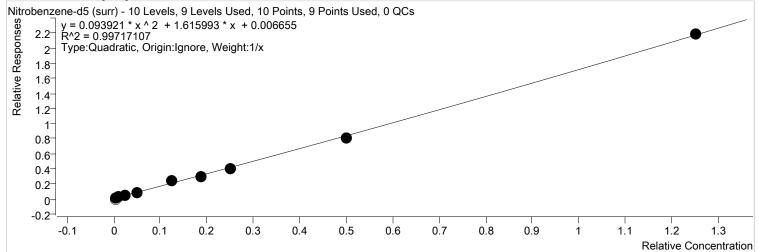
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Hexachloroethane

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		0	10.0000	0.0000
D:\GC-21\Data\060320\060319.D	Calibration	2	x	224	20.0000	1.0562
D:\GC-21\Data\060320\060320.D	Calibration	3	х	250	40.0000	0.5466
D:\GC-21\Data\060320\060321.D	Calibration	4	x	838	100.0000	0.7275
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1592	200.0000	0.6845
D:\GC-21\Data\060320\060323.D	Calibration	6	х	4112	500.0000	0.7214
D:\GC-21\Data\060320\060324.D	Calibration	7	x	6523	750.0000	0.7099
D:\GC-21\Data\060320\060325.D	Calibration	8	х	9483	1000.0000	0.7915
D:\GC-21\Data\060320\060326.D	Calibration	9	х	17564	2000.0000	0.7476
D:\GC-21\Data\060320\060327.D	Calibration	10	x	44505	5000.0000	0.7846


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Nitrobenzene-d5 (surr)

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		0	5.0000	0.0000
D:\GC-21\Data\060320\060319.D	Calibration	2	x	228	10.0000	2.1491
D:\GC-21\Data\060320\060320.D	Calibration	3	x	659	20.0000	2.8840
D:\GC-21\Data\060320\060321.D	Calibration	4	x	1125	50.0000	1.9533
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2063	100.0000	1.7746
D:\GC-21\Data\060320\060323.D	Calibration	6	x	5531	250.0000	1.9407
D:\GC-21\Data\060320\060324.D	Calibration	7	x	7371	375.0000	1.6043
D:\GC-21\Data\060320\060325.D	Calibration	8	x	9673	500.0000	1.6148
D:\GC-21\Data\060320\060326.D	Calibration	9	x	19169	1000.0000	1.6319
D:\GC-21\Data\060320\060327.D	Calibration	10	x	49537	2500.0000	1.7466

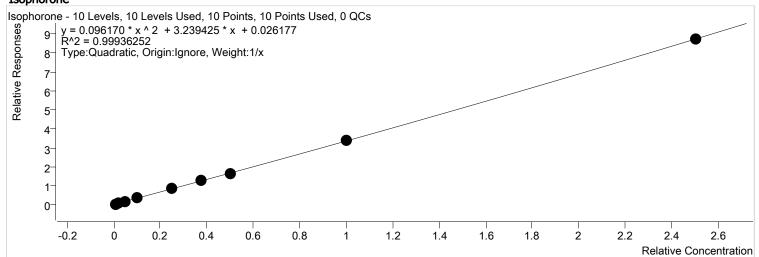
 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

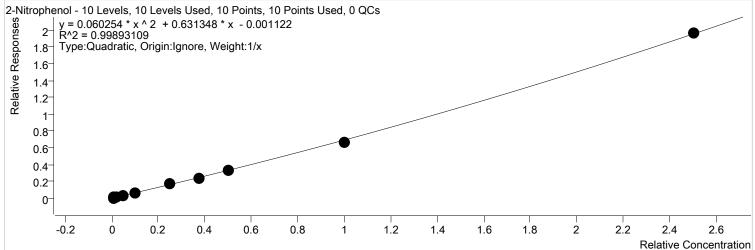
Nitrobenzene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	292	10.0000	2.7113
D:\GC-21\Data\060320\060319.D	Calibration	2	х	511	20.0000	2.4041
D:\GC-21\Data\060320\060320.D	Calibration	3	х	864	40.0000	1.8897
D:\GC-21\Data\060320\060321.D	Calibration	4	х	2363	100.0000	2.0510
D:\GC-21\Data\060320\060322.D	Calibration	5	х	4692	200.0000	2.0178
D:\GC-21\Data\060320\060323.D	Calibration	6	х	11346	500.0000	1.9906
D:\GC-21\Data\060320\060324.D	Calibration	7	х	18021	750.0000	1.9612
D:\GC-21\Data\060320\060325.D	Calibration	8	х	23094	1000.0000	1.9276
D:\GC-21\Data\060320\060326.D	Calibration	9	х	45917	2000.0000	1.9545
D:\GC-21\Data\060320\060327.D	Calibration	10	х	114098	5000.0000	2.0115

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

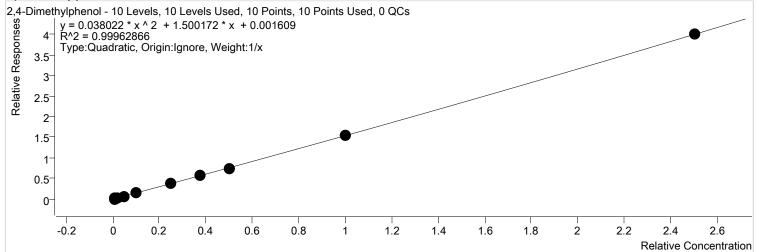
Isophorone



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	1047	10.0000	9.7067
D:\GC-21\Data\060320\060319.D	Calibration	2	х	1191	20.0000	5.6031
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1640	40.0000	3.5863
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4364	100.0000	3.7876
D:\GC-21\Data\060320\060322.D	Calibration	5	х	8014	200.0000	3.4461
D:\GC-21\Data\060320\060323.D	Calibration	6	х	19075	500.0000	3.3467
D:\GC-21\Data\060320\060324.D	Calibration	7	х	31478	750.0000	3.4258
D:\GC-21\Data\060320\060325.D	Calibration	8	x	39261	1000.0000	3.2770
D:\GC-21\Data\060320\060326.D	Calibration	9	х	79961	2000.0000	3.4036
D:\GC-21\Data\060320\060327.D	Calibration	10	х	197662	5000.0000	3.4847

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

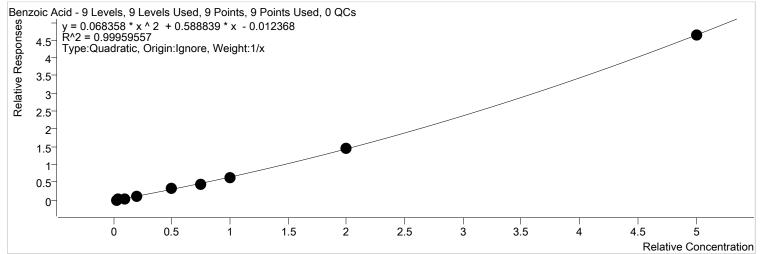
2-Nitrophenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	32	10.0000	0.2934
D:\GC-21\Data\060320\060319.D	Calibration	2	х	120	20.0000	0.5644
D:\GC-21\Data\060320\060320.D	Calibration	3	x	228	40.0000	0.4992
D:\GC-21\Data\060320\060321.D	Calibration	4	х	819	100.0000	0.7107
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1532	200.0000	0.6588
D:\GC-21\Data\060320\060323.D	Calibration	6	х	3985	500.0000	0.6991
D:\GC-21\Data\060320\060324.D	Calibration	7	х	5646	750.0000	0.6145
D:\GC-21\Data\060320\060325.D	Calibration	8	х	8039	1000.0000	0.6710
D:\GC-21\Data\060320\060326.D	Calibration	9	х	15741	2000.0000	0.6700
D:\GC-21\Data\060320\060327.D	Calibration	10	х	44499	5000.0000	0.7845

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

2,4-Dimethylphenol

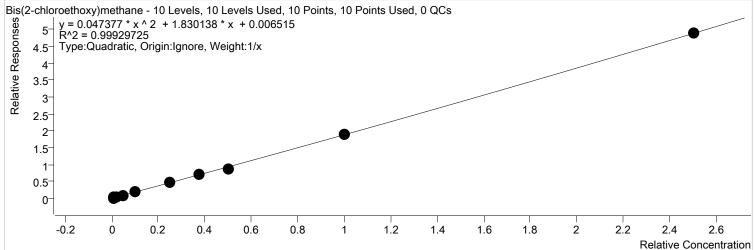


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	175	10.0000	1.6216
D:\GC-21\Data\060320\060319.D	Calibration	2	x	375	20.0000	1.7644
D:\GC-21\Data\060320\060320.D	Calibration	3	х	795	40.0000	1.7385
D:\GC-21\Data\060320\060321.D	Calibration	4	x	1624	100.0000	1.4096
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3643	200.0000	1.5664
D:\GC-21\Data\060320\060323.D	Calibration	6	х	8857	500.0000	1.5540
D:\GC-21\Data\060320\060324.D	Calibration	7	x	14261	750.0000	1.5521
D:\GC-21\Data\060320\060325.D	Calibration	8	х	17570	1000.0000	1.4665
D:\GC-21\Data\060320\060326.D	Calibration	9	х	36242	2000.0000	1.5427
D:\GC-21\Data\060320\060327.D	Calibration	10	x	90557	5000.0000	1.5965

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Benzoic Acid

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	х	32	40.0000	0.0759
D:\GC-21\Data\060320\060320.D	Calibration	3	x	202	80.0000	0.2213
D:\GC-21\Data\060320\060321.D	Calibration	4	х	949	200.0000	0.4117
D:\GC-21\Data\060320\060322.D	Calibration	5	X	2595	400.0000	0.5578
D:\GC-21\Data\060320\060323.D	Calibration	6	x	7130	1000.0000	0.6255
D:\GC-21\Data\060320\060324.D	Calibration	7	х	10913	1500.0000	0.5938
D:\GC-21\Data\060320\060325.D	Calibration	8	X	15179	2000.0000	0.6335
D:\GC-21\Data\060320\060326.D	Calibration	9	х	34536	4000.0000	0.7350
D:\GC-21\Data\060320\060327.D	Calibration	10	х	105107	10000.0000	0.9265

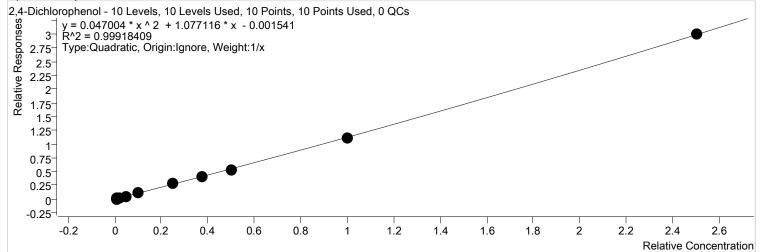

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

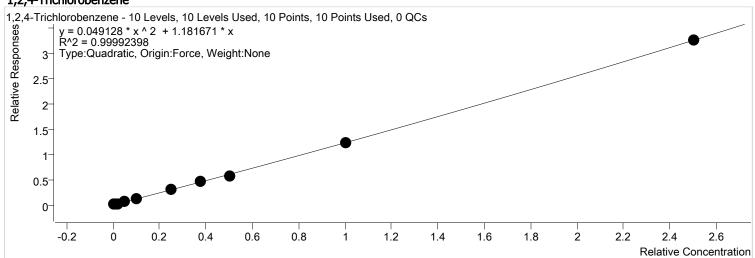
Bis(2-chloroethoxy)methane



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	370	10.0000	3.4324
D:\GC-21\Data\060320\060319.D	Calibration	2	x	540	20.0000	2.5386
D:\GC-21\Data\060320\060320.D	Calibration	3	х	773	40.0000	1.6907
D:\GC-21\Data\060320\060321.D	Calibration	4	х	2327	100.0000	2.0202
D:\GC-21\Data\060320\060322.D	Calibration	5	x	4428	200.0000	1.9042
D:\GC-21\Data\060320\060323.D	Calibration	6	х	10941	500.0000	1.9195
D:\GC-21\Data\060320\060324.D	Calibration	7	х	17877	750.0000	1.9456
D:\GC-21\Data\060320\060325.D	Calibration	8	x	21350	1000.0000	1.7820
D:\GC-21\Data\060320\060326.D	Calibration	9	х	44290	2000.0000	1.8852
D:\GC-21\Data\060320\060327.D	Calibration	10	x	110726	5000.0000	1.9521

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

2,4-Dichlorophenol

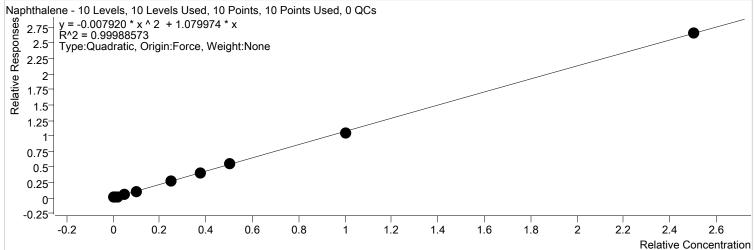


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	66	10.0000	0.6114
D:\GC-21\Data\060320\060319.D	Calibration	2	x	169	20.0000	0.7942
D:\GC-21\Data\060320\060320.D	Calibration	3	х	511	40.0000	1.1168
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1234	100.0000	1.0712
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2906	200.0000	1.2495
D:\GC-21\Data\060320\060323.D	Calibration	6	х	6340	500.0000	1.1123
D:\GC-21\Data\060320\060324.D	Calibration	7	х	9684	750.0000	1.0540
D:\GC-21\Data\060320\060325.D	Calibration	8	x	12910	1000.0000	1.0776
D:\GC-21\Data\060320\060326.D	Calibration	9	х	26143	2000.0000	1.1128
D:\GC-21\Data\060320\060327.D	Calibration	10	x	67874	5000.0000	1.1966

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

1,2,4-Trichlorobenzene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	x	126	10.0000	1.1650
D:\GC-21\Data\060320\060319.D	Calibration	2	x	327	20.0000	1.5393
D:\GC-21\Data\060320\060320.D	Calibration	3	x	412	40.0000	0.9005
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1470	100.0000	1.2759
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3003	200.0000	1.2915
D:\GC-21\Data\060320\060323.D	Calibration	6	x	7034	500.0000	1.2340
D:\GC-21\Data\060320\060324.D	Calibration	7	х	11257	750.0000	1.2251
D:\GC-21\Data\060320\060325.D	Calibration	8	x	14017	1000.0000	1.1700
D:\GC-21\Data\060320\060326.D	Calibration	9	x	28949	2000.0000	1.2322
D:\GC-21\Data\060320\060327.D	Calibration	10	х	73998	5000.0000	1.3046


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

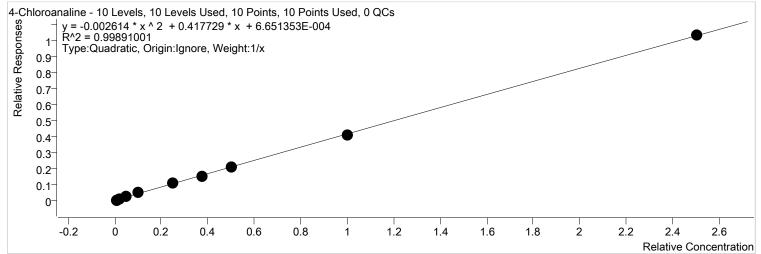
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Naphthalene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	Х	687	10.0000	1.6247
D:\GC-21\Data\060320\060319.D	Calibration	2	x	989	20.0000	1.1840
D:\GC-21\Data\060320\060320.D	Calibration	3	х	2059	40.0000	1.1767
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4516	100.0000	0.9771
D:\GC-21\Data\060320\060322.D	Calibration	5	х	9741	200.0000	1.1098
D:\GC-21\Data\060320\060323.D	Calibration	6	х	24812	500.0000	1.1101
D:\GC-21\Data\060320\060324.D	Calibration	7	х	38414	750.0000	1.0924
D:\GC-21\Data\060320\060325.D	Calibration	8	х	51300	1000.0000	1.1081
D:\GC-21\Data\060320\060326.D	Calibration	9	х	97495	2000.0000	1.0551
D:\GC-21\Data\060320\060327.D	Calibration	10	х	242809	5000.0000	1.0609


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

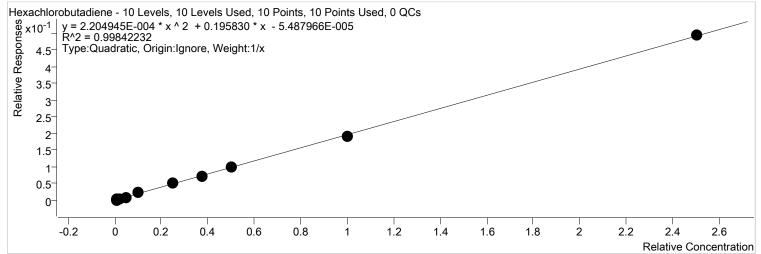
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

4-Chloroanaline

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	295	10.0000	0.6971
D:\GC-21\Data\060320\060319.D	Calibration	2	x	266	20.0000	0.3185
D:\GC-21\Data\060320\060320.D	Calibration	3	X	736	40.0000	0.4206
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1971	100.0000	0.4264
D:\GC-21\Data\060320\060322.D	Calibration	5	x	4144	200.0000	0.4722
D:\GC-21\Data\060320\060323.D	Calibration	6	X	9913	500.0000	0.4435
D:\GC-21\Data\060320\060324.D	Calibration	7	х	14486	750.0000	0.4119
D:\GC-21\Data\060320\060325.D	Calibration	8	x	19059	1000.0000	0.4117
D:\GC-21\Data\060320\060326.D	Calibration	9	х	37851	2000.0000	0.4096
D:\GC-21\Data\060320\060327.D	Calibration	10	х	94414	5000.0000	0.4125


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

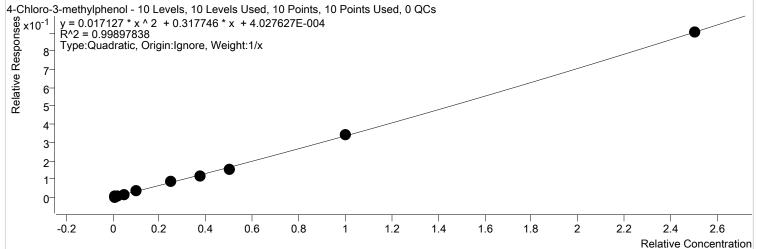
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Hexachlorobutadiene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	63	10.0000	0.1479
D:\GC-21\Data\060320\060319.D	Calibration	2	x	177	20.0000	0.2114
D:\GC-21\Data\060320\060320.D	Calibration	3	x	365	40.0000	0.2085
D:\GC-21\Data\060320\060321.D	Calibration	4	х	732	100.0000	0.1583
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2026	200.0000	0.2308
D:\GC-21\Data\060320\060323.D	Calibration	6	X	4505	500.0000	0.2016
D:\GC-21\Data\060320\060324.D	Calibration	7	х	6783	750.0000	0.1929
D:\GC-21\Data\060320\060325.D	Calibration	8	x	9263	1000.0000	0.2001
D:\GC-21\Data\060320\060326.D	Calibration	9	X	17485	2000.0000	0.1892
D:\GC-21\Data\060320\060327.D	Calibration	10	х	45141	5000.0000	0.1972

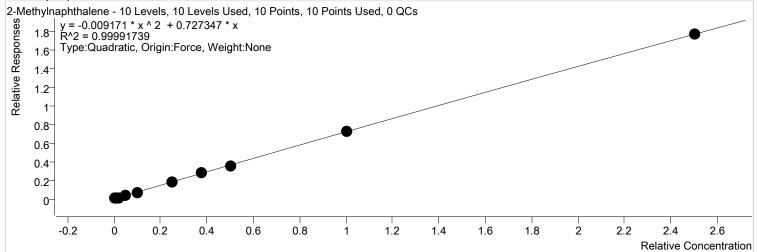

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

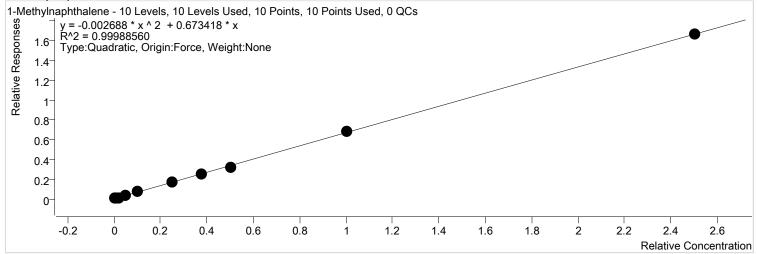
4-Chloro-3-methylphenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	171	10.0000	0.4057
D:\GC-21\Data\060320\060319.D	Calibration	2	х	292	20.0000	0.3500
D:\GC-21\Data\060320\060320.D	Calibration	3	х	507	40.0000	0.2899
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1564	100.0000	0.3384
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3258	200.0000	0.3712
D:\GC-21\Data\060320\060323.D	Calibration	6	х	7534	500.0000	0.3371
D:\GC-21\Data\060320\060324.D	Calibration	7	x	10989	750.0000	0.3125
D:\GC-21\Data\060320\060325.D	Calibration	8	x	14377	1000.0000	0.3105
D:\GC-21\Data\060320\060326.D	Calibration	9	х	31522	2000.0000	0.3411
D:\GC-21\Data\060320\060327.D	Calibration	10	х	82512	5000.0000	0.3605

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

2-Methylnaphthalene

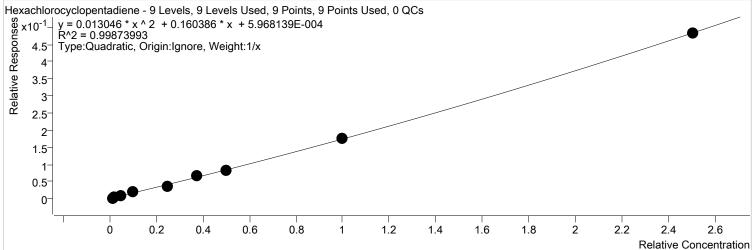


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	457	10.0000	1.0815
D:\GC-21\Data\060320\060319.D	Calibration	2	x	628	20.0000	0.7518
D:\GC-21\Data\060320\060320.D	Calibration	3	x	1201	40.0000	0.6864
D:\GC-21\Data\060320\060321.D	Calibration	4	x	3197	100.0000	0.6916
D:\GC-21\Data\060320\060322.D	Calibration	5	x	6467	200.0000	0.7369
D:\GC-21\Data\060320\060323.D	Calibration	6	х	15944	500.0000	0.7134
D:\GC-21\Data\060320\060324.D	Calibration	7	x	25776	750.0000	0.7330
D:\GC-21\Data\060320\060325.D	Calibration	8	x	32360	1000.0000	0.6990
D:\GC-21\Data\060320\060326.D	Calibration	9	x	67026	2000.0000	0.7254
D:\GC-21\Data\060320\060327.D	Calibration	10	х	161153	5000.0000	0.7041

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

1-Methylnaphthalene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	233	10.0000	0.5503
D:\GC-21\Data\060320\060319.D	Calibration	2	x	680	20.0000	0.8138
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1180	40.0000	0.6745
D:\GC-21\Data\060320\060321.D	Calibration	4	х	3219	100.0000	0.6965
D:\GC-21\Data\060320\060322.D	Calibration	5	x	6218	200.0000	0.7085
D:\GC-21\Data\060320\060323.D	Calibration	6	х	14994	500.0000	0.6709
D:\GC-21\Data\060320\060324.D	Calibration	7	х	23110	750.0000	0.6572
D:\GC-21\Data\060320\060325.D	Calibration	8	x	30080	1000.0000	0.6497
D:\GC-21\Data\060320\060326.D	Calibration	9	х	62900	2000.0000	0.6807
D:\GC-21\Data\060320\060327.D	Calibration	10	x	152492	5000.0000	0.6663


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

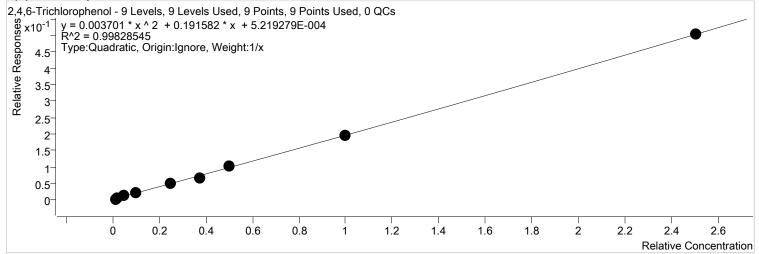
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Hexachlorocyclopentadiene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	Х	187	20.0000	0.2241
D:\GC-21\Data\060320\060320.D	Calibration	3	x	344	40.0000	0.1967
D:\GC-21\Data\060320\060321.D	Calibration	4	х	706	100.0000	0.1528
D:\GC-21\Data\060320\060322.D	Calibration	5	Х	1640	200.0000	0.1869
D:\GC-21\Data\060320\060323.D	Calibration	6	x	3358	500.0000	0.1502
D:\GC-21\Data\060320\060324.D	Calibration	7	х	6221	750.0000	0.1769
D:\GC-21\Data\060320\060325.D	Calibration	8	х	7504	1000.0000	0.1621
D:\GC-21\Data\060320\060326.D	Calibration	9	х	16348	2000.0000	0.1769
D:\GC-21\Data\060320\060327.D	Calibration	10	х	44155	5000.0000	0.1929


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

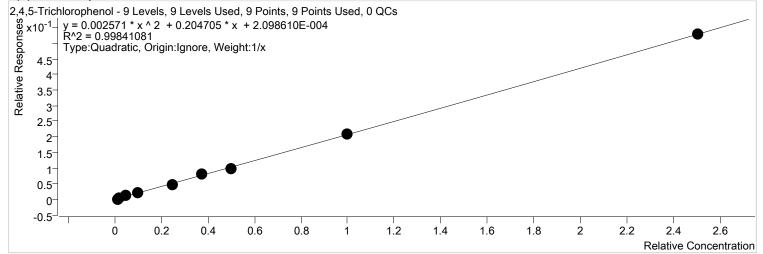
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

2,4,6-Trichlorophenol

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	х	152	20.0000	0.1820
D:\GC-21\Data\060320\060320.D	Calibration	3	x	453	40.0000	0.2589
D:\GC-21\Data\060320\060321.D	Calibration	4	х	986	100.0000	0.2134
D:\GC-21\Data\060320\060322.D	Calibration	5	х	1913	200.0000	0.2180
D:\GC-21\Data\060320\060323.D	Calibration	6	x	4269	500.0000	0.1910
D:\GC-21\Data\060320\060324.D	Calibration	7	х	6223	750.0000	0.1770
D:\GC-21\Data\060320\060325.D	Calibration	8	x	9491	1000.0000	0.2050
D:\GC-21\Data\060320\060326.D	Calibration	9	x	18000	2000.0000	0.1948
D:\GC-21\Data\060320\060327.D	Calibration	10	х	46042	5000.0000	0.2012


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

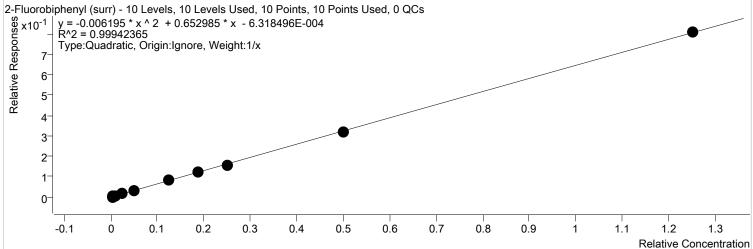
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

2,4,5-Trichlorophenol

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	х	129	20.0000	0.1539
D:\GC-21\Data\060320\060320.D	Calibration	3	x	453	40.0000	0.2589
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1038	100.0000	0.2246
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2056	200.0000	0.2342
D:\GC-21\Data\060320\060323.D	Calibration	6	x	4283	500.0000	0.1916
D:\GC-21\Data\060320\060324.D	Calibration	7	х	7530	750.0000	0.2141
D:\GC-21\Data\060320\060325.D	Calibration	8	х	9099	1000.0000	0.1965
D:\GC-21\Data\060320\060326.D	Calibration	9	x	19356	2000.0000	0.2095
D:\GC-21\Data\060320\060327.D	Calibration	10	х	48339	5000.0000	0.2112


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

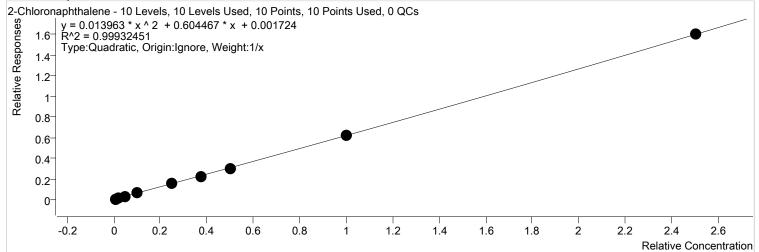
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

2-Fluorobiphenyl (surr)

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	59	5.0000	0.2812
D:\GC-21\Data\060320\060319.D	Calibration	2	x	238	10.0000	0.5698
D:\GC-21\Data\060320\060320.D	Calibration	3	x	502	20.0000	0.5739
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1615	50.0000	0.6986
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2842	100.0000	0.6476
D:\GC-21\Data\060320\060323.D	Calibration	6	x	7733	250.0000	0.6920
D:\GC-21\Data\060320\060324.D	Calibration	7	х	11257	375.0000	0.6403
D:\GC-21\Data\060320\060325.D	Calibration	8	x	14582	500.0000	0.6299
D:\GC-21\Data\060320\060326.D	Calibration	9	x	29688	1000.0000	0.6426
D:\GC-21\Data\060320\060327.D	Calibration	10	x	73942	2500.0000	0.6462


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

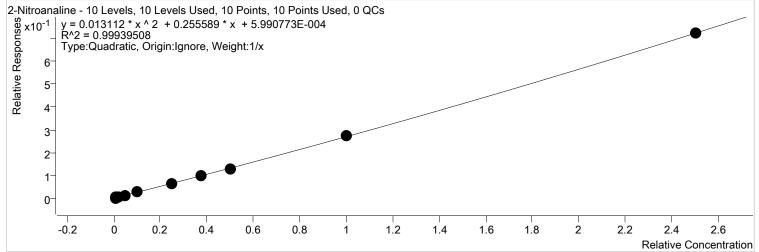
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

2-Chloronaphthalene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	444	10.0000	1.0499
D:\GC-21\Data\060320\060319.D	Calibration	2	x	563	20.0000	0.6745
D:\GC-21\Data\060320\060320.D	Calibration	3	X	1117	40.0000	0.6382
D:\GC-21\Data\060320\060321.D	Calibration	4	х	2897	100.0000	0.6268
D:\GC-21\Data\060320\060322.D	Calibration	5	x	6079	200.0000	0.6926
D:\GC-21\Data\060320\060323.D	Calibration	6	X	14387	500.0000	0.6437
D:\GC-21\Data\060320\060324.D	Calibration	7	х	21184	750.0000	0.6024
D:\GC-21\Data\060320\060325.D	Calibration	8	x	27449	1000.0000	0.5929
D:\GC-21\Data\060320\060326.D	Calibration	9	х	57554	2000.0000	0.6229
D:\GC-21\Data\060320\060327.D	Calibration	10	х	146564	5000.0000	0.6404


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

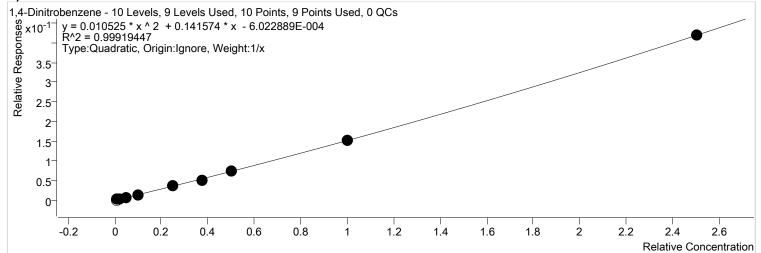
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

2-Nitroanaline

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	137	10.0000	0.3244
D:\GC-21\Data\060320\060319.D	Calibration	2	x	254	20.0000	0.3041
D:\GC-21\Data\060320\060320.D	Calibration	3	x	603	40.0000	0.3446
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1191	100.0000	0.2578
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2557	200.0000	0.2914
D:\GC-21\Data\060320\060323.D	Calibration	6	х	5641	500.0000	0.2524
D:\GC-21\Data\060320\060324.D	Calibration	7	х	9030	750.0000	0.2568
D:\GC-21\Data\060320\060325.D	Calibration	8	x	12066	1000.0000	0.2606
D:\GC-21\Data\060320\060326.D	Calibration	9	х	25154	2000.0000	0.2722
D:\GC-21\Data\060320\060327.D	Calibration	10	x	66009	5000.0000	0.2884

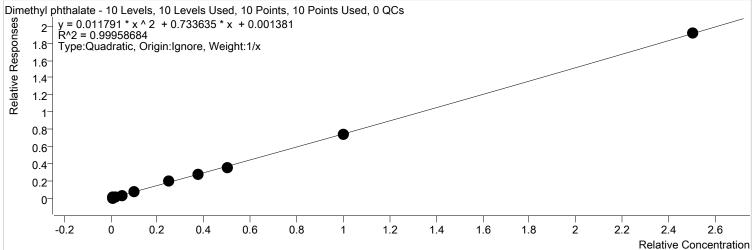

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

1,4-Dinitrobenzene

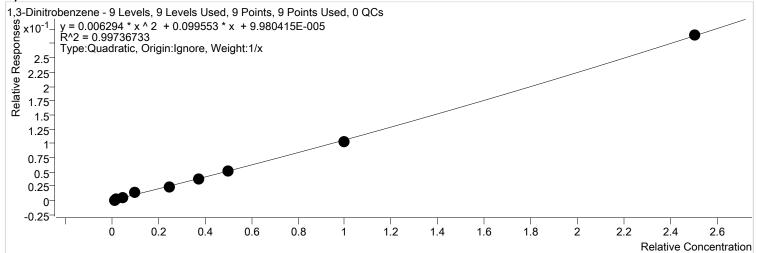


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		32	10.0000	0.0756
D:\GC-21\Data\060320\060319.D	Calibration	2	x	93	20.0000	0.1117
D:\GC-21\Data\060320\060320.D	Calibration	3	х	160	40.0000	0.0916
D:\GC-21\Data\060320\060321.D	Calibration	4	х	529	100.0000	0.1144
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1200	200.0000	0.1367
D:\GC-21\Data\060320\060323.D	Calibration	6	х	3406	500.0000	0.1524
D:\GC-21\Data\060320\060324.D	Calibration	7	х	4768	750.0000	0.1356
D:\GC-21\Data\060320\060325.D	Calibration	8	x	6910	1000.0000	0.1492
D:\GC-21\Data\060320\060326.D	Calibration	9	х	13949	2000.0000	0.1510
D:\GC-21\Data\060320\060327.D	Calibration	10	x	38375	5000.0000	0.1677

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Dimethyl phthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	394	10.0000	0.9322
D:\GC-21\Data\060320\060319.D	Calibration	2	x	760	20.0000	0.9095
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1422	40.0000	0.8129
D:\GC-21\Data\060320\060321.D	Calibration	4	x	3400	100.0000	0.7357
D:\GC-21\Data\060320\060322.D	Calibration	5	x	6876	200.0000	0.7835
D:\GC-21\Data\060320\060323.D	Calibration	6	х	17710	500.0000	0.7924
D:\GC-21\Data\060320\060324.D	Calibration	7	x	25909	750.0000	0.7368
D:\GC-21\Data\060320\060325.D	Calibration	8	х	33583	1000.0000	0.7254
D:\GC-21\Data\060320\060326.D	Calibration	9	х	68205	2000.0000	0.7381
D:\GC-21\Data\060320\060327.D	Calibration	10	x	175151	5000.0000	0.7653


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

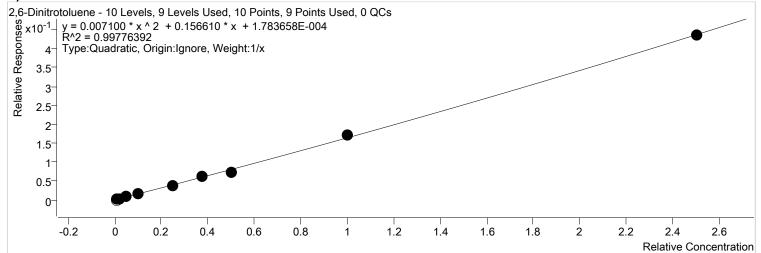
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

1,3-Dinitrobenzene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	x	69	20.0000	0.0827
D:\GC-21\Data\060320\060320.D	Calibration	3	x	223	40.0000	0.1275
D:\GC-21\Data\060320\060321.D	Calibration	4	х	377	100.0000	0.0815
D:\GC-21\Data\060320\060322.D	Calibration	5	х	1147	200.0000	0.1307
D:\GC-21\Data\060320\060323.D	Calibration	6	x	2193	500.0000	0.0981
D:\GC-21\Data\060320\060324.D	Calibration	7	х	3542	750.0000	0.1007
D:\GC-21\Data\060320\060325.D	Calibration	8	х	4877	1000.0000	0.1053
D:\GC-21\Data\060320\060326.D	Calibration	9	x	9517	2000.0000	0.1030
D:\GC-21\Data\060320\060327.D	Calibration	10	х	26486	5000.0000	0.1157

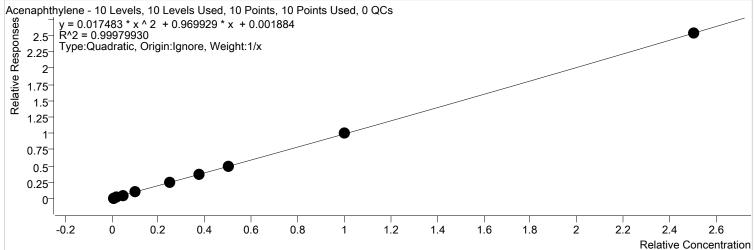

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

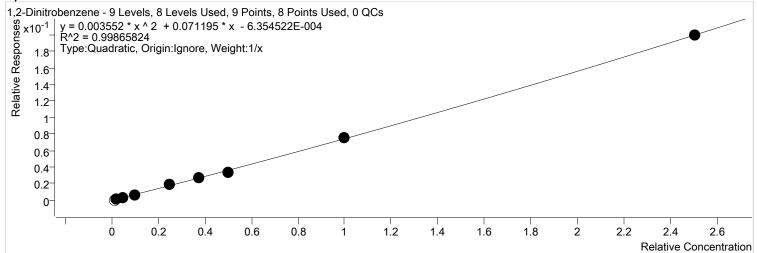
2,6-Dinitrotoluene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		0	10.0000	0.0000
D:\GC-21\Data\060320\060319.D	Calibration	2	x	122	20.0000	0.1462
D:\GC-21\Data\060320\060320.D	Calibration	3	х	308	40.0000	0.1762
D:\GC-21\Data\060320\060321.D	Calibration	4	x	798	100.0000	0.1726
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1552	200.0000	0.1768
D:\GC-21\Data\060320\060323.D	Calibration	6	х	3424	500.0000	0.1532
D:\GC-21\Data\060320\060324.D	Calibration	7	x	5760	750.0000	0.1638
D:\GC-21\Data\060320\060325.D	Calibration	8	х	6626	1000.0000	0.1431
D:\GC-21\Data\060320\060326.D	Calibration	9	х	15880	2000.0000	0.1719
D:\GC-21\Data\060320\060327.D	Calibration	10	x	39774	5000.0000	0.1738

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Acenaphthylene

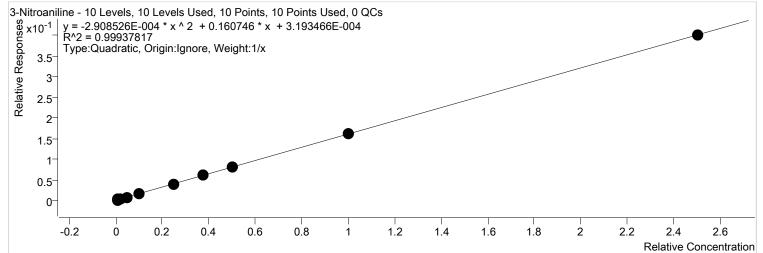


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	627	10.0000	1.4830
D:\GC-21\Data\060320\060319.D	Calibration	2	х	864	20.0000	1.0346
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1866	40.0000	1.0667
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4376	100.0000	0.9468
D:\GC-21\Data\060320\060322.D	Calibration	5	x	9118	200.0000	1.0389
D:\GC-21\Data\060320\060323.D	Calibration	6	х	22315	500.0000	0.9984
D:\GC-21\Data\060320\060324.D	Calibration	7	х	34163	750.0000	0.9715
D:\GC-21\Data\060320\060325.D	Calibration	8	х	44849	1000.0000	0.9687
D:\GC-21\Data\060320\060326.D	Calibration	9	х	92005	2000.0000	0.9957
D:\GC-21\Data\060320\060327.D	Calibration	10	x	232054	5000.0000	1.0139

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

1,2-Dinitrobenzene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2		0	20.0000	0.0000
D:\GC-21\Data\060320\060320.D	Calibration	3	x	61	40.0000	0.0346
D:\GC-21\Data\060320\060321.D	Calibration	4	х	287	100.0000	0.0621
D:\GC-21\Data\060320\060322.D	Calibration	5	х	569	200.0000	0.0648
D:\GC-21\Data\060320\060323.D	Calibration	6	x	1695	500.0000	0.0758
D:\GC-21\Data\060320\060324.D	Calibration	7	х	2496	750.0000	0.0710
D:\GC-21\Data\060320\060325.D	Calibration	8	х	3032	1000.0000	0.0655
D:\GC-21\Data\060320\060326.D	Calibration	9	x	6999	2000.0000	0.0757
D:\GC-21\Data\060320\060327.D	Calibration	10	х	18250	5000.0000	0.0797

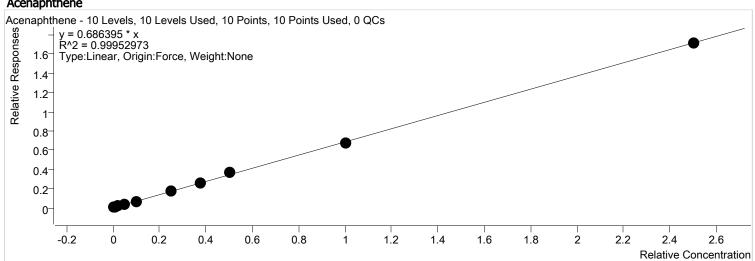

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

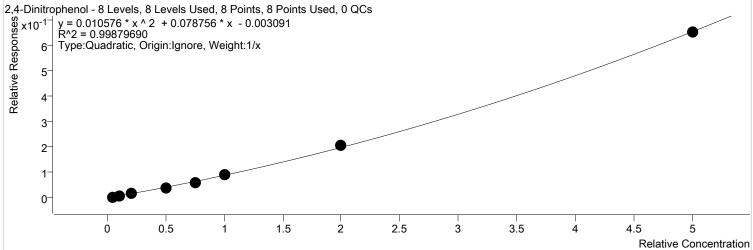
3-Nitroaniline



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	107	10.0000	0.2522
D:\GC-21\Data\060320\060319.D	Calibration	2	x	173	20.0000	0.2066
D:\GC-21\Data\060320\060320.D	Calibration	3	х	283	40.0000	0.1616
D:\GC-21\Data\060320\060321.D	Calibration	4	х	649	100.0000	0.1405
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1458	200.0000	0.1661
D:\GC-21\Data\060320\060323.D	Calibration	6	х	3439	500.0000	0.1538
D:\GC-21\Data\060320\060324.D	Calibration	7	х	5736	750.0000	0.1631
D:\GC-21\Data\060320\060325.D	Calibration	8	х	7583	1000.0000	0.1638
D:\GC-21\Data\060320\060326.D	Calibration	9	х	15073	2000.0000	0.1631
D:\GC-21\Data\060320\060327.D	Calibration	10	x	36555	5000.0000	0.1597

D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin **Batch Path Analysis Time** 6/4/2020 10:24:14 AM **Analyst Name** FA\lab Report Time 6/4/2020 10:26:44 AM **Reporter Name** lab Last Calib Update 6/4/2020 10:23:34 AM **Batch State** Processed

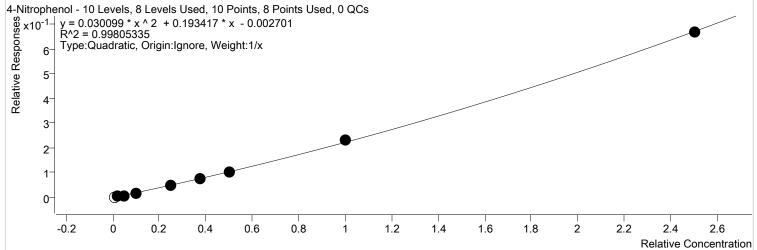
Acenaphthene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	331	10.0000	0.7837
D:\GC-21\Data\060320\060319.D	Calibration	2	x	803	20.0000	0.9617
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1481	40.0000	0.8462
D:\GC-21\Data\060320\060321.D	Calibration	4	x	3367	100.0000	0.7285
D:\GC-21\Data\060320\060322.D	Calibration	5	x	5899	200.0000	0.6721
D:\GC-21\Data\060320\060323.D	Calibration	6	x	15711	500.0000	0.7029
D:\GC-21\Data\060320\060324.D	Calibration	7	x	24767	750.0000	0.7043
D:\GC-21\Data\060320\060325.D	Calibration	8	x	34718	1000.0000	0.7499
D:\GC-21\Data\060320\060326.D	Calibration	9	х	62637	2000.0000	0.6779
D:\GC-21\Data\060320\060327.D	Calibration	10	х	156692	5000.0000	0.6846

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

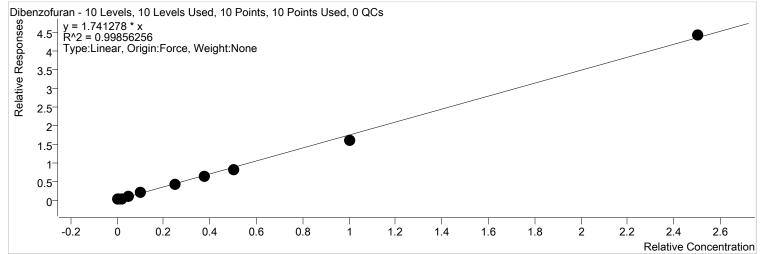
2,4-Dinitrophenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060320.D	Calibration	3	х	30	80.0000	0.0160
D:\GC-21\Data\060320\060321.D	Calibration	4	x	137	200.0000	0.0295
D:\GC-21\Data\060320\060322.D	Calibration	5	х	710	400.0000	0.0776
D:\GC-21\Data\060320\060323.D	Calibration	6	х	1690	1000.0000	0.0724
D:\GC-21\Data\060320\060324.D	Calibration	7	x	2828	1500.0000	0.0773
D:\GC-21\Data\060320\060325.D	Calibration	8	х	4269	2000.0000	0.0870
D:\GC-21\Data\060320\060326.D	Calibration	9	х	10231	4000.0000	0.1019
D:\GC-21\Data\060320\060327.D	Calibration	10	x	30103	10000.0000	0.1306

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

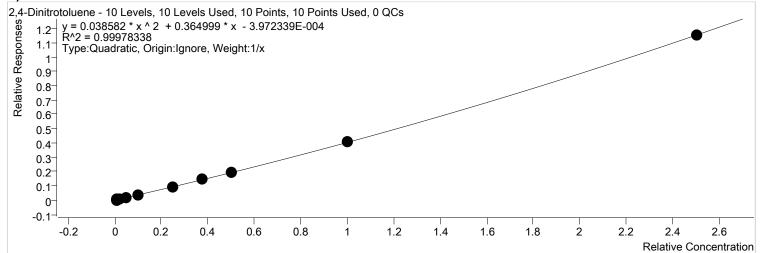
4-Nitrophenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		0	10.0000	0.0000
D:\GC-21\Data\060320\060319.D	Calibration	2		0	20.0000	0.0000
D:\GC-21\Data\060320\060320.D	Calibration	3	х	123	40.0000	0.1314
D:\GC-21\Data\060320\060321.D	Calibration	4	х	253	100.0000	0.1084
D:\GC-21\Data\060320\060322.D	Calibration	5	х	558	200.0000	0.1220
D:\GC-21\Data\060320\060323.D	Calibration	6	x	2262	500.0000	0.1937
D:\GC-21\Data\060320\060324.D	Calibration	7	х	3621	750.0000	0.1980
D:\GC-21\Data\060320\060325.D	Calibration	8	x	4859	1000.0000	0.1981
D:\GC-21\Data\060320\060326.D	Calibration	9	х	11568	2000.0000	0.2303
D:\GC-21\Data\060320\060327.D	Calibration	10	x	30693	5000.0000	0.2663

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Dibenzofuran

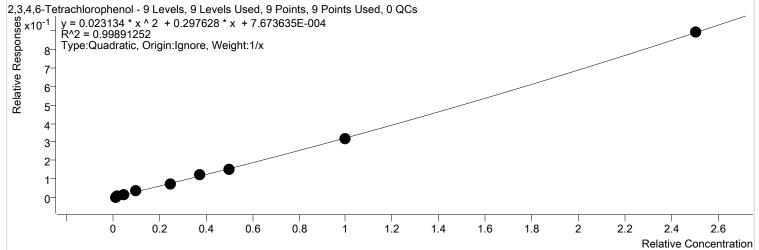


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	518	10.0000	2.2865
D:\GC-21\Data\060320\060319.D	Calibration	2	x	883	20.0000	2.0 4 75
D:\GC-21\Data\060320\060320.D	Calibration	3	X	1435	40.0000	1.5352
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4166	100.0000	1.7854
D:\GC-21\Data\060320\060322.D	Calibration	5	x	8531	200.0000	1.8655
D:\GC-21\Data\060320\060323.D	Calibration	6	x	19525	500.0000	1.6720
D:\GC-21\Data\060320\060324.D	Calibration	7	X	31490	750.0000	1.7218
D:\GC-21\Data\060320\060325.D	Calibration	8	x	40613	1000.0000	1.6561
D:\GC-21\Data\060320\060326.D	Calibration	9	Х	80815	2000.0000	1.6092
D:\GC-21\Data\060320\060327.D	Calibration	10	х	203635	5000.0000	1.7667

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

2,4-Dinitrotoluene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	Х	63	10.0000	0.2798
D:\GC-21\Data\060320\060319.D	Calibration	2	x	136	20.0000	0.3161
D:\GC-21\Data\060320\060320.D	Calibration	3	X	340	40.0000	0.3639
D:\GC-21\Data\060320\060321.D	Calibration	4	х	859	100.0000	0.3681
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1683	200.0000	0.3680
D:\GC-21\Data\060320\060323.D	Calibration	6	x	4075	500.0000	0.3490
D:\GC-21\Data\060320\060324.D	Calibration	7	Х	6997	750.0000	0.3826
D:\GC-21\Data\060320\060325.D	Calibration	8	x	9445	1000.0000	0.3851
D:\GC-21\Data\060320\060326.D	Calibration	9	Х	20454	2000.0000	0.4073
D:\GC-21\Data\060320\060327.D	Calibration	10	х	53101	5000.0000	0.4607

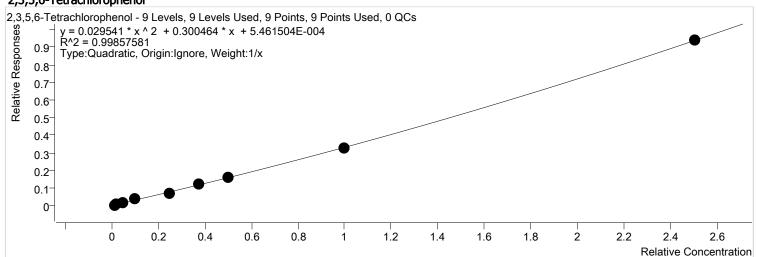

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

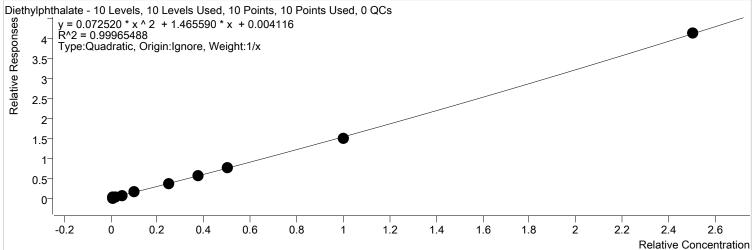
2,3,4,6-Tetrachlorophenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	х	139	20.0000	0.3217
D:\GC-21\Data\060320\060320.D	Calibration	3	x	329	40.0000	0.3518
D:\GC-21\Data\060320\060321.D	Calibration	4	х	732	100.0000	0.3139
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1645	200.0000	0.3598
D:\GC-21\Data\060320\060323.D	Calibration	6	x	3333	500.0000	0.2854
D:\GC-21\Data\060320\060324.D	Calibration	7	х	5919	750.0000	0.3236
D:\GC-21\Data\060320\060325.D	Calibration	8	х	7529	1000.0000	0.3070
D:\GC-21\Data\060320\060326.D	Calibration	9	x	15862	2000.0000	0.3158
D:\GC-21\Data\060320\060327.D	Calibration	10	х	41103	5000.0000	0.3566

D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin **Batch Path Analysis Time** 6/4/2020 10:24:14 AM **Analyst Name** FA\lab Report Time 6/4/2020 10:26:44 AM Reporter Name lab Last Calib Update 6/4/2020 10:23:34 AM **Batch State** Processed

2,3,5,6-Tetrachlorophenol

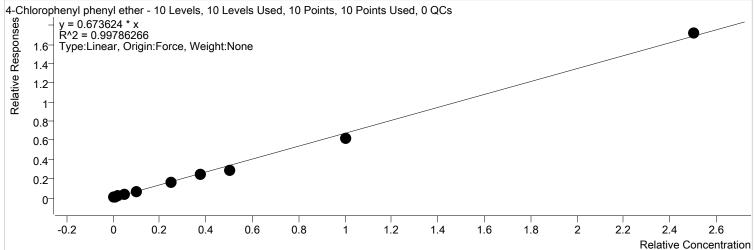


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	х	154	20.0000	0.3575
D:\GC-21\Data\060320\060320.D	Calibration	3	x	322	40.0000	0.3442
D:\GC-21\Data\060320\060321.D	Calibration	4	х	587	100.0000	0.2515
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1645	200.0000	0.3598
D:\GC-21\Data\060320\060323.D	Calibration	6	x	3354	500.0000	0.2872
D:\GC-21\Data\060320\060324.D	Calibration	7	х	6087	750.0000	0.3328
D:\GC-21\Data\060320\060325.D	Calibration	8	х	7787	1000.0000	0.3175
D:\GC-21\Data\060320\060326.D	Calibration	9	x	16276	2000.0000	0.3241
D:\GC-21\Data\060320\060327.D	Calibration	10	х	43251	5000.0000	0.3752

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Diethylphthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	517	10.0000	2.2830
D:\GC-21\Data\060320\060319.D	Calibration	2	x	772	20.0000	1.7913
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1457	40.0000	1.5593
D:\GC-21\Data\060320\060321.D	Calibration	4	x	3874	100.0000	1.6601
D:\GC-21\Data\060320\060322.D	Calibration	5	x	7283	200.0000	1.5926
D:\GC-21\Data\060320\060323.D	Calibration	6	х	17912	500.0000	1.5339
D:\GC-21\Data\060320\060324.D	Calibration	7	x	27632	750.0000	1.5108
D:\GC-21\Data\060320\060325.D	Calibration	8	х	37439	1000.0000	1.5267
D:\GC-21\Data\060320\060326.D	Calibration	9	х	75261	2000.0000	1.4986
D:\GC-21\Data\060320\060327.D	Calibration	10	x	190663	5000.0000	1.6542

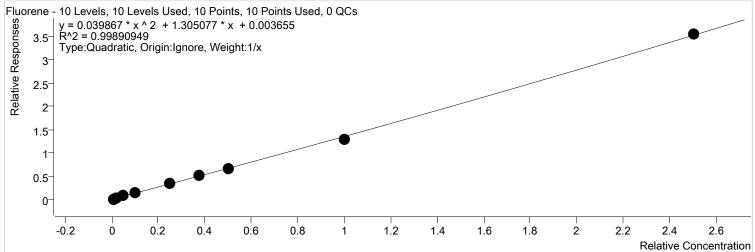

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

4-Chlorophenyl phenyl ether

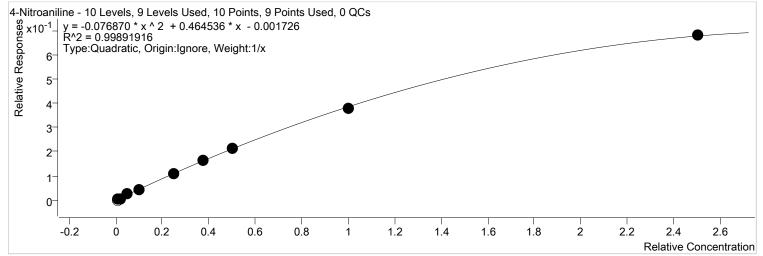


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	134	10.0000	0.5933
D:\GC-21\Data\060320\060319.D	Calibration	2	x	398	20.0000	0.9224
D:\GC-21\Data\060320\060320.D	Calibration	3	х	803	40.0000	0.8590
D:\GC-21\Data\060320\060321.D	Calibration	4	x	1693	100.0000	0.7254
D:\GC-21\Data\060320\060322.D	Calibration	5	х	2971	200.0000	0.6498
D:\GC-21\Data\060320\060323.D	Calibration	6	х	7485	500.0000	0.6409
D:\GC-21\Data\060320\060324.D	Calibration	7	х	12091	750.0000	0.6611
D:\GC-21\Data\060320\060325.D	Calibration	8	х	14390	1000.0000	0.5868
D:\GC-21\Data\060320\060326.D	Calibration	9	x	31349	2000.0000	0.6242
D:\GC-21\Data\060320\060327.D	Calibration	10	x	79024	5000.0000	0.6856

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Fluorene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	Х	509	10.0000	2.2467
D:\GC-21\Data\060320\060319.D	Calibration	2	x	634	20.0000	1.4717
D:\GC-21\Data\060320\060320.D	Calibration	3	X	1159	40.0000	1.2398
D:\GC-21\Data\060320\060321.D	Calibration	4	Х	3447	100.0000	1.4773
D:\GC-21\Data\060320\060322.D	Calibration	5	x	6524	200.0000	1.4266
D:\GC-21\Data\060320\060323.D	Calibration	6	х	16186	500.0000	1.3860
D:\GC-21\Data\060320\060324.D	Calibration	7	х	25255	750.0000	1.3809
D:\GC-21\Data\060320\060325.D	Calibration	8	x	32922	1000.0000	1.3425
D:\GC-21\Data\060320\060326.D	Calibration	9	х	64406	2000.0000	1.2824
D:\GC-21\Data\060320\060327.D	Calibration	10	х	163038	5000.0000	1.4145


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

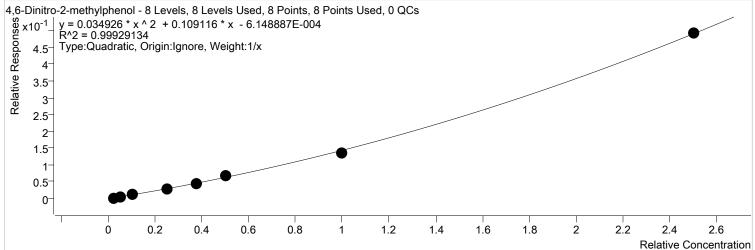
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

4-Nitroaniline

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		0	10.0000	0.0000
D:\GC-21\Data\060320\060319.D	Calibration	2	х	120	20.0000	0.2777
D:\GC-21\Data\060320\060320.D	Calibration	3	x	297	40.0000	0.3176
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1191	100.0000	0.5104
D:\GC-21\Data\060320\060322.D	Calibration	5	х	1948	200.0000	0.4260
D:\GC-21\Data\060320\060323.D	Calibration	6	x	5089	500.0000	0.4358
D:\GC-21\Data\060320\060324.D	Calibration	7	х	8033	750.0000	0.4392
D:\GC-21\Data\060320\060325.D	Calibration	8	x	10456	1000.0000	0.4264
D:\GC-21\Data\060320\060326.D	Calibration	9	х	18964	2000.0000	0.3776
D:\GC-21\Data\060320\060327.D	Calibration	10	х	31431	5000.0000	0.2727

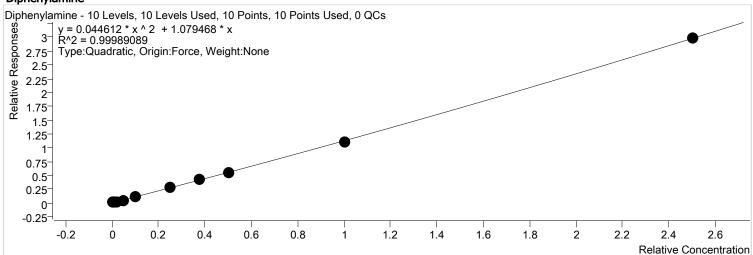

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

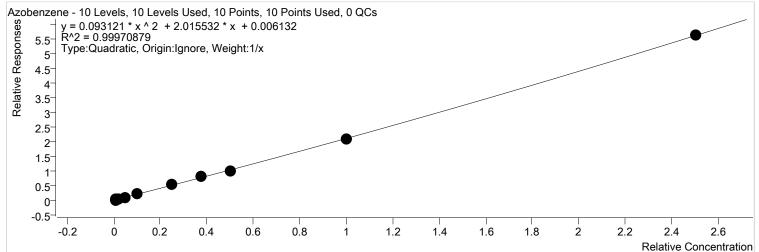
4,6-Dinitro-2-methylphenol



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060320.D	Calibration	3	х	73	40.0000	0.0778
D:\GC-21\Data\060320\060321.D	Calibration	4	x	199	100.0000	0.0855
D:\GC-21\Data\060320\060322.D	Calibration	5	х	539	200.0000	0.1178
D:\GC-21\Data\060320\060323.D	Calibration	6	х	1358	500.0000	0.1162
D:\GC-21\Data\060320\060324.D	Calibration	7	x	2207	750.0000	0.1207
D:\GC-21\Data\060320\060325.D	Calibration	8	х	3258	1000.0000	0.1329
D:\GC-21\Data\060320\060326.D	Calibration	9	х	6897	2000.0000	0.1373
D:\GC-21\Data\060320\060327.D	Calibration	10	x	22687	5000.0000	0.1968

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Diphenylamine

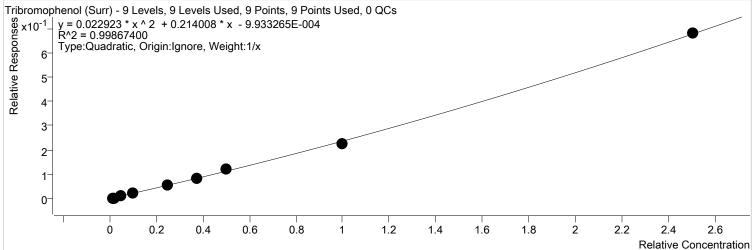


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	335	10.0000	1.4803
D:\GC-21\Data\060320\060319.D	Calibration	2	х	611	20.0000	1.4173
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1211	40.0000	1.2962
D:\GC-21\Data\060320\060321.D	Calibration	4	x	2368	100.0000	1.0147
D:\GC-21\Data\060320\060322.D	Calibration	5	x	5313	200.0000	1.1618
D:\GC-21\Data\060320\060323.D	Calibration	6	х	13357	500.0000	1.1438
D:\GC-21\Data\060320\060324.D	Calibration	7	x	20975	750.0000	1.1468
D:\GC-21\Data\060320\060325.D	Calibration	8	х	26642	1000.0000	1.0864
D:\GC-21\Data\060320\060326.D	Calibration	9	х	55894	2000.0000	1.1130
D:\GC-21\Data\060320\060327.D	Calibration	10	x	137344	5000.0000	1.1916

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Azobenzene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	697	10.0000	3.0757
D:\GC-21\Data\060320\060319.D	Calibration	2	х	1204	20.0000	2.7930
D:\GC-21\Data\060320\060320.D	Calibration	3	x	2187	40.0000	2.3399
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4770	100.0000	2.0442
D:\GC-21\Data\060320\060322.D	Calibration	5	x	9689	200.0000	2.1187
D:\GC-21\Data\060320\060323.D	Calibration	6	х	24511	500.0000	2.0990
D:\GC-21\Data\060320\060324.D	Calibration	7	х	39433	750.0000	2.1561
D:\GC-21\Data\060320\060325.D	Calibration	8	х	49724	1000.0000	2.0276
D:\GC-21\Data\060320\060326.D	Calibration	9	x	104771	2000.0000	2.0862
D:\GC-21\Data\060320\060327.D	Calibration	10	x	259894	5000.0000	2.2549


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

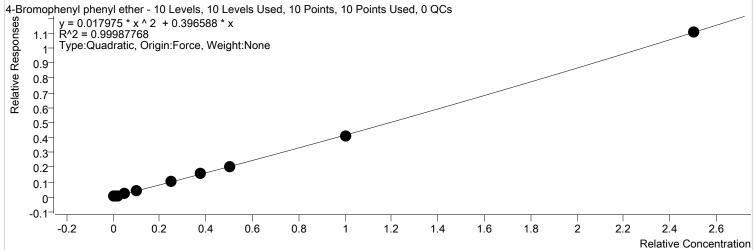
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Tribromophenol (Surr)

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	х	67	20.0000	0.1560
D:\GC-21\Data\060320\060320.D	Calibration	3	x	101	40.0000	0.1080
D:\GC-21\Data\060320\060321.D	Calibration	4	x	432	100.0000	0.1849
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1026	200.0000	0.2243
D:\GC-21\Data\060320\060323.D	Calibration	6	x	2543	500.0000	0.2178
D:\GC-21\Data\060320\060324.D	Calibration	7	х	4100	750.0000	0.2242
D:\GC-21\Data\060320\060325.D	Calibration	8	x	5802	1000.0000	0.2366
D:\GC-21\Data\060320\060326.D	Calibration	9	х	11218	2000.0000	0.2234
D:\GC-21\Data\060320\060327.D	Calibration	10	х	31382	5000.0000	0.2723

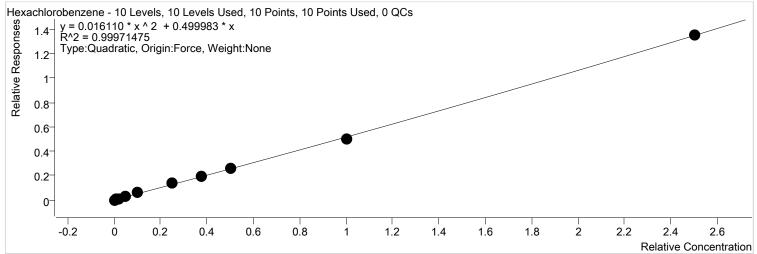

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

4-Bromophenyl phenyl ether

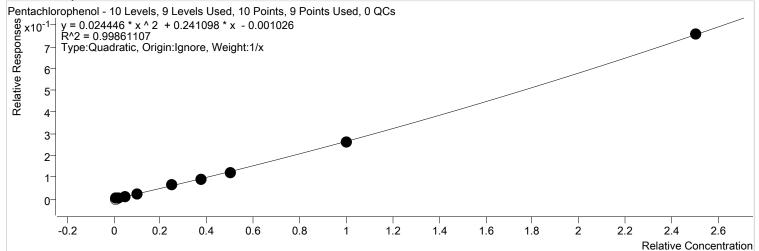


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	x	112	10.0000	0.4953
D:\GC-21\Data\060320\060319.D	Calibration	2	x	110	20.0000	0.2561
D:\GC-21\Data\060320\060320.D	Calibration	3	x	471	40.0000	0.5038
D:\GC-21\Data\060320\060321.D	Calibration	4	х	921	100.0000	0.3946
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2094	200.0000	0.4579
D:\GC-21\Data\060320\060323.D	Calibration	6	x	4866	500.0000	0.4167
D:\GC-21\Data\060320\060324.D	Calibration	7	x	7544	750.0000	0.4125
D:\GC-21\Data\060320\060325.D	Calibration	8	x	10123	1000.0000	0.4128
D:\GC-21\Data\060320\060326.D	Calibration	9	x	20484	2000.0000	0.4079
D:\GC-21\Data\060320\060327.D	Calibration	10	х	50927	5000.0000	0.4418

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Hexachlorobenzene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	72	10.0000	0.3180
D:\GC-21\Data\060320\060319.D	Calibration	2	x	297	20.0000	0.6884
D:\GC-21\Data\060320\060320.D	Calibration	3	х	519	40.0000	0.5559
D:\GC-21\Data\060320\060321.D	Calibration	4	х	1362	100.0000	0.5837
D:\GC-21\Data\060320\060322.D	Calibration	5	x	2599	200.0000	0.5684
D:\GC-21\Data\060320\060323.D	Calibration	6	х	6611	500.0000	0.5661
D:\GC-21\Data\060320\060324.D	Calibration	7	х	9520	750.0000	0.5205
D:\GC-21\Data\060320\060325.D	Calibration	8	х	12462	1000.0000	0.5082
D:\GC-21\Data\060320\060326.D	Calibration	9	х	25405	2000.0000	0.5059
D:\GC-21\Data\060320\060327.D	Calibration	10	х	62332	5000.0000	0.5408


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

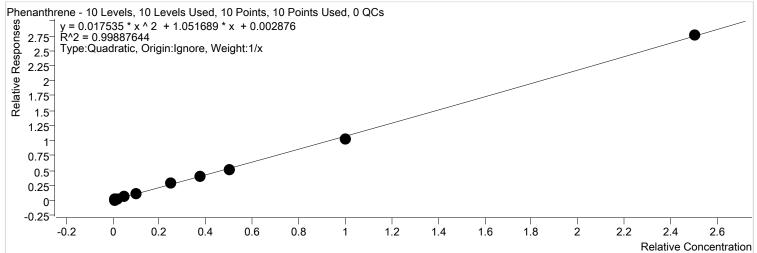
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Pentachlorophenol

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1		0	10.0000	0.0000
D:\GC-21\Data\060320\060319.D	Calibration	2	x	70	20.0000	0.1628
D:\GC-21\Data\060320\060320.D	Calibration	3	х	116	40.0000	0.1240
D:\GC-21\Data\060320\060321.D	Calibration	4	x	547	100.0000	0.2346
D:\GC-21\Data\060320\060322.D	Calibration	5	x	1141	200.0000	0.2496
D:\GC-21\Data\060320\060323.D	Calibration	6	х	3197	500.0000	0.2737
D:\GC-21\Data\060320\060324.D	Calibration	7	x	4531	750.0000	0.2478
D:\GC-21\Data\060320\060325.D	Calibration	8	х	5790	1000.0000	0.2361
D:\GC-21\Data\060320\060326.D	Calibration	9	х	13116	2000.0000	0.2612
D:\GC-21\Data\060320\060327.D	Calibration	10	x	34879	5000.0000	0.3026

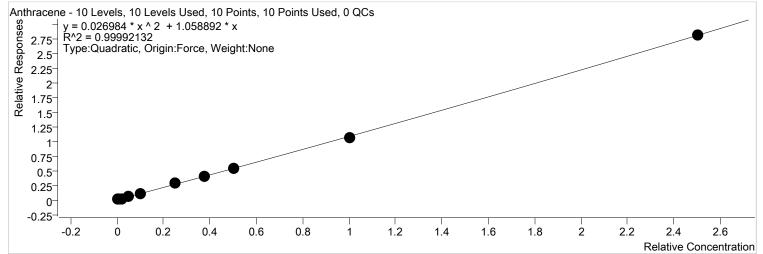

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

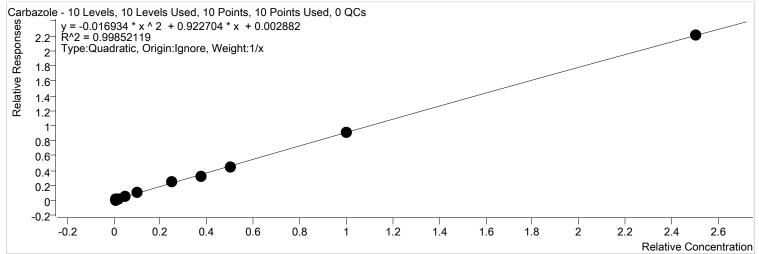
Phenanthrene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	611	10.0000	1.5782
D:\GC-21\Data\060320\060319.D	Calibration	2	x	918	20.0000	1.2169
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1908	40.0000	1.1819
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4717	100.0000	1.1638
D:\GC-21\Data\060320\060322.D	Calibration	5	x	9208	200.0000	1.1614
D:\GC-21\Data\060320\060323.D	Calibration	6	х	23872	500.0000	1.1776
D:\GC-21\Data\060320\060324.D	Calibration	7	х	34693	750.0000	1.0733
D:\GC-21\Data\060320\060325.D	Calibration	8	x	44090	1000.0000	1.0318
D:\GC-21\Data\060320\060326.D	Calibration	9	х	89923	2000.0000	1.0357
D:\GC-21\Data\060320\060327.D	Calibration	10	x	227978	5000.0000	1.1025

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

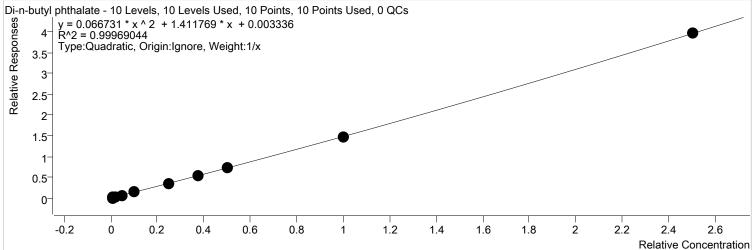
Anthracene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	611	10.0000	1.5782
D:\GC-21\Data\060320\060319.D	Calibration	2	x	922	20.0000	1.2227
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1757	40.0000	1.0881
D:\GC-21\Data\060320\060321.D	Calibration	4	x	4493	100.0000	1.1086
D:\GC-21\Data\060320\060322.D	Calibration	5	x	8962	200.0000	1.1303
D:\GC-21\Data\060320\060323.D	Calibration	6	х	23088	500.0000	1.1389
D:\GC-21\Data\060320\060324.D	Calibration	7	x	34258	750.0000	1.0599
D:\GC-21\Data\060320\060325.D	Calibration	8	х	46263	1000.0000	1.0827
D:\GC-21\Data\060320\060326.D	Calibration	9	x	93427	2000.0000	1.0760
D:\GC-21\Data\060320\060327.D	Calibration	10	x	233021	5000.0000	1.1269

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Carbazole

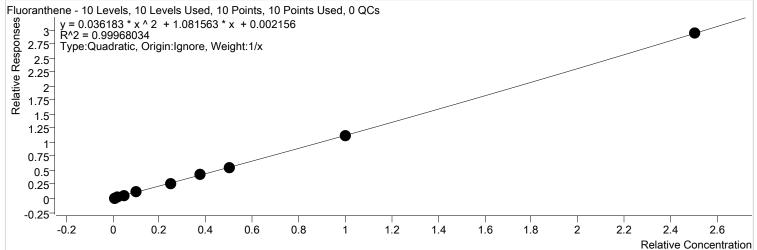


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	580	10.0000	1.4991
D:\GC-21\Data\060320\060319.D	Calibration	2	x	1041	20.0000	1.3803
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1291	40.0000	0.7995
D:\GC-21\Data\060320\060321.D	Calibration	4	x	3914	100.0000	0.9658
D:\GC-21\Data\060320\060322.D	Calibration	5	x	8283	200.0000	1.0448
D:\GC-21\Data\060320\060323.D	Calibration	6	х	20534	500.0000	1.0129
D:\GC-21\Data\060320\060324.D	Calibration	7	x	28291	750.0000	0.8752
D:\GC-21\Data\060320\060325.D	Calibration	8	x	38559	1000.0000	0.9024
D:\GC-21\Data\060320\060326.D	Calibration	9	х	78763	2000.0000	0.9071
D:\GC-21\Data\060320\060327.D	Calibration	10	x	182513	5000.0000	0.8826

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:44 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Di-n-butyl phthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	697	10.0000	1.8004
D:\GC-21\Data\060320\060319.D	Calibration	2	x	1482	20.0000	1.9657
D:\GC-21\Data\060320\060320.D	Calibration	3	X	2453	40.0000	1.5189
D:\GC-21\Data\060320\060321.D	Calibration	4	х	6077	100.0000	1.4996
D:\GC-21\Data\060320\060322.D	Calibration	5	x	12536	200.0000	1.5812
D:\GC-21\Data\060320\060323.D	Calibration	6	X	29346	500.0000	1.4476
D:\GC-21\Data\060320\060324.D	Calibration	7	х	45716	750.0000	1.4144
D:\GC-21\Data\060320\060325.D	Calibration	8	x	62483	1000.0000	1.4623
D:\GC-21\Data\060320\060326.D	Calibration	9	X	127446	2000.0000	1.4679
D:\GC-21\Data\060320\060327.D	Calibration	10	х	327178	5000.0000	1.5822

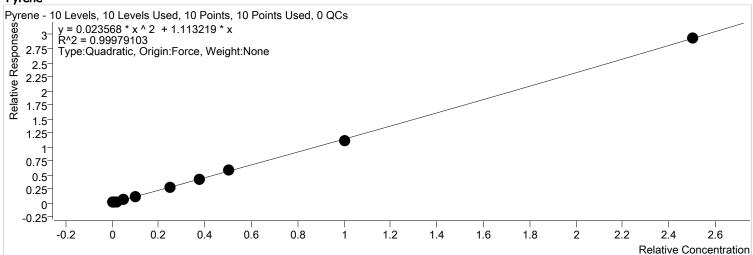

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:44 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Fluoranthene

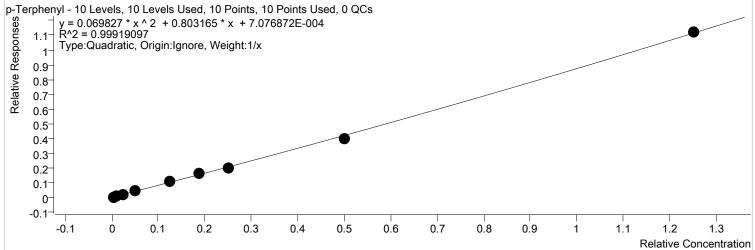


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	662	10.0000	1.7091
D:\GC-21\Data\060320\060319.D	Calibration	2	x	923	20.0000	1.2237
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1756	40.0000	1.0876
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4200	100.0000	1.0363
D:\GC-21\Data\060320\060322.D	Calibration	5	x	9313	200.0000	1.1746
D:\GC-21\Data\060320\060323.D	Calibration	6	х	21847	500.0000	1.0777
D:\GC-21\Data\060320\060324.D	Calibration	7	х	36405	750.0000	1.1263
D:\GC-21\Data\060320\060325.D	Calibration	8	x	47609	1000.0000	1.1142
D:\GC-21\Data\060320\060326.D	Calibration	9	х	96129	2000.0000	1.1072
D:\GC-21\Data\060320\060327.D	Calibration	10	x	242789	5000.0000	1.1741

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:45 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Pyrene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	434	10.0000	1.1217
D:\GC-21\Data\060320\060319.D	Calibration	2	x	1091	20.0000	1.4471
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1604	40.0000	0.9933
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4607	100.0000	1.1366
D:\GC-21\Data\060320\060322.D	Calibration	5	x	9569	200.0000	1.2070
D:\GC-21\Data\060320\060323.D	Calibration	6	х	22928	500.0000	1.1310
D:\GC-21\Data\060320\060324.D	Calibration	7	х	36042	750.0000	1.1151
D:\GC-21\Data\060320\060325.D	Calibration	8	x	50700	1000.0000	1.1865
D:\GC-21\Data\060320\060326.D	Calibration	9	х	96813	2000.0000	1.1150
D:\GC-21\Data\060320\060327.D	Calibration	10	x	242573	5000.0000	1.1730


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

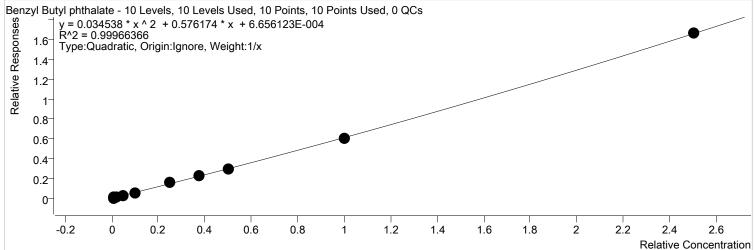
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

p-Terphenyl

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	227	5.0000	1.1732
D:\GC-21\Data\060320\060319.D	Calibration	2	x	293	10.0000	0.7762
D:\GC-21\Data\060320\060320.D	Calibration	3	х	703	20.0000	0.8714
D:\GC-21\Data\060320\060321.D	Calibration	4	x	1692	50.0000	0.8352
D:\GC-21\Data\060320\060322.D	Calibration	5	x	3423	100.0000	0.8636
D:\GC-21\Data\060320\060323.D	Calibration	6	х	8716	250.0000	0.8599
D:\GC-21\Data\060320\060324.D	Calibration	7	x	13854	375.0000	0.8572
D:\GC-21\Data\060320\060325.D	Calibration	8	x	17395	500.0000	0.8142
D:\GC-21\Data\060320\060326.D	Calibration	9	х	34958	1000.0000	0.8052
D:\GC-21\Data\060320\060327.D	Calibration	10	x	92594	2500.0000	0.8955


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

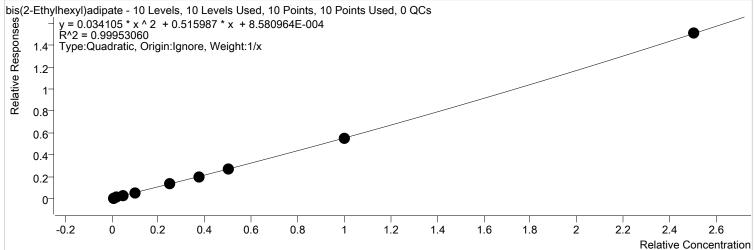
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Benzyl Butyl phthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	283	10.0000	0.7306
D:\GC-21\Data\060320\060319.D	Calibration	2	x	518	20.0000	0.6875
D:\GC-21\Data\060320\060320.D	Calibration	3	х	842	40.0000	0.5215
D:\GC-21\Data\060320\060321.D	Calibration	4	x	2399	100.0000	0.5919
D:\GC-21\Data\060320\060322.D	Calibration	5	х	4612	200.0000	0.5818
D:\GC-21\Data\060320\060323.D	Calibration	6	x	12479	500.0000	0.6156
D:\GC-21\Data\060320\060324.D	Calibration	7	х	19523	750.0000	0.6040
D:\GC-21\Data\060320\060325.D	Calibration	8	x	25283	1000.0000	0.5917
D:\GC-21\Data\060320\060326.D	Calibration	9	х	51975	2000.0000	0.5986
D:\GC-21\Data\060320\060327.D	Calibration	10	х	137388	5000.0000	0.6644


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

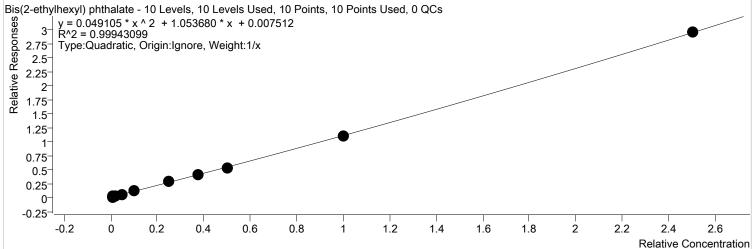
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

bis(2-Ethylhexyl)adipate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	283	10.0000	0.7304
D:\GC-21\Data\060320\060319.D	Calibration	2	x	344	20.0000	0.4565
D:\GC-21\Data\060320\060320.D	Calibration	3	х	994	40.0000	0.6155
D:\GC-21\Data\060320\060321.D	Calibration	4	х	2322	100.0000	0.5730
D:\GC-21\Data\060320\060322.D	Calibration	5	x	4123	200.0000	0.5201
D:\GC-21\Data\060320\060323.D	Calibration	6	х	11309	500.0000	0.5579
D:\GC-21\Data\060320\060324.D	Calibration	7	x	17251	750.0000	0.5337
D:\GC-21\Data\060320\060325.D	Calibration	8	х	22486	1000.0000	0.5262
D:\GC-21\Data\060320\060326.D	Calibration	9	х	47091	2000.0000	0.5424
D:\GC-21\Data\060320\060327.D	Calibration	10	x	124682	5000.0000	0.6029


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

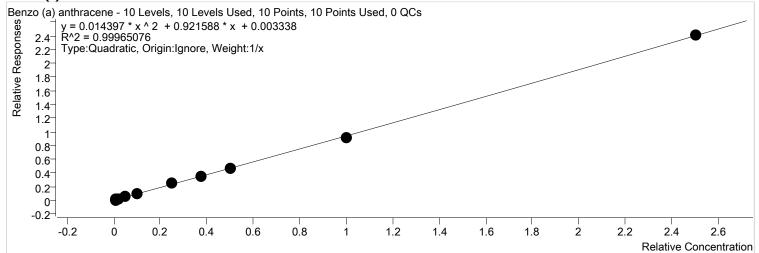
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Bis(2-ethylhexyl) phthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	841	10.0000	2.6584
D:\GC-21\Data\060320\060319.D	Calibration	2	x	1122	20.0000	1.8496
D:\GC-21\Data\060320\060320.D	Calibration	3	x	1489	40.0000	1.1418
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4080	100.0000	1.2510
D:\GC-21\Data\060320\060322.D	Calibration	5	x	8047	200.0000	1.2155
D:\GC-21\Data\060320\060323.D	Calibration	6	x	19248	500.0000	1.1304
D:\GC-21\Data\060320\060324.D	Calibration	7	х	29583	750.0000	1.1062
D:\GC-21\Data\060320\060325.D	Calibration	8	x	37894	1000.0000	1.0750
D:\GC-21\Data\060320\060326.D	Calibration	9	x	78000	2000.0000	1.0933
D:\GC-21\Data\060320\060327.D	Calibration	10	х	206402	5000.0000	1.1821

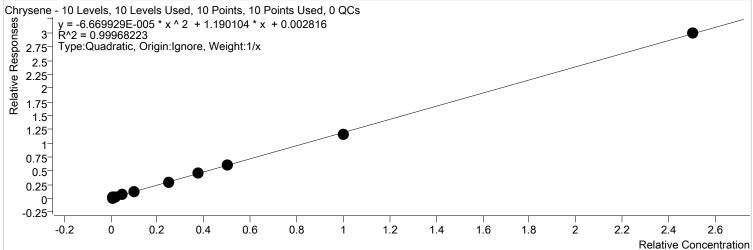

 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

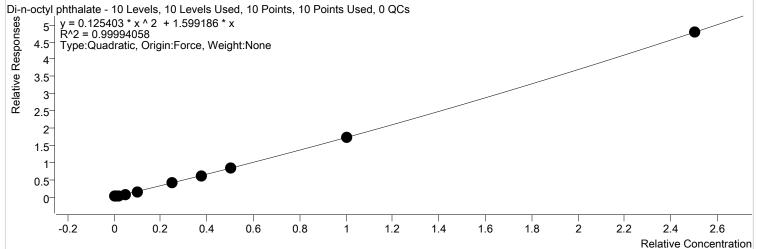
Benzo (a) anthracene



Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	x	558	10.0000	1.4403
D:\GC-21\Data\060320\060319.D	Calibration	2	x	1026	20.0000	1.3604
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1786	40.0000	1.1064
D:\GC-21\Data\060320\060321.D	Calibration	4	x	4087	100.0000	1.0084
D:\GC-21\Data\060320\060322.D	Calibration	5	х	7332	200.0000	0.9248
D:\GC-21\Data\060320\060323.D	Calibration	6	х	19863	500.0000	0.9798
D:\GC-21\Data\060320\060324.D	Calibration	7	x	31028	750.0000	0.9599
D:\GC-21\Data\060320\060325.D	Calibration	8	х	39542	1000.0000	0.9254
D:\GC-21\Data\060320\060326.D	Calibration	9	x	79894	2000.0000	0.9202
D:\GC-21\Data\060320\060327.D	Calibration	10	x	198821	5000.0000	0.9615

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:45 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Chrysene

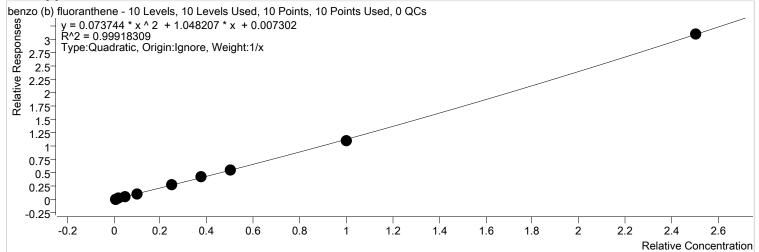


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	557	10.0000	1.7589
D:\GC-21\Data\060320\060319.D	Calibration	2	x	827	20.0000	1.3629
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1709	40.0000	1.3101
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4278	100.0000	1.3118
D:\GC-21\Data\060320\060322.D	Calibration	5	x	8414	200.0000	1.2710
D:\GC-21\Data\060320\060323.D	Calibration	6	х	20328	500.0000	1.1939
D:\GC-21\Data\060320\060324.D	Calibration	7	х	32980	750.0000	1.2332
D:\GC-21\Data\060320\060325.D	Calibration	8	x	42278	1000.0000	1.1994
D:\GC-21\Data\060320\060326.D	Calibration	9	х	82968	2000.0000	1.1629
D:\GC-21\Data\060320\060327.D	Calibration	10	x	208631	5000.0000	1.1949

Batch PathD:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.binAnalysis Time6/4/2020 10:24:14 AMAnalyst NameFA\labReport Time6/4/2020 10:26:45 AMReporter NamelabLast Calib Update6/4/2020 10:23:34 AMBatch StateProcessed

Di-n-octyl phthalate

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	741	10.0000	2.3397
D:\GC-21\Data\060320\060319.D	Calibration	2	x	941	20.0000	1.5516
D:\GC-21\Data\060320\060320.D	Calibration	3	х	2100	40.0000	1.6102
D:\GC-21\Data\060320\060321.D	Calibration	4	x	5009	100.0000	1.5359
D:\GC-21\Data\060320\060322.D	Calibration	5	x	10332	200.0000	1.5607
D:\GC-21\Data\060320\060323.D	Calibration	6	х	27284	500.0000	1.6024
D:\GC-21\Data\060320\060324.D	Calibration	7	x	42446	750.0000	1.5872
D:\GC-21\Data\060320\060325.D	Calibration	8	х	60271	1000.0000	1.7098
D:\GC-21\Data\060320\060326.D	Calibration	9	х	123004	2000.0000	1.7241
D:\GC-21\Data\060320\060327.D	Calibration	10	x	333945	5000.0000	1.9126


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

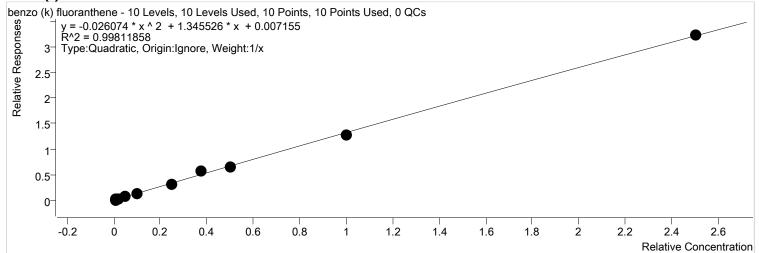
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

benzo (b) fluoranthene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	934	10.0000	2.9506
D:\GC-21\Data\060320\060319.D	Calibration	2	x	966	20.0000	1.5918
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1684	40.0000	1.2912
D:\GC-21\Data\060320\060321.D	Calibration	4	x	3473	100.0000	1.0650
D:\GC-21\Data\060320\060322.D	Calibration	5	x	6899	200.0000	1.0420
D:\GC-21\Data\060320\060323.D	Calibration	6	х	19846	500.0000	1.1655
D:\GC-21\Data\060320\060324.D	Calibration	7	x	30002	750.0000	1.1219
D:\GC-21\Data\060320\060325.D	Calibration	8	х	39092	1000.0000	1.1090
D:\GC-21\Data\060320\060326.D	Calibration	9	х	79266	2000.0000	1.1110
D:\GC-21\Data\060320\060327.D	Calibration	10	x	215976	5000.0000	1.2369


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

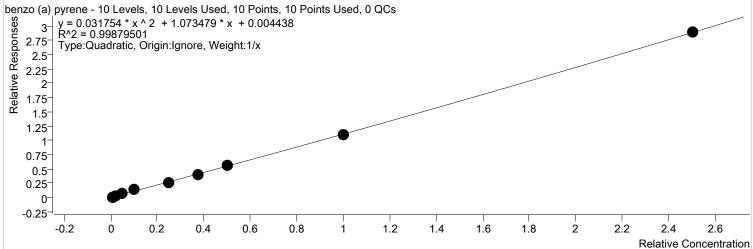
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

benzo (k) fluoranthene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	903	10.0000	2.8516
D:\GC-21\Data\060320\060319.D	Calibration	2	x	1267	20.0000	2.0883
D:\GC-21\Data\060320\060320.D	Calibration	3	x	2073	40.0000	1.5894
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4687	100.0000	1.4373
D:\GC-21\Data\060320\060322.D	Calibration	5	x	9496	200.0000	1.4344
D:\GC-21\Data\060320\060323.D	Calibration	6	х	22448	500.0000	1.3184
D:\GC-21\Data\060320\060324.D	Calibration	7	х	40800	750.0000	1.5257
D:\GC-21\Data\060320\060325.D	Calibration	8	x	45724	1000.0000	1.2971
D:\GC-21\Data\060320\060326.D	Calibration	9	х	92105	2000.0000	1.2910
D:\GC-21\Data\060320\060327.D	Calibration	10	x	224810	5000.0000	1.2875


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

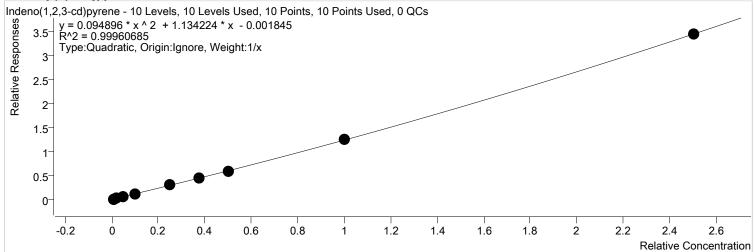
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

benzo (a) pyrene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	663	10.0000	2.0944
D:\GC-21\Data\060320\060319.D	Calibration	2	х	746	20.0000	1.2292
D:\GC-21\Data\060320\060320.D	Calibration	3	х	1590	40.0000	1.2195
D:\GC-21\Data\060320\060321.D	Calibration	4	х	4133	100.0000	1.2673
D:\GC-21\Data\060320\060322.D	Calibration	5	х	8770	200.0000	1.3247
D:\GC-21\Data\060320\060323.D	Calibration	6	х	17768	500.0000	1.0435
D:\GC-21\Data\060320\060324.D	Calibration	7	х	28625	750.0000	1.0704
D:\GC-21\Data\060320\060325.D	Calibration	8	х	39236	1000.0000	1.1131
D:\GC-21\Data\060320\060326.D	Calibration	9	х	78482	2000.0000	1.1000
D:\GC-21\Data\060320\060327.D	Calibration	10	х	201911	5000.0000	1.1564


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

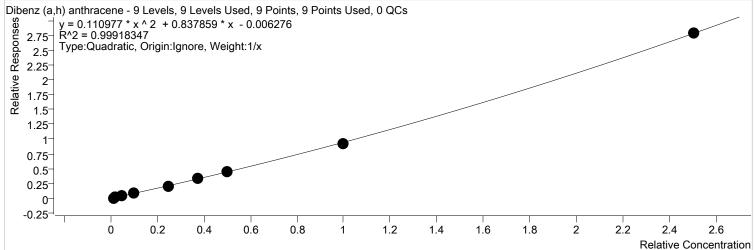
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Indeno(1,2,3-cd)pyrene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	406	10.0000	1.1733
D:\GC-21\Data\060320\060319.D	Calibration	2	x	583	20.0000	0.8638
D:\GC-21\Data\060320\060320.D	Calibration	3	x	1133	40.0000	0.7958
D:\GC-21\Data\060320\060321.D	Calibration	4	х	3676	100.0000	1.0224
D:\GC-21\Data\060320\060322.D	Calibration	5	x	7901	200.0000	1.1125
D:\GC-21\Data\060320\060323.D	Calibration	6	x	21760	500.0000	1.1520
D:\GC-21\Data\060320\060324.D	Calibration	7	х	34954	750.0000	1.1894
D:\GC-21\Data\060320\060325.D	Calibration	8	x	44893	1000.0000	1.1610
D:\GC-21\Data\060320\060326.D	Calibration	9	x	99570	2000.0000	1.2398
D:\GC-21\Data\060320\060327.D	Calibration	10	х	258009	5000.0000	1.3689


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

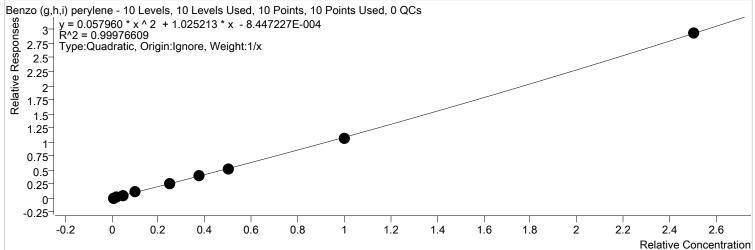
 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Dibenz (a,h) anthracene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060319.D	Calibration	2	х	111	20.0000	0.1646
D:\GC-21\Data\060320\060320.D	Calibration	3	x	740	40.0000	0.5199
D:\GC-21\Data\060320\060321.D	Calibration	4	х	2652	100.0000	0.7375
D:\GC-21\Data\060320\060322.D	Calibration	5	х	6144	200.0000	0.8651
D:\GC-21\Data\060320\060323.D	Calibration	6	x	14104	500.0000	0.7467
D:\GC-21\Data\060320\060324.D	Calibration	7	х	26521	750.0000	0.9025
D:\GC-21\Data\060320\060325.D	Calibration	8	х	34835	1000.0000	0.9009
D:\GC-21\Data\060320\060326.D	Calibration	9	х	74688	2000.0000	0.9300
D:\GC-21\Data\060320\060327.D	Calibration	10	х	209949	5000.0000	1.1139


 Batch Path
 D:\GC-21\Data\060320\QuantResults\SEMI CAL.batch.bin

 Analysis Time
 6/4/2020 10:24:14 AM
 Analyst Name
 FA\lab

 Report Time
 6/4/2020 10:26:45 AM
 Reporter Name
 lab

 Last Calib Update
 6/4/2020 10:23:34 AM
 Batch State
 Processed

Benzo (g,h,i) perylene

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor
D:\GC-21\Data\060320\060318.D	Calibration	1	х	338	10.0000	0.9777
D:\GC-21\Data\060320\060319.D	Calibration	2	х	585	20.0000	0.8670
D:\GC-21\Data\060320\060320.D	Calibration	3	x	1334	40.0000	0.9366
D:\GC-21\Data\060320\060321.D	Calibration	4	х	3418	100.0000	0.9507
D:\GC-21\Data\060320\060322.D	Calibration	5	x	7638	200.0000	1.0755
D:\GC-21\Data\060320\060323.D	Calibration	6	х	19330	500.0000	1.0233
D:\GC-21\Data\060320\060324.D	Calibration	7	х	31635	750.0000	1.0765
D:\GC-21\Data\060320\060325.D	Calibration	8	х	40851	1000.0000	1.0565
D:\GC-21\Data\060320\060326.D	Calibration	9	х	85604	2000.0000	1.0659
D:\GC-21\Data\060320\060327.D	Calibration	10	х	220822	5000.0000	1.1716

Kryn Madiane

Semivolatile Calibration

Analyst: Sum Berman

Cal		ICV		
8270 Megamix:	23298	8270 Megamix:	23297	
2,4-DNP:	23446	2,4-DNP:	23305	
Benzoic Acid:	23303	Benzoic Acid:	23302	

TOO IT CO

8270 Surrogate:

23454 / 237/2

1s 23709

	Spike Conc. (ppb)	BN/Acid Surr Conc. (ppb)	2° Spike (uL)	B/N Surr (uL)	Internal Standard (uL)	Remove (uL)	Final Vol. (mL)	Comments
61	10	10/5	1		10	11	1	
	20	20/10	2		10	12	1	
	40	40/20	4		10	14	· 1	
	100	100/50	10		10	20	1	
	200	200/100	20	AND 1600	10	30	1	
	500	500/250	40-50		10	60	11	
	75 0	750/375	75 %	514	10	85	1	
	1000	1000/500	100 ຶ້		10	110	1	
	2000	2000/1000	200		10	210	1	
	5000	5000/2500	500		10	510	1	
	ICB	1000/500		1	10	11	1	*,
ZV	ICV (1000 ppb)	1000/500	100 (2° SS)	1	10	- 110 - if		
*			11111			8m51	1.10	

				· / /	15/10
	Mega Mix (uL)	2,4-DNP (uL)	Benzoic Acid (uL)	8270 Surr (uL)	Final Volume (mL)
2° Intermediate (cal)	100	100	100	100	10
2° Intermediate (SS)	50	50	50	50	5

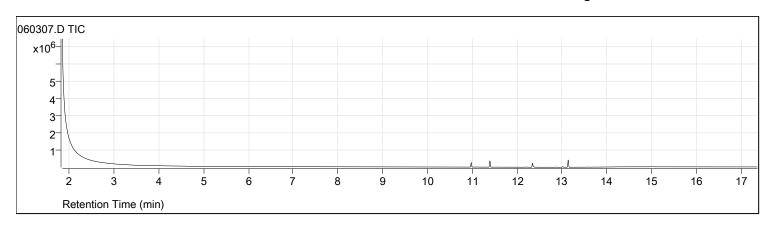
Signature and Date:

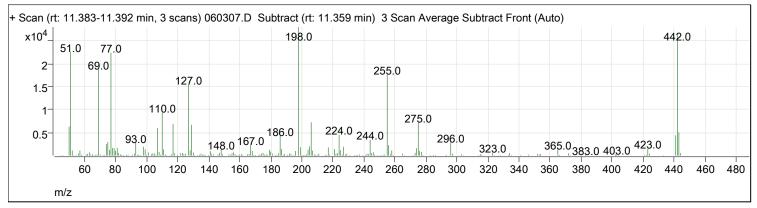
Signature: EM

700 Building Calibration Template - SVOC v1.1

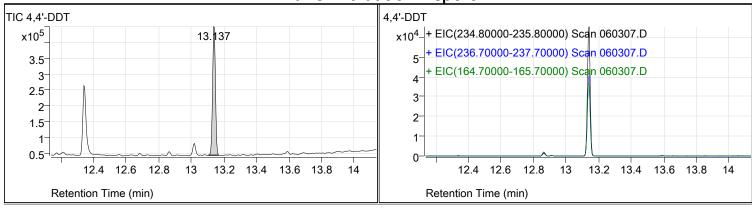
1 of 1

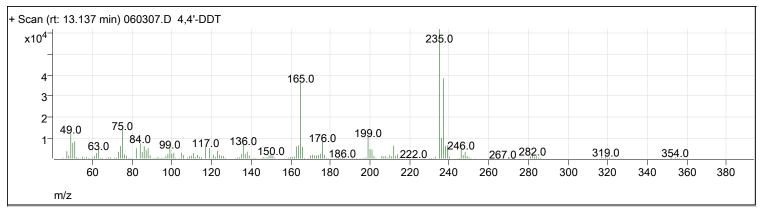
Official Approval: 11/14/2019

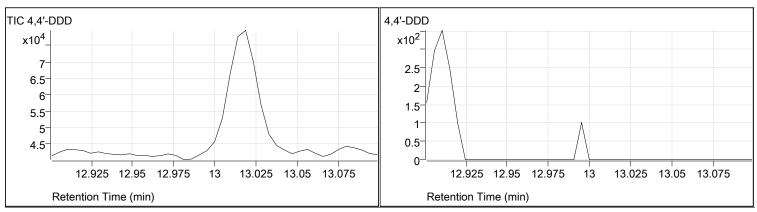

Tunes

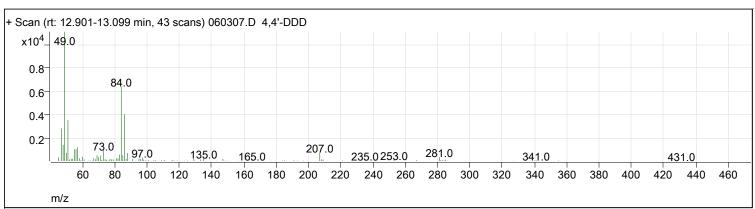

Data Path: D:\GC-21\Data\060320\060307.D

Acq on: 6/3/2020 10:29:33 AM

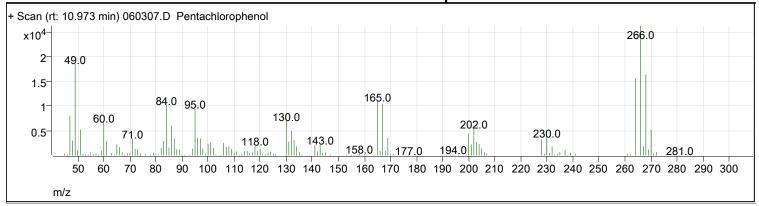

Operator: SNB
Sample: TUNE
Inst Name: GC-21
ALS Vial: 1

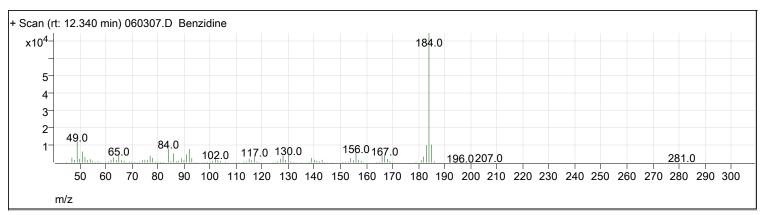

Method: D:\MassHunter\Methods\Quant\DFTPPwBreak&TailingGC218270E.m





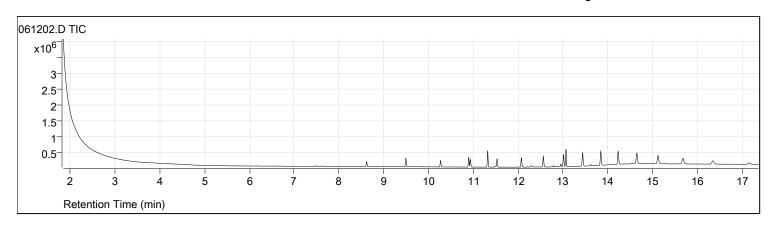
Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	1.4	255	Pass
70	69	0	2	1.5	286	Pass
197	198	0	2	0.0	0	Pass
198	198	100	100	100.0	27925	Pass
199	198	5	9	6.5	1812	Pass
365	198	1	100	4.7	1314	Pass
441	443	1E-10	150	87.1	4417	Pass
442	442	100	100	100.0	26549	Pass
443	442	15	24	19.1	5069	Pass
69	69	100	100	100.0	18724	Pass

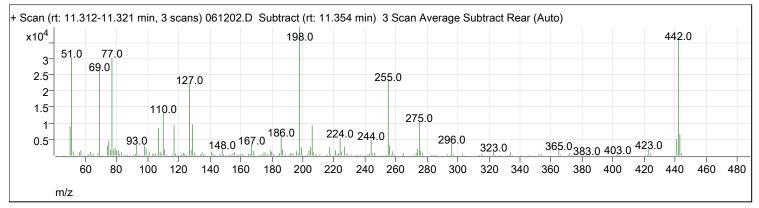




Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	13.137	13.137	495796	0.0	Pass
4,4'-DDD	13.000	0.000	0		

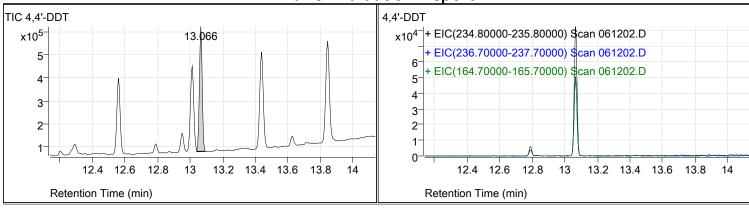
Generated: 10:29:36 AM 6/4/2020

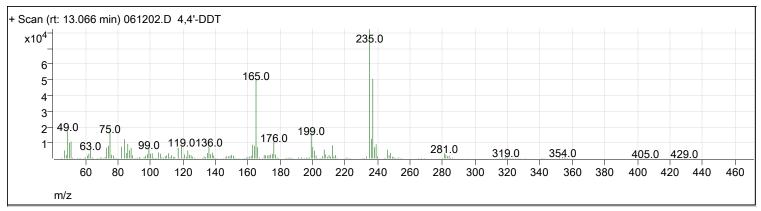

Compound Name	Expected RT	Observed RT	Tailing Factor	PGF	Pass/Fail
Pentachlorophenol	10.900	10.973	1.2	3.4	Pass
Benzidine	12.400	12.340	1.8	2.9	Pass

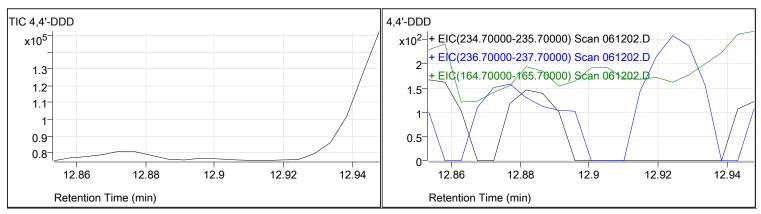

Data Path: D:\GC-21\Data\061220\061202.D

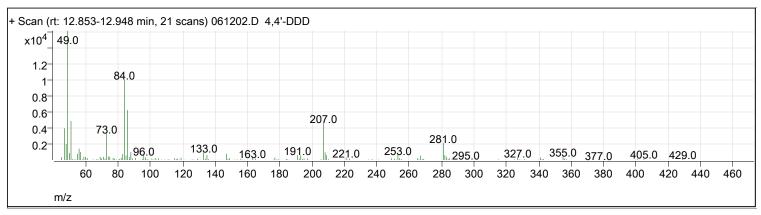
6/12/2020 9:57:34 AM Acq on:

Operator: **SNB** Sample: **TUNE** Inst Name: GC-21 ALS Vial: 1

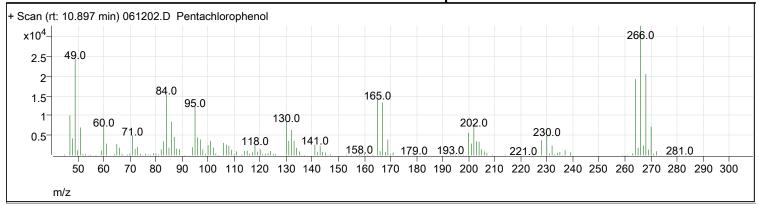

D:\MassHunter\Methods\Quant\DFTPPwBreak&TailingGC218270E.m Method:

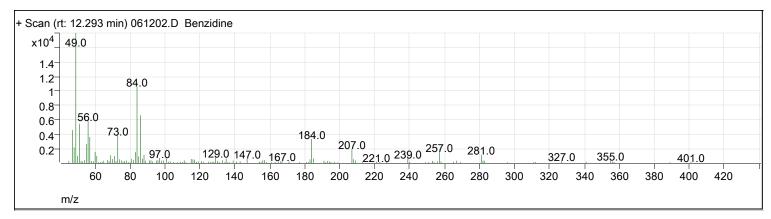





Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	2.7	713	Fail
70	69	0	2	0.6	154	Pass
197	198	0	2	1.8	708	Pass
198	198	100	100	100.0	39784	Pass
199	198	5	9	6.5	2569	Pass
365	198	1	100	4.5	1787	Pass
441	443	1E-10	150	76.6	5062	Pass
442	442	100	100	100.0	35723	Pass
443	442	15	24	18.5	6611	Pass
69	69	100	100	100.0	26213	Pass

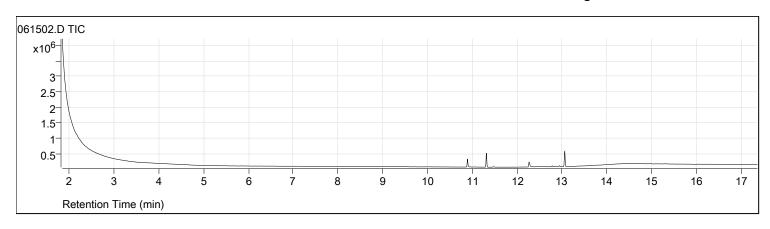
Generated: 1:27:05 PM 6/12/2020

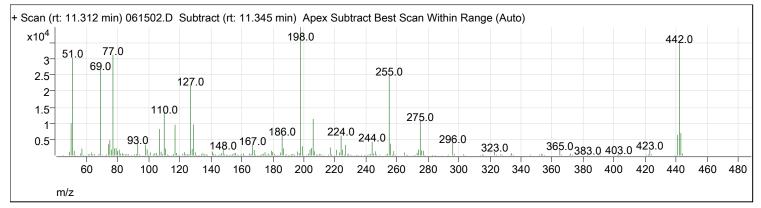




Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	13.137	13.066	642047	0.0	Pass
4,4'-DDD	12.900	0.000	0		

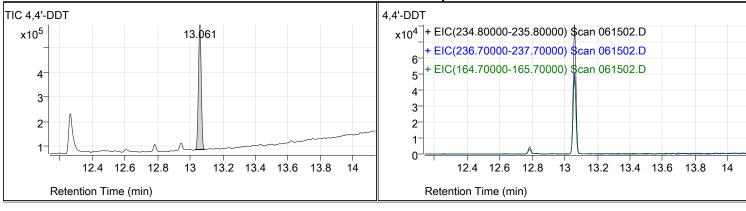
Generated: 1:27:05 PM 6/12/2020

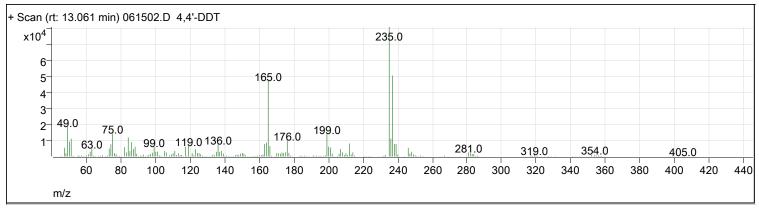

Compound Name	Expected RT	Observed RT	Tailing Factor	PGF	Pass/Fail
Pentachlorophenol	10.900	10.897	1.0	7.9	Pass
Benzidine	12.400	12.293	1.2	5.2	Pass

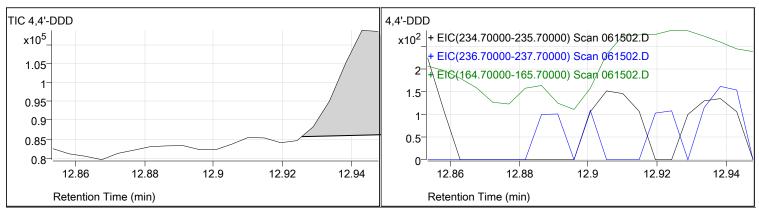

Data Path: D:\GC-21\Data\061520\061502.D

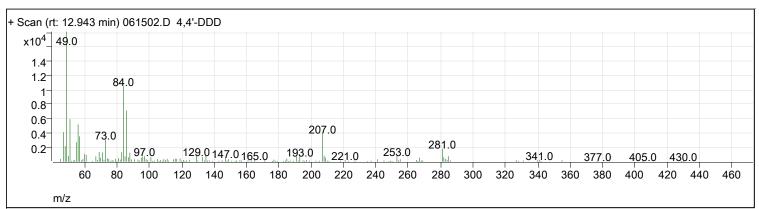
Acq on: 6/15/2020 9:55:56 AM

Operator: SNB
Sample: TUNE
Inst Name: GC-21
ALS Vial: 1

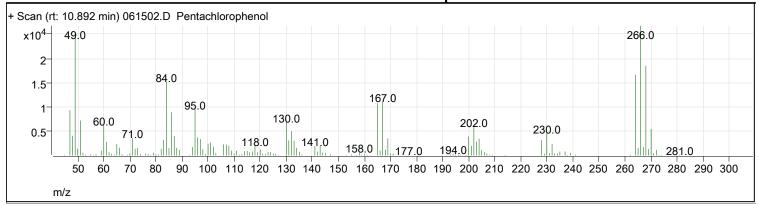

Method: D:\MassHunter\Methods\Quant\DFTPPwBreak&TailingGC218270E.m

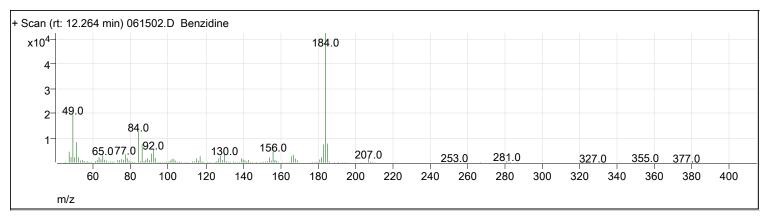





Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	1.9	510	Pass
70	69	0	2	0.9	228	Pass
197	198	0	2	1.8	704	Pass
198	198	100	100	100.0	39880	Pass
199	198	5	9	7.2	2855	Pass
365	198	1	100	4.3	1712	Pass
441	443	1E-10	150	92.3	6404	Pass
442	442	100	100	100.0	34888	Pass
443	442	15	24	19.9	6942	Pass
69	69	100	100	100.0	26598	Pass

Generated: 10:56:59 AM 6/15/2020





Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	13.137	13.061	605045	5.3	Pass
4,4'-DDD	12.900	12.943	33942		

Generated: 10:56:59 AM 6/15/2020

Compound Name	Expected RT	Observed RT	Tailing Factor	PGF	Pass/Fail
Pentachlorophenol	10.900	10.892	1.0	5.5	Pass
Benzidine	12.400	12.264	2.6	4.1	Fail

Generated: 10:56:59 AM 6/15/2020

DATA SET for Review -- **Deliverable Requirements**

Metals Analysis by EPA 200.8

Fremont Analytical Work Order No. 2006085

Libby Environmental

Project Name: Hardel Site

Project No. L200603-7

This Data contains the following:

- Analytical Sequence Summary for Work Order 2006085
- Calibration Information for Work Order 2006085
- Tune Information for Work Order 2006085

Dataset Report

User Name: lab Computer Name: DT28

 $Dataset\ File\ Path:\ C:\ Users\ Public\ Documents\ PerkinElmer\ Syngistix\ ICPMS\ DataSet\ June 2020\ 060820co\ New 2020\ N$

Report Date/Time: Tuesday, June 09, 2020 10:27:26

The Dataset

		The Dataset	
Batch ID	Sample ID	Date and Time Read Type	Samp. File Name Description
	wash	08:48:24 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	wash	08:53:58 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	wash	08:59:34 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	wash	09:05:08 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	CAL BLK IS 22718	09:10:42 Mon 08-JBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 1	09:16:16 Mon 08-JStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 2	09:21:50 Mon 08-JStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 3	09:27:24 Mon 08-JStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 4	09:32:57 Mon 08-JStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 5	09:38:31 Mon 08-JStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 6	09:44:05 Mon 08-JStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 7	09:49:39 Mon 08-JStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 8	09:55:13 Mon 08-JStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 9	10:00:47 Mon 08-JStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 10	10:06:20 Mon 08-JStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	Standard 11	10:11:54 Mon 08-JStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	WASH	10:17:30 Mon 08-JQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	ICB	10:23:04 Mon 08-JQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	ICV LL	10:28:38 Mon 08-JQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	ICV	10:35:17 Mon 08-JQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	ICSA	10:59:25 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	ICSAB	11:04:58 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	wash	11:10:34 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	LCS-28562	11:16:08 Mon 08-JSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\June2020\0608
	2006001-002A 5X	11:21:42 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
	CCV	11:27:51 Mon 08-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	CCB	11:33:25 Mon 08-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	MB-28580	13:22:18 Mon 08-JSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	LCS-28580	13:27:52 Mon 08-JSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006087-001C	13:33:26 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006087-001CDUP	13:39:00 Mon 08-JSample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006087-001CMS	13:44:34 Mon 08-JSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006087-001CMSD	13:50:08 Mon 08-JSample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006020-001A	13:55:42 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006020-008A	14:01:15 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006020-009A	14:06:49 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006066-001A	14:12:23 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	CCV	14:17:58 Mon 08-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	CCB	14:23:32 Mon 08-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	2006073-001D	14:31:57 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006080-001A 2006080-002A	14:37:31 Mon 08-JSample 14:43:05 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608 C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006080-002A 2006081-001A	14:48:38 Mon 08-JSample	• •
		•	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006081-002A 2006085-001B	14:54:12 Mon 08-JSample 14:59:46 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608 C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
		•	, , ,
	2006087-001CMS 2006085-002B	15:05:20 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608 C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	2006085-002B 2006085-003B	15:10:55 Mon 08-JSample 15:16:29 Mon 08-JSample	• •
	CCV	15:22:04 Mon 08-JQC Std #4	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608 C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
	CCV	15:31:22 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0008
	00 V	13.31.22 WOII 00-J38IIIPIE	0.10561511 UDIICIDOCUITIETIIS/FEIKITETITIET SYTIGISIIX/IIOFIVIS/DAIASEI/JUTIEZUZU/0000

ССВ	15:36:56 Mon 08-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
2006085-004B	15:43:01 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
2006085-004B 2006085-005B	15:48:35 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
2006085-006B	15:54:09 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
	15:59:43 Mon 08-JSample	
2006085-007B	16:05:17 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
2006091-001A	•	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
2006092-006A	16:10:51 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
2006080-001A 10X	16:16:25 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
2006080-002A 10X	16:21:59 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0608
CCV	16:27:33 Mon 08-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
CCB	16:33:07 Mon 08-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
MB-28579	16:38:59 Mon 08-JSample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\June2020\0608
LCS-28579	16:44:33 Mon 08-JSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006047-001A	16:50:07 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-Sgistix\ICPMS\DataSet\June2020\0608
2006047-001ADUP	16:55:41 Mon 08-JSample	C:\Users\Public\DocumDUP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006047-001ADIL	17:01:15 Mon 08-JSample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006047-001AMS	17:06:49 Mon 08-JSample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006047-001AMSD	17:11:40 Mon 08-JSample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006047-001APDS	17:16:29 Mon 08-JSample	C:\Users\Public\DocumPDS,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006047-002A	17:21:18 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
2006047-003A	17:26:07 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
CCV	17:30:56 Mon 08-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
CCB	17:35:46 Mon 08-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
2006047-004A	17:40:36 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
2006047-005A	17:45:25 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
2006058-001A	17:50:14 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
2006058-002A	17:55:03 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
2006058-003A	17:59:51 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
2006058-004A	18:04:40 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-Sgistix\ICPMS\DataSet\June2020\0608
2006058-005A	18:09:29 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-Sgistix\ICPMS\DataSet\June2020\0608
2006058-006A	18:14:17 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0608
2006058-007A	18:19:06 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006058-008A	18:23:54 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
CCV	18:28:44 Mon 08-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
CCB	18:33:32 Mon 08-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
2006058-009A	18:38:22 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006058-010A	18:43:11 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006058-011A	18:47:59 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006058-012A	18:52:48 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006058-013A	18:57:36 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006058-014A	19:02:25 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
2006058-015A	19:07:13 Mon 08-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0608
CCV	19:12:03 Mon 08-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
CCB	19:16:52 Mon 08-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
2%	19:21:41 Mon 08-JQC Std #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
DI	19:26:30 Mon 08-JQC Std #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0608
		555.5.2. Sand E Standard Standard Syligida in the Education of the

Dataset Report

User Name: lab Computer Name: DT28

 $Dataset\ File\ Path:\ C:\ Users\ Public\ Documents\ PerkinElmer\ Syngistix\ ICPMS\ DataSet\ June 2020\ 060920CO\ New Public\ New Public\$

Report Date/Time: Wednesday, June 10, 2020 08:00:13

MB-28586

The Dataset

		The Dataset	
Batch ID	Sample ID	Date and Time Read Type	Samp. File Name Description
	cone conditioning	08:57:26 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	cone conditioning	09:03:00 Tue 09-JıSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	cone conditioning	09:08:34 Tue 09-J ₁ Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	cone conditioning	09:14:08 Tue 09-J ₁ Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	cone conditioning	09:19:42 Tue 09-J ₁ Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	hcl wash	09:25:18 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	hcl wash	09:30:51 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	wash	09:36:25 Tue 09-JıSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	wash	09:41:59 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
		09:47:33 Tue 09-JiBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 1	09:53:07 Tue 09-JiStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 2	09:58:40 Tue 09-JiStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 3	10:04:14 Tue 09-JiStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 4	10:09:47 Tue 09-JiStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 5	10:15:21 Tue 09-JiStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 6	10:20:54 Tue 09-JiStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 7	10:26:27 Tue 09-JiStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 8	10:32:01 Tue 09-JiStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 9	10:37:34 Tue 09-JiStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 10 Standard 11	10:43:07 Tue 09-JiStandard #10 10:48:41 Tue 09-JiStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	WASH	10:48:41 Tue 09-JiStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\ C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\
	ICB	10:59:49 Tue 09-JiQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
	ICV LL	11:05:24 Tue 09-JiQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
	ICV	11:11:08 Tue 09-JiQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
	ICSA	11:31:12 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
	ICSAB	11:36:46 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
	wash	11:42:20 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
		12:15:14 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
		12:20:46 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
		12:26:20 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
		12:31:54 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
		12:37:27 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
	2006087-001CMS	12:43:00 Tue 09-JıSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
	2006085-002B	12:48:34 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
	CCV	12:54:08 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	CCB	13:01:50 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	MB1-28596	13:20:16 Tue 09-JıSample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	LCS-28596	13:25:50 Tue 09-JiSample	C:\Users\Public\DocumLCS,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006095-001A	13:31:24 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006095-001ADUP	13:36:57 Tue 09-JiSample	C:\Users\Public\DocumDUP,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006095-001AMS	13:42:31 Tue 09-JiSample	C:\Users\Public\DocumMS,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006095-001AMSD	13:48:04 Tue 09-JiSample	C:\Users\Public\DocumMSD,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006103-001A	13:53:38 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	MB2-28596	13:59:11 Tue 09-JiSample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006061-001C	14:04:45 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	&SampID	14:10:18 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	CCV	14:15:52 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	CCB	14:22:05 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609

14:37:40 Tue 09-J₁Sample

C:\Users\Public\DocumMBLK,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609

LCS-28586	14:43:13 Tue 09-JiSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016A	14:48:47 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016ADUP	14:54:20 Tue 09-JiSample	C:\Users\Public\DocumDUP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016ADIL	14:59:54 Tue 09-JiSample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016AMS	15:05:28 Tue 09-J ₁ Sample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016AMSD	15:11:02 Tue 09-JiSample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016APDS	15:16:36 Tue 09-JiSample	C:\Users\Public\DocumPDS,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-017A	15:22:10 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006062-002A	15:27:43 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
CCV	15:33:18 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	15:39:12 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006064-001A	15:44:46 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-004A	15:50:20 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-007A	15:55:54 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-010A	16:01:28 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-013A	16:07:02 Tue 09-J ₁ Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-016A	16:12:36 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-019A	16:18:10 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-022A	16:23:44 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-025A	16:29:17 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-028A	16:34:51 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
CCV	16:40:25 Tue 09-JtQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	16:49:24 Tue 09-JtQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006064-031A	17:19:12 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-034A	17:24:47 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006075-001A 10X	17:30:21 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006075-002A 10X	17:35:55 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006075-003A 10X	17:41:29 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\060\$
2006085-008A	17:47:03 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006085-009A	17:52:36 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
&SampID	17:58:11 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
MB-28597	18:03:46 Tue 09-JiSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
LCS-28597	18:09:20 Tue 09-JiSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
CCV	18:14:55 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
CCB	18:20:29 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006062-002A 10X	18:26:04 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006119-001D	18:31:38 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006119-001DDUP	18:37:12 Tue 09-JiSample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\June2020\060\$
2006119-001DMS	18:42:46 Tue 09-JiSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\June2020\060\$
2006119-001DMSD	18:48:20 Tue 09-JiSample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPMS\DataSet\June2020\060\$
2006124-001D	18:53:54 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006124-002D	18:59:28 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\060\$
2006124-003D	19:05:02 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006090-001A	19:10:36 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
2006094-001E	19:16:10 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
CCV	19:21:45 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
CCB	19:27:19 Tue 09-JıQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006098-001A	19:32:54 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006100-001A	19:38:28 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006101-001A	19:44:02 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006101-002A	19:49:36 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006107-001E	19:55:09 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006109-001A	20:00:43 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
2006109-002A	20:06:18 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006109-003A	20:11:52 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006109-004A	20:17:26 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006109-005A	20:22:59 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
CCV	20:28:34 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	20:34:08 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006111-001C	20:39:43 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
	·	· ·

2006121-001E	20:45:17 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
&SampID	20:50:52 Tue 09-JıSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
MB-28598	20:56:26 Tue 09-JiSample	C:\Users\Public\DocumMBLK,M-200.8-DW_gistix\ICPMS\DataSet\June2020\0609
LCS-28598	21:02:00 Tue 09-JiSample	C:\Users\Public\DocumLCS,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0609
2006070-001A	21:07:34 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006070-001ADUP	21:13:08 Tue 09-JıSample	C:\Users\Public\DocumDUP,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0609
2006070-001AMS	21:18:42 Tue 09-JiSample	C:\Users\Public\DocumMS,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0609
2006070-001AMSD	21:24:16 Tue 09-JiSample	C:\Users\Public\DocumMSD,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0609
2006114-001A	21:29:50 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
CCV	21:35:25 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	21:40:59 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006114-002A	21:46:34 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006120-001A	21:52:08 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006120-002A	21:57:42 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006126-001A	22:03:16 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006126-002A	22:08:50 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2005353-003B	22:14:25 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
CCV	22:19:59 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	22:25:33 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
hcl wash	22:31:07 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
hcl wash	22:36:41 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCV	22:42:15 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	22:47:49 Tue 09-JtQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
wash	22:53:23 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
wash	22:58:57 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CAL BLK	23:04:30 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 1	23:10:04 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 2	23:15:38 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 3	23:21:11 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 4	23:26:45 Tue 09-J ₁ Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 5	23:32:18 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
HCI Standard 6	23:37:52 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 7	23:43:25 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 8	23:48:59 Tue 09-JıSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
HCI Standard 9	23:54:32 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 10	00:00:06 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 11	00:05:39 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
WASH	00:11:14 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICB	00:16:47 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICV LL	00:22:22 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICV LL	00:27:56 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICV	00:33:30 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICV	00:39:04 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
wash	Sample ا 00:44:38 Wed	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
WASH	00:50:12 Wed 10-גSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
MB-28580	00:55:46 Wed 10-Sample	C:\Users\Public\DocumMBLK,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
MB-28535	01:01:20 Wed 10-Sample	C:\Users\Public\DocumMBLK,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
MB-28482	01:06:53 Wed 10-Sample	C:\Users\Public\DocumMBLK,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
MB-28513	01:12:27 Wed 10-Sample	C:\Users\Public\DocumMBLK,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
MB-28586	01:18:00 Wed 10-Sample	C:\Users\Public\DocumMBLK,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
MB-28579	01:23:34 Wed 10-აSample	C:\Users\Public\DocumMBLK,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
MB-28563	01:29:07 Wed 10-ւSample	C:\Users\Public\DocumMBLK,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
MB-28562	Sample - 01:34:41 Wed	C:\Users\Public\DocumMBLK,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
CCV	Sample، 01:40:15 Wed 10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	Sample، 01:45:49 Wed 10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
WASH	01:51:23 Wed 10-აSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
LOQ 1	01:56:57 Wed 10-ւSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
LOQ 2	02:02:31 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
LOQ 3	Sample، 02:08:04 Wed 10	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
LOQ 4	02:13:38 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609

wash	02:19:12 Wed 10Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
wash	02:24:46 Wed 10-ւSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
LOQ 1	02:30:20 Wed 10-ւSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
LOQ 2	02:35:54 Wed 10-ւSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
LOQ 3	02:41:27 Wed 10-ւSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
CCV	02:47:02 Wed 10-ւSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	02:52:36 Wed 10-ւSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2%	02:58:09 Wed 10-JQC Std #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
DI	03:03:43 Wed 10-JQC Std #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609

Calibration

Table 1: Calibration Standards

Element	Calibration Standard ug/L						
	Cal 1	Cal 2	Cal 3	Cal 4	Cal 5	Cal 6	Cal 7
Antimony	0.025	0.05	0.25	1.25	5.0	10.0	25.0
Arsenic	0.5	1.0	5.0	25.0	100.0	200.	500
Barium	0.5	1.0	5.0	25.0	100.0	200.	500
Beryllium	0.025	0.05	0.25	1.25	5.0	10.0	25.0
Cadmium	0.025	0.05	0.25	1.25	5.0	10.0	25.0
Chromium	0.5	1.0	5.0	25.0	100.0	200.0	500
Cobalt	0.5	1.0	5.0	25.0	100.0	200.0	500
Copper	0.5	1.0	5.0	25.0	100.0	200.0	500
Lead	0.25	0.5	2.5	12.5	50	100	250
Manganese	0.5	1.0	5.0	25.0	100.0	200.0	500
Molybdenum	0.5	1.0	5.0	25.0	100.0	200.0	500
Nickel	0.5	1.0	5.0	25.0	100.0	200.0	500
Selenium	0.05	0.1	0.5	2.5	10.0	20.0	50.0
Silver	0.025	0.05	0.25	1.25	5.0	10.0	25
Strontium	0.5	1.0	5.0	25.0	100.0	200.0	500
Thallium	0.0125	0.025	0.125	0.625	2.5	5.0	12.5
Tin	0.5	1.0	5.0	25.0	100.0	200.0	500
Titanium	0.5	1.0	5.0	25.0	100.0	200.0	500
Uranium	0.25	0.5	2.5	12.5	50	100	250
Vanadium	0.5	1.0	5.0	25.0	100.0	200.	500
Zinc	0.5	1.0	5.0	25.0	100.0	200.	500
Aluminum						50	100
Boron						25	50
Calcium						50	100
Iron						50	100
Magnesium						50	100
Phosphorous						50	100
Potassium						50	100
Sodium						50	100

Element					
		Cal 8	Cal 9	Cal 10	Cal 11
Aluminum	Al	500	1000	2500	5000
Boron	В	250	500	1250	2500
Calcium	Ca	500	1000	2500	5000
Iron	Fe	500	1000	2500	5000
Magnesium	Mg	500	1000	2500	5000
Phosphorous	Ь	500	1000	2500	5000
Potassium	K	500	1000	2500	5000
Sodium	Na	500	1000	2500	5000
Mercury	Hg	500	1000	2500	5000

Quantitative Analysis Calibration Report

File Name: 060820CO.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\060820CO.cal

Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.04	0.00	0.999967
В	11.009	Linear Thru Zero	0.05	0.00	0.999647
Na	22.990	Weighted Linear	0.00	0.00	0.998865
Mg	24.986	Weighted Linear	0.02	0.01	0.999641
Al	26.982	Linear Thru Zero	0.00	0.00	0.999834
K	38.964	Linear Thru Zero	0.00	0.00	0.999960
Fe	56.935	Linear Thru Zero	0.00	0.00	0.999827
Ca	43.956	Linear Thru Zero	0.01	0.00	0.999646
Р	30.994	Linear Thru Zero	0.01	0.00	0.999256
Sc-5	44.956	Linear Thru Zero	0.00	0.00	0.000000
Ti	46.952	Linear Thru Zero	0.01	0.00	0.999932
V	50.944	Weighted Linear	0.13	-0.10	0.999989
Mn	54.938	Linear Thru Zero	0.16	0.00	0.999862
Be-2	9.012	Linear Thru Zero	0.03	0.00	0.999956
Co	58.933	Linear Thru Zero	0.12	0.00	0.999998
Ni	59.933	Linear Thru Zero	0.03	0.00	0.999920
Cr-1	51.941	Linear Thru Zero	0.11	0.00	0.999941
Cu	62.930	Linear Thru Zero	0.06	0.00	0.999992
Cu-2	64.928	Linear Thru Zero	0.03	0.00	0.999980
Zn	65.926	Linear Thru Zero	0.01	0.00	0.999900
As	74.922	Linear Thru Zero	0.01	0.00	0.999960
Se	81.917	Linear Thru Zero	0.00	0.00	0.999716
Kr	82.914	Linear Thru Zero	0.00	0.00	0.000000
Sr	87.906	Linear Thru Zero	0.18	0.00	0.999994
Mo	96.906	Linear Thru Zero	0.01	0.00	0.999919
Rh-3	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag	106.905	Linear Thru Zero	0.05	0.00	0.999919
Sb-1	120.904	Linear Thru Zero	0.05	0.00	0.999999
Ag-2	108.905	Linear Thru Zero	0.06	0.00	0.999909
Cd	110.904	Linear Thru Zero	0.02	0.00	0.999952
Sn	117.902	Linear Thru Zero	0.06	0.00	0.999998
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Weighted Linear	0.03	0.00	0.999530
Sb-1	122.904	Linear Thru Zero	0.02	0.00	0.999920
Ba	136.904	Linear Thru Zero	0.02	0.00	0.999950
Tb	158.925	Linear Thru Zero	0.02	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
TI	204.975	Linear Thru Zero	0.10	0.00	0.999909
Pb	207.977	Weighted Linear	0.13	0.00	0.999298
U	238.050	Linear Thru Zero	0.13	0.00	0.999976
Li-1	6.015	Linear Thru Zero	0.00	0.00	
Be-1	9.012	Linear Thru Zero			0.000000
B-1	11.009	Linear Thru Zero	0.04 0.01	0.00 0.00	0.999125 0.999590
		Linear Thru Zero			
Se-2 Sb-3	77.917	Simple Linear	0.00 0.02	0.00 0.00	0.999579 0.999987
	120.904	Linear Thru Zero			
Mo-1 Rh-1	97.906	Linear Thru Zero	0.03	0.00	0.999988
	102.905		0.00	0.00	0.000000
Ag-1	106.905	Simple Linear	0.07	-0.00	0.999999
Na-1	22.990	Weighted Linear	0.01	0.01	0.999142
Ca-1	43.956	Linear Thru Zero	0.00	0.00	0.998986
Mg-1	23.985	Weighted Linear	0.00	0.00	0.998141
Al-1	26.982	Weighted Linear	0.00	-0.00	0.998101
Ba-1	137.905	Linear Thru Zero	0.04	0.00	0.999993
Cd-1	110.904	Linear Thru Zero	0.01	0.00	0.999954

Report Date/Time: Monday, June 08, 2020 10:53:12

Page 1

K-1	38.964	Weighted Linear	0.00	-0.00	0.998268
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.01	0.00	0.999979
Cr-2	51.941	Linear Thru Zero	0.02	0.00	0.999986
Fe-1	56.935	Weighted Linear	0.00	-0.00	0.999247
Ni-1	59.933	Linear Thru Zero	0.02	0.00	0.999992
Cu-1	62.930	Linear Thru Zero	0.04	0.00	0.999919
Zn-2	65.926	Linear Thru Zero	0.00	0.00	0.999867
As-3	74.922	Linear Thru Zero	0.00	0.00	0.999907
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
ln-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Linear Thru Zero	0.17	0.00	0.999999

Report Date/Time: Monday, June 08, 2020 10:53:12 Page 2

Quantitative Analysis Calibration Report

File Name: 060920CO.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\060920CO.cal

Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.04	0.00	0.999903
В	11.009	Linear Thru Zero	0.05	0.00	0.999787
Na	22.990	Weighted Linear	0.00	0.01	0.999076
Mg	24.986	Weighted Linear	0.02	0.00	0.999762
Al	26.982	Weighted Linear	0.00	0.00	0.999742
K	38.964	Weighted Linear	0.00	0.00	0.999783
Fe	56.935	Weighted Linear	0.00	-0.00	0.999699
Ca	43.956	Linear Thru Zero	0.01	0.00	0.998525
Р	30.994	Linear Thru Zero	0.01	0.00	0.999623
Sc-5	44.956	Linear Thru Zero	0.00	0.00	0.000000
Ti	46.952	Linear Thru Zero	0.01	0.00	0.999987
V	50.944	Weighted Linear	0.12	-0.00	0.999952
Mn	54.938	Linear Thru Zero	0.14	0.00	0.999993
Be-2	9.012	Linear Thru Zero	0.03	0.00	0.999924
Co	58.933	Linear Thru Zero	0.11	0.00	0.999973
Ni	59.933	Weighted Linear	0.03	0.00	0.998302
Cr-1	51.941	Linear Thru Zero	0.10	0.00	0.999981
Cu	62.930	Weighted Linear	0.06	0.00	0.999064
Cu-2	64.928	Weighted Linear	0.03	-0.00	0.998882
Zn	65.926	Weighted Linear	0.01	-0.01	0.999837
As	74.922	Linear Thru Zero	0.01	0.00	0.999980
Se	81.917	Linear Thru Zero	0.00	0.00	0.999772
Kr	82.914	Linear Thru Zero	0.00	0.00	0.000000
Sr	87.906	Linear Thru Zero	0.17	0.00	0.999990
Мо	96.906	Linear Thru Zero	0.01	0.00	0.999933
Rh-3	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag	106.905	Weighted Linear	0.06	-0.00	0.998301
Sb-1	120.904	Linear Thru Zero	0.05	0.00	0.999977
Ag-2	108.905	Linear Thru Zero	0.07	0.00	0.999712
Cd	110.904	Linear Thru Zero	0.02	0.00	0.999966
Sn	117.902	Linear Thru Zero	0.06	0.00	0.999943
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Simple Linear	0.04	0.00	0.999933
Sb-1	122.904	Linear Thru Zero	0.03	0.00	0.999658
Ba	136.904	Weighted Linear	0.02	0.00	0.998702
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
TI	204.975	Linear Thru Zero	0.12	0.00	0.999634
Pb	207.977	Linear Thru Zero	0.16	0.00	0.999976
U	238.050	Weighted Linear	0.15	0.00	0.998286
Li-1	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be-1	9.012	Linear Thru Zero	0.04	0.00	0.999348
B-1	11.009	Linear Thru Zero	0.04	0.00	0.999956
Se-2	77.917	Simple Linear	0.00	0.00	0.999976
Sb-3	120.904	Weighted Linear	0.00	0.00	0.999867
Mo-1	97.906	Linear Thru Zero	0.01	0.00	
Rh-1	102.905	Linear Thru Zero			0.999979
		Weighted Linear	0.00	0.00	0.000000 0.999352
Ag-1	106.905	•	0.07	-0.00	
Na-1	22.990	Linear Thru Zero Linear Thru Zero	0.00	0.00	0.999723
Ca-1	43.956	Linear Thru Zero	0.00	0.00	0.999729
Mg-1	23.985		0.00	0.00	0.999647
Al-1	26.982	Linear Thru Zero	0.00	0.00	0.999340
Ba-1	137.905	Simple Linear	0.03	0.00	0.999996
Cd-1	110.904	Weighted Linear	0.01	0.00	0.999953

Report Date/Time: Tuesday, June 09, 2020 11:28:19

Page 1

K-1	38.964	Linear Thru Zero	0.00	0.00	0.999346
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.01	0.00	0.999991
Cr-2	51.941	Linear Thru Zero	0.02	0.00	0.999986
Fe-1	56.935	Linear Thru Zero	0.00	0.00	0.999738
Ni-1	59.933	Linear Thru Zero	0.02	0.00	0.999976
Cu-1	62.930	Linear Thru Zero	0.04	0.00	0.999981
Zn-2	65.926	Simple Linear	0.00	-0.00	0.999953
As-3	74.922	Linear Thru Zero	0.00	0.00	0.999965
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
ln-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Linear Thru Zero	0.19	0.00	0.999998

Report Date/Time: Tuesday, June 09, 2020 11:28:19 Page 2

Tunes

SmartTune Wizard - Summary

Optimization Summary

SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz

Start Time: 6/8/2020 8:36:55 AM End Time: 6/8/2020 8:39:15 AM

Lab Performance Check - [Passed] Optimum value(s): N/A

Obtained Intensity (Be 9): 10974.28 Obtained Intensity (Mg 24): 50865.27 Obtained Intensity (In 115): 95901.72 Obtained Intensity (U 238): 71459.91 Obtained Intensity (Bkgd 220): 0.63

Obtained Formula (CeO 156 / Ce 140): 0.020 (=1475.94 / 74970.96) Obtained Formula (Ce++ 70 / Ce 140): 0.025 (=1879.39 / 74970.96)

Obtained RSD (Be 9): 0.0156 Obtained RSD (Mg 24): 0.0112 Obtained RSD (In 115): 0.0107 Obtained RSD (U 238): 0.0139

Report Date/Time: Monday, June 08, 2020 08:40:45

Page 1

SmartTune Wizard - Details

```
Optimization Details
```

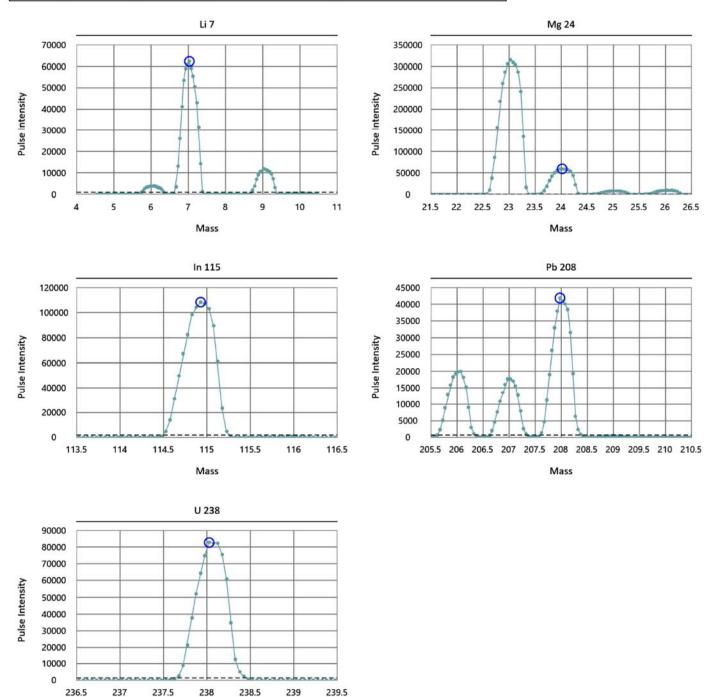
```
SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz
Optimization Status
Start Time: 6/8/2020 8:36:55 AM
Lab Performance Check
       Optimization Settings:
               Method: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Method\FA_Daily Performance.mth.
               Intensity Criterion: Be 9 > 2000
               Intensity Criterion: Mg 24 > 15000
               Intensity Criterion: In 115 > 40000
               Intensity Criterion: U 238 > 30000
               Intensity Criterion: Bkgd 220 <= 5</pre>
               Formula Criterion: CeO 156 / Ce 140 <= 0.03
               Formula Criterion: Ce++ 70 / Ce 140 <= 0.05
               RSD Criterion: Be 9.0122 < 0.05
               RSD Criterion: Mg 23.985 < 0.05
               RSD Criterion: In 114.904 < 0.05
               RSD Criterion: U 238.05 < 0.05
       Optimization Results:
       Initial Try
               Obtained Intensity (Be 9): 10974.28
               Obtained Intensity (Mg 24): 50865.27
               Obtained Intensity (In 115): 95901.72
               Obtained Intensity (U 238): 71459.91
               Obtained Intensity (Bkgd 220): 0.63
               Obtained Formula (CeO 156 / Ce 140): 0.020 (=1475.94 / 74970.96)
               obtained Formula (Ce++ 70 / Ce 140): 0.025 (=1879.39 / 74970.96)
               Obtained RSD (Be 9): 0.0156
               Obtained RSD (Mg 24): 0.0112
               Obtained RSD (In 115): 0.0107
               Obtained RSD (U 238): 0.0139
```

[Passed] Optimum value(s): N/A

End Time: 6/8/2020 8:39:15 AM

Report Date/Time: Monday, June 08, 2020 08:40:45

Page 2


Mass Calibration and Resolution - [Passed] Optimum value(s): N/A
Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.700)
Target/Obtained mass (23.985/24.025), Target/Obtained resolution (0.7/0.694)
Target/Obtained mass (114.904/114.925), Target/Obtained resolution (0.7/0.694)
Target/Obtained mass (207.977/207.975), Target/Obtained resolution (0.7/0.699)
Target/Obtained mass (238.05/238.025), Target/Obtained resolution (0.7/0.703)

Acq. Date/Time: 6/8/2020 8:28:56 AM

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Mass

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1318	2021	0.700	
Mg	23.985	24.025	4713	2021	0.694	
In	114.904	114.925	22858	2038	0.694	
Pb	207.977	207.975	41420	2060	0.699	
U	238.05	238.025	47420	2068	0.703	

SmartTune Wizard - Summary

Optimization Summary

Start Time: 6/9/2020 8:52:34 AM

SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz

End Time: 6/9/2020 8:54:54 AM

Lab Performance Check - [Passed] Optimum value(s): N/A

Obtained Intensity (Be 9): 11152.62

Obtained Intensity (Mg 24): 50193.30

Obtained Intensity (In 115): 97774.08 Obtained Intensity (U 238): 74514.19 Obtained Intensity (Bkgd 220): 0.73

Obtained Formula (CeO 156 / Ce 140): 0.019 (=1554.75 / 80645.55) Obtained Formula (Ce++ 70 / Ce 140): 0.021 (=1668.96 / 80645.55)

Obtained RSD (Be 9): 0.0119 Obtained RSD (Mg 24): 0.0086 Obtained RSD (In 115): 0.0096 Obtained RSD (U 238): 0.0135

Report Date/Time: Tuesday, June 09, 2020 08:55:40

SmartTune Wizard - Details

```
Optimization Details
```

```
SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz
Optimization Status
Start Time: 6/9/2020 8:52:34 AM
Lab Performance Check
       Optimization Settings:
               Method: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Method\FA_Daily Performance.mth.
               Intensity Criterion: Be 9 > 2000
               Intensity Criterion: Mg 24 > 15000
               Intensity Criterion: In 115 > 40000
               Intensity Criterion: U 238 > 30000
               Intensity Criterion: Bkgd 220 <= 5</pre>
               Formula Criterion: CeO 156 / Ce 140 <= 0.03
               Formula Criterion: Ce++ 70 / Ce 140 <= 0.05
               RSD Criterion: Be 9.0122 < 0.05
               RSD Criterion: Mg 23.985 < 0.05
               RSD Criterion: In 114.904 < 0.05
               RSD Criterion: U 238.05 < 0.05
       Optimization Results:
       Initial Try
               Obtained Intensity (Be 9): 11152.62
               Obtained Intensity (Mg 24): 50193.30
               Obtained Intensity (In 115): 97774.08
               Obtained Intensity (U 238): 74514.19
               Obtained Intensity (Bkgd 220): 0.73
               Obtained Formula (CeO 156 / Ce 140): 0.019 (=1554.75 / 80645.55)
               Obtained Formula (Ce++ 70 / Ce 140): 0.021 (=1668.96 / 80645.55)
               Obtained RSD (Be 9): 0.0119
               Obtained RSD (Mg 24): 0.0086
               Obtained RSD (In 115): 0.0096
               Obtained RSD (U 238): 0.0135
```

[Passed] Optimum value(s): N/A

End Time: 6/9/2020 8:54:54 AM

Report Date/Time: Tuesday, June 09, 2020 08:55:40

Mass Calibration and Resolution - [Passed] Optimum value(s): N/A

Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.695) Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.7/0.689)

Target/Obtained mass (114.904/114.875), Target/Obtained resolution (0.7/0.703) Target/Obtained mass (207.977/207.975), Target/Obtained resolution (0.7/0.698)

Target/Obtained mass (238.05/238.075), Target/Obtained resolution (0.7/0.716)

Acq. Date/Time: 6/9/2020 8:40:36 AM

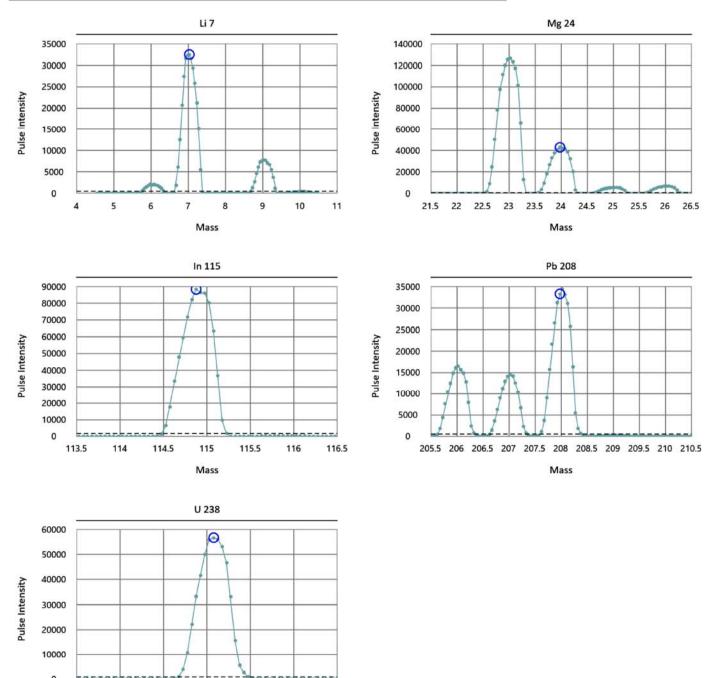
236.5

237

237.5

238

Mass


238.5

239

239.5

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1319	2021	0.695	
Mg	23.985	23.975	4711	2021	0.689	
In	114.904	114.875	22852	2038	0.703	
Pb	207.977	207.975	41419	2060	0.698	
U	238.05	238.075	47424	2068	0.716	

DATA SET for Review -- **Deliverable Requirements**

Metals Analysis by EPA 6020

Fremont Analytical Work Order No. 2006085

Libby Environmental

Project Name: Hardel Site

Project No. L200603-7

This Data contains the following:

- Analytical Sequence Summary for Work Order 2006085
- Calibration Information for Work Order 2006085
- Tune Information for Work Order 2006085

Dataset Report

User Name: lab Computer Name: DT28

 $Dataset\ File\ Path:\ C:\ Users\ Public\ Documents\ PerkinElmer\ Syngistix\ ICPMS\ DataSet\ June 2020\ 060920CO\ New Public\ New Public\$

Report Date/Time: Wednesday, June 10, 2020 08:00:13

The Dataset

		The Dataset	
Batch ID	Sample ID	Date and Time Read Type	Samp. File Name Description
	cone conditioning	08:57:26 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	cone conditioning	09:03:00 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	cone conditioning	09:08:34 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	cone conditioning	09:14:08 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	cone conditioning	09:19:42 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	hcl wash	09:25:18 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	hcl wash	09:30:51 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	wash	09:36:25 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	wash	09:41:59 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	CAL BLK IS 22718	09:47:33 Tue 09-JıBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 1	09:53:07 Tue 09-JiStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 2	09:58:40 Tue 09-JiStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 3	10:04:14 Tue 09-JiStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 4	10:09:47 Tue 09-JiStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 5	10:15:21 Tue 09-JiStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 6	10:20:54 Tue 09-JiStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 7	10:26:27 Tue 09-JiStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 8	10:32:01 Tue 09-JiStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 9	10:37:34 Tue 09-JiStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 10	10:43:07 Tue 09-JiStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	Standard 11	10:48:41 Tue 09-JiStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	WASH	10:54:16 Tue 09-JiQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	ICB	10:59:49 Tue 09-JiQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	ICV LL	11:05:24 Tue 09-JiQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	ICV	11:11:08 Tue 09-JiQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	ICSA	11:31:12 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	ICSAB	11:36:46 Tue 09-J:Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	wash	11:42:20 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	2006047-001A 10X	12:15:14 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
	2006047-002A 10X	12:20:46 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
	2006047-003A 100X	12:26:20 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
	2006047-004A 10X	12:31:54 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
	2006058-005A 10X	12:37:27 Tue 09-J:Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
	2006087-001CMS	12:43:00 Tue 09-JıSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
	2006085-002B	12:48:34 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
	CCV	12:54:08 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	CCB	13:01:50 Tue 09-JtQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	MB1-28596	13:20:16 Tue 09-J:Sample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	LCS-28596	13:25:50 Tue 09-JiSample	C:\Users\Public\DocumLCS,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006095-001A	13:31:24 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006095-001ADUP	13:36:57 Tue 09-JiSample	C:\Users\Public\DocumDUP,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006095-001AMS	13:42:31 Tue 09-JiSample	C:\Users\Public\DocumMS,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006095-001AMSD	13:48:04 Tue 09-JiSample	C:\Users\Public\DocumMSD,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006103-001A	13:53:38 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	MB2-28596	13:59:11 Tue 09-JiSample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	2006061-001C	14:04:45 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0609
	&SampID	14:10:18 Tue 09-JıSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	CCV	14:15:52 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	CCB	14:22:05 Tue 09-JtQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
	MB-28586	14:37:40 Tue 09-JıSample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\June2020\0609
		·	

LCS-28586	14:43:13 Tue 09-JiSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016A	14:48:47 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016ADUP	14:54:20 Tue 09-JiSample	C:\Users\Public\DocumDUP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016ADIL	14:59:54 Tue 09-JiSample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016AMS	15:05:28 Tue 09-J ₁ Sample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016AMSD	15:11:02 Tue 09-JiSample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-016APDS	15:16:36 Tue 09-JiSample	C:\Users\Public\DocumPDS,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006058-017A	15:22:10 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006062-002A	15:27:43 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
CCV	15:33:18 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	15:39:12 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006064-001A	15:44:46 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-004A	15:50:20 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-007A	15:55:54 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-010A	16:01:28 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-013A	16:07:02 Tue 09-J ₁ Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-016A	16:12:36 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-019A	16:18:10 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-022A	16:23:44 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-025A	16:29:17 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-028A	16:34:51 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
CCV	16:40:25 Tue 09-JtQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	16:49:24 Tue 09-JtQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006064-031A	17:19:12 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006064-034A	17:24:47 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006075-001A 10X	17:30:21 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006075-002A 10X	17:35:55 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006075-003A 10X	17:41:29 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\060\$
2006085-008A	17:47:03 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
2006085-009A	17:52:36 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
&SampID	17:58:11 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
MB-28597	18:03:46 Tue 09-JiSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
LCS-28597	18:09:20 Tue 09-JiSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
CCV	18:14:55 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
CCB	18:20:29 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006062-002A 10X	18:26:04 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609
2006119-001D	18:31:38 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006119-001DDUP	18:37:12 Tue 09-JiSample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\June2020\060\$
2006119-001DMS	18:42:46 Tue 09-JiSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\June2020\060\$
2006119-001DMSD	18:48:20 Tue 09-JiSample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006124-001D	18:53:54 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006124-002D	18:59:28 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\060\$
2006124-003D	19:05:02 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006090-001A	19:10:36 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
2006094-001E	19:16:10 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
CCV	19:21:45 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
CCB	19:27:19 Tue 09-JıQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006098-001A	19:32:54 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006100-001A	19:38:28 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006101-001A	19:44:02 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006101-002A	19:49:36 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\060\$
2006107-001E	19:55:09 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006109-001A	20:00:43 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
2006109-002A	20:06:18 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006109-003A	20:11:52 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006109-004A	20:17:26 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
2006109-005A	20:22:59 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
CCV	20:28:34 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	20:34:08 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006111-001C	20:39:43 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
	·	· ·

2006121-001E	20:45:17 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
&SampID	20:50:52 Tue 09-J ₁ Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
MB-28598	20:56:26 Tue 09-J ₁ Sample	C:\Users\Public\DocumMBLK,M-200.8-DW_gistix\ICPMS\DataSet\June2020\0609
LCS-28598	21:02:00 Tue 09-J ₁ Sample	C:\Users\Public\DocumLCS,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0609
2006070-001A	21:07:34 Tue 09-JıSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006070-001ADUP	21:13:08 Tue 09-JıSample	C:\Users\Public\DocumDUP,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0609
2006070-001AMS	21:18:42 Tue 09-J ₁ Sample	C:\Users\Public\DocumMS,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0609
2006070-001AMSD	21:24:16 Tue 09-J ₁ Sample	C:\Users\Public\DocumMSD,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006114-001A	21:29:50 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
CCV	21:35:25 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	21:40:59 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2006114-002A	21:46:34 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006120-001A	21:52:08 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006120-002A	21:57:42 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006126-001A	22:03:16 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2006126-002A	22:08:50 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0609
2005353-003B	22:14:25 Tue 09-JiSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0609
CCV	22:19:59 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	22:25:33 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
hcl wash hcl wash	22:31:07 Tue 09-JiSample 22:36:41 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCV	22:42:15 Tue 09-JiQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\9 C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\9
CCB	22:47:49 Tue 09-JiQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
wash	22:53:23 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
wash	22:58:57 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
CAL BLK	23:04:30 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
HCI Standard 1	23:10:04 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\060\$
HCl Standard 2	23:15:38 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 3	23:21:11 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCl Standard 4	23:26:45 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 5	23:32:18 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 6	23:37:52 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 7	23:43:25 Tue 09-J _I Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 8	23:48:59 Tue 09-JiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 9	23:54:32 Tue 09-J ₁ Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 10	00:00:06 Wed 10-دSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
HCI Standard 11	00:05:39 Wed 10-دSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
WASH	00:11:14 Wed 10-دSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICB	00:16:47 Wed 10-دSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICV LL	00:22:22 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICV LL	00:27:56 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICV	00:33:30 Wed 10-cSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
ICV	00:39:04 Wed 10- ₋ Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
wash	00:44:38 Wed 10-പSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
WASH	00:50:12 Wed 10-ւSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
MB-28580	00:55:46 Wed 10-Sample	C:\Users\Public\DocumMBLK,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
MB-28535	01:01:20 Wed 10-Sample	C:\Users\Public\DocumMBLK,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
MB-28482	01:06:53 Wed 10- ₋ Sample	C:\Users\Public\DocumMBLK,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
MB-28513	01:12:27 Wed 10-ւSample	C:\Users\Public\DocumMBLK,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
MB-28586	01:18:00 Wed 10-പSample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\June2020\0609
MB-28579	01:23:34 Wed 10-ւSample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\June2020\0609
MB-28563	01:29:07 Wed 10-\Sample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\June2020\0609
MB-28562	01:34:41 Wed 10-CSample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\June2020\0609
CCV	01:40:15 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	01:45:49 Wed 10-CSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
WASH	01:51:23 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
LOQ 1	01:56:57 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
LOQ 2	02:02:31 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
LOQ 3	02:08:04 Wed 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0609
LOQ 4	02:13:38 Wed 10-ւSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0609

wash	02:19:12 Wed 10Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
wash	Sample-،02:24:46 Wed	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
LOQ 1	Sample-،02:30:20 Wed	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
LOQ 2	02:35:54 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
LOQ 3	Sample-،02:41:27 Wed	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0609
CCV	Sample- 02:47:02 Wed 10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
CCB	02:52:36 Wed 10-cSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
2%	02:58:09 Wed 10-JQC Std #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609
DI	03:03:43 Wed 10-JQC Std #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0609

Dataset Report

User Name: lab Computer Name: DT28

 $Dataset\ File\ Path:\ C:\ Users\ Public\ Documents\ PerkinElmer\ Syngistix\ ICPMS\ DataSet\ June 2020\ 061020co\ New 2020\ N$

Report Date/Time: Thursday, June 11, 2020 11:44:43

The Dataset

			me Dataset					
Batch ID	Sample ID cone conditioning	Date and Time 08:48:38 Wed	• • •	Samp. File Name I C:\Users\Public\Docume	Description	Synaietiv\I	CPMS\DataSo	t\.lune2020\0614
	_		•					
	cone conditioning	08:54:11 Wed		C:\Users\Public\Docume				
	cone conditioning	08:59:45 Wed	<u>-</u>	C:\Users\Public\Docume				
	cone conditioning	09:05:19 Wed	•	C:\Users\Public\Docume				
	cone conditioning	09:13:40 Wed	•	C:\Users\Public\Docume				
	wash	09:19:13 Wed		C:\Users\Public\Docume				
	wash	09:24:47 Wed		C:\Users\Public\Docume				
	CAL BLK IS 22718	09:30:21 Wed		C:\Users\Public\Docume				
	CAL BLK IS 22718	09:59:39 Wed		C:\Users\Public\Docume				
	Standard 1		10-JStandard #1	C:\Users\Public\Docume				
	Standard 2		10-JStandard #2	C:\Users\Public\Docume				
	Standard 3		10-JStandard #3	C:\Users\Public\Docume				
	Standard 4		10-JStandard #4	C:\Users\Public\Docume				
	Standard 5		10-JStandard #5	C:\Users\Public\Docume				
	Standard 6		10-JStandard #6	C:\Users\Public\Docume				
	Standard 7		10-JStandard #7	C:\Users\Public\Docume				
	Standard 8		10-JStandard #8	C:\Users\Public\Docume				
	Standard 9	10:50:47 Wed	10-JStandard #9	C:\Users\Public\Docume				
	Standard 10	10:56:21 Wed	10-JStandard #10	C:\Users\Public\Docume				
	Standard 11		10-JStandard #11	C:\Users\Public\Docume	ents\PerkinElmer	Syngistix\I	CPMS\DataSet	t\June2020\0610
	WASH	11:07:29 Wed		C:\Users\Public\Docume				
	ICB	11:13:03 Wed	10-JQC Std #2	C:\Users\Public\Docume				
	ICV LL	11:18:37 Wed	10-JQC Std #3	C:\Users\Public\Docume	ents\PerkinElmer	Syngistix\I	CPMS\DataSet	t\June2020\0610
	ICV	11:24:12 Wed	10-JQC Std #6	C:\Users\Public\Docume	ents\PerkinElmer	Syngistix\I	CPMS\DataSet	t\June2020\0610
	ICSA	11:38:23 Wed	10-√Sample	C:\Users\Public\Docume				
	ICSAB	11:43:57 Wed	10-دSample	C:\Users\Public\Docume	ents\PerkinElmer	Syngistix\I	CPMS\DataSet	t\June2020\0610
	&SampID	11:49:31 Wed	10-√Sample	C:\Users\Public\Docume				
	2006062-002A 10X	11:55:06 Wed	10-√Sample	C:\Users\Public\Docum	SAMP,M-6020-S	_ gistix∖I	CPMS\DataSet	t\June2020\0610
	2006062-002A 10X	12:02:45 Wed	10-دSample	C:\Users\Public\Docum	SAMP,M-6020-S	_ gistix∖I	CPMS\DataSet	t\June2020\0610
	2006075-001A 100X			C:\Users\Public\Docum	SAMP,M-6020-S	_ gistix∖I	CPMS\DataSet	t\June2020\0610
	2006075-002A 1000X	(12:13:52 Wed	Sample-،Sample	C:\Users\Public\Docum	SAMP,M-6020-S	_ gistix∖I	CPMS\DataSet	t\June2020\0610
	2006075-003A 10000)12:19:26 Wed	Sample-،Sample	C:\Users\Public\Docum	SAMP,M-6020-S	_ gistix∖I	CPMS\DataSet	t\June2020\0610
	2006085-008A	12:25:00 Wed	10-دSample	C:\Users\Public\Docum	SAMP,M-6020-S	_ gistix∖I	CPMS\DataSet	t\June2020\0610
	2006085-009A	12:30:34 Wed	Sample-،Sample	C:\Users\Public\Docum	SAMP,M-6020-S	_ gistix∖I	CPMS\DataSet	t\June2020\0610
	CCV	12:36:08 Wed	10-JQC Std #4	C:\Users\Public\Docume	ents\PerkinElmer	Syngistix\I	CPMS\DataSet	t\June2020\0610
	CCB	12:41:42 Wed	10-JQC Std #5	C:\Users\Public\Docume	ents\PerkinElmer	Syngistix\I	CPMS\DataSet	t\June2020\0610
	2006124-001D 5X	12:47:33 Wed	10-₊Sample	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix\I	CPMS\DataSet	t\June2020\0610
	2006124-002D 5X	12:53:07 Wed	10-cSample	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix∖I	CPMS\DataSet	t\June2020\0610
	2006124-003D 5X	12:58:41 Wed	10-₊Sample	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix\I	CPMS\DataSet	t\June2020\0610
	2006098-001A 100X	13:04:15 Wed	10-cSample	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix\I	CPMS\DataSet	t\June2020\0610
	2006098-001A 5X	13:09:49 Wed	Sample-،Sample	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix∖I	CPMS\DataSet	t\June2020\0610
	2006109-003A	13:15:23 Wed	10-₊Sample	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix\I	CPMS\DataSet	t\June2020\0610
	2006109-005A	13:20:56 Wed	Sample-،Sample	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix\I	CPMS\DataSet	t\June2020\0610
	2006121-001E	13:29:59 Wed	Sample،-10	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix\I	CPMS\DataSet	t\June2020\0610
	2006109-003A 5X	13:53:12 Wed	Sample-،Sample	C:\Users\Public\Docum	SAMP,M-200.8-T	gistix\I	CPMS\DataSet	t\June2020\0610
	2006109-005A 5X	13:58:46 Wed	•	C:\Users\Public\Docum	SAMP,M-200.8-T			t\June2020\0610
	CCV	14:04:20 Wed		C:\Users\Public\Docume				
	CCB	14:09:55 Wed		C:\Users\Public\Docume				
	MB-28612	14:18:19 Wed		C:\Users\Public\Docum!				t\June2020\0610
	LCS-28612	14:23:53 Wed	•	C:\Users\Public\Documl				t\June2020\0610
			•		*			

MB-28599FB	14:29:26 Wed 10-ւSample	C:\Users\Public\DocumMBLK,M-200.8-D gistix\ICPMS\DataSet\June2020\061(
2006124-001G	14:35:00 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006124-001GDUP	14:40:35 Wed 10-Sample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006124-001GMS	14:46:09 Wed 10- Sample	C:\Users\Public\DocumMS,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006124-001GMSD	14:51:43 Wed 10- Sample	C:\Users\Public\DocumMSD,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006124-002G	14:57:17 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006124-003G	15:02:51 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006130-001D	15:08:24 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
CCV	15:13:59 Wed 10-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
CCB	15:19:43 Wed 10-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
2006124-001G 5X	15:29:43 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006124-002G 5X	15:35:17 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006124-003G 5X	15:40:51 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\June2020\0610
2006085-009A 10X	15:46:25 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006121-001E 5X	15:51:59 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
CCV	15:57:35 Wed 10 todample 15:57:35 Wed 10-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
CCB	16:03:22 Wed 10-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
MB-28613	16:12:47 Wed 10 tag old #3	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\June2020\0610
LCS-28613	16:18:21 Wed 10-CSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-010A	16:23:55 Wed 10-CSample	- · · · · · - · · · · · · · · · · · · ·
2006085-010A 2006085-010ADUP	·	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
	16:29:29 Wed 10-Sample	C:\Users\Public\DocumDUP,M-6020-S gistix\ICPMS\DataSet\June2020\0610 C:\Users\Public\DocumSD.M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-010ADIL	16:35:03 Wed 10-Sample	
2006085-010AMS	16:40:37 Wed 10-Sample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-010AMSD	16:46:11 Wed 10-Sample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-010APDS	16:51:45 Wed 10-Cample	C:\Users\Public\DocumPDS,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-011A	16:57:19 Wed 10-Cample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-012A	17:02:53 Wed 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
CCV	17:08:28 Wed 10-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
CCB	17:14:02 Wed 10-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
2006085-013A	17:19:37 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-014A	17:25:11 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-015A	17:30:45 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006085-016A	17:36:19 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2005309-029A	17:41:53 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006115-001A	17:47:27 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006115-002A	17:53:01 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006115-003A	17:58:35 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006115-004A	18:04:09 Wed 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006115-005A	18:09:43 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\061(
CCV	18:15:18 Wed 10-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\061(
CCB	18:20:52 Wed 10-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\061(
2006115-006A	18:26:27 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\061(
2006115-007A	18:32:00 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\061(
2006115-008A	18:37:34 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006115-009A	18:43:07 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\061(
2006115-010A	18:48:41 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0610
2006125-001A	18:54:14 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\061(
2006125-002A	18:59:48 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\061(
&SampID	19:05:21 Wed 10-CSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
wash	19:10:55 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
wash	19:16:30 Wed 10-Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\061(
CCV	19:22:04 Wed 10-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
CCB	19:27:38 Wed 10-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
MB-28616	19:33:12 Wed 10-Sample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\June2020\061(
LCS-28616	19:38:46 Wed 10-Sample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
2006130-001C	19:44:19 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\061(
2006130-001CDUP	19:49:53 Wed 10-Sample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\June2020\061(
2006130-001CMS	19:55:26 Wed 10-Sample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
2006130-001CMSD	20:01:00 Wed 10-Sample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPMS\DataSet\June2020\061(
2006127-001A	20:06:33 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610

2006139-001A	20:12:07 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610
2006139-002A	20:17:40 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610
wash	20:23:15 Wed 10- Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
CCV	20:28:48 Wed 10-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
CCB	20:34:22 Wed 10-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
2006142-001A	20:39:56 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
2006142-002A	20:45:30 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
2006147-003A	20:51:03 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610
2006147-004A	20:56:37 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610
2006148-001A	21:02:10 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610
2006149-001A	21:07:44 Wed 10- Sample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610
2006149-002A	21:13:17 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610
2006150-001B	21:18:51 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
2006152-001A	21:24:24 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
2006153-001A	21:29:58 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
CCV	21:35:32 Wed 10-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
CCB	21:41:06 Wed 10-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
hcl wash	21:46:40 Wed 10-cSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
WASH	21:52:14 Wed 10-cSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
WASH	21:57:48 Wed 10- Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
2004009-030E	22:03:22 Wed 10-cSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0610
2004009-030E	22:08:55 Wed 10-Sample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0610
CCV	22:14:29 Wed 10-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
CCB	22:20:03 Wed 10-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0610
		· ·

Dataset Report

User Name: lab Computer Name: DT28

 $Dataset\ File\ Path:\ C:\ Users\ Public\ Documents\ PerkinElmer\ Syngistix\ ICPMS\ DataSet\ June 2020\ 061520co\ New 2020\ N$

Report Date/Time: Tuesday, June 16, 2020 08:01:53

The Dataset

		The Dataset	
Batch ID	Sample ID	Date and Time Read Type	Samp. File Name Description
	WASH	08:59:04 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	WASH	09:04:38 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	CAL BLK IS 22718	09:10:12 Mon 15-JBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 1	09:15:46 Mon 15-JStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 2	09:21:20 Mon 15-JStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 3	09:26:54 Mon 15-JStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 4	09:32:28 Mon 15-JStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 5	09:38:02 Mon 15-JStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 6	09:43:35 Mon 15-JStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 7	09:49:09 Mon 15-JStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 8	09:54:43 Mon 15-JStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 9	10:00:17 Mon 15-JStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 10	10:05:51 Mon 15-JStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	Standard 11	10:11:25 Mon 15-JStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	WASH	10:17:00 Mon 15-JQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	ICB	10:22:34 Mon 15-JQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	ICV LL	10:28:09 Mon 15-JQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	ICV	10:33:43 Mon 15-JQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	ICV LL	10:53:06 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	ICSA	11:03:42 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	ICSAB	11:09:16 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	WASH	11:14:51 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	2006085-010A	11:20:25 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	LCS-28638	11:25:59 Mon 15-JSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\June2020\0615
	2006116-001A	11:31:33 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	2006116-001AMS	11:37:07 Mon 15-JSample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\June2020\0615
	2006116-001AMSD	11:42:41 Mon 15-JSample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\June2020\0615
	2006116-001APDS	11:58:06 Mon 15-JSample	C:\Users\Public\DocumPDS,M-6020-S gistix\ICPMS\DataSet\June2020\0618
	2006135-001A	12:03:40 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0618
	CCV	12:09:15 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0618
	CCB	12:14:50 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0618
	2006136-002A	12:28:22 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0618
	2006138-001A	12:33:56 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	2006183-001A	12:39:30 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	2006175-001A	12:45:03 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0618
	2006175-002A	12:50:37 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	2006175-003A	12:56:11 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	2006175-004A	13:01:46 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0618
	2006116-003A	13:07:20 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\061f
	2006175-001A 20X	13:12:54 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	2006175-002A 20X	13:18:29 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	CCV	13:24:04 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\061f
	CCB	13:35:55 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\061f
	2006175-003A 20X	13:42:01 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	2006175-004A 20X	13:47:35 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
	2006175-004A 10X	13:53:09 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-Sgistix\ICPMS\DataSet\June2020\061\$
	&SampID	13:58:44 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
	MB-28659	14:04:19 Mon 15-JSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\June2020\0619
	LCS-28659	14:09:53 Mon 15-JSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\June2020\061\$
	2006230-001A	14:15:26 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0619

2006230-001ADUP	14:21:00 Mon 15-JSample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\June2020\061
2006230-001AMS	14:26:34 Mon 15-JSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\June2020\061
2006230-001AMSD	14:32:08 Mon 15-JSample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPMS\DataSet\June2020\061
CCV	14:37:43 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\061
CCB	14:43:48 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\061
CCV	14:49:45 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCB	14:55:24 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCV	15:06:03 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\061
CCB	15:12:02 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
MB-28660	15:21:18 Mon 15-JSample	C:\Users\Public\DocumMBLK,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
LCS-28660	15:26:52 Mon 15-JSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006167-001A	15:32:26 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
2006167-001ADUP	15:38:00 Mon 15-JSample	C:\Users\Public\DocumDUP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006167-001ADIL	15:43:34 Mon 15-JSample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006167-001AMS	15:49:08 Mon 15-JSample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006167-001AMSD	15:54:42 Mon 15-JSample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006167-001APDS	16:00:16 Mon 15-JSample	C:\Users\Public\DocumPDS,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
2006232-001A	16:05:50 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
CCV	16:12:08 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCB	16:17:42 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
2006122-001A	16:26:28 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
2006122-002A	16:32:02 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006122-003A	16:37:36 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\June2020\0615
2006177-001A	16:43:10 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006177-002A	16:48:43 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006177-003A	16:54:17 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006177-004A	16:59:51 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006177-005A	17:05:25 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
WASH	17:11:00 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
2006177-006A	17:15:50 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
CCV	17:20:40 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCB	17:25:29 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
2006177-007A	17:30:19 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006177-008A	17:35:08 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006177-009A	17:39:57 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006177-010A	17:44:46 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006177-011A	17:49:35 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006188-001A	17:54:24 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006198-001A	17:59:13 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006198-002A	18:04:02 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
2006241-001A	18:08:51 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\June2020\0615
WASH	18:13:41 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCV	18:18:30 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCB	18:23:19 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
MB-28645	18:28:09 Mon 15-JSample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\June2020\0615
LCS-28645	18:32:58 Mon 15-JSample	C:\Users\Public\DocumLCS,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006129-001A	18:37:47 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006129-001ADUP	18:42:36 Mon 15-JSample	C:\Users\Public\DocumDUP,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006129-001AMS	18:47:25 Mon 15-JSample	C:\Users\Public\DocumMS,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006129-001AMSD	18:52:14 Mon 15-JSample	C:\Users\Public\DocumMSD,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006175-001A	18:57:03 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006175-002A	19:01:52 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006175-003A	19:06:41 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006175-004A	19:11:30 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0615
CCV	19:16:20 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCB	19:21:09 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
2006180-001A 10X	19:25:59 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006180-001A	19:30:48 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\June2020\0615
MB2-28645	19:35:37 Mon 15-JSample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\June2020\0615
2006224-001A	19:40:27 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0615
	•	

2006229-001A	19:45:16 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0615
2006229-002A	19:50:05 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0615
2006229-003A	19:54:54 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\June2020\0615
2006229-004A	19:59:43 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006229-005A	20:04:32 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006229-006A	20:09:20 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
CCV	20:14:10 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCB	20:18:59 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
2006229-007A	20:23:48 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006229-008A	20:28:37 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006229-009A	20:33:26 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006229-010A	20:38:14 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006228-001A	20:43:48 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006228-002A	20:49:21 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006228-003A	20:54:55 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006228-004A	21:00:28 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006228-005A	21:06:02 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006228-006A	21:11:36 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
CCV	21:17:10 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCB	21:22:44 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
2006236-001A	21:28:18 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
2006237-001A	21:33:51 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\June2020\0615
&SampID	21:39:26 Mon 15-JSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
MB-28658	21:45:00 Mon 15-JSample	C:\Users\Public\DocumMBLK,M-200.8-DW_gistix\ICPMS\DataSet\June2020\0615
LCS-28658	21:50:34 Mon 15-JSample	C:\Users\Public\DocumLCS,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0615
2006156-001A	21:56:07 Mon 15-JSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\June2020\0615
2006156-001ADUP	22:01:41 Mon 15-JSample	C:\Users\Public\DocumDUP,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0615
2006156-001AMS	22:07:14 Mon 15-JSample	C:\Users\Public\DocumMS,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0615
2006156-001AMSD	22:12:48 Mon 15-JSample	C:\Users\Public\DocumMSD,M-200.8-DW _ gistix\ICPMS\DataSet\June2020\0615
CCV	22:18:22 Mon 15-JQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
CCB	22:23:56 Mon 15-JQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
2%	22:29:30 Mon 15-JQC Std #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615
DI	22:35:04 Mon 15-JQC Std #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\June2020\0615

Calibration

Detection of Metals by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) EPA Method 6020B

Table 1: Calibration Standards

Element		Calibration Standard ug/L						
	Cal 1	Cal 2	Cal 3	Cal 4	Cal 5	Cal 6	Cal 7	
Antimony	0.025	0.05	0.25	1.25	5.0	10.0	25.0	
Arsenic	0.5	1.0	5.0	25.0	100.0	200.	500	
Barium	0.5	1.0	5.0	25.0	100.0	200.	500	
Beryllium	0.025	0.05	0.25	1.25	5.0	10.0	25.0	
Cadmium	0.025	0.05	0.25	1.25	5.0	10.0	25.0	
Chromium	0.5	1.0	5.0	25.0	100.0	200.0	500	
Cobalt	0.5	1.0	5.0	25.0	100.0	200.0	500	
Copper	0.5	1.0	5.0	25.0	100.0	200.0	500	
Lead	0.25	0.5	2.5	12.5	50	100	250	
Manganese	0.5	1.0	5.0	25.0	100.0	200.0	500	
Molybdenum	0.5	1.0	5.0	25.0	100.0	200.0	500	
Nickel	0.5	1.0	5.0	25.0	100.0	200.0	500	
Selenium	0.05	0.1	0.5	2.5	10.0	20.0	50.0	
Silver	0.025	0.05	0.25	1.25	5.0	10.0	25	
Strontium	0.5	1.0	5.0	25.0	100.0	200.0	500	
Thallium	0.0125	0.025	0.125	0.625	2.5	5.0	12.5	
Tin	0.5	1.0	5.0	25.0	100.0	200.0	500	
Titanium	0.5	1.0	5.0	25.0	100.0	200.0	500	
Uranium	0.25	0.5	2.5	12.5	50	100	250	
Vanadium	0.5	1.0	5.0	25.0	100.0	200.	500	
Zinc	0.5	1.0	5.0	25.0	100.0	200.	500	
Aluminum						50	100	
Boron						25	50	
Calcium					-	50	100	
Iron					-	50	100	
Magnesium						50	100	
Phosphorous						50	100	
Potassium						50	100	
Sodium						50	100	

Element					
		Cal 8	Cal 9	Cal 10	Cal 11
Aluminum	Al	500	1000	2500	5000
Boron	В	250	500	1250	2500
Calcium	Ca	500	1000	2500	5000
Iron	Fe	500	1000	2500	5000
Magnesium	Mg	500	1000	2500	5000
Phosphorous	P	500	1000	2500	5000

Detection of Metals by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) EPA Method 6020B

Potassium	K	500	1000	2500	5000
Sodium	Na	500	1000	2500	5000
Mercury	Hg	500	1000	2500	5000

Quantitative Analysis Calibration Report

File Name: 060920CO.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\060920CO.cal

Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.04	0.00	0.999903
В	11.009	Linear Thru Zero	0.05	0.00	0.999787
Na	22.990	Weighted Linear	0.00	0.01	0.999076
Mg	24.986	Weighted Linear	0.02	0.00	0.999762
Al	26.982	Weighted Linear	0.00	0.00	0.999742
K	38.964	Weighted Linear	0.00	0.00	0.999783
Fe	56.935	Weighted Linear	0.00	-0.00	0.999699
Ca	43.956	Linear Thru Zero	0.01	0.00	0.998525
Р	30.994	Linear Thru Zero	0.01	0.00	0.999623
Sc-5	44.956	Linear Thru Zero	0.00	0.00	0.000000
Ti	46.952	Linear Thru Zero	0.01	0.00	0.999987
V	50.944	Weighted Linear	0.12	-0.00	0.999952
Mn	54.938	Linear Thru Zero	0.14	0.00	0.999993
Be-2	9.012	Linear Thru Zero	0.03	0.00	0.999924
Co	58.933	Linear Thru Zero	0.11	0.00	0.999973
Ni	59.933	Weighted Linear	0.03	0.00	0.998302
Cr-1	51.941	Linear Thru Zero	0.10	0.00	0.999981
Cu	62.930	Weighted Linear	0.06	0.00	0.999064
Cu-2	64.928	Weighted Linear	0.03	-0.00	0.998882
Zn	65.926	Weighted Linear	0.01	-0.01	0.999837
As	74.922	Linear Thru Zero	0.01	0.00	0.999980
Se	81.917	Linear Thru Zero	0.00	0.00	0.999772
Kr	82.914	Linear Thru Zero	0.00	0.00	0.000000
Sr	87.906	Linear Thru Zero	0.17	0.00	0.999990
Мо	96.906	Linear Thru Zero	0.01	0.00	0.999933
Rh-3	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag	106.905	Weighted Linear	0.06	-0.00	0.998301
Sb-1	120.904	Linear Thru Zero	0.05	0.00	0.999977
Ag-2	108.905	Linear Thru Zero	0.07	0.00	0.999712
Cd	110.904	Linear Thru Zero	0.02	0.00	0.999966
Sn	117.902	Linear Thru Zero	0.06	0.00	0.999943
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Simple Linear	0.04	0.00	0.999933
Sb-1	122.904	Linear Thru Zero	0.03	0.00	0.999658
Ва	136.904	Weighted Linear	0.02	0.00	0.998702
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
TI	204.975	Linear Thru Zero	0.12	0.00	0.999634
Pb	207.977	Linear Thru Zero	0.16	0.00	0.999976
U	238.050	Weighted Linear	0.15	0.00	0.998286
Li-1	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be-1	9.012	Linear Thru Zero	0.04	0.00	0.999348
B-1	11.009	Linear Thru Zero	0.04	0.00	0.999956
Se-2	77.917	Simple Linear	0.00	0.00	0.999976
Sb-3	120.904	Weighted Linear	0.00	0.00	
Mo-1	97.906	Linear Thru Zero	0.01	0.00	0.999867
Rh-1	102.905	Linear Thru Zero			0.999979
			0.00	0.00	0.000000
Ag-1	106.905	Weighted Linear Linear Thru Zero	0.07	-0.00	0.999352
Na-1	22.990	Linear Thru Zero	0.00	0.00	0.999723
Ca-1	43.956	Linear Thru Zero	0.00	0.00	0.999729
Mg-1	23.985		0.00	0.00	0.999647
Al-1	26.982	Linear Thru Zero	0.00	0.00	0.999340
Ba-1	137.905	Simple Linear	0.03	0.00	0.999996
Cd-1	110.904	Weighted Linear	0.01	0.00	0.999953

Report Date/Time: Tuesday, June 09, 2020 11:28:19

K-1	38.964	Linear Thru Zero	0.00	0.00	0.999346
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.01	0.00	0.999991
Cr-2	51.941	Linear Thru Zero	0.02	0.00	0.999986
Fe-1	56.935	Linear Thru Zero	0.00	0.00	0.999738
Ni-1	59.933	Linear Thru Zero	0.02	0.00	0.999976
Cu-1	62.930	Linear Thru Zero	0.04	0.00	0.999981
Zn-2	65.926	Simple Linear	0.00	-0.00	0.999953
As-3	74.922	Linear Thru Zero	0.00	0.00	0.999965
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
In-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Linear Thru Zero	0.19	0.00	0.999998

Report Date/Time: Tuesday, June 09, 2020 11:28:19 Page 2

Quantitative Analysis Calibration Report

File Name: 061020CO.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\061020CO.cal

Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.04	0.00	0.999954
В	11.009	Linear Thru Zero	0.05	0.00	0.999795
Na	22.990	Linear Thru Zero	0.00	0.00	0.999796
Mg	24.986	Linear Thru Zero	0.02	0.00	0.999120
Al	26.982	Linear Thru Zero	0.00	0.00	0.999930
K	38.964	Linear Thru Zero	0.00	0.00	0.999716
Fe	56.935	Linear Thru Zero	0.00	0.00	0.999481
Ca	43.956	Linear Thru Zero	0.01	0.00	0.999520
Р	30.994	Linear Thru Zero	0.01	0.00	0.999732
Sc-5	44.956	Linear Thru Zero	0.00	0.00	0.000000
Ti	46.952	Linear Thru Zero	0.01	0.00	0.999947
V	50.944	Linear Thru Zero	0.13	0.00	0.999979
Mn	54.938	Linear Thru Zero	0.15	0.00	1.000000
Be-2	9.012	Linear Thru Zero	0.03	0.00	0.999959
Co	58.933	Linear Thru Zero	0.11	0.00	0.999876
Ni	59.933	Linear Thru Zero	0.02	0.00	0.999900
Cr-1	51.941	Linear Thru Zero	0.11	0.00	0.999984
Cu	62.930	Linear Thru Zero	0.05	0.00	0.999975
Cu-2	64.928	Linear Thru Zero	0.03	0.00	0.999903
Zn	65.926	Linear Thru Zero	0.01	0.00	0.999972
As	74.922	Linear Thru Zero	0.01	0.00	0.999987
Se	81.917	Linear Thru Zero	0.00	0.00	0.999843
Kr	82.914	Linear Thru Zero	0.00	0.00	0.000000
Sr	87.906	Linear Thru Zero	0.18	0.00	0.999846
Мо	96.906	Linear Thru Zero	0.01	0.00	0.999987
Rh-3	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag	106.905	Linear Thru Zero	0.06	0.00	0.999547
Sb-1	120.904	Linear Thru Zero	0.05	0.00	0.999972
Ag-2	108.905	Linear Thru Zero	0.07	0.00	0.999490
Cd	110.904	Linear Thru Zero	0.02	0.00	0.999981
Sn	117.902	Linear Thru Zero	0.06	0.00	0.999997
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Weighted Linear	0.03	0.00	0.999739
Sb-1	122.904	Linear Thru Zero	0.02	0.00	0.999980
Ba	136.904	Linear Thru Zero	0.02	0.00	0.999794
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
TI	204.975	Linear Thru Zero	0.09	0.00	0.999998
Pb	207.977	Linear Thru Zero	0.11	0.00	0.999810
U	238.050	Linear Thru Zero	0.11	0.00	0.999992
Li-1	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be-1	9.012	Linear Thru Zero	0.03	0.00	0.999721
B-1	11.009	Linear Thru Zero	0.03	0.00	0.999872
Se-2	77.917	Simple Linear	0.00	-0.00	0.999957
Sb-3	120.904	Weighted Linear	0.00	0.00	0.999616
Mo-1	97.906	Linear Thru Zero	0.02	0.00	
Rh-1	102.905	Linear Thru Zero	0.00		0.999975
	102.905	Simple Linear		0.00	0.000000
Ag-1		Linear Thru Zero	0.07	-0.00	0.998151
Na-1	22.990	Linear Thru Zero	0.01	0.00	0.999977
Ca-1	43.956		0.00	0.00	0.999808
Mg-1	23.985	Linear Thru Zero	0.00	0.00	0.999804
Al-1	26.982	Linear Thru Zero	0.00	0.00	0.999913
Ba-1	137.905	Linear Thru Zero	0.04	0.00	0.999953
Cd-1	110.904	Linear Thru Zero	0.01	0.00	0.999851

Report Date/Time: Wednesday, June 10, 2020 11:34:57

K-1	38.964	Linear Thru Zero	0.00	0.00	0.999858
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.01	0.00	0.999944
Cr-2	51.941	Linear Thru Zero	0.02	0.00	0.999935
Fe-1	56.935	Linear Thru Zero	0.00	0.00	0.999623
Ni-1	59.933	Linear Thru Zero	0.01	0.00	0.999950
Cu-1	62.930	Linear Thru Zero	0.04	0.00	0.999945
Zn-2	65.926	Simple Linear	0.00	0.00	0.999981
As-3	74.922	Linear Thru Zero	0.00	0.00	0.999928
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
In-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Linear Thru Zero	0.17	0.00	0.999854

Report Date/Time: Wednesday, June 10, 2020 11:34:57 Page 2

Quantitative Analysis Calibration Report

File Name: 061520CO.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\061520CO.cal

Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.03	0.00	0.999933
В	11.009	Linear Thru Zero	0.04	0.00	0.999807
Na	22.990	Linear Thru Zero	0.00	0.00	0.999915
Mg	24.986	Linear Thru Zero	0.02	0.00	0.999948
Al	26.982	Linear Thru Zero	0.00	0.00	0.999991
K	38.964	Linear Thru Zero	0.00	0.00	0.999634
Fe	56.935	Linear Thru Zero	0.00	0.00	0.999946
Ca	43.956	Linear Thru Zero	0.01	0.00	0.998886
Р	30.994	Linear Thru Zero	0.01	0.00	0.999778
Sc-5	44.956	Linear Thru Zero	0.00	0.00	0.000000
Ti	46.952	Weighted Linear	0.01	0.00	0.998131
V	50.944	Weighted Linear	0.12	-0.02	0.999155
Mn	54.938	Linear Thru Zero	0.14	0.00	0.999992
Be-2	9.012	Linear Thru Zero	0.02	0.00	0.999949
Co	58.933	Linear Thru Zero	0.11	0.00	0.999992
Ni	59.933	Linear Thru Zero	0.02	0.00	0.999633
Cr-1	51.941	Linear Thru Zero	0.10	0.00	0.999983
Cu	62.930	Linear Thru Zero	0.05	0.00	0.999987
Cu-2	64.928	Linear Thru Zero	0.02	0.00	0.999878
Zn	65.926	Linear Thru Zero	0.01	0.00	0.999213
As	74.922	Linear Thru Zero	0.01	0.00	0.999321
Se	81.917	Linear Thru Zero	0.00	0.00	0.999953
Kr	82.914	Linear Thru Zero	0.00	0.00	0.000000
Sr	87.906	Linear Thru Zero	0.15	0.00	0.999975
Мо	96.906	Weighted Linear	0.01	0.00	0.999284
Rh-3	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag	106.905	Weighted Linear	0.06	-0.00	0.998471
Sb-1	120.904	Linear Thru Zero	0.05	0.00	0.999982
Ag-2	108.905	Weighted Linear	0.06	-0.00	0.998479
Cd	110.904	Linear Thru Zero	0.02	0.00	0.999994
Sn	117.902	Weighted Linear	0.05	0.00	0.999627
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Weighted Linear	0.03	0.00	0.999275
Sb-1	122.904	Linear Thru Zero	0.02	0.00	0.999983
Ba	136.904	Linear Thru Zero	0.01	0.00	0.999666
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
TI	204.975	Linear Thru Zero	0.09	0.00	0.999999
Pb	207.977	Linear Thru Zero	0.10	0.00	0.999537
U	238.050	Linear Thru Zero	0.09	0.00	0.999973
Li-1	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be-1	9.012	Linear Thru Zero	0.03	0.00	0.999976
B-1	11.009	Linear Thru Zero	0.03	0.00	0.999656
Se-2	77.917	Linear Thru Zero	0.00	0.00	0.999984
Sb-3		Weighted Linear		0.00	
Mo-1	120.904 97.906	Weighted Linear	0.01		0.999790
		-	0.03	-0.00	0.999433
Rh-1	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag-1	106.905	Linear Thru Zero	0.07	0.00	0.998450
Na-1	22.990	Linear Thru Zero	0.00	0.00	0.999619
Ca-1	43.956	Linear Thru Zero	0.00	0.00	0.999994
Mg-1	23.985	Linear Thru Zero	0.00	0.00	0.999920
Al-1	26.982	Linear Thru Zero	0.00	0.00	0.999980
Ba-1	137.905	Linear Thru Zero	0.04	0.00	0.999988
Cd-1	110.904	Linear Thru Zero	0.01	0.00	0.999998

Report Date/Time: Monday, June 15, 2020 12:19:15

K-1	38.964	Linear Thru Zero	0.00	0.00	0.999994
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.01	0.00	0.999992
Cr-2	51.941	Weighted Linear	0.02	-0.00	0.999312
Fe-1	56.935	Linear Thru Zero	0.00	0.00	0.999980
Ni-1	59.933	Weighted Linear	0.01	0.00	0.999835
Cu-1	62.930	Linear Thru Zero	0.04	0.00	0.999992
Zn-2	65.926	Linear Thru Zero	0.00	0.00	0.999993
As-3	74.922	Linear Thru Zero	0.00	0.00	0.999993
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
ln-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Weighted Linear	0.15	0.00	0.999232

Report Date/Time: Monday, June 15, 2020 12:19:15 Page 2

Tunes

SmartTune Wizard - Summary

Optimization Summary

Start Time: 6/9/2020 8:52:34 AM

Obtained RSD (In 115): 0.0096 Obtained RSD (U 238): 0.0135

SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz

End Time: 6/9/2020 8:54:54 AM

Lab Performance Check - [Passed] Optimum value(s): N/A

Obtained Intensity (Be 9): 11152.62

Obtained Intensity (Mg 24): 50193.30

Obtained Intensity (In 115): 97774.08

Obtained Intensity (U 238): 74514.19

Obtained Intensity (Bkgd 220): 0.73

Obtained Formula (CeO 156 / Ce 140): 0.019 (=1554.75 / 80645.55)

Obtained Formula (Ce++ 70 / Ce 140): 0.021 (=1668.96 / 80645.55)

Obtained RSD (Be 9): 0.0119

Obtained RSD (Mg 24): 0.0086

Report Date/Time: Tuesday, June 09, 2020 08:55:40

SmartTune Wizard - Details

```
Optimization Details
```

```
SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz
Optimization Status
Start Time: 6/9/2020 8:52:34 AM
Lab Performance Check
       Optimization Settings:
               Method: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Method\FA_Daily Performance.mth.
               Intensity Criterion: Be 9 > 2000
               Intensity Criterion: Mg 24 > 15000
               Intensity Criterion: In 115 > 40000
               Intensity Criterion: U 238 > 30000
               Intensity Criterion: Bkgd 220 <= 5</pre>
               Formula Criterion: CeO 156 / Ce 140 <= 0.03
               Formula Criterion: Ce++ 70 / Ce 140 <= 0.05
               RSD Criterion: Be 9.0122 < 0.05
               RSD Criterion: Mg 23.985 < 0.05
               RSD Criterion: In 114.904 < 0.05
               RSD Criterion: U 238.05 < 0.05
       Optimization Results:
       Initial Try
               Obtained Intensity (Be 9): 11152.62
               Obtained Intensity (Mg 24): 50193.30
               Obtained Intensity (In 115): 97774.08
               Obtained Intensity (U 238): 74514.19
               Obtained Intensity (Bkgd 220): 0.73
               Obtained Formula (CeO 156 / Ce 140): 0.019 (=1554.75 / 80645.55)
               Obtained Formula (Ce++ 70 / Ce 140): 0.021 (=1668.96 / 80645.55)
               Obtained RSD (Be 9): 0.0119
               Obtained RSD (Mg 24): 0.0086
               Obtained RSD (In 115): 0.0096
               Obtained RSD (U 238): 0.0135
```

[Passed] Optimum value(s): N/A

End Time: 6/9/2020 8:54:54 AM

Report Date/Time: Tuesday, June 09, 2020 08:55:40

Mass Calibration and Resolution - [Passed] Optimum value(s): N/A
Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.695)

Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.7/0.689)

Target/Obtained mass (23.985/23.975), larget/Obtained resolution (0.7/0.889)

Target/Obtained mass (114.904/114.875), Target/Obtained resolution (0.7/0.703) Target/Obtained mass (207.977/207.975), Target/Obtained resolution (0.7/0.698)

Target/Obtained mass (238.05/238.075), Target/Obtained resolution (0.7/0.716)

Acq. Date/Time: 6/9/2020 8:40:36 AM

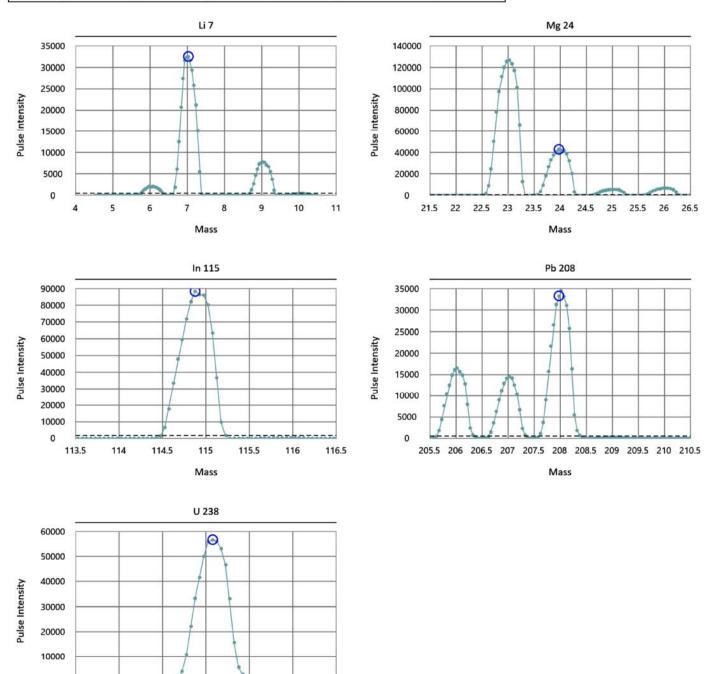
236.5

237

237.5

238

Mass


238.5

239

239.5

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1319	2021	0.695	
Mg	23.985	23.975	4711	2021	0.689	
In	114.904	114.875	22852	2038	0.703	
Pb	207.977	207.975	41419	2060	0.698	
U	238.05	238.075	47424	2068	0.716	

SmartTune Wizard - Summary

Optimization Summary

Start Time: 6/10/2020 8:36:23 AM

SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz

End Time: 6/10/2020 8:38:42 AM

Lab Performance Check - [Passed] Optimum value(s): N/A

Obtained Intensity (Be 9): 9664.20
Obtained Intensity (Mg 24): 46962.07
Obtained Intensity (In 115): 96056.29
Obtained Intensity (U 238): 73555.10
Obtained Intensity (Bkgd 220): 0.00
Obtained Formula (CeO 156 / Ce 140): 0.025 (=1997.47 / 79067.82)
Obtained Formula (Ce++ 70 / Ce 140): 0.026 (=2045.35 / 79067.82)
Obtained RSD (Be 9): 0.0157
Obtained RSD (Mg 24): 0.0132
Obtained RSD (In 115): 0.0118
Obtained RSD (U 238): 0.0131

Report Date/Time: Wednesday, June 10, 2020 08:40:21

SmartTune Wizard - Details

```
Optimization Details
```

```
SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz
Optimization Status
Start Time: 6/10/2020 8:36:23 AM
Lab Performance Check
       Optimization Settings:
                Method: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Method\FA_Daily Performance.mth.
                Intensity Criterion: Be 9 > 2000
                Intensity Criterion: Mg 24 > 15000
                Intensity Criterion: In 115 > 40000
                Intensity Criterion: U 238 > 30000
                Intensity Criterion: Bkgd 220 <= 5</pre>
                Formula Criterion: CeO 156 / Ce 140 <= 0.03
                Formula Criterion: Ce++ 70 / Ce 140 <= 0.05
                RSD Criterion: Be 9.0122 < 0.05
                RSD Criterion: Mg 23.985 < 0.05
                RSD Criterion: In 114.904 < 0.05
                RSD Criterion: U 238.05 < 0.05
       Optimization Results:
       Initial Try
                Obtained Intensity (Be 9): 9664.20
                Obtained Intensity (Mg 24): 46962.07
                Obtained Intensity (In 115): 96056.29
                Obtained Intensity (U 238): 73555.10
                Obtained Intensity (Bkgd 220): 0.00
                Obtained Formula (CeO 156 / Ce 140): 0.025 (=1997.47 / 79067.82)
                Obtained Formula (Ce++ 70 / Ce 140): 0.026 (=2045.35 / 79067.82)
                Obtained RSD (Be 9): 0.0157
                Obtained RSD (Mg 24): 0.0132
                Obtained RSD (In 115): 0.0118
                Obtained RSD (U 238): 0.0131
```

[Passed] Optimum value(s): N/A

End Time: 6/10/2020 8:38:42 AM

Report Date/Time: Wednesday, June 10, 2020 08:40:21

Mass Calibration and Resolution - [Passed] Optimum value(s): N/A
Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.706)

Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.7/0.703)

Target/Obtained mass (114.904/114.925), Target/Obtained resolution (0.7/0.702)

Target/Obtained mass (207.977/208.025), Target/Obtained resolution (0.7/0.703)

Target/Obtained mass (238.05/238.075), Target/Obtained resolution (0.7/0.695)

Acq. Date/Time: 6/10/2020 8:28:43 AM

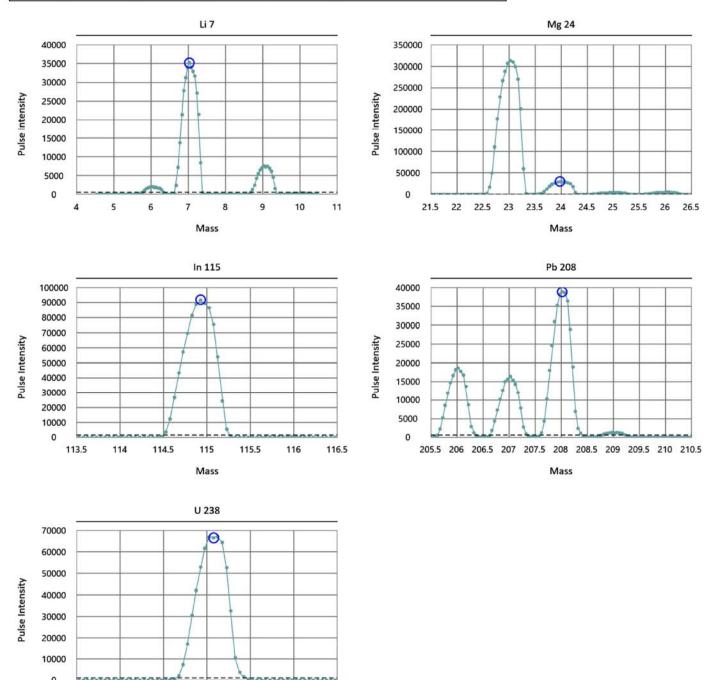
236.5

237

237.5

238

Mass


238.5

239

239.5

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1320	2021	0.706	
Mg	23.985	23.975	4709	2021	0.703	
In	114.904	114.925	22856	2038	0.702	
Pb	207.977	208.025	41428	2060	0.703	
U	238.05	238.075	47428	2068	0.695	

SmartTune Wizard - Summary

Optimization Summary

Start Time: 6/15/2020 8:41:49 AM End Time: 6/15/2020 8:44:09 AM

SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz

Datained Intensity (Be 9): 13228.32
Obtained Intensity (Mg 24): 75689.60
Obtained Intensity (In 115): 129105.74
Obtained Intensity (U 238): 86956.20
Obtained Intensity (Bkgd 220): 0.20
Obtained Formula (Ce0 156 / Ce 140): 0.029 (=3067.06 / 103983.44)
Obtained Formula (Ce++ 70 / Ce 140): 0.020 (=2053.08 / 103983.44)

Obtained RSD (Be 9): 0.0139 Obtained RSD (Mg 24): 0.0105 Obtained RSD (In 115): 0.0092 Obtained RSD (U 238): 0.0106

Report Date/Time: Monday, June 15, 2020 08:44:31

SmartTune Wizard - Details

Optimization Details

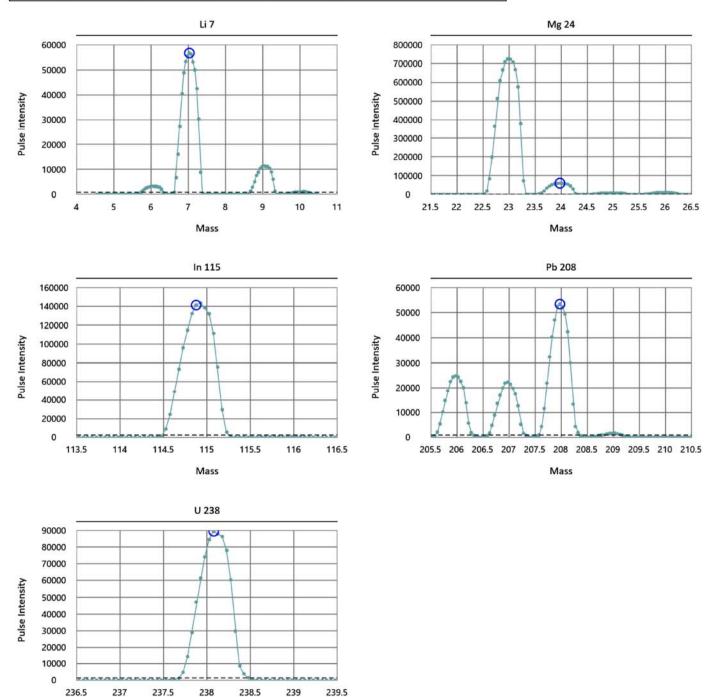
```
SmartTune file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Wizard\SmartTune\FA_SmartTune Daily.swz
Optimization Status
Start Time: 6/15/2020 8:41:49 AM
Lab Performance Check
       Optimization Settings:
               Method: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Method\FA_Daily Performance.mth.
               Intensity Criterion: Be 9 > 2000
               Intensity Criterion: Mg 24 > 15000
               Intensity Criterion: In 115 > 40000
               Intensity Criterion: U 238 > 30000
               Intensity Criterion: Bkgd 220 <= 5</pre>
               Formula Criterion: CeO 156 / Ce 140 <= 0.03
               Formula Criterion: Ce++ 70 / Ce 140 <= 0.05
               RSD Criterion: Be 9.0122 < 0.05
               RSD Criterion: Mg 23.985 < 0.05
               RSD Criterion: In 114.904 < 0.05
               RSD Criterion: U 238.05 < 0.05
       Optimization Results:
       Initial Try
               Obtained Intensity (Be 9): 13228.32
               Obtained Intensity (Mg 24): 75689.60
               Obtained Intensity (In 115): 129105.74
               Obtained Intensity (U 238): 86956.20
               Obtained Intensity (Bkgd 220): 0.20
               Obtained Formula (CeO 156 / Ce 140): 0.029 (=3067.06 / 103983.44)
               obtained Formula (Ce++ 70 / Ce 140): 0.020 (=2053.08 / 103983.44)
               Obtained RSD (Be 9): 0.0139
               Obtained RSD (Mg 24): 0.0105
               Obtained RSD (In 115): 0.0092
               Obtained RSD (U 238): 0.0106
```

[Passed] Optimum value(s): N/A

End Time: 6/15/2020 8:44:09 AM

Report Date/Time: Monday, June 15, 2020 08:44:31

Mass Calibration and Resolution - [Passed] Optimum value(s): N/A
Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.719)
Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.7/0.709)
Target/Obtained mass (114.904/114.875), Target/Obtained resolution (0.7/0.709)
Target/Obtained mass (207.977/207.975), Target/Obtained resolution (0.7/0.707)


Acq. Date/Time: 6/15/2020 8:32:14 AM

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Mass

Target/Obtained mass (238.05/238.075), Target/Obtained resolution (0.7/0.698)

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1323	2021	0.719	
Mg	23.985	23.975	4712	2021	0.709	
In	114.904	114.875	22848	2038	0.709	
Pb	207.977	207.975	41425	2060	0.707	
U	238.05	238.075	47422	2068	0.698	

DATA SET for Review -- **Deliverable Requirements**

Total Organic Carbon Analysis by EPA 9060

Fremont Analytical Work Order No. 2006085

Libby Environmental

Project Name: Hardel Site

Project No. L200603-7

This Data contains the following:

- Analytical Sequence Summary for Work Order 2006085
- Calibration Information for Work Order 2006085

Fremont Analytical 3600 Fremont Ave N. Seattle, WA 98103

USA

Date Prepared: 2020/06/18 **By:**

Date Approved:

2020/06/18 **By**: *TOC*

TOC

Sample Results Summary

Spl		Num	Act	t				Avg. Area	Avg. Mass	Avg.	Avg.			
#	Sample ID	Rep	Re	p Method	Type	Customer ID	Mode	(cts)	(mgC)	%Carbon	%SOM	Std. Dev	% RSD	Notes
1	CCV-28695A	3	4	TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	61273	1.057	1.057	1.822	1,369.71	2.24	Pass
2	CCB_MB-28695	3	4	TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	857	0.000	0.000	0.000	11.15	1.30	Pass
1	LCS-28695	3	4	TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	62191	1.074	1.074	1.852	1,395.56	2.24	Pass
2	2006085-016A	3	4	TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	325941	5.963	5.951	10.260	3,753.05	1.15	Pass
3	2006085-016ADUP	3	4	TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	109371	1.948	1.935	3.336	1,127.43		Pass
4	2006085-016AMS	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	168167	3.038	3.044	5.249	1,106.85		Pass
5	2006085-016AMSD	3	4	TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	185494	3.359	3.356	5.786	1,412.96		Pass
6	MDL1	3	4	TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	5999	0.032	0.032	0.056	125.31		Pass
7	MDL2	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	5341	0.020	0.020	0.035	77.40		Pass
8	MDL3	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	5415	0.022	0.022	0.037	149.82	2.77	Pass
9	CCV-28695B	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	60963	1.051	1.051	1.812	1,248.17		Pass
10	CCB-28695B	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	744	0.000	0.000	0.000	32.51		Pass
1	CCV-28695C	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	59981	1.033	1.033	1.781	1,375.46		Pass
2	CCB-28695C	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	695	0.000	0.000	0.000	42.47		Pass
3	2006085-016A	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	98594	1.749	3.363	5.798	1,975.40	2.00	Pass
4	CCV-28695D	3		TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	61609	1.063	1.063	1.833	1,348.57	2.19	Pass
5	CCB-28695D	3	4	TOC-S-9060S - Jul 23, 2019; 10-51-57 AM	Sample	00000000	TC	820	0.000	0.000	0.000	19.37	2.36	Pass

Instrument ID: P843732823 (Wet Chemical)

Report_ID: TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 1 of 12

Date Printed:

Jun 18,2020

By Sample Report

Fremont Analytical 3600 Fremont Ave N. Seattle, WA

98103 USA **Date Prepared:** 2020/06/18

2020/06/18 By: *TOC*

Date Approved: 2020/06/18 **By:** *TOC*

Sample Results

 Spl #:
 1
 Sample ID:
 CCV-28695A
 Type:
 Sample
 Date:
 2020/06/17
 Status:
 Pass

Method: TOC-S-9060S - Jul 23, 2019; 10-51-57 AM **Customer ID**: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	10:56 am	46,033	0.774	0.774	1.335	-	-	-	-
2	11:00 am	59,743	1.029	1.029	1.773	-	-	-	-
3	11:05 am	61,689	1.065	1.065	1.836	-	-	-	-
4	11:09 am	62,386	1.078	1.078	1.858	-	-	-	-
	Avg.	61,273	1.057	1.057	1.822	-	-	-	-
	Std.Dev.	1,370							
	% RSD.	2.24							

 Spl #:
 2
 Sample ID:
 CCB_MB-28695
 Type:
 Sample
 Date:
 2020/06/17
 Status:
 Pass

 Method:
 TOC-S-9060S - Jul 23, 2019; 10-51-57 AM
 Customer ID:
 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	11:15 am	860	0.000	0.000	0.000	-	-	-	-
2	11:19 am	920	0.000	0.000	0.000	-	-	-	-
3	11:22 am	844	0.000	0.000	0.000	-	-	-	-
4	11:26 am	866	0.000	0.000	0.000	-	-	-	-
	Avg.	857	0.000	0.000	0.000	-	-	-	-
	Std.Dev.	11							
	% PSD	1.30							

Instrument ID: P843732823 (Wet Chemical)

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 2 of 12

Date Printed:

Jun 18,2020

By Sample Report

Seattle, WA

98103 USA

Date Prepared: 2020/06/18

TOCBy:

Date Approved: 2020/06/18 By: TOC

LCS-28695 Sample ID: Date: 2020/06/17 Status: Pass Spl #: 1 Type: Sample

> TOC-S-9060S - Jul 23, 2019; 10-51-57 AM Method: **Customer ID:** 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	12:00 pm	45,415	0.763	0.763	1.316	-	-	-	-
2	12:04 pm	60,613	1.045	1.045	1.801	-	-	-	-
3	12:09 pm	62,701	1.083	1.083	1.868	-	-	-	-
4	12:13 pm	63,260	1.094	1.094	1.886	-	-	-	-
	Avg.	62,191	1.074	1.074	1.852	-	-	-	-
	Std.Dev.	1,396							
	% RSD.	2.24							

2 Sample ID: 2006085-016A 2020/06/17 Pass Spl #: Type: Sample Date: Status:

> Method: TOC-S-9060S - Jul 23, 2019; 10-51-57 AM Customer ID: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	12:28 pm	296,380	5.415	5.404	9.317	-	-	-	-
2	12:33 pm	321,640	5.883	5.871	10.123	-	-	-	-
3	12:38 pm	327,628	5.994	5.982	10.314	-	-	-	-
4	12:43 pm	328,554	6.011	5.999	10.343	-	-	-	-
	Avg.	325,941	5.963	5.951	10.260	-	-	-	-
	Std.Dev.	3,753							
	% RSD.	1.15							

P843732823 (Wet Chemical) Instrument ID:

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 3 of 12 Date Printed:

Jun 18,2020

By Sample Report

Denotes Excluded Replicates

Denotes First Failed Samples

3

Spl #:

Fremont Analytical 3600 Fremont Ave N.

Seattle, WA

98103 USA

Date Prepared: 2020/06/18

TOCBy:

Date Approved: 2020/06/18 By: TOC

Sample ID: 2006085-016ADUP

Type: Sample

Date: 2020/06/17 Status: Pass

Pass

Status:

Method:

TOC-S-9060S - Jul 23, 2019; 10-51-57 AM

Customer ID: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	12:49 pm	95,910	1.699	1.687	2.909	-	-	-	-
2	12:54 pm	108,073	1.924	1.911	3.295	-	-	-	-
3	12:59 pm	109,940	1.959	1.945	3.354	-	-	-	- 1
4	1:03 pm	110,101	1.962	1.948	3.359	-	-	-	-
	Avg.	109,371	1.948	1.935	3.336	-	-	-	-
	Std.Dev.	1,127							
	% RSD.	1.03							

Sample ID: 2006085-016AMS Spl #: Type: Sample

2020/06/17 Date:

Method: TOC-S-9060S - Jul 23, 2019; 10-51-57 AM Customer ID: 00000000

		TC Area	TC Mass	тс	TC %SOM	TOC Area	TOC Mass	тос	TOC %SOM
Rep#	Time	(cts)	(mgC)	%Carbon		(cts)	(mgC)	%Carbon	
1	1:10 pm	153,490	2.766	2.772	4.779	-	-	-	-
2	1:15 pm	166,922	3.015	3.021	5.209	-	-	-	-
3	1:19 pm	168,540	3.045	3.051	5.261	-	-	-	-
4	1:24 pm	169,039	3.054	3.061	5.277	-	-	-	-
	Avg.	168,167	3.038	3.044	5.249	-	-	-	-
	Std.Dev.	1,107							
	% RSD.	0.66							

P843732823 (Wet Chemical) Instrument ID:

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 4 of 12 Date Printed:

Jun 18,2020

By Sample Report

Denotes Excluded Replicates Denotes First Failed Samples

Page 393 of 403

Seattle, WA

98103 USA

Date Prepared: 2020/06/18 By:

2020/06/18 By: TOC

TOC

Date Approved:

5 Sample ID: 2006085-016AMSD Date: 2020/06/17 Status: Pass Spl #: Type: Sample

> Method: TOC-S-9060S - Jul 23, 2019; 10-51-57 AM **Customer ID:** 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	2:31 pm	170,018	3.073	3.069	5.292	-	-	-	-
2	2:36 pm	183,918	3.330	3.327	5.736	-	-	-	-
3	2:40 pm	185,915	3.367	3.364	5.800	-	-	-	-
4	2:45 pm	186,648	3.381	3.377	5.823	-	-	-	-
	Avg.	185,494	3.359	3.356	5.786	-	-	-	-
	Std.Dev.	1,413							
	% RSD.	0.76							

MDL1 Sample ID: 2020/06/17 Pass Spl #: 6 Type: Sample Date: Status:

> Method: TOC-S-9060S - Jul 23, 2019; 10-51-57 AM Customer ID: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	2:51 pm	5,018	0.014	0.014	0.025	-	-	-	-
2	2:55 pm	5,960	0.032	0.032	0.055	-	-	-	-
3	2:59 pm	6,139	0.035	0.035	0.060	-	-	-	-
4	3:03 pm	5,897	0.031	0.031	0.053	-	-	-	-
	Avg.	5,999	0.032	0.032	0.056	-	-	-	-
	Std.Dev.	125							
	% RSD.	2.09							

P843732823 (Wet Chemical) Instrument ID:

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 5 of 12 Date Printed:

Jun 18,2020

By Sample Report

Seattle, WA

98103 USA

Date Prepared: 2020/06/18

TOCBy:

Date Approved: 2020/06/18 By:

TOC

SpI #: 7

Sample ID :

Method:

MDL2

Type: Sample

Date:

2020/06/17

Status:

Pass

TOC-S-9060S - Jul 23, 2019; 10-51-57 AM Method:

Customer ID: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	3:10 pm	3,927	0.000	0.000	0.000	-	-	-	-
2	3:13 pm	5,259	0.019	0.019	0.032	-	-	-	-
3	3:17 pm	5,353	0.020	0.020	0.035	-	-	-	-
4	3:21 pm	5,412	0.022	0.022	0.037	-	-	-	-]
	Avg.	5,341	0.020	0.020	0.035	-	-	-	-
	Std.Dev.	77							
	% RSD.	1.45							

MDL3 Sample ID: Spl #: 8 Type: Sample

TOC-S-9060S - Jul 23, 2019; 10-51-57 AM

2020/06/17 Date:

Customer ID: 00000000

Pass Status:

		TC Area	TC Mass	TC	TC %SOM	TOC Area	TOC Mass	TOC	TOC %SOM
Rep#	Time	(cts)	(mgC)	%Carbon		(cts)	(mgC)	%Carbon	
1	3:28 pm	3,875	0.000	0.000	0.000	-	-	-	-
2	3:32 pm	5,242	0.018	0.018	0.032	-	-	-	-
3	3:35 pm	5,510	0.023	0.023	0.040	-	-	-	- 1
4	3:39 pm	5,492	0.023	0.023	0.040	-	-	-	-
	Avg.	5,415	0.022	0.022	0.037	-	-	-	-
	Std.Dev.	150							
	% RSD.	2.77							

P843732823 (Wet Chemical) Instrument ID:

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 6 of 12 Date Printed:

Jun 18,2020

By Sample Report

Denotes Excluded Replicates Denotes First Failed Samples

Seattle, WA

98103 USA

Date Approved:

Date Prepared:

2020/06/18

TOC

TOC

2020/06/18 Ву:

By:

Sample ID:

Method:

Type: Sample

Date: 2020/06/17

Pass Status:

Method:

9

Spl #:

TOC-S-9060S - Jul 23, 2019; 10-51-57 AM

TOC-S-9060S - Jul 23, 2019; 10-51-57 AM

Customer ID: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	3:47 pm	47,276	0.798	0.798	1.375	-	-	-	-
2	3:51 pm	59,522	1.024	1.024	1.766	=	-	-	-
3	3:56 pm	61,713	1.065	1.065	1.836	-	-	-	-
4	4:00 pm	61,654	1.064	1.064	1.834	-	-	-	-
	Avg.	60,963	1.051	1.051	1.812	-	-	-	-
	Std.Dev.	1,248							
	% RSD.	2.05							

Spl #: 10 Sample ID : CCB-28695B Type: Sample

> 33 4.37

CCV-28695B

Date: 2020/06/17

Customer ID: 00000000

Pass Status:

TC Area TC Mass TC **TOC Area TOC Mass** TOC TC %SOM TOC %SOM %Carbon %Carbon Rep# Time (cts) (mgC) (mgC) (cts) 738 0.000 0.000 4:07 pm 0.000 2 4:11 pm 933 0.000 0.000 0.000 715 3 4:14 pm 0.000 0.000 0.000 4:18 pm 779 0.000 0.000 0.000 744 0.000 0.000 0.000 Avg.

Instrument ID: P843732823 (Wet Chemical)

Report_ID:

Std.Dev.

% RSD.

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 7 of 12 **Date Printed:**

Jun 18,2020

By Sample Report

Denotes Excluded Replicates

Denotes First Failed Samples

Page 396 of 403

Seattle, WA

98103 USA Date Approved:

Date Prepared:

2020/06/18

2020/06/18

By: By: TOC

TOC

Spl #: 1

Sample ID: CCV-28695C

Type: Sample

Date: 20

2020/06/18

Status: Pass

Method :

% RSD.

TOC-S-9060S - Jul 23, 2019; 10-51-57 AM

Customer ID: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	10:44 am	45,354	0.762	0.762	1.314	-	-	-	-
2	10:48 am	58,401	1.004	1.004	1.730	-	-	-	-
3	10:52 am	60,634	1.045	1.045	1.802	-	-	-	- 1
4	10:57 am	60,908	1.050	1.050	1.811	-	-	-	-
	Avg. Std.Dev.	59,981 1,375	1.033	1.033	1.781	-	-	-	-

Spl #: 2 Sample ID: CCB-28695C Type: Sample

2.29

Method:

TOC-S-9060S - Jul 23, 2019; 10-51-57 AM

Date: 2020/06/18

Customer ID: 00000000

Status: Pass

		TC Area	TC Mass	TC	TC %SOM	TOC Area	TOC Mass	тос	TOC %SOM
Rep#	Time	(cts)	(mgC)	%Carbon		(cts)	(mgC)	%Carbon	
1	11:03 am	682	0.000	0.000	0.000	-	-	-	-
2	11:07 am	812	0.000	0.000	0.000	-	-	-	-
3	11:10 am	661	0.000	0.000	0.000	-	-	-	-
4	11:15 am	743	0.000	0.000	0.000	-	-	-	
	Avg.	695	0.000	0.000	0.000	-	-	-	-
	Std.Dev.	42							
	% RSD.	6.11							

Instrument ID: P843732823 (Wet Chemical)

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 8 of 12

Date Printed:

Jun 18,2020

By Sample Report

Denotes Excluded Replicates

Seattle, WA

98103 USA Date Prepared: 2

2020/06/18 **By**:

2020/06/18

TOC

By: TOC

 Spl #:
 3
 Sample ID:
 2006085-016A
 Type:
 Sample
 Date:
 2020/06/18
 Status:
 Pass

Method: TOC-S-9060S - Jul 23, 2019; 10-51-57 AM **Customer ID**: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	11:22 am	79,040	1.386	2.666	4.596	-	-	-	-
2	11:27 am	96,322	1.707	3.282	5.658	-	-	-	-
3	11:31 am	99,561	1.767	3.397	5.857	-	-	-	-
4	11:36 am	99,900	1.773	3.409	5.878	-	-	-	-
	Avg.	98,594	1.749	3.363	5.798	-	-	-	-
	Std.Dev.	1,975							
	% RSD.	2.00							

 Spl #:
 4
 Sample ID:
 CCV-28695D
 Type:
 Sample
 Date:
 2020/06/18
 Status:
 Pass

Method: TOC-S-9060S - Jul 23, 2019; 10-51-57 AM Customer ID: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	11:43 am	44,961	0.755	0.755	1.301	-	-	-	-
2	11:47 am	60,077	1.035	1.035	1.784	-	-	-	-
3	11:51 am	62,133	1.073	1.073	1.850	-	-	-	-
4	11:55 am	62,616	1.082	1.082	1.865	-	-	-	-
	Avg.	61,609	1.063	1.063	1.833	-	-	-	-
	Std.Dev.	1,349							
	% RSD.	2.19							

Instrument ID: P843732823 (Wet Chemical)

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 9 of 12

Date Printed:

Jun 18,2020

By Sample Report

Denotes Excluded Replicates

Denotes First Failed Samples

Seattle, WA

98103 USA **Date Prepared:** 2020/06/18

By:

By:

TOC

Date Approved: 2020/

2020/06/18

TOC

 Spl #:
 5
 Sample ID:
 CCB-28695D
 Type:
 Sample
 Date:
 2020/06/18
 Status:
 Pass

Method: TOC-S-9060S - Jul 23, 2019; 10-51-57 AM **Customer ID**: 00000000

Rep#	Time	TC Area (cts)	TC Mass (mgC)	TC %Carbon	TC %SOM	TOC Area (cts)	TOC Mass (mgC)	TOC %Carbon	TOC %SOM
1	12:02 pm	841	0.000	0.000	0.000	-	-	-	-
2	12:06 pm	803	0.000	0.000	0.000	-	-	-	- 1
3	12:11 pm	948	0.000	0.000	0.000	-	-	-	-
4	12:14 pm	816	0.000	0.000	0.000	-	-	-	-
	Avg.	820	0.000	0.000	0.000	-	-	-	-
	Std.Dev.	19							
	% RSD.	2.36							

Instrument ID: P843732823 (Wet Chemical)

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 10 of 12 Date Printed:

Jun 18,2020

By Sample Report

Page 399 of 403

Seattle, WA

98103 USA **Date Prepared:** 2020/06/18 **By:**

r: TOC

Date Approved: 2020/06/18 **By**: *TOC*

Method Summary

Method Details

Method Name: TOC-S-9060S - Jul 23, 2019;

10-51-57 AM

Date Created: 2019/07/23 Time Created: 10:51 am

Created By: toc

Analysis Mode: Solids - TC

Sparging Mode: n/a
Pre-Acid Volume (mL): n/a
Sparge Time (mm:ss): n/a

Volumes

Sample Volume (mL): 8.000

Other

SysPressure: 20.00

Times

React Time: 03:00 Detect Time: 07:00

Temp

React Temp: 910

Outlier Removal Criteria

Enabled: Yes

Additional Replicates: 1

Max. % RSD. 2.00

Max. Std. Dev. 100

Calibration Summary

Calibration Mode

Primary Mode: TC
User for ALL Modes: Enabled

Calibration Pass/Fail Criteria

Parameter	Enabled	Low	High	Failure
RF (mgC/K-cts)	Yes	0.1000	0.3000	Continue
R2	Yes	0.950	1.000	Continue
Offset (area) (cts)	No	-	-	-
Offset (mass) (mgC)	No	-	-	-
QC Blank(cts)	No	-	_	-

Checks, QC's and Actions

iccks, do s and r	Cuons			
Туре	Target	Tolerance	1st Failure	2nd Failure
	mgC	(+/- %)		
CK Std	n/a	10,000.00	Re-run	Continue
QC #1	0.000	10,000.00	Re-run	Continue
QC #2	0.000	10,000.00	Re-run	Continue
QC #3	0.000	10,000.00	Re-run	Continue
QC #4	0.000	10,000.00	Re-run	Continue

Instrument ID: P843732823 (Wet Chemical)

Report_ID:

TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 11 of 12

Date Printed:

Jun 18,2020

By Sample Report

Denotes Excluded Replicates

Denotes First Failed Samples

Calibration Details

Calibration Mode: TC

Date Calibrated: 2020/05/21 Time Calibrated: 10:38 am

Calibrated By: toc

RF (mgC/k-cts): 0.0185 R2: 0.9989

R: 0.9995

QC Blank(cts): 0
Offset (cts): 4250

Offset (mgC): -0.079

Fremont Analytical 3600 Fremont Ave N.

Seattle, WA Date Approved: 2020/06/18 By: TOC

Date Prepared:

2020/06/18

By:

98103

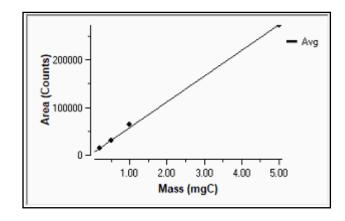
USA

Calibration Settings

EFC Enabled: No

Total Flowrate w/EFC: 50 ml/min

Check Standards: Subtract Offset Samples: Substract Offset


Regression type: Unweighted Linear

Calculations:

Concentration =
$$\frac{\frac{RF}{1000} \times Area}{\text{volume}}$$

Samples: $Area = Area_{Peak} - Area_{Offset}$ or $Area = Area_{Peak} - Area_{RB}$ CHK Stds: $Area = Area_{Peak} - Area_{Offset}$ or $Area = Area_{Peak} - Area_{RW}$

QC Samples: Area = Area_{Peak} - Area_{QCBlank}

$$y = m \times x + b$$

b⇒0

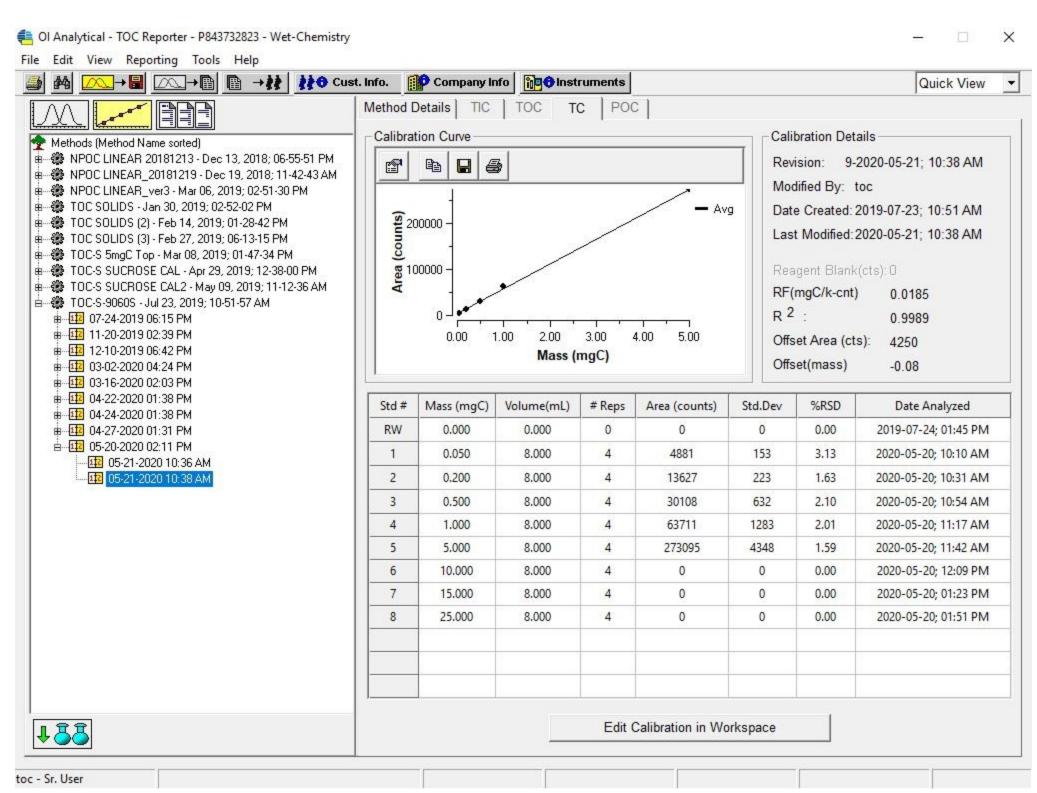
Instrument ID: P843732823 (Wet Chemical)

Report_ID: TOC1030-R00241 (Report generated by OI Analytical's TOC Reporter V1.4.2)

Page 12 of 12

Date Printed: Jun 18,2020

By Sample Report


Denotes Excluded Replicates

Denotes First Failed Samples

TOC

Calibration

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957

August 20, 2020

Joel Hecker Pioneer Technologies Corporation 5205 Corporate Center Ct SE, Suite C Lacey, WA 98503

Dear Mr. Hecker:

Please find enclosed the analytical data report for the Hardel Site Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

						of Custody Record											mental.com
3322 South Bay Road NE Olympia, WA 98506							: 06/00/	2020	:	***		of 2	-				
Client: Promeer Technolog						4666cs04041111062800	ect Manager:	PROFESSIONAL MARKET STATEMENT OF THE STA	Hec	ker					Annual Meteory and the Control of th	augustas per recent de de de de consenses	
Address: \$205 Corporat	The control of the co	es Con	+ 5€,	Sute C			ect Name: A				uju ette om gen erungen	**************************************			bio-unidendinal del communicación de la commun		-
			A Zip:		Capital My Calendary 2010 and	Loca	ition: (219 1	Mest 1	State	ite: Olympia WA							
Phone: 340-829-3739	- Annual	Fax:	Commonwell for Common of Africa (Common of Africa)	Collector: SH /MK											tion: (
Client Project # Hardel						Ema	il: hecker	-100	SPI	onee	r, co	M		~	nov-navrisero dericcirio a roccionatara		
Sample Number	Depth	Time	Sample Type	Container Type	10	20 20 X	Age of Selling	10 0 10 10 10 10 10 10 10 10 10 10 10 10	1 5 M	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 so				Fiel	d Notes	
1GW-81-0603	10-15	1400	Greso	nutiple	X	X	X		X		X	- Company of the Comp			metal	s disso	wed _
26W-B2-0603	3-8	1700	, management										are dispersional		all the same of th	n Fill	A
	3-8	1240	And Andrews	- Control of the Cont		Marie Comment							-			-	
4 GW-84-0603	7-12	1110											- Section and a section of				
5 GN- BS- 0603	3-8	1000															
6 GW-B6-0803		915		**************************************		V	U		V		1						
76W-86-0603 -81	3-8	915	4		4	X	X		X		X.		and the same of th			L	
8 Trip Dlank 6663					X												
95-BI-4-5-0603	4-5	1240			X	X	X		X	X			en carcinello and car		sample	Poleote	ly impaulo
105-132-2-4-0603	2-4	1230			11					1		8	Anna Anna Anna Anna Anna Anna Anna Anna	1			119 March
115-33-2-3-0603	2-3	1130	e de la companya de l									8					
125-13-0603	1-3	1030		Control of the Contro								(\bigotimes		5+01	TAT	
135-84-1-3-0603-01	1-3	1030	ACT DECORPOR AND HOLD OF THE PROPERTY OF THE P	****						1					Added	6-11-2	020
145-B4-11-12-0603	11-12	1045			X	1	U		V	X					per Jo	el via	email.
155 B5-3-4-0603	3-4	0920			X	X	X		X	1	X.	C		77		hed pe	
16 5-136-3-4-0603	3-4	0845			X	X	X		X		X			1		8-12-21	
175-67-3-5-0603	3-5	1600			X	X	X		X		X				STD		
Relinquished by: Relinquished by:		6/3	Date / Time 1712 Date / Time	Received by: Received by	- &	lez	10/3/20]	Date / Time Styl Date / Time	Good	Sample Condition? r Temp.		D i	C	Rem	arks:	PH - 0,0	s, + H0
Relinquished by:			Date / Time	Received by:				Date / Time	Total I	le Temp. Number of ntainers			С	TAT	: 24HF	R 48HF	R 5-DAY
LEGAL ACTION CLAUSE: In the event of default of payer	nent and/or failur	e to pay, Client a	grees to pay the cos	ts of collection including	court costs	and reasonable	attorney fees to be deter	mined by a cour	1		L			*********		White - Lab, Y	

Libby Environmer	ntal, li	nc.	7 -	CI	nair	1 01	f C	ust	od	y F	Rec	or	d							www.Lib	byEnvi	ronmental	l.con
	Fax	360-352-4 : 360-352-4					Date	e: (0/3	3							Page):	2	patricum.	of	2	
Client: Plunear tech	pulon	w					Proje	ect N	lanaç	ger:	2	oel	H	ed	رور	/							
Address:	5										love												
City:		State:	Zip:				Loca	ation:									City,	Stat	e:				
Phone: 360-928-3779		Fax:	-				Colle	ector												ction:	0/3	-	
Client Project #							Ema	il: 6	eck	er	je.	USP	المارو	25.	Piv								
B & A . TV	B		Sample	Container	/5	\$ 80 P	40	ALINE A	1 80 xx	0 X		4 6		in a second	idio A	0/10	100	200					
Sample Number	Depth 4-5	Time	Туре	Type		78	X	10	1	X	7 87	14	7 87	()	\\{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	15	RA	$\overline{}$	\leftarrow	f	Id Not		
13-69-4-5-0603 25-89-6-7-0603	6-7	1690	Gran	multiple	X		X			X				\dashv	X		8/			Std			
	6-7	1010		V	1		7		-					\dashv	^	+	\dashv					11-2020	
3		-			+					-				+	\dashv	+	+			pers	oel 1	lia emai	
5					+				\dashv		-			\dashv	-	+	+	-					
6									-					\dashv	-	+	+				-		
7	-				\vdash				-					+	-	-	+	-					
8														\dashv	-	-	+						
9														+	-	+	+						
10		-							-					\dashv		_	+						
11														\dashv		_	+						
12														\dashv	\neg	1	\dashv	_					
13		<u> </u>												1		_	1						
14					\vdash									+			1						
15														\dashv	_	\dashv	\dashv						
16														_			+						
17														\neg									
Relinguished by:		0/3	Date / Time	Received by:	y l	Sle	<u></u>	6/3	120	ָרֶ ג	Pate K	Fime	Good		-	Rec		N	Ren	narks:	led	TPH-0	5
Relinquished by:				Received by:		1	·			-	Date /	***************************************	Coole	r Tem	p.			°C				0,1	HO
Relinquished by:			Date / Time	Received by:						D	Date / T	Time	Total I Cor	Numb					TA	T: 24H			DAY

Libby Environmental, Inc.

HARDEL SITE PROJECT Pioneer Technologies Libby Project # L200603-7 Date Received 6/3/2020 Time Received 5:10 PM Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

3322 South Bay Road NE

Received By KE

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	\checkmark	Yes		lo	
2. How was the sample delivered?	✓	Hand Delivered	P	icked Up	Shipped
Log In					
3. Cooler or Shipping Container is present.	\checkmark	Yes		lo	□ N/A
4. Cooler or Shipping Container is in good condition.	\checkmark	Yes		lo	□ N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ N	lo	□ N/A
6. Was an attempt made to cool the samples?	\checkmark	Yes		lo	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.9	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		1.8	°C		
9. Did all containers arrive in good condition (unbroken)?	\checkmark	Yes		lo	
10. Is it clear what analyses were requested?	\checkmark	Yes		lo	
11. Did container labels match Chain of Custody?	\checkmark	Yes		lo	
12. Are matrices correctly identified on Chain of Custody?	\checkmark	Yes		lo	
13. Are correct containers used for the analysis indicated?	\checkmark	Yes		lo	
14. Is there sufficient sample volume for indicated analysis?	\checkmark	Yes		lo	
15. Were all containers properly preserved per each analysis?	\checkmark	Yes		lo	
16. Were VOA vials collected correctly (no headspace)?	\checkmark	Yes		lo	□ N/A
17. Were all holding times able to be met?	\checkmark	Yes		lo	
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes		lo	✓ N/A
Person Notified:			_	Date:	_
By Whom:			_	Via:	
Regarding:			-		
19. Comments.					

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: Hardel Site

Work Order Number: 2008171

August 20, 2020

Attention Kodey Eley:

Fremont Analytical, Inc. received 2 sample(s) on 8/13/2020 for the analyses presented in the following report.

Total Organic Carbon by EPA 9060

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 08/20/2020

CLIENT: Libby Environmental Work Order Sample Summary

Project: Hardel Site Work Order: 2008171

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2008171-001
 S-B4-1-3-0603
 06/03/2020 10:30 AM
 08/13/2020 9:36 AM

 2008171-002
 S-B5-3-4-0603
 06/03/2020 9:20 AM
 08/13/2020 9:36 AM

Case Narrative

WO#: **2008171**Date: **8/20/2020**

CLIENT: Libby Environmental

Project: Hardel Site

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2008171**

Date Reported: **8/20/2020**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2008171**Date Reported: **8/20/2020**

CLIENT: Libby Environmental

Project: Hardel Site

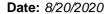
Lab ID: 2008171-001 **Collection Date:** 6/3/2020 10:30:00 AM

Client Sample ID: S-B4-1-3-0603 Matrix: Soil

Analyses Result RL Qual Units DF Date Analyzed

Total Organic Carbon by EPA 9060 Batch ID: 29386 Analyst: SS

Total Organic Carbon 1.35 0.0750 H %-dry 1 8/18/2020 11:39:00 AM


Lab ID: 2008171-002 **Collection Date:** 6/3/2020 9:20:00 AM

Client Sample ID: S-B5-3-4-0603 Matrix: Soil

Analyses Result RL Qual Units DF Date Analyzed

Total Organic Carbon by EPA 9060 Batch ID: 29386 Analyst: SS

Total Organic Carbon 0.0770 0.0750 H %-dry 1 8/18/2020 12:37:00 PM

Work Order: 2008171

Project:

Analyte

QC SUMMARY REPORT

%RPD RPDLimit

Qual

CLIENT: Libby Environmental

Hardel Site

Total Organic Carbon by EPA 9060

LowLimit HighLimit RPD Ref Val

Sample ID: MB-29386 RunNo: 61243 SampType: MBLK Units: %-dry Prep Date: 8/18/2020

Client ID: MBLKS 29386 Analysis Date: 8/18/2020 SeqNo: 1228555 Batch ID: SPK value SPK Ref Val

Total Organic Carbon ND 0.0750

Result

Sample ID: LCS-29386 SampType: LCS Units: %-dry Prep Date: 8/18/2020 RunNo: 61243 Client ID: LCSS Batch ID: 29386 Analysis Date: 8/18/2020 SeqNo: 1228556 SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Result RL %REC Qual Analyte 80 **Total Organic Carbon** 1.03 0.0750 1.000 0 103 120

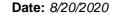
%REC

Sample ID: 2008171-001ADUP SampType: DUP Prep Date: 8/18/2020 Units: %-dry RunNo: 61243 Client ID: S-B4-1-3-0603 Batch ID: 29386 Analysis Date: 8/18/2020 SeqNo: 1228558 Analyte Result RΙ SPK value SPK Ref Val. %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual **Total Organic Carbon** 0.861 0.0750 1.352 44.4 20 RH

NOTES:

R - High RPD due to suspected sample inhomogeneity. The method is in control as indicated by the Laboratory Control Sample (LCS).

RL


Sample ID: 2008171-001AMS SampType: MS Units: %-dry Prep Date: 8/18/2020 RunNo: 61243 Client ID: S-B4-1-3-0603 Analysis Date: 8/18/2020 Batch ID: 29386 SeqNo: 1228559 LowLimit HighLimit RPD Ref Val Analyte Result RL SPK value SPK Ref Val %REC %RPD RPDLimit Qual **Total Organic Carbon** 0.0750 75 SH 1.91 1.000 1.352 56.1 125

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2008171-001AMSD	SampType: MSD			Units: %-dry		Prep Da	te: 8/18/20	20	RunNo: 612	243	
Client ID: S-B4-1-3-0603	Batch ID: 29386					Analysis Da	te: 8/18/20	20	SeqNo: 122	8560	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	2.04	0.0750	1.000	1.352	68.4	75	125	1.913	6.23	20	SH

Page 6 of 9 Original

Hardel Site

Work Order: 2008171

QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Organic Carbon by EPA 9060

Sample ID: 2008171-001AMSD

Client ID: S-B4-1-3-0603

SampType: MSD

Units: %-dry

Prep Date: 8/18/2020

RunNo: 61243

Batch ID: 29386

Analysis Date: 8/18/2020

SeqNo: 1228560

Analyte

Result

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

NOTES:

Project:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

RL

Page 7 of 9 Original

Sample Log-In Check List

С	lient Name:	LIBBY	Work Or	der Num	ber: 2008171		
Lo	ogged by:	Carissa True	Date Red	ceived:	8/13/2020	9:36:00 AM	
Cha	nin of Custo	<u>ody</u>					
1.	Is Chain of C	ustody complete?	Yes	✓	No \square	Not Present	
2.	How was the	sample delivered?	<u>UPS</u>				
Log	ıln						
_	Coolers are p	present?	Yes	✓	No 🗌	NA \square	
4.	Shipping con	tainer/cooler in good condition?	Yes	✓	No 🗌		
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes		No 🗌	Not Present ✓	
6.	Was an atten	npt made to cool the samples?	Yes	✓	No 🗌	NA \square	
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes	✓	No 🗆	NA 🗆	
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗆		
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No \square		
10.	Are samples	properly preserved?	Yes	✓	No \square		
11.	Was preserva	ative added to bottles?	Yes		No 🗸	NA 🗌	
12.	Is there head	space in the VOA vials?	Yes		No 🗌	NA 🗸	
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes	✓	No \square		
14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?	Yes	✓	No \square		
17.	Were all hold	ing times able to be met?	Yes		No 🗸		
Spe	cial Handli	ing (if applicable)					
18.	Was client no	otified of all discrepancies with this order?	Yes	✓	No 🗌	NA 🗆	
	Person	Notified: Melissa Harrington Date:			8/13/2020		
	By Who	m: Carissa True Via:	✓ eMai	l 🗌 Ph	none 🗌 Fax [In Person	
	Regardi	ng: Hold time					
	Client In	nstructions: Proceed					
19	Additional rer	marks:					

Item Information

Item #	Temp ^o C
Cooler 1	2.8
Sample 1	5.1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

				Fr	emon	+																	
Libby Environme				CI	nair	1 0	f C	ust	tod	y I	Rec	cor	d	20	081	17			1	www.Li	bbyEnv	rironm	ental.com
3322 South Bay Road NE	Ph: Fax	360-352-	2110					e: 8							0.0.				1			1	
Olympia, WA 98506	Fax	360-352-	4154														Page	9:			of		_
Client: Libby Environmen	ntel .						Proj	ect N	lanag	ger:	10	deg	El	ey									
Address: See Above						Project Name: Hardel Site Location: City, State: Olympia, Wa																	
City:		State:	Zip:				Loca	ation:								- 3	City,	Stat	e: 🔿	lympi.	4, W.	a	
Phone:	one: Fax:							ector								j	Date	of C	ollec	tion, 🌡	13/2	20	
Client Project # L20060	3-7B						Ema	ail: 1	ibby	en	10	gre	il.c	on									
Sample Number	Depth	Time	Sample Type	Container Type	/3	200	100/1	STEP STEP	2 68 / SE	0) 10'1 10'1 10'1		0 0 0 W	12/2	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	84 07 P	200	/ S.	370	7	/ /F	ield No	tes	
15-84-1-3-0603	1-3	1030	Soil	402													X						
25-35-3-4-0603	7-4	0920	Soil	4,2													X						
3																							
4									: 1														
5																							
6																							
7																\neg							
8			Ì																				
9							3																
10																							
11															\neg	\neg							
12	1															\exists	T						
13							7		\neg						\neg	\neg							
14																							
15															\neg	\neg							
16					\Box		7									\neg							
17							T.																
Relinquished by: Thoday Cley Relinquished by:	8/17	Yrow	Date / Time	Received by:	425		7	8/12	120		Date /	Time	Good		ple I		-	N	Rem	arks:			
Relinquished by:			Date / Time	Received by:	1	1	1	100		1	Date /		Coole					°C					
Polinguished by			Data / Time	Panalund har	17	KL,	1	O	13/2	_ \			Samp	C	- 1		- 1	°C					
Relinquished by:			Date / Time	Received by:						15	Date /	ime	000000000000000000000000000000000000000	Numb ntaine	600				TAT	: 241	HR 4	8HR/	5-DAY
EGAL ACTION CLAUSE: In the event of default of pa	yment and/or tailui	e to pay. Client a	grees to pay the cos	ts of collection including of	court costs	s and rea	sonable	attorney	fees to b	e deter	mined by	y a court						_	10,000			1	ow - Originator

August 2020 Investigation Activities

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Reported:

12/9/2020 13:31

Client:Pioneer Technologies CorporationWork Order:MAH0632Address:5205 Corporate Center Court-Suite AProject:Hardel

Lacey, WA 98503

Attn: Joel Hecker

Case Narrative

The samples listed below were received for analysis at Anatek Labs, Inc. The analytical report is attached. All test results reported below comply with and meet current TNI standards, other applicable regulatory standards, and the Anatek Labs, Inc. Quality Assurance Manual, unless otherwise noted in the report.

The results in this report relate only to the samples analyzed. All soil and solid results are reported on a dryweight basis unless otherwise noted. An estimation of uncertainty is available upon request.

This report shall not be reproduced, except in full, without the written consent of Anatek Labs, Inc.

For questions about this report, please contact Justin Doty at 208-883-2839.

Laboratory ID	Sample Name
MAH0632-01	S-B101-0.5-30820
MAH0632-02	S-B102-2-4-0820
MAH0632-03	S-B102-5-7-0820
MAH0632-04	S-B103-1-3-0820
MAH0632-05	S-B104-1-3-0820
MAH0632-06	S-B105-2-4-0820
MAH0632-07	S-B105-2-4-0820-01
MAH0632-08	S-B106-6-8-0820
MAH0632-09	S-B107-2-4-0820
MAH0632-10	S-B2-C-8.5-10-0820
MAH0632-11	S-B2-N-3-5-0820
MAH0632-12	S-B2-E-3-5.5-0820
MAH0632-13	S-B2-S-1-2-0820
MAH0632-14	S-B2-S-8-10-0820
MAH0632-15	S-B2-S-8-10-0820 (Dup)
MAH0632-16	S-B2-W-7-8.5-0820
MAH0632-17	TB-0820

QA/QC Summary

QC Parameter		Yes / No (if No, see Comments below)
1. Sample Holding Time Valid?	Yes	
2 Instrument Tunes Valid?		Yes

Instrument Tunes Valid?
 Method Blank(s) Valid?
 Internal Standard Response(s) Valid?
 Initial Calibration Curve(s) Valid?
 Continuing Calibration(s) Valid?

Comments:

Analytical Results Report

Sample Location:

S-B101-0.5-30820

Lab/Sample Number:

MAH0632-01

Collect Date:

08/20/20 12:50

Date Received:

08/24/20 07:30

Collected By:

Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
91.4	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
ND	mg/kg dry	0.00273	0.00547	8/27/20 13:57	SAT	EPA 8082A	
ND	mg/kg dry	0.00273	0.00547	8/27/20 13:57	SAT	EPA 8082A	
ND	mg/kg dry	0.00273	0.00547	8/27/20 13:57	SAT	EPA 8082A	
ND	mg/kg dry	0.00273	0.00547	8/27/20 13:57	SAT	EPA 8082A	
ND	mg/kg dry	0.00273	0.00547	8/27/20 13:57	SAT	EPA 8082A	
ND	mg/kg dry	0.00273	0.00547	8/27/20 13:57	SAT	EPA 8082A	
ND	mg/kg dry	0.00273	0.00547	8/27/20 13:57	SAT	EPA 8082A	
ND	mg/kg dry	0.00273	0.00547	8/27/20 13:57	SAT	EPA 8082A	
93.8%		70-13	0	8/27/20 13:57	SAT	EPA 8082A	
	91.4 ND	91.4 % ND mg/kg dry	91.4 % 0.100 ND mg/kg dry 0.00273 ND mg/kg dry 0.00273	91.4 % 0.100 0.100 ND mg/kg dry 0.00273 0.00547 ND mg/kg dry 0.00273 0.00547	91.4 % 0.100 0.100 9/4/20 11:01 ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 ND mg/kg dry 0.00273 0.00547 8/27/20 13:57	91.4 % 0.100 0.100 9/4/20 11:01 JBM ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT	91.4 % 0.100 0.100 9/4/20 11:01 JBM SM 2540 G ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A ND mg/kg dry 0.00273 0.00547 8/27/20 13:57 SAT EPA 8082A

Analytical Results Report (Continued)

Sample Location:

S-B102-2-4-0820

Lab/Sample Number:

MAH0632-02

Collect Date:

08/20/20 10:06

Date Received:

08/24/20 07:30

Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	75.1	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
Semivolatiles								
Diesel	ND	mg/kg dry	51.6	129	8/27/20 21:19	taz	NWTPH-Dx	
Lube Oil	ND	mg/kg dry	258	516	8/27/20 21:19	taz	NWTPH-Dx	
Surrogate: Hexacosane	139%		50-150	0	8/27/20 21:19	taz	NWTPH-Dx	
Volatiles								
Gasoline	5.09	mg/kg dry	0.0848	0.170	9/2/20 15:24	TEC	NWTPH-Gx	
Surrogate: 4-Bromofluorobenzene	92.6%		70-130	0	9/2/20 15:24	TEC	NWTPH-Gx	

Analytical Results Report (Continued)

Sample Location:

S-B102-5-7-0820

Lab/Sample Number:

MAH0632-03

Collect Date:

08/20/20 10:08

Date Received:

08/24/20 07:30

Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	72.8	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
Semivolatiles								
Arochlor 1016 (1)	ND	mg/kg dry	0.00299	0.00598	8/27/20 14:16	SAT	EPA 8082A	
Arochlor 1221 (1)	ND	mg/kg dry	0.00299	0.00598	8/27/20 14:16	SAT	EPA 8082A	
Arochlor 1232 (1)	ND	mg/kg dry	0.00299	0.00598	8/27/20 14:16	SAT	EPA 8082A	
Arochlor 1242 (1)	ND	mg/kg dry	0.00299	0.00598	8/27/20 14:16	SAT	EPA 8082A	
Arochlor 1248 (1)	ND	mg/kg dry	0.00299	0.00598	8/27/20 14:16	SAT	EPA 8082A	
Arochlor 1254 (1)	ND	mg/kg dry	0.00299	0.00598	8/27/20 14:16	SAT	EPA 8082A	
Arochlor 1260 (1)	ND	mg/kg dry	0.00299	0.00598	8/27/20 14:16	SAT	EPA 8082A	
PCB 8082 (total)	ND	mg/kg dry	0.00299	0.00598	8/27/20 14:16	SAT	EPA 8082A	
Surrogate: DCB	98.2%		70-13	0	8/27/20 14:16	SAT	EPA 8082A	
Diesel	ND	mg/kg dry	41.4	104	8/27/20 21:53	taz	NWTPH-Dx	
Lube Oil	553	mg/kg dry	207	414	8/27/20 21:53	taz	NWTPH-Dx	
Surrogate: Hexacosane	129%		50-15	0	8/27/20 21:53	taz	NWTPH-Dx	
Volatiles								
Gasoline	9.56	mg/kg dry	0.0910	0.182	9/2/20 15:54	TEC	NWTPH-Gx	
Surrogate: 4-Bromofluorobenzene	96.8%		70-13	0	9/2/20 15:54	TEC	NWTPH-Gx	

Analytical Results Report (Continued)

Sample Location:

S-B103-1-3-0820

Lab/Sample Number:

MAH0632-04

Collect Date:

08/20/20 09:45

Date Received:

08/24/20 07:30

Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	84.0	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
Semivolatiles								
Arochlor 1016 (1)	ND	mg/kg dry	0.00149	0.00297	8/27/20 14:34	SAT	EPA 8082A	
Arochlor 1221 (1)	ND	mg/kg dry	0.00149	0.00297	8/27/20 14:34	SAT	EPA 8082A	
Arochlor 1232 (1)	ND	mg/kg dry	0.00149	0.00297	8/27/20 14:34	SAT	EPA 8082A	
Arochlor 1242 (1)	ND	mg/kg dry	0.00149	0.00297	8/27/20 14:34	SAT	EPA 8082A	
Arochlor 1248 (1)	ND	mg/kg dry	0.00149	0.00297	8/27/20 14:34	SAT	EPA 8082A	
Arochlor 1254 (1)	ND	mg/kg dry	0.00149	0.00297	8/27/20 14:34	SAT	EPA 8082A	
Arochlor 1260 (1)	ND	mg/kg dry	0.00149	0.00297	8/27/20 14:34	SAT	EPA 8082A	
PCB 8082 (total)	ND	mg/kg dry	0.00149	0.00297	8/27/20 14:34	SAT	EPA 8082A	
Surrogate: DCB	93.0%		70-13	0	8/27/20 14:34	SAT	EPA 8082A	
•				-	5,=1,=0 = 110 1			

Analytical Results Report (Continued)

Sample Location:

S-B104-1-3-0820

Lab/Sample Number:

MAH0632-05

Collect Date:

08/20/20 08:45

Date Received:

08/24/20 07:30

Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	93.0	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
Semivolatiles								
Arochlor 1016 (1)	ND	mg/kg dry	0.00269	0.00537	8/27/20 15:12	SAT	EPA 8082A	
Arochlor 1221 (1)	ND	mg/kg dry	0.00269	0.00537	8/27/20 14:53	SAT	EPA 8082A	
Arochlor 1232 (1)	ND	mg/kg dry	0.00269	0.00537	8/27/20 14:53	SAT	EPA 8082A	
Arochlor 1242 (1)	ND	mg/kg dry	0.00269	0.00537	8/27/20 14:53	SAT	EPA 8082A	
Arochlor 1248 (1)	ND	mg/kg dry	0.00269	0.00537	8/27/20 14:53	SAT	EPA 8082A	
Arochlor 1254 (1)	ND	mg/kg dry	0.00269	0.00537	8/27/20 14:53	SAT	EPA 8082A	
Arochlor 1260 (1)	ND	mg/kg dry	0.00269	0.00537	8/27/20 14:53	SAT	EPA 8082A	
PCB 8082 (total)	ND	mg/kg dry	0.00269	0.00537	8/27/20 14:53	SAT	EPA 8082A	
Surrogate: DCB	85.0%		70-13	0	8/27/20 14:53	SAT	EPA 8082A	

Analytical Results Report (Continued)

Sample Location:

S-B105-2-4-0820

Lab/Sample Number:

MAH0632-06

Collect Date:

08/20/20 08:20

Date Received:

08/24/20 07:30

Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	76.5	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
Semivolatiles								
Arochlor 1016 (1)	ND	mg/kg dry	0.00272	0.00545	8/27/20 15:12	SAT	EPA 8082A	
Arochlor 1221 (1)	ND	mg/kg dry	0.00272	0.00545	8/27/20 15:12	SAT	EPA 8082A	
Arochlor 1232 (1)	ND	mg/kg dry	0.00272	0.00545	8/27/20 15:12	SAT	EPA 8082A	
Arochlor 1242 (1)	ND	mg/kg dry	0.00272	0.00545	8/27/20 15:12	SAT	EPA 8082A	
Arochlor 1248 (1)	ND	mg/kg dry	0.00272	0.00545	8/27/20 15:12	SAT	EPA 8082A	
Arochlor 1254 (1)	ND	mg/kg dry	0.00272	0.00545	8/27/20 15:12	SAT	EPA 8082A	
Arochlor 1260 (1)	ND	mg/kg dry	0.00272	0.00545	8/27/20 15:12	SAT	EPA 8082A	
PCB 8082 (total)	ND	mg/kg dry	0.00272	0.00545	8/27/20 15:12	SAT	EPA 8082A	
Surrogate: DCB	85.7%		70-13	0	8/27/20 15:12	SAT	EPA 8082A	

Analytical Results Report (Continued)

Sample Location:

S-B105-2-4-0820-01

Lab/Sample Number:

MAH0632-07

Collect Date:

08/20/20 08:20

Date Received:

08/24/20 07:30

Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	80.5	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
Semivolatiles								
Arochlor 1016 (1)	ND	mg/kg dry	0.00222	0.00444	8/27/20 15:49	SAT	EPA 8082A	
Arochlor 1221 (1)	ND	mg/kg dry	0.00222	0.00444	8/27/20 15:31	SAT	EPA 8082A	
Arochlor 1232 (1)	ND	mg/kg dry	0.00222	0.00444	8/27/20 15:31	SAT	EPA 8082A	
Arochlor 1242 (1)	ND	mg/kg dry	0.00222	0.00444	8/27/20 15:31	SAT	EPA 8082A	
Arochlor 1248 (1)	ND	mg/kg dry	0.00222	0.00444	8/27/20 15:31	SAT	EPA 8082A	
Arochlor 1254 (1)	ND	mg/kg dry	0.00222	0.00444	8/27/20 15:31	SAT	EPA 8082A	
Arochlor 1260 (1)	ND	mg/kg dry	0.00222	0.00444	8/27/20 15:31	SAT	EPA 8082A	
PCB 8082 (total)	ND	mg/kg dry	0.00222	0.00444	8/27/20 15:31	SAT	EPA 8082A	
Surrogate: DCB	97.1%		70-13	0	8/27/20 15:31	SAT	EPA 8082A	

Analytical Results Report (Continued)

Sample Location:

S-B106-6-8-0820

Lab/Sample Number:

MAH0632-08

Collect Date:

08/20/20 08:00

Date Received:

08/24/20 07:30

Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	49.8	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
Semivolatiles								
Arochlor 1016 (1)	ND	mg/kg dry	0.0251	0.0502	8/27/20 15:49	SAT	EPA 8082A	
Arochlor 1221 (1)	ND	mg/kg dry	0.0251	0.0502	8/27/20 15:49	SAT	EPA 8082A	
Arochlor 1232 (1)	ND	mg/kg dry	0.0251	0.0502	8/27/20 15:49	SAT	EPA 8082A	
Arochlor 1242 (1)	ND	mg/kg dry	0.0251	0.0502	8/27/20 15:49	SAT	EPA 8082A	
Arochlor 1248 (1)	ND	mg/kg dry	0.0251	0.0502	8/27/20 15:49	SAT	EPA 8082A	
Arochlor 1254 (1)	ND	mg/kg dry	0.0251	0.0502	8/27/20 15:49	SAT	EPA 8082A	
Arochlor 1260 (1)	ND	mg/kg dry	0.0251	0.0502	8/27/20 15:49	SAT	EPA 8082A	
PCB 8082 (total)	ND	mg/kg dry	0.0251	0.0502	8/27/20 15:49	SAT	EPA 8082A	
Surrogate: DCB	91.1%		70-13	0	8/27/20 15:49	SAT	EPA 8082A	

Analytical Results Report (Continued)

Sample Location:

S-B107-2-4-0820

Lab/Sample Number:

MAH0632-09

Collect Date:

08/20/20 07:50

Date Received:

08/24/20 07:30

Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	78.4	%	0.100	0.100	9/4/20 11:01	JBM	SM 2540 G	
Semivolatiles								
Arochlor 1016 (1)	ND	mg/kg dry	0.00213	0.00425	8/27/20 16:08	SAT	EPA 8082A	
Arochlor 1221 (1)	ND	mg/kg dry	0.00213	0.00425	8/27/20 16:08	SAT	EPA 8082A	
Arochlor 1232 (1)	ND	mg/kg dry	0.00213	0.00425	8/27/20 16:08	SAT	EPA 8082A	
Arochlor 1242 (1)	ND	mg/kg dry	0.00213	0.00425	8/27/20 16:08	SAT	EPA 8082A	
Arochlor 1248 (1)	ND	mg/kg dry	0.00213	0.00425	8/27/20 16:08	SAT	EPA 8082A	
Arochlor 1254 (1)	ND	mg/kg dry	0.00213	0.00425	8/27/20 16:08	SAT	EPA 8082A	
Arochlor 1260 (1)	ND	mg/kg dry	0.00213	0.00425	8/27/20 16:08	SAT	EPA 8082A	
PCB 8082 (total)	ND	mg/kg dry	0.00213	0.00425	8/27/20 16:08	SAT	EPA 8082A	
Surrogate: DCB	92.6%		70-13	0	8/27/20 16:08	SAT	EPA 8082A	

Analytical Results Report (Continued)

Sample Location: S-B2-C-8.5-10-0820

Collect Date: 08/20/20 10:50 Lab/Sample Number: MAH0632-10

Date Received: 08/24/20 07:30 Collected By:

Matrix: Solid

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	36.3	%	0.100	0.100	8/27/20 12:45	BMM	SM 2540 G	
Semivolatiles								
1-Methylnaphthalene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
2-Methylnaphthalene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Acenaphthene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Acenaphthylene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Anthracene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Benzo(g,h,i)perylene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Benzo[a]anthracene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Benzo[a]pyrene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Benzo[b]fluoranthene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Benzo[k]fluoranthene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Chrysene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Dibenz(a,h)anthracene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Fluoranthene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Fluorene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Naphthalene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Phenanthrene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	
Pyrene	ND	mg/kg dry	0.0444	0.0888	9/3/20 17:59	BMM	EPA 8270D	L2
Surrogate: Terphenyl-d14	72.5%		60-13	0	9/3/20 17:59	ВММ	EPA 8270D	
Diesel	ND	mg/kg dry	142	355	8/27/20 22:28	taz	NWTPH-Dx	
Lube Oil	4130	mg/kg dry	709	1420	8/27/20 22:28	taz	NWTPH-Dx	
Surrogate: Hexacosane	126%		50-15	0	8/27/20 22:28	taz	NWTPH-Dx	
Volatiles								
Gasoline	ND	mg/kg dry	0.174	0.348	9/2/20 16:24	TEC	NWTPH-Gx	
Surrogate: 4-Bromofluorobenzene	94.7%		70-13	0	9/2/20 16:24	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
Benzene	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
EDB	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
Ethylbenzene	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
m/p Xylenes (MCL for total)	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
methyl-t-butyl ether (MTBE)	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
Naphthalene	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
o-Xylene (MCL for total)	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
Toluene	ND	mg/kg dry	0.00348	0.00871	9/2/20 1:52	TEC	EPA 8260C	
n-Hexane	ND	mg/kg dry	8.71	43.5	9/2/20 16:24	TEC	EPA 8260C	

Analytical Results Report (Continued)

Analytical Results Report (Continued)

Sample Location: S-B2-N-3-5-0820

Collect Date: 08/20/20 11:40 Lab/Sample Number: MAH0632-11

Date Received: 08/24/20 07:30 Collected By:

Matrix: Solid

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	70.4	%	0.100	0.100	8/27/20 12:45	BMM	SM 2540 G	
Semivolatiles								
1-Methylnaphthalene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
2-Methylnaphthalene	0.0251	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Acenaphthene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Acenaphthylene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Anthracene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Benzo(g,h,i)perylene	0.0188	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Benzo[a]anthracene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Benzo[a]pyrene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Benzo[b]fluoranthene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Benzo[k]fluoranthene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Chrysene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Dibenz(a,h)anthracene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Fluoranthene	0.0262	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Fluorene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Naphthalene	0.0293	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Phenanthrene	0.0438	mg/kg dry	0.00714	0.0143	9/3/20 21:08	BMM	EPA 8270D	
Pyrene	0.0237	mg/kg dry	0.00714	0.0143	9/3/20 21:08	ВММ	EPA 8270D	L2
Surrogate: Terphenyl-d14	73.0%		60-13	0	9/3/20 21:08	ВММ	EPA 8270D	
Diesel	ND	mg/kg dry	51.5	129	8/27/20 23:03	taz	NWTPH-Dx	
Lube Oil	792	mg/kg dry	258	515	8/27/20 23:03	taz	NWTPH-Dx	
Surrogate: Hexacosane	123%		50-15	0	8/27/20 23:03	taz	NWTPH-Dx	
Volatiles								
Gasoline	ND	mg/kg dry	0.0905	0.181	9/2/20 16:53	TEC	NWTPH-Gx	
Surrogate: 4-Bromofluorobenzene	92.0%		70-13	0	9/2/20 16:53	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
Benzene	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
EDB	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
Ethylbenzene	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
m/p Xylenes (MCL for total)	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
methyl-t-butyl ether (MTBE)	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
Naphthalene	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
o-Xylene (MCL for total)	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
Toluene	ND	mg/kg dry	0.00181	0.00453	9/2/20 2:21	TEC	EPA 8260C	
n-Hexane	ND	mg/kg dry	4.53	22.6	9/2/20 16:53	TEC	EPA 8260C	

Analytical Results Report (Continued)

Analytical Results Report (Continued)

Sample Location: S-B2-E-3-5.5-0820

Collect Date: 08/20/20 11:40 Lab/Sample Number: MAH0632-12

Date Received: 08/24/20 07:30 Collected By:

Matrix: Solid

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	82.4	%	0.100	0.100	8/27/20 12:45	BMM	SM 2540 G	
Semivolatiles								
1-Methylnaphthalene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	ВММ	EPA 8270D	
2-Methylnaphthalene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Acenaphthene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Acenaphthylene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Anthracene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Benzo(g,h,i)perylene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Benzo[a]anthracene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Benzo[a]pyrene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Benzo[b]fluoranthene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Benzo[k]fluoranthene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Chrysene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Dibenz(a,h)anthracene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Fluoranthene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Fluorene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Naphthalene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Phenanthrene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	
Pyrene	ND	mg/kg dry	0.00603	0.0121	9/3/20 16:48	BMM	EPA 8270D	L2
Surrogate: Terphenyl-d14	89.7%		60-13	0	9/3/20 16:48	ВММ	EPA 8270D	
Diesel	ND	mg/kg dry	12.5	31.3	8/27/20 23:39	taz	NWTPH-Dx	
Lube Oil	ND	mg/kg dry	62.6	125	8/27/20 23:39	taz	NWTPH-Dx	
Surrogate: Hexacosane	126%		50-15	0	8/27/20 23:39	taz	NWTPH-Dx	
Volatiles								
Gasoline	ND	mg/kg dry	0.0788	0.158	9/2/20 17:23	TEC	NWTPH-Gx	
Surrogate: 4-Bromofluorobenzene	91.7%		70-13	0	9/2/20 17:23	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
Benzene	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
EDB	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
Ethylbenzene	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
m/p Xylenes (MCL for total)	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
methyl-t-butyl ether (MTBE)	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
Naphthalene	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
o-Xylene (MCL for total)	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
Toluene	ND	mg/kg dry	0.000315	0.000788	9/1/20 23:55	TEC	EPA 8260C	
n-Hexane	ND	mg/kg dry	3.94	19.7	9/2/20 17:23	TEC	EPA 8260C	

Analytical Results Report (Continued)

Analytical Results Report (Continued)

Sample Location: S-B2-S-8-10-0820

Collect Date: 08/20/20 12:10 Lab/Sample Number: MAH0632-14

Date Received: 08/24/20 07:30 Collected By:

Matrix: Solid

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	65.5	%	0.100	0.100	8/27/20 12:45	BMM	SM 2540 G	
Semivolatiles								
1-Methylnaphthalene	ND	mg/kg dry	0.00762	0.0152	9/3/20 17:36	ВММ	EPA 8270D	
2-Methylnaphthalene	ND	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Acenaphthene	0.163	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Acenaphthylene	ND	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Anthracene	ND	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Benzo(g,h,i)perylene	0.0827	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Benzo[a]anthracene	0.0307	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Benzo[a]pyrene	0.0235	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Benzo[b]fluoranthene	0.0646	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Benzo[k]fluoranthene	0.0276	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Chrysene	0.0288	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Dibenz(a,h)anthracene	ND	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Fluoranthene	0.0423	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Fluorene	0.0284	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Indeno(1,2,3-cd)pyrene	0.0524	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Naphthalene	0.0247	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Phenanthrene	0.0413	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	
Pyrene	0.0254	mg/kg dry	0.00762	0.0152	9/3/20 17:36	BMM	EPA 8270D	L2
Surrogate: Terphenyl-d14	77.8%		60-13	0	9/3/20 17:36	ВММ	EPA 8270D	
Diesel	ND	mg/kg dry	25.4	63.4	8/28/20 0:14	taz	NWTPH-Dx	
Lube Oil	ND	mg/kg dry	127	254	8/28/20 0:14	taz	NWTPH-Dx	
Surrogate: Hexacosane	108%		50-15	0	8/28/20 0:14	taz	NWTPH-Dx	
Volatiles								
Gasoline	ND	mg/kg dry	0.0992	0.198	9/2/20 17:53	TEC	NWTPH-Gx	
Surrogate: 4-Bromofluorobenzene	88.9%		70-13	0	9/2/20 17:53	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
Benzene	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
EDB	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
Ethylbenzene	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
m/p Xylenes (MCL for total)	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
methyl-t-butyl ether (MTBE)	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
Naphthalene	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
o-Xylene (MCL for total)	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
Toluene	ND	mg/kg dry	0.000397	0.000992	9/2/20 0:24	TEC	EPA 8260C	
n-Hexane	ND	mg/kg dry	4.96	24.8	9/2/20 17:53	TEC	EPA 8260C	

Analytical Results Report (Continued)

Analytical Results Report (Continued)

Sample Location: S-B2-S-8-10-0820 (Dup)

08/20/20 12:10 Lab/Sample Number: MAH0632-15 Collect Date:

Date Received: 08/24/20 07:30 Collected By:

Matrix: Solid

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	52.7	%	0.100	0.100	8/27/20 12:45	BMM	SM 2540 G	
Semivolatiles								
1-Methylnaphthalene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	ВММ	EPA 8270D	
2-Methylnaphthalene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Acenaphthene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Acenaphthylene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Anthracene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Benzo(g,h,i)perylene	0.0366	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Benzo[a]anthracene	0.0241	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Benzo[a]pyrene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Benzo[b]fluoranthene	0.0191	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Benzo[k]fluoranthene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Chrysene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Dibenz(a,h)anthracene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Fluoranthene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Fluorene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Indeno(1,2,3-cd)pyrene	0.0250	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Naphthalene	0.0196	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Phenanthrene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	
Pyrene	ND	mg/kg dry	0.00944	0.0189	9/3/20 18:23	BMM	EPA 8270D	L2
Surrogate: Terphenyl-d14	69.6%		60-130	9	9/3/20 18:23	ВММ	EPA 8270D	
Diesel	ND	mg/kg dry	93.9	235	8/28/20 0:50	taz	NWTPH-Dx	
Lube Oil	ND	mg/kg dry	469	939	8/28/20 0:50	taz	NWTPH-Dx	
Surrogate: Hexacosane	131%		50-150	9	8/28/20 0:50	taz	NWTPH-Dx	
Volatiles								
Gasoline	ND	mg/kg dry	0.126	0.251	9/2/20 18:23	TEC	NWTPH-Gx	
Surrogate: 4-Bromofluorobenzene	91.0%		70-130	9	9/2/20 18:23	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
Benzene	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
EDB	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
Ethylbenzene	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
m/p Xylenes (MCL for total)	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
methyl-t-butyl ether (MTBE)	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
Naphthalene	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
o-Xylene (MCL for total)	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
Toluene	ND	mg/kg dry	0.000502	0.00126	9/2/20 0:53	TEC	EPA 8260C	
n-Hexane	ND	mg/kg dry	6.28	31.4	9/2/20 18:23	TEC	EPA 8260C	

Analytical Results Report (Continued)

Analytical Results Report (Continued)

Sample Location: S-B2-W-7-8.5-0820

Collect Date: 08/20/20 12:10 Lab/Sample Number: MAH0632-16

Date Received: 08/24/20 07:30 Collected By:

Matrix: Solid

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
% Solids	63.1	%	0.100	0.100	8/27/20 12:45	BMM	SM 2540 G	
Semivolatiles								
1-Methylnaphthalene	0.0337	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
2-Methylnaphthalene	0.0336	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Acenaphthene	0.0861	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Acenaphthylene	ND	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Anthracene	0.0158	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Benzo(g,h,i)perylene	0.192	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Benzo[a]anthracene	0.167	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Benzo[a]pyrene	0.182	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Benzo[b]fluoranthene	0.239	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Benzo[k]fluoranthene	0.0909	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Chrysene	0.149	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Dibenz(a,h)anthracene	0.0253	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Fluoranthene	0.193	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Fluorene	0.0320	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Indeno(1,2,3-cd)pyrene	0.135	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Naphthalene	0.0339	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Phenanthrene	0.116	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	
Pyrene	0.188	mg/kg dry	0.00781	0.0156	9/3/20 21:32	BMM	EPA 8270D	L2
Surrogate: Terphenyl-d14	96.6%		60-130	0	9/3/20 21:32	ВММ	EPA 8270D	
Diesel	ND	mg/kg dry	155	388	8/28/20 1:25	taz	NWTPH-Dx	
Lube Oil	ND	mg/kg dry	777	1550	8/28/20 1:25	taz	NWTPH-Dx	
Surrogate: Hexacosane	127%		50-150	0	8/28/20 1:25	taz	NWTPH-Dx	
V olatiles								
Gasoline	5.62	mg/kg dry	0.102	0.204	9/2/20 18:52	TEC	NWTPH-Gx	
Surrogate: 4-Bromofluorobenzene	92.6%		70-130	0	9/2/20 18:52	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
Benzene	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
EDB	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
Ethylbenzene	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
m/p Xylenes (MCL for total)	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
methyl-t-butyl ether (MTBE)	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
Naphthalene	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
o-Xylene (MCL for total)	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
Toluene	ND	mg/kg dry	0.000409	0.00102	9/2/20 1:23	TEC	EPA 8260C	
n-Hexane	ND	mg/kg dry	5.11	25.6	9/2/20 18:52	TEC	EPA 8260C	

Analytical Results Report (Continued)

Analytical Results Report (Continued)

Sample Location: TB-0820

MAH0632-17 Collect Date: 08/20/20 00:00 Lab/Sample Number:

Date Received: 08/24/20 07:30 Collected By:

Matrix: Water

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
1,1,1-Trichloroethane	ND	ug/L	0.140	0.500	9/1/20 21:57	TEC	EPA 624.1	
1,1,2,2-Tetrachloroethane	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
1,1,2-Trichlorethane	ND	ug/L	0.0800	0.500	9/1/20 21:57	TEC	EPA 624.1	
1,1-Dichloroethane	ND	ug/L	0.140	0.500	9/1/20 21:57	TEC	EPA 624.1	
1,1-Dichloroethylene	ND	ug/L	0.130	0.500	9/1/20 21:57	TEC	EPA 624.1	
1,1-Dichloropropene	ND	ug/L	0.140	0.500	9/1/20 21:57	TEC	EPA 624.1	
,2,3-Trichlorobenzene	ND	ug/L	0.120	0.500	9/1/20 21:57	TEC	EPA 624.1	
1,2,3-Trichloropropane	ND	ug/L	0.220	0.500	9/1/20 21:57	TEC	EPA 624.1	
,2,4-Trichlorobenzene	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
,2,4-Trimethylbenzene	ND	ug/L	0.160	0.500	9/1/20 21:57	TEC	EPA 624.1	
1,2-Dichlorobenzene	ND	ug/L	0.290	0.500	9/1/20 21:57	TEC	EPA 624.1	
(ortho-Dichlorobenzene)		_						
1,2-Dichloroethane	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
.,2-Dichloropropane	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
,3,5-Trimethylbenzene	ND	ug/L	0.180	0.500	9/1/20 21:57	TEC	EPA 624.1	
.,3-Dichloropropane	ND	ug/L	0.0600	0.500	9/1/20 21:57	TEC	EPA 624.1	
,4-Dichlorobenzene	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
para-Dichlorobenzene) ,2-Dichloropropane	ND	ug/l	0.110	0.500	0/1/20 21,57	TEC	EDA 624 1	
		ug/L	0.110	0.500	9/1/20 21:57 9/1/20 21:57	TEC	EPA 624.1	
-Chloroethyl vinyl ether -hexanone	ND	ug/L	2.50	2.50		TEC	EPA 624.1	
cetone	ND ND	ug/L	0.440	2.50	9/1/20 21:57	TEC	EPA 624.1	
	ND	ug/L	2.50	2.50	9/1/20 21:57	TEC	EPA 624.1	
Acrolein	ND	ug/L	0.150	2.50	9/1/20 21:57	TEC	EPA 624.1	
Acrylonitrile	ND	ug/L	0.130	2.50	9/1/20 21:57	TEC	EPA 624.1	
Benzene	ND	ug/L	0.100	0.200	9/1/20 21:57	TEC	EPA 624.1	
Bromobenzene	ND	ug/L	0.0700	0.500	9/1/20 21:57	TEC	EPA 624.1	
Bromochloromethane	ND	ug/L	0.120	0.500	9/1/20 21:57	TEC	EPA 624.1	
Bromodichloromethane	ND	ug/L	0.0400	0.200	9/1/20 21:57	TEC	EPA 624.1	
Bromoform Bromomethane	ND	ug/L	0.120	0.500	9/1/20 21:57	TEC	EPA 624.1	
Promomethane	ND	ug/L	0.470	0.500	9/1/20 21:57	TEC	EPA 624.1	
Carbon disulfide	ND	ug/L	0.180	2.50	9/1/20 21:57	TEC	EPA 624.1	
Carbon Tetrachloride	ND	ug/L	0.0300	0.200	9/1/20 21:57	TEC	EPA 624.1	
Chlorobenzene (Monochlorobenzene)	ND	ug/L	0.0800	0.500	9/1/20 21:57	TEC	EPA 624.1	
Chloroethane	ND	ug/L	0.270	0.500	9/1/20 21:57	TEC	EPA 624.1	
hloroform	ND	ug/L	0.0400	0.200	9/1/20 21:57	TEC	EPA 624.1	
Chloromethane	ND	ug/L	0.350	0.500	9/1/20 21:57	TEC	EPA 624.1	
is-1,2-Dichloroethylene	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
is-1,3-Dichloropropene	ND	ug/L	0.0700	0.200	9/1/20 21:57	TEC	EPA 624.1	
DBCP	ND	ug/L	0.290	0.500	9/1/20 21:57	TEC	EPA 624.1	
Dibromochloromethane	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
Dibromomethane	ND	ug/L	0.0800	0.500	9/1/20 21:57	TEC	EPA 624.1	
Dichlorodifluoromethane	ND	ug/L	0.140	0.500	9/1/20 21:57	TEC	EPA 624.1	

Analytical Results Report (Continued)

Sample Location: TB-0820

MAH0632-17 Collect Date: 08/20/20 00:00 Lab/Sample Number:

Date Received: 08/24/20 07:30 Collected By:

Matrix: Water

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles (Continued)								
EDB	ND	ug/L	0.0400	0.200	9/1/20 21:57	TEC	EPA 624.1	
Ethylbenzene	ND	ug/L	0.120	0.500	9/1/20 21:57	TEC	EPA 624.1	
Hexachlorobutadiene	ND	ug/L	0.160	0.500	9/1/20 21:57	TEC	EPA 624.1	
Iodomethane	ND	ug/L	0.460	0.500	9/1/20 21:57	TEC	EPA 624.1	
Isopropylbenzene	ND	ug/L	0.140	0.500	9/1/20 21:57	TEC	EPA 624.1	
m/p Xylenes (MCL for total)	ND	ug/L	0.300	1.00	9/1/20 21:57	TEC	EPA 624.1	
m-Dichlorobenzene	ND	ug/L	0.100	0.500	9/1/20 21:57	TEC	EPA 624.1	
Methyl ethyl ketone (MEK)	ND	ug/L	0.570	2.50	9/1/20 21:57	TEC	EPA 624.1	
Methyl isobutyl ketone (MIBK)	ND	ug/L	0.490	2.50	9/1/20 21:57	TEC	EPA 624.1	
Methylene Chloride (Dichloromethane)	ND	ug/L	0.440	0.500	9/1/20 21:57	TEC	EPA 624.1	
methyl-t-butyl ether (MTBE)	ND	ug/L	0.0600	0.500	9/1/20 21:57	TEC	EPA 624.1	
Naphthalene	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
n-Butylbenzene	ND	ug/L	0.160	0.500	9/1/20 21:57	TEC	EPA 624.1	
n-Propylbenzene	ND	ug/L	0.140	0.500	9/1/20 21:57	TEC	EPA 624.1	
o-Chlorotoluene	ND	ug/L	0.160	0.500	9/1/20 21:57	TEC	EPA 624.1	
o-Xylene (MCL for total)	ND	ug/L	0.150	0.500	9/1/20 21:57	TEC	EPA 624.1	
p-Chlorotoluene	ND	ug/L	0.130	0.500	9/1/20 21:57	TEC	EPA 624.1	
p-isopropyltoluene	ND	ug/L	0.110	0.500	9/1/20 21:57	TEC	EPA 624.1	
sec-Butylbenzene	ND	ug/L	0.160	0.500	9/1/20 21:57	TEC	EPA 624.1	
Styrene	ND	ug/L	0.100	0.500	9/1/20 21:57	TEC	EPA 624.1	
tert-Butylbenzene	ND	ug/L	0.140	0.500	9/1/20 21:57	TEC	EPA 624.1	
Tetrachloroethylene	ND	ug/L	0.300	0.500	9/1/20 21:57	TEC	EPA 624.1	
Toluene	ND	ug/L	0.0600	0.500	9/1/20 21:57	TEC	EPA 624.1	
Total Xylenes	ND	ug/L	0.100	0.500	9/1/20 21:57	TEC	EPA 624.1	
trans-1,2 Dichloroethylene	ND	ug/L	0.120	0.500	9/1/20 21:57	TEC	EPA 624.1	
trans-1,3-Dichloropropene	ND	ug/L	0.0700	0.200	9/1/20 21:57	TEC	EPA 624.1	
trans-1-4-Dichloro-2-butene	ND	ug/L	0.340	0.500	9/1/20 21:57	TEC	EPA 624.1	
Trichloroethene	ND	ug/L	0.0800	0.500	9/1/20 21:57	TEC	EPA 624.1	
Trichloroflouromethane	ND	ug/L	0.130	0.500	9/1/20 21:57	TEC	EPA 624.1	
Vinyl acetate	ND	ug/L	0.140	0.500	9/1/20 21:57	TEC	EPA 624.1	
Vinyl Chloride	ND	ug/L	0.150	0.200	9/1/20 21:57	TEC	EPA 624.1	
Surrogate: 1,2-Dichlorobenzene-d4	108%		70-130)	9/1/20 21:57	TEC	EPA 624.1	
Surrogate: 4-Bromofluorobenzene	91.5%		70-130)	9/1/20 21:57	TEC	EPA 624.1	
Surrogate: Toluene-d8	103%		70-130		9/1/20 21:57	TEC	EPA 624.1	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

L2 The associated blank spike recovery was below laboratory acceptance limits

PQL Practical Quantitation Limit

ND Not Detected

MDL Method Detection Limit

Dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

Quality Control Data

Semivolatiles

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAH0685 - PCBs										
Blank (BAH0685-BLK1)				Pre	pared: 8/25	/2020 Analyze	ed: 8/27/202	0		
Aroclor 1260 (PCB-1260)	ND		0.00500	mg/kg wet		,	, .			
Aroclor 1254 (PCB-1254)	ND		0.00500	mg/kg wet						
Aroclor 1248 (PCB-1248)	ND		0.00500	mg/kg wet						
Aroclor 1242 (PCB-1242)	ND		0.00500	mg/kg wet						
Aroclor 1232 (PCB-1232)	ND		0.00500	mg/kg wet						
Aroclor 1221 (PCB-1221)	ND		0.00500	mg/kg wet						
Aroclor 1016 (PCB-1016)	ND		0.00500	mg/kg wet						
PCB 8082 (total)	ND		0.00500	mg/kg wet						
Surrogate: DCB			0.0453	mg/kg wet	0.0500		90.6	70-130		
LCS (BAH0685-BS1)				Pre	pared: 8/25,	/2020 Analyze	ed: 8/27/202	0		
Aroclor 1016 (PCB-1016)	0.173		0.00500	mg/kg wet	0.200	,	86.6	70-130		
Aroclor 1260 (PCB-1260)	0.174		0.00500	mg/kg wet	0.200		87.2	70-130		
Surrogate: DCB			0.0461	mg/kg wet	0.0500		92.1	70-130		
Matrix Spike (BAH0685-MS1)		Source: M	AH0617-03	Pre	pared: 8/25,	/2020 Analyze	ed: 8/27/202	0		
Aroclor 1016 (PCB-1016)	0.196		0.00513	mg/kg dry	0.205	ND	95.6	60-130		
Aroclor 1260 (PCB-1260)	0.208		0.00513	mg/kg dry	0.205	ND	101	60-130		
Surrogate: DCB			0.0520	mg/kg dry	0.0513		101	70-130		
Matrix Spike Dup (BAH0685-MSD1)		Source: M	AH0617-03	Pre	pared: 8/25,	/2020 Analyze	ed: 8/27/202	0		
Aroclor 1016 (PCB-1016)	0.211		0.00513	mg/kg dry	0.205	ND	103	60-130	7.02	25
Aroclor 1260 (PCB-1260)	0.190		0.00513	mg/kg dry	0.205	ND	92.4	60-130	9.03	25
Surrogate: DCB			0.0494	mg/kg dry	0.0513		96.3	70-130		
Batch: BAH0775 - TPH-Dx				_	1.0/24	(2020 4 /	1 0/27/222	•		
Blank (BAH0775-BLK1)					pared: 8/26,	2020 Analyze	ea: 8/2//202	U		
Diesel	ND		25.0	mg/kg wet						
Lube Oil	ND		100	mg/kg wet						
Surrogate: Hexacosane			8.83	mg/kg wet	10.0		88.3	<i>50-150</i>		

Quality Control Data (Continued)

Semivolatiles (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAH0775 - TPH-Dx (Continued)								
LCS (BAH0775-BS1)	,		Pre	pared: 8/26	5/2020 Analyze	d: 8/27/2020)		
Diesel	85.3	25.0	mg/kg wet	100		85.3	70-130		
Surrogate: Hexacosane			mg/kg wet	10.0		146	<i>50-150</i>		
Surrogate. Hexaeosane		17.0	mg/kg wet	10.0		170	30 130		
Batch: BAH0783 - ASE Ext									
Blank (BAH0783-BLK1)			Pre	epared: 8/20	6/2020 Analyze	ed: 9/3/2020			
Naphthalene	ND	0.0100	mg/kg wet						
2-Methylnaphthalene	ND	0.0100	mg/kg wet						
1-Methylnaphthalene	ND	0.0100	mg/kg wet						
Acenaphthylene	ND	0.0100	mg/kg wet						
Acenaphthene	ND	0.0100	mg/kg wet						
Fluorene	ND	0.0100	mg/kg wet						
Phenanthrene	ND	0.0100	mg/kg wet						
Anthracene	ND	0.0100	mg/kg wet						
Fluoranthene	ND	0.0100	mg/kg wet						
Pyrene	ND	0.0100	mg/kg wet						
Benzo[a]anthracene	ND	0.0100	mg/kg wet						
Chrysene	ND	0.0100	mg/kg wet						
Benzo[b]fluoranthene	ND	0.0100	mg/kg wet						
Benzo[k]fluoranthene	ND	0.0100	mg/kg wet						
Benzo[a]pyrene	ND	0.0100	mg/kg wet						
Indeno[1,2,3-cd]pyrene	ND	0.0100	mg/kg wet						
Dibenz[a,h]anthracene	ND	0.0100	mg/kg wet						
Benzo[ghi]perylene	ND	0.0100	mg/kg wet						
Surrogate: Terphenyl-d14		4.42	mg/kg wet	5.15		85.9	60-130		
LCS (BAH0783-BS1)			Pre	epared: 8/20	6/2020 Analyze	ed: 9/3/2020	ı		
Naphthalene	0.578	0.0100	mg/kg wet	1.00	., , .	57.8	32-133		
2-Methylnaphthalene	0.662	0.0100	mg/kg wet	1.00		66.2	45-138		
1-Methylnaphthalene	0.645	0.0100	mg/kg wet	1.00		64.5	47-135		
Acenaphthylene	0.656	0.0100	mg/kg wet	1.00		65.6	48-136		
Acenaphthene	0.773	0.0100	mg/kg wet	1.00		77.3	52-127		
Fluorene	0.771	0.0100	mg/kg wet	1.00		77.1	56-126		
Phenanthrene	0.872	0.0100	mg/kg wet	1.00		87.2	69-127		
Anthracene	0.787	0.0100	mg/kg wet	1.00		78.7	32-141		
Fluoranthene	1.00	0.0100	mg/kg wet	1.00		100	45-130		
Pyrene	0.666 L2	0.0100		1.00		66.6	71-141		
Benzo[a]anthracene	0.833		mg/kg wet	1.00		83.3	47-139		
Chrysene	0.779		mg/kg wet	1.00		77.9	36-133		
Benzo[b]fluoranthene	0.851	0.0100	5. 5	1.00		85.1	48-177		
Benzo[k]fluoranthene	0.882			1.00		88.2	47-169		
Benzo[a]pyrene	0.796	0.0100		1.00		79.6	51-155		
Indeno[1,2,3-cd]pyrene	0.816	0.0100		1.00		81.6	66-166		
Dibenz[a,h]anthracene	0.818	0.0100	mg/kg wet	1.00		81.8	57-155		
Benzo[ghi]perylene	0.801	0.0100		1.00		80.1	49-165		
Surrogate: Terphenyl-d14		3.52	mg/kg wet	5.15		68.4	60-130		
		- · · · ·	<u> </u>			<u> </u>			

Quality Control Data (Continued)

Semivolatiles (Continued)

			porting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAH0783 - ASE Ext (Coi	ntinued)									
LCS Dup (BAH0783-BSD1)				Pr	epared: 8/26	5/2020 Analyze	ed: 9/3/2020)		
Naphthalene	0.637		0.0100	mg/kg wet	1.00		63.7	32-133	9.67	50
2-Methylnaphthalene	0.724		0.0100	mg/kg wet	1.00		72.4	45-138	8.91	50
1-Methylnaphthalene	0.707		0.0100	mg/kg wet	1.00		70.7	47-135	9.19	50
Acenaphthylene	0.716		0.0100	mg/kg wet	1.00		71.6	48-136	8.73	50
Acenaphthene	0.831		0.0100	mg/kg wet	1.00		83.1	52-127	7.13	50
Fluorene	0.827		0.0100	mg/kg wet	1.00		82.7	56-126	6.97	50
Phenanthrene	0.879		0.0100	mg/kg wet	1.00		87.9	69-127	0.800	50
Anthracene	0.837		0.0100	mg/kg wet	1.00		83.7	32-141	6.06	50
Fluoranthene	1.04		0.0100	mg/kg wet	1.00		104	45-130	3.66	50
Pyrene	0.648	L2	0.0100	mg/kg wet	1.00		64.8	71-141	2.82	50
Benzo[a]anthracene	0.874		0.0100	mg/kg wet	1.00		87.4	47-139	4.86	50
Chrysene	0.807		0.0100	mg/kg wet	1.00		80.7	36-133	3.57	50
Benzo[b]fluoranthene	0.850		0.0100	mg/kg wet	1.00		85.0	48-177	0.0407	50
Benzo[k]fluoranthene	0.858		0.0100	mg/kg wet	1.00		85.8	47-169	2.80	50
Benzo[a]pyrene	0.816		0.0100	mg/kg wet	1.00		81.6	51-155	2.54	50
Indeno[1,2,3-cd]pyrene	0.811		0.0100	mg/kg wet	1.00		81.1	66-166	0.549	50
Dibenz[a,h]anthracene	0.806		0.0100	mg/kg wet	1.00		80.6	57-155	1.44	50
Benzo[ghi]perylene	0.791		0.0100	mg/kg wet	1.00		79.1	49-165	1.21	50
Surrogate: Terphenyl-d14			3.53	mg/kg wet	5.15		68.6	60-130		
Matrix Spike (BAH0783-MS1)		Source: MAH055	4-04	Pro	epared: 8/26	5/2020 Analyze	ed: 9/3/2020			
Naphthalene	0.656	0	.00999	mg/kg dry	0.999	, ND	65.7	30-140		
2-Methylnaphthalene	0.729		.00999	mg/kg dry	0.999	ND	73.0	30-140		
1-Methylnaphthalene	0.723		.00999	mg/kg dry	0.999	ND	72.4	30-140		
Acenaphthylene	0.696		.00999	mg/kg dry	0.999	ND	69.6	30-140		
Acenaphthene	0.834		.00999	mg/kg dry	0.999	ND	83.5	30-140		
Fluorene	0.809		.00999	mg/kg dry	0.999	ND	81.0	30-140		
Phenanthrene	0.898		.00999	mg/kg dry	0.999	0.0129	88.7	30-140		
Anthracene	0.807		.00999	mg/kg dry	0.999	0.0102	79.8	30-140		
Fluoranthene	0.963		.00999	mg/kg dry	0.999	0.00834	95.6	30-140		
Pyrene	0.808		.00999	mg/kg dry	0.999	0.0174	79.2	30-140		
Benzo[a]anthracene	0.853		.00999	mg/kg dry	0.999	0.0312	82.3	30-140		
Chrysene	0.780		.00999	mg/kg dry	0.999	0.0302	75.0	30-140		
Benzo[b]fluoranthene	0.770		.00999	mg/kg dry	0.999	0.0196	75.2	30-140		
Benzo[k]fluoranthene	0.981		.00999	mg/kg dry	0.999	0.0267	95.6	30-140		
Benzo[a]pyrene	0.827		.00999	mg/kg dry	0.999	0.0127	81.6	30-140		
Indeno[1,2,3-cd]pyrene	0.820		.00999	mg/kg dry	0.999	0.00676	81.4	30-140		
Dibenz[a,h]anthracene	0.835		.00999	mg/kg dry	0.999	ND	83.6	30-140		
Benzo[ghi]perylene	0.795		.00999	mg/kg dry	0.999	0.0146	78.2	30-140		
Surrogate: Terphenyl-d14			4.37	mg/kg dry	5.14		84.9	60-130		

Quality Control Data (Continued)

Semivolatiles (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAH0783 - ASE Ext (Conti	nued)									
Matrix Spike Dup (BAH0783-MSD1)		Source: M	AH0554-04	Pre	epared: 8/26	5/2020 Analyze	ed: 9/3/2020)		
Naphthalene	0.674		0.00999	mg/kg dry	0.999	ND	67.5	30-140	2.75	50
2-Methylnaphthalene	0.719		0.00999	mg/kg dry	0.999	ND	72.0	30-140	1.41	50
1-Methylnaphthalene	0.740		0.00999	mg/kg dry	0.999	ND	74.1	30-140	2.39	50
Acenaphthylene	0.701		0.00999	mg/kg dry	0.999	ND	70.2	30-140	0.803	50
Acenaphthene	0.843		0.00999	mg/kg dry	0.999	ND	84.4	30-140	1.08	50
Fluorene	0.817		0.00999	mg/kg dry	0.999	ND	81.8	30-140	1.04	50
Phenanthrene	0.904		0.00999	mg/kg dry	0.999	0.0129	89.2	30-140	0.624	50
Anthracene	0.827		0.00999	mg/kg dry	0.999	0.0102	81.8	30-140	2.47	50
Fluoranthene	0.959		0.00999	mg/kg dry	0.999	0.00834	95.2	30-140	0.483	50
Pyrene	0.901		0.00999	mg/kg dry	0.999	0.0174	88.4	30-140	10.8	50
Benzo[a]anthracene	0.867		0.00999	mg/kg dry	0.999	0.0312	83.7	30-140	1.66	50
Chrysene	0.801		0.00999	mg/kg dry	0.999	0.0302	77.1	30-140	2.66	50
Benzo[b]fluoranthene	0.837		0.00999	mg/kg dry	0.999	0.0196	81.9	30-140	8.34	50
Benzo[k]fluoranthene	0.974		0.00999	mg/kg dry	0.999	0.0267	94.8	30-140	0.751	50
Benzo[a]pyrene	0.848		0.00999	mg/kg dry	0.999	0.0127	83.6	30-140	2.48	50
Indeno[1,2,3-cd]pyrene	0.844		0.00999	mg/kg dry	0.999	0.00676	83.9	30-140	2.92	50
Dibenz[a,h]anthracene	0.867		0.00999	mg/kg dry	0.999	ND	86.9	30-140	3.85	50
Benzo[ghi]perylene	0.817		0.00999	mg/kg dry	0.999	0.0146	80.4	30-140	2.70	50
Surrogate: Terphenyl-d14			4.78	mg/kg dry	5.14		93.0	60-130		

Quality Control Data (Continued)

Volatiles

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAH0908 - VOC										
Blank (BAH0908-BLK1)					Prepared 8	& Analyzed: 9	/2/2020			
Gasoline	ND		0.0400	mg/kg wet						
Surrogate: 4-Bromofluorobenzene			0.0224	mg/kg	0.0250		89.5	70-130		
LCS (BAH0908-BS1)					Prepared 8	& Analyzed: 9	/2/2020			
Gasoline	8.80		0.0400	mg/kg wet	10.0		88.0	80-120		
Surrogate: 4-Bromofluorobenzene			0.0237	mg/kg	0.0250		94.8	70-130		
Matrix Spike (BAH0908-MS1)	:	Source: MAH	10632-12	Pr	epared: 9/2/	2020 Analyze	d: 9/3/2020			
Gasoline	10.1		0.0485	mg/kg dry	12.1	ND	83.0	50-150		
Surrogate: 4-Bromofluorobenzene			0.0237	mg/kg	0.0250		94.6	70-130		
Matrix Spike Dup (BAH0908-MSD1)	:	Source: MAH	10632-12	Pr	epared: 9/2/	2020 Analyze	d: 9/3/2020			
Gasoline	11.0		0.0485	mg/kg dry	12.1	ND	91.0	50-150	9.20	25
Surrogate: 4-Bromofluorobenzene			0.0237	mg/kg	0.0250		94.7	70-130		

Batch: BAH0928 - VOC

Blank (BAH0928-BLK1) Prepared: 8/31/2020 Analyzed: 9/2/2020

n-Hexane ND 25.0 mg/kg wet

Quality Control Data (Continued)

Volatiles (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAH0933 - VOC									
Blank (BAH0933-BLK1)				Prepared	& Analyzed: 9	/1/2020			
Acetone	ND	2.50	ug/L	•	-				
Acrolein	ND	2.50	ug/L						
Acrylonitrile	ND	2.50	ug/L						
Benzene	ND	0.200	ug/L						
Bromochloromethane	ND	0.500	ug/L						
Bromodichloromethane	ND	0.200	ug/L						
Bromoform	ND	0.500	ug/L						
Bromomethane	ND	0.500	ug/L						
Methyl ethyl ketone (MEK)	ND	2.50	ug/L						
Carbon disulfide	ND	2.50	ug/L						
Carbon Tetrachloride	ND	0.200	ug/L						
Chlorobenzene	ND	0.500	ug/L						
Chloroethane	ND	0.500	ug/L						
2-Chloroethyl vinyl ether	ND	2.50	ug/L						
Chloroform	ND	0.200	ug/L						
Chloromethane	ND	0.500	ug/L						
cis-1,2-dichloroethene	ND	0.500	ug/L						
cis-1,3-Dichloropropene	ND	0.200	ug/L						
1,2-Dibromo-3-chloropropane(DBCP)	ND	0.500	ug/L						
1,2-Dibromoethane (EDB)	ND	0.200	ug/L						
1,2-Dichlorobenzene	ND	0.500	ug/L						
1,3-Dichlorobenzene	ND	0.500	ug/L						
1,4-Dichlorobenzene	ND	0.500	ug/L						
trans-1-4-Dichloro-2-butene	ND	0.500	ug/L						
Dichlorodifluoromethane	ND	0.500	ug/L						
1,1-Dichloroethane	ND	0.500	ug/L						
1,2-Dichloroethane	ND	0.500	ug/L						
1,1-Dichloroethene	ND	0.500	ug/L						
trans-1,2-Dichloroethene	ND	0.500	ug/L						
1,2-Dichloropropane	ND	0.500	ug/L						
trans-1,3-Dichloropropene	ND	0.200	ug/L						
Ethylbenzene	ND	0.500	ug/L						
Hexachlorobutadiene	ND	0.500	ug/L						
2-hexanone	ND	2.50	ug/L						
Iodomethane	ND	0.500	ug/L						
Isopropylbenzene	ND	0.500	ug/L						
Methylene chloride	ND	0.500	ug/L						
Methyl isobutyl ketone (MIBK)	ND	2.50	ug/L						
Naphthalene	ND	0.500	ug/L						
Styrene	ND	0.500	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L ug/L						
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L						
Tetrachloroethene	ND	0.500	ug/L						
Toluene	ND ND	0.500							
1,2,4-Trichlorobenzene	ND ND	0.500	ug/L ug/L						
1,1,1-Trichloroethane	ND ND	0.500	ug/L ug/L						
1,1,2-Trichloroethane	ND	0.500	ug/L ug/L						
Trichloroethene	ND	0.500							
1,2,3-Trichloropropane	ND ND	0.500	ug/L						
• • •	ND	0.500	ug/L						
Vinyl Chlorida			ug/L						
Vinyl Chloride	ND ND	0.200	ug/L						
m+p-Xylene	ND ND	1.00	ug/L						
o-Xylene	ND	0.500	ug/L						

Quality Control Data (Continued)

Volatiles (Continued)

		Reporting		Spike	Source	0/ 5=6	%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAH0933 - VOC (Contin	ued)								
Blank (BAH0933-BLK1)				Prepared	& Analyzed: 9	/1/2020			
Total Xylene	ND	0.500	ug/L						
1,1-dichloropropene	ND	0.500	ug/L						
1,2,3-Trichlorobenzene	ND	0.500	ug/L						
1,2,4-Trimethylbenzene	ND	0.500	ug/L						
1,3,5-Trimethylbenzene	ND	0.500	ug/L						
1,3-Dichloropropane	ND	0.500	ug/L						
2,2-Dichloropropane	ND	0.500	ug/L						
2-Chlorotoluene	ND	0.500	ug/L						
4-Chlorotoluene	ND	0.500	ug/L						
Bromobenzene	ND	0.500	ug/L						
Dibromochloromethane	ND	0.500	ug/L						
Dibromomethane	ND	0.500	ug/L						
methyl-t-butyl ether (MTBE)	ND	0.500	ug/L						
n-Butylbenzene	ND	0.500	ug/L						
n-Propylbenzene	ND	0.500	ug/L						
p-isopropyltoluene	ND	0.500	ug/L						
sec-Butylbenzene	ND	0.500	ug/L						
tert-Butylbenzene	ND	0.500	ug/L						
Trichlorofluoromethane	ND	0.500	ug/L						
Surrogate: Toluene-d8		24.6	ug/L	25.0		98.4	70-130		
Surrogate: 4-Bromofluorobenzene		23.1	ug/L	25.0		92.4	70-130		
Surrogate: 1,2-Dichlorobenzene-d4		20.8	ug/L	19.0		110	70-130		
Batch: BAI0125 - VOC								_	_
Blank (BAI0125-BLK1)				Prepared	& Analyzed: 9	/1/2020			
methyl-t-butyl ether (MTBE)	ND	0.000100	mg/kg wet		,	. ,			
Toluene	ND ND		mg/kg wet						
o-Xylene	ND		mg/kg wet						
Naphthalene	ND		mg/kg wet						
m+p-Xylene	ND		mg/kg wet						
Ethylbenzene	ND								
Benzene	ND ND		mg/kg wet						
1,2-Dibromoethane (EDB)	ND ND	0.000100	mg/kg wet						
1,2-Dichloroethane	ND ND								
1,2-DICHIOLOGUIGHE	טוו	0.000100	mg/kg wet						

Quality Control Data (Continued)

Volatiles (Continued)

Analyte	Result Qual	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0125 - VOC (Con	ntinued)							
LCS (BAI0125-BS1)	•		Prepared	& Analyzed: 9/1/	2020			
1,2-Dibromoethane (EDB)	0.00986	0.000100 mg/kg wet	0.0100		98.6	70-130		
1,2-Dichloroethane	0.0102	0.000100 mg/kg wet	0.0100		102	80-120		
Benzene	0.0101	0.000100 mg/kg wet	0.0100		101	80-120		
Ethylbenzene	0.0105	0.000100 mg/kg wet	0.0100		105	80-120		
m+p-Xylene	0.0208	0.000100 mg/kg wet	0.0200		104	80-120		
methyl-t-butyl ether (MTBE)	0.00906	0.000100 mg/kg wet	0.0100		90.6	80-120		
Naphthalene	0.0103	0.000100 mg/kg wet	0.0100		103	80-120		
o-Xylene	0.0103	0.000100 mg/kg wet	0.0100		103	80-120		
Toluene	0.0106	0.000100 mg/kg wet	0.0100		106	80-120		

Chain of Custody Record

Anatek Log-In #

MAH	0632

Due: 09/08/20

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433

Comp	pany Name:	'NOI	EER Technolologi	ies (PTC)	Proje	ject Mar	nager:				Joe	el Hed	Turn Around			
Addres	200'		orporate Center C		Proj€	ject Nan	ne &	#:				Hard	del			Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Lacey		State: WA Zip:	98503	Ema	ail Addre	ess:		Н	ecke	rj@ı	ıspic	oneer.	.con	n	
Phone	2:	- ((360) 828-3739		Purc	chase O)rder#	# :								2nd Day*Fax
Fax:			7		Sam	npler Na	ame &	phon	ie:		J	Joel I	Hecke	er		Other* Email
	Provi	de S	ample Description					List	Ana	alyse	es Re	que	sted			Note Special Instructions/Comments
1 ala	1	Sc	Soil Sampling		Containers	Sample Volume	TPH-G	Select VOCs **	TPH-D / HO	PAHs	Dioxins/Furans	PCBs				
Lab ID	Sample Identification	cation	Sampling Date/Time	Matrix	# of	Sam	201	Self	T I		Dio					
	S-B101-0.5-3082	20	08/20/20 12:50	Soil	2						×	×				**Select VOCs include BTEX, n-hexane, 1,2-DBA,
	S-B102-2-4-0820	20	08/20/20 10:06	Soil	1		×		×							1,2-DCA, MTBE, naphthalene
	S-B102-5-7-0820	.0	08/20/20 10:08	Soil	2		×		×		×	×				1
	S-B103-1-3-0820	0	08/20/20 9:45	Soil	2						×	×				No silica gel cleanup on TPH analyses
	S-B104-1-3-0820	20	08/20/20 8:45	Soil	2						×	×				
	S-B105-2-4-0820	20	08/20/20 8:20	Soil	2 -	-19ª					×	×				
	S-B105-2-4-0820-	<i>i</i> -01	08/20/20 8:20	Soil	2	-802					×	×				
	S-B106-6-8-0820	.0	08/20/20 8:00	Soil	2						×	×				Inspection Checklist
	S-B107-2-4-0820	.0	08/20/20 7:50	Soil	2						×	×				Received Intact? Y N
	S-B2-C-8.5-10-08	320	08/20/20 10:50	Soil	1		×	×	×	×						Labels & Chains Agree? Y N
	S-B2-N-3-5-0820	.0	08/20/20 11:40	Soil	1		×	×	_							Containers Sealed? Y N
	S-B2-E-3-5.5-082		08/20/20 12:00	Soil	1		×	×	×	×						VOC Head Space? Y N
	S-B2-S-1-2-0820			HOLD SAMPLE	1											
	and the same of th			Signature						mpany			Date	SECRETARION DE LA CONTRACTOR DE LA CONTR	Time	
Reling	quished by	Joe	el Hecker	gho	N	10	52		PT	С			8/20/20	.0	14:00	Temperature (°C):
	ived by			7	_											Preservative:
Relina	quished by															
Recei	eived by															Date & Time:
Relina	quished by															Inspected By:
Recei	eived by	1	,	1									1	1	1	。在一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

Anatek Labs.

Chain of Custody Record

Anatek Log-In#

VI				_	
	Ш	Ш	Ш	Ш	Ш
	Ш	Ш	Ш	Ш	Ш
	Ш	Ш	Ш	Ш	Ш

Due: 09/08/20

Inc.			08) 883-2839 FAX 882-9246 509) 838-3999 FAX 838-4433	L
PIONE	R Technolologies (PTC)	Project Manager:	Joel Hecker	T
5005 0		Project Name & #:	Handal	7

Comp	any Name: P	IONE	ER Technolologie	es (PTC)	Proje	ct Man	ager:				Joe	Turn Around 1				
Addre	ss: 52 !	05 C	orporate Center Ct	SE	Proje	ect Nan	ne & #	# :				Hard	lel			Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Lacey		State: WA Zip:	98503		il Addre	*********		Нє	ecke	rj@u	ıspio	neer.	.cor	n	✓ Normal *All rush order — Phone — Next Day* requests must be — Mail
Phone	ii.	(360) 828-3739			hase O										Next Day* requests must beMailFaxEmail
Fax:					Sam	pler Na	me &						lecke	er		
	Provi	de Sa	ample Description					List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments
Loh	Г	Sc	oil Sampling		Containers	Sample Volume	TPH-G	Select VOCs **	ТРН-Д / НО	PAHs	Dioxins	PCBs				
Lab ID	Sample Identific	ation	Sampling Date/Time	Matrix	# of	San		Sel	F							
	S-B2-S-8-10-082	20	08/20/20 12:10	Soil	1		×	×	×	×						**Select VOCs include BTEX, n-hexane, 1,2-DBA,
	S-B2-S-8-10-082	20	08/20/20 12:10	Soil	1		×	×	×	×						1,2-DCA, MTBE, naphthalene
	S-B2-W-7-8.5-082	20	08/20/20 11:20	Soil	1		×	×	×	×						
	TB-0820		08/20/20	Water	2			×								No silica gel cleanup on TPH analyses
					<u> </u>				<u> </u>			igsquare				
					╙	<u> </u>			_	\sqcup		\perp	\sqcup			
					ـــــ	├			—	\vdash		<u> </u>	\vdash			Inspection Checklist
					├	_			-	\vdash			\vdash			Received Intact? Y N
					<u> </u>	<u> </u>	-		-	-			\vdash		\vdash	Labels & Chains Agree? Y N
					⊢	-			-	\vdash	_	\vdash	\vdash	_	\vdash	Containers Sealed? Y N
					⊢	\vdash	-	_	+-	\vdash		\vdash	\vdash			VOC Head Space? Y N
	ELECTRIC COLUMN SERVICE	Printe	l ed Name	Signature					Com	npany			Date		Time	
Relin	quished by	-	el Hecker	Signature L	N.	6	N		PT				8/20/2		14:00	Temperature (°C):
Rece	ived by			7												Preservative:
Relin	quished by															
Rece	ived by															Date & Time:
Relin	quished by															Inspected By:
Rece	ived by															

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

4	Anatek
	Labs,
	Inc.

Chain of Custody Record ■ 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246

Page

Anatek Log-In # MAH0632

Due: 09/08/20

	· ·	504 E Sp	orague Ste D,									X 838-	443.	3	201 0 3000			
Company Name:		10	۲۷)	Proje	ct Mana	ager:	50-e	1 1	ter	kor					Turn Around			
Address.	, -		9	Proje	ct Nam	e & 7	# : N N		1 - 1	4					Please refer to our normal turn around times at:			
5205 Corpor	ote Center	Ct. S	E	F	1 4 4 4		H	oro	0	0					http://www.anateklabs.com/services/guidelines/reporting.asp			
5205 Corpor City: Lacey		ZIP:	18503	Emai	Addres	ss .	reck	eri(20	SPI	000	er, co	M		XNormal *All rush orderPhone _Next Day* requests must beMail			
Phone: 360-83	8-3739														2nd Day* prior approvedFax			
Fax:				Samp	pler Nar	me &	phone	30	u l	Hee	(ce	Other* /39						
Provi	de Sample Des	100			List	Ana	lyse	s Re	ques	sted	Note Special Instructions/Comments							
investigation	rples from	Plenetar	Containers Prese	Sample Volume	H-G	Select *	TPH-D/HO	PAHS	Djustins	85								
Lab ID Sample Identific	cation Sampling D	ate/Time	Matrix	# of	Sam	TPH	3	tpi	PA		PC							
5-3101-0.	5-3-0820 8/2	0 1250	Soul	2						X	X				* VOC; include BTEX,			
5-B102-2	-4-0820 81	20 100%	1	1		X		X							n-hexane, 1,2-DBA, 1,2-OCA,			
S-B102-5-	7-0820	1003		2		X		X		X	×				MTBE, na phthalene			
5-8163-1-	3-0120	945								X	X							
5-B164-1-	3-0820	845								×	×							
5-B105-2-		820								X	4							
	-4-0820-01	820								V	X							
5-B166-6		800								X	X				Inspection Checklist			
5-8167-2		750								×	X				Received Intact? Y N			
	8.5-10-0820	1050				X	X.	X	X						Labels & Chains Agree? Y N			
5-B2-N-	3-5-0020	1140				X	X	X	X						Containers Sealed? Y N			
5-82-€-	7-5.5-0920	1200				X	X	X	X						VOC Head Space? Y N			
	1-2- 1215	T	4		HOL	0_												
	Printed Name	SEE	Signature					Com	pany			Date		Time	8/22/20			
Relinquished by	Joel Hec	Je v	I)—			P	TC			8/2	٥	1400	Temperature (°C): 1.0 IN-5				
Received by	Todal -		0					A	ral	eh		0/22	_		Preservative:			
Relinquished by			Ø									1,	,					
Received by	Jusha De	14/	4					An	ale	(8/24/	26	0730	Date & Time:			
Relinquished by											Inspected By:							

Form COC01.00 - Eff 1 Mar 2015

Received by

Page 1 of 1

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

1	Anatek Labs, Inc.	100 miles (100 miles (uras Dr	ive, l	Mosc		838	43 (2	208) 8	383-2	839						Anatek Log-In #	y 2		Due: 09/08/20
Comp	any Name:	(90	+1	1			ct Mar										T	Turn	Around		
Addre	ss:	notogies (P	16-)		Proje	ct Nar	ne &	#:	tar	da	i					\neg	Please ref http://www.anate	er to our normal : klabs.com/servic		
City:		State: Zip	:				I Addr			Ç-0		•					\neg	✓ Normal	*All rush		Phone
Phone	360,828.	3739				Purch	nase C	order #	1								\neg	Next Day* 2nd Day*	requests m	nust be	Mail Fax
Fax:	120 520					Samı	oler Na	me &	phone	::Ju	عا	He	de	. 74	8-0	28-	2-78	Other*	· prior appr	ovcu.	Email
	Provide S	ample Description	on	120							-		ques				+		ial Instruc	tions/C	omments
50	il scriptes !	tom supplem	unt	tal		Containers	Sample Volume	TPH-G	eut *	- D/Ha	구										
Lab ID	Sample Identification	Sampling Date/Tim	е	Matrix		# of C	Samp	4	Schert	TPH-D,	PA										
	5-132-5-8-10		۵	1210	5621	ì		X	4	×	7							*5	ce page	1 F	or VOL
	5-132-5-8-10.	0820-02		1210	1	1		1	4	×	X										list
	5-132-W-7-83	-0820	\perp	1120		١		×	X	X	X						\perp				
	TB -0820		\perp			ì			X							_	_				
			\perp		1	_									_	_	_				
		•	1			_		<u> </u>							_	_	_				
			\perp												_	_	_				
			\perp			_									_	_	_		spection C	hecklis	it
			\perp			<u> </u>		_						\vdash	_	-		Received Intac		Υ	N
			\perp			_	_	_							\rightarrow	\rightarrow		abels & Chair		Υ	N
2000			+			_		_		_				$\vdash \vdash$	_	\dashv	_	Containers Sea		Y	N

Relinquished by							
Received by	1) She	Sold	A	Analek	0/24/20	0730	Date & Time:
Relinquished by		. 7			/ /		Inspected By:
Received by							
Form COC01.00 - Eff	1 Mar 2015						Page 1 of 1

Company

PTC

Avolo

Date

8/20

Time

1400

Temperature (°C

Preservative:

Printed Name

Relinquished by

Received by

Signature

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

MAH0632

Anatek Labs, Inc.

Sample Receipt and Preservation Form

Client Name: Chnologies Project:	(apply Anatek sample label here)
TAT: Normal RUSH: days	
Samples Received From: FedEx UPS USP	S Client Courier Other:
Custody Seal on Cooler/Box: Yes No	Custody Seals Intact: Yes No (N/A)
Number of Coolers/Boxes:(Type of Ice: Ice/Ice Packs Blue Ice Dry Ice None
,	n/Peanuts None Other:
Cooler Temp As Read (°C): Cooler Te	mp Corrected (°C): Thermometer Used:
2 Jan Barahard Intent?	No N/A Comments:
Samples Received Intact?	
Chain of Custody Present?	
Samples Received Within Hold Time? Yes	No N/A
Samples Properly Preserved? Yes	No N/A
VOC Vials Free of Headspace (<6mm)?	No N/A
VOC Trip Blanks Present?	No N/A
Labels and Chains Agree?	No N/A
Total Number of Sample Bottles Received:	
Chain of Custody Fully Completed?	No N/A
Correct Containers Received?	No N/A
Anatek Bottles Used? Yes	No Unknown
Record preservatives (and lot numbers, if known) for	containers below:
HC1 -> VOC TB - 544~1 XZ	2
Notes, comments, etc. (also use this space if contact	eting the client record names and date/time)
	cuing the client - record harnes and date/time)
38-2 × ZZ 5402 × Z	
9402 × 2	
Received/Inspected By:	_ Date/Time:

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Todd Taruscio Anatek Labs, Inc. 1282 Alturas Drive Moscow ID 83843

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10530197

Sample Receipt Date: 08/28/2020

Client Project #: MAH0632

Client Sub PO #: N/A State Cert #: C486

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Joanne Richardson, your Pace Project Manager.

This report has been reviewed by:

September 21, 2020

Joanne Richardson, (612) 607-6453 (612) 607-6444 (fax)

Report of Laboratory Analysis

 $This report should not be reproduced, except in full,\\ without the written consent of Pace Analytical Services, Inc.$

The results relate only to the samples included in this report.

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of Anatek Labs, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 27-92%. Except for five low values, which were flagged "R" on the results tables, the labeled internal standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

A laboratory spike sample was also prepared with the sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 96-117%. These results were within the target range for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

The response obtained for the labeled 1,2,3,4,7,8,9-HpCDF in calibration standard analysis U200917A_19 was outside the target range. As specified in our procedures for this method, the average of the daily response factors for this compound was used in the calculations for the samples from this runshift. The affected values were flagged "Y" on the results tables. It should be noted that the accuracy of the native congener determinations was not impacted by this deviation.

REPORT OF LABORATORY ANALYSIS

Tel: 612-607-1700 Fax: 612-607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Mississippi	MN00064
A2LA	2926.01	Missouri	10100
Alabama	40770	Montana	CERT0092
Alaska-DW	MN00064	Nebraska	NE-OS-18-06
Alaska-UST	17-009	Nevada	MN00064
Arizona	AZ0014	New Hampshire	2081
Arkansas - WW	88-0680	New Jersey	MN002
Arkansas-DW	MN00064	New York	11647
California	2929	North Carolina-	27700
Colorado	MN00064	North Carolina-	530
Connecticut	PH-0256	North Dakota	R-036
Florida	E87605	Ohio - VAP	CL101
Georgia	959	Ohio-DW	41244
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon- rimary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
Iowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Massachusetts-	via MN 027-053	West Virginia-D	382
Michigan	9909	West Virginia-D	9952C
Minnesota	027-053-137	Wisconsin	999407970
Minnesota-Ag	via MN 027-053	Wyoming-UST	via A2LA 2926.
Minnesota-Petr	1240		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10530197

Appendix A

Sample Management

SUBCONTRACT ORDER

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com

504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Sending Laboratory:

Anatek Labs Inc, Moscow ID 1282 Alturas Drive Moscow, ID 83843 Phone: 208-883-2839

Fax: 208-882-9246

Project Manager: Todd Taruscio

toddt@anateklabs.com

Subcontracted Laboratory:

Pace Analytical - MN 1800 Elm Street SE Minneaplis, MN 55414 Phone: (612) 607-6400

Fax:

WO#:10530197

Analysis		Due	Expire	s	Comments	
Lab Sample ID: MAH0632-01	Solid	Sampled:	08/20/2020	12:50		
Client Sample Name: S-B101-0).5-308	320				· 61
Dioxin/Fuzzas		09/03/2020	09/03/2020	12:50		
Containers Supplied:						
Lab Sample ID: MAH0632-03	Solid	Sampled:	08/20/2020	10:08		
Client Sample Name: S-B102-5	5-7-08	20				is J
Dioxin/Frans		09/03/2020	09/03/2020	10:08		
Containers Supplied:						
Lab Sample ID: MAH0632-04	Solid	Sampled:	08/20/2020	09:45		
Client Sample Name: S-B103-1	L-3-08	20				w 3
Dioxin/Forms		09/03/2020	09/03/2020	09:45		
Containers Supplied:						
Lab Sample ID: MAH0632-05	Solid	Sampled:	08/20/2020	08:45		
Client Sample Name: S-B104-1	L-3-08	2,0				w 4
Dioxin/j=vans		09/03/2020	09/03/2020	08:45		
Containers Supplied:						
Lab Sample ID: MAH0632-06	Solid	Sampled:	08/20/2020	08:20		
Client Sample Name: S-B105-2	2-4-08	20				cu 5
xin/Furans		09/03/2020	09/03/2020	08:20		
ners Supplied:						

08/26/2020

nu kluer

Received By

SUBCONTRACT ORDER (Continued)

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com
504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Work Order: MAH0632 (Continued)

Analysis		Due	Expire	s	Comments		
Lab Sample ID: MAH0632-07	Solid	Sampled:	08/20/2020	08:20			
Client Sample Name: S-B105-2	-4-082	20-01	•			w 6	
Dioxin/Furans		09/03/2020	09/03/2020	08:20			
Containers Supplied:							
Lab Sample ID: MAH0632-08	Solid	Sampled:	08/20/2020	08:00	<u> </u>		·····
Client Sample Name: S-B106-6	-8-082	20				a 7	
Dioxin/Evrans		09/03/2020	09/03/2020	08:00			
Containers Supplied:							
Lab Sample ID: MAH0632-09	Solid	Sampled:	08/20/2020	07:50			
Client Sample Name: S-B107-2	-4-082	20				wé	
Dioxin/Frans	<u>.</u>	09/03/2020	09/03/2020	07:50			
Containers Supplied:							

Chris Sandison Released By

eceipt (SCUR) - MN

Document Revised: 12Aug2020

Pace Analytical®	Document
Pace Analytical®	Sample Condition Upon Re
/	Pocument

/ Pace Analytical	Sample Condition Opon Receipt (SCOR) - Mile	rage 1 Of 1
- Tuoon mary trout	Pocument No.:	Pace Analytical Services -
	ENV-FRM-MIN4-0150 Rev.01	Minneapolis
		•
Upon Receipt Client Name:	Project #: IJO#	:10530197

Sample Condition Client Name:			Project	#:	LIO	H · 1 A	E20407	,	
Upon Receipt Anatel Labs, Inc.					MU:	H · TA	<u>530197</u>		
Courier: Fed Ex DUPS DI	JSPS Commerc]Client		PM: J CLIEN	MR T: Anatek	Due Date: 09	3/21/20	
Tracking Number: 12, 98) 176 01 4002	1048	Se EN	e Exception V-FRM-MIN		\			<u></u>	
Custody Seal on Cooler/Box Present? Yes	No	Sea	ls Intact?	• □Y	′es 🔼 N	o Biologi	cal Tissue Frozen?	□Yes □No ⊠N/A	
Packing Material: Bubble Wrap Bubble Ba	gs 🗆	None	Othe	er: <u>5</u>	yroloan		Temp Blank?	□Yes XNo	
Thermometer: T1(0461) T2(1336) T3(0459) T4(0254) T5(0489)		Type of lo	ce:]Wet	⊠Blue	□None	☐ Dry ☐ Melted		
Did Samples Originate in West Virginia? ☐Yes 🗡 No	Wei	re All Co	ntainer T	emps T	aken? □Ye	s □No ĎN	/A		
Temp should be above freezing to 6°C Cooler Temp Read w/temp blank: Cooler Temp Read w/temp blank: Temp (no temp blank ENV-FRM-MIN4-0142									
Correction Factor: 70,) Cooler Temp Corrected	d w/tem	p blank:	/32/33				only):ºC	☐1 Container	
USDA Regulated Soil: (N/A, water sample/Other:) Did samples originate in a quarantine zone within the United States: AL, AR, CA, FL, GA, ID, LA. MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? Yes No If Yes to either question, fill out a Regulated Soil Checklist (F-MN-Q-338) and include with SCUR/COC paperwork.									
							COMMENTS:		
Chain of Custody Present and Filled Out?	Yes	□No		1.			•		
Chain of Custody Relinquished?	Yes	□No		2.			-		
Sampler Name and/or Signature on COC?	Yes	□No	⊠ N/A	3.					
Samples Arrived within Hold Time?	Yes	□No	•	4.				7211	
Short Hold Time Analysis (<72 hr)?	Yes	∕ZINo					al Coliform/E coli BC e Orthophos Othe	D/cBOD Hex Chrome	
Rush Turn Around Time Requested?	₹¥es	- No		6. 9	/03/2	<i>2</i> 0			
Sufficient Volume?	Yes	□No		7.		-			
Correct Containers Used? -Pace Containers Used?	Yes Yes	□No ⊠No		8.					
Containers Intact?	Yes	∕□No		9.					
Field Filtered Volume Received for Dissolved Tests?	☐Yes	□No	⊠ N/A	10.	Is sediment	visible in the d	issolved container? [∐Yes	
Is sufficient information available to reconcile the samples to the COC?	Yes	□No		11. If	no, write ID/	Date/Time on Co	ontainer Below:	See Exception ENV-FRM-MIN4-014	
Matrix: ☑Water ☐Soil ☐Oil ☐Other									
All containers needing acid/base preservation have been checked?	☐Yes	□No	⊠n/a	12. Sa	mple#				
All containers needing preservation are found to be in compliance with EPA recommendation?	□Yes	□No	⊠n/a		☐ NaOH	☐ HNC	D₃ □H₂SO₄	Zinc Acetate	
(HNO₃, H₂SO₄, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease,	□Yes	□No	⊠N/A	Positiv Chlori	ve for Res. [ne?	_Yes _No p	H Paper Lot#	See Exception ENV-FRM-MIN4-0142	
DRO/8015 (water) and Dioxin/PFAS				Res. C	hlorine	0-6 Roll	0-6 Strip	0-14 Strip	
Extra labels present on soil VOA or WIDRO containers?	Yes	□No	⊠N/A	13.				See Exception	
Headspace in VOA Vials (greater than 6mm)?	Yes	□No	₩N/A					ENV-FRM-MIN4-0140	
Trip Blank Present?	Yes	No	√ZN/A	14.					
Trip Blank Custody Seals Present?	☐Yes	□ No	⊠N/A		Pace Trip Bla	ink Lot # (if pui	rchased):		
CLIENT NOTIFICATION/RESOLUTION Person Contacted:				Date	e/Time:	Field	Data Required?]Yes □No	
Comments/Resolution:				,					
5-45-75-9		See See and							
Project Manager Review	John The Control	خممال			Date:	8-28-20			
Note: Whenever there is a discrepancy	12.		ору	of this fo	rm will be se	nt to the North	Carolina DEHNR Certi	fication Office (i.e out of	

Document Name:

Sample Condition Upon Receipt (SCUR) Exception Form

Document No.: ENV-FRM-MIN4-0142 Rev.01

Document Revised: 04Jun2020 Page 1 of 1

Pace Analytical Services - **Minneapolis**

SCUR Exceptions:						Wo	rkord	er_#:105	5 <u>30</u> 19	7	
Out of Temp Sample IDs	Container Type	# of Containers		To the Control	PM No	tified?					
	S. Carling Fa Various			If yes, i			tacted/date/time. on why.				
			Multiple Cooler Pr								
						No Temp	Blank	nk			
			Re	ead Temp		rected Te		Aver	age Te	mp	
				3	1,4			4.5	5		
			<u> </u>	7	5.7 5.6	· •		٠.			
			1 9	7	5.6						
				.9	5.0						
77.00 4.4			Issu	e Type:			Con	tainer	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of	
Tracking Number	/Temperature	,		Sai	mple ID		T	уре	Cont	ainers	
			_								
·			┨								
			┨ ├──								
			1			<u> </u>	·				
			1								
	pH Ad	justment	Log for	Preserv	ed Sam	ples	1				
Sample ID	Type o		Date Adjusted	Time Adjusted	Amoun t Added (mL)	Lot # Added	pH After	In Compl	ition?	Initials	
								☐ Yes]No		
								Yes	No		
								☐ Yes [No		
A CONTRACTOR OF THE CONTRACTOR								☐Yes	No		
Comments:							1			1	

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interferencepresent
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = SeeDiscussion

REPORT OF LABORATORY ANALYSIS

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID MAH0632-01 Lab Sample ID 10530197001 Filename U200920B_07 Injected By BAL

Total Amount Extracted 11.1 g Matrix Solid % Moisture 6.2 Dilution NA

Dry Weight Extracted 10.4 g Collected 08/20/2020 12:50 ICAL ID U200729 Received 08/28/2020 09:15 CCal Filename(s) U200920B_01 & U200920B_19 Extracted 09/14/2020 15:38 Method Blank ID BLANK-82418 Analyzed 09/20/2020 15:17

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.65 0.65	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	46 50 49
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	50 57 59
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 8.3	 	1.4 0.68 0.68	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	56 56 54 63
1,2,3,7,8-PeCDD Total PeCDD	ND 3.6		0.84 0.84 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	51 51 49
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND 1.2	 1.2	0.68 0.54 J 0.54 IJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	64 41
1,2,3,7,8,9-HxCDF Total HxCDF	ND 21		0.54 0.54	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 2.1 20	 0.64 	0.70 0.68 J 0.54 J 0.54	2,3,7,8-TCDD-37Cl4	0.20	46
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	11 ND 41	 	0.63 0.64 0.63	Total 2,3,7,8-TCDD Equivalence: 1.6 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	44 92		0.59 0.59			
OCDF OCDD	21 480		0.94 1.7			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

REPORT OF LABORATORY ANALYSIS

Page 48 of 57

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

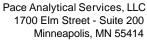
Client's Sample ID MAH0632-03 Lab Sample ID 10530197002 Filename U200920B_08 Injected By BAL

Total Amount Extracted 21.3 g Matrix Solid % Moisture 36.5 Dilution NA

Dry Weight Extracted Collected 08/20/2020 10:08 13.5 g ICAL ID U200729 Received 08/28/2020 09:15 CCal Filename(s) U200920B 01 & U200920B 19 Extracted 09/14/2020 15:38 Method Blank ID BLANK-82418 Analyzed 09/20/2020 15:58

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.60 0.60	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	57 59 47
2,3,7,8-TCDD Total TCDD	ND ND		0.87 0.87	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	46 52 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		1.4 0.63 0.63	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 66 66 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.77 0.77	1,2,3,4,7,8-1 KCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	61 53 56
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.85 0.72 0.77	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	65 42
1,2,3,7,8,9-HxCDF Total HxCDF	ND 4.3		0.80 0.72	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.90 5.0	1.5 	0.82 0.86 JJ 0.55 J 0.55	2,3,7,8-TCDD-37Cl4	0.20	58
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	3.9 	1.2 P 0.83 0.83	Total 2,3,7,8-TCDD Equivalence: 1.1 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	38 71		0.86 0.86			
OCDF OCDD	11 440		1.6 1.2			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).


ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference I = Interference present

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID MAH0632-04 Lab Sample ID 10530197003 U200920B_09 Filename Injected By BAL

Total Amount Extracted 17.9 g Matrix Solid % Moisture Dilution NA 12.6

Dry Weight Extracted Collected 08/20/2020 09:45 15.7 g ICAL ID U200729 Received 08/28/2020 09:15 CCal Filename(s) U200920B_01 & U200920B_19 Extracted 09/14/2020 15:38 Method Blank ID BLANK-82418 Analyzed 09/20/2020 16:40

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.58 0.58	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	51 56 50
2,3,7,8-TCDD Total TCDD	ND ND		0.64 0.64	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	51 58 65
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.77 0.41 0.41	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	59 58 59 64
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.55 0.55	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	52 53 51
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.44 0.47 0.35	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	66 40
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.5		0.46 0.35 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.95		0.49 0.72 0.47 0.47 J	2,3,7,8-TCDD-37Cl4	0.20	50
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.5 ND 3.8	 	0.53 J 0.55 0.53	Total 2,3,7,8-TCDD Equivalence: 0.13 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	5.1 9.8		0.65 0.65			
OCDF OCDD	 60	2.0	1.4 J 1.7			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

EDL = Estimated Detection Limit

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID MAH0632-05
Lab Sample ID 10530197004
Filename U200920B_10
Injected By BAL

Total Amount Extracted 11.0 g Matrix Solid % Moisture 4.3 Dilution NA

Dry Weight Extracted 10.5 g Collected 08/20/2020 08:45 ICAL ID U200729 Received 08/28/2020 09:15 CCal Filename(s) U200920B_01 & U200920B_19 Extracted 09/14/2020 15:38 Method Blank ID BLANK-82418 Analyzed 09/20/2020 17:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.49 0.49	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	55 56 57
2,3,7,8-TCDD Total TCDD	ND ND		0.83 0.83	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	60 67 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.56 0.43 0.43	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	65 65 60 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.56 0.56	1,2,3,4,7,8-11XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	60 57 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.37 0.31 0.31	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	71 42
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.34 0.31	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.47 0.42 0.39 0.39	2,3,7,8-TCDD-37Cl4	0.20	50
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.76 	0.46 J 0.52 0.46	Total 2,3,7,8-TCDD Equivalence: 0.10 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	4.9 10		0.69 0.69			
OCDF OCDD	43	1.9	1.2 J 1.6			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

REPORT OF LABORATORY ANALYSIS

Page 51 of 57

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID MAH0632-06
Lab Sample ID 10530197005
Filename U200920B_11
Injected By BAL

Total Amount Extracted 14.4 g Matrix Solid % Moisture 24.4 Dilution NA

Dry Weight Extracted 10.9 g Collected 08/20/2020 08:20 ICAL ID U200729 Received 08/28/2020 09:15 CCal Filename(s) U200920B 01 & U200920B 19 Extracted 09/14/2020 15:38 Method Blank ID BLANK-82418 Analyzed 09/20/2020 18:04

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.59 0.59	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	46 53 49
2,3,7,8-TCDD Total TCDD	ND ND		1.2 1.2	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	50 58 60
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 3.0	 	0.95 0.55 0.55 J	1,2,3,4,7,8-HXCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	56 56 57 63
1,2,3,7,8-PeCDD Total PeCDD	ND 1.3		0.65 0.65 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	52 50 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.60 0.65 0.57	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	63 39 R
1,2,3,7,8,9-HxCDF Total HxCDF	ND 4.2		0.56 0.56 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.1 23	0.95 1.7 	0.78 J 0.74 J 0.66 J 0.66	2,3,7,8-TCDD-37Cl4	0.20	54
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 19	5.5 	0.54 I 0.44 0.44	Total 2,3,7,8-TCDD Equivalence: 2.0 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	76 160		0.51 0.51			
OCDF OCDD	32 620		1.4 1.6			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

I = Interference present

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID MAH0632-07 Lab Sample ID 10530197006 U200920B_12 Filename Injected By BAL

Total Amount Extracted 14.1 g Matrix Solid % Moisture Dilution NA 33.4

Dry Weight Extracted Collected 08/20/2020 08:20 9.36 g ICAL ID U200729 Received 08/28/2020 09:15 CCal Filename(s) U200920B 01 & U200920B 19 Extracted 09/14/2020 15:38 Method Blank ID BLANK-82418 Analyzed 09/20/2020 18:45

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.95 0.95	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	39 R 42 40
2,3,7,8-TCDD Total TCDD	ND ND		1.1 1.1	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	44 48 51
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	1.6 0.60 0.60	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	51 49 44 55
1,2,3,7,8-PeCDD Total PeCDD	ND 3.9		0.99 0.99 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	33 43 38 R 37 R
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.70 0.81 0.97	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	48 27 R
1,2,3,7,8,9-HxCDF Total HxCDF	ND 8.5		0.97 0.70	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.7 9.2 140	 5.4 	1.4 1.2 1.3 I 1.2	2,3,7,8-TCDD-37Cl4	0.20	45
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	9.8 ND 48		1.0 0.83 0.83	Total 2,3,7,8-TCDD Equivalence: 7.1 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	300 720		0.58 0.58			
OCDF OCDD	64 1900		1.4 2.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

I = Interference present

REPORT OF LABORATORY ANALYSIS

Page 53 of 57

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID MAH0632-08
Lab Sample ID 10530197007
Filename U200920B_13
Injected By BAL

Total Amount Extracted 11.3 g Matrix Solid % Moisture 35.0 Dilution NA

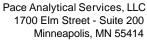
Dry Weight Extracted Collected 08/20/2020 08:00 7.36 g ICAL ID U200729 Received 08/28/2020 09:15 CCal Filename(s) U200920B_01 & U200920B_19 Extracted 09/14/2020 15:38 Method Blank ID BLANK-82418 Analyzed 09/20/2020 19:27

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.54 0.54	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 72 71
2,3,7,8-TCDD Total TCDD	ND ND		0.71 0.71	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 85 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.76 0.43 0.43	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	77 79 77
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.51 0.51	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	89 70 69 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.40 0.33 0.34	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	92 58
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.39 0.33	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.41 0.39 0.41 0.39	2,3,7,8-TCDD-37Cl4	0.20	63
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.32 0.50 0.32	Total 2,3,7,8-TCDD Equivalence: 0.015 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.79 1.8		0.31 J 0.31 J			
OCDF OCDD	ND 6.9		0.78 1.3 BJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable


EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID MAH0632-09 Lab Sample ID 10530197008 Filename U200920B_14 Injected By BAL

<u> Pace Analytical</u>

Total Amount Extracted 15.7 g Matrix Solid % Moisture Dilution NA 23.8

Dry Weight Extracted 12.0 g Collected 08/20/2020 07:50 ICAL ID U200729 Received 08/28/2020 09:15 CCal Filename(s) U200920B 01 & U200920B 19 Extracted 09/14/2020 15:38 Method Blank ID BLANK-82418 Analyzed 09/20/2020 20:09

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.27 0.27	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 62 63
2,3,7,8-TCDD Total TCDD	ND ND		0.37 0.37	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 78 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.37 0.21 0.21	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	76 78 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.29 0.29	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	85 72 69 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.20 0.23 0.26	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	91 53
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.23 0.20	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.33	 	0.24 0.19 0.22 0.19 J	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 2.2	0.64 	0.34 J 0.41 0.34 J	Total 2,3,7,8-TCDD Equivalence: 0.093 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	4.5 4.5		0.30 0.30			
OCDF OCDD	2.7 40		0.49 BJ 0.75			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample Name Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

DFBLKMD BLANK-82418 U200917A_04 10.6 g U200729

U200917A_01 & U200917A_19

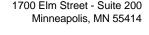
Matrix Solid Dilution NA

Extracted 09/14/2020 15:38 Analyzed 09/17/2020 09:04 Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.080 0.080	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 63 85
2,3,7,8-TCDD Total TCDD	ND ND		0.14 0.14	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	84 94 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.14 0.081 0.081	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 81 78 84
1,2,3,7,8-PeCDD Total PeCDD	 ND	0.11	0.092 JJ 0.092	1,2,3,4,7,6-FIXEDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 67 93 Y
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.075	0.082 0.076 0.064 JJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 66
1,2,3,7,8,9-HxCDF Total HxCDF	ND	0.086	0.074 JJ 0.064	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.10 0.12 0.12 0.10	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.16 0.20 0.16	Total 2,3,7,8-TCDD Equivalence: 0.073 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	 ND	0.19	0.081 JJ 0.081			
OCDF OCDD	0.28 0.74		0.15 J 0.19 J			

Conc = Concentration (Totals include 2, 3, 7, 8-substitute disomers).

EMPC = Estimated Maximum Possible Concentration


EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID

LCS-82419 U200917A_02 10.5 g

U200729 U200917A_01 & U200917A_19 BLANK-82418

Matrix Dilution Extracted

Solid NA

09/14/2020 15:38 Analyzed 09/17/2020 07:43

Injected By **SMT**

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	107	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	73 73 86
2,3,7,8-TCDD Total TCDD	0.20	0.21	107	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	82 93 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.0	105 105	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	72 76 75 79
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	101	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	67 63 88 Y
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	113 105 108 107	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	78 63 NA
Total HxCDF 1,2,3,4,7,8-HxCDD	1.0	1.2	117	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.0 0.20	NA 76
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0	1.1 1.1	108 109			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.1	108 107			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.96	96			
OCDF OCDD	2.0 2.0	2.2 2.3	112 115			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

August 2020 GWM

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: **Pioneer Technologies Corporation**

Address: 5205 Corporate Center Court-Suite A

Lacey, WA 98503

Joel Hecker Attn:

Work Order: MAI0068

Project: Milestone Hardel Reported:

12/9/2020 13:29

Case Narrative

The samples listed below were received for analysis at Anatek Labs, Inc. The analytical report is attached. All test results reported below comply with and meet current TNI standards, other applicable regulatory standards, and the Anatek Labs, Inc. Quality Assurance Manual, unless otherwise noted in the report.

The results in this report relate only to the samples analyzed. All soil and solid results are reported on a dryweight basis unless otherwise noted. An estimation of uncertainty is available upon request.

This report shall not be reproduced, except in full, without the written consent of Anatek Labs, Inc.

For questions about this report, please contact Justin Doty at 208-883-2839.

Laboratory ID Sample Name MAI0068-01 GW-MW101-0831 GW-MW102-0831 MAI0068-02 MAI0068-03 GW-MW102-0831-01 MAI0068-04 GW-MW103-0831 MAI0068-05 GW-MW104-0831 MAI0068-06 TB-083120

QA/QC Summary

QC Parameter Yes / No (if No, see Comments below)

1. Sample Holding Time Valid? 2. Instrument Tunes Valid? Yes 3. Method Blank(s) Valid? Yes 4. Internal Standard Response(s) Valid? Yes 5. Initial Calibration Curve(s) Valid? Yes 6. Continuing Calibration(s) Valid?

Comments:

Pioneer Technologies Corporation project name "Hardel" was received at Anatek Labs on 9/2/2020 and logged into the laboratory information management system as work order MAI0068. The water samples were extracted and analyzed following EPA 8015 / NWTPH-Dx for NWTPH-HCID, and NWTPH-Gx as well as other petroleum screening methods (PAH's, EPH, Dioxins, PCBs and metals).

Upon reporting, Pioneer Technologies realized that the reporting limit for the NWTPH-Dx test was elevated in relation to the screening levels needed for the scope of this project. After investigation by the lab, it was determined that the petroleum chemist made a judgement decision when performing the extraction, due to perceived sample odor, and took a sub-sample instead of using the entire 1 liter. Pioneer Technologies requested that NWTPH-Dx extraction and analysis be repoeated using the remainder of the sample (approximately 750 milliliters) and reported with a holding time qualifier. The results for the samples from this repeat extraction/analysis was reported with a lower reporting limit and the results were in good agreement with the original extraction/analysis results for the samples.

Analytical Results Report

Sample Location: GW-MW101-0831

08/31/20 11:45 Lab/Sample Number: MAI0068-01 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
Chloride	111	mg/L	3.55	5.00	9/3/20 21:25	BKP	EPA 300.0	
Metals by ICP-MS								
Dissolved Arsenic	0.0128	mg/L	0.0000850	0.00100	9/28/20 15:48	MYM	EPA 200.8	
Semivolatiles								
1-Methylnaphthalene	0.131	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	
2-Methylnaphthalene	0.0318	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	
Acenaphthene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Acenaphthylene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Anthracene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Benzo(g,h,i)perylene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Benzo[a]anthracene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Benzo[a]pyrene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Benzo[b]fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Benzo[k]fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Chrysene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Dibenz(a,h)anthracene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Fluorene	0.0201	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Naphthalene	0.0111	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	
Phenanthrene	0.0181	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.00500	0.0100	9/17/20 19:05	TGT	EPA 8270D	U
Surrogate: Terphenyl-d14	83.9%		65-135		9/17/20 19:05	TGT	EPA 8270D	
Arochlor 1016 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:29	GPB	EPA 8082A	U
Arochlor 1221 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:29	GPB	EPA 8082A	U
Arochlor 1232 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:29	GPB	EPA 8082A	U
Arochlor 1242 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:29	GPB	EPA 8082A	U
Arochlor 1248 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:29	GPB	EPA 8082A	U
Arochlor 1254 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:29	GPB	EPA 8082A	U
Arochlor 1260 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:29	GPB	EPA 8082A	U
PCB (total)	ND	ug/L	0.0500	0.200	9/3/20 17:29	GPB	EPA 8082A	U
Surrogate: DCB	101%		70-130		9/3/20 17:29	GPB	EPA 8082A	
Diesel	0.322	mg/L	0.0785	0.157	10/8/20 19:59	taz	NWTPH-HCID	
Gasoline	ND	mg/L	0.0785	0.157	10/8/20 19:59	taz	NWTPH-HCID	
Lube Oil	ND	mg/L	0.392	0.785	10/8/20 19:59	taz	NWTPH-HCID	
Surrogate: Hexacosane			50-150		10/8/20 19:59		NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location: GW-MW101-0831

08/31/20 11:45 Lab/Sample Number: MAI0068-01 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles								
Gasoline	ND	mg/L	0.100	0.200	9/8/20 13:49	TEC	NWTPH-Gx	U
Surrogate: 4-Bromofluorobenzene	83.6%		70-13	0	9/8/20 13:49	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
Benzene	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
EDB	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
Ethylbenzene	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
m/p Xylenes (MCL for total)	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
methyl-t-butyl ether (MTBE)	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
Naphthalene	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
o-Xylene (MCL for total)	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
Toluene	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U
n-Hexane	ND	ug/L	0.100	0.500	9/8/20 13:49	TEC	EPA 8260C	U

Analytical Results Report (Continued)

Sample Location:

GW-MW101-0831

Lab/Sample Number:

MAI0068-01

Collect Date:

08/31/20 11:45

Date Received:

09/01/20 12:35

Collected By:

Joel Hecker

Matrix:

Groundwater

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
Diesel	0.322	mg/L	0.0785	0.157	10/8/20 19:59	taz	NWTPH-Dx	H4
Lube Oil	ND	mg/L	0.314	0.471	10/8/20 19:59	taz	NWTPH-Dx	H4, U
Surrogate: Hexacosane	89.1%		50-150)	10/8/20 19:59	taz	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: GW-MW102-0831

08/31/20 09:30 Lab/Sample Number: MAI0068-02 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
Chloride	12.1	mg/L	0.0710	0.100	9/3/20 16:24	BKP	EPA 300.0	
Metals by ICP-MS								
Dissolved Arsenic	ND	mg/L	0.0000850	0.00100	9/28/20 15:55	MYM	EPA 200.8	
Semivolatiles								
1-Methylnaphthalene	0.582	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
2-Methylnaphthalene	0.380	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
Acenaphthene	0.883	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
Acenaphthylene	0.0226	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
Anthracene	0.0323	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
Benzo(g,h,i)perylene	ND	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	U
Benzo[a]anthracene	ND	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	U
Benzo[a]pyrene	ND	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	U
Benzo[b]fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	U
Benzo[k]fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	U
Chrysene	ND	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	U
Dibenz(a,h)anthracene	ND	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	U
Fluoranthene	0.0404	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
Fluorene	0.323	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
ndeno(1,2,3-cd)pyrene	ND	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	U
Naphthalene	0.655	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
Phenanthrene	0.283	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
Pyrene	0.0771	ug/L	0.00500	0.0100	9/17/20 19:29	TGT	EPA 8270D	
Surrogate: Terphenyl-d14	79.8%		65-135		9/17/20 19:29	TGT	EPA 8270D	
Arochlor 1016 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:47	GPB	EPA 8082A	U
Arochlor 1221 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:47	GPB	EPA 8082A	U
Arochlor 1232 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:47	GPB	EPA 8082A	U
Arochlor 1242 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:47	GPB	EPA 8082A	U
Arochlor 1248 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:47	GPB	EPA 8082A	U
Arochlor 1254 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:47	GPB	EPA 8082A	U
Arochlor 1260 (1)	ND	ug/L	0.0500	0.200	9/3/20 17:47	GPB	EPA 8082A	U
PCB (total)	ND	ug/L	0.0500	0.200	9/3/20 17:47	GPB	EPA 8082A	U
Surrogate: DCB	100%		70-130		9/3/20 17:47	GPB	EPA 8082A	
Diesel	ND	mg/L	0.0663	0.133	10/8/20 20:34	taz	NWTPH-HCID	
Gasoline	ND	mg/L	0.0663	0.133	10/8/20 20:34	taz	NWTPH-HCID	
Lube Oil	ND	mg/L	0.332	0.663	10/8/20 20:34	taz	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location: GW-MW102-0831

08/31/20 09:30 Lab/Sample Number: MAI0068-02 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles								
Gasoline	ND	mg/L	0.100	0.200	9/8/20 12:50	TEC	NWTPH-Gx	U
Surrogate: 4-Bromofluorobenzene	82.6%		70-13	0	9/8/20 12:50	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U
Benzene	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U
EDB	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U
Ethylbenzene	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U
m/p Xylenes (MCL for total)	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U
methyl-t-butyl ether (MTBE)	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U
Naphthalene	1.06	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	
o-Xylene (MCL for total)	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U
Toluene	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U
n-Hexane	ND	ug/L	0.100	0.500	9/8/20 12:50	TEC	EPA 8260C	U

Analytical Results Report

(Continued)

Sample Location: GW-MW102-0831

08/31/20 09:30 Lab/Sample Number: MAI0068-02 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
Diesel	0.105	mg/L	0.0663	0.133	10/8/20 20:34	taz	NWTPH-Dx	H4, J
Lube Oil	ND	mg/L	0.265	0.398	10/8/20 20:34	taz	NWTPH-Dx	H4, U
Surrogate: Hexacosane	71.2%		50-150)	10/8/20 20:34	taz	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: GW-MW102-0831-01

08/31/20 09:30 Lab/Sample Number: MAI0068-03 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
Chloride	12.8	mg/L	0.0710	0.100	9/8/20 21:53	BKP	EPA 300.0	
Metals by ICP-MS								
Dissolved Arsenic	ND	mg/L	0.0000850	0.00100	9/28/20 16:01	MYM	EPA 200.8	
Semivolatiles								
1-Methylnaphthalene	0.442	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
2-Methylnaphthalene	0.289	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Acenaphthene	0.634	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Acenaphthylene	0.0204	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Anthracene	0.0323	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Benzo(g,h,i)perylene	ND	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	U
Benzo[a]anthracene	0.00981	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	j
Benzo[a]pyrene	ND	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	U
Benzo[b]fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	U
Benzo[k]fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	U
Chrysene	0.00901	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	j
Dibenz(a,h)anthracene	ND	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	U
Fluoranthene	0.0276	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Fluorene	0.277	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	U
Naphthalene	0.553	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Phenanthrene	0.243	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Pyrene	0.0720	ug/L	0.00500	0.0100	9/17/20 19:52	TGT	EPA 8270D	
Surrogate: Terphenyl-d14	89.4%		<i>65-135</i>		9/17/20 19:52	TGT	EPA 8270D	
Arochlor 1016 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:06	GPB	EPA 8082A	U
Arochlor 1221 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:06	GPB	EPA 8082A	U
Arochlor 1232 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:06	GPB	EPA 8082A	U
Arochlor 1242 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:06	GPB	EPA 8082A	U
Arochlor 1248 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:06	GPB	EPA 8082A	U
Arochlor 1254 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:06	GPB	EPA 8082A	U
Arochlor 1260 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:06	GPB	EPA 8082A	U
PCB (total)	ND	ug/L	0.0500	0.200	9/3/20 18:06	GPB GPB	EPA 8082A	U
Surrogate: DCB	98.0%		70-130		9/3/20 18:06	GPB	EPA 8082A	
Volatiles								
Gasoline	ND	mg/L	0.100	0.200	9/8/20 14:19	TEC	NWTPH-Gx	U
Surrogate: 4-Bromofluorobenzene	82.8%		70-130		9/8/20 14:19	TEC	NWTPH-Gx	

Analytical Results Report (Continued)

Sample Location: GW-MW102-0831-01

08/31/20 09:30 Lab/Sample Number: MAI0068-03 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles (Continued)								
Benzene	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
EDB	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
Ethylbenzene	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
m/p Xylenes (MCL for total)	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
methyl-t-butyl ether (MTBE)	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
Naphthalene	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
o-Xylene (MCL for total)	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
Toluene	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
Surrogate: 1,2-Dichlorobenzene-d4	109%		70-130)	9/8/20 14:19	TEC	EPA 8260C	
Surrogate: 4-Bromofluorobenzene	93.4%		70-130)	9/8/20 14:19	TEC	EPA 8260C	
Surrogate: Toluene-d8	95.7%		70-130))	9/8/20 14:19	TEC	EPA 8260C	
n-Hexane	ND	ug/L	0.100	0.500	9/8/20 14:19	TEC	EPA 8260C	U
Surrogate: 1,2-Dichlorobenzene-d4	86.5%		70-130)	9/8/20 14:19	TEC	EPA 8260C	
Surrogate: 4-Bromofluorobenzene	92.5%		70-130)	9/8/20 14:19	TEC	EPA 8260C	
Surrogate: Toluene-d8	93.9%		70-130		9/8/20 14:19	TEC	EPA 8260C	

Analytical Results Report

(Continued)

Sample Location: GW-MW102-0831-01

08/31/20 09:30 Lab/Sample Number: MAI0068-03 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
Diesel	0.105	mg/L	0.0696	0.139	10/8/20 21:08	taz	NWTPH-Dx	H4, J
Lube Oil	0.282	mg/L	0.279	0.418	10/8/20 21:08	taz	NWTPH-Dx	H4, J
Surrogate: Hexacosane	89.0%		50-150)	10/8/20 21:08	taz	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: GW-MW103-0831

08/31/20 10:45 Lab/Sample Number: MAI0068-04 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
norganics								
Chloride	5.03	mg/L	0.0710	0.100	9/8/20 22:14	ВКР	EPA 300.0	
Metals by ICP-MS								
Dissolved Arsenic	ND	mg/L	0.0000850	0.00100	9/28/20 16:21	MYM	EPA 200.8	
Semivolatiles								
1-Methylnaphthalene	0.0270	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
2-Methylnaphthalene	0.0240	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
Acenaphthene	0.356	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
Acenaphthylene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
Anthracene	0.0132	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
Benzo(g,h,i)perylene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
Benzo[a]anthracene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
Benzo[a]pyrene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
Benzo[b]fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
Benzo[k]fluoranthene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
Chrysene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
Dibenz(a,h)anthracene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
luoranthene	0.0268	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
luorene	0.0385	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
ndeno(1,2,3-cd)pyrene	ND	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	U
laphthalene	0.0412	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
Phenanthrene	0.0556	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
Pyrene	0.0210	ug/L	0.00500	0.0100	9/17/20 20:16	TGT	EPA 8270D	
Surrogate: Terphenyl-d14	82.6%		65-135	,	9/17/20 20:16	TGT	EPA 8270D	
Arochlor 1016 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:25	GPB	EPA 8082A	U
rochlor 1221 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:25	GPB	EPA 8082A	U
rochlor 1232 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:25	GPB	EPA 8082A	U
rochlor 1242 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:25	GPB	EPA 8082A	U
Arochlor 1248 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:25	GPB	EPA 8082A	U
rochlor 1254 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:25	GPB	EPA 8082A	U
Arochlor 1260 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:25	GPB	EPA 8082A	U
PCB (total)	ND	ug/L	0.0500	0.200	9/3/20 18:25	GPB	EPA 8082A	U
Surrogate: DCB	96.9%		70-130)	9/3/20 18:25	GPB	EPA 8082A	
Diesel	0.196	mg/L	0.0693	0.139	10/8/20 21:43	taz	NWTPH-HCID	
Gasoline	ND	mg/L	0.0693	0.139	10/8/20 21:43	taz	NWTPH-HCID	
ube Oil	ND	mg/L	0.346	0.693	10/8/20 21:43	taz	NWTPH-HCID	
Surrogate: Hexacosane	95.0%		50-150)	10/8/20 21:43	taz	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location: GW-MW103-0831

08/31/20 10:45 Lab/Sample Number: MAI0068-04 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles								
Gasoline	ND	mg/L	0.100	0.200	9/8/20 14:48	TEC	NWTPH-Gx	U
Surrogate: 4-Bromofluorobenzene	84.0%		70-130)	9/8/20 14:48	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
Benzene	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
EDB	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
Ethylbenzene	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
m/p Xylenes (MCL for total)	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
methyl-t-butyl ether (MTBE)	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
Naphthalene	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
o-Xylene (MCL for total)	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
Toluene	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U
n-Hexane	ND	ug/L	0.100	0.500	9/8/20 14:48	TEC	EPA 8260C	U

Analytical Results Report (Continued)

Sample Location:

GW-MW103-0831

Lab/Sample Number:

MAI0068-04

Collect Date:

08/31/20 10:45

Date Received:

09/01/20 12:35

Collected By:

Joel Hecker

Matrix:

Groundwater

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
Diesel	0.196	mg/L	0.0693	0.139	10/8/20 21:43	taz	NWTPH-Dx	H4
Lube Oil	0.289	mg/L	0.277	0.416	10/8/20 21:43	taz	NWTPH-Dx	H4, J
Surrogate: Hexacosane	95.0%		50-150)	10/8/20 21:43	taz	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: GW-MW104-0831

08/31/20 08:10 Lab/Sample Number: MAI0068-05 Collect Date: Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
Chloride	2340	mg/L	7.10	10.0	9/9/20 20:03	BKP	EPA 300.0	
Metals by ICP-MS								
Dissolved Arsenic	0.00547	mg/L	0.0000850	0.00100	9/28/20 16:55	MYM	EPA 200.8	
Semivolatiles								
1-Methylnaphthalene	175	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
2-Methylnaphthalene	188	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
Acenaphthene	199	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
Acenaphthylene	2.53	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
nthracene	16.3	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
enzo(g,h,i)perylene	ND	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	U
enzo[a]anthracene	0.910	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
enzo[a]pyrene	0.156	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
enzo[b]fluoranthene	0.242	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
enzo[k]fluoranthene	0.0626	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	J
hrysene	0.894	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
ibenz(a,h)anthracene	ND	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	U
luoranthene	12.1	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
luorene	67.0	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
ndeno(1,2,3-cd)pyrene	ND	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	U
laphthalene	239	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
Phenanthrene	117	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
yrene	12.6	ug/L	0.0500	0.100	9/17/20 20:40	TGT	EPA 8270D	
urrogate: Terphenyl-d14	81.7%		65-135	·	9/17/20 20:40	TGT	EPA 8270D	
Arochlor 1016 (1)	ND	/1	0.0500	0.200	0/2/20 10:42	CDD	EDA 0002A	
	ND	ug/L	0.0500	0.200	9/3/20 18:43	GPB	EPA 8082A	U
rochlor 1221 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:43	GPB	EPA 8082A	U
rochlor 1232 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:43	GPB	EPA 8082A	U
rochlor 1242 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:43	GPB	EPA 8082A	U
rochlor 1248 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:43	GPB	EPA 8082A	U
rochlor 1254 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:43	GPB	EPA 8082A	U
Arochlor 1260 (1)	ND	ug/L	0.0500	0.200	9/3/20 18:43	GPB	EPA 8082A	U
PCB (total)	ND	ug/L 	0.0500	0.200	9/3/20 18:43	GPB	EPA 8082A	U
Gurrogate: DCB	87.6%		70-130	,	9/3/20 18:43	GPB	EPA 8082A	
Diesel	1.69	mg/L	0.118	0.236	9/14/20 16:22	taz	NWTPH-Dx	
ube Oil	2.20	mg/L	0.472	1.18	9/14/20 16:22	taz	NWTPH-Dx	
Surrogate: Hexacosane	143%		50-150	,	9/14/20 16:22	taz	NWTPH-Dx	
Diesel	1.69	mg/L	0.236	0.472	9/14/20 16:22	taz	NWTPH-HCID	
Gasoline	ND	mg/L	0.236	0.472	9/14/20 16:22	taz	NWTPH-HCID	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report (Continued)

Sample Location: GW-MW104-0831

Lab/Sample Number: MAI0068-05 Collect Date: 08/31/20 08:10

Date Received: 09/01/20 12:35 Collected By: Joel Hecker

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Lube Oil	ND	mg/L	1.18	2.36	9/14/20 16:22	taz	NWTPH-HCID	
Surrogate: Hexacosane	143%		50-150	0	9/14/20 16:22	taz	NWTPH-HCID	
olatiles								
Gasoline	ND	mg/L	0.500	1.00	9/8/20 15:18	TEC	NWTPH-Gx	U
Gurrogate: 4-Bromofluorobenzene	80.5%		70-130	0	9/8/20 15:18	TEC	NWTPH-Gx	
1,2-Dichloroethane	ND	ug/L	1.00	5.00	9/8/20 15:18	TEC	EPA 8260C	U
Benzene	ND	ug/L	0.500	2.50	9/8/20 15:18	TEC	EPA 8260C	U
DB	ND	ug/L	1.00	5.00	9/8/20 15:18	TEC	EPA 8260C	U
thylbenzene	ND	ug/L	0.500	2.50	9/8/20 15:18	TEC	EPA 8260C	U
n/p Xylenes (MCL for total)	ND	ug/L	0.500	2.50	9/8/20 15:18	TEC	EPA 8260C	U
nethyl-t-butyl ether (MTBE)	ND	ug/L	0.500	2.50	9/8/20 15:18	TEC	EPA 8260C	U
laphthalene	386	ug/L	2.50	12.5	9/10/20 19:00	TEC	EPA 8260C	
-Xylene (MCL for total)	ND	ug/L	0.500	2.50	9/8/20 15:18	TEC	EPA 8260C	U
oluene	ND	ug/L	0.500	2.50	9/8/20 15:18	TEC	EPA 8260C	U
-Hexane	ND	ua/L	1.00	5.00	9/8/20 15:18	TEC	EPA 8260C	U

Analytical Results Report (Continued)

Sample Location: TB-083120

Collect Date: 08/31/20 00:00 Lab/Sample Number: MAI0068-06

Date Received: 09/01/20 12:35 Collected By:

Matrix: Water

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles								
1,1,1,2-Tetrachloroethane	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,1,1-Trichloroethane	ND	ug/L	0.140	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,1,2-Trichlorethane	ND	ug/L	0.0800	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,1-Dichloroethane	ND	ug/L	0.140	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,1-Dichloroethylene	ND	ug/L	0.130	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,1-Dichloropropene	ND	ug/L	0.140	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,2,3-Trichlorobenzene	ND	ug/L	0.120	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,2,3-Trichloropropane	ND	ug/L	0.220	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,2,4-Trichlorobenzene	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,2,4-Trimethylbenzene	ND	ug/L	0.160	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,2-Dichlorobenzene	ND	ug/L	0.290	0.500	9/8/20 13:19	TEC	EPA 8260C	
(ortho-Dichlorobenzene)								
1,2-Dichloroethane	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,2-Dichloropropane	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,3,5-Trimethylbenzene	ND	ug/L	0.180	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,3-Dichloropropane	ND	ug/L	0.0600	0.500	9/8/20 13:19	TEC	EPA 8260C	
1,4-Dichlorobenzene (para-Dichlorobenzene)	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
2,2-Dichloropropane	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
2-Chloroethyl vinyl ether	ND	ug/L	2.50	2.50	9/8/20 13:19	TEC	EPA 8260C	
2-hexanone	ND	ug/L	0.440	2.50	9/8/20 13:19	TEC	EPA 8260C	
Acetone	ND	ug/L	2.50	2.50	9/8/20 13:19	TEC	EPA 8260C	
Acrolein	ND	ug/L	0.150	2.50	9/8/20 13:19	TEC	EPA 8260C	
Acrylonitrile	ND	ug/L	0.130	2.50	9/8/20 13:19	TEC	EPA 8260C	
Benzene	ND	ug/L	0.100	0.200	9/8/20 13:19	TEC	EPA 8260C	
Bromobenzene	ND	ug/L	0.0700	0.500	9/8/20 13:19	TEC	EPA 8260C	
Bromochloromethane	ND	ug/L	0.120	0.500	9/8/20 13:19	TEC	EPA 8260C	
Bromodichloromethane	ND	ug/L	0.0400	0.200	9/8/20 13:19	TEC	EPA 8260C	
Bromoform	ND	ug/L	0.120	0.500	9/8/20 13:19	TEC	EPA 8260C	
Bromomethane	ND	ug/L	0.470	0.500	9/8/20 13:19	TEC	EPA 8260C	
Carbon disulfide	ND	ug/L	0.180	2.50	9/8/20 13:19	TEC	EPA 8260C	
Carbon Tetrachloride	ND	ug/L	0.0300	0.200	9/8/20 13:19	TEC	EPA 8260C	
Chlorobenzene (Monochlorobenzene)	ND	ug/L	0.0800	0.500	9/8/20 13:19	TEC	EPA 8260C	
Chloroethane	ND	ug/L	0.270	0.500	9/8/20 13:19	TEC	EPA 8260C	
Chloroform	ND	ug/L	0.0400	0.200	9/8/20 13:19	TEC	EPA 8260C	
Chloromethane	ND	ug/L	0.350	0.500	9/8/20 13:19	TEC	EPA 8260C	
cis-1,2-Dichloroethylene	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
cis-1,3-Dichloropropene	ND	ug/L	0.0700	0.200	9/8/20 13:19	TEC	EPA 8260C	
DBCP	ND	ug/L	0.290	0.500	9/8/20 13:19	TEC	EPA 8260C	
Dibromochloromethane	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
Dibromomethane	ND	ug/L	0.0800	0.500	9/8/20 13:19	TEC	EPA 8260C	
Dichlorodifluoromethane	ND	ug/L	0.140	0.500	9/8/20 13:19	TEC	EPA 8260C	

Analytical Results Report (Continued)

Sample Location: TB-083120

Collect Date: 08/31/20 00:00 Lab/Sample Number: MAI0068-06

Date Received: 09/01/20 12:35 Collected By:

Matrix: Water

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles (Continued)								
EDB	ND	ug/L	0.0400	0.200	9/8/20 13:19	TEC	EPA 8260C	
Ethylbenzene	ND	ug/L	0.120	0.500	9/8/20 13:19	TEC	EPA 8260C	
Hexachlorobutadiene	ND	ug/L	0.160	0.500	9/8/20 13:19	TEC	EPA 8260C	
Iodomethane	ND	ug/L	0.460	0.500	9/8/20 13:19	TEC	EPA 8260C	
Isopropylbenzene	ND	ug/L	0.140	0.500	9/8/20 13:19	TEC	EPA 8260C	
m/p Xylenes (MCL for total)	ND	ug/L	0.300	1.00	9/8/20 13:19	TEC	EPA 8260C	
m-Dichlorobenzene	ND	ug/L	0.100	0.500	9/8/20 13:19	TEC	EPA 8260C	
Methyl ethyl ketone (MEK)	ND	ug/L	0.570	2.50	9/8/20 13:19	TEC	EPA 8260C	
Methyl isobutyl ketone (MIBK)	ND	ug/L	0.490	2.50	9/8/20 13:19	TEC	EPA 8260C	
Methylene Chloride (Dichloromethane)	ND	ug/L	0.440	0.500	9/8/20 13:19	TEC	EPA 8260C	
methyl-t-butyl ether (MTBE)	ND	ug/L	0.0600	0.500	9/8/20 13:19	TEC	EPA 8260C	
Naphthalene	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
n-Butylbenzene	ND	ug/L	0.160	0.500	9/8/20 13:19	TEC	EPA 8260C	
n-Propylbenzene	ND	ug/L	0.140	0.500	9/8/20 13:19	TEC	EPA 8260C	
o-Chlorotoluene	ND	ug/L	0.160	0.500	9/8/20 13:19	TEC	EPA 8260C	
o-Xylene (MCL for total)	ND	ug/L	0.150	0.500	9/8/20 13:19	TEC	EPA 8260C	
p-Chlorotoluene	ND	ug/L	0.130	0.500	9/8/20 13:19	TEC	EPA 8260C	
p-isopropyltoluene	ND	ug/L	0.110	0.500	9/8/20 13:19	TEC	EPA 8260C	
sec-Butylbenzene	ND	ug/L	0.160	0.500	9/8/20 13:19	TEC	EPA 8260C	
Styrene	ND	ug/L	0.100	0.500	9/8/20 13:19	TEC	EPA 8260C	
tert-Butylbenzene	ND	ug/L	0.140	0.500	9/8/20 13:19	TEC	EPA 8260C	
Tetrachloroethylene	ND	ug/L	0.300	0.500	9/8/20 13:19	TEC	EPA 8260C	
Toluene	ND	ug/L	0.0600	0.500	9/8/20 13:19	TEC	EPA 8260C	
Total Xylenes	ND	ug/L	0.100	0.500	9/8/20 13:19	TEC	EPA 8260C	
trans-1,2 Dichloroethylene	ND	ug/L	0.120	0.500	9/8/20 13:19	TEC	EPA 8260C	
trans-1,3-Dichloropropene	ND	ug/L	0.0700	0.200	9/8/20 13:19	TEC	EPA 8260C	
trans-1-4-Dichloro-2-butene	ND	ug/L	0.340	0.500	9/8/20 13:19	TEC	EPA 8260C	
Trichloroethene	ND	ug/L	0.0800	0.500	9/8/20 13:19	TEC	EPA 8260C	
Trichloroflouromethane	ND	ug/L	0.130	0.500	9/8/20 13:19	TEC	EPA 8260C	
Vinyl acetate	ND	ug/L	0.140	0.500	9/8/20 13:19	TEC	EPA 8260C	
Vinyl Chloride	ND	ug/L	0.150	0.200	9/8/20 13:19	TEC	EPA 8260C	
Surrogate: 1,2-Dichlorobenzene-d4	108%		70-130)	9/8/20 13:19	TEC	EPA 8260C	
Surrogate: 4-Bromofluorobenzene	88.4%		70-130)	9/8/20 13:19	TEC	EPA 8260C	
Surrogate: Toluene-d8	90.7%		70-130		9/8/20 13:19	TEC	EPA 8260C	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

H4 Sample was extracted past required extraction holding time, but analyzed within analysis holding time.

J The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J Compound was analyzed for but not detected

PQL Practical Quantitation Limit

ND Not Detected

MDL Method Detection Limit

Dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

Quality Control Data

Inorganics

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAI0097 - Anions										
Blank (BAI0097-BLK1)					Prepared	& Analyzed: 9	9/3/2020			
Chloride	ND	U	0.100	mg/L	.,	,				
LCS (BAI0097-BS1)					Prepared	& Analyzed: 9	0/3/2020			
Chloride	3.96		0.100	mg/L	4.00		99.1	90-110		
Matrix Spike (BAI0097-MS1)		Source: M	1AI0081-01RE	L	Prepared	& Analyzed: 9	9/3/2020			
Chloride	77.8		1.00	mg/L	40.0	36.8	102	90-110		
Matrix Spike Dup (BAI0097-MSD1)		Source: M	1AI0081-01RE	L	Prepared	& Analyzed: 9	9/3/2020			
Chloride	78.4		1.00	mg/L	40.0	36.8	104	90-110	0.871	25
Batch: BAI0143 - Anions										
Blank (BAI0143-BLK1)					Prepared	& Analyzed: 9	9/8/2020			
Chloride	ND	U	0.100	mg/L						
LCS (BAI0143-BS1)					Prepared	& Analyzed: 9	9/8/2020			
Chloride	4.00		0.100	mg/L	4.00		100	90-110		
Matrix Spike (BAI0143-MS1)		Source: M	1AI0068-05		Prepared	& Analyzed: 9	9/8/2020			
Chloride	41700		1000	mg/L	40000	2000	99.2	90-110		
Matrix Spike Dup (BAI0143-MSD1)		Source: M	1AI0068-05		Prepared	& Analyzed: 9	0/8/2020			
Chloride	41700		1000	mg/L	40000	2000	99.2	90-110	0.00	25
Databa BATOOM Aufana										
Batch: BAI0241 - Anions							1012020			
Blank (BAI0241-BLK1)			0.400	,,	Prepared	& Analyzed: 9	9/9/2020			
Chloride	ND	U	0.100	mg/L						

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0241 - Anions (Continu	ied)								
LCS (BAI0241-BS1)				Prepared	& Analyzed: 9	/9/2020			
Chloride	4.00	0.100	mg/L	4.00		99.9	90-110		
Matrix Spike (BAI0241-MS1)	Source: I	MAI0204-01RE1		Prepared	& Analyzed: 9	/9/2020			
Chloride	77.9	1.00	mg/L	40.0	34.2	109	90-110		
Matrix Spike Dup (BAI0241-MSD1)	Source: I	MAI0204-01RE1		Prepared	& Analyzed: 9	/9/2020			
Chloride	76.3	1.00	mg/L	40.0	34.2	105	90-110	2.13	25

Quality Control Data (Continued)

Metals by ICP-MS

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0598 - ICP-MS D									
Blank (BAI0598-BLK1)			Pr	epared: 9/21	/2020 Analyzed	d: 9/28/202	0		
Dissolved Arsenic	ND	0.00100	mg/L						
LCS (BAI0598-BS1)			Pr	epared: 9/21	/2020 Analyzed	d: 9/28/202	0		
Dissolved Arsenic	0.0449	0.00100	mg/L	0.0500		89.9	85-115		
Matrix Spike (BAI0598-MS1)	Source: I	MAI0068-03	Pr	epared: 9/21	/2020 Analyzed	d: 9/28/202	0		
Dissolved Arsenic	0.0489	0.00100	mg/L	0.0500	0.000313	97.2	70-130		
Matrix Spike Dup (BAI0598-MSD1)	Source: I	MAI0068-03	Pr	epared: 9/21	/2020 Analyzed	d: 9/28/202	0		
Dissolved Arsenic	0.0461	0.00100	mg/L	0.0500	0.000313	91.5	70-130	5.97	20

Quality Control Data (Continued)

Semivolatiles

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Allalyte	Nesuit	Quai	Limit	Offics	LEVEI	Result	70INEC	Lillics	NI D	LITTIC
Batch: BAI0114 - SVOC Water										
Blank (BAI0114-BLK1)				Р	repared: 9/3/	2020 Analyzed	l: 9/17/2020			
Naphthalene	ND	U	0.0100	ug/L						
2-Methylnaphthalene	ND	U	0.0100	ug/L						
1-Methylnaphthalene	ND	U	0.0100	ug/L						
Acenaphthylene	ND	U	0.0100	ug/L						
Acenaphthene	ND	U	0.0100	ug/L						
Fluorene	ND	U	0.0100	ug/L						
Phenanthrene	ND	U	0.0100	ug/L						
Anthracene	ND	U	0.0100	ug/L						
Fluoranthene	ND	U	0.0100	ug/L						
Pyrene	ND	U	0.0100	ug/L						
Benzo[a]anthracene	ND	U	0.0100	ug/L						
Chrysene	ND	U	0.0100	ug/L						
Benzo[b]fluoranthene	ND	U	0.0100	ug/L						

Quality Control Data (Continued)

Semivolatiles (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RP[Lim
·			Limit	- Cinto	ECVCI	resuit	701120	LiiiliG	1410	
atch: BAI0114 - SVOC Water	(Continued))		_						
Blank (BAI0114-BLK1)				Р	repared: 9/3/	2020 Analyze	d: 9/17/2020			
Benzo[k]fluoranthene	ND	U	0.0100	ug/L						
Benzo[a]pyrene	ND	U	0.0100	ug/L						
Indeno[1,2,3-cd]pyrene	ND	U	0.0100	ug/L						
Dibenz[a,h]anthracene	ND	U	0.0100	ug/L						
Benzo[ghi]perylene	ND	U	0.0100	ug/L						
.CS (BAI0114-BS1)				Р	repared: 9/3/	2020 Analyze	d: 9/17/2020			
Naphthalene	4.75		0.0100	ug/L	5.00		95.1	55-135		
2-Methylnaphthalene	4.63		0.0100	ug/L	5.00		92.7	55-135		
1-Methylnaphthalene	4.74		0.0100	ug/L	5.00		94.8	55-135		
Acenaphthylene	4.65		0.0100	ug/L	5.00		93.1	55-135		
Acenaphthene	4.80		0.0100	ug/L	5.00		95.9	55-135		
Fluorene	4.67		0.0100	ug/L	5.00		93.4	55-135		
Phenanthrene	4.84		0.0100	ug/L	5.00		96.8	55-135		
Anthracene	5.49		0.0100	ug/L	5.00		110	55-135		
Fluoranthene	5.41		0.0100	ug/L	5.00		108	55-135		
Pyrene	5.23		0.0100	ug/L	5.00		105	55-135		
Benzo[a]anthracene	5.27		0.0100	ug/L	5.00		105	55-135		
Chrysene	5.05		0.0100	ug/L	5.00		101	55-135		
Benzo[b]fluoranthene	4.80		0.0100	ug/L	5.00		95.9	55-135		
Benzo[k]fluoranthene	4.71		0.0100	ug/L	5.00		94.3	55-135		
Benzo[a]pyrene	4.47		0.0100	ug/L ug/L	5.00		89.5	55-135		
Indeno[1,2,3-cd]pyrene	4.52		0.0100	ug/L ug/L	5.00		90.4	55-135		
Dibenz[a,h]anthracene	4.47		0.0100	ug/L ug/L	5.00		89.3	55-135		
Benzo[ghi]perylene	4.62		0.0100	ug/L ug/L	5.00		92.5	55-135		
De 120[gril]per yierie	7.02		0.0100	ug/L	3.00		92.3	33-133		
.CS Dup (BAI0114-BSD1)						2020 Analyze				
Naphthalene	4.31		0.0100	ug/L	5.00		86.3	55-135	9.74	50
2-Methylnaphthalene	4.23		0.0100	ug/L	5.00		84.6	55-135	9.14	50
1-Methylnaphthalene	4.31		0.0100	ug/L	5.00		86.2	55-135	9.56	50
Acenaphthylene	2.91		0.0100	ug/L	5.00		58.3	55-135	46.0	50
Acenaphthene	4.42		0.0100	ug/L	5.00		88.3	55-135	8.21	50
Fluorene	3.95		0.0100	ug/L	5.00		79.1	55-135	16.5	50
Phenanthrene	4.58		0.0100	ug/L	5.00		91.6	55-135	5.47	50
Anthracene	4.83		0.0100	ug/L	5.00		96.7	55-135	12.6	50
Fluoranthene	4.35		0.0100	ug/L	5.00		87.0	55-135	21.8	50
Pyrene	5.14		0.0100	ug/L	5.00		103	55-135	1.78	50
Benzo[a]anthracene	4.84		0.0100	ug/L	5.00		96.8	55-135	8.49	50
Chrysene	4.88		0.0100	ug/L	5.00		97.5	55-135	3.58	50
Benzo[b]fluoranthene	4.53		0.0100	ug/L	5.00		90.6	55-135	5.72	50
Benzo[k]fluoranthene	4.43		0.0100	ug/L	5.00		88.7	55-135	6.14	50
Benzo[a]pyrene	3.56		0.0100	ug/L	5.00		71.1	55-135	22.8	50
Indeno[1,2,3-cd]pyrene	4.54		0.0100	ug/L	5.00		90.7	55-135	0.363	50
Dibenz[a,h]anthracene	4.64		0.0100	ug/L	5.00		92.7	55-135	3.74	50
Benzo[ghi]perylene	4.51		0.0100	ug/L	5.00		90.2	55-135	2.48	50

Quality Control Data (Continued)

Semivolatiles (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0123 - PCBs										
Blank (BAI0123-BLK1)					Prepared a	& Analyzed: 9	/3/2020			
PCB (total)	ND	U	0.200	ug/L						
Aroclor 1260 (PCB-1260)	ND	U	0.200	ug/L						
Aroclor 1254 (PCB-1254)	ND	U	0.200	ug/L						
Aroclor 1248 (PCB-1248)	ND	U	0.200	ug/L						
Aroclor 1242 (PCB-1242)	ND	U	0.200	ug/L						
Aroclor 1232 (PCB-1232)	ND	U	0.200	ug/L						
Aroclor 1221 (PCB-1221)	ND	U	0.200	ug/L						
Aroclor 1016 (PCB-1016)	ND	U	0.200	ug/L						
Surrogate: DCB			2.39	ug/L	2.50		95.4	70-130		
LCS (BAI0123-BS1)					Prepared 8	& Analyzed: 9	/3/2020			
Aroclor 1260 (PCB-1260)	4.55		0.200	ug/L	5.00		91.0	70-130		
Aroclor 1016 (PCB-1016)	3.80		0.200	ug/L	5.00		76.1	70-130		
Surrogate: DCB			2.39	ug/L	2.50		95.5	70-130		
LCS Dup (BAI0123-BSD1)					Prepared 8	& Analyzed: 9	/3/2020			
Aroclor 1016 (PCB-1016)	4.54		0.200	ug/L	5.00		90.9	70-130	17.7	20
Aroclor 1260 (PCB-1260)	4.71		0.200	ug/L	5.00		94.2	70-130	3.45	20
Surrogate: DCB			2.40	ug/L	2.50		95.9	70-130		
Batch: BAI0316 - TPH-Dx Blank (BAI0316-BLK1)				Di	repared: 9/11,	/2020 Analyze	id: 0/13/202i	n		
Lube Oil	ND	U	0.500	mg/L	ι τραιτα. <i>3</i> /11,	LUZU MIIAIYZE	.u. 3/13/202	U		
Diesel	ND ND	U	0.300	mg/L						
	UND									
Surrogate: Hexacosane			0.0643	mg/L	0.0500		129	<i>50-150</i>		

Quality Control Data (Continued)

Semivolatiles (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAI0316 - TPH-Dx (Col	ntinued)									
LCS (BAI0316-BS1)	-			P	repared: 9/11,	/2020 Analyze	d: 9/13/202	0		
Diesel	0.393		0.100	mg/L	0.500		78.7	70-130		
Surrogate: Hexacosane			0.0639	mg/L	0.0500		128	50-150		
LCS Dup (BAI0316-BSD1)				P	repared: 9/11,	/2020 Analyze	d: 9/13/202	0		
Diesel	0.423		0.100	mg/L	0.500		84.6	70-130	7.24	20
Surrogate: Hexacosane			0.0643	mg/L	0.0500		129	50-150		
Batch: BAJ0086 - TPH-Dx										
Blank (BAJ0086-BLK1)				P	repared: 9/12	/2020 Analyze	d: 9/13/202	0		
Diesel	ND		0.100	mg/L		,				
Gasoline	ND		0.100	mg/L						
Lube Oil	ND		0.500	mg/L						
Surrogate: Hexacosane			0.0643	mg/L	0.0500		129	50-150		
LCS (BAJ0086-BS1)				P	repared: 9/12,	/2020 Analyze	d: 9/13/202	0		
Diesel	0.393		0.100	mg/L	0.500		78.7	70-130		
Surrogate: Hexacosane			0.0639	mg/L	0.0500		128	50-150		
LCS Dup (BAJ0086-BSD1)				P	repared: 9/12,	/2020 Analyze	d: 9/13/202	0		
Diesel	0.423		0.100	mg/L	0.500		84.6	70-130	7.24	20
Surrogate: Hexacosane			0.0643	mg/L	0.0500		129	50-150		
Batch: BAJ0239 - TPH-Dx										
Blank (BAJ0239-BLK1)					Prepared 8	k Analyzed: 10	/8/2020			
Diesel	ND	U	0.100	mg/L						
Lube Oil	ND	U	0.500	mg/L						
Surrogate: Hexacosane			0.0410	mg/L	0.0500		82.0	50-150		

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Quality Control Data (Continued)

Semivolatiles (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Batch: BAJ0239 - TPH-Dx (Continued)

 LCS (BAJ0239-BS1)
 Prepared & Analyzed: 10/8/2020

 Diesel
 0.429
 0.100
 mg/L
 0.500
 85.8
 70-130

 Surrogate: Hexacosane
 0.0393
 mg/L
 0.0500
 78.7
 50-150

Quality Control Data (Continued)

Volatiles

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·	- Tobali	- Quui		00	2010.	resure	701120			
Batch: BAI0206 - VOC					Duamanad	0 Ameliandi O	10/2020			
Blank (BAI0206-BLK1)					Prepared	& Analyzed: 9	/8/2020			
Iodomethane	ND		0.500	ug/L						
1,2-Dibromoethane (EDB)	ND	U	0.500	ug/L						
1,2-Dichlorobenzene	ND	U	0.500	ug/L						
1,2-Dichloroethane	ND	U	0.500	ug/L						
1,2,3-Trichlorobenzene	ND	U	0.500	ug/L						
1,2-Dichloropropane	ND	U	0.500	ug/L						
1,2-Dibromo-3-chloropropane(DBCP)	ND	U	0.500	ug/L						
1,2,4-Trimethylbenzene	ND	U	0.500	ug/L						
1,2,3-Trichloropropane	ND	U	0.500	ug/L						
1,3-Dichloropropane	ND	U	0.500	ug/L						
1,1-dichloropropene	ND	U	0.500	ug/L						
1,1-Dichloroethene	ND	U	0.500	ug/L						
1,1-Dichloroethane	ND	U	0.500	ug/L						
1,1,2-Trichloroethane	ND	U	0.500	ug/L						
1,1,2,2-Tetrachloroethane	ND	U	0.500	ug/L						
1,1,1-Trichloroethane	ND	U	0.500	ug/L						
1,1,1,2-Tetrachloroethane	ND	U	0.500	ug/L						
1,2,4-Trichlorobenzene	ND	U	0.500	ug/L						
sec-Butylbenzene	ND	U	0.500	ug/L						
Hexachlorobutadiene	ND	U	0.500	ug/L						
Isopropylbenzene	ND	U	0.500	ug/L						
m+p-Xylene	ND	U	0.500	ug/L						
Methyl ethyl ketone (MEK)	ND	U	2.50	ug/L						
Methyl isobutyl ketone (MIBK)	ND	U	2.50	ug/L						
Methylene chloride	ND	U	2.50	ug/L						
methyl-t-butyl ether (MTBE)	ND	U	0.500	ug/L						
Naphthalene	ND	U	0.500	ug/L						
n-Butylbenzene	ND	U	0.500	ug/L						
n-Propylbenzene	ND	U	0.500	ug/L						
1,3,5-Trimethylbenzene	ND	U	0.500	ug/L						
p-isopropyltoluene	ND	U	0.500	ug/L						
Dibromomethane	ND	U	0.500	ug/L						
Styrene	ND	U	0.500	ug/L						
tert-Butylbenzene	ND	U	0.500	ug/L						
Tetrachloroethene	ND	U	0.500	ug/L						
Toluene	ND	U	0.500	ug/L						
trans-1,2-Dichloroethene	ND	U	0.500	ug/L						
trans-1,3-Dichloropropene	ND	U	0.500	ug/L						
Trichloroethene	ND ND	U	0.500	ug/L ug/L						

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0206 - VOC (Continued) Blank (BAI0206-BLK1)					Prepared 8	& Analyzed: 9/	8/2020			
Trichlorofluoromethane	ND	U	0.500	ug/L			0, 2020			
Vinyl Chloride	ND	U	0.500	ug/L						
o-Xylene	ND	U	0.500	ug/L						
Bromoform	ND	U	0.500	ug/L						
1,4-Dichlorobenzene	ND	U	0.500	ug/L						
2,2-Dichloropropane	ND	U	0.500	ug/L						
2-Chlorotoluene	ND	U	0.500	ug/L						
2-hexanone	ND	U	2.50	ug/L						
4-Chlorotoluene	ND	U	0.500	ug/L						
Acetone	ND	U	2.50	ug/L						
Acrylonitrile	ND	U	0.500	ug/L						
Benzene	ND	U	0.500	ug/L						
Bromobenzene	ND	U	0.500	ug/L						
Ethylbenzene	ND	U	0.500	ug/L						
Bromodichloromethane	ND	U	0.500	ug/L						
Dichlorodifluoromethane	ND	U	0.500	ug/L ug/L						
Bromomethane	ND	U	0.500	ug/L ug/L						
Carbon disulfide	ND	U	0.500	ug/L ug/L						
Carbon Tetrachloride	ND	U	0.500							
Chlorobenzene		U	0.500	ug/L						
Chloroethane	ND ND	U	0.500	ug/L						
Chloroform	ND	U	0.500	ug/L						
Chloromethane		U	0.500	ug/L						
	ND			ug/L						
cis-1,2-dichloroethene	ND	U U	0.500 0.500	ug/L						
cis-1,3-Dichloropropene Dibromochloromethane	ND ND	U	0.500	ug/L						
		U		ug/L						
1,3-Dichlorobenzene Bromochloromethane	ND	U	0.500 0.500	ug/L						
	ND	U		ug/L						
Acreloin	ND		2.50	ug/L						
Acrolein	ND		2.50	ug/L						
Acrylonitrile Benzene	ND ND		2.50 0.200	ug/L						
Bromochloromethane			0.500	ug/L						
Bromodichloromethane	ND			ug/L						
	ND		0.200	ug/L						
Bromoform	ND		0.500	ug/L						
Bromomethane Method sthod ketone (MEK)	ND		0.500	ug/L						
Methyl ethyl ketone (MEK)	ND		2.50	ug/L						
Carbon disulfide	ND		2.50	ug/L						
Carbon Tetrachloride	ND		0.200	ug/L						
Chlorobenzene	ND		0.500	ug/L						
Chloroethane	ND		0.500	ug/L						
2-Chloroethyl vinyl ether	ND		2.50	ug/L						
Chloroform	ND		0.200	ug/L						
Chloromethane	ND		0.500	ug/L						
cis-1,2-dichloroethene	ND		0.500	ug/L						
cis-1,3-Dichloropropene	ND		0.200	ug/L						
1,2-Dibromo-3-chloropropane(DBCP)	ND		0.500	ug/L						
1,2-Dibromoethane (EDB)	ND		0.200	ug/L						
1,2-Dichlorobenzene	ND		0.500	ug/L						
1,3-Dichlorobenzene	ND		0.500	ug/L						
1,4-Dichlorobenzene	ND		0.500	ug/L						
trans-1-4-Dichloro-2-butene	ND		0.500	ug/L						
Dichlorodifluoromethane	ND		0.500	ug/L						

Quality Control Data (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAI0206 - VOC (Continu	ued)								
Blank (BAI0206-BLK1)				Prepared	& Analyzed: 9	/8/2020			
1,1-Dichloroethane	ND	0.500	ug/L						
1,2-Dichloroethane	ND	0.500	ug/L						
1,1-Dichloroethene	ND	0.500	ug/L						
trans-1,2-Dichloroethene	ND	0.500	ug/L						
1,2-Dichloropropane	ND	0.500	ug/L						
trans-1,3-Dichloropropene	ND	0.200	ug/L						
Ethylbenzene	ND	0.500	ug/L						
Hexachlorobutadiene	ND	0.500	ug/L						
2-hexanone	ND	2.50	ug/L						
Isopropylbenzene	ND	0.500	ug/L						
Methylene chloride	ND	0.500	ug/L						
Methyl isobutyl ketone (MIBK)	ND	2.50	ug/L						
Naphthalene	ND	0.500	ug/L						
Styrene	ND	0.500	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L						
Tetrachloroethene	ND	0.500	ug/L						
Toluene	ND	0.500	ug/L						
1,2,4-Trichlorobenzene	ND	0.500	ug/L						
1,1,1-Trichloroethane	ND	0.500	ug/L						
1,1,2-Trichloroethane	ND	0.500	ug/L						
Trichloroethene	ND	0.500	ug/L						
1,2,3-Trichloropropane	ND	0.500	ug/L						
Vinyl acetate	ND	0.500	ug/L						
Vinyl Chloride	ND	0.200	ug/L						
m+p-Xylene	ND	1.00	ug/L						
o-Xylene	ND	0.500	ug/L						
Total Xylene	ND	0.500	ug/L						
1,1-dichloropropene	ND	0.500	ug/L						
1,2,3-Trichlorobenzene	ND	0.500	ug/L						
1,2,4-Trimethylbenzene	ND	0.500	ug/L						
1,3,5-Trimethylbenzene	ND	0.500	ug/L ug/L						
1,3-Dichloropropane	ND	0.500	ug/L						
2,2-Dichloropropane	ND	0.500	ug/L						
2-Chlorotoluene	ND	0.500	ug/L ug/L						
4-Chlorotoluene	ND	0.500	ug/L ug/L						
Bromobenzene	ND	0.500	ug/L ug/L						
Dibromochloromethane	ND ND	0.500	ug/L ug/L						
Dibromomethane	ND	0.500							
	ND ND	0.500	ug/L						
methyl-t-butyl ether (MTBE)	ND ND	0.500	ug/L						
n-Butylbenzene	ND ND		ug/L						
n-Propylbenzene		0.500	ug/L						
p-isopropyltoluene	ND ND	0.500 0.500	ug/L						
sec-Butylbenzene tert-Butylbenzene	ND ND	0.500	ug/L						
-			ug/L						
Trichlorofluoromethane	ND	0.500	ug/L						
Surrogate: Toluene-d8		22.7	ug/L	25.0		90.8	70-130		
Surrogate: Toluene-d8		22.7	ug/L	25.0		90.8	70-130		
Surrogate: 4-Bromofluorobenzene		23.4	ug/L	25.0		93.6	70-130		
Surrogate: 4-Bromofluorobenzene		23.4	ug/L	25.0		93.6	70-130		
Surrogate: 1,2-Dichlorobenzene-d4		21.2	ug/L	19.0		111	70-130		
Surrogate: 1,2-Dichlorobenzene-d4		21.2	ug/L	19.0		111	70-130		

Quality Control Data (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0206 - VOC (Continued									
LCS (BAI0206-BS1)				Prepared	& Analyzed: 9/	/8/2020			
1,1,2,2-Tetrachloroethane	10.7	0.500	ug/L	10.0		107	80-120		
2-Chlorotoluene	11.7	0.500	ug/L	10.0		117	80-120		
1,1,1,2-Tetrachloroethane	9.71	0.500	ug/L	10.0		97.1	80-120		
1,1,1-Trichloroethane	10.2	0.500	ug/L	10.0		102	80-120		
p-isopropyltoluene	10.6	0.500	ug/L	10.0		106	80-120		
Chloroform	10.7	0.500	ug/L	10.0		107	80-120		
cis-1,2-dichloroethene	9.37	0.500	ug/L	10.0		93.7	80-120		
cis-1,3-Dichloropropene	9.40	0.500	ug/L	10.0		94.0	80-120		
Dibromochloromethane	9.67	0.500	ug/L	10.0		96.7	80-120		
Dibromomethane	9.07	0.500	ug/L	10.0		90.7	80-120		
Dichlorodifluoromethane	11.0	0.500	ug/L	10.0		110	80-120		
Ethylbenzene	10.8	0.500	ug/L	10.0		108	80-120		
Hexachlorobutadiene	9.76	0.500	ug/L	10.0		97.6	80-120		
Isopropylbenzene	10.2	0.500	ug/L	10.0		102	80-120		
m+p-Xylene	21.9	0.500	ug/L	20.0		109	80-120		
Methyl ethyl ketone (MEK)	9.25	2.50	ug/L	10.0		92.5	80-120		
Methyl isobutyl ketone (MIBK)	9.99	2.50	ug/L ug/L	10.0		99.9	80-120		
methyl-t-butyl ether (MTBE)	8.72	0.500	ug/L	10.0		87.2	80-120		
Chloroethane	11.0	0.500	ug/L	10.0		110	80-120		
1,1,2-Trichloroethane	9.53	0.500	ug/L	10.0		95.3	80-120		
1,4-Dichlorobenzene	10.8	0.500	ug/L ug/L	10.0		108	80-120		
Vinyl Chloride	10.5	0.500	ug/L ug/L	10.0		105	80-120		
Trichlorofluoromethane	10.6	0.500	ug/L ug/L	10.0		105	80-120		
Trichloroethene	8.48	0.500	_	10.0		84.8	80-120		
n-Butylbenzene	11.6	0.500	ug/L ug/L	10.0		116	80-120		
•	10.5	0.500		10.0		105	80-120		
trans-1,2-Dichloroethene	11.0	0.500	ug/L	10.0			80-120		
o-Xylene Toluene	10.0	0.500	ug/L	10.0		110	80-120		
	9.12		ug/L			100 91.2	80-120 80-120		
Tetrachloroethene		0.500	ug/L	10.0					
tert-Butylbenzene	11.0	0.500	ug/L	10.0		110	80-120		
Styrene	11.0	0.500	ug/L	10.0		110	80-120		
sec-Butylbenzene	11.0	0.500	ug/L	10.0		110	80-120		
Naphthalene	9.40	0.500	ug/L	10.0		94.0	80-120		
trans-1,3-Dichloropropene	10.2	0.500	ug/L	10.0		102	80-120		
1,2,3-Trichloropropane	9.72	0.500	ug/L	10.0		97.2	80-120		
1,3,5-Trimethylbenzene	11.3	0.500	ug/L	10.0		113	80-120		
1,2-Dichloropropane	9.94	0.500	ug/L	10.0		99.4	80-120		
1,2-Dichloroethane	10.9	0.500	ug/L	10.0		109	80-120		
1,2-Dichlorobenzene	10.3	0.500	ug/L	10.0		103	80-120		
1,2-Dibromo-3-chloropropane(DBCP)	9.56	0.500	ug/L	10.0		95.6	80-120		
1,3-Dichlorobenzene	10.5	0.500	ug/L	10.0		105	80-120		
1,2,4-Trichlorobenzene	9.30	0.500	ug/L	10.0		93.0	80-120		
1,2,3-Trichlorobenzene	8.86	0.500	ug/L	10.0		88.6	80-120		
1,1-dichloropropene	8.95	0.500	ug/L	10.0		89.5	80-120		
Chlorobenzene	10.5	0.500	ug/L	10.0		105	80-120		
n-Propylbenzene	11.2	0.500	ug/L	10.0		112	80-120		
1,1-Dichloroethane	10.6	0.500	ug/L	10.0		106	80-120		
1,1-Dichloroethene	10.8	0.500	ug/L	10.0		108	80-120		
1,2,4-Trimethylbenzene	11.0	0.500	ug/L	10.0		110	80-120		
Bromochloromethane	9.37	0.500	ug/L	10.0		93.7	80-120		
Carbon Tetrachloride	10.5	0.500	ug/L	10.0		105	80-120		
Carbon disulfide	10.1	0.500	ug/L	10.0		101	80-120		
Bromoform	10.3	0.500	ug/L	10.0		103	80-120		

Quality Control Data (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0206 - VOC (Continu	ued)								
LCS (BAI0206-BS1)	icu)			Dronarod	& Analyzed: 9	/8/2020			
•	9.60	0.500	ug/l	10.0	& Allalyzeu. 3	96.0	70-130		
1,2-Dibromoethane (EDB) Bromodichloromethane	10.3	0.500	ug/L ug/L	10.0		103	80-120		
Bromobenzene	10.1	0.500	ug/L ug/L	10.0		103	80-120		
Benzene	9.50	0.500	ug/L ug/L	10.0		95.0	80-120		
Acrylonitrile	9.89	0.500	ug/L ug/L	10.0		98.9	80-120		
1,3-Dichloropropane	9.95	0.500	ug/L ug/L	10.0		99.5	80-120		
	10.9	2.50	-	10.0		109	80-120		
2-hexanone	10.9	0.500	ug/L	10.0			80-120		
2,2-Dichloropropane		0.500	ug/L			106	80-120		
4-Chlorotoluene	11.9		ug/L	10.0		119			
Surrogate: Toluene-d8		25.3	ug/L	25.0		101	70-130		
Surrogate: 4-Bromofluorobenzene		26.5	ug/L	25.0		106	70-130		
Surrogate: 1,2-Dichlorobenzene-d4		18.4	ug/L	19.0		96.6	70-130		
Matrix Spike (BAI0206-MS1)	Source:	MAI0068-01		Prepared	& Analyzed: 9	/8/2020			
Dibromochloromethane	100	5.00	ug/L	100	ND	100	70-130		
Methyl ethyl ketone (MEK)	92.6	25.0	ug/L	100	ND	92.6	70-130		
Chloroethane	112	5.00	ug/L	100	ND	112	70-130		
m+p-Xylene	222	5.00	ug/L	200	ND	111	70-130		
Isopropylbenzene	106	5.00	ug/L	100	ND	106	70-130		
Hexachlorobutadiene	112	5.00	ug/L	100	ND	112	70-130		
Ethylbenzene	112	5.00	ug/L	100	ND	112	70-130		
cis-1,2-dichloroethene	98.8	5.00	ug/L	100	ND	98.8	70-130		
Dibromomethane	92.8	5.00	ug/L	100	ND	92.8	70-130		
cis-1,3-Dichloropropene	97.8	5.00	ug/L	100	ND	97.8	70-130		
Chlorobenzene	108	5.00	ug/L	100	ND	108	70-130		
Trichloroethene	86.0	5.00	ug/L	100	ND	86.0	70-130		
Chloroform	111	5.00	ug/L	100	ND	111	70-130		
Methyl isobutyl ketone (MIBK)	108	25.0	ug/L	100	ND	108	70-130		
Dichlorodifluoromethane	112	5.00	ug/L	100	ND	112	70-130		
Styrene	107	5.00	ug/L	100	ND	107	70-130		
Trichlorofluoromethane	104	5.00	ug/L	100	ND	104	70-130		
1,1,2,2-Tetrachloroethane	107	5.00	ug/L	100	ND	107	70-130		
Carbon Tetrachloride	105	5.00	ug/L	100	ND	105	70-130		
trans-1,3-Dichloropropene	107	5.00	ug/L	100	ND	107	70-130		
Toluene	102	5.00	ug/L	100	ND	102	70-130		
trans-1,2-Dichloroethene	112	5.00	ug/L	100	ND	112	70-130		
tert-Butylbenzene	113	5.00	ug/L ug/L	100	ND	113	70-130		
methyl-t-butyl ether (MTBE)	89.6	5.00	ug/L ug/L	100	ND	89.6	70-130		
sec-Butylbenzene	113	5.00	ug/L ug/L	100	ND	113	70-130		
p-isopropyltoluene	110	5.00	ug/L ug/L	100	ND	110	70-130		
	111	5.00		100		111	70-130		
o-Xylene n-Propylbenzene	116	5.00	ug/L ug/L	100	ND ND	111	70-130		
• •									
n-Butylbenzene	124	5.00	ug/L	100	ND	124	70-130 70-130		
Naphthalene Totrachloroothono	105 92.3	5.00	ug/L	100	ND	105	70-130 70-130		
Tetrachloroethene	92.3 97.7	5.00	ug/L	100	ND	92.3	70-130		
1,2,3-Trichlorobenzene		5.00	ug/L	100	ND	97.7	70-130		
1,1-Dichloroethane	111	5.00	ug/L	100	ND	111	70-130		
1,2-Dichlorobenzene	106	5.00	ug/L	100	ND	106	70-130		
1,2-Dibromoethane (EDB)	95.6	5.00	ug/L	100	ND	95.6	70-130		
1,2-Dibromo-3-chloropropane(DBCP)	96.6	5.00	ug/L	100	ND	96.6	70-130		
1,2,4-Trimethylbenzene	114	5.00	ug/L	100	ND	114	70-130		
1,2-Dichloroethane	111	5.00	ug/L	100	ND	111	70-130		

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Nesuit	Quai	LITTIL	UIIILS	FCACI	Kesuit	70NLC	LIIIILS	KFD	LIIIIL
Batch: BAI0206 - VOC (Continue	ed)									
Matrix Spike (BAI0206-MS1)		Source: M	AI0068-01		Prepared	& Analyzed: 9	/8/2020			
1,2,3-Trichloropropane	103		5.00	ug/L	100	ND	103	70-130		
1,2-Dichloropropane	105		5.00	ug/L	100	ND	105	70-130		
1,1-dichloropropene	94.5		5.00	ug/L	100	ND	94.5	70-130		
1,1-Dichloroethene	115		5.00	ug/L	100	ND	115	70-130		
Vinyl Chloride	108		5.00	ug/L	100	ND	108	70-130		
1,1,2-Trichloroethane	96.3		5.00	ug/L	100	ND	96.3	70-130		
1,1,1-Trichloroethane	104		5.00	ug/L	100	ND	104	70-130		
1,1,1,2-Tetrachloroethane	99.4		5.00	ug/L	100	ND	99.4	70-130		
1,2,4-Trichlorobenzene	101		5.00	ug/L	100	ND	101	70-130		
Bromoform	102		5.00	ug/L	100	ND	102	70-130		
Bromodichloromethane	104		5.00	ug/L	100	ND	104	70-130		
Bromochloromethane	96.1		5.00	ug/L	100	ND	96.1	70-130		
Bromobenzene	104		5.00	ug/L	100	ND	104	70-130		
Benzene	97.7		5.00	ug/L	100	ND	97.7	70-130		
4-Chlorotoluene	124		5.00	ug/L	100	ND	124	70-130		
Carbon disulfide	117		5.00	ug/L	100	ND	117	70-130		
2-hexanone	115		25.0	ug/L	100	ND	115	70-130		
2-Chlorotoluene	120		5.00	ug/L	100	ND	120	70-130		
2,2-Dichloropropane	110		5.00	ug/L	100	ND	110	70-130		
1,4-Dichlorobenzene	111		5.00	ug/L	100	ND	111	70-130		
1,3-Dichloropropane	102		5.00	ug/L	100	ND	102	70-130		
1,3-Dichlorobenzene	109		5.00	ug/L	100	ND	109	70-130		
1,3,5-Trimethylbenzene	115		5.00	ug/L	100	ND	115	70-130		
Acrylonitrile	104		5.00	ug/L	100	ND	104	70-130		
Surrogate: Toluene-d8			25.2	ug/L	25.0		101	70-130		
Surrogate: 4-Bromofluorobenzene			26.2	ug/L	25.0		105	70-130		
Surrogate: 1,2-Dichlorobenzene-d4			18.5	ug/L	19.0		97.4	70-130		

Quality Control Data (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0206 - VOC (Continued	9)								
Matrix Spike Dup (BAI0206-MSD1)	Source: M	AI0068-01		Prepared	& Analyzed: 9	/8/2020			
m+p-Xylene	225	5.00	ug/L	200	ND	113	70-130	1.57	25
Carbon disulfide	117	5.00	ug/L	100	ND	117	70-130	0.428	25
Ethylbenzene	113	5.00	ug/L	100	ND	113	70-130	1.42	25
2-hexanone	134	25.0	ug/L	100	ND	134	70-130	15.2	25
4-Chlorotoluene	125	5.00	ug/L	100	ND	125	70-130	0.885	25
Acrylonitrile	106	5.00	ug/L	100	ND	106	70-130	1.43	25
Benzene	100	5.00	ug/L	100	ND	100	70-130	2.53	25
Bromobenzene	108	5.00	ug/L	100	ND	108	70-130	3.68	25
Bromochloromethane	92.8	5.00	ug/L	100	ND	92.8	70-130	3.49	25
2,2-Dichloropropane	110	5.00	ug/L	100	ND	110	70-130	0.272	25
Bromoform	109	5.00	ug/L ug/L	100	ND	109	70-130	5.96	25
	112	5.00	-	100	ND	112	70-130	0.983	25
1,4-Dichlorobenzene	105		ug/L				70-130 70-130		25 25
Carbon Tetrachloride		5.00	ug/L	100	ND	105		0.476	
Chlorobenzene	111	5.00	ug/L	100	ND	111	70-130	2.74	25
Chloroethane	111	5.00	ug/L	100	ND	111	70-130	0.269	25
Chloroform	107	5.00	ug/L	100	ND	107	70-130	2.94	25
cis-1,2-dichloroethene	94.3	5.00	ug/L	100	ND	94.3	70-130	4.66	25
cis-1,3-Dichloropropene	103	5.00	ug/L	100	ND	103	70-130	5.08	25
Dibromochloromethane	107	5.00	ug/L	100	ND	107	70-130	6.74	25
Dibromomethane	93.7	5.00	ug/L	100	ND	93.7	70-130	0.965	25
Methyl isobutyl ketone (MIBK)	117	25.0	ug/L	100	ND	117	70-130	7.97	25
Bromodichloromethane	105	5.00	ug/L	100	ND	105	70-130	1.43	25
1,2,4-Trimethylbenzene	115	5.00	ug/L	100	ND	115	70-130	1.40	25
1,1,1,2-Tetrachloroethane	104	5.00	ug/L	100	ND	104	70-130	4.04	25
1,1,1-Trichloroethane	104	5.00	ug/L	100	ND	104	70-130	0.385	25
1,1,2,2-Tetrachloroethane	117	5.00	ug/L	100	ND	117	70-130	8.39	25
1,1,2-Trichloroethane	105	5.00	ug/L	100	ND	105	70-130	8.55	25
1,1-Dichloroethane	108	5.00	ug/L	100	ND	108	70-130	3.01	25
1,1-Dichloroethene	114	5.00	ug/L	100	ND	114	70-130	0.609	25
-	97.5	5.00	-	100	ND	97.5	70-130	3.12	25
1,1-dichloropropene			ug/L						
1,2,3-Trichlorobenzene	113	5.00	ug/L	100	ND	113	70-130	14.4	25
2-Chlorotoluene	121	5.00	ug/L	100	ND	121	70-130	0.993	25
1,2,4-Trichlorobenzene	107	5.00	ug/L	100	ND	107	70-130	6.25	25
Hexachlorobutadiene	110	5.00	ug/L	100	ND	110	70-130	1.35	25
1,2-Dibromo-3-chloropropane(DBCP)	108	5.00	ug/L	100	ND	108	70-130	11.6	25
1,2-Dibromoethane (EDB)	104	5.00	ug/L	100	ND	104	70-130	8.32	25
1,2-Dichlorobenzene	106	5.00	ug/L	100	ND	106	70-130	0.189	25
1,2-Dichloroethane	111	5.00	ug/L	100	ND	111	70-130	0.00	25
1,2-Dichloropropane	108	5.00	ug/L	100	ND	108	70-130	2.92	25
1,3,5-Trimethylbenzene	117	5.00	ug/L	100	ND	117	70-130	1.55	25
1,3-Dichlorobenzene	110	5.00	ug/L	100	ND	110	70-130	0.548	25
1,3-Dichloropropane	112	5.00	ug/L	100	ND	112	70-130	9.36	25
1,2,3-Trichloropropane	111	5.00	ug/L	100	ND	111	70-130	7.57	25
trans-1,2-Dichloroethene	108	5.00	ug/L	100	ND	108	70-130	3.53	25
Dichlorodifluoromethane	107	5.00	ug/L	100	ND	107	70-130	4.64	25
Vinyl Chloride	103	5.00	ug/L	100	ND	103	70-130	4.35	25
Trichlorofluoromethane	108	5.00	ug/L	100	ND	108	70-130	3.79	25
trans-1,3-Dichloropropene	117	5.00	ug/L	100	ND	117	70-130	8.66	25
Toluene	102	5.00	ug/L	100	ND	102	70-130	0.0983	25
Tetrachloroethene	98.2	5.00	ug/L ug/L	100	ND	98.2	70-130	6.19	25
tert-Butylbenzene	115	5.00	ug/L ug/L	100	ND ND	115	70-130	1.41	25 25
-			-						
Styrene	113	5.00	ug/L	100	ND	113	70-130	5.81	25
p-isopropyltoluene	112	5.00	ug/L	100	ND	112	70-130	1.35	25

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch: BAI0206 - VOC (Continue	ed)										
Matrix Spike Dup (BAI0206-MSD1)	;	Source: M	AI0068-01		Prepared & Analyzed: 9/8/2020						
o-Xylene	114		5.00	ug/L	100	ND	114	70-130	2.22	25	
n-Propylbenzene	118		5.00	ug/L	100	ND	118	70-130	1.53	25	
n-Butylbenzene	125		5.00	ug/L	100	ND	125	70-130	1.37	25	
Isopropylbenzene	108		5.00	ug/L	100	ND	108	70-130	2.53	25	
Naphthalene	123		5.00	ug/L	100	ND	123	70-130	15.7	25	
Trichloroethene	90.5		5.00	ug/L	100	ND	90.5	70-130	5.10	25	
methyl-t-butyl ether (MTBE)	99.0		5.00	ug/L	100	ND	99.0	70-130	9.97	25	
Methyl ethyl ketone (MEK)	109		25.0	ug/L	100	ND	109	70-130	16.6	25	
sec-Butylbenzene	115		5.00	ug/L	100	ND	115	70-130	1.57	25	
Surrogate: 4-Bromofluorobenzene			26.5	ug/L	25.0		106	70-130			
Surrogate: Toluene-d8			24.6	ug/L	25.0		98.6	70-130			
Surrogate: 1,2-Dichlorobenzene-d4			18.1	ug/L	19.0		95.2	70-130			
Batch: BAI0218 - VOC											
Blank (BAI0218-BLK1)					Prepared & Analyzed: 9/8/2020						
Gasoline	ND	U	0.200	mg/L							
Surrogate: 4-Bromofluorobenzene			0.0208	mg/L	0.0250		83.4	70-130			
LCS (BAI0218-BS1)					Prepared 8	& Analyzed: 9	9/8/2020				
Gasoline	0.910		0.200	mg/L	1.00		91.0	80-120			
Surrogate: 4-Bromofluorobenzene			0.0221	mg/L	0.0250		88.3	70-130			
Matrix Spike (BAI0218-MS1)		Source: M	AI0068-01		Prepared 8	& Analyzed: 9	9/8/2020				
Gasoline	8.70		2.00	mg/L	10.0	ND	87.0	50-150			
Surrogate: 4-Bromofluorobenzene			0.0216	mg/L	0.0250		86.6	70-130			

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAI0218 - VOC (Continued	d)									
Matrix Spike Dup (BAI0218-MSD1)	=	Source: M	IAI0068-01		Prepared	& Analyzed: 9	/8/2020			
Gasoline	8.90		2.00	mg/L	10.0	ND	89.0	50-150	2.27	25
Surrogate: 4-Bromofluorobenzene			0.0217	mg/L	0.0250		86.8	70-130		
Batch: BAI0219 - VOC										
Blank (BAI0219-BLK1)					Prepared	& Analyzed: 9	/8/2020			
Allyl chloride (3-chloropropene)	ND	U	0.0500	ug/L						
Vinyl Chloride	ND	U	0.0500	ug/L						
1,3-Butadiene	ND	U	0.0500	ug/L						
Cyclohexane	ND	U	0.0500	ug/L						
Epichlorohydrin	ND	U	0.0500	ug/L						
Ethyl methacrylate	ND	U	0.0500	ug/L						
Isopropanol	ND	U	0.0500	ug/L						
Methyl methacrylate	ND	U	0.0500	ug/L						
n-Hexane	ND	U	0.0500	ug/L						
Pentachloroethane	ND	U	0.0500	ug/L						
Propionitrile	ND	U	0.0500	ug/L						
tert-Butyl alcohol (t-Butanol)	ND	U	0.0500	ug/L						
Tetrahydrofuran	ND	U	0.0500	ug/L						
Surrogate: 4-Bromofluorobenzene			23.3	ug/L	25.0		93.1	70-130		
Surrogate: Toluene-d8			24.0	ug/L	25.0		96.1	70-130		
Surrogate: 1,2-Dichlorobenzene-d4			16.4	ug/L	19.0		86.2	70-130		

Cooler	3	OF	3

	0000
Anatek	Chain of Custody Record
	1282 Alturas Drive, Moscow ID 83843 (208) 883-283

Anatek Log-In#

Due: 09/16/20

	nc.		Ituras Drive, orague Ste D,												Due: 09/16/2
Company Name:	or Tod			Proje	ect Mar	nager:	Jue	(۵۵۶)	Hee	kor		A 05	0-11		Turn Around
Address: 5205 City: Lacey	Carp.	center of	.SE	Proje	ect ivar	ne & 7	11/25	etho	4	Ha	de	L			Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp
			98503	Ema	Email Address: Heckeri @ us pionoer, com Russbace Order #: Purebace Order #:								Mail Mail		
Phone: 360 - 5	70-1700			2nd Day*						2nd Day*Fax					
Fax:				Sampler Name & phone: 5H 366 -828-3739Other*							Other*Email				
Prov	ide Sampl	e Description	1				List	Ana	lyse	s Re	ques	ted			Note Special Instructions/Comments
				Containers	Sample Volume	4-62	Such *2	TPH-D/40	PAHSE	Dioxins/Front	Bsom		Chronde	EPH	
Lab ID Sample Identif	fication Sam	pling Date/Time	Matrix	# of	San	784	257	10	PA		PuB	E	J	Ü	* Vocs = BTEX, n-nexage,
GW-MWIOI		8/31 1145	GW	10		X	X	X	X	X	X	X	X	X	1,2-DBA, 1,2-DCA, MTBE,
CM-WMIO		093		1\$	1/4	X	X	X	X	X	X	X	X	X	naphthalene
CM-WAY!			8	-	W	X	X	X	X		X	X	1		- no silva get cleans on TPH
GW-MWI		1045		11		X	X	X	X	X	X	X	X	×	- DIGKINS, PCBS, As, Chlonce
3 CM-WM				11		X	X	X	X	X	X	×	X	X	were Field Fittered.
TB-0831	120	1 -	•	2		X	X								
				├											- Hold all samples for EPH
				_											Inspection Checklist
				_											Received Intact? Y N
				\vdash											Labels & Chains Agree? Y N
7.5. (C. 10.)	Village Control														Containers Sealed? Y N
															VOC Head Space? Y N
	Printed Na	me	Signature					Com	2001/			Date		Time	
				2 1 A		$\frac{1}{\lambda}$						202000000000000000000000000000000000000			
Relinquished by	Joel He	the	Je v	16		1 X		PT				8/3	_	1400	
Received by					1	1		A	na	tek		9/	2	12:20	Preservative:
Relinquished by							4								
Received by															Date & Time:
Relinquished by		L 1													Inspected By:
Received by															
		- Karaman and Araba													

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

Sample Receipt and Preservation Form

Due: 09/16/20

Client Name: Project: (apply Anatek sample label here)
TAT: Normal RUSH: days
Samples Received From: FedEx UPS USPS Client Courier Other:
Custody Seal on Cooler/Box: Yes No Custody Seals Intact: Yes No NA
Number of Coolers/Boxes: Type of Ice: Type of Ice: Dry Ice
Packing Material: Bubble Wrap Bags Foam/Peanuts None Other:
Cooler Temp As Read (°C): Cooler Temp Corrected (°C): Thermometer Used: Thermometer Used: Cooler Temp Corrected (°C): Thermometer Used:
Samples Received Intact? Chain of Custody Present? Samples Received Within Hold Time? Samples Properly Preserved? Ves No N/A Samples Properly Preserved? Ves No N/A VOC Vials Free of Headspace (<6mm)? Ves No N/A VOC Trip Blanks Present? Labels and Chains Agree? Total Number of Sample Bottles Received: Chain of Custody Fully Completed? Chain of Custody Fully Completed? Anatek Bottles Used? Record preservatives (and lot numbers, if known) for containers below: ### Cl (1925) -> TPH - DX (1919) -> VOC, TPH - G
Notes, comments, etc. (also use this space if contacting the client - record names and date/time) Received all bottles for sample GW-MW103-0831 (11) Received 3 of 8 bottles for sample GW-MW102-0831-01 (PAH, chloride/As, PCB)
Received 5 of 11 bottles for sample GW-MW102-0831 (Dioxin/Furan x2, EPH, PCB, chloride/18)
Sub Dioxin -> Pace
Received/Inspected By: Date/Time: 9/1/20 12:35

Sample Receipt and Preservation Form

Due: 09/16/20

Client Name: PTC Projec	t: (apply Anatek sample label here)
TAT: Normal RUSH: days	
Samples Received From: FedEx UPS US	SPS Client Courier Other:
Custody Seal on Cooler/Box: Yes No	Custody Seals Intact: Yes No N/A
Number of Coolers/Boxes: 2	Type of Ice: Ice/Ice Packs Blue Ice Dry Ice None
Packing Material: Bubble Wrap Bags For	am/Peanuts None Other:
Cooler Temp As Read (°C): 3.8 Cooler	Temp Corrected (°C): Thermometer Used:
Samples Received Intact? Chain of Custody Present? Samples Received Within Hold Time? Samples Properly Preserved? VOC Vials Free of Headspace (<6mm)? VOC Trip Blanks Present? Labels and Chains Agree? Total Number of Sample Bottles Received:	No N/A No N/A No N/A No N/A No N/A Use times on COC
Chain of Custody Fully Completed? Yes Correct Containers Received? Yes Anatek Bottles Used? Yes	No N/A No N/A No Unknown
Record preservatives (and lot numbers, if known) f + CI (1919) → VOC, TPH-G (1925) → TPH-Dx	
Notes, comments, etc. (also use this space if contour Sub Dioxin -> Pace MN	acting the client - record names and date/time)
Received/Inspected By:	Date/Time: 9/2/20 12:29

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Phone: 612.607.1700 Fax: 612.607.6444

Report Prepared for:

Todd Taruscio Anatek Labs, Inc. 1282 Alturas Drive Moscow ID 83843

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10530961

Sample Receipt Date: 09/04/2020

Client Project #: MAI0068 Client Sub PO #: N/A

State Cert #: C486

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Joanne Richardson, your Pace Project Manager.

This report has been reviewed by:

September 29, 2020

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

Thisreportshould not bereproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

September 29, 2020

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on four samples submitted by a representative of Anatek Labs, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 54-86%. All of the labeled internal standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain a trace level of Total HpCDD. This level was below the calibration range of the method. The levels reported for Total HpCDD in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory spike samples were also prepared with the sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 96-123% with relative percent differences of 0.0-13.3%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Mississippi	MN00064
A2LA	2926.01	Missouri	10100
Alabama	40770	Montana	CERT0092
Alaska-DW	MN00064	Nebraska	NE-OS-18-06
Alaska-UST	17-009	Nevada	MN00064
Arizona	AZ0014	New Hampshire	2081
Arkansas - WW	88-0680	New Jersey	MN002
Arkansas-DW	MN00064	New York	11647
California	2929	North Carolina-	27700
Colorado	MN00064	North Carolina-	530
Connecticut	PH-0256	North Dakota	R-036
Florida	E87605	Ohio - VAP	CL101
Georgia	959	Ohio-DW	41244
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon- rimary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Massachusetts-	via MN 027-053	West Virginia-D	382
Michigan	9909	West Virginia-D	9952C
Minnesota	027-053-137	Wisconsin	999407970
Minnesota-Ag	via MN 027-053	Wyoming-UST	via A2LA 2926
Minnesota-Petr	1240		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10530961

Appendix A

Sample Management

SUBCONTRACT ORDER

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com
504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Sending Laboratory:

Fax: 208-882-9246

Anatek Labs Inc, Moscow ID 1282 Alturas Drive Moscow, ID 83843 Phone: 208-883-2839

Project Manager: Todd Taruscio

toddt@anateklabs.com

Subcontracted Laboratory:

Pace Analytical - MN 1800 Elm Street SE Minneaplis, MN 55414 Phone: (612) 607-6400

WO#:10530961

Work Order: MAI0068

Analysis		Due	Expires	Comments	
Lab Sample ID: MAI Client Sample Name			ampled: 08/31/2020	11:45	001
Dioxin		09/14/2020	09/14/2020 11:45	Field Filtered	
Containers Supplied: G 1000mL (B)	G 1000mL (C)			
Lab Sample ID: MAI	0068-02	Groundwater S	ampled: 08/31/2020	09:30	802
Client Sample Name	: GW-MW10	2-0831			
Dioxin		09/14/2020	09/14/2020 09:30	Field Filtered	
Containers Supplied: G 1000mL (B)	G 1000mL (C)			
Lab Sample ID: MAI	0068-04		ampled: 08/31/2020	10:45	003
Client Sample Name	: GW-MW10	3-0831			
Client Sample Name	: GW-MW10	3-0831 09/14/2020	0 09/14/2020 10:45	Field Filtered	1,4
Dioxin	G 1000mL (09/14/2020	09/14/2020 10:45	Field Filtered	
Dioxin Containers Supplied: G 1000mL (B) Lab Sample ID: MAI	G 1000mL (09/14/2020 ©) Groundwater Si	09/14/2020 10:45 ampled: 08/31/2020		00 M
Dioxin Containers Supplied:	G 1000mL (09/14/2020 ©) Groundwater Si	ampled: 08/31/2020		00 M

From the State of Washington Dioxin/Frans by 8290

Page 1 of 1

Report No.....10530961 8290FC_DFR

Page 5 of 17

Page 40 of 80

Pace Analytical*

Document Name:

Sample Condition Upon Receipt (SCUR) - MN

Document No.: ENV-FRM-MIN4-0150 Rev.01 Document Revised: 12Aug2020

Page 1 of 1

Pace Analytical Services - Minneapolis

Sample Condition Upon Receipt Client Name:		1	Project #	" WO# : 10530961
Courier: Fed Ex UPS	USPS Commerc	TO PASSED	Client	PM: JMR Due Date: 09/14/20 CLIENT: Anatek
Tracking Number: 12 981 17 € 01 4277	6800	See	Exception V-FRM-MIN	4-0142
Custody Seal on Cooler/Box Present? Yes	ľNo	Sea	s Intact?	Yes No Biological Tissue Frozen? Yes No N/A
Packing Material: Bubble Wrap Bubble Ba	gs 🗌	None	Othe	er: Temp Blank?
Thermometer:		Type of Ic		Wet □Blue □None □Dry □Melted
Did Samples Originate in West Virginia? ☐ Yes ☑ No				emps Taken? ☐ Yes ☐ No ☑ N/A
Temp should be above freezing to 6°C Cooler Temp Rea	id w/tem	p blank:		OC Average Corrected See Exceptions Temp (no temp blank ENV-FRM-MIN4-0142
Correction Factor: Thirtigaler Temp Correcte	d w/tem	p blank:		oc only): S(3 oc □1 Container
USDA Regulated Soil: (N/A, water sample/Other:)		Date/Initials of Person Examining Contents: 770 9420
Did samples originate in a quarantine zone within the Unit ID, LA. MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check ma	ed States:	AL, AR, C	CA, FL, GA □No	, Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐ Yes ☐ No
If Yes to either question, fill out a F	Regulated	Soil Ch		-MN-Q-338) and include with SCUR/COC paperwork.
	-		•	COMMENTS:
Chain of Custody Present and Filled Out?	∠ Yes	□No		1.
Chain of Custody Present and Timed Gut?	Yes	□No		2.
Sampler Name and/or Signature on COC?	Yes	□No	ZN/A	3.
Samples Arrived within Hold Time?	Yes	□No		4.
Short Hold Time Analysis (<72 hr)?	Yes	ØÑo		5. Fecal Coliform HPC Total Coliform/E coli BOD/cBOD Hex Chrome Turbidity Nitrate Nitrite Orthophos Other
Rush Turn Around Time Requested?	Yes	□No		6.
Sufficient Volume?	⊠Ÿes	□No		7.
Correct Containers Used?	Z Yes Z Yes	□No □No		8.
-Pace Containers Used? Containers Intact?	Yes	□No		9.
Field Filtered Volume Received for Dissolved Tests?	□Yes	□No	ØN/A	10. Is sediment visible in the dissolved container? Yes No
Is sufficient information available to reconcile the samples to the COC?	Yes	□No		11. If no, write ID/ Date/Time on Container Below: See Exception ENV-FRM-MIN4-014:
Matrix: ☑Water ☐Soil ☐Oil ☐Other				
All containers needing acid/base preservation have been checked?	□Yes	□No	ØN/A	12. Sample #
All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH>9 Sulfide, NaOH>10 Cyanide)	Yes	□No	⊠n/a	□ NaOH □ HNO₃ □ H₂SO₄ □ Zinc Acetate
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease,	□Yes	□No	⊠N/A	Positive for Res. Yes Chlorine? No pH Paper Lot# See Exception ENV-FRM-MIN4-0142
DRO/8015 (water) and Dioxin/PFAS				Res. Chlorine 0-6 Roll 0-6 Strip 0-14 Strip
Extra labels present on soil VOA or WIDRO containers? Headspace in VOA Vials (greater than 6mm)?	☐Yes ☐Yes	□No □No	N/A N/A	13. See Exception ENV-FRM-MIN4-0140
Trip Blank Present?	☐Yes	□No	N/A	14.
Trip Blank Custody Seals Present?	☐Yes	□No	TIN/A	Pace Trip Blank Lot # (if purchased):
CLIENT NOTIFICATION/RESOLUTION	Personal Control of the Control of t		7	Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:	11 0			
Project Manager Review: VINATIAN	HORSE	NA		Date: 9/4/2020
Project Manager Review: When your thorains a discrepancy affecting North Carolina	complian	celsample	es, a conv	of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of
hold, incorrect preservative, out of temp, incorrect containers).		U	,,	55.0000

Report No.....10530961_8290FC_DFR

Page 6 of 17

Labeled by: _

Document Name:

Sample Condition Upon Receipt (SCUR) Exception Form

Document No.: ENV-FRM-MIN4-0142 Rev.01 Document Revised: 04Jun2020

Page 1 of 1

Pace Analytical Services - Minneapolis

SCUR Exceptions:	la .	- 10E	-	11.2			ar economic designation	ler #: 105	3096)
Out of Temp Sample IDs	Container Type	# of Containers			PM No	otified? [Yes _	No	1 m	
				If yes, i				d/date/tim	e.	
44					If no, i	ndicate re	ason w	hy.		
	1-2		-							
			100			oler Proje				
	 	(m-1)-m-14:			in mealest.	e plank f. 19.	1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P	THE THE	1 3 10 5	11 - 1
		3,000			1 8 J	No Temp	Blank	a Estate	100	4. Te.
* · · · · · · · · · · · · · · · · · · ·			Re	ead Temp		rected Te		Avera		mp
				9				5.	3	
				1.9		ma	/			
			5	2	1	\				
	 		4 5	5.N						
			Issu	e Type:			Con	tainer	#	of
Tracking Number,	Temperature		F 9/1		mple ID	1.50	- 3	NAME OF TAXABLE PARTY.		ainers
							D , III III _			
			1							
	Samura						-		-	
	- Xamila line X		1 -				-			-
			1 -				 			-
			1				-			
							1			
] [nemocratic (
	pH Ad	ustment	Log for	Preserv	ed Sam	ples	,	-		
		рН			Amoun					
	Type o	f Upon	Date	Time		Lot#	pН	In Complian	nce	
Sample ID	Presen		Adjusted	Adjusted	(mL)	Added	After	after additi	on?	Initials
								Yes	No	
Will be a second of the second								Yes 🗆	No	
Community 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			,					☐Yes ☐	No	
								Yes	No	
Comments:			- Landonnes	1				I - Carrier		
		10-10-1								

Fax: 612-607-6444

Reporting Flags

			and the second s		
Δ	=	Reporting	Limit based	on signal	to noise
$\overline{}$	(T-1)	1 COOUTHING	LIIIII DUOOG	00.9	

- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interferencepresent
- J = Estimated value
- Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%DExceeds limits
- Y = Calculated using average of daily RFs
- SeeDiscussion

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By

Total Amount Extracted % Moisture Dry Weight Extracted

ICAL ID CCal Filename(s) Method Blank ID

MAI0068-01 10530961001 Y200922A_08

937 mL NA NA Y200611

SMT

Y200922A_02 & Y200922B_01 BLANK-82452

Matrix Dilution Collected Received

Extracted

Analyzed

Water NA

08/31/2020 11:45 09/04/2020 09:10 09/15/2020 13:26 09/22/2020 12:15

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.8 1.8	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 68 72
2,3,7,8-TCDD Total TCDD	ND ND		3.9 3.9	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	68 77 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		3.4 3.1 3.1	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	76 76 72 71
1,2,3,7,8-PeCDD Total PeCDD	ND ND		3.3 3.3	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	64 61 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		2.4 2.5 2.3	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	66 69
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		2.3 2.3	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 3.2		3.6 2.9 2.4 2.4 J	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		1.5 2.2 1.5	Total 2,3,7,8-TCDD Equivalence: 0.071 pg/L (Lower-bound - Using ITE I	Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND	3.4	2.5 JJ 2.5			
OCDF OCDD	30	6.3	3.5 IJ 5.9 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

I = Interference present

J = Estimated value

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Pace Analytical™

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted MAI0068-02 10530961002 Y200922A_13 SMT

% Moisture
Dry Weight Extracted

924 mL NA NA Y200611 Matrix Water Dilution NA Collected 08/31/

NA 08/31/2020 09:30

ICAL ID CCal Filename(s) Method Blank ID Y200611 Y200922A_02 & Y200922B_01 BLANK-82452 Received Extracted Analyzed 09/04/2020 09:10 09/15/2020 13:26 09/22/2020 15:04

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		2.0 2.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 71 76
2,3,7,8-TCDD Total TCDD	ND ND		2.5 2.5	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	72 81 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		3.4 1.9 1.9	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	79 79 74 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		3.3 3.3	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	70 66 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		2.7 2.0 2.0 2.5	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	70 68 NA
Total HxCDF	ND		2.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		2.9 2.0 2.2 2.0	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		3.5 3.8 3.5	Total 2,3,7,8-TCDD Equivalence: 0.010 pg/L (Lower-bound - Using ITE I	Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 10		5.5 6.1 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit ND = Not Detected NA = Not Applicable NC = Not Calculated

J = Estimated value

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By MAI0068-04 10530961003 Y200922A_15 SMT

Total Amount Extracted % Moisture

SMT 945 mL NA

Matrix V Dilution N

Water NA

Dry Weight Extracted ICAL ID

NA NA Y200611

Collected Received Extracted 08/31/2020 10:45 09/04/2020 09:10 09/15/2020 13:26

CCal Filename(s) Method Blank ID Y200922A_02 & Y200922B_01 BLANK-82452

Analyzed

09/22/2020 16:29

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.7 1.7	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 61 66
2,3,7,8-TCDD Total TCDD	ND ND		2.4 2.4	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	61 69 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		3.8 2.4 2.4	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	70 71 67 68
1,2,3,7,8-PeCDD Total PeCDD	ND ND		2.4 2.4	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	59 59 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	2222		1.7 1.4 1.3 2.1 1.3	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00	63 55 NA NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND ND		2.6 2.1 2.1 2.1	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		1.5 3.0 1.5	Total 2,3,7,8-TCDD Equivalence: 0.0070 pg/L (Lower-bound - Using ITE F	Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		2.2 2.2			
OCDF OCDD	ND 7.0		4.6 5.6			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

FMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted MAI0068-05 10530961004 Y200922A_16 SMT

% Moisture
Dry Weight Extracted

943 mL NA NA

Matrix Water Dilution NA Collected 08/31/2

NA 08/31/2020 08:10 09/04/2020 09:10

ICAL ID CCal Filename(s) Method Blank ID Y200611 Y200922A_02 & Y200922B_01 BLANK-82452 Received Extracted Analyzed

09/15/2020 13:26 09/22/2020 17:11

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.4 1.4	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 75 81
2,3,7,8-TCDD Total TCDD	ND ND		1.8 1.8	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	77 86 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		4.5 2.8 2.8	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	82 86 84 84
1,2,3,7,8-PeCDD Total PeCDD	ND ND	Section 1	2.7 2.7	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	71 69 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND ND		1.9 1.7 1.6 1.8	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	74 61 NA
1,2,3,7,8,9-HxCDF Total HxCDF	ND		1.6	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND 48	3.7	3.8 2.8 U 2.4 2.4 J	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND 18		3.8 4.8 3.8 J	Total 2,3,7,8-TCDD Equivalence: 2.0 pg/L (Lower-bound - Using ITE I	Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	130 280		4.1 4.1			
OCDF OCDD	310	18	4.5 IJ 4.9			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit ND = Not Detected NA = Not Applicable NC = Not Calculated

J = Estimated value I = Interference present

Method 8290 Blank Analysis Results

Lab Sample Name Lab Sample ID Filename

Total Amount Extracted ICAL ID CCal Filename(s)

DFBLKMS BLANK-82452 U200920B_05 1030 mL

U200920B_03 1030 mL U200729 U200920B_01 & U200920B_19 Matrix Dilution Extracted Analyzed

Injected By

Water NA 09/15/2020

09/15/2020 13:26 09/20/2020 13:53 BAL

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		4.8 4.8	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	51 56 54
2,3,7,8-TCDD Total TCDD	ND ND		7.6 7.6	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	57 64 65
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.7 3.6 3.6	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	58 64 63 69
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.7 5.7	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	56 59 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND		1.9 2.1 2.3 2.7 1.9	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00	75 45 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		2.6 4.0 3.8 2.6	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		2.9 5.1 2.9	Total 2,3,7,8-TCDD Equivalence: 0.093 pg/L (Lower-bound - Using ITE I	Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	11	5.4	3.6 J 3.6 J			
OCDF OCDD		8.8 31	6.1 JJ 8.9 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

J = Estimated value I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID

LCS-82453 U200920B_02 1040 mL U200729

U200920B_01 & U200920B_19 BLANK-82452

Matrix

Dilution Extracted Analyzed

Water NA

09/15/2020 13:26 09/20/2020 11:50

Injected By

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.22	108	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	69 78 76
2,3,7,8-TCDD Total TCDD	0.20	0.21	105	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0	78 91 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.0 1.1	105 108	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0	81 91 88 97
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.96	96	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0	72 80 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.2 1.1 1.0	119 111 105	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	104 66
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.2	115	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.2 1.1	108 118 110	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	0.98 0.99	98 99			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.96	96			
OCDF OCDD	2.0 2.0	2.1 2.4	105 118			

Qs = Quantity Spiked Qm = Quantity Measured Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis NA = Not Applicable

* = See Discussion

Method 8290 Laboratory Control Spike Results

Lab Sample ID
Filename
Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCSD-82454 U200920B_03 1040 mL U200729

U200920B_01 & U200920B_19 BLANK-82452 Matrix Dilution

Dilution Extracted Analyzed Water NA

09/15/2020 13:26 09/20/2020 12:30

Injected By BAL

Native Isomers	Q s (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	107	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	62 72 67
2,3,7,8-TCDD Total TCDD	0.20	0.20	98	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0	71 77 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.0 1.0	103 102	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0	75 78 78 79
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	103	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0	68 70 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.2 1.1 1.1	120 109 115	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0 2.0	86 53 NA
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	115	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.2 1.2	123 118 120	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	112 104			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.98	98			
OCDF OCDD	2.0 2.0	2.2 2.4	108 118			

Qs = Quantity Spiked Qm = Quantity Measured Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range Y = RF averaging used in calculations Nn = Value obtained from additional analysis NA = Not Applicable * = See Discussion

Method 8290

Spike Recovery Relative Percent Difference (RPD) Results

Client

Anatek Labs, Inc.

Spike 1 ID Spike 1 Filename LCS-82453 U200920B_02 Spike 2 ID Spike 2 Filename LCSD-82454 U200920B_03

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	108	107	0.9	
2,3,7,8-TCDD	105	98	6.9	
1,2,3,7,8-PeCDF	105	103	1.9	
2,3,4,7,8-PeCDF	108	102	5.7	
1,2,3,7,8-PeCDD	96	103	7.0	
1,2,3,4,7,8-HxCDF	119	120	0.8	
1,2,3,6,7,8-HxCDF	111	109	1.8	
2,3,4,6,7,8-HxCDF	105	115	9.1	
1,2,3,7,8,9-HxCDF	115	115	0.0	
1,2,3,4,7,8-HxCDD	108	123	13.0	
1,2,3,6,7,8-HxCDD	118	118	0.0	
1,2,3,7,8,9-HxCDD	110	120	8.7	
1,2,3,4,6,7,8-HpCDF	98	112	13.3	
1,2,3,4,6,7,6-HPCDF	99	104	4.9	
1,2,3,4,7,8,9-HpCDF	96	98	2.1	
1,2,3,4,6,7,8-HpCDD	105	108	2.8	
OCDF OCDD	118	118	0.0	

[%]REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

October 20, 2020

Todd Taruscio Anatek Labs 1282 Alturas Drive Moscow, ID 83843 ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222 F:+1 360 636 1068

www.alsglobal.com

Analytical Report for Service Request No: K2008742

RE: MAI0068

Dear Todd,

Enclosed are the results of the sample(s) submitted to our laboratory October 01, 2020 For your reference, these analyses have been assigned our service request number **K2008742**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms
Qualifiers
State Certifications, Accreditations, And Licenses
Chain of Custody
Subcontract Lab Results

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number	
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040	
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339	
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637	
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795	
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4	
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412	
Hawaii DOH	http://health.hawaii.gov/	14	
ISO 17025	http://www.pjlabs.com/	L16-57	
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016	
Maine DHS	http://www.maine.gov/dhhs/	WA01276	
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457	
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276	
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005	
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060	
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-certification	605	
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801	
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010	
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002	
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427	
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544	
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	6	
Kelso Laboratory Website	www.alsqlobal.com	NA.	

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

PAGNET SOLDTIONS - STORT PARTINER

SUBCONTRACT ORDER

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com
504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Sending Laboratory:

Anatek Labs Inc, Moscow ID 1282 Alturas Drive Moscow, ID 83843 Phone: 208-883-2839 Fax: 208-882-9246

Project Manager: Todd Taruscio

toddt@anateklabs.com

Subcontracted Laboratory:

ALS Environmental 1317 S 13th Ave Kelso, WA 98626 Phone: (360) 577-7222

Work Order: MAI0068

Analysis	Due	Expir	res	Comments	
Lab Sample ID: MAI0068-05 Client Sample Name: GW-MW		Sampled: 08/	31/2020	08:10	
EPH	09/14/20	20 09/14/202	0 08:10		
Containers Supplied:					

Released By

Oglaglano

Date

Page 1 of 1

Page 7 of 14

									•	PM M	ark
Samples we	or received via? re received in: (circy seals on coolers?	Opened: L	poler Box	By:	BR DHI velope	Servic	e Request Inloaded: _ PDX] Cl.[] Courie		BR	
If present, we was a Temper If no, take the Were samples If no, were the	ere custody seals in rature Blank prese the temperature of a received within the	ntact? nt in cooler? representative ne method spece and same day	XX	yes, not d within es? tate the	ate the t	empera er; nota	ite in the col	ppropriate umn "Sam	column below: ple Temp": NA NA Y	N N	COMME
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID/I NA	5 .	Out of		PM Notifi If out of	ed	Tracking Numi	ber NA	Filed
つ:か		KOL			***************************************				78111508	92700	1013
Were custo Were samp Were all sam 0. Did all sam 1. Were appro 2. Were the p 3. Were VO/	nple labels and tag opriate bottles/con oH-preserved bottle	y filled out (in) od condition (to lete (ie, analys) s agree with cu tainers and vo es (see SMO G	unbroken) is, preservation, etc.)?	ests indi			Sleeves	ble below	NA Y X X X X X X X X X X X X X X X X X X	и и и и и и	
Si	ample ID on Bo	ttle	Sample	ID on	coc				Identified by:		
	Sample ID		Bottle Count Bottle Type	Head- space	Broke	рН	Reagent	Volume added	Reagent Lot Number	Initials	Time
Notes, Disc	crepancies, Res	olutions:									

Subcontract Lab Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT STRUTIONS RIGHT PART VER

October 19, 2020

Mr. Mark Harris ALS Laboratory Group 1317 South 13th Avenue Kelso, WA 98626

Dear Mr. Harris,

On October 6th, 1 sample was received by our laboratory and assigned our laboratory project number EV20100023. The project was identified as your K2008742. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Glen Perry

Mer. Perry

Laboratory Manager

CLIENT:

ALS Laboratory Group

1317 South 13th Avenue

Kelso, WA 98626

CLIENT CONTACT: CLIENT PROJECT:

Mark Harris K2008742

CLIENT SAMPLE ID

MAI0068-05

DATE:

10/19/2020

ALS JOB#:

EV20100023 EV20100023-01

ALS SAMPLE#: DATE RECEIVED:

10/06/2020

COLLECTION DATE:

8/31/2020 8:10:00 AM

WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

	METHOD	RESULTS	REPORTING LIMITS	DILUTION	UNITS	ANALYSIS DATE	ANALYSIS BY
ANALYTE >C8-C10 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C10-C12 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C12-C16 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C16-C21 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C21-C34 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C8-C10 Aromatics	NWEPH	U, HT05	50	1	UG/L	10/17/2020	EBS
>C10-C12 Aromatics	NWEPH	250 HT05	50	1	UG/L	10/17/2020	EBS
>C12-C16 Aromatics	NWEPH	930 HT05	50	1	UG/L	10/17/2020	EBS
>C16-C21 Aromatics	NWEPH	520 HT05	50	1	UG/L	10/17/2020	EBS
>C21-C34 Aromatics	NWEPH	99 HT05	50	1	UG/L	10/17/2020	EBS
	440000000000000000000000000000000000000	170 d 50 Tean (200				ANALYSIS DATE	ANALYSIS BY
SURROGATE	METHOD	%REC				10/16/2020	EBS
C25	NWEPH	85.2 HT05				000000000000000000000000000000000000000	
p-Terphenyl	NWEPH	66.0 HT05				10/17/2020	EBS

HT05 -Sample was analyzed outside of the holding time at the request of the client. Results should be considered estimated.

CLIENT:

ALS Laboratory Group

1317 South 13th Avenue

Kelso, WA 98626

ALS SDG#:

10/19/2020 EV20100023

WDOE ACCREDITATION:

C601

DATE:

CLIENT CONTACT: CLIENT PROJECT:

Mark Harris K2008742

LABORATORY BLANK RESULTS

MBLK-R370817 - Batch R370817 - Water by NWEPH

MIDEN-NOTOOTT Buton				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
>C8-C10 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C10-C12 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C12-C16 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C16-C21 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
C21-C34 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C8-C10 Aromatics	NWEPH	U	UG/L	50	10/16/2020	EBS
C10-C12 Aromatics	NWEPH	U	UG/L	50	10/16/2020	EBS
C12-C16 Aromatics	NWEPH	U	UG/L	50	10/16/2020	EBS
CONTROL AND	NWEPH	u	UG/L	50	10/16/2020	EBS
>C16-C21 Aromatics >C21-C34 Aromatics	NWEPH	Ü	UG/L	50	10/16/2020	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT:

ALS Laboratory Group

1317 South 13th Avenue

Kelso, WA 98626

DATE:

10/19/2020

ALS SDG#:

EV20100023

WDOE ACCREDITATION:

C601

CLIENT CONTACT: CLIENT PROJECT: Mark Harris K2008742

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R370817 - Water by NWEPH

ALS Test Batch ID: R3708	in trace. by it.	· · · · · ·		LIN	MITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
>C8-C10 Aliphatics - BS	NWEPH	89.0		70	130	10/16/2020	EBS
>C8-C10 Aliphatics - BSD	NWEPH	78.8	12	70	130	10/16/2020	EBS
>C10-C12 Aliphatics - BS	NWEPH	91.0		70	130	10/16/2020	EBS
>C10-C12 Aliphatics - BSD	NWEPH	81.2	11	70	130	10/16/2020	EBS
>C12-C16 Aliphatics - BS	NWEPH	96.3		70	130	10/16/2020	EBS
>C12-C16 Aliphatics - BSD	NWEPH	86.4	11	70	130	10/16/2020	EBS
>C16-C21 Aliphatics - BS	NWEPH	99.5		70	130	10/16/2020	EBS
>C16-C21 Aliphatics - BSD	NWEPH	88.9	11	70	130	10/16/2020	EBS
>C21-C34 Aliphatics - BS	NWEPH	106		70	130	10/16/2020	EBS
>C21-C34 Aliphatics - BSD	NWEPH	94.7	11	70	130	10/16/2020	EBS
>C8-C10 Aromatics - BS	NWEPH	93.1		70	130	10/17/2020	EBS
>C8-C10 Aromatics - BSD	NWEPH	80.3	15	70	130	10/17/2020	EBS
>C10-C12 Aromatics - BS	NWEPH	93.2		70	130	10/17/2020	EBS
>C10-C12 Aromatics - BSD	NWEPH	81.2	14	70	130	10/17/2020	EBS
>C12-C16 Aromatics - BS	NWEPH	92.6		70	130	10/17/2020	EBS
>C12-C16 Aromatics - BSD	NWEPH	82.5	12	70	130	10/17/2020	EBS
>C16-C21 Aromatics - BS	NWEPH	90.4		70	130	10/17/2020	EBS
>C16-C21 Aromatics - BSD	NWEPH	82.6	9	70	130	10/17/2020	EBS
>C21-C34 Aromatics - BS	NWEPH	93.4		70	130	10/17/2020	EBS
>C21-C34 Aromatics - BSD	NWEPH	85.3	9	70	130	10/17/2020	EBS

APPROVED BY

Laboratory Manager

Page 4

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 PHONE 425-356-2600 FAX 425-356-2626

ALS Group USA, Corp dba ALS Environmental

Page 66 of 80

ALS Environmental Chain of Custody

1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1068

ALS Contact: Mark Harris

Project Number: K2008742 Project Manager: Mark Harris QAP: LAB QAP

isc Out 1 None

				Sam	ple		Σ
Lah Code	Sample ID	# of Cont.	Matrix	Date	Time	Lab ID	
K2008742-001	MAI0068-05	1	Ground Water	8/31/20	0810	Everett ALS	X

EV20100023

Special Instructions/Comments	Turnaround Requirements	Report Requirements	Invoice Information
Please provide the electronic (PDF and EDD) report to the following e-mail address: ALKLS.Data \overline{a} alsglobal.com.	RUSH (Surcharges Apply)	L Results Only II. Results + QC Summaries	
* EPIT	PLEASE CIRCLE WORK DAYS 1 2 3 4 5	III. Results + QC and Calibration Summaries	PO# 51K2008742
	STANDARD	IV. Data Validation Report with Raw Data	
1	Requested FAX Date:	PQL/MDL/J N	Bill to
H - Test is On Hold P - Test is Authorized for Prep Only	Requested Report Date: 10/14/20	EDD <u>N</u>	

October 20, 2020

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626
T:+1 360 577 7222

T:+1 360 577 7222 F:+1 360 636 1068

www.alsglobal.com

Analytical Report for Service Request No: K2008953

RE: MAI0068

Todd Taruscio Anatek Labs 1282 Alturas Drive Moscow, ID 83843

Dear Todd.

Enclosed are the results of the sample(s) submitted to our laboratory October 07, 2020 For your reference, these analyses have been assigned our service request number **K2008953**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms
Qualifiers
State Certifications, Accreditations, And Licenses
Chain of Custody
Subcontract Lab Results

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEO Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See ease narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	12
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	9
Kelso Laboratory Website	www.alsglobal.com	NA Listing of

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

THE REPORT OF THE PARTIES.

SUBCONTRACT ORDER

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com
504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Sending Laboratory:

Anatek Labs Inc, Moscow ID 1282 Alturas Drive Moscow, ID 83843

Phone: 208-883-2839 Fax: 208-882-9246

Project Manager: Todd Taruscio

toddt@anateklabs.com

Subcontracted Laboratory:

ALS Environmental 1317 S 13th Ave Kelso, WA 98626

Phone: (360) 577-7222

Fax: -

Work Order: MAI0068

Analysis		Due	Expire	s Commen	ts	
Lab Sample ID: MAI Client Sample Name			mpled: 08/3.	1/2020 09:30		
EPH		09/14/2020	09/14/2020	09:30		
Containers Supplied:						
Lab Sample ID: MA			ampled: 08/3	1/2020 08:10-		
EPH		09/14/2020	09/14/2020	08:10		
Containers Supplied:	this	Sample	11295	already	sent.	Water 1975

Released By

10/7/20 1015 Date

										1	PM/M	ack
	Mustol		Cooler Receipt	and I	Prese				789x	52	Artector	10110 11 6
Client	1/2/20121		- talau		$\overline{\Delta}$	Serv	ice Reques		1010	<u></u>	7	
Received:[C	17/10	Opened: _	10/7/20	By:	1	<u> </u>	Unloaded:	10/1	120	By:		
I. Samples we	ere received via?	USPS	Fed Ex	UPS 3	, D	HL	PDX	Cou	rier Ha	nd Delive	ered	
2. Samples we	ere received in: (cir	rcle) C	ooler Box	E	nvelope	Ğ.	Other				VA.	
B. Were custod	ly seals on coolers'	?	NA Y N	If yes, h	ow man	ny and w	here?					
If present, w	vere custody seals i	intact?	YN	If prese	nt, were	they sig	ned and date	ed?		Y	N	
1. Was a Tempe	erature Blank prese	ent in cooler?	NA Y N	lf yes, r	otate th	e tempe	rature in the	appropria	te column belo	w:		
If no, take th	he temperature of a	representativ	e sample bottle contair	ed with	in the co	ooler; no	tate in the co	olumn "Sa	imple Temp":	OX ~		
5. Were sample	s received within t	he method spe	cified temperature ran	ges?					NA	XIII	(M)	
If no, were th	hey received on ice	and same day	y as collected? If not, n	otate the	e cooler	# below	and notify t	the PM.	NA	Y	(N)	
If applicable, tis	ssue samples were	received:	Frozen Partially TI	iawed	Thaw	ed						
*****************	T	I a co	Carlot despert Wilselle	ereste d		SEPTEMBE	1 44 7 2 5 7	100/2003	Name (Spine	Elsie.		1
					Out	of temp	P Noti					
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID / N	IA I	indicate	e with "X		of temp	00	Number		Filed
	11.7	IRO1				<u> </u>			17 98/	17EC	13 40	27
											65	92
					The Property of the Land				2080 6505 175 ST 1250		~	
6. Packing ma	aterial: Inserts	Bassies Ru	ibble Wrap Gel Pack	SC We	t lee 1	Drv Ice	Sleeves					
	ody papers properly			<u> </u>		.,,	-	13.000 and	NA	(Y)	N	
	oles received in goo		AND SHIP CONTRACTOR OF STREET						NA	Y	W	
			is, preservation, etc.)?						NA	(2)	N	
	aple labels and tags	100	(9):17() 17()						NA	\odot	N	
			lumes received for the					aza na nan	NA	Y	N	
			EN SOP) received at t		•	H? Indi	cate in the t	able below	" (NA)	Y	N	
		thout headspace	ce? Indicate in the tab	le below	' -				(NA)	Y	N	
14. Was C12/I	Res negative?								NAX.	Y	N	
S	ample ID on Bot	tle	Sampl	e ID on	COC				Identified	bv:		
ļ ,	ample to on bot	***		0.12.011								
<u> </u>						100						and of
								X.			***************************************	
L			1									
			Bottle Count	Head-	100000	11.00	reference experi	Volum	e Reagent	Lot		
	Sample ID	a 194 Europa	Bottle Type		Broke	pH	Reagent	added			nitials	Time
				ļ	-							
				-	-							.,-
		(11.07 - A) (-11.77 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -										A SUIT SEE CHILLY
		59/65730_5546-yee-to-the-co-t-					7 Thomas Appendicts 11 12 1					
Notes, Disc	repancies, Resc	lutions			***************************************		***************************************			- years		
				·								
					11 (2015)				T. (1)			

Subcontract Lab Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

MICHT SOLUTIONS RIGHT PARTIES

October 19, 2020

Mr. Mark Harris ALS Laboratory Group 1317 South 13th Avenue Kelso, WA 98626

Dear Mr. Harris,

On October 9th, 1 sample was received by our laboratory and assigned our laboratory project number EV20100057. The project was identified as your K2008953. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Glen Perry

Mer. Peng

Laboratory Manager

CLIENT:

ALS Laboratory Group

1317 South 13th Avenue

Kelso, WA 98626

CLIENT CONTACT: Mark Harris CLIENT PROJECT:

CLIENT SAMPLE ID

K2008953 MAI0068-02

DATE:

10/19/2020

ALS JOB#:

EV20100057

ALS SAMPLE#:

EV20100057-01

DATE RECEIVED:

10/09/2020

COLLECTION DATE:

8/31/2020 9:30:00 AM

WDOE ACCREDITATION:

C601

SAMPLE DATA RESULTS

	METHOD	RESULTS	REPORTING LIMITS	DILUTION	UNITS	ANALYSIS DATE	ANALYSIS BY
ANALYTE >C8-C10 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C10-C12 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C12-C16 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C16-C21 Aliphatics	NWEPH	U, HT05	50	1	UG/L	10/16/2020	EBS
>C21-C34 Aliphatics	NWEPH	U, HT05	50	Ĭ	UG/L	10/16/2020	EBS
>C8-C10 Aromatics	NWEPH	U, HT05	50	1	UG/L	10/17/2020	EBS
>C10-C12 Aromatics	NWEPH	U, HT05	50	1	UG/L	10/17/2020	EBS
>C12-C16 Aromatics	NWEPH	U, HT05	50	1	UG/L	10/17/2020	EBS
>C16-C21 Aromatics	NWEPH	U. HT05	50	1	UG/L	10/17/2020	EBS
>C21-C34 Aromatics	NWEPH	U, HT05	50	1	UG/L	10/17/2020	EBS
	1000000					ANALYSIS DATE	ANALYSIS BY
SURROGATE	METHOD	%REC				10/16/2020	EBS

		ANALYSIS ANALYSIS			
METHOD	%REC	DATE	BY		
100000000000000000000000000000000000000	The first control of the first	10/16/2020	EBS		
NWEPH	77.5 HT05				
NWEPH	76.0 HT05	10/17/2020	EBS		
	METHOD NWEPH NWEPH	NWEPH 77.5 HT05	METHOD %REC 10/16/2020 10/17/2020		

HT05 -Sample was analyzed outside of the holding time at the request of the client. Results should be considered estimated.

CLIENT:

ALS Laboratory Group

1317 South 13th Avenue

Kelso, WA 98626

DATE:

10/19/2020

ALS SDG#:

EV20100057

WDOE ACCREDITATION:

C601

CLIENT CONTACT: CLIENT PROJECT: Mark Harris K2008953

LABORATORY BLANK RESULTS

MBLK-R370817 - Batch R370817 - Water by NWEPH

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
>C8-C10 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C10-C12 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C12-C16 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C16-C21 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C21-C34 Aliphatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C8-C10 Aromatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C10-C12 Aromatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C12-C16 Aromatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C16-C21 Aromatics	NWEPH	U	UG/L	50	10/16/2020	EBS
>C21-C34 Aromatics	NWEPH	U	UG/L	50	10/16/2020	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT:

ALS Laboratory Group

1317 South 13th Avenue

Kelso, WA 98626

ALS SDG#:

10/19/2020

EV20100057

WDOE ACCREDITATION:

LIMITO

DATE:

C601

CLIENT CONTACT: CLIENT PROJECT:

Mark Harris K2008953

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R370817 - Water by NWEPH

				ANALYSIS	ANALYSIS BY			
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
>C8-C10 Aliphatics - BS	NWEPH	89.0			70	130	10/16/2020	EBS
>C8-C10 Aliphatics - BSD	NWEPH	78.8	12		70	130	10/16/2020	EBS
>C10-C12 Aliphatics - BS	NWEPH	91.0			70	130	10/16/2020	EBS
>C10-C12 Aliphatics - BSD	NWEPH	81.2	11		70	130	10/16/2020	EBS
>C12-C16 Aliphatics - BS	NWEPH	96.3			70	130	10/16/2020	EBS
>C12-C16 Aliphatics - BSD	NWEPH	86.4	11		70	130	10/16/2020	EBS
>C16-C21 Aliphatics - BS	NWEPH	99.5			70	130	10/16/2020	EBS
>C16-C21 Aliphatics - BSD	NWEPH	88.9	11		70	130	10/16/2020	EBS
>C21-C34 Aliphatics - BS	NWEPH	106			70	130	10/16/2020	EBS
>C21-C34 Aliphatics - BSD	NWEPH	94.7	11		70	130	10/16/2020	EBS
>C8-C10 Aromatics - BS	NWEPH	93.1			70	130	10/17/2020	EBS
>C8-C10 Aromatics - BSD	NWEPH	80.3	15		70	130	10/17/2020	EBS
>C10-C12 Aromatics - BS	NWEPH	93.2			70	130	10/17/2020	EBS
>C10-C12 Aromatics - BSD	NWEPH	81.2	14		70	130	10/17/2020	EBS
>C12-C16 Aromatics - BS	NWEPH	92.6			70	130	10/17/2020	EBS
>C12-C16 Aromatics - BSD	NWEPH	82.5	12		70	130	10/17/2020	EBS
>C16-C21 Aromatics - BS	NWEPH	90.4			70	130	10/17/2020	EBS
>C16-C21 Aromatics - BSD	NWEPH	82.6	9		70	130	10/17/2020	EBS
>C21-C34 Aromatics - BS	NWEPH	93.4			70	130	10/17/2020	EBS
>C21-C34 Aromatics - BSD	NWEPH	85.3	9		70	130	10/17/2020	EBS

APPROVED BY

Laboratory Manager

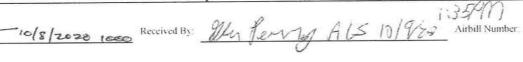
Page 4

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626

ALS Group USA, Corp dba ALS Environmental

Page 14 of 14

ALS Environmental Chain of Custody


1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1068

ALS Contact: Mark Harris

EY27100057

Project Number: K2008953 Project Manager: Mark Harris LAB QAP QAP: Sample Time Lab ID # of Cont. Matrix Date Lab Code Sample ID Water 8/31/20 0930 Everett ALS X K2008953-001 MAI0068-02

Special Instructions/Comm	ents	Turnaround Requirements	Report Requirements	Invoice Information
Please provide the electronic	(PDF and EDD) report to the following e-mail address:	RUSH (Surcharges Apply)	I. Results Only	
ALKLS Data a alsglobal com	6	PLEASE CIRCLE WORK DAYS	II. Results + QC Summaries	PO#
FIRS		/ 1 2 3 4 5	III. Results + QC and Calibration Summaries	51K2008953
		STANDARD	IV. Data Validation Report with Raw Data	
		Requested FAX Date:	PQL/MDL/J N	Bill to
H - Test is On Hold	P - Test is Authorized for Prep Only	Requested Report Date: 10/21/20	EDD <u>N</u>	
			5000	

November 2020 GWM

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 14, 2020

Joel Hecker, Project Manager Pioneer Technologies Corp 5205 Corporate Center Ct, Suite A Lacey, WA 98503

Dear Mr Hecker:

Included are the amended results from the testing of material submitted on November 24, 2020 from the Hardel, F&BI 011454 project. The reporting limits were lowered for several compounds.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: heckerj@uspioneer.com

PTC1209R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 9, 2020

Joel Hecker, Project Manager Pioneer Technologies Corp 5205 Corporate Center Ct, Suite A Lacey, WA 98503

Dear Mr Hecker:

Included are the results from the testing of material submitted on November 24, 2020 from the Hardel, F&BI 011454 project. There are 30 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: heckerj@uspioneer.com

PTC1209R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 24, 2020 by Friedman & Bruya, Inc. from the Pioneer Technologies Corp Hardel, F&BI 011454 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Pioneer Technologies Corp
011454 -01	GW-MW101-112420
011454 -02	GW-MW102-112420
011454 -03	GW-MW102-01-112420
011454 -04	GW-MW103-112420
011454 -05	GW-MW104-112420
011454 -06	TB-112420

Samples GW-MW101-112420, GW-MW102-112420, GW-MW102-01-112420, GW-MW103-112420, and GW-MW104-112420 were sent to Fremont Analytical for chloride analysis. The report is enclosed.

The benzo(b)fluoranthene calibration standard did not pass the acceptance criteria in sample GW-MW104-112420. The data were flagged accordingly.

1,2-Dibromoethane (EDB) by 8260D was reported below standard laboratory reporting limit. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/24/20

Project: Hardel, F&BI 011454 Date Extracted: 12/01/20 Date Analyzed: 12/02/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
GW-MW101-112420 011454-01	<100	98
GW-MW102-112420 011454-02	<100	100
GW-MW102-01-112420 011454-03	<100	100
GW-MW103-112420 011454-04	<100	100
GW-MW104-112420 011454-05	150	107
Method Blank 00-2596 MB	<100	97

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/24/20

Project: Hardel, F&BI 011454

Date Extracted: 11/25/20 Date Analyzed: 11/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
GW-MW101-112420 011454-01	410	290 x	66
GW-MW102-112420 ₀₁₁₄₅₄₋₀₂	<50	<250	79
GW-MW102-01-112420 011454-03	<50	<250	81
GW-MW103-112420 011454-04	170	<250	85
GW-MW104-112420 011454-05	4,100	480 x	82
Method Blank _{00-2591 MB2}	<50	<250	79

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW101-112420 Client: Pioneer Technologies Corp

 Date Received:
 11/24/20
 Project:
 Hardel, F&BI 011454

 Date Extracted:
 12/02/20
 Lab ID:
 011454-01 rr

Concentration

Analyte: ug/L (ppb)

Arsenic 6.18 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW102-112420 Client: Pioneer Technologies Corp Date Received: 11/24/20 Project: Hardel, F&BI 011454

Date Extracted: 12/02/20 Lab ID: 011454-02 rr Date Analyzed: 12/09/20 19:29:35 Data File: 011454-02 rr.151

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Arsenic 2.30 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW102-01-112420 Client: Pioneer Technologies Corp

 Date Received:
 11/24/20
 Project:
 Hardel, F&BI 011454

 Date Extracted:
 12/02/20
 Lab ID:
 011454-03 rr

 Date Analyzed:
 12/09/20 19:34:16
 Data File:
 011454-03 rr.152

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 2.32 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW103-112420 Client: Pioneer Technologies Corp Date Received: 11/24/20 Project: Hardel, F&BI 011454

 Date Extracted:
 12/02/20
 Lab ID:
 011454-04 rr

 Date Analyzed:
 12/09/20 19:38:57
 Data File:
 011454-04 rr.153

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW104-112420 Client: Pioneer Technologies Corp

Date Received: 11/24/20 Project: Hardel, F&BI 011454
Date Extracted: 12/02/20 Lab ID: 011454-05 rr

Concentration

Analyte: ug/L (ppb)

Arsenic 2.26 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Pioneer Technologies Corp Date Received: NA Project: Hardel, F&BI 011454

 Date Extracted:
 12/02/20
 Lab ID:
 I0-743 mb rr

 Date Analyzed:
 12/03/20 17:53:01
 Data File:
 I0-743 mb rr.119

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <1 Silver <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW101-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	12/01/20	Lab ID:	011454-01
Date Analyzed:	12/01/20	Data File:	120129.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	101	60	133

4-Bromofluorobenzene	101	60	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	<0.05 j		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

GW-MW102-112420	Client:	Pioneer Technologies Corp
11/24/20	Project:	Hardel, F&BI 011454
12/01/20	Lab ID:	011454-02
12/01/20	Data File:	120130.D
Water	Instrument:	GCMS4
ug/L (ppb)	Operator:	JCM
	11/24/20 12/01/20 12/01/20 Water	11/24/20 Project: 12/01/20 Lab ID: 12/01/20 Data File: Water Instrument:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	104	60	133

4-Bromofluorobenzene	104	60	13
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	<0.05 j		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	1.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW102-01-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	12/01/20	Lab ID:	011454-03
Date Analyzed:	12/01/20	Data File:	120131.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	102	60	133

4-Bromofluorobenzene	102	60
Compounds:	Concentration ug/L (ppb)	
Vinyl chloride	< 0.2	
Hexane	<5	
Methyl t-butyl ether (MTBE)	<1	
cis-1,2-Dichloroethene	<1	
1,2-Dichloroethane (EDC)	<1	
Benzene	< 0.35	
Trichloroethene	< 0.7	
Toluene	<1	
Tetrachloroethene	<1	
1,2-Dibromoethane (EDB)	<0.05 j	
Ethylbenzene	<1	
m,p-Xylene	<2	
o-Xylene	<1	
Naphthalene	1.4	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW103-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	12/01/20	Lab ID:	011454-04
Date Analyzed:	12/01/20	Data File:	120132.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	103	60	133

4-Bromofluorobenzene	103	60	13
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	<0.05 j		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	GW-MW104-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	12/01/20	Lab ID:	011454-05
Date Analyzed:	12/01/20	Data File:	120133.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	100	60	133

4-Bromofluorobenzene	100	60	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	<0.05 j		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	240 ve		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GW-MW104-112420 Client: Pioneer Technologies Corp Date Received: 11/24/20 Project: Hardel, F&BI 011454 Lab ID: Date Extracted: 12/01/20 011454-05 1/10 Date Analyzed: 12/02/20 Data File: 120215.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JCM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 98 57 121 Toluene-d8 102 63 127 4-Bromofluorobenzene 60 102 133

Concentration

Compounds: ug/L (ppb)

Naphthalene 220

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:		Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	12/01/20	Lab ID:	011454-06
Date Analyzed:	12/02/20	Data File:	120211.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	103	60	133

4-Bromofluorobenzene	103	60	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	<0.05 j		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Method Blank	Client:	Pioneer Technologies Corp
Not Applicable	Project:	Hardel, F&BI 011454
12/01/20	Lab ID:	00-2565 mb
12/01/20	Data File:	120109.D
Water	Instrument:	GCMS4
ug/L (ppb)	Operator:	JCM
	12/01/20 12/01/20 Water	Not Applicable Project: 12/01/20 Lab ID: 12/01/20 Data File: Water Instrument:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	100	60	133

4 Diomondorobenzene	100	
Compounds:	Concentration ug/L (ppb)	
Vinyl chloride	< 0.2	
Hexane	<5	
Methyl t-butyl ether (MTBE)	<1	
cis-1,2-Dichloroethene	<1	
1,2-Dichloroethane (EDC)	<1	
Benzene	< 0.35	
Trichloroethene	< 0.7	
Toluene	<1	
Tetrachloroethene	<1	
1,2-Dibromoethane (EDB)	<0.05 j	
Ethylbenzene	<1	
m,p-Xylene	<2	
o-Xylene	<1	
Naphthalene	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	GW-MW101-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	11/25/20	Lab ID:	011454-01 1/2
Date Analyzed:	11/25/20	Data File:	112508.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	YA

G .	0/ D	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	38	15	61
Phenol-d6	26	10	46
Nitrobenzene-d5	70	17	143
2-Fluorobiphenyl	71	50	150
2,4,6-Tribromophenol	88	50	150
Terphenyl-d14	86	50	150

· · · · ·	
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	GW-MW102-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	11/25/20	Lab ID:	011454-02 1/2
Date Analyzed:	11/25/20	Data File:	112509.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	35	15	61
Phenol-d6	22	10	46
Nitrobenzene-d5	85	17	143
2-Fluorobiphenyl	88	50	150
2,4,6-Tribromophenol	90	50	150
Terphenyl-d14	106	50	150

Concentration Compounds: ug/L (ppb) Naphthalene 1.3 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene 1.3 Fluorene 0.40Phenanthrene 0.13Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	GW-MW102-01-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	11/25/20	Lab ID:	011454-03 1/2
Date Analyzed:	11/25/20	Data File:	112510.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	YA

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol	36	15	61
Phenol-d6	24	10	46
Nitrobenzene-d5	88	17	143
2-Fluorobiphenyl	87	50	150
2,4,6-Tribromophenol	97	50	150
Terphenyl-d14	103	50	150

1 0	
Compounds:	Concentration ug/L (ppb)
Naphthalene	1.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	1.2
Fluorene	0.40
Phenanthrene	0.13
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	GW-MW103-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	11/25/20	Lab ID:	011454-04 1/2
Date Analyzed:	11/25/20	Data File:	112511.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	42	15	61
Phenol-d6	28	10	46
Nitrobenzene-d5	91	17	143
2-Fluorobiphenyl	91	50	150
2,4,6-Tribromophenol	107	50	150
Terphenyl-d14	112	50	150

respires y a a s	
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	1.7
Fluorene	0.21
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received:	GW-MW104-112420 11/24/20	Client: Project:	Pioneer Technologies Corp Hardel, F&BI 011454
Date Extracted:	11/25/20	Lab ID:	011454-05 1/2
Date Analyzed:	11/25/20	Data File:	112512.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	41	15	61
Phenol-d6	28	10	46
Nitrobenzene-d5	93	17	143
2-Fluorobiphenyl	85	50	150
2,4,6-Tribromophenol	107	50	150
Terphenyl-d14	104	50	150

< 0.04

< 0.04

< 0.08

Terphenyl-d14	104
Compounds:	Concentration ug/L (ppb)
Naphthalene	150 ve
2-Methylnaphthalene	160 ve
1-Methylnaphthalene	130 ve
Acenaphthylene	< 0.04
Acenaphthene	140 ve
Fluorene	56
Phenanthrene	89 ve
Anthracene	11
Fluoranthene	8.3
Pyrene	8.4
Benz(a)anthracene	0.32
Chrysene	0.39
Benzo(a)pyrene	0.098
Benzo(b)fluoranthene	0.12 ca
Benzo(k)fluoranthene	0.050

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	GW-MW104-112420	Client:	Pioneer Technologies Corp
Date Received:	11/24/20	Project:	Hardel, F&BI 011454
Date Extracted:	11/25/20	Lab ID:	011454-05 1/20
Date Analyzed:	12/01/20	Data File:	120106.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	30 d	15	61
Phenol-d6	23 d	10	46
Nitrobenzene-d5	82 d	17	143
2-Fluorobiphenyl	82 d	50	150
2,4,6-Tribromophenol	87 d	50	150
Terphenyl-d14	94 d	50	150

Concentration ug/L (ppb)
160
160
120
150
96

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Pioneer Technologies Corp
Date Received:	Not Applicable	Project:	Hardel, F&BI 011454
Date Extracted:	11/25/20	Lab ID:	00-2729 mb
Date Analyzed:	11/25/20	Data File:	112506.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	YA

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol	17	15	61
Phenol-d6	12	10	46
Nitrobenzene-d5	86	17	143
2-Fluorobiphenyl	89	50	150
2,4,6-Tribromophenol	63	50	150
Terphenyl-d14	115	50	150

rerphenyi-a14	119
Compounds:	Concentration ug/L (ppb)
Naphthalene 2-Methylnaphthalene	<0.2 <0.2
1-Methylnaphthalene	< 0.2
Acenaphthylene Acenaphthene	<0.02 <0.02
Fluorene	<0.02
Phenanthrene	< 0.02
Anthracene Fluoranthene	<0.02 <0.02
Pyrene	<0.02
Benz(a)anthracene	< 0.02
Chrysene	<0.02
Benzo(a)pyrene Benzo(b)fluoranthene	<0.02 <0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	<0.02
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	<0.02 <0.04
(C) //I V	

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/24/20

Project: Hardel, F&BI 011454

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 011431-01(Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Gasoline	ug/L (ppb)	1.000	<100	94	101	53-117	7

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Gasoline	ug/L (ppb)	1,000	99	69-134	_		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/24/20

Project: Hardel, F&BI 011454

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	94	98	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/24/20

Project: Hardel, F&BI 011454

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 011492-01 rr (Matrix Spike)

				Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)	
Arsenic	ug/L (ppb)	10	22.9	91	82	75-125	10	
Silver	ug/L (ppb)	5	<1	83	89	75 - 125	7	

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	96	80-120
Silver	ug/L (ppb)	5	93	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/24/20

Project: Hardel, F&BI 011454

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011466-01 (Matrix Spike)

Easoratory code: 011100 01 (W	Laboratory Code: 011100 01 (Matrix Opine)						
				Percent			
	Reporting	Spike	Sample	Recovery	Acceptance		
Analyte	Units	Level	Result	MS	Criteria		
Vinyl chloride	ug/L (ppb)	10	< 0.2	90	36-166		
Hexane	ug/L (ppb)	10	<5	95	52 - 150		
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	100	74 - 127		
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	104	71 - 127		
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	116	48-149		
Benzene	ug/L (ppb)	10	< 0.35	100	76 - 125		
Trichloroethene	ug/L (ppb)	10	<1	108	66 - 135		
Toluene	ug/L (ppb)	10	<1	96	76 - 122		
Tetrachloroethene	ug/L (ppb)	10	<1	103	10-226		
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	108	69-134		
Ethylbenzene	ug/L (ppb)	10	<1	97	69-135		
m,p-Xylene	ug/L (ppb)	20	<2	98	69-135		
o-Xylene	ug/L (ppb)	10	<1	97	60-140		
Naphthalene	ug/L (ppb)	10	<1	91	44-164		

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	88	82	50 - 154	7
Hexane	ug/L (ppb)	10	85	82	57 - 137	4
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	99	98	64 - 147	1
cis-1,2-Dichloroethene	ug/L (ppb)	10	102	102	74 - 136	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	117	111	66-129	5
Benzene	ug/L (ppb)	10	98	96	69-134	2
Trichloroethene	ug/L (ppb)	10	106	100	67-133	6
Toluene	ug/L (ppb)	10	91	91	72 - 122	0
Tetrachloroethene	ug/L (ppb)	10	96	97	76 - 121	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	102	103	82 - 115	1
Ethylbenzene	ug/L (ppb)	10	92	92	77 - 124	0
m,p-Xylene	ug/L (ppb)	20	92	93	81-112	1
o-Xylene	ug/L (ppb)	10	93	93	81-121	0
Naphthalene	ug/L (ppb)	10	93	92	64-133	1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/24/20

Project: Hardel, F&BI 011454

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

			Percent	Percent		
A 1 4	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	83	84	70-130	1
2-Methylnaphthalene	ug/L (ppb)	5	85	85	70-130	0
1-Methylnaphthalene	ug/L (ppb)	5	82	82	70-130	0
Acenaphthylene	ug/L (ppb)	5	96	98	70-130	2
Acenaphthene	ug/L (ppb)	5	90	92	70-130	2
Fluorene	ug/L (ppb)	5	91	92	70-130	1
Phenanthrene	ug/L (ppb)	5	92	95	70-130	3
Anthracene	ug/L (ppb)	5	92	95	70-130	3
Fluoranthene	ug/L (ppb)	5	96	97	70-130	1
Pyrene	ug/L (ppb)	5	105	104	70-130	1
Benz(a)anthracene	ug/L (ppb)	5	98	97	70-130	1
Chrysene	ug/L (ppb)	5	96	95	70-130	1
Benzo(a)pyrene	ug/L (ppb)	5	104	102	70-130	2
Benzo(b)fluoranthene	ug/L (ppb)	5	110	127	62-130	14
Benzo(k)fluoranthene	ug/L (ppb)	5	104	105	70-130	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	101	100	70-130	1
Dibenz(a,h)anthracene	ug/L (ppb)	5	103	100	70-130	3
Benzo(g,h,i)perylene	ug/L (ppb)	5	104	100	70-130	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 011454

Work Order Number: 2011535

December 04, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 11/25/2020 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 12/04/2020

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 011454 **Work Order:** 2011535

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2011535-001	GW-MW101-112420	11/24/2020 9:25 AM	11/25/2020 12:26 PM
2011535-002	GW-MW102-112420	11/24/2020 10:30 AM	11/25/2020 12:26 PM
2011535-003	GW-MW102-01-112420	11/24/2020 10:30 AM	11/25/2020 12:26 PM
2011535-004	GW-MW103-112420	11/24/2020 11:30 AM	11/25/2020 12:26 PM
2011535-005	GW-MW104-112420	11/24/2020 12:30 PM	11/25/2020 12:26 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2011535**Date: **12/4/2020**

CLIENT: Friedman & Bruya

Project: 011454

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original

Qualifiers & Acronyms

WO#: **2011535**

Date Reported: 12/4/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2011535 Date Reported: 12/4/2020

CLIENT: Friedman & Bruya

Project: 011454

Collection Date: 11/24/2020 9:25:00 AM Lab ID: 2011535-001

Client Sample ID: GW-MW101-112420 Matrix: Groundwater

Result **RL Qual** Units DF **Date Analyzed Analyses**

Batch ID: 30566 Analyst: SS Ion Chromatography by EPA Method 300.0

Chloride 175 10.0 D mg/L 100 12/1/2020 11:51:00 AM

2011535-002 Collection Date: 11/24/2020 10:30:00 AM Lab ID:

Client Sample ID: GW-MW102-112420 Matrix: Groundwater

Result **RL Qual** Units DF **Date Analyzed Analyses** Batch ID: 30566 Ion Chromatography by EPA Method 300.0 Analyst: SS Chloride 1.00 D 2.40 mg/L 10 11/30/2020 4:51:00 PM

Lab ID: 2011535-003 Collection Date: 11/24/2020 10:30:00 AM

Matrix: Groundwater Client Sample ID: GW-MW102-01-112420

RL Qual Units DF **Date Analyzed Analyses** Result

Ion Chromatography by EPA Method 300.0

Chloride 2.41 1.00 D mg/L 10 11/30/2020 5:14:00 PM

Batch ID: 30566

Lab ID: 2011535-004 Collection Date: 11/24/2020 11:30:00 AM

Client Sample ID: GW-MW103-112420 Matrix: Groundwater

Analyses Result RL Qual Units DF **Date Analyzed**

Ion Chromatography by EPA Method 300.0 Batch ID: 30566 Analyst: SS

Chloride 5.80 1.00 D mg/L 10 11/30/2020 5:37:00 PM

Analyst: SS

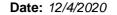
Analytical Report

Work Order: **2011535**Date Reported: **12/4/2020**

CLIENT: Friedman & Bruya

Project: 011454

Lab ID: 2011535-005 **Collection Date:** 11/24/2020 12:30:00 PM


Client Sample ID: GW-MW104-112420 Matrix: Groundwater

Analyses Result RL Qual Units DF Date Analyzed

Ion Chromatography by EPA Method 300.0 Batch ID: 30566 Analyst: SS

Chloride 329 20.0 D mg/L 200 12/1/2020 12:14:00 PM

Original

Work Order: 2011535

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

011454

Ion Chromatography by EPA Method 300.0

Sample ID: MB-30566	SampType: MBLK	Units: mg/L	Prep Date:	11/30/2020	RunNo: 63748
Client ID: MRI KW	Potch ID: 20566		Analysis Data:	11/20/2020	SoaNo: 1290062

Client ID: **MBLKW** Batch ID: **30566** Analysis Date: **11/30/2020** SeqNo: **1280063**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Chloride ND 0.100

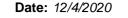
Sample ID: LCS-30566	SampType: LCS			Units: mg/L		Prep Da	te: 11/30/2	020	RunNo: 637	'48	
Client ID: LCSW	Batch ID: 30566					Analysis Da	te: 11/30/2	020	SeqNo: 128	0064	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.705	0.100	0.7500	0	94.0	90	110				

Sample ID: 2011542-001BDUP	SampType: DUP			Units: mg/L		Prep Date: 11/30/2	020	RunNo: 637	48	
Client ID: BATCH	Batch ID: 30566					Analysis Date: 11/30/2	020	SeqNo: 128	0071	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	270	0.100					269.3	0.0861	20	E

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 2011542-001BMS	SampType: MS			Units: mg/L		Prep Da	te: 11/30/2	020	RunNo: 637	48	
Client ID: BATCH	Batch ID: 30566					Analysis Da	te: 11/30/2	020	SeqNo: 128	80072	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	268	0.100	0.7500	269.3	-145	80	120				ES


NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 2011542-001BMSD	SampType: MSD			Units: mg/L		Prep Da	te: 11/30/2	020	RunNo: 637	' 48	
Client ID: BATCH	Batch ID: 30566					Analysis Da	te: 11/30/2	020	SeqNo: 128	80073	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	268	0.100	0.7500	269.3	-186	80	120	268.2	0.114	20	ES

Original Page 7 of 10

Work Order: 2011535

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

011454

Ion Chromatography by EPA Method 300.0

Client ID: **BATCH** Batch ID: **30566** Analysis Date: **11/30/2020** SeqNo: **1280073**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Project:

S - Analyte concentration was too high for accurate spike recovery(ies).

E - Estimated value. The amount exceeds the linear working range of the instrument.

Original Page 8 of 10

Sample Log-In Check List

Client Nam	ie: FB			Work Orde	er Numbei	: 2011535		
Logged by	Clare	Griggs		Date Rece	eived:	11/25/20	20 12:26:00 PM	
Chain of C	ustody							
1. Is Chain	of Custody of	complete?		Yes [✓	No \square	Not Present	
2. How was	s the sample	delivered?		Client				
Log In								
_	are present?	,		Yes	✓	No \square	NA \square	
4. Shipping	container/co	ooler in good condition?		Yes •	✓	No 🗌		
		nt on shipping container/cooler? for Custody Seals not intact)		Yes		No 🗌	Not Present ✓	
6. Was an	attempt mad	le to cool the samples?		Yes [✓	No \square	NA \square	
7. Were all	items receiv	ved at a temperature of >2°C to 6°C	*	Yes [✓	No 🗆	NA 🗌	
8. Sample	s) in proper o	container(s)?		Yes [✓	No 🗆		
Sufficier	nt sample vol	ume for indicated test(s)?		Yes [✓	No \square		
10. Are sam	ples properly	y preserved?		Yes	✓	No \square		
11. Was pre	servative ad	ded to bottles?		Yes		No 🗸	NA 🗌	
12. Is there	headspace ir	n the VOA vials?		Yes [No \square	NA 🗸	
13. Did all s	amples conta	ainers arrive in good condition(unbro	ken)?	Yes	✓	No \square		
14. Does pa	perwork mat	ch bottle labels?		Yes	✓	No \square		
15. Are mat	rices correctl	y identified on Chain of Custody?		Yes	✓	No \square		
16. Is it clea	r what analys	ses were requested?			✓	No 🗌		
17. Were al	holding time	es able to be met?		Yes	✓	No \square		
Special Ha	ndling (if	applicable)						
18. Was clie	ent notified of	f all discrepancies with this order?		Yes [No \square	NA 🗹	
Pe	rson Notified		Date:					
Ву	Whom:		Via:	☐ eMail	☐ Phon	e 🗌 Fax	☐ In Person	
Re	garding:							
Cli	ent Instructio	ns:						
19. Addition	al remarks:							_
Item Informat	<u>ion</u>							
	Ite	m# Temp °C						

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

	City, State, ZIP Seattle, WA 98119	Address 3012 16th Ave W	Company Friedman and Bruya, Inc. PROJECT NAME/NC	Send Report To Michael Erdahl
Plassa Email Results	ARKS	1041	ECT NAME/NO.	SCHOONINACIEN FREMOV

PROJECT NAME/NO. PROJECT NAME/NO. PO# RUSH REMARKS Please Fmail Results Please Fmail Results Please Fmail Results Return samples	Please Email Results
--	----------------------

Page 10 of 10

Fax (206) 283-5044	Seattle, WA 98119-2029 Ph. (206) 285-8282	3012 16th Avenue West	Friedman & Bruya, Inc.					004-111-401/MM-MG	GW-MW/03-112420	CHU11-10-101-112420	GW-MW102-112420	6W-MW/01-112420	Sample ID Lab	
Received by:	Received by:	Relinquished by						<u></u>				11/24/20	ab Date D Sampled	
	1 by: auch	John C.	SIGNATURE,					1230	11 30	1030	1030	0925	Time Sampled	
	Tun 1	Some	7 2					←				G,W	Matrix	
	Clu	Mach						4				+	# of jars	
	lawe	Michael Erdahl	7 P										Dioxins/Furans	
	Ma	ahl	PRINT NAME										ЕРН	
	Luc		MAM		4								VPH	A
	far		C ₂		+	-		×	×	×	×	×	chloride	ANALYSES REQUESTED
		Fr												ES REC
	The state of the s	Friedman & Bruya	CC											SEUÈ
		n & B	COMPANY											TED
		ruya	YY											
	ulse III	11/25/2019:40	DATE				***					: 4:	N.	
	mee!	04:40	TIME							.17			Notes	

Chr.Lunio1 - 115450 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. GW-MW107-01-112424 פת משושאר וושאש GW" MW103" 112420 をたたに したのろ しんだん Phone 3 to -828-1739 Email Heckerin Uspinser. or City, State, ZIP Local Report To Jeal Hecker 45h110 18- 1124 20 Address 5205 carparate contact SE Company Planer Technologics Corp. Sample ID Relinquished by Relinquished by Received by: (D D A-X 103 4× 10 12 ady NW ho 02 A.M. 20 05 A.X Lab ID AB | 11/25 € 98583 SIGNATURE 124 11/12/4 いなに Sampled Date SAMPLE CHAIN OF CUSTODY 13 1230 5 Time Sampled 100 Project specific RLs? - Yes / No PROJECT NAME SAMPLERS (signature) 24.0 REMARKS Hardes 100 mg Sample Type 7 了 个 2 === 2 互 Mirchael Edch 3 1 みので S. 4 E # of Jars きぐ PRINT NAME 5 NWTPH-Dx b Œ NWTPH-Gx BTEX EPA 8021 NWTPH-HCID INVOICE TO Hede ANALYSES REQUESTED VOCs EPA 8260 × Ç, ME PO# PAHs EPA 8270 25 PCBs EPA 8082 Samples received at 11-24-20 COMPANY < chlorida W Standard turnaround Default: Dispose after 30 days Other ☐ Archive samples Rush charges authorized by: Page #_ TURNAROUND TIME SAMPLE DISPOSAL グログ 三 之 PLETTLE, US-OLE, EDS, EDC, MASE, BTEX, n-husearch, 11/24/20 Carolina Hivin 18 LAS CHARACT DATE er netas Selvel Voca: Har all Sir CPH/VOH/ De midlene Notes : ¥ 307 1630 TIME HCIO

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 11, 2021

Joel Hecker, Project Manager Pioneer Technologies Corp 5205 Corporate Center Ct, Suite A Lacey, WA 98503

Dear Mr Hecker:

Included are the additional results from the testing of material submitted on November 24, 2020 from the Hardel, F&BI 011454 project. There are 3 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PTC0111R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 24, 2020 by Friedman & Bruya, Inc. from the Pioneer Technologies Corp Hardel, F&BI 011454 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Pioneer Technologies Corp
011454 -01	GW-MW101-112420
011454 -02	GW-MW102-112420
011454 -03	GW-MW102-01-112420
011454 -04	GW-MW103-112420
011454 -05	GW-MW104-112420
011454 -06	TB-112420

Sample GW-MW104-112420 was sent to Fremont Analytical for EPH analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/11/21 Date Received: 11/24/20

Project: Hardel, F&BI 011454

Date Extracted: 11/25/20 Date Analyzed: 11/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 56-165)
GW-MW101-112420 011454-01	ND	D	ND	ip
Method Blank 00-2591 MB2	ND	ND	ND	79

ND - Material not detected at or above 0.2 mg/L gas, 0.5 mg/L diesel and 0.5 mg/L heavy oil.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 011454

Work Order Number: 2012157

January 07, 2021

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 12/9/2020 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 01/07/2021

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 011454 **Work Order:** 2012157

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2012157-001 GW-MW104-112420 11/24/2020 12:30 PM 12/09/2020 3:08 PM

Case Narrative

WO#: **2012157**Date: **1/7/2021**

CLIENT: Friedman & Bruya

Project: 011454

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2012157**

Date Reported: 1/7/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

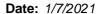
Analytical Report

Work Order: **2012157**Date Reported: **1/7/2021**

Client: Friedman & Bruya Collection Date: 11/24/2020 12:30:00 PM

Project: 011454

Lab ID: 2012157-001 Matrix: Groundwater


Client Sample ID: GW-MW104-112420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocar	bons by NWEPI	1		Bato	h ID: 30	682 Analyst: IH
Aliphatic Hydrocarbon (C8-C10)	ND	158	*H	μg/L	1	1/7/2021 2:04:08 AM
Aliphatic Hydrocarbon (C10-C12)	ND	79.0	Н	μg/L	1	1/7/2021 2:04:08 AM
Aliphatic Hydrocarbon (C12-C16)	ND	79.0	Н	μg/L	1	1/7/2021 2:04:08 AM
Aliphatic Hydrocarbon (C16-C21)	ND	79.0	Н	μg/L	1	1/7/2021 2:04:08 AM
Aliphatic Hydrocarbon (C21-C34)	ND	79.0	Н	μg/L	1	1/7/2021 2:04:08 AM
Aromatic Hydrocarbon (C8-C10)	ND	158	*H	μg/L	1	1/7/2021 2:04:08 AM
Aromatic Hydrocarbon (C10-C12)	241	79.0	Н	μg/L	1	1/7/2021 2:04:08 AM
Aromatic Hydrocarbon (C12-C16)	654	79.0	Н	μg/L	1	1/7/2021 2:04:08 AM
Aromatic Hydrocarbon (C16-C21)	528	79.0	Н	μg/L	1	1/7/2021 2:04:08 AM
Aromatic Hydrocarbon (C21-C34)	ND	79.0	Н	μg/L	1	1/7/2021 2:04:08 AM
Surr: 1-Chlorooctadecane	46.3	60 - 140	SH	%Rec	1	1/7/2021 2:04:08 AM
Surr: o-Terphenyl	72.3	60 - 140	Н	%Rec	1	1/7/2021 2:04:08 AM

NOTES:

^{* -} Flagged value is not within established control limits.

S - Outlying surrogate recovery(ies) observed.

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

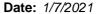
011454

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: MB-30682	SampType: MBLK			Units: µg/L		Prep Da	te: 12/10/ 2	2020	RunNo: 64	524	
Client ID: MBLKW	Batch ID: 30682				Analysis Date: 1/6/2021			SeqNo: 12 9	97760		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	160		0	0						*
Aromatic Hydrocarbon (C10-C12)	ND	79.9		0	0						
Aromatic Hydrocarbon (C12-C16)	ND	79.9		0	0						
Aromatic Hydrocarbon (C16-C21)	ND	79.9		0	0						
Aromatic Hydrocarbon (C21-C34)	ND	79.9		0	0						
Surr: o-Terphenyl	306		399.4		76.7	60	140				
NOTEC:											

NOTES:

Project:


^{* -} Flagged value is not within established control limits.

Sample ID: MB-30682	SampType: MBLK			Units: µg/L	Prep Date: 12/10/2020)20	RunNo: 645	525		
Client ID: MBLKW	Batch ID: 30682				Analysis Date: 1/6/2021			SeqNo: 12 9			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	160		0	0						*
Aliphatic Hydrocarbon (C10-C12)	ND	79.9		0	0						
Aliphatic Hydrocarbon (C12-C16)	ND	79.9		0	0						
Aliphatic Hydrocarbon (C16-C21)	ND	79.9		0	0						
Aliphatic Hydrocarbon (C21-C34)	ND	79.9		0	0						
Surr: 1-Chlorooctadecane NOTES:	320		399.4		80.0	60	140				

^{* -} Flagged value is not within established control limits.

Sample ID: LCS-30682	SampType: LCS			Units: µg/L		Prep Da	te: 12/10/2	020	RunNo: 645	524	
Client ID: LCSW	Batch ID: 30682				Analysis Date: 1/6/2021				SeqNo: 129		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	453	158	987.9	0	45.9	70	130				S
Aromatic Hydrocarbon (C10-C12)	366	79.0	494.0	0	74.1	70	130				
Aromatic Hydrocarbon (C12-C16)	354	79.0	494.0	0	71.7	70	130				
Aromatic Hydrocarbon (C16-C21)	560	79.0	494.0	0	113	70	130				
Aromatic Hydrocarbon (C21-C34)	562	79.0	494.0	0	114	70	130				

Original Page 6 of 11

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

011454

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: LCS-30682	SampType: LCS		1	Jnits: µg/L	Prep Da	te: 12/10/2020	RunNo: 64524	
Client ID: LCSW	Batch ID: 30682				Analysis Da	te: 1/6/2021	SeqNo: 1297761	
Analyte	Result	RL	SPK value SPK	Ref Val %REC	LowLimit	HighLimit RPD Re	ef Val %RPD RPDLimit	Qual
Surr: o-Terphenyl	349		395.2	88.4	60	140		

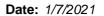
NOTES:

Project:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Sample ID: LCS-30682	SampType: LCS			Units: µg/L		Prep Da	te: 12/10/2020	RunNo: 64525	
Client ID: LCSW	Batch ID: 30682					Analysis Da	te: 1/6/2021	SeqNo: 1297779	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD R	Ref Val %RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	440	158	987.9	0	44.5	70	130		S
Aliphatic Hydrocarbon (C10-C12)	375	79.0	494.0	0	76.0	70	130		
Aliphatic Hydrocarbon (C12-C16)	417	79.0	494.0	0	84.5	70	130		
Aliphatic Hydrocarbon (C16-C21)	442	79.0	494.0	0	89.6	70	130		
Aliphatic Hydrocarbon (C21-C34)	406	79.0	494.0	0	82.3	70	130		
Surr: 1-Chlorooctadecane	321		395.2		81.3	60	140		

NOTES:


S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Sample ID: 2012115-001AMS	SampType: MS			Units: µg/L			te: 12/10/2020	RunNo: 645		
Client ID: BATCH	Batch ID: 30682					Analysis Da	te: 1/6/2021	SeqNo: 129	7763	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	216	159	993.9	0	21.7	70	130			S
Aromatic Hydrocarbon (C10-C12)	170	79.5	496.9	0	34.2	70	130			S
Aromatic Hydrocarbon (C12-C16)	324	79.5	496.9	0	65.2	70	130			S
Aromatic Hydrocarbon (C16-C21)	315	79.5	496.9	0	63.4	70	130			S
Aromatic Hydrocarbon (C21-C34)	456	79.5	496.9	71.49	77.3	70	130			
Surr: o-Terphenyl	310		397.6		77.9	60	140			

NOTES:

Original Page 7 of 11

S - Outlying spike recovery(ies) observed.

Project:

QC SUMMARY REPORT

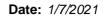
CLIENT: Friedman & Bruya

011454

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: 2012115-001AMS	SampType: MS			Units: µg/L		Prep Da	te: 12/10/2	020	RunNo: 645	525	
Client ID: BATCH	Batch ID: 30682				Analysis Date: 1/6/2021				SeqNo: 1297781		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	352	159	993.9	0	35.4	70	130				S
Aliphatic Hydrocarbon (C10-C12)	540	79.5	496.9	0	109	70	130				
Aliphatic Hydrocarbon (C12-C16)	419	79.5	496.9	0	84.3	70	130				
Aliphatic Hydrocarbon (C16-C21)	404	79.5	496.9	0	81.2	70	130				
Aliphatic Hydrocarbon (C21-C34)	491	79.5	496.9	0	98.8	70	130				
Surr: 1-Chlorooctadecane	303		397.6		76.3	60	140				
NOTES:											

S - Outlying spike recovery observed.


Sample ID: 2012115-001AMSD	SampType: MSD			Units: µg/L		Prep Da	te: 12/10/2	2020	RunNo: 64	524	
Client ID: BATCH	Batch ID: 30682				Analysis Date: 1/6/2021 SeqNo: 1297764					97764	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	252	158	986.1	0	25.6	70	130	216.1	15.4	30	S
Aromatic Hydrocarbon (C10-C12)	218	78.9	493.0	0	44.3	70	130	170.2	24.8	30	S
Aromatic Hydrocarbon (C12-C16)	340	78.9	493.0	0	69.0	70	130	323.8	4.90	30	S
Aromatic Hydrocarbon (C16-C21)	381	78.9	493.0	0	77.2	70	130	315.0	18.9	30	
Aromatic Hydrocarbon (C21-C34)	546	78.9	493.0	71.49	96.2	70	130	455.6	18.0	30	
Surr: o-Terphenyl	291		394.4		73.7	60	140		0		

NOTES:

S - Outlying spike recovery(ies) observed.

Sample ID: 2012115-001AMSD	Sample ID: 2012115-001AMSD SampType: MSD			Units: µg/L				020	RunNo: 645		
Client ID: BATCH	Batch ID: 30682					Analysis Da	te: 1/6/202	SeqNo: 129			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	389	158	986.1	0	39.4	70	130	351.6	10.0	30	S
Aliphatic Hydrocarbon (C10-C12)	472	78.9	493.0	0	95.8	70	130	540.2	13.4	30	
Aliphatic Hydrocarbon (C12-C16)	423	78.9	493.0	0	85.8	70	130	419.1	0.978	30	
Aliphatic Hydrocarbon (C16-C21)	424	78.9	493.0	0	86.1	70	130	403.7	5.00	30	
Aliphatic Hydrocarbon (C21-C34)	476	78.9	493.0	0	96.5	70	130	491.0	3.15	30	

Original Page 8 of 11

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

011454

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: 2012115-001AMSD	SampType: MSD		Units: µg/L		Prep Da	te: 12/10/2020		RunNo: 645	525	
Client ID: BATCH	Batch ID: 30682				Analysis Da	te: 1/6/2021		SeqNo: 129	7782	
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit	HighLimit RPD	Ref Val	%RPD	RPDLimit	Qual
Surr: 1-Chlorooctadecane	319		394.4	81.0	60	140		0		

NOTES:

Project:

Original Page 9 of 11

S - Outlying spike recovery observed.

Sample Log-In Check List

С	lient Name:	FB			Work O	rder Numb	per: 2012157		
Lo	ogged by:	Gabrielle Coeuille			Date Re	ceived:	12/9/2020	3:08:00 PM	
<u>Cha</u>	in of Custo	<u>ody</u>							
1.	Is Chain of C	ustody complete?			Yes	•	No \square	Not Present	
2.	How was the	sample delivered?			Clien	<u>ıt</u>			
<u>Log</u>	ln .								
	Coolers are p	resent?			Yes	✓	No 🗆	NA \square	
							_		
4.	Shipping conf	ainer/cooler in good condition	1?		Yes	✓	No 📙		
5.		s present on shipping contain ments for Custody Seals not			Yes		No 📙	Not Present ✓	
6.	Was an atten	npt made to cool the samples	?		Yes	✓	No 🗆	NA 🗆	
7.	Were all item	s received at a temperature o	f >2°C to 6°C	*	Yes	✓	No 🗌	NA \square	
8.	Sample(s) in	proper container(s)?			Yes	✓	No 🗌		
		nple volume for indicated test	(s)?		Yes	✓	No 🗆		
10.	Are samples	properly preserved?			Yes	✓	No 🗌		
11.	Was preserva	ative added to bottles?			Yes	✓	No 🗌	NA \square	
12	Is there head	space in the VOA vials?			Yes		No 🗆	HCL NA ✓	
		es containers arrive in good c	ondition(unbro	oken)?	Yes	✓	No 🗌		
		ork match bottle labels?			Yes	✓	No \square		
15.	Are matrices	correctly identified on Chain o	of Custody?		Yes	✓	No 🗌		
_		at analyses were requested?	·		Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?			Yes		No 🗸		
<u>Spe</u>	cial Handli	ng (if applicable)							
18.	Was client no	tified of all discrepancies with	this order?		Yes		No 🗌	NA 🗸	
	Person	Notified:		Date:					
	By Who	m:		Via:	еМа	il 🗌 Pho	one 🗌 Fax 🏻	In Person	
	Regardi	· ·							
	Client In	structions:							
19.	Additional rer	narks:							
	Sample	received out of hold							
ltem	<u>Information</u>								
		Item #	Temp °C						
	Sample 1		2.3						

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Address Company City, State, ZIP Seattle, WA 98119 Send Report To Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave W SUBCONTRACTER

Send Report To Michael Erdahl	SUBCUNIKACIBK WEMONT	At the	TURNAROUND TIM
Company Friedman and Bruya, Inc.	PROJECT NAME/NO.	PO#	XStandard TAT
Address 3012 16th Ave W	HSH110	A-488	Rush charges authorized by
City, State, ZIP Seattle, WA 98119	REMARKS		SAMPLE DISPOSAL
Phone #(206) 285-8282_merdahl@friedmanandbruya.com	Please Email Results		Return samples Will call with instructions

Page 11 of 11

Ph. (206) 285-8282 Pax (206) 283-5044	1012 16th Avenue West	riedman & Bruya, Inc.	024211-401 MW - MX	Sample ID	
	_			Lab ID	
Relinquished by:	Kelingueshed by		11/24/20 1230	Date Sampled	
*(**	No No	SIGNATURE	1230	Time Sampled	
	f	7	aw	Matrix	
5	Mich			# of jars	
avren Baken	Michael Erdahl	q		Dioxins/Furans	
So.	ahl	PRINT NAME		ЕРН	
Kan		MAN		VPH	
		æ	×	EPH	ANAI
					YSE
1	Fri				ANALYSES REQUESTED
A	Friedman & Bruya	CC			SEUR
	n & B	COMPANY			TED
	ruya	YN			
13/1/20 1508	12/9/20 1430	DATE		Z	
1208	1430	HIME		Notes	

Report To Jose Hecky

Phone 360-828-1739 Email Heckey @ Uspinson in City, State, ZIP Locas Address Company Planey Technologicas Cock Stol Charact Control Ct (E E S 98533

SAMPLERS (signature) PROJECT NAME b ٤

SAMPLE CHAIN OF CUSTODY

ME

#04

11-24-20

Page # TURNAROUND TIME roal/Ros

X Standard turnaround Rush charges authorized by:

They Huds

INVOICE TO

SAMPLE DISPOSAL

O Archive samples
O Other
Default: Dispose after 30 days

Project specific RLs? - Yes / No

REMARKS

Harder

Sample II	14.75	, ç	2 6	3 5	ş		1	<u> </u>		Ti	T	Ta	10		G:		
FRINT NAME Time Sampled Type Jars Jar	·	2029	· · 	ن ن			A. C.		en de la company de la comp	18-112420	שבונרון - וופושות ש	W'MW163- 112476	CII - 10-701MU-MS	5W- HW182- 112474 \$	-Lumal - 112470	Sample ID	
FRINT NAME Time Sampled Type Jars Jar	teceived by	Kelinquish	Legis and the second se	Kennquish						01			5		0	<u>.</u>	-
FRINT NAME Time Sampled Type Jars Jar	, F	ed by:	1/2	Jka ps	Sic					A PD	A-M	# X	3 4-8	2 A.W.	₽ X Z	E ∃	
Sampled Type Jars Popular Hold Type Jars Property Jars Pro		**************************************	Mar	P WIS	NATURE					3	भूतमा		345	W.hz.n	111/24	1	
PRINT NAME ANALYSES NWTPH-Dx NWTPH-HCID NWTPH-HCID NWTPH-HCID POBs EPA 8270 POBs EPA 8082			1	18					,		1230	119.	Je/Je	1035	Tro 4	Time Sampled	
PRINT NAME PRINT			Z. rofes	यंद						OF THE PERSON NAMED IN COLUMN TO PERSON NAME	五个		l	es hi	7	Sample Type	į
NWTPH-Gx BTEX EPA 8021 NWTPH-HCID NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	Andrew Communication Communica		E	He of	PRIN		:			4	6.0	E		E	642	# of Jars	-
BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082			E)	NA								<u> </u>	<u> </u>	<u>×</u>	NWTPH-Dx	
ANALYSES VOCS EPA 8260 VOCS EPA 8260 PAHS EPA 8270 PCBS EPA 8082 PCS EPA 8082 PC					B	-	<u> </u>		ļ		\$		-			NWTPH-G _X	
ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED PAHS EPA 8270 PAHS EPA 8082 PCBS EPA 8082 PCBS EPA 8082 PCBS EPA 8082 Argaic/Silver Argaic/Silver Argaic/Silver Argaic/Silver Argaic/Silver HCIO						<u> </u>	ļ		ļ							BTEX EPA 8021	
PAHS EPA 8270 POSS J. 1. 0250 PAHS EPA 8270 PCBS EPA 8082 PCBS				1		-							<u></u>				,
PAHS EPA 8270 SESS BEQUESTED PCBS EPA 8082 PCBS E			ļ 	<u> </u>		-			-	<u> </u>	7		-		>	VOCs EPA 8260	NA
HCIP			#	72							Ç-		:		\times		YS.
HCIP			100	7		Ţo.							:			PCBs EPA 8082	SR
HCIP			ľ		8	li.					-				><	Disselved Across / Silver	EQU
HCIP					AN	les					é-				X	,	EST
POLETICE WOTES FILLY PILLY WAS FILLY WAS F					۲	Tecc				,	<					FOU	B
Sarphy Character of Color of C	1		,	,		lve.								(5 3	HUD	
Notes Setud Vac Setud Vac CEPT, A-May C. A-May CEPT, May C. C. A-May CEPT, May C. C. A-May CEPT, May C.			=======================================	=		22	3	20	رځ	****	*******			o th	vo s	8 8	
100 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		٠	1/2	7	ATE		\$	i .	£.		Ü	泛		£,%	73	2 5	1
一片。多是我是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一					\vdash	l'a	1	1	76		E)	70		T.C.	7 8	Sign and	
			1630	2017	BMILL	M		5	25		HC ID	25.	,	385	he same,	Local A	

, e.

January 2021 Investigation Activities

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 20, 2021

Joel Hecker, Project Manager Pioneer Technologies Corp 5205 Corporate Center Ct, Suite A Lacey, WA 98503

Dear Mr Hecker:

Included are the results from the testing of material submitted on January 8, 2021 from the Hardel, F&BI 101069 project. There are 29 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PTC0120R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 8, 2021 by Friedman & Bruya, Inc. from the Pioneer Technologies Corp Hardel, F&BI 101069 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Pioneer Technologies Corp
101069 -01	GW-B201-010721
101069 -02	GW-B202-010721
101069 -03	S-B202-5-6-010721
101069 -04	GW-B204-010721
101069 -05	S-B204-5-7-010721
101069 -06	TB-010721
101069 -07	WCS-010721

Naphthalene was detected in the 8270E analysis of the soil method blank. The data were flagged as due to laboratory contamination.

The 8270E calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several analytes. In addition, acetone in the laboratory control sample exceeded the acceptance criteria. The analytes were not detected in the sample therefore the data were acceptable.

Per the chain of custody, sample WCS-010721 was reported in a separate report.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

Date Extracted: 01/08/20 Date Analyzed: 01/11/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
S-B202-5-6-010721 101069-03 1/5	120	92
Method Blank	<5	93

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

Date Extracted: 01/11/21 Date Analyzed: 01/12/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
GW-B201-010721 101069-01	110	96
GW-B202-010721 101069-02	1,800	101
GW-B204-010721 101069-04	<100	66
TB-010721 101069-06	<100	94
Method Blank _{01-52 MB}	<100	98

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

Date Extracted: 01/08/21 Date Analyzed: 01/08/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
S-B202-5-6-010721 101069-03	2,600 x	600 x	83
Method Blank _{01-75 MB}	<50	<250	92

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

Date Extracted: 01/08/20 Date Analyzed: 01/08/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
GW-B201-010721 101069-01	140 x	<250	98
GW-B202-010721 101069-02	5,000 x	610 x	114
GW-B204-010721 101069-04	98 x	<250	97
Method Blank	<50	<250	118

ENVIRONMENTAL CHEMISTS

Client Sample ID:	S-B202-5-6-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/08/21	Lab ID:	101069-03 1/500
Date Analyzed:	01/08/21	Data File:	010817.D
Matrix:	Soil	Instrument:	GCMS9
Units:	mg/kg (ppm) Dry Weight	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	40 d	32	100
Phenol-d6	53 d	46	107
Nitrobenzene-d5	70 d	24	127
2-Fluorobiphenyl	90 d	46	108
2,4,6-Tribromophenol	333 d	25	127
Terphenyl-d14	100 d	50	150

100 d
Concentration mg/kg (ppm)
120
63
36
<1
74
89
210
29
88
43
12
11
2.5
4.1
1.6
<1
<1
<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Pioneer Technologies Corp
Date Received:	Not Applicable	Project:	Hardel, F&BI 101069

 Date Extracted:
 01/08/21
 Lab ID:
 01-74 mb 2 1/5

 Date Analyzed:
 01/08/21
 Data File:
 010809.D

 Matrix:
 Soil
 Instrument:
 GCMS9

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	92	32	100
Phenol-d6	97	46	107
Nitrobenzene-d5	110	24	127
2-Fluorobiphenyl	106	46	108
2,4,6-Tribromophenol	96	25	127
Terphenyl-d14	111	50	150

Concentration Compounds: mg/kg (ppm) Naphthalene 0.010 lc

Naphthalene 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	GW-B201-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-01
Date Analyzed:	01/11/21	Data File:	011113.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

Q	0/ P	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	14 ip	15	99
Phenol-d6	13	11	65
Nitrobenzene-d5	87	10	145
2-Fluorobiphenyl	90	16	138
2,4,6-Tribromophenol	61	12	132
Terphenyl-d14	96	35	138

2,4,6-Tribromophenol Terphenyl-d14	61 96	$\begin{array}{c} 12 \\ 35 \end{array}$	
	Concentration		
Compounds:	ug/L (ppb)		
Naphthalene	0.22		
2-Methylnaphthalene	< 0.2		
1-Methylnaphthalene	< 0.2		
Acenaphthylene	< 0.02		
Acenaphthene	5.1		
Fluorene	1.3		
Phenanthrene	0.13		
Anthracene	0.034		
Fluoranthene	0.049		
Pyrene	0.031		
Benz(a)anthracene	< 0.02		
Chrysene	< 0.02		
Benzo(a)pyrene	< 0.02		
Benzo(b)fluoranthene	< 0.02		
Benzo(k)fluoranthene	< 0.02		
Indeno(1,2,3-cd)pyrene	< 0.02		
Dibenz(a,h)anthracene	< 0.02		
Benzo(g,h,i)perylene	< 0.04		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	GW-B202-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-02 1/5
Date Analyzed:	01/11/21	Data File:	011116.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM
Offics.	ug/L (ppb)	Operator.	V 1V1

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	20 d	15	99
Phenol-d6	14 d	11	65
Nitrobenzene-d5	62 d	10	145
2-Fluorobiphenyl	56 d	16	138
2,4,6-Tribromophenol	73 d	12	132
Terphenyl-d14	71 d	35	138

 $0.48 \mathrm{~ca}$

1.0

Terphenyl-d14	71 d
Compounds:	Concentration ug/L (ppb)
Naphthalene	440 ve
2-Methylnaphthalene	$200 \mathrm{\ ve}$
1-Methylnaphthalene	120
Acenaphthylene	2.2
Acenaphthene	190 ve
Fluorene	210 ve
Phenanthrene	380 ve
Anthracene	55
Fluoranthene	150
Pyrene	76
Benz(a)anthracene	24
Chrysene	20
Benzo(a)pyrene	5.8
Benzo(b)fluoranthene	9.5
Benzo(k)fluoranthene	3.7
Indeno(1,2,3-cd)pyrene	1.4 ca

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	GW-B202-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-02 1/100
Date Analyzed:	01/12/21	Data File:	011210.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	13 d	15	99
Phenol-d6	7 d	11	65
Nitrobenzene-d5	50 d	10	145
2-Fluorobiphenyl	50 d	16	138
2,4,6-Tribromophenol	$247~\mathrm{d}$	12	132
Terphenyl-d14	60 d	35	138

<2

<2

<4

Terpnenyi-d14	60 a
Compounds:	Concentration ug/L (ppb)
Naphthalene	560
2-Methylnaphthalene	200
1-Methylnaphthalene	120
Acenaphthylene	<2
Acenaphthene	210
Fluorene	230
Phenanthrene	430
Anthracene	54
Fluoranthene	170
Pyrene	74
Benz(a)anthracene	21
Chrysene	18
Benzo(a)pyrene	4.8
Benzo(b)fluoranthene	8.5
Benzo(k)fluoranthene	3.3

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	GW-B204-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-04
Date Analyzed:	01/11/21	Data File:	011114.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol	25	15	99
Phenol-d6	16	11	65
Nitrobenzene-d5	83	10	145
2-Fluorobiphenyl	84	16	138
2,4,6-Tribromophenol	95	12	132
Terphenyl-d14	89	35	138

Terphenyl-d14	95 89	$\frac{12}{35}$	1
Compounds:	Concentration ug/L (ppb)		
Naphthalene	< 0.2		
2-Methylnaphthalene	< 0.2		
1-Methylnaphthalene	< 0.2		
Acenaphthylene	< 0.02		
Acenaphthene	1.8		
Fluorene	0.81		
Phenanthrene	0.26		
Anthracene	0.097		
Fluoranthene	0.53		
Pyrene	0.31		
Benz(a)anthracene	0.064		
Chrysene	0.065		
Benzo(a)pyrene	0.055		
Benzo(b)fluoranthene	0.085		
Benzo(k)fluoranthene	0.031		
Indeno(1,2,3-cd)pyrene	0.059 ca		
Dibenz(a,h)anthracene	< 0.02		
Benzo(g,h,i)perylene	0.085		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Pioneer Technologies Corp
Date Received:	Not Applicable	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	01-078 mb2
Date Analyzed:	01/11/21	Data File:	011108.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	23	15	99
Phenol-d6	15	11	65
Nitrobenzene-d5	96	10	145
2-Fluorobiphenyl	96	16	138
2,4,6-Tribromophenol	81	12	132
Terphenyl-d14	106	35	138

Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Acenaphthylene < 0.02 Acenaphthene < 0.02 Fluorene < 0.02 < 0.02 Phenanthrene Anthracene < 0.02 Fluoranthene < 0.02 Pyrene < 0.02 Benz(a)anthracene < 0.02 Chrysene < 0.02 Benzo(a)pyrene < 0.02 Benzo(b)fluoranthene < 0.02 Benzo(k)fluoranthene < 0.02 Indeno(1,2,3-cd)pyrene < 0.02 Dibenz(a,h)anthracene < 0.02 Benzo(g,h,i)perylene < 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: S-B202-5-6-010721 Client: Pioneer Technologies Corp Date Received: 01/08/21 Project: Hardel, F&BI 101069

Date Extracted: 01/08/21 Lab ID: 101069-03 Date Analyzed: 01/08/21 Data File: 010817.D Soil Matrix: Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCM Operator:

Upper Lower Limit: Surrogates: % Recovery: Limit: 1.2-Dichloroethane-d4 84 118 95 Toluene-d8 92 86 117 4-Bromofluorobenzene 90 96 112

Concentration mg/kg (ppm) Compounds: Vinyl chloride < 0.05 Hexane < 0.25 Methyl t-butyl ether (MTBE) < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 Benzene < 0.03 Trichloroethene < 0.02 Toluene < 0.05 Tetrachloroethene < 0.025 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene < 0.05 m,p-Xylene < 0.1 o-Xylene < 0.05 Naphthalene 15

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Pioneer Technologies Corp Date Received: Not Applicable Project: Hardel, F&BI 101069

Date Extracted: 01/08/21 Lab ID: 01-023 mb Date Analyzed: 01/08/21 Data File: 010809.D Soil Matrix: Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCM Operator:

Upper Lower Limit: Surrogates: % Recovery: Limit: 1.2-Dichloroethane-d4 84 104 118 Toluene-d8 103 86 117 4-Bromofluorobenzene 101 90 112

Concentration mg/kg (ppm) Compounds: Vinyl chloride < 0.05 Hexane < 0.25 Methyl t-butyl ether (MTBE) < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 Benzene < 0.03 Trichloroethene < 0.02 Toluene < 0.05 Tetrachloroethene < 0.025 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene < 0.05 m,p-Xylene < 0.1 o-Xylene < 0.05 Naphthalene < 0.05

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-B201-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-01
Date Analyzed:	01/11/21	Data File:	011118.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	78	126
Toluene-d8	104	87	115
4-Bromofluorobenzene	100	92	112

4-Bromofluorobenzene	100	92
Compounds:	Concentration ug/L (ppb)	
Vinyl chloride	< 0.2	
Hexane	<5	
Methyl t-butyl ether (MTBE)	<1	
cis-1,2-Dichloroethene	<1	
1,2-Dichloroethane (EDC)	<1	
Benzene	0.51	
Trichloroethene	< 0.7	
Toluene	5.0	
Tetrachloroethene	<1	
1,2-Dibromoethane (EDB)	< 0.05	
Ethylbenzene	1.2	
m,p-Xylene	6.0	
o-Xylene	2.1	
Naphthalene	<1	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-B202-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-02
Date Analyzed:	01/11/21	Data File:	011119.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	78	126
Toluene-d8	104	87	115
4-Bromofluorobenzene	98	92	112

4-Bromofluorobenzene	98	92
Compounds:	Concentration ug/L (ppb)	
Vinyl chloride	< 0.2	
Hexane	<5	
Methyl t-butyl ether (MTBE)	<1	
cis-1,2-Dichloroethene	<1	
1,2-Dichloroethane (EDC)	<1	
Benzene	< 0.35	
Trichloroethene	< 0.7	
Toluene	3.0	
Tetrachloroethene	<1	
1,2-Dibromoethane (EDB)	< 0.05	
Ethylbenzene	4.3	
m,p-Xylene	10	
o-Xylene	5.2	
Naphthalene	1,300 ve	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-B202-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-02 1/100
Date Analyzed:	01/11/21	Data File:	011123.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	78	126
Toluene-d8	96	87	115
4-Bromofluorobenzene	97	92	112

4-Bromofluorobenzene	97	92
	Concentration	
Compounds:	ug/L (ppb)	
Vinyl chloride	<20	
Hexane	< 500	
Methyl t-butyl ether (MTBE)	<100	
cis-1,2-Dichloroethene	<100	
1,2-Dichloroethane (EDC)	<100	
Benzene	<35	
Trichloroethene	< 70	
Toluene	<100	
Tetrachloroethene	<100	
1,2-Dibromoethane (EDB)	<5	
Ethylbenzene	<100	
m,p-Xylene	<200	
o-Xylene	<100	
Naphthalene	1,700	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-B204-010721	Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-04
Date Analyzed:	01/11/21	Data File:	011117.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	78	126
Toluene-d8	106	87	115
4-Bromofluorobenzene	102	92	112

< 0.2	
<5	
<1	
<1	
<1	
< 0.35	
< 0.7	
1.6	
<1	
< 0.05	
<1	
2.1	
<1	
<1	
	<5 <1 <1 <1 <0.35 <0.7 1.6 <1 <0.05 <1 2.1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:		Client:	Pioneer Technologies Corp
Date Received:	01/08/21	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	101069-06
Date Analyzed:	01/11/21	Data File:	011116.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	78	126
Toluene-d8	104	87	115
4-Bromofluorobenzene	99	92	112

99	92
Concentration ug/L (ppb)	
< 0.2	
<5	
<1	
<1	
<1	
< 0.35	
< 0.7	
<1	
<1	
< 0.05	
<1	
<2	
<1	
<1	
	Concentration ug/L (ppb) <0.2 <5 <1 <1 <1 <0.35 <0.7 <1 <1 <0.05 <1 <2 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Pioneer Technologies Corp
Date Received:	Not Applicable	Project:	Hardel, F&BI 101069
Date Extracted:	01/11/21	Lab ID:	01-026 mb
Date Analyzed:	01/11/21	Data File:	011108.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	85	117
Toluene-d8	104	88	112
4-Bromofluorobenzene	105	90	111

4-Bromofluorobenzene	105	90	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	<0.05 j		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 101067-02 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	95	61-153	-

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 101070-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Gasoline	ug/L (ppb)	1,000	102	69-134		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 101044-01 (Matrix Spike)

v	`	1 /	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5.000	<50	86	88	64-133	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	94	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	104	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 101062-01 1/5 (Matrix Spike)

			Sample	Percent	Percent		
Analyte	Reporting Units	Spike Level	Result (Wet wt)	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
		Level	(wet wt)	MIO	MISD	Officeria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	84	80	50-150	5
2-Methylnaphthalene	mg/kg (ppm)	0.83	0.022	87	82	50-150	6
1-Methylnaphthalene	mg/kg (ppm)	0.83	0.019	87	82	50-150	6
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	95	91	50-150	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	90	87	50-150	3
Fluorene	mg/kg (ppm)	0.83	< 0.01	96	93	50-150	3
Phenanthrene	mg/kg (ppm)	0.83	0.016	98	93	50-150	5
Anthracene	mg/kg (ppm)	0.83	< 0.01	98	93	50-150	5
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	105	103	50-150	2
Pyrene	mg/kg (ppm)	0.83	< 0.01	97	93	50-150	4
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	102	98	50-150	4
Chrysene	mg/kg (ppm)	0.83	< 0.01	102	99	50-150	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	104	99	50-150	5
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	100	95	50-150	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	101	97	50-150	4
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	113	117	50-150	3
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	112	116	50-150	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	111	115	50-150	4

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	85	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	89	70-130
1-Methylnaphthalene	mg/kg (ppm)	0.83	89	70-130
Acenaphthylene	mg/kg (ppm)	0.83	98	70-130
Acenaphthene	mg/kg (ppm)	0.83	93	70-130
Fluorene	mg/kg (ppm)	0.83	98	70-130
Phenanthrene	mg/kg (ppm)	0.83	97	70-130
Anthracene	mg/kg (ppm)	0.83	98	70-130
Fluoranthene	mg/kg (ppm)	0.83	104	70-130
Pyrene	mg/kg (ppm)	0.83	96	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	103	70-130
Chrysene	mg/kg (ppm)	0.83	106	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	104	70-130
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	99	70-130
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	99	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	113	70-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	116	70-130
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	114	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	80	80	56-100	0
2-Methylnaphthalene	ug/L (ppb)	5	83	83	60-104	0
1-Methylnaphthalene	ug/L (ppb)	5	83	84	60-104	1
Acenaphthylene	ug/L (ppb)	5	91	91	70-130	0
Acenaphthene	ug/L (ppb)	5	87	87	65-122	0
Fluorene	ug/L (ppb)	5	93	93	70-130	0
Phenanthrene	ug/L (ppb)	5	91	93	70-130	2
Anthracene	ug/L (ppb)	5	93	97	70-130	4
Fluoranthene	ug/L (ppb)	5	99	105	70-130	6
Pyrene	ug/L (ppb)	5	88	95	70-130	8
Benz(a)anthracene	ug/L (ppb)	5	94	100	70-130	6
Chrysene	ug/L (ppb)	5	95	101	70-130	6
Benzo(a)pyrene	ug/L (ppb)	5	105	110	70-130	5
Benzo(b)fluoranthene	ug/L (ppb)	5	99	104	70-130	5
Benzo(k)fluoranthene	ug/L (ppb)	5	106	109	70-130	3
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	105	116	57-141	10
Dibenz(a,h)anthracene	ug/L (ppb)	5	104	115	57-137	10
Benzo(g,h,i)perylene	ug/L (ppb)	5	100	113	50-143	12

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 101093-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	1.0	< 0.05	52	67	10-79	25 vo
Hexane	mg/kg (ppm)	1.0	< 0.25	65	82	10-106	23 vo
Methylene chloride	mg/kg (ppm)	1.0	< 0.5	55	48	10-139	14
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1.0	< 0.05	79	99	18-131	22 vo
cis-1,2-Dichloroethene	mg/kg (ppm)	1.0	< 0.05	76	95	18-129	22 vo
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1.0	< 0.05	88	110	19-138	22 vo
Benzene	mg/kg (ppm)	1.0	< 0.03	76	97	15-129	24 vo
Trichloroethene	mg/kg (ppm)	1.0	< 0.02	77	97	14-127	23 vo
Toluene	mg/kg (ppm)	1.0	< 0.05	75	93	15-129	21 vo
Tetrachloroethene	mg/kg (ppm)	1.0	< 0.025	73	91	20-121	22 vo
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1.0	< 0.05	78	94	21-130	19
Ethylbenzene	mg/kg (ppm)	1.0	< 0.05	77	97	23-133	23 vo
m,p-Xylene	mg/kg (ppm)	2.0	< 0.1	77	97	19-134	23 vo
o-Xylene	mg/kg (ppm)	1.0	< 0.05	75	96	20-132	25 vo
Naphthalene	mg/kg (ppm)	1.0	< 0.05	84	100	30-138	17

Eastratory code. Eastratory c	orrer or wearing re			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	1.0	89	47-106
Hexane	mg/kg (ppm)	1.0	103	54-142
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1.0	112	70-130
cis-1,2-Dichloroethene	mg/kg (ppm)	1.0	108	70-130
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1.0	124	66-140
Benzene	mg/kg (ppm)	1.0	111	70-130
Trichloroethene	mg/kg (ppm)	1.0	111	53-133
Toluene	mg/kg (ppm)	1.0	109	63-127
Tetrachloroethene	mg/kg (ppm)	1.0	107	66-124
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1.0	111	70-130
Ethylbenzene	mg/kg (ppm)	1.0	113	70-130
m,p-Xylene	mg/kg (ppm)	2.0	112	67-129
o-Xylene	mg/kg (ppm)	1.0	111	70-130
Naphthalene	mg/kg (ppm)	1.0	120	67-143

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/21 Date Received: 01/08/21

Project: Hardel, F&BI 101069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 101112-01 (Matrix Spike)

			Percent	
Reporting	Spike	Sample	Recovery	Acceptance
Units	Level	Result	MS	Criteria
ug/L (ppb)	10	< 0.2	111	16-176
ug/L (ppb)	10	<5	105	49-161
ug/L (ppb)	10	<1	112	50 - 150
ug/L (ppb)	10	<1	110	50 - 150
ug/L (ppb)	10	<1	126	50 - 150
ug/L (ppb)	10	< 0.35	110	50 - 150
ug/L (ppb)	10	<1	110	43-133
ug/L (ppb)	10	<1	107	50-150
ug/L (ppb)	10	<1	104	50 - 150
ug/L (ppb)	10	<1	111	50-150
ug/L (ppb)	10	<1	109	50-150
ug/L (ppb)	20	<2	108	50-150
ug/L (ppb)	10	<1	107	50-150
ug/L (ppb)	10	<1	114	50-150
	Units ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 10 ug/L (ppb) 20 ug/L (ppb) 10	Units Level Result ug/L (ppb) 10 <0.2	Reporting Spike Sample Recovery Result MS ug/L (ppb) 10 <0.2

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	102	103	70-130	1
Hexane	ug/L (ppb)	10	86	75	50-161	14
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	108	109	70-130	1
cis-1,2-Dichloroethene	ug/L (ppb)	10	105	104	70-130	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	120	120	70-130	0
Benzene	ug/L (ppb)	10	105	105	70-130	0
Trichloroethene	ug/L (ppb)	10	104	103	70-130	1
Toluene	ug/L (ppb)	10	101	99	70-130	2
Tetrachloroethene	ug/L (ppb)	10	97	92	70-130	5
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	106	104	70-130	2
Ethylbenzene	ug/L (ppb)	10	102	102	70-130	0
m,p-Xylene	ug/L (ppb)	20	99	101	70-130	2
o-Xylene	ug/L (ppb)	10	100	101	70-130	1
Naphthalene	ug/L (ppb)	10	106	113	70-130	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY $_{\mathcal{M}}\mathcal{E}$

Report To Jay Huck

Address 5205 Corporate Contr Ct. Company Ploneer technologies

City, State, ZIP Lace, WA 98553

Phone 360 828 3739 Bmail Huter @ Uspinners. con

Project specific RLs? SAMPLERS (signature) PROJECT NAME REMARKS , TON WI BUT Hardel TO THE PERSON NAMED IN COLUMN TO THE E INVOICE TO P0# SAMPLE DISPOSAL

**M Archive samples

Other X Standard turnaround Default: Dispose after 30 days Rush charges authorized by: /EWV TURNAROUND TIME

ည ိုင္ပ	Samples received at	recei	ples	San							T.A.T.T.A.L.A.M.			Received by:	Ph. (206) 285-8282
									K	7	2			Relinguished by:	Seattle, WA 98119-2029 Relin
1/8/0 15:3/	(متسم	F	T T	ک	1305	The Manual State		>	ved Miller	3012 16th Avenue West Received
165 218	e E	Tokalogie	ドコ	Parse	20				1	Te.	Joel Hecker	P	SO WID	Kelinquished by: (<u>ا</u> ن
DATE TIME		YANY	COMPANY		H			AME	Z	PRINT NAME			SIGNATURE	SIS	
					<u> </u>			<u> </u>							
Right Superatury		×			×			×	×	6	2811	40.51	142	07 A-F	MCS-010721
										٠					
•													,		
				V	<u> </u>			×		か	Wat Y		五五	06 A B	TB-010721
Hard										9	5001	1886	7427	05 A-E	5-B204-5-7-010721
				_	× ×	•		×	><	۵	SW.	200	7 2	OU A.I	CW- 8264-010721
TCC, CU-12-OCG, 6			·	7	×	 		×	×	9	Sail	98	1772	03 A-E	5-8202-5-6-01074
neontholine, put					X X			×	×	-0	Sw.	gue	172	02 A-H	CM-B201-010721
H-harm liter				 ^	×			X	X	-0	Sw	240	19721	OI A-I	GW-8201-010721
Notes * Seluck VOCS	RCPA8	VOCS		PAHs EPA 8270 PCBs EPA 8082		NWTPH-HCID	BTEX EPA 8021	NWTPH-Gx	NWTPH-Dx	# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
		THUSH	ANALYSES REQUESTED	SES I	YALY	A			\prod						

January 2021 GWM

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 22, 2021

Joel Hecker Project Manager Pioneer Technologies Corp 5205 Corporate Center Ct, Suite A Lacey, WA 98503

Dear Mr Hecker:

Included are the results from the testing of material submitted on January 15, 2021 from the Hardel, F&BI 101190 project. There are 32 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PTC0122R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 15, 2021 by Friedman & Bruya, Inc. from the Pioneer Technologies Corp Hardel, F&BI 101190 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Pioneer Technologies Corp
101190 -01	GW-MW101-011421
101190 -02	GW-MW102-011421
101190 -03	GW-MW104-011421
101190 -04	GW-MW105-011421
101190 -05	GW-MW105-011421-01
101190 -06	GW-MW106-011421
101190 -07	Trip Blank-011421

The samples were sent to Fremont Analytical for GW-MW101-011421, GW-MW102-011421, GW-MW104-011421, GW-MW105-011421, GW-MW105-011421-01, and GW-MW106-011421 for chloride analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/15/21

Project: Hardel, F&BI 101190

Date Extracted: 01/20/21 Date Analyzed: 01/20/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
GW-MW101-011421 101190-01	<100	84
GW-MW102-011421 101190-02	<100	86
GW-MW104-011421 101190-03	<100	89
GW-MW105-011421 101190-04	<100	92
GW-MW105-011421-01	<100	90
GW-MW106-011421 101190-06	<100	89
Trip Blank-011421	<100	87
Method Blank	<100	90

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/15/21

Project: Hardel, F&BI 101190

Date Extracted: 01/18/21 Date Analyzed: 01/18/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 41-152)
GW-MW101-011421 101190-01	460 x	<250	111
GW-MW102-011421 101190-02	<50	<250	121
GW-MW104-011421 101190-03	1,200 x	<250	106
GW-MW105-011421 101190-04	<50	<250	118
GW-MW105-011421-01	<50	<250	119
GW-MW106-011421 101190-06	220 x	<250	125
Method Blank 01-115 MB	<50	<250	114

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW101-011421 Client: Pioneer Technologies Corp Date Received: 01/15/21 Project: Hardel, F&BI 101190

Lab ID: Date Extracted: 01/20/21 101190-01 Date Analyzed: 01/20/21 Data File: 101190-01.216 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 6.75 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW102-011421 Client: Pioneer Technologies Corp Date Received: 01/15/21 Project: Hardel, F&BI 101190

Lab ID: Date Extracted: 01/20/21 101190-02 Date Analyzed: 01/20/21 Data File: 101190-02.218 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Arsenic 1.75 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW104-011421 Client: Pioneer Technologies Corp Date Received: 01/15/21 Project: Hardel, F&BI 101190

Lab ID: Date Extracted: 01/20/21 101190-03 Date Analyzed: 01/20/21 Data File: 101190-03.219 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Arsenic 1.17 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW105-011421 Client: Pioneer Technologies Corp Date Received: 01/15/21 Project: Hardel, F&BI 101190

Lab ID: Date Extracted: 01/20/21 101190-04 Date Analyzed: 01/20/21 Data File: 101190-04.220 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW105-011421-01 Client: Pioneer Technologies Corp Date Received: 01/15/21 Project: Hardel, F&BI 101190

Lab ID: Date Extracted: 01/20/21 101190-05 Date Analyzed: 01/20/21 Data File: 101190-05.224 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Arsenic <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: GW-MW106-011421 Client: Pioneer Technologies Corp Date Received: 01/15/21 Project: Hardel, F&BI 101190

Lab ID: Date Extracted: 01/20/21 101190-06 Date Analyzed: 01/20/21 Data File: 101190-06.225 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Arsenic 1.78 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Pioneer Technologies Corp Date Received: NA Project: Hardel, F&BI 101190

Lab ID: Date Extracted: 01/20/21 I1-35 mb Date Analyzed: 01/20/21 Data File: I1-35 mb.085 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic <1 Silver <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW101-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/15/21	Lab ID:	101190-01
Date Analyzed:	01/15/21	Data File:	011515.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	78	126
Toluene-d8	104	87	115
4-Bromofluorobenzene	101	92	112

4-Bromofluorobenzene	101	92	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	< 0.05		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW102-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/15/21	Lab ID:	101190-02
Date Analyzed:	01/15/21	Data File:	011516.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	78	126
Toluene-d8	102	87	115
4-Bromofluorobenzene	98	92	112

4-Bromofluorobenzene	98	92	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	< 0.05		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	1.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW104-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/15/21	Lab ID:	101190-03
Date Analyzed:	01/18/21	Data File:	011808.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	$_{ m JCM}$

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	78	126
Toluene-d8	109	87	115
4-Bromofluorobenzene	96	92	112

4-Bromofluorobenzene	96	92	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	< 0.05		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	110		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW105-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/15/21	Lab ID:	101190-04
Date Analyzed:	01/18/21	Data File:	011805.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	91	78	126
Toluene-d8	95	87	115
4-Bromofluorobenzene	100	92	112

4-Bromofluorobenzene	100	92	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	< 0.05		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW105-011421-01	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/15/21	Lab ID:	101190-05
Date Analyzed:	01/18/21	Data File:	011806.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	78	126
Toluene-d8	103	87	115
4-Bromofluorobenzene	102	92	112

4-Bromofluorobenzene	102	92	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	< 0.05		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW106-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/15/21	Lab ID:	101190-06
Date Analyzed:	01/18/21	Data File:	011807.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	$_{ m JCM}$

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	78	126
Toluene-d8	105	87	115
4-Bromofluorobenzene	100	92	112

4-Bromofluorobenzene	100	92	1
	Concentration		
Compounds:	ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	< 0.05		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/15/21	Lab ID:	101190-07
Date Analyzed:	01/15/21	Data File:	011514.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	78	126
Toluene-d8	99	87	115
4-Bromofluorobenzene	103	92	112

4-Bromofluorobenzene	103	92	1
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	< 0.2		
Hexane	<5		
Methyl t-butyl ether (MTBE)	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
Benzene	< 0.35		
Trichloroethene	< 0.7		
Toluene	<1		
Tetrachloroethene	<1		
1,2-Dibromoethane (EDB)	< 0.05		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		

ENVIRONMENTAL CHEMISTS

Method Blank	Client:	Pioneer Technologies Corp
Not Applicable	Project:	Hardel, F&BI 101190
01/15/21	Lab ID:	01-93 mb
01/15/21	Data File:	011507.D
Water	Instrument:	GCMS11
ug/L (ppb)	Operator:	JCM
	01/15/21 01/15/21 Water	Not Applicable Project: 01/15/21 Lab ID: 01/15/21 Data File: Water Instrument:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	92	78	126
Toluene-d8	104	87	115
4-Bromofluorobenzene	99	92	112

4-Bromofluorobenzene	99	92
Compounds:	Concentration ug/L (ppb)	
Vinyl chloride	< 0.2	
Hexane	<5	
Methyl t-butyl ether (MTBE)	<1	
cis-1,2-Dichloroethene	<1	
1,2-Dichloroethane (EDC)	<1	
Benzene	< 0.35	
Trichloroethene	< 0.7	
Toluene	<1	
Tetrachloroethene	<1	
1,2-Dibromoethane (EDB)	< 0.05	
Ethylbenzene	<1	
m,p-Xylene	<2	
o-Xylene	<1	
Naphthalene	<1	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW101-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/18/21	Lab ID:	101190-01
Date Analyzed:	01/18/21	Data File:	011819.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol	22	15	61
Phenol-d6	14	10	46
Nitrobenzene-d5	84	17	143
2-Fluorobiphenyl	$7\overline{5}$	50	150
2,4,6-Tribromophenol	99	50	150
Terphenyl-d14	76	50	150

Terphenyl-d14	76	50 50
Compounds:	Concentration ug/L (ppb)	
Naphthalene	< 0.2	
2-Methylnaphthalene	< 0.2	
1-Methylnaphthalene	< 0.2	
Acenaphthylene	< 0.02	
Acenaphthene	< 0.02	
Fluorene	0.020	
Phenanthrene	0.033	
Anthracene	< 0.02	
Fluoranthene	< 0.02	
Pyrene	< 0.02	
Benz(a)anthracene	< 0.02	
Chrysene	< 0.02	
Benzo(a)pyrene	< 0.02	
Benzo(b)fluoranthene	< 0.02	
Benzo(k)fluoranthene	< 0.02	
Indeno(1,2,3-cd)pyrene	< 0.02	
Dibenz(a,h)anthracene	< 0.02	
Benzo(g,h,i)perylene	< 0.04	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW102-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/18/21	Lab ID:	101190-02
Date Analyzed:	01/18/21	Data File:	011820.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

G .	0/ D	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	11 ip	15	61
Phenol-d6	9 ip	10	46
Nitrobenzene-d5	94	17	143
2-Fluorobiphenyl	85	50	150
2,4,6-Tribromophenol	55	50	150
Terphenyl-d14	96	50	150

respires as a	0.0
Compounds:	Concentration ug/L (ppb)
Naphthalene	1.0
2-Methylnaphthalene	< 0.2
1-Methylnaphthalene	0.26
Acenaphthylene	< 0.02
Acenaphthene	1.0
Fluorene	0.33
Phenanthrene	0.081
Anthracene	< 0.02
Fluoranthene	0.020
Pyrene	0.020
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	GW-MW104-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/18/21	Lab ID:	101190-03
Date Analyzed:	01/18/21	Data File:	011821.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM
Date Extracted: Date Analyzed: Matrix:	01/18/21 01/18/21 Water	Lab ID: Data File: Instrument:	101190-03 011821.D GCMS9

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
		12111111.	
2-Fluorophenol	20	15	61
Phenol-d6	12	10	46
Nitrobenzene-d5	50	17	143
2-Fluorobiphenyl	42 ip	50	150
2,4,6-Tribromophenol	64	50	150
Terphenyl-d14	45 ip	50	150

< 0.02

< 0.02

< 0.02

< 0.04

Terphenyl-d14	45 ip
Compounds:	Concentration ug/L (ppb)
Naphthalene	39 ve
2-Methylnaphthalene	41 ve
1-Methylnaphthalene	36 ve
Acenaphthylene	< 0.02
Acenaphthene	34 ve
Fluorene	14
Phenanthrene	18
Anthracene	2.2
Fluoranthene	1.9
Pyrene	1.4
Benz(a)anthracene	0.051
Chrysene	0.059
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	0.020

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	GW-MW104-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/18/21	Lab ID:	101190-03 1/10
Date Analyzed:	01/19/21	Data File:	011913.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
		111111111111111111111111111111111111111	
2-Fluorophenol	15 d	15	61
Phenol-d6	9 d	10	46
Nitrobenzene-d5	45 d	17	143
2-Fluorobiphenyl	41 d	50	150
2,4,6-Tribromophenol	75 d	50	150
Terphenyl-d14	38 d	50	150

< 0.2

< 0.2

< 0.4

resplicitys and	90 u
Compounds:	Concentration ug/L (ppb)
Naphthalene	44
2-Methylnaphthalene	40
1-Methylnaphthalene	34
Acenaphthylene	< 0.2
Acenaphthene	37
Fluorene	14
Phenanthrene	19
Anthracene	2.1
Fluoranthene	1.7
Pyrene	1.3
Benz(a)anthracene	< 0.2
Chrysene	< 0.2
Benzo(a)pyrene	< 0.2
Benzo(b)fluoranthene	< 0.2
Benzo(k)fluoranthene	< 0.2

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW105-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/18/21	Lab ID:	101190-04
Date Analyzed:	01/18/21	Data File:	011815.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

Q	0/ P	Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	25	15	99
Phenol-d6	16	11	65
Nitrobenzene-d5	74	10	145
2-Fluorobiphenyl	74	16	138
2,4,6-Tribromophenol	80	12	132
Terphenyl-d14	91	35	138

Terphenyl-d14	91	35
Compounds:	Concentration ug/L (ppb)	
Naphthalene	< 0.2	
2-Methylnaphthalene	< 0.2	
1-Methylnaphthalene	< 0.2	
Acenaphthylene	< 0.02	
Acenaphthene	< 0.02	
Fluorene	< 0.02	
Phenanthrene	< 0.02	
Anthracene	< 0.02	
Fluoranthene	< 0.02	
Pyrene	< 0.02	
Benz(a)anthracene	< 0.02	
Chrysene	< 0.02	
Benzo(a)pyrene	< 0.02	
Benzo(b)fluoranthene	< 0.02	
Benzo(k)fluoranthene	< 0.02	
Indeno(1,2,3-cd)pyrene	< 0.02	
Dibenz(a,h)anthracene	< 0.02	
Benzo(g,h,i)perylene	< 0.04	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted:	GW-MW105-011421-01 01/15/21 01/18/21	Client: Project: Lab ID:	Pioneer Technologies Corp Hardel, F&BI 101190 101190-05
Date Extracted: Date Analyzed: Matrix:	01/18/21 01/18/21 Water	Data File: Instrument:	011816.D GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	21	15	99
Phenol-d6	15	11	65
Nitrobenzene-d5	68	10	145
2-Fluorobiphenyl	72	16	138
2,4,6-Tribromophenol	75	12	132
Terphenyl-d14	83	35	138

Terphenyi-a14	00
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.2
2-Methylnaphthalene	< 0.2
1-Methylnaphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GW-MW106-011421	Client:	Pioneer Technologies Corp
Date Received:	01/15/21	Project:	Hardel, F&BI 101190
Date Extracted:	01/18/21	Lab ID:	101190-06
Date Analyzed:	01/18/21	Data File:	011817.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	12 ip	15	99
Phenol-d6	10 ip	11	65
Nitrobenzene-d5	83	10	145
2-Fluorobiphenyl	85	16	138
2,4,6-Tribromophenol	54	12	132
Terphenyl-d14	92	35	138

Terphenyl-d14	92
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.2
2-Methylnaphthalene	< 0.2
1-Methylnaphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	0.031
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Pioneer Technologies Corp
Date Received:	Not Applicable	Project:	Hardel, F&BI 101190
Date Extracted:	01/18/21	Lab ID:	01-116 mb
Date Analyzed:	01/18/21	Data File:	011812.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	16	15	99
Phenol-d6	14	11	65
Nitrobenzene-d5	83	10	145
2-Fluorobiphenyl	79	16	138
2,4,6-Tribromophenol	48	12	132
Terphenyl-d14	93	35	138

Terphenyr-u14	90
	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
2-Methylnaphthalene	< 0.2
1-Methylnaphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/15/21

Project: Hardel, F&BI 101190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 101216-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	ug/L (ppb)	1,000	102	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/15/21

Project: Hardel, F&BI 101190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	84	96	63-142	13

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/15/21

Project: Hardel, F&BI 101190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 101199-05 x10 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	<10	96	93	75-125	3
Silver	ug/L (ppb)	10	<10	78	85	75 - 125	9

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	96	80-120
Silver	ug/L (ppb)	10	93	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/15/21

Project: Hardel, F&BI 101190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 101190-01 (Matrix Spike)

	Percent			
Reporting	Spike	Sample	Recovery	Acceptance
Units	Level	Result	MS	Criteria
ug/L (ppb)	10	< 0.2	109	50-150
ug/L (ppb)	10	<5	99	50-150
ug/L (ppb)	10	<1	108	50 - 150
ug/L (ppb)	10	<1	111	50-150
ug/L (ppb)	10	<1	105	50 - 150
ug/L (ppb)	10	< 0.35	110	50-150
ug/L (ppb)	10	<1	110	50-150
ug/L (ppb)	10	<1	101	50-150
ug/L (ppb)	10	<1	103	50-150
ug/L (ppb)	10	<1	106	50-150
ug/L (ppb)	10	<1	104	50-150
ug/L (ppb)	20	<2	102	50-150
ug/L (ppb)	10	<1	104	50-150
ug/L (ppb)	10	<1	113	50-150
	Units ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 10 ug/L (ppb) 10	Units Level Result ug/L (ppb) 10 <0.2	Reporting Spike Sample Recovery Units Level Result MS ug/L (ppb) 10 <0.2

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	113	108	70-130	5
Hexane	ug/L (ppb)	10	81	81	54-136	0
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	114	110	70-130	4
cis-1,2-Dichloroethene	ug/L (ppb)	10	109	109	70-130	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	106	105	70-130	1
Benzene	ug/L (ppb)	10	109	110	70-130	1
Trichloroethene	ug/L (ppb)	10	106	108	70-130	2
Toluene	ug/L (ppb)	10	101	100	70-130	1
Tetrachloroethene	ug/L (ppb)	10	100	98	70-130	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	111	109	70-130	2
Ethylbenzene	ug/L (ppb)	10	100	100	70-130	0
m,p-Xylene	ug/L (ppb)	20	96	99	70-130	3
o-Xylene	ug/L (ppb)	10	100	102	70-130	2
Naphthalene	ug/L (ppb)	10	118	101	70-130	16

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/15/21

Project: Hardel, F&BI 101190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

· ·	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	78	77	56-100	1
2-Methylnaphthalene	ug/L (ppb)	5	86	86	60-104	0
1-Methylnaphthalene	ug/L (ppb)	5	87	86	60-104	1
Acenaphthylene	ug/L (ppb)	5	89	90	70-130	1
Acenaphthene	ug/L (ppb)	5	84	85	65-122	1
Fluorene	ug/L (ppb)	5	92	94	70-130	2
Phenanthrene	ug/L (ppb)	5	87	86	70-130	1
Anthracene	ug/L (ppb)	5	90	89	70-130	1
Fluoranthene	ug/L (ppb)	5	98	96	70-130	2
Pyrene	ug/L (ppb)	5	89	89	70-130	0
Benz(a)anthracene	ug/L (ppb)	5	95	96	70-130	1
Chrysene	ug/L (ppb)	5	94	95	70-130	1
Benzo(a)pyrene	ug/L (ppb)	5	109	107	70-130	2
Benzo(b)fluoranthene	ug/L (ppb)	5	106	103	70-130	3
Benzo(k)fluoranthene	ug/L (ppb)	5	107	104	70-130	3
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	103	113	57-141	9
Dibenz(a,h)anthracene	ug/L (ppb)	5	99	108	57-137	9
Benzo(g,h,i)perylene	ug/L (ppb)	5	91	101	50-143	10

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY 01-15-2

EOY /AIY/WG

City, State, ZIP Laces WA 93003

Phone 3008 28 3739 Email Heckey Uppronedula Project specific RLs? (Yes) No Address 5205 Corporate Cuto Ct. SE Company Proper Technologics

PROJECT NAME (SAMPLERS (signature) (\(\script{\chi}\) Sold Heir INVOICE TO PO#

SAMPLE DISPOSAL & Archive samples Other_ ☐ XStandard turnaround Rush charges authorized by: Page#_ TURNAROUND TIME

Default: Dispose after 30 days

		Tre Black-01/421	CM/MUTOG -011421 06 A-1	GW, WM102 - 011421-01 054-H	GW- AWIOS-OHEL	GW , MM 104 -011421 03	GW- MW102- 011421	GW/ MWIDI - OIHZI	Sample ID	
		07 AB	06 A-16	05AH	54	03	02	01 A-x 1/11/21	Lab ID	
								Mulzs	Date Sampled	
		١	1040	SHO	840	950	155	1220	Time Sampled	
		-						ريني	Sample Type	
		Ŋ		Ø	==	 ســر		دنست مست	#of Jars	
		444	ς					\times	NWTPH-Dx	
		<u>×</u>	←					\times	NWTPH-Gx	
									BTEX EPA 8021	
									NWTPH-HCID	
		×	<u> </u>					\times	Select * VOCs EPA 8260	NAI
			€					\times	PAHs EPA 8270	YSE
San									PCBs EPA 8082	is RI
nple			←				And the state of t	×	Dissolved Arguic/Silve	IJQU
STE			-	<u> </u>				X	chioride	ANALYSES REQUESTED
cei.										Œ
Samples received at								<u></u>		
#°C						vinyl chlorac	TCE CISTERES	CTEX, NEXONE,	Notes	

Seattle, WA 98119-2029 Ph. (206) 285-8282 3012 16th Avenue West

Recold by:

Relinquished by

Received by:

Friedman & Bruya, Inc.

Relinquished by:

SIGNATURE

PRINT NAME

COMPANY

DATE

TIME

181

15/2

A5530

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 101190

Work Order Number: 2101253

January 21, 2021

Attention Michael Erdahl:

Fremont Analytical, Inc. received 6 sample(s) on 1/15/2021 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 01/21/2021

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 101190 **Work Order:** 2101253

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2101253-001	GW-MW101-011421	01/14/2021 12:20 PM	01/15/2021 10:14 AM
2101253-002	GW-MW102-011421	01/14/2021 11:35 AM	01/15/2021 10:14 AM
2101253-003	GW-MW104-011421	01/14/2021 9:50 AM	01/15/2021 10:14 AM
2101253-004	GW-MW105-011421	01/14/2021 8:40 AM	01/15/2021 10:14 AM
2101253-005	GW-MW105-011421-01	01/14/2021 8:40 AM	01/15/2021 10:14 AM
2101253-006	GW-MW106-011421	01/14/2021 10:40 AM	01/15/2021 10:14 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2101253**Date: **1/21/2021**

CLIENT: Friedman & Bruya

Project: 101190

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2101253**

Date Reported: 1/21/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2101253**Date Reported: **1/21/2021**

CLIENT: Friedman & Bruya

Project: 101190

Lab ID: 2101253-001 Collection Date: 1/14/2021 12:20:00 PM

Client Sample ID: GW-MW101-011421 Matrix: Groundwater

Analyses Result RL Qual Units DF Date Analyzed

Ion Chromatography by EPA Method 300.0 Batch ID: 31086 Analyst: SS

Chloride 182 10.0 D mg/L 100 1/19/2021 1:03:00 PM

Lab ID: 2101253-002 Collection Date: 1/14/2021 11:35:00 AM

Client Sample ID: GW-MW102-011421 Matrix: Groundwater

Analyses Result RL Qual Units DF Date Analyzed

Ion Chromatography by EPA Method 300.0 Batch ID: 31086 Analyst: SS

Chloride 1.09 0.100 mg/L 1 1/19/2021 1:26:00 PM

Lab ID: 2101253-003 **Collection Date:** 1/14/2021 9:50:00 AM

Client Sample ID: GW-MW104-011421 Matrix: Groundwater

Analyses Result RL Qual Units DF Date Analyzed

<u>Ion Chromatography by EPA Method 300.0</u>
Batch ID: 31086 Analyst: SS

Chloride 60.4 5.00 D mg/L 50 1/19/2021 1:49:00 PM

Lab ID: 2101253-004 **Collection Date:** 1/14/2021 8:40:00 AM

Client Sample ID: GW-MW105-011421 Matrix: Groundwater

Analyses Result RL Qual Units DF Date Analyzed

Ion Chromatography by EPA Method 300.0 Batch ID: 31086 Analyst: SS

Chloride 30.5 2.00 D mg/L 20 1/19/2021 2:12:00 PM

Work Order: **2101253**Date Reported: **1/21/2021**

CLIENT: Friedman & Bruya

Project: 101190

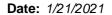
Lab ID: 2101253-005 **Collection Date:** 1/14/2021 8:40:00 AM

Client Sample ID: GW-MW105-011421-01 Matrix: Groundwater

Analyses Result RL Qual Units DF Date Analyzed

Ion Chromatography by EPA Method 300.0 Batch ID: 31086 Analyst: SS

Chloride 33.2 2.00 D mg/L 20 1/19/2021 2:35:00 PM


Lab ID: 2101253-006 **Collection Date:** 1/14/2021 10:40:00 AM

Client Sample ID: GW-MW106-011421 Matrix: Groundwater

Analyses Result RL Qual Units DF Date Analyzed

Ion Chromatography by EPA Method 300.0 Batch ID: 31086 Analyst: SS

Chloride 7.86 1.00 D mg/L 10 1/19/2021 2:11:00 AM

Work Order: 2101253

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

101190

Ion Chromatography by EPA Method 300.0

Sample ID: MB-31086	SampType: MBLK	Units: mg/L	Prep Date:	1/18/2021	RunNo: 64800
Client ID: MBLKW	Batch ID: 31086		Analysis Date:	1/18/2021	SeqNo: 1303427

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

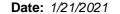
Chloride ND 0.100

Sample ID: LCS-31086	SampType: LCS			Units: mg/L		Prep Dat	te: 1/18/20	21	RunNo: 648	300	
Client ID: LCSW	Batch ID: 31086				ı	Analysis Dat	te: 1/18/20	21	SeqNo: 130)3428	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.695 0).100	0.7500	0	92.7	90	110				

Sample ID: 2101242-001ADUP	SampType: DUP		Units: mg/L		Prep Date: 1/18/2	2021	RunNo: 648	300	
Client ID: BATCH	Batch ID: 31086				Analysis Date: 1/18/2	2021	SeqNo: 130	3430	
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	41.0	1.00				41.01	0.0244	20	DE

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.


Sample ID: 2101242-001AMS	SampType: MS			Units: mg/L		Prep Da	te: 1/18/2 0)21	RunNo: 648	300	
Client ID: BATCH	Batch ID: 31086					Analysis Da	te: 1/18/2 0)21	SeqNo: 130	3431	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	49.1	1.00	7.500	41.01	108	80	120				DE

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 2101242-001AMSD	SampType: MSD			Units: mg/L		Prep Dat	te: 1/18/20	21	RunNo: 648	800	
Client ID: BATCH	Batch ID: 31086					Analysis Da	te: 1/18/20	21	SeqNo: 130	3432	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	49.2	1.00	7.500	41.01	109	80	120	49.12	0.163	20	DE

Original Page 7 of 10

Work Order: 2101253

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

101190

Ion Chromatography by EPA Method 300.0

SampType: MSD

Units: mg/L

Prep Date: 1/18/2021

RunNo: 64800

Sample ID: 2101242-001AMSD

Analysis Date: 1/18/2021

SeqNo: 1303432

Client ID: BATCH

Batch ID: 31086

SPK value SPK Ref Val

LowLimit HighLimit RPD Ref Val %REC

%RPD RPDLimit Qual

Analyte

NOTES:

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 2101251-001BDUP

SampType: DUP

Units: mg/L

Prep Date: 1/18/2021

RunNo: 64800

Client ID: BATCH

Batch ID: 31086

Analysis Date: 1/18/2021

SeqNo: 1303440

Analyte

Result

2.00

Result

Result

SPK value SPK Ref Val

%REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit

Qual

Chloride

0.200

RL

RL

RL

1.998

0.200

DH

Sample ID: 2101251-001BMS

SampType: MS

Units: mg/L

SPK value SPK Ref Val

Prep Date: 1/18/2021

20

BATCH

%REC

RunNo: 64800

Client ID:

Batch ID: 31086

Analysis Date: 1/18/2021

SeqNo: 1303441

Analyte

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit

Qual

80 DH Chloride 3.54 0.200 1.500 1.998 103 120

Page 8 of 10 Original

Sample Log-In Check List

С	lient Name:	FB	Work Order Nun	nber: 2101253		
Lo	ogged by:	Carissa True	Date Received:	1/15/2021	10:14:00 AM	
Cha	nin of Custo	ody				
		ustody complete?	Yes 🗸	No 🗌	Not Present	
2.	How was the	sample delivered?	Client			
Log	ı İn					
_	Coolers are p	iresent?	Yes 🗸	No 🗌	na 🗆	
ა.	Coolers are p	1636111:	163	NO L	IVA 🗀	
4.	Shipping conf	tainer/cooler in good condition?	Yes 🗸	No 🗌		
5.	Custody Seal (Refer to com	s present on shipping container/cooler? Iments for Custody Seals not intact)	Yes	No 🗆	Not Present ✓	
6.	Was an atten	npt made to cool the samples?	Yes 🗹	No 🗌	NA 🗌	
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🗸	No 🗆	NA 🗌	
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆		
_		nple volume for indicated test(s)?	Yes 🗸	No 🗆		
10.	Are samples	properly preserved?	Yes 🗹	No \square		
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA \square	
12	Is there head	space in the VOA vials?	Yes	No 🗆	NA 🗹	
		es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌		
		ork match bottle labels?	Yes 🗸	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No \square		
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No 🗌		
17.	Were all hold	ing times able to be met?	Yes 🗸	No 🗌		
<u>Spe</u>	cial Handli	ing (if applicable)				
18.	Was client no	stified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
	Person	Notified: Date				
	By Who	m: Via:	eMail P	hone Fax	In Person	
	Regardi	ng:				
	Client In	structions:				
19.	Additional rer	narks:				
<u>lte</u> m	Information					
		Item # Temp °C				

3.6

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Page 10 of 10

*					Received by:	3.5044	Fax (206) 283-5044
			Corre	y.	Remquished by:	-8282	Ph. (206) 285-8282
41 01 MS111	CHI	ve Anderson	FIGUR	Auson	Received by:-	8119-2029	Seattle, WA 98119-2029
1/15/21	Friedman & Bruya	Ann Webber-Bruya	Ann W	The april	Relinquished by	enue West	3012 16th Avenue West
DATE TIME	COMPANY	PRINT NAME		SIGNATURE		Bruva. Inc.	Friedman & Bruva. Inc.
			<	1040	<	REPILIE	CM-4110-90147
				840		01421-01	GW-MW105-DH421-01
				0 118		phila	CAM-MW/05-0144
				950		144110	CAM-MN/04-011421
				//35		-0/1421	CW-MW102-01421
		*	->-	1220 GW	1/14/21	-011421	GW-MW101-01144
Notes		Chloride	trix # of	Time Matrix	Date Sampled	D Lab	Sample ID
Will call with instructions	Will call with in	Please Email Results	Flea	(206) 285-8282 merdahl@friedmanandbruya.com	merdahl@frie	6) 285-8282	Phone #(20
SAMPLE DISPOSAL Dispose after 30 days	Disp	1	REMARKS		Seattle, WA 98119		City, State, ZIP
Rush charges authorized by:		1000	101190		3012 16th Ave W	3012 16	Address
d TAT	-	0	PROJECT NAME/NO.	Inc.	Friedman and Bruya, Inc.		Company
TURNAROUND TIME	Pag TUI	SUBCONTRACTER FUEMON+	SUBCONTR		Michael Erdahl		Send Report To

May 2021 GWM

3322 South Bay Road NE • Olympia, WA 98506-2957

June 9, 2021

Joel Hecker Pioneer Technologies Corporation 5205 Corporate Center Ct SE, Suite C Lacey, WA 98503

Dear Mr. Hecker:

Please find enclosed the analytical data report for the Hardel Data Gap Investigation Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt

Senior Chemist

Libby Environmental, Inc.

Thy I Un

Libby Environmen				CI	nain	of C	ust	od	y Re	cor	d						www.L	ibbyEnviro	nmental.com
		360-352-4 : 360-352-4				Date	e: 5	75	121					Pag	e:	1		of	
Client: Piner Technologi	c) Cor	P.				Pro	ject M	lanag	er: て	Toel	Hec	kur						·	
Address: 5205 Corpora			55						Hore				CAS	Inve	stigo	ati on	•		
City: 0/50019				99503					rdel								014,	WA	
Phone: 360-570-1766							ector:											5/5/21	
Client Project # Horder Da			.V _e			Ema	ail:	Hec	keri	<i>a</i> .	Splon	ver,	con						
B & A			Sample	Container	/30/	/	7	/ 2./			7		/	0/10	370	10 N	100		
Sample Number	Depth	Time 1360	Type	Туре	137	XX	7 8	4	1	50 4	7 87	C)	1 5	X		_	(F	ield Notes	S
1 GW-MW102 - 0521			GW	multiple		(X	\vdash	+	$\langle \rangle$	+		$\frac{1}{x}$			X				
2 GW-MW103-0521 3 GW-MW105-0521		1215			$++\langle$	X		\dashv	1	+		$\dashv \overset{\circ}{\lor}$	+	X	-				
4 GW-MW106-0721		1055			+ + (X			X	+		+		X	X				
5 GW- MW107-0521		1350			+ (10		\dashv	\bigcirc	+		-	-	~	×				
6 GW-MW107-0521-01		1350			1 2	\ \ \ \		-		+		10	,	X	~				
		_				4			-	+		X	+	^	X				
7-1B-050521			1	J	 	1			-			-	-		^				
9					++	_			\dashv	+			+						
10						_			_										
11										-		-	+-						
12										1-		-	+						
13					++	_				+			+-						
14																			
15										1								***************************************	
16										1									
17_					++	+													
Relinquished by:	5/	5/21	1458	Received by: Received by:	Wy)			5.5	3.21 11	/ Time / 53 / Time	Good C			ceipt	N °C	Ren	narks:	isible, f	duplicates - sample.
Relinquished by:			Date / Time	Received by:					Date	/ Time	Total N	lumber tainers	of		°C	- ^- TA	om letals T: 24	Are Field	IR (5-DAY
LEGAL ACTION CLAUSE: In the event of default of payn	nent and/or failu	ne to nav. Client a	areas to nev the cos	ts of collection including	court costs an	d reasonable	e attornev	fees to be	e determiner	hy a coun	of law						Distribution	. White - Lah	Yellow - Originato

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	GW-MW102-	GW-MW103-	GW-MW105-	GW-MW106-	GW-MW107-
-		Blank	0521	0521	0521	0521	0521
Date Sampled	Reporting	N/A	5/5/2021	5/5/2021	5/5/2021	5/5/2021	5/5/2021
Date Analyzed	Limits	5/7/2021	5/7/2021	5/7/2021	5/7/2021	5/7/2021	5/7/2021
	$(\mu g/L)$	(µg/L)					
Vinyl chloride	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Benzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Toluene	2.0	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd	nd	nd	nd
Naphthalene	5.0	nd	nd	nd	nd	nd	nd
1-Methylnaphthalene	5.0	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	5.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		108	111	110	108	108	108
1,2-Dichloroethane-d4		96	101	97	91	94	96
Toluene-d8		99	99	100	99	99	98
4-Bromofluorobenzene		102	102	99	101	101	98

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		GW-MW107-	TB-050521
		0521 Dup	
Date Sampled	Reporting	5/5/2021	5/5/2021
Date Analyzed	Limits	5/7/2021	5/7/2021
	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Vinyl chloride	0.2	nd	nd
1,1-Dichloroethene	0.5	nd	nd
Methyl tert- Butyl Ether (MTBE)	5.0	nd	nd
trans -1,2-Dichloroethene	1.0	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd
Benzene	1.0	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd
Trichloroethene (TCE)	0.4	nd	nd
Toluene	2.0	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd
Ethylbenzene	1.0	nd	nd
Total Xylenes	2.0	nd	nd
Naphthalene	5.0	nd	nd
1-Methylnaphthalene	5.0	nd	nd
2-Methylnaphthalene	5.0	nd	nd
Surrogate Recovery			
Dibromofluoromethane		110	111
1,2-Dichloroethane-d4		96	104
Toluene-d8		98	97
4-Bromofluorobenzene		100	98

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies

Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@gmail.com

Gasoline by NWTPH-Gx in Water

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	$(\mu g/L)$
Method Blank	5/7/2021	99%	nd
GW-MW102-0521	5/7/2021	99%	nd
GW-MW103-0521	5/7/2021	100%	nd
GW-MW105-0521	5/7/2021	99%	nd
GW-MW106-0521	5/7/2021	99%	nd
GW-MW107-0521	5/7/2021	98%	nd
GW-MW107-0521 Dup	5/7/2021	98%	nd
Practical Quantitation Limit			100

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Diesel & Oil by NWTPH-Dx/Dx Extended in Water

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	$(\mu g/L)$	(µg/L)
Method Blank	5/6/2021	95%	nd	nd
GW-MW102-0521	5/6/2021	94%	nd	nd
GW-MW103-0521	5/6/2021	91%	nd	nd
GW-MW105-0521	5/6/2021	86%	nd	nd
GW-MW106-0521	5/6/2021	93%	nd	nd
GW-MW107-0521	5/6/2021	92%	nd	nd
GW-MW107-0521 Dup	5/6/2021	90%	nd	nd
Practical Quantitation Limit			200	400

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Kory Dixon

[&]quot;int" Indicates that interference prevents determination.

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Data - Volatile Organic Compounds by EPA 8260D in Water

Matrix Spike Sample Identification: GW-MW107-0521								
	Spiked Conc. (µg/L)	MS Response (µg/L)	MSD Response (µg/L)	MS Recovery (%)	MSD Recovery (%)	RPD	Limits Recovery (%)	Data Flag
Vinyl chloride	5.0	4.3	4.5	87	90	3.6	65-135	
1,1-Dichloroethene	5.0	4.7	5.1	95	102	7.7	65-135	
Methyl tert- Butyl Ether (MTBE)	5.0	5.3	5.0	105	101	4.3	65-135	
trans-1,2-Dichloroethene	5.0	5.4	5.6	109	113	3.6	65-135	
cis-1,2-Dichloroethene	5.0	4.9	4.9	98	99	1.0	65-135	
Benzene	5.0	4.4	4.5	88	89	1.1	65-135	
1,2-Dichloroethane (EDC)	5.0	4.7	4.8	95	96	1.9	65-135	
Trichloroethene (TCE)	5.0	4.8	4.8	95	95	0.2	65-135	
Toluene	5.0	4.2	4.4	84	87	3.5	65-135	
Tetrachloroethene (PCE)	5.0	5.8	4.9	115	98	15.9	65-135	
1,2-Dibromoethane (EDB) *	5.0	4.4	4.4	87	88	1.1	65-135	
Ethylbenzene	5.0	4.6	4.4	91	88	3.6	65-135	
Total Xylenes	15.0	13.0	12.7	87	85	2.3	65-135	
Naphthalene	5.0	3.8	4.0	75	79	5.2	65-135	
1-Methylnaphthalene	5.0	5.9	5.1	119	103	14.3	65-135	
2-Methylnaphthalene	5.0	6.4	5.1	128	102	23.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				113	113		65-135	
1,2-Dichloroethane-d4				106	106		65-135	
Toluene-d8				100	100		65-135	
4-Bromofluorobenzene				105	103		65-135	

ACCEPTABLE RPD IS 35%

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.				Flag
	cone. (μg/L)	Response (µg/L)	Recovery (%)	Recovery Limits (%)	riag
Vinyl shlarida	(μg/L) 5.0	5.2	103	80-120	
Vinyl chloride					
1,1-Dichloroethene	5.0	5.5	110	80-120	
Methyl <i>tert</i> - Butyl Ether (MTBE)	5.0	5.6	112	80-120	
trans -1,2-Dichloroethene	5.0	4.9	97	80-120	
cis -1,2-Dichloroethene	5.0	5.6	112	80-120	
Benzene	5.0	5.3	107	80-120	
1,2-Dichloroethane (EDC)	5.0	5.3	106	80-120	
Trichloroethene (TCE)	5.0	5.5	111	80-120	
Toluene	5.0	5.3	105	80-120	
Tetrachloroethene (PCE)	5.0	4.9	97	80-120	
1,2-Dibromoethane (EDB) *	5.0	5.9	117	80-120	
Ethylbenzene	5.0	5.9	119	80-120	
Total Xylenes	15.0	17.4	116	80-120	
Naphthalene	5.0	5.5	109	80-120	
1-Methylnaphthalene	10.0	8.0	80	80-120	
2-Methylnaphthalene	10.0	8.5	85	80-120	
Surrogate Recovery					
Dibromofluoromethane			92	65-135	
1,2-Dichloroethane-d4			73	65-135	
Toluene-d8			69	65-135	
4-Bromofluorobenzene			103	65-135	

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

CCV 5/7/2021

	Spiked	CCV	CCV	CCV	
	Conc.	Response	Recovery	Recovery	
	(µg/L)	(µg/L)	(%)	Limits (%)	
Vinyl chloride	10.0	9.8	98	80-120	
1,1-Dichloroethene	10.0	10.4	104	80-120	
Methyl tert- Butyl Ether (MTBE)	10.0	11.8	118	80-120	
trans -1,2-Dichloroethene	10.0	11.9	119	80-120	
cis -1,2-Dichloroethene	10.0	10.7	107	80-120	
Benzene	10.0	10.1	101	80-120	
1,2-Dichloroethane (EDC)	10.0	10.0	100	80-120	
Trichloroethene (TCE)	10.0	10.9	109	80-120	
Toluene	10.0	10.0	100	80-120	
Tetrachloroethene (PCE)	10.0	12.0	120	80-120	
1,2-Dibromoethane (EDB) *	10.0	11.3	113	80-120	
Ethylbenzene	10.0	11.5	115	80-120	
Total Xylenes	30.0	34.2	114	80-120	
Naphthalene	10.0	9.2	92	80-120	
1-Methylnaphthalene	10.0	11.0	110	80-120	
2-Methylnaphthalene	10.0	11.3	113	80-120	
Surrogate Recovery					
Dibromofluoromethane			94	65-135	
1,2-Dichloroethane-d4			73	65-135	
Toluene-d8			70	65-135	
4-Bromofluorobenzene			105	65-135	

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@gmail.com

QA/QC Gasoline by NWTPH-Gx in Water

Sample	Date	Gasoline	Gasoline	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(% Recovery)	(%)
500 ppb LCS	5/7/2021	543	109%	70-130%
500 ppb LCSD	5/7/2021	582	116%	70-130%
RPD			6%	30%
Practical Quantitat	ion Limit	100		

CCV Gasoline by NWTPH-Gx in Water

Sample	Date	Gasoline	CCV Recovery	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(%)	(%)
1000 ppb CCV	5/7/2021	1076	108%	80-120%
Practical Quantitat	ion Limit	100		

HARDEL DATA GAPS INVESTIGATION PROJECT

Pioneer Technologies Olympia, Washington Libby Project # L210505-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Diesel by NWTPH-Dx in Water

Sample	Date	Diesel	Diesel	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(% Recovery)	(%)
400 ppb LCS	5/6/2021	370	93%	70-130%
400 ppb LCSD	5/6/2021	370	93%	70-130%
RPD			0%	30%
Practical Quantitation Limit		50		

CCV Diesel by NWTPH-Dx in Water

Sample	Date	Diesel	CCV	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(%)	(%)
CCV Kilvan FID 1 500 ppm	5/6/2021	430	86%	85-115%
CCV Kilvan FID 1 500 ppm	5/6/2021	440	88%	85-115%
Practical Quantitation Limit		50		

HARDEL DATA GAPS INVESTIGATION PROJECT

Pioneer Technologies Libby Project # L210505-1 Date Received 5/5/2021 Time Received 2:58 PM Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

3322 South Bay Road NE

Received By RJK

Sample Receipt Checklist

<u>Chain of Custody</u>					
1. Is the Chain of Custody complete?	V	Yes	☐ No		
2. How was the sample delivered?	V	Hand Delivered	☐ Picked Up)	Shipped
<u>Log In</u>					
3. Cooler or Shipping Container is present.	V	Yes	☐ No		□ N/A
4. Cooler or Shipping Container is in good condition.	V	Yes	☐ No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ No		□ N/A
6. Was an attempt made to cool the samples?	V	Yes	□ No		□ N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.3	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		2.3	°C		
9. Did all containers arrive in good condition (unbroken)?	V	Yes	☐ No		
10. Is it clear what analyses were requested?	V	Yes	□ No		
11. Did container labels match Chain of Custody?	√	Yes	□ No		
12. Are matrices correctly identified on Chain of Custody?	√	Yes	□ No		
13. Are correct containers used for the analysis indicated?	V	Yes	□ No		
14. Is there sufficient sample volume for indicated analysis?	V	Yes	☐ No		
15. Were all containers properly preserved per each analysis?	V	Yes	□ No		
16. Were VOA vials collected correctly (no headspace)?	√	Yes	□ No		□ N/A
17. Were all holding times able to be met?	V	Yes	□ No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes	□ No		✓ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: Hardel Data Gaps Investigation Work Order Number: 2105070

May 28, 2021

Attention Kodey Eley:

Fremont Analytical, Inc. received 6 sample(s) on 5/6/2021 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 06/08/2021

CLIENT: Libby Environmental Work Order Sample Summary

Project: Hardel Data Gaps Investigation

Work Order: 2105070

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2105070-001	GW-MW102-0521	05/05/2021 1:00 PM	05/06/2021 10:27 AM
2105070-002	GW-MW103-0521	05/05/2021 12:15 PM	05/06/2021 10:27 AM
2105070-003	GW-MW105-0521	05/05/2021 10:55 AM	05/06/2021 10:27 AM
2105070-004	GW-MW106-0521	05/05/2021 11:35 AM	05/06/2021 10:27 AM
2105070-005	GW-MW107-0521	05/05/2021 1:50 PM	05/06/2021 10:27 AM
2105070-006	GW-MW107-0521-01	05/05/2021 1:50 PM	05/06/2021 10:27 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2105070**Date: **5/28/2021**

CLIENT: Libby Environmental

Project: Hardel Data Gaps Investigation

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original

Fremont Analytical

Qualifiers & Acronyms

WO#: **2105070**

Date Reported: 5/28/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2105070**Date Reported: **5/28/2021**

Client: Libby Environmental Collection Date: 5/5/2021 1:00:00 PM

Project: Hardel Data Gaps Investigation

Lab ID: 2105070-001 **Matrix:** Water

Client Sample ID: GW-MW102-0521

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	270 (SIM)		Batc	h ID: 3	2250 Analyst: IH
Naphthalene	0.927	0.0993		μg/L	1	5/11/2021 1:05:07 PM
2-Methylnaphthalene	0.144	0.0993		μg/L	1	5/11/2021 1:05:07 PM
1-Methylnaphthalene	0.330	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Acenaphthylene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Acenaphthene	0.968	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Fluorene	0.298	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Phenanthrene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Anthracene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Fluoranthene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Pyrene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Benz(a)anthracene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Chrysene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Benzo(b)fluoranthene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Benzo(k)fluoranthene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Benzo(a)pyrene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Indeno(1,2,3-cd)pyrene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Dibenz(a,h)anthracene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Benzo(g,h,i)perylene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM
Surr: 2-Fluorobiphenyl	84.2	33.2 - 139		%Rec	1	5/11/2021 1:05:07 PM
Surr: Terphenyl-d14	94.3	24.6 - 136		%Rec	1	5/11/2021 1:05:07 PM
Dissolved Metals by EPA Met	hod 200.8			Batc	h ID: 3	2446 Analyst: EH
Arsenic	2.91	1.00		μg/L	1	5/26/2021 11:01:53 PM
Silver	ND	0.350		μg/L	1	5/11/2021 2:03:29 AM

Work Order: **2105070**Date Reported: **5/28/2021**

Client: Libby Environmental Collection Date: 5/5/2021 12:15:00 PM

Project: Hardel Data Gaps Investigation

Lab ID: 2105070-002 **Matrix:** Water

Client Sample ID: GW-MW103-0521

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Bato	h ID:	32250 Analyst: IH
Naphthalene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
2-Methylnaphthalene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
1-Methylnaphthalene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Acenaphthylene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Acenaphthene	1.51	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Fluorene	0.200	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Phenanthrene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Anthracene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Fluoranthene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Pyrene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Benz(a)anthracene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Chrysene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Benzo(b)fluoranthene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Benzo(k)fluoranthene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Benzo(a)pyrene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Indeno(1,2,3-cd)pyrene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Dibenz(a,h)anthracene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Benzo(g,h,i)perylene	ND	0.0991		μg/L	1	5/11/2021 1:48:18 PM
Surr: 2-Fluorobiphenyl	81.0	33.2 - 139		%Rec	1	5/11/2021 1:48:18 PM
Surr: Terphenyl-d14	89.5	24.6 - 136		%Rec	1	5/11/2021 1:48:18 PM
Dissolved Metals by EPA Meth	od 200.8			Bato	h ID:	32239 Analyst: EH
Arsenic	ND	1.00		μg/L	1	5/11/2021 2:08:03 AM
Silver	ND	0.350		μg/L	1	5/11/2021 2:08:03 AM

Work Order: **2105070**Date Reported: **5/28/2021**

Client: Libby Environmental Collection Date: 5/5/2021 10:55:00 AM

Project: Hardel Data Gaps Investigation

Lab ID: 2105070-003 **Matrix:** Water

Client Sample ID: GW-MW105-0521

Naphthalene	Analyses	Result	RL	Qual	Units	DF	Date Analyzed
2-Methylnaphthalene ND 0.0997 Pg/L 1 5/11/2021 2:09:56 1-Methylnaphthalene ND 0.0997 ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Acenaphthylene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Acenaphthene 8.05 0.0997 Ng/L 1 5/11/2021 2:09:56 Acenaphthene 8.05 ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Phenanthrene 0.557 ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Anthracene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Phenanthrene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Phenanthrene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benz(a)anthracene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzo(b)fluoranthene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzo(b)fluoranthene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzo(k)fluoranthene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzo(a)pyrene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzo(a)pyrene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzo(a)pyrene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzo(g),,i)perylene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzo(g,h,i)perylene ND 0.0997 Ng/L 1 5/11/2021 2:09:56 Benzolyed Metals by EPA Method 200.8 Arsenic ND 1.00	Polyaromatic Hydrocarbons	by EPA Method 8	3270 (SIM)		Bato	h ID: 32	2250 Analyst: IH
1-Methylnaphthalene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Acenaphthylene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Acenaphthene 8.05 0.0997 μg/L 1 5/11/2021 2:09:56 Fluorene 3.04 0.0997 μg/L 1 5/11/2021 2:09:56 Fluorene 0.557 0.0997 μg/L 1 5/11/2021 2:09:56 Anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:56 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:56 Dissolved Metals by EPA Method 200.8	Naphthalene	0.119	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Acenaphthylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Acenaphthene 8.05 0.0997 μg/L 1 5/11/2021 2:09:50 Fluorene 3.04 0.0997 μg/L 1 5/11/2021 2:09:50 Phenanthrene 0.557 0.0997 μg/L 1 5/11/2021 2:09:50 Anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benza(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50	2-Methylnaphthalene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Acenaphthene 8.05 0.0997 μg/L 1 5/11/2021 2:09:50 Fluorene 3.04 0.0997 μg/L 1 5/11/2021 2:09:50 Phenanthrene 0.557 0.0997 μg/L 1 5/11/2021 2:09:50 Anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 </td <td>1-Methylnaphthalene</td> <td>ND</td> <td>0.0997</td> <td></td> <td>μg/L</td> <td>1</td> <td>5/11/2021 2:09:56 PM</td>	1-Methylnaphthalene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Acenaphthene 8.05 0.0997 μg/L 1 5/11/2021 2:09:50 Fluorene 3.04 0.0997 μg/L 1 5/11/2021 2:09:50 Phenanthrene 0.557 0.0997 μg/L 1 5/11/2021 2:09:50 Anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1	Acenaphthylene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Phenanthrene 0.557 0.0997 μg/L 1 5/11/2021 2:09:5/ Anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:5/ Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/20	Acenaphthene	8.05	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Anthracene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Fluoranthene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Pyrene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Benz(a)anthracene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Chrysene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Benzo(b)fluoranthene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Benzo(a)pyrene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Indeno(1,2,3-cd)pyrene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Benzo(g,h,i)perylene ND 0.0997 µg/L 1 5/11/2021 2:09:56 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:56 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:56 Dissolved Metals by EPA Method 200.8 Arsenic ND 1.00 µg/L 1 5/11/2021 2:09:56	Fluorene	3.04	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8	Phenanthrene	0.557	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst:	Anthracene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst:	Fluoranthene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Benz(a)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Chrysene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst:	Pyrene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Benzo(b)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst:	Benz(a)anthracene	ND	0.0997			1	5/11/2021 2:09:56 PM
Benzo(k)fluoranthene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:56 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:56 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst:	Chrysene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Benzo(a)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst:	Benzo(b)fluoranthene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Indeno(1,2,3-cd)pyrene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst: Arsenic	Benzo(k)fluoranthene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Dibenz(a,h)anthracene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:56 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:56 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:56 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst: Arsenic	Benzo(a)pyrene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Benzo(g,h,i)perylene ND 0.0997 μg/L 1 5/11/2021 2:09:50 Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst: Arsenic ND 1.00 μg/L 1 5/11/2021 2:12:3	Indeno(1,2,3-cd)pyrene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Surr: 2-Fluorobiphenyl 85.7 33.2 - 139 %Rec 1 5/11/2021 2:09:50 Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst: Arsenic ND 1.00 μg/L 1 5/11/2021 2:12:3	Dibenz(a,h)anthracene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Surr: Terphenyl-d14 106 24.6 - 136 %Rec 1 5/11/2021 2:09:50 Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst: Arsenic ND 1.00 μg/L 1 5/11/2021 2:12:3	Benzo(g,h,i)perylene	ND	0.0997		μg/L	1	5/11/2021 2:09:56 PM
Dissolved Metals by EPA Method 200.8 Batch ID: 32239 Analyst: Arsenic ND 1.00 μg/L 1 5/11/2021 2:12:3	Surr: 2-Fluorobiphenyl	85.7	33.2 - 139		%Rec	1	5/11/2021 2:09:56 PM
Arsenic ND 1.00 μg/L 1 5/11/2021 2:12:3'	Surr: Terphenyl-d14	106	24.6 - 136		%Rec	1	5/11/2021 2:09:56 PM
10	Dissolved Metals by EPA Met	thod 200.8			Bato	h ID: 32	2239 Analyst: EH
	Arsenic	ND	1.00		μg/L	1	5/11/2021 2:12:37 AM
	Silver	ND	0.350		μg/L	1	5/11/2021 2:12:37 AM

Work Order: **2105070**Date Reported: **5/28/2021**

Client: Libby Environmental Collection Date: 5/5/2021 11:35:00 AM

Project: Hardel Data Gaps Investigation

Lab ID: 2105070-004 **Matrix:** Water

Client Sample ID: GW-MW106-0521

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons I	oy EPA Method 8	3270 (SIM)		Batc	h ID:	32250 Analyst: IH
Naphthalene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
2-Methylnaphthalene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
1-Methylnaphthalene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Acenaphthylene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Acenaphthene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Fluorene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Phenanthrene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Anthracene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Fluoranthene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Pyrene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Benz(a)anthracene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Chrysene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Benzo(b)fluoranthene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Benzo(k)fluoranthene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Benzo(a)pyrene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Indeno(1,2,3-cd)pyrene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Dibenz(a,h)anthracene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Benzo(g,h,i)perylene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM
Surr: 2-Fluorobiphenyl	78.7	33.2 - 139		%Rec	1	5/11/2021 2:31:32 PM
Surr: Terphenyl-d14	89.9	24.6 - 136		%Rec	1	5/11/2021 2:31:32 PM
Dissolved Metals by EPA Met	hod 200.8			Batc	h ID:	32239 Analyst: EH
Arsenic	ND	1.00		μg/L	1	5/11/2021 2:17:10 AM
Silver	ND	0.350		μg/L	1	5/11/2021 2:17:10 AM

Work Order: **2105070**Date Reported: **5/28/2021**

Client: Libby Environmental Collection Date: 5/5/2021 1:50:00 PM

Project: Hardel Data Gaps Investigation

Lab ID: 2105070-005 **Matrix:** Water

Client Sample ID: GW-MW107-0521

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	oy EPA Method 8	3270 (SIM)		Bato	h ID: 32	2250 Analyst: IH
Naphthalene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
2-Methylnaphthalene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
1-Methylnaphthalene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Acenaphthylene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Acenaphthene	0.316	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Fluorene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Phenanthrene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Anthracene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Fluoranthene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Pyrene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Benz(a)anthracene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Chrysene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Benzo(b)fluoranthene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Benzo(k)fluoranthene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Benzo(a)pyrene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Indeno(1,2,3-cd)pyrene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Dibenz(a,h)anthracene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Benzo(g,h,i)perylene	ND	0.0984		μg/L	1	5/11/2021 2:53:20 PM
Surr: 2-Fluorobiphenyl	89.4	33.2 - 139		%Rec	1	5/11/2021 2:53:20 PM
Surr: Terphenyl-d14	103	24.6 - 136		%Rec	1	5/11/2021 2:53:20 PM
Dissolved Metals by EPA Met	hod 200.8			Bato	h ID: 32	2365 Analyst: EH
Arsenic	ND	1.00		μg/L	1	5/21/2021 11:22:06 PM
Silver	ND	0.350		μg/L	1	5/21/2021 11:22:06 PM

Work Order: 2105070 Date Reported: 5/28/2021

Libby Environmental Collection Date: 5/5/2021 1:50:00 PM

Project: Hardel Data Gaps Investigation

Lab ID: 2105070-006 Matrix: Water

Client Sample ID: GW-MW107-0521-01

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons t	oy EPA Method 8	3270 (SIM)		Bato	h ID: 32	2250 Analyst: IH
Naphthalene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
2-Methylnaphthalene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
1-Methylnaphthalene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Acenaphthylene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Acenaphthene	0.317	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Fluorene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Phenanthrene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Anthracene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Fluoranthene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Pyrene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Benz(a)anthracene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Chrysene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Benzo(b)fluoranthene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Benzo(k)fluoranthene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Benzo(a)pyrene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Indeno(1,2,3-cd)pyrene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Dibenz(a,h)anthracene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Benzo(g,h,i)perylene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM
Surr: 2-Fluorobiphenyl	84.9	33.2 - 139		%Rec	1	5/11/2021 3:15:02 PM
Surr: Terphenyl-d14	101	24.6 - 136		%Rec	1	5/11/2021 3:15:02 PM
Dissolved Metals by EPA Met	hod 200.8			Bato	h ID: 32	2365 Analyst: EH
Arsenic	ND	1.00		μg/L	1	5/21/2021 11:40:19 PM
Silver	ND	0.350		μg/L	1	5/21/2021 11:40:19 PM

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Dissolved Metals by EPA Method 200.8

Project: Hardel Data Gaps Investigation

Sample ID: ICB-32239	SampType: ICB			Units: µg/L		Prep Da	te: 5/10/2 0)21	RunNo: 67	151	
Client ID: ICB	Batch ID: 32239					Analysis Da	te: 5/10/2 0)21	SeqNo: 13	53206	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00									
Silver	ND	0.350									

Sample ID: ICV-32239	SampType: ICV			Units: µg/L		Prep Da	te: 5/10/2 0	21	RunNo: 671	151	
Client ID: ICV	Batch ID: 32239					Analysis Da	te: 5/10/2 0	21	SeqNo: 135	53208	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic Silver	107 4.94	1.00 0.350	100.0 5.000	0	107 98.8	90 90	110 110				

Sample ID: CCV-32239A	SampType: CCV			Units: µg/L		Prep Da	te: 5/11/20	21	RunNo: 671	51	
Client ID: CCV	Batch ID: 32239					Analysis Da	te: 5/11/20	21	SeqNo: 135	3209	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	119	1.00	100.0	0	119	85	115				S
Silver	5.68	0.350	5.000	0	114	85	115				
NOTES:											

Silver

S - Outlying spike recovery observed (high bias). Detections will be qualified with a Q.

ND

0.350

Sample ID: CCB-32239A	SampType: CCB		Units: µg/L	Prep Date	e: 5/11/2021	RunNo: 67151	
Client ID: CCB	Batch ID: 32239			Analysis Dat	e: 5/11/2021	SeqNo: 1353210	
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	ND	1.00					

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

CLIENT: Libby Enviro	onmental					Disselved Me	tala by EDA Mathad	200 0
Project: Hardel Data	a Gaps Investigation					Dissolved Me	tals by EPA Method	200.0
Sample ID: MB-32239FB	SampType: MBLK			Units: µg/L		Prep Date: 5/7/2021	RunNo: 67151	
Client ID: MBLKW	Batch ID: 32239					Analysis Date: 5/11/2021	SeqNo: 1353211	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	ND	1.00						
Silver	ND	0.350						
NOTES: Filter Blank								
Sample ID: MB-32239	SampType: MBLK			Units: µg/L		Prep Date: 5/7/2021	RunNo: 67151	
Client ID: MBLKW	Batch ID: 32239					Analysis Date: 5/11/2021	SeqNo: 1353212	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	ND	1.00						
Silver	ND	0.350						
Sample ID: 2105045-002CDUP	SampType: DUP			Units: µg/L		Prep Date: 5/7/2021	RunNo: 67151	
Client ID: BATCH	Batch ID: 32239					Analysis Date: 5/11/2021	SeqNo: 1353215	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Silver	ND	0.350				0	30	
Sample ID: CCV-32239B	SampType: CCV			Units: µg/L		Prep Date: 5/11/2021	RunNo: 67151	
Client ID: CCV	Batch ID: 32239					Analysis Date: 5/11/2021	SeqNo: 1353221	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	125	1.00	100.0	0	125	85 115		S
Silver	6.20	0.350	5.000	0	124	85 115		S

NOTES:

S - Outlying spike recovery observed (high bias). Detections will be qualified with a Q.

Work Order: 2105070

QC SUMMARY REPORT

%RPD RPDLimit

Qual

CLIENT: Libby Environmental

Dissolved Metals by EPA Method 200.8

LowLimit HighLimit RPD Ref Val

Project: Hardel Data Gaps Investigation

Sample ID: CCB-32239B	SampType: CCB	Units: µg/L Prep Da	e: 5/11/2021	RunNo: 67151
Client ID: CCB	Batch ID: 32239	Analysis Da	e: 5/11/2021	SeqNo: 1353222

SPK value SPK Ref Val

 Arsenic
 ND
 1.00

 Silver
 ND
 0.350

Sample ID: CCV-32239C	SampType: CCV			Units: µg/L		Prep Da	te: 5/11/20	21	RunNo: 671	51	
Client ID: CCV	Batch ID: 32239					Analysis Da	te: 5/11/20	21	SeqNo: 135	3232	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	124	1.00	100.0	0	124	85	115				S
Silver	6.04	0.350	5.000	0	121	85	115				S

%REC

NOTES:

Analyte

Result

RL

Sample ID: CCB-32239C	SampType: CCB			Units: µg/L		Prep Da	te: 5/11/2 0)21	RunNo: 67 1	151	
Client ID: CCB	Batch ID: 32239					Analysis Da	te: 5/11/20)21	SeqNo: 135	53233	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00									
Silver	ND	0.350									

Sample ID: ICB-32239A	SampType: ICB			Units: µg/L		Prep Date:	5/12/2021	RunNo: 6715	51	
Client ID: ICB	Batch ID: 32239					Analysis Date:	5/12/2021	SeqNo: 135 4	4320	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ghLimit RPD Ref Val	%RPD	RPDLimit	Qual

 Arsenic
 ND
 1.00

 Silver
 ND
 0.350

S - Outlying spike recovery observed (high bias). Detections will be qualified with a Q.

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

•	ata Gaps Investigation						Dissolved M	etals by EP	A Method	3.002 t
Sample ID: ICV-32239A	SampType: ICV			Units: μg/L		Prep Da	ate: 5/12/2021	RunNo: 671	51	
Client ID: ICV	Batch ID: 32239					Analysis Da	ate: 5/12/2021	SeqNo: 135	4322	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	%RPD	RPDLimit	Qual
Arsenic	108	1.00	100.0	0	108	90	110			
Silver	4.79	0.350	5.000	0	95.9	90	110			
Sample ID: CCV-32239D	SampType: CCV			Units: µg/L		Prep Da	ate: 5/12/2021	RunNo: 671	51	
Client ID: CCV	Batch ID: 32239					Analysis Da	ate: 5/12/2021	SeqNo: 135	4323	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	%RPD	RPDLimit	Qual
Arsenic	106	1.00	100.0	0	106	85	115			
Silver	5.10	0.350	5.000	0	102	85	115			
Sample ID: CCB-32239D	SampType: CCB			Units: µg/L		Prep Da	ate: 5/12/2021	RunNo: 671	51	
Client ID: CCB	Batch ID: 32239					Analysis Da	ate: 5/12/2021	SeqNo: 135	4324	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	%RPD	RPDLimit	Qual
Arsenic	ND	1.00								
Silver	ND	0.350								
Sample ID: LCS-32239	SampType: LCS			Units: µg/L		Prep Da	ate: 5/7/2021	RunNo: 671	51	
Client ID: LCSW	Batch ID: 32239					Analysis Da	ate: 5/12/2021	SeqNo: 135	4326	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	%RPD	RPDLimit	Qual
Arsenic	111	1.00	100.0	0	111	85	115			
Silver	5.29	0.350	5.000	0	106	85	115			

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Hardel Data	a Gaps Investigation						Dis	solved Met	als by EP	A Method	200.8
Sample ID: 2105045-002CDUP	SampType: DUP			Units: µg/L		Prep Date	e: 5/7/202	:1	RunNo: 67 1	51	
Client ID: BATCH	Batch ID: 32239					Analysis Date	e: 5/12/2 0	21	SeqNo: 13	54328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic NOTES: R - High RPD observed.	6.46	1.00						19.22	99.4	30	R
Sample ID: 2105045-002CMS	SampType: MS			Units: µg/L		Prep Date	e: 5/7/202	:1	RunNo: 671	51	
Client ID: BATCH	Batch ID: 32239					Analysis Date	e: 5/12/2 0	21	SeqNo: 13	64329	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	550	1.00	500.0	8.022	108	70	130				
Silver	25.4	0.350	25.00	0	102	70	130				
Sample ID: 2105045-002CMSD	SampType: MSD			Units: µg/L		Prep Date	e: 5/7/202		RunNo: 67 1	51	
Client ID: BATCH	Batch ID: 32239					Analysis Date	e: 5/12/2 0	21	SeqNo: 13	64330	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	518	1.00	500.0	8.022	102	70	130	633.8	20.1	30	
Silver	26.7	0.350	25.00	0	107	70	130	29.21	8.82	30	
Sample ID: CCV-32239E	SampType: CCV			Units: µg/L		Prep Date	e: 5/12/2 0	21	RunNo: 67 1	51	
Client ID: CCV	Batch ID: 32239					Analysis Date	e: 5/12/2 0	21	SeqNo: 13	64333	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	103	1.00	100.0	0	103	85	115				
Silver	4.75	0.350	5.000	0	95.0	85	115				

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Dissolved Metals by EPA Method 200.8

Project:	Hardel Data	Gaps	Investigation
----------	-------------	------	---------------

Sample ID: CCB-32239E SampType: CCB				Units: µg/L		Prep Date: 5/12/2021		RunNo: 67151			
Client ID: CCB	Batch ID: 32239				Analysis Date: 5/12/2021			SeqNo: 1354334			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00									
Silver	ND	0.350									

Sample ID: 2105070-005BDUP	SampType: DUP			Units: µg/L		Prep Da	te: 5/7/202	:1	RunNo: 67 1	151	
Client ID: GW-MW107-0521	Batch ID: 32239					Analysis Da	te: 5/12/20	21	SeqNo: 135	54338	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	35.1	1.00						20.51	52.6	30	R
Silver	ND	0.350						0		30	
NOTES:											

NOTES:

R - High RPD observed.

Sample ID: CCV-32239F	SampType: CCV			Units: µg/L		Prep Da	te: 5/13/20	21	RunNo: 67 1	151	
Client ID: CCV	Batch ID: 32239					Analysis Da	te: 5/13/20	21	SeqNo: 135	54339	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	107	1.00	100.0	0	107	85	115				
Silver	5.02	0.350	5.000	0	100	85	115				

Sa	mple ID:	CCB-32239F	SampType: CCB		Units: µg/L		Prep Date:	5/13/2021	RunNo: 671	51	
Cli	ent ID:	ССВ	Batch ID: 32239				Analysis Date:	5/13/2021	SeqNo: 135	4340	
An	alyte		Result	RL	SPK value SPK Ref Val	%REC	LowLimit Hig	ghLimit RPD Ref Val	%RPD	RPDLimit	Qual

Arsenic	ND	1.00
Silver	ND	0.350

Work Order: 2105070

Silver

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project:	Hardel Data Gaps Investigation						Dis	solved Met	als by EP	A Method	200.8
Sample ID: ICB-32	365 SampType: ICB			Units: µg/L		Prep Da	te: 5/21/20	21	RunNo: 67 4	125	
Client ID: ICB Batch ID: 32365						Analysis Da	te: 5/21/20	21	SeqNo: 135	59607	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00									
Silver	ND	0.350									
Sample ID: ICV-32	365 SampType: ICV			Units: µg/L		Prep Da	te: 5/21/20	21	RunNo: 67 4	125	
Client ID: ICV	Batch ID: 32365					Analysis Da	te: 5/21/20	21	SeqNo: 135	59609	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	105	1.00	100.0	0	105	90	110				

Sample ID: CCV-32365A SampType: CCV			Units: µg/L	Prep Date: 5/21/2021 Analysis Date: 5/21/2021			RunNo: 67425				
Client ID: CCV	Batch ID: 32365					Analysis Da	te: 5/21/20	21	SeqNo: 135	59610	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	100	1.00	100.0	0	100	85	115				
Silver	5.18	0.350	5.000	0	104	85	115				

90

110

103

0.350

5.000

5.13

Sample ID: CCB-32365A	SampType: CCB	Units: µg/L	Prep Date: 5/21/2021	RunNo: 67425
Client ID: CCB	Batch ID: 32365		Analysis Date: 5/21/2021	SeqNo: 1359611
Analyte	Result	RL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Arsenic	ND	1.00
Silver	ND	0.350

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

CLIENT: Libby Environment	onmental										
Project: Hardel Data	a Gaps Investigation						Diss	olved Met	als by EP	A Method	1 200.8
Sample ID: MB-32365	SampType: MBLK			Units: µg/L		Prep Date	e: 5/20/2021		RunNo: 674	125	
Client ID: MBLKW	Batch ID: 32365					Analysis Date	e: 5/21/2021		SeqNo: 135	59612	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00									
Silver	ND	0.350									
Sample ID: LCS-32365	SampType: LCS			Units: µg/L		Prep Date	e: 5/20/2021		RunNo: 674	125	
Client ID: LCSW	Batch ID: 32365					Analysis Date	e: 5/21/2021		SeqNo: 135	59613	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	103	1.00	100.0	0	103	85	115				
Silver	4.95	0.350	5.000	0	98.9	85	115				
Sample ID: 2105070-005BDUP	SampType: DUP			Units: µg/L		Prep Date	e: 5/20/2021		RunNo: 674	125	
Client ID: GW-MW107-0521	Batch ID: 32365					Analysis Date	e: 5/21/2021		SeqNo: 135	59615	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00						0		30	
Silver	ND	0.350						0		30	
Sample ID: 2105070-005BMS	SampType: MS			Units: µg/L		Prep Date	e: 5/20/2021		RunNo: 674	125	
Client ID: GW-MW107-0521	Batch ID: 32365					Analysis Date	e: 5/21/2021		SeqNo: 135	59616	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	499	1.00	500.0	0.5810	99.6	70	130				
Silver	23.8	0.350	25.00	0	95.4	70	130				

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project:	Hardel Data	Gaps Investigation						Dissolved Me	tals by EPA Method	200.8
Sample ID: 210	05070-005BMSD	SampType: MSD			Units: µg/L		Prep Date: 5/	/20/2021	RunNo: 67425	
Client ID: GV	V-MW107-0521	Batch ID: 32365					Analysis Date: 5/	21/2021	SeqNo: 1359617	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Highl	Limit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		508	1.00	500.0	0.5810	102	70	130 498.6	1.92 30	
Silver		24.1	0.350	25.00	0	96.6	70	130 23.84	1.25 30	
Sample ID: CC	V-32365B	SampType: CCV			Units: µg/L		Prep Date: 5/	/21/2021	RunNo: 67425	
Client ID: CC	v	Batch ID: 32365					Analysis Date: 5/	21/2021	SeqNo: 1359620	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Highl	Limit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		96.6	1.00	100.0	0	96.6	85	115		
Silver		5.16	0.350	5.000	0	103	85	115		
Sample ID: CC	B-32365B	SampType: CCB			Units: µg/L		Prep Date: 5/	/21/2021	RunNo: 67425	
Client ID: CC	В	Batch ID: 32365					Analysis Date: 5/	21/2021	SeqNo: 1359621	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Highl	Limit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		ND	1.00							
Silver		ND	0.350							
Sample ID: ICI	3-32446	SampType: ICB			Units: µg/L		Prep Date: 5/	/26/2021	RunNo: 67575	
Client ID: ICE	3	Batch ID: 32446					Analysis Date: 5/	26/2021	SeqNo: 1362848	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Highl	Limit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		ND	1.00							
Sample ID: IC	/-32446	SampType: ICV			Units: µg/L		Prep Date: 5/	/26/2021	RunNo: 67575	
Client ID: IC	/	Batch ID: 32446					Analysis Date: 5/	26/2021	SeqNo: 1362850	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Highl	Limit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		108	1.00	100.0	0	108	90	110		

Hardel Data Gaps Investigation

Date: 5/28/2021

Work Order: 2105070

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Dissolved Metals by EPA Method 200.8

Sample ID: ICV-32446	SampType: ICV	Units: µg/L	Prep Date: 5/26/2021	RunNo: 67575
Client ID: ICV	Batch ID: 32446	Ana	alysis Date: 5/26/2021	SeqNo: 1362850

RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Result

Sample ID: CCV-32446A	SampType: CCV			Units: µg/L		Prep Da	te: 5/26/2021	RunNo: 675	75	
Client ID: CCV	Batch ID: 32446					Analysis Da	te: 5/26/2021	SeqNo: 136	2851	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	96.8	1.00	100.0	0	96.8	85	115			

Sample ID: CCB-32446A	SampType: CCB		Units: µg/L	Prep Date: 5/26/2021	RunNo: 67575
Client ID: CCB	Batch ID: 32446			Analysis Date: 5/26/2021	SeqNo: 1362852
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	ND	1.00			

Sample ID: MB-32446	SampType: MBLK	Units: µg/L	Prep Date: 5/26/2021	RunNo: 67575
Client ID: MBLKW	Batch ID: 32446		Analysis Date: 5/26/2021	SeqNo: 1362853

Analyte RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Result

Arsenic ND 1.00

Sample ID: LCS-32446	SampType: LCS			Units: µg/L		Prep Da	te: 5/26/2021	RunNo: 675	575	
Client ID: LCSW	Batch ID: 32446					Analysis Da	te: 5/26/2021	SeqNo: 136	2854	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD	RPDLimit	Qual
Arsenic	102	1.00	100.0	0	102	85	115			

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

	ii oi ii i i oi i i ai						D! I I M	- (- I - I FDA Matha	-1 000
Project: Hardel Da	ata Gaps Investigation						Dissolved Me	etals by EPA Metho	d 200.
Sample ID: 2105070-001BDUP	SampType: DUP			Units: µg/L		Prep Date:	5/26/2021	RunNo: 67575	
Client ID: GW-MW102-0521	Batch ID: 32446					Analysis Date:	5/26/2021	SeqNo: 1362856	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	2.60	1.00					2.912	11.4 30	
Sample ID: 2105070-001BMS	SampType: MS			Units: µg/L		Prep Date:	5/26/2021	RunNo: 67575	
Client ID: GW-MW102-0521	Batch ID: 32446					Analysis Date:	5/26/2021	SeqNo: 1362857	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	476	1.00	500.0	2.006	94.8	70	130		
Sample ID: CCV-32446B	SampType: CCV			Units: µg/L		Prep Date:	5/26/2021	RunNo: 67575	
Client ID: CCV	Batch ID: 32446					Analysis Date:	5/26/2021	SeqNo: 1362858	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	98.9	1.00	100.0	0	98.9	85	115		
Sample ID: CCB-32446B	SampType: CCB			Units: µg/L		Prep Date:	5/26/2021	RunNo: 67575	
Client ID: CCB	Batch ID: 32446					Analysis Date:	5/26/2021	SeqNo: 1362859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	ND	1.00							
Sample ID: 2105070-001BMSD	SampType: MSD			Units: µg/L		Prep Date:	5/26/2021	RunNo: 67575	
Client ID: GW-MW102-0521	Batch ID: 32446					Analysis Date:	5/26/2021	SeqNo: 1362860	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	490	1.00	500.0	2.006	97.6	70	130 476.2	2.86 30	

Work Order: 2105070

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Dissolved Metals by EPA Method 200.8

RunNo: 67575

Fioject.	Tialuel Dala	Caps investigation			
Sample ID: CCV-3	32446C	SampType: CCV	Units: ,	ug/L Prep Date:	5/27/2021

Client ID: CCV Batch ID: 32446 Analysis Date: 5/27/2021 SeqNo: 1362865

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Arsenic 101 1.00 100.0 0 101 85 115

Sample ID: CCB-32446C SampType: CCB Units: µg/L Prep Date: 5/27/2021 RunNo: 67575

Client ID: **CCB** Batch ID: **32446** Analysis Date: **5/27/2021** SeqNo: **1362866**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Arsenic ND 1.00

Hardel Data Gane Investigation

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Harde	el Data Gaps Investigation	on F					tic Hydr	y EPA Me	thod 827	0 (SIM)	
Sample ID: PAH ICB	SampType: ICB			Units: µg/L		Prep Da	te: 4/2/20 2	21	RunNo: 66	329	
Client ID: ICB	Batch ID: 32250					Analysis Da	te: 4/2/20 2	21	SeqNo: 13	56895	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.100									
2-Methylnaphthalene	ND	0.100									
1-Methylnaphthalene	ND	0.100									
Acenaphthylene	ND	0.100									
Acenaphthene	ND	0.100									
Fluorene	ND	0.100									
Phenanthrene	ND	0.100									
Anthracene	ND	0.100									
Fluoranthene	ND	0.100									
Pyrene	ND	0.100									
Benz(a)anthracene	ND	0.100									
Chrysene	ND	0.100									
Benzo(b)fluoranthene	ND	0.100									
Benzo(k)fluoranthene	ND	0.100									
Benzo(a)pyrene	ND	0.100									
Indeno(1,2,3-cd)pyrene	ND	0.100									
Dibenz(a,h)anthracene	ND	0.100									
Benzo(g,h,i)perylene	ND	0.100									
Surr: 2-Fluorobiphenyl	495		500.0		99.0	72.7	131				
Surr: Terphenyl-d14	562		500.0		112	74.6	134				

Sample ID: PAH ICV	SampType: ICV			Units: µg/L		Prep Da	te: 4/2/202	1	RunNo: 663	329	
Client ID: ICV	Batch ID: 32250					Analysis Da	te: 4/2/202	1	SeqNo: 135	6896	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,050	0.100	1,000	0	105	70	130				
2-Methylnaphthalene	1,050	0.100	1,000	0	105	70	130				
1-Methylnaphthalene	1,080	0.100	1,000	0	108	70	130				
Acenaphthylene	1,090	0.100	1,000	0	109	70	130				
Acenaphthene	1,050	0.100	1,000	0	105	70	130				

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: PAH ICV	SampType: ICV			Units: µg/L		Prep Da	te: 4/2/20 2	21	RunNo: 663	329	
Client ID: ICV	Batch ID: 32250			13		Analysis Da			SeqNo: 135		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	•		RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	1,090	0.100	1,000	0	109	70	130				
Phenanthrene	1,080	0.100	1,000	0	108	70	130				
Anthracene	1,060	0.100	1,000	0	106	70	130				
Fluoranthene	1,090	0.100	1,000	0	109	70	130				
Pyrene	1,100	0.100	1,000	0	110	70	130				
Benz(a)anthracene	1,070	0.100	1,000	0	107	70	130				
Chrysene	1,080	0.100	1,000	0	108	70	130				
Benzo(b)fluoranthene	1,020	0.100	1,000	0	102	70	130				
Benzo(k)fluoranthene	1,200	0.100	1,000	0	120	70	130				
Benzo(a)pyrene	1,210	0.100	1,000	0	121	70	130				
Indeno(1,2,3-cd)pyrene	1,080	0.100	1,000	0	108	70	130				
Dibenz(a,h)anthracene	1,100	0.100	1,000	0	110	70	130				
Benzo(g,h,i)perylene	1,090	0.100	1,000	0	109	70	130				
Surr: 2-Fluorobiphenyl	524		500.0		105	70.2	145				
Surr: Terphenyl-d14	574		500.0		115	71.3	142				
Sample ID: CCV-32251B	SampType: CCV			Units: µg/L		Prep Da	te: 5/11/2 0	021	RunNo: 67 1	194	
Client ID: CCV	Batch ID: 32250					Analysis Da	te: 5/11/2 0	021	SeqNo: 135	56911	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	849	0.100	1,000	0	84.9	80	120				
2-Methylnaphthalene	859	0.100	1,000	0	85.9	80	120				
1-Methylnaphthalene	895	0.100	1,000	0	89.5	80	120				
Acenaphthylene	873	0.100	1,000	0	87.3	80	120				
Acenaphthene	877	0.100	1,000	0	87.7	80	120				
Fluorene	881	0.100	1,000	0	88.1	80	120				
Phenanthrene	860	0.100	1,000	0	86.0	80	120				
Anthracene	854	0.100	1,000	0	85.4	80	120				
Fluoranthene	874	0.100	1,000	0	87.4	80	120				
i idorantinene	017	0.100	1,000	U	07.4	00	120				

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: CCV-32251B	SampType: CCV			Units: µg/L		Prep Da	te: 5/11/2 0	021	RunNo: 67 1	194	
Client ID: CCV	Batch ID: 32250					Analysis Da	te: 5/11/2 0	021	SeqNo: 135	56911	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	897	0.100	1,000	0	89.7	80	120				
Chrysene	832	0.100	1,000	0	83.2	80	120				
Benzo(b)fluoranthene	914	0.100	1,000	0	91.4	80	120				
Benzo(k)fluoranthene	801	0.100	1,000	0	80.1	80	120				
Benzo(a)pyrene	877	0.100	1,000	0	87.7	80	120				
Indeno(1,2,3-cd)pyrene	913	0.100	1,000	0	91.3	80	120				
Dibenz(a,h)anthracene	934	0.100	1,000	0	93.4	80	120				
Benzo(g,h,i)perylene	842	0.100	1,000	0	84.2	80	120				
Surr: 2-Fluorobiphenyl	425		500.0		85.0	70.2	145				
Surr: Terphenyl-d14	473		500.0		94.7	71.3	142				
Sample ID: MB-32250	SampType: MBLK			Units: µg/L		Prep Da	te: 5/10/2 0	021	RunNo: 67 1	194	
Client ID: MBLKW	Batch ID: 32250					Analysis Da	te: 5/11/2 0	021	SeqNo: 13	53957	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.0986									
2-Methylnaphthalene	ND	0.0986									
1-Methylnaphthalene	ND	0.0986									
Acenaphthylene	ND	0.0986									
Acenaphthene	ND	0.0986									
Fluorene	ND	0.0986									
Phenanthrene	ND	0.0986									
Anthracene	ND	0.0986									
Fluoranthene	ND	0.0986									
Pyrene	ND	0.0986									
Benz(a)anthracene	ND	0.0986									
Chrysene	ND	0.0986									
Benzo(b)fluoranthene	ND	0.0986									
Daniel (IVI)	ND	0.0986									
Benzo(k)fluoranthene	IND	0.0300									

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project:	Hardel Da	ata Gaps	Investigation
----------	-----------	----------	---------------

-											
Sample ID: MB-32250	SampType: MBLK			Units: µg/L		Prep Da	te: 5/10/2 0)21	RunNo: 67 1	194	
Client ID: MBLKW	Batch ID: 32250					Analysis Da	te: 5/11/2 0)21	SeqNo: 135	53957	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	ND	0.0986									
Dibenz(a,h)anthracene	ND	0.0986									
Benzo(g,h,i)perylene	ND	0.0986									
Surr: 2-Fluorobiphenyl	1.51		1.972		76.7	33.2	139				
Surr: Terphenyl-d14	1.89		1.972		95.7	24.6	136				

Sample ID: LCS-32250	SampType: LCS			Units: µg/L	Prep Date: 5/10/2021			21	RunNo: 67	194	
Client ID: LCSW	Batch ID: 32250					Analysis Da	te: 5/11/20	21	SeqNo: 13	53958	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2.76	0.0987	3.949	0	69.9	24.1	124				
2-Methylnaphthalene	2.92	0.0987	3.949	0	73.9	32	129				
1-Methylnaphthalene	3.00	0.0987	3.949	0	76.0	30.4	125				
Acenaphthylene	3.02	0.0987	3.949	0	76.4	34.5	130				
Acenaphthene	3.07	0.0987	3.949	0	77.7	33.1	126				
Fluorene	3.37	0.0987	3.949	0	85.2	34.4	134				
Phenanthrene	3.40	0.0987	3.949	0	86.1	41.2	130				
Anthracene	3.29	0.0987	3.949	0	83.4	34.3	127				
Fluoranthene	3.48	0.0987	3.949	0	88.0	42.2	135				
Pyrene	3.33	0.0987	3.949	0	84.4	40.9	133				
Benz(a)anthracene	3.34	0.0987	3.949	0	84.5	33.1	130				
Chrysene	3.07	0.0987	3.949	0	77.7	34.7	113				
Benzo(b)fluoranthene	3.10	0.0987	3.949	0	78.6	24.9	128				
Benzo(k)fluoranthene	2.95	0.0987	3.949	0	74.7	21.3	131				
Benzo(a)pyrene	3.27	0.0987	3.949	0	82.8	23.2	139				
Indeno(1,2,3-cd)pyrene	2.88	0.0987	3.949	0	72.8	14.9	123				
Dibenz(a,h)anthracene	2.96	0.0987	3.949	0	75.0	12.2	125				
Benzo(g,h,i)perylene	2.68	0.0987	3.949	0	67.7	11.8	122				
Surr: 2-Fluorobiphenyl	1.56		1.974		79.1	33.2	139				
Surr: Terphenyl-d14	1.88		1.974		95.0	24.6	136				

Work Order: 2105070

QC SUMMARY REPORT

RunNo: 67194

CLIENT: Libby Environmental

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Hardel Data Gaps Investigation

Sample ID: LCS-32250

SampType: LCS

Units: µg/L

Prep Date: 5/10/2021

Client ID: **LCSW** Batch ID: **32250** Analysis Date: **5/11/2021** SeqNo: **1353958**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: LCSD-32250 SampType: LCSD				Units: µg/L		Prep Da	te: 5/10/2 0)21	RunNo: 67 1	194		
Client ID: LCSW02	Batch ID: 32250					Analysis Da	te: 5/11/2 0	SeqNo: 1353959				
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene	1.76	0.0990	3.962	0	44.5	24.1	124	2.762	44.2	30	R	
2-Methylnaphthalene	1.88	0.0990	3.962	0	47.3	32	129	2.916	43.5	30	R	
1-Methylnaphthalene	1.95	0.0990	3.962	0	49.3	30.4	125	3.003	42.4	30	R	
Acenaphthylene	1.96	0.0990	3.962	0	49.6	34.5	130	3.016	42.2	30	R	
Acenaphthene	2.02	0.0990	3.962	0	51.1	33.1	126	3.067	41.0	30	R	
Fluorene	2.21	0.0990	3.962	0	55.7	34.4	134	3.366	41.6	30	R	
Phenanthrene	2.30	0.0990	3.962	0	58.1	41.2	130	3.402	38.6	30	R	
Anthracene	2.28	0.0990	3.962	0	57.5	34.3	127	3.294	36.5	30	R	
Fluoranthene	2.45	0.0990	3.962	0	61.8	42.2	135	3.476	34.7	30	R	
Pyrene	2.33	0.0990	3.962	0	58.9	40.9	133	3.335	35.3	30	R	
Benz(a)anthracene	2.40	0.0990	3.962	0	60.5	33.1	130	3.338	32.9	30	R	
Chrysene	2.18	0.0990	3.962	0	55.0	34.7	113	3.068	33.9	30	R	
Benzo(b)fluoranthene	2.24	0.0990	3.962	0	56.6	24.9	128	3.103	32.2	30	R	
Benzo(k)fluoranthene	2.10	0.0990	3.962	0	53.1	21.3	131	2.948	33.5	30	R	
Benzo(a)pyrene	2.35	0.0990	3.962	0	59.4	23.2	139	3.271	32.7	30	R	
Indeno(1,2,3-cd)pyrene	2.08	0.0990	3.962	0	52.6	14.9	123	2.876	32.0	30	R	
Dibenz(a,h)anthracene	2.14	0.0990	3.962	0	54.1	12.2	125	2.963	32.1	30	R	
Benzo(g,h,i)perylene	1.92	0.0990	3.962	0	48.5	11.8	122	2.675	32.7	30	R	
Surr: 2-Fluorobiphenyl	0.998		1.981		50.4	33.2	139		0	0		
Surr: Terphenyl-d14	1.35		1.981		68.0	24.6	136		0	0		

NOTES:

R - High RPD observed, spike recovery is within range.

Work Order: 2105070

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: 2105070-001AMS	SampType: MS			Units: µg/L		Prep Date	e: 5/10/202	1	RunNo: 671	94	
Client ID: GW-MW102-0521	Batch ID: 32250					Analysis Date	e: 5/11/202	1	SeqNo: 135	3961	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	3.92	0.101	4.042	0.9274	74.1	25.1	120				
2-Methylnaphthalene	3.33	0.101	4.042	0.1436	78.9	20.4	134				
1-Methylnaphthalene	3.58	0.101	4.042	0.3296	80.5	31.5	122				
Acenaphthylene	3.22	0.101	4.042	0	79.6	34.9	125				
Acenaphthene	4.19	0.101	4.042	0.9678	79.7	33.2	123				
Fluorene	3.81	0.101	4.042	0.2982	86.8	41.1	127				
Phenanthrene	3.52	0.101	4.042	0.08083	85.1	41.6	126				
Anthracene	3.46	0.101	4.042	0	85.5	34.1	123				
Fluoranthene	3.56	0.101	4.042	0	88.2	50	126				
Pyrene	3.40	0.101	4.042	0	84.2	46.7	125				
Benz(a)anthracene	3.38	0.101	4.042	0	83.6	25.3	122				
Chrysene	3.15	0.101	4.042	0	77.9	22.8	111				
Benzo(b)fluoranthene	3.16	0.101	4.042	0	78.1	8.57	125				
Benzo(k)fluoranthene	3.24	0.101	4.042	0	80.1	7.05	124				
Benzo(a)pyrene	3.50	0.101	4.042	0	86.6	9.61	130				
Indeno(1,2,3-cd)pyrene	3.14	0.101	4.042	0	77.7	5	120				
Dibenz(a,h)anthracene	3.22	0.101	4.042	0	79.7	5	122				
Benzo(g,h,i)perylene	2.93	0.101	4.042	0	72.6	5	114				
Surr: 2-Fluorobiphenyl	1.71		2.021		84.8	33.2	139				
Surr: Terphenyl-d14	1.95		2.021		96.4	24.6	136				
Sample ID: QCS-32251B	SampType: QCS			Units: µg/L		Prep Date	e: 5/11/202	1	RunNo: 671	94	
Client ID: BATCH	Batch ID: 32250					Analysis Date	e: 5/11/202	1	SeqNo: 135	6912	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	852	0.100	1,000	0	85.2	50	150				
2-Methylnaphthalene	859	0.100	1,000	0	85.9	50	150				
1-Methylnaphthalene	891	0.100	1,000	0	89.1	50	150				
Acenaphthylene	880	0.100	1,000	0	88.0	50	150				
Acenaphthene	877	0.100	1,000	0	87.7	50	150				

Hardel Data Gaps Investigation

Date: 5/28/2021

Work Order: 2105070

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Sample ID: QCS-32251B	SampType: QCS			Units: µg/L		Prep Dat	te: 5/11/2 0	21	RunNo: 67	194	
Client ID: BATCH	Batch ID: 32250					Analysis Da	te: 5/11/2 0	21	SeqNo: 13	56912	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	876	0.100	1,000	0	87.6	50	150				
Phenanthrene	845	0.100	1,000	0	84.5	50	150				
Anthracene	843	0.100	1,000	0	84.3	50	150				
Fluoranthene	874	0.100	1,000	0	87.4	50	150				
Pyrene	843	0.100	1,000	0	84.3	50	150				
Benz(a)anthracene	901	0.100	1,000	0	90.1	50	150				
Chrysene	809	0.100	1,000	0	80.9	50	150				
Benzo(b)fluoranthene	876	0.100	1,000	0	87.6	50	150				
Benzo(k)fluoranthene	864	0.100	1,000	0	86.4	50	150				
Benzo(a)pyrene	886	0.100	1,000	0	88.6	50	150				
Indeno(1,2,3-cd)pyrene	921	0.100	1,000	0	92.1	50	150				
Dibenz(a,h)anthracene	944	0.100	1,000	0	94.4	50	150				
Benzo(g,h,i)perylene	838	0.100	1,000	0	83.8	50	150				
Surr: 2-Fluorobiphenyl	427		500.0		85.4	50	150				
Surr: Terphenyl-d14	478		500.0		95.5	50	150				

Sample Log-In Check List

С	ient Name:	LIBBY		Work Order Numb	oer: 2105070		
Lo	ogged by:	Gabrielle	Coeuille	Date Received:	5/6/2021 1	10:27:00 AM	
Cha	in of Custo	ody					
	Is Chain of C	-	plete?	Yes 🗸	No 🗌	Not Present	
2.	How was the	sample del	ivered?	<u>UPS</u>			
Log	· In						
_	Coolers are p	oresent?		Yes 🗸	No 🗌	NA 🗌	
4.	Shipping con	tainer/coole	er in good condition?	Yes 🗹	No 🗌		
5.			n shipping container/cooler? Custody Seals not intact)	Yes	No 🗌	Not Present ✓	
6.	Was an atten	npt made to	cool the samples?	Yes 🗸	No 🗌	NA 🗌	
7.	Were all item	s received	at a temperature of >2°C to 6°C *	Yes 🗸	No 🗆	NA 🗌	
8.	Sample(s) in	proper con	tainer(s)?	Yes 🗹	No 🗆		
9.	Sufficient san	nple volum	e for indicated test(s)?	Yes 🗸	No \square		
10.	Are samples	properly pr	eserved?	Yes 🗹	No \square		
11.	Was preserva	ative added	to bottles?	Yes	No 🗸	NA 🗆	
12.	Is there head	space in th	e VOA vials?	Yes	No \square	NA 🗸	
13.	Did all sample	es containe	rs arrive in good condition(unbroken)?	Yes 🔽	No 🗌		
14.	Does paperw	ork match l	pottle labels?	Yes 🗸	No 🗌		
15.	Are matrices	correctly id	entified on Chain of Custody?	Yes 🗸	No \square		
16.	Is it clear wha	at analyses	were requested?	Yes 🗹	No \square		
17.	Were all hold	ing times a	ble to be met?	Yes 🗸	No \square		
Spe	cial Handl	ing (if ap	plicable)				
18.	Was client no	otified of all	discrepancies with this order?	Yes 🗸	No \square	NA \square	
	Person	Notified:	Kristina Ikerd Date	:	5/6/2021		
	By Who	m:	Gabrielle Coeuille Via:	✓ eMail ☐ Ph	one 🗌 Fax [In Person	
	Regardi	ng:	Which sample should be duplicate?				
	Client In	structions:	Please run the duplicate for GW-MW1	07-0521			
19.	Additional rer	marks:					

Item Information

Item #	Temp ⁰C
Sample 1	1.3

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Libby Environmen		CI	nair	0	f Cı	usi	od	ly I	Rec	cor	d	01	ine	70	m		W	ww.Lib	byEnvir	ronment	al.com			
3322 South Bay Road NE		360-352-2								1	,		25 W		·V	(0)	50			120				
Olympia, WA 98506		360-352-4						Date:				- 20				_		age:	2			of	- 1	32
Client: Libby En			L, I	رد.			:	Proje	ect N	lana	ger:		Ko	dey	E	=le	Y							₹
Address: (See	above)	· ·				γ.	Proje	ect N	ame	: }	lar	de	7	at	a_	Ga	20	In	ves	tige	itio.	^	31
City:		State:	- 2	Zip:				Locat									Ċ	City, S	State	01.	ymp	ia,	WA	age
Phone:		Fax:						Colle	ctor	-	TH							ate (of Co	llection	on:	5-5	-202	١.
Client Project # L21050	5-1							Emai	ile		11	bby	en	u@	gn	ail	1. c	m						
Sample Number	Depth	Time	Samp Type	100	Container Type	/.0		10 10 10 10 10 10 10 10 10 10 10 10 10 1	Serie Carl	24 80 V	SO S	801.7 801.7 801.7 801.7	48		25/2	PH 021	200	10/00/	and see	AST	//	eld Note	2	>
1 GW-MWIOZ -0521	Depar	1300			nber/Poly	1 1	7 4	7	70	7 7	/ 4	7 4	/ N			X	197	X	\prec	1	1 10	IG NOR	C 5	-
12		1215	Wate	7 /7/	noer/ roly	+		-								$\hat{\chi}$		X	+	_			-	$\neg \neg$
2GW-MW103-0521 3GW-MW105-0521		1055	\vdash	+	_										-		_	×	+	+				
4 GW - MW106-0521		1135		+	+	+		-	\dashv	\dashv			_			X		K	+	+				
5GW-MW107-0521		1350		+	-			\neg							_	X	_	×	+	+				
6GW-MW107-0521-01		1350		\top	1	\vdash		\dashv							-	X		X	+	+				
7		1000		\neg		\Box		\neg							\neg		7		\top	_				
8				\top												T			\top					
9				\top				\neg											\top					
10				\neg																				
11																								
12																								
13																								
14																								
15																								
16																								
17					4	1																		
elinquished by: Date / Time			me Re	ceived by:	1	1		(141	216	Date /					Rece		R	emar	ks: Ţ	CF P	essible		
Relinquished by:	Data / Time			me Re	ceived by:	X	~)	141	-	Date /	27	Good				_ N	C 5	rease	run	inter	nal di	plicati
in some district of			500111	10	outon by.		-				Cooler Temp. °C Sample Temp. °C				ō 1	rom	MU	107	Sampl	e.				
Relinquished by:			Date / Ti	me Re	ceived by:		Date / Time									- 4	Remarks: If possible, please run internal duplicate from MW 107 sample. Metals are field filtered.							
LEGAL ACTION CLAUSE: In the event of default of onvi	EGAL ACTION CLAUSE: In the event of default of navment and/or failure to nav. Client agrees to nav the costs				collection including a	including court costs and reasonable afformey fees to be determined by a court						Containers				1	TAT: 24HR 48HR 5-DAY							

Libby Environmer 3322 South Bay Road NE Olympia, WA 98506		360-352-2	110	C	hain (of Cus	5-	5-2	021				0 ge:		www.LibbyEnviro	nmental.com
Client: Libby En	norivi	menta	1 Inc			Project	Manag	er:	Ke	odey 1	Ele	У				
Address: \ \ 5ee	above)				Project	Name:	Ha	rde	1 Dat	9	Gap.	,]	Lnv	estigation	
City:		State:	Zip			Locatio						Cit	y, Sta	ite: (Olympia, L	JA .
Phone:		Fax:				Collect	or: J	H				Da	te of	Colle	ction: 5-5-	-2021
Client Project # L21050	05-1					Email:		libb	yen	W@ qn	nail	. cor	n			
Sample Number	Depth	Time	Sample Type	Container Type	100	E CONST	120/	(82°)	7		//	\mathbb{Z}	1800	and I	Field Note:	
1 GW-MW102 -0521		1300	The second secon	Amber/Poly				Ì			X	X	Ì			
2GW-MW103-0521		1215		1							X	×				
3 GW-MW 105-0521		1055									X	X				
4 GW - MW106-0521		1135									X	X				
5GW-MW107-0521		1350									X	X				
6GW-MW107-0521-01		1350									X	X				
7																
8 40 - 20 - 40 - 40 - 40 - 40 - 40 - 40 -									N.							
9																
10																
1																
14																
15																
16																
		7			上											
Relinquished by #5	-6-21	13:34		Received by:	D		5/4/2	01	Time /12	Sam Good Cond Cooler Tem	tion?	Receip Y	°C	Plea	narks: If pos ue run intern m MW 107 s	zible, al duplient
Relinguished by:			Date / Time	Received by:				Date	/ Time	Sample Ter Total Numb			ъс	Met	bals are field l	filtered:
TEGAL ACTION CLAUSE in the event of default of pays	nent antiva fallun	to pay. Client as	rems to pay the cas	N of codestion metalling	cart costs and	feetscountrie offers	ey feas to be	totor mend d	by a could	Containe	rs			- Constitution	T: 24HR 48H	Administration of the Control of the

DATA SET for Review -- **Deliverable Requirements**

Dissolved Metals by EPA Method 200.8

Fremont Analytical Work Order No. 2105070

Libby Environmental

Project Name: Hardel Data Gaps Investigation

This Data contains the following:

- Analytical Sequence Summary
- Calibration Information
- Tune Information

Dataset Report

User Name: ICPMS Computer Name: DT28

 $Dataset\ File\ Path:\ C:\ Users\ Public\ Documents\ PerkinElmer\ Syngistix\ ICPMS\ DataSet\ May 2021\ 051021eh\ Normalised$

Report Date/Time: Tuesday, May 11, 2021 08:54:06

The Dataset

		The Dataset	
Batch ID	Sample ID	Date and Time Read Type	Samp. File Name Description
	2% 2	10:16:41 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2% 4	10:22:14 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2% 5	10:27:48 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2%	10:34:08 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2%	10:39:42 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2%	10:45:16 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2%	10:52:28 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2%	11:00:07 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2%	11:05:41 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	CAL BLK IS 23514	11:11:25 Mon 10-MBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 1	11:16:59 Mon 10-NStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 2	11:22:32 Mon 10-NStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 3	11:28:06 Mon 10-NStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 4	11:33:39 Mon 10-NStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 5	11:39:13 Mon 10-NStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 6	11:44:46 Mon 10-NStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 7	11:50:20 Mon 10-NStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 8	11:55:53 Mon 10-NStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 9	12:01:27 Mon 10-NStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 10	12:07:01 Mon 10-NStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	Standard 11	12:12:34 Mon 10-NStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	WASH	12:18:09 Mon 10-MQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	ICB	12:23:43 Mon 10-MQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	ICV LL	12:29:17 Mon 10-MQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	ICV	12:34:51 Mon 10-MQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	ICSA	12:49:38 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	ICSAB	12:55:12 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	WASH	13:02:33 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	2105012-001A	13:13:39 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
	2105012-002A	13:19:13 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105012-003A	13:24:46 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
	2105013-001A	13:30:20 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
	2105013-002A	13:35:53 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105046-001A	13:41:27 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	CCV	13:47:02 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	CCV	13:53:04 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	CCB	14:01:03 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	CCB	14:07:43 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	MB-32245	14:13:18 Mon 10-\Sample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	LCS-32245	14:18:51 Mon 10-\Sample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105102-003A	14:24:25 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105102-003ADIL	14:29:58 Mon 10-\Sample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105102-003AMS	14:35:32 Mon 10-\Sample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105102-003AMSD	14:41:05 Mon 10-\Sample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105102-003APDS	14:46:39 Mon 10-NSample	C:\Users\Public\DocumPDS,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105102-001A	14:52:12 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105102-002A	14:57:46 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	2105102-004A	15:03:20 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	CCV	15:08:54 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
	CCB	15:14:28 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510

2105102-005A	15:20:03 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-006A	15:25:37 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105059-001A	15:31:11 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
2105059-002A	15:36:45 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
2105059-003A	15:42:19 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
CCV	15:47:54 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	15:53:29 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
2105110-001A	16:03:49 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105115-001A	16:09:24 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2104421-005A	16:14:58 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105123-001A	16:20:32 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105123-002A	16:26:06 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105123-004A	16:31:40 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105123-006A	16:37:13 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105013-001A 10X 2105013-002A 10X	16:42:48 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
	16:48:22 Mon 10-NSample 16:53:57 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510 C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
CCV	16:59:32 Mon 10-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	17:05:06 Mon 10-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CAL BLK IS 23514	17:13:26 Mon 10-MBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 1	17:19:00 Mon 10-NStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CAL BLK IS 23514	17:23:23 Mon 10-NBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CAL BLK IS 23514	17:47:12 Mon 10-NBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 1	17:52:46 Mon 10-NStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 2	17:58:20 Mon 10-NStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 3	18:03:54 Mon 10-NStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 4	18:09:28 Mon 10-NStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 5	18:15:02 Mon 10-NStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 6	18:20:36 Mon 10-NStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 7	18:26:10 Mon 10-NStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 8	18:31:43 Mon 10-NStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 9	18:37:17 Mon 10-NStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 10	18:42:51 Mon 10-NStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
Standard 11	18:48:25 Mon 10-NStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
WASH	18:54:01 Mon 10-NQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
ICB	18:59:35 Mon 10-NQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
ICV LL	19:05:09 Mon 10-NQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
ICV	19:10:44 Mon 10-NQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
WASH	19:16:18 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
ICSA ICSAB	19:21:53 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510 C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
WASH	19:27:27 Mon 10-\Sample 19:33:02 Mon 10-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
WASH	19:38:37 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
MB-32245	19:44:12 Mon 10-NSample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\May2021\0510
LCS-32245	19:49:46 Mon 10-NSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-003A	19:55:20 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-003ADIL	20:00:54 Mon 10-NSample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-003AMS	20:06:28 Mon 10-NSample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-003AMSD	20:12:01 Mon 10-NSample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-003APDS	20:17:36 Mon 10-NSample	C:\Users\Public\DocumPDS,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-001A	20:23:10 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-002A	20:28:44 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105102-004A	20:34:18 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
CCV	20:39:53 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	20:45:27 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
2105102-005A	20:51:02 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
2105102-006A	20:56:36 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
2105110-001A	21:02:10 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2105115-001A	21:07:44 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510
2104421-005A	21:13:18 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0510

2105123-001A	21:18:51 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
2105123-002A	21:24:25 Mon 10-\Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
2105123-004A	21:30:00 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
2105123-006A	21:35:34 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0510
CCV	21:41:09 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	21:46:43 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
WASH	21:52:18 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
MB-32247	21:57:53 Mon 10-NSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
LCS-32247	22:03:27 Mon 10-NSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105117-001A	22:09:01 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105117-001ADUP	22:14:35 Mon 10-NSample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105117-001AMS	22:20:08 Mon 10-NSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105117-001AMSD	22:25:42 Mon 10-NSample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105063-001B	22:31:16 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105068-001A	22:36:50 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105068-002A	22:42:23 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
LCS-32245	22:47:58 Mon 10-NSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\May2021\0510
CCV	22:53:33 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	22:59:07 Mon 10-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
2105075-001A	23:04:41 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105075-006A	23:10:15 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105083-001A	23:15:48 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105089-001A	23:21:22 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105097-001A	23:26:56 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105097-002A	23:32:30 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105097-003A	23:38:04 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105097-004A	23:43:37 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105097-005A	23:49:11 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105097-006A	23:54:45 Mon 10-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
CCV	00:00:20 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	00:05:54 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
2105097-007A	00:11:28 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105099-001A	00:17:02 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105101-001A	00:22:36 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105107-001A	00:28:10 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105107-002A	00:33:43 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105112-001B	00:39:17 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105074-001A DRUM	M00:44:51 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
2105074-002A DRUM	M00:50:25 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0510
WASH	00:55:00 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCV	00:59:34 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	01:04:08 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
MB-32239FB	01:08:43 Tue 11-MSample	C:\Users\Public\DocumMBLK,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
MB-32239	01:13:16 Tue 11-MSample	C:\Users\Public\DocumMBLK,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
LCS-32239	01:17:50 Tue 11-MSample	C:\Users\Public\DocumLCS,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105045-002C	01:22:24 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D _ gistix\ICPMS\DataSet\May2021\0510
2105045-002CDUP	01:26:58 Tue 11-MSample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105045-002CMS	01:31:31 Tue 11-MSample	C:\Users\Public\DocumMS,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105045-002CMSD	01:36:05 Tue 11-MSample	C:\Users\Public\DocumMSD,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105045-001C	01:40:39 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105045-003C	01:45:13 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D _ gistix\ICPMS\DataSet\May2021\0510
2105045-004C	01:49:46 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
CCV	01:54:21 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	01:58:55 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
2105070-001B	02:03:29 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105070-002B	02:08:03 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105070-003B	02:12:37 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105070-004B	02:17:10 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105070-005B	02:21:44 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
2105070-006B	02:26:18 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0510
	·	, ,

2105050-016E	02:30:51 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D _ gistix\ICPMS\DataSet\May2021\0510
2105050-017E	02:35:25 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D _ gistix\ICPMS\DataSet\May2021\0510
2105050-018E	02:39:59 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D _ gistix\ICPMS\DataSet\May2021\0510
CCV	02:44:34 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	02:49:08 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
WASH	02:53:42 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
MB-32237	06:59:15 Tue 11-MSample	C:\Users\Public\DocumMBLK,M-200.8-DW gistix\ICPMS\DataSet\May2021\0510
LCS-32237	07:04:49 Tue 11-MSample	C:\Users\Public\DocumLCS,M-200.8-DW _ gistix\ICPMS\DataSet\May2021\0510
2105047-001A	07:10:22 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0510
2105047-001ADUP	07:15:56 Tue 11-MSample	C:\Users\Public\DocumDUP,M-200.8-DW _ gistix\ICPMS\DataSet\May2021\0510
2105047-001AMS	07:21:30 Tue 11-MSample	C:\Users\Public\DocumMS,M-200.8-DW _ gistix\ICPMS\DataSet\May2021\0510
2105047-001AMSD	07:27:03 Tue 11-MSample	C:\Users\Public\DocumMSD,M-200.8-DW _ gistix\ICPMS\DataSet\May2021\0510
2105047-002A	07:32:37 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0510
2105047-003A	07:38:11 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0510
2105073-001A	07:43:45 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0510
2105073-002A	07:49:18 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0510
CCV	07:54:53 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510
CCB	08:00:27 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0510

5EQ For 5/12/21 EH 5/13

	2105123-004A	16:06:45 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
	2105123-006A	16:12:19 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
	2105126-001A	16:17:53 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
	2105131-001A	16:23:27 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
	WASH	16:29:02 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	MB-32261	16:34:37 Tue 11-MSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	CCV	16:40:12 Tue 11-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	CCB	16:45:47 Tue 11-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	LCS-32261	16:51:22 Tue 11-MSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105103-001A	16:56:56 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105103-001ADUP	17:02:31 Tue 11-MSample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\Data8et\May2021\0511
	2105103-001AMS	17:08:05 Tue 11-MSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105103-001AMSD	17:13:39 Tue 11-MSample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPM8\DataSet\May2021\0511
	2105094-001D	17:19:13 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105113-001B	17:24:47 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\(\text{CPMS\DataSet\May2021\0511}\)
	2105122-002C	17:30:21 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105127-001A	17:35:56 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105128-001A	17:41:30 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	CCV	17:47:05 Tue 11-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	CCB	17:52:40 Tue 11-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	2105130-001C	17:58:15 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105132-001A	18:03:49 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105132-002A	18:09:23 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105138-001D	18:14:57 Tue 11-MSample	C:\Users\Public\Docum\\$AMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105142-001A	18:20:31 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105047-003A	18:26:06 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105099-001A	18:31:40 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105101-001A	18:37:15 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105107-001A	18:42:50 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	2105107-002A	18:48:25 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	CCV	18:54:00 Tue 11-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	CCB	18:59:34 Tue 11-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	2105112-001B	19:05:09 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	OVI	119:10:43 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
		119:16:18 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
	WASH	19:21:52 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	MB-32239	19:27:27 Tue 11-MSample	C:\Users\Public\DocumMBLK,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	LCS-32239	19:33:01 Tue 11-MSample	C:\Users\Public\DocumLCS,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	2105045-002C	19:38:34 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	2105045-002CDUP	19:44:08 Tue 11 MSample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	2105045-002CMS	19:49:42 Tue 11-MSample	C:\Users\Public\DocumMS,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	2105045-002CMSD	19:55:16 Tue 11-MSample	C:\Users\Public\DocumMSD,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	CCV	20:00:50 Tue 11-MQC Std #4	C:\Users\Public\Documents\PerkinElmer\Syngistix\ICPMS\DataSet\May2021\0511
	CCB	20:06:24 Tue 11-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	2105045-001C	20:11:59 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	2105045-003C	20:17:33 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	2105045-004C	20:23:07 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\\CPMS\DataSet\May2021\0511
	2105070-001B	20:28:41 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPM\$\DataSet\May2021\0511
VL	NEW 2% #6	20:34:15 Tue 11-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
/	2105070-005B	20:39:50 Tue 11-MSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	2105070-005BDUP	20:45:23 Tue 11-MSample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511
	CCV	20:50:58 Tue 11-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	CCB	20:56:32 Tue 11-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	2%	21:02:07 Tue 11-MQC Std #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
_	DI	21:07:41 Tue 11-MQC Std #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	CAL BLK IS 23514	10:20:20 Wed 12-MBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	Standard 1	10:25:54 Wed 12-NStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	Standard 2	10:31:27 Wed 12-NStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	Standard 3	10:37:01 Wed 12-NStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
	Standard 4	10:42:35 Wed 12-NStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511

Page 2

SEQ for 5/12/21 24 5/13

Ctondard E	10:48:09 Wed 12-NStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 5	10:53:42 Wed 12-NStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\GrMs\DataSet\May2021\0511
Standard 6		C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 7	10:59:16 Wed 12-NStandard #7	[2] 전 시작 전 4대 전 2개 (1) 2개 (1) 2개 (1) 2개 (2) 22 2개 (2) 23 23 23 23 23 23 23 23 23 23 23 23 23
Standard 8	11:04:50 Wed 12-NStandard #8 11:10:24 Wed 12-NStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 9	맛있으라 하다 하고 있는 것 같아 가듯 하네지 않아 나를 가면서 되었다	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 10	11:15:58 Wed 12-NStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 11	11:21:31 Wed 12-NStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
WASH	11:27:07 Wed 12-NQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
ICB	11:32:41 Wed 12-NQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
ICV LL	11:38:15 Wed 12-NQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
ICV	11:43:50 Wed 12-NQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
ICV LL	11:55:29 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
ICSA	12:46:09 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
ICSAB	12:51:42 Wed 12-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
WASH	12:57:17 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
NEW 2%	13:02:51 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
2105115-001A	13:09:37 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
2105123-001A	13:15:11 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
2105123-001A 10X	13:20:45 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0511
2105123-002A	13:26:18 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
2105123-002A 10X	13:31:52 Wed 12-\Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0511
2105123-004A	13:37:26 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
2105123-006A	13:42:59 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
2105123-006A 10X	13:48:33 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511
2105122-002C	13:54:08 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
2105138-001D	13:59:42 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
CCV	14:05:17 Wed 12-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
CCB	14:10:51 Wed 12-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
WASH	14:16:25 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
MB-32237	14:22:00 Wed 12-\Sample	C:\Users\Public\DocumMBLK,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511
LCS-32237	14:27:34 Wed 12-NSample	C:\Users\Public\DocumLCS,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511
2105047-001A	14:33:07 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511
2105047-001ADUP	14:38:41 Wed 12-NSample	C:\Users\Public\DocumDUP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511
2105047-001AMS	14:44:14 Wed 12-NSample	C:\Users\Public\DocumMS,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511
2105047-001AMSD	14:49:48 Wed 12-NSample	C:\Users\Public\DocumMSD,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511
2105047-002A	14:55:22 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511
CCV	15:03:28 Wed 12-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
CCB	15:09:07 Wed 12-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\lor Mo\bataSet\May2021\0511
LCS-32261	15:14:41 Wed 12-NSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\May2021\0511
MB-32272	15:20:15 Wed 12-Nample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\May2021\0511
LCS-32272	15:25:50 Wed 12-NSample	2.00
2105116-001A	15:31:24 Wed 12-NSample	C:\Users\Public\DocumLCS,M-TCLP gistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\May2021\0511
2105116-001A	15:36:58 Wed 12-NSample	
2105116-001AD0F	15:42:32 Wed 12-NSample	위한 가 보통한 발경에서 가 있습니다. 경우 사용을 하면 보면 있다고 있는 사용을 하면 보고 있습니다. 그 보는 그 그렇게 되었는데 있는데 보고 있습니다. 그렇게 하면 보고 있는데 보고 있는데 보고 있다면 보고 있다면 보고 있는데 보고 있는데 보고 있다면 보고 있는데 br>되었다고 있는데 보고 있는데 보다 되었다. 보고 있는데 보고
2105116-001AMSD		그런 가게 가게 하는데 가게 가게 가게 가게 가게 가게 가게 하는데
2105120-001A	15:48:06 Wed 12-NSample	
	15:53:40 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\May2021\0511
2105120-002A	15:59:14 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\May2021\0511
2105121-001A	16:04:48 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\May2021\0511
CCV	16:10:23 Wed 12-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
CCB	16:15:57 Wed 12-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
2105121-002A	16:21:32 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\May2021\0511
CCV	16:28:18 Wed 12-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
CCB	16:33:52 Wed 12-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
WASH	17:08:07 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
WASH	17:13:42 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
CAL BLK IS 23514	17:19:16 Wed 12-NBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 1	17:24:51 Wed 12-NStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 2	17:30:25 Wed 12-NStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 3	17:35:59 Wed 12-NStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Standard 4	17:41:33 Wed 12-NStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511

SEQ For 5112121 EH 5/13

Standard 5	17:47:07 Wed 12-NStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
Standard 6	17:52:41 Wed 12-NStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
Standard 7	17:58:15 Wed 12-NStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
Standard 8	18:03:49 Wed 12-NStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
Standard 9	18:09:22 Wed 12-NStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
Standard 10	20:12:58 Wed 12-NStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
Standard 11	20:18:32 Wed 12-NStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
WASH	20:24:07 Wed 12-NQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
ICB	20:29:41 Wed 12-NQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
ICV LL	20:35:16 Wed 12-NQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
ICV	20:40:50 Wed 12-NQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
WASH	20:45:40 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
ICV LL	20:50:29 Wed 12-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
ICSA	20:55:18 Wed 12-NSample	할 입사 병원이 보지는 그는		
		C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
ICSAB	21:00:52 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
WASH	21:06:27 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
WASH	21:12:00 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
2105123-001A	21:17:35 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511		
2105123-001A 10X	21:23:09 Wed 12-\Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0511		
2105123-002A	21:28:43 Wed 12-\Sample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\May2021\0511		
2105123-002A 10X	21:34:17 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-Sgistix\ICPMS\DataSet\May2021\0511		
2105123-004A	21:39:51 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511		
2105123-006A	21:45:26 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511		
2105123-006A 10X	21:51:00 Wed 12-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511		
2105126-001A	21:56:34 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511		
2105131-001A	22:02:08 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511		
CCV	22:07:43 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
CCB	22:13:16 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
2105131-001A 10X	22:18:51 Wed 12-\Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0511		
WASH	22:24:25 Wed 12-\Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
MB-32239	22:30:00 Wed 12-\Sample	C:\Users\Public\DocumMBLK,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
LCS-32239	22:35:34 Wed 12-NSample	C:\Users\Public\DocumLCS,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
2105045-002C	22:41:08 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
2105045-002CDUP	22:46:42 Wed 12-NSample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
2105045-002GMS	22:52:16 Wed 12-NSample			
2105045-002CMSD	22:57:50 Wed 12-NSample			
2105045-002CMSD		C:\Users\Public\DocumMSD,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
(1) 10 10 10 10 10 10 10 10 10 10 10 10 10	23:03:24 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
2105045-003C	23:08:58 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
CCV	23:14:34 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
CCB	23:20:08 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
2105045-004C	23:25:43 Wed 12-\Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
2105070-001B	23:31:17 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
2105070-005B	23:36:50 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
2105070-005BDUP	23:42:24 Wed 12-NSample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\May2021\0511		
WASH	23:47:58 Wed 12-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
LCS-32261	23:53:32 Wed 12-NSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105103-001A	23:59:06 Wed 12-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105103-001ADUP	00:04:40 Thu 13-MSample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105094-001D	00:10:13 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105113-001B	00:15:47 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
CCV	00:21:22 Thu 13-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
CCB	00:26:56 Thu 13-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
2105127-001A	00:32:31 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105128-001A	00:38:04 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105130-001C	00:43:38 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105132-001A	00:49:12 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105132-002A	00:54:45 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
2105142-001A	01:00:19 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
	M01:05:54 Thu 13-MSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0511		
CCV	01:11:28 Thu 13-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511		
sometime to the second				

SEQ For 51121 21 SH 5115

CCB	01:17:02 Thu 13-MSample
LCS-32237	01:22:36 Thu 13-MSample
2105073-001A	01:28:11 Thu 13-MSample
2105073-002A	01:33:45 Thu 13-MSample
2105073-003A	01:39:19 Thu 13-MSample
2105082-001A	01:44:52 Thu 13-MSample
2105082-002A	01:50:26 Thu 13-MSample
NEW 2% #5	01:56:01 Thu 13-MSample
CCV	02:01:35 Thu 13-MSample
CCB	02:07:09 Thu 13-MSample
2%	02:12:43 Thu 13-MQC Std #7
DI	02:18:17 Thu 13-MQC Std #8

C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\DocumLCS,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\DocumSAMP,M-200.8-DW gistix\ICPMS\DataSet\May2021\0511 C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0511
Dataset Report

User Name: icpms Computer Name: FA-DT28

 $Dataset\ File\ Path:\ C:\ Users\ Public\ Documents\ PerkinElmer\ Syngistix\ ICPMS\ DataSet\ May 2021\ 121eh\ Normalised$

Report Date/Time: Monday, May 24, 2021 08:58:39

The Dataset

		The Dataset	
Batch ID	Sample ID	Date and Time Read Type	Samp. File Name Description
	new 2% 5	10:19:29 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	new 2% 6	10:25:02 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	carrier soln	10:30:36 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	carrier soln	10:37:21 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	NEW 2% 6	10:43:21 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	CAL BLK IS 23514	10:49:38 Fri 21-MaBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 1	10:55:12 Fri 21-MaStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 2	11:00:45 Fri 21-MaStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 3	11:06:18 Fri 21-MaStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 4	11:11:51 Fri 21-MaStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 5	11:17:24 Fri 21-MaStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 6	11:22:57 Fri 21-MaStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 7	11:28:31 Fri 21-MaStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 8	11:34:04 Fri 21-MaStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 9	11:39:37 Fri 21-MaStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 10	11:45:10 Fri 21-MaStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	Standard 11	11:50:43 Fri 21-MaStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	WASH	11:56:17 Fri 21-MaQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	ICB	12:01:51 Fri 21-MaQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	ICV LL	12:07:25 Fri 21-MaQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	ICV	12:12:59 Fri 21-MaQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	ICSA	12:29:12 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	ICSAB	12:34:45 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	WASH	12:42:49 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	MB-32385FB	12:56:52 Fri 21-MaSample	C:\Users\Public\DocumMBLK,M-200.8-D _ gistix\ICPMS\DataSet\May2021\0521
	MB-32386	13:02:25 Fri 21-MaSample	C:\Users\Public\DocumMBLK,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
	LCS-32386	13:07:58 Fri 21-MaSample	C:\Users\Public\DocumLCS,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
	2105221-001C	13:13:31 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-D _ gistix\ICPMS\DataSet\May2021\0521
	2105221-001CDUP	13:19:04 Fri 21-MaSample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
	2105221-001CMS	13:24:38 Fri 21-MaSample	C:\Users\Public\DocumMS,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
	2105221-001CMSD	13:30:11 Fri 21-MaSample	C:\Users\Public\DocumMSD,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
	2105221-002C	13:35:44 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
	2105226-001D	13:41:18 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\May2021\0521
	CCV	13:46:52 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	CCB	13:52:25 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	MB-32359	13:57:59 Fri 21-MaSample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	LCS-32359	14:03:33 Fri 21-MaSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	2105216-025A	14:09:06 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	2105216-025ADIL	14:46:17 Fri 21-MaSample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	2105276-003A	14:51:48 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	2105276-006A	14:57:19 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	2105276-008A	15:02:50 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	2105276-009A	15:10:32 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	2105276-010A	15:16:28 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	2105276-010A 10X	15:21:59 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
	CCV	15:27:31 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	CCB	15:33:03 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	MB-32326	15:39:14 Fri 21-MaSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
	CCV	15:44:45 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
	CCB	15:50:16 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521

000	10.10.50.5 : 01.11.0	0.11
CCB	16:13:56 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
2105276-011A	16:19:40 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105276-011A 10X	16:25:13 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105276-013A	16:30:47 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105276-13A 10X	16:36:20 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105276-015A	16:41:53 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105276-015A 10X	16:47:26 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105228-001A	16:52:59 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105228-002A	16:58:51 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105222-001A	17:04:25 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
CCV	17:09:59 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	17:15:32 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCV	17:22:11 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	17:27:45 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
MB-32347	17:59:04 Fri 21-MaSample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\May2021\0521
LCS-32347	18:04:37 Fri 21-MaSample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105160-003A 5X	18:10:10 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105160-003ADIL	18:15:43 Fri 21-MaSample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105160-001A 5X	18:21:17 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2104433-043A	18:26:50 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
CCV	18:32:24 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	18:37:58 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCV	18:50:18 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	18:55:52 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
2105216-006A	19:05:49 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-007A	19:11:22 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-008A 10X	19:16:55 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-009A 10X	19:22:28 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-010A	19:28:01 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-011A	19:33:35 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-012A	19:39:08 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-013A	19:43:56 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-014A 10X	19:48:45 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-015A	19:53:33 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
CCV	19:58:22 Fri 21-MaQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	20:03:11 Fri 21-MaQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
2105216-016A	20:08:00 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-017A	20:12:48 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-018A	20:17:37 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-019A	20:22:25 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-020A 10X	20:27:13 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-021A	20:32:02 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-022A	20:36:50 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-023A	20:41:38 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-024A	20:46:26 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-026A	20:51:15 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
CCV	20:56:04 Fri 21-MaQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	21:00:52 Fri 21-MaQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
2105216-027A	21:05:41 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-028A	21:10:30 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105216-029A	21:15:18 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105290-001A	21:20:06 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
2105290-002A	21:24:54 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\May2021\0521
WASH	21:29:43 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
MB-32346	21:34:33 Fri 21-MaSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
LCS-32346	21:39:21 Fri 21-MaSample	C:\Users\Public\DocumECS,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
2105258-001E	21:44:09 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
2105258-001EDUP	21:48:58 Fri 21-MaSample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
CCV	21:53:47 Fri 21-MaQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
ССВ	21:58:36 Fri 21-MaQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521

2105258-001EMS	22:04:10 Fri 21-MaSample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
2105258-001EMSD	22:09:43 Fri 21-MaSample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
2105239-001E	22:15:16 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\May2021\0521
2105242-004C	22:20:49 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\May2021\0521
2105246-001C	22:26:22 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\May2021\0521
2105246-002C	22:31:56 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\May2021\0521
2105248-001E	22:36:29 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\May2021\0521
2105248-002E	22:41:02 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\May2021\0521
2105249-001E	22:45:36 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T _ gistix\ICPMS\DataSet\May2021\0521
2105251-001A	22:50:09 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
CCV	22:54:43 Fri 21-MaQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	22:59:17 Fri 21-MaQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
2105224-003A DRUM	123:03:52 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\May2021\0521
WASH	23:08:25 Fri 21-MaSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
MB-32365	23:12:59 Fri 21-MaSample	C:\Users\Public\DocumMBLK,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
LCS-32365	23:17:33 Fri 21-MaSample	C:\Users\Public\DocumLCS,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
2105070-005B	23:22:06 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
2105070-005BDUP	23:26:39 Fri 21-MaSample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
2105070-005BMS	23:31:12 Fri 21-MaSample	C:\Users\Public\DocumMS,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
2105070-005BMSD	23:35:46 Fri 21-MaSample	C:\Users\Public\DocumMSD,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
2105070-006B	23:40:19 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
2105264-011B	23:44:53 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
CCV	23:49:27 Fri 21-MaQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	23:54:01 Fri 21-MaQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
2105264-012B	23:58:35 Fri 21-MaSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
2105264-013B	00:03:08 Sat 22-M:Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
2105273-019E	00:07:41 Sat 22-M:Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\May2021\0521
WASH	00:12:15 Sat 22-MiSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
MB-32384	00:16:49 Sat 22-M/Sample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\May2021\0521
LCS-32384	00:21:23 Sat 22-M/Sample	C:\Users\Public\DocumLCS,M-TCLP gistix\ICPMS\DataSet\May2021\0521
2105290-001A	00:25:56 Sat 22-M:Sample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\May2021\0521
2105290-001A 2105290-001ADUP	00:30:29 Sat 22-M/Sample	C:\Users\Public\DocumDUP,M-TCLP gistix\ICPMS\DataSet\May2021\0521
2105290-001ADOF 2105290-001AMS	•	
2105290-001AMSD	00:35:03 Sat 22-MSample 00:39:36 Sat 22-MSample	C:\Users\Public\DocumMS,M-TCLP gistix\ICPMS\DataSet\May2021\0521
	·	C:\Users\Public\DocumMSD,M-TCLP gistix\ICPMS\DataSet\May2021\0521
CCV	00:44:10 Sat 22-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	00:48:44 Sat 22-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
2105290-002A	00:53:18 Sat 22-MSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\May2021\0521
LDR	00:57:52 Sat 22-M:Sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCV	01:02:25 Sat 22-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
CCB	01:06:59 Sat 22-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
2%	01:11:32 Sat 22-MQC Std #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521
DI	01:16:06 Sat 22-M:QC Std #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\May2021\0521

Dataset Report

User Name: icpms Computer Name: FA-DT28

ССВ

 $Dataset\ File\ Path:\ C:\ Users\ Public\ Documents\ PerkinElmer\ Syngistix\ ICPMS\ DataSet\ 052621eh\ Normaliset\ Path:\ C:\ Normaliset\ Path:\ C:\ Normaliset\ Path:\ C:\ Normaliset\ Path:\ Normaliset\$

Report Date/Time: Thursday, May 27, 2021 08:38:46

The Dataset

		The Dataset	I
Batch ID	Sample ID	Date and Time Read Type	Samp. File Name Description
	WASH	09:18:38 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
	WASH	09:24:11 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
	WASH	09:29:45 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
	WASH	09:35:20 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
	WASH	09:40:53 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
	CAL BLK IS 23514	09:47:29 Wed 26-NBlank	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CAL
	Standard 1	09:53:02 Wed 26-NStandard #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 2	09:58:35 Wed 26-NStandard #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 3	10:04:09 Wed 26-NStandard #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 4	10:09:42 Wed 26-NStandard #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 5	10:15:15 Wed 26-NStandard #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 6	10:20:48 Wed 26-NStandard #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 7	10:26:22 Wed 26-NStandard #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 8	10:31:55 Wed 26-NStandard #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 9	10:37:29 Wed 26-NStandard #9	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 10	10:43:02 Wed 26-NStandard #10	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	Standard 11	10:48:35 Wed 26-NStandard #11	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\Star
	WASH	10:54:09 Wed 26-NQC Std #1	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
	ICB	10:59:43 Wed 26-NQC Std #2	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\ICB.
	ICV LL	11:05:17 Wed 26-IQC Std #3	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\ICV
	ICV WASH	11:10:51 Wed 26-IQC Std #6	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\ICV.
	WASH ICSA	11:16:24 Wed 26-ISample 11:39:05 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA\C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\ICS\
	ICSA	11:44:39 Wed 26-\sample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\ICS\
	WASH	11:50:13 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA\
	WASH	11:55:46 Wed 26-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA\
	2105305-002C 10X	12:06:47 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210
	2105282-001 T	12:12:20 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210;
	2105282-001 D	12:17:53 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210
	2105282-002 T	12:23:26 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210
	2105282-002 D	12:29:00 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210
	2105282-006 T	12:34:33 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210
	2105282-006 D	12:40:06 Wed 26- I Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210
	2105282-007 T	12:45:39 Wed 26- I Sample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\2109
	2105282-007 D	12:51:12 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\2109
	WASH	12:56:46 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
	CCV	13:02:19 Wed 26-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
	CCB	13:07:53 Wed 26-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
	MB-32445	13:13:27 Wed 26-NSample	C:\Users\Public\DocumMBLK,M-200.8-T gistix\ICPMS\DataSet\052621eh\MB-
	LCS-32445	13:19:00 Wed 26-NSample	C:\Users\Public\DocumLCS,M-200.8-T gistix\ICPMS\DataSet\052621eh\LCS
	2105370-001A	13:24:33 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2109
	2105370-001ADUP	13:30:07 Wed 26-ISample	C:\Users\Public\DocumDUP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2108
	2105370-001AMS	13:35:40 Wed 26-ISample	C:\Users\Public\DocumMS,M-200.8-T gistix\ICPMS\DataSet\052621eh\2108
	2105370-001AMSD	13:41:13 Wed 26-ISample	C:\Users\Public\DocumMSD,M-200.8-T gistix\ICPMS\DataSet\052621eh\2108
	2105380-001A	13:46:46 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2108
	2105393-001C	13:52:19 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2109
	CCV	13:57:53 Wed 26-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
	CCB	14:03:27 Wed 26-IQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
	CCV	14:10:05 Wed 26-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\

14:15:38 Wed 26-NQC Std #5

C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE

0405000 0000	440457111 10010	0.11
2105282-006C	14:24:57 Wed 26-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\210
2105282-007C	14:33:31 Wed 26-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\210
WASH	14:39:05 Wed 26-NSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
MB-32455	14:44:39 Wed 26-\text{Nample}	C:\Users\Public\DocumMBLK,M-6020-TW gistix\ICPMS\DataSet\052621eh\MB-
LCS-32455	14:50:12 Wed 26-\text{Nample}	C:\Users\Public\DocumLCS,M-6020-TW gistix\ICPMS\DataSet\052621eh\LCS
2105317-001D	14:55:45 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-6020-TW_ gistix\ICPMS\DataSet\052621eh\2104
2105317-001DDUP	15:01:18 Wed 26-NSample 15:06:51 Wed 26-NSample	C:\Users\Public\DocumDUP,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
2105317-001DDIL	15:12:25 Wed 26-ISample	C:\Users\Public\DocumSD,M-6020-TW gistix\ICPMS\DataSet\052621eh\2104
2105317-001DMS 2105317-001DMSD	15:17:58 Wed 26-ISample	C:\Users\Public\DocumMS,M-6020-TW gistix\ICPMS\DataSet\052621eh\210 C:\Users\Public\DocumMSD,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
CCV	15:23:32 Wed 26-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	15:29:05 Wed 26-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2105317-001DPDS	15:43:58 Wed 26-NSample	C:\Users\Public\DocumPDS,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
2105317-001D1 DC	15:49:31 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
2105317-003D	15:55:05 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
2105317-004D	16:00:38 Wed 26-\sample	C:\Users\Public\DocumSAMP,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
2105317-005D	16:06:11 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-6020-TW_ gistix\ICPMS\DataSet\052621eh\210
2105317-006D	16:11:44 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-TW_gistix\ICPMS\DataSet\052621eh\210
2105317-007D	16:17:17 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
2104011-033A	16:22:51 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
2104011-033A	16:28:24 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-TW gistix\ICPMS\DataSet\052621eh\210
CCV	16:33:58 Wed 26-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	16:39:32 Wed 26-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
MB-32447	16:49:33 Wed 26-ISample	C:\Users\Public\DocumMBLK,M-6020-D gistix\ICPMS\DataSet\052621eh\MB-
LCS-32447	16:55:05 Wed 26-NSample	C:\Users\Public\DocumLCS,M-6020-D gistix\ICPMS\DataSet\052621eh\LCS
2105317-003C	17:00:39 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-003CDUP	17:06:12 Wed 26-ISample	C:\Users\Public\DocumDUP,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-003CDIL	17:11:45 Wed 26-ISample	C:\Users\Public\DocumSD,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-003CMS	17:17:18 Wed 26-ISample	C:\Users\Public\DocumMS,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-003CMSD	17:22:52 Wed 26-ISample	C:\Users\Public\DocumMSD,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-001C	17:28:25 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-002C	17:33:58 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-004C	17:39:31 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-D gistix\ICPMS\DataSet\052621eh\210
CCV	17:45:06 Wed 26-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	17:50:39 Wed 26-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2105317-005C	17:56:13 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-006C	18:01:47 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-D gistix\ICPMS\DataSet\052621eh\210
2105317-007C	18:07:20 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-D _ gistix\ICPMS\DataSet\052621eh\210
WASH	18:12:54 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
MB-32448	18:18:28 Wed 26- l Sample	C:\Users\Public\DocumMBLK,M-6020-S gistix\ICPMS\DataSet\052621eh\MB-
LCS-32448	18:24:01 Wed 26-ISample	C:\Users\Public\DocumLCS,M-6020-S gistix\ICPMS\DataSet\052621eh\LCS
2105343-003A	18:29:34 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\052621eh\210
2105343-003ADIL	18:35:08 Wed 26- l Sample	C:\Users\Public\DocumSD,M-6020-S gistix\ICPMS\DataSet\052621eh\210
2105343-003AMS	18:40:41 Wed 26-ISample	C:\Users\Public\DocumMS,M-6020-S gistix\ICPMS\DataSet\052621eh\210
2105343-003AMSD	18:46:14 Wed 26- l Sample	C:\Users\Public\DocumMSD,M-6020-S gistix\ICPMS\DataSet\052621eh\210
CCV	18:51:48 Wed 26-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	18:57:22 Wed 26-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2105343-003APDS	19:02:56 Wed 26-NSample	C:\Users\Public\DocumPDS,M-6020-S gistix\ICPMS\DataSet\052621eh\210
2105340-001A	19:08:29 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\210
2105343-004A	19:14:02 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\210
2105343-007A	19:19:35 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\210
2105343-008A	19:25:08 Wed 26-\text{Nample}	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\2104
2105343-009A	19:30:42 Wed 26-\\$ample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\2104
2105391-001A	19:36:15 Wed 26-\text{Nample}	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\210
2105396-003A	19:41:48 Wed 26-\(\)Sample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\2104
2105396-004A	19:47:22 Wed 26-\\$ample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\210
2105396-005A	19:52:55 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\210t
CCV CCB	19:58:29 Wed 26-NQC Std #4 20:04:03 Wed 26-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
		C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2105396-006A	20:09:37 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\052621eh\210

2105396-007A	20:15:10 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S _ gistix\ICPMS\DataSet\052621eh\2109
2105396-008A	20:20:43 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\2108
2105396-009A	20:26:16 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-Sgistix\ICPMS\DataSet\052621eh\2108
2105398-001A	20:31:49 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\2109
2104421-001A	20:37:22 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-6020-S gistix\ICPMS\DataSet\052621eh\2104
WASH	20:42:56 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
2105368-001A	20:48:30 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2109
2105373-001A	20:54:03 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\210
2105375-001A	20:59:36 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\210
CCV	21:05:10 Wed 26-IQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	21:10:44 Wed 26-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2105375-002A	21:16:18 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\210
2105376-001C	21:21:51 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\210
2105377-001B	21:27:24 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\210
2105377-002B	21:32:58 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2103
2105378-001B	21:38:31 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2103
2105379-001B	21:44:04 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2103
2105381-001B	21:49:37 Wed 26-\Sample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2103
2105384-001A	21:55:11 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2103
2105386-001A	22:00:44 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2104
2105386-001A	22:06:17 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2103
CCV	22:11:51 Wed 26-NQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	22:17:25 Wed 26-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2105387-001A	22:22:59 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2103
2105390-001A	22:28:32 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\210
2105390-001A 2105390-002A	22:34:05 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\2103
	122:39:39 Wed 26-ISample	, ,
WASH	22:45:13 Wed 26-ISample	C:\Users\Public\DocumSAMP,M-200.8-T gistix\ICPMS\DataSet\052621eh\210; C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA;
		, 5
MB-32446	22:50:47 Wed 26-ISample	C:\Users\Public\DocumMBLK,M-200.8-D gistix\ICPMS\DataSet\052621eh\MB-
LCS-32446	22:56:20 Wed 26-ISample 23:01:53 Wed 26-ISample	C:\Users\Public\DocumLCS,M-200.8-D gistix\ICPMS\DataSet\052621eh\LCS C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210!
2105070-001B		
2105070-001BDUP	23:07:27 Wed 26-ISample	C:\Users\Public\DocumDUP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210
2105070-001BMS	23:13:00 Wed 26-ISample 23:18:34 Wed 26-IQC Std #4	C:\Users\Public\DocumMS,M-200.8-D gistix\ICPMS\DataSet\052621eh\2109
CCV		C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	23:24:08 Wed 26-NQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2105070-001BMSD	23:29:42 Wed 26-ISample	C:\Users\Public\DocumMSD,M-200.8-D gistix\ICPMS\DataSet\052621eh\2109
2105345-001B	23:35:15 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\2109
2105345-002B	23:40:49 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\2109
2105345-003B	23:46:22 Wed 26-\text{Nample}	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\210
2105345-004B	23:51:55 Wed 26-NSample	C:\Users\Public\DocumSAMP,M-200.8-D gistix\ICPMS\DataSet\052621eh\2108
WASH	23:57:29 Wed 26-ISample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\WA
MB-32444	00:03:03 Thu 27-MSample	C:\Users\Public\DocumMBLK,M-TCLP gistix\ICPMS\DataSet\052621eh\MB-
LCS-32444	00:08:36 Thu 27-MSample	C:\Users\Public\DocumLCS,M-TCLP gistix\ICPMS\DataSet\052621eh\LCS
2104037-004A	00:14:10 Thu 27-MSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\052621eh\210
2104037-004ADUP	00:19:43 Thu 27-MSample	C:\Users\Public\DocumDUP,M-TCLP gistix\ICPMS\DataSet\052621eh\210
CCV	00:25:17 Thu 27-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	00:30:51 Thu 27-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2104037-004AMS	00:36:25 Thu 27-MSample	C:\Users\Public\DocumMS,M-TCLP gistix\ICPMS\DataSet\052621eh\2104
2104037-004AMSD	00:41:58 Thu 27-MSample	C:\Users\Public\DocumMSD,M-TCLP gistix\ICPMS\DataSet\052621eh\2104
2104037-003A	00:47:31 Thu 27-MSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\052621eh\2104
2104037-007A	00:53:05 Thu 27-MSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\052621eh\210
2104037-009A	00:58:38 Thu 27-MSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\052621eh\210
2104037-011A	01:04:11 Thu 27-MSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\052621eh\2104
2104037-012A	01:09:44 Thu 27-MSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\052621eh\210
2104037-013A	01:15:18 Thu 27-MSample	C:\Users\Public\DocumSAMP,M-TCLP gistix\ICPMS\DataSet\052621eh\210
LDR	01:20:52 Thu 27-MSample	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\LDR
CCV	01:26:25 Thu 27-MQC Std #4	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CC\
CCB	01:31:59 Thu 27-MQC Std #5	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\CCE
2%	01:37:33 Thu 27-MQC Std #7	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\2%.
DI	01:43:07 Thu 27-MQC Std #8	C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\052621eh\DI.1

Calibration

Quantitative Analysis Calibration Report

File Name: 051021eh-1.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\051021eh-1.cal

Calibration Type: External Calibration

Analyte Mass Curve type Slope Intercept Corr. Coeff. Li 6.015 Linear Thru Zero 0.01 0.00 0.0000000 0.999794 B 11.009 Linear Thru Zero 0.01 0.00 0.999994 Na 22.990 Linear Thru Zero 0.00 0.00 0.9999904 Na 22.990 Linear Thru Zero 0.00 0.00 0.9999925 Al 26.982 Linear Thru Zero 0.00 0.00 0.999952 Al 26.982 Linear Thru Zero 0.00 0.00 0.999962 Na 38.964 Linear Thru Zero 0.00 0.00 0.999762 Na 38.964 Linear Thru Zero 0.00 0.00 0.999889 Na 38.994 Linear Thru Zero 0.00 0.00 0.999889 Na 4.956 Linear Thru Zero 0.00 0.00 0.999889 Na 4.956 Linear Thru Zero 0.00 0.00 0.999884 Na 56.5 44.956 Linear Thru Zero 0.00 0.00 0.999811 Na 56.934 Linear Thru Zero 0.02 0.00 0.999811 Na 56.934 Linear Thru Zero 0.02 0.00 0.9999127 Na 56.944 Linear Thru Zero 0.02 0.00 0.9999127 Na 56.933 Linear Thru Zero 0.02 0.00 0.999868 Na 59.933 Linear Thru Zero 0.02 0.00 0.999468 Na 59.933 Linear Thru Zero 0.02 0.00 0.999468 Na 59.933 Linear Thru Zero 0.02 0.00 0.999762 Cu 62.930 Linear Thru Zero 0.02 0.00 0.999762 Cu 62.930 Linear Thru Zero 0.00 0.00 0.999763 Na 74.922 Weighted Linear 0.00 0.00 0.999763 Na 74.922 Weighted Linear 0.00 0.00 0.999884 Na 74.922 Weighted Linear 0.00 0.00 0.00 0.999884 Na 74.922 Weig	A 1- 1		O	01	Laterral	0
Be 9.012 Linear Thru Zero 0.01 0.00 0.999794 B 11.009 Linear Thru Zero 0.01 0.00 0.999904 Na 22.990 Linear Thru Zero 0.00 0.00 0.999933 Mg 24.986 Linear Thru Zero 0.00 0.00 0.999762 K 38.964 Linear Thru Zero 0.00 0.00 0.999762 Fe 56.935 Linear Thru Zero 0.00 0.00 0.999858 Ca 43.956 Linear Thru Zero 0.00 0.00 0.999858 P 30.994 Linear Thru Zero 0.00 0.00 0.999818 Sc-5 44.956 Linear Thru Zero 0.02 0.00 0.999818 V 50.944 Linear Thru Zero 0.02 0.00 0.999912 Mn 54.938 Linear Thru Zero 0.02 0.00 0.999480 Co 58.933 Linear Thru Zero 0.02 0.00 0.999468 Cr1-1 <th< td=""><td>Analyte</td><td>Mass</td><td></td><td>Slope</td><td>Intercept</td><td>Corr. Coeff.</td></th<>	Analyte	Mass		Slope	Intercept	Corr. Coeff.
B 11.009 Linear Thru Zero 0.01 0.00 0.999904 Na 22.996 Linear Thru Zero 0.00 0.00 0.999825 Mg 24.986 Linear Thru Zero 0.00 0.00 0.999925 K 38.964 Linear Thru Zero 0.00 0.00 0.999462 E 56.935 Linear Thru Zero 0.00 0.00 0.999482 Ca 43.956 Linear Thru Zero 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.999814 V 50.944 Linear Thru Zero 0.02 0.00 0.999818 M 54.938 Linear Thru Zero 0.02 0.00 0.999816 Be-2 9.012 Linear Thru Zero 0.01 0.00 0.99986 Be-2 9.012 Linear Thru Zero 0.01 0.00 0.999876 Co <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Na 22.990 Linear Thru Zero 0.00 0.00 0.999833 Mg 24.986 Linear Thru Zero 0.00 0.00 0.999555 Al 26.982 Linear Thru Zero 0.00 0.00 0.999762 Fe 56.935 Linear Thru Zero 0.00 0.00 0.999482 Ca 43.956 Linear Thru Zero 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.999811 V 50.944 Linear Thru Zero 0.02 0.00 0.999127 Mn 54.938 Linear Thru Zero 0.02 0.00 0.999764 Co 58.933 Linear Thru Zero 0.02 0.00 0.999764 Co 58.933 Linear Thru Zero 0.02 0.00 0.999764 Cu 62.930 Linear Thru Zero 0.02 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.01 0.00 0.999767 Cu-2						
Mg 24.986 Linear Thru Zero 0.00 0.00 0.999925 AI 26.982 Linear Thru Zero 0.00 0.00 0.999762 K 38.964 Linear Thru Zero 0.00 0.00 0.999782 Fe 56.935 Linear Thru Zero 0.00 0.00 0.999889 Ca 43.956 Linear Thru Zero 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.999814 V 50.944 Linear Thru Zero 0.02 0.00 0.9999811 Mn 54.938 Linear Thru Zero 0.02 0.00 0.9999764 Co 58.933 Linear Thru Zero 0.01 0.00 0.999764 Cr-1 51.941 Linear Thru Zero 0.01 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.01 0.00 0.999765 Zn 65.926 Weighted Linear 0.00 0.00 0.999826 Kr						
AI 26.982 Linear Thru Zero 0.00 0.00 0.999515 K 38.964 Linear Thru Zero 0.00 0.00 0.999762 Fe 56.935 Linear Thru Zero 0.00 0.00 0.999482 Ca 43.956 Linear Thru Zero 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.999817 Mn 56.934 Linear Thru Zero 0.02 0.00 0.999917 Mn 54.938 Linear Thru Zero 0.01 0.00 0.999566 Be-2 9.012 Linear Thru Zero 0.01 0.00 0.999468 Co 58.933 Linear Thru Zero 0.02 0.00 0.999468 Cr-1 51.941 Linear Thru Zero 0.01 0.00 0.999767 Cu 62.936 Weighted Linear 0.00 0.00 0.999861						
K 38.964 Linear Thru Zero 0.00 0.00 0.999762 Fe 56.935 Linear Thru Zero 0.00 0.00 0.999482 Ca 43.956 Linear Thru Zero 0.00 0.00 0.999589 P 30.994 Linear Thru Zero 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.999884 Sc-5 44.956 Linear Thru Zero 0.02 0.00 0.999811 V 50.944 Linear Thru Zero 0.02 0.00 0.999956 Be-2 9.012 Linear Thru Zero 0.02 0.00 0.999764 Co 58.933 Linear Thru Zero 0.02 0.00 0.999480 Ni 59.933 Linear Thru Zero 0.02 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.01 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999878 Kr	_					
Fe 56.935 Linear Thru Zero 0.00 0.00 0.999482 Ca 43.956 Linear Thru Zero 0.00 0.00 0.999589 P 30.994 Linear Thru Zero 0.00 0.00 0.999814 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.999811 V 50.944 Linear Thru Zero 0.02 0.00 0.9999127 Mn 54.938 Linear Thru Zero 0.02 0.00 0.999764 Co 58.933 Linear Thru Zero 0.02 0.00 0.999786 Cr-1 51.941 Linear Thru Zero 0.02 0.00 0.999766 Cu 62.930 Linear Thru Zero 0.01 0.00 0.999776 Cu-2 64.928 Linear Thru Zero 0.01 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.9998218 As 74.922 Weighted Linear 0.00 0.00 0.998218 As						
Ca 43.956 Linear Thru Zero 0.00 0.00 0.999589 P 30.994 Linear Thru Zero 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.000 Ti 46.952 Linear Thru Zero 0.02 0.00 0.999127 Mn 54.938 Linear Thru Zero 0.02 0.00 0.999566 Be-2 9.012 Linear Thru Zero 0.02 0.00 0.999766 Co 58.933 Linear Thru Zero 0.02 0.00 0.999468 Cr-1 51.941 Linear Thru Zero 0.02 0.00 0.999790 Cu 62.930 Linear Thru Zero 0.01 0.00 0.999790 Cu 64.928 Linear Thru Zero 0.00 0.00 0.9998955 Zn 65.926 Weighted Linear 0.00 -0.00 0.998218 As 74.922 Weighted Linear 0.00 0.00 0.999821 Se <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
P 30.994 Linear Thru Zero 0.00 0.00 0.999844 Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.000000 Ti 46.952 Linear Thru Zero 0.02 0.00 0.0999127 Mn 54.938 Linear Thru Zero 0.02 0.00 0.999566 Be-2 9.012 Linear Thru Zero 0.02 0.00 0.999764 Co 58.933 Linear Thru Zero 0.02 0.00 0.999468 Cr-1 51.941 Linear Thru Zero 0.02 0.00 0.999767 Cu 62.930 Linear Thru Zero 0.02 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999767 Cu-2 64.928 Weighted Linear 0.00 0.00 0.999767 Cu-2 64.928 Weighted Linear 0.00 0.00 0.999767 Zu 65.926 Weighted Linear 0.00 0.00 0.00 0.999783						
Sc-5 44.956 Linear Thru Zero 0.00 0.00 0.000000 Ti 46.952 Linear Thru Zero 0.00 0.00 0.999811 V 50.944 Linear Thru Zero 0.02 0.00 0.999126 Mn 54.938 Linear Thru Zero 0.02 0.00 0.999764 Co 58.933 Linear Thru Zero 0.01 0.00 0.999764 Co 58.933 Linear Thru Zero 0.02 0.00 0.999468 Cr-1 51.941 Linear Thru Zero 0.02 0.00 0.999767 Cu 62.930 Linear Thru Zero 0.01 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.01 0.00 0.999767 Zn 65.926 Weighted Linear 0.00 0.00 0.998218 As 74.922 Weighted Linear 0.00 0.00 0.998218 Kr 82.914 Linear Thru Zero 0.00 0.00 0.999713 Mo						
Ti 46.952 Linear Thru Zero 0.00 0.00 0.999811 V 50.944 Linear Thru Zero 0.02 0.00 0.999566 Mn 54.938 Linear Thru Zero 0.02 0.00 0.999566 Be-2 9.012 Linear Thru Zero 0.02 0.00 0.999480 Ni 59.933 Linear Thru Zero 0.02 0.00 0.999762 Cu 62.930 Linear Thru Zero 0.02 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999767 Zn 65.926 Weighted Linear 0.00 0.00 0.9998218 As 74.922 Weighted Linear 0.00 -0.00 0.998218 Se 81.917 Linear Thru Zero 0.00 0.00 0.9998218 Kr 82.914 Linear Thru Zero 0.00 0.00 0.999713 Mo	•					
V 50.944 Linear Thru Zero 0.02 0.00 0.999127 Mn 54.938 Linear Thru Zero 0.02 0.00 0.999566 Be-2 9.012 Linear Thru Zero 0.01 0.00 0.999480 Ni 59.933 Linear Thru Zero 0.02 0.00 0.999468 Cr-1 51.941 Linear Thru Zero 0.02 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.998218 As 74.922 Weighted Linear 0.00 -0.00 0.998218 As 74.922 Weighted Linear 0.00 -0.00 0.998841 Se 81.917 Linear Thru Zero 0.00 0.00 0.999834 Kr 82.914 Linear Thru Zero 0.02 0.00 0.999821 Kr 82.914 Linear Thru Zero 0.00 0.00 0.99973 Mo						
Mn 54.938 Linear Thru Zero 0.02 0.00 0.999566 Be-2 9.012 Linear Thru Zero 0.01 0.00 0.999764 Co 58.933 Linear Thru Zero 0.02 0.00 0.999480 Ni 59.933 Linear Thru Zero 0.02 0.00 0.999767 Cu 62.930 Linear Thru Zero 0.01 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999767 Se 81.917 Linear Thru Zero 0.00 0.00 0.998218 Se 81.917 Linear Thru Zero 0.00 0.00 0.998841 Kr 82.914 Linear Thru Zero 0.00 0.00 0.9998213 Kr 87.906 Linear Thru Zero 0.00 0.00 0.999713 Mo 96.905 Linear Thru Zero 0.01 0.00 0.999833 Rh-3						
Be-2 9.012 Linear Thru Zero 0.01 0.00 0.999764 Co 58.933 Linear Thru Zero 0.02 0.00 0.999480 Ni 59.933 Linear Thru Zero 0.00 0.00 0.999767 Cr-1 51.941 Linear Thru Zero 0.01 0.00 0.999797 Cu 62.930 Linear Thru Zero 0.01 0.00 0.999797 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999695 Zn 65.926 Weighted Linear 0.00 -0.00 0.998218 As 74.922 Weighted Linear 0.00 -0.00 0.998841 Se 81.917 Linear Thru Zero 0.00 0.00 0.999534 Kr 82.914 Linear Thru Zero 0.00 0.00 0.999534 Kr 87.906 Linear Thru Zero 0.00 0.00 0.999733 Rh-3 102.905 Linear Thru Zero 0.01 0.00 0.999733 Rh-1						
Co 58.933 Linear Thru Zero 0.02 0.00 0.999480 Ni 59.933 Linear Thru Zero 0.00 0.00 0.999468 Cr-1 51.941 Linear Thru Zero 0.02 0.00 0.999790 Cu 62.930 Linear Thru Zero 0.01 0.00 0.999695 Zn 65.926 Weighted Linear 0.00 -0.00 0.998218 As 74.922 Weighted Linear 0.00 -0.00 0.998841 Se 81.917 Linear Thru Zero 0.00 0.00 0.999534 Kr 82.914 Linear Thru Zero 0.00 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.01 0.00 0.999733 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999783 Sb-1						
Ni 59.933 Linear Thru Zero 0.00 0.00 0.999468 Cr-1 51.941 Linear Thru Zero 0.02 0.00 0.999790 Cu 62.930 Linear Thru Zero 0.01 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.9998218 As 74.922 Weighted Linear 0.00 -0.00 0.998841 Se 81.917 Linear Thru Zero 0.00 0.00 0.999534 Kr 82.914 Linear Thru Zero 0.00 0.00 0.999838 Mo 96.906 Linear Thru Zero 0.00 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.9999838 Rh-3 102.905 Linear Thru Zero 0.00 0.00 0.9999838 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999983 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sn<						
Cr-1 51.941 Linear Thru Zero 0.02 0.00 0.999790 Cu 62.930 Linear Thru Zero 0.01 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999695 Zn 65.926 Weighted Linear 0.00 -0.00 0.998218 As 74.922 Weighted Linear 0.00 -0.00 0.998841 Se 81.917 Linear Thru Zero 0.00 0.00 0.999831 Kr 82.914 Linear Thru Zero 0.00 0.00 0.90000 Sr 87.906 Linear Thru Zero 0.00 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.999713 Mo 96.905 Linear Thru Zero 0.01 0.00 0.999838 Rh-3 102.905 Linear Thru Zero 0.01 0.00 0.999826 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999973 Sh-1						
Cu 62.930 Linear Thru Zero 0.01 0.00 0.999767 Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999695 Zn 65.926 Weighted Linear 0.00 -0.00 0.998218 As 74.922 Weighted Linear 0.00 -0.00 0.999841 Se 81.917 Linear Thru Zero 0.00 0.00 0.999534 Kr 82.914 Linear Thru Zero 0.00 0.00 0.000 0.999713 Mo 96.906 Linear Thru Zero 0.02 0.00 0.999713 Mo 96.905 Linear Thru Zero 0.00 0.00 0.999733 Rh-3 102.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999862 Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.99973 Sn 117.902 Weighted Linear 0.01 0.00 0.99973						
Cu-2 64.928 Linear Thru Zero 0.00 0.00 0.999695 Zn 65.926 Weighted Linear 0.00 -0.00 0.998218 As 74.922 Weighted Linear 0.00 -0.00 0.998841 Se 81.917 Linear Thru Zero 0.00 0.00 0.999534 Kr 82.914 Linear Thru Zero 0.00 0.00 0.9999713 Mo 96.906 Linear Thru Zero 0.02 0.00 0.9999838 Rh-3 102.905 Linear Thru Zero 0.00 0.00 0.9998818 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.9999826 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.01 0.00 0.999973 Sn 117.902 Weighted Linear 0.01 0.00 0.999932 In 114.904 Linear Thru Zero 0.00 0.00 0.999993 Sb						
Zn 65.926 Weighted Linear 0.00 -0.00 0.998218 As 74.922 Weighted Linear 0.00 -0.00 0.998841 Se 81.917 Linear Thru Zero 0.00 0.00 0.00 0.999534 Kr 82.914 Linear Thru Zero 0.00 0.00 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.999838 Rh-3 102.905 Linear Thru Zero 0.00 0.00 0.000 Ag 106.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 1129.904 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.9999326 In 114.904 Linear Thru Zero 0.00 0.00 0.9999326 In 114.904 Linear Thru Zero 0.01 0.00 0.99999						
As 74.922 Weighted Linear 0.00 -0.00 0.998841 Se 81.917 Linear Thru Zero 0.00 0.00 0.999534 Kr 82.914 Linear Thru Zero 0.00 0.00 0.000 Sr 87.906 Linear Thru Zero 0.00 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.0999838 Rh-3 102.905 Linear Thru Zero 0.00 0.00 0.000 Ag 106.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.9999692 Ag-2 108.905 Linear Thru Zero 0.00 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.999973 Sn 117.902 Weighted Linear 0.01 -0.00 0.9999326 In 114.904 Linear Thru Zero 0.01 0.00 0.999932 Sb-1						
Se 81.917 Linear Thru Zero 0.00 0.00 0.999534 Kr 82.914 Linear Thru Zero 0.00 0.00 0.000000 Sr 87.906 Linear Thru Zero 0.02 0.00 0.0999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.999838 Rh-3 102.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999862 Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.9999326 In 114.904 Linear Thru Zero 0.01 0.00 0.999932 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999933 Ba<			-			
Kr 82.914 Linear Thru Zero 0.00 0.00 0.000000 Sr 87.906 Linear Thru Zero 0.02 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.999838 Rh-3 102.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999862 Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.999926 In 114.904 Linear Thru Zero 0.00 0.00 0.999933 In 114.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.00 0.00 0.00 0.00 0			-			
Sr 87.906 Linear Thru Zero 0.02 0.00 0.999713 Mo 96.906 Linear Thru Zero 0.00 0.00 0.999838 Rh-3 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag 106.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999926 Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.9999793 Sn 117.902 Weighted Linear 0.01 -0.00 0.9999326 In 114.904 Linear Thru Zero 0.00 0.00 0.000000 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.00 0.00 0.00 0.00						
Mo 96.906 Linear Thru Zero 0.00 0.00 0.999838 Rh-3 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag 106.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999926 Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.999926 In 114.904 Linear Thru Zero 0.00 0.00 0.999932 In 114.904 Linear Thru Zero 0.00 0.00 0.0999932 In 112.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999993 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Rh-3 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag 106.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999962 Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.999793 Sn 117.902 Weighted Linear 0.01 -0.00 0.9997326 In 114.904 Linear Thru Zero 0.00 0.00 0.9999326 In 114.904 Linear Thru Zero 0.00 0.00 0.000000 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.00 0.00 0.999993 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.02 0.00 0.00 0.999992 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Ag 106.905 Linear Thru Zero 0.01 0.00 0.999861 Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999692 Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.999793 Sn 117.902 Weighted Linear 0.01 -0.00 0.9999326 In 114.904 Linear Thru Zero 0.00 0.00 0.000000 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999998 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.00 0.00 0.00000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.9999980						
Sb-1 120.904 Linear Thru Zero 0.01 0.00 0.999692 Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.999793 Sn 117.902 Weighted Linear 0.01 -0.00 0.9999326 In 114.904 Linear Thru Zero 0.00 0.00 0.000000 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.00 0.00 0.999998 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.00 0.00 0.000000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.00 0.9999980 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Ag-2 108.905 Linear Thru Zero 0.01 0.00 0.999926 Cd 110.904 Linear Thru Zero 0.00 0.00 0.999793 Sn 117.902 Weighted Linear 0.01 -0.00 0.999326 In 114.904 Linear Thru Zero 0.00 0.00 0.000000 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999993 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.00 0.00 0.000000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.999992 Pb 207.977 Linear Thru Zero 0.02 0.00 0.9999980 Li-1 6.015 Linear Thru Zero 0.02 0.00 0.00 0.00 <	-					
Cd 110.904 Linear Thru Zero 0.00 0.999793 Sn 117.902 Weighted Linear 0.01 -0.00 0.999326 In 114.904 Linear Thru Zero 0.00 0.00 0.000000 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999998 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.02 0.00 0.000000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.999998 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.999988 Be-1 9.012 Linear Thru Zero 0.00 0.00 0.999988 Se-2 77.917						
Sn 117.902 Weighted Linear 0.01 -0.00 0.999326 In 114.904 Linear Thru Zero 0.00 0.00 0.000000 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999993 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.00 0.00 0.000000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.999992 Pb 207.977 Linear Thru Zero 0.02 0.00 0.999998 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.01 0.00 0.999988 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-					
In 114.904 Linear Thru Zero 0.00 0.00 0.000000 Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999986 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.00 0.00 0.000000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.999980 Pb 207.977 Linear Thru Zero 0.02 0.00 0.999980 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.999988 Li-1 11.009 Linear Thru Zero 0.01 0.00 0.999988 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999988 Se-2<						
Sb 120.904 Linear Thru Zero 0.01 0.00 0.999993 Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999986 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.00 0.00 0.000000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.999992 Pb 207.977 Linear Thru Zero 0.03 0.00 0.999980 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.999988 B-1 9.012 Linear Thru Zero 0.01 0.00 0.999988 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 77.917 Simple Linear 0.00 0.00 0.999930 Mo-1			J			
Sb-1 122.904 Linear Thru Zero 0.01 0.00 0.999986 Ba 136.904 Linear Thru Zero 0.00 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.02 0.00 0.999992 Pb 207.977 Linear Thru Zero 0.02 0.00 0.999980 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.999988 B-1 9.012 Linear Thru Zero 0.01 0.00 0.999988 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999988 Se-2 77.917 Simple Linear 0.00 0.00 0.999988 Se-2 77.917 Simple Linear 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.999930 Rh-1						
Ba 136.904 Linear Thru Zero 0.00 0.999993 Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.00 0.00 0.000000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.999992 Pb 207.977 Linear Thru Zero 0.03 0.00 0.999980 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.000000 Be-1 9.012 Linear Thru Zero 0.01 0.00 0.999636 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999988 Se-2 77.917 Simple Linear 0.00 0.00 0.999980 Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.9999805 Rh-1 102.90						
Tb 158.925 Linear Thru Zero 0.00 0.00 0.000000 Ho 164.930 Linear Thru Zero 0.00 0.00 0.000000 Tl 204.975 Linear Thru Zero 0.02 0.00 0.999992 Pb 207.977 Linear Thru Zero 0.03 0.00 0.999980 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.000000 Be-1 9.012 Linear Thru Zero 0.01 0.00 0.999636 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 77.917 Simple Linear 0.00 0.00 0.999888 Se-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.999980 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.999972 Na-1<	Ва		Linear Thru Zero			0.999993
Ho 164.930 Linear Thru Zero 0.00 0.00 0.000000 TI 204.975 Linear Thru Zero 0.02 0.00 0.999992 Pb 207.977 Linear Thru Zero 0.03 0.00 0.999980 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.000000 Be-1 9.012 Linear Thru Zero 0.01 0.00 0.999636 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999988 Se-2 77.917 Simple Linear 0.00 0.00 0.9995017 Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.9999805 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.0099992 Na-1 22.990 Linear Thru Zero 0.01 0.00 0.999972 N	Tb		Linear Thru Zero	0.00		
TI 204.975 Linear Thru Zero 0.02 0.00 0.999992 Pb 207.977 Linear Thru Zero 0.03 0.00 0.999980 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.000000 Be-1 9.012 Linear Thru Zero 0.01 0.00 0.999636 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 77.917 Simple Linear 0.00 0.00 0.9995017 Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.9999805 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.0999805 Rh-1 106.905 Linear Thru Zero 0.01 0.00 0.999972 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.9999964 <t< td=""><td>Но</td><td>164.930</td><td>Linear Thru Zero</td><td></td><td></td><td></td></t<>	Но	164.930	Linear Thru Zero			
Pb 207.977 Linear Thru Zero 0.03 0.00 0.999980 U 238.050 Linear Thru Zero 0.02 0.00 0.999988 Li-1 6.015 Linear Thru Zero 0.00 0.00 0.000000 Be-1 9.012 Linear Thru Zero 0.01 0.00 0.999636 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 77.917 Simple Linear 0.00 0.00 0.995017 Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.999980 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.0999805 Rh-1 106.905 Linear Thru Zero 0.01 0.00 0.999972 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999996 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.999976	TI	204.975	Linear Thru Zero			
Li-1 6.015 Linear Thru Zero 0.00 0.00 0.000000 Be-1 9.012 Linear Thru Zero 0.01 0.00 0.999636 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 77.917 Simple Linear 0.00 0.00 0.995017 Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.9999805 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag-1 106.905 Linear Thru Zero 0.01 0.00 0.9999727 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999964 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.9999949	Pb	207.977		0.03	0.00	0.999980
Li-1 6.015 Linear Thru Zero 0.00 0.00 0.000000 Be-1 9.012 Linear Thru Zero 0.01 0.00 0.999636 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 77.917 Simple Linear 0.00 0.00 0.995017 Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.9999805 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag-1 106.905 Linear Thru Zero 0.01 0.00 0.9999727 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999964 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.9999949	U	238.050	Linear Thru Zero	0.02	0.00	0.999988
Be-1 9.012 Linear Thru Zero 0.01 0.00 0.999636 B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 77.917 Simple Linear 0.00 0.00 0.995017 Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.9999805 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag-1 106.905 Linear Thru Zero 0.01 0.00 0.9999727 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999964 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.869177 Mg-1 23.985 Linear Thru Zero 0.00 0.00 0.999995 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999994 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.9999949	Li-1	6.015				
B-1 11.009 Linear Thru Zero 0.00 0.00 0.999888 Se-2 77.917 Simple Linear 0.00 0.00 0.995017 Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.999985 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag-1 106.905 Linear Thru Zero 0.01 0.00 0.9999727 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999964 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.869177 Mg-1 23.985 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949						
Se-277.917Simple Linear0.000.000.995017Sb-3120.904Linear Thru Zero0.000.000.999930Mo-197.906Linear Thru Zero0.000.000.999805Rh-1102.905Linear Thru Zero0.000.000.000000Ag-1106.905Linear Thru Zero0.010.000.999727Na-122.990Linear Thru Zero0.000.000.999964Ca-143.956Linear Thru Zero0.000.000.869177Mg-123.985Linear Thru Zero0.000.000.999976Al-126.982Linear Thru Zero0.000.000.999995Ba-1137.905Linear Thru Zero0.010.000.999949		11.009	Linear Thru Zero		0.00	0.999888
Sb-3 120.904 Linear Thru Zero 0.00 0.00 0.999930 Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.999805 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag-1 106.905 Linear Thru Zero 0.01 0.00 0.9999727 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999964 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.869177 Mg-1 23.985 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949						
Mo-1 97.906 Linear Thru Zero 0.00 0.00 0.999805 Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag-1 106.905 Linear Thru Zero 0.01 0.00 0.999727 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999964 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.869177 Mg-1 23.985 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949	Sb-3		Linear Thru Zero			
Rh-1 102.905 Linear Thru Zero 0.00 0.00 0.000000 Ag-1 106.905 Linear Thru Zero 0.01 0.00 0.999727 Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999964 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.869177 Mg-1 23.985 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949	Mo-1		Linear Thru Zero			
Na-1 22.990 Linear Thru Zero 0.00 0.00 0.999964 Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.869177 Mg-1 23.985 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949	Rh-1		Linear Thru Zero			0.000000
Ca-1 43.956 Linear Thru Zero 0.00 0.00 0.869177 Mg-1 23.985 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949	Ag-1		Linear Thru Zero	0.01		
Mg-1 23.985 Linear Thru Zero 0.00 0.0999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949	-		Linear Thru Zero			0.999964
Mg-1 23.985 Linear Thru Zero 0.00 0.00 0.999976 Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949						
Al-1 26.982 Linear Thru Zero 0.00 0.00 0.999995 Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949			Linear Thru Zero			
Ba-1 137.905 Linear Thru Zero 0.01 0.00 0.999949						
			Linear Thru Zero			
	Cd-1	110.904	Simple Linear	0.00	0.00	0.999851

Report Date/Time: Tuesday, May 11, 2021 09:14:49

Page 1

K-1	38.964	Linear Thru Zero	0.00	0.00	0.999937
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.00	0.00	0.999873
Cr-2	51.941	Linear Thru Zero	0.00	0.00	0.999904
Fe-1	56.935	Linear Thru Zero	0.00	0.00	0.999970
Ni-1	59.933	Linear Thru Zero	0.00	0.00	0.999919
Cu-1	62.930	Linear Thru Zero	0.01	0.00	0.999784
Zn-2	65.926	Linear Thru Zero	0.00	0.00	0.999925
As-3	74.922	Weighted Linear	0.00	0.00	0.999848
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
ln-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Linear Thru Zero	0.03	0.00	0.999859

Report Date/Time: Tuesday, May 11, 2021 09:14:49 Page 2

Quantitative Analysis Calibration Report

File Name: 051221eh-1.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\051221eh-1.cal

Calibration Type: External Calibration

A 1 - 1 -		O T	01	latanant	0
Analyte	Mass	• • •	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be B	9.012	Linear Thru Zero	0.01	0.00	0.999745
	11.009	Linear Thru Zero	0.01	0.00	0.999517
Na	22.990	Linear Thru Zero Weighted Linear	0.00	0.00	0.998709
Mg Al	24.986	Linear Thru Zero	0.00	-0.01	0.999615
K	26.982	Linear Thru Zero	0.00	0.00	0.999973
Fe	38.964	Linear Thru Zero	0.00	0.00	0.999676
Са	56.935	Linear Thru Zero	0.00	0.00	0.999972
Оа Р	43.956	Weighted Linear	0.00	0.00	0.999584
Sc-5	30.994	Linear Thru Zero		-0.00	0.999842
Ti	44.956 46.952	Linear Thru Zero	0.00	0.00 0.00	0.000000 0.999968
V	50.944	Linear Thru Zero	0.00	0.00	0.998755
V Mn	54.938	Linear Thru Zero	0.03	0.00	0.999920
Be-2	9.012	Linear Thru Zero	0.03	0.00	0.999992
Co	58.933	Weighted Linear	0.01	-0.00	0.999428
Ni	59.933	Weighted Linear	0.02	0.00	0.998142
Cr-1	51.941	Linear Thru Zero			0.999908
Cu		Weighted Linear	0.02 0.01	0.00	0.998514
Cu-2	62.930 64.928	Weighted Linear	0.01	-0.00 0.00	0.998423
Zn	65.926	Weighted Linear	0.00	-0.00	0.998233
As	74.922	Weighted Linear	0.00	-0.00	0.998689
Se	81.917	Linear Thru Zero	0.00	0.00	0.999967
Kr	82.914	Linear Thru Zero	0.00	0.00	0.000000
Sr	87.906	Weighted Linear	0.00	0.00	0.999346
Mo	96.906	Weighted Linear	0.00	-0.00	0.999311
Rh-3	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag	106.905	Linear Thru Zero	0.02	0.00	0.999884
Sb-1	120.904	Linear Thru Zero	0.01	0.00	0.999987
Ag-2	108.905	Linear Thru Zero	0.02	0.00	0.999888
Cd	110.904	Linear Thru Zero	0.00	0.00	0.999999
Sn	117.902	Linear Thru Zero	0.01	0.00	0.999959
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Linear Thru Zero	0.01	0.00	0.999883
Sb-1	122.904	Linear Thru Zero	0.01	0.00	0.999872
Ba	136.904	Linear Thru Zero	0.00	0.00	0.999504
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
TI	204.975	Linear Thru Zero	0.03	0.00	0.999969
Pb	207.977	Weighted Linear	0.04	0.00	0.999801
U	238.050	Linear Thru Zero	0.03	0.00	0.999881
Li-1	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be-1	9.012	Linear Thru Zero	0.01	0.00	0.999748
B-1	11.009	Linear Thru Zero	0.00	0.00	0.999568
Se-2	77.917	Linear Thru Zero	0.00	0.00	0.998252
Sb-3	120.904	Weighted Linear	0.00	0.00	0.999452
Mo-1	97.906	Linear Thru Zero	0.01	0.00	0.999951
Rh-1	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag-1	106.905	Linear Thru Zero	0.01	0.00	0.999951
Na-1	22.990	Linear Thru Zero	0.00	0.00	0.999874
Ca-1	43.956	Linear Thru Zero	0.00	0.00	0.869886
Mg-1	23.985	Linear Thru Zero	0.00	0.00	0.999677
Al-1	26.982	Linear Thru Zero	0.00	0.00	0.998324
Ba-1	137.905	Linear Thru Zero	0.01	0.00	0.999991
Cd-1	110.904	Linear Thru Zero	0.00	0.00	0.999609

Report Date/Time: Thursday, May 13, 2021 08:31:46

Page 1

K-1	38.964	Linear Thru Zero	0.00	0.00	0.999786
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.00	0.00	0.999958
Cr-2	51.941	Linear Thru Zero	0.00	0.00	0.999914
Fe-1	56.935	Linear Thru Zero	0.00	0.00	0.999065
Ni-1	59.933	Linear Thru Zero	0.00	0.00	0.999991
Cu-1	62.930	Linear Thru Zero	0.01	0.00	0.999879
Zn-2	65.926	Weighted Linear	0.00	0.00	0.999935
As-3	74.922	Weighted Linear	0.00	0.00	0.999866
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
In-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Linear Thru Zero	0.03	0.00	0.999968

Report Date/Time: Thursday, May 13, 2021 08:31:46 Page 2

Quantitative Analysis Calibration Report

File Name: 052121eh.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\052121eh.cal

Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Weighted Linear	0.01	0.00	0.999081
В	11.009	Linear Thru Zero	0.01	0.00	0.999855
Na	22.990	Linear Thru Zero	0.00	0.00	0.999861
Mg	24.986	Weighted Linear	0.00	0.01	0.999316
Al	26.982	Linear Thru Zero	0.00	0.00	0.999823
K	38.964	Simple Linear	0.00	-0.02	0.998667
Fe	56.935	Weighted Linear	0.00	0.00	0.999758
Ca	43.956	Linear Thru Zero	0.00	0.00	0.999757
Р	30.994	Weighted Linear	0.00	0.01	0.999380
Sc-5	44.956	Linear Thru Zero	0.00	0.00	0.000000
Ti	46.952	Linear Thru Zero	0.00	0.00	0.999948
V	50.944	Linear Thru Zero	0.03	0.00	0.999608
Mn	54.938	Linear Thru Zero	0.03	0.00	0.999979
Be-2	9.012	Linear Thru Zero	0.01	0.00	0.999979
Co	58.933	Linear Thru Zero	0.02	0.00	0.999996
Ni	59.933	Linear Thru Zero	0.01	0.00	0.999841
Cr-1	51.941	Linear Thru Zero	0.02	0.00	0.999703
Cu	62.930	Linear Thru Zero	0.01	0.00	0.999868
Cu-2	64.928	Linear Thru Zero	0.01	0.00	0.999979
Zn	65.926	Linear Thru Zero	0.00	0.00	0.999951
As	74.922	Linear Thru Zero	0.00	0.00	0.999973
Se	81.917	Linear Thru Zero	0.00	0.00	0.999960
Kr	82.914	Linear Thru Zero	0.00	0.00	0.000000
Sr	87.906	Linear Thru Zero	0.03	0.00	0.999934
Mo	96.906	Linear Thru Zero	0.00	0.00	0.999964
Rh-3	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag	106.905	Linear Thru Zero	0.02	0.00	0.999680
Sb-1	120.904	Linear Thru Zero	0.01	0.00	0.999812
Ag-2	108.905	Linear Thru Zero	0.02	0.00	0.999667
Cd	110.904	Linear Thru Zero	0.00	0.00	0.999612
Sn	117.902	Linear Thru Zero	0.01	0.00	0.999833
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Weighted Linear	0.01	0.00	0.999717
Sb-1	122.904	Linear Thru Zero	0.01	0.00	0.999856
Ba	136.904	Linear Thru Zero	0.00	0.00	0.999779
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
TI	204.975	Linear Thru Zero	0.03	0.00	0.999865
Pb	207.977	Linear Thru Zero	0.04	0.00	0.999584
U	238.050	Linear Thru Zero	0.04	0.00	0.999954
Li-1	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be-1	9.012	Linear Thru Zero	0.00	0.00	0.999631
B-1	11.009	Linear Thru Zero	0.00	0.00	0.999216
Se-2	77.917	Weighted Linear	0.00	0.00	0.999481
Sb-3		Weighted Linear	0.00	0.00	
Mo-1	120.904 97.906	Linear Thru Zero	0.00	0.00	0.999883 0.999971
Rh-1	102.905 106.905	Linear Thru Zero Linear Thru Zero	0.00	0.00	0.000000
Ag-1			0.02	0.00	0.999964
Na-1	22.990	Linear Thru Zero	0.00	0.00	0.999668
Ca-1	43.956	Linear Thru Zero	0.00	0.00	0.870762
Mg-1	23.985	Linear Thru Zero	0.00	0.00	0.999735
Al-1	26.982	Linear Thru Zero	0.00	0.00	0.999934
Ba-1	137.905	Linear Thru Zero	0.01	0.00	0.999745
Cd-1	110.904	Linear Thru Zero	0.00	0.00	0.999755

Report Date/Time: Tuesday, June 08, 2021 16:55:47

Page 1

K-1	38.964	Linear Thru Zero	0.00	0.00	0.999930
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.00	0.00	0.999454
Cr-2	51.941	Linear Thru Zero	0.00	0.00	0.999640
Fe-1	56.935	Linear Thru Zero	0.00	0.00	0.999984
Ni-1	59.933	Linear Thru Zero	0.00	0.00	0.999604
Cu-1	62.930	Weighted Linear	0.01	0.00	0.999415
Zn-2	65.926	Weighted Linear	0.00	0.00	0.999325
As-3	74.922	Weighted Linear	0.00	0.00	0.999476
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
In-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Linear Thru Zero	0.04	0.00	0.999984

Report Date/Time: Tuesday, June 08, 2021 16:55:47 Page 2

Quantitative Analysis Calibration Report

File Name: 052621eh.cal

File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\System\052621eh.cal

Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.01	0.00	0.999964
В	11.009	Linear Thru Zero	0.01	0.00	0.999985
Na	22.990	Linear Thru Zero	0.00	0.00	0.998585
Mg	24.986	Linear Thru Zero	0.00	0.00	0.999950
Al	26.982	Linear Thru Zero	0.00	0.00	0.999972
K	38.964	Weighted Linear	0.00	0.00	0.999808
Fe	56.935	Linear Thru Zero	0.00	0.00	0.999977
Ca	43.956	Linear Thru Zero	0.00	0.00	0.999810
Р	30.994	Linear Thru Zero	0.00	0.00	0.999975
Sc-5	44.956	Linear Thru Zero	0.00	0.00	0.000000
Ti	46.952	Weighted Linear	0.00	-0.00	0.999476
V	50.944	Linear Thru Zero	0.03	0.00	0.999974
Mn	54.938	Linear Thru Zero	0.04	0.00	0.999921
Be-2	9.012	Linear Thru Zero	0.01	0.00	0.999957
Co	58.933	Linear Thru Zero	0.03	0.00	0.999963
Ni	59.933	Linear Thru Zero	0.01	0.00	0.999927
Cr-1	51.941	Linear Thru Zero	0.03	0.00	0.999989
Cu	62.930	Linear Thru Zero	0.01	0.00	0.999860
Cu-2	64.928	Linear Thru Zero	0.01	0.00	0.999936
Zn	65.926	Weighted Linear	0.00	0.00	0.999780
As	74.922	Linear Thru Zero	0.00	0.00	0.999982
Se	81.917	Linear Thru Zero	0.00	0.00	0.999852
Kr	82.914	Linear Thru Zero	0.00	0.00	0.000000
Sr	87.906	Linear Thru Zero	0.03	0.00	0.999917
Мо	96.906	Linear Thru Zero	0.00	0.00	0.999971
Rh-3	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag	106.905	Linear Thru Zero	0.02	0.00	0.999991
Sb-1	120.904	Linear Thru Zero	0.01	0.00	0.999986
Ag-2	108.905	Linear Thru Zero	0.02	0.00	0.999897
Cd	110.904	Linear Thru Zero	0.00	0.00	0.999982
Sn	117.902	Linear Thru Zero	0.01	0.00	0.999954
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Weighted Linear	0.01	0.00	0.999456
Sb-1	122.904	Linear Thru Zero	0.01	0.00	0.999983
Ва	136.904	Linear Thru Zero	0.00	0.00	0.999989
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
TI	204.975	Linear Thru Zero	0.03	0.00	0.999968
Pb	207.977	Linear Thru Zero	0.04	0.00	0.999997
U	238.050	Linear Thru Zero	0.04	0.00	0.999965
Li-1	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be-1	9.012	Linear Thru Zero	0.01	0.00	0.999596
B-1	11.009	Linear Thru Zero	0.00	0.00	0.999709
Se-2	77.917	Simple Linear	0.00	0.00	0.999978
Sb-3	120.904	Weighted Linear	0.00	0.00	0.999726
Mo-1	97.906	Linear Thru Zero	0.01	0.00	0.999984
Rh-1	102.905	Linear Thru Zero	0.00	0.00	0.000000
Ag-1	106.905	Linear Thru Zero	0.02	0.00	0.999966
Na-1	22.990	Linear Thru Zero	0.02	0.00	0.999839
Ca-1	43.956	Linear Thru Zero	0.00	0.00	0.889647
Mg-1	23.985	Linear Thru Zero	0.00	0.00	0.999975
Al-1	26.982	Linear Thru Zero	0.00	0.00	0.999972
Ba-1	137.905	Linear Thru Zero	0.00	0.00	0.999992
Cd-1	110.904	Simple Linear	0.00	0.00	0.999987
Ju-1	110.304	Omple Linear	0.00	0.00	0.333301

Report Date/Time: Wednesday, May 26, 2021 11:35:06

Page 1

K-1	38.964	Linear Thru Zero	0.00	0.00	0.999711
Sc-6	44.956	Linear Thru Zero	0.00	0.00	0.000000
V-1	50.944	Linear Thru Zero	0.00	0.00	0.999930
Cr-2	51.941	Weighted Linear	0.00	0.00	0.998514
Fe-1	56.935	Linear Thru Zero	0.00	0.00	0.999936
Ni-1	59.933	Linear Thru Zero	0.00	0.00	0.999974
Cu-1	62.930	Linear Thru Zero	0.01	0.00	0.999950
Zn-2	65.926	Weighted Linear	0.00	0.00	0.998956
As-3	74.922	Weighted Linear	0.00	-0.00	0.998131
Rh-2	102.905	Linear Thru Zero	0.00	0.00	0.000000
In-1	114.904	Linear Thru Zero	0.00	0.00	0.000000
Tb-1	158.925	Linear Thru Zero	0.00	0.00	0.000000
Ho-1	164.930	Linear Thru Zero	0.00	0.00	0.000000
Pb-1	207.977	Linear Thru Zero	0.04	0.00	0.999971

Tunes

Mass Calibration and Resolution - [Passed] Optimum value(s): N/A Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.705) Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.7/0.673)

> Target/Obtained mass (114.904/114.925), Target/Obtained resolution (0.7/0.706) Target/Obtained mass (207.977/207.975), Target/Obtained resolution (0.7/0.719)

Target/Obtained mass (238.05/238.075), Target/Obtained resolution (0.7/0.688)

Acq. Date/Time: 5/10/2021 9:51:33 AM

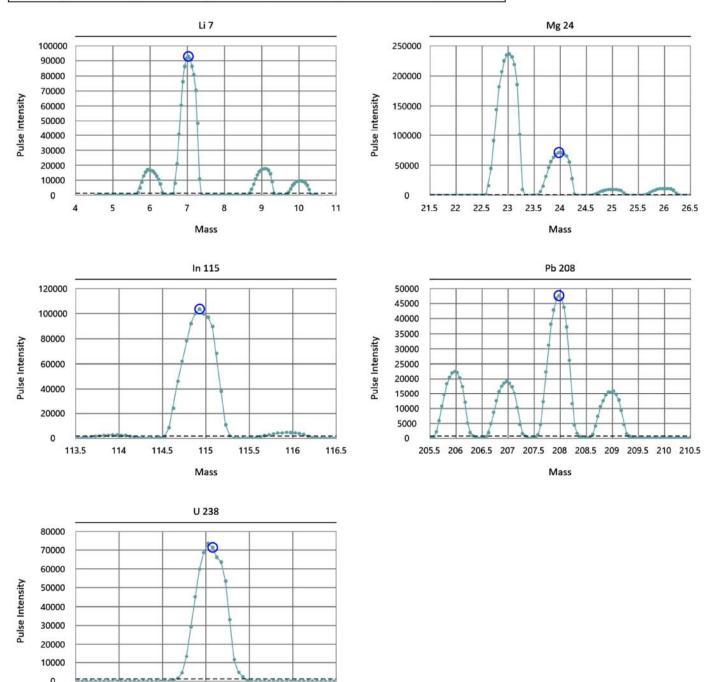
236.5

237

237.5

238

Mass


238.5

239

239.5

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1325	2021	0.705	
Mg	23.985	23.975	4714	2023	0.673	
In	114.904	114.925	22852	2039	0.706	
Pb	207.977	207.975	41424	2061	0.719	
U	238.05	238.075	47427	2073	0.688	

Mass Calibration and Resolution - [Passed] Optimum value(s): N/A

Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.701)

Target/Obtained mass (23.985/24.025), Target/Obtained resolution (0.7/0.671)

Target/Obtained mass (114.904/114.925), Target/Obtained resolution (0.7/0.705)

Target/Obtained mass (207.977/207.975), Target/Obtained resolution (0.7/0.727)

Target/Obtained mass (238.05/238.025), Target/Obtained resolution (0.7/0.700)

Acq. Date/Time: 5/12/2021 4:44:17 PM

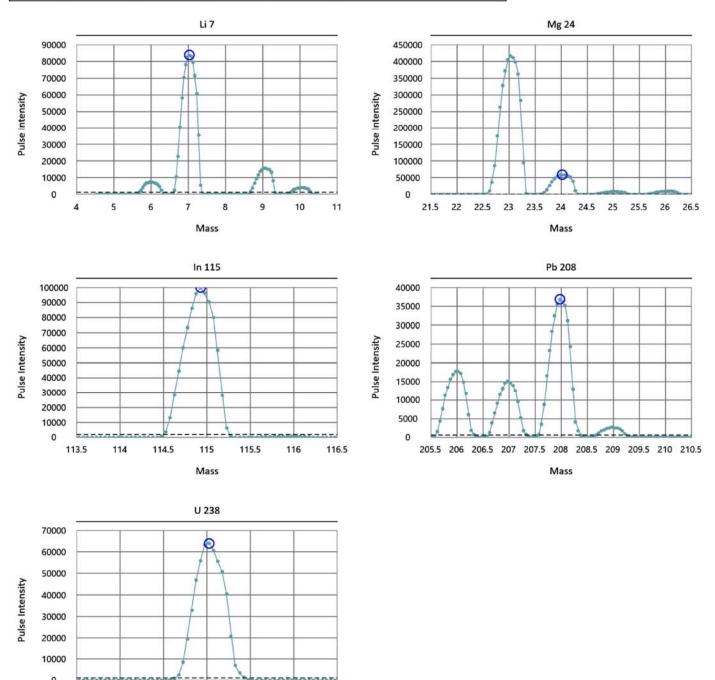
236.5

237

237.5

238

Mass

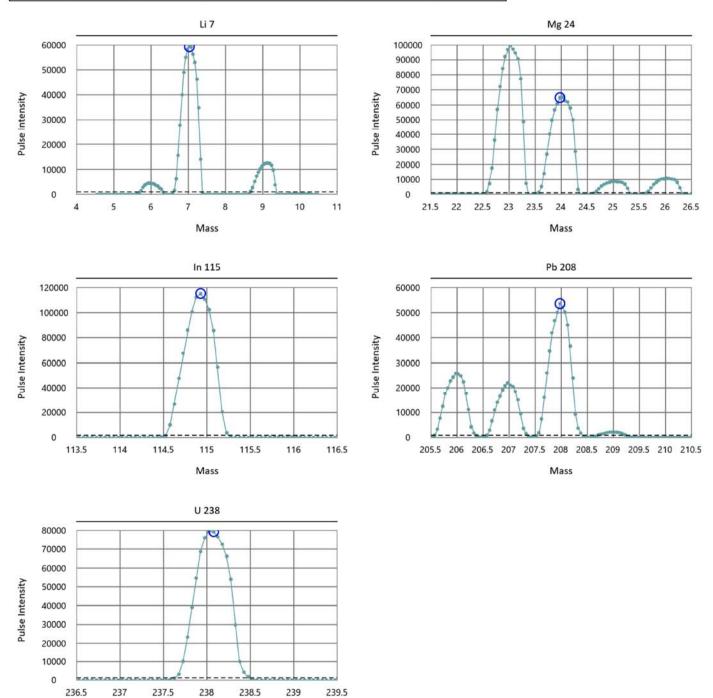

238.5

239

239.5

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1328	2021	0.701	
Mg	23.985	24.025	4717	2023	0.671	
In	114.904	114.925	22854	2039	0.705	
Pb	207.977	207.975	41421	2061	0.727	
U	238.05	238.025	47421	2073	0.700	


Mass Calibration and Resolution - [Passed] Optimum value(s): N/A
Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.728)
Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.7/0.729)
Target/Obtained mass (114.904/114.925), Target/Obtained resolution (0.7/0.669)
Target/Obtained mass (207.977/207.975), Target/Obtained resolution (0.7/0.769)
Target/Obtained mass (238.05/238.075), Target/Obtained resolution (0.7/0.750)

Acq. Date/Time: 5/21/2021 9:15:32 AM

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Mass

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1321	2019	0.728	
Mg	23.985	23.975	4704	2018	0.729	
In	114.904	114.925	22856	2042	0.669	
Pb	207.977	207.975	41418	2057	0.769	
U	238.05	238.075	47420	2067	0.750	

Mass Calibration and Resolution - [Passed] Optimum value(s): N/A Target/Obtained mass (7.016/7.025), Target/Obtained resolution (0.7/0.748)

Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.7/0.759)

Target/Obtained mass (114.904/114.875), Target/Obtained resolution (0.7/0.671)

Target/Obtained mass (207.977/207.975), Target/Obtained resolution (0.7/0.761)

Target/Obtained mass (238.05/238.025), Target/Obtained resolution (0.7/0.751)

Acq. Date/Time: 5/26/2021 8:54:04 AM

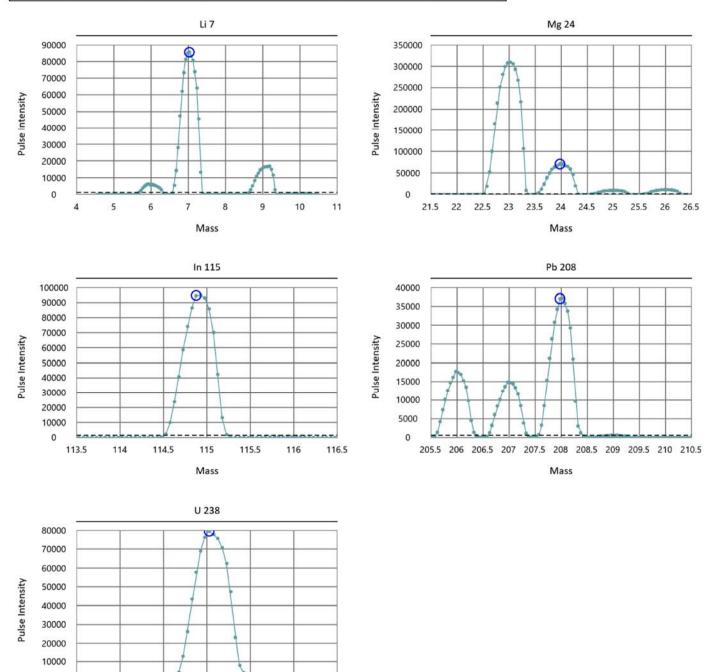
236.5

237

237.5

238

Mass


238.5

239

239.5

Sent to file: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\MassCal\Default.tun

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res DAC	Meas. Peak Width	Custom Res
Li	7.016	7.025	1324	2019	0.748	
Mg	23.985	23.975	4707	2018	0.759	
In	114.904	114.875	22848	2042	0.671	
Pb	207.977	207.975	41415	2057	0.761	
U	238.05	238.025	47414	2067	0.751	

DATA SET for Review -- **Deliverable Requirements**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Fremont Analytical Work Order No. 2105070

Libby Environmental

Project Name: Hardel Data Gaps Investigation

This Data contains the following:

- Analytical Sequence Summary
- Calibration Information
- Tune Information

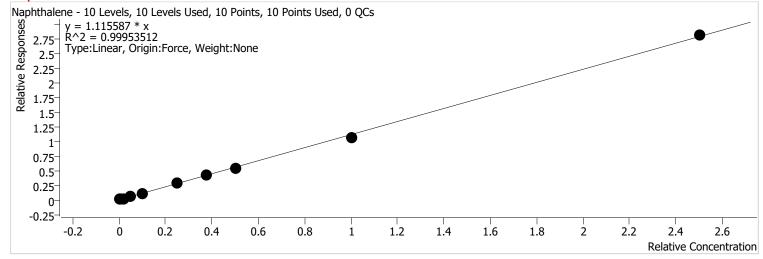
SampleName	MiscInfo	Vial	Multiplier	Injection Time	
1) 051001.D	PAH-SIM.M	2	1.000	10 May 2021 09:15 a	am
2) 051002.D UNE	SEMI9.M	1	1.000	10 May 2021 09:36 a	am
3) 051003.D CCV-32233B	PAH-SIM.M	2	1.000	10 May 2021 09:58 a	am
4) 051004.D 2105012-004A	PAH-SIM.M	54	1.000	10 May 2021 10:20 a	am
5) 051005.D	PAH-SIM.M	2	1.000	10 May 2021 10:56 a	am
6) 051006.D CCV-32233B	PAH-SIM.M	2	1.000	10 May 2021 11:18 a	am
7) 051007.D 2105012-004A	PAH-SIM.M	54	1.000	10 May 2021 11:39 a	am
8) 051008.D QCS-32233B	PAH-SIM.M	2	1.000	10 May 2021 12:01 p	pm
9) 051009.D CCV-32203B	PAH-SIM.M	2	1.000	10 May 2021 12:22 p	pm
10) 051010.D MB-32203	PAH-SIM.M	46	1.000	10 May 2021 12:43 p	pm
11) 051011.D GCS-32203	PAH-SIM.M	47	1.000	10 May 2021 01:05 p	pm
12) 051012.D 2105013-001A	PAH-SIM.M	48	1.000	10 May 2021 01:26 p	pm
13) 051013.D 2105013-002A	PAH-SIM.M	49	1.000	10 May 2021 01:48 p	pm
14) 051014.D	PAH-SIM.M				pm
15) 051015.D					
16) 051016.D					
17) 051017.D	PAH-SIM.M				
18) 051018.D	PAH-SIM.M				
19) 051019.D					
20) 051020.D CCV-32251	PAH-SIM.M O-PAH-S-SIM	2	1.000	10 May 2021 06:58 I	pm
21) 051021.D IB-32251	PAH-SIM.M O-PAH-S-SIM	51	1.000	10 May 2021 07:19 p	pm

22) 051022.D LCS-32251	PAH-SIM.M O-PAH-S-SIM	52	1.000	10 May 2021	07:41 pm
- /	PAH-SIM.M O-PAH-S-SIM	53	1.000	10 May 2021	08:02 pm
24) 051024.D 2105123-001AMS	PAH-SIM.M O-PAH-S-SIM	54	1.000	10 May 2021	08:24 pm
25) 051025.D 2105123-001AMSD	PAH-SIM.M O-PAH-S-SIM	55	1.000	10 May 2021	08:46 pm
26) 051026.D 2105123-002A	PAH-SIM.M O-PAH-S-SIM	56	1.000	10 May 2021	09:07 pm
27) 051027.D 2105123-003A	PAH-SIM.M O-PAH-S-SIM	57	1.000	10 May 2021	09:28 pm
28) 051028.D 2105123-004A	PAH-SIM.M O-PAH-S-SIM	58	1.000	10 May 2021	09:50 pm
29) 051029.D 2105123-005A	PAH-SIM.M O-PAH-S-SIM	59	1.000	10 May 2021	10:11 pm
30) 051030.D 2105123-006A	PAH-SIM.M O-PAH-S-SIM	60	1.000	10 May 2021	10:33 pm
31) 051031.D 2105123-007A	PAH-SIM.M O-PAH-S-SIM	61	1.000	10 May 2021	10:54 pm
32) 051032.D QCS-32251	PAH-SIM.M O-PAH-S-SIM	2	1.000	10 May 2021	11:16 pm

Calibration

SampleName	MiscInfo	77: ~ 7	Mul+inlin-	Injoction "-	m o	
-	PAH+021021.M	vтат	murcipiler	INJECTION TI	ще	
1) 040201.D CO	FARTUZUZI.M	2	1.000	02 Apr 2021	07:51	am
2) 040202.D pah sim check	PAH+021021.M	2	1.000	02 Apr 2021	08:12	am
3) 040203.D TUNE	SEMI9.M	1	1.000	02 Apr 2021	08:44	am
	PAH-SIM.M	2	1.000	02 Apr 2021	09:06	am
5) 040205.D CO	PAH-SIM.M	2	1.000	02 Apr 2021	09:46	am
6) 040206.D PAH 10	PAH-SIM.M	12	1.000	02 Apr 2021	10:07	am
7) 040207.D PAH 20	PAH-SIM.M	13	1.000	02 Apr 2021	10:28	am
PAH 40	PAH-SIM.M		1.000	02 Apr 2021	10:50	am
	SEMI9.M		1.000	02 Apr 2021	11:11	am
10) 040210.D	PAH-SIM.M	2	1.000	02 Apr 2021	12:43	pm
11) 040211.D CO	PAH-SIM.M	2	1.000	02 Apr 2021	01:04	pm
12) 040212.D FUNE	SEMI9.M	1	1.000	02 Apr 2021	01:25	pm
13) 040213.D CO	PAH-SIM.M	2	1.000	02 Apr 2021	01:52	pm
14) 040214.D	PAH-SIM.M					pm
15) 040215.D	PAH-SIM.M					
16) 040216.D	PAH-SIM.M					
17) 040217.D	PAH-SIM.M					
18) 040218.D PAH 200	PAH-SIM.M	16	1.000	02 Apr 2021	03:39	
19) 040219.D PAH 500	PAH-SIM.M	17	1.000	02 Apr 2021	04:00	pm
20) 040220.D	PAH-SIM.M					pm
21) 040221.D	PAH-SIM.M					
		Pāg	e 66 of 108			

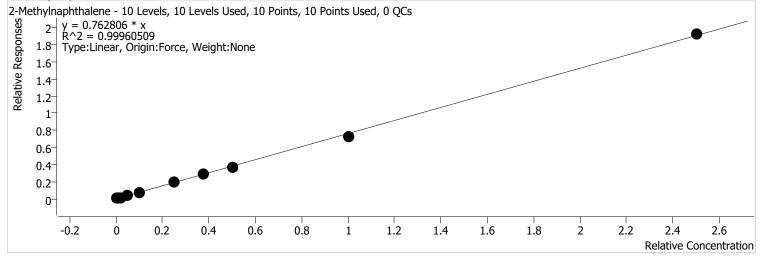
22) 040222.D PAH 2000	PAH-SIM.M	20	1.000	02 Apr 2021	05:04 p	m
23) 040223.D PAH 5000	PAH-SIM.M	21	1.000	02 Apr 2021		·m
PAH ICB		22	1.000	02 Apr 2021	05:47 p	·m
25) 040225.D	PAH-SIM.M	0.0	1 000	02 Apr 2021	06:09 p	·m
26) 040226.D	PAH-LOWLEVEL.M					·m
	PAH-LOWLEVEL.M			02 Apr 2021		
PAH LL 20	PAH-LOWLEVEL.M	13		02 Apr 2021		·m
29) 040229.D PAH LL 40	PAH-LOWLEVEL.M			02 Apr 2021		m
30) 040230.D PAH LL 100	PAH-LOWLEVEL.M	15	1.000	02 Apr 2021	07:55 p	m
	PAH-LOWLEVEL.M			02 Apr 2021		m
32) 040232.D PAH LL 500	PAH-LOWLEVEL.M			02 Apr 2021		
33) 040233.D PAH LL 750	PAH-LOWLEVEL.M	18	1.000	02 Apr 2021	08:59 p	m
34) 040234.D PAH LL 1000	PAH-LOWLEVEL.M	19		02 Apr 2021		
	PAH-LOWLEVEL.M		1.000	02 Apr 2021	09:41 p	m
36) 040236.D PAH LL 5000	PAH-LOWLEVEL.M	21	1.000	02 Apr 2021	10:02 p	m
37) 040237.D	PAH-LOWLEVEL.M					
38) 040238.D	PAH-LOWLEVEL.M					
39) 040239.D	PAH-LOWLEVEL.M					
40) 040240.D MB-31823	PAH-LOWLEVEL.M	31	1.000	02 Apr 2021	11:27 p	
41) 040241.D LCS-31823	PAH-LOWLEVEL.M	32	1.000	02 Apr 2021	11:48 p	m
42) 040242.D	PAH-LOWLEVEL.M					.m
43) 040243.D	PAH-LOWLEVEL.M					
44) 040244.D 2103406-001A	PAH-LOWLEVEL.M			03 Apr 2021		
45) 040245.D	PAH-LOWLEVEL.M	Pag	e 67 of 108			


2103406-001AMS		36	1.000	03 Apr 2021	01:12 am
46) 040246.D 2103423-001B	PAH-LOWLEVEL.M	37	1.000	03 Apr 2021	01:33 am
47) 040247.D 2103423-002B	PAH-LOWLEVEL.M	38	1.000	03 Apr 2021	01:54 am
48) 040248.D 2103423-003B	PAH-LOWLEVEL.M	39	1.000	03 Apr 2021	02:15 am
49) 040249.D 2103473-001A	PAH-LOWLEVEL.M	40	1.000	03 Apr 2021	02:36 am
50) 040250.D 2103473-002A	PAH-LOWLEVEL.M	41	1.000	03 Apr 2021	02:57 am
51) 040251.D QCS-LL-31823	PAH-LOWLEVEL.M	2	1.000	03 Apr 2021	03:18 am

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 FA\GC14 Report Time 4/5/2021 8:33:22 AM Reporter Name Last Calib Update **Batch State** Processed 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

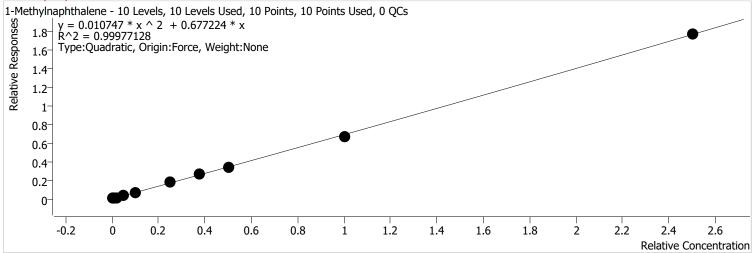
Naphthalene %RSE = 3.7


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1239	10.0000	1.0894	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2636	20.0000	1.1819	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	5067	40.0000	1.1142	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	11916	100.0000	1.0567	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	25326	200.0000	1.1318	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	65107	500.0000	1.1394	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	97405	750.0000	1.1349	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	130618	1000.0000	1.0763	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	265310	2000.0000	1.0685	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	650191	5000.0000	1.1240	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

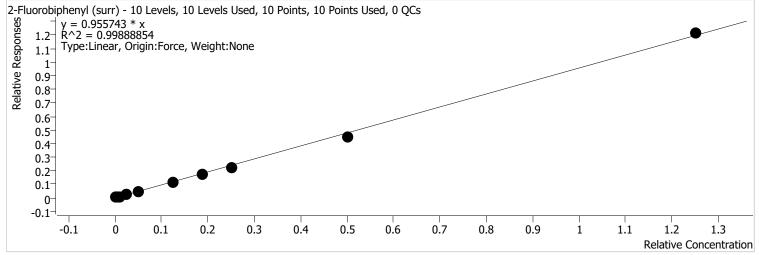
2-Methylnaphthalene %RSE = 8.1


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	729	10.0000	0.6407	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	1620	20.0000	0.7262	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	3126	40.0000	0.6875	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	7666	100.0000	0.6798	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	16796	200.0000	0.7506	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	44674	500.0000	0.7818	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	66022	750.0000	0.7692	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	89931	1000.0000	0.7411	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	181953	2000.0000	0.7328	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	444370	5000.0000	0.7682	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

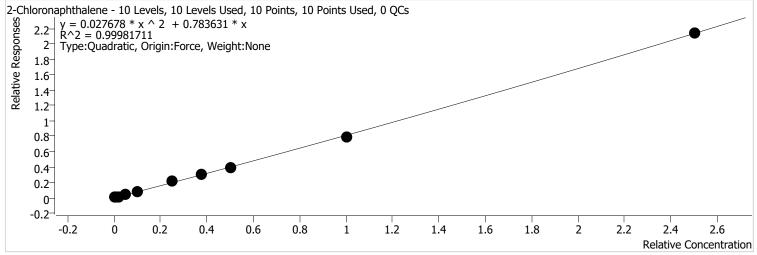
1-Methylnaphthalene %RSE = 4.9


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	749	10.0000	0.6584	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	1570	20.0000	0.7039	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	3170	40.0000	0.6971	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	7496	100.0000	0.6647	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	16115	200.0000	0.7202	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	41768	500.0000	0.7310	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	х	61868	750.0000	0.7208	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	83161	1000.0000	0.6853	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	167295	2000.0000	0.6738	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	407691	5000.0000	0.7048	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

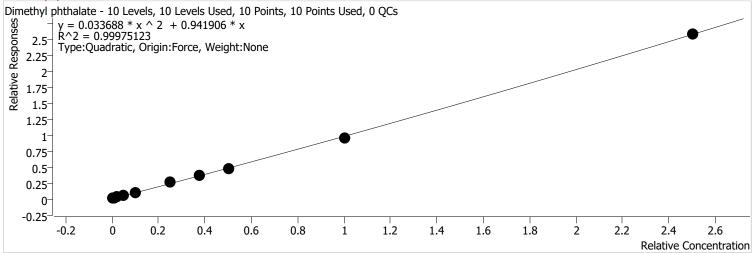
2-Fluorobiphenyl (surr) %RSE =


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	491	5.0000	0.8637	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	1055	10.0000	0.9458	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	2045	20.0000	0.8995	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	4869	50.0000	0.8636	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	10509	100.0000	0.9393	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	27101	250.0000	0.9486	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	40221	375.0000	0.9373	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	54547	500.0000	0.8990	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	111103	1000.0000	0.8949	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	280059	2500.0000	0.9683	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update **Batch State** Processed 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

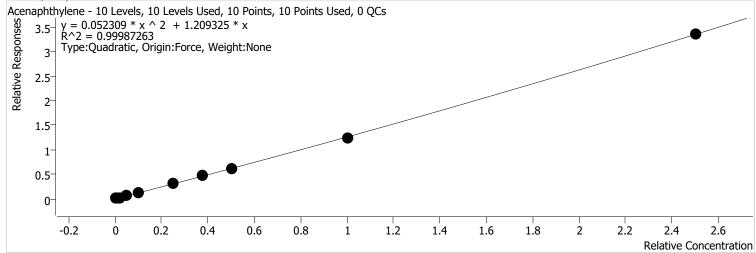
2-Chloronaphthalene %RSE = 4.7


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	871	10.0000	0.7657	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	1849	20.0000	0.8289	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	3578	40.0000	0.7868	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	8592	100.0000	0.7619	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	18511	200.0000	0.8272	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	48350	500.0000	0.8462	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	71907	750.0000	0.8378	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	96978	1000.0000	0.7991	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	197705	2000.0000	0.7962	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	493753	5000.0000	0.8536	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update **Batch State** Processed 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

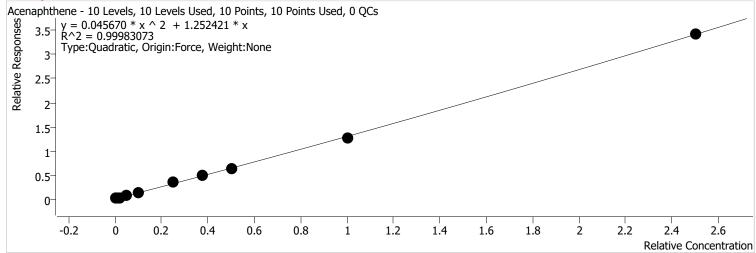
Dimethyl phthalate %RSE = 101.6


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	3510	10.0000	3.0857	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	х	4820	20.0000	2.1611	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	6764	40.0000	1. 4 875	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	х	12283	100.0000	1.0892	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	23531	200.0000	1.0515	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	58017	500.0000	1.0154	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	х	85898	750.0000	1.0008	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	115633	1000.0000	0.9529	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	238189	2000.0000	0.9593	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	594067	5000.0000	1.0270	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

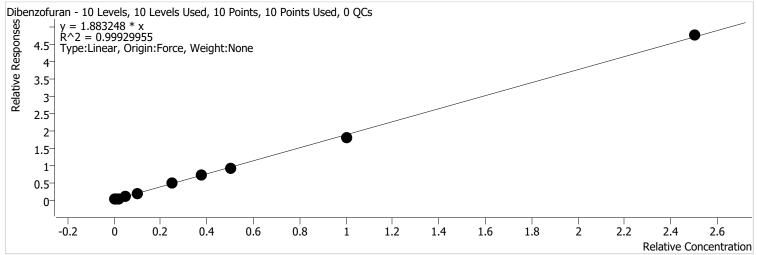
Acenaphthylene %RSE = 5.0


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	1372	10.0000	1.2058	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2943	20.0000	1.3196	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	5663	40.0000	1.2453	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	13291	100.0000	1.1785	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	28533	200.0000	1.2751	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	73516	500.0000	1.2866	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	110934	750.0000	1.2925	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	149626	1000.0000	1.2330	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	308610	2000.0000	1.2429	•
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	775729	5000.0000	1.3410	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

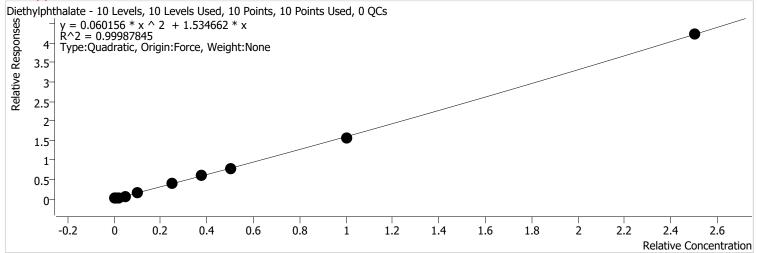
Acenaphthene %RSE = 8.9


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	969	10.0000	1.3698	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2040	20.0000	1.4693	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	3749	40.0000	1.3359	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	8692	100.0000	1.2369	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	18490	200.0000	1.3423	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	47554	500.0000	1.3575	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	70652	750.0000	1.3302	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	95283	1000.0000	1.2779	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	195588	2000.0000	1.2749	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	495706	5000.0000	1.3678	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

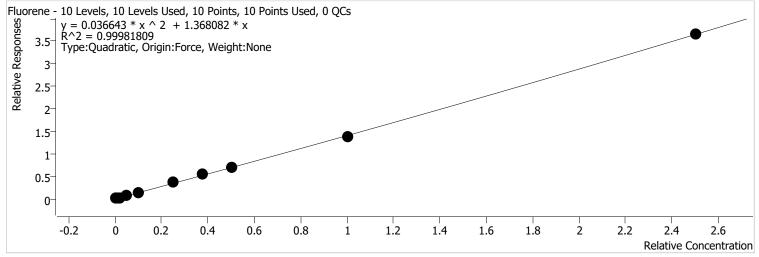
Dibenzofuran %RSE = 4.3


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	1253	10.0000	1.7717	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2634	20.0000	1.8966	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	5156	40.0000	1.8371	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	12275	100.0000	1.7467	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	25574	200.0000	1.8567	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	66998	500.0000	1.9126	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	99472	750.0000	1.8728	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	134403	1000.0000	1.8026	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	х	273899	2000.0000	1.7854	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	689391	5000.0000	1.9022	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

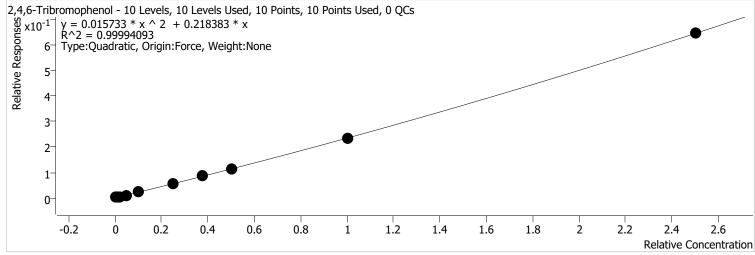
Diethylphthalate %RSE = 7.5


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	1225	10.0000	1.7316	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2369	20.0000	1.7062	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	4410	40.0000	1.5712	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	10219	100.0000	1.4542	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	21859	200.0000	1.5869	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	57673	500.0000	1.6464	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	86201	750.0000	1.6229	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	117083	1000.0000	1.5703	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	240904	2000.0000	1.5703	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	611138	5000.0000	1.6863	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update **Batch State** Processed 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

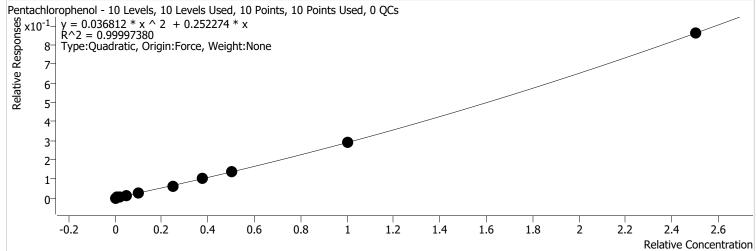
Fluorene %RSE = 5.2


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	960	10.0000	1.3570	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2028	20.0000	1.4603	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	3937	40.0000	1.4027	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	9211	100.0000	1.3107	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	20032	200.0000	1.4543	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	51970	500.0000	1.4835	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	76909	750.0000	1.4480	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	103702	1000.0000	1.3909	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	211547	2000.0000	1.3790	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	529489	5000.0000	1.4610	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

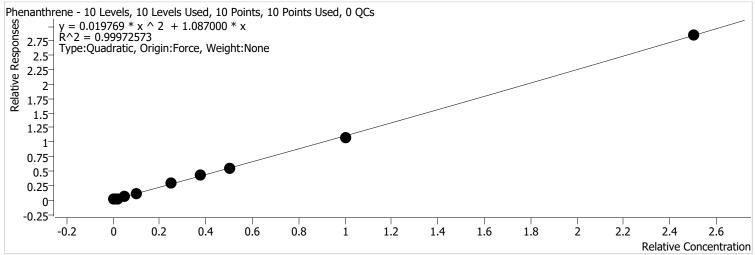
2,4,6-Tribromophenol %RSE =


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	177	10.0000	0.2496	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	х	331	20.0000	0.2387	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	620	40.0000	0.2208	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	х	1440	100.0000	0.2049	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	3038	200.0000	0.2206	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	х	8137	500.0000	0.2323	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	х	12291	750.0000	0.2314	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	16936	1000.0000	0.2272	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	х	35515	2000.0000	0.2315	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	93448	5000.0000	0.2578	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

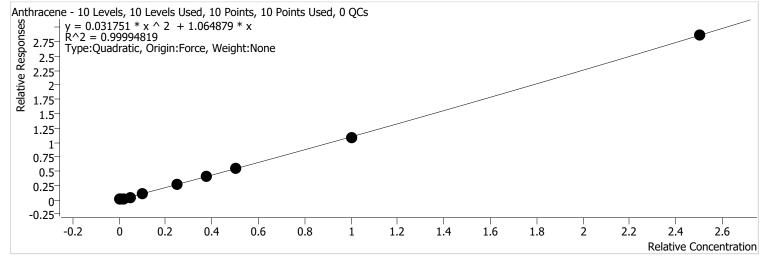
Pentachlorophenol %RSE = 11.2


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	142	10.0000	0.2014	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	324	20.0000	0.2333	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	623	40.0000	0.2218	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	1526	100.0000	0.2172	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	3266	200.0000	0.2371	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	8961	500.0000	0.2558	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	14020	750.0000	0.2640	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	20001	1000.0000	0.2683	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	44692	2000.0000	0.2913	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	124745	5000.0000	0.3442	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 **Batch State** Last Calib Update 4/5/2021 8:32 AM Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

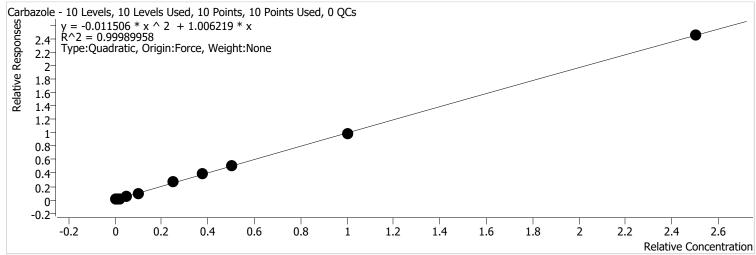
Phenanthrene %RSE = 10.7


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1652	10.0000	1.2688	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	х	3310	20.0000	1.2845	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	6187	40.0000	1.1681	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	х	14087	100.0000	1.0574	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	29800	200.0000	1.1515	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	х	77366	500.0000	1.1712	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	х	115271	750.0000	1.1673	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	156682	1000.0000	1.1062	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	х	316127	2000.0000	1.0807	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	797632	5000.0000	1.1377	·

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update **Batch State** 4/5/2021 8:32 AM Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

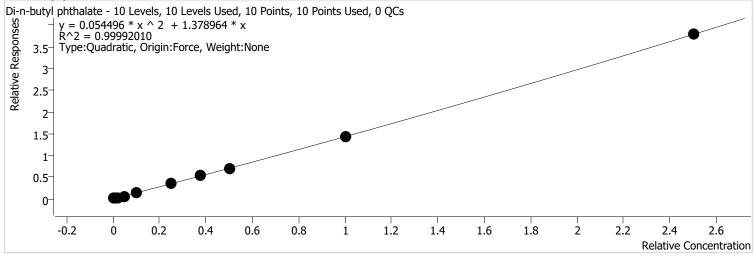
Anthracene %RSE = 4.8


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1411	10.0000	1.0835	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	х	2977	20.0000	1.1550	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	5664	40.0000	1.0695	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	13096	100.0000	0.9831	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	28280	200.0000	1.0927	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	73049	500.0000	1.1058	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	109933	750.0000	1.1133	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	152400	1000.0000	1.0760	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	318189	2000.0000	1.0878	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	802553	5000.0000	1.1447	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name Last Calib Update **Batch State** Processed 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

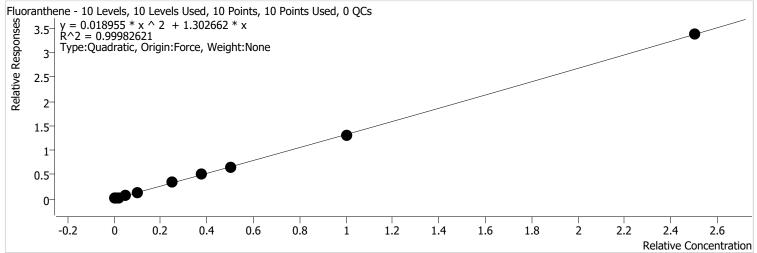
Carbazole %RSE = 5.0


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	1253	10.0000	0.9625	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2718	20.0000	1.0547	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	5224	40.0000	0.9862	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	12126	100.0000	0.9103	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	25948	200.0000	1.0026	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	69032	500.0000	1.0450	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	103027	750.0000	1.0433	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	141804	1000.0000	1.0012	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	х	287466	2000.0000	0.9827	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	685700	5000.0000	0.9780	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 **Batch State** Last Calib Update 4/5/2021 8:32 AM Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

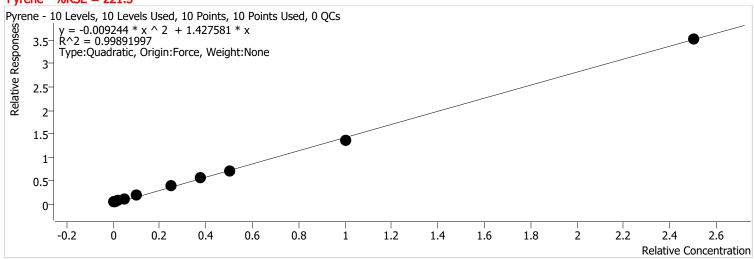
Di-n-butyl phthalate %RSE = 5.0


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1803	10.0000	1.3847	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	3688	20.0000	1.4312	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	7068	40.0000	1.3345	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	16412	100.0000	1.2320	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	35750	200.0000	1.3814	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	95312	500.0000	1.4428	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	144341	750.0000	1.4617	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	198393	1000.0000	1.4007	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	415029	2000.0000	1.4188	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	1062816	5000.0000	1.5159	, and the second

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

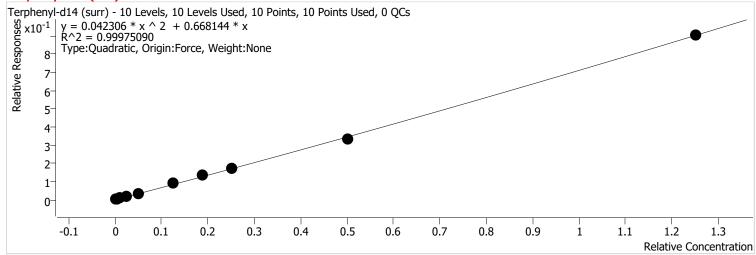
Fluoranthene %RSE = 5.6


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1777	10.0000	1.3645	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	х	3652	20.0000	1.4171	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	х	7016	40.0000	1.3247	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	х	16312	100.0000	1.2244	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	34947	200.0000	1.3503	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	х	91445	500.0000	1.3843	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	136428	750.0000	1.3816	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	186524	1000.0000	1.3169	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	379699	2000.0000	1.2981	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	947326	5000.0000	1.3512	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

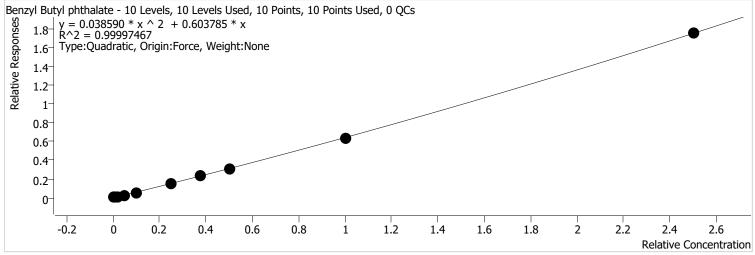
Pyrene %RSE = 221.3


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	11314	10.0000	8.6878	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	х	13136	20.0000	5.0975	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	17047	40.0000	3.2185	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	х	26408	100.0000	1.9823	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	45940	200.0000	1.7751	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	х	104653	500.0000	1.5842	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	х	150418	750.0000	1.5232	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	202822	1000.0000	1.4320	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	х	400956	2000.0000	1.3707	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	986396	5000.0000	1.4069	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

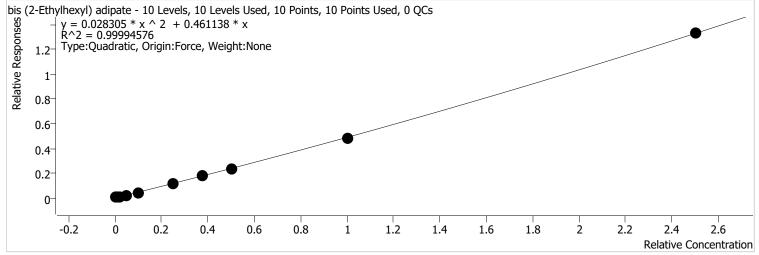
Terphenyl-d14 (surr) %RSE =


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	949	5.0000	1.4572	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	1431	10.0000	1.1108	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	2331	20.0000	0.8804	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	4672	50.0000	0.7015	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	9428	100.0000	0.7286	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	23793	250.0000	0.7203	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	35373	375.0000	0.7164	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	48348	500.0000	0.6827	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	98609	1000.0000	0.6742	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	253018	2500.0000	0.7218	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

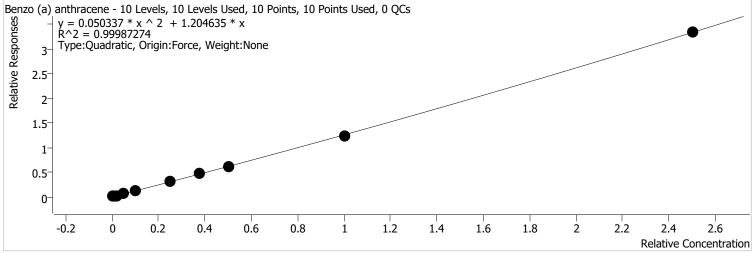
Benzyl Butyl phthalate %RSE = 9.0


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	912	10.0000	0.7001	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	1741	20.0000	0.6755	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	3132	40.0000	0.5913	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	7096	100.0000	0.5327	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	15214	200.0000	0.5879	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	41291	500.0000	0.6251	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	62493	750.0000	0.6328	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	88147	1000.0000	0.6224	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	186982	2000.0000	0.6392	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	491057	5000.0000	0.7004	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

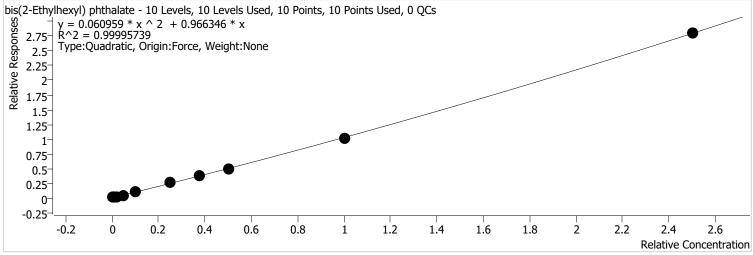
bis (2-Ethylhexyl) adipate %RSE = 9.1


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	709	10.0000	0.5443	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	1223	20.0000	0.4745	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	2346	40.0000	0.4429	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	5306	100.0000	0.3983	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	11471	200.0000	0.4432	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	31717	500.0000	0.4801	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	48146	750.0000	0.4876	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	67714	1000.0000	0.4781	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	141823	2000.0000	0.4848	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	373063	5000.0000	0.5321	, and the second

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

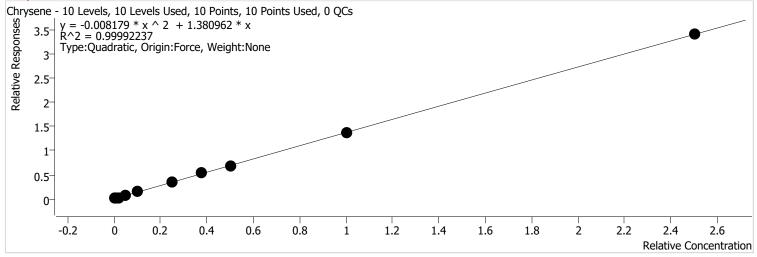
Benzo (a) anthracene %RSE = 25.1


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	2432	10.0000	1.8675	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	4192	20.0000	1.6267	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	7054	40.0000	1.3318	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	15635	100.0000	1.1736	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	32341	200.0000	1.2497	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	85238	500.0000	1.2903	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	125583	750.0000	1.2717	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	175887	1000.0000	1.2418	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	360906	2000.0000	1.2338	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	933515	5000.0000	1.3315	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 **Batch State** Processed Last Calib Update 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

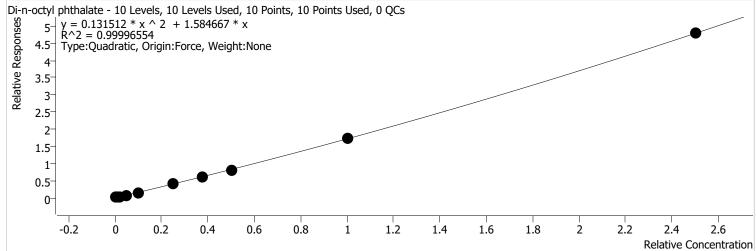
bis(2-Ethylhexyl) phthalate %RSE = 5.5


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1131	10.0000	0.9770	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2255	20.0000	0.9776	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	4415	40.0000	0.9294	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	10108	100.0000	0.8437	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	22176	200.0000	0.9636	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	60600	500.0000	1.0243	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	х	90142	750.0000	1.0135	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	127235	1000.0000	0.9870	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	267605	2000.0000	1.0224	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	692570	5000.0000	1.1190	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update **Batch State** Processed 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

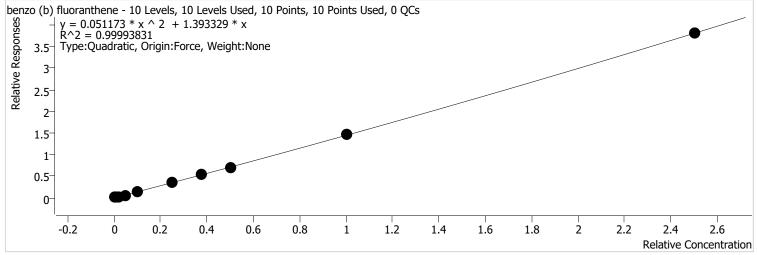
Chrysene %RSE = 4.9


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1591	10.0000	1.3738	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	3308	20.0000	1.4343	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	6983	40.0000	1.4700	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	15330	100.0000	1.2796	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	33372	200.0000	1.4501	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	84739	500.0000	1.4324	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	126897	750.0000	1.4267	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	174783	1000.0000	1.3559	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	357084	2000.0000	1.3643	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	842343	5000.0000	1.3610	·

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name Last Calib Update **Batch State** Processed 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

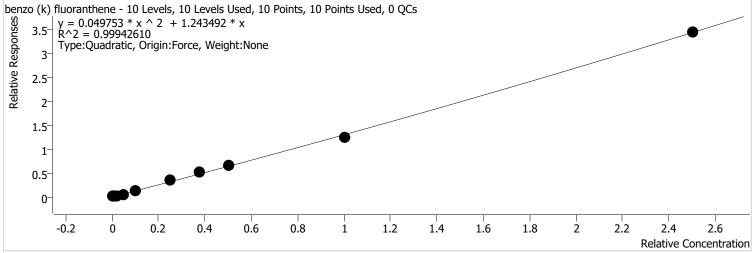
Di-n-octyl phthalate %RSE = 8.1


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1725	10.0000	1.4894	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	3474	20.0000	1.5065	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	6735	40.0000	1.4178	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	15929	100.0000	1.3296	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	36027	200.0000	1.5655	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	98215	500.0000	1.6601	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	148562	750.0000	1.6703	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	209250	1000.0000	1.6233	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	449073	2000.0000	1.7157	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	1184308	5000.0000	1.9135	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

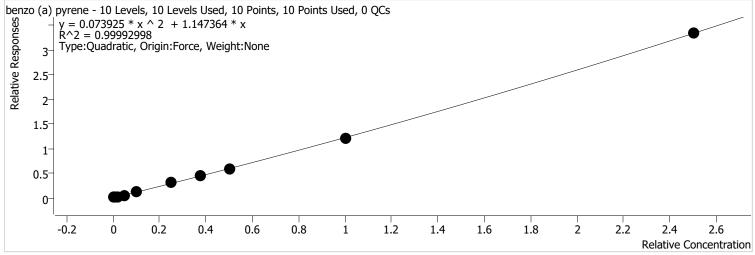
benzo (b) fluoranthene %RSE = 3.5


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	1535	10.0000	1.3254	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	3133	20.0000	1.3585	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	6454	40.0000	1.3587	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	15721	100.0000	1.3123	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	31825	200.0000	1.3829	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	83163	500.0000	1.4057	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	126526	750.0000	1.4225	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	176946	1000.0000	1.3727	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	381770	2000.0000	1.4586	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	941179	5000.0000	1.5207	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

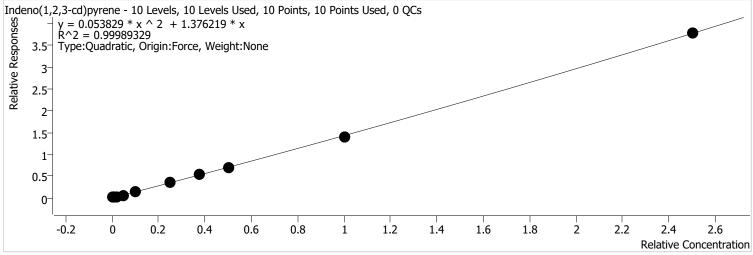
benzo (k) fluoranthene %RSE = 9.3


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	1401	10.0000	1.2097	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	3238	20.0000	1.4040	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	6154	40.0000	1.2955	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	13727	100.0000	1.1459	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	31489	200.0000	1.3683	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	84597	500.0000	1.4300	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	120752	750.0000	1.3576	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	167166	1000.0000	1.2968	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	326355	2000.0000	1.2469	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	847978	5000.0000	1.3701	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

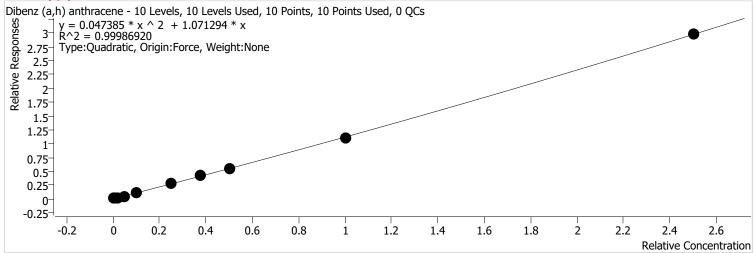
benzo (a) pyrene %RSE = 4.5


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1308	10.0000	1.1297	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2757	20.0000	1.1956	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	5432	40.0000	1.1435	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	12596	100.0000	1.0515	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	27368	200.0000	1.1892	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	72616	500.0000	1.2274	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	108225	750.0000	1.2168	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	х	151451	1000.0000	1.1749	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	316760	2000.0000	1.2102	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	824860	5000.0000	1.3328	·

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

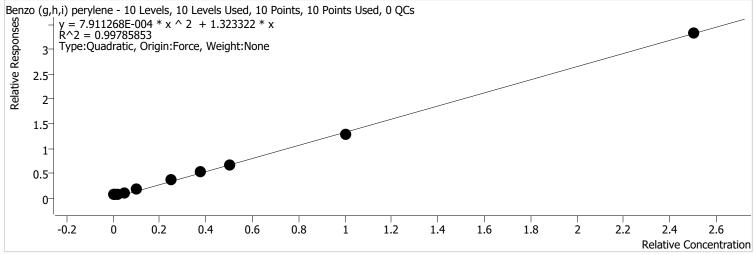
Indeno(1,2,3-cd)pyrene %RSE = 5.3


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1542	10.0000	1.3023	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	3325	20.0000	1.4453	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	6524	40.0000	1.3463	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	15074	100.0000	1.2552	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	х	32959	200.0000	1.4146	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	87223	500.0000	1.4573	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	129738	750.0000	1.4658	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	179582	1000.0000	1.3896	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	х	375627	2000.0000	1.4144	·
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	959368	5000.0000	1.5116	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 **Batch State** Processed Last Calib Update 4/5/2021 8:32 AM **Quant Batch Version** 10.0 **Quant Report Version** 10.0

Dibenz (a,h) anthracene %RSE = 5.3


Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	х	1218	10.0000	1.0286	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	2637	20.0000	1.1460	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	5081	40.0000	1.0484	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	11924	100.0000	0.9929	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	25901	200.0000	1.1116	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	68463	500.0000	1.1438	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	101574	750.0000	1.1476	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	140648	1000.0000	1.0884	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	293012	2000.0000	1.1033	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	х	755598	5000.0000	1.1905	

Batch Path C:\GC-14\Data\2021\040221\QuantResults\PAH CAL.batch.bin

Analysis Time 4/5/2021 8:32 AM **Analyst Name** FA\GC14 Report Time 4/5/2021 8:33:24 AM Reporter Name FA\GC14 Last Calib Update 4/5/2021 8:32 AM **Batch State** Processed **Quant Batch Version** 10.0 **Quant Report Version** 10.0

Benzo (g,h,i) perylene %RSE = 358.8

Calibration STD Path	Cal Type	Level	Enabled	Resp.	Exp. Conc	Resp. Factor	Level RSD
C:\GC-14\Data\2021\040221\040214.D	Calibration	1	Х	14441	10.0000	12.1998	
C:\GC-14\Data\2021\040221\040215.D	Calibration	2	Х	15896	20.0000	6.9095	
C:\GC-14\Data\2021\040221\040216.D	Calibration	3	Х	19391	40.0000	4.0013	
C:\GC-14\Data\2021\040221\040217.D	Calibration	4	Х	26884	100.0000	2.2385	
C:\GC-14\Data\2021\040221\040218.D	Calibration	5	Х	42588	200.0000	1.8278	
C:\GC-14\Data\2021\040221\040219.D	Calibration	6	Х	89586	500.0000	1.4968	
C:\GC-14\Data\2021\040221\040220.D	Calibration	7	Х	126301	750.0000	1.4269	
C:\GC-14\Data\2021\040221\040221.D	Calibration	8	Х	170459	1000.0000	1.3190	
C:\GC-14\Data\2021\040221\040222.D	Calibration	9	Х	338315	2000.0000	1.2739	
C:\GC-14\Data\2021\040221\040223.D	Calibration	10	Х	842836	5000.0000	1.3280	

PAH Calibration

Date:	04/01	121

Analyst: Sam Beerman

MeCl2: 5(13)

PAN Calibration	
Cal	ICV
8270 Megamix: 24373	8270 Megamix: 24490
	3 (7) 0

8270 Surrogate: 25093

15: 25010

Spike Conc. (ppb)	BN/Acid Surr Conc. (ppb)	2° Spike (uL)	B/N Surr (uL)	Internal Standard (uL) 10	Remove (uL)	Final Vol. (mL)	orto es	Comments
10	10/5	1		10	11	1		
20	20/10	2		10	12	11		
40	40/20	4	,	10	14	1		
100	100/50	10		10	20	11		
200	200/100	20		10	30	11		
500	500/250	40		10	60	1		
750	750/375	75		10	85	1		
1000	1000/500	100		10	110	11		
2000	2000/1000	200		10	210	1		
5000	5000/2500	500		10	510	1		
ICB	1000/500		15	10	11-15	1		
ICV (1000 ppb)	1000/500	100 (2° SS)		10	-110	1		
107 (1000 pp.)		Doglii		800 A11121	16	De tilist		

		819-4/112	\
	Mega Mix (uL)	8270 Surr (uL)	Final Volume (mL)
2° Intermediate (cal)	100	100	10
2° Intermediate (SS)		50	5

Signature and Date:

Signature: EM

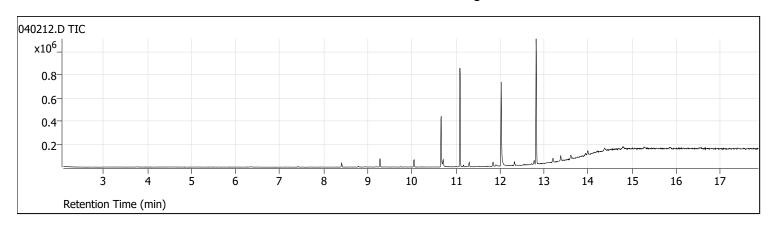
700 Building Calibration Template - PAH v1.1

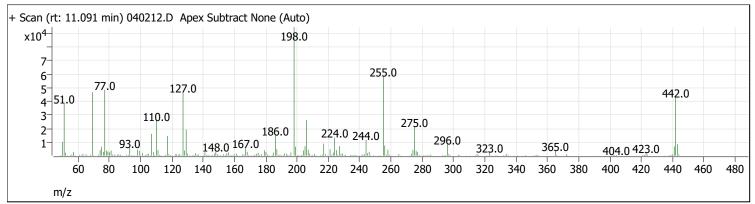
1 of 1

Official Approval: 11/14/2019

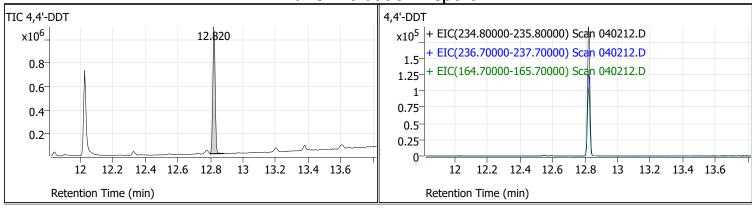
Tunes

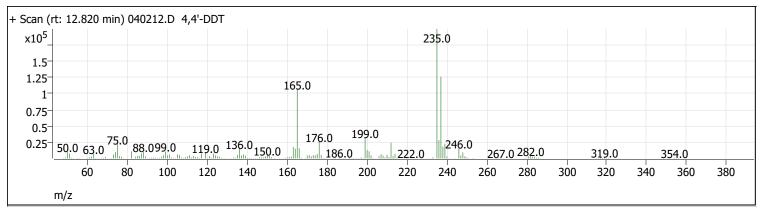
Data Path: C:\GC-14\Data\2021\040221\040212.D

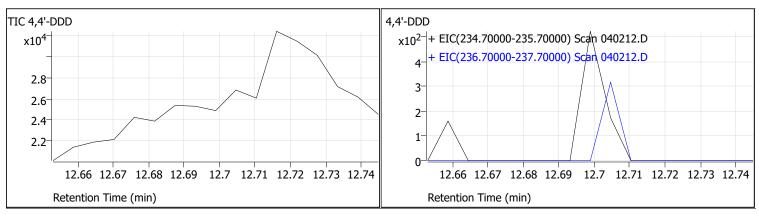

4/2/2021 1:25:46 PM Acq on:

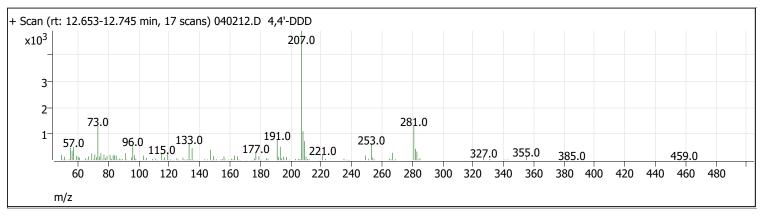

Operator: FA\GC14 Sample: **TUNE** Inst Name: GC-14

ALS Vial:

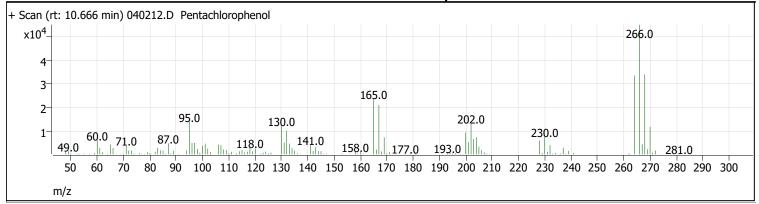

Method: C:\GC-14\Methods\Quant

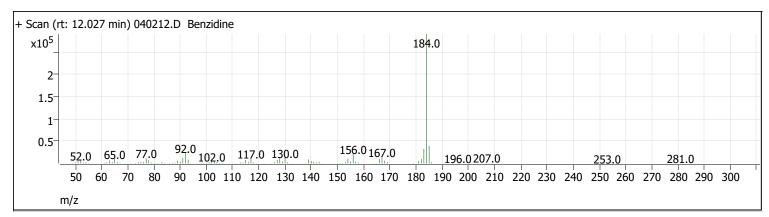

Methods\TUNE\DFTPPwBreak&TailingGC218270E.m





Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	1.7	799	Pass
70	69	0	2	0.6	259	Pass
197	198	0	2	0.0	0	Pass
198	198	100	100	100.0	94664	Pass
199	198	5	9	7.0	6639	Pass
365	198	1	100	3.5	3316	Pass
441	443	1E-10	150	81.3	6842	Pass
442	442	100	100	100.0	42920	Pass
443	442	15	24	19.6	8416	Pass
69	69	100	100	100.0	46704	Pass





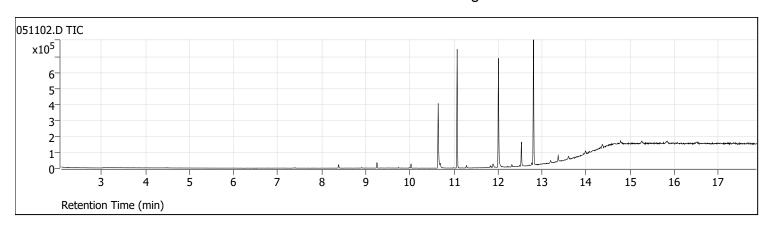
Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	12.820	12.820	1100351	0.0	Pass
4,4'-DDD	12.700	0.000	0		

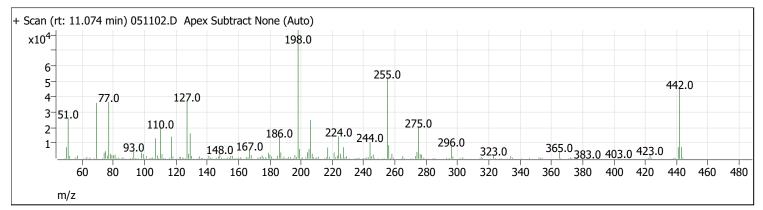
Generated: 8:04:25 AM 4/5/2021

Compound Name	Expected RT	Observed RT	Tailing Factor	PGF	Pass/Fail
Pentachlorophenol	10.660	10.666	1.0	16.0	Pass
Benzidine	12.027	12.027	1.5	14.8	Pass

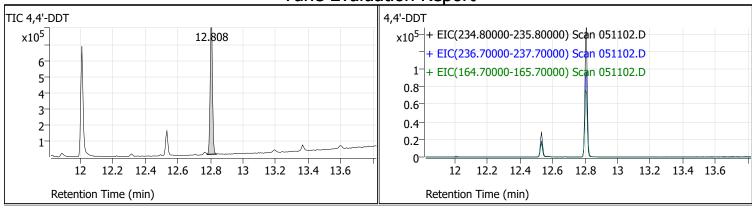
Generated: 8:04:25 AM 4/5/2021

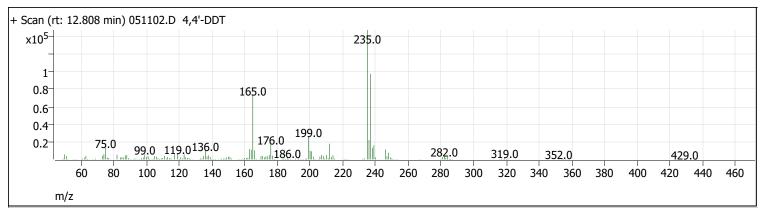
Data Path: C:\GC-14\Data\2021\051121\051102.D

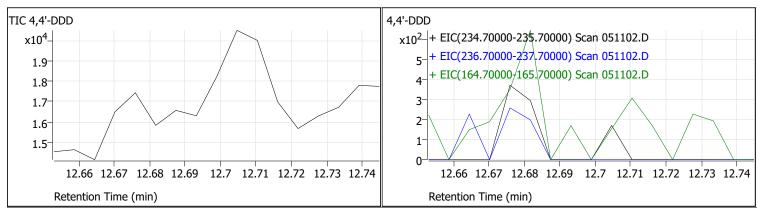

Acq on: 5/11/2021 10:51:52 AM

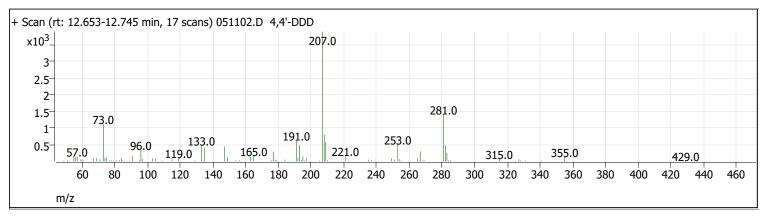

Operator: FA\GC14
Sample: TUNE
Inst Name: GC-14

ALS Vial: 1

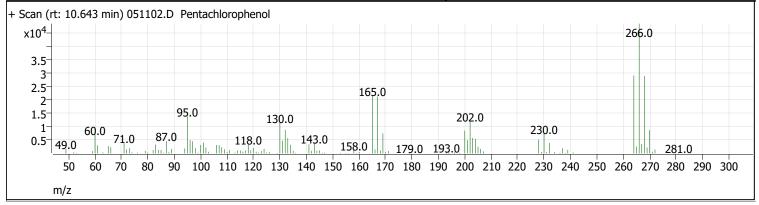

Method: C:\GC-14\Methods\Quant

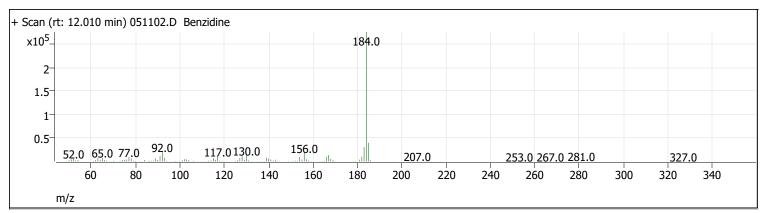

Methods\TUNE\DFTPPwBreak&TailingGC218270E.m





Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	1.2	422	Pass
70	69	0	2	0.5	198	Pass
197	198	0	2	1.3	1094	Pass
198	198	100	100	100.0	83072	Pass
199	198	5	9	7.6	6298	Pass
365	198	1	100	5.0	4182	Pass
441	443	1E-10	150	98.5	7347	Pass
442	442	100	100	100.0	45072	Pass
443	442	15	24	16.6	7460	Pass
69	69	100	100	100.0	36040	Pass





Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	12.820	12.808	819554	0.0	Pass
4,4'-DDD	12.700	0.000	0		

Generated: 11:30:26 AM 5/11/2021

Compound Name	Expected RT	Observed RT	Tailing Factor	PGF	Pass/Fail
Pentachlorophenol	10.660	10.643	1.6	42.7	Pass
Benzidine	12.027	12.010	1.2	44.7	Pass

Generated: 11:30:26 AM 5/11/2021

Appendix F

Table F-1: Calculation of Soil Direct Contact Screening Levels

			Unrestricted Land Use Scenario			Commercial/Industrial Land Use Scenar	io
Constituent Category	Detected Constituent	Standard Method B Soil Value for Carcinogens ⁽¹⁾ (mg/kg)	Standard Method B Soil Value for Non- carcinogens ⁽¹⁾ (mg/kg)	Soil Direct Contact Screening Level for an Unrestricted Land Use Scenario ⁽²⁾ (mg/kg)	Standard Method C Soil Value for Carcinogens ⁽¹⁾ (mg/kg)	Standard Method C Soil Value for Non- carcinogens ⁽¹⁾ (mg/kg)	Soil Direct Contact Screening Level for a Commercial/Industrial Land Use Scenario ⁽²⁾ (mg/kg)
	TPH-D ⁽⁴⁾			3,000			39,000
TPH	TPH-G ⁽⁴⁾			4,700			150,000
	TPH-HO ⁽⁴⁾			3,000			39,000
	1,2,4-Trimethylbenzene		800	800		35,000	35,000
	1,3,5-Trimethylbenzene		800	800		35,000	35,000
	Benzene	18	320	18	2,400	14,000	2,400
	Chloroethane			No Value ⁽³⁾			No Value ⁽³⁾
	Cumene		8,000	8,000		350,000	350,000
	Ethylbenzene		8,000	8,000		350,000	350,000
	Ethylene Dibromide (EDB)	0.50	720	0.50	66	32,000	66
VOCs	n-Butylbenzene		4,000	4,000		180,000	180,000
	n-Propylbenzene		8,000	8,000		350,000	350,000
	p-isopropyltoluene			No Value ⁽³⁾			No Value ⁽³⁾
	sec-Butylbenzene		8,000	8,000		350,000	350,000
	Tetrachloroethylene	480	480	480	63,000	21,000	21,000
	Toluene		6,400	6,400		280,000	280,000
	Trichloroethylene	12	40	12	2,900	1,800	1,800
	Xylenes, Total		16,000	16,000		700,000	700,000
	3&4 Methylphenol coelution			No Value ⁽³⁾			No Value ⁽³⁾
	Acenaphthene		4,800	4,800		210,000	210,000
	Acenaphthylene			No Value ⁽³⁾			No Value ⁽³⁾
	Anthracene		24,000	24,000		1,100,000	1,100,000
	Benzo(ghi)perylene			No Value ⁽³⁾			No Value ⁽³⁾
	Carbazole			No Value ⁽³⁾			No Value ⁽³⁾
SVOCs/PAHs	Fluoranthene		3,200	3,200		140,000	140,000
	Fluorene		3,200	3,200		140,000	140,000
	Naphthalenes, Total		1,600	1,600		70,000	70,000
	Phenanthrene			No Value ⁽³⁾			No Value ⁽³⁾
	Phenol		24,000	24,000		1,100,000	1,100,000
	Pyrene		2,400	2,400		110,000	110,000
	Total cPAHs TEF (5)	0.19	24	0.19	130	1,100	130
Other Organics	Total PCBs (6)	0.50		0.50	66		66
	Total dioxins/furans TEF (5)	1.3E-05	9.3E-05	1.3E-05	1.7E-03	4.1E-03	1.7E-03
	Arsenic	0.67	24	20 (7)	88	1,100	88
	Barium		16,000	16,000		700,000	700,000
Metals	Chromium (III)		120,000	120,000		5,300,000	5,300,000
	Lead (8)			250			1,000
	Selenium		400	400		18,000	18,000
	Silver		400	400		18,000	18,000

Screening levels are shown only if the constituent was detected in one or more media during RI data gap activities. Screening levels for total PCBs, which were not detected in any media during RI data gap activities, are also shown.

^{--:} No value exists for this constituent in the CLARC database (Ecology 2021).

All values are presented as two significant figures in standard notation, with the exception of total dioxins/furans in scientific notation.

⁽¹⁾ Values from CLARC (Ecology 2021), unless otherwise noted.

⁽²⁾ The screening level is the most stringent of the carcinogenic and non-carcinogenic values.

⁽³⁾ A screening level cannot be calculated because no values exist in CLARC (Ecology 2021). In addition, in the case of alkylbenzenes and non-carcinogenic PAHs, the constituents are components of petroleum products that are already accounted for in the TPH cleanup levels (e.g., see footnote 14(a) to MTCA Table 830-1).

⁽⁴⁾ Default TPH-D, TPH-G, and TPH-HO direct contact values for an unrestricted land use scenario (Ecology 2001a) and a commercial/industrial land use scenario (Ecology 2001b).

⁽⁵⁾ Total cPAHs and total dioxins/furans screening levels were based on the toxicity of benzo(a) pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin, respectively, in accordance with WAC 173-340-708(8). Total cPAHs and total dioxins/furans concentrations were calculated using MTCA toxicity equivalence factors (TEFs).

⁽⁶⁾ Total PCBs are the sum of the PCB aroclors.

⁽⁷⁾ Adjusted to accepted soil background concentration of 20 mg/kg per WAC 173-340-740(5)(c) (see MTCA Table 740-1 footnote b).

⁽⁸⁾ MTCA Method A soil cleanup levels for lead.

Table F-2: Calculation of Groundwater as Drinking Water Screening Levels

Constituent Category	Detected Constituent	MTCA Method A Groundwater Cleanup Level ⁽¹⁾ (ug/L)	Standard Method B Groundwater Value for Carcinogens ⁽¹⁾ (ug/L)	Standard Method B Groundwater Value for Non-Carcinogens ⁽¹⁾ (ug/L)	Maximum Contaminant Level (MCL) ⁽¹⁾ (ug/L)	Groundwater Screening Level ⁽²⁾ (ug/L)
	TPH-D	500				500
TPH	TPH-G	800 ⁽³⁾				800
	TPH-HO	500				500
	1,2,4-Trimethylbenzene			80		80
	1,3,5-Trimethylbenzene			80		80
	Benzene	5.0	0.80	32	5.0	5.0 ⁽⁴⁾
	Chloroethane					No Value ⁽⁵⁾
	Cumene			800		800
	Ethylbenzene	700		800	700	700
	Ethylene Dibromide (EDB)	0.010	0.022	72	0.050	0.050 ⁽⁴⁾
VOCs	n-Butylbenzene	-		400		400
	n-Propylbenzene			800		800
	p-isopropyltoluene	-				No Value ⁽⁵⁾
	sec-Butylbenzene			800		800
	Tetrachloroethylene	5.0	21	48	5.0	5.0
	Toluene	1,000		640	1,000	640
	Trichloroethylene	5.0	0.54	4.0	5.0	4.0 (4)
	Xylenes, Total	1,000		1,600	10,000	1,600
	3&4 Methylphenol coelution					No Value ⁽⁵⁾
	Acenaphthene			960		960
	Acenaphthylene					No Value ⁽⁵⁾
	Anthracene			4,800		4,800
	Benzo(ghi)perylene				-	No Value ⁽⁵⁾
	Carbazole				-	No Value ⁽⁵⁾
SVOCs/PAHs	Fluoranthene			640		640
	Fluorene			640	-	640
	Naphthalenes, Total	160		160		160
	Phenanthrene					No Value ⁽⁵⁾
	Phenol			2,400		2,400
	Pyrene			480		480
	Total cPAHs TEF (6)	0.10	0.023	4.8	0.20	0.015 ⁽⁷⁾
Other Organics	Total PCBs (8)	0.10	0.044		0.50	1.4 ⁽⁷⁾
Other Organics	Total dioxins/furans TEF (6)		6.7E-07	1.1E-05	3.0E-05	7.2E-06 ⁽⁷⁾
	Arsenic	5.0	0.058	4.8	10.0	5.0 ⁽⁹⁾
	Barium			3,200	2,000	2,000
Metals	Chromium (total)	50			100	100
ivictais	Lead	15			15	15
	Selenium			80	50	50
	Silver			80		80

All values are presented as two significant figures in standard notation, with the exception of total dioxins/furans in scientific notation.

Screening levels are shown only if the constituent was detected in one or more media during RI data gap activities. A screening level for total PCBs, which were not detected in any media during RI data gap activities, is also shown.

^{--:} No value exists for this constituent in the CLARC database (Ecology 2021).

⁽¹⁾ Values from CLARC (Ecology 2021), unless otherwise noted.

⁽²⁾ The screening level is the most stringent of the standard Method B groundwater value for carcinogens, and the MCL, unless otherwise noted. The MTCA Method A groundwater cleanup level was used if no other values were available. In accordance with WAC 173-340-720(7)(c), some screening levels may need to be adjusted up to the practical quantitation limit (PQL) in the future (beyond what is shown in this table).

⁽³⁾ Because benzene is present in groundwater, the MTCA Method A groundwater cleanup level of 800 ug/L applies.

⁽⁴⁾ In accordance with WAC 173-340-720(7)(b), the standard Method B value for carcinogens was adjusted upward towards the MCL by a maximum factor of ten (not to exceed the MCL).

⁽⁵⁾ A screening level cannot be calculated because no values exist in CLARC (Ecology 2021). In addition, in the case of alkylbenzenes and non-carcinogenic PAHs, the constituents are components of petroleum products that are already accounted for in the TPH cleanup levels (e.g., see footnote 14(a) to MTCA Table 830-1).

⁽⁶⁾ Total cPAHs and total dioxins/furans screening levels were based on the toxicity of benzo(a) pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin, respectively, in accordance with WAC 173-340-708(8). Total cPAHs and total dioxins/furans concentrations were calculated using MTCA toxicity equivalence factors (TEFs).

⁽⁷⁾ For current screening purposes, the lowest PQL in any sample was considered for a current PQL adjustment in accordance with WAC 173-340-720(7)(c). The individual constituent PQLs and TEFs were used to calculate PQLs for total cPAHs and total dioxins/furans. The current screening level may need to be adjusted up further in the future in accordance with WAC 173-340-720(7)(c) since some samples had PQLs greater than this screening level. A non-detect result with a PQL greater than the screening level was not considered an exceedance.

⁽⁸⁾ Total PCBs are the sum of the PCB aroclors.

⁽⁹⁾ Adjusted to accepted groundwater background concentration of 5 ug/L per WAC 173-340-720(7)(c) (see MTCA Table 720-1 footnote b).

Table F-3: Calculation of Surface Water Screening Levels

Constituent Category	Detected Constituent	Standard Method B Surface Water Value for Carcinogens ⁽¹⁾ (ug/L)	Standard Method B Surface Water Value for Non-Carcinogens ⁽¹⁾ (ug/L)				Surface Water Value for Chronic Marine Aquatic Life CWA §304 ⁽¹⁾ (ug/L)	Surface Water Value for Human Health in Marine Waters 173- 201A WAC ⁽¹⁾ (ug/L)	Surface Water Value for Human Health in Marine Waters 40 CFR 131.45 ⁽¹⁾ (ug/L)	Surface Water Value for Human Health in Marine Waters CWA §304 ⁽¹⁾ (ug/L)	Surface Water Screening Level ⁽²⁾ (ug/L)
	TPH-D		-			-					No Value ⁽³⁾
TPH	TPH-G										No Value ⁽³⁾
	TPH-HO										No Value ⁽³⁾
	1,2,4-Trimethylbenzene										No Value ⁽³⁾
	1,3,5-Trimethylbenzene										No Value ⁽³⁾
	Benzene	23	2,000					1.6		16	1.6
	Chloroethane										No Value ⁽³⁾
	Cumene										No Value ⁽³⁾
	Ethylbenzene		6,900					270	31	130	31
	Ethylene dibromide (EDB)										No Value ⁽³⁾
VOCs	n-Butylbenzene				-						No Value ⁽³⁾
	n-Propylbenzene										No Value ⁽³⁾
	p-Isopropyltoluene				-						No Value ⁽³⁾
	sec-Butylbenzene		-		-						No Value ⁽³⁾
	Tetrachloroethylene	100	500		-			7.1	2.9	29	2.9
	Toluene		19,000		1	-		410	130	520	130
	Trichloroethylene	4.9	120			-		0.86	0.70	7.0	0.70
	Xylenes, Total										No Value ⁽³⁾
	3&4-Methylphenol coelution		-			-					No Value ⁽³⁾
	Acenaphthene		640					110	30	90	30
	Acenaphthylene		-		1	-					No Value ⁽³⁾
	Anthracene		26,000					4,600	100	400	100
	Benzo(ghi)perylene		-		1	-					No Value ⁽³⁾
	Carbazole		-			-					No Value ⁽³⁾
SVOCs/PAHs	Fluoranthene		90					16	6.0	20	6.0
	Fluorene		3,500		-	-		610	10.0	70	10
	Naphthalenes, Total		4,900		-						4,900
	Phenanthrene										No Value ⁽³⁾
	Phenol		560,000					200,000	70,000	300,000	70,000
	Pyrene		2,600		1	-		460	8.0	30	8.0
	Total cPAHs TEF (4)	0.035	26					0.0021	0.000016	0.00013	0.015 ⁽⁵⁾
Other Organics	Total PCBs (6)	0.00010		10		0.030	0.030	0.00017	0.0000070	0.000064	1.4 ⁽⁵⁾
Office Organics	Total dioxins/furans TEF (4)	1.0E-08	3.6E-07			-		6.4E-08	1.4E-08	5.1E-09	7.2E-06 (5)
	Arsenic	0.098	18	69	69	36	36	10	0.14	0.14	5.0 ⁽⁷⁾
	Barium					-					No Value ⁽³⁾
Metals	Chromium (total)		240,000		-	-					240,000
เขเษเสเจ	Lead		-	210	210	8.1	8.1				8.1
	Selenium		2,700	290	290	71	71	480	200	4,200	71
	Silver		26,000	1.9	1.9	-					1.9

All values are presented as two significant figures in standard notation, with the exception of total dioxins/furans in scientific notation.

Screening levels are shown only if the constituent was detected in one or more media during RI data gap activities. A screening level for total PCBs, which were not detected in any media during RI data gap activities, is also shown.

^{--:} No value exists for this constituent in the CLARC database (Ecology 2021).

⁽¹⁾ Values from CLARC (Ecology 2021), unless otherwise noted.

⁽²⁾ The screening level is the most stringent of the standard Method B surface water value for carcinogens, the 173-210A WAC and CWA §304 chronic marine aquatic life values, and the 173-210A WAC and CWA §304 chronic marine aquatic life values, and the 173-210A WAC, CWA §304, and 40 CFR 131.45 human health marine water values, unless otherwise noted. In accordance with WAC 173-340-730(3)(c), some screening levels may need to be adjusted up to the practical quantitation limit (PQL) in the future (beyond what is shown in this table).

⁽³⁾ A screening level cannot be calculated because no values exist in CLARC (Ecology 2021).

⁽⁴⁾ Total cPAHs and total dioxins/furans screening levels were based on the toxicity of benzo(a)pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin, respectively, in accordance with WAC 173-340-708(8). Total cPAHs and total dioxins/furans concentrations will be calculated using MTCA toxicity equivalence factors (TEFs).

⁽⁵⁾ For current screening purposes, the lowest PQL in any sample was considered for a current PQL adjustment in accordance with WAC 173-340-730(5)(c)). The individual constituent PQLs and TEFs were used to calculate PQLs for total cPAHs and total dioxins/furans. The current screening level may need to be adjusted up further in the future in accordance with WAC 173-340-730(5)(c) since some samples had PQLs greater than this screening level. A non-detect result with a PQL greater than the screening level was not considered an exceedance.

⁽⁶⁾ Total PCBs are the sum of the PCB aroclors.

⁽⁷⁾ Adjusted to accepted groundwater background concentration of 5 ug/L per WAC 173-340-730(5)(c).

Table F-4: Calculation of Groundwater Screening Levels

Constituent		Groundwater as Drinking Water Screening Level (1)	Surface Water Screening Level (2)	Groundwater Screening Level (3)
Category	Detected Constituent	(ug/L)	(ug/L)	(ug/L)
	TPH-D	500	No Value	500
TPH	TPH-G	800	No Value	800
	TPH-HO	500	No Value	500
	1,2,4-Trimethylbenzene	80	No Value	80
	1,3,5-Trimethylbenzene	80	No Value	80
	Benzene	5.0	1.6	1.6
	Chloroethane	No Value	No Value	No Value
	Cumene	800	No Value	800
	Ethylbenzene	700	31	31
	Ethylene dibromide (EDB)	0.050	No Value	0.050
VOCs	n-Butylbenzene	400	No Value	400
	n-Propylbenzene	800	No Value	800
	p-Isopropyltoluene	No Value	No Value	No Value
	sec-Butylbenzene	800	No Value	800
	Tetrachloroethylene	5.0	2.9	2.9
	Toluene	640	130	130
	Trichloroethylene	4.0	0.70	0.70
	Xylenes, Total	1,600	No Value	1,600
	3&4-Methylphenol coelution	No Value	No Value	No Value
	Acenaphthene	960	30	30
	Acenaphthylene	No Value	No Value	No Value
	Anthracene	4,800	100	100
	Benzo(ghi)perylene	No Value	No Value	No Value
	Carbazole	No Value	No Value	No Value
SVOCs/PAHs	Fluoranthene	640	6.0	6.0
	Fluorene	640	10	10.0
	Naphthalenes, Total	160	4,900	160
	Phenanthrene	No Value	No Value	No Value
	Phenol	2,400	70,000	2,400
	Pyrene	480	8.0	8.0
	Total cPAHs TEF (4)	0.015	0.015	0.015
Other Organics	Total PCBs (5)	1.4	1.4	1.4
	Total dioxins/furans TEF (4)	7.2E-06	7.2E-06	7.2E-06
	Arsenic	5.0	5.0	5.0
	Barium	2,000	No Value	2,000
Metals	Chromium (total)	100	240,000	100
wetais	Lead	15	8.1	8.1
	Selenium	50	71	50
	Silver	80	1.9	1.9

All values are presented as two significant figures in standard notation, with the exception of total dioxins/furans in scientific notation.

Screening levels are shown only if the constituent was detected in one or more media during RI data gap activities. A screening level for total PCBs, which were not detected in any media during RI data gap activities, is also shown.

⁽¹⁾ See Table F-2 for calculation of groundwater as drinking water screening levels.

⁽²⁾ See Table F-3 for calculation of surface water screening levels.

⁽³⁾ The screening level is the most restrictive of the groundwater as drinking water and surface water screening levels.

⁽⁴⁾ Total cPAHs and total dioxins/furans screening levels were based on the toxicity of benzo(a) pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin, respectively, in accordance with WAC 173-340-708(8). Total cPAHs and total dioxins/furans concentrations were calculated using MTCA toxicity equivalence factors (TEFs).

⁽⁵⁾ Total PCBs are the sum of the PCB aroclors.

Table F-5: Calculation of Soil-to-Groundwater Screening Levels

				Physiochemical Prop	perties (2)		Soil-to-	Soil-to-Groundwater Calculations			
Constituent Category	Detected Constituent	Groundwater Screening Level ⁽¹⁾ (ug/L)	Henry's Law Constant (Hcc) (unitless)	Organic Carbon Partitioning Coefficient (Koc) (L/kg)	Aqueous Solubility (mg/L)	Distribution Coefficient (Kd) (L/kg)	Soil Concentration Protective of Groundwater Screening Level ⁽³⁾ (mg/kg)	Soil Saturation Concentration ⁽⁴⁾ (mg/kg)	Soil-to-Groundwater Screening Level ⁽⁵⁾ (mg/kg)		
	TPH-D	500				Not applicable	1,000,000 ⁽⁶⁾	2,000 ⁽⁷⁾	2,000		
TPH	TPH-G	800				Not applicable	30 ⁽⁶⁾	1,000 ⁽⁷⁾	30		
	TPH-HO	500				Not applicable	1,000,000 ⁽⁶⁾	2,000 ⁽⁷⁾	2,000		
	1,2,4-Trimethylbenzene	80						-	No Value ⁽⁸⁾		
	1,3,5-Trimethylbenzene	80	0.11						No Value ⁽⁸⁾		
	Benzene	1.6	0.13	62	1,750	0.062	0.0088	479	0.0088 (9)		
	Chloroethane	No Value							No Value ⁽⁸⁾		
	Cumene	800	0.26						No Value ⁽⁸⁾		
	Ethylbenzene	31	0.16	204	169	0.20	0.26	71	0.26		
	Ethylene Dibromide (EDB)	0.050	0.015	66		0.066	0.00027		0.00079 ⁽⁹⁾		
VOCs	n-Butylbenzene	400	0.24						No Value ⁽⁸⁾		
	n-Propylbenzene	800	0.20						No Value ⁽⁸⁾		
	p-isopropyltoluene	No Value							No Value ⁽⁸⁾		
	sec-Butylbenzene	800	0.26						No Value ⁽⁸⁾		
	Tetrachloroethylene	2.9	0.40	265	200	0.27	0.029	100	0.029		
	Toluene	130	0.15	140	526	0.14	0.92	186	0.92		
	Trichloroethylene	0.70	0.24	94	1,100	0.094	0.0044	346	0.020 ⁽⁹⁾		
	Xylenes, Total	1,600	0.14	233	171	0.23	14	76	14		
	3&4-Methylphenol coelution	No Value							No Value ⁽⁸⁾		
	Acenaphthene	30	0.0021	4,898	4.2	4.9	3.1	22	3.1		
	Acenaphthylene	No Value							No Value ⁽⁸⁾		
	Anthracene	100	0.00076	23,493	0.043	23	47	1.0	1.0		
	Benzo(ghi)perylene	No Value							No Value ⁽⁸⁾		
	Carbazole	No Value							No Value ⁽⁸⁾		
SVOCs/PAHs	Fluoranthene	6.0	0.00017	49,096	0.21	49	5.9	10	5.9		
	Fluorene	10	0.00086	7,707	2.0	7.7	1.6	16	1.6		
	Naphthalenes, Total	160	0.0082	1,191	31	1.2	4.5	43	4.5		
	Phenanthrene	No Value							No Value ⁽⁸⁾		
	Phenol	2,400	0.0082	1,191	31	1.2	67	43	43		
	Pyrene	8.0	0.00011	67,992	0.14	68	11	9.2	9.2		
	Total cPAHs TEF ⁽¹⁰⁾	0.015	0.000064	969,000	0.0016	969	0.29	1.6	0.29		
Other Organics	Total PCBs ⁽¹¹⁾	1.4	0.017	309,000	0.70	309	8.7	216	8.7		
Janor Organios	Total dioxins/furans TEF (10)	7.2E-06	0.0020	249,000	0.00020	249	3.6E-05	5.0E-02	3.6E-05		
	Arsenic	5.0	0.0	Not applicable	Not applicable	29	2.9	Not applicable	20 (12)		
	Barium	2,000	0.0	Not applicable	Not applicable	41	1,648	Not applicable	1,600		
Metals	Chromium (total)	100	0.0	Not applicable	Not applicable	1,000	2,000	Not applicable	2,000		
motaio	Lead	8.1	0.0	Not applicable	Not applicable	10,000	1,620	Not applicable	1,600		
	Selenium	50	0.0	Not applicable	Not applicable	5.0	5.2	Not applicable	5.2		
Notes:	Silver	1.9	0.0	Not applicable	Not applicable	8.3	0.32	Not applicable	0.32		

^{--:} No value exists for this constituent in the CLARC database (Ecology 2021) or no value can be calculated.

All screening levels (SLs) are presented as two significant figures in standard notation, with the exception of total dioxins/furans SLs in scientific notation.

SLs are shown only if the constituent was detected in one or more media during RI data gap activities. A SL for total PCBs, which were not detected in any media during RI data gap activities, is also shown.

⁽¹⁾ See Table F-4 for calculation of groundwater SLs.

⁽²⁾ Values from CLARC (Ecology 2021), unless otherwise noted. Henry's Law Constant values are for 13 degrees Celsius, with the exception that values for total PCBs and total dioxins/furans are for 25 degrees Celsius.

⁽³⁾ Calculated with the MTCA three-phase partitioning model using standard MTCA default inputs in WAC 173-340-747(4).

⁽⁴⁾ Calculated by substituting aqueous solubility value for target groundwater concentration * dilution factor in MTCA Equation 747-1 (Ecology 2001a), unless otherwise noted.

⁽⁵⁾ Most stringent of soil concentration protective of target groundwater concentration and soil saturation concentration. In accordance with WAC 173-340-740(5)(c), some SLs may need to be adjusted up to the practical quantitation limit (PQL) in the future (beyond what is shown in this table).

⁽⁶⁾ SL in Ecology 2001a.

⁽⁷⁾ Default residual soil saturation concentration in MTCA Table 747-5.

⁽⁸⁾ A SL cannot be calculated because the applicable inputs to perform the calculation do not exist in CLARC (Ecology 2021). In addition, in the case of alkylbenzenes and non-carcinogenic PAHs, the constituents are components of petroleum products that are already accounted for in the TPH cleanup levels (e.g., see footnote 14(a) to MTCA Table 830-1).

⁽⁹⁾ For current screening purposes, the lowest PQL in any sample was considered for a current SL was not adjusted since at least one sample had a PQL less than the current SL. In the case of EDB and trichloroethylene, the current SLs were adjusted up to the lowest PQL in any sample. The current SL may need to be adjusted up further in the future in accordance with WAC 173-340-740(5) since some samples had PQLs greater than this SL. A non-detect result with a PQL greater than the SL was not considered an exceedance.

⁽¹⁰⁾ Total cPAHs and total dioxins/furans SLs were based on the toxicity of benzo(a)pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin, respectively, in accordance with WAC 173-340-708(8). Total cPAHs and total dioxins/furans concentrations were calculated using MTCA toxicity equivalence factors (TEFs).

 $^{^{\}rm (11)}$ Total PCBs are the sum of the PCB aroclors.

⁽¹²⁾ Adjusted to accepted soil background concentration of 20 mg/kg per WAC 173-340-740(5)(c) (see MTCA Table 740-1 footnote b).

Table F-6: Calculation of Preliminary Groundwater Vapor Intrusion Screening Levels

			Unrestricted Land Use Scenario		Commercial/Industrial Land Use Scenario			
Constituent Category	Detected Volatile Constituent	Standard Method B Groundwater VI Screening Level for Carcinogens ⁽¹⁾ (ug/L)	Standard Method B Groundwater VI Screening Level for Non-carcinogens ⁽¹⁾ (ug/L)	Groundwater VI Screening Level for an Unrestricted Land Use Scenario ⁽²⁾ (ug/L)	Standard Method C Groundwater VI Screening Level for Carcinogens ⁽¹⁾ (ug/L)	Standard Method C VI Groundwater Screening Level for Non-carcinogens ⁽¹⁾ (ug/L)	Groundwater VI Screening Level for a Commercial/Industrial Land Use Scenario ⁽²⁾ (ug/L)	
TPH	TPH-D (3)			500			500	
1111	TPH-G (3)			800			800	
	1,2,4-Trimethylbenzene		240	240		520	520	
	1,3,5-Trimethylbenzene		170	170	-1	370	370	
	Benzene	2.4	100	2.4	24	220	24	
	Chloroethane		15,000	15,000	-1	32,000	32,000	
	Cumene		910	910		2,000	2,000	
	Ethylbenzene		2,800	2,800		6,100	6,100	
	Ethylene Dibromide (EDB)	0.30	290	0.30	3.0	640	3.0	
VOCs	n-Butylbenzene							
	n-Propylbenzene		2,300	2,300		4,900	4,900	
	p-isopropyltoluene							
	sec-Butylbenzene					-		
	Tetrachloroethylene	24	46	24	240	100	100	
	Toluene		15,000	15,000		34,000	34,000	
	Trichloroethylene	1.4	3.8	1.4	25	8.2	8.2	
	Xylenes, Total		320	320		710	710	
SVOCs/PAHs	Naphthalene	8.9	170	8.9	89	360	89	

All values are presented as two significant figures in standard notation.

Screening levels are shown only if a volatile constituent was detected in one or more media during RI data gap activities.

^{--:} No value exists for this constituent in the CLARC database (Ecology 2021).

⁽¹⁾ Values from CLARC (Ecology 2021), unless otherwise noted.

⁽²⁾ The screening level is the most stringent of the carcinogenic and non-carcinogenic values.

⁽³⁾ Method A groundwater cleanup levels were used as conservative, preliminary screening levels for TPH-G and TPH-D since there are no TPH-G or TPH-D values in the CLARC database. As indicated in Ecology guidance, "the vast majority of sites that meet the Method A soil and groundwater cleanup levels will be protective of the PVI pathway both now and if a building is constructed in the future" (Ecology 2018).

⁽⁴⁾ A screening level cannot be calculated because no values exist in CLARC (Ecology 2021).