

Oregon Portland | Baker City

California Oakland | Irvine

August 31, 2021

Nicholas Acklam Washington State Department of Ecology Southwest Regional Office PO Box 47775 Olympia, Washington 98504

RE: RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104TH STREET COURT SOUTH, LAKEWOOD, WASHINGTON FARALLON PN: 188-002 VCP IDENTIFICATION NO: SW1012

Dear Nicholas Acklam:

Farallon Consulting, L.L.C. (Farallon) has prepared this letter to provide a response and additional information requested by the Washington State Department of Ecology (Ecology) in its letter regarding Further Action at the Following Site: Woodworth & Co Inc. Lakeview Plant from Nicholas Acklam of Ecology to Branislav Jurista of Farallon dated August 30, 2019 (Opinion Letter) for the property at 2800 104th Street Court South in Lakewood, Washington (herein referred to as the Lakeview Facility) (Figure 1). In the Opinion Letter, Ecology stated that it supports issuance of a No Further Action determination with an environmental covenant for the Lakeview Facility, if additional characterization, evaluation, and reporting is completed, including:

- Collection of additional data supporting that recently discovered releases are appropriately delineated and remediated at the Lakeview Facility and confidence that future releases will be prevented;
- Conducting additional sampling and evaluation of the aquifers to ensure that trichloroethene (TCE) contamination is not present in a sole-source aquifer used as a public drinking water source and that it will not enter the Lakewood Water District drinking water system;
- Conducting additional groundwater monitoring events at the Lakeview Facility to obtain sufficient information for Ecology to adequately evaluate groundwater contaminant trends or restoration timeframes; and
- Conducting additional characterization to define the lateral and vertical extents of contamination in some areas of the Lakeview Facility.

Specific Ecology comments are detailed below in italics, followed by Farallon's response. The term "Site" used in the following sections as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) refers to the portions of the Lakeview Facility where hazardous substances have come to be located at concentrations exceeding applicable MTCA cleanup levels.

CHARACTERIZATION OF THE SITE

Ecology Comment: *Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action.*

PETROLEUM HYDROCARBONS

Remedial investigation in 2017 detected petroleum hydrocarbons in several areas of the Site, including the equipment parking area, equipment storage area, hot mix area, and the former recycled stockpile area. Ecology is particularly concerned with the results at the equipment storage carport area where petroleum hydrocarbons were detected at 12,000 milligrams per kilograms (mg/kg) following remedial activities. Other areas of concern include the hot mix storage area, where a heavy sheen was observed, and the area surrounding monitoring well MW-16, where petroleum hydrocarbons were released to the deep aquifer. These results show an increase of petroleum concentrations in soil and groundwater since the completion of remedial actions. Ecology is concerned that the increase in contaminant concentrations may be attributable to recent or ongoing releases of hazardous substances into the environment, potentially due to poor best management practices.

For the remedial investigation, ensure sufficient information has been collected to determine the lateral and vertical extents of contamination throughout the Site, including the areas of newly discovered contamination. Provide to Ecology both plan view and geologic cross section concentration isopleth maps of the Site. Include the extents of contamination with respect to surface and subsurface features, geologic strata, and groundwater elevations and flows at the Site. To support an environmental covenant, clearly indicate in plan view and cross section the extents of the Site, and indicate the specific volumes and areas where cleanup standards are exceeded. Ensure that the feasibility study addresses all contamination at the Site.

FARALLON RESPONSE

Supplemental subsurface investigation activities were completed in December 2019 and January 2020 to address Ecology's request for lateral and vertical delineation of petroleum hydrocarbons in soil and groundwater in the areas where petroleum hydrocarbons were detected during the 2017 investigation activities. The specific locations that were subject to supplemental subsurface investigation consisted of the Former Recycled Stockpile Area proximate to former monitoring well MW-24 and boring MW-24T; the Hot-Mix Storage Area proximate to boring B-19; the Equipment Storage Carport Area proximate to boring B-12; the Former Asphalt-Testing Laboratory Area proximate to boring B-16; and the area proximate to monitoring well MW-16 (Figure 2). The concentration of total petroleum hydrocarbons (TPH) as oil-range organics (ORO) of 130 milligrams per kilogram (mg/kg) detected in soil in boring B-10 in the Equipment Parking Area was significantly less than the MTCA Method A cleanup level of 2,000 mg/kg, and therefore was not investigated further. The drilling for the supplemental subsurface investigation was provided by Holt Services, Inc. of Edgewood, Washington; test pitting was conducted by Miles Resources of Puyallup, Washington.

The results from DRO and ORO soil analyses are summarized in Table 1 and discussed by Site Area below. The laboratory analytical reports are included in Attachment A.

Former Recycled Stockpile Area

Borings B-36 through B-40 and test pits B-41 through B-43 were completed in accessible areas surrounding the Former Recycled Stockpile Area (Figure 3) to delineate petroleum hydrocarbons in soil north, south, east, and west of boring MW-24T. Due to the steep slope, woods, and unstable ground from recently placed reclamation fill, the area north and west of boring MW-24T could not be accessed safely to drill using a direct-push rig. Therefore, borings B-39 and B-40 were advanced using a hand-auger.

Borings B-36, B-37, and B-38 were completed south, east-southeast, and east-northeast of boring MW-24T, respectively, to a depth of approximately 15 feet below ground surface (bgs) using direct-push drilling methods. Soil samples were collected from boring B-36 at depths of 5.0, 10.0, and 13.0 feet bgs; and from borings B-37 and B-38 at depths of 5.0, 10.0, and 13.0 feet bgs, and analyzed for TPH as diesel-range organics (DRO) and ORO by Northwest Method NWTPH-Dx. ORO was detected at a concentration of 2,300 mg/kg in the soil sample collected from boring B-36 at a depth of 5.0 feet bgs, which exceeds the MTCA Method A cleanup level of 2,000 mg/kg, but is less than the calculated Site-specific MTCA Method B cleanup level for the Former Recycled Stockpile Area of 3,739 mg/kg previously approved by Ecology.¹ ORO was detected at concentrations exceeding the laboratory reporting limit but less than MTCA Method A and B cleanup levels in soil samples collected from boring B-36 at depths of 10.0 and 13.5 feet bgs, from boring B-37 at a depth of 5.0 feet bgs, and from boring B-38 at depths of 5.0 and 10.0 feet bgs. DRO was detected at concentrations less than the MTCA Method A and calculated Site-specific Method B cleanup levels in the soil sample collected from boring B-36 at a depth of 13.5 feet bgs and from boring B-38 at a depth of 5.0 feet bgs; however, the laboratory noted that the reported concentrations in both samples were impacted by hydrocarbons in the oil-range.

Borings B-39 and B-40 were completed west and north of boring MW-24T to depths of 3.5 and 4.0 feet bgs, respectively, using a hand-auger. The borings were terminated due to refusal at depths where dense or gravelly soil was encountered. Soil samples were collected from the total depth of each boring and analyzed for DRO and ORO. ORO was detected at a concentration exceeding the laboratory reporting limit but less than MTCA Method A and Site-specific Method B cleanup levels in the soil sample collected from boring B-39 at a depth of 3.5 feet bgs. DRO was not detected at the laboratory practical quantitation limit (PQL) in the soil sample collected from boring B-39.

Test pits B-41 through B-43 were completed south, west, and southeast of boring B-36 to a depth of approximately 5 feet bgs via backhoe, to delineate ORO impacts detected in boring B-36. Soil samples were collected from the bottom of each test pit and analyzed for DRO and ORO. DRO

¹ Letter Regarding Opinion on Proposed Cleanup of the Following Site: Woodworth & Co. Lakeview Plant, 2800 104th Street South, Tacoma (Lakewood) dated February 15, 2011 from Charles S. Cline of Ecology to Branislav Jurista of Farallon.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

and ORO were detected at concentrations exceeding the laboratory reporting limit, but less than MTCA Method A and calculated Site-specific Method B cleanup levels in each of the soil samples collected from test pits B-41 through B-43. The laboratory noted that the reported DRO concentrations in soil samples were impacted by hydrocarbons in the oil-range.

The lateral extent of petroleum hydrocarbons exceeding the MTCA Method A cleanup level in soil at the Former Recycled Stockpile Area is delineated: to the east by analytical results for soil samples collected from borings B-37 and B-38; to the west by results from boring B-39; to the north by results from boring B40; and to the south by results from borings B-41 through B43. Vertical delineation of petroleum hydrocarbon impact at concentrations exceeding the MTCA Method A in soil is complete by analytical results for soil samples collected from borings MW-24T and B-36. Cross sections A-A' and B-B' depict the limits of ORO contamination in soil and groundwater at the Former Recycled Stockpile Area in vertical view (Figures 4 and 5, respectively). TPH has not been detected at concentrations exceeding the Site-specific Method B cleanup level in soil; therefore, TPH is not a contaminant concern for soil in the Former Recycled Stockpile Area.

A reconnaissance groundwater sample was collected from a temporary well installed in boring B-36 and analyzed for DRO and ORO. DRO and ORO were detected at concentrations of 2,700 and 3,300 micrograms per liter (μ g/l), respectively, which exceeds the MTCA Method A cleanup level of 500 μ g/l. A Site-specific MTCA Method B cleanup level for TPH was not calculated for this area of the Site. The laboratory analytical reports are included in Attachment A. Boring logs are included in Attachment B.

Hot-Mix Storage Area

Borings B-30 through B-34 were completed southeast, east, north, west, and southwest of boring B-19 to a depth of approximately 10 feet bgs using direct-push drilling methods, to delineate ORO concentrations exceeding MTCA Method A cleanup level detected in soil in the Hot-Mix Storage Area (Figure 6). Soil samples were collected from each boring at depths of 3.0 and 10.0 feet bgs and submitted for laboratory analysis for DRO and ORO.

DRO was detected at a concentration exceeding the laboratory reporting limit, but less than the MTCA Method A cleanup level in the soil sample collected from boring B-34 at a depth of 3.0 feet bgs. DRO was not detected in any of the other soil samples collected from borings B-30 through B-34. ORO was detected at concentrations exceeding the laboratory reporting limit, but less than the MTCA Method A cleanup level in the soil samples collected from borings B-31, B-33, and B-34 at a depth of 3.0 feet bgs. ORO was not detected in any of the soil samples collected from borings B-31, B-33, and B-34 at a depth of 3.0 feet bgs. ORO was not detected in any of the soil samples collected from borings B-30 through B-34 at a depth of 10.0 feet bgs.

Delineation of the lateral extent of ORO at concentrations exceeding the MTCA Method A cleanup level in soil at the Hot-Mix Storage Area has been completed to the southeast, east, north, west, and southwest by analytical results for soil samples collected from borings B-30, B-31, B-32, B-33, and B-34, respectively. Delineation of the vertical extent of ORO in soil at concentrations exceeding the MTCA Method A cleanup level has been completed by the results for a soil sample

collected from boring B-19 at a depth of 10.0 feet bgs. Cross section C-C' depicts the limits of ORO contamination in soil at the Hot-Mix Storage Area in vertical view (Figure 7). The laboratory analytical reports are included in Attachment A. Boring logs are included in Attachment B.

Equipment Storage Carport Area

Borings B-25, B-26, B-27, B-28, and B-29 were completed southeast, east, south, north, and west of boring B-12, respectively, to a depth of approximately 15 feet bgs on using direct-push drilling methods, to delineate the detection of ORO at a concentration exceeding the MTCA Method A cleanup level in soil from boring B-12, located in the Equipment Storage Carport Area (Figure 8). Boring B-35 was completed north of boring B-28 to a depth of approximately 9 feet bgs on December 19, 2019 using direct-push drilling methods. Soil samples were collected from borings B-25, B-26, B-28, B-29, and B-35 at a depth of 9 feet bgs; from borings B-27 and B-29 at a depth of 12 feet bgs; and from borings B-25 through B-28 at a depth of 15 feet bgs, and submitted for laboratory analysis for ORO and DRO.

ORO was detected at concentrations exceeding the laboratory reporting limit, but less than the MTCA Method A cleanup level in the soil sample collected from borings B-25 and B-27 at a depth of 9.0 feet bgs, and the soil sample collected from boring B-29 at a depth of 12.0 feet bgs. ORO was detected at a concentration equivalent to the MTCA Method A cleanup level in the soil sample collected from boring B-28 at a depth of 9.0 feet bgs. DRO was detected at a concentration exceeding the laboratory PQL, but less than the MTCA Method A cleanup level in a sample collected from boring B-28 at a depth of 9.0 feet bgs. However, the laboratory noted that the reported DRO concentration was impacted by hydrocarbons in the oil-range. DRO and ORO were not detected in the soil sample collected from boring B-35 at a depth of 9.0 feet bgs.

Delineation of the lateral extent of ORO in soil at the Equipment Storage Carport Area has been completed to the southeast, east, north, and west by analytical results for soil samples collected form borings B-25, B-26, B-28, B-29, and B-35. Delineation of the vertical extent of ORO in soil in the Equipment Storage Carport Area has been completed by results for the soil sample collected from boring B-27 at a dept of 15.0 feet bgs. Boring B-27 is proximate to boring B-12, where elevated ORO concentrations were previously detected. Cross section D-D' depicts the limits of ORO contamination in soil and groundwater at the Equipment Storage Carport Area in vertical view (Figure 9). The laboratory analytical reports are included in Attachment A. Boring logs are included in Attachment B.

Former Asphalt-Testing Laboratory Area

Boring B-24 was completed north of boring B-16 to a depth of approximately 10 feet bgs using direct-push drill methods, to delineate ORO detected at a concentration exceeding the MTCA Method A cleanup level in soil in boring B-16, located in the Former Asphalt-Testing Laboratory Area (Figure 10). Prior investigations delineated the extent of ORO impacts exceeding the MTCA Method A cleanup level in soil to the west, southwest, south, and east-northeast by analytical results for soil samples collected from borings B-13, B-14, B-15, and B-17, respectively. Soil samples were collected from boring B-24 at depths of 2.4 and 10.0 feet bgs, and submitted for

laboratory analysis for DRO and ORO. DRO was not detected in either of the soil samples collected from boring B-24. ORO was detected at a concentration less than the MTCA Method A cleanup level in the soil sample collected from boring B-24 at a depth of 2.4 feet bgs.

Delineation of the lateral extent of ORO at concentrations exceeding the MTCA Method A cleanup level in soil at boring B-16 has been completed to the north by results for the soil samples collected from boring B-24, and by results for soil samples previously collected at borings in other directions. Delineation of the vertical extent of ORO in soil has been completed by analytical results from soil samples collected from boring B-16 at depth of 10.0 and 17.5 feet bgs. Cross section E-E' depicts the limits of ORO contamination in soil and groundwater at the Former Asphalt-Testing Laboratory Area in vertical view (Figure 11). The laboratory analytical reports are included in Attachment A. Boring logs are included in Attachment B.

CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS (CPAHS)

Due to concerns about air emissions from historical hot asphalt mixing operations, Ecology previously requested that Site soils be analyzed for cPAHs. Based on Ecology's request, additional soil analysis was completed for cPAHs at several areas across the Site. Concentrations of cPAHs were detected at multiple locations above Ecology's MTCA Method A cleanup screening levels for soil, including the equipment storage carport area, the roofing shredded building, and the former asphalt-testing laboratory area.

These results indicate that a new release or a previously undiscovered release may have been identified. Since the cPAH release and transport mechanisms are not yet identified,' additional investigation is warranted to determine the nature and extent of contamination.

Ecology suggests including delineation of cPAHs at the Site in plan view concentration isopleth maps and geologic cross sections for the remedial investigation and site conceptual model, and evaluating remediation of areas of cPAHs in the remedial investigation and feasibility study as appropriate.

FARALLON RESPONSE

Supplemental subsurface investigation activities were completed in December 2019 to address Ecology's request for lateral and vertical delineation of carcinogenic polycyclic aromatic hydrocarbons (cPAHs) in soil in the areas where cPAHs were detected during 2017 investigation activities. The specific locations subject to supplemental subsurface investigation consisted of the Hot-Mix Storage Area proximate to boring B-19, the Equipment Storage Carport Area proximate to boring B-12, and the Former Asphalt-Testing Laboratory Area proximate to boring B-16 (Figure 2).

The total toxicity equivalent concentrations (TECs) for cPAH mixtures of 0.0063 mg/kg in soil from boring B-18 in the Asphalt Plant Area and 0.072 mg/kg in soil from boring MW-24T in the Former Recycled Stockpile Area were less than the MTCA Method A cleanup level of 0.1 mg/kg, and were not further investigated.

The results from cPAH soil analyses are summarized in Table 2 and discussed by Site area below. The laboratory analytical reports are included in Attachment A. Boring logs are included in Attachment B.

Hot-Mix Storage Area

Soil samples collected from borings B-30, B-32, and B-34 were used to evaluate for the presence of cPAHs in the Hot-Mix Storage Area (Figure 6). Soil samples were collected from borings B-30, B-32, and B-34 at a depth of 10.0 feet bgs, and submitted for laboratory analysis for cPAHs by U.S. Environmental Protection Agency (EPA) Method 8270D/SIM. cPAHs were not detected at the laboratory PQL in the soil samples collected from boring B-30, B-32, or B-34. Therefore, cPAHs are not considered constituents of potential concern (COPCs) for the Hot-Mix Storage area.

Equipment Storage Carport Area

Borings B-25, B-26, B-27, B-28, and B-29 were completed southeast, east, south, north, and west of boring B-12, respectively, and were used to delineate the lateral extent of cPAHs in the Equipment Storage Carport Area (Figure 8). Soil samples collected from borings B-25, B-26, B-28, and B-29, at a depth of 9 feet bgs and from boring B-27 at a depth of 12 and 15 feet bgs were submitted for laboratory analysis for cPAHs.

cPAHs were not detected in any of the soil samples collected from boring B-25, B-26, B-28, or B-29. cPAHs were detected at a TEC of 0.105 mg/kg in the soil sample collected from boring B-27 at a depth of 12.0 feet bgs, which slightly exceeds the MTCA Method A cleanup level of 0.1 mg/kg. cPAHs were not detected at the laboratory PQL in the soil sample collected from boring B-27 at a depth of 15.0 feet bgs.

Delineation of the lateral extent of cPAHs in soil at the Equipment Storage Carport Area has been completed by analytical results for soil samples collected from borings B-25, B-26, B-28, and B-29. Delineation of the vertical extent of cPAHs in soil in the Equipment Storage Carport Area has been completed by results for the soil sample collected from boring B-27 at a depth of 15.0 feet bgs (Figure 8).

Former Asphalt-Testing Laboratory Area

Boring B-21 was completed south of boring B-16; borings B-22 and B-24 were completed north of boring B-16; and boring B-23 was completed east of boring B-16 to a depth of approximately 10 feet bgs using direct-push drilling methods, to delineate cPAH detected at a concentration exceeding the MTCA Method A TEC cleanup level in soil collected from boring B-16 in the Former Asphalt-Testing Laboratory Area (Figure 10). Soil samples were collected from boring B-24 at a depth of at 2.4 feet bgs, from borings B-21 and B-23 at a depth of 3.0 feet bgs, and from boring B-22 at a depth of 10.0 feet bgs, and submitted for laboratory analysis for cPAHs.

cPAHs were detected at TEC concentrations less than the MTCA Method A cleanup level in the soil samples collected from borings B-21, B-23, and B-24. cPAHs were not detected at the laboratory PQL in the sample collected from boring B-22 at a depth of 10.0 feet bgs.

Delineation of the lateral extent of cPAHs in soil at the Former Asphalt-Testing Laboratory Area has been completed to the south by analytical results for soil samples from boring B-21; to the east by results for soil samples from boring B-23; and to the north by results for soil samples from borings B-22 and B-24. The lateral extent of cPAHs in soil at the Former Asphalt-Testing Laboratory Area was delineated to the west in 2017 by analytical results for soil samples from boring B-13. Delineation of the vertical extent of cPAHs in soil in the Former Asphalt-Testing Laboratory Area has been completed by results for the soil sample collected from boring B-22 at a depth of 10.0 feet bgs (Figure 11).

GROUNDWATER MONITORING

Groundwater sampling has been completed infrequently and is insufficient for Ecology to evaluate trends at particular monitoring wells or areas. To collect sufficient information for Ecology to evaluate trends, we recommend sampling Site monitoring wells at regular intervals. Use the groundwater monitoring results to evaluate and report on the lateral and vertical extents of contamination and concentration trends.

Continue to measure geochemical parameters including temperature, pH, oxygen reduction potential (ORP), and conductivity. Provide contaminant concentration isopleth maps in plan view and geologic cross section delineating the Site. Plan view and geologic cross section concentration isopleth maps will be necessary to determine appropriate conditional points of compliance for any environmental covenant, and will be included as attachments to any environmental covenant determined appropriate for the Site.

FARALLON RESPONSE

Supplemental groundwater monitoring and sampling events were conducted in 202 from January 6 through 10 and January 23, May 15, June 10 and 22, September 29 and 30, and December 18; and on February 23 and 24, 2021 to address Ecology's request for additional groundwater data. Groundwater elevations recorded on January 6, 2020 (Table 3) were used to estimate groundwater flow direction at the Site. In the shallow water-bearing zone, groundwater was determined to flow generally inward at the Lakeview Facility toward areas with lower relief, consistent with prior groundwater monitoring events (e.g., groundwater flow from the southeastern boundary of the Site toward the northwest, groundwater flow from the eastern boundary of the Site toward the west, groundwater flow from the northeastern boundary of the Site toward the southwest) (Figure 12). Groundwater in the deep water-bearing zone at the Site was determined to flow predominantly to the north-northeast, consistent with prior groundwater monitoring events (Figure 13).

Diesel-Range Organics and Oil-Range Organics

Groundwater samples were collected in January 2020 from monitoring wells MW-9R, MW-11, MW-13, MW-16R, and SVE-5; in May 2020 from monitoring wells MW-11 and SVE-5; in June 2020 from monitoring wells MW-11 and SVE-5; in September 2020 from monitoring wells MW-6, MW-9R, MW-13, MW-16R, and SVE-5; in December 2020 from monitoring wells MW-9R, MW-13, MW-16R, and SVE-5; in January 2021 from monitoring well MW-36; and in February 2021 from monitoring wells MW-6 and MW-36, and submitted for laboratory analysis

for DRO and ORO. The groundwater samples collected in December 2020 from monitoring wells MW-9R, MW-13, MW-16R, and SVE-5 were submitted for laboratory analysis additionally for benzene, toluene, ethylbenzene, and xylenes (BTEX); cPAHs; extractable petroleum hydrocarbons, and volatile petroleum hydrocarbons for calculation of MTCA Method B cleanup levels.

The results from DRO and ORO groundwater analyses are summarized in Table 4. The extent of DRO- and/or ORO-impacted groundwater for the Former Recycled Stockpile Area is shown on Figure 3, for the Equipment Storage Carport Area on Figure 8, and for the Former Asphalt-Testing Laboratory Area on Figure 10. Groundwater results for monitoring wells MW-9R and MW-16R are discussed below under the "Monitoring Wells" heading. Monitoring wells tentatively selected for monitoring natural attenuation are discussed below under the "Monitoring Mells" heading.

The groundwater samples collected in December 2020 from monitoring wells MW-9R, MW-13, MW-16R, and SVE-5 were submitted for laboratory analysis additionally for extractable petroleum hydrocarbons, volatile petroleum hydrocarbons, BTEX, naphthalenes, and cPAHs, to calculate the Site-specific MTCA Method B cleanup level in the four groundwater areas represented by those wells impacted by DRO and ORO. The results from these analyses were entered into the Ecology *Workbook Tools for Calculating Soil and Ground Water Cleanup Levels under the MTCA, User's Guide for MTCATPH 11.1 & MTCASGL 11.0, Publication No. 01-09-073*, revised December 2007, to calculate Site-specific MTCA Method B cleanup levels for TPH. The resulting worksheets are provided in Attachment C.

The calculated TPH concentration for the sample from monitoring well MW-9R was 301.78 μ g/l, less than the calculated MTCA Method B cleanup level for TPH for the MW-9R area of 493.93 μ g/l. The calculated TPH concentration for the sample from monitoring well MW-16R was 369.49 μ g/l, less than the calculated MTCA Method B cleanup level for TPH for the MW-16R area of 585.04 μ g/l. Based on the calculated TPH results and the MTCA Method B cleanup levels, cleanup of TPH-impacted groundwater in the shallow and deep water-bearing zones around monitoring wells MW-9R and MW-16R is not warranted.

The calculated TPH concentration for the sample from monitoring well MW-13 was 478.48 μ g/l, less than the calculated MTCA Method B cleanup level for TPH for the monitoring well MW-13 area of 614.50 μ g/l. Based on the calculated TPH result, further cleanup of TPH-impacted groundwater in the shallow water-bearing zone around monitoring well MW-13 is not warranted.

The calculated MTCA Method B cleanup level for TPH for the SVE-5 area is 798.68 μ g/l; the calculated concentration of TPH for the SVE-5 sample was 1,866.49 μ g/l. Based on the calculated TPH result, the concentrations of TPH in the shallow water-bearing zone in the Former Asphalt-Testing Laboratory Area are not protective of groundwater. Monitoring well SVE-5 was further evaluated for the potential to act as a conduit for transport of TPH-contaminated groundwater from the shallow water-bearing zone to the deep water-bearing zone, discussed below under the "Monitoring Wells" heading. The laboratory analytical reports are included in Attachment A.

Carcinogenic Polycyclic Aromatic Hydrocarbons

Groundwater samples were collected in January 2020 from monitoring wells MW-11, MW-13, and SVE-5; and in December 2020 from monitoring wells MW-9R, MW-13, MW-16R, and SVE-5, and submitted for laboratory analysis for cPAHs by EPA Method 8270E SIM.

cPAHs were not detected in the groundwater samples collected from monitoring well MW-9R, MW-11, MW-16R, or SVE-5. cPAHs were detected with a TEC less than the MTCA Method A cleanup level of 0.1 μ g/l in the January 2020 groundwater sample collected from monitoring well MW-13. The results from cPAH groundwater analyses are summarized in Table 5. The laboratory analytical reports are included in Attachment A.

Chlorinated Volatile Organic Compounds

Groundwater samples were collected in January 2020 from shallow water-bearing zone wells MW-3, MW-9R, MW-26, SVE-3, SVE-6, and SVE-12; and from deep water-bearing zone wells MW-2, MW-9B, MW-14, MW-15, MW-16R, MW-18, MW-20, MW-22, MW-23, MW-25, SVE-1, SVE-2, SVE-8, AS-1, AS-2, AS-3, AS-4, AS-6, AS-7, and AS-8; and in September 2020 from shallow water-bearing zone well SVE-12 and deep water-bearing zone wells MW-9B and MW-20, and submitted for analysis for chlorinated volatile organic compounds (CVOCs) by EPA Method 8260D.

TCE was detected at a concentration of 12 μ g/l in the September 2020 groundwater sample collected from shallow water-bearing zone monitoring well SVE-12, which exceeds the MTCA Method A cleanup level of 5 μ g/l. TCE concentrations in the remaining shallow water-bearing zone monitoring wells ranged from non-detect at monitoring wells MW-9R and MW-26 to 4.0 μ g/l at monitoring well SVE-6, which are less than the MTCA Method A cleanup level. The results for CVOC groundwater analyses are summarized in Table 6.

The horizontal extent of TCE-impacted groundwater is limited to the area immediately surrounding monitoring well SVE-12. The down-gradient extent of TCE in shallow water-bearing zone groundwater is defined by analytical results for groundwater samples collected from monitoring wells SVE-1 and SVE-6 (Figure 14). The cross- and up-gradient extent of TCE in shallow water-bearing zone groundwater is defined by analytical results for groundwater samples collected from shallow water-bearing zone groundwater is defined by analytical results for groundwater samples collected from remediation well SVE-3 and monitoring wells MW-1 and MW-26 (Figure 14).

TCE was detected at concentrations of 13, 7.9 and 19 μ g/l in the January 2020 groundwater samples collected from deep water-bearing zone monitoring wells MW-2, MW-14, and MW-20, respectively; and at a concentration of 17 μ g/l in the September 2020 groundwater sample collected from monitoring well MW-20, which exceed the MTCA Method A cleanup level of 5 μ g/l. TCE concentrations in the remaining deep water-bearing zone monitoring wells ranged from non-detect at monitoring wells MW-9B, MW-16R, AS-1, AS-2, AS-3, AS-4, AS-6, AS-7, and AS-8 to 3.1 μ g/l at monitoring well MW-15, which are less than the MTCA Method A cleanup level. The results from CVOC groundwater analyses are summarized in Table 6. The laboratory analytical reports are included in Attachment A.

The down-gradient extent of TCE in groundwater in the deep water-bearing zone has been defined by analytical results for groundwater samples collected from monitoring wells MW-22 and MW-23 (Figure 15). Analytical results for groundwater samples collected from monitoring wells SVE-2, AS-3, AS-4, and AS-7 define the cross-gradient extent of TCE contamination in the deep water-bearing zone (Figure 15). The up-gradient extent of TCE contamination in the deep water-bearing zone has been defined by analytical results for groundwater samples collected from monitoring wells AS-2, AS-3, and MW-25 (Figure 15).

The vertical extent of concentrations of TCE exceeding the MTCA Method A cleanup level in groundwater has been defined by analytical results for groundwater samples collected from deep water-bearing zone monitoring wells MW-14C and MW-15 and air sparge wells AS-1, AS-2, AS-3, AS-4, AS-6, AS-7, and AS-8 (Figure 16).

Metals

Groundwater samples were collected in January 2020 from shallow water-bearing zone monitoring wells MW-9R, MW-12, MW-31, MW-32, MW-34, and MW-35, and from deep water-bearing zone monitoring wells MW-9B and MW-12B; in September 2020 from shallow water-bearing zone monitoring wells MW-9R, MW-31, and MW-35, and deep water-bearing zone monitoring well MW-9B; and in July 2021 from shallow water-bearing zone monitoring well MW-9A, and deep water-bearing zone monitoring well MW-9A, and deep water-bearing zone monitoring well MW-9A, and deep water-bearing zone monitoring well MW-9D, and submitted for analysis for total and dissolved arsenic and lead.

The results from the arsenic and lead groundwater analyses are summarized in Table 7, shown on Figure 17, and discussed below under the "Groundwater Geochemistry" heading. The laboratory analytical reports are included in Attachment A.

AQUIFER(S)

The Chambers-Clover Creek Watershed underlies the Site, and has been designated as a solesource aquifer for approximately 400,000 residents in DuPont, Fircrest, Lakewood, Ruston, Steilacoom, Tacoma, and University Place. This regional aquifer is reported to be separated from the deep water-bearing zone at the Site by a silt and silty gravel aquitard.

An industrial water supply well is currently screened at a depth of 107 to 129 feet below ground surface (bgs), presumably below the aquitard within the regional aquifer. The industrial supply well was reportedly installed during 1969 to a total depth of 187 feet bgs and screened from 167 to 187 feet bgs, and later perforated from 107 to 129 feet bgs.

TCE was detected in the industrial water supply well at a concentration of 0.39 micrograms per liter ($\mu g/I$) in a groundwater sample collected in December 2017, consistent with previously reported groundwater TCE concentration results. It is unclear to Ecology how TCE is entering the industrial water supply well across the aquitard. Possibilities that Ecology is currently concerned about include:

• The industrial well is compromised and leaks between aquifers.

- The aquitard is not comprehensive in this area of the Site and is transmitting contamination to deeper regional groundwater.
- The industrial water supply well is screened above the aquitard and shallow groundwater contamination extends to at least 130 feet below ground surface.

Ecology will need additional reporting and analyses evaluating subsurface strata, groundwater flow, and contamination in groundwater throughout the Site. Plan view and geologic cross section concentration isopleth maps will likely support an analyses demonstrating with boring logs, groundwater elevations, and contaminant chemistry how the Site impacts the regional aquifer.

Ecology also recommends working with the Lakewood Water District to evaluate the release of TCE detected at the Site. Public water supply wells 88th and Pine J-1 and J-2 are located less than 1-mile north of the Site. The deeper water-bearing unit flow is reported to the north-northeast from the Site.

Lakewood well pumping rates and capture zones should be evaluated and included in the remedial investigation. For the remedial investigation, determine if TCE released from this Site is impacting or could impact water supply wells.

Finally, to support an environmental covenant at the Site, appropriate conditional points of compliance will need to be determined and proposed for all aquifers at the Site. Collect sufficient data from proposed conditional points of compliance to support their use for the long term groundwater monitoring that will be needed with the environmental covenant.

FARALLON RESPONSE

TCE distribution in the deep water-bearing zone and the industrial supply well is shown on Figure 15. Cross section F-F' shown on Figure 16 depicts the lithology around the industrial supply well. Based on the available boring logs, the silt and silty gravel unit (also described on the drilling log for the industrial supply well as sandy clay) functioning as an aquitard at a depth from approximately 83 to 91 feet bgs beneath the Site is present and appears to be continuous in the area proximate to the industrial supply well. The industrial supply well is screened within a sand and gravel unit present below the sandy clay aquitard. On December 4, 2019, Farallon and Holt Services, Inc. conducted a down-well camera survey to ascertain whether the driller's log for the industrial supply well is accurate (Attachment D). The two well perforation depths indicated on the boring log matched the ones observed, with the screen interval depth ranging from approximately 107 to 129 feet bgs (178 to 156 feet North American Vertical Datum of 1988 [NAVD88]) and 167 to 187 feet bgs (118 to 98 feet NAVD88).

Groundwater samples were collected on January 10, 2020 from the industrial supply well; on January 9, 2020 from air sparge wells AS-1 through AS-4, AS-6, and AS-7; on January 23, 2020 from air sparge wells AS-6 and AS-8; and on January 8, 2020 from monitoring well MW-2, to evaluate whether TCE in the deep water-bearing zone was being transmitted to the deeper regional groundwater aquifer (Table 6). Air sparge wells AS-7 and AS-8 are approximately 55 feet south and 23 feet north of the industrial supply well, respectively, and are screened immediately above

the silt and silty gravel aquitard at a depth ranging from approximately 92.7 to 94.7 feet bgs (190.8 to 192.8 feet NAVD88) and 70.9 to 72.9 feet bgs (208.5 to 210.5 feet NAVD88) (Figure 15). Monitoring well MW-2 is approximately 45 feet south of the industrial supply well and 5 feet north of air sparge well AS-7, and is screened in the deep water-bearing zone at the Site within the TCE groundwater plume at a depth ranging from approximately 19.6 to 34.6 feet bgs (248 to 263 feet NAVD88) (Figures 15 and 16). The groundwater samples were submitted for laboratory analysis for CVOCs. There were no detections of CVOCs, including TCE, at the laboratory PQL in the January 2020 groundwater samples from the industrial supply well, or in air sparge well AS-1 through AS-4, AS-6, AS-7, or AS-8, with the exception of 1,1,1-trichloroethane and 1,1dichloroethane detected at concentrations less than MTCA cleanup levels in the groundwater sample from air sparge well AS-7. TCE was detected at a concentration of 13 µg/l in the groundwater sample collected in January 2020 from monitoring well MW-2. The laboratory analytical reports are included in Attachment A. The January 2020 groundwater results for groundwater samples from the air sparge wells and the industrial supply well do not suggest that contaminated groundwater extends to the depth of the aquitard, or that it is vertically migrating through the aquitard to impact the industrial supply well. The down-well survey of the industrial supply well coupled with results for the groundwater samples collected from the base of the deep water-bearing zone wells indicate that none of the three scenarios that were a subject of Ecology concern is viable:

- The industrial supply well is not compromised, and does not leak between aquifers.
- There is no evidence that the aquitard is leaky in this area of the Site, or that it is transmitting contamination to deeper regional groundwater, as results for groundwater samples collected from wells screened at the base of the deep-water-bearing zone near the top of the aquitard indicate that groundwater at those depths is not impacted.
- Based on the down-well camera survey identifying screen intervals matching the driller's well log, the industrial supply well is not screened above the aquitard, and groundwater sampling results show that shallow groundwater contamination does not extend to 130 feet bgs.

Another possible source of low TCE concentrations in the industrial supply well is TCE migration via deep groundwater from an up-gradient source. Joint Base Lewis McChord has known releases of TCE to groundwater; the potential exists for groundwater impacted with TCE at concentrations less than the MTCA Method A cleanup level to have migrated onto the Lakeview Facility. Empirical data for groundwater samples collected over the years from deep water-bearing zone monitoring wells installed proximate to the southern Lakeview Facility property boundary and up-gradient of the Former Asphalt-Testing Laboratory Area (e.g., monitoring wells MW-15, MW-25, MW-29) suggest that low concentrations of TCE are migrating onto the Lakeview Facility from an off-Site source. Other than the industrial supply well, no wells are screened within the regional aquifer in the immediate vicinity of the Lakeview Facility to confirm groundwater impacts migrating onto the Lakeview Facility from an up-gradient source.

On October 30, 2019, Farallon requested information from the Lakewood Water District regarding the capture zones for water supply wells in its district to evaluate whether water supply wells in

the vicinity of the Site could potentially capture groundwater from the Lakeview Facility. A representative of the Lakewood Water District provided a map of the water supply well locations and stated that the Lakewood Water District does not track specific capture zones by well or well cluster, but instead considers the entire area within the district to be part of the capture zone for its wells (Attachment E). The Lakeview Facility is located outside of the eastern boundary of the Lakewood Water District, who confirmed that groundwater beneath the Lakeview Facility is not considered part of the capture zone.

The Scotts well cluster, also known as the G-well cluster, and the 88th and Pine well cluster, also known as the J-well cluster, located in the Lakewood Water District, are the water supply wells in the Lakewood Water District closest to the Site. Farallon searched the Washington State Department of Health drinking water database for volatile organic compounds (VOCs) data for the G-well and J-well clusters for the time period between December 2017 and July 2021. One sample was collected from the G-well cluster on June 21, 2019, one sample from the J-well cluster on August 18, 2017, and one sample from the J-well cluster on March 22, 2018, and analyzed for VOCs, including TCE. No VOCs were detected in the water samples collected from the G-well or J-well cluster. Based on the information available from the Lakewood Water District, VOCs in groundwater at the Site are not impacting water supply wells in the Lakewood Water District.

MONITORED NATURAL ATTENUATION (MNA)

Ecology previously requested that non-parametric statistical methods (Mann Kendall) be used to support a natural attenuation assessment. This information was not provided in the most recent feasibility study. Please assess natural attenuation at the site. Use the information to assess predicted restoration timeframes and support use of conditional points of compliance for the cleanup. Ecology recommends using EPA's technical protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water (EPA/600/R-98/128; September 1998) as a guide to evaluate MNA.

FARALLON RESPONSE

Non-parametric statistical analyses of CVOCs were completed for groundwater from monitoring well SVE-12 screened in the shallow water-bearing zone, and monitoring wells MW-2, MW-14, MW-15, MW-20, MW-22 and MW-23 screened in the deep water-bearing zone, to assess natural attenuation of CVOCs in Site groundwater, per Ecology request. Mann-Kendall trend analyses were completed using EPA ProUCL Software Version 5.1 to statistically determine whether concentrations of CVOCs in Site groundwater were decreasing, remaining stable, or increasing. The predicted restoration time frames were calculated using the Ecology Natural Attenuation Analysis Tool Package for Petroleum-Contaminated Ground Water, Package A. Concentration trends at monitoring wells with a sufficient number of samples and concentrations of one or more CVOCs exceeding the cleanup level in groundwater were evaluated (Table 6).

Shallow Water-Bearing Zone

TCE was detected at concentrations exceeding the MTCA Method A cleanup level in shallow water-bearing zone groundwater samples collected from monitoring well SVE-12 in the Former Asphalt-Testing Laboratory Area. CVOCs were not detected at a concentration exceeding groundwater cleanup levels in shallow water-bearing zone groundwater samples collected from any other Site groundwater monitoring well.

Based on the Mann-Kendall trend analysis, there is no statistically significant evidence of a decreasing trend in TCE at the monitoring well SVE-12 location (Attachment F).

Monitoring wells MW-14 and SVE-12 have been tentatively selected for monitoring natural attenuation parameters (Figure 20) pending Ecology's approval of the point of compliance locations.

DRO and ORO were detected at concentrations exceeding cleanup levels in shallow water-bearing zone groundwater samples collected from monitoring wells MW-6, MW-11, and MW-36 in the Former Recycled Stockpile Area. These monitoring wells have been tentatively selected for monitoring natural attenuation parameters (Figure 20) pending Ecology's approval of the point of compliance locations.

Arsenic was detected at concentrations exceeding cleanup levels in the shallow-water bearing zone groundwater samples collected from MW-12, MW-31, and MW-35. These monitoring wells have been tentatively selected for monitoring natural attenuation parameters (Figure 20) pending Ecology's approval of the point of compliance locations. Detailed investigations regarding arsenic and lead concentrations in this area are discussed further under the "Groundwater Geochemistry" heading.

Deep Water-Bearing Zone

TCE was detected at concentrations exceeding cleanup levels in deep water-bearing zone groundwater samples collected from monitoring wells MW-2, MW-14, and MW-20 in the Former Asphalt-Testing Laboratory Area during the most-recent groundwater monitoring events: monitoring wells MW-2 and MW-14 in January 2020, and monitoring well MW-20 in January and September 2020. CVOCs were not detected at a concentration exceeding groundwater cleanup levels in deep water-bearing zone groundwater samples in any other Site groundwater monitoring wells. Based on the Mann-Kendall trend analysis, there is statistically significant evidence of a decreasing trend in concentrations of TCE in groundwater at the locations of monitoring wells MW-20, and at down-gradient monitoring well MW-22. (Attachment F). A statistically significant trend could not be identified for the TCE concentrations detected in monitoring well MW-2, which is located mid-plume. However, historical data indicate that TCE concentrations in groundwater at monitoring well MW-2 were as high as 31 μ g/l in 1994,²

² Remedial Investigation/Feasibility Study Report, Woodworth & Company, Inc., Lakeview Facility, 2800 104th Street South, Lakewood, Washington 98499, Toxics Cleanup Program VCP No. SW 1012 dated August 19, 2009 prepared by Farallon for Woodworth & Company, Inc.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

indicating that TCE concentrations at this location are reducing over time. The predicted restoration time frame for TCE in groundwater at source area monitoring well MW-20 indicates that the MTCA Method A cleanup level will be reached in 2060. Concentrations of TCE in groundwater at monitoring well MW-14 is predicted to reach the MTCA Method A cleanup level in 2027. According to recent data, the Method A cleanup level for TCE in groundwater has been achieved at down-gradient monitoring well MW-22.

Monitoring wells MW-2 and MW-20, and soil vapor extraction well SVE-1 have been tentatively selected for monitoring natural attenuation parameters (Figure 20) pending Ecology's approval of the point of compliance locations.

VAPOR INTRUSION/TCE

The vapor intrusion assessment was revised to evaluate the potential for migration of TCE from soil gas into future buildings under an industrial exposure scenario based on the current site use as a gravel mine. The vapor intrusion assessment concluded that TCE contaminated groundwater does not pose a vapor intrusion risk.

Based on the analysis provided, Ecology will need soil gas sample results from the Site to complete the assessment prior to reconstruction and redevelopment of the property. Because only an industrial exposure scenario has been evaluated, current Site use will need to be institutionalized in an environmental covenant limiting future use of the Property to similar industrial uses. Ecology suggests it may be beneficial for you to evaluate additional possible Site uses, and therefore not limit future Site use.

Please also evaluate and report on the acute risks of TCE as part of the overall Site risk using guidelines from US EPA."' Consider if pregnant women or children risk exposure from indoor air. Ecology's Toxic Cleanup Program has recently drafted an implementation memo providing guidance on this issue.

FARALLON RESPONSE

TCE concentrations detected in groundwater in the shallow water-bearing zone were used to evaluate the potential for vapor intrusion at the Site. TCE concentrations detected in groundwater samples from the shallow water-bearing wells do not exceed the non-residential short-term vapor intrusion screening level for groundwater of 31 μ g/l, which is protective of the current industrial use at the Lakeview Facility. As noted in the Addendum to Focused Feasibility Study and Disproportionate Cost Analysis Report,³ placement of 30 feet of clean fill at the Lakeview Facility is one of the regulatory requirements for site reclamation, due to the gravel and sand mining operations previously conducted at the Lakeview Facility. No residences or buildings for human occupancy are present within 30 feet of the TCE groundwater plume in the shallow water-bearing

³ Addendum to Focused Feasibility Study and Disproportionate Cost Analysis Report, Lakeview Facility, 2800 104th Street Court South, Lakewood, Washington, VCP Identification No. SW1012 dated August 3, 2018 prepared by Farallon for Woodworth Capital, Inc. (FFS Addendum).

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

zone. The environmental covenant will have a provision for soil gas sampling and vapor mitigation, if necessary, for any new buildings that may be constructed following completion of fill placement as part of the site reclamation.

GROUNDWATER GEOCHEMISTRY

Ecology previously provided that stockpiling of recycled concrete aggregate at the Site likely has increased the pH of shallow groundwater. During the December 2017 groundwater monitoring event, pH was detected as high as 13.01 (MW-9B) in the deep aquifer and as high as 12.52 in the shallow aquifer (MW-31). High levels of lead and arsenic have been detected in shallow groundwater in this area (MW-12 and MW-31), potentially a result of elevated pH in this area of the Site leaching those metals from soil into groundwater.

Based on the pH levels identified during the December 2017 groundwater sampling event (13.01 MW-9B deep aquifer and 12.52 MW-31 shallow aquifer) groundwater appears to classify as Dangerous Waste per WAC 173-303. Ecology recommends working with Ecology's Hazardous Waste & Toxics Reduction Program to ensure purge water generated is properly handled.

Groundwater oxygen reduction potential (ORP) values less than 50 millivolts (mV) are indicative of reduced geochemical conditions.2" Reduced groundwater as low as -400.5 mV correlated with arsenic has been measured in Site monitoring wells (MW-12 and MW-31).

The shallow groundwater unit flows into a low elevation area within the center of the Property. Large stockpiles of recycled concrete aggregate have also been reported in this area. It appears likely that rainwater infiltration through recycled concrete aggregate piles may have caused reaction with the concrete lime and altered both pH and ORP in this area of the Site. The nature and extents of groundwater contamination in this area are unknown, as the downgradient monitoring well (MW-30) has been dry during sampling events.

Ecology suggests evaluating groundwater chemistry throughout the Site, and delineating areas where geochemical conditions are conducive to metals or other contaminant mobilization, and areas where metals or other contaminant mobilization has been detected. Include these areas in the remedial investigation and feasibility study, and delineate them in plan view and geologic cross section.

Additional groundwater monitoring data are also needed to define the extent of arsenic and lead in groundwater. Ecology further recommends, if not already done so, to implement best management practices (BMPs).

FARALLON RESPONSE

In response to detections of elevated pH values in deep water-bearing zone monitoring well MW-9B, and of arsenic and lead in shallow water-bearing zone monitoring wells MW-12 and MW-31, Farallon conducted a series of activities in January 2021 to evaluate pH in soil and groundwater. Activities conducted to evaluate elevated pH in groundwater proximate to monitoring well MW-9B consisted of: advancing two borings for soil and reconnaissance

groundwater sampling and installing shallow water-bearing zone monitoring well MW-9A and deep water-bearing zone monitoring well MW-9D; redeveloping monitoring well MW-9B and conducting a down-well camera survey of the well to evaluate its condition; decommissioning monitoring well MW-9B; and conducting groundwater sampling (Figure 18). In response to detections of dissolved arsenic and lead in shallow water-bearing zone monitoring wells MW-12 and MW-31, Farallon installed two monitoring wells and sampled groundwater throughout and proximate to the Arsenic and Lead Plume in Groundwater Area to evaluate the nature and extent of these constituents in the shallow water-bearing zone. Dissolved arsenic and lead rather than total metals concentrations are considered representative of groundwater conditions at the Lakeview Facility, as approved by Ecology in the Opinion Letter.

On January 4 and 5, 2021, the boring for monitoring well MW-9A was advanced to a total depth of 115 feet bgs. A Farallon Geologist collected soil and reconnaissance groundwater samples at selected intervals starting from the ground surface to the final depth of the boring for field-screening. The samples were retained for potential laboratory analysis for pH. Soil samples were collected generally every 10 feet; reconnaissance groundwater water samples were collected at depths of 32, 55, 75, 95, 102, and 115 feet bgs, and were measured for pH in accordance with American Public Health Association Standard Method SM 4500-H B. Soil and reconnaissance groundwater samples were measured using a standalone pencil-type pH meter. Field measurements of pH in soil ranged from 7.2 to 11.0, with the highest pH of approximately 11.0 measured at depths from 35 to 70 feet bgs, respectively, and of 7.2 to 8.2 in soil samples collected at depths greater than 80 feet bgs. Field measurements of pH in reconnaissance groundwater was not affected by the elevated pH in soil.

Monitoring well MW-9A was installed in the boring and screened from 22 to 32 feet bgs in the shallow water-bearing zone. The boring void below the screened interval was filled with hydrated bentonite. The boring log for monitoring well MW-9A is provided in Attachment B. Following well development on January 6, 2021, Farallon measured a pH value of 6.55 in the field in a groundwater sample collected from monitoring well MW-9A, further confirming that groundwater in the shallow water-bearing zone in the vicinity of monitoring well MW-9A is not impacted by the elevated pH. A groundwater sample was collected from monitoring well MW-9A on February 23, 2021 and laboratory-analyzed for pH by Standard Method SM 4500-H B. The laboratory reported a pH of 6.8.

On January 18, 2021, Farallon redeveloped monitoring well MW-9B to investigate the contribution of accrued sediment and/or stagnant water to prior elevated pH measurements in groundwater at this well. Monitoring well MW-9B was screened in the deep water-bearing zone with a screen interval from approximately 109.3 to 119.3 feet bgs. The depth to groundwater during redevelopment was measured at 53.8 feet below the top of casing. Redevelopment was conducted using a motorized Waterra pump equipped with tubing and a foot-valve at 10-foot intervals starting at 63 feet bgs to a maximum depth of 119 feet bgs. During redevelopment, after approximately 5 gallons of water had been removed from each interval, a Farallon Geologist measured pH in

groundwater using both a multimeter equipped with a flow-through cell and a stand-alone pencil-type pH meter (Table 8). At 63- and 73-foot-bgs intervals, the measured pH values ranged from 11.7 to 12.9. Measured pH values decreased with depth to 8.9 and 9.3 at 83 feet bgs, and to 8.2 and 8.4 at 93 feet bgs. Further decreases of pH to 7.7 and 7.8 were measured at 103 feet bgs. The final pH values recorded at approximately 120 feet below the top of casing were 7.4 and 7.5. The pump intake was raised to approximately 75 feet bgs, where an additional 20 gallons of water was removed from the well. Following completion of well redevelopment, pH was measured at 7.4 and 7.8 in a groundwater sample collected at 75 feet bgs.

On January 25, 2021, Farallon video-scoped monitoring well MW-9B with a down-well camera to investigate potential causes of elevated pH values previously measured in groundwater at this well. Results from inspecting the well casing with the camera showed a breach in the casing at a depth of approximately 30 feet bgs, which was allowing saturated soil to seep into the well, affecting the pH in the well casing. A Farallon Geologist in field described the saturated soil as dark reddish brown. Due to the breach in casing, the decision was made to decommission monitoring well MW-9B and replace it with monitoring well MW-9D. Monitoring well MW-9B was decommissioned by Cascade Drilling, L.P. of Woodinville, Washington on February 10, 2021 by placing hydrated bentonite chips in the well casing, and removing the monument at the ground surface.

Due to adverse weather conditions, installation of replacement deep water-bearing zone monitoring well MW-9D was conducted over the course of several days between February 10 and 18, 2021. The boring for monitoring well MW-9D was advanced to a depth of 119 feet bgs, and the well screen was placed from 109 to 119 feet bgs. During boring advancement activities, a soil sample was collected at a depth of 30 feet bgs and laboratory-analyzed for pH by EPA Method 9045D. A pH of 11.3 was detected in the soil sample (Table 8). Following completion of well development, Farallon recorded a pH measurement of 7.6 in a groundwater sample collected from monitoring well MW-9D on February 24, 2021. The sample was submitted for laboratory analysis of pH by EPA Method 9045D. The recorded laboratory measurement of pH was 7.3.

In July 2021, Farallon returned to the Lakeview Facility to sample shallow water-bearing zone monitoring well MW-9A and deep water-bearing zone monitoring well MW-9D for pH and total and dissolved arsenic. Laboratory analysis of pH by EPA Method 9045D for monitoring wells MW-9A and MW-9D were 6.7 and 6.8, respectively (Table 8). Total and dissolved arsenic was detected at concentrations less than the MTCA Method A cleanup level in the groundwater samples collected from shallow water-bearing zone monitoring well MW-9A. Total or dissolved arsenic was not detected at the laboratory PQL in deep water-bearing zone monitoring well MW-9D (Table 7).

Based on the results from the additional subsurface investigation, groundwater in the shallow and deep water-bearing zones beneath the Site proximate to former monitoring well MW-9B and new monitoring wells MW-9A and MW-9D is not impacted with elevated pH. The elevated pH value observed in prior groundwater samples collected from monitoring well MW-9B was the result of the seep occurring in an interval of soil with elevated pH at a depth of between approximately 30

and 32 feet bgs. The seep was observed from the breach in the monitoring well casing at a depth of approximately 30 feet bgs, which was introducing saturated soil from the noted interval into the casing of monitoring well MW-9B. Additionally, pH values in groundwater samples collected from new monitoring wells MW-9A screened in the shallow water-bearing zone and MW-9D screened in the deep water-bearing zone ranged from 6.55 to 7.8, demonstrating that pH values in groundwater in the shallow and deep water-bearing zones are neutral. Elevated pH in groundwater is limited to monitoring wells MW-31 and MW-12, located in the northeastern portion of the Lakeview Facility.

To further evaluate the nature and extent of elevated concentrations of arsenic and lead in shallow water-bearing zone groundwater proximate to monitoring wells MW-31 and MW-12, Farallon installed monitoring well MW-35 west of monitoring well MW-31 on January 8, 2020 (Figure 2). Due to a lack of water in down-gradient shallow monitoring well MW-31, Farallon sampled down-gradient shallow monitoring well MW-9R, installed on December 19, 2019 to replace decommissioned monitoring well MW-9.

Groundwater samples were collected from monitoring wells MW-12, MW-12B, and MW-31; newly installed monitoring well MW-35; up-gradient monitoring wells MW-32 and MW-34; and down-gradient monitoring well MW-9R from January 7 through 10, 2020; and monitoring wells MW-9R, MW-31, and MW-35 on September 30, 2020, and submitted for laboratory analysis for total and dissolved arsenic and lead. Groundwater samples were collected from deep water-bearing zone monitoring wells MW-9A and MW-9D on July 22, 2021, and submitted for laboratory analysis for total and dissolved arsenic.

Total arsenic was detected at concentrations ranging from 7.6 to 43 μ g/l in the groundwater samples collected from monitoring wells MW-12, MW-31, MW-35, and MW-12B in January 2020, which exceed the MTCA Method A cleanup level of 5 μ g/l. Dissolved arsenic was detected at concentrations ranging from 6.0 to 27 μ g/l in the groundwater samples from monitoring wells MW-12, MW-31, and MW-35 in January 2020, which exceed the MTCA Method A cleanup level. Total arsenic was detected at a concentration less than the MTCA Method A cleanup level in the groundwater sample collected from up-gradient monitoring well MW-34; dissolved arsenic was not detected in the groundwater sample collected from monitoring well MW-34. Total or dissolved arsenic was not detected in the groundwater sample collected from up-gradient monitoring well MW-32. Total or dissolved arsenic was not detected in the groundwater sample collected from up-gradient monitoring well MW-32. Total or dissolved arsenic was not detected in the groundwater sample collected from up-gradient monitoring well MW-32. Total or dissolved arsenic was not detected in the groundwater sample collected from up-gradient monitoring well MW-34.

Total and dissolved arsenic were detected at concentrations exceeding the MTCA Method A cleanup level in the January and September 2020 groundwater samples collected from monitoring well MW-9B. As discussed above, the breach in monitoring well MW-9B allowed saturated soil to seep into the well, resulting in elevated pH. Monitoring well MW-9B was decommissioned and replaced with monitoring well MW-9D, screened in the deep water-bearing zone. Shallow water-bearing zone monitoring well MW-9A was installed proximate to the location of former monitoring well MW-9B. Total and dissolved arsenic were detected at concentrations less than the MTCA Method A cleanup level in the groundwater sample collected from monitoring well

MW-9A. Total or dissolved arsenic was not detected at the laboratory reporting limit in the groundwater sample collected from monitoring well MW-9D.

Arsenic-impacted groundwater is limited in extent to the area immediately surrounding monitoring wells MW-12 and MW-31, and likely is associated with elevated pH in groundwater at those locations, causing mobilization of metals (Figure 19). Additionally, concentrations of dissolved arsenic detected in groundwater samples collected from monitoring wells MW-12 and MW-35 either were less than or slightly exceeded the background concentration of 8 μ g/l of arsenic in groundwater for the Puget Sound area.⁴ Ecology previously approved use of dissolved arsenic concentrations as representative of Site groundwater.⁵

Total lead was detected at concentrations of 18 and 500 μ g/l in the groundwater samples collected from monitoring wells MW-12 and MW-31, respectively in January 2020. The reported concentrations of total lead in the groundwater sample collected from monitoring well MW-31 likely were impacted by the high turbidity of 118.47 nephelometric turbidity units for the sample recorded in the field. The concentration of total lead detected in the September 2020 groundwater sample collected from monitoring well MW-31 was 14 μ g/l, with an associated turbidity of 9.27 nephelometric turbidity units. Dissolved lead was detected at concentrations less than the MTCA Method A cleanup level of 15 μ g/l in the groundwater samples collected from monitoring wells MW-12 and MW-31. Total lead was detected at concentrations less than the MTCA Method A cleanup level in the groundwater samples collected from up-gradient wells MW-32 and MW-34; dissolved lead was not detected at the laboratory PQL in the groundwater samples collected from monitoring well MW-32 or MW-34. Total or dissolved lead was not detected at the laboratory PQL in the groundwater sample collected from down-gradient monitoring well MW-9R. The laboratory analytical reports are included in Attachment A. Boring logs are included in Attachment B.

Based on the groundwater results for dissolved lead, lead in groundwater is not a concern at the Site. Ecology previously approved use of concentrations of dissolved lead as representative of Site groundwater.⁶

Monitoring wells tentatively selected for monitoring natural attenuation of arsenic and lead are discussed under the "Monitored Natural Attenuation" heading above.

MONITORING WELLS

Monitoring well MW-16 (screened within the reported deep water bearing zone) was observed to have been damaged prior to the December 2017 sampling event and concentrations of petroleum hydrocarbons subsequently observed in the monitoring well were reported to not be representative

⁴ Natural Background Groundwater Arsenic Concentrations in Washington State, Results of a Study, Draft for Public Comment dated July 2021 prepared by Ecology, Publication No. 14-09-044.

⁵ Letter Regarding Response to Comments for the Woodworth & Co. Lakeview Plant, 2800 104th Street South, Tacoma (Lakewood) dated May 25, 2017 from Jeremy Hughes of Ecology to Branislav Jurista of Farallon.
⁶ Ibid.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

of groundwater quality." Groundwater monitoring wells can act as a conduit in which contamination is transmitted downward into an aquifer.

Based on recently reported data results, it appears that the deep aquifer in the vicinity of MW-16 is currently impacted with petroleum hydrocarbons. Please evaluate the lateral and vertical extents of contamination in the area of MW-16 in the deep water-bearing zone.

Please note that any monitoring well destroyed or abandoned must be located and properly decommissioned in accordance with WAC 173-160-381 and 173-160-460. RCW 18.104.040 provides Ecology's authority. Ecology recommends working with Ecology's Water Resources Program to ensure monitoring wells abandoned or destroyed are properly decommissioned.

FARALLON RESPONSE

As discussed above, during the 2017 groundwater sampling event conducted at the Site, the monitoring well MW-16 monument, cap, and casing were observed to be damaged, and the well was decommissioned by overdrilling methods.⁷ Replacement monitoring well MW-16R was installed in an accessible area approximately 50 feet northeast of monitoring well MW-16 to evaluate the detection of petroleum hydrocarbons in the deep aquifer (Figure 2). Shallow waterbearing zone monitoring well MW-9 was present in an area proximate to a large stockpile of concrete debris, and was in danger of being damaged by falling debris. Therefore, monitoring well MW-9 also was decommissioned, and was replaced by monitoring well MW-9R, installed adjacent to monitoring well MW-16R. Borings for monitoring wells MW-9R and MW-16R were completed to depths of 25 and 40 feet bgs, respectively, using a sonic drill rig. Monitoring well MW-9R was installed to a depth of 25.0 feet bgs, with a 10-foot screen from 15.0 to 25.0 bgs. Monitoring well MW-16R was installed to a depth of 38.5 feet bgs, with a 10-foot screen from 28.5 to 38.5 feet bgs. Boring logs for monitoring wells MW-9R and MW-16R are provided in Attachment B.

During drilling, soil cuttings were screened for visual and olfactory evidence of petroleum hydrocarbon contamination, and measured for VOCs using a portable photoionization detector. No evidence of petroleum contamination was detected in the soil cuttings from the borings advanced for installation of monitoring well MW-9R or MW-16R.

Groundwater samples were collected from monitoring wells MW-9R and MW-16R (Figure 2) on January 7 or 8, September 29, and December 18, 2020, and submitted for laboratory analysis for DRO and ORO. ORO was detected at concentrations ranging from 460 to 1,700 μ g/l in the groundwater samples collected from monitoring well MW-9R, some detections exceeding the MTCA Method A cleanup level of 500 μ g/l. ORO was detected at concentrations ranging from 450 to 1,300 μ g/l in the groundwater samples collected from monitoring well MW-9R, some detections exceeding the MTCA Method A cleanup level of 500 μ g/l. ORO was detected at concentrations ranging from 450 to 1,300 μ g/l in the groundwater samples collected from monitoring well MW-16R, some detections exceeding the MTCA Method A cleanup level. DRO was detected at concentrations ranging from 290 to 630 μ g/l in groundwater samples collected from monitoring well MW-9R, some detections exceeding the MTCA Method A cleanup level. DRO was detected at concentrations ranging from 290 to 630 μ g/l in groundwater samples collected from monitoring well MW-9R, some detections exceeding the MTCA Method A cleanup level. DRO was detected at concentrations ranging from 290 to 630 μ g/l in groundwater samples collected from monitoring well MW-9R, some detections exceeding the MTCA Method A cleanup level. DRO was detected at concentrations ranging from 290 to 630 μ g/l in groundwater samples collected from monitoring well MW-9R, some detections exceeding the MTCA Method A cleanup level. DRO was detected at concentration less than the MTCA Method A cleanup level in groundwater samples collected from

⁷ FFS Addendum.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

monitoring well MW-16R. The analytical results for groundwater samples collected from replacement monitoring wells MW-9R and MW-16R confirm that ORO and DRO are present in the shallow water-bearing zone, and that DRO is present in the deep water-bearing zone, at concentrations exceeding the MTCA Method A cleanup level in the vicinity of monitoring wells MW-9R and MW-16R. However, the calculated concentrations of TPH in groundwater of $301.78 \mu g/l$ at monitoring well MW-9R in the shallow water-bearing zone and of $369.49 \mu g/l$ at monitoring well MW-16R in the deep water-bearing zone are protective based on the calculated Method B cleanup levels of 493.93 and $585.04 \mu g/l$, respectively, as discussed above in the Groundwater Monitoring section.

Remediation well SVE-5 was installed with a long screen from 10 to 38 feet bgs to facilitate soil vapor extraction for remediation of TCE contamination. Soil vapor extraction at the Site has been discontinued and, due to the long screen and potential for this well to serve as a conduit between the shallow and deep water-bearing zones, well SVE-5 was decommissioned by overdrilling methods in January 2021. Monitoring well MW-36 was installed approximately 10 feet east-southeast of well SVE-5 to continue groundwater monitoring in the shallow water-bearing zone at this location.

The boring for monitoring well MW-36 was completed to a depth of 20 feet bgs using a sonic drill rig. Monitoring well MW-36 was installed to a depth of 16.5 feet bgs, with a 10-foot screen from 6.5 to 16.5 feet bgs. The boring log for monitoring well MW-36 is provided in Attachment B.

During drilling, soil cuttings were screened for visual and olfactory evidence of petroleum hydrocarbon contamination, and measured for VOCs using a portable photoionization detector. A slightly elevated photoionization detector reading of 20.0 parts per million was recorded for the soil cuttings from the boring at a depth of 15.0 feet bgs. No other evidence of petroleum contamination was detected in the soil cuttings from the boring advanced for installation of monitoring well MW-36.

Soil samples were collected from the boring for monitoring well MW-36 at depths of 5.0, 10.0, 15.0, and 20.0 feet bgs, and submitted for laboratory analysis for DRO and ORO. DRO was detected at a concentration of 180 mg/kg in the soil sample collected at a depth of 15.0 feet bgs, less than the MTCA Method A cleanup level of 2,000 mg/kg. DRO or ORO was not detected at the laboratory reporting limit in the soil samples collected at depths of 5.0, 10.0, or 20.0 feet bgs. The laboratory analytical reports are included in Attachment A. Boring logs are included in Attachment B.

UPDATES TO CONCEPTUAL SITE MODEL

A conceptual site model describing the sources of contamination, contaminants and media of concern, the nature and extent of contamination, the fate and transport of constituents of concern, and potential exposure pathways was provided in the FFS-DCA, and revised in the FFS Addendum. The conceptual site model has been updated, as necessary, to incorporate data collected for the Site since submittal of the FFS Addendum. The updates to the conceptual site model are presented below.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

The contaminants and media of concern by area are summarized below:

- Equipment Parking Area: Based on the analytical results for soil samples, the calculated concentration of TPH in groundwater from monitoring well MW-13, and calculation of a Site-specific MTCA Method B cleanup level for groundwater in the area of monitoring well MW-13, no contaminants or media of concern are in the Equipment Parking Area (Figure 2).
- Former Recycled Stockpile Area: The contaminants and medium of concern are DRO and ORO in the shallow water-bearing zone groundwater (Figure 3). Soil is not a medium of concern, as concentrations of TPH in soil do not exceed the calculated Site-specific MTCA Method B cleanup level for the Former Recycled Stockpile Area previously approved by Ecology⁸ (Table 1).
- Hot-Mix Storage Area: The contaminant and medium of concern remain limited to ORO in shallow soil (Figure 6).
- Equipment Storage Carport Area: The contaminants and media of concern are ORO and cPAHs in soil, and DRO and ORO in shallow groundwater (Figure 8).
- Former Asphalt-Testing Laboratory Area: The contaminants and media of concern are ORO and cPAHs in shallow soil, and TCE in shallow and deep water-bearing zone groundwater (Figure 10).
- SVE-5 Area: The contaminants and medium of concern for the area proximate to monitoring well MW-36 and former well SVE-5 are DRO and ORO in shallow groundwater (Figure 10).
- Arsenic and Lead Plume in Groundwater Area: The contaminant and medium of concern is dissolved arsenic in shallow groundwater. The dissolved arsenic plume is coincident with elevated pH in groundwater at monitoring wells MW-12 and MW-31, but not with neutral pH at monitoring well MW-35 (Figure 17).

The nature and extent of contamination are summarized below by media:

• Soil:

ORO-impacted soil occurs in the Hot-Mix Storage Area in an area approximately 30 by 45 feet to a maximum depth of approximately 10 feet bgs. ORO- and cPAH-impacted soil occurs in the Equipment Storage Carport Area in an area approximately 30 by 45 feet to a depth of approximately 15 feet bgs. ORO- and cPAH-impacted soil occurs in the Former Asphalt-Testing Laboratory Area in an area approximately 25 by 50 feet to a maximum depth of approximately 10 feet bgs.

⁸ Letter Regarding Opinion on Proposed Cleanup of the Following Site: Woodworth & Co. Lakeview Plant, 2800 104th Street South, Tacoma (Lakewood) dated February 15, 2011 from Charles S. Cline of Ecology to Branislav Jurista of Farallon.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

The extent of fill material potentially causing naturally occurring arsenic and lead to leach into shallow groundwater is limited to the easternmost area of the Lakeview Facility proximate to monitoring wells MW-12, and MW-31. The vertical extent of fill material in the northeastern area of the Lakeview Facility is estimated to be a maximum depth of 40 feet bgs. According to the results from groundwater sampling at newly installed monitoring wells MW-9A and MW-9D, the elevated pH in soil proximate to decommissioned monitoring well MW-9B does not affect groundwater quality at that location.

• Groundwater:

The extent of ORO and DRO in shallow groundwater is limited to the Former Recycled Stockpile Area, the Equipment Storage Carport Area, and the SVE-5 Area, depicted on Figures 3, 8, and 10, respectively. Shallow groundwater flows to the interior of the Site toward monitoring well MW-9R. Shallow groundwater flow direction: in the Former Recycled Stockpile Area is east from the western property boundary; in the Equipment Storage Carport Area is north-northwest; and in the Former Asphalt-Testing Laboratory Area is north-northeast.

The extent of ORO in deep groundwater is limited to the area around monitoring well MW-16R. The direction of deep groundwater flow is east-northeast at the location of MW-16R. The down-gradient extent of ORO in deep groundwater is defined by the analytical results for groundwater samples collected from monitoring well MW-9D.

The extent of TCE in groundwater is limited to an area on the Site proximate to the source area associated with the Former Asphalt-Testing Laboratory (Figures 14 and 15). The direction of groundwater flow in the shallow water-bearing zone is north-northeast in this area of the Site (Figure 12). The down-gradient extent of TCE in shallow water-bearing zone groundwater is defined by analytical results for a reconnaissance groundwater sample collected from monitoring well SVE-1, and for groundwater samples collected from monitoring wells SVE-6 and MW-3 (Figure 14). The cross- and up-gradient extent of TCE in shallow water-bearing zone groundwater is defined by analytical results for groundwater samples collected from monitoring wells SVE-6 and MW-3 (Figure 14). The cross- and up-gradient extent of TCE in shallow water-bearing zone groundwater is defined by analytical results for groundwater samples collected from monitoring wells SVE-6 and MW-3 (Figure 14). The cross- and up-gradient extent of TCE in shallow water-bearing zone groundwater is defined by analytical results for groundwater samples collected from monitoring wells SVE-3 and MW-26. TCE has not been detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected from shallow water-bearing zone monitoring wells MW-5, MW-6, MW-10, MW-11, MW-12, MW-17A, or MW-27, installed proximate to the Lakeview Facility property boundaries.

The direction of groundwater flow in the deep water-bearing zone ranges from north to northeast in the Former Asphalt-Testing Laboratory Area (Figure 13). The down-gradient extent of TCE in groundwater in the deep water-bearing zone is defined by analytical results for groundwater samples collected from monitoring wells MW-22 and MW-23 (Figure 15). Analytical results for groundwater samples collected from monitoring wells SVE-2, AS-3, AS-4, and AS-7 define the cross-gradient extent of TCE contamination in the deep water-bearing zone (Figure 15). The up-gradient extent of TCE contamination in

the deep water-bearing zone is defined by analytical results for groundwater samples collected from monitoring wells MW-15, MW-25, MW-28 and MW-29 (Figure 15).

The vertical extent of concentrations of TCE exceeding the MTCA Method A cleanup level in groundwater is defined by analytical results for groundwater samples collected from deep water-bearing zone monitoring well MW-14C and air sparge wells AS-1, AS-2, AS-3, AS-4, AS-6, AS-7, and AS-8 (Figure 16).

The extent of dissolved arsenic in groundwater is limited to an area proximate to monitoring wells MW-12, MW-31, and MW-35 (Figure 17). The direction of groundwater flow in the shallow water-bearing zone is west-southwest in the area of monitoring wells MW-12 and MW-31, and south in the area of monitoring well MW-35 (Figure 12). The down-gradient extent of dissolved arsenic in shallow groundwater is defined by the discontinuous nature of the shallow water-bearing zone around monitoring well MW-30. Additionally, analytical results for the groundwater samples collected from monitoring well MW-9R define the down-gradient extent of dissolved arsenic in shallow groundwater is defined by analytical results for the groundwater samples collected from monitoring well MW-9R define the down-gradient extent of dissolved arsenic in shallow groundwater is defined by analytical results for the groundwater samples collected from monitoring wells MW-32, MW-33, and MW-34.

The vertical extent of dissolved arsenic in groundwater is defined by analytical results for a groundwater sample collected from monitoring well MW-12B, screened in the deep water-bearing zone. The groundwater flow direction for the deep groundwater-bearing zone in this area of the Site is northeast.

The MTCA Method A or Method B cleanup levels established for the constituents of concern at each area of concern are as follows:

- Soil:
 - DRO and ORO: 2,000 mg/kg, with the following exceptions:
 - Calculated MTCA Method B cleanup level for total TPH (sum of DRO and ORO): 3,699 mg/kg at the Equipment Parking Area
 - Calculated MTCA Method B cleanup level for total TPH (sum of DRO and ORO): 3,739 mg/kg at the Former Stockpile Area
 - o cPAHs (TEC): 0.1 mg/kg
- Groundwater:
 - DRO and ORO: 500 μg/l, with the exception of the area of monitoring wells MW-9R and MW-16R and the Equipment Parking Area (monitoring well MW-13), where calculated TPH concentrations do not exceed the calculated MTCA Method B cleanup levels;
 - o TCE: $5 \mu g/l$;

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

- o Dissolved arsenic: $5 \mu g/l$ (or the Puget Sound Area background level of $8 \mu g/l$; and
- o Dissolved lead: $15 \mu g/l$.

The revised conditional points of compliance based on the updates to the conceptual site model are identified below in the section discussing the Feasibility Study.

RULES REGARDING CLEANUP LEVELS

Ecology does not concur with the Report's statement that silica gel cleanup results from recent sampling meet compliance standards based on the intent of WAC 173-340- 702(12)(b). WAC173-340-702(12)(b) refers to cleanup levels, not to the appropriateness of specific analytical methods.

<u>Silica Gel</u>

Ecology's May 25, 2017, opinion letter requested that silica gel cleanup be discontinued; nonetheless samples collected in 2017 were analyzed using silica gel cleanup (B-12, MW- 24T, etc.). Data for this Site to support the use of silica gel cleanup of analytical samples has not been provided for the remedial investigation. With the data currently available, Ecology considers reported concentrations using silica gel cleanup at this Site to be minimum estimates of contamination present at those locations. Additional information will be necessary to evaluate the use of silica gel cleanup of this Site's analytical samples.

If you choose to use silica gel cleanup on any samples used for delineation or MTCA compliance purposes, Ecology will need you to provide the following supporting information:

- *Reporting of both pre- and post-silica gel treatment results at all locations.*
- Chromatograms, calculations, and numerical estimations of variability or laboratory measurements based on laboratory QA/QC, and supporting evidence and criteria for use of the method on a location-by-location basis.
- Sample results for this remedial investigation reported without the use of silica gel cleanup in plan view and cross section concentration isopleth maps.
- *Results reported with and without silica gel treatment in tables.*
- Evaluation of the impact of silica gel cleanup in both contaminated and non-contaminated areas. This will be especially important to understand the biogenic influence of organic matter at the Site.
- Justify and calculate the risk of polar breakdown metabolites as part of the site-specific cumulative risk.

When used inappropriately, the use of silica gel cleanup of samples can artificially reduce the concentration of petroleum detected in a sample. Ecology is concerned that petroleum results at the Site are greater than what you reported using silica gel cleanup.

Ecology recognizes that there are situations where the use of silica gel treatment is appropriate at cleanup sites. An example is for sites with highly organic soils, such as peat, where very high concentrations of naturally occurring organic carbon impacts analytical results.

An example of data that may be useful for Ecology to support the use of silica gel cleanup is high measured soil sample carbon fractions both in impacted areas and upgradient of the Site, in adjacent unimpacted areas. Delineation of total and dissolved organic carbon in samples obtained at the Site and upgradient may provide support for use of silica gel cleanup.

It may alternately be appropriate to obtain sufficient upgradient samples not impacted by the release, and determine the amount that silica gel cleanup impacts those sample results. If a statistically significant difference is detected between upgradient samples with and without silica gel treatment, it may be appropriate to subtract that amount from sample results not analyzed with silica gel, but determined by other means to be impacted by the release.

If this approach is appropriate, be sure to carefully address how the Site was delineated, how the specific background samples were selected, and how the results were determined to be statistically significant. Ensure that you also report on organic carbon fractions in all samples.

Additional site reporting may provide sufficient information for Ecology to concur with the use of silica gel cleanup of samples at this Site. Until that analysis is provided, Ecology strongly suggests you avoid additional silica gel cleanup of analytical samples.

FARALLON RESPONSE

The soil sample collected on November 16, 2017 from boring B-12 at a depth of 9.0 feet bgs and the reconnaissance groundwater sample collected from boring MW-24T were analyzed for DRO and ORO with and without silica gel cleanup. The analytical results for the samples both with and without silica gel cleanup were reported in the FFS Addendum. The delineation of soil and/or groundwater impacted with DRO and/or ORO, and the selection of remedial alternatives described in this letter were not based on the 2017 samples analyzed with silica gel cleanup.

Farallon agrees that analysis of groundwater samples for DRO and ORO should be run without the silica gel cleanup procedure. Soil and groundwater samples collected at the Site in 2019, 2020, and 2021 and submitted for analysis for DRO and ORO were not analyzed using a silica gel cleanup preparation (Tables 1 and 4).

<u>Feasibility Study</u>

The feasibility study submitted in 2018 evaluated two cleanup alternatives; 1) institutional controls to prevent exposure to TCE, arsenic, and lead in groundwater by implementation of an environmental covenant to prohibit the use of groundwater as a potable water source at the Site, and 2) active cleanup of soil and groundwater. Alternative 1 was proposed as the recommended cleanup alternative, similar to a previous 2015 feasibility study and disproportionate cost analysis.

Conditional points of compliance were proposed for shallow groundwater at MW-3 (TCE), MW-9 (petroleum, lead, and arsenic), MW-32 (lead and arsenic), and MW-34 (lead and arsenic) and deeper groundwater MW-12B (TCE, lead, and arsenic). Monitoring wells MW-12 MW-13, MW-20, MW-31, SVE-5, and SVE-12 were additionally proposed to be sampled for natural attenuation. Monitoring well MW-9B was originally proposed as a conditional point of compliance, but was not included in the most recent feasibility study.

In the 2015 Feasibility Study, alternative 1 did not address the direct contact pathway for shallow soil contamination; however the revised feasibility study indicates that the environmental covenant will include engineering controls for shallow soil petroleum and cPAH soil contamination.

Ecology recommends updating the cleanup alternatives evaluation and disproportionate cost analysis based on recently collected data, evaluate at least three cleanup alternatives including at least one permanent cleanup alternative. Ecology needs to ensure that each remedial alternative evaluated:

- Includes all contamination and pathways at the Site at all points of compliance.
- Meets minimum requirements for cleanup actions.
- Uses permanent solutions to the maximum extent practicable.
- *Provides for a reasonable restoration timeframe.*

FARALLON RESPONSE

The evaluation of cleanup alternatives and the disproportionate cost analysis have been updated per Ecology's recommendation, discussed below.

Farallon screened and retained the following technologies for further evaluation (Table 10):

- Institutional Controls;
- In-Situ Treatment via Chemical Oxidation;
- In-Situ Treatment via Enhanced Aerobic Bioremediation;
- In-Situ Treatment via Air Sparging and Soil Vapor Extraction;
- Excavation and Off-Site Disposal; and
- In-Situ Treatment via Soil Solidification.

The remedial alternatives evaluated in this letter and their primary components are as follows:

- Alternative 1: Institutional and Engineered Controls
 - Implementing engineered controls in the form of an asphalt or concrete cap and/or a minimum of 15 feet of clean fill on top of contaminated soil. The mandatory reclamation of the Lakeview Facility includes placing up to 30 feet of clean fill on the existing ground surface.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

- Implementing institutional controls that include an Environmental Covenant restricting groundwater use for drinking water purposes at the Lakeview Facility, and health advisories and requirements for handling soil and groundwater with concentrations of DRO, ORO, cPAHs, TCE, and/or arsenic exceeding MTCA cleanup levels, if encountered.
- Implementing long-term monitoring, consisting of: periodic (annual or every 18 months) groundwater monitoring at the conditional-point-of-compliance monitoring wells to ensure compliance with the provisions of the Environmental Covenant and to monitor the progress of natural attenuation of contaminants; and monitoring of engineered controls in terms of cap maintenance.
- Conducting a vapor intrusion assessment prior to construction of any new buildings; and potentially implementing vapor mitigation measures (e.g., vapor barrier, subslab depressurization system) to mitigate risk for vapor migration into buildings, based on the results from the vapor intrusion assessment.
- Alternative 2: In-Situ Chemical Oxidation and Soil Solidification
 - In-Situ Chemical Oxidation via direct-push injection to treat residual soil and/or groundwater contamination in the Former Recycled Stockpile Area, the Hot-Mix Storage Area, Equipment Storage Carport Area, and the Former Asphalt-Testing Laboratory Area;
 - In-Situ Chemical Oxidation via direct-push injection into the shallow and deep water-bearing zones for treatment of TCE in groundwater at the Former Asphalt-Testing Laboratory Area; and
 - Soil Solidification via in-situ soil mixing of a Portland cement mixture for solidification of soil and groundwater for treatment of dissolved arsenic in groundwater at the location of monitoring wells MW-12 and MW-31, and potentially monitoring well MW-35 (although no elevated pH was identified in this area).
- Alternative 3: Source Removal, Enhanced Aerobic Degradation, and Monitored Natural Attenuation
 - Removal and off-Site disposal of soil with residual soil contamination, application
 of bioremediation reagents, and monitored natural attenuation of groundwater in
 the Former Recycled Stockpile Area, the Hot-Mix Storage Area (soil only), the
 Equipment Storage Carport Area, the Former Asphalt-Testing Laboratory Area
 (soil only), and the area of well SVE-5;
 - Air sparge and soil vapor extraction in the shallow and deep water-bearing zones for treatment of TCE in the Former Asphalt-Testing Laboratory Area; and
 - Removal and off-Site disposal of fill material and concrete waste for treatment of dissolved arsenic in groundwater at the location of monitoring wells MW-12, MW-31, and MW-35.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

The evaluation of each cleanup alternative is presented in Table 11. A MTCA Composite Benefit Score was applied for each of the six evaluation criteria for permanence to the maximum extent practicable for each alternative. A MTCA Composite Benefit Score was calculated for each alternative by summing the mathematical product of the score multiplied by the indicated weighting factor for each of the six evaluation criteria. The basis for the weighting factors for the six evaluation criteria for permanence to the maximum extent practicable was obtained from Ecology guidance.⁹ Table 11 provides the results from the evaluation. The following MTCA Composite Benefit Scores were calculated for the three remedial alternatives evaluated in this update:

- Alternative 1: 6.1
- Alternative 2: 7.4
- Alternative 3: 7.7

Cost is not given a weighting factor in the MTCA benefit score, but is weighed against the benefit score as a benefit-to-cost ratio for each alternative. The estimated costs for Alternatives 1, 2, and 3, rounded to the nearest \$10 thousand, are presented in Tables 11, 12a, 12b, and 12c. The total estimated costs are as follows:

- Alternative 1: \$129,000
- Alternative 2: \$9.02 million
- Alternative 3: \$30.59 million.

These costs include both short- and long-term costs associated with each alternative.

The disproportionate cost analysis indicates that the corresponding benefit associated with the treatment technologies presented in Alternatives 2 and 3 do not justify their substantially higher costs (Chart 1). If compliance with the provisions of the Environmental Covenant is not met, the groundwater treatment technologies under Alternative 2 will be employed as a contingency action.

Based on the results from the cleanup alternative evaluation and disproportionate cost analysis , the recommended alternative is Cleanup Alternative 1—Institutional and Engineered Controls for residual contamination at the Lakeview Facility to achieve a No Further Action determination from Ecology under the Voluntary Cleanup Program. Cleanup Alternative 1 provides a high degree of environmental benefit, is the most cost-effective of the three permanent technically feasible cleanup alternatives, and meets the MTCA requirements for selection of a cleanup action (Section 360 of Chapter 173-340 of the Washington Administrative Code (WAC 173-340-360).

As indicated under Alternative 1, long-term groundwater monitoring at the conditional point of compliance monitoring wells, and cap maintenance will be required periodically. In addition, if

⁹ Feasibility Study Checklist dated May 2016 prepared by Ecology, Publication No. 16-09-007.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

the property is redeveloped, a vapor intrusion assessment and potential vapor intrusion mitigation will be conducted.

UPDATES TO CONDITIONAL POINTS OF COMPLIANCE

Points of compliance are defined in WAC 173-340-200 as the locations where "cleanup levels established in accordance with WAC 173-340-720 through 173-340-760 shall be attained" to meet the requirements of MTCA. Once the cleanup levels have been attained at the defined points of compliance, constituents of concern at each affected area at the Lakeview Facility are no longer considered a threat to human health or the environment. The points of compliance for soil and groundwater are discussed below:

Soil

The point of compliance for soil is established for the protection of groundwater, and is defined as soil throughout the "site" exceeding cleanup levels protective of groundwater (WAC 173-340-740[6][b]). TCE, arsenic, or lead has not been detected at a concentration exceeding MTCA Method A cleanup levels in soil; therefore, cleanup levels for those constituents of concern have been attained at the standard point of compliance for soil. ORO, ORO, and cPAHs have been detected at concentrations exceeding MTCA Method A cleanup levels or calculated Site-specific MTCA Method B cleanup levels. Potential exposure will be addressed by engineering controls consisting of an asphalt or concrete cap and/or a minimum of 15 feet of clean fill cover.

Groundwater

The standard point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth that potentially could be impacted by the constituent of concern throughout the "site" (WAC 173-340-720[8][b]). For active cleanup alternatives, the standard points of compliance would include all monitoring wells within the limits of groundwater affected by constituents of concern at concentrations exceeding cleanup levels.

A conditional point of compliance is applicable where it is not practicable to meet the cleanup level throughout the "site" within a reasonable restoration time frame (WAC 173-340-720[8][c]). If the selected cleanup action includes a restriction on groundwater use in the form of an Environmental Covenant, the conditional points of compliance as close as practicable to the boundaries of the restrictive area of groundwater use will become applicable to the Lakeview Facility.

The following conditional points of compliance for shallow water-bearing zone groundwater have been selected (Figure 20):

• Monitoring well MW-3 and soil vapor extraction wells SVE-3 and SVE-6 for the TCE-affected Former Asphalt-Testing Laboratory Area;

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

- Monitoring well MW-9R for the DRO- and ORO-affected Former Recycled Stockpile Area, the DRO and ORO-affected Equipment Storage Carport Area, and Arsenic and Lead Plume in Groundwater Area (concentrations of dissolved lead currently do not exceed the MTCA Method A cleanup level in any monitoring wells; groundwater sampling will continue for a minimum of four quarters at wells where lead was previously detected at concentrations exceeding the MTCA Method A cleanup level, after which further sampling for dissolved lead can be discontinued); TPH will be analyzed for parameters required to establish Sitespecific MTCA Method B cleanup levels.¹⁰
- Monitoring well MW-32 for the Arsenic and Lead Plume in Groundwater Area;
- Monitoring well MW-33 for the Arsenic and Lead Plume in Groundwater Area; and
- Monitoring well MW-34 for Arsenic and Lead Plume in Groundwater Area.

The following conditional point of compliance for the deep water-bearing zone groundwater has been selected (Figure 20):

• Monitoring wells MW-15 and MW-23 for the TCE-affected Former Asphalt-Testing Laboratory Area.

Monitoring wells tentatively selected for sampling for MNA parameters pending Ecology approval of the selected conditional points of compliance are indicated on Figure 20.

Farallon understands that reclamation of the Lakeview Facility will include placing up to 30 feet of clean fill in some of the areas of the selected conditional points of compliance for groundwater. Prior to any permanent filling of the areas of the selected conditional points of compliance for groundwater, Ecology will be contacted to discuss and seek concurrence for placement of alternative conditional points of compliance, if concentrations of constituents of concern still exceed cleanup standards in groundwater at that time.

ENVIRONMENTAL COVENANT

The recommended cleanup alternative is proposed as an institutional control with an environmental covenant to restrict groundwater from being used for potable water and engineering controls for shallow soil contamination. A draft Environmental Covenant was submitted to Ecology as Appendix D in the August 3, 2018, Addendum to the Focused Feasibility Study and Disproportionate Cost Analysis Report.

Ecology suggests that you reevaluate the preferred remedial alternative and the need for institutional controls after you complete the additional investigation and analyses suggested in

¹⁰ Calculation of Method B and Method C Cleanup Levels for Petroleum Mixtures, 2006-2007, Supporting Material for Cleanup Levels and Risk Calculation, Ecology website accessed January 12, 2021

https://www.ezview.wa.gov/Portals/ 1987/Documents/Documents/CalculationOfMethodBandMethodC CULsForP etroleumMixtures_2006-2007.pdf.

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\2021-08 Response to ECY Op Ltr.docx

this opinion. If institutional or engineered controls remain an appropriate part of the preferred remedial alternative determined through the feasibility study and disproportionate cost analysis, update the draft environmental covenant to manage implementation of needed institutional or engineered controls with consideration to the [listed] requirements.

FARALLON RESPONSE:

A revised draft Environmental Covenant will be prepared and submitted for Ecology review following receipt of confirmation that Ecology agrees that sufficient site characterization and proposed conditional points of compliance presented in this letter.

LONG TERM MONITORING PLAN (LTM)

The August 3, 2018, draft covenant included long term groundwater monitoring. It did not include long term soil vapor, indoor air monitoring, or cap monitoring. It also did not include a contingency plan describing actions that will be conducted if results exceed applicable cleanup levels at the conditional points of compliance., cap maintenance or repair of remedy is required, or contaminated soil is encountered during property redevelopment activities.

FARALLON RESPONSE

A revised draft Long-Term Monitoring Plan addressing Ecology's comments will be prepared and submitted for Ecology review following Ecology agreement of sufficient site characterization and proposed conditional points of compliance.

ENVIRONMENTAL COVENANT

The recommended cleanup alternative is proposed as an institutional control with an environmental covenant to restrict groundwater from being used for potable water and engineering controls for shallow soil contamination. A draft Environmental Covenant was submitted to Ecology as Appendix D in the August 3, 2018, Addendum to the Focused Feasibility Study and Disproportionate Cost Analysis Report.

Ecology suggests that you reevaluate the preferred remedial alternative and the need for institutional controls after you complete the additional investigation and analyses suggested in this opinion. If institutional or engineered controls remain an appropriate part of the preferred remedial alternative determined through the feasibility study and disproportionate cost analysis, update the draft environmental covenant to manage implementation of needed institutional or engineered controls requirements.

FARALLON RESPONSE

A revised draft Environmental Covenant will be prepared and submitted for Ecology review following receipt of confirmation that Ecology agrees that sufficient site characterization and proposed conditional points of compliance.

Washington State Department of Ecology Southwest Regional Office August 31, 2021 Page 35

CLOSING

Farallon appreciates the opportunity to provide the requested information, and trusts that this provides sufficient information to address the comments provided in the Opinion Letter. If you have questions, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

amanda M. Mengnist

Amanda Meugniot, L.G. Associate Geologist

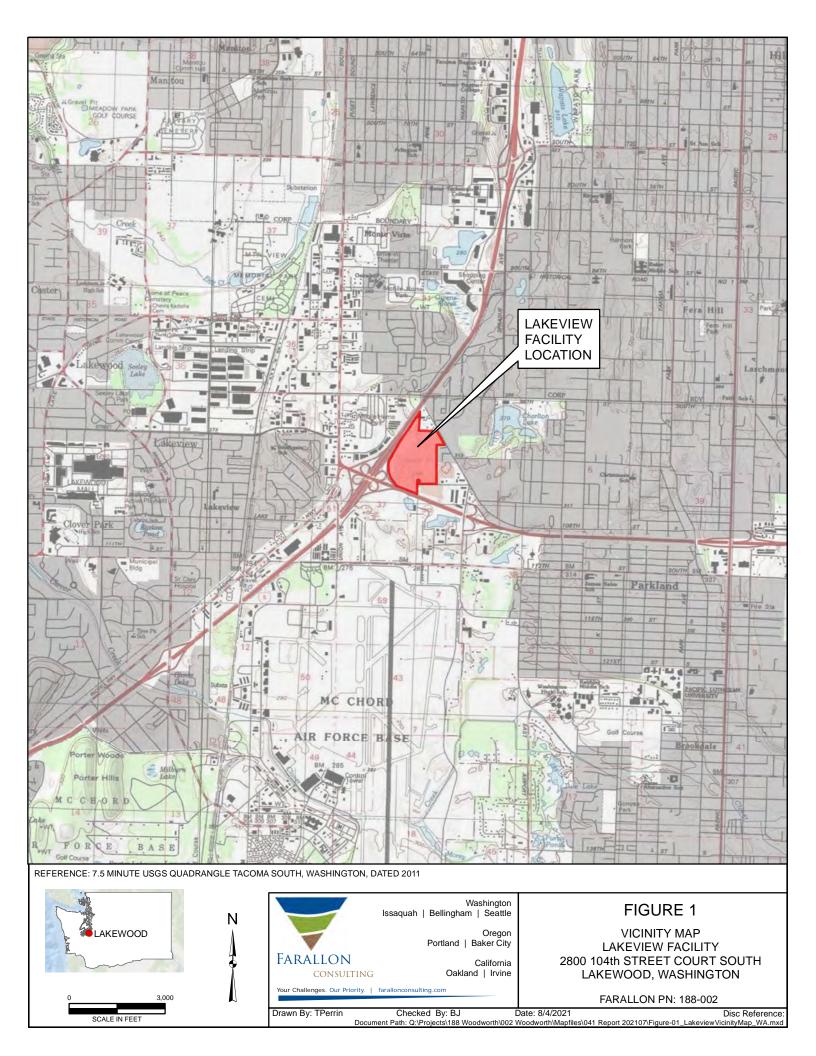
Braniolar urisla

Brani Jurista, L.G., P.G. Principal Geologist

Attachments: Figure 1, Vicinity Map

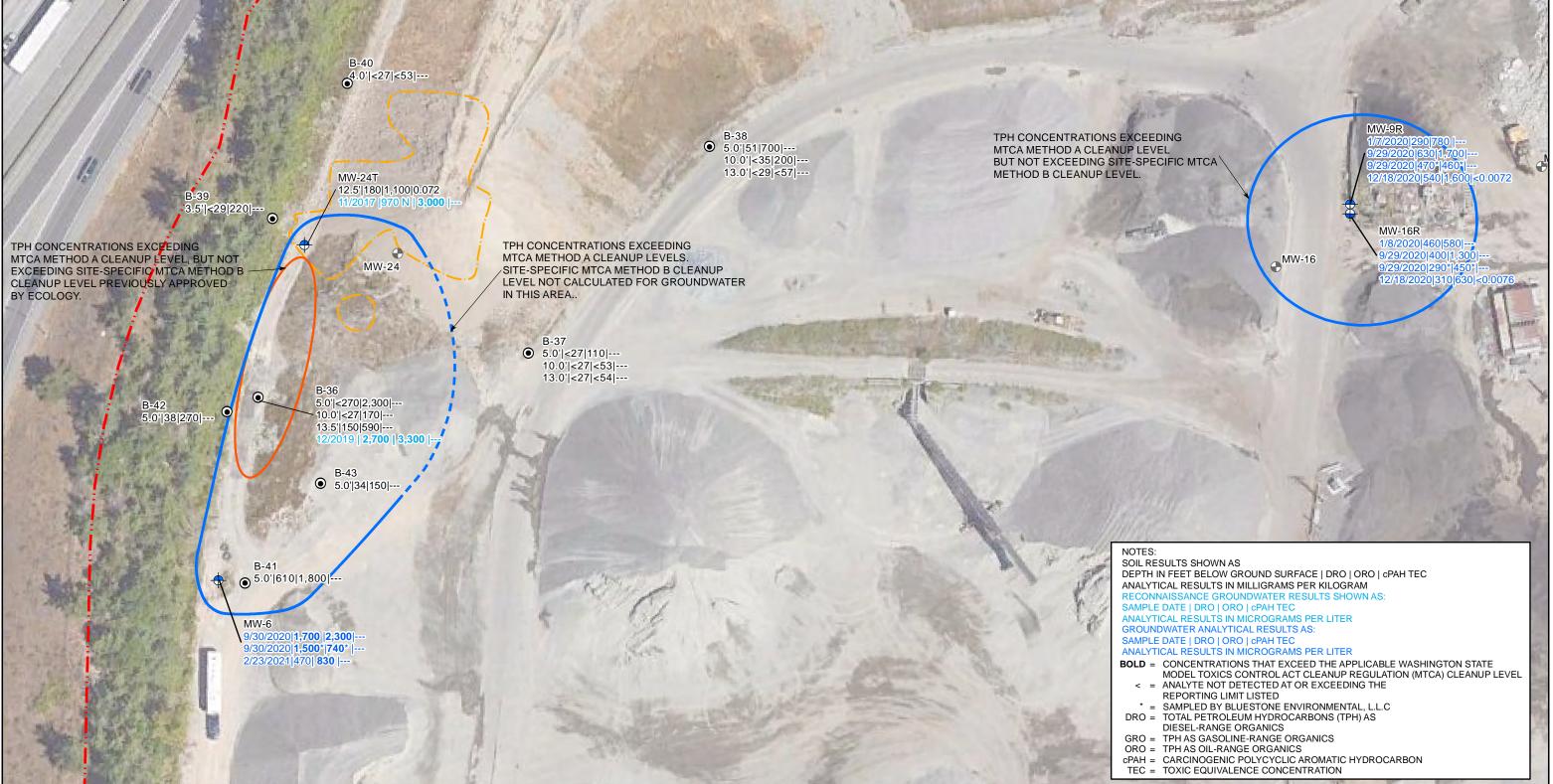
- Figure 2, Property Plan
- Figure 3, Soil and Groundwater Analytical Data, Former Recycled Stockpile Area
- Figure 4, Cross Section A-A', Former Recycled Stockpile Area
- Figure 5, Cross Section B-B', Former Recycled Stockpile Area
- Figure 6, Soil Analytical Data, Hot-Mix Storage Area
- Figure 7, Cross Section C-C', Hot-Mix Storage Area
- Figure 8, Soil and Groundwater Analytical Data, Equipment Storage Carport Area
- Figure 9, Cross Section D-D', Equipment Storage Carport Area
- Figure 10, Soil Analytical Data, Former Asphalt-Testing Laboratory Area
- Figure 11, Cross Section E-E', Former Asphalt-Testing Laboratory Area
- Figure 12, Groundwater Elevation Contours for Shallow Water-Bearing Zone (January 2020)
- Figure 13, Groundwater Elevation Contours for Deep Water-Bearing Zone (January 2020)
- Figure 14, TCE Concentrations in Shallow Water-Bearing Zone
- Figure 15, TCE Concentrations in Deep Water- Bearing Zone
- Figure 16, Cross Section F-F', Former Asphalt-Testing Laboratory Area
- Figure 17, Groundwater Analytical Data, Arsenic and Lead Plume in Groundwater Area
- Figure 18, pH Investigation Monitoring Well Schematic
- Figure 19, Cross Section G-G'
- Figure 20, Proposed Engineered Control Areas and Conditional Points of Compliance for Groundwater
- Table 1, Soil Analytical Results for TPH and BTEX
- Table 2, Soil Analytical Results for cPAHs
- Table 3, Monitoring Well Elevation Data
- Table 4, Groundwater Analytical Results for TPH and BTEX

Table 5, Groundwater Analytical Results for PAHs Table 6, Groundwater Analytical Results for Select VOCs Table 7, Groundwater Analytical Results for Metals Table 8, pH Readings Surrounding Monitoring Well MW-9B Table 9, Natural Attenuation and Water Quality Parameters Table 10, Cleanup Technology Screening Table 11, Detailed Evaluation of Cleanup Alternatives Table 12a, Summary of Estimated Cleanup Costs for Cleanup Alternatives 1, 2a, and 3a for TPH and cPAH Areas Table 12b, Summary of Estimated Cleanup Costs for Cleanup Alternatives 1, 2b, and 3b for TCE Areas Table 12c, Summary of Estimated Cleanup Costs for Cleanup Alternatives 1, 2C, and 3c for Lead and Arsenic Areas Chart 1, Disproportionate Cost Analysis Results Attachment A, Laboratory Analytical Reports Attachment B, Boring Logs Attachment C, Worksheets for Site-Specific Groundwater Cleanup Levels Attachment D, Well Log for Industrial Supply Well Attachment E, Lakewood Water District Documentation Attachment F, Mann-Kendall Trend Analysis Graphs


cc: Jeff Woodworth, Woodworth Capital, Inc.

AM/BJ:bjj

FIGURES

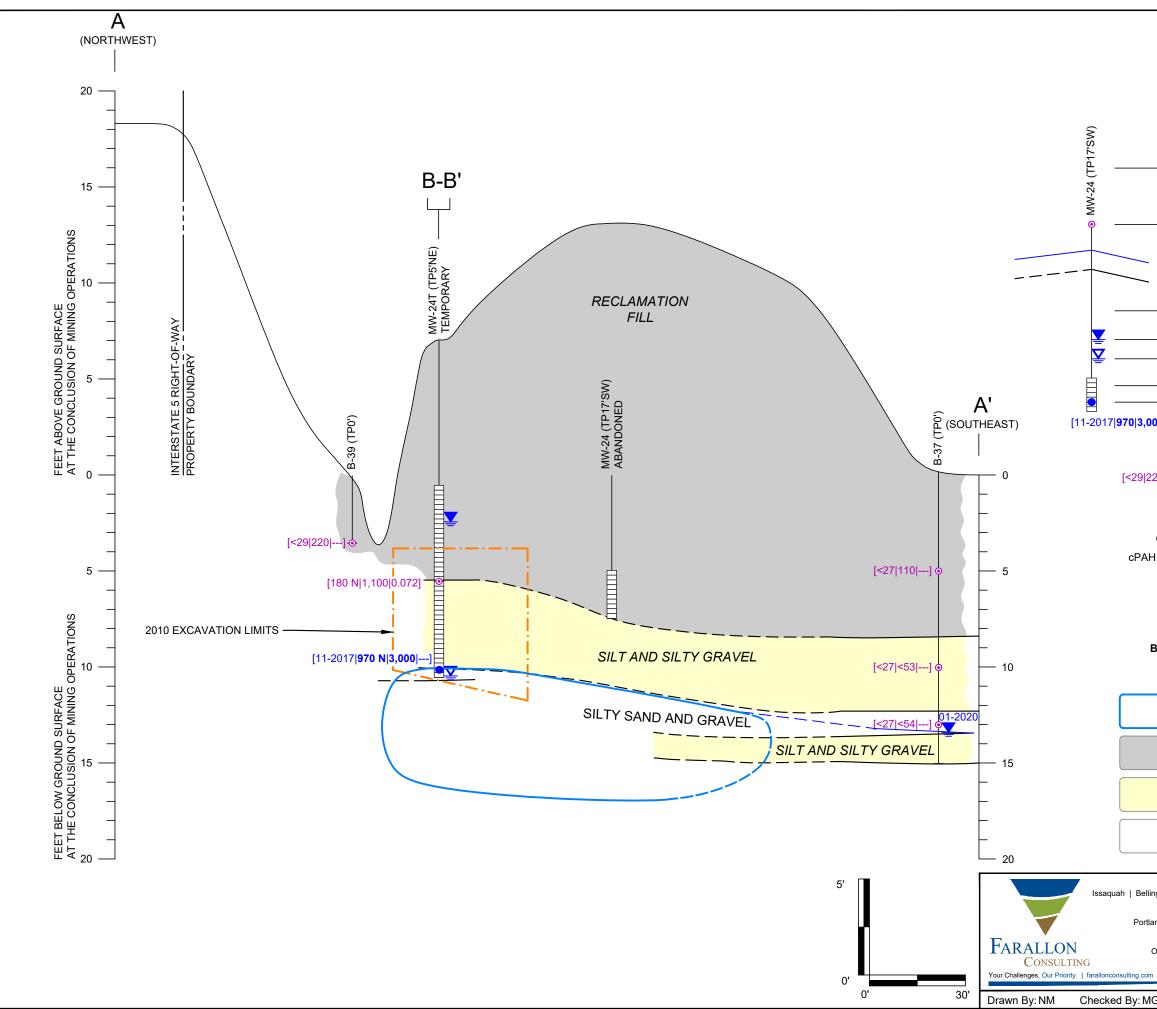

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

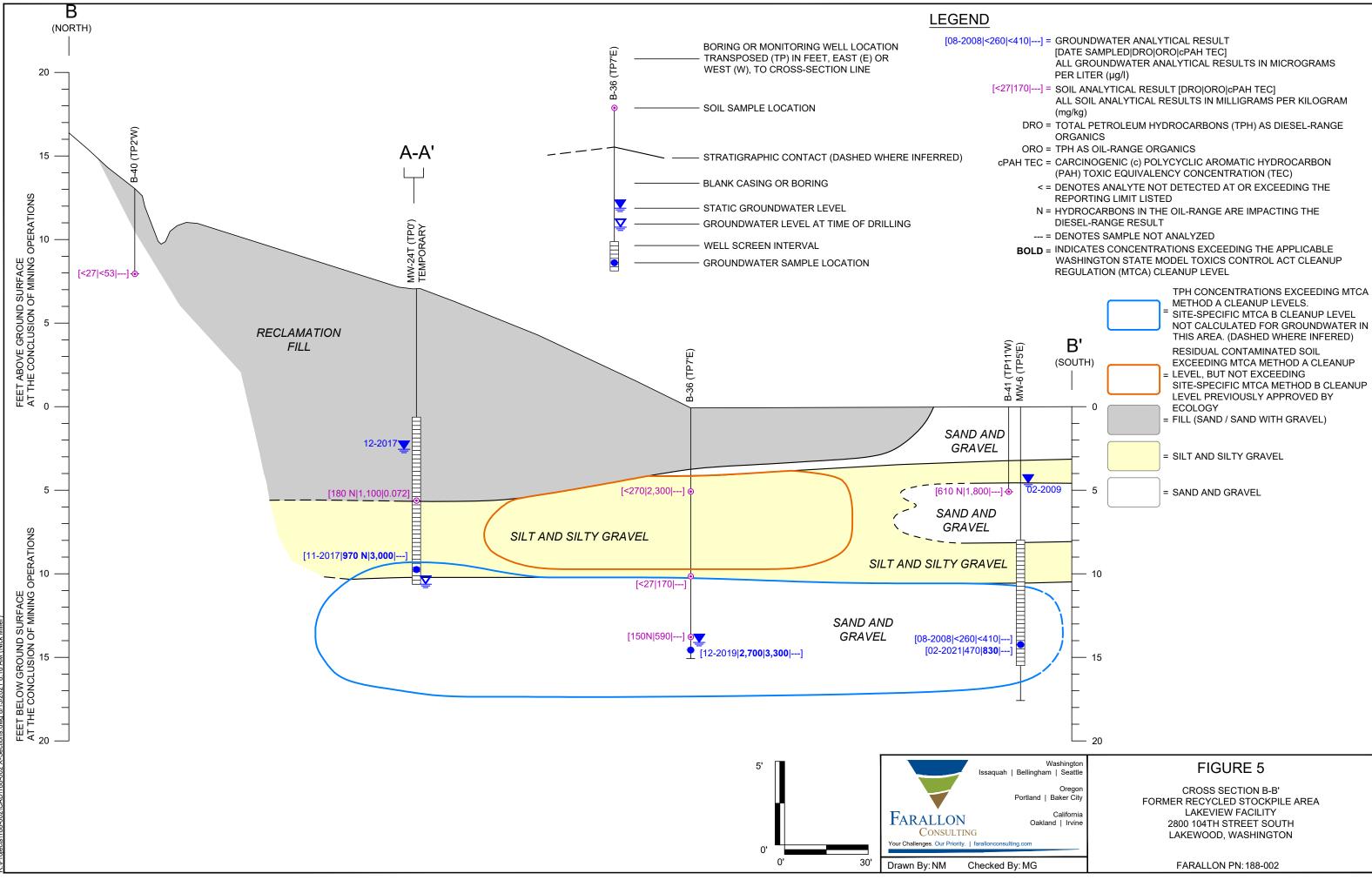
Farallon PN: 188-002

LEGEND	Ν			
• BORING (2017)	٨		M(achington	FIGURE 2
BORING (2019 - 2021)	4		Washington Issaquah Bellingham Seattle	
MONITORING WELL SHALLOW WATER-BEARING ZONE	•			
MONITORING WELL DEEP WATER-BEARING ZONE			Oregon Portland Baker City	PROPERTY PLAN LAKEVIEW FACILITY
DECOMMISSIONED WELL				2800 104TH STREET COURT SOUTH
AIR SPARGE/SOIL VAPOR EXTRACTION WELL PAIR		Farallon	California	LAKEWOOD, WASHINGTON
AIR SPARGE WELL	0 100 200	Consulting	Oakland Irvine	
SOIL VAPOR EXTRACTION WELL		CONSCIENTS		
EXCAVATION LIMITS (2010)	SCALE IN FEET	Your Challenges. Our Priority.	farallonconsulting.com	FARALLON PN: 188-002
PROPERTY BOUNDARY	NOTES:			
LINE OF CROSS SECTION	 ALL LOCATIONS ARE APPROXIMATE. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION. 	Drawn By: TPerrin	Checked By: CB	Date: 8/12/2021 Disc Reference: Document Path: Q:\Projects\188 Woodworth\002 Woodworth\Mapfiles\041 Report 202107\Figure-02_PropertyPlan.mxd

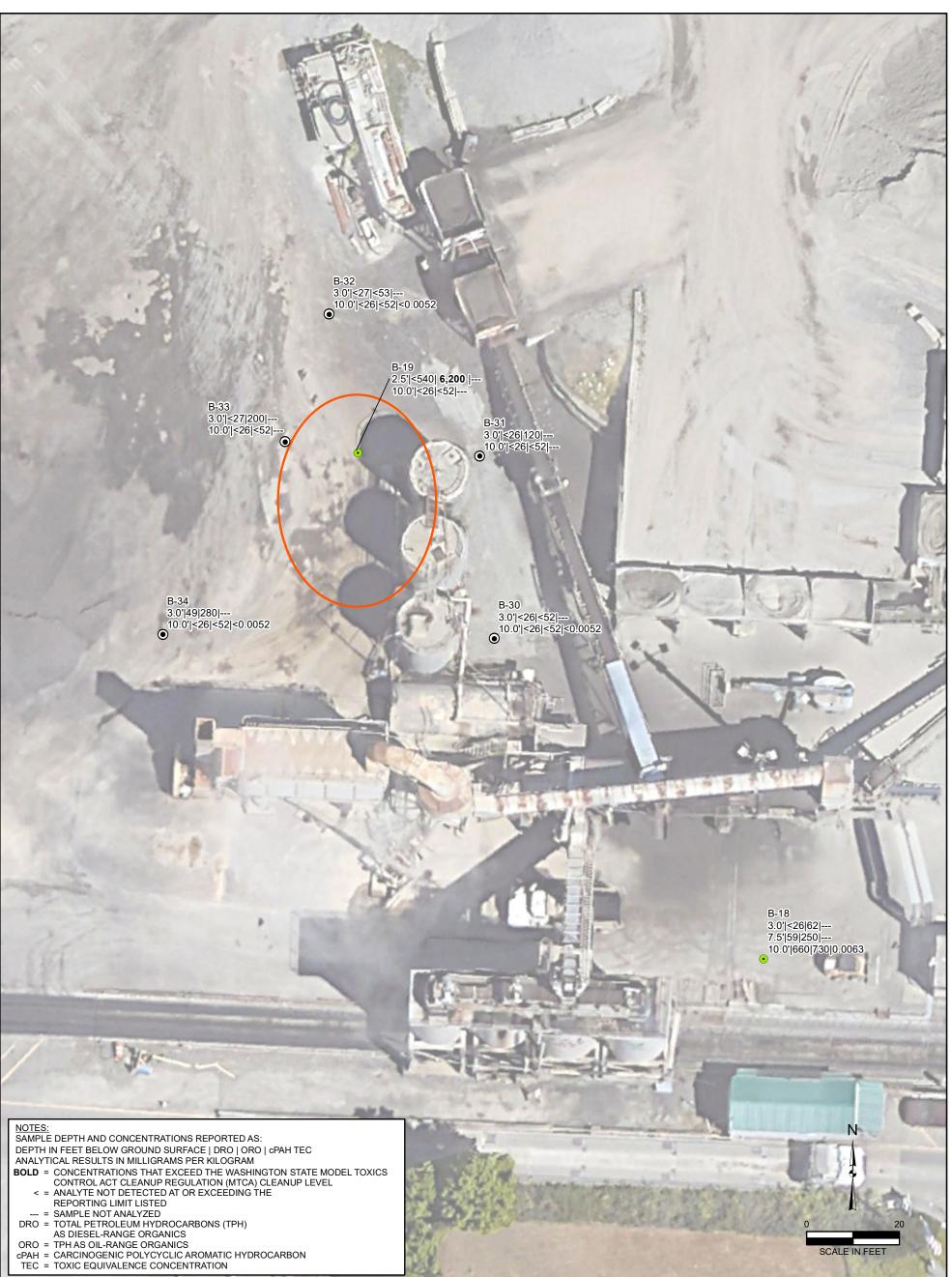
- \odot BORING (2019 - 2021)
- MONITORING WELL DEEP WATER-BEARING ZONE
- \bullet MONITORING WELL SHALLOW WATER-BEARING ZONE
- DECOMMISSIONED WELL

- EXCAVATION LIMITS (2010) RESIDUAL CONTAMINATED GROUNDWATER EXCEEDING
- - MTCA CLEANUP LEVEL
- RESIDUAL CONTAMINATED SOIL EXCEEDING MTCA
- CLEANUP LEVEL
- PROPERTY BOUNDARY




Ν

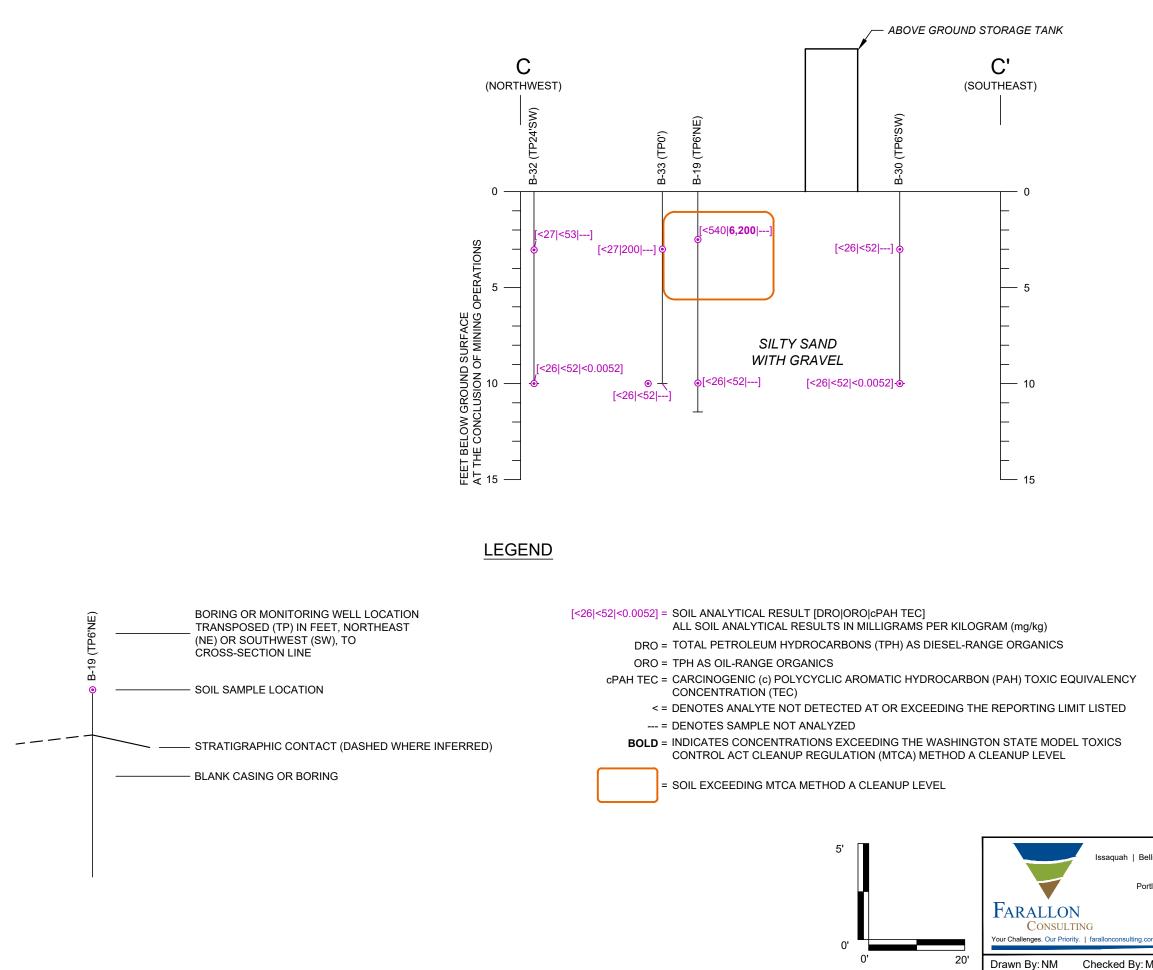
2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.


Washington	FIGURE 3			
Issaquah Bellingham Seattle	SOIL AND GROUNDWATER			
Oregon Portland Baker City	ANALYTICAL DATA FORMER RECYCLED STOCKPILE AREA			
California	LAKEVIEW FACILITY 2800 104TH STREET COURT SOUTH			
Oakland Irvine	LAKEWOOD, WASHINGTON			
aranonconsulting.com	FARALLON PN: 188-002			
Checked By: CB	Date: 8/16/2021 Disc Reference:			
Path: Q:\Projects\188 Woodworth	\002 Woodworth\Mapfiles\041 Report 202107\Figure-03_RecycledStockpile_Indscp.mxd			

	RANSPOSED (TP) IN FEET, NORTHEAST NE) OR SOUTHWEST (SW), TO
C	CROSS-SECTION LINE
2	SOIL SAMPLE LOCATION
A	APPROXIMATE STATIC GROUNDWATER LEVEL (WITH DATE)
	STRATIGRAPHIC CONTACT (DASHED WHERE INFERRED)
—— В	BLANK CASING OR BORING
5	STATIC GROUNDWATER LEVEL
	GROUNDWATER LEVEL AT TIME OF DRILLING
,	
	VELL SCREEN INTERVAL GROUNDWATER SAMPLE LOCATION
-	GROUNDWATER ANALYTICAL RESULT
[]	DATE SAMPLED DRO ORO cPAH TEC]
	ALL GROUNDWATER ANALYTICAL RESULTS IN MICROGRAMS
	SOIL ANALYTICAL RESULT [DRO ORO cPAH TEC]
A	ALL SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM
	TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE DRGANICS
	TPH AS OIL-RANGE ORGANICS
	CARCINOGENIC (c) POLYCYCLIC AROMATIC HYDROCARBON PAH) TOXIC EQUIVALENCY CONCENTRATION (TEC)
< = [DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE
	REPORTING LIMIT LISTED IYDROCARBONS IN THE OIL-RANGE ARE IMPACTING THE
	DIESEL-RANGE RESULT
	DENOTES SAMPLE NOT ANALYZED NDICATES CONCENTRATIONS EXCEEDING THE APPLICABLE
	VASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION (MTCA) CLEANUP LEVEL
	TPH CONCENTRATIONS EXCEEDING MTCA METHOD A CLEANUP
L	EVELS. SITE-SPECIFIC MTCA B CLEANUP LEVEL NOT
	CALCULATED FOR GROUNDWATER IN THIS AREA. (DASHED WHERE INFERED)
= F	TILL
= 5	SILT AND SILTY GRAVEL
= 5	SILTY SAND AND GRAVEL
	. 1
Washing اllingham Sea	
Ore rtland Baker	gon CROSS SECTION A-A'
Califo	
Oakland In	2800 104TH STREET SOUTH
om	LAKEWOOD, WASHINGTON
MG	FARALLON PN: 188-002

18 AM (

SAMPLE DEPTH AND CONCENTRATIONS REPORTED AS:
DEPTH IN FEET BELOW GROUND SURFACE DRO ORO CPAH TEC
ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM
BOLD = CONCENTRATIONS THAT EXCEED THE WASHINGTON STATE MODEL TOXI
CONTROL ACT CLEANUP REGULATION (MTCA) CLEANUP LEVEL
< = ANALYTE NOT DETECTED AT OR EXCEEDING THE
REPORTING LIMIT LISTED
= SAMPLE NOT ANALYZED
DRO = TOTAL PETROLEUM HYDROCARBONS (TPH)
AS DIESEL-RANGE ORGANICS
ORO = TPH AS OIL-RANGE ORGANICS
CPAH = CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBON
TEC = TOXIC EQUIVALENCE CONCENTRATION

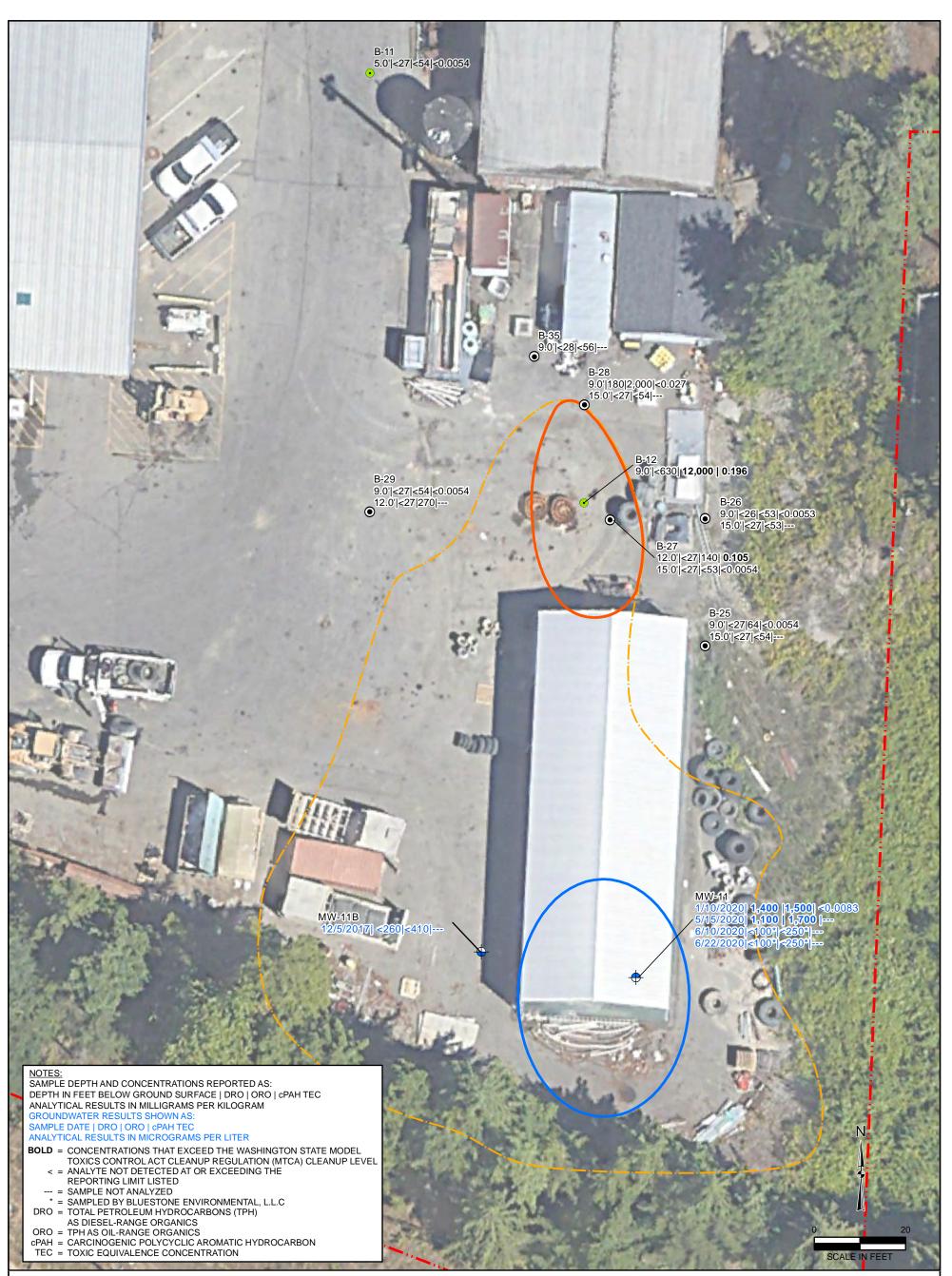

<u>LEGEND</u>

- BORING (2017) ullet
- BORING (2019 2021) ۲

SOIL EXCEEDING MTCA METHOD A CLEANUP LEVEL

	Washington Issaquah Bellingham Seattle	FIGURE 6			
FARALLON	Oregon Portland Baker City California Oakland Irvine	SOIL ANALYTIC HOT-MIX STORA LAKEVIEW FA 2800 104TH STREET (LAKEWOOD, WAS	GE AREA CILITY COURT SOUTH		
Your Challenges. Our Priority.	farallonconsulting.com	FARALLON PN:	188-002		
Drawn By: TPerrin	Checked By: CB	Date: 8/16/2021	Disc Reference		
	Q:\Projects\188 Woodworth\002	2 Woodworth\Mapfiles\041 Report 202107\	Figure-06 HotMixStorage .mx		

NOTES: 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.



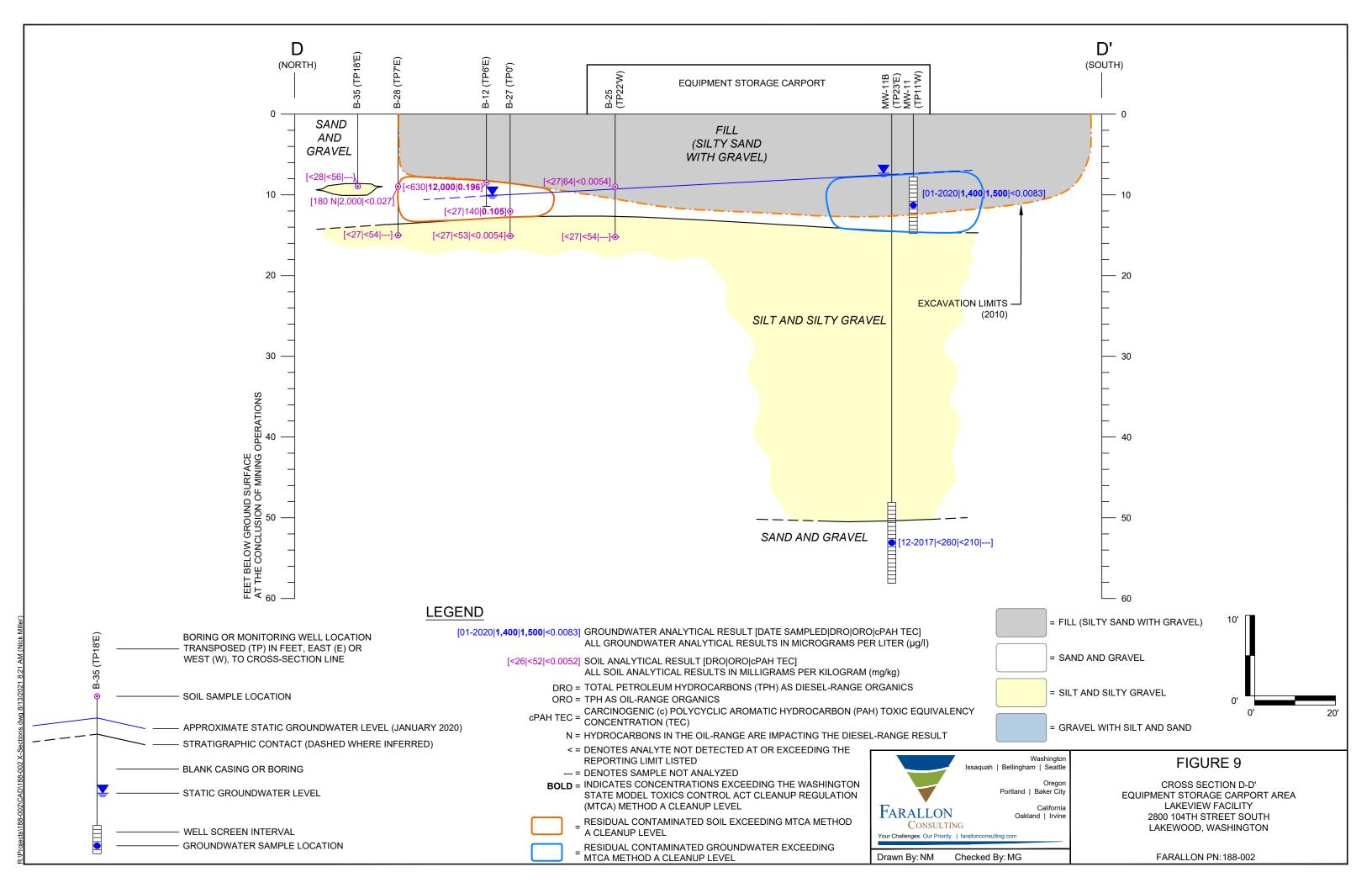
Washington ellingham Seattle
Oregon ortland Baker City
California Oakland Irvine
com
MG

FIGURE 7

CROSS SECTION C-C' HOT-MIX STORAGE AREA LAKEVIEW FACILITY 2800 104TH STREET SOUTH LAKEWOOD, WASHINGTON

FARALLON PN: 188-002

- BORING (2017)
- BORING (2019 2021)
- MONITORING WELL SHALLOW WATER-BEARING ZONE
- 0


- RESIDUAL CONTAMINATED GROUNDWATER EXCEEDING MTCA METHOD A CLEANUP LEVEL
- RESIDUAL CONTAMINATED SOIL EXCEEDING MTCA METHOD A CLEANUP LEVEL
 - EXCAVATION LIMITS (2010)
 - PROPERTY BOUNDARY

NOTES:

1. ALL LOCATIONS ARE APPROXIMATE.

2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

	Washington Issaquah Bellingham Seattle	FIGURE 8			
FARALLON Consulting	Oregon Portland Baker City California Oakland Irvine	SOIL AND GROUNDWATER ANALYTICAL DAT EQUIPMENT STORAGE CARPORT AREA LAKEVIEW FACILITY 2800 104TH STREET COURT SOUTH LAKEWOOD, WASHINGTON	Ā		
Your Challenges. Our Priority.	farallonconsulting.com	FARALLON PN: 188-002			
Drawn By: TPerrin	Checked By: CB Q:\Projects\188 Woodworth\002 Woo	Date: 8/16/2021 Disc Refe dworth\Mapfiles\041 Report 202107\Figure-08_EquipStorageCarpo			

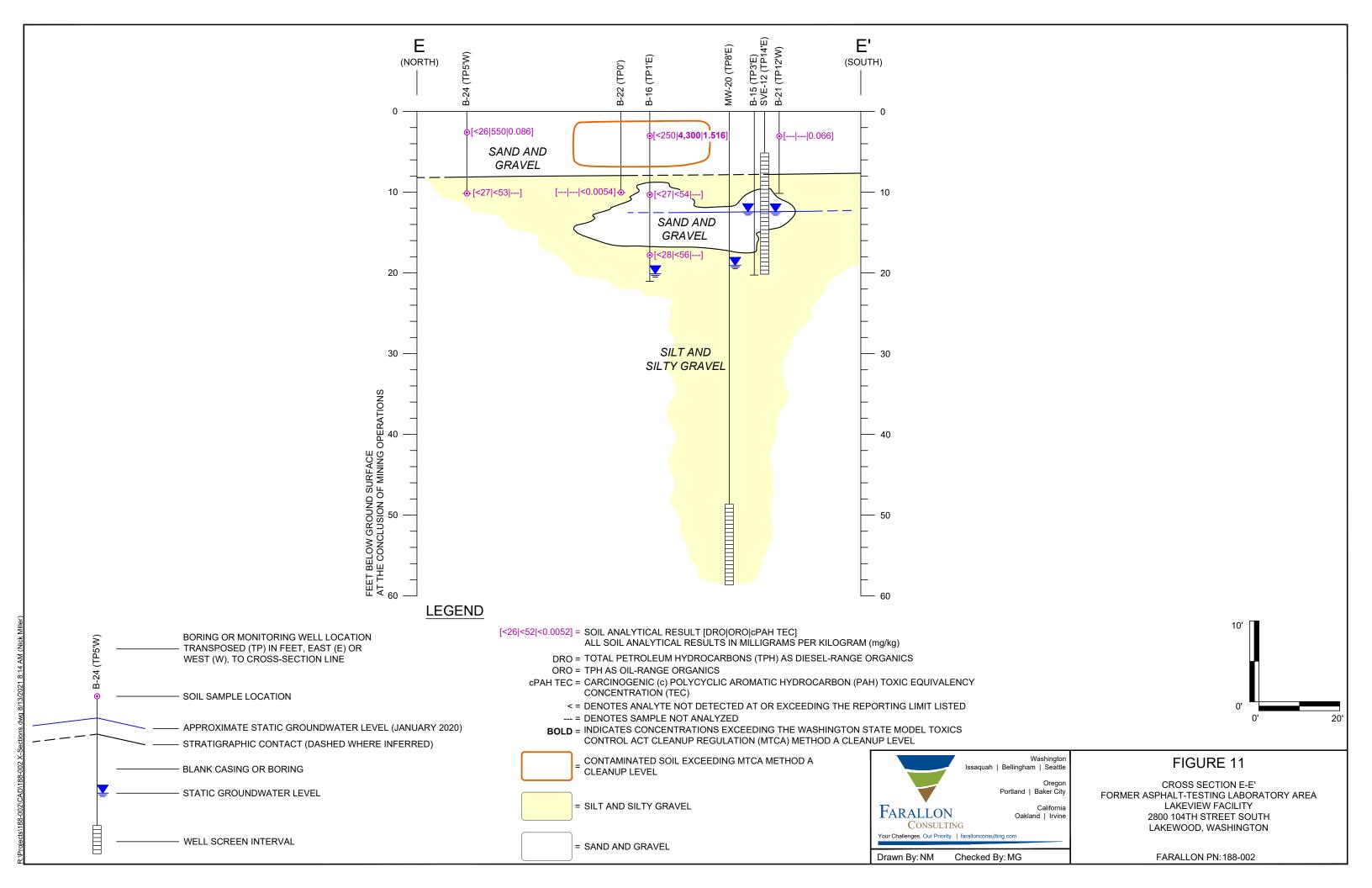
GROUNDWATER ANALYTICAL RESULTS AS: SAMPLE DATE | DRO | ORO | cPAH TEC ANALYTICAL RESULTS IN MICROGRAMS PER LITER.

- **BOLD** = CONCENTRATIONS THAT EXCEED THE WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION (MTCA) CLEANUP LEVEL < = ANALYTE NOT DETECTED AT OR EXCEEDING THE
 - REPORTING LIMIT LISTED
- --- = SAMPLE NOT ANALYZED DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE ORGANICS ORO = TPH AS OIL-RANGE ORGANICS CPAH = CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBON

- TEC = TOXIC EQUIVALENCE CONCENTRATION

Ν SCALE IN FEET

LEGEND


- BORING (2017) •
- \odot BORING (2019 - 2021)
- $\mathbf{\Phi}$ MONITORING WELL DEEP WATER-BEARING ZONE
- $\mathbf{\Phi}$ MONITORING WELL SHALLOW WATER-BEARING ZONE
- DECOMMISSIONED WELL
- AIR SPARGE/SOIL VAPOR EXTRACTION WELL PAIR \diamond
- AIR SPARGE WELL
- SOIL VAPOR EXTRACTION WELL \bigcirc
- RESIDUAL CONTAMINATED GROUNDWATER EXCEEDING 0 MTCA METHOD A CLEANUP LEVEL
 - RESIDUAL CONTAMINATED SOIL EXCEEDING MTCA METHOD A CLEANUP LEVEL

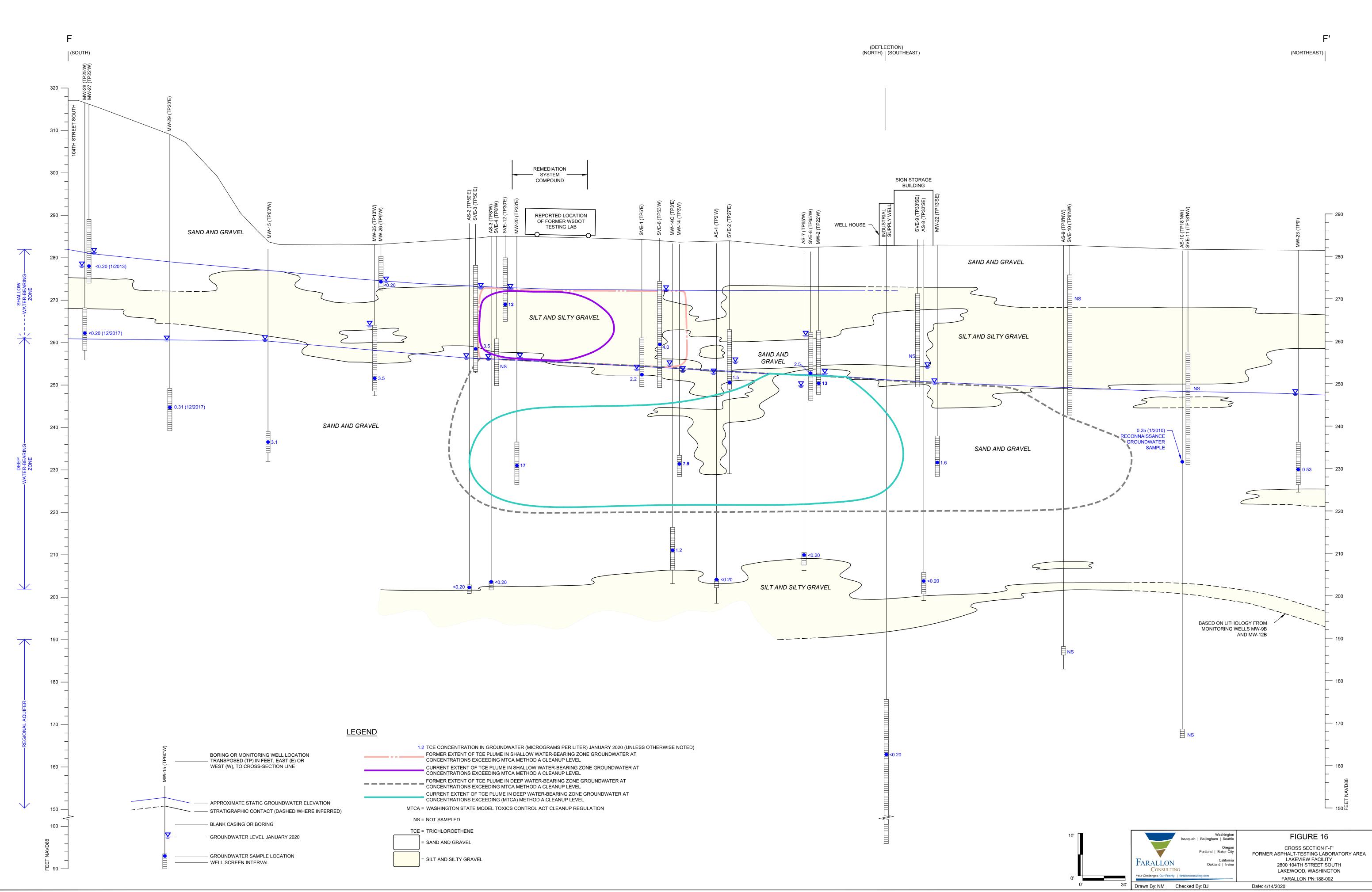
NOTES:

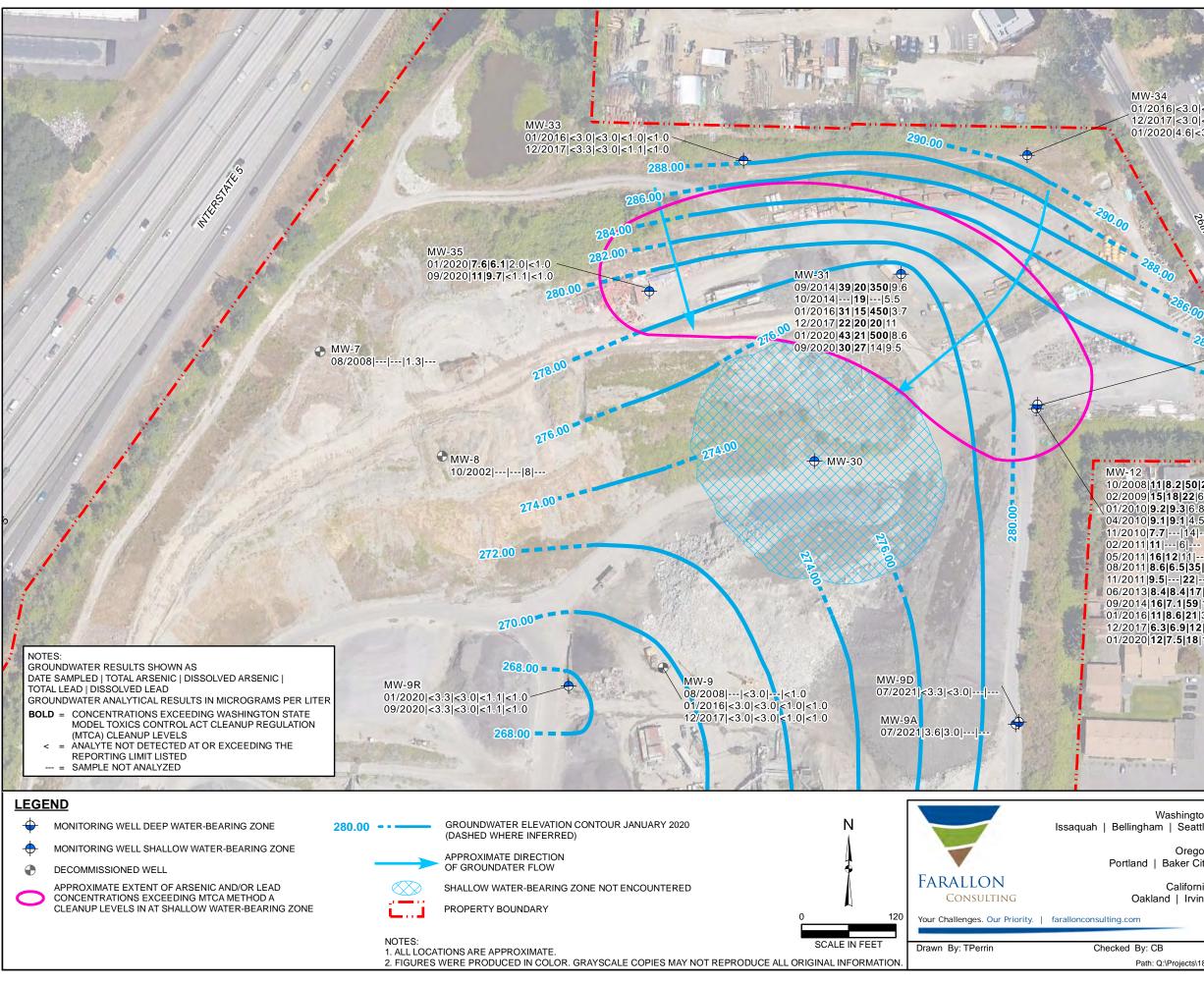
1. ALL LOCATIONS ARE APPROXIMATE.

2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

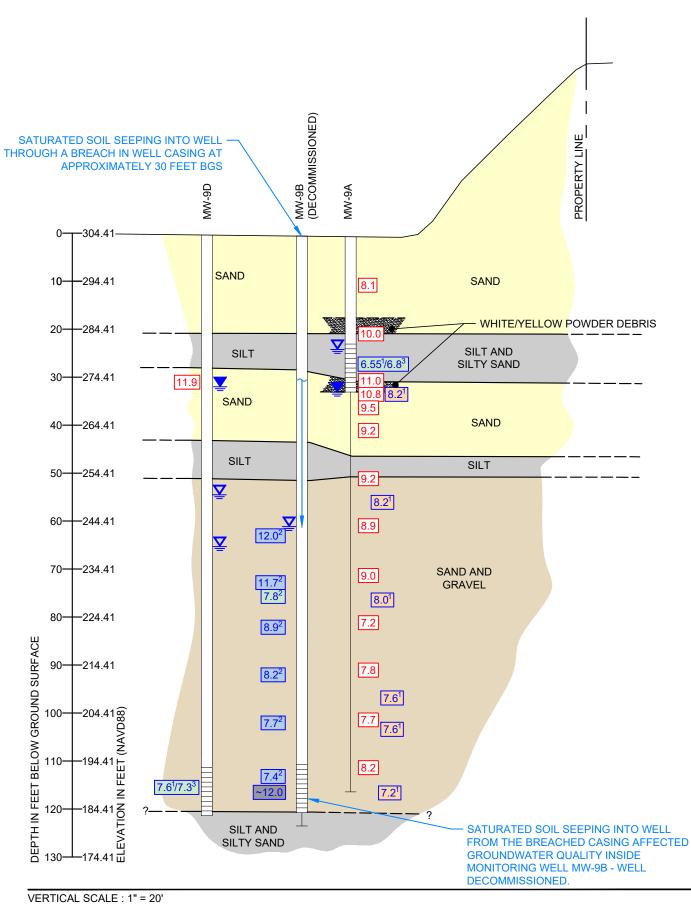
FARALLON CONSULTING	Washington Issaquah Bellingham Seattle Oregon Portland Baker City California Oakland Irvine	FIGURE 10 SOIL ANALYTICAL DATA FORMER ASPHALT-TESTING LABORATORY AREA LAKEVIEW FACILITY 2800 104TH STREET COURT SOUTH LAKEWOOD, WASHINGTON		
Your Challenges. Our Priority. Drawn By: TPerrin	farallonconsulting.com Checked By: CB	FARALLON PN: 188-002 Date: 8/16/2021 Disc Reference:		
Q:\Projects\188 Woodworth\002 Woodworth\Mapfiles\041 Report 202107\Figure-10_Zone-D_SoilAnalytical.mxd				

¢	MONITORING WELL SHALLOW WATER- BEARING ZONE	280.00	GROUNDWATER ELEVATION CONTOUR (DASHED WHERE INFERRED)		Washington Issaquah Bellingham Seattle	FIGURE 12
• • •	DECOMMISSIONED WELL AIR SPARGE/SOIL VAPOR EXTRACTION WELL PAIR SOIL VAPOR EXTRACTION WELL SHALLOW WATER-BEARING ZONE NOT ENCOUNTERED	(281.09) [269.45] NM	APPROXIMATE DIRECTION OF GROUNDATER FLOW GROUNDWATER ELEVATION (1/6/2020) GROUNDWATER ELEVATION NOT USED IN CONTOURING (1/6/2020) NOT MEASURED	FARALLON	Oregon Portland Baker City California Oakland Irvine	GROUNDWATER ELEVATION CONTOURS FOR SHALLOW WATER-BEARING ZONE (JANUARY 2020) LAKEVIEW FACILITY 2800 104TH STREET COURT SOUTH
i	PROPERTY BOUNDARY			Consulting		LAKEWOOD, WASHINGTON
			NOTES:	Your Challenges. Our Priority.	farallonconsulting.com	FARALLON PN: 188-002
			1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.	Drawn By: TPerrin	Checked By: CB	Date: 8/16/2021 Disc Reference: Document Path: Q:\Projects\188 Woodworth\002 Woodworth\Mapfiles\041 Report 202107\Figure-12_GW_Contours.mxd


 ⊕ 	MONITORING WELL DEEP WATER- BEARING ZONE DECOMMISSIONED WELL AIR SPARGE/SOIL VAPOR EXTRACTION WELL PAIR AIR SPARGE WELL SOIL VAPOR EXTRACTION WELL PROPERTY BOUNDARY	 280.00 GROUNDWATER ELEVATION CONTOUR (DASHED WHERE INFERRED) APPROXIMATE DIRECTION OF GROUNDATER FLOW (253.90) GROUNDWATER ELEVATION (1/6/2020) [279.98] GROUNDWATER ELEVATION NOT USED IN CONTOURING (1/6/2020) NM NOT MEASURED 	FARALLON CONSULTING	Washington Issaquah Bellingham Seattle Oregon Portland Baker City California Oakland Irvine	GROUNDWATER ELEVATION CONTOURS FOR DEEP WATER-BEARING ZONE (JANUARY 2020) LAKEVIEW FACILITY
			Your Challenges. Our Priority.	farallonconsulting.com	FARALLON PN: 188-002
		NOTES: 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.	Drawn By: TPerrin	Checked By: BJ	Date: 8/6/2021 Disc Reference: Document Path: Q:\Projects\188 Woodworth\002 Woodworth\Mapfiles\041 Report 202107\Figure-13_GW_DeepContours.mxd


•	MONITORING WELL DEEP WATER- BEARING ZONE	CURRENT EXTENT OF TCE PLUME IN SHALLOW WATER-BEARING ZONE GROUNDWATER		Washington Issaquah Bellingham Seattle		
+	MONITORING WELL SHALLOW WATER- BEARING ZONE	SHALLOW WATER-BEARING ZONE NOT ENCOUNTERED		Oregon	TCE CONCENTRATIONS IN	
•	DECOMMISSIONED WELL	PROPERTY BOUNDARY		Portland Baker City	SHALLOW WATER-BEARING ZONE	
\diamond	AIR SPARGE/SOIL VAPOR EXTRACTION WELL PAIR	APPROXIMATE DIRECTION OF GROUNDATER FLOW	Farallon	California Oakland Irvine	LAKEVIEW FACILITY 2800 104TH STREET COURT SOUTH	
	AIR SPARGE WELL		Consulting		LAKEWOOD, WASHINGTON	
	SOIL VAPOR EXTRACTION WELL		Your Challenges. Our Priority. faral	lonconsulting.com	FARALLON PN: 188-002	
		NOTES: 1. ALL LOCATIONS ARE APPROXIMATE.				
		2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.	Drawn By: TPerrin	Checked By: CB	Date: 8/16/2021 Disc Reference Document Path: Q:\Projects\188 Woodworth\002 Woodworth\Mapfiles\041 Report 202107\Figure-14 TCE SWBZ	

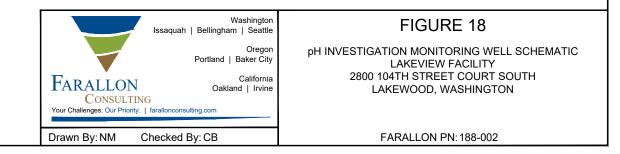
	MONITORING WELL DEEP WATER-BEARING DECOMMISSIONED WELL	APPROXIMATE DIRECTION OF GROUNDATER FLOW		Washington Issaquah Bellingham Seattle	
▲	AIR SPARGE/SOIL VAPOR EXTRACTION WELL AIR SPARGE WELL	PROPERTY BOUNDARY		Oregon Portland Baker City	
	SOIL VAPOR EXTRACTION CURRENT EXTENT OF TCE PLUME IN DEEP WATER-BEARING ZONE AT CONCENTRATIONS EXCEEDING MTCA METHOD A CLEANUP LEVEL		FARALLON Consulting	California Oakland Irvine	
\bigcirc	FORMER EXTENT OF TCE CONCENTRATIONS IN DEEP WATER-BEARING ZONE GROUNDWATER EXCEED MTCA METHOD A CLEANUP LEVEL (2010)		Your Challenges. Our Priority.	farallonconsulting.com	FARALLON PN: 188-002
		NOTES: 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.	Drawn By: TPerrin	Checked By: BJ	Date: 8/16/2021 Disc Reference: Document Path: Q:\Projects\188 Woodworth\002 Woodworth\Mapfiles\041 Report 202107\Figure-15_TCE_DWBZ.mxd

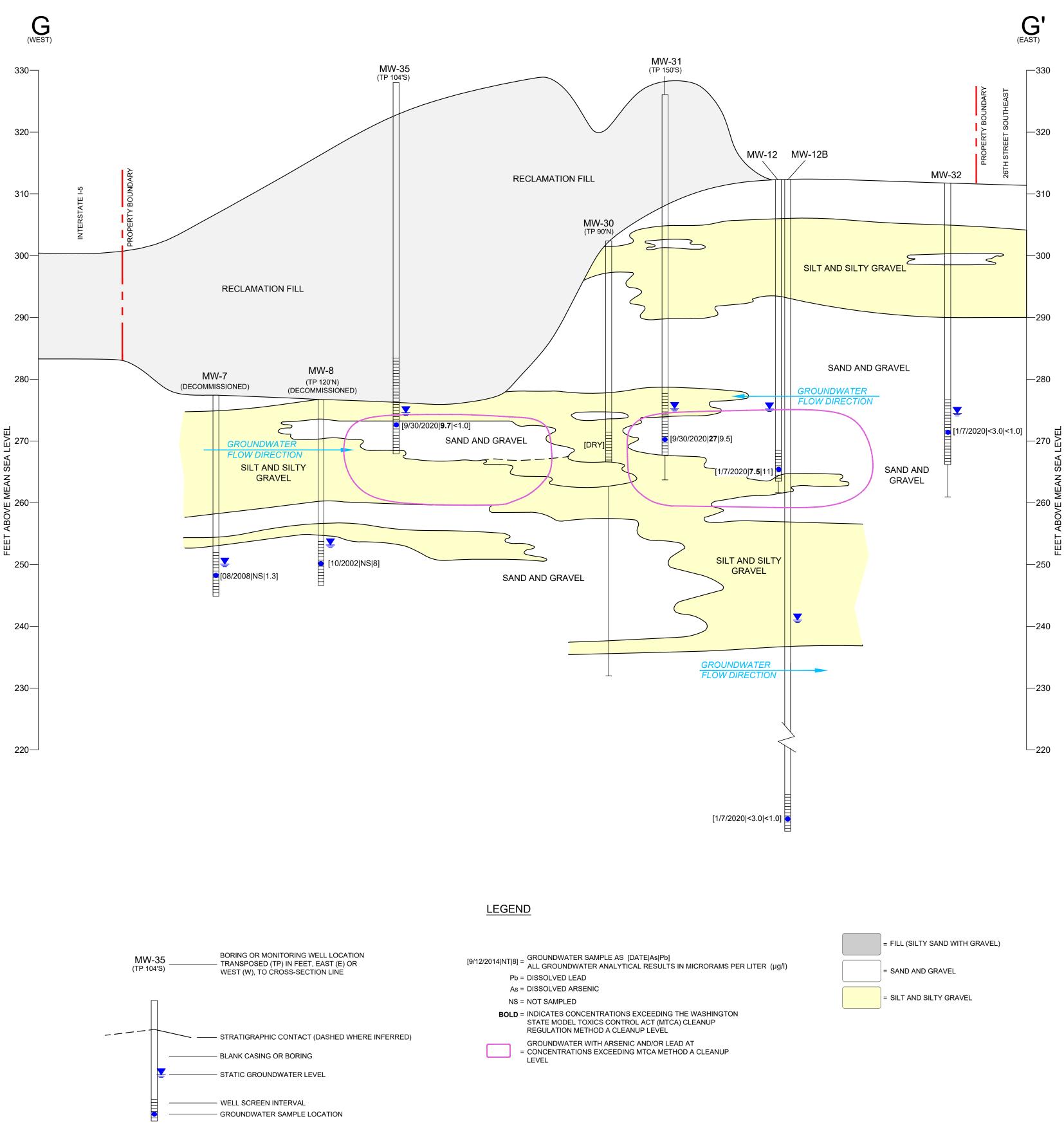

Oregon Portland | Baker City

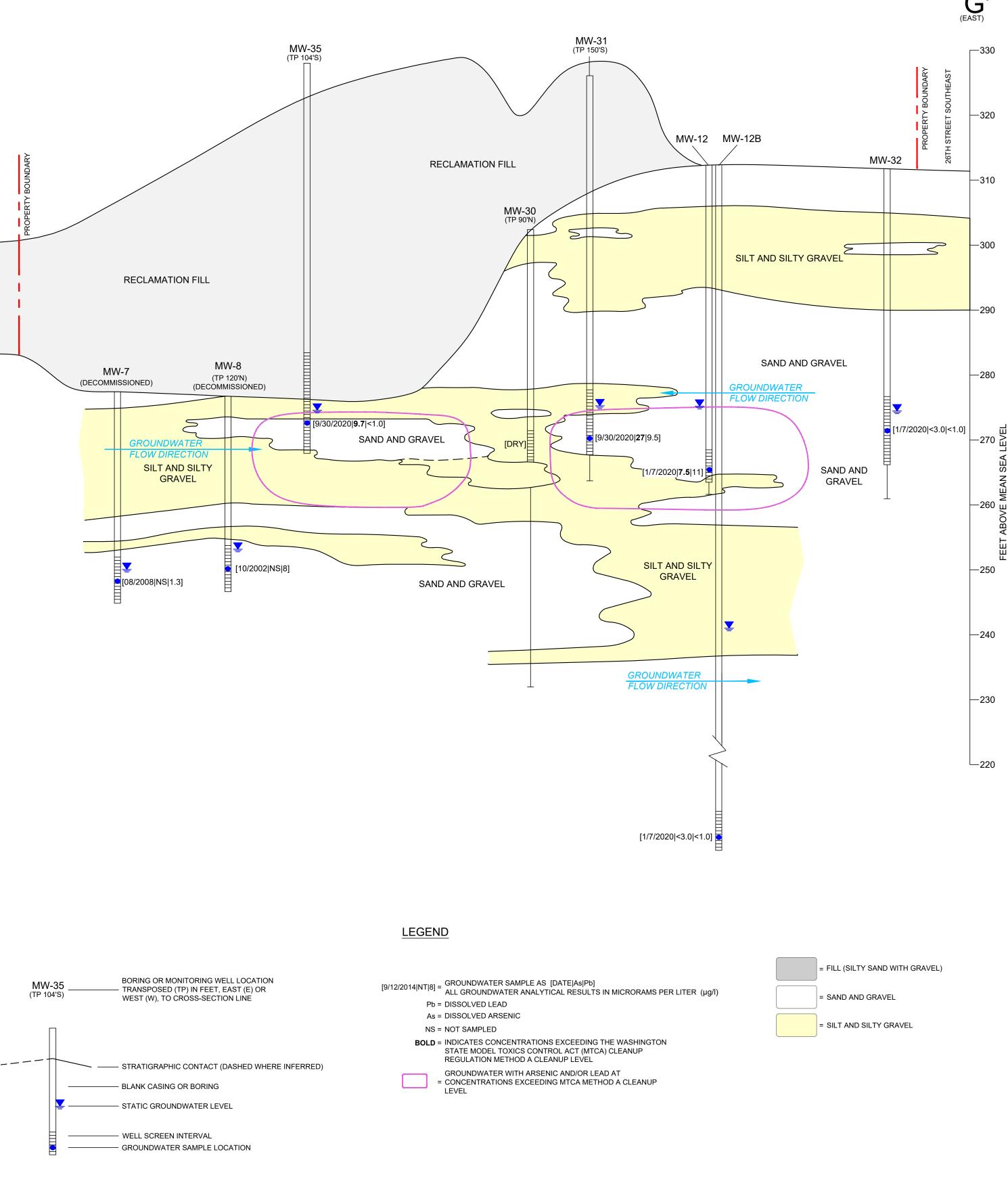
> California Oakland | Irvine

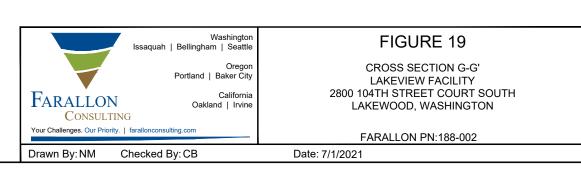
GROUNDWATER ANALYTICAL DATA ARSENIC AND LEAD PLUME IN GROUNDWATER AREA LAKEVIEW FACILITY 2800 104TH STREET COURT SOUTH LAKEWOOD, WASHINGTON

FARALLON PN: 188-002


Date: 8/16/2021 Disc Reference: Path: Q:\Projects\188 Woodworth\002 Woodworth\Mapfiles\041 Report 202107\Figure-17_Metals_GW_tbld.mxd




HORIZONTAL SCALE : NOT TO SCALE


~12.0	BLUE pH RESULTS IN GROUNDWATER
7.4**	RED pH RESULTS IN SOIL
~12.0	pH RESULT PRE-DEVELOPMENT
7.4 ²	pH RESULT DURING DEVELOPMENT
7.6 ¹ /7.3 ³	pH RESULT POST-DEVELOPMENT
7 01	

- 7.2¹ pH DURING RECONNAISSANCE GROUNDWATER SAMPLING
 - ¹ MEASURED USING A STANDALONE pH METER
- ² MEASURED USING A MULTIMETER WITH FLOW-THROUGH CELL
- ³ pH ANALYZED IN A LABORATORY BY EPA METHOD 9045D
- NAVD88 NORTH AMERICAN VERTICAL DATUM OF 1988
- BGS BELOW GROUND SURFACE
- WATER LEVEL (2021)
- WATER LEVEL AT TIME OF DRILLING

10'

MW-3 (TCE) MW-9R (DRO, ORO, ARSENIC AND LEAD) MW-32 (ARSENIC AND LEAD) MW-33 (ARSENIC AND LEAD) MW-34 (ARSENIC AND LEAD) SVE-3 (TCE) SVE-6 (TCE) <u>DEEP WATER-BEARING ZONE</u> MW-15 (TCE) MW-22 (TCE) SVE-2 (TCE) MW-16R (TCE) MW-23 (TCE)		MW-11B EQUIPMENT STORAGE CARPORT AREA PAVEMENT ELEVATION = 291' MS CONTAMINATED SOIL ELEVATION MINIMUM TOP OF FILL ELEVATION (IF ASPHALT CAP REMOVED) = 2 EQUIPMENT STORAGE CARPORT AREA	N = 282' MSL
MW-10K (TCE) MW-23 (TCE) MW-18 (TCE) MW-25 (TCE) MONITORED NATURAL ATTENUATION: SHALLOW WATER-BEARING ZONE MW-6 (DRO AND ORO) MW-11 (DRO AND ORO) MW-11 (DRO AND ORO) MW-12 (ARSENIC AND ORO) MW-12 (ARSENIC AND LEAD) MW-31 (ARSENIC AND LEAD) MW-35 (ARSENIC AND LEAD) MW-36 (ARSENIC AND LEAD) SVE-12 (TCE)	STATE ROUTE S	512	
DEEP WATER-BEARING ZONE MW-2 (TCE) SVE-1 (TCE) MW-20 (TCE) DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE ORGANICS ORO = TPH AS OIL-RANGE ORGANICS MSL = MEAN SEA LEVEL TCE = TRICHLOROETHENE			0 100 200 SCALE IN FEET
LEGEND MW-10 MONITORING WELL SCREENED IN SHALLOW WATER-BEARING ZONE MONITORING WELL SCREENED IN DEEP WATER-	APPROXIMATE AREA WHERE ARSENIC AND LEAD CONCENTRATIONS IN SHALLOW WATER-BEARING ZONE GROUNDWATER EXCEED APPLICABLE CLEANUP LEVELS	N OTES: 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT RE	PRODUCE ALL ORIGINAL INFORMATION.
MW-10B ● BEARING ZONE MW-6 ● DECOMMISSIONED WELL SVE-1 ◇ AIR SPARGE/SOIL VAPOR EXTRACTION WELL PAIR	APPROXIMATE AREA WHERE DRO OR ORO CONCENTRATIONS IN SHALLOW WATER-BEARING ZONE EXCEED APPLICABLE CLEANUP LEVELS	Washington Issaquah Bellingham Seattle	FIGURE 20
AS-1 AIR SPARGE WELL CONDITIONAL POINT OF COMPLIANCE FOR SHALLOW WATER-BEARING ZONE	APPROXIMATE AREA WHERE DRO OR ORO CONCENTRATIONS IN SOIL EXCEED APPLICABLE CLEANUP LEVELS	Oregon Portland Baker City	PROPOSED ENGINEERED CONTROL AREAS AND CONDITIONAL POINTS OF COMPLIANCE FOR GROUNDWATER
 MW-23 + CONDITIONAL POINT OF COMPLIANCE FOR DEEP WATER-BEARING ZONE SVE-6 + AIR SPARGE/SOIL VAPOR EXTRACTION WELL PAIR AS-2 SOIL VAPOR EXTRACTION WELL 	APPROXIMATE AREA WHERE TCE CONCENTRATIONS IN SHALLOW WATER-BEARING ZONE GROUNDWATER EXCEED APPLICABLE CLEANUP LEVEL	FARALLON California Consulting Oakland Irvine	LAKEVIEW FACILITY 2800 104TH STREET COURT SOUTH LAKEWOOD, WASHINGTON
MW-6 MONITORING WELL SHALLOW WATER-BEARING ZONE USED TO MONITOR NATURAL ATTENUATION MONITORING WELL DEEP WATER-BEARING ZONE	APPROXIMATE AREA WHERE TCE CONCENTRATIONS IN DEEP WATER-BEARING ZONE EXCEED APPLICABLE CLEANUP LEVEL	Your Challenges. Our Priority. farallonconsulting.com	FARALLON PN: 188-002
MW-2 USED TO MONITOR NATURAL ATTENUATION SOIL VAPOR EXTRACTION WELL USED TO	ENGINEERED CONTROL/CAP	Drawn By: TPerrin Checked By: CB	Date: 8/16/2021 Disc Reference:
SVE-12 O SOIL VAPOR EXTRACTION WELL USED TO MONITOR NATURAL ATTENUATION	PROPERTY BOUNDARY		Document Path: Q:\Projects\188 Woodworth\002 Woodworth\Mapfiles\041 Report 202107\Figure-20_PointofComplianceWells.mxd

SV-9

TABLES

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

Farallon PN: 188-002

							An	alytical Results (m	illigrams per kilogra	am)			
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date		reated with a Sulfu Cleanup Procedure ORO ²		Sample Extra DRO ²	act Not Treated Pri	ior to Analysis Calculated DRO+ORO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
		•		•	•	Equipment	Parking Area						
B-10	B-10-5.0-111317	5.0	11/13/2017				< 26	130	NA				
				•		Tack Ta	ank Area	• •			• •		
B-11	B-11-5.0-111617	5.0	11/16/2017				< 27	< 54	NA				
	•	-				Equipment Stor	age Carport Area	-					
B-12	B-12-9.0-111617	9.0	11/16/2017	< 580	11,000	11,290	< 630	12,000	12,315				
B-25	B25-9.0	9.0	12/5/2019				< 27	64	78				
D -25	B25-15.0	15.0	12/5/2019				< 27	< 54	<41				
B-26	B26-9.0	9.0	12/5/2019				< 26	< 53	<40				
D- 20	B26-15.0	15.0	12/5/2019				< 27	< 53	<40				
B-27	B27-12.0	12.0	12/5/2019				< 27	140	154				
D-27	B27-15.0	15.0	12/5/2019				< 27	< 53	<40				
B-28	B28-9.0	9.0	12/6/2019				180 N	2,000	2,180				
B-28	B28-15.0	15.0	12/6/2019				< 27	< 54	<41				
D 20	B29-9.0	9.0	12/6/2019				< 27	< 54	<41				
B-29	B29-12.0	12.0	12/6/2019				< 27	270	284				
B35	B35-9.0	9.0	12/19/2019				< 28	< 56	<42				
		•	•	•		Asphalt l	Plant Area	•			•		
	B-18-3.0-111417	3.0	11/14/2017				< 26	62	NA				
B-18	B-18-7.5-111617	7.5	11/16/2017				59 N	250	NA				
	B-18-10.0-111617	10.0	11/16/2017				660 N	730	NA				
MTCA Method	A Cleanup Levels for So	oil ⁵	-	2,000	2,000	NA	2,000	2,000	NA	0.03	7	6	9
	B Cleanup Levels for So			NA	NA	3,699 3,739	NA	NA	3,699 3,739	NA	NA	NA	NA

					Analytical Results (milligrams per kilogram)								
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	-	reated with a Sulfu Cleanup Procedure ORO ²	uric Acid/Silica Gel e Calculated DRO+ORO ³	Sample Extra DRO ²	act Not Treated Pr	ior to Analysis Calculated DRO+ORO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
						Hot-Mix S	torage Area						
B-19	B-19-2.5-111417	2.5	NA										
D-19	B-19-10.0-111617	10.0	11/16/2017				< 26	< 52	NA				
B-30	B30-3.0	3.0	12/6/2019				< 26	< 52	NA				
D-30	B30-10.0	10.0	12/6/2019				< 26	< 52	NA				
B-31	B31-3.0	3.0	12/6/2019				< 26	120	NA				
D-51	B31-10.0	10.0	12/6/2019				< 26	< 52	NA				
B-32	B32-3.0	3.0	12/6/2019				< 27	< 53	NA				
D- 52	B32-10.0	10.0	12/6/2019				< 26	< 52	NA				
B-33	B33-3.0	3.0	12/6/2019				< 27	200	NA				
D- 55	B33-10.0	10.0	12/6/2019				< 26	< 52	NA				
B-34	B34-3.0	3.0	12/6/2019				49	280	NA				
D-04	B34-10.0	10.0	12/6/2019				< 26	< 52	NA				
MTCA Method	ATCA Method A Cleanup Levels for Soil ⁵				2,000	NA	2,000	2,000	NA	0.03	7	6	9
MTCA Method	TCA Method B Cleanup Levels for Soil ⁶				NA	3,699 3,739	NA	NA	3,699 3,739	NA	NA	NA	NA

					Analytical Results (milligrams per kilogram)									
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date		reated with a Sulfu Cleanup Procedure ORO ²	ric Acid/Silica Gel e Calculated DRO+ORO ³	Sample Extra DRO ²	oct Not Treated Pri	ior to Analysis Calculated DRO+ORO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴	
	-			•	•	Former Recycle	d Stockpile Area							
MW-24T	MW-24T-12.5-111417	12.5	11/14/2017	200 N	800	1,000	180 N	1,100	1,280					
	B36-5.0	5.0	12/19/2019				< 270	2,300	2,435					
B36	B36-10.0	10.0	12/19/2019				< 27	170	184					
	B36-13.5	13.5	12/19/2019				150 N	590	740					
	B37-5.0	5.0	12/19/2019				< 27	110	124					
B37	B37-10.0	10.0	12/19/2019				< 27	< 53	40					
	B37-13.0	13.0	12/19/2019				< 27	< 54	41					
	B38-5.0	5.0	12/19/2019				51 N	700	751					
B38	B38-10.0	10.0	12/19/2019				< 35	200	218					
	B38-13.0	13.0	12/19/2019				< 29	< 57	43					
B39	B39-3.5	3.5	12/20/2019				< 29	220	235					
B40	B40-4.0	4.0	12/20/2019				< 27	< 53	40					
B41	B-41-5.0	5.0	1/3/2020				610 N	1,800	2,410					
B42	B-42-5.0	5.0	1/3/2020				38 N	270	308					
B43	B-43-5.0	5.0	1/3/2020				34 N	150	184					
MTCA Method	l A Cleanup Levels for So	il ⁵		2,000	2,000	NA	2,000	2,000	NA	0.03	7	6	9	
MTCA Method	B Cleanup Levels for So		NA	NA	3,699 3,739	NA	NA	3,699 3,739	NA	NA	NA	NA		

							An	alytical Results (m	illigrams per kilogra	am)			
Sample		Sample Depth		-	reated with a Sulfu Cleanup Procedure ORO ²		Sample Extra	act Not Treated Pri	ior to Analysis Calculated DRO+ORO ³	D 4	T 1 4		X 4
Location	Sample Identification	(feet) ¹	Sample Date	DRO		DRO+ORO			DRO+ORO	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
	B-13-2.5-111317	2.5	11/13/2017							< 0.00086	< 0.0043	< 0.00086	< 0.00256
										< 0.00080	< 0.0043	< 0.00080	< 0.00230
B-13	B-13-5.0-111617	5.0	11/16/2017				< 26	< 52	NA				
	B-13-10.0-111617	10.0	11/16/2017				< 27	< 53	NA	< 0.00083	< 0.0041	< 0.00083	< 0.00253
	B-13-17.5-111617	17.5	11/16/2017				< 28	< 56	NA	< 0.00079	< 0.0039	< 0.00079	< 0.00239
	B-14-2.5-111317	2.5	11/13/2017				< 26	< 52	NA	< 0.00093	< 0.0046	< 0.00093	< 0.00283
B-14	B-14-10.0-111417	10.0	11/14/2017				< 26	< 53	NA	< 0.0010	< 0.0052	< 0.0010	< 0.0031
	B-14-17.5-111417	17.5	11/14/2017				< 27	< 55	NA	< 0.00090	< 0.0045	< 0.00090	< 0.0027
	B-15-2.5-111317	2.5	11/13/2017				150	1,000	NA	< 0.00083	< 0.0041	< 0.00083	< 0.00253
B-15	B-15-10.0-111517	10.0	11/15/2017				< 27	< 53	NA	< 0.00092	< 0.0046	< 0.00092	< 0.00272
	B-15-17.5-111517	17.5	11/15/2017				< 29	< 58	NA	< 0.00084	< 0.0042	< 0.00084	< 0.00254
	B-16-3.0-111417	3.0	11/14/2017				< 250	4,300	NA	< 0.0011	< 0.0053	< 0.0011	< 0.0032
B-16	B-16-10.0-111517	10.0	11/15/2017				< 27	< 54	NA	< 0.00074	< 0.0037	< 0.00074	< 0.00224
	B-16-17.5-111517	17.5	11/15/2017				< 28	< 56	NA	< 0.00083	< 0.0042	< 0.00083	< 0.00253
	B-17-5.0-111517	5.0	11/15/2017				< 84	1,000	NA	< 0.00083	< 0.0041	< 0.00083	< 0.00253
B-17	B-17-10.0-111517	10.0	11/15/2017				< 28	< 55	NA	< 0.00072	< 0.0036	< 0.00072	< 0.00212
	B-17-20.0-111517 20.0 11/15/20						< 29	< 58	NA	< 0.00084	< 0.0042	< 0.00084	< 0.00254
MTCA Methoo	ITCA Method A Cleanup Levels for Soil ⁵				2,000	NA	2,000	2,000	NA	0.03	7	6	9
MTCA Methoo	TCA Method B Cleanup Levels for Soil ⁶			NA	NA	3,699 3,739	NA	NA	3,699 3,739	NA	NA	NA	NA

							An	alytical Results (mi	illigrams per kilogr	am)			
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	-	reated with a Sulfu Cleanup Procedure ORO ²	ric Acid/Silica Gel e Calculated DRO+ORO ³	Sample Extra DRO ²	act Not Treated Pri ORO ²	or to Analysis Calculated DRO+ORO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
	B-20-2.5-111417	2.5	11/14/2017							< 0.00089	< 0.0044	< 0.00089	< 0.00269
B-20	B-20-10.0-111517	10.0	11/15/2017							< 0.0011	< 0.0055	< 0.0011	< 0.0033
	B-20-17.5-111517	17.5	11/15/2017							< 0.00099	< 0.0049	< 0.00099	< 0.00299
B-24	B24-2.4	2.4	12/5/2019				< 26	550	NA				
D-24	B24-10.0	10.0	12/5/2019				< 27	< 53	NA				
	MW-36-5.0	5.0	2/18/2021				< 26	< 51	NA				
MW-36	MW-36-10.0	10.0	2/18/2021				< 26	< 52	NA				
101 00 -50	MW-36-15.0	15.0	2/18/2021				180	< 56	NA				
	MW-36-20.0	20.0	2/18/2021				< 27	< 55	NA				
MTCA Method	TCA Method A Cleanup Levels for Soil ⁵				2,000	NA	2,000	2,000	NA	0.03	7	6	9
MTCA Method	ГСА Method B Cleanup Levels for Soil ⁶				NA	3,699 3,739	NA	NA	3,699 3,739	NA	NA	NA	NA

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by U.S. Environmental Protection Agency Method 8260C.

⁴Sum of DRO and ORO, using half the laboratory reporting limit for non-detect results.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Calculated Site-specific MTCA Method B cleanup level for DRO and/or ORO in soil in the Equipment Parking Area (3,699 mg/kg) and the Former Recycled Stockpile Area (3,739 mg/kg) in accordance with Ecology Publication No. 01-09-073.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

mg/kg = milligrams per kilogram

 $\mathbf{N}=\mathbf{h}\mathbf{y}\mathbf{d}\mathbf{r}\mathbf{o}\mathbf{c}\mathbf{a}\mathbf{r}\mathbf{b}\mathbf{o}\mathbf{n}\mathbf{s}$ in the oil-range are impacting the diesel-range result

ORO = TPH as oil-range organics

					Analyt	tical Result	s (milligra	ns per kilo	gram) ²		
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(j,k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
			Equipm	ent Parking	g Area						
B-10	B-10-5.0-111317	5.0	11/13/2017	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0052
			Tac	k Tank Are	ea						
B-11	B-11-5.0-111617	5.0	11/16/2017	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0054
			Equipment S	torage Ca	rport Area	-					
B-12	B-12-9.0-111617	9.0	11/16/2017	0.16	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	0.196
B-25	B25-9.0	9.0	12/5/2019	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0054
B-26	B26-9.0	9.0	12/5/2019	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0053
B-27	B27-12.0	12.0	12/5/2019	0.082	0.042	0.068	< 0.036	0.049	< 0.036	0.080	0.105
5.27	B27-15.0	15.0	12/5/2019	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0054
B-28	B28-9.0	9.0	12/6/2019	< 0.036	< 0.036	< 0.036	< 0.036	< 0.036	< 0.036	< 0.036	< 0.027
B-29	B29-9.0	9.0	12/6/2019	< 0.0072	< 0.0072	< 0.0072	< 0.0072	< 0.0072	< 0.0072	< 0.0072	< 0.0054
			Asph	alt Plant A	rea						
B-18	B-18-10.0-111617	10.0	11/16/2017	< 0.0074	0.0088	< 0.0074	< 0.0074	0.028	< 0.0074	< 0.0074	0.0063
			Hot-M	ix Storage	Area						
В-30	B30-10.0	10.0	12/6/2019	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0052
B-32	B32-10.0	10.0	12/6/2019	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0052
B-34	B34-10.0	10.0	12/6/2019	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0052
MTCA Method A Cle	eanup Level for Soil ⁵										0.1

					Analyt	tical Result	s (milligrai	ns per kilo	gram) ²		
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(j,k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
			Former Rec	ycled Stock	xpile Area		-				
MW-24T	MW-24T-12.5-111417	12.5	11/14/2017	0.053	0.057	0.060	0.020	0.097	0.0099	0.034	0.072
			Former Asphalt-	Testing La	boratory A	rea					
B-13	B-13-5.0-111617	5.0	11/16/2017	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0069	< 0.0052
B-16	B-16-3.0-111417	3.0	11/14/2017	1.1	0.94	1.4	0.49	1.2	0.21	1.0	1.516
B-21	B21-3.0	3.0	12/5/2019	0.050	0.036	0.049	0.014	0.049	0.0092	0.044	0.066
B-22	B22-10.0	10.0	12/5/2019	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0054
B-23	B23-3.0	3.0	12/5/2019	< 0.0069	< 0.0069	0.0078	< 0.0069	0.012	< 0.0069	0.0096	0.0063
B-24	B24-2.4	2.4	12/5/2019	0.063	0.060	0.073	0.024	0.061	0.0093	0.059	0.086
MTCA Method A Cl	eanup Level for Soil ⁵										0.1

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

³Total cPAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons TEC = toxic equivalent concentration

Table 3Monitoring Well Elevation DataLakeview FacilityLakewood, WashingtonFarallon PN: 188-002

Well	Water-Bearing		Casing Elevation	Monument Rim Elevation	Ground Elevation	Total Depth of Well (feet below	Screen (feet below	Interval	Measurement	Depth to Groundwater (feet below	Groundwater Elevation
Identification	Zone	Location	(feet NAVD88) ¹	(feet NAVD88) ¹	(feet NAVD88) ¹	top of casing)	ground surface)	(feet NAVD88) ¹	Date	top of casing)	(feet NAVD88) ¹
			L	Shallow W	ater-Bearing Zon	ne Monitoring V	Vells		•		•
MW-1	Shallow	Miscellaneous	317.07	NA	312.99	52.95	33.9 to 48.9	264.1 to 279.1	1/6/2020	38.00	279.07
									1/6/2020	10.31	272.42
MW-3	Shallow	Former Asphalt Testing Laboratory Area	282.73	283.20	281.62	22.00	7.6 to 20.9	260.7 to 275.1	5/15/2020	10.35	272.38
	C1 11		204.10	204.74	202.41	24.72	10.5 (01.0	250 5 4 272 7	1/6/2020	12.91	271.28
MW-4	Shallow	Former Asphalt Testing Laboratory Area	284.19	284.74	283.41	24.73	10.5 to 24.0	259.5 to 273.7	5/15/2020	12.42	271.77
MW-5	Shallow	Miscellaneous	286.41	286.68	286.68	16.68	9.9 to 17.0	269.7 to 276.7	1/6/2020	8.89	277.52
									1/6/2020	NM	—
			277.80	278.38	278.38	10.88	4.5 to 11.5	266.9 to 273.9	9/30/2020	9.15	268.65
MW-6	Shallow	Miscellaneous							2/23/2021	8.31	269.49
			282.08	Casing extended 4.28 feet	278.38	15.16	4.5 to 11.5	266.9 to 273.9	4/22/2021	NM	-
MW-9	Shallow	Former Asphalt Testing Laboratory Area Arsenic and Lead Plume in Groundwater		•	-		Well Decommissioned	12/20/2019	•		
	C1 11	Former Asphalt Testing Laboratory Area	204.05	204.20	204.20	22.0	22.0 / 22.0	272.4 4 202.4	2/23/2021	20.80	283.25
MW-9A	Shallow	Arsenic and Lead Plume in Groundwater	304.05	304.39	304.39	32.0	22.0 to 32.0	272.4 to 282.4	7/22/2021	24.59	279.46
									1/6/2020	13.85	267.32
MW-9R	Shallow	Former Asphalt Testing Laboratory Area	281.17	281.71	281.71	25.80	16.3 to 26.3	255.4 to 265.4	6/22/2020	13.87	267.30
IVI VV -9K	Shahow	Arsenic and Lead Plume in Groundwater	201.17	201./1	201./1	23.80	16.3 to 26.3	255.4 to 265.4	9/29/2020	14.06	267.11
									12/18/2020	13.99	267.18
MW-10	Shallow	Miscellaneous	316.60	NA	314.60	41.81	32.8 to 39.8	274.8 to 281.8	1/6/2020	33.73	282.87
									1/6/2020	9.25	281.30
MW-11	Shallow	Equipment Storage Carport Area	290.55	291.16	291.16	12.11	8.5 to 15.5	278.4 to 285.4	5/15/2020	8.58	281.97
	Siluito II	Equipment Storage Carport mea	270.00	2,1.10	271.10	12.11	0.0 10 10.0	270.11 to 200.11	6/10/2020	8.85	281.70
									6/22/2020	8.98	281.57
MW-12	Shallow	Arsenic and Lead Plume in Groundwater	316.73	317.30	317.30	48.15	43.7 to 48.7	268.6 to 273.6	1/6/2020	36.18	280.55
NOV 12	C1 11		200.15	200.20	200.20	24.14	10.4 . 04.4	264.0 / 260.0	1/6/2020	18.70	269.45
MW-13	Shallow	Equipment Parking Area	288.15	288.39	288.39	24.14	19.4 to 24.4	264.0 to 269.0	9/29/2020	18.01	270.14
									12/18/2020	18.35	269.80
MW-17A	Shallow	Miscellaneous	285.14	285.65	285.65	34.70	25.2 to 35.2	250.4 to 260.4	1/6/2020 5/15/2020	NM 9.55	276.59
MW-24	Shallow	Former Recycled Stockpile Area				Wall Dastro	yed - Under more than 2	0 fact of reclamation fill	3/13/2020	8.55	270.39
MW-24 MW-26	Shallow	Former Asphalt Testing Laboratory Area	282.72	283.12	283.12	9.88	2.8 to 10.3	272.8 to 280.4	1/6/2020	8.52	274.20
MW-20 MW-27	Shallow	Miscellaneous	315.39	315.79	315.79	41.75	27.2 to 42.2	273.6 to 288.6	1/6/2020	34.30	281.09
MW-30	Shallow	Arsenic and Lead Plume in Groundwater	307.08	307.62	307.62	37.65	28.2 to 38.2	269.4 to 279.4	1/6/2020	Dry	
101 00 - 50	Shallow	rusenie and Lead runne in Groundwater	507.00	307.02	507.02	51.05	20.2 10 30.2	207.4	1/6/2020	49.60	278.71
MW-31	Shallow	Arsenic and Lead Plume in Groundwater	328.31	328.61	328.61	55.90	46.2 to 56.2	272.4 to 282.4	6/22/2020	47.95	280.36
					220.01				9/30/2020	49.35	278.96
MW-32	Shallow	Arsenic and Lead Plume in Groundwater	316.41	316.76	316.76	44.62	35.0 to 45.0	271.8 to 281.8	1/6/2020	35.80	280.61
MW-33	Shallow	Arsenic and Lead Plume in Groundwater	333.29	332.75	332.75	50.70	40.2 to 50.2	282.6 to 292.6	1/6/2020	44.85	288.44
MW-34	Shallow	Arsenic and Lead Plume in Groundwater	333.39	332.89	332.89	50.00	39.5 to 49.5	283.4 to 293.4	1/6/2020	42.00	291.39
									1/10/2020	49.90	278.31
MW-35	Shallow	Arsenic and Lead Plume in Groundwater	328.21	328.92	328.92	60.00	45.7 to 60.7	268.2 to 283.2	9/30/2020	50.72	277.49
MW-36	Shallow	Former Asphalt Plant Area	284.51	284.14	284.14	16.50	6.5 to 16.5	267.6 to 277.6	2/23/2021	13.45	271.06

Table 3Monitoring Well Elevation DataLakeview FacilityLakewood, WashingtonFarallon PN: 188-002

Well Identification	Water-Bearing Zone	Location	Casing Elevation (feet NAVD88) ¹	Monument Rim Elevation (feet NAVD88) ¹	Ground Elevation (feet NAVD88) ¹	Total Depth of Well (feet below top of casing)	(feet below		Measurement Date	Depth to Groundwater (feet below top of casing)	Groundwater Elevation (feet NAVD88) ¹
	•	•		Deep Wa	ter-Bearing Zone	Monitoring W	ells	•			
MW-2	Deep	Former Asphalt Testing Laboratory Area	282.32	282.57	282.57	34.30	19.6 to 34.6	248.0 to 263.0	1/6/2020	29.53	252.79
MW-7	NA	NA						an 20 feet of reclamation			
MW-8	NA	NA			W			than 20 feet of reclamati			
						* 1			1/6/2020	43.70	260.95
									5/15/2020	57.37	247.28
			304.65	304.97	304.97	119.00	109.3 to 119.3	185.6 to 195.6	6/22/2020	59.92	244.73
MW-9B	Deep	Miscellaneous							9/29/2020	60.54	244.11
									12/18/2020	59.02	245.63
							Well Decommissioned	02/10/2021			
	D		202.00	204.41	204.41	110.00			2/24/2021	54.55	249.44
MW-9D	Deep	Miscellaneous	303.99	304.41	304.41	119.00	109.0 to 119.0	185.4 to 195.4	7/22/2021	65.30	238.69
MW-10B	Deep	Miscellaneous	314.33	314.69	314.69	127.00	117.4 to 127.4	187.3 to 197.3	1/6/2020	59.95	254.38
MW-11B	Deep	Equipment Storage Carport Area	290.47	290.82	290.82	58.67	49.0 to 59.0	231.8 to 241.8	1/6/2020	26.85	263.62
MW-12B	Deep	Arsenic and Lead Plume in Groundwater	316.95	317.16	317.16	121.00	111.2 to 121.2	195.9 to 205.9	1/6/2020	69.97	246.98
MW-14	Deep	Former Asphalt Testing Laboratory Area	282.94	283.70	283.70	55.30	51.1 to 56.1	227.6 to 232.6	1/6/2020	29.63	253.31
MW-14C	Deep	Former Asphalt Testing Laboratory Area	283.41	283.77	283.77	77.22	67.6 to 77.6	206.2 to 216.2	1/6/2020	28.72	254.69
MW-15	Deep	Former Asphalt Testing Laboratory Area	281.79	282.08	282.08	48.24	43.5 to 48.5	233.5 to 238.5	1/6/2020	20.94	260.85
MW-16	Deep	Former Asphalt Testing Laboratory Area					Well Decommissioned	12/20/2019			
									1/6/2020	29.95	251.37
MW-16R	Deep	Former Asphalt Testing Laboratory Area	281.32	281.74	281.74	38.50	28.9 to 38.9	242.8 to 252.8	6/22/2020	27.90	253.42
	Deep	Former Asphart Testing Laboratory Area	201.52	201.74	201.74	56.50	20.9 10 30.9	242.0 10 252.0	9/29/2020	30.25	251.07
									12/18/2020	29.90	251.42
MW-17	Deep	Miscellaneous	285.20	285.38	285.38	50.03	40.2 to 50.2	235.2 to 245.2	1/6/2020	NM	—
101 00 - 1 /	Deep	Wiscenatious	205.20	205.50	265.56	50.05	40.2 10 50.2	255.2 10 245.2	5/15/2020	34.98	250.22
MW-18	Deep	Former Asphalt Testing Laboratory Area	281.09	281.51	281.51	59.89	50.3 to 60.3	221.2 to 231.2	1/9/2020	28.86	252.23
MW-19	Deep	Equipment Parking Area	287.88	288.13	288.13	55.78	46.0 to 56.0	232.1 to 242.1	1/6/2020	30.10	257.78
				Deep Water-Be	aring Zone Moni	itoring Wells (co	ontinued)				
			205.00	205.22	205.22	<i>z</i> o <i>i z</i>	10.0	0000	1/6/2020	28.74	256.26
MW-20	Deep	Former Asphalt Testing Laboratory Area	285.00	285.32	285.32	58.45	48.8 to 58.8	226.5 to 236.5	9/30/2020	32.11	252.89
MW-21	Deep	Former Asphalt Testing Laboratory Area	284.65	285.27	285.27	55.18	45.8 to 55.8	229.5 to 239.5	1/6/2020	NM	—
MW-22	Deep	Former Asphalt Testing Laboratory Area	282.11	282.56	282.56	54.86	45.3 to 55.3	227.2 to 237.2	1/6/2020	31.95	250.16
MW-23		Former Asphalt Testing Laboratory							1/6/2020	33.45	247.92
IVI W-23	Deep	Former Asphalt Testing Laboratory Area	281.37	281.66	281.66	56.50	46.8 to 56.8	224.9 to 234.9	6/22/2020	34.80	246.57
MW-25	Deep	Former Asphalt Testing Laboratory Area	282.85	283.17	283.17	35.54	20.9 to 35.9	247.3 to 262.3	1/6/2020	18.81	264.04
MW-28	Deep	Miscellaneous	315.47	315.88	315.88	58.23	48.6 to 58.6	257.2 to 267.2	1/6/2020	35.49	279.98
MW-29	Deep	Miscellaneous	308.63	309.05	309.05	69.35	59.8 to 69.8	239.3 to 249.3	1/6/2020	48.32	260.31

Table 3 Monitoring Well Elevation Data Lakeview Facility Lakewood, Washington Farallon PN: 188-002

			Casing Elevation	Monument Rim Elevation	Ground Elevation	Total Depth of Well		Interval		Depth to Groundwater	Groundwater Elevation	
Well Identification	Water-Bearing Zone	Location	(feet NAVD88) ¹	(feet NAVD88) ¹		(feet below	(feet below ground surface)	(feet NAVD88) ¹	Measurement Date	(feet below top of casing)	(feet NAVD88) ¹	
Identification	Zone	Location	(leet NAVDoo)	(leet NAVDoo)		top of casing)	ground surface)	(leet NAVDoo)	Date	top of casing)	(leet NA v Doo)	
			-		Air Sparge			1		1	•	
AS-1	Deep		282.89	283.55	283.55	81.93	80.6 to 82.6	201.0 to 203.0	1/6/2020	30.15	252.74	
AS-2	Deep		287.14	287.76	287.76	87.60	86.2 to 88.2	199.5 to 201.5	1/6/2020	30.78	256.36	
AS-3	Deep		284.49	285.20	285.20	83.68	82.4 to 84.4	200.8 to 202.8	1/6/2020	28.43	256.06	
AS-4	Deep		284.55	285.12	285.12	90.93	89.5 to 91.5	193.6 to 195.6	1/9/2020	27.10	257.45	
AS-5	Deep	Former Asphalt Testing Laboratory Area	283.93	284.55	284.55	82.00	80.6 to 82.6	201.9 to 203.9	1/6/2020	NM	—	
AS-6	Deep	Tornier rispitale resulting Europiatory rifea	284.84	285.55	285.55	94.00	92.7 to 94.7	190.8 to 192.8	1/6/2020	NM	—	
AS-7	Deep		280.73	281.42	281.42	72.21	70.9 to 72.9	208.5 to 210.5	1/9/2020	31.04	249.69	
AS-8	Deep		283.96	284.65	284.65	83.90	82.6 to 84.6	200.1 to 202.1	1/6/2020	29.28	254.68	
AS-9	Deep		282.42	283.05	283.05	93.55	92.2 to 94.2	188.9 to 190.9	1/6/2020	NM	—	
AS-10	Deep		280.77	281.42	281.42	113.45	112.1 to 114.1	167.3 to 169.3	1/6/2020	NM	—	
				S	Soil Vapor Extrac	ction Wells						
SVE-1	Deep		283.31	~284.42	~284.42	35.25	24.4 to 36.4	248.1 to 260.1	1/6/2020	29.41	253.90	
SVE-2	Deep		283.54	~283.99	~283.99	35.94	21.8 to 36.8	247.6 to 262.6	1/6/2020	28.35	255.19	
SVE-3	Shallow		287.67	288.13	288.13	33.03	8.5 to 33.5	254.6 to 279.6	1/6/2020	14.81	272.86	
SVE-4	Deep		284.66	285.13	285.13	34.14	23.6 to 34.6	250.5 to 261.5	1/6/2020	NM	_	
			284.71						1/10/2020	30.02	254.69	
		Former Asphalt Testing Laboratory Area		285.12		37.74			5/15/2020	30.41	254.30	
					285.12		10.2 to 38.2	247.0 to 275.0	6/10/2020	30.85	253.86	
SVE-5	Shallow to Deep						10.2 to 38.2	247.0 to 275.0	6/22/2020	30.98	253.73	
									9/29/2020	33.59	251.12	
									12/18/2020	31.79	252.92	
					•		Well Decommissioned	02/19/2021				
SVE-6	Shallow		284.33	284.75	284.75	34.62	10.0 to 35.0	249.7 to 274.7	1/6/2020	11.71	272.62	
SVE-7	Deep		285.02	285.52	285.52	34.10	22.6 to 34.6	250.9 to 262.9	1/6/2020	NM	—	
SVE-8	Deep		280.98	281.53	281.53	34.10	18.7 to 34.7	246.9 to 262.9	1/6/2020	19.40	261.58	
SVE-9	Deep		284.17	284.67	284.67	34.40	12.9 to 34.9	249.8 to 271.8	1/6/2020	NM	—	
SVE-10	Shallow		282.53	283.06	283.06	38.45	6.0 to 39.0	244.1 to 277.1	1/6/2020	NM	—	
SVE-11	Deep		280.99	281.44	281.44	47.54	22.0 to 48.0	233.4 to 259.4	1/6/2020	NM	—	
SVE-12	Shallow	ך ד	285.41	285.93	285.93	19.35	4.9 to 19.9	266.1 to 281.1	1/6/2020	12.66	272.75	
3VE-12	Shanow		203.41	203.93	203.93	19.33	4.9 to 19.9	266.1 to 281.1	9/30/2020	15.03	270.38	
Industrial Supply Well	Regional		NA	NA	285	187	107 to 129 167 to 187	178 to 156 118 to 98	12/4/2020	42.25	~243	

NOTES:

--- denotes groundwater elevation not calculated.

¹ Feet North American Vertical Datum of 1988 (NAVD88).

Elevation converted from NGVD 1929 by adding 3.415 feet

Miscellaneous = not associated with any particular area of concern

NA = not available

NM = not measured

					Analytical Results (micrograms per liter) ¹													
Sample	Water-				Sulfuric Acid/Sil	nple Extract Treated with a uric Acid/Silica Gel Cleanup Procedure Analysis		· · · · · · · · · · · · · · · · · · ·										
Sample Location	Bearing Zone	Sample Identification	Sample Date	Sampled By	DRO ¹	ORO ¹	DRO ¹	ORO ¹	Benzene ²	Toluene ²	Ethylbenzene ²	Xylenes ²						
				. <u> </u>	Monitoring Wells							<i>y</i>						
MW-3	Shallow	MW-3-120617	12/6/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-5	Shallow	MW-5-120517	12/5/2017	Farallon			< 260	< 410										
	Shallow		12/5/2017	Farallon		I	We	ell Not Sampled - Unat	le to locate	•	1							
MW-6	Shallow	MW-6-093020	9/30/2020	Farallon			1,700	2,300										
IVI VV -0	Shallow	MW-6	9/30/2020	BSE			1,500	740										
	Shallow	MW-6-022321	2/23/2021	Farallon			470	830										
	Shallow	MW-9R-010720	1/7/2020	Farallon			290	780										
MW-9R	Shallow	MW-9R-092920	9/29/2020	Farallon			630	1,700										
	Shallow	MW-9R	9/29/2020	BSE			470	460										
	Shallow	MW-9R-121820	12/18/2020	Farallon			540	1,600	< 0.20	< 1.0	< 0.20	< 0.60						
MW-9A	Shallow	MW-9A-072221	7/22/2021	Farallon			< 210	< 210										
	Shallow		12/5/2017	Farallon				ell Not Sampled - Unat		1								
	Shallow	MW-11-011020	1/10/2020	Farallon			1,400	1,500										
MW-11	Shallow	MW-11-051520	5/15/2020	Farallon			1,100	1,700										
	Shallow Shallow	MW-11 MW-11	6/10/2020 6/22/2020	BSE BSE			< 100 < 100	< 250 < 250										
	Shallow	MIW-11	9/29/2020	Farallon				< 250 ficient water in well cas										
	Shallow	MW-13-120517	12/5/2017	Farallon			310	580										
	Shallow	MW-13-010720	1/7/2020	Farallon			240	560										
MW-13	Shallow	MW-13-092920	9/29/2020	Farallon			500	1,300										
1110 15	Shallow	MW-13	9/29/2020	BSE			1,800	1,300										
	Shallow	MW-13-121820	12/18/2020	Farallon			310	650	< 0.20	< 1.0	< 0.20	< 0.60						
MW-24	Shallow		12/5/2017	Farallon				troyed - Under 20 feet										
MW-26	Shallow	MW-26-120617	12/6/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-36	Shallow	MW-36-022321	2/23/2021	Farallon			1,100	560										
SVE-3	Shallow	SVE-3-120517	12/5/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
	Shallow	SVE-5-120817	12/8/2017	Farallon			330	680										
	Shallow	SVE-5-011020	1/10/2020	Farallon			16,000	2,500 M										
	Shallow	SVE-5-051520	5/15/2020	Farallon			13,000	2,800 M										
	Shallow	SVE-5	6/10/2020	BSE			2,100	< 250										
SVE-5	Shallow	SVE-5	6/22/2020	BSE			1,600	< 250										
	Shallow	SVE-5-092920	9/29/2020	Farallon			1,300	1,800										
	Shallow	SVE-5	9/29/2020	BSE			1,400	480										
	Shallow	SVE-5-121820	12/18/2020	Farallon			1,400	1,100	< 0.20	< 1.0	< 0.20	< 0.60						
	Shallow	0110 4 100015	10/0/2015				mmissioned 02/19/2021		0.00		0.20	0.50						
SVE-6	Shallow	SVE-6-120817	12/8/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
SVE-12	Shallow	SVE-12-120817	12/8/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MTCA Metho	d A Cleanup Leve	l for Groundwater ³			500	500	500	500	5	1,000	700	1,000						

					Analytical Results (micrograms per liter) ¹													
					Sulfuric Acid/Si	t Treated with a ilica Gel Cleanup eedure	-	ot Treated Prior to alysis										
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	DRO ¹ ORO ¹		DRO ¹	ORO ¹	Benzene ²	Toluene ²	Ethylbenzene ²	Xylenes ²						
		Reconnat	issance Groundwa	ater Sample from	n Shallow Water-B	earing Zone												
MW-24T	Shallow	MW-24T-111617	11/16/2017	Farallon	< 280	< 450	970 N	3,000										
B36	Shallow	B36-121919-GW	12/19/2019	Farallon			2,700	3,300										
	•	•	De	ep Water-Beari	ng Zone	•	•	•										
MW-2	Deep	MW-2-120617	12/6/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-9D	Deep	MW-9D-072221	7/22/2021	Farallon			< 210	< 210										
MW-10B	Deep	MW-10B-120717	12/7/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-11B	Deep	MW-11B-120517	12/5/2017	Farallon			< 260	< 410										
MW-14	Deep	MW-14-120817	12/8/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-14C	Deep	MW-14C-120817	12/8/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-15	Deep	MW-15-120617	12/6/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
	Deep	MW-16-120617	12/6/2017	Farallon			< 260	570 ⁴	< 0.20	< 1.0	< 0.20	< 0.60						
MW-16	Deep			•		Well Deco	mmissioned 12/20/201	9		•	1							
	Deep	MW-16R-010820	1/8/2020	Farallon			460	580										
MW-16R	Deep	MW-16R-092920	9/29/2020	Farallon			400	1,300										
	Deep	MW-16R	9/29/2020	BSE			290	450										
	Deep	MW-16R-121820	12/18/2020	Farallon			310	630	< 0.20	< 1.0	< 0.20	< 0.60						
MW-18	Deep	MW-18-120617	12/6/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-19	Deep	MW-19-120517	12/5/2017	Farallon			< 250	< 410	< 0.20	< 1.0	< 0.20	< 0.60						
MW-20	Deep	MW-20-120717	12/7/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-21	Deep	MW-21-120717	12/7/2017	Farallon			< 250	< 410	< 0.20	< 1.0	< 0.20	< 0.60						
MW-23	Deep	MW-23-120717	12/7/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-25	Deep	MW-25-120617	12/6/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-28	Deep	MW-28-120717	12/7/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MW-29	Deep	MW-29-120717	12/7/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
AS-1	Deep	AS-1-120817	12/8/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
SVE-1	Deep	SVE-1-120717	12/7/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
SVE-2	Deep	SVE-2-120517	12/5/2017	Farallon			< 260	< 410	< 0.20	< 1.0	< 0.20	< 0.60						
SVE-7	Deep		12/5/2017	Farallon			Well Not Sampl	ed - Inaccessible due to	gravel stockpile o	ver well								
SVE-9	Deep	SVE-9-120717	12/7/2017	Farallon			< 260	< 410										
					Regi	onal Water-Bearing	Zone											
Industrial Well	Regional	INDUSTRIAL_WELL-120717	12/7/2017	Farallon					< 0.20	< 1.0	< 0.20	< 0.60						
MTCA Method	A Cleanup Lev	vel for Groundwater ³			500	500	500	500	5	1,000	700	1,000						

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

- denotes sample not analyzed.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by U.S. Environmental Protection Agency Method 8260C.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

⁴During the December 2017 groundwater monitoring and sampling event, the monument cover for monitoring well MW-16 was found to be destroyed and the internal cap/casing damaged, impacting the integrity of the monitoring well and results.

BSE = BlueStone Environmental, LLC

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics Farallon = Farallon Consulting, L.L.C.

M = hydrocarbons in the diesel-range are impacting the oil-range result

N = hydrocarbons in the oil-range are impacting the diesel-range result

ORO = TPH as oil-range organics

Table 5Groundwater Analytical Results for PAHsLakeview FacilityLakewood, WashingtonFarallon PN: 188-002

Image Mappe					-					Farallon	PN: 18	8-002												
kink kink <th< th=""><th></th><th></th><th></th><th></th><th colspan="14"></th><th></th></th<>																								
MW-10 Shallow 1/2/2017 MW-3/206/7 <						1	1		N	on-Carcin	ogenic PAI	Hs			1			T	T	Carcinog	enic PAHs			
MW33 Shallow 12/62017 MW-3-120617 cl.0 m <th< th=""><th>-</th><th>0</th><th>Sample Date</th><th>Sample Identification</th><th>Naphthalene</th><th>1-Methylnaphthalene</th><th>2-Methylnaphthalene</th><th>Total Naphthalenes²</th><th>Acenaphthene</th><th>Acenaphthylene</th><th>Anthracene</th><th>Benzo(g,h,i)Perylene</th><th>Fluoranthene</th><th>Fluorene</th><th>Phenanthrene</th><th>Pyrene</th><th>Benzo(a)Pyrene</th><th>Benzo(a)Anthracene</th><th>Benzo(b)Fluoranthene</th><th>Benzo(j,k)Fluoranthene</th><th>Chrysene</th><th>Dibenzo(a,h)Anthracene</th><th>Indeno(1,2,3-cd)Pyrene</th><th>Total cPAHs TEC^{3,4}</th></th<>	-	0	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ²	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
MN-11 Shallow 11/0220 MW+1010120 4.01 4.01 4.01 4.0									S	hallow Wa	ater-Bearin	ng Zone												
MW-13 Shallow 17/2020 MW+13.01720 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 -0.095 -0.095 -0.0095 -0.095 -0.0095 -0.095 -0.005 -0.005 -0.005 -0.005 -0.005	MW-3	Shallow	12/6/2017	MW-3-120617	<1.0			<1.0																
MW-3 MW-3 1218200 MW-3 1218200 MW-3 1218200 MW-3 1218200 MW-9 1218200 MU -9 1282017	MW-11	Shallow	1/10/2020	MW-11-011020	< 0.11	< 0.11	< 0.11	< 0.33	< 0.54	< 0.54	< 0.11	< 0.011	< 0.11	< 0.11	< 0.11	< 0.11	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.0083
Shallow 1218200 MM-941-121820 0.005 0.005	MW-13	Shallow	1/7/2020	MW-13-010720	< 0.097	< 0.097	< 0.097	< 0.291	< 0.097	< 0.097	< 0.097	0.027	< 0.097	< 0.097	< 0.097	< 0.097	0.055	0.055	0.043	0.019	0.052	< 0.0097	0.027	
MW-26 Shallow 126/2017 MW-26-120617 <10 <10	IVI VV-13	Shallow	12/18/2020	MW-13-121820	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0072
SYE3 Shallow 12/52017 SYE3-120517 <10	MW-9R	Shallow	12/18/2020	MW-9R-121820	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0072
Shallow 1/10/2020 SVE-5-011020 0.25 0.68 0.39 1.32 <0.36 <0.07 <0.073 <0.073 <0.073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <0.0073 <td>MW-26</td> <td>Shallow</td> <td>12/6/2017</td> <td>MW-26-120617</td> <td><1.0</td> <td></td> <td></td> <td><1.0</td> <td></td>	MW-26	Shallow	12/6/2017	MW-26-120617	<1.0			<1.0																
Shalow 12/18/202 SVE-5.12/18/201	SVE-3	Shallow	12/5/2017																					
Shallow Syle-6 Shallow 128/2017 Syle-6-120817 <1.3 .		Shallow	1/10/2020	SVE-5-011020	0.25	0.68	0.39	1.32	< 0.36	< 0.36	< 0.073	< 0.0073	< 0.073	< 0.15	0.081	0.29	< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.015	< 0.0073	< 0.0073	< 0.0056
SVE-6 Shallow 12/8/2017 SVE-6-120817 <1.3 <1	SVE-5	Shallow	12/18/2020	SVE-5-121820	< 0.10	< 0.10	< 0.10	< 0.30	< 0.10	< 0.10	< 0.10	< 0.010	< 0.10	< 0.10	< 0.10	< 0.15	< 0.010	< 0.014	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0078
SVE-12 SNellow 12/8/2017 SVE-12-120817 <1.3 <1.5 <		Shallow									Well De	commissio	ned 02/19/2	2021										
MW-2 Deep 12/6/2017 MW-2-120617 <1.0 ···	SVE-6	Shallow	12/8/2017	SVE-6-120817	<1.3			<1.3																
MW-2 Deep 12/6/2017 MW-2-120617 <1.0	SVE-12	Shallow	12/8/2017	SVE-12-120817	<1.3			<1.3																
MW-10B Deep 12/7/2017 MW-10B-120717 <1.3										Deep Wat	er-Bearing	Zone												
MW-14 Deep 12/8/2017 MW-14-120817 <1.3 <1.3 <1 </td <td>MW-2</td> <td>Deep</td> <td>12/6/2017</td> <td>MW-2-120617</td> <td><1.0</td> <td></td> <td></td> <td><1.0</td> <td></td>	MW-2	Deep	12/6/2017	MW-2-120617	<1.0			<1.0																
MW-14C Deep 12/8/2017 MW-14C-120817 <1.3 <1.3	MW-10B	Deep	12/7/2017	MW-10B-120717	<1.3			<1.3																
MW-15 Deep 12/6/2017 MW-15-120617 <1.0 <1.0	MW-14	Deep	12/8/2017	MW-14-120817	<1.3			<1.3																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-14C	Deep	12/8/2017	MW-14C-120817	<1.3			<1.3																
MW-16 Deep 12/18/2020 MW-16R-121820 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <td>MW-15</td> <td>Deep</td> <td>12/6/2017</td> <td>MW-15-120617</td> <td><1.0</td> <td></td> <td></td> <td><1.0</td> <td></td>	MW-15	Deep	12/6/2017	MW-15-120617	<1.0			<1.0																
Deep Deep 12/82020 MW-16R-121820	MW-16	Deep	12/6/2017	MW-16-120617	<1.0			<1.0																
MW-18 Deep 12/6/2017 MW-18-120617 <1.0 <1.0 <th-< td=""><td>IVI VV - 10</td><td>Deep</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Well De</td><td>commissio</td><td>ned 12/20/2</td><td>2019</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th-<>	IVI VV - 10	Deep									Well De	commissio	ned 12/20/2	2019										
MW-19 Deep 12/5/2017 MW-19-120517 <1.0 <1.0	MW-16R	Deep			< 0.10	< 0.10	<0.10	< 0.30	<0.10	<0.10	<0.10	< 0.010	<0.10	<0.10	<0.10	<0.10	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.0076
MW-20 Deep 12/7/2017 MW-20-120717 <1.3 <1.3	MW-18	Deep	12/6/2017	MW-18-120617	<1.0			<1.0																
MW-21 Deep 12/7/2017 MW-21-120717 <1.3 <1.3 <1.3		Deep			<1.0			<1.0																
	MW-20	Deep	12/7/2017		<1.3			<1.3																
MTCA Method A Cleanup Level for Groundwater5 160 960° NE 4,800° NE 640° 640° NE 480° 0.1	MW-21	Deep	12/7/2017	MW-21-120717	<1.3																			
	MTCA Method	MTCA Method A Cleanup Level for Groundwater ⁵						160	960 ⁶	NE	4,800 ⁶	NE	640 ⁶	640 ⁶	NE	480 ⁶								0.1

Table 5Groundwater Analytical Results for PAHsLakeview FacilityLakewood, WashingtonFarallon PN: 188-002

-		1	1 1					-		1111.10	000				1								1
				Analytical Results (micrograms per liter) ¹																			
								N	on-Carcin	ogenic PAI	Is								Carcinog	enic PAHs			
Sample Location	Water-Bearing Zone	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ²	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
MW-23	Deep	12/7/2017	MW-23-120717	<1.3			<1.3																
MW-25	Deep	12/6/2017	MW-25-120617	<1.0			<1.0																
MW-28	Deep	12/7/2017	MW-28-120717	<1.3			<1.3																
MW-29	Deep	12/7/2017	MW-29-120717	<1.3			<1.3																
AS-1	Deep	12/8/2017	AS-1-120817	<1.3			<1.3																
SVE-1	Deep	12/7/2017	SVE-1-120717	<1.3			<1.3																
SVE-2	Deep	12/5/2017	SVE-2-120517	<1.0			<1.0																
								R	Regional W	ater-Bearin	ng Zone												
WATER-WELL	Regional	12/7/2017	INDUSTRIAL_WELL-120717	<1.3			<1.3																
MTCA Method	A Cleanup Leve	el for Groundwa				160	960 ⁶	NE	4,800 ⁶	NE	640 ⁶	640 ⁶	NE	480 ⁶								0.1	
NOTES																							

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency (EPA) Method 8270E/SIM. Samples with only naphthalene results were analyzed by EPA Method 8260.

²Sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

³Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁶MTCA Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contaminationclean-up-tools/CLARC cPA NE PAF TEC

cPAHs = carcinogenic polycyclic aromatic hydrocarbonsNE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

							An	alytical F	Results (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
			S	Shallow Water-	Bearing	Zone								
		MW1-082008	8/20/2008	Farallon	< 0.20	0.32	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-1	Shallow	MW1-020409	2/4/2009	Farallon	< 0.20	0.51	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
101 00 - 1	Shanow	MW-1-041510	4/15/2010	Farallon	< 0.20	0.28	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW1-041510-GEO	4/15/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW3-082008	8/20/2008	Farallon	< 0.20	4.3	< 0.20	< 0.20	< 0.20	< 0.20	0.66	< 0.20	< 0.20	1.2
		MW3-020609	2/6/2009	Farallon	< 0.20	3.4	< 0.20	< 0.20	< 0.20	< 0.20	0.43	< 0.20	< 0.20	0.71
		Dup1-020609	2/6/2009	Farallon	< 0.20	3.4	< 0.20	< 0.20	< 0.20	< 0.20	0.40	< 0.20	< 0.20	0.69
MW-3	Shallow	MW3-041410	4/14/2010	Farallon	< 0.20	2.2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.56
11111 3	Shanow	MW3-041410-GEO	4/14/2010	GeoEngineers	< 0.50	2.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.53
		MW-3-012916	1/29/2016	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-3-120617	12/6/2017	Farallon	< 0.20	1.4	< 0.20	< 0.20	< 0.20	< 0.20	0.28	< 0.20	< 0.20	< 0.20
		MW-3-010720	1/7/2020	Farallon	< 0.20	1.2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW4-082008	8/20/2008	Farallon	< 0.20	2.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-4	Shallow	MW4-020609	2/6/2009	Farallon	< 0.20	2.3	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW4-041410	4/14/2010	Farallon	< 0.20	1.8	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW4-041410-GEO	4/14/2010	GeoEngineers	< 0.50	1.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW5-081908	8/19/2008	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-5	Shallow	MW5-020309	2/3/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-5-041510	4/15/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW5-041510-GEO	4/15/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical F	Results (n	nicrogram	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW6-081908	8/19/2008	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-6	Shallow	MW6-020309	2/3/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
IVI VV -0	Shanow	MW-6-041510	4/15/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW6-041510-GEO	4/15/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW9-082008	8/20/2008	Farallon	< 0.20	2.1	< 0.20	< 0.20	< 0.20	< 0.20	0.30	< 0.20	< 0.20	0.41
		MW9-020309	2/3/2009	Farallon	< 0.20	2.4	< 0.20	< 0.20	< 0.20	< 0.20	0.31	< 0.20	< 0.20	0.45
MW-9	Shallow	MW-9-041510	4/15/2010	Farallon	< 0.20	2.2	< 0.20	< 0.20	< 0.20	< 0.20	0.28	< 0.20	< 0.20	0.42
	Shanow	MW9-041510-GEO	4/15/2010	GeoEngineers	< 0.50	2.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.50
		MW-9-012816	1/28/2016	Farallon	< 0.20	1.7	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.22
				We	ell Decom	missione	d 12/20/20	019						
MW-9R	Shallow	MW-9R-010720	1/7/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW10-091708	9/17/2008	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-10	Shallow	MW10-020409	2/4/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	Simile ii	MW-10-041510	4/15/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW10-041510-GEO	4/15/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW11-081908	8/19/2008	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-11	Shallow	MW11-020609	2/6/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW11-041310-GEO	4/13/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-12	Shallow	MW12-020609	2/6/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW12-041310-GEO	4/13/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW13-101408	10/14/2008	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	0.26	< 0.20	0.58	0.73	0.41	<0.20
MW-13	Shallow	MW13-020609	2/6/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.68	0.83	0.22	< 0.20
		MW13-041310-GEO	4/13/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.94	1.1	< 0.50	< 0.50
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

P:\188 Woodworth Capital\188002 Woodworth Lakeview Remed\Reports\2021 Resp to ECY Op Letter\Tables\Tbls 1-9\T6 GW HVOCs

							An	alytical F	lesults (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW17A-020409	2/4/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-17A	Shallow	MW17A-041410	4/14/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW17A-041410-GEO	4/14/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW-26-122112	12/21/2012	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-26	Shallow	MW-26-120617	12/6/2017	Farallon	< 0.20	0.71	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-26-010720	1/7/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-27	Shallow	MW-27-011513	1/15/2013	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		SVE-3-051112	5/11/2012	Farallon	< 0.20	0.93	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	9.8
		SVE-3-061312	6/13/2012	Farallon	< 0.20	1.2	< 0.20	< 0.20	< 0.20	< 0.20	0.32	< 0.20	< 0.20	12
SVE-3	Shallow	SVE-3-080912	8/9/2012	Farallon	< 0.20	1.4	< 0.20	< 0.20	< 0.20	< 0.20	0.27	< 0.20	< 0.20	14
542.5	bhanow	SVE-3-012916	1/29/2016	Farallon	< 0.20	2.2	< 0.20	< 0.20	< 0.20	< 0.20	0.32	< 0.20	< 0.20	1.9
		SVE-3-120517	12/5/2017	Farallon	< 0.20	3.5	< 0.20	< 0.20	< 0.20	< 0.20	0.80	< 0.20	< 0.20	1.9
		SVE-3-010720	1/7/2020	Farallon	< 0.20	3.5	< 0.20	< 0.20	0.21	< 0.20	1.1	< 0.20	< 0.20	1.7
		SVE-6-011012	1/10/2012	Farallon	< 0.20	5.4	< 0.20	< 0.20	0.24	< 0.20	0.66	< 0.20	< 0.20	8.2
		SVE-6-021312	2/13/2012	Farallon	< 0.20	5.3	< 0.20	< 0.20	< 0.20	< 0.20	0.56	< 0.20	< 0.20	6.3
SVE-6	Shallow	SVE-6-012816	1/28/2016	Farallon	0.21	5.2	< 0.20	< 0.20	0.24	< 0.20	0.81	< 0.20	< 0.20	0.95
		SVE-6-120817	12/8/2017	Farallon	< 0.20	2.2	< 0.20	< 0.20	< 0.20	< 0.20	0.25	< 0.20	< 0.20	0.35
		SVE-6-010720	1/7/2020	Farallon	< 0.20	4.0	< 0.20	< 0.20	< 0.20	< 0.20	0.53	< 0.20	< 0.20	0.42
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical R	lesults (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		SVE-12-041310	4/13/2010	Farallon	0.37	10	< 0.20	< 0.20	0.47	< 0.20	4.7	< 0.20	< 0.20	0.32
		SVE12-041310-GEO	4/13/2010	GeoEngineers	< 0.50	15	< 0.50	< 0.50	0.70	< 0.50	7.0	< 0.50	< 0.50	< 0.50
		SVE-12-110911	11/9/2011	Farallon	0.24	11	< 0.20	< 0.20	4.4	< 0.20	5.1	< 0.20	< 0.20	2.7
		SVE-12-080912	8/9/2012	Farallon	0.26	12	< 0.20	< 0.20	5.9	< 0.20	5.5	< 0.20	< 0.20	0.43
SVE-12	Shallow	SVE-12-061213	6/12/2013	Farallon	< 0.20	6.4	< 0.20	< 0.20	4.1	< 0.20	3.6	< 0.20	< 0.20	0.36
		SVE-12-012916	1/29/2016	Farallon	< 0.20	1.7	< 0.20	< 0.20	1.2	< 0.20	2.3	< 0.20	< 0.20	< 0.20
		SVE-12-120817	12/8/2017	Farallon	< 0.20	4.2	< 0.20	< 0.20	4.3	< 0.20	5.8	0.48	< 0.20	0.21
		SVE-12-010720	1/7/2020	Farallon	< 0.20	1.7	< 0.20	< 0.20	0.65	< 0.20	2.2	< 0.20	< 0.20	< 0.20
		SVE-12-093020	9/30/2020	Farallon	< 0.20	12	< 0.20	< 0.20	15	< 0.20	18	2.9	< 0.20	0.30
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical F	Results (n	nicrogram	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
	1 1			Deep Water-B										
		MW2-082008	8/20/2008	Farallon	< 0.20	14	< 0.20	< 0.20	< 0.20	< 0.20	2.1	< 0.20	< 0.20	2.2
		MW2-021209	2/12/2009	Farallon	< 0.20	14	< 0.20	< 0.20	< 0.20	< 0.20	1.2	< 0.20	< 0.20	2.0
		Dup2-021209	2/12/2009	Farallon	< 0.20	14	< 0.20	< 0.20	< 0.20	< 0.20	1.2	< 0.20	< 0.20	1.9
		MW2-100109	10/1/2009	Farallon	< 0.20	9.2	< 0.20	< 0.20	< 0.20	< 0.20	0.96	< 0.20	< 0.20	1.4
		MW-2-041310	4/13/2010	Farallon	< 0.20	5.1	< 0.20	< 0.20	< 0.20	< 0.20	0.57	< 0.20	< 0.20	1.4
		MW2-041310-GEO	4/13/2010	GeoEngineers	< 0.50	7.3	< 0.50	< 0.50	< 0.50	< 0.50	0.85	< 0.50	< 0.50	2.0
		MW-2-110410	11/4/2010	Farallon	< 0.20	10	< 0.20	< 0.20	< 0.20	< 0.20	0.97	< 0.20	< 0.20	2.0
		MW-2-020111	2/1/2011	Farallon	< 0.20	13	< 0.20	< 0.20	0.54	< 0.20	1.8	< 0.20	< 0.20	0.76
MW-2	Deep	MW-2-050411	5/4/2011	Farallon	< 0.20	12	< 0.20	< 0.20	0.51	< 0.20	1.5	< 0.20	< 0.20	0.58
101 00 -22	Deep	MW-2-080211	8/2/2011	Farallon	< 0.20	11	< 0.20	< 0.20	0.45	< 0.20	1.5	< 0.20	< 0.20	0.54
		MW-2-1108211	11/8/2011	Farallon	< 0.20	12	< 0.20	< 0.20	0.32	< 0.20	1.5	< 0.20	< 0.20	0.92
		MW-2-011012	1/10/2012	Farallon	< 0.20	11	< 0.20	< 0.20	0.44	< 0.20	1.4	< 0.20	< 0.20	0.70
		MW-2-021312	2/13/2012	Farallon	< 0.20	11	< 0.20	< 0.20	0.39	< 0.20	1.5	< 0.20	< 0.20	0.70
		MW-2	4/10/2012	Farallon	< 0.20	6.7	< 0.20	< 0.20	0.34	< 0.20	0.80	< 0.20	< 0.20	0.30
		MW-2-061213	6/12/2013	Farallon	< 0.20	4.6	< 0.20	< 0.20	< 0.20	< 0.20	0.46	< 0.20	< 0.20	0.40
		MW-2-012816	1/28/2016	Farallon	< 0.20	7.5	< 0.20	< 0.20	< 0.20	< 0.20	0.66	< 0.20	< 0.20	2.0
		MW-2-120617	12/6/2017	Farallon	< 0.20	12	< 0.20	< 0.20	< 0.20	< 0.20	0.90	< 0.20	< 0.20	2.0
		MW-2-010820	1/8/2020	Farallon	< 0.20	13	< 0.20	< 0.20	< 0.20	< 0.20	0.79	< 0.20	< 0.20	1.5
MTCA Cleanup	Levels for G	roundwater ²		-	5	5	16 ³	160³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical R	Results (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW7-082008	8/20/2008	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-7	Deep	MW7-020309	2/3/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	Deep	MW-7-041510	4/15/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW7-041510-GEO	4/15/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW9B-021209	2/12/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.21
		MW-9B-041410	1/14/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-9B	Deep	MW9B-041410-GEO	1/14/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
WI W - 7D	Deep	MW-9B-010720	1/7/2020	Farallon	1.1	0.21	0.58	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-9B-092920	9/29/2020	Farallon	1.3	< 0.20	0.49	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
				We	ell Decom	missioned	1 02/10/20	021						
		MW10B-020409	2/4/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-10B	Deep	MW-10B-041510	4/15/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
WW-10D	Бсер	MW10B-041510-GEO	4/15/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW-10B-120717	12/7/2017	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW11B-020609	2/6/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-11B	Deep	MW-11B-041410	4/14/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW11B-041410-GEO	4/14/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW12B-021209	2/12/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-12B	Deep	MW-12B-041510	4/15/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW12B-041510-GEO	4/15/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical F	Results (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW-14-101308	10/13/2008	Farallon	< 0.20	24	< 0.20	< 0.20	3.5	< 0.20	11	0.43	< 0.20	0.33
		MW-14-021209	2/12/2009	Farallon	< 0.20	22	< 0.20	< 0.20	2.0	< 0.20	7.5	0.33	< 0.20	0.29
		MW-14-100109	10/1/2009	Farallon	< 0.20	23	< 0.20	< 0.20	2.2	< 0.20	7.5	0.42	< 0.20	0.30
		MW-14-041310	4/13/2010	Farallon	< 0.20	22	< 0.20	< 0.20	2.2	< 0.20	6.7	0.36	< 0.20	0.26
		MW-14-041310-GEO	4/13/2010	GeoEngineers	< 0.50	32	< 0.50	< 0.50	3.2	< 0.50	10	< 0.50	< 0.50	< 0.50
		MW-14-110410	11/4/2010	Farallon	< 0.20	29	< 0.20	< 0.20	3.4	< 0.20	9.3	0.43	< 0.20	0.60
		MW-14-110410-X	11/4/2010	Farallon	0.21	30	< 0.20	< 0.20	3.7	< 0.20	10	0.43	< 0.20	0.57
		MW-14-020111	2/1/2011	Farallon	< 0.20	24	< 0.20	< 0.20	2.7	< 0.20	6.8	0.33	< 0.20	0.38
MW-14	Deep	MW-14-050411	5/4/2011	Farallon	< 0.20	30	< 0.20	< 0.20	3.7	< 0.20	8.8	0.41	< 0.20	0.48
		MW-14-080311	8/3/2011	Farallon	< 0.20	25	< 0.20	< 0.20	2.4	< 0.20	6.8	0.33	< 0.20	0.41
		MW-14-110811	11/8/2011	Farallon	< 0.20	26	< 0.20	< 0.20	2.2	< 0.20	6.0	0.30	< 0.20	0.43
		MW-14-011012	1/10/2012	Farallon	< 0.20	24	< 0.20	< 0.20	2.2	< 0.20	5.9	0.34	< 0.20	0.59
		MW-14-021312	2/13/2012	Farallon	< 0.20	11	< 0.20	< 0.20	1.6	< 0.20	3.4	< 0.20	< 0.20	< 0.20
		MW-14-061213	6/12/2013	Farallon	< 0.20	10	< 0.20	< 0.20	0.75	< 0.20	2.3	< 0.20	< 0.20	3.0
		MW-14-012816	1/28/2016	Farallon	< 0.20	11	< 0.20	< 0.20	1.3	< 0.20	4.2	< 0.20	< 0.20	0.97
		MW-14-120817	12/8/2017	Farallon	< 0.20	12	< 0.20	< 0.20	1.6	< 0.20	5.1	< 0.20	< 0.20	0.61
		MW-14-010920	1/9/2020	Farallon	< 0.20	7.9	< 0.20	< 0.20	1.6	< 0.20	3.8	< 0.20	< 0.20	0.45
		MW-14C-020509	2/5/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	0.20	< 0.20	1.0	< 0.20	< 0.20	< 0.20
MW-14C	Deep	MW-14C-120817	12/8/2017	Farallon	< 0.20	0.80	< 0.20	< 0.20	< 0.20	< 0.20	0.27	< 0.20	< 0.20	< 0.20
		MW-14C-010720	1/7/2020	Farallon	< 0.20	1.2	< 0.20	< 0.20	< 0.20	< 0.20	0.56	< 0.20	< 0.20	< 0.20
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

						-	An	alytical F	Results (n	nicrogram	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW15-101308	10/13/2008	Farallon	< 0.20	2.8	0.45	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW15-020409	2/4/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-15-041210	4/12/2010	Farallon	< 0.20	2.2	0.28	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW15-041210-GEO	4/12/2010	GeoEngineers	< 0.50	3.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW-15-110310	11/3/2010	Farallon	< 0.20	2.2	0.33	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-15	Deep	MW-15-020111	2/1/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-15-050411	5/4/2011	Farallon	< 0.20	0.46	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-15-080211	8/2/2011	Farallon	< 0.20	3.5	0.45	0.26	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-15-110911	11/9/2011	Farallon	< 0.20	3.5	0.41	0.21	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-15-120617	12/6/2017	Farallon	< 0.20	3.2	0.41	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-15-011020	1/10/2020	Farallon	< 0.20	3.1	0.30	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW16-101308	10/13/2008	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW16-020309	2/3/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.26	< 0.20	< 0.20	< 0.20
		MW-16-041210	4/12/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW16-041210-GEO	4/12/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW-16-110410	11/4/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-16	Deep	MW-16-020111	2/1/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-16-050311	5/3/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-16-080211	8/2/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.20	< 0.20	< 0.20	< 0.20
		MW-16-110911	11/9/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.22	< 0.20	< 0.20	< 0.20
		MW-16-120617	12/6/2017	Farallon	< 0.20	< 0.50	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
				We	ell Decom	missione								
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

						-	An	alytical F	Results (n	nicrogram	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
MW-16R	Deep	MW-16R-010820	1/8/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.27	< 0.20	< 0.20	< 0.20
		MW17-101308	10/13/2008	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-17	Deep	MW17-020409	2/4/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	Deep	MW17-041410	4/14/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW17-041410-GEO	4/14/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW18-020509	2/5/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	2.6	< 0.20	9.9	0.63	< 0.20	< 0.20
		MW18-100109	10/1/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	4.3	< 0.20	15	0.83	< 0.20	< 0.20
		MW-18-041210	4/12/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	4.0	< 0.20	12	0.75	< 0.20	< 0.20
		MW18-041210-GEO	4/12/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	6.0	< 0.50	19	1.2	< 0.50	< 0.50
		MW-18-110310	11/3/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	2.2	< 0.20	6.9	0.75	< 0.20	< 0.20
		MW-18-020111	2/1/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	2.2	< 0.20	6.7	0.69	< 0.20	< 0.20
MW-18	Deep	MW-18-050411	5/4/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	0.71	< 0.20	1.5	< 0.20	< 0.20	< 0.20
	Deep	MW-18-080311	8/3/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	0.81	< 0.20	2.6	0.56	< 0.20	< 0.20
		MW-18-110811	11/8/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	0.72	< 0.20	2.3	0.48	< 0.20	< 0.20
		MW-18-011012	1/10/2012	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	1.1	< 0.20	2.8	0.59	< 0.20	< 0.20
		MW-18-021312	2/13/2012	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	0.28	< 0.20	0.78	< 0.20	< 0.20	< 0.20
		MW-18	4/10/2012	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.47	0.30	< 0.20	< 0.20
		MW-18-120617	12/6/2017	Farallon	< 0.20	< 0.50	< 0.20	< 0.20	2.8	< 0.20	6.9	2.5	< 0.20	< 0.20
		MW-18-010920	1/9/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	2.6	< 0.20	4.4	3.0	< 0.20	< 0.20
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical F	Results (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW19-020509	2/5/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-19-041210	4/12/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW19-041210-GEO	4/12/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW-19-110310	11/3/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-19	Deep	MW-19-020111	2/1/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-19-050411	5/4/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-19-080311	8/3/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-19-110911	11/9/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-19-120517	12/5/2017	Farallon	< 0.20	< 0.50	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical F	Results (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW20-093009	9/30/2009	Farallon	< 0.20	33	< 0.20	< 0.20	0.43	< 0.20	3.5	0.42	< 0.20	< 0.20
		MW-20-041310	4/13/2010	Farallon	< 0.20	33	0.21	< 0.20	0.47	< 0.20	3.4	0.29	< 0.20	0.23
		MW20-041310-GEO	4/13/2010	GeoEngineers	< 0.50	48	< 0.50	< 0.50	0.70	< 0.50	5.0	< 0.50	< 0.50	< 0.50
		MW-20-110410	11/4/2010	Farallon	0.27	30	< 0.20	< 0.20	0.36	< 0.20	3.0	0.23	< 0.20	0.28
		MW-20-020111	2/1/2011	Farallon	< 0.20	19	< 0.20	< 0.20	0.22	< 0.20	1.7	< 0.20	< 0.20	0.20
		MW-20-050311	5/3/2011	Farallon	< 0.20	29	< 0.20	< 0.20	0.40	< 0.20	2.9	< 0.20	< 0.20	0.29
		MW-20-080311	8/3/2011	Farallon	< 0.20	30	< 0.20	< 0.20	0.46	< 0.20	2.8	< 0.20	< 0.20	0.28
MW-20	Deep	MW-20-110811	11/8/2011	Farallon	< 0.20	24	0.20	< 0.20	0.25	< 0.20	2.0	< 0.20	< 0.20	0.28
WI W -20	Deep	MW-20-051112	5/11/2012	Farallon	< 0.20	28	< 0.20	< 0.20	0.31	< 0.20	2.9	< 0.20	< 0.20	0.38
		MW-20-061312	6/13/2012	Farallon	< 0.20	26	< 0.20	< 0.20	0.36	< 0.20	2.5	< 0.20	< 0.20	0.37
		MW-20-080912	8/9/2012	Farallon	< 0.20	22	< 0.20	< 0.20	0.24	< 0.20	1.9	< 0.20	< 0.20	0.31
		MW-20-061213	6/12/2013	Farallon	< 0.20	20	< 0.20	< 0.20	< 0.20	< 0.20	2.0	< 0.20	< 0.20	0.30
		MW-20-012916	1/29/2016	Farallon	< 0.20	20	< 0.20	< 0.20	< 0.20	< 0.20	2.1	< 0.20	< 0.20	0.29
		MW-20-120717	12/7/2017	Farallon	< 0.20	20	< 0.20	< 0.20	< 0.20	< 0.20	2.1	< 0.20	< 0.20	0.26
		MW-20-010920	1/9/2020	Farallon	< 0.20	19	< 0.20	< 0.20	< 0.20	< 0.20	1.9	< 0.20	< 0.20	< 0.20
		MW-20-093020	9/30/2020	Farallon	< 0.20	17	< 0.20	< 0.20	< 0.20	< 0.20	1.9	< 0.20	< 0.20	< 0.20
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical F	Results (n	nicrogram	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW21-100109	10/1/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-21-041310	4/13/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW21-041310-GEO	4/13/2010	GeoEngineers	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW-21-110310	11/3/2010	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-21	Deep	MW-21-020111	2/1/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.21	< 0.20	< 0.20	< 0.20
		MW-21-050311	5/3/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-21-080311	8/3/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-21-110811	11/8/2011	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-21-120717	12/7/2017	Farallon	< 0.20	0.32	< 0.20	< 0.20	< 0.20	< 0.20	0.20	< 0.20	< 0.20	< 0.20
		MW22-100109	10/1/2009	Farallon	< 0.20	20	< 0.20	< 0.20	1.6	< 0.20	5.9	0.36	< 0.20	1.4
		MW-22-041210	4/12/2010	Farallon	< 0.20	19	< 0.20	< 0.20	1.4	< 0.20	5.0	0.28	< 0.20	0.60
		FD-041210	4/12/2010	Farallon	< 0.20	19	< 0.20	< 0.20	1.5	< 0.20	5.1	0.31	< 0.20	0.55
		MW22-041210-GEO	4/12/2010	GeoEngineers	< 0.50	29	< 0.50	< 0.50	2.1	< 0.50	8.4	< 0.50	< 0.50	0.89
		Dupe1-041210-GEO	4/12/2010	GeoEngineers	< 0.50	29	< 0.50	< 0.50	2.1	< 0.50	8.5	< 0.50	< 0.50	0.90
MW-22	Deep	MW-22-110410	11/4/2010	Farallon	< 0.20	18	< 0.20	< 0.20	1.2	< 0.20	4.6	0.26	< 0.20	0.46
10100 22	Deep	MW-22-020111	2/1/2011	Farallon	< 0.20	12	< 0.20	< 0.20	0.59	< 0.20	2.6	< 0.20	< 0.20	0.31
		MW-22-050411	5/4/2011	Farallon	< 0.20	15	< 0.20	< 0.20	0.94	< 0.20	3.4	< 0.20	< 0.20	0.37
		MW-22-080311	8/2/2011	Farallon	< 0.20	13	< 0.20	< 0.20	0.61	< 0.20	2.3	< 0.20	< 0.20	0.34
		MW-22-110811	11/8/2011	Farallon	< 0.20	14	< 0.20	< 0.20	0.65	< 0.20	2.5	< 0.20	< 0.20	0.36
		MW-22-061213	6/12/2013	Farallon	< 0.20	12	< 0.20	< 0.20	0.45	< 0.20	2.3	< 0.20	< 0.20	0.31
		MW-22-01-2320	1/23/2020	Farallon	< 0.20	1.6	< 0.20	< 0.20	< 0.20	< 0.20	1.2	< 0.20	< 0.20	< 0.20
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical F	Results (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		MW23-112409	11/24/2009	Farallon	< 0.20	0.57	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-23-041210	4/12/2010	Farallon	< 0.20	0.74	< 0.20	< 0.20	< 0.20	< 0.20	0.30	< 0.20	< 0.20	< 0.20
		MW23-041210-GEO	4/12/2010	GeoEngineers	< 0.50	1.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
		MW-23-110410	11/4/2010	Farallon	< 0.20	0.68	< 0.20	< 0.20	< 0.20	< 0.20	0.21	< 0.20	< 0.20	< 0.20
		MW-23-020111	2/1/2011	Farallon	< 0.20	0.65	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-23	Deep	MW-23-050311	5/3/2011	Farallon	< 0.20	0.84	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
141 44 - 2.5	Бсер	MW-23-080311	8/3/2011	Farallon	< 0.20	0.79	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-23-110911	11/9/2011	Farallon	< 0.20	0.83	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-23-061213	6/12/2013	Farallon	< 0.20	0.64	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-23-012816	1/28/2016	Farallon	< 0.20	0.61	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-23-120717	12/7/2017	Farallon	< 0.20	0.64	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-23-010920	1/9/2020	Farallon	< 0.20	0.53	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-25-080912	8/9/2012	Farallon	0.26	5.7	< 0.20	< 0.20	< 0.20	< 0.20	0.26	< 0.20	< 0.20	0.46
		MW25-092412	9/24/2012	Farallon	< 0.20	3.5	< 0.20	< 0.20	< 0.20	< 0.20	0.20	< 0.20	< 0.20	< 0.20
MW-25	Deep	MW-25-061213	6/12/2013	Farallon	< 0.20	2.7	< 0.20	< 0.20	< 0.20	< 0.20	0.22	< 0.20	< 0.20	< 0.20
10100 25	Deep	MW-25-012916	1/29/2016	Farallon	< 0.20	3.1	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		MW-25-120617	12/6/2017	Farallon	< 0.20	3.3	< 0.20	< 0.20	< 0.20	< 0.20	0.25	< 0.20	< 0.20	< 0.20
		MW-25-010720	1/7/2020	Farallon	< 0.20	3.5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-28	Deep	MW-28-011513	1/15/2013	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.37
	Deep	MW-28-120717	12/7/2017	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-29	MW-29 Deep MW-29-011513 1/1 MW-29-120717 12			Farallon	< 0.20	0.22	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	-	MW-29-120717	Farallon	< 0.20	0.31	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	
MTCA Cleanup	Levels for G	roundwater ²			5	5	16 ³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

						-	An	alytical F	Results (n	nicrogram	ns per lit	er) ¹	-	
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		SVE1-093009	9/30/2009	Farallon	< 0.20	0.68	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	1.6
		SVE-1-011012	1/10/2012	Farallon	< 0.20	4.0	< 0.20	< 0.20	1.4	< 0.20	2.9	0.28	< 0.20	0.95
SVE-1	Deep	SVE-1-021312	2/13/2012	Farallon	< 0.20	7.0	< 0.20	< 0.20	1.1	< 0.20	2.5	0.25	< 0.20	0.81
5711	Deep	SVE-1-012916	1/29/2016	Farallon	< 0.20	4.7	< 0.20	< 0.20	0.31	< 0.20	1.3	< 0.20	< 0.20	2.2
		SVE-1-120717	12/7/2017	Farallon	< 0.20	2.7	< 0.20	< 0.20	0.24	< 0.20	1.1	< 0.20	< 0.20	1.3
		SVE-1-010920	1/9/2020	Farallon	< 0.20	2.2	< 0.20	< 0.20	< 0.20	< 0.20	0.53	< 0.20	< 0.20	0.95
		SVE2-093009	9/30/2009	Farallon	< 0.20	9.7	< 0.20	< 0.20	0.41	< 0.20	5.2	< 0.20	< 0.20	0.50
SVE-2	Deep	SVE2-110910	11/9/2010	Farallon	< 0.20	3.4	< 0.20	< 0.20	< 0.20	< 0.20	1.3	< 0.20	< 0.20	0.43
5,122	Deep	SVE-2-120517	12/5/2017	Farallon	< 0.20	6.6	< 0.20	< 0.20	< 0.20	< 0.20	1.6	< 0.20	< 0.20	0.54
		SVE-2-010920	1/9/2020	Farallon	< 0.40	1.5	< 0.40	< 0.40	< 0.40	< 0.40	0.69	< 0.40	< 0.40	< 0.40
		SVE-8-011012	1/10/2012	Farallon	< 0.20	5.3	< 0.20	< 0.20	0.29	< 0.20	0.80	< 0.20	< 0.20	1.1
SVE-8	Deep	SVE-8-021312	2/13/2012	Farallon	< 0.20	5.6	< 0.20	< 0.20	0.33	< 0.20	0.96	< 0.20	< 0.20	0.40
2.20	p	SVE-8	4/10/2012	Farallon	< 0.20	4.6	< 0.20	< 0.20	0.30	< 0.20	0.62	< 0.20	< 0.20	< 0.20
		SVE-8-010720	Farallon	< 0.20	2.5	< 0.20	< 0.20	< 0.20	< 0.20	0.25	< 0.20	< 0.20	< 0.20	
MTCA Cleanup	Levels for G	roundwater ²			5	5	16³	160 ³	400 ³	0.2	200	7.68 ³	5	1.41 ³

							An	alytical F	Results (n	nicrogran	ns per lit	er) ¹		
Sample Location	Water- Bearing Zone	Sample Identification	Sample Date	Sampled By	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	Chloroform
		AS1-093009	9/30/2009	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	1.5
AS-1	Deep	AS-1-120817	12/8/2017	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		AS-1-010920	1/9/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
AS-2	Deep	AS-2-010920	1/9/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
AS-3	Deep	AS-3-010920	1/9/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
AS-4	Deep	AS-4-010920	1/9/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
AS-6	Deep	AS-6-012320	1/23/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
AS-7	Deep	AS-7-010920	1/9/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.28	0.28	< 0.20	< 0.20
AS-8	Deep	AS-8-012320	1/23/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
			F	Regional Water-	Bearing	Zone								
		SW-082008	8/20/2008	Farallon	< 0.20	0.30	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		Pumphouse-021209	2/12/2009	Farallon	< 0.20	0.53	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Industrial Well	Regional	PUMP HOUSE - 081715	8/17/2015	Farallon	< 0.20	0.27	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		INDUSTRIAL_WELL-120717	12/7/2017	Farallon	< 0.20	0.39	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		IW-011020	1/10/2020	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MTCA Cleanup	Levels for G	broundwater ²			5	5	16 ³	160³	400³	0.2	200	7.68 ³	5	1.41 ³

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8260B/8260C/8260D.

²Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

³MTCA Cleanup Levels and Risk Calculations, Version 3.1, Standard Method B Values for Groundwater, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx Farallon = Farallon Consulting, L.L.C. GeoEngineers = GeoEngineers, Inc. VOCs = volatile organic compounds

				Analyti	ical Results (n	nicrograms p	er liter) ¹
	Water-Bearing	Sample		Ars	enic	L	ead
Well Identification	Zone	Identification	Sample Date	Total	Dissolved	Total	Dissolved
		Shallow V	Vater-Bearing Z	lone			
		MW9-082008	8/20/2008		<3.0		<1.0
MW-9	Shallow	MW-9-012816	1/28/2016	<3.0	<3.0	<1.0	<1.0
	Shanow	MW-9-120717	12/7/2017	<3.0	<3.0	<1.0	<1.0
			Well De	ecommissione	d 12/20/2019		
MW-9R	Shallow	MW-9R-010720	1/7/2020	<3.3	<3.0	<1.1	<1.0
IVI VV - 91K	Shanow	MW-9R-092920	9/29/2020	<3.3	<3.0	<1.1	<1.0
MW-9A	Shallow	MW-9A-072221	7/22/2021	3.6	3.0		
		MW12-101408	10/14/2008	11	8.2	50	29
		MW12-020609	2/6/2009	15	18	22	6.1
		MW12-011310	1/13/2010	9.2	9.3	6.8	7.1
		MW12-041310	4/13/2010	9.1	9.1	4.5	3.5
		MW12-111910	11/19/2010	7.7		14	_
		MW12-020111	2/1/2011	11	_	6	_
MW-12	Shallow	MW12-050311	5/3/2011	16	12	11	_
IVI VV - 1 2	Shahow	MW12-080211	8/2/2011	8.6	6.5	35	25
		MW-12-1110211	11/10/2011	9.5	_	22	_
		MW-12-061313	6/13/2013	8.4	8.4	17	13
		MW-12-091214	9/12/2014	16	7.1	59	12
		MW-12-012716	1/27/2016	11	8.6	21	3.7
		MW-12-120517	12/5/2017	6.3	6.9	12	10
		MW-12-010720	1/7/2020	12	7.5	18	11
			9/12/2014	Dry	No Groundwa	ater Sample C	ollected
			10/30/2014	Dry	No Groundwa	ater Sample C	ollected
MW-30	Shallow		1/28/2016	Dry	No Groundwa	ater Sample C	ollected
		_	12/5/2017	Dry	No Groundwa	ater Sample C	ollected
			1/7/2020	Dry	No Groundwa	ater Sample C	ollected
ATCA Method A C	leanup Levels ²				5		15

				Analyt	ical Results (n	nicrograms p	er liter) ¹
	Water-Bearing	Sample		Ars	senic	L	ead
Well Identification	Zone	Identification	Sample Date	Total	Dissolved	Total	Dissolved
		MW-31-091214	9/12/2014	39	20	350	9.6
		MW-31-103014	10/30/2014		19		5.5
MW-31	Shallow	MW-31-012716	1/27/2016	31	15	450	3.7
IVI VV -31	Shanow	MW-31-120517	12/5/2017	22	20	20	11
		MW-31-010720	1/7/2020	43	21	500	8.6
		MW-31-093020	9/30/2020	30	27	14	9.5
		MW-32-091214	9/12/2014	9.1	<3.0	7.9	<1.0
MW-32	Shallow	MW-32-012816	1/28/2016	3.2	<3.0	2.1	<1.0
IVI VV -32	Shanow	MW-32-120517	12/5/2017	<3.3	<3.0	<1.1	<1.0
		MW-32-010720	1/7/2020	<3.3	<3.0	1.5	<1.0
MW-33	Shallow	MW-33-012916	1/29/2016	<3.0	<3.0	<1.0	<1.0
IVI VV -33	Shanow	MW-33-120517	12/5/2017	<3.3	<3.0	<1.1	<1.0
		MW-34-012916	1/29/2016	<3.0	<3.0	<1.0	<1.0
MW-34	Shallow	MW-34-120617	12/6/2017	<3.0	<3.0	<1.0	<1.0
		MW-34-010920	1/9/2020	4.6	<3.0	5.8	<1.0
MW-35	Shallow	MW-35-011020	1/10/2020	7.6	6.1	2.0	<1.0
101 00 -55	Shanow	MW-35-093020	9/30/2020	11	9.7	<1.1	<1.0
MTCA Method A C	leanup Levels ²				5		15

				Analyti	cal Results (n	nicrograms p	er liter) ¹
	Water-Bearing	Sample		Ars	enic	L	ead
Well Identification	Zone	Identification	Sample Date	Total	Dissolved	Total	Dissolved
		Deep Wa	ater-Bearing Zo	ne			
MW-7	Deep	MW7082008	8/20/2008	_		1.3	
MW-8	Deep	MW-8	10/22/2002		_	8	
		MW-9B-010720	1/7/2020	18	9.9	<1.1	<1.0
MW-9B	Deep	MW-9B-092920	9/29/2020	12	6.0	<1.1	<1.0
			Well De	ecommissioned	d 02/10/2021		
MW-9D	Deep	MW-9D-072221	7/22/2021	< 3.3	< 3.0	_	
		MW12B-021209	1/12/2009	<3.3		<1.1	
MW-12B	Deep	MW-12B-012716	1/27/2016	2.9	<3.0	1.2	<1.0
IVI VV -12D	Deep	MW-12B-120617	12/6/2017	<3.0	<3.0	1.4	<1.0
		MW-12B-010720	1/7/2020	15	<3.0	8.5	<1.0
MTCA Method A C	leanup Levels ²			5	5		15

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

- denotes sample not analyzed

¹Analyzed by U.S. Environmental Protection Agency Method 200.8.

²Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Cleanup Levels for Groundwater,

Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

Table 8pH Readings Surrounding Monitoring Well MW-9BLakeview FacilityLakewood, WashingtonFarallon PN: 188-002

	Monitoring V Install (January 4 a	ation		Monito	oring Well MV (January		opment		(February 1	llation 0 through 18, 21)
			Fir	st-Phase Purg	ing	Seco	ond-Phase Pur	ging		
Depth ¹	pH in Groundwater ²	pH in Soil ³	Gallons of Water Removed	pH in Water after Purging ²	pH in Water after Purging ³	Gallons of Water Removed	pH in Water after Purging ²	pH in Water after Purging ³	pH in Groundwater ²	pH in Soil ³
10		8.1								
15	6.55/6.8 ⁴									
20		10.0								
30		11.0								11.3
32	8.24	10.8								
35		9.5								
40		9.2								
50		9.2								
55	8.19									
60		8.9								
63			5.0	12.9	12.0					
70		9.0								
73			5.0	12.7	11.7					
75	7.98					20.0	7.4	7.8		
80		7.2								
83			5.0	9.3	8.9					
90		7.8								
93			5.0	8.4	8.2					
100		7.7								
102	7.57									
103			5.0	7.8	7.7					
110		8.2								
113									7.6/7.34	
120			5.0	7.5	7.4					

1 of 1

NOTES:

denotes groundwater result

denotes soil result

- denotes sample not analyzed or measured.

¹Depth in feet below ground surface.

²Collected using a multimeter with flow-through cell, unless otherwise noted.

³Collected using a standalone pH meter.

⁴January 23-24, 2021 groundwater sample recorded in the field using standalone pH meter (first value) and laboratory-analyzed for pH by American Public Health Association Standard Method SM 4500-H B or U.S. Environmental Protection Agency Method 9045D (second value).

						Electron F	Receptors ¹		Metals	Metabo	olic By-Prod	ucts ²		Water Qualit	y Parameters ³		Available Organic Carbon
Sample Location	Water-Bearing Zone	Sample Identification	Sample Date	Sampled By	Dissolved Oxygen ³ (mg/l)	Nitrite ⁴ (mg/l)	Nitrate ⁴ (mg/l)	Sulfate ⁵ (mg/l)	Ferrous Iron ⁶ (mg/l)	Methane ⁷ (µg/l)	Ethane ⁷ (µg/l)	Ethene ⁷ (µg/l)	рН	Temperature (°Celsius)	Conductivity (mS/cm)	ORP (mV)	Total Organic Carbon ⁸ (mg/l)
							Shall	ow Water-B	earing Zone								
		MW-3-120617	12/6/2017	Farallon	2.09								6.48	12.1	0.446	166.0	
MW-3	Shallow	MW-3-010720	1/7/2020	Farallon	2.73								6.72	11.0	0.483	152.2	
			5/15/2020	Farallon	2.51								6.38	14.6	0.511	-97.1	
MW-4	Shallow		5/15/2020	Farallon	0.29								6.47	13.2	1.024	-148	
MW-5	Shallow	MW-5-120517	12/5/2017	Farallon	0.30								6.04	14.8	0.339	68.4	
			12/5/2017	Farallon							Sampled - U						
MW-6	Shallow		1/7/2020	Farallon			1	1	1	Well Not	Sampled - U	nable to loc	-				1
		MW-6-093020	9/30/2020	Farallon	0.23								7.18	14.4	IE ⁹	-250	
		MW-6-022321	2/23/2021	Farallon	0.43								7.07	9.8	0.520	-71.9	
		MW-9-120717	12/7/2017	Farallon	2.17								6.61	11.9	0.380	185.6 74.9	
		MW-9R-010720	1/7/2020	Farallon	0.52								6.60	13.4	0.589		
MW-9	Shallow	MW-9R	6/22/2020	BSE	0.36								6.35/6.77 ¹⁰	15.66	0.569	63.1	
		MW-9R-092920	9/29/2020	Farallon	0.34								6.30/6.5 ¹¹	17.5	IE ⁹	-74	
		MW-9R-121820	12/18/2020	Farallon	0.72								6.56	13.5	0.432	194.5	
		MW-9A	1/18/2021	Farallon			1		ll Decommission	1	1		7.0	1	[1
	Ch all and	MW-9A-022321	2/23/2021	Farallon	1.13								6.55/6.8 ¹¹	12.5	0.449	153.7	
MW-9A	Shallow												6.7 ¹²			133.7 IE ⁹	
		MW-9A-072221	7/22/2021	Farallon Farallon	1.21					 Wall Not	Comminal II	 [n als] = 4 = 1 = a		19.1	0.478	IE	
		 MW-11-011020	12/5/2017 1/10/2020	Farallon	3.45			1		1	Sampled - U		6.67	10.3	1.301	-81.0	1
MW-11	Shallow	MW-11-011020 MW-11-051520	5/15/2020	Farallon	0.23								6.43	11.5	0.931	-179.8	
101 00 - 1 1	Shanow	MW-11-051520 MW-11	6/10/2020	BSE	1.16								6.72	13.01	0.00836	83.4	
		MW-11 MW-11	6/22/2020	BSE	1.52								6.34	12.4	0.679	15.5	
		MW-12-120517	12/5/2017	Farallon	0.44								8.92	12.4	0.823	-326.5	
MW-12	Shallow	MW-12-010720	1/7/2020	Farallon	6.52								9.11	13.5	0.831	-241.7	
		MW-13-120517	12/5/2017	Farallon	0.92								7.63	15.4	0.314	-46.5	
	C1 11	MW-13-010720	1/7/2020	Farallon	6.19								7.43	14.9	0.259	-68.3	
MW-13	Shallow	MW-13-092920	9/29/2020	Farallon	1.96								6.88	17.3	IE ⁹	21.7	
		MW-13-121820	12/18/2020	Farallon	4.45								7.42	14.9	0.193	198	
MW-17A	Shallow		5/15/2020	Farallon	0.25								6.58	15.6	0.592	-181.2	
MW-26	Shallow	MW-26-120617	12/6/2017	Farallon	4.50								6.18	10.6	0.155	101.9	
IVI VV -20	Shallow	MW-26-010720	1/7/2020	Farallon	6.05								6.45	8.9	0.176	145.3	
MW-30	Shallow		12/5/2017	Farallon							ell Not Samp						
141 44 -30	Shanow		1/7/2020	Farallon			-			We	ell Not Sampl	led - Dry					
		MW-31-120517	12/5/2017	Farallon	0.08								12.52	12.0	1.446	-400.5	
MW-31	Shallow	MW-31-010720	1/7/2020	Farallon	7.13								11.52	13.0	1.122	-149.8	
11111 51	Shullow	MW-31	6/22/2020	BSE	0.03								11.11/11.3 ¹⁰	17.70	0.734	13.6	
		MW-31-093020	9/30/2020	Farallon	0.24								11.48/11.5 ¹¹	14.9	IE ⁹	-393.3	

									100 002								
						Electron F	Receptors ¹	1	Metals	Metab	olic By-Prod	ucts ²		Water Qualit	y Parameters ³		Available Organic Carbon
Sample Location	Water-Bearing Zone	Identification	Sample Date	Sampled By	Dissolved Oxygen ³ (mg/l)	Nitrite ⁴ (mg/l)	Nitrate ⁴ (mg/l)	Sulfate ⁵ (mg/l)	Ferrous Iron ⁶ (mg/l)	Methane ⁷ (µg/l)	Ethane ⁷ (µg/l)	Ethene ⁷ (µg/l)	рН	Temperature (°Celsius)	Conductivity (mS/cm)	ORP (mV)	Total Organic Carbon ⁸ (mg/l)
MW-32	Shallow	MW-32-120517	12/5/2017	Farallon	7.48								5.79	12.3	0.191	141.0	
		MW-32-010720	1/7/2020	Farallon	8.65								6.43	12.2	0.151	-14.0	
MW-33	Shallow	MW-33-120517	12/5/2017 1/7/2020	Farallon Farallon	7.86						 Well Not Sar	npled	5.88	12.7	0.158	148.8	
MW-34	Shallow	MW-34-120617	12/6/2017	Farallon	7.42								5.85	12.6	0.127	132.9	
		MW-34-010920	1/9/2020	Farallon	7.65								6.28	9.0	0.189	127.5	
MW-35	Shallow	MW-35-011020	1/10/2020	Farallon	4.05								6.56	9.8	0.799	-12.5	
MILL OF	01-11	MW-35-093020	9/30/2020	Farallon	0.14								6.02/6.4 ¹¹	15.4	IE ⁹	-115.6	
MW-36	Shallow	MW-36-022321	2/23/2021	Farallon	1.63 8.87								7.40	12.5 13.8	2.519	-204.3 59.8	
SVE-3	Shallow	SVE-3-120517 SVE-3-010720	12/5/2017 1/7/2020	Farallon									7.00	13.8	0.133	59.8 147.1	
		SVE-5-010720 SVE-5-120817		Farallon	8.08								6.81		0.206		
		SVE-5-011020	12/8/2017	Farallon	6.68 3.50								6.37	14.5	0.312 0.366	89.5 -20.0	
		SVE-5-011020 SVE-5-051520	1/10/2020	Farallon Farallon	5.25								6.96 6.54	10.4 15.7	0.366	-20.0	
		SVE-5-051520	5/15/2020 6/10/2020	BSE	4.06								6.58	17.65	0.339		
SVE-5	Shallow	SVE-5 SVE-5	6/10/2020	BSE	3.20										0.312	138.5 34.0	
													6.66	17.33			
		SVE-5-092920	9/29/2020	Farallon	3.90								6.3	19.5	IE ⁹	32.3	
		SVE-5-121820	12/18/2020	Farallon	3.72								6.71	13.8	0.251	35.9	
		QUE 6 100017	10/0/2017	F 11	0.54				ell Decommission		1		6.04	11.6	0.267	72 0	!
SVE-6	Shallow	SVE-6-120817	12/8/2017	Farallon	2.54								6.24	11.6	0.367	72.9	
		SVE-6-010720	1/7/2020	Farallon	2.88								6.44	12.1	0.314	161.8	
SVE 12	Ch all and	SVE-12-120817	12/8/2017	Farallon	7.75	< 0.020	0.81	21	0.0	< 0.50	< 0.50	< 0.50	6.79	12.6	0.228	158.8	1.7
SVE-12	Shallow	SVE-12-010720	1/7/2020	Farallon	6.62								6.53	11.5	0.633	153.7	
		SVE-12-093020	9/30/2020	Farallon	4.12								6.41	16	IE9	17.9	
							Dee	p Water-Bea	aring Zone								
MW-2	Deep	MW-2-120617	12/6/2017	Farallon	3.40	0.027	0.52	16		< 0.50	< 0.50	< 0.50	6.65	13.9	0.310	190.6	1.1
101 00 -2	Бсер	MW-2-010820	1/8/2020	Farallon	4.57								6.45	13.4	0.403	-14.0	
		MW-9B-120717		Farallon	0.45								13.01	9.0	2.906	-248.2	
		MW-9B-010720	1/7/2020	Farallon	7.85								12.14	11.8	3.147	-137.6	
			5/15/2020	Farallon	3.15								12.12	16.8	3.693	-185.6	
MW-9B	Deep	MW-9B	6/22/2020	BSE	2.78								11.69/11.8 ¹⁰	17.06	2.261	67.2	
101 07 - 7 D	Deep	MW-9B-092920	9/29/2020	Farallon	0.22								11.86/11.911	17.5	IE ⁹	-155.6	
		MW-9B	9/29/2020	BSE									12.2 J				
			12/18/2020	Farallon	3.33								12.24	12.1	2.354	-124.1	
						-	1	We	ell Decommission	ed 02/10/2021		1					
MW-9D	Deep	MW-9D-022421	2/24/2021	Farallon	0.66								7.61/7.3 ¹¹	8.2	0.375	-284.9	
	1	MW-9D-072221	7/22/2021	Farallon	IE ⁹								6.8 ¹²	16.6	0.335	IE ⁹	
MW-10B	1	MW-10B-120717		Farallon	1.21								6.32	11.3	0.337	79.5	
MW-11B	.	MW-11B-120517	12/5/2017	Farallon	8.18								6.84	11.3	0.165	107.3	
MW-12B	Deen	MW-12B-120617		Farallon	1.10								6.91	12.5	0.255	157.1	
	= •••P	MW-12B-010720	1/7/2020	Farallon	7.42								7.62	12.8	0.248	-91.0	

	1	T						1 unon 1 1 ()									
						Electron F	Receptors ¹	Γ	Metals	Metab	olic By-Prod	ucts ²		Water Qualit	ty Parameters ³		Available Organic Carbon
Sample Location	Water-Bearing Zone	Sample Identification	Sample Date	Sampled By	Dissolved Oxygen ³ (mg/l)	Nitrite ⁴ (mg/l)	Nitrate ⁴ (mg/l)	Sulfate ⁵ (mg/l)	Ferrous Iron ⁶ (mg/l)	Methane ⁷ (µg/l)	Ethane ⁷ (µg/l)	Ethene ⁷ (µg/l)	рН	Temperature (°Celsius)	Conductivity (mS/cm)	ORP (mV)	Total Organic Carbon ⁸ (mg/l)
		MW-14-120817	12/8/2017	Farallon	2.29	0.056	0.23	18	0.0	< 0.50	< 0.50	< 0.50	6.84	12.3	0.351	73.2	1.1
MW-14	Deep	MW-14-010920	1/9/2020	Farallon	1.32								7.12	9.9	0.366	100.6	
		MW-14C-120817	12/8/2017	Farallon	0.44	< 0.020	< 0.050	120	0.0	4.9	< 0.50	< 0.50	7.52	11.2	0.534	39.7	1.7
MW-14C	Deep	MW-14C-120017 MW-14C-010720	1/7/2020	Farallon	0.54	< 0.020	< 0.050				< 0.50	< 0.50	7.43	12.5	0.367	68.6	
		MW-14C-010/20 MW-15-120617	12/6/2017	Farallon	0.18								6.95	11.4	0.281	58.6	
MW-15	Deep	MW-15-011020	1/10/2020	Farallon	2.52								6.88	10.9	0.281	43.7	
		MW-15-011020 MW-16-120617	12/6/2017	Farallon	0.42	< 0.020	0.088	74	0.0	< 0.50	< 0.50	< 0.50		13.8	0.701	67.6	
MW-16	Deep	IVI W-10-120017	12/0/2017	Faralloli	0.42	< 0.020	0.088		U.0 Il Decommission			< 0.30	6.46	15.8	0.701	07.0	6.2
		MW-16R-010820	1/8/2020	Equallen	0.42	1	1				1		6.61	1/1	0.916	4116	
				Farallon	0.42								6.61	14.1	0.816	-411.6	
MW-16R	Deep	MW-16R	6/22/2020	BSE	1.59								6.60/6.93 ¹⁰	16.88	0.724	37.6	
	-	MW-16R-092920	9/29/2020	Farallon	0.75								6.49	16.9	IE ⁹	-67.8	
		MW-16R-121820	12/18/2020	Farallon	2.99								6.72	13.5	0.604	29.9	
MW-17	Deep		5/15/2020	Farallon	1.26								6.69	21.4	0.621	-158.7	
MW-18	Deep	MW-18-120617	12/6/2017	Farallon	0.70	0.076	< 0.050	40	0.0	0.90	< 0.50	< 0.50	7.61	13.2	0.420	47.6	2.7
	-	MW-18-010920	1/9/2020	Farallon	0.55								7.80	7.6	0.505	-30.9	
MW-19	Deep	MW-19-120517	12/5/2017	Farallon	0.27	< 0.020	0.60	52	0.0	1.7	< 0.50	< 0.50	7.28	14.0	0.472	4.5	2.1
		MW-20-120717	12/7/2017	Farallon	0.44	0.074	0.10	10	0.0	0.58	< 0.50	< 0.50	6.59	12.3	0.300	69.0	1.3
MW-20	Deep	MW-20-010920	1/9/2020	Farallon	0.27								6.61	10.0	0.418	138.2	
		MW-20-093020	9/30/2020	Farallon	0.50								6.41	14.9	IE ⁹	-59.2	
MW-21	Deep	MW-21-120717	12/7/2017	Farallon	0.14								7.70	11.7	0.212	94.7	
MW-22	Deep	MW-22-012320	1/23/2020	Farallon	5.20								7.15	11.2	0.299	159.8	
		MW-23-120717	12/7/2017	Farallon	0.32	< 0.020	< 0.050	38	0.0	79	< 5.0	< 5.0	6.44	11.6	0.600	71.7	3.6
MW-23	Deep	MW-23-010920	1/9/2020	Farallon	7.16								6.81	6.3	0.573	116.1	
	_	MW-23	6/22/2020	BSE	0.18								6.58/7.05 ¹⁰	21.33	0.527	59.8	
1011.25	D	MW-25-120617	12/6/2017	Farallon	0.28	< 0.020	< 0.050	21	0.0	440	< 50	< 50	6.19	12.3	0.397	103.3	1.9
MW-25	Deep	MW-25-010720	1/7/2020	Farallon	0.59								6.50	12.0	0.469	96.1	
MW-28	Deep	MW-28-120717	12/7/2017	Farallon	0.14	0.029	< 0.050	23	0.0	630	< 75	< 75	6.46	10.5	0.425	-53.4	3.3
MW-29	Deep	MW-29-120717	12/7/2017	Farallon	1.20								6.55	11.1	0.335	80.8	
		AS-1-120817	12/8/2017	Farallon	2.02								7.22	12.7	0.656	-10.1	
AS-1	Deep	AS-1-010920	1/9/2020	Farallon	1.24								7.20	10.5	0.578	100.2	
AS-2	Deep	AS-2-010920	1/9/2020	Farallon	3.35								6.65	9.1	0.110	133.3	
AS-3	Deep	AS-3-010920	1/9/2020	Farallon	5.05								7.10	11.0	0.270	142.8	
			12/7/2017	Farallon		1	I	1	1		Sampled - U						1
AS-4	Deep	AS-4-010920	1/9/2020	Farallon	8.36								7.33	9.2	0.056	107.0	
AS-6	Deep	AS-6-012320	1/23/2020	Farallon	5.97								6.55	10.6	0.159	196.5	
AS-7	Deep	AS-7-010920	1/9/2020	Farallon	4.16								7.19	12.1	0.275	72.8	
AS-7 AS-8	Deep	AS-8-012320	1/23/2020	Farallon	4.47								7.48	11.1	0.064	99.7	
UD-0	Deep	A5-0-012520	1/23/2020	1 ar an 011	ц т.+ /								7.40	11.1	0.004	77.1	

						Electron R	eceptors ¹		Metals	Metabo	olic By-Prod	ucts ²		Water Qualit	y Parameters ³		Available Organic Carbon
Sample Location	Water-Bearing Zone	Sample Identification	Sample Date	Sampled By	Dissolved Oxygen ³ (mg/l)	Nitrite ⁴ (mg/l)	Nitrate ⁴ (mg/l)	Sulfate ⁵ (mg/l)	Ferrous Iron ⁶ (mg/l)	Methane ⁷ (µg/l)	Ethane ⁷ (µg/l)	Ethene ⁷ (µg/l)	рН	Temperature (°Celsius)	Conductivity (mS/cm)	ORP (mV)	Total Organic Carbon ⁸ (mg/l)
SVE-1	Deep	SVE-1-120717	12/7/2017	Farallon	6.75	< 0.020	0.85	20		< 0.50	< 0.50	< 0.50	6.55	13.5	0.278	83.3	1.2
571-1	Бсер	SVE-1-010920	1/9/2020	Farallon	8.74								7.04	9.4	0.323	118.8	
SVE-2	Deep	SVE-2-120517	12/5/2017	Farallon	7.38								6.84	13.3	0.294	160.0	
	ľ	SVE-2-010920	1/9/2020	Farallon	5.20 6.82 8.0 0.332 125.4 Well Not Sampled - Inaccessible due to overlying gravel stockpile												
SVE-7	Deep		12/7/2017	Farallon	Well Not Sampled - Inaccessible due to overlying gravel stockpile 3 23												
SVE-8	Deep	SVE-8-010720	1/7/2020	Farallon		3.23 6.56 12.6 0.403 133.3											
SVE-9	Deep	SVE-9-120717	12/7/2017	Farallon	6.97 6.46 13.4 0.368 88.1												
SVE-10	Deep		12/7/2017	Farallon							Sampled - U						
SVE-11	Deep		12/7/2017	Farallon					Well Not	Sampled - Inac	ccessible due	to overlying	asphalt stock	pile			
							Region	nal Water-B	earing Zone								
X 1 1 XX / 11			12/7/2017	Farallon						Water Qua	lity Paramete	rs not Measu	ired				
Industrial Well	Regional	IW-011020	1/10/2020	Farallon	3.81								7.59	5.0	0.365	-54.6	
NOTES:											•	BSE = BlueSto	ne Environmenta	al, LLC			
< denotes analyte no	ot detected at or exceedi	ng the reporting limit li	sted.									° = degrees					
- denotes sample n	not analyzed or measure	d.										Farallon = Faral	lon Consulting, I	L.L.C.			
¹ electron receptors denotes compounds that gain electrons and are sources of energy during biodegradation $E = internal error$																	
² metabolic by-produ	icts denotes compounds	that result from biodeg	radation processes									$\mu g/l = microgra$	ms per liter				
³ Collected using a m	nultimeter with flow-thr	ough cell.	-									mg/l = milligrar	1				
-	Environmental Protectio	-	od 353.2.										-	meter specific conduc	ctance units		
⁵ Analyzed by ASTM	4 D516-07.											mV = millivolts	-	*			

⁶Measured in the field using conventional chemistry parameters by EPA/American Public Health Association Methods.

⁷Analyzed by Gas Chromatograph/Flame Ionization Detector Headspace Method RSK 175.

⁸Analyzed by Standard Method 5310B.

⁹The specific conductance meter appeared to be malfunctioning; readings are not provided.

¹⁰ First value for pH collected using a multimeter with flow-through cell, second value for pH analyzed in a laboratory by EPA Method 150.1.

¹¹First value for pH collected using a multimeter with flow-through cell, second value for pH analyzed in a laboratory by Standard Method 4500-H B.

¹²pH analyzed in a laboratory by Standard Method 4500-H B.

ORP = oxidation-reduction potential

Table 10Cleanup Technology ScreeningLakeview FacilityLakewood, WashingtonFarallon PN: 188-002

		_		1	Score	of Evaluation	Criteria	I	I			
General Response Action	Technology Type	Technology Process Option	Protectiveness	Permanence	Long-Term Effectiveness	Short-Term Risk Management	Implementability	Public Concerns	Implementation Cost	Total	Rank	Retain for Consideration in Focused Feasibility Study?
No Action	None	"No Action" provides no control of exposure to contaminated soil or groundwater.	1	1	1	1	5	1	5	15	9	No
Institutional and Engineered Controls	Legal	Institutional controls comprise legal documentation that includes deed restrictions (Environmental Covenant) with Site use restrictions and health advisories. Engineered controls include barriers (e.g., pavement) to limit exposure to hazardous substances that remain at a site.	3	1	4	4	5	3	5	25	1	Yes
Treatment In-Situ	Chemical Oxidation	Chemical oxidation uses oxidants that change contaminants in soil and/or groundwater into harmless by-products through chemical reactions. Typically chemical oxidants are injected into the subsurface through injection wells or trenches, or borings advanced by a direct-push drilling method.	3	4	3	3	3	2	2	20	5	Yes
Treatment In-Situ	Enhanced Anaerobic Bioremediation	Enhanced anaerobic bioremediation of contaminated groundwater occurs by providing an electron donor to groundwater through injection of a solution to increase the population of naturally occurring microorganisms performing anaerobic bioremediation by reductive dechlorination (i.e. hydrogen release compound, molasses, or vegetable oil). Contaminants are destroyed or anaerobically degraded by gradually replacing chlorine with hydrogen atoms until the process is completed resulting in harmless end-products.	3	4	2	4	1	3	2	19	7	No
Treatment In-Situ	Enhanced Aerobic Bioremediation	Enhanced aerobic bioremediation of contaminated groundwater occurs by providing an electron receptor (i.e., oxygen) to groundwater through application through injection of air, ozone, or reagent, or soil mixing of a reagent to promote biodegradation by the number of naturally occurring microorganisms performing aerobic bioremediation. Contaminants are destroyed or aerobically degraded to carbon dioxide, water, and microbial cell mass.	3	4	3	4	3	3	2	22	2	Yes
Treatment In-Situ	Thermal Treatment	In-situ thermal technologies heat contaminated soil and groundwater to change the physical and chemical properties of contaminates into a vapor-phase for extraction.	4	4	4	2	2	2	1	19	7	No

Table 10 **Cleanup Technology Screening** Lakeview Facility Lakewood, Washington Farallon PN: 188-002

				-	Score o	f Evaluation (Criteria	-	-			
General Response Action	Technology Type	Technology Process Option	Protectiveness	Permanence	Long-Term Effectiveness	Short-Term Risk Management	Implementability	Public Concerns	Implementation Cost	Total	Rank	Retain for Consideration in Focused Feasibility Study?
Treatment In-Situ	Air Sparging and Soil Vapor Extraction	In-situ air sparging injects air into the saturated zone(s) and volatizes organic contaminants. The vapors are captured in the vadose zone by the soil vapor extraction system and discharged into the atmosphere.	4	4	3	3	3	3	1	21	3	Yes
Excavation and Off-Site Disposal	Physical Removal and Off-Site Disposal	Physical removal and off-site disposal of contaminated soil to a subtitle D landfill without pre-treatment. Temporary dewatering of the excavation beneath the water table and disposal of contaminated water at a permitted facility or sanitary sewer will be required.	3	4	4	3	3	2	1	20	5	Yes
Treatment In-Situ	Soil Solidification	Mixing of soil with Portland Cement to stabilize arsenic and lead in soil and prevent leaching of metals into groundwater. The process includes mixing of soil in-situ by large augers, and injecting soil with Portland Cement.	4	3	3	3	3	3	2	21	3	Y

NOTES: Bold denotes general response actions, technology types, and technology process options retained for incorporation into cleanup alternatives Total Score denotes sum of individual scores for implementability, effectiveness, and cost. Rank denotes position relative to other technologies based on Total Score.

Ranking Criteria 5 = Very Favorable 4 = Favorable 3 = Somewhat Favorable to Uncertain 2 = Unfavorable

1 = Very Unfavorable

Table 11Detailed Evaluation of Cleanup AlternativesLakeview FacilityLakewood, WashingtonFarallon PN: 188-002

	Cleanup Alternative 1: Institutional and Engineering Controls	Cleanup Alternative 2a: In-Situ Chemical Oxidation	Cleanup Alternative 2b: In-Situ Chemical Oxidation	Cleanup Alternative 2c: Soil Solidification	Cleanup Alternative 3a: Source Removal, Enhanced Aerobic Degradation, and Monitored Natural Attenuation	Cleanup Alternative 3b: Air Sparge and Soil Vapor Extraction	Cleanup Alternative 3c: Source Removal
Description	Institutional controls in the form of an Environmental Covenant to include Site use restrictions and health advisories. Engineered controls include barriers (e.g. pavement) to limit exposure to hazardous substances that remain at a site.	Direct-push injection of in-situ chemical oxidation reagent into the saturated and unsaturated soil zones to treat residual groundwater and soil contamination.	Direct-push injection of in-situ chemical oxidation reagent into the shallow and deep saturated soil zones to treat residual groundwater contamination.	Large auger in-situ soil mixing of a Portland cement mixture for solidification of soil and groundwater contamination.	Removal and disposal of soil with residual soil contamination, application of bioremediation reagents, and monitored natural attenuation of groundwater.	Operation of air sparge and soil vapor extraction system for cleanup of shallow and deep saturated soil zones for removal of groundwater contamination.	Removal and disposal of foundry fill material and concrete waste.
Applicable Site Areas	All	Former Recycled Stockpile Area, Hot Mix Storage Area, Equipment Storage Carport Area, and Former Asphalt-Testing Laboratory Area	Former Asphalt Testing Laboratory Area	Lead and Arsenic Plume in Groundwater Area	Former Recycled Stockpile Area, Hot Mix Storage Area, Equipment Storage Carport Area, and Former Asphalt-Testing Laboratory Area	Former Asphalt Testing Laboratory Area	Lead and Arsenic Plume in Groundwater Area
			THRESHOLD REQUIRE	MENTS			
Protection of Human Health and the Environment	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment reducing contaminant toxicity and leachability in soil using soil stabilization and solidification	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment.
Compliance with Cleanup Standards	Yes - But cleanup levels will not be met throughout the Site except over the long- term with natural attenuation processes.	Yes - Active remedial measure for soil and groundwater not complying with cleanup standards.	Yes - Active remedial measure groundwater not complying with cleanup standards.	Yes - Active remedial measure for soil and groundwater not complying with cleanup standards.	Yes - Active remedial measure for soil and groundwater not complying with cleanup standards.	Yes - Active remedial measure groundwater not complying with cleanup standards.	Yes - Active remedial measure for soil and groundwater not complying with cleanup standards.
Compliance with Applicable State and Federal Laws	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.
Provision for Compliance Monitoring	Yes - Alternative includes provisions for compliance monitoring (i.e., compliance groundwater monitoring).	Yes - Alternative includes provisions for compliance monitoring (i.e., compliance groundwater monitoring).	Yes - Alternative includes provisions for compliance monitoring (i.e., compliance groundwater monitoring).	Yes - Alternative includes provisions for compliance monitoring (i.e., compliance groundwater monitoring).	Yes - Alternative includes provisions for compliance monitoring (i.e., compliance groundwater monitoring).	Yes - Alternative includes provisions for compliance monitoring (i.e., compliance groundwater monitoring).	Yes - Alternative includes provisions for compliance monitoring (i.e., compliance groundwater monitoring).
			OTHER REQUIREME	ENTS			
Permanent to the Maximum Extent Practicable (see detail below)	Yes - Alternative is permanent to the maximum extent practicable.	Yes - Alternative is permanent to the maximum extent practicable.	Yes - Alternative is permanent to the maximum extent practicable.	Yes - Alternative is permanent and protective to the maximum extent practicable. Soil in the area of groundwater exceeding the cleanup levels for arsenic and lead levels would be stabilized to the extent practicable.	Yes - Alternative is permanent to the maximum extent practicable.	Yes - Alternative is permanent to the maximum extent practicable.	Yes - But while Alternative is permanent it is not considered to be practicable (see text).
Restoration Time Frame	Restoration of soil and groundwater to achieve cleanup standards at the standard points of compliance is indefinite and will be achieved through natural attenuation processes over the long-term.	Yes - Estimated restoration time frame from application of in-situ reagent is 2 to 5 years.	Yes - Estimated restoration time frame from application of in-situ reagent is 2 to 5 years.	Yes - Estimated restoration time frame for soil stabilization is 2- to 3-months to complete.	Yes - Estimated restoration time frame for removal of source material would be less than one year. Bioremediation would occur over 1 to 2 years following application of reagents. Monitored natural attenuation would occur over 3 to 5 years following bioremediation application.	Yes - Estimated restoration time frame is 5 to 12 years of operation of the AS/SVE system.	Yes - Estimated restoration time frame for removal of source material would be less than one year.

Table 11 **Detailed Evaluation of Cleanup Alternatives** Lakeview Facility Lakewood, Washington Farallon PN: 188-002

	Cleanup Alternative 1: Institutional and Engineering Controls	Cleanup Alternative 2a: In-Situ Chemical Oxidation	Cleanup Alternative 2b: In-Situ Chemical Oxidation	Cleanup Alternative 2c: Soil Solidification	Cleanup Alternative 3a: Source Removal, Enhanced Aerobic Degradation, and Monitored Natural Attenuation	Cleanup Alternative 3b: Air Sparge and Soil Vapor Extraction	Cleanup Alternative 3c: Source Removal		
		Eva	aluation Criteria for Permanence to the M	aximum Extent Practicable ¹					
Protectiveness (30% weighting Factor)	Alternative will achieve overall protection by preventing direct contact with affected media = 6.	Alternative protects human health by achieving cleanup standards. = 8.	Alternative protects human health by achieving cleanup standards. = 8.	Alternative protects human health by containing soil and groundwater by soil solidification. = 7.	Alternative protects human health by achieving cleanup standards. = 8.	Alternative protects human health by achieving cleanup standards. = 8.	Alternative protects human health by achieving cleanup standards. = 9.		
Permanence (20% weighting Factor)	A Restrictive Covenant will require permanent measures for future material handling (e.g., removal and disposal of affected media) to prevent exposure to subsurface affected media = 2.	Alternative will permanently reduce residual groundwater and soil contamination in-situ through destruction. = 8.	Alternative will permanently reduce residual groundwater contamination in- situ through destruction. = 8.	Alternative would be permanent to the maximum extent practicable. Residual groundwater contamination be stabilized in-situ to the extent practicable. 7.	Alternative will permanently reduce the volume of residual soil contamination with excavation of soil exceeding cleanup levels. Residual groundwater contamination will be permanently reduced in-situ through degradation. = 8.	Alternative will permanently remove residual groundwater contamination through AS and SVE. = 7.	Alternative will permanently reduce the volume of residual soil contamination with excavation of soil impacting groundwater. = 9.		
Long-Term Effectiveness (20% weighting Factor)	Alternative is considered effective in that it implements controls to prevent direct contact with affected media and possible future removal if and when disturbed = 6 .	Alternative provides long-term effectiveness by reducing residual soil and groundwater contamination in-situ through destruction of contaminants. = 8.	Alternative provides long-term effectiveness by reducing residual groundwater contamination in-situ through destruction of contaminants. = 8.	Alternative provides long-term effectiveness by immobilizing soils and groundwater with contaminants exceeding cleanup levels. = 6.	Alternative provides long-term effectiveness by removing soil with contaminants exceeding cleanup levels and reducing residual groundwater contamination in-situ through degradation of contaminants. = 8.	Alternative provides long-term effectiveness by removal of residual groundwater contamination through AS and SVE. = 7.	Alternative has long-term effectiveness with removal of residual soil contamination impacting groundwater. = 9.		
Short-Term Risk Management (10% weighting Factor)	Alternative does not disturb affected media in the short term; no short-term risk management needed = 9.	Alternative will pose limited short-term risk during direct-push injections of substrates at potentially high pressures. = 7.	Alternative will pose limited short-term risk during direct-push injections of substrates at potentially high pressures. = 7.	Alternative disturbs affected media, presenting short-term risk to workers, and to the public during construction and off the Site transport. = 6.	Alternative disturbs affected media, presenting short-term risk to workers, proximate property owners, and during transport off-Site. = 7.	Alternative presents limited short-term risk related to operation and maintenance of existing AS/SVE system. = 9.	Alternative disturbs affected media, presenting short-term risk to workers, proximate property owners, and during transport off-Site. = 7.		
	Cleanup Alternative 1: Institutional and Engineering Controls	Cleanup Alternative 2a: In-Situ Chemical Oxidation	Cleanup Alternative 2b: In-Situ Chemical Oxidation	Cleanup Alternative 2c: Soil Solidification	Cleanup Alternative 3a: Source Removal, Enhanced Aerobic Degradation, and Monitored Natural Attenuation	Cleanup Alternative 3b: Air Sparge and Soil Vapor Extraction	Cleanup Alternative 3c: Source Removal		
Implementability (10% weighting Factor)	Alternative is readily implementable with controls and subsurface excavation restrictions and health advisories = 10.	Alternative requires closely spaced direct push injections into fine grain soils which could pose challenges with reagent deleivery. An Underground Injection Control permit would be required for injections. = 7.	Alternative requires closely spaced direct push injections into fine grain soils in the shallow and deep water-bearing zones which could pose challenges with reagent deleivery. An Underground Injection Control permit would be required for injections. = 6.	Alternative requires soil mixing in slopped portions of the Site posing logistical challenges. = 7.	Alternative employs disturbing and removing soil from four locations on the property and would require temporary relocation of facilities. = 5.	Alternative includes operation and maintenance of existing AS/SVE system. = 9.	Alternative employs disturbing and removal of large volumes of affected so while readily implementable, is considered less implementable than an Alternative that does not require these measures = 3.		
Public Concerns (10% weighting Factor)	Alternative leaves impacted groundwater and potentially-impacted soil in place. Site is in area zoned Industrial/Air Corridor and public access is restricted. Public exposure will not occur and limited public concern is anticipated = 8.	Alternative would pose limited public concerns regarding injection of substrates via high-pressure injection points. = 8.	Alternative would pose limited public concerns regarding injection of substrates via high-pressure injection points. = 8.	Alternative may result in short-term construction disturbance at the Site creating public concern. = 7.	Public concern likely will not be an issue. Highest potential for public concerns will be during off-site transport. = 9.	Alternative would pose limited public concerns regarding noise generated from operation of the AS/SVE system. The existing AS/SVE system is not prominent to receptors. = 9.	Alternative employs removal of impacted soil near property line and residential properties which noise, dust, and truck traffic might pose public concern. = 6.		
MTCA Composite Benefit Score ¹	6.1	7.8	7.7	6.7	7.5	7.9	7.6		
Overall Alternative Ranking	6.1		7.4			7.7			
Subtotal Cost - Former Recycled Stockpile Area, Hot Mix Storage Area, Equipment Storage Carport Area, and Former Asphalt-Testing Laboratory Area	\$40,680	\$1,773,540	-	-	\$4,024,260	-	-		
Subtotal Cost - Former Asphalt Testing Laboratory Area	\$47,160		\$2,739,060	-	-	\$1,635,840	-		
Subtotal Cost - Lead and Arsenic Plume in Groundwater Area	\$41,220		-	\$4,507,667	-	-	\$24,938,667		
Cost	\$129,060		\$9,020,267			\$30,598,767			
Cost-Benefit Ratio	\$21,157		\$1,218,955		\$3,991,143				

¹ Basis for overall Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Composite Benefit Score provided quantitatively with a "score" from 0 (least favorable) to 10 (most favorable) for each of the six evaluation criteria for Permanent to the Maximum Extent Practicable above. MTCA Composite Benefit Scores are calculated by summing the mathematical product of the score multiplied by the indicated weighting factor for each of the six criteria. The basis for the weighting factors for the six criteria to evaluate Permanent to the Maximum Extent Practicable was provided in the Washington State Department of Ecology guidance cited in the letter text.

 Table 12a

 Summary of Estimated Cleanup Costs for Cleanup Alternatives 1, 2a, and 3a for TPH and cPAH Areas

 Lakeview Facility

 Lakewood, Washington

 Farallon PN: 188-002

				Es	stimated Cost		
		-	ve 1: Institutional and Controls	-	2a: In-Situ Chemical lation	1	ce Removal, Enhanced Aerobic ored Natural Attenuation
Remedial Action Task	Scope of Work	Low Estimate	High Estimate	Low Estimate	High Estimate	Low Estimate	High Estimate
Project Management	Ongoing project management throughout the cleanup action (assumes 8 percent of the total estimated cost)	\$1,893	\$3,013	\$45,213	\$131,373	\$246,413	\$298,093
Institutional and Engineered Controls	Applicable to Cleanup Alternative 1, institutional controls will be in the form of an Environmental Covenant recorded on the property deed that will include Site use restrictions and health advisories. Engineered controls will be in the form of a soil cap to limit exposure to hazardous substances that remain at the Site. Included estimated cost is 1/3 of estimated total cost for implementing institutional controls for the entire Site.	\$6,667	\$6,667	\$0	\$0	\$0	\$0
Chemical Oxidation	Applicable to Cleanup Alternative 2a, includes engineering design, construction management, potential multiple chemical oxidant injection events, and collection of confirmational soil and groundwater samples. The low estimate assumes one injection with three performance groundwater monitoring events. The high estimate assumes three injections with nine performance groundwater monitoring events. Both estimates assume four quarters of confirmation groundwater monitoring events.	\$0	\$0	\$553,000	\$1,629,000	\$0	\$0
Excavation and Off-Site Disposal	Applicable to Cleanup Alternative 3a, includes engineering design, construction management, excavation, transport, and disposal of impacted material off the Site, application of biostimulant in backfill or to existing wells, and groundwater monitoring. The low estimate assumes no performance groundwater monitoring events and four quarters of confirmation groundwater monitoring. The high estimate assumes eight performance groundwater monitoring events, four quarterly confirmation groundwater monitoring events, and a 20 percent construction contingency.	\$0	\$0	\$0	\$0	\$3,068,000	\$3,713,000
Closure Report	Applicable to Cleanup Alternatives 2 and 3, summarizing the completed cleanup action and requesting issuance of a No Further Action (NFA) determination from the Washington State Department of Ecology (Ecology). Included estimated cost is 1/3 of estimated total cost for the Site Closure Report.	\$0	\$0	\$6,667	\$6,667	\$6,667	\$6,667
Compliance Groundwater Monitoring	Applicable to Cleanup Alternative 1, long-term groundwater monitoring of contaminant concentrations at points of compliance monitoring wells. The low estimate assumes 3 groundwater monitoring events 18 months apart over the period of 4.5 years following receipt of an NFA determination for the Site from Ecology, and preparation of one report to document groundwater monitoring results. The high estimate assumes 10 groundwater monitoring events 18 months apart over the period of 15 years following receipt of an NFA determination for the Site from Ecology, and preparation of three reports to document groundwater monitoring results. Included estimated cost is 1/3 of estimated total cost for the Site Compliance Groundwater Monitoring.	\$7,000	\$21,000	\$0	\$0	\$0	\$0
Interactions with Ecology and 5-Year Review	Interactions with Ecology and, in case of Cleanup Alternative 1, a 5-year project review following receipt of an NFA determination for the Site from Ecology.	\$6,000	\$6,000	\$1,500	\$2,500	\$1,500	\$2,500
Remediation System and Monitoring Well Decommissioning	Decommissioning the monitoring well network in accordance with Chapter 173-160 of the Washington Administrative Code for well abandonment following receipt of an NFA determination for the Site from Ecology. Costs for decommissioning wells in the area of total petroleum hydrocarbon and carcinogenic polycyclic aromatic hydrocarbon impacts, including monitoring wells MW-6, MW-11, MW-11B, MW-14C, MW-20, and MW-36.	\$4,000	\$4,000	\$4,000	\$4,000	\$4,000	\$4,000
ESTIMATED CLEANUP ACTION TOTAL COST (SUBTOTAL)	\$25,560	\$40,680	\$610,380	\$1,773,540	\$3,326,580	\$4,024,260
	ESTIMATED CLEANUP ACTION TOTAL COST	\$25,560 Low Estimate	\$40,680 High Estimate	\$610,380 Low Estimate	\$1,773,540 High Estimate	\$3,326,580 Low Estimate	\$4,024,260 High Estimate

Table 12b Summary of Estimated Cleanup Costs for Cleanup Alternatives 1 , 2b, and 3b for TCE Areas Lakeview Facility Lakewood, Washington Farallon PN: 188-002

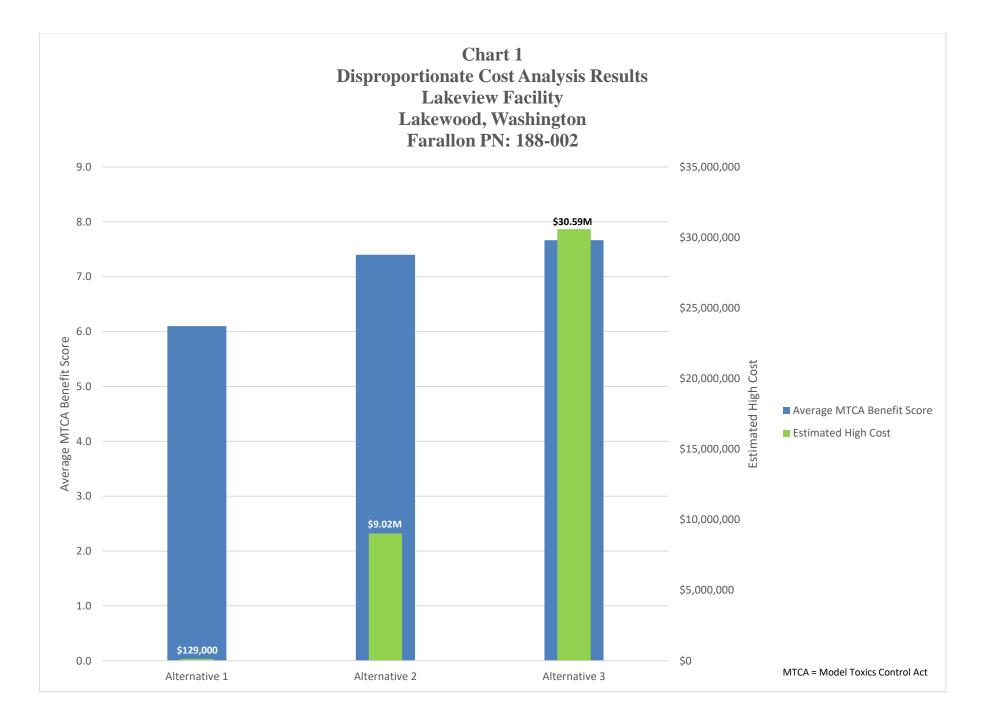
				Es	timated Cost				
		-	nstitutional and Engineered ntrols	Cleanup Alternative 2b:	In-Situ Chemical Oxidation	Cleanup Alternative 3b: Air Sparge and Soil Vapor Ex			
Remedial Action Task	Scope of Work	Low Estimate	High Estimate	Low Estimate	High Estimate	Low Estimate	High Estimate		
Project Management	Ongoing project management throughout the cleanup action (assumes 8 percent of the total estimated cost).	\$2,373	\$3,493	\$102,813	\$202,893	\$55,093	\$121,173		
Institutional and Engineered Controls	Applicable to Cleanup Alternative 1, institutional controls will be in the form of an Environmental Covenant recorded on the property deed that will include Site-use restrictions and health advisories. Engineered controls will be in the form of a soil cap to limit exposure to hazardous substances that remain at the Site. Included estimated cost is 1/3 of estimated total cost for implementing institutional controls for the entire Site.	\$6,667	\$6,667	\$0	\$0	\$0	\$0		
Chemical Oxidation	Applicable to Cleanup Alternative 2b, includes engineering design, construction management, potential multiple chemical oxidant injection events, and collection of confirmational groundwater samples. The low estimate assumes one injection with three performance groundwater monitoring events. The high estimate assumes two injections with nine performance groundwater monitoring events. Both estimates assume four quarters of confirmation groundwater monitoring events.	\$0	\$0	\$1,267,000	\$2,517,000	\$0	\$0		
Air Sparge/Soil Vapor Extraction	Applicable to Cleanup Alternative 3b, includes engineering design, construction management, construction of air sparge/soil vapor extraction system upgrades, operation and maintenance, and groundwater monitoring. The low estimate assumes 70 months of operation with one replacement of the compressor and blower. The high estimate assumes 152 months of operation with three replacements of the compressor and blower, and an ozone injection contingency.	\$0	\$0	\$0	\$0	\$666,000	\$1,486,000		
Closure Report	Applicable to Cleanup Alternatives 2 and 3, summarizing the completed cleanup action and requesting issuance of a No Further Action (NFA) determination from the Washington State Department of Ecology (Ecology). Included estimated cost is 1/3 of estimated total cost for the Site Closure Report.	\$0	\$0	\$6,667	\$6,667	\$6,667	\$6,667		
Compliance Groundwater Monitoring	Applicable to Cleanup Alternative 1, long-term groundwater monitoring of contaminant concentrations at points of compliance monitoring wells. The low estimate assumes 3 groundwater monitoring events 18 months apart over the period of 4.5 years following receipt of an NFA determination for the Site from Ecology, and preparation of one report to document groundwater monitoring results. The high estimate assumes 10 groundwater monitoring events 18 months apart over the period of 15 years following receipt of an NFA determination for the Site from Ecology, and preparation of three reports to document groundwater monitoring results. The high estimate assumes 10 groundwater monitoring events 18 months apart over the period of 15 years following receipt of an NFA determination for the Site from Ecology, and preparation of three reports to document groundwater monitoring results. Included estimated cost is 1/3 of estimated total cost for the Site Compliance Groundwater Monitoring.	\$7,000	\$21,000	\$0	\$0	\$0	\$0		
Interactions with Ecology and 5-Year Review	Interactions with Ecology and, in case of Cleanup Alternatives 1 and 3, 5-year project reviews.	\$6,000	\$6,000	\$1,500	\$2,500	\$6,000	\$12,000		
Remediation System and Monitoring Well Decommissioning	Decommissioning the air sparge/soil vapor extraction system, and monitoring well network in accordance with Washington Administrative Code 173-160 for well abandonment following the receipt of NFA determination for the Site from Ecology. Costs for decommissioning wells in the TCE [trichloroethene] Area, including monitoring wells MW-1 through MW-5, MW 9R, MW-10B, MW-11, MW-13, MW-14, MW-14C, MW-15, MW16R, MW-17A, MW-18 through MW-29; SVE wells SVE-1 through SVE-4, and SVE-6 through SVE-12; and AS wells AS-1 through AS-10.		\$10,000	\$10,000	\$10,000	\$10,000	\$10,000		
ESTIMATED CLEANUP ACTION TOTAL COST (SU	BTOTAL)	\$32,040	\$47,160	\$1,387,980	\$2,739,060	\$743,760	\$1,635,840		
	ESTIMATED CLEANUP ACTION TOTAL COST	\$32,040 Low Estimate	\$47,160 High Estimate	\$1,387,980 Low Estimate	\$2,739,060 High Estimate	\$743,760 Low Estimate	\$1,635,840 High Estimate		

 Table 12c

 Summary of Estimated Cleanup Costs for Cleanup Alternatives 1, 2C, and 3c for Lead and Arsenic Areas

 Lakeview Facility

 Lakewood, Washington


 Farallon PN: 188-002

				E	stimated Cost	I	
		Cleanup Alternative 1	: Institutional Controls	Cleanup Alternative	e 2: Soil Solidification	Cleanup Alternative 3: Exc	avation and Off-Site Disposal
Remedial Action Task	Scope of Work	Low Estimate	High Estimate	Low Estimate	High Estimate	Low Estimate	High Estimate
Project Management	Ongoing project management throughout the cleanup action (assumes 8 percent of the total estimated cost)	\$1,933	\$3,053	\$276,000	\$334,000	\$1,538,000	\$1,847,000
Institutional and Engineered Controls	Applicable to Cleanup Alternative 1, institutional controls will be in the form of an Environmental Covenant recorded on the property deed that will include Site use restrictions and health advisories. Engineered controls will be in the form of a soil cap to limit exposure to hazardous substances that remain at the Site. Included estimated cost is 1/3 of estimated total cost for implementing institutional controls for the entire Site.	\$6,667	\$6,667	\$0	\$0	\$0	\$0
Soil Solidification	Applicable to Cleanup Alternative 2c, includes engineering design, construction management, implementation of large auger soil mixing, removal and transport of excess soil cuttings, installation of three new groundwater monitoring wells, and groundwater monitoring. The low estimate assumes no performance groundwater monitoring events and four quarters of confirmation groundwater monitoring events. The high estimate assumes eight performance groundwater monitoring events, four quarters of confirmation groundwater monitoring events, and a 20 percent construction contingency.	\$0	\$0	\$3,443,000	\$4,160,000	\$0	\$0
Excavation and Off-Site Disposal	Applicable to Cleanup Alternative 3c, includes engineering design, construction management, excavation, transport, and disposal of foundry fill material and concrete waste off the Site, and groundwater monitoring. The low estimate assumes no performance groundwater monitoring events and four quarters of confirmation groundwater monitoring events. The high estimate assumes eight performance groundwater monitoring events, four quarters of confirmation groundwater monitoring events, and a 20 percent construction contingency.	\$0	\$0	\$0	\$0	\$19,217,000	\$23,078,000
Closure Report	Applicable to Cleanup Alternatives 2 and 3, summarizing the completed cleanup action and requesting issuance of a No Further Action (NFA) determination from the Washington State Department of Ecology (Ecology). Included estimated cost is 1/3 of estimated total cost for the Site Closure Report.	\$0	\$0	\$6,667	\$6,667	\$6,667	\$6,667
Compliance Groundwater Monitoring	Applicable to Cleanup Alternative 1, long-term groundwater monitoring of contaminant concentrations at points of compliance monitoring wells. The low estimate assumes three groundwater monitoring events 18 months apart over the period of 4.5 years following receipt of an NFA determination for the Site from Ecology, and preparation of one report to document groundwater monitoring results. The high estimate assumes 10 groundwater monitoring events 18 months apart over the period of 15 years following receipt of an NFA determination of three reports to document groundwater monitoring results. Included estimated cost is 1/3 of estimated total cost for the Site Compliance Groundwater Monitoring.	\$7,000	\$21,000	\$0	\$0	\$0	\$0
Interactions with Ecology and 5-Year Review	Interactions with Ecology and, in case of Cleanup Alternative 1, a 5-year project review following receipt of an NFA determination for the Site from Ecology.	\$6,000	\$6,000	\$1,500	\$2,500	\$1,500	\$2,500
Monitoring Well Decommissioning	Decommissioning nine monitoring wells associated with the Arsenic and Lead Plume in Groundwater Area in accordance with Chapter 173-160 of the Washington Administrative Code for well abandonment following receipt of an NFA determination for the Site from Ecology. Costs for decommissioning wells in the Arsenic and Lead Plume in Groundwater Area, including monitoring wells MW-9A, MW-9D, MW-9R, MW-12, MW-12B, and MW-30 through MW-35.	\$4,500	\$4,500	\$4,500	\$4,500	\$4,500	\$4,500
ESTIMATED CLEANUP ACTION TOTAL COST	(SUBTOTAL)	\$26,100	\$41,220	\$3,731,667	\$4,507,667	\$20,767,667	\$24,938,667
	ESTIMATED CLEANUP ACTION TOTAL COST	\$26,100 Low Estimate	\$41,220 High Estimate	\$3,731,667 Low Estimate	\$4,507,667 High Estimate	\$20,767,667 Low Estimate	\$24,938,667 High Estimate

CHART

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

Farallon PN: 188-002

ATTACHMENT A LABORATORY ANALYTICAL REPORTS

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

Farallon PN: 188-002

December 16, 2019

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 1912-048

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on December 6, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 16, 2019 Samples Submitted: December 6, 2019 Laboratory Reference: 1912-048 Project: 188-002

Case Narrative

Samples were collected on December 5, 2019 and received by the laboratory on December 6, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B24-2.4					
_aboratory ID:	12-048-05					
Diesel Range Organics	ND	26	NWTPH-Dx	12-10-19	12-10-19	
ube Oil	550	51	NWTPH-Dx	12-10-19	12-10-19	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	87	50-150				
Client ID:	B24-10.0					
_aboratory ID:	12-048-08					
Diesel Range Organics	ND	27	NWTPH-Dx	12-10-19	12-10-19	
ube Oil Range Organics	ND	53	NWTPH-Dx	12-10-19	12-10-19	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	89	50-150				
- reiphenyi	09	30-130				
Client ID:	B25-9.0					
_aboratory ID:	12-048-12					
Diesel Range Organics	ND	27	NWTPH-Dx	12-10-19	12-10-19	
ube Oil	64	53	NWTPH-Dx	12-10-19	12-10-19	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	73	50-150				
Client ID:	B25-15.0					
_aboratory ID:	12-048-13					
Diesel Range Organics	ND	27	NWTPH-Dx	12-10-19	12-10-19	
ube Oil Range Organics	ND	54	NWTPH-Dx	12-10-19	12-10-19	
Surrogate:	Percent Recovery	Control Limits				
- T						
o-Terpnenyi	80	50-150				
o- i erpnenyi	80	50-150				
	80 B26-9.0	50-150				
Client ID:	B26-9.0	50-150				
Client ID: aboratory ID:	B26-9.0 12-048-14		NWTPH-Dx	12-10-19	12-10-19	
Client ID: _aboratory ID: Diesel Range Organics	B26-9.0 12-048-14 ND	26	NWTPH-Dx NWTPH-Dx	12-10-19 12-10-19	12-10-19 12-10-19	
Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics	B26-9.0 12-048-14 ND ND	26 53	NWTPH-Dx NWTPH-Dx	12-10-19 12-10-19	12-10-19 12-10-19	
Client ID: aboratory ID: Diesel Range Organics ube Oil Range Organics Surrogate:	B26-9.0 12-048-14 ND ND Percent Recovery	26 53 Control Limits				
Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	B26-9.0 12-048-14 ND ND	26 53				
Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl	B26-9.0 12-048-14 ND ND Percent Recovery	26 53 Control Limits				
Client ID: _aboratory ID: _Diesel Range Organics _ube Oil Range Organics Surrogate: p-Terphenyl Client ID:	B26-9.0 12-048-14 ND ND Percent Recovery 82	26 53 Control Limits				
Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID:	B26-9.0 12-048-14 ND ND Percent Recovery 82 B26-15.0	26 53 Control Limits		12-10-19		
D-Terphenyl Client ID: _aboratory ID: Diesel Range Organics _ube Oil Range Organics Surrogate: D-Terphenyl Client ID: _aboratory ID: Diesel Range Organics _ube Oil Range Orga	B26-9.0 12-048-14 ND ND Percent Recovery 82 B26-15.0 12-048-15	26 53 Control Limits 50-150	NWTPH-Dx	12-10-19	12-10-19 12-10-19	
Client ID: _aboratory ID: _Diesel Range Organics _ube Oil Range Organics Surrogate: p-Terphenyl Client ID: _aboratory ID:	B26-9.0 12-048-14 ND ND Percent Recovery 82 B26-15.0 12-048-15 ND	26 53 Control Limits 50-150 27	NWTPH-Dx	12-10-19	12-10-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

DIESEL AND HEAVY OIL RANGE ORGANICS **NWTPH-Dx**

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B27-12.0					
Laboratory ID:	12-048-16					
Diesel Range Organics	ND	27	NWTPH-Dx	12-10-19	12-10-19	
Lube Oil	140	54	NWTPH-Dx	12-10-19	12-10-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	B27-15.0					
Laboratory ID:	12-048-17					
Diesel Range Organics	ND	27	NWTPH-Dx	12-10-19	12-10-19	
Lube Oil Range Organics	ND	53	NWTPH-Dx	12-10-19	12-10-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				

ALA

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Result	PQL	Method	Prepared	Analyzed	Flags
MD404004					
MB1210S1					
ND	25	NWTPH-Dx	12-10-19	12-10-19	
ND	50	NWTPH-Dx	12-10-19	12-10-19	
ercent Recovery	Control Limits				
90	50-150				
e	ND ND rcent Recovery	ND25ND50rcent RecoveryControl Limits	ND25NWTPH-DxND50NWTPH-Dxrcent RecoveryControl Limits	ND25NWTPH-Dx12-10-19ND50NWTPH-Dx12-10-19rcent RecoveryControl Limits	ND 25 NWTPH-Dx 12-10-19 12-10-19 ND 50 NWTPH-Dx 12-10-19 12-10-19 rcent Recovery Control Limits 12-10-19 12-10-19

					Source	Pere	cent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-04	1 8-12									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Lube Oil	59.7	56.9	NA	NA		N	А	NA	5	NA	
Surrogate:											
o-Terphenyl						73	84	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B21-3.0					
Laboratory ID:	12-048-01					
Naphthalene	ND	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
2-Methylnaphthalene	ND	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
1-Methylnaphthalene	ND	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Acenaphthylene	ND	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Acenaphthene	ND	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Fluorene	ND	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Phenanthrene	0.037	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Anthracene	0.0077	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Fluoranthene	0.066	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Pyrene	0.064	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[a]anthracene	0.036	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Chrysene	0.049	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[b]fluoranthene	0.049	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo(j,k)fluoranthene	0.014	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[a]pyrene	0.050	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Indeno(1,2,3-c,d)pyrene	0.044	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Dibenz[a,h]anthracene	0.0092	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[g,h,i]perylene	0.052	0.0076	EPA 8270E/SIM	12-10-19	12-13-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	99	40 - 111				
Pyrene-d10	99	40 - 110				
Terphenyl-d14	86	45 - 122				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B23-3.0					
Laboratory ID:	12-048-03					
Naphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
2-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
1-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Acenaphthylene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Acenaphthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Fluorene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Phenanthrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[a]anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Chrysene	0.012	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[b]fluoranthene	0.0078	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo(j,k)fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[a]pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Indeno(1,2,3-c,d)pyrene	0.0096	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Dibenz[a,h]anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[g,h,i]perylene	0.025	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	88	40 - 111				
Pyrene-d10	89	40 - 110				
Terphenyl-d14	79	45 - 122				

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B24-2.4					
Laboratory ID:	12-048-05					
Naphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
2-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
1-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Acenaphthylene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Acenaphthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Fluorene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Phenanthrene	0.078	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Anthracene	0.022	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Fluoranthene	0.13	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Pyrene	0.12	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[a]anthracene	0.060	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Chrysene	0.061	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[b]fluoranthene	0.073	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo(j,k)fluoranthene	0.024	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[a]pyrene	0.063	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Indeno(1,2,3-c,d)pyrene	0.059	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Dibenz[a,h]anthracene	0.0093	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Benzo[g,h,i]perylene	0.068	0.0069	EPA 8270E/SIM	12-10-19	12-13-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	94	40 - 111				
Pyrene-d10	90	40 - 110				
Terphenyl-d14	83	45 - 122				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B22-10.0					
Laboratory ID:	12-048-06					
Naphthalene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
2-Methylnaphthalene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
1-Methylnaphthalene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthylene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Fluorene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Phenanthrene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Anthracene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Fluoranthene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Pyrene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]anthracene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Chrysene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[b]fluoranthene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo(j,k)fluoranthene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]pyrene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Dibenz[a,h]anthracene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[g,h,i]perylene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	100	40 - 111				
Pyrene-d10	88	40 - 110				
Terphenyl-d14	93	45 - 122				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B25-9.0					
Laboratory ID:	12-048-12					
Naphthalene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
2-Methylnaphthalene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
1-Methylnaphthalene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Acenaphthylene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Acenaphthene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Fluorene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Phenanthrene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Anthracene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Fluoranthene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Pyrene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[a]anthracene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Chrysene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[b]fluoranthene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo(j,k)fluoranthene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[a]pyrene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Dibenz[a,h]anthracene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[g,h,i]perylene	ND	0.0071	EPA 8270E/SIM	12-10-19	12-12-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	99	40 - 111				
Pyrene-d10	93	40 - 110				
Terphenyl-d14	95	45 - 122				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B26-9.0					
Laboratory ID:	12-048-14					
Naphthalene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
2-Methylnaphthalene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
1-Methylnaphthalene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthylene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Fluorene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Phenanthrene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Anthracene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Fluoranthene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Pyrene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]anthracene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Chrysene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[b]fluoranthene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo(j,k)fluoranthene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]pyrene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Dibenz[a,h]anthracene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[g,h,i]perylene	ND	0.0070	EPA 8270E/SIM	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	100	40 - 111				
Pyrene-d10	98	40 - 110				
Terphenyl-d14	96	45 - 122				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B27-12.0					
Laboratory ID:	12-048-16					
Naphthalene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
2-Methylnaphthalene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
1-Methylnaphthalene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Acenaphthylene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Acenaphthene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Fluorene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Phenanthrene	0.036	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Anthracene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Fluoranthene	0.042	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Pyrene	0.072	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[a]anthracene	0.042	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Chrysene	0.049	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[b]fluoranthene	0.068	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo(j,k)fluoranthene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[a]pyrene	0.082	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Indeno(1,2,3-c,d)pyrene	0.080	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Dibenz[a,h]anthracene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[g,h,i]perylene	0.11	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	40 - 111				
Pyrene-d10	86	40 - 110				
Terphenyl-d14	83	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1210S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Fluorene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Anthracene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Pyrene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	40 - 111				
Pyrene-d10	87	40 - 110				
Terphenyl-d14	81	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

Units. http://tg					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	12-0	64-07									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.165	0.156	0.167	0.167	ND	99	93	44 - 111	6	21	
Acenaphthylene	0.160	0.143	0.167	0.167	ND	96	86	47 - 122	11	24	
Acenaphthene	0.157	0.139	0.167	0.167	ND	94	83	46 - 122	12	24	
Fluorene	0.177	0.158	0.167	0.167	ND	106	95	53 - 118	11	23	
Phenanthrene	0.176	0.156	0.167	0.167	ND	105	93	41 - 124	12	24	
Anthracene	0.185	0.163	0.167	0.167	ND	111	98	53 - 119	13	21	
Fluoranthene	0.192	0.169	0.167	0.167	ND	115	101	39 - 135	13	32	
Pyrene	0.185	0.154	0.167	0.167	ND	111	92	39 - 134	18	34	
Benzo[a]anthracene	0.187	0.169	0.167	0.167	ND	112	101	53 - 131	10	23	
Chrysene	0.171	0.148	0.167	0.167	ND	102	89	46 - 126	14	24	
Benzo[b]fluoranthene	0.173	0.156	0.167	0.167	ND	104	93	45 - 127	10	25	
Benzo(j,k)fluoranthene	0.171	0.147	0.167	0.167	ND	102	88	52 - 122	15	21	
Benzo[a]pyrene	0.170	0.151	0.167	0.167	ND	102	90	51 - 126	12	24	
Indeno(1,2,3-c,d)pyrene	0.179	0.151	0.167	0.167	ND	107	90	48 - 127	17	23	
Dibenz[a,h]anthracene	0.175	0.148	0.167	0.167	ND	105	89	51 - 124	17	22	
Benzo[g,h,i]perylene	0.181	0.150	0.167	0.167	ND	108	90	50 - 120	19	22	
Surrogate:											
2-Fluorobiphenyl						104	93	40 - 111			
Pyrene-d10						107	92	40 - 110			
Terphenyl-d14						103	92	45 - 122			

Date of Report: December 16, 2019 Samples Submitted: December 6, 2019 Laboratory Reference: 1912-048 Project: 188-002

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
B21-3.0	12-048-01	12	12-10-19
B23-3.0	12-048-03	4	12-10-19
B24-2.4	12-048-05	3	12-10-19
B22-10.0	12-048-06	6	12-10-19
B24-10.0	12-048-08	6	12-10-19
B25-9.0	12-048-12	6	12-10-19
B25-15.0	12-048-13	8	12-10-19
B26-9.0	12-048-14	5	12-10-19
B26-15.0	12-048-15	6	12-10-19
B27-12.0	12-048-16	8	12-10-19
B27-15.0	12-048-17	6	12-10-19

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished KenScott	Signature	B26-3.0	9 325-3.0	8 B24-10:0	7 13 23-10.0	6 822-10:0	5 824-214	4 B21-10:0	3 B13-3.0	2 B12-3.0	1 B21-3,0	Lab ID Sample Identification	Sampine by Ken Scott	BRAVI JURISTA	LAREVIEW FACILITY	188-002	FARALLON Project Number:	Phone: (425) 883-3881 • www.onsite-env.com Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					726)	FARAL	Company	V 1315 S	1255 5	1238 5	1218 5	1200 S	1120 5	1105 5	1022 S	1000 S	S 006 61/241	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain
					19/19/18	eristri No	Date	1							~		1	Numb NWTF NWTF NWTF	PH-HCI PH-Gx/ PH-Gx PH-Dx (BTEX	ers 1/SGC				Laboratory N	Chain of Custody
Chromatograms	Data Package:			x-added	Ill and	1800 7616 3	Time Comments/Special Instructions					X	X		X		×	Halog EDB E Semiv (with I PAHs PCBs	PA 80 volatiles ow-lev 8270D 8082A	Volatile 11 (Wat 8 8270E el PAHs /SIM (Ic		()			Number: 12-0	
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs)	Standard Level III Level IV			ded 12-9 LL (SIA)		Amples, with ct	tial Instructions											Organ Chlori Total I Total I Total I	ophos nated A RCRA I MTCA I Metals	ohorus Acid He Metals Metals	Pesticides	es 827			48	Page of
erables (EDDs)						} (1				X	1	×.	X		X		X	% Mo	isture							N

Image: Standard Image: Standard	Environmental Inc. Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		0 - 0 0 - 0	LAROVIEW FACILITY	BRANI Juris	Sampled by: Kon Show	Lab ID Sample Identification	11 B27-3.0	12 B25- 9,0	13 325-15.0	14 B26-9.0	K B26-15.0	16 B27-12.0	17 B27-15.0	18 328-3.0			Relinquished Keyn S.	Received	Relinquished	Received	Relinquished	Received	Reviewed/Date
Image: Standard Image: Standard	Turnaround Request (in working days) (Check One)	ck One)			Containe		Time Sampled Matrix	1345	1435 S 1	1445 5 1	1500 5 1	S			1555 5 1			Company FAR ALLON	380					Reviewed/Date
Chromatograms with final report	Laboratory Number:				Acid	PH-Gx/E PH-Gx PH-Dx ([es 8260	NWTP NWTP NWTP Volatile		×	X	X	X	×	X		2	6	Tin Tin	0					
bles (EDD)	Page ~ of ~)/SIM	081B 98 8270D	'SIM w-level) cides 8(Pesticides bicides	8270D/ el PAHs) SIM (lov ne Pesti ohorus P Acid Herl Acid Herl Metals	olatiles ow-leve 8270D/ 8082A ochlorir ophosp nated A RCRA M MTCA M Metals	Semiv. (with k PAHs I PCBs Organi Organi Chlorir Total F Total N TCLP											Comments/Special Instructions	J w Prive				Standard 🗌 Level III 🗍 Level IV	Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs)

December 18, 2019

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 1912-048B

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on December 6, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 18, 2019 Samples Submitted: December 6, 2019 Laboratory Reference: 1912-048B Project: 188-002

Case Narrative

Samples were collected on December 5, 2019 and received by the laboratory on December 6, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B27-15.0					
Laboratory ID:	12-048-17					
Naphthalene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
2-Methylnaphthalene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
1-Methylnaphthalene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Acenaphthylene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Acenaphthene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Fluorene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Phenanthrene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Anthracene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Fluoranthene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Pyrene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo[a]anthracene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Chrysene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo[b]fluoranthene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo(j,k)fluoranthene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo[a]pyrene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Dibenz[a,h]anthracene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo[g,h,i]perylene	ND	0.0071	EPA 8270E/SIM	12-17-19	12-17-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	40 - 111				
Pyrene-d10	94	40 - 110				
Terphenyl-d14	105	45 - 122				

3

PAHs EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1217S2					
Naphthalene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Fluorene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Anthracene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Pyrene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	12-17-19	12-17-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	103	40 - 111				
Pyrene-d10	78	40 - 110				
Terphenyl-d14	103	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	12-1	54-02									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0841	0.0776	0.0833	0.0833	ND	101	93	44 - 111	8	21	
Acenaphthylene	0.0858	0.0838	0.0833	0.0833	ND	103	101	47 - 122	2	24	
Acenaphthene	0.0845	0.0818	0.0833	0.0833	ND	101	98	46 - 122	3	24	
Fluorene	0.0826	0.0780	0.0833	0.0833	ND	99	94	53 - 118	6	23	
Phenanthrene	0.0802	0.0763	0.0833	0.0833	ND	96	92	41 - 124	5	24	
Anthracene	0.0887	0.0850	0.0833	0.0833	ND	106	102	53 - 119	4	21	
Fluoranthene	0.0934	0.0900	0.0833	0.0833	ND	112	108	39 - 135	4	32	
Pyrene	0.0929	0.0893	0.0833	0.0833	ND	112	107	39 - 134	4	34	
Benzo[a]anthracene	0.0922	0.0849	0.0833	0.0833	ND	111	102	53 - 131	8	23	
Chrysene	0.0907	0.0831	0.0833	0.0833	ND	109	100	46 - 126	9	24	
Benzo[b]fluoranthene	0.0911	0.0839	0.0833	0.0833	ND	109	101	45 - 127	8	25	
Benzo(j,k)fluoranthene	0.0949	0.0864	0.0833	0.0833	ND	114	104	52 - 122	9	21	
Benzo[a]pyrene	0.0906	0.0832	0.0833	0.0833	ND	109	100	51 - 126	9	24	
Indeno(1,2,3-c,d)pyrene	0.0907	0.0810	0.0833	0.0833	ND	109	97	48 - 127	11	23	
Dibenz[a,h]anthracene	0.0881	0.0822	0.0833	0.0833	ND	106	99	51 - 124	7	22	
Benzo[g,h,i]perylene	0.0877	0.0791	0.0833	0.0833	ND	105	95	50 - 120	10	22	
Surrogate:											
2-Fluorobiphenyl						106	92	40 - 111			
Pyrene-d10						97	90	40 - 110			
Terphenyl-d14						105	98	45 - 122			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished KenScott	Signature	N B26-3.0	9 B25-3.0	× B24-10:0	7 323-10:0	6 822-10:0	5 824-214	4 821-10:0	3 B13-3.0	2 B12-3.0	B21-3,0	Lab ID Sample Identification	Sampled by: Ken Scott	b		Company: FARALLON	Analytical Laboratory lesting Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					380)	FRALON	Company	V 1315 S 1	1255 5 1	1238 5 1	1218 5	1200 S	1120 5	1105 5 1	1022 S	1000 S	1 S 006 61/5/1	Date Time Sampled Sampled Matrix	(other)	X Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)	Chain of
					12/6/19/1100	12/5/19 1800	Date Time			X			×					NWTP NWTP NWTP NWTP Volatile Haloge	H-HCID H-Gx/BTE) H-Gx H-Dx (A es 8260C enated Vola	K .cid / SG Cle .tilles 8260C			Laboratory Number:	Custody
Chromatograms with final report	Data Package: Standard Level III Level IV		12/16/19.08 (5	X-added 12-9 VL (SIA)	a Auritoris , Ec 10-1) Hold SAMPLES, with	Comments/Special Instructions											Semiv. (with ld PAHs 8 PCBs Organd Organd Chlorir Total R Total N TCLP 1	olatiles 827 pw-level PA 8270D/SIM 8082A ochlorine P ophosphore nated Acid RCRA Metal MTCA Metals	(low-level) (low-level) Pesticides 8(us Pesticide Herbicides	081B 95 8270	D/SIM	er: 12-048	Page 1 of 2

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished KenSust	Signature			18 328-3.0	17 B27-15.0	16 B27-12.0	15 B26-15.0	Ly B26-9.0	13 B25-15.0	12 325- 3,0	11 B27-3.0	Lab ID Sample Identification	Sampled by: Ken Lourista	Project Manager:	Project Number: 188-002	Company: FARALLON	An 14 Ph	Environmental Inc.
Reviewed/Date					380	FARALLON	Company			1555 5 1	1540 5 1	1530 5 1	1510 5 1	1500 5 1	144.5 5 1	1435 S 1	1 S 5481 61/5121	Date Time Sampled Sampled Matrix	(other)	X Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)	Chain of Custody
					Wally liw	1245/19 1860	Date Time	(2		X	×	X	X	X	×		NWTF NWTF NWTF Volatil Halog	PH-Dx (Ad les 8260C enated Volat	iles 82600	2		Laboratory Number:	Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV					o see page #1 comments	Comments/Special Instructions											Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I	PA 8011 (W rolatiles 827) ow-level PAI 8270D/SIM 8082A nochlorine Pe nophosphoru nated Acid H RCRA Metals (oil and grea	DD/SIM Hs) (low-level) esticides 8 s Pesticid Herbicides s	081B es 8270 8151A	D/SIM	er: 12-048	Page 2 of 2

December 16, 2019

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 1912-064

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on December 9, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 16, 2019 Samples Submitted: December 9, 2019 Laboratory Reference: 1912-064 Project: 188-002

Case Narrative

Samples were collected on December 6, 2019 and received by the laboratory on December 9, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B28-9.0			•	•	•
Laboratory ID:	12-064-01					
Diesel Range Organics	180	54	NWTPH-Dx	12-10-19	12-12-19	Ν
Lube Oil	2000	110	NWTPH-Dx	12-10-19	12-12-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	B28-15.0					
Laboratory ID:	12-064-02					
Diesel Range Organics	ND	27	NWTPH-Dx	12-10-19	12-11-19	
Lube Oil Range Organics	ND	54	NWTPH-Dx	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	59	50-150				
Client ID:	B29-9.0					
Laboratory ID:	12-064-04					
Diesel Range Organics	ND	27	NWTPH-Dx	12-10-19	12-11-19	
Lube Oil Range Organics	ND	54	NWTPH-Dx	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				
Client ID:	B29-12.0					
Laboratory ID:	12-064-05					
Diesel Range Organics	ND	27	NWTPH-Dx	12-10-19	12-11-19	
Lube Oil	270	54	NWTPH-Dx	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
	Bac = =					
	B30-3.0					
Laboratory ID:	12-064-06			10.12.12		
Laboratory ID: Diesel Range Organics	12-064-06 ND	26	NWTPH-Dx	12-10-19	12-11-19	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics	12-064-06 ND ND	52	NWTPH-Dx NWTPH-Dx	12-10-19 12-10-19	12-11-19 12-11-19	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	12-064-06 ND ND Percent Recovery	52 Control Limits				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	12-064-06 ND ND	52				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	12-064-06 ND ND Percent Recovery	52 Control Limits				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID:	12-064-06 ND ND Percent Recovery 63	52 Control Limits				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID:	12-064-06 ND ND Percent Recovery 63 B30-10.0	52 Control Limits				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics	12-064-06 ND ND Percent Recovery 63 B30-10.0 12-064-07	52 Control Limits 50-150	NWTPH-Dx	12-10-19	12-11-19	
Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	12-064-06 ND ND Percent Recovery 63 B30-10.0 12-064-07 ND	52 Control Limits 50-150 26	NWTPH-Dx	12-10-19	12-11-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Result	PQL	Method	Date Prepared	Date Analyzed	Flags
B31-3.0 12-064-08					
	26	NWTPH-Dx	12-10-19	12-11-19	
120	52	NWTPH-Dx			
Percent Recovery	Control Limits				
83	50-150				
B31-10.0					
12-064-09					
ND	26	NWTPH-Dx	12-10-19	12-11-19	
ND	52	NWTPH-Dx	12-10-19	12-11-19	
Percent Recovery	Control Limits				
85	50-150				
B32-3.0					
12-064-10					
ND	27	NWTPH-Dx	12-10-19	12-11-19	
ND	53	NWTPH-Dx	12-10-19	12-11-19	
Percent Recovery	Control Limits				
71	50-150				
B32-10.0					
ND	26	NWTPH-Dx	12-10-19	12-11-19	
ND	52			-	
Percent Recovery	Control Limits				
80	50-150				
P22 2 0					
	27		12-10-10	12-11-10	
Percent Recovery			12 10 10	12 11 10	
70	50-150				
70					
70 B33-10.0					
70 B33-10.0 12-064-13	50-150		12-10-10	12-11-10	
70 B33-10.0 12-064-13 ND	26	NWTPH-Dx	12-10-19	12-11-19	
70 B33-10.0 12-064-13	50-150	NWTPH-Dx NWTPH-Dx	12-10-19 12-10-19	12-11-19 12-11-19	
	B31-3.0 12-064-08 ND 120 Percent Recovery 83 B31-10.0 12-064-09 ND Percent Recovery 85 B32-3.0 12-064-10 ND Percent Recovery 85 B32-3.0 12-064-10 ND Percent Recovery 71 B32-10.0 12-064-11 ND Percent Recovery 80 B33-3.0 12-064-12 ND 200	B31-3.0 12-064-08 ND 26 120 52 Percent Recovery Control Limits 83 50-150 B31-10.0 12-064-09 12-064-09 26 ND 26 ND 26 ND 26 ND 26 ND 52 Percent Recovery Control Limits 85 50-150 B32-3.0 27 12-064-10 27 ND 27 ND 53 Percent Recovery Control Limits 71 50-150 B32-10.0 12-064-11 ND 26 ND 26 ND 26 ND 26 ND 52 Percent Recovery Control Limits 80 50-150 B33-3.0 50-150 12-064-12 27 ND 27 200 53	B31-3.0 ND 26 NWTPH-Dx ND 52 NWTPH-Dx Percent Recovery Control Limits 83 83 50-150 S0 B31-10.0 12-064-09 NWTPH-Dx ND 26 NWTPH-Dx Percent Recovery Control Limits S0 B32-3.0 12-064-10 NWTPH-Dx Percent Recovery Control Limits NWTPH-Dx Percent Recovery Control Limits S0 71 50-150 S0 B32-10.0 12-064-11 ND ND 26 NWTPH-Dx Percent Recovery Control Limits NWTPH-Dx Percent Recovery Control Limits S0 80 50-150 NWTPH-Dx Percent Recovery Control Limits NWTPH-Dx Percoent Recovery	Result PQL Method Prepared B31-3.0 12-064-08 12-10-19 12-10-19 ND 26 NWTPH-Dx 12-10-19 120 52 NWTPH-Dx 12-10-19 Percent Recovery Control Limits 83 50-150 12-10-19 B31-10.0 12-064-09 12-10-19 12-10-19 12-10-19 ND 26 NWTPH-Dx 12-10-19 ND 26 NWTPH-Dx 12-10-19 ND 52 NWTPH-Dx 12-10-19 Percent Recovery Control Limits 50-150 12-10-19 B32-3.0 12-064-10 12-10-19 12-10-19 Percent Recovery Control Limits 71 50-150 12-10-19 B32-10.0 12-064-11 ND 52 NWTPH-Dx 12-10-19 Percent Recovery Control Limits 50-150 12-10-19 12-10-19 Percent Recovery Control Limits 50-150 12-10-19 12-10-19 Percent Recovery	Result PQL Method Prepared Analyzed B31-3.0 12-064-08 NUTPH-Dx 12-10-19 12-11-19 ND 26 NWTPH-Dx 12-10-19 12-11-19 120 52 NWTPH-Dx 12-10-19 12-11-19 Percent Recovery Control Limits S0-150 12-10-19 12-11-19 B31-10.0 12-064-09 NWTPH-Dx 12-10-19 12-11-19 ND 26 NWTPH-Dx 12-10-19 12-11-19 Percent Recovery Control Limits NWTPH-Dx 12-10-19 12-11-19 Percent Recovery Control Limits S0-150 12-10-19 12-11-19 Percent Recovery Control Limits NWTPH-Dx 12-10-19 12-11-19 Percent Recovery C

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Surrogate:

o-Terphenyl

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B34-3.0					
Laboratory ID:	12-064-14					
Diesel Range Organics	49	26	NWTPH-Dx	12-10-19	12-11-19	
Lube Oil	280	52	NWTPH-Dx	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	B34-10.0					
Laboratory ID:	12-064-15					
Diesel Range Organics	ND	26	NWTPH-Dx	12-10-19	12-11-19	
Lube Oil Range Organics	ND	52	NWTPH-Dx	12-10-19	12-11-19	

Percent Recovery Control Limits

50-150

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

			Date	Date		
Result	PQL	Method	Prepared	Analyzed	Flags	
MB1210S2						
ND	25	NWTPH-Dx	12-10-19	12-11-19		
ND	50	NWTPH-Dx	12-10-19	12-11-19		
Percent Recovery	Control Limits					
92	50-150					
	MB1210S2 ND ND Percent Recovery	MB1210S2 ND 25 ND 50 Percent Recovery Control Limits	MB1210S2ND25ND50NWTPH-DxPercent RecoveryControl Limits	Result PQL Method Prepared MB1210S2	Result PQL Method Prepared Analyzed MB1210S2	

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-06	64-01									
	ORIG	DUP									
Diesel Range Organics	168	115	NA	NA		NA	٩	NA	37	NA	Ν
Lube Oil	1810	1490	NA	NA		NA	4	NA	19	NA	
Surrogate:											
o-Terphenyl						98	85	50-150			
Laboratory ID:	12-06	64-02									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						59	75	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B28-9.0					
Laboratory ID:	12-064-01					
Naphthalene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
2-Methylnaphthalene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
1-Methylnaphthalene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Acenaphthylene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Acenaphthene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Fluorene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Phenanthrene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Anthracene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Fluoranthene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Pyrene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[a]anthracene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Chrysene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[b]fluoranthene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo(j,k)fluoranthene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[a]pyrene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Indeno(1,2,3-c,d)pyrene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Dibenz[a,h]anthracene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Benzo[g,h,i]perylene	ND	0.036	EPA 8270E/SIM	12-10-19	12-12-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	40 - 111				
Pyrene-d10	81	40 - 110				
Terphenyl-d14	71	45 - 122				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B29-9.0					
Laboratory ID:	12-064-04					
Naphthalene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
2-Methylnaphthalene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
1-Methylnaphthalene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthylene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Fluorene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Phenanthrene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Anthracene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Fluoranthene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Pyrene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]anthracene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Chrysene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo(j,k)fluoranthene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]pyrene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[g,h,i]perylene	ND	0.0072	EPA 8270E/SIM	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	104	40 - 111				
Pyrene-d10	94	40 - 110				
Terphenyl-d14	95	45 - 122				

8

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B30-10.0					
Laboratory ID:	12-064-07					
Naphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
2-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
1-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthylene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Fluorene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Phenanthrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Chrysene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[b]fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo(j,k)fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Dibenz[a,h]anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[g,h,i]perylene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	101	40 - 111				
Pyrene-d10	100	40 - 110				
Terphenyl-d14	98	45 - 122				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B32-10.0					
Laboratory ID:	12-064-11					
Naphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
2-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
1-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthylene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Fluorene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Phenanthrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Chrysene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[b]fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo(j,k)fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Dibenz[a,h]anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[g,h,i]perylene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	104	40 - 111				
Pyrene-d10	96	40 - 110				
Terphenyl-d14	99	45 - 122				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B34-10.0					
Laboratory ID:	12-064-15					
Naphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
2-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
1-Methylnaphthalene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthylene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Acenaphthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Fluorene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Phenanthrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Chrysene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[b]fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo(j,k)fluoranthene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[a]pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Dibenz[a,h]anthracene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Benzo[g,h,i]perylene	ND	0.0069	EPA 8270E/SIM	12-10-19	12-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	97	40 - 111				
Pyrene-d10	87	40 - 110				
Terphenyl-d14	93	45 - 122				

11

PAHs EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1210S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Fluorene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Anthracene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Pyrene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	12-10-19	12-10-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	40 - 111				
Pyrene-d10	87	40 - 110				
Terphenyl-d14	81	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

Units. mg/rg					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result		overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	12-0	64-07									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.165	0.156	0.167	0.167	ND	99	93	44 - 111	6	21	
Acenaphthylene	0.160	0.143	0.167	0.167	ND	96	86	47 - 122	11	24	
Acenaphthene	0.157	0.139	0.167	0.167	ND	94	83	46 - 122	12	24	
Fluorene	0.177	0.158	0.167	0.167	ND	106	95	53 - 118	11	23	
Phenanthrene	0.176	0.156	0.167	0.167	ND	105	93	41 - 124	12	24	
Anthracene	0.185	0.163	0.167	0.167	ND	111	98	53 - 119	13	21	
Fluoranthene	0.192	0.169	0.167	0.167	ND	115	101	39 - 135	13	32	
Pyrene	0.185	0.154	0.167	0.167	ND	111	92	39 - 134	18	34	
Benzo[a]anthracene	0.187	0.169	0.167	0.167	ND	112	101	53 - 131	10	23	
Chrysene	0.171	0.148	0.167	0.167	ND	102	89	46 - 126	14	24	
Benzo[b]fluoranthene	0.173	0.156	0.167	0.167	ND	104	93	45 - 127	10	25	
Benzo(j,k)fluoranthene	0.171	0.147	0.167	0.167	ND	102	88	52 - 122	15	21	
Benzo[a]pyrene	0.170	0.151	0.167	0.167	ND	102	90	51 - 126	12	24	
Indeno(1,2,3-c,d)pyrene	0.179	0.151	0.167	0.167	ND	107	90	48 - 127	17	23	
Dibenz[a,h]anthracene	0.175	0.148	0.167	0.167	ND	105	89	51 - 124	17	22	
Benzo[g,h,i]perylene	0.181	0.150	0.167	0.167	ND	108	90	50 - 120	19	22	
Surrogate:											
2-Fluorobiphenyl						104	93	40 - 111			
Pyrene-d10						107	92	40 - 110			
Terphenyl-d14						103	92	45 - 122			

Date of Report: December 16, 2019 Samples Submitted: December 9, 2019 Laboratory Reference: 1912-064 Project: 188-002

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
B28-9.0	12-064-01	8	12-10-19
B28-15.0	12-064-02	8	12-10-19
B29-9.0	12-064-04	8	12-10-19
B29-12.0	12-064-05	7	12-10-19
B30-3.0	12-064-06	4	12-10-19
B30-10.0	12-064-07	4	12-10-19
B31-3.0	12-064-08	4	12-10-19
B31-10.0	12-064-09	3	12-10-19
B32-3.0	12-064-10	6	12-10-19
B32-10.0	12-064-11	4	12-10-19
B33-3.0	12-064-12	6	12-10-19
B33-10.0	12-064-13	4	12-10-19
B34-3.0	12-064-14	4	12-10-19
B34-10.0	12-064-15	3	12-10-19

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Kan Shoth	Signature	10 B32-3.0	9 331-10:0	8 831-3.0	7 330-1010	6 830-3.0	5 829-12:0	4 829-9,0	3 329-3.0	2 828-15:0	1 328-9:0	Lab ID Sample Identification	sampled by: Ken Sud	Friger Manager	LAKEVIEW FACILITY	188-001	Project Number:		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					37.0	FARALON	Company	V 1200 5	ILFO S I	1108 S	1100 5	1018 5	5 0101	1000 5	1 2 216	855 S	12/6/19/845 S 1	Date Time Sampled Sampled Matrix	(other)	Contain	X,Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
					12/9/19/1110	126/10/1615	Date Time							0		E	-75	NWTF NWTF NWTF NWTF NWTF Volatil Halog	PH-HCI PH-Gx/ PH-Gx PH-Dx es 826 enated	D BTEX Acic OC Volatile	I / SG C es 8260 ers Onl;	С	D)		Laboratory Number:	Custody
Chromatograms with final report 🔲 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard Level III Level IV				w ADATIS'S X Adder	Hald SAMPES, will oft	Comments/Special Instructions											Semix (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I	volatile ow-lev 8270D 8082A nochlor ophos nated RCRA WTCA Metals	s 82700 el PAHs /SIM (lo ine Pes phorus Acid He Metals s	D/SIM s) bw-level) 8081B des 827 s 8151/	POD/SIM		12-064	Page of 2
s (EDDs)					en unun ro	alalia I								8	0	+	-2	5 % Mo	isture					_		1

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Ken Snort	Signature				15 B34-16.0	14 834-3.0	13 833-10:0	12 B33-3,0	II B32-1010	Lab ID Sample Identification	Company: FARALLON Project Number: 188-002 Project Name: 2 AKEVIEW FACILITY Project Manager: BCAUI JURISTA Sampled by:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date				(OSE	FARALLON	Company				V 1355 S	1310 5	1240 S	1220 S	12/6/19/12/0 5	Date Time Sampled Sampled Matrix	Same Day 1 Day 2 Days 3 Days Standard (7 Days) (other)	Turnaround Request (in working days)	Chain of
					12/9/18/110	1 2/6/09 1615	Date Time		((2	NWTF NWTF NWTF NWTF Volatil	PH-HCID PH-Gx/BTEX PH-Gx PH-Gx PH-Dx (Acid / SG Clean-up) les 8260C enated Volatiles 8260C EPA 8011 (Waters Only)	Laboratory Number:	Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV					See connects of Anet 1	Comments/Special Instructions									Semiv (with II PAHs PCBs Organ Organ Chlorin Total F Total N TCLP	rolatiles 8270D/SIM ow-level PAHs) 8270D/SIM (low-level) 8082A nochlorine Pesticides 8081B ophosphorus Pesticides 8270D/SIM nated Acid Herbicides 8151A RCRA Metals MTCA Metals Metals foil and grease) 1664A	n 12-064	Page Z of Z
(EDDs)														1	8	% Moi	sture		

January 13, 2020

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2001-026

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on January 3, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 13, 2020 Samples Submitted: January 3, 2020 Laboratory Reference: 2001-026 Project: 188-002

Case Narrative

Samples were collected on January 3, 2020 and received by the laboratory on January 3, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-41-5.0					
Laboratory ID:	01-026-01					
Diesel Fuel #2	610	280	NWTPH-Dx	1-6-20	1-10-20	Ν
Lube Oil	1800	570	NWTPH-Dx	1-6-20	1-10-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	B-42-5.0					
Laboratory ID:	01-026-02					
Diesel Range Organics	38	27	NWTPH-Dx	1-6-20	1-7-20	Ν
Lube Oil	270	55	NWTPH-Dx	1-6-20	1-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				
Client ID:	B-43-5.0					
Laboratory ID:	01-026-03					
Diesel Range Organics	34	27	NWTPH-Dx	1-6-20	1-7-20	Ν
Lube Oil	150	54	NWTPH-Dx	1-6-20	1-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	69	50-150				

3

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0106S4					
Diesel Range Organics	ND	25	NWTPH-Dx	1-6-20	1-7-20	
Lube Oil Range Organics	ND	50	NWTPH-Dx	1-6-20	1-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	64	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	01-02	26-02								
	ORIG	DUP								
Diesel Range Organics	34.8	33.9	NA	NA		NA	NA	3	NA	Ν
Lube Oil	246	221	NA	NA		NA	NA	11	NA	
Surrogate:										
o-Terphenyl						77 57	50-150			

Date of Report: January 13, 2020 Samples Submitted: January 3, 2020 Laboratory Reference: 2001-026 Project: 188-002

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
B-41-5.0	01-026-01	12	1-6-20
B-42-5.0	01-026-02	8	1-6-20
B-43-5.0	01-026-03	8	1-6-20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished YURUL POWING	Received YUS OF PCHING	Relinquished Ulanu Cum	Signature		46		3 B-43-5.0	2 8-42-5.0	1 B-41-5.0	Lab ID Sample Identification	M. Gehning	Brani Juristen	Moo dw orth	Britist Name: 188-002	Project Number: Farallan	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date			JODI (DOIE	[ival]ou	Forallon	- Education	Company				1/3/20 1247 S 1	1/3/20 1240 S 1	13/20 1230 S	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
			1/3/10 1920	1/3/20 1720	1/3/20 1500	1/3/20 1500	Date Time				×	×	- X	NWTF NWTF NWTF NWTF Volatil Halog	PH-HC PH-Gx/ PH-Gx PH-Dx es 826 enated	/BTEX (Acid SOC	d / SG C es 82600	C	p)		Laboratory Number:	Chain of Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs)	Data Package: Standard 😿 Level III 🛛 Level IV 🗌						Comments/Special Instructions							Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I	olatile ow-lev 8270D 8082/ ochlor ophos nated RCRA MTCA	s 8270[/el PAH: //SIM (lo / / ine Pes phorus Acid He Metals Metals s	D/SIM s) ow-level;) 3081B les 827 3 8151/	/0D/SIM		n 01-028	Page of

January 14, 2020

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2001-077

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on January 8, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 14, 2020 Samples Submitted: January 8, 2020 Laboratory Reference: 2001-077 Project: 188-002

Case Narrative

Samples were collected on January 7, 2020 and received by the laboratory on January 8, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-13-010720			•		
Laboratory ID:	01-077-02					
Diesel Range Organics	0.24	0.22	NWTPH-Dx	1-9-20	1-9-20	
Lube Oil Range Organics	0.56	0.22	NWTPH-Dx	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	MW-9R-010720					

Laboratory ID:	01-077-06					
Diesel Range Organics	0.29	0.20	NWTPH-Dx	1-9-20	1-9-20	
Lube Oil Range Organics	0.78	0.20	NWTPH-Dx	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

c <i>i</i>				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0109W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	1-9-20	1-9-20	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB01	09W1								
	ORIG	DUP								
Diesel Fuel #2	0.456	0.400	NA	NA		NA	NA	13	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						104 97	50-150			

Matrix: Water Units: ug/L

Units. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-12-010720					
Laboratory ID:	01-077-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	0.65	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	2.2	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	1.7	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-12-010720					
Laboratory ID:	01-077-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	87	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-010720					
Laboratory ID:	01-077-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	1.2	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-010720					
Laboratory ID:	01-077-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	88	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-6-010720					
Laboratory ID:	01-077-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	0.42	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	0.53	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	4.0	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-6-010720					
Laboratory ID:	01-077-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	90	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9R-010720					
Laboratory ID:	01-077-06					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9R-010720					
Laboratory ID:	01-077-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	88	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9B-010720					
Laboratory ID:	01-077-07					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	0.58	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	0.21	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9B-010720					
Laboratory ID:	01-077-07					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	1.1	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	87	78-125				

14

Matrix: Water Units: ug/L

Method EPA 8260D EPA 8260D	Prepared 1-9-20	Analyzed	Flags
	1-9-20		
	1-9-20		
	1-9-20		
EPA 8260D		1-9-20	
	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
EPA 8260D	1-9-20	1-9-20	
	1-0-20	1-9-20	
LI A 0200D	1-9-20	1-3-20	
	EPA 8260D EPA 8260D	EPA 8260D1-9-20EPA 8260D1-9-20	EPA 8260D1-9-201-9-20EPA 8260D1-9-201-9-20

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-010720					
Laboratory ID:	01-077-09					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	87	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-3-010720					
Laboratory ID:	01-077-10					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	0.21	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	1.7	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	1.1	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	3.5	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

17

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-3-010720					
Laboratory ID:	01-077-10					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	89	78-125				

18

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-25-010720					
Laboratory ID:	01-077-12					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	3.5	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-25-010720					
Laboratory ID:	01-077-12					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	88	78-125				

Date

Date

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-8-010720					
Laboratory ID:	01-077-13					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Iodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	0.25	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	2.5	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

21

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-8-010720					
Laboratory ID:	01-077-13					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	87	78-125				

Matrix: Water Units: ug/L

onns. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-14C-010720					
Laboratory ID:	01-077-16					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	0.56	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	1.2	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

23

				Duic	Duic	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-14C-010720					
Laboratory ID:	01-077-16					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	0.23	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	86	78-125				

Date

Date

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0109W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Iodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

Date of Report: January 14, 2020 Samples Submitted: January 8, 2020 Laboratory Reference: 2001-077 Project: 188-002

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0109W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	88	78-125				

26

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB010	09W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.69	10.2	10.0	10.0	97	102	63-130	5	17	
Benzene	9.73	10.1	10.0	10.0	97	101	76-125	4	19	
Trichloroethene	10.6	11.0	10.0	10.0	106	110	76-121	4	18	
Toluene	10.2	10.4	10.0	10.0	102	104	80-124	2	18	
Chlorobenzene	9.74	10.1	10.0	10.0	97	101	75-120	4	19	
Surrogate:										
Dibromofluoromethane					102	103	75-127			
Toluene-d8					108	110	80-127			
4-Bromofluorobenzene					89	90	78-125			

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13-010720					
Laboratory ID:	01-077-02					
Naphthalene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
2-Methylnaphthalene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
1-Methylnaphthalene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
Acenaphthylene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
Acenaphthene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
Fluorene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
Phenanthrene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
Anthracene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
Fluoranthene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
Pyrene	ND	0.097	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo[a]anthracene	0.055	0.0097	EPA 8270E/SIM	1-10-20	1-10-20	
Chrysene	0.052	0.0097	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo[b]fluoranthene	0.043	0.0097	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo(j,k)fluoranthene	0.019	0.0097	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo[a]pyrene	0.055	0.0097	EPA 8270E/SIM	1-10-20	1-10-20	
Indeno(1,2,3-c,d)pyrene	0.027	0.0097	EPA 8270E/SIM	1-10-20	1-10-20	
Dibenz[a,h]anthracene	ND	0.0097	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo[g,h,i]perylene	0.027	0.0097	EPA 8270E/SIM	1-10-20	1-10-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	27 - 106				
Pyrene-d10	78	35 - 98				
Terphenyl-d14	78	41 - 129				

PAHs EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0110W1					
Naphthalene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
2-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
1-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
Acenaphthylene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
Acenaphthene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
Fluorene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
Phenanthrene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
Anthracene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
Fluoranthene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
Pyrene	ND	0.10	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	1-10-20	1-10-20	
Chrysene	ND	0.010	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	1-10-20	1-10-20	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	1-10-20	1-10-20	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	1-10-20	1-10-20	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270E/SIM	1-10-20	1-10-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	27 - 106				
Pyrene-d10	97	35 - 98				
Terphenyl-d14	99	41 - 129				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB01	10W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.335	0.360	0.500	0.500	67	72	36 - 99	7	40	
Acenaphthylene	0.372	0.389	0.500	0.500	74	78	45 - 113	4	32	
Acenaphthene	0.379	0.386	0.500	0.500	76	77	43 - 119	2	33	
Fluorene	0.416	0.422	0.500	0.500	83	84	48 - 114	1	30	
Phenanthrene	0.430	0.422	0.500	0.500	86	84	49 - 113	2	24	
Anthracene	0.436	0.440	0.500	0.500	87	88	50 - 113	1	25	
Fluoranthene	0.493	0.465	0.500	0.500	99	93	57 - 118	6	22	
Pyrene	0.475	0.429	0.500	0.500	95	86	56 - 128	10	32	
Benzo[a]anthracene	0.498	0.474	0.500	0.500	100	95	59 - 127	5	24	
Chrysene	0.471	0.451	0.500	0.500	94	90	57 - 122	4	24	
Benzo[b]fluoranthene	0.488	0.451	0.500	0.500	98	90	58 - 123	8	26	
Benzo(j,k)fluoranthene	0.499	0.481	0.500	0.500	100	96	60 - 123	4	22	
Benzo[a]pyrene	0.475	0.451	0.500	0.500	95	90	54 - 121	5	24	
Indeno(1,2,3-c,d)pyrene	0.492	0.466	0.500	0.500	98	93	55 - 125	5	26	
Dibenz[a,h]anthracene	0.477	0.453	0.500	0.500	95	91	57 - 127	5	25	
Benzo[g,h,i]perylene	0.473	0.451	0.500	0.500	95	90	54 - 122	5	25	
Surrogate:										
2-Fluorobiphenyl					75	70	27 - 106			
Pyrene-d10					90	84	35 - 98			
Terphenyl-d14					109	94	41 - 129			

TOTAL METALS EPA 200.8

Matrix: Water						
Units: ug/L (ppb)				_	_	
A I	D	DOL		Date	Date	-
Analyte Client ID:	Result MW-9R-010720	PQL	Method	Prepared	Analyzed	Flags
	01-077-06					
Laboratory ID:	ND	3.3	EPA 200.8	1-9-20	1-9-20	
Arsenic Lead	ND	3.3 1.1	EPA 200.8 EPA 200.8	1-9-20 1-9-20	1-9-20	
Leau	ND	1.1	EFA 200.0	1-9-20	1-9-20	
Client ID:	MW-9B-010720					
Laboratory ID:	01-077-07					
Arsenic	18	3.3	EPA 200.8	1-9-20	1-9-20	
Lead	ND	1.1	EPA 200.8	1-9-20	1-9-20	
Client ID:	MW-12-010720					
Laboratory ID:	01-077-08					
Arsenic	12	3.3	EPA 200.8	1-9-20	1-9-20	
Lead	18	1.1	EPA 200.8	1-9-20	1-9-20	
	MW 42D 040720					
Client ID:	MW-12B-010720					
Laboratory ID:	01-077-11	3.3		1.0.00	1.0.00	
Arsenic	15		EPA 200.8	1-9-20	1-9-20	
Lead	8.5	1.1	EPA 200.8	1-9-20	1-9-20	
Client ID:	MW-32-010720					
Laboratory ID:	01-077-14					
Arsenic	ND	3.3	EPA 200.8	1-9-20	1-9-20	
Lead	1.5	1.1	EPA 200.8	1-9-20	1-9-20	
Client ID:	MW-31-010720					
Laboratory ID:	01-077-15					
Arsenic	43	17	EPA 200.8	1-9-20	1-9-20	
Lead	500	5.6	EPA 200.8	1-9-20	1-9-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0109WM1					
Arsenic	ND	3.3	EPA 200.8	1-9-20	1-9-20	
Lead	ND	1.1	EPA 200.8	1-9-20	1-9-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-2	14-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	1.71	1.72	NA	NA		1	NA	NA	0	20	
MATRIX SPIKES											
Laboratory ID:	12-2	14-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	117	122	111	111	ND	106	110	75-125	4	20	
Lead	119	123	111	111	1.71	106	109	75-125	3	20	

DISSOLVED METALS EPA 200.8

Units: ug/L (ppb)					-					
Analuta	Result	PQL	Method	Date Prepared	Date Analyzed	Flage				
Analyte Client ID:	MW-9R-010720	PQL	Method	Prepared	Analyzeu	Flags				
Laboratory ID:	01-077-06									
Arsenic	ND	3.0	EPA 200.8		1-9-20					
Lead	ND	1.0	EPA 200.8		1-9-20					
Client ID:	MW-9B-010720									
Laboratory ID:	01-077-07									
Arsenic	9.9	3.0	EPA 200.8		1-9-20					
Lead	ND	1.0	EPA 200.8		1-9-20					
Client ID:	MW-12-010720									
Laboratory ID:	01-077-08									
Arsenic	7.5	3.0	EPA 200.8		1-9-20					
Lead	11	1.0	EPA 200.8		1-9-20					
Client ID:	MW-12B-010720									
Laboratory ID:	01-077-11									
Arsenic	ND	3.0	EPA 200.8		1-9-20					
Lead	ND	1.0	EPA 200.8		1-9-20					
		1.0	2177200.0		1020					
Client ID:	MW-32-010720									
Laboratory ID:	01-077-14									
Arsenic	ND	3.0	EPA 200.8		1-9-20					
Lead	ND	1.0	EPA 200.8		1-9-20					
Client ID:	MW-31-010720									
Laboratory ID:	01-077-15									
Arsenic	21	3.0	EPA 200.8		1-9-20					
Lead	8.6	1.0	EPA 200.8		1-9-20					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0108F1					
Arsenic	ND	3.0	EPA 200.8	1-8-20	1-9-20	
Lead	ND	1.0	EPA 200.8	1-8-20	1-9-20	

	_				Source		rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	01-07	77-08									
	ORIG	DUP									
Arsenic	7.46	8.96	NA	NA		1	NA	NA	18	20	
Lead	10.5	11.2	NA	NA		1	NA	NA	6	20	
MATRIX SPIKES											
Laboratory ID:	01-07	77-08									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	92.6	93.6	80.0	80.0	7.46	106	108	75-125	1	20	
Lead	80.4	82.8	80.0	80.0	10.5	87	90	75-125	3	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received NAWU LAUN	Relinquished Kon Shield	Signature	10 SVE-3-010720	9 MW-26-0107 20	8 MW-12-010720	7 MW-9B-010720	6 MW-9R-010720	5 SVE-6-010720	4 MW-11-010720	3 MW-3-010720	2 MW-13-010720	1 SVE-12-010720	Lab ID Sample Identification	AN	Project Manager: Broant Thickton		-	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					0.ST	FARALLOW	Company	V 1330 W 3	1230 W 3	1230 W 2	1140 W 5	1106 W 7	1017 W 3	1005 W 4	938 W 3	1 N 816	147120 900 W 3		(other)	ntainers	Standard (7 Davs)	Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
					00 14 00 18 1	1/120 1800	Date Time		X		×			K ND 38	X	X	X	NWTF NWTF NWTF Volati Halog	PH-Gx/BT PH-Gx PH-Dx (les 82600 enated V] Acid / S(260C	-up)		Laboratory Number:	ustody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard 🛛 Level III 🗌 Level IV 🗌				were ried filtered	All Dissolved mether samples	Comments/Special Instructions							Kicon				(with PAHs PCBs Orgar Orgar Chlor Total Total Total TCLP	ow-level 8270D/S 8082A nochloring ophosph nated Ac RCRA Ma MTCA Ma MTCA Ma MTCA Ma MTCA Ma Matals (oil and g Al Ar	IM (low-le e Pesticida norus Pest cid Herbici etals	es 8081 icides 8 des 815	270D/S		01-077	Page of

Received	Relinquished	Received	Relinquished	Received	Relinquished		Company: FARAL Project Number: Project Number: Project Name: Project Manager: Project Manager: Project Manager: Project Manager: Project Manager: Null AKE SUFAU Sampled by: Lab ID SUFAU SUF-8 13 SUE-8 14 Mul-32 15 Mul-32 16 Mul-31 16 Mul-140	Enviro Analytical Labor
			N I C	hand been	Ken Sudt	Signature	Phone: (425) 883-3881 · www.onsite-env.com Phone: (425) 883-3881 · www.onsite-env.com Sample Identification Phul-12.B-0107.20 MW-32-0107.20 MW-31-0107.20 MW-31-0107.20 MW-14C-0107.20 MW-14C-0107.20	Environmental Inc. Analytical Laboratory Testing Services
				OSE	FRRALLON	Company	(Check One) Same Day Check One) Same Day Check One) Same Day Check One) Date Time Sampled Sampled Matrix 1/1/20/1345 W 3 Days 1/1/20/1345 W 3 Days 1/1/20/145 W	*
				20H1 00/2/1	1/1/20 1800	Date Time	NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Gx NWTPH-Dx ([] Acid / SG Clean-up)	
Data Package: Standard Level III Level IV	I				see paye # 1 connects.	Comments/Special Instructions	EDB EPA 8011 (Waters Only) Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082A Organophosphorus Pesticides 8081B Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA Metals TCLP Metals HEM (oil and grease) 1664A Total Arsenic + LsAD Orssolvet Arsenic + LesAD	Page 2 of 2
t							% Moisture	

January 17, 2020

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2001-093

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on January 9, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 17, 2020 Samples Submitted: January 9, 2020 Laboratory Reference: 2001-093 Project: 188-002

Case Narrative

Samples were collected on January 8, 2020 and received by the laboratory on January 9, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-16R-010820					
Laboratory ID:	01-093-02					
Diesel Range Organics	0.46	0.22	NWTPH-Dx	1-10-20	1-10-20	
Lube Oil Range Organics	0.58	0.22	NWTPH-Dx	1-10-20	1-10-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

c <i>i</i>				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0110W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	1-10-20	1-10-20	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	1-10-20	1-10-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
, ,						

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	01-10	04-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						90	87	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-010820					
Laboratory ID:	01-093-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Iodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	1.5	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	0.79	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	13	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-010820					
Laboratory ID:	01-093-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	87	78-125				

Matrix: Water Units: ug/L

Units. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16R-010820					
Laboratory ID:	01-093-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
lodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	0.27	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16R-010820					
Laboratory ID:	01-093-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	90	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0109W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloromethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromomethane	ND	2.0	EPA 8260D	1-9-20	1-9-20	
Chloroethane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Iodomethane	ND	4.5	EPA 8260D	1-9-20	1-9-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chloroform	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Trichloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromomethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-9-20	1-9-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-9-20	1-9-20	

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0109W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Bromoform	ND	1.0	EPA 8260D	1-9-20	1-9-20	
Bromobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-9-20	1-9-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-9-20	1-9-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-9-20	1-9-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	88	78-125				

10

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB010	09W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.69	10.2	10.0	10.0	97	102	63-130	5	17	
Benzene	9.73	10.1	10.0	10.0	97	101	76-125	4	19	
Trichloroethene	10.6	11.0	10.0	10.0	106	110	76-121	4	18	
Toluene	10.2	10.4	10.0	10.0	102	104	80-124	2	18	
Chlorobenzene	9.74	10.1	10.0	10.0	97	101	75-120	4	19	
Surrogate:										
Dibromofluoromethane					102	103	75-127			
Toluene-d8					108	110	80-127			
4-Bromofluorobenzene					89	90	78-125			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

In of Custory Image: Standard Image: Standard	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received MAUN LISS	Relinquished Ken Snight	Signature					8 MW-16R-010820	1 MW-2-010820	Lab ID Sample Identification	Sampled by: Ken Scott	Company: FARALLON Project Number: 188-002 Project Name: LAKEVIEW FACILITY Project Manager: BRANI JUVIETA	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Image: Standard Comments/System Comments/System Comments/System	Reviewed/Date				(W OSE	5 PARALLON	Company				Je le		V	Time Sampled Matrix		1 Day 3 Days	Turnaround Request (In working days)	Chain of
Package: Standard Carlos Stand						0001 00 19 19	18/201				(VAII		XX	7B	NWTF NWTF NWTF NWTF Volatil Halog	PH-HCII PH-Gx/E PH-Gx PH-Dx () es 8260 enated	D BTEX Acid / SG Clean-up) DC Volatiles 8260C		Custody
		Standard Level III Level IV						Comments/Special Instructions							Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I	volatiles ow-leve 8270D/ 8082A oochlorin ophosp nated A RCRA M MTCA M MTCA M	8270D/SIM el PAHs) (SIM (low-level) ne Pesticides 8081B phorus Pesticides 8270D/SIM Acid Herbicides 8151A Atetals	01-09	$\left \right $

January 20, 2020

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2001-108

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on January 10, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 20, 2020 Samples Submitted: January 10, 2020 Laboratory Reference: 2001-108 Project: 188-002

Case Narrative

Samples were collected on January 9, 2020 and received by the laboratory on January 10, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Halogenated Volatiles EPA 8260D Analysis.

Some MTCA Method A cleanup levels are non-achievable for sample SVE-2-010920 due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-14-010920					
Laboratory ID:	01-108-01					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	1.6	0.20	EPA 8260D	1-14-20	1-14-20	
Iodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	0.45	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	3.8	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	7.9	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

3

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-14-010920					
Laboratory ID:	01-108-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	109	80-127				
4-Bromofluorobenzene	89	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-2-010920					
Laboratory ID:	01-108-03					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Iodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-2-010920					
Laboratory ID:	01-108-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	88	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-23-010920					
Laboratory ID:	01-108-04					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
lodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	0.53	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-23-010920					
Laboratory ID:	01-108-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	109	80-127				
4-Bromofluorobenzene	90	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-4-010920					
Laboratory ID:	01-108-05					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
lodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

9

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-4-010920					
Laboratory ID:	01-108-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	109	80-127				
4-Bromofluorobenzene	89	78-125				

10

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-1-010920					
Laboratory ID:	01-108-06					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Iodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	0.95	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	0.53	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	2.2	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-1-010920					
Laboratory ID:	01-108-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	89	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-3-010920					
Laboratory ID:	01-108-07					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
lodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

13

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-3-010920					
Laboratory ID:	01-108-07					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	110	80-127				
4-Bromofluorobenzene	89	78-125				

14

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-2-010920					
Laboratory ID:	01-108-08					
Dichlorodifluoromethane	ND	0.70	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	2.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	2.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
lodomethane	ND	2.6	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	2.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	0.69	0.40	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	1.5	0.40	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	2.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.40	EPA 8260D	1-14-20	1-14-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-2-010920					
Laboratory ID:	01-108-08					
1,1,2-Trichloroethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	2.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.40	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	2.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	2.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	110	80-127				
4-Bromofluorobenzene	91	78-125				

16

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-20-010920					
Laboratory ID:	01-108-09					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
lodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	1.9	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	19	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

17

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-20-010920					
Laboratory ID:	01-108-09					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	89	78-125				

18

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-18-010920					
Laboratory ID:	01-108-10					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	2.6	0.20	EPA 8260D	1-14-20	1-14-20	
Iodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	3.0	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	4.4	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

19

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-18-010920					
Laboratory ID:	01-108-10					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-7-010920					
Laboratory ID:	01-108-11					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
lodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	0.28	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	0.28	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-7-010920					
Laboratory ID:	01-108-11					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-1-010920					
Laboratory ID:	01-108-12					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Iodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-1-010920					
Laboratory ID:	01-108-12					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	88	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0114W1					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Iodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

25

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0114W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	90	78-125				

26

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB01	14W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.87	9.68	10.0	10.0	99	97	63-130	2	17	
Benzene	10.2	10.1	10.0	10.0	102	101	76-125	1	19	
Trichloroethene	11.2	11.2	10.0	10.0	112	112	76-121	0	18	
Toluene	10.8	10.7	10.0	10.0	108	107	80-124	1	18	
Chlorobenzene	10.6	10.3	10.0	10.0	106	103	75-120	3	19	
Surrogate:										
Dibromofluoromethane					101	101	75-127			
Toluene-d8					108	108	80-127			
4-Bromofluorobenzene					92	92	78-125			

27

TOTAL METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-34-010920					
Laboratory ID:	01-108-02					
Arsenic	4.6	3.3	EPA 200.8	1-15-20	1-15-20	
Lead	5.8	1.1	EPA 200.8	1-15-20	1-15-20	

TOTAL METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0114WM1					
Arsenic	ND	3.3	EPA 200.8	1-15-20	1-15-20	
Lead	ND	1.1	EPA 200.8	1-15-20	1-15-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	01-12	22-06									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	01-12	22-06									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	113	120	111	111	ND	102	108	75-125	6	20	
Lead	107	111	111	111	ND	96	100	75-125	4	20	

DISSOLVED METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-34-010920					
Laboratory ID:	01-108-02					
Arsenic	ND	3.0	EPA 200.8		1-14-20	
Lead	ND	1.0	EPA 200.8		1-14-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0110F1					
Arsenic	ND	3.0	EPA 200.8	1-10-20	1-14-20	
Lead	ND	1.0	EPA 200.8	1-10-20	1-14-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	01-10	08-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	01-10	08-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	77.4	77.0	80.0	80.0	ND	97	96	75-125	1	20	
Lead	75.6	75.0	80.0	80.0	ND	95	94	75-125	1	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Ken Sucht	Signature	0100-81-WM 01	9 MW-20-010920	SVE-2-010920	1 AS-3-010920	6 SVE-1-010920	S AS-4-010920	4 MW-23-010920	3 AS-2-010920	2 MW-34-010920	1 MW-14-010920	Lab ID Sample Identification	Sampled by: Ken Lever Amegan Schrifte	Brawn Jurista	LAKEVIEW FACILITY	Briter Name	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					0111 38O	FARALLON 1/9	Company Date	V 1400 W 3	1368 W 3	1210 W, 3	1205 W 3	1120 W 3	(115 W 3	1030 W 3	1028 W 3	935 W 2	1/9/20 910 W 3	NWTE	(other) per of C PH-HCIE PH-Gx/E)	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
					120 1130	2181 02	Time	X	×	X	×		×	×	X		×	NWTF Volati Halog EDB I	PH-Dx ([les 8260 enated ^v EPA 801	Volatile: 1 (Wate	s 82600 ers Only	0)		Laboratory Number:	ody
Chromatograms with final report \square Electronic Data Deliverables (EDDs) \square	Data Package: Standard 🛛 Level III 🗌 Level IV 🗍						Comments/Special Instructions											(with PAHs PCBs Orgar Orgar Chlor Total Total Total Total HEM	MTCA M MTCA M Metals (oil and) A(A ()	I PAHs) SIM (lov he Pesti horus F cid Her letals letals grease)	v-level) cides & Pesticid bicides	3081B les 827 \$ 8151A	od/sim		01-108	Page 1 of 2

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Ken Sutt	Signature					12 AS-1-010920	AS-7-010920	TURI not	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					380	FARALLON	Company					V 1546 W 3	1/2/20/520 W 3	Sampled Sampled Matrix	ck One)	Turnaround Request (in working days)	Chain of
					1/10/20 1130	1/9/20 1815	Date Time			1 KA				NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Dx (Acid / SG Clean-up) Volatiles 8260C Halogenated Volatiles 8260C EDB EPA 8011 (Waters Only)		Laboratory Number:	of Custody
Chromatograms with final report Clectronic Data Deliverables (FDDs)	Data Package: Standard Level III Level IV					,	Comments/Special Instructions							Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082A Organochlorine Pesticides 8081B Organophosphorus Pesticides 8270D/ Chlorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA Metals TCLP Metals HEM (oil and grease) 1664A	5IM	r: 01-108	Page Z of Z

January 20, 2020

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2001-120

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on January 10, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 20, 2020 Samples Submitted: January 10, 2020 Laboratory Reference: 2001-120 Project: 188-002

Case Narrative

Samples were collected on January 10, 2020 and received by the laboratory on January 10, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-11-011020			-	-	
Laboratory ID:	01-120-01					
Diesel Range Organics	1.4	0.20	NWTPH-Dx	1-13-20	1-13-20	
Lube Oil Range Organics	1.5	0.20	NWTPH-Dx	1-13-20	1-13-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	SVE-5-011020					
Laboratory ID:	01-120-05					

Laboratory ID.	01-120-05					
Diesel Fuel #2	16	0.20	NWTPH-Dx	1-13-20	1-13-20	
Lube Oil Range Organics	2.5	0.20	NWTPH-Dx	1-13-20	1-13-20	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	122	50-150				

Date of Report: January 20, 2020 Samples Submitted: January 10, 2020 Laboratory Reference: 2001-120 Project: 188-002

DIESEL AND HEAVY OIL RANGE ORGANICS **NWTPH-Dx** QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0113W1					
ND	0.20	NWTPH-Dx	1-13-20	1-13-20	
ND	0.20	NWTPH-Dx	1-13-20	1-13-20	
Percent Recovery	Control Limits				
94	50-150				
	MB0113W1 ND ND Percent Recovery	MB0113W1 ND 0.20 ND 0.20 Percent Recovery Control Limits	MB0113W1ND0.20ND0.20ND0.20Percent RecoveryControl Limits	Result PQL Method Prepared MB0113W1	Result PQL Method Prepared Analyzed MB0113W1 -

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB01	13W1								
	ORIG	DUP								
Diesel Fuel #2	0.434	0.418	NA	NA		NA	NA	4	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						91 89	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	IW-011020					
Laboratory ID:	01-120-03					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
lodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	IW-011020					
Laboratory ID:	01-120-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-15-011020					
Laboratory ID:	01-120-04					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Iodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	0.30	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	3.1	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-15-011020					
Laboratory ID:	01-120-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	110	80-127				
4-Bromofluorobenzene	89	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0114W1					
Dichlorodifluoromethane	ND	0.35	EPA 8260D	1-14-20	1-14-20	
Chloromethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Vinyl Chloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroethane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Iodomethane	ND	1.3	EPA 8260D	1-14-20	1-14-20	
Methylene Chloride	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chloroform	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Trichloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromomethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromodichloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	1-14-20	1-14-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	1-14-20	1-14-20	

Date of Report: January 20, 2020 Samples Submitted: January 10, 2020 Laboratory Reference: 2001-120 Project: 188-002

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

Analyte Result PQL Method Prepared Analyzed Flag: METHOD BLANK Laboratory ID: MB0114W1 1.12-Trichloroethane 1.14-20 1.14-20 1.14-20 1,1,2-Trichloroethane ND 0.20 EPA 8260D 1.14-20 1.14-20 1,3-Dichloroethane ND 0.20 EPA 8260D 1.14-20 1.14-20 1,3-Dichloropropane ND 0.20 EPA 8260D 1.14-20 1.14-20 1,3-Dichloropropane ND 0.20 EPA 8260D 1.14-20 1.14-20 1,2-Dibromoethane ND 0.20 EPA 8260D 1.14-20 1.14-20 1,2-Dibromoethane ND 0.20 EPA 8260D 1.14-20 1.14-20 Bromoform ND 0.20 EPA 8260D 1.14-20 1.14-20 Bromobenzene ND 0.20 EPA 8260D 1.14-20 1.14-20 1,1,2-2-Tetrachloroethane ND 0.20 EPA 8260D 1.14-20 1.14-20 1,2,3-Trichloroptopane ND					Date	Date	
Laboratory ID: MB0114W1 1,1,2-Trichloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Tetrachloroethene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromoethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromoethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Bromoform ND 1.0 EPA 8260D 1-14-20 1-14-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Tichloroben	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Tetrachloroethene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 Dibromochloromethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromoethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Chlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Bromoform ND 1.0 EPA 8260D 1-14-20 1-14-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloroptopane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloroppane ND 0.20 EPA 8260D	METHOD BLANK						
Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 Dibromochloromethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromoethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Chlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Bromoform ND 1.0 EPA 8260D 1-14-20 1-14-20 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Bromobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloropthane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloroppane ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20	Laboratory ID:	MB0114W1					
1,3-Dichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 Dibromochloromethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromoethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Chlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Chlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Sromoform ND 1.0 EPA 8260D 1-14-20 1-14-20 Bromobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 J.1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 J.2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 J.3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 J.3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 J.2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 J.3-Dichlorobenzene ND 0.20 EPA 8260	1,1,2-Trichloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Dibromochloromethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromoethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Chlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Bromoform ND 1.0 EPA 8260D 1-14-20 1-14-20 J,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Sromobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20	Tetrachloroethene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromoethane ND 0.20 EPA 8260D 1.14-20 1.14-20 Chlorobenzene ND 0.20 EPA 8260D 1.14-20 1.14-20 I,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1.14-20 1.14-20 Bromoform ND 1.0 EPA 8260D 1.14-20 1.14-20 Bromobenzene ND 0.20 EPA 8260D 1.14-20 1.14-20 J,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1.14-20 1.14-20 1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1.14-20 1.14-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 1.14-20 1.14-20 2,3-Trichloroptoluene ND 0.20 EPA 8260D 1.14-20 1.14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1.14-20 1.14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1.14-20 1.14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1.14-20 1.14-20 1,2-Dibrlorobenzene ND 0.20	1,3-Dichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Chlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Bromoform ND 1.0 EPA 8260D 1-14-20 1-14-20 Bromobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 J,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Diblromo-3-chloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D <	Dibromochloromethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 Bromoform ND 1.0 EPA 8260D 1-14-20 1-14-20 Bromobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20	1,2-Dibromoethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromoform ND 1.0 EPA 8260D 1-14-20 1-14-20 Bromobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Diblorob-3-chloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D <	Chlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Bromobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D	1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND	Bromoform	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-Trichloropropane ND 0.20 EPA 8260D 1-14-20 1-14-20 2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND	Bromobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
2-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Surrogate: Percent Recovery	1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
4-Chlorotoluene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibhorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibhorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Surrogate: Percent Recovery	1,2,3-Trichloropropane	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,3-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Surrogate: Percent Recovery Control Limits 1-14-20 1-14-20 1-14-20 Dibromofluoromethane 103 75-127 1-14-20 1-14-20 1-14-20 Toluene-d8 108 80-127 108 108 80-127 108	2-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,4-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Surrogate: Percent Recovery Control Limits 1-14-20 1-14-20 Dibromofluoromethane 103 75-127 70/0000 1000000000000000000000000000000000000	4-Chlorotoluene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Hexachlorobutadiene ND 1.0 EPA 8260D 1-14-20 1-14-20 Hexachlorobutadiene ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Surrogate: Percent Recovery Control Limits 1-14-20 1-14-20 Dibromofluoromethane 103 75-127 70/2000 108 80-127	1,3-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Hexachlorobutadiene ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Surrogate: Percent Recovery Control Limits 1-14-20 1-14-20 Dibromofluoromethane 103 75-127 70/2000 108	1,4-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Hexachlorobutadiene ND 1.0 EPA 8260D 1-14-20 1-14-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 1-14-20 1-14-20 Surrogate: Percent Recovery Control Limits 103 75-127 108 80-127	1,2-Dichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
HexachlorobutadieneND1.0EPA 8260D1-14-201-14-201,2,3-TrichlorobenzeneND0.20EPA 8260D1-14-201-14-20Surrogate:Percent RecoveryControl LimitsDibromofluoromethane10375-127Toluene-d810880-127	1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	1-14-20	1-14-20	
1,2,3-TrichlorobenzeneND0.20EPA 8260D1-14-20Surrogate:Percent RecoveryControl LimitsDibromofluoromethane10375-127Toluene-d810880-127	1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Surrogate:Percent RecoveryControl LimitsDibromofluoromethane10375-127Toluene-d810880-127	Hexachlorobutadiene	ND	1.0	EPA 8260D	1-14-20	1-14-20	
Dibromofluoromethane 103 75-127 Toluene-d8 108 80-127	1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	1-14-20	1-14-20	
Toluene-d8 108 80-127	Surrogate:	Percent Recovery	Control Limits				
	Dibromofluoromethane	103	75-127				
4-Bromofluorobenzene 90 78-125	Toluene-d8	108	80-127				
	4-Bromofluorobenzene	90	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB01 ⁻	14W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.87	9.68	10.0	10.0	99	97	63-130	2	17	
Benzene	10.2	10.1	10.0	10.0	102	101	76-125	1	19	
Trichloroethene	11.2	11.2	10.0	10.0	112	112	76-121	0	18	
Toluene	10.8	10.7	10.0	10.0	108	107	80-124	1	18	
Chlorobenzene	10.6	10.3	10.0	10.0	106	103	75-120	3	19	
Surrogate:										
Dibromofluoromethane					101	101	75-127			
Toluene-d8					108	108	80-127			
4-Bromofluorobenzene					92	92	78-125			

PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-11-011020					
Laboratory ID:	01-120-01					
Naphthalene	ND	0.11	EPA 8270E/SIM	1-15-20	1-15-20	
2-Methylnaphthalene	ND	0.11	EPA 8270E/SIM	1-15-20	1-15-20	
1-Methylnaphthalene	ND	0.11	EPA 8270E/SIM	1-15-20	1-15-20	
Acenaphthylene	ND	0.54	EPA 8270E/SIM	1-15-20	1-16-20	
Acenaphthene	ND	0.54	EPA 8270E/SIM	1-15-20	1-16-20	
Fluorene	ND	0.11	EPA 8270E/SIM	1-15-20	1-15-20	
Phenanthrene	ND	0.11	EPA 8270E/SIM	1-15-20	1-15-20	
Anthracene	ND	0.11	EPA 8270E/SIM	1-15-20	1-15-20	
Fluoranthene	ND	0.11	EPA 8270E/SIM	1-15-20	1-15-20	
Pyrene	ND	0.11	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[a]anthracene	ND	0.011	EPA 8270E/SIM	1-15-20	1-15-20	
Chrysene	ND	0.011	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[b]fluoranthene	ND	0.011	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[a]pyrene	ND	0.011	EPA 8270E/SIM	1-15-20	1-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270E/SIM	1-15-20	1-15-20	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[g,h,i]perylene	ND	0.011	EPA 8270E/SIM	1-15-20	1-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	27 - 106				
Pyrene-d10	77	35 - 98				
Terphenyl-d14	90	41 - 129				

PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

5				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-5-011020					
Laboratory ID:	01-120-05					
Naphthalene	0.25	0.073	EPA 8270E/SIM	1-15-20	1-15-20	
2-Methylnaphthalene	0.39	0.073	EPA 8270E/SIM	1-15-20	1-15-20	
1-Methylnaphthalene	0.68	0.073	EPA 8270E/SIM	1-15-20	1-15-20	
Acenaphthylene	ND	0.36	EPA 8270E/SIM	1-15-20	1-16-20	
Acenaphthene	ND	0.36	EPA 8270E/SIM	1-15-20	1-16-20	
Fluorene	ND	0.15	EPA 8270E/SIM	1-15-20	1-15-20	U1
Phenanthrene	0.081	0.073	EPA 8270E/SIM	1-15-20	1-15-20	
Anthracene	ND	0.073	EPA 8270E/SIM	1-15-20	1-15-20	
Fluoranthene	ND	0.073	EPA 8270E/SIM	1-15-20	1-15-20	
Pyrene	0.29	0.073	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[a]anthracene	ND	0.0073	EPA 8270E/SIM	1-15-20	1-15-20	
Chrysene	ND	0.015	EPA 8270E/SIM	1-15-20	1-15-20	U1
Benzo[b]fluoranthene	ND	0.0073	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo(j,k)fluoranthene	ND	0.0073	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[a]pyrene	ND	0.0073	EPA 8270E/SIM	1-15-20	1-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0073	EPA 8270E/SIM	1-15-20	1-15-20	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[g,h,i]perylene	ND	0.0073	EPA 8270E/SIM	1-15-20	1-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	56	27 - 106				
Pyrene-d10	79	35 - 98				
Terphenyl-d14	84	41 - 129				

PAHs EPA 8270E/SIM QUALITY CONTROL

. . .

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0115W2					
Naphthalene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
2-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
1-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
Acenaphthylene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
Acenaphthene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
Fluorene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
Phenanthrene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
Anthracene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
Fluoranthene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
Pyrene	ND	0.10	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	1-15-20	1-15-20	
Chrysene	ND	0.010	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	1-15-20	1-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	1-15-20	1-15-20	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	1-15-20	1-15-20	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270E/SIM	1-15-20	1-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	27 - 106				
Pyrene-d10	90	35 - 98				
Terphenyl-d14	95	41 - 129				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB01	15W2								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.294	0.280	0.500	0.500	59	56	36 - 99	5	40	
Acenaphthylene	0.389	0.383	0.500	0.500	78	77	45 - 113	2	32	
Acenaphthene	0.388	0.376	0.500	0.500	78	75	43 - 119	3	33	
Fluorene	0.411	0.387	0.500	0.500	82	77	48 - 114	6	30	
Phenanthrene	0.423	0.410	0.500	0.500	85	82	49 - 113	3	24	
Anthracene	0.434	0.427	0.500	0.500	87	85	50 - 113	2	25	
Fluoranthene	0.485	0.477	0.500	0.500	97	95	57 - 118	2	22	
Pyrene	0.440	0.419	0.500	0.500	88	84	56 - 128	5	32	
Benzo[a]anthracene	0.484	0.478	0.500	0.500	97	96	59 - 127	1	24	
Chrysene	0.457	0.450	0.500	0.500	91	90	57 - 122	2	24	
Benzo[b]fluoranthene	0.458	0.463	0.500	0.500	92	93	58 - 123	1	26	
Benzo(j,k)fluoranthene	0.472	0.464	0.500	0.500	94	93	60 - 123	2	22	
Benzo[a]pyrene	0.440	0.433	0.500	0.500	88	87	54 - 121	2	24	
Indeno(1,2,3-c,d)pyrene	0.411	0.416	0.500	0.500	82	83	55 - 125	1	26	
Dibenz[a,h]anthracene	0.421	0.424	0.500	0.500	84	85	57 - 127	1	25	
Benzo[g,h,i]perylene	0.433	0.434	0.500	0.500	87	87	54 - 122	0	25	
Surrogate:										
2-Fluorobiphenyl					58	60	27 - 106			
Pyrene-d10					88	85	35 - 98			
Terphenyl-d14					88	92	41 - 129			

TOTAL METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-35-011020					
Laboratory ID:	01-120-02					
Arsenic	7.6	3.3	EPA 200.8	1-15-20	1-15-20	
Lead	2.0	1.1	EPA 200.8	1-15-20	1-15-20	

TOTAL METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0114WM1					
Arsenic	ND	3.3	EPA 200.8	1-15-20	1-15-20	
Lead	ND	1.1	EPA 200.8	1-15-20	1-15-20	

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	01-12	22-06								
	ORIG	DUP								
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	
Lead	ND	ND	NA	NA		NA	NA	NA	20	

MATRIX SPIKES

Laboratory ID:	01-1	22-06									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	113	120	111	111	ND	102	108	75-125	6	20	
Lead	107	111	111	111	ND	96	100	75-125	4	20	

DISSOLVED METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-35-011020					
Laboratory ID:	01-120-02					
Arsenic	6.1	3.0	EPA 200.8		1-14-20	
Lead	ND	1.0	EPA 200.8		1-14-20	

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0110F1					
Arsenic	ND	3.0	EPA 200.8	1-10-20	1-14-20	
Lead	ND	1.0	EPA 200.8	1-10-20	1-14-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	01-10	08-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	01-10	08-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	77.4	77.0	80.0	80.0	ND	97	96	75-125	1	20	
Lead	75.6	75.0	80.0	80.0	ND	95	94	75-125	1	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Baliswitched Melly (e.	Relinquished Ken Sugt	Signature	SVE-5-611020	J MW-15-011020	3 JW-011020	2 MW-35-011020	1 MW-11-011020	Lab ID Sample Identification	Sampled By: KON SCOTT	Project Number: Project Number: 188-002 Project Name: LAKEVIEW FACILITY Project Manager: Brawi Turista	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testino Services
Reviewed/Date			Faraller	Favaller	FARALLON	Company Date	V 1235W 4	5 M 57J	1125 W 3	1037 W 2	1/10/20 850 W 4	Sampled Sampled Matrix Number	H-HCID	Standard (7 Days)	(in working days)	n of C
Chrom	Data P	X7CI OIDI	10/20 328	10/20 328	1/10/20 328 0:	Тіте Сол						NWTPH NWTPH Volatile Haloger EDB EF Semivo (with lov	H-Gx H-Dx (s 82600 nated V PA 8011 latiles 8 w-level	Acid / SG Clean-up) C olatiles 8260C (Waters Only) 2270D/SIM PAHs)	Laboratory Number: 0	stody
s with final report 🗌 Electronic Data De	Package: Standard Level III Level IV			is tield.	issolved samples fultered	Comments/Special Instructions						PCBs 8 Organo Organo Chlorina Total RC Total M ² TCLP M HEM (oi	082A chlorine phosph ated Ac CRA Me TCA Me letals		1-120	Page of

May 27, 2020

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2005-128

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on May 18, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 27, 2020 Samples Submitted: May 18, 2020 Laboratory Reference: 2005-128 Project: 188-002

Case Narrative

Samples were collected on May 15, 2020 and received by the laboratory on May 18, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

onito. ing/2 (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-11-051520					
Laboratory ID:	05-128-01					
Diesel Range Organics	1.1	0.24	NWTPH-Dx	5-21-20	5-21-20	
Lube Oil Range Organics	1.7	0.24	NWTPH-Dx	5-21-20	5-21-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	SVE-5-051520					
Laboratory ID:	05-128-02					
Diesel Fuel #2	13	0.21	NWTPH-Dx	5-26-20	5-26-20	
Lube Oil Range Organics	2.8	0.21	NWTPH-Dx	5-26-20	5-26-20	N1
Surrogate:	Percent Recovery	Control Limits				

Surrogate:	Percent Recovery	Control Limits
o-Terphenyl	139	50-150

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte		Result		PQL	Me	ethod		Date Prepared	Date Analyz		Flags
METHOD BLANK								•	,		U
Laboratory ID:		MB0521W1									
Diesel Range Organics		ND		0.20	NW	[PH-D>	(5-21-20	5-21-2	20	
Lube Oil Range Organic	s	ND		0.20	NW	[PH-D>	¢	5-21-20	5-21-2	20	
Surrogate:	Pe	rcent Recovery	Со	ntrol Limit	s						
o-Terphenyl		100		50-150							
Laboratory ID:		MB0526W1									
Diesel Range Organics		ND		0.20	NW	[PH-D>	(5-26-20	5-26-2	20	
Lube Oil Range Organic		ND		0.20	NW	[PH-D>	(5-26-20	5-26-2	20	
Surrogate:	Pe	rcent Recovery	Со	ntrol Limit	s						
o-Terphenyl		86		50-150							
					Source	Per	ent	Recovery		RPD	
Analyte	Re	sult	Snik	e Level	Result	Reco		Limits	RPD	Limit	Flags
DUPLICATE	1.00	Suit	opin	0 2010	Rebuit		,,,,,,	Linito		Enne	Tlago
Laboratory ID:	SB05	21W1									
	ORIG	DUP									
	0.508	0.481	NA	NA		N	A	NA	5	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						102	102	50-150			
Laboratory ID:	SB05	26W1									
	ORIG	DUP									
	0.424	0.424	NA	NA		N	A	NA	0	NA	
Lube Oil Range	ND	ND	NA	NA		N		NA	NA	NA	
Surrogate:											
o-Ternhenvl						101	105	50-150			

o-Terphenyl

ALA

101 105 50-150

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received / Van	Relinquished Thyon, Ost	Signature						25VE-5-051520	1 MW-11-051520	Lab ID Sample Identification	Kyour Ostrour		Lake View facility	1.13ert Minute:	Foriert Number		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date			C C	8	S	and tava	Company				0)	1 1100	5/15/20 1003	Date Time Sampled Sampled	(other)]	Standard (7 Days)	2 Days	Same Day	(Check One)	Turnaround Request (in working days)	Cha
te		(int .	200	10 have	your	Da		7				+ +	S N	NWTF	-		ers	3 Days	1 Day			Chain of Custody
			118/20 1415	1822 1415	18/20 1320	5/18/20 0700	Date Time	/	/				×	5	NWTF NWTF Volatil Halog	PH-Gx PH-Dx les 826 enated	OC Volatile	/ SG Cl s 82600))		Laboratory Number:	stody
Chromatograms with final report	Data Package: Standard		- \				Comments/Special Instructions								Semiv (with I PAHs PCBs Organ Organ	volatile: ow-lev 8270D 8082A nochlor	s 8270D el PAHs /SIM (lo ine Pest	/SIM	081B es 8270			n 05-128	
ort 🗌 Electronic Data Deliverables (EDDs) 🗌	Level III Level IV						8								Total I	MTCA Metals (oil and		1664A					Page of

October 8, 2020

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2009-314

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on September 29, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 8, 2020 Samples Submitted: September 29, 2020 Laboratory Reference: 2009-314 Project: 188-002

Case Narrative

Samples were collected on September 29, 2020 and received by the laboratory on September 29, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13-092920					
Laboratory ID:	09-314-01					
Diesel Range Organics	0.50	0.13	NWTPH-Dx	9-30-20	9-30-20	
Lube Oil Range Organics	1.3	0.21	NWTPH-Dx	9-30-20	9-30-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	SVE-5-092920					
Laboratory ID:	09-314-02					
Diesel Range Organics	1.3	0.14	NWTPH-Dx	9-30-20	9-30-20	
Lube Oil Range Organics	1.8	0.22	NWTPH-Dx	9-30-20	9-30-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	MW-16R-092920					
Laboratory ID:	09-314-03					
Diesel Range Organics	0.40	0.13	NWTPH-Dx	9-30-20	9-30-20	
Lube Oil Range Organics	1.3	0.21	NWTPH-Dx	9-30-20	9-30-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	MW-9R-092920					
Laboratory ID:	09-314-04					
Diesel Range Organics	0.63	0.13	NWTPH-Dx	9-30-20	9-30-20	
Lube Oil Range Organics	1.7	0.21	NWTPH-Dx	9-30-20	9-30-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

c <i>i</i>				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	9-30-20	9-30-20	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	9-30-20	9-30-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	SB09	30W1								
	ORIG	DUP								
Diesel Fuel #2	0.589	0.524	NA	NA		NA	NA	12	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						128 114	50-150			

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9B-092920					
Laboratory ID:	09-314-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Chloromethane	ND	1.0	EPA 8260D	9-30-20	9-30-20	
Vinyl Chloride	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Bromomethane	ND	0.48	EPA 8260D	9-30-20	9-30-20	
Chloroethane	ND	1.0	EPA 8260D	9-30-20	9-30-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
lodomethane	ND	3.1	EPA 8260D	9-30-20	9-30-20	
Methylene Chloride	ND	1.0	EPA 8260D	9-30-20	9-30-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
(cis) 1,2-Dichloroethene	0.49	0.20	EPA 8260D	9-30-20	9-30-20	
Bromochloromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Chloroform	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Trichloroethene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Dibromomethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Bromodichloromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	9-30-20	9-30-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-30-20	9-30-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9B-092920					
Laboratory ID:	09-314-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Tetrachloroethene	1.3	0.20	EPA 8260D	9-30-20	9-30-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Dibromochloromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Chlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Bromoform	ND	1.0	EPA 8260D	9-30-20	9-30-20	
Bromobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-30-20	9-30-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	9-30-20	9-30-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	99	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

6

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Chloromethane	ND	1.0	EPA 8260D	9-30-20	9-30-20	
Vinyl Chloride	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Bromomethane	ND	0.48	EPA 8260D	9-30-20	9-30-20	
Chloroethane	ND	1.0	EPA 8260D	9-30-20	9-30-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Iodomethane	ND	3.1	EPA 8260D	9-30-20	9-30-20	
Methylene Chloride	ND	1.0	EPA 8260D	9-30-20	9-30-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Bromochloromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Chloroform	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Trichloroethene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Dibromomethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Bromodichloromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	9-30-20	9-30-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
-						

7

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Tetrachloroethene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Dibromochloromethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Chlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Bromoform	ND	1.0	EPA 8260D	9-30-20	9-30-20	
Bromobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-30-20	9-30-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-30-20	9-30-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	9-30-20	9-30-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	9-30-20	9-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	102	78-125				

8

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB093	30W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.7	9.99	10.0	10.0	107	100	65-126	7	19	
Benzene	10.6	10.3	10.0	10.0	106	103	71-119	3	16	
Trichloroethene	10.4	10.2	10.0	10.0	104	102	82-123	2	18	
Toluene	10.1	9.79	10.0	10.0	101	98	77-119	3	18	
Chlorobenzene	10.1	9.94	10.0	10.0	101	99	80-120	2	17	
Surrogate:										
Dibromofluoromethane					108	104	75-127			
Toluene-d8					107	104	80-127			
4-Bromofluorobenzene					105	102	78-125			

TOTAL METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9R-092920					
Laboratory ID:	09-314-04					
Arsenic	ND	3.3	EPA 200.8	10-1-20	10-1-20	
Lead	ND	1.1	EPA 200.8	10-1-20	10-1-20	

Client ID:	MW-9B-092920					
Laboratory ID:	09-314-05					
Arsenic	12	3.3	EPA 200.8	10-1-20	10-2-20	
Lead	ND	1.1	EPA 200.8	10-1-20	10-2-20	

TOTAL METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL Method		Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001WM2					
Arsenic	ND	3.3	EPA 200.8	10-1-20	10-1-20	
Lead	ND	1.1	EPA 200.8	10-1-20	10-1-20	

					Source	Pe	rcent	Recovery			
Analyte	Res	sult	Spike	Level	Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-25	52-08									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		NA		NA NA		20	
Lead	1.13	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	09-25	52-08									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	121	125	111	111	ND	109	112	75-125	3	20	
Lead	116	119	111	111	1.13	104 106		75-125	2	20	

DISSOLVED METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

• • ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9R-092920					
Laboratory ID:	09-314-04					
Arsenic	ND	3.0	EPA 200.8	9-30-20	10-1-20	
Lead	ND	1.0	EPA 200.8	9-30-20	10-1-20	

Chefit ID.	IVI VV-9D-092920					
Laboratory ID:	09-314-05					
Arsenic	6.0	3.0	EPA 200.8	9-30-20	10-1-20	
Lead	ND	1.0	EPA 200.8	9-30-20	10-1-20	

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
METHOD BLANK							
Laboratory ID:	MB0930F1						
Arsenic	ND	3.0	EPA 200.8	9-30-20	10-1-20		
Lead	ND	1.0	EPA 200.8	9-30-20	10-1-20		

					Source	Pe	rcent	Recovery				
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags	
DUPLICATE												
Laboratory ID:	09-31	14-04										
	ORIG	DUP										
Arsenic	ND	ND	NA	NA		NA		NA	NA	20		
Lead	ND	ND	NA	NA		1	NA	NA	NA	20		
MATRIX SPIKES												
Laboratory ID:	09-31	14-04										
	MS	MSD	MS	MSD		MS	MSD					
Arsenic	85.2	82.6	80.0	80.0	ND	107	103	75-125	3	20		
Lead	70.2	71.0	80.0	80.0	ND	88 89		75-125	1	20		

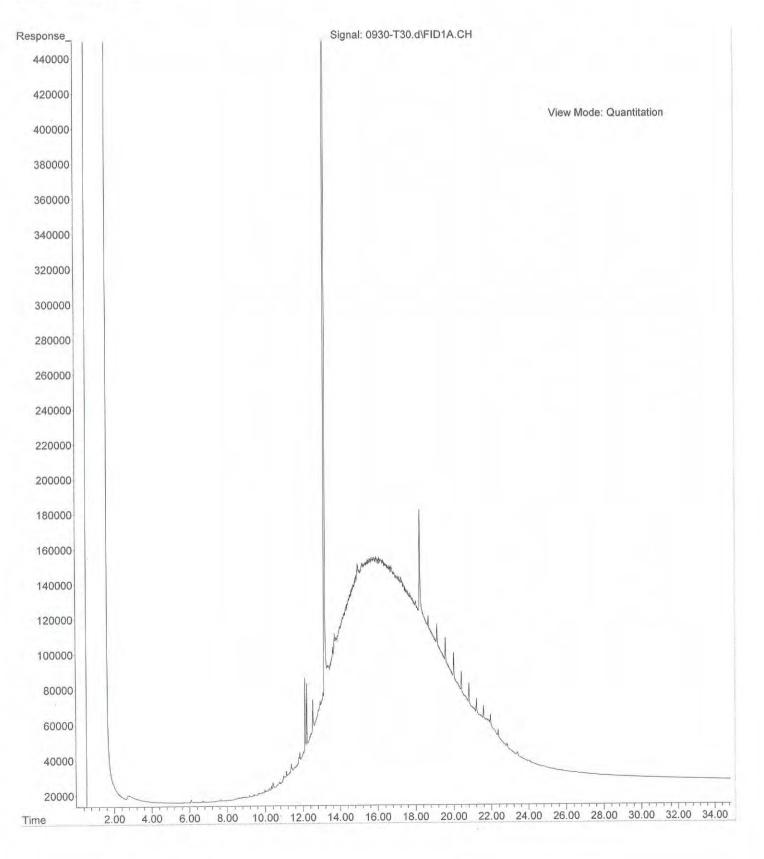
рН SM 4500-Н В

Matrix: Water Units: pH (@ 25°C)

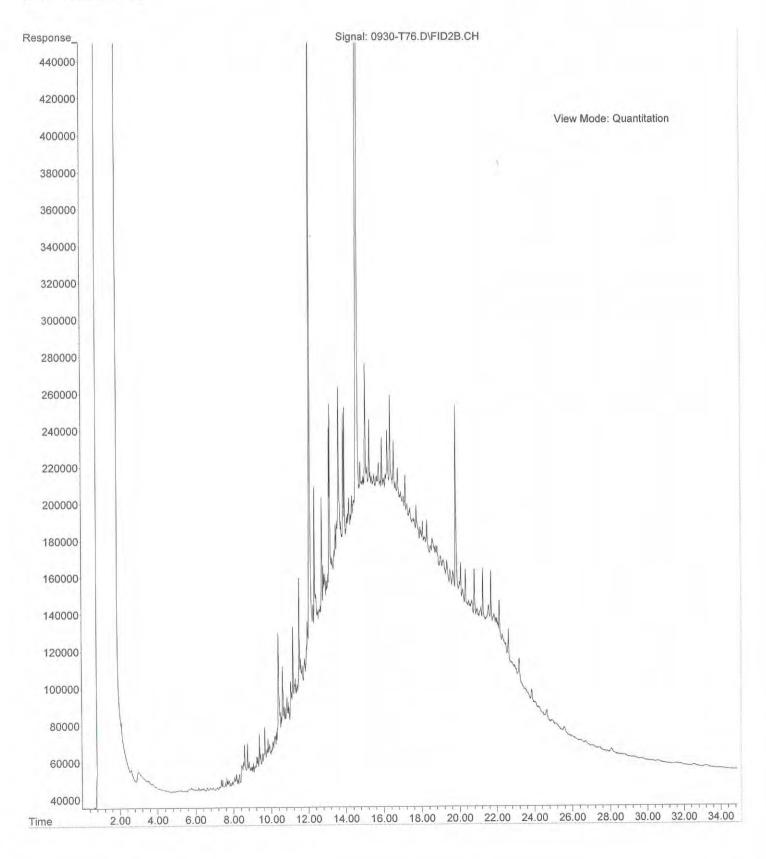
			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	MW-9R-092920				
Laboratory ID:	09-314-04				
рН	6.5	SM 4500-H B	9-30-20	9-30-20	
Client ID:	MW-9B-092920				
Laboratory ID:	09-314-05				
рН	11.9	SM 4500-H B	9-30-20	9-30-20	

Data Qualifiers and Abbreviations

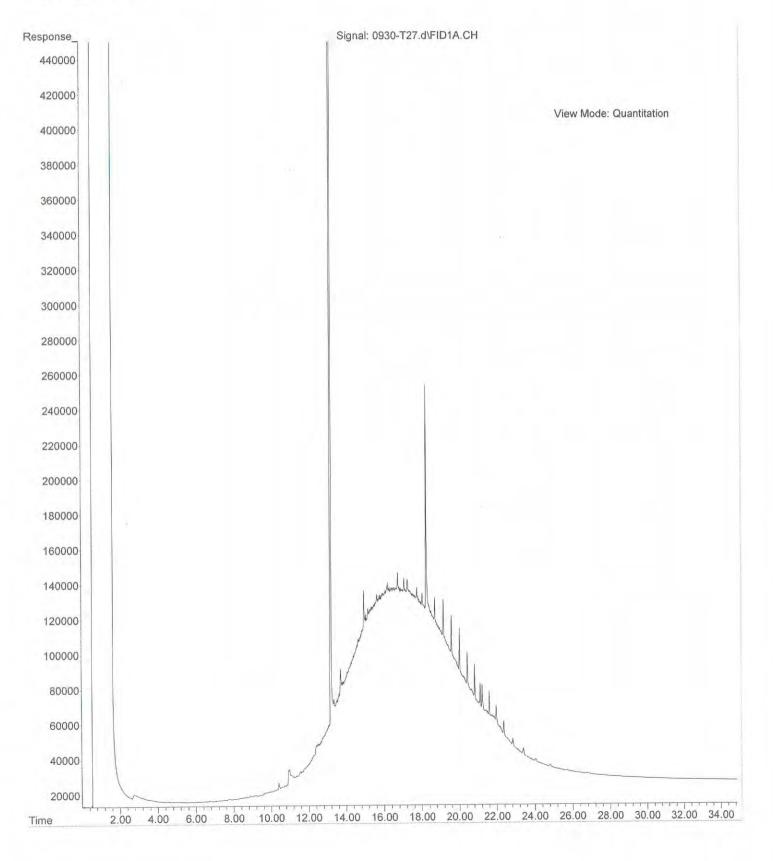
- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

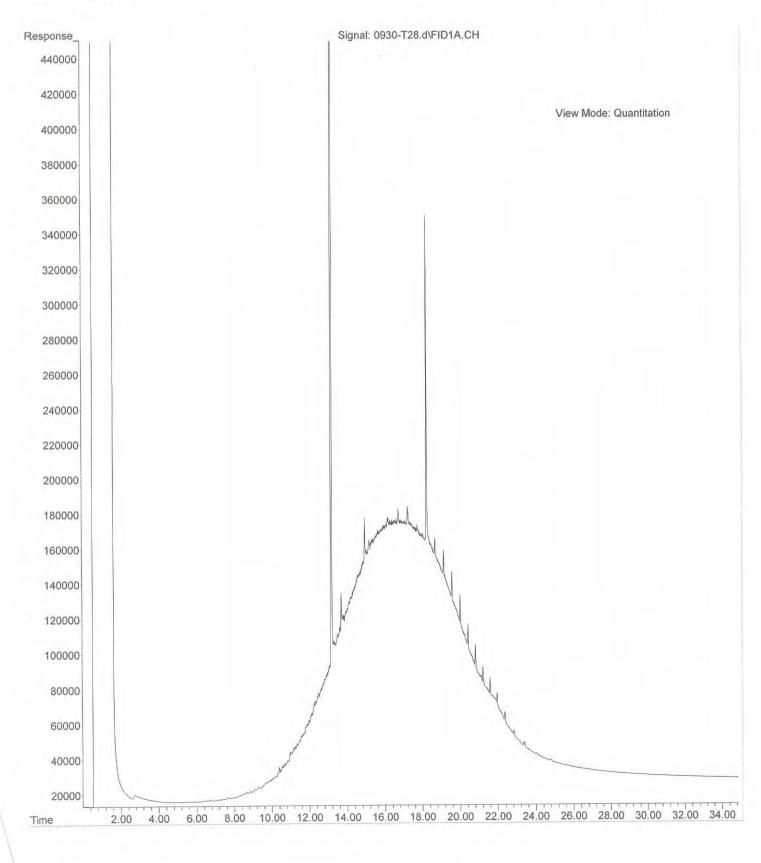

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		2 MM-918-092920	4 MW-9R-092920	3 MW-16R-092920	2 SVE-5-092920	1 MW-13-092920	Lab 10 Sample Identification	USA Thompson	bran Jurista	Lakeview Facility	188-002	Favallon Consulting		Analytical Laboratory Testing Services	Environmental Inc
Reviewed/Date					J CORE	Favallon	Company		q/2q/20 1635 W	9/29/20 1330 W.	9/29/201245 W	9/29/20/1105 W	9/29/200930 W	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Turnaround Request	Chain o
					9/28/2018	9/29/20 1830	Date Time		o X	জ X	2 ×	2 X	2 X	NWTF NWTF NWTF NWTF	PH-HCII PH-Gx/F PH-Gx PH-Dx (les 8260	3TEX	/ SG CI)			of Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard 🗌 Level III 🗌 Level IV 🗌				20	1 ab filter	Comments/Special Instructions							Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I TCLP	volatiles ow-leve 8270D/ 8082A ochlori ophosp nated A RCRA M MTCA M Metals (oil and	8270D al PAHs (SIM (lo ne Pest bhorus I Acid He Acid He Acid He Acid He Metals		081B es 827(8151A		U9-314	000	Page of


File :X:\DIESELS\TERI\DATA\T200930\0930-T30.d
Operator : JT
Acquired : 01 Oct 2020 4:18 using AcqMethod T200106F.M
Instrument : Teri
Sample Name: 09-314-01
Misc Info :
Vial Number: 30


File :X:\DIESELS\TERI\DATA\T200930.SEC\0930-T76.D Operator : JT Acquired : 01 Oct 2020 1:28 using AcqMethod T200106F.M Instrument : Teri Sample Name: 09-314-02 Misc Info : Vial Number: 76

File :X:\DIESELS\TERI\DATA\T200930\0930-T27.d Operator : JT Acquired : 01 Oct 2020 2:10 using AcqMethod T200106F.M Instrument : Teri Sample Name: 09-314-03 Misc Info : Vial Number: 27

File :X:\DIESELS\TERI\DATA\T200930\0930-T28.d Operator : JT Acquired : 01 Oct 2020 2:53 using AcqMethod T200106F.M Instrument : Teri Sample Name: 09-314-04 Misc Info : Vial Number: 28

October 8, 2020

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2009-333

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on September 30, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 8, 2020 Samples Submitted: September 30, 2020 Laboratory Reference: 2009-333 Project: 188-002

Case Narrative

Samples were collected on September 30, 2020 and received by the laboratory on September 30, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-6-093020					
Laboratory ID:	09-333-01					
Diesel Range Organics	1.7	0.22	NWTPH-Dx	10-1-20	10-2-20	
Lube Oil Range Organics	2.3	0.22	NWTPH-Dx	10-1-20	10-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
nalyte	Result	PQL	Method	Prepared	Analyzed	Flags
ETHOD BLANK						
boratory ID:	MB1001W1					
esel Range Organics	ND	0.20	NWTPH-Dx	10-1-20	10-2-20	
be Oil Range Organics	ND	0.20	NWTPH-Dx	10-1-20	10-2-20	
urrogate:	Percent Recovery	Control Limits				
Terphenyl	102	50-150				
Terphenyl	102	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB10	01W1									
	ORIG	DUP									
Diesel Fuel #2	0.455	0.443	NA	NA		N/	A	NA	3	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						88	85	50-150			

VOLATILE ORGANICS EPA 8260D page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-20-093020					
Laboratory ID:	09-333-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chloromethane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Vinyl Chloride	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromomethane	ND	0.29	EPA 8260D	10-1-20	10-1-20	
Chloroethane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
lodomethane	ND	2.1	EPA 8260D	10-1-20	10-1-20	
Methylene Chloride	ND	1.0	EPA 8260D	10-1-20	10-1-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromochloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chloroform	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,1-Trichloroethane	1.9	0.20	EPA 8260D	10-1-20	10-1-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Trichloroethene	17	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Dibromomethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromodichloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	10-1-20	10-1-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-20-093020					
Laboratory ID:	09-333-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Tetrachloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Dibromochloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromoform	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Bromobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-1-20	10-1-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	101	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-12-093020					
Laboratory ID:	09-333-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chloromethane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Vinyl Chloride	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromomethane	ND	0.29	EPA 8260D	10-1-20	10-1-20	
Chloroethane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloroethene	15	0.20	EPA 8260D	10-1-20	10-1-20	
lodomethane	ND	2.1	EPA 8260D	10-1-20	10-1-20	
Methylene Chloride	ND	1.0	EPA 8260D	10-1-20	10-1-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloroethane	2.9	0.20	EPA 8260D	10-1-20	10-1-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromochloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chloroform	0.30	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,1-Trichloroethane	18	0.20	EPA 8260D	10-1-20	10-1-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Trichloroethene	12	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Dibromomethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromodichloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	10-1-20	10-1-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-12-093020					
Laboratory ID:	09-333-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Tetrachloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Dibromochloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromoform	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Bromobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-1-20	10-1-20	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	100	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chloromethane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Vinyl Chloride	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromomethane	ND	0.29	EPA 8260D	10-1-20	10-1-20	
Chloroethane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Iodomethane	ND	2.1	EPA 8260D	10-1-20	10-1-20	
Methylene Chloride	ND	1.0	EPA 8260D	10-1-20	10-1-20	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromochloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chloroform	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Trichloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Dibromomethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromodichloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	10-1-20	10-1-20	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-1-20	10-1-20	

9

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

Analyte Result PQL Method Prepared Analyzed Flags METHOD BLANK Laboratory ID: MB1001W1 1.1.2. 1.0.1-20 10.1-20 <					Date	Date	
Laboratory ID: MB1001W1 1,1,2-Trichloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Tetrachloroethene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromoethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromoethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Bromoform ND 1.0 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichl	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Tetrachloroethene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromoethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromoethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Zibromoethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Bromobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloroppane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D	METHOD BLANK						
Tetrachloroethane ND 0.20 EPA 8260D 10.1-20 10.1-20 1,3-Dichloropropane ND 0.20 EPA 8260D 10.1-20 10.1-20 Dibromochloromethane ND 0.20 EPA 8260D 10.1-20 10.1-20 1,2-Dibromoethane ND 0.20 EPA 8260D 10.1-20 10.1-20 1,2-Dibromoethane ND 0.20 EPA 8260D 10.1-20 10.1-20 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10.1-20 10.1-20 Bromoform ND 1.0 EPA 8260D 10.1-20 10.1-20 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10.1-20 10.1-20 Bromobenzene ND 0.20 EPA 8260D 10.1-20 10.1-20 1,2,3-Trichloropthane ND 0.20 EPA 8260D 10.1-20 10.1-20 1,2,3-Trichloropthane ND 0.20 EPA 8260D 10.1-20 10.1-20 1,2,3-Trichloropthane ND 0.20 EPA 8260D 1	Laboratory ID:	MB1001W1					
1,3-Dichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 Dibromochloromethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromoethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Chlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Bromoform ND 1.0 EPA 8260D 10-1-20 10-1-20 Bromobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20	1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Dibromochloromethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromoethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Chlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Bromoform ND 1.0 EPA 8260D 10-1-20 10-1-20 Bromobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 J.1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloroptopane ND 0.20 EPA 8260D 10-1-20 10-1-20 2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-2	Tetrachloroethene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dibromoethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Chlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Bromoform ND 1.0 EPA 8260D 10-1-20 10-1-20 Bromobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloroptopane ND 0.20 EPA 8260D 10-1-20 10-1-20 2,3-Trichloroptopane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloroptopane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 1.0 </td <td>1,3-Dichloropropane</td> <td>ND</td> <td>0.20</td> <td>EPA 8260D</td> <td>10-1-20</td> <td>10-1-20</td> <td></td>	1,3-Dichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Chlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Bromoform ND 1.0 EPA 8260D 10-1-20 10-1-20 Bromobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 4-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 10	Dibromochloromethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 Bromoform ND 1.0 EPA 8260D 10-1-20 10-1-20 Bromobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 4-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Diblorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Diblorobenzene ND 0.20 EPA 8260D 10-1-	1,2-Dibromoethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromoform ND 1.0 EPA 8260D 10-1-20 10-1-20 Bromobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 4-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-A-Trichlorobenzene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D	Chlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Bromobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 4-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260	1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 4-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND<	Bromoform	ND	1.0	EPA 8260D	10-1-20	10-1-20	
1,2,3-Trichloropropane ND 0.20 EPA 8260D 10-1-20 10-1-20 2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 4-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery	Bromobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
2-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 4-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Hexachlorobutadiene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery Control Limits <	1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
4-Chlorotoluene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery Control Limits In-1-20 In-1-20 In-1-20 Dibromofluoromethane	1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,3-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 107 75-127 Toluene-d8 103 80-127 103 80-127 103	2-Chlorotoluene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,4-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 107 75-127 Toluene-d8 103 80-127 10-3 80-127 10-3	4-Chlorotoluene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Hexachlorobutadiene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 107 75-127 Toluene-d8 103 80-127 103 80-127	1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Hexachlorobutadiene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 107 75-127 Toluene-d8 103 80-127 103 80-127	1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Hexachlorobutadiene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery Control Limits 107 75-127 103 80-127	1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Hexachlorobutadiene ND 1.0 EPA 8260D 10-1-20 10-1-20 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 10-1-20 10-1-20 Surrogate: Percent Recovery Control Limits 107 75-127 103 80-127	1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	10-1-20	10-1-20	
1,2,3-TrichlorobenzeneND0.20EPA 8260D10-1-2010-1-20Surrogate:Percent RecoveryControl LimitsDibromofluoromethane10775-127Toluene-d810380-127	1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Surrogate:Percent RecoveryControl LimitsDibromofluoromethane10775-127Toluene-d810380-127	Hexachlorobutadiene	ND	1.0	EPA 8260D	10-1-20	10-1-20	
Dibromofluoromethane 107 75-127 Toluene-d8 103 80-127	1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-1-20	10-1-20	
Toluene-d8 103 80-127	Surrogate:	Percent Recovery	Control Limits				
	Dibromofluoromethane	107	75-127				
4-Bromofluorobenzene 102 78-125	Toluene-d8	103	80-127				
	4-Bromofluorobenzene	102	78-125				

10

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-32	21-03									
	MS	MSD	MS	MSD		MS	MSD				
1,1-Dichloroethene	10.4	10.5	10.0	10.0	ND	104	105	68-122	1	15	
Benzene	10.3	10.5	10.0	10.0	ND	103	105	70-121	2	16	
Trichloroethene	10.2	10.4	10.0	10.0	ND	102	104	80-121	2	17	
Toluene	9.76	9.85	10.0	10.0	ND	98	99	78-117	1	19	
Chlorobenzene	9.77	9.84	10.0	10.0	ND	98	98	80-120	1	16	
Surrogate:											
Dibromofluoromethane						106	107	75-127			
Toluene-d8						106	106	80-127			
4-Bromofluorobenzene						103	105	78-125			

TOTAL METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-31-093020					
Laboratory ID:	09-333-02					
Arsenic	30	3.3	EPA 200.8	10-1-20	10-1-20	
Lead	14	1.1	EPA 200.8	10-1-20	10-1-20	
Client ID:	MW-35-093020					
Laborater / ID:	00 000 00					

Laboratory ID:	09-333-03					
Arsenic	11	3.3	EPA 200.8	10-1-20	10-1-20	
Lead	ND	1.1	EPA 200.8	10-1-20	10-1-20	

TOTAL METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001WM2					
Arsenic	ND	3.3	EPA 200.8	10-1-20	10-1-20	
Lead	ND	1.1	EPA 200.8	10-1-20	10-1-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-25	52-08									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	1.13	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	09-25	52-08									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	121	125	111	111	ND	109	112	75-125	3	20	
Lead	116	119	111	111	1.13	104	106	75-125	2	20	

ND

DISSOLVED METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

Lead

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-31-093020					
Laboratory ID:	09-333-02					
Arsenic	27	3.0	EPA 200.8	9-30-20	10-1-20	
Lead	9.5	1.0	EPA 200.8	9-30-20	10-1-20	
Client ID:	MW-35-093020					
Laboratory ID:	09-333-03					
Arsenic	9.7	3.0	EPA 200.8	9-30-20	10-1-20	

EPA 200.8

1.0

9-30-20

10-1-20

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930F1					
Arsenic	ND	3.0	EPA 200.8	9-30-20	10-1-20	
Lead	ND	1.0	EPA 200.8	9-30-20	10-1-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-31	4-04									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	09-31	4-04									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	85.2	82.6	80.0	80.0	ND	107	103	75-125	3	20	
Lead	70.2	71.0	80.0	80.0	ND	88	89	75-125	1	20	

рН SM 4500-Н В

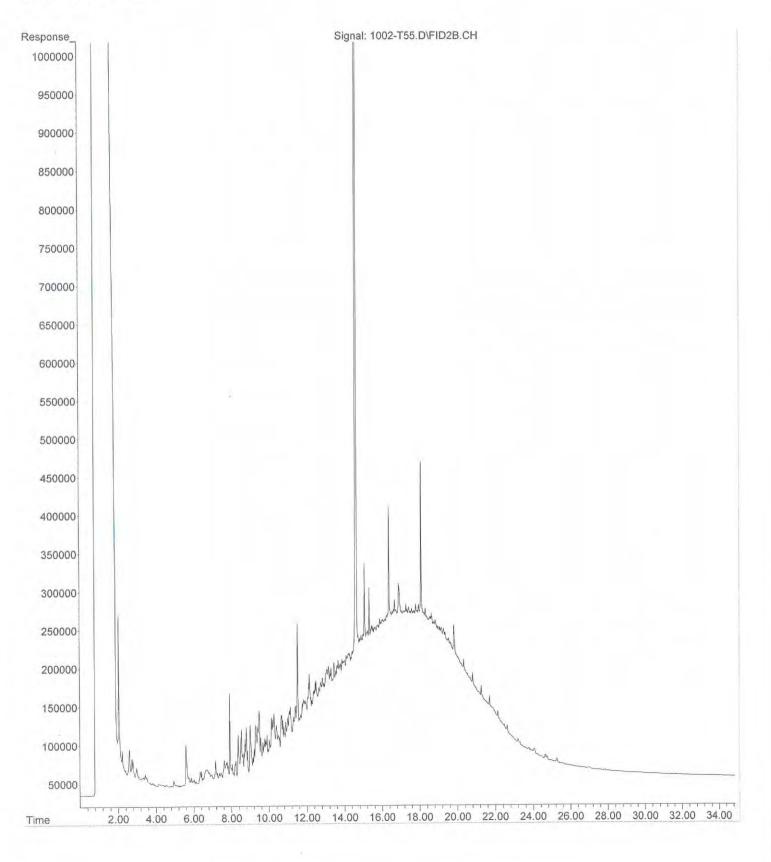
Matrix: Water Units: pH (@ 25°C)

			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	MW-31-093020				
Laboratory ID:	09-333-02				
рН	11.5	SM 4500-H B	10-1-20	10-1-20	
Client ID:	MW-35-093020				
Laboratory ID:	09-333-03				
рН	6.4	SM 4500-H B	10-1-20	10-1-20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-


ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		5 SVE-12-093020	4 MW-20 - 093020	3 MW-35-093020	2 MW-31-093020	1 NW-6-093020	Lab ID Sample Identification	LISA THOMPSON	Brani Jurista	Lakeview Facility	188-00Z	Fay all on	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	Environmental Inc.
Reviewed/Date					S (OXE	Favallon	Company		9/30/20 1435 W 3	9/30/20 1403 W 3	9(30/20 1215 W 3	9(30/20 1045 W 3	9/30/20 0850 W 2	Date Time Sampled Matrix	(other)	Contain	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request	Chain of Custody
					9/20/20 1705	50L1 02/05/b	Date Time		×	×			~	NWTF NWTF NWTF NWTF Volati	PH-HCI PH-Gx/ PH-Gx PH-Dx (les 826 enated	D BTEX	/ SG Cl s 82600	0)		Laboratory Number:	Custody
Chromatograms with final report \square Electronic Data Deliverables (EDDs) \square	Data Package: Standard Level III Level IV				P.	Lab Eiltered	Comments/Special Instructions				XX			Semix (with PAHs PCBs Orgar Orgar Chlor Total Total Total Total HEM	volatiles ow-lev 8270D 8082A nochlor ophos inated RCRA I MTCA Metals (oil anc	s 8270D el PAHs /SIM (lo ine Pest phorus I Acid He Metals Metals	/SIM) w-level) icides 8 Pesticid rbicides	081B es 827(r: 09-333	Page _ 1 of _1

File :X:\DIESELS\TERI\DATA\T201002.SEC\1002-T55.D Operator : JT Acquired : 02 Oct 2020 9:25 using AcqMethod T200106F.M Instrument : Teri Sample Name: 09-333-01 Misc Info : Vial Number: 55

January 8, 2021

Brani Jurista Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2012-198

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on December 18, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 8, 2021 Samples Submitted: December 18, 2020 Laboratory Reference: 2012-198 Project: 188-002

Case Narrative

Samples were collected on December 18, 2020 and received by the laboratory on December 18, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9R-121820					
Laboratory ID:	12-198-01					
Benzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Toluene	ND	1.0	EPA 8260D	12-21-20	12-21-20	
Ethylbenzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
m,p-Xylene	ND	0.40	EPA 8260D	12-21-20	12-21-20	
o-Xylene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	102	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13-121820					
Laboratory ID:	12-198-02					
Benzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Toluene	ND	1.0	EPA 8260D	12-21-20	12-21-20	
Ethylbenzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
m,p-Xylene	ND	0.40	EPA 8260D	12-21-20	12-21-20	
o-Xylene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	105	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-5-121820					
Laboratory ID:	12-198-03					
Benzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Toluene	ND	1.0	EPA 8260D	12-21-20	12-21-20	
Ethylbenzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
m,p-Xylene	ND	0.40	EPA 8260D	12-21-20	12-21-20	
o-Xylene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	107	78-125				

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16R-121820					
Laboratory ID:	12-198-04					
Benzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Toluene	ND	1.0	EPA 8260D	12-21-20	12-21-20	
Ethylbenzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
m,p-Xylene	ND	0.40	EPA 8260D	12-21-20	12-21-20	
o-Xylene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	103	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1221W1					
Benzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Toluene	ND	1.0	EPA 8260D	12-21-20	12-21-20	
Ethylbenzene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
m,p-Xylene	ND	0.40	EPA 8260D	12-21-20	12-21-20	
o-Xylene	ND	0.20	EPA 8260D	12-21-20	12-21-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	102	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB122	21W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.1	10.4	10.0	10.0	101	104	65-126	3	19	
Benzene	10.5	10.5	10.0	10.0	105	105	71-119	0	16	
Trichloroethene	10.8	10.8	10.0	10.0	108	108	82-123	0	18	
Toluene	10.7	10.8	10.0	10.0	107	108	77-119	1	18	
Chlorobenzene	9.74	9.85	10.0	10.0	97	99	80-120	1	17	
Surrogate:										
Dibromofluoromethane					104	103	75-127			
Toluene-d8					107	104	80-127			
4-Bromofluorobenzene					109	104	78-125			

8

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9R-121820					
Laboratory ID:	12-198-01					
Diesel Range Organics	0.54	0.21	NWTPH-Dx	12-21-20	12-22-20	
Lube Oil Range Organics	1.6	0.21	NWTPH-Dx	12-21-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	MW-13-121820					
Laboratory ID:	12-198-02					
	0.31	0.20	NWTPH-Dx	12-21-20	12-22-20	
Diesel Range Organics	0.65	0.20	NWTPH-DX NWTPH-Dx	12-21-20	12-22-20	
Lube Oil Range Organics			NVVIPH-DX	12-21-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	SVE-5-121820					
Laboratory ID:	12-198-03					
Diesel Range Organics	1.4	0.20	NWTPH-Dx	12-21-20	12-22-20	
Lube Oil Range Organics	1.1	0.20	NWTPH-Dx	12-21-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	MW-16R-121820					
Laboratory ID:	12-198-04					
Diesel Range Organics	0.31	0.21	NWTPH-Dx	12-21-20	12-22-20	
Lube Oil Range Organics	0.63	0.21	NWTPH-Dx	12-21-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

Date of Report: January 8, 2021 Samples Submitted: December 18, 2020 Laboratory Reference: 2012-198 Project: 188-002

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Result	DOL				
Recart	PQL	Method	Prepared	Analyzed	Flags
MB1221W1					
ND	0.20	NWTPH-Dx	12-21-20	12-21-20	
ND	0.20	NWTPH-Dx	12-21-20	12-21-20	
Percent Recovery	Control Limits				
97	50-150				
	ND ND Percent Recovery	ND0.20ND0.20Percent RecoveryControl Limits	ND0.20NWTPH-DxND0.20NWTPH-DxPercent RecoveryControl Limits	ND 0.20 NWTPH-Dx 12-21-20 ND 0.20 NWTPH-Dx 12-21-20 Percent Recovery Control Limits 12-21-20	ND 0.20 NWTPH-Dx 12-21-20 12-21-20 ND 0.20 NWTPH-Dx 12-21-20 12-21-20 Percent Recovery Control Limits 12-21-20 12-21-20

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB12	21W1								
	ORIG	DUP								
Diesel Fuel #2	0.474	0.465	NA	NA		NA	NA	2	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						100 102	50-150			

Matrix: Water Units: ug/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-9R-121820					
12-198-01					
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Percent Recovery	Control Limits				
70	20 - 106				
91	26 - 104				
109	44 - 127				
	MW-9R-121820 12-198-01 ND ND ND ND ND ND ND ND ND ND ND ND ND	MW-9R-121820 12-198-01 ND 0.095 ND 0.0095 ND 0.0095	MW-9R-121820 12-198-01 ND 0.095 EPA 8270E/SIM ND 0.0095 EPA 8270E/SIM	Result PQL Method Prepared MW-9R-121820 12-198-01 12-198-01 12-198-01 ND 0.095 EPA 8270E/SIM 12-18-20 ND 0.0095 EPA 8270E/SIM 12-18-20 ND 0.0095 EPA 8270E/SIM 12-18-20 ND 0.0095 EPA 8270E/SIM 12-18-20	ResultPQLMethodPreparedAnalyzedMW-9R-12182012-198-0112-198-01ND0.095EPA 8270E/SIM12-18-2012-22-20ND0.095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18-2012-22-20ND0.0095EPA 8270E/SIM12-18

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13-121820					
Laboratory ID:	12-198-02					
Naphthalene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
2-Methylnaphthalene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
1-Methylnaphthalene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
Acenaphthylene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
Acenaphthene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
Fluorene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
Phenanthrene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
Anthracene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
Fluoranthene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
Pyrene	ND	0.095	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[a]anthracene	ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Chrysene	ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[a]pyrene	ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270E/SIM	12-18-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	20 - 106				
Pyrene-d10	88	26 - 104				
Terphenyl-d14	101	44 - 127				

12

Matrix: Water Units: ug/L

5				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-5-121820					
Laboratory ID:	12-198-03					
Naphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
2-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
1-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Acenaphthylene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Acenaphthene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Fluorene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Phenanthrene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Anthracene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Fluoranthene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Pyrene	ND	0.15	EPA 8270E/SIM	12-18-20	12-22-20	U1
Benzo[a]anthracene	ND	0.014	EPA 8270E/SIM	12-18-20	12-22-20	U1
Chrysene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	20 - 106				
Pyrene-d10	97	26 - 104				
Terphenyl-d14	109	44 - 127				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16R-121820					
Laboratory ID:	12-198-04					
Naphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
2-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
1-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Acenaphthylene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Acenaphthene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Fluorene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Phenanthrene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Anthracene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Fluoranthene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Pyrene	ND	0.10	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Chrysene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270E/SIM	12-18-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	20 - 106				
Pyrene-d10	86	26 - 104				
Terphenyl-d14	100	44 - 127				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1218W1					
Naphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
2-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
1-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
Acenaphthylene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
Acenaphthene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
Fluorene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
Phenanthrene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
Anthracene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
Fluoranthene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
Pyrene	ND	0.10	EPA 8270E/SIM	12-18-20	12-18-20	
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	12-18-20	12-18-20	
Chrysene	ND	0.010	EPA 8270E/SIM	12-18-20	12-18-20	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	12-18-20	12-18-20	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	12-18-20	12-18-20	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	12-18-20	12-18-20	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	12-18-20	12-18-20	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	12-18-20	12-18-20	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270E/SIM	12-18-20	12-18-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	52	20 - 106				
Pyrene-d10	81	26 - 104				
Terphenyl-d14	84	44 - 127				

. . .

15

PAHs EPA 8270E/SIM QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB12	18W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.275	0.245	0.500	0.500	55	49	30 - 98	12	40	
Acenaphthylene	0.335	0.303	0.500	0.500	67	61	39 - 106	10	32	
Acenaphthene	0.319	0.298	0.500	0.500	64	60	36 - 114	7	33	
Fluorene	0.360	0.335	0.500	0.500	72	67	45 - 112	7	30	
Phenanthrene	0.402	0.363	0.500	0.500	80	73	51 - 109	10	24	
Anthracene	0.351	0.333	0.500	0.500	70	67	49 - 109	5	25	
Fluoranthene	0.384	0.372	0.500	0.500	77	74	53 - 115	3	22	
Pyrene	0.405	0.382	0.500	0.500	81	76	49 - 129	6	32	
Benzo[a]anthracene	0.428	0.402	0.500	0.500	86	80	61 - 123	6	24	
Chrysene	0.418	0.393	0.500	0.500	84	79	59 - 114	6	24	
Benzo[b]fluoranthene	0.437	0.411	0.500	0.500	87	82	60 - 125	6	26	
Benzo(j,k)fluoranthene	0.432	0.398	0.500	0.500	86	80	58 - 121	8	22	
Benzo[a]pyrene	0.413	0.387	0.500	0.500	83	77	58 - 118	7	24	
Indeno(1,2,3-c,d)pyrene	0.430	0.410	0.500	0.500	86	82	59 - 124	5	26	
Dibenz[a,h]anthracene	0.437	0.408	0.500	0.500	87	82	59 - 123	7	25	
Benzo[g,h,i]perylene	0.419	0.396	0.500	0.500	84	79	58 - 120	6	25	
Surrogate:										
2-Fluorobiphenyl					52	51	20 - 106			
Pyrene-d10					82	78	26 - 104			
Terphenyl-d14					92	88	44 - 127			

Date of Report: January 8, 2021 Samples Submitted: December 18, 2020 Laboratory Reference: 2012-198 Project: 188-002

VOLATILE PETROLEUM HYDROCARBONS

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9R-121820					
Laboratory ID:	12-198-01					
Aliphatic C5-C6	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C6-C8	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aliphatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Aromatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C12-C13	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aromatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Methyl t-butyl ether	ND	10	EPA 8021B	12-22-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	65-120				

17

VOLATILE PETROLEUM HYDROCARBONS

Matrix: Water Units: ug/L (ppb)

onno. dg/2 (ppo)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13-121820					
Laboratory ID:	12-198-02					
Aliphatic C5-C6	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C6-C8	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aliphatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Aromatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C12-C13	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aromatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Methyl t-butyl ether	ND	10	EPA 8021B	12-22-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	75	65-120				

VOLATILE PETROLEUM HYDROCARBONS

Matrix: Water Units: ug/L (ppb)

omio: 49/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SVE-5-121820					
Laboratory ID:	12-198-03					
Aliphatic C5-C6	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C6-C8	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aliphatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Aromatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C12-C13	170	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aromatic:	170		NWTPH-VPH	12-22-20	12-22-20	
Methyl t-butyl ether	ND	10	EPA 8021B	12-22-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	75	65-120				

VOLATILE PETROLEUM HYDROCARBONS

Matrix: Water Units: ug/L (ppb)

ormo: dg/2 (pp0)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16R-121820					
Laboratory ID:	12-198-04					
Aliphatic C5-C6	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C6-C8	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aliphatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Aromatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C12-C13	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aromatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Methyl t-butyl ether	ND	10	EPA 8021B	12-22-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	65-120				

Date of Report: January 8, 2021 Samples Submitted: December 18, 2020 Laboratory Reference: 2012-198 Project: 188-002

VOLATILE PETROLEUM HYDROCARBONS QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

onno. dg/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1222W1					
Aliphatic C5-C6	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C6-C8	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aliphatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aliphatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Aromatic C8-C10	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C10-C12	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Aromatic C12-C13	ND	50	NWTPH-VPH	12-22-20	12-22-20	
Total Aromatic:	NA		NWTPH-VPH	12-22-20	12-22-20	
Methyl t-butyl ether	ND	1.0	EPA 8021B	12-22-20	12-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	65-120				

VOLATILE PETROLEUM HYDROCARBONS QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	11-19	98-01								
	ORIG	DUP								
Aliphatic C5-C6	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C6-C8	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C8-C10	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C10-C12	ND	ND	NA	NA		NA	NA	NA	30	
Total Aliphatic:	NA	NA	NA	NA		NA	NA	NA	30	
Aromatic C8-C10	ND	ND	NA	NA		NA	NA	NA	30	
Aromatic C10-C12	ND	ND	NA	NA		NA	NA	NA	30	
Aromatic C12-C13	ND	ND	NA	NA		NA	NA	NA	30	
Total Aromatic:	NA	NA	NA	NA		NA	NA	NA	30	
MTBE	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										

Fluorobenzene

80 76 65-120

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

January 7, 2021

Mr. David Baumeister OnSite Environmental, Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

On December 21st, 4 samples were received by our laboratory and assigned our laboratory project number EV20120153. The project was identified as your Lab Ref #12-198 / Proj #188-002. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Aler, Perry

Glen Perry Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	OnSite Environme 14648 NE 95th Sti Redmond, WA 98 David Baumeister Lab Ref #12-198 / MW-9R-121820	reet 052	COL	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE: CCREDITATION:	1/7/202 ⁻ EV2012 EV2012 12/21/20 12/18/20 C601	0153 0153-01	AM
	10100-911-121020	SAMPLE	DATA RESULTS	SCILDITATION.	0001		
ANALYTE	METHOD	RESULTS	REPORTING	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C21-C34 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
C25	NWEPH	101				01/05/2021	JNF
p-Terphenyl	NWEPH	58.3				01/05/2021	JNF

U - Analyte analyzed for but not detected at level above reporting limit.

Page 2
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	OnSite Environme 14648 NE 95th Sti Redmond, WA 98	reet		DATE: ALS JOB#: ALS SAMPLE#:	1/7/202 ⁷ EV2012 EV2012	-	
CLIENT CONTACT:	David Baumeister		D	ATE RECEIVED:	12/21/20)20	
CLIENT PROJECT:	Lab Ref #12-198 /	Proj #188-002	COL	LECTION DATE:	12/18/20	020 11:18:00) AM
CLIENT SAMPLE ID	MW-13-121820		WDOE AG	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C21-C34 Aliphatics	NWEPH	72	50	1	UG/L	01/05/2021	JNF
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C21-C34 Aromatics	NWEPH	150	50	1	UG/L	01/05/2021	JNF
SURROGATE	METHOD	%REC				ANALYSIS / DATE	ANALYSIS BY
C25	NWEPH	87.7				01/05/2021	JNF
p-Terphenyl	NWEPH	82.1				01/05/2021	JNF

U - Analyte analyzed for but not detected at level above reporting limit.

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	OnSite Environme 14648 NE 95th Sti Redmond, WA 98	reet		DATE: ALS JOB#: ALS SAMPLE#:	1/7/202 ² EV2012 EV2012		
CLIENT CONTACT:	David Baumeister		D	ATE RECEIVED:	12/21/20)20	
CLIENT PROJECT:	Lab Ref #12-198 /	Proj #188-002	COL	LECTION DATE:	12/18/20	020 12:14:00) PM
CLIENT SAMPLE ID	SVE-5-121820		WDOE A	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C10-C12 Aliphatics	NWEPH	85	50	1	UG/L	01/05/2021	JNF
>C12-C16 Aliphatics	NWEPH	420	50	1	UG/L	01/05/2021	JNF
>C16-C21 Aliphatics	NWEPH	470	50	1	UG/L	01/05/2021	JNF
>C21-C34 Aliphatics	NWEPH	340	50	1	UG/L	01/05/2021	JNF
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C12-C16 Aromatics	NWEPH	110	50	1	UG/L	01/05/2021	JNF
>C16-C21 Aromatics	NWEPH	290	50	1	UG/L	01/05/2021	JNF
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
SURROGATE	METHOD	%REC				ANALYSIS / DATE	ANALYSIS BY
C25	NWEPH	104				01/05/2021	JNF
p-Terphenyl	NWEPH	83.1				01/05/2021	JNF

U - Analyte analyzed for but not detected at level above reporting limit.

Page 4
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	OnSite Environme 14648 NE 95th Sti Redmond, WA 98	reet		DATE: ALS JOB#: ALS SAMPLE#:	1/7/202 ⁷ EV2012 EV2012	0153	
CLIENT CONTACT:	David Baumeister		D	ATE RECEIVED:	12/21/20		
CLIENT PROJECT:	Lab Ref #12-198 /	Proj #188-002		LECTION DATE:	12/18/20	020 10:16:00	D AM
CLIENT SAMPLE ID	MW-16R-121820		WDOE A	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C21-C34 Aliphatics	NWEPH	62	50	1	UG/L	01/05/2021	JNF
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	01/05/2021	JNF
>C21-C34 Aromatics	NWEPH	56	50	1	UG/L	01/05/2021	JNF
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
C25	NWEPH	105				01/05/2021	JNF
p-Terphenyl	NWEPH	89.1				01/05/2021	JNF

U - Analyte analyzed for but not detected at level above reporting limit.

Page 5
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT:OnSite Environmental, Inc.DATE:1/7/202114648 NE 95th StreetALS SDG#:EV20120153Redmond, WA 98052WDOE ACCREDITATION:C601CLIENT CONTACT:David BaumeisterCLIENT PROJECT:Lab Ref #12-198 / Proj #188-002

LABORATORY BLANK RESULTS

MB-123120W - Batch R376034 - Water by NWEPH

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
>C8-C10 Aromatics	NWEPH	U	UG/L	50	01/05/2021	JNF
>C10-C12 Aromatics	NWEPH	U	UG/L	50	01/05/2021	JNF
>C12-C16 Aromatics	NWEPH	U	UG/L	50	01/05/2021	JNF
>C16-C21 Aromatics	NWEPH	U	UG/L	50	01/05/2021	JNF
>C21-C34 Aromatics	NWEPH	U	UG/L	50	01/05/2021	JNF

U - Analyte analyzed for but not detected at level above reporting limit.

MB-123120W - Batch R376036 - Water by NWEPH

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
>C8-C10 Aliphatics	NWEPH	U	UG/L	50	01/05/2021	JNF
>C10-C12 Aliphatics	NWEPH	U	UG/L	50	01/05/2021	JNF
>C12-C16 Aliphatics	NWEPH	U	UG/L	50	01/05/2021	JNF
>C16-C21 Aliphatics	NWEPH	U	UG/L	50	01/05/2021	JNF
>C21-C34 Aliphatics	NWEPH	U	UG/L	50	01/05/2021	JNF

U - Analyte analyzed for but not detected at level above reporting limit.

Page 6 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT: OnSite Environmental, Inc. 14648 NE 95th Street Redmond, WA 98052 CLIENT CONTACT: David Baumeister CLIENT PROJECT: Lab Ref #12-198 / Proj #188-002

DATE: 1/7/2 ALS SDG#: EV20 WDOE ACCREDITATION: C607

1/7/2021 EV20120153 C601

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R376034 - Water by NWEPH

	· · · · · · · · · · · · · · · · · · ·			LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
>C8-C10 Aromatics - BS	NWEPH	83.5		70	130	01/06/2021	JNF
>C8-C10 Aromatics - BSD	NWEPH	80.7	3	70	130	01/05/2021	JNF
>C10-C12 Aromatics - BS	NWEPH	90.7		70	130	01/06/2021	JNF
>C10-C12 Aromatics - BSD	NWEPH	87.3	4	70	130	01/05/2021	JNF
>C12-C16 Aromatics - BS	NWEPH	90.7		70	130	01/06/2021	JNF
>C12-C16 Aromatics - BSD	NWEPH	88.2	3	70	130	01/05/2021	JNF
>C16-C21 Aromatics - BS	NWEPH	90.4		70	130	01/06/2021	JNF
>C16-C21 Aromatics - BSD	NWEPH	89.6	1	70	130	01/05/2021	JNF
>C21-C34 Aromatics - BS	NWEPH	74.9		70	130	01/06/2021	JNF
>C21-C34 Aromatics - BSD	NWEPH	87.2	15	70	130	01/05/2021	JNF

ALS Test Batch ID: R376036 - Water by NWEPH

					LIN	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
>C8-C10 Aliphatics - BS	NWEPH	42.6		LCS01	70	130	01/05/2021	JNF
>C8-C10 Aliphatics - BSD	NWEPH	49.1	14	LCS01	70	130	01/05/2021	JNF
>C10-C12 Aliphatics - BS	NWEPH	58.9		LCS01	70	130	01/05/2021	JNF
>C10-C12 Aliphatics - BSD	NWEPH	69.0	16	LCS01	70	130	01/05/2021	JNF
>C12-C16 Aliphatics - BS	NWEPH	79.8			70	130	01/05/2021	JNF
>C12-C16 Aliphatics - BSD	NWEPH	91.8	14		70	130	01/05/2021	JNF
>C16-C21 Aliphatics - BS	NWEPH	83.5			70	130	01/05/2021	JNF
>C16-C21 Aliphatics - BSD	NWEPH	95.6	14		70	130	01/05/2021	JNF
>C21-C34 Aliphatics - BS	NWEPH	77.2			70	130	01/05/2021	JNF
>C21-C34 Aliphatics - BSD	NWEPH	89.3	15		70	130	01/05/2021	JNF

LCS01 - The LCS and/or LCSD recovery was below the lower control limit. The sample results may be biased low for this analyte.

APPROVED BY

Aler, Perg

Laboratory Director

Page 7 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

Environmental Inc. 14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881					Laboratory Reference #: 12-198	·#: 12-198
Laboratory: ALS Environmental	Turn	Turnaround Request	quest		Project Manag	Project Manager: David Baumeister
Attention: Rick Bagan 8620 Holly Drive Everett, WA 98208	1 Day	2 Day Standard	3 Day		email: Project Number:	email: dbaumeister@onsite-env.com umber: 188-002
Phone Number: (425)356-2600	Other:				Project Name:	
Lab.ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont	Bay	Requested Analyses
1 MW-9R-121820	12/18/20	9:38	M	2	EPH	
Z MW-13-121820	12/18/20	11:18	N	2	EPH	
3 SVE-5-121820	12/18/20	12:14	M	2	EPH	
년 MW-16R-121820	12/18/20	10:16	M	2	EPH	
Signature	CC	Company		Date		Comments/Special Instructions
Relinquished by: Victur OUR MUN	COSE He A	H		1261	1412	
Relinquished by: Linua and Received by: Churuan Huffmon Received by: Churuan Huffmon	AUS	1 M		17/21	1515	

EV20120153-

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished , Eller Hynge	Signature					4 MW-162-121820	3 SVE-5-121820	2 MW-13-121820	1 MW-912-121820	Lab ID Sample Identification	Sampled by: Elise + Lisa	Project Manager: Brand Junista	LAKEINEW Pacility	188-002	Project Number: Favallon	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	Environmental Inc
Reviewed/Date					1000	Farallon	Company					12/18 10/16 W 12	12/18 1214 W 12	12/18/11/8 W 12	12/18 938 W 12	Date Time Sampled Sampled Matrix :	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request	Chain of
					12/18/2015W	12/18/10 1500	Date Time		CMUD 12			X	X	XX	X	NWTP NWTP NWTP NWTP Volatil	er of Co H-HCID H-GX H-GX H-DX ([es 8260 enated V PA 801	Acid	%2(/ SG CI	ean-up			Laboratory Number:	Chain of Custody
s with final raport	Data Package: Standard 🗌 Level III 🗌 Level IV				SUDAL JUST BTEX	fincludes naphnalenes	Comments/Special Instructions		10/20				X	×		Semiv (with le PAHs I PCBs Organ Organ Chlorin Total F Total N TCLP	olatiles l ow-level 8270D/S	8270D/ I PAHs) SIM (lov e Pesti norus P cid Heri etals etals	SIM v-level) cides 8 vesticide bicides	# 081B es 8270			49-108	Page
	IV 🗆					100		/	ų	- F		XX	XX		X	EF VI % Moi:	PH	1	1.0.00					of

d.

February 17, 2021

Brani Jurista Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2102-135

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on February 12, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 17, 2021 Samples Submitted: February 12, 2021 Laboratory Reference: 2102-135 Project: 188-002

Case Narrative

Samples were collected on February 10, 2021 and received by the laboratory on February 12, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

pH EPA 9045D

Matrix: Soil Units: pH (@ 25°C)

			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D-30.0				
Laboratory ID:	02-135-01				
рН	11.3	EPA 9045D	2-12-21	2-12-21	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	 Relinquished	Received	Relinquished		Project Name: HOB - CO 2 Project Name: MIDD/MIDYHN LOAK Project Manager: Sampled by: Sampled by: Sampl		Env Uns
) N.	GINN SNUT	Signature	101 -boz -boz Sumith Sample Identification -9D - 20.0	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Unsite Environmental Inc.
Review			-	7	50	Company	Same Day Same Day Standard (7 Days) Date Time Sampled Sample	(Check One)	
Reviewed/Date				AA A	vallon		Image: Second	(Check One)	Chain of Custody
			10121	alinta	2/12/21	Date	NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Cx NWTPH-Dx (Laboratory	Justouy
Dat	2		Q Q	1.1	25	Time Co	Volatiles 8260C Halogenated Volatiles 8260C EDB EPA 8011 (Waters Only) Semivolatiles 8270D/SIM (with low-level PAHs)	Number:	
Data Package: Standard L						Comments/Special Instructions	Image: Constraint of the constr	02-	
eve						tructions	Image: Constraint of the sector of the se	135	Page
							HEM (oil and grease) 1664A	-	ie of
							- X % Moisture NU DR	_	

February 25, 2021

Brani Jurista Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2102-197

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on February 19, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 25, 2021 Samples Submitted: February 19, 2021 Laboratory Reference: 2102-197 Project: 188-002

Case Narrative

Samples were collected on February 18, 2021 and received by the laboratory on February 19, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx Analysis

Method 5035A VOA vials were not provided for the samples. The samples were therefore extracted from 4-ounce jars for analysis. Some loss of volatiles may have occurred.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-36-5.0					
02-197-01					
ND	3.2	NWTPH-Gx	2-23-21	2-23-21	
Percent Recovery	Control Limits				
94	58-129				
MW-36-10.0					
02-197-02					
ND	4.3	NWTPH-Gx	2-23-21	2-23-21	
Percent Recovery	Control Limits				
93	58-129				
MW-36-15.0					
02-197-03					
ND	72	NWTPH-Gx	2-23-21	2-23-21	U1
Percent Recovery	Control Limits				
96	58-129				
MW-36-20.0					
02-197-04					
ND	4.8	NWTPH-Gx	2-23-21	2-23-21	
Percent Recovery	Control Limits				
97	58-129				
	MW-36-5.0 02-197-01 ND Percent Recovery 94 MW-36-10.0 02-197-02 ND Percent Recovery 93 MW-36-15.0 02-197-03 ND Percent Recovery 96 MW-36-20.0 02-197-04 ND Percent Recovery	MW-36-5.0 02-197-01 ND 3.2 Percent Recovery Control Limits 94 58-129 MW-36-10.0 02-197-02 ND 4.3 Percent Recovery Control Limits 93 58-129 MW-36-15.0 Control Limits 93 58-129 MW-36-15.0 Control Limits 02-197-03 72 Percent Recovery Control Limits 96 58-129 MW-36-20.0 Limits 96 58-129 MW-36-20.0 Limits 96 58-129 MW-36-20.0 Limits 97-04 4.8 Percent Recovery Control Limits	MW-36-5.0 MW-36-5.0 02-197-01 3.2 NWTPH-Gx ND 3.2 NWTPH-Gx Percent Recovery Control Limits 58-129 MW-36-10.0 02-197-02 NO 4.3 NWTPH-Gx Percent Recovery Control Limits 93 58-129 MW-36-15.0 Control Limits 93 58-129 MW-36-15.0 Control Limits 93 58-129 MW-36-15.0 Control Limits 96 58-129 MW-36-20.0 Control Limits 96 58-129 MW-36-20.0 Control Limits 96 58-129 MW-36-20.0 Q2-197-04 A.8 NWTPH-Gx Percent Recovery Control Limits Percent Recovery Control Limits 96 S8-129 MU-36-20.0 MU-36-20.0 MU-36-20.0 02-197-04 4.8 NWTPH-Gx	Result PQL Method Prepared MW-36-5.0 02-197-01 <	Result PQL Method Prepared Analyzed MW-36-5.0 02-197-01

3

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

onits. mg/kg (ppm)							Date	Date)	
Analyte		Result	PQL	Me	ethod		Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB0223S2								
Gasoline		ND	5.0	NW	ГРН-Gx		2-23-21	2-23-2	21	
Surrogate:	Pe	rcent Recove	ry Control Lim	its						
Fluorobenzene		94	58-129							
				Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recov	very	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	02-20)8-02								
	ORIG	DUP								
Gasoline	ND	ND	NA NA		NA	4	NA	NA	30	
Surrogate:										
Fluorobenzene					96	95	58-129			

4

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-36-5.0					
Laboratory ID:	02-197-01					
Diesel Range Organics	ND	26	NWTPH-Dx	2-23-21	2-23-21	
Lube Oil Range Organics	ND	51	NWTPH-Dx	2-23-21	2-23-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	MW-36-10.0					
Laboratory ID:	02-197-02					
Diesel Range Organics	ND	26	NWTPH-Dx	2-23-21	2-23-21	
Lube Oil Range Organics	ND	52	NWTPH-Dx	2-23-21	2-23-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	MW-36-15.0					
Laboratory ID:	02-197-03					
Diesel Fuel #2	180	28	NWTPH-Dx	2-23-21	2-23-21	
Lube Oil Range Organics	ND	56	NWTPH-Dx	2-23-21	2-23-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	MW-36-20.0					
Laboratory ID:	02-197-04					
Diesel Range Organics	ND	27	NWTPH-Dx	2-23-21	2-23-21	
Lube Oil Range Organics	ND	55	NWTPH-Dx	2-23-21	2-23-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

5

Date of Report: February 25, 2021 Samples Submitted: February 19, 2021 Laboratory Reference: 2102-197 Project: 188-002

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0223S2					
ND	25	NWTPH-Dx	2-23-21	2-23-21	
ND	50	NWTPH-Dx	2-23-21	2-23-21	
Percent Recovery	Control Limits				
89	50-150				
	MB0223S2 ND ND Percent Recovery	MB0223S2 ND 25 ND 50 Percent Recovery Control Limits	MB0223S2 ND 25 NWTPH-Dx ND 50 NWTPH-Dx Percent Recovery Control Limits	Result PQL Method Prepared MB0223S2	Result PQL Method Prepared Analyzed MB0223S2 ND 25 NWTPH-Dx 2-23-21 2-23-21 ND 50 NWTPH-Dx 2-23-21 2-23-21 Percent Recovery Control Limits Keen Keen

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB02	23S2								
	ORIG	DUP								
Diesel Fuel #2	92.4	91.8	NA	NA		NA	NA	1	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						100 100	50-150			

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: February 25, 2021 Samples Submitted: February 19, 2021 Laboratory Reference: 2102-197 Project: 188-002

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
MW-36-5.0	02-197-01	3	2-23-21
MW-36-10.0	02-197-02	4	2-23-21
MW-36-15.0	02-197-03	11	2-23-21
MW-36-20.0	02-197-04	8	2-23-21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Clair Smith	Signature					0,00- 0E- NW 1	3 MM-36-15.0	2 MW-36-10.0	MW-36-5.0	Lab ID Sample Identification	Emi Smith	Brani Jurista	Project Manager: Project Manager:	Project Name:	FOVAIDY Project Number:	Phone: (425) 883-3881 • www.onsite-env.com Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					786)	Farallon	Company					F 0151 F	1505	1445	S OHHI IC(BIC	Date Time Sampled Sampled Matrix	(other)		X Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain o
					5/19/11 1725	26F1 18/01/8	Date Time					XX	× ×	XX	XX	NWTP NWTP NWTP NWTP Volatili Haloge	PH-HCI PH-Gx/I PH-Gx H-Dx (es 826 enated	BTEX Acid DC Volatile	I / SG C s 82600 ers Only	C	(q		Laboratory Number:	Chain of Custody
s with final report Flectronic Data De	Data Package: Standard Devel III Devel IV			×			Comments/Special Instructions									Semiv (with k PAHs 1 PCBs Organo Organo Chlorir Total P Total N TCLP I	olatiles ow-leve 3270D/ 8082A ochlori ophosp nated A ICRA N ITCA N Metals	8270D PAHs SIM (lo ne Pest bhorus I Acid He Acid He Acid He	/SIM ;) w-level; ticides 8) 3081B les 827 ; 8151,	70D/SIM		- 02-197	Page of
								/							K	% Mois	sture							-

March 2, 2021

Brani Jurista Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2102-232

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on February 24, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 2, 2021 Samples Submitted: February 24, 2021 Laboratory Reference: 2102-232 Project: 188-002

Case Narrative

Samples were collected on February 23 and 24, 2021 and received by the laboratory on February 24, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-6-022321					
Laboratory ID:	02-232-02					
Diesel Range Organics	0.47	0.21	NWTPH-Dx	2-26-21	3-1-21	
Lube Oil Range Organics	0.83	0.21	NWTPH-Dx	2-26-21	3-1-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	MW-36-022321					
Laboratory ID:	02-232-03					
Dissel Banga Organias	4.4	0.04		0.00.04	2 4 24	

Diesel Range Organics	1.1	0.21	NWTPH-Dx	2-26-21	3-1-21	
Lube Oil Range Organics	0.56	0.21	NWTPH-Dx	2-26-21	3-1-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

3

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: March 2, 2021 Samples Submitted: February 24, 2021 Laboratory Reference: 2102-232 Project: 188-002

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0226W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	2-26-21	3-2-21	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	2-26-21	3-2-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	SB02	26W1								
	ORIG	DUP								
Diesel Fuel #2	0.485	0.481	NA	NA		NA	NA	1	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						106 103	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

рН SM 4500-Н В

Matrix: Water Units: pH (@ 25°C)

			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	MW-9A-022321				
Laboratory ID:	02-232-01				
рН	6.8	SM 4500-H B	2-25-21	2-25-21	
Client ID:	MW-9D-022421				
Laboratory ID:	02-232-04				
рН	7.3	SM 4500-H B	2-25-21	2-25-21	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Received Relinquished	Relinquished	Received	Relinquished	Signature				4 MW-90-022421	3 Mul-36-022321	2 MW-6-022321	1 MW-9A-022321	Lab 10 Sample Identification	Sampled by: Lisa T/Greg &	Project Manager: Joan Junta	Project Name: Whodework Lakeview	Project Number:	1 23 1	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date		- (QX)	Speedy	Speedy	ferech	Company				2/24/21 402	1448	1 OUEN N/ES/C	2/23/21 12.15 Water	Date Time Sampled Sampled Matrix	(other)]	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)	Chain of
		2/04/2 164	2-24-21 1643	-	2/14/21 1415	Date Time				6	X	X		NWTF NWTF NWTF NWTF Volatil Halog	PH-Dx ([les 8260 enated \	TEX] Acid C /olatile:	/ SG CI s 82600))	Laboratory Number:	Chain of Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs)	Data Package: Standard 🛛 Level III 🗍 Level IV 🗌		Image: Sign Sign Sign Sign Sign Sign Sign Sign								er: 02-232	Page 1 of 1									

July 26, 2021

Brani Jurista Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 188-002 Laboratory Reference No. 2107-229

Dear Brani:

Enclosed are the analytical results and associated quality control data for samples submitted on July 23, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 26, 2021 Samples Submitted: July 23, 2021 Laboratory Reference: 2107-229 Project: 188-002

Case Narrative

Samples were collected on July 22, 2021 and received by the laboratory on July 23, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Surrogate:

o-Terphenyl

······				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D-072221					
Laboratory ID:	07-229-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	7-23-21	7-26-21	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	7-23-21	7-26-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	127	50-150				
Client ID:	MW-9A-072221					
Laboratory ID:	07-229-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	7-23-21	7-26-21	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	7-23-21	7-26-21	

Percent Recovery Control Limits

50-150

111

1	Or
MA	

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

c ,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0723W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	7-23-21	7-26-21	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	7-23-21	7-26-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	118	50-150				
o-Terphenyl	118	50-150				

				Source	Perc	cent	Recovery		RPD	
Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
SB07	23W1									
ORIG	DUP									
0.464	0.444	NA	NA		N/	A	NA	4	NA	
					124	118	50-150			
	SB07 ORIG		SB0723W1 ORIG DUP	SB0723W1 ORIG DUP	Result Spike Level Result SB0723W1 ORIG DUP	ResultSpike LevelResultRecoSB0723W1ORIGDUP0.4640.444NANA	ResultSpike LevelResultRecoverySB0723W1ORIGDUP0.4640.444NANA	ResultSpike LevelResultRecoveryLimitsSB0723W1ORIGDUP0.4640.444NANANA	ResultSpike LevelResultRecoveryLimitsRPDSB0723W1ORIGDUP0.4640.444NANANAA	ResultSpike LevelResultRecoveryLimitsRPDLimitSB0723W1ORIGDUP0.4640.444NANANANA4NA

TOTAL ARSENIC EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D-072221					
Laboratory ID:	07-229-01					
Arsenic	ND	3.3	EPA 200.8	7-23-21	7-23-21	
Client ID:	MW-9A-072221					
Laboratory ID:	07-229-02					

Laboratory ID:	07-229-02				
Arsenic	3.6	3.3	EPA 200.8	7-23-21	7-23-21

TOTAL ARSENIC EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date	e	
Analyte		Result		PQL	М	ethod		Prepared	Analy	zed	Flags
METHOD BLANK											
Laboratory ID:	Ν	//B0723WM	1								
Arsenic		ND		3.3	EP	A 200.	8	7-23-21	7-23-	21	
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-22	29-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		Ν	IA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	07-22	29-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	115	117	111	111	ND	103	105	75-125	2	20	

DISSOLVED ARSENIC EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D-072221					
Laboratory ID:	07-229-01					
Arsenic	ND	3.0	EPA 200.8	7-23-21	7-23-21	
Client ID:	MW-9A-072221					

Chefit ID.	IVI VV-5A-072221					
Laboratory ID:	07-229-02					
Arsenic	3.0	3.0	EPA 200.8	7-23-21	7-23-21	

DISSOLVED ARSENIC EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Date	Dat	е	
Analyte	Result	PQL	М	ethod	Prepared	Analy	zed	Flags
METHOD BLANK								
Laboratory ID:	MB0723F	1						
Arsenic	ND	3.0	EP.	A 200.8	7-23-21	7-23-	21	
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-229-02							
	ORIG DUP							

MATRIX SPIKES

Arsenic

3.08

3.00

NA

NA

Laboratory ID:	07-22	29-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	81.6	84.8	80.0	80.0	3.00	98	102	75-125	4	20	

NA

NA

20

3

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

рН SM 4500-Н В

Matrix: Water Units: pH (@ 25°C)

		Date	Date	
Result	Method	Prepared	Analyzed	Flags
MW-9D-072221				
07-229-01				
6.8	SM 4500-H B	7-23-21	7-23-21	
MW-9A-072221				
07-229-02				
6.7	SM 4500-H B	7-23-21	7-23-21	
	MW-9D-072221 07-229-01 6.8 MW-9A-072221 07-229-02	МW-9D-072221 07-229-01 6.8 SM 4500-Н В МW-9A-072221 07-229-02	Result Method Prepared MW-9D-072221 7229-01 723-21 6.8 SM 4500-H B 7-23-21 MW-9A-072221 723-21 723-21	Result Method Prepared Analyzed MW-9D-072221 7-229-01 7-23-21 7-23-21 6.8 SM 4500-H B 7-23-21 7-23-21 MW-9A-072221 07-229-02 7-23-21 7-23-21

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Reviewed/Date	Received	Relinquished	Relinquished CD both	Received July 656 MA	Relinquished Ellyn hyojk	Signature	1	Burn	elwi-		2 MW-9A-072221	1 MW-90-072221	Brani Jurista sampled by: Elise Bugge Lab ID Sample Identification	Company: Fayallon consulting Project Number: Project Name: WOOdworth Laken'rw fac	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date		280	Spieledy	Speedy	FLN	Company					1 1256 - 4	H on 5511 10001+	Date Time Sampled Matrix Number of Contai	Same Day 1 Day 2 Days 3 Days Standard (7 Days)	Turnaround Request (in working days)	Chain of
		3/23/21 (22	7-23-24 122	7.23.2 1059	7/22/21 1510	Date Time					×	X	NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Dx (Ac Volatiles 8260D Halogenated Volati	id / SG Clean-up)	Laboratory Number:	Chain of Custody
natograms with final report 🗌 Electron	Data Package: Standard 🗌 Level III 🗌 Level IV 🗌	8	6	4	0	Comments/Special Instructions						XX	EDB EPA 8011 (Wa Semivolatiles 8270 (with low-level PAH PAHs 8270E/SIM (PCBs 8082A Organophosphorus Chlorinated Acid H Total RCRA Metals Total MTCA Metals TCLP Metals HEM (oil and greas HOTAL FCIS PH	IE/SIM Isy Iow-level) sticides 8081B s Pesticides 8270E/SIM Ierbicides 8151A s se) 1664A	er: 07 - 2 29	Page of

June 19, 2020

Alex Koch Blue Sage Environmental 198007 E 30th Ave Kennewick, WA 99337

Dear Mr. Koch:

Please find enclosed the analytical data reports for the Lakewood Pit Project in Lakewood, Washington. Water samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended on June 11, 2020.

The results of the analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. A copy of the invoice for this work is enclosed for your records.

ESN Northwest appreciates the opportunity to have provided these services to Blue Sage Environmental for this project. If you have any further questions about the data report, please give us a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

IOLV

Julie Todd Office Manager

ESN NORTHWEST CHEMISTRY LABORATORY

BSE - Miles Sand & Gravel LAKE WOOD PIT PROJECT Lakewood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(ug/L)	(ug/L)
Method Blank	6/11/2020	6/11/2020	77	nd	nd
LCS	6/11/2020	6/11/2020	65	103%	
SVE-5	6/11/2020	6/11/2020	115	2100	nd
MW-11	6/11/2020	6/11/2020	116	nd	nd
Reporting Limits				100	250

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

ww.esnin b@esnn			Phone: 360-459-4670 Fax: 360-459-3432			ite 200 1	1210 Eastside Street SE, Suite 200 Olympia, Washington 98501
Turn Around Time: 24 HR 48 HR 5 DAV	Tu		NOTES:				
		RECEIVED GOOD COND./COLD	RECEIVI				
		SEALS INTACT? Y/N/NA	DATE/TIME SEALS I	RECEIVED BY (Signature)	DATE/TIME	ire)	RELINQUISHED BY (Signature)
	2	CHAIN OF CUSTODY SEALS Y/N/NA	200	Une Harnelle	3	640120	Der D.
	2	TOTAL NUMBER OF CONTAINERS	_	0 11 0	6		UNK!
LABORATORY NOTES:	5	SAMPLE RECEIPT	, DATE/TIME	RECEIVED BY (Signature)	DATE/TIME	ıre)	RELINQUISHED BY (Signature)
							18.
							17.
							16.
							15.
							14.
							13.
							12.
							11.
							10.
							9.
							.00
							7.
							6.
							5.
							4.
							3.
				ir vi X	~	2	2. Mus-4
					1105 GW 3	1	1. SUE -5
	1	RCRA 8 Metals MTCA 5 Metals Pb ASBESTOS PLM GRO Suite 830.1 WO Suite 830.1	SEMIVOC 8270 PAH'S 8270 PCB'S 8082 CL PECT	Container Type	Sample (Time Type	Depth	Sample Number
COLLECTION: C/10/2	5	COLLECTOR: Dan Hatel	+ Kach	PROJECT MANAGER: Ale	-		CLIENT PROJECT #:
	Sal	LOCATION: Later wood			EMAIL		PHONE:
2 Pit	Doa	PROJECT NAME: Lake was					ADDRESS:
E / OF /	PAGE	DATE: 6/10/20		1BSE	& Gravel 1	Sand	CLIENT: Miles
CHAIN-OF-CUSTODY RECORD	-50	CHAIN-OF-			£r∎£	ronment bes Netwo	ESN EDV

July 1, 2020

Alex Koch Blue Sage Environmental 198007 E 30th Ave Kennewick, WA 99337

Dear Mr. Koch:

Please find enclosed the analytical data reports for the Lakeview Project in Lakewood, Washington. Water samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended and pH by Method 150.1 on June 22 & 26, 2020.

The results of the analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. A copy of the invoice for this work is enclosed for your records.

ESN Northwest appreciates the opportunity to have provided these services to Blue Sage Environmental for this project. If you have any further questions about the data report, please give us a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

OFF

Julie Todd Office Manager

ESN NORTHWEST CHEMISTRY LABORATORY

Miles Sand and Gravel (BSE) PROJECT LAKEVIEW Lakewood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (ug/L)	Lube Oil Range Organics (ug/L)
Method Blank	6/26/2020	6/26/2020	92	nd	nd
LCS	6/26/2020	6/26/2020	89	95%	
MW-11	6/26/2020	6/26/2020	94	nd	nd
SVE-5	6/26/2020	6/26/2020	99	1600	nd
Reporting Limits				100	250

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

ESN NORTHWEST CHEMISTRY LABORATORY

Miles Sand and Gravel (BSE) PROJECT LAKEVIEW Lakewood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Sample	Date	Date	
Number	Sampled	Analyzed	pН
MW-23	6/22/2020	6/22/2020	7.05
MW-16R	6/22/2020	6/22/2020	6.93
MW-9R	6/22/2020	6/22/2020	6.77
MW-9B	6/22/2020	6/22/2020	11.8
MW-31	6/22/2020	6/22/2020	11.3

Analysis of pH in Water by EPA Method 150.1

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-Mail- lab@eennw.com						-3432	Fax: 360-459-3432	Fa					200	1210 Eastside Street SE, Suite 200 Olympia, Washington 98501	Olympia
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	48 HR (S	NOTE									
IENT: Miles Scale & Drzuel / BSE DATE: Chi DORESS:				סרס	COND./CO		RECEI									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					/N/NA	INTACT? Y	E SEALS	DATE/TIM	Ĩ	(Signature)	ECEIVED B	5	ATE/TIME		UISHED BY (Signature	RELINQ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Y/N/NA	DY SEALS	OF CUSTO	CHAIN		128	Nuc	10mb		12/20	61	an tool	C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u> </u>		INERS	OF CONTA	L NUMBER	ATOTA	6-72-	2	20	1	16:00	1		1111	7
Import Environment Defense Date: G_{L}^{+} IENT: M_1 [IS Scare 1 / IS E PROJECT MAIL PROJECT III PROJECT IIII IENT PROJECT #: PROJECT MANAGER: A [IS] PROJECT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ABORATORY NOTES:	F		RECEIPT	SAMPLE		m	DATE/TIM	5 5	(Signature)	ECEIVED BY	R			UISHED BY (Signature	RELINQ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												1				18.
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$																17.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_													(16.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				_				_								15.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						_										14.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													N.			13.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																12.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																11.
The information of								_		1.						10.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																9.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_		-				_			2				1	8. MQ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-1	×					_				V		lyng	12	7. M
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			\times		_									1350	9,	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			\times									1		1240	2	1 C C C C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			X								R	2-00		1215	1	1.1
Inversion Environmentation VIENT: Miles Samuel BSE DATE: CL VIENT: Miles Samuel BSE PROJECT N PROJECT N HONE: EMAIL PROJECT MANAGER: Aex LOCATION: LIENT PROJECT #: PROJECT MANAGER: Aex COLLECTOR NUDRESS: Image: PROJECT MANAGER: Aex COLLECTOR LIENT PROJECT #: PROJECT MANAGER: Aex COLLECTOR Sample Number Depth Time Type $Type$ FE <			X								-	2-0614	-	1120	i	3. M
Thread Devices Network Date: Date: <td></td> <td>X</td> <td>12 April</td> <td>60</td> <td>gai</td> <td>K-5</td> <td>2. SU</td>											X	12 April	60	gai	K-5	2. SU
$\begin{tabular}{ c c c c c c c c c c$				1			11					(LAW)	-		-11 -	1. M
Niles Sand 3 6720 et / BSE DATE: 6/2 S:			030	DRO 5 830-1	ASBEST	RCRA 8 Metals	CL PEC	PAH'S S	VOC 8260CL	TPH-GAS	TPH-HO					Sar
Miles Sand & bravel / BSE DATE: 6/2 S:EMAIL LOCATION:	COLLECTION: C/22	2	Hato	1: Daw	LECTOR	COL		X	Alex	L	CT MAN	PROJE			NT PROJECT #:	CLIE
Viles Sand & Gravel / BSE DATE: 6/2 PROJECT N		S	ewood	1	ATION:	LOC							EMAIL			РНО
Proces National Service DATE: 6/2	0	ieu		AME:	JECT N	PRO									RESS:	ADD
CHAIN-OF-CUSIODY RECORD	1	PAG	0	12/24	E: Col	DAT	Ļ			m	1351	el /	6rau	and 3	NT: Miles S	CLIE
	JSTODY RECORD	Ċ	N-OF	CHAI	2									Manaed W.	Envire Service	NORTHWE

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 8, 2020

Ryan Ransavage, Project Manager Miles Resources 400 Valley Highway NE Puyallup, WA 98372

Dear Mr Ransavage:

Included are the results from the testing of material submitted on September 30, 2020 from the Lakeview (Miles), F&BI 009561 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Alex Koch (akoch19672@gmail.com), ryan.ransavage@miles.rocks NAA1008R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 30, 2020 by Friedman & Bruya, Inc. from the Company/HomeOwner Lakeview (Miles), F&BI 009561 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Miles Resources</u>
009561 -01	MW-13
009561 -02	SVE-5
009561 -03	MW-16R
009561 -04	MW-9R
009561 -05	MW-9B
009561 -06	MW-6

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/08/20 Date Received: 09/30/20 Project: Lakeview (Miles), F&BI 009561 Date Extracted: 10/01/20 Date Analyzed: 10/01/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-13 009561-01	1,800 x	1,300 x	99
SVE-5 009561-02	1,400 x	480 x	110
MW-16R 009561-03	290 x	450 x	93
MW-9R 009561-04	470 x	460 x	87
MW-6 009561-06	1,500 x	740 x	87
Method Blank 00-2220 MB2	<50	<250	85

ENVIRONMENTAL CHEMISTS

Date of Report: 10/08/20 Date Received: 09/30/20 Project: Lakeview (Miles), F&BI 009561 Date Extracted: NA Date Analyzed: 09/30/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH USING EPA METHOD 150.2

 $\frac{Sample \ ID}{Laboratory \ ID}$

<u>pH</u>

MW-9B 009561-05 $12.2 \ \mathrm{ve}$

ENVIRONMENTAL CHEMISTS

Date of Report: 10/08/20 Date Received: 09/30/20 Project: Lakeview (Miles), F&BI 009561

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	100	63-142	11

ENVIRONMENTAL CHEMISTS

Date of Report: 10/08/20 Date Received: 09/30/20 Project: Lakeview (Miles), F&BI 009561

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH BY METHOD 150.2

Laboratory Code:	009561-05 (Dup	olicate)		
	Sample	Duplicate	Relative Percent	Acceptance
Analyte	Result	Result	Difference	Criteria
pH	12.2 ve	12.2 ve	0	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Received by:	g Relinquished	Friedman & Bruya, Inc. Relinquished by				mw-6 06	mw-9B s	MW-AR M	MW-16R 03	SUE-S 02	MW-13 01	Sample ID Lab ID	· · · · · · · · · · · · · · · · · · ·	Phone Srighn 405 Emailakach 19672 Siver	City, State, ZIP	Address	Company Miles Resources	Report To Alex Koch	10,5000
	milled hurd	AS / Da	SIGNATURE			9/30/20	9/29/20/	apates 1	ghaho 1	gheglus 1	9/25/20	Date Sampled		Manicorchel.			res		<i>u</i>
						8:50	16:35	13:30	1245	11:05	9:30 60	Time Sar Sampled Ty	· · · · · · · · · · · · · · · · · · ·	Project specific RLs? -	REMARKS	Cateview	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
	NNAN K	5	PRINT NAME			· · X		× /		~~~		Sample Type # of Jars NWTPH-Dx		ic RLs? - Yes ⁱ / No		ew (miles	AME C	(signature)	IAIN OF CU
:	PNAN	2 Ch	VAME									NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	AN/	Milles 1	INV	5		A la	VSTODY /
A.S.	1924	Blue Sa	COMPANY	Sa			×					PAHs EPA 8270 PCBs EPA 8082	ANALYSES REQUESTED	Resources	INVOICE TO		PO #		45 09/301
	- 9/	1 ater		Samples receive									STED	□ Other Default: Disp	SAMPLE DI	Rush charges authorized by:	Standard turnaround	Page #	060
	1241 06/08	30/20 1015	DATE TIME	ved at 4 °C								Notes		□ Other Default: <u>Dispose after 30 days</u>	SAMPLE DISPOSAL hive samples	authorized by:	urnaround	Page # / of / TURNAROUND TIME	-208 1/8JH 1

1000

ATTACHMENT B BORING LOGS

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

Farallon PN: 188-002

		FARALLON		Lo	bg	of I	Borin	g:	B-21		Pa	ge 1 of 1
Fa	ojec cati rall	et: Woodworth Lakeview Facility ion: 2800 104th St Ct S, Lakewood Ion PN: 188-002	Date/Time Start Date/Time Com Equipment: Drilling Compar Drilling Forema Drilling Method	pleted: ny: in:	12/5/ Geor Holt Louie	/19 @ /19 @ probe 7 Drilling e Ferno ct Pusl	1115 7800 9 er		Sampler Type: 5 Drive Hammer (II Depth of Water A Total Boring Dep Total Well Depth	os.): TD oth (1	(ft bgs): ft bgs):	10.0
Lo	gge 	ed By: Ken Scott										
Depth (feet bgs.)	Sample Interval	Lithologic Descriptior	1	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ng/Well struction etails
0		0.0-0.3': Asphalt. Vac clear for utilities.		AC		100						
		0.3-2.5': Silty SAND with gravel (65% sand, 25% silt, 1 to coarse sand, fine and coarse gravel, gray, moist, no 2.5-5.0': Silty SAND with silt (80% sand, 15% silt, 5% coarse sand, fine and coarse gravel, black-brown, mois sheen.	odor, no sheen. gravel), fine to	SM				0.0	B21-3.0	x		Concrete
5-		5.0-7.3': Silty SAND with silt (80% sand, 15% silt, 5% coarse sand, fine and coarse gravel, black-brown, mois sheen.		SM		100		0.0				Bentonite
		 7.3-8.2': Silty GRAVEL with sand (60% gravel, 25% silfine and coarse gravel, fine to coarse sand, tan, moist, sheen. 8.2-10.0': SILT with gravel (80% silt, 15% gravel. 5% s and sand, gray, moist, no odor, no sheen. 	no odor, no	GM				0.0				
10 -								0.0	B21-10.0			

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA	

	FARALLON	I	_og	of E	Boring	g:	B-22		Page 1 of 1
Faral		Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ed: 12/5 Geo Holt Lou	5/19 @ ^ 5/19 @ ^ pprobe 7 : Drilling ie Ferne ect Push	1210 7800 er		Sampler Type: 5 Drive Hammer (I Depth of Water / Total Boring De Total Well Depth	bs.): ATD oth (1	Auto (ft bgs): NE it bgs): 10.0
Depth (feet bgs.)	Lithologic Description	l cs n sc n	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
	0.0-0.3': Asphalt. Vac clear for utilities. 0.3-0.8': Concrete. 0.8-2.5': Silty SAND with gravel (65% sand, 20% silt, fine to coarse sand, fine and coarse gravel, brown, m sheen. 2.5-5.0': Silty SAND (80% sand, 15% silt, 5% gravel) sand, fine and coarse gravel, black-brown, moist, no 5.0-7.5': Silty SAND (80% sand, 15% silt, 5% gravel) sand, fine and coarse gravel, black-brown, moist, no 7.5-8.5': Silty SAND (80% sand, 15% silt, 5% gravel) sand, fine and coarse gravel, brown, moist, no odor, 7.5-8.5': Silty GRAVEL with sand (60% gravel, 25% s fine and coarse gravel, fine to coarse sand, tan, mois sheen. 8.5-10.0': SILT with gravel (80% silt, 15% gravel, 5% gravel, fine sand, tan, moist, no odor, no sheen.	, fine to coarse odor, no sheen. SM , fine to coarse no sheen. SM sitt, 15% sand), st, no odor, no GM				0.7	B22-3.0	×	Asphalt Bentonite

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA	

	V	FARALLON		L	bg	of E	Bori	ng:	B-23		Pa	ge 1 of 1
ar	jec ati all		Date/Time Star Date/Time Com Equipment: Drilling Compa Drilling Forema Drilling Methoo	npleted ny: an:	: 12/5 Geo Holt Loui	/19 @ /19 @ probe Drilling e Fern ct Pusl	1225 7800 9 er		Sampler Type: 5 Drive Hammer (Depth of Water Total Boring De Total Well Dept	lbs.): ATD pth ((ft bgs) ft bgs):	10.0
Deptn (reet pgs.)	Sample Interval	Lithologic Description	I	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well structior vetails
0		0.0-0.3': Asphalt. Vac clear for utilities. 0.3-0.8': Concrete. 0.8-3.0': Silty SAND with gravel (65% sand, 20% silt, fine to coarse sand, fine and coarse gravel, brown, m sheen. Refusal at 3.0' due to cobbles		AC CO SM		100						Asphalt
		3.0-5.0': Silty SAND (80% sand, 15% silt, 5% gravel) sand, fine and coarse gravel, black-brown, moist, no		SM		100		0.0	B23-3.0	x		
5		5.0-6.2': Silty SAND (80% sand, 15% silt, 5% gravel) sand, fine and coarse gravel, brown, moist, no odor,		SM		100						Bentonite
-		6.2-8.1': Silty GRAVEL with sand (60% gravel, 25% s fine and coarse gravel, fine to coarse sand, tan, mois sheen.	silt, 15% sand), t, no odor, no	GM	X X X X X X X X X X X X X X X X X X X			0.2				
_		8.1-10.0': SILT with gravel (80% silt, 15% gravel, 5% gravel, fine sand, tan, moist, no odor, no sheen.	sand), fine	ML								
0+								0.0	B23-10.0			

		Well Constructi	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA	

		7	FARALLON		Lo	og	of∣	Borir	ng:	B-24		Page 1 of 1
	ojec	ct:	Woodworth Capital, Inc. Woodworth Lakeview Facility 2800 104th St Ct S, Lakewood	Date/Time Start Date/Time Com Equipment: Drilling Compa	pleted:	12/5/ Geoj	-	7800		Sampler Type: 5 Drive Hammer (II Depth of Water A Total Boring Dep	bs.) ATD	: Auto (ft bgs): NE
		lon ed E	PN: 188-002 By: Ken Scott	Drilling Forema Drilling Method			e Fern ct Pus			Total Well Depth	(ft	bgs): NA
Depth (feet bgs.)	Sample Interval		Lithologic Descriptior	1	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details

0		0.0-0.3': Asphalt. Vac clear for utilities.	AC	100					
	$\backslash /$	0.3-0.8': Concrete.	со					ŚŚŚŚŚ	Asphalt
-	\mathbb{N}	0.8-2.4': Silty SAND with gravel (60% sand, 25% gravel, 15% silt), fine to coarse sand, fine and coarse gravel, brown, moist, no odor, no sheen.	SM						
_		2.4-3.3': Silty SAND with gravel (50% sand, 35% gravel, 15% silt), fine to coarse sand, fine and coarse gravel, brown, moist, no odor, no sheen.	SM	100	0.2	B24-2.4	X		
-		3.3-5.0': Silty SAND (80% sand, 15% silt, 5% gravel), fine to coarse sand, fine and coarse gravel, brown, moist, no odor, no sheen.	SM						
		5.0-7.4': Silty SAND (80% sand, 15% silt, 5% gravel), fine to coarse sand, fine and coarse gravel, black-brown, moist, no odor, no sheen.	SM	100					Bentonite
-		7.4-8.5': Silty GRAVEL with sand (60% gravel, 20% sand, 20% silt), fine and coarse gravel, fine to coarse sand, tan, moist, no odor, no sheen.	GM						
- 10 -		8.5-10.0': SILT with gravel (80% silt, 15% gravel, 5% sand), coarse gravel, fine sand, tan, moist, no odor, no sheen.	ML						
					0.3	B24-10.0	x		

		Well Constructi	on Information	
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft): NA
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft): NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA

		FARALLON		L	og (of E	Boriı	ng:	B-25		Pa	age 1 of 1
Far	jec ati all		Date/Time Start Date/Time Com Equipment: Drilling Compa Drilling Forema Drilling Method	ipleted ny: in:	: 12/5/ Geop Holt Louie	/19 @ /19 @ probe 7 Drilling e Ferno ct Push	1450 7800 J er		Sampler Type: Drive Hammer Depth of Water Total Boring Do Total Well Dept	(Ibs.) ATD epth (: (ft bgs) (ft bgs):	Auto): NE 15.0
Depth (feet bgs.)	Sample Interval	Lithologic Description	1	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
0		0.0-3.0': Silty SAND with gravel (60% sand, 20% grav fine to coarse sand, fine and coarse gravel, brown, m sheen. Vac clear to 5.6' for utilities.	oist, no odor, no	SM		100						Asphalt
5-		3.0-5.0': Silty SAND with gravel (50% sand, 30% grav fine to coarse sand, fine and coarse gravel, brown, m sheen. 5.0-5.6': Silty SAND with gravel (50% sand, 30% grav	oist, no odor, no	SM		100		0.3	B25-3.0			
-		fine to coarse sand, fine and coarse gravel, brown, m sheen. 5.6-7.5': Silty SAND with gravel (50% sand, 30% grav fine to coarse sand, fine and coarse gravel, brown, m sheen.	vel, 20% silt), vel, 20% silt), loist, no odor, no	SM		95						
-	$\left \right $	7.5-9.5': Silty GRAVEL with sand (60% gravel, 20% s fine and coarse gravel, fine to coarse sand, light brow odor, no sheen. 9.5-10.0': No recovery.	and, 20% silt), vn, moist, no	GW 				0.1	B25-9.0	×		Bentonite
10		10.0-12.7': Silty SAND with gravel (60% sand, 20% g fine to coarse sand, fine and coarse gravel, tan, mois sheen.		SM		100						
- 15 —	$\left \right $	12.7-15.0': Silty GRAVEL with sand (60% gravel, 20% silt), fine and coarse gravel, fine to coarse sand, tan, no sheen.		GW								
15								0.0	B25-15.0	x	_	

Well Construction Information Monument Type: NA Casing Diameter (inches): Filter Pack: NA Ground Surface Elevation (ft): NA NA Surface Seal: Asphalt Top of Casing Elevation (ft): NA Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X: NA Y: NA Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Unique Well ID: NA

		FARALLON CONSULTING		L	og (of E	Boriı	ng:	B-26		Pa	ige 1 of 1
Clie Pro Loc	ojec		Date/Time Start Date/Time Com Equipment: Drilling Compa	pleted	: 12/5/ Geop	/19 @ /19 @ probe 7 Drilling	1515 7800		Sampler Type: Drive Hammer (Depth of Water Total Boring De	lbs.) ATD	: (ft bgs)	
Fa	rall	on PN: 188-002	Drilling Forema Drilling Method			e Fern ct Push			Total Well Dept	h (ft	bgs): N/	A I
Lo	gge	ed By: Ken Scott		-			•		1			
Depth (feet bgs.)	Sample Interval	Lithologic Descriptior	ı	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction letails
0		0.0-3.0': Silty SAND with gravel (80% sand, 15% silt, fine and medium sand, fine gravel, brown, moist, no Vac clear to 3.0' for utilities.		SM		100						Asphalt
-		3.0-5.0': Silty SAND with gravel (65% sand, 25% silt, fine to coarse sand, fine and coarse gravel, brown, n sheen.		SM		100		0.2	B26-3.0			
5-		5.0-6.5': Silty SAND with gravel (65% sand, 25% silt, fine to coarse sand, fine and coarse gravel, brown, n sheen.		SM		95						
-		6.5-8.8': Silty SAND (80% sand, 15% silt, 5% gravel) sand, fine and coarse gravel, tan, moist, no odor, no		SM	· · · · · · · · · · · · · · · · · · ·							
- 10 -		8.8-9.5': Silty SAND with gravel (60% sand, 20% gra fine to coarse sand, fine and coarse gravel, tan, mois sheen.	vel, 20% silt), st, no odor, no	SM				0.1	B26-9.0	x		Bentonite
		10.0-14.2': Silty SAND with gravel (60% sand, 20% of fine to coarse sand, fine and coarse gravel, tan, mois sheen. 14.2-15.0': Well-graded GRAVEL (90% gravel, 5% s	st, no odor, no	SM		100		0.1				
15 -		fine and coarse gravel, fine to coarse sand, tan, mois						0.0	B26-15.0	x		

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA	

Construction: 2800 104th St Ct S, Lakewood Equipment: Drilling Company: Farallon PN: 188-002 Depth of Water ATD (ift bgs): NE Total Boring Depth (ift bgs): 15: Total Boring Depth (ift bgs): 15: Total Well Depth (ift bgs): 16: Total Well Depth		FARALLON		Lo	og o	of B	oring	:	B-27		Ра	ge 1 of 1
0 0.0-0.3: Asphalt. Vac clear to 3.5' for utilities. AC 0 0.0-0.3: Asphalt. Vac clear to 3.5' for utilities. AC 0.0-0.3: Asphalt. Vac clear to 3.5' for utilities. AC 0 0.4 0.5-0.6': Concrete. 0.5-3.0': Silty SAND with gravel (50% sand, 30% gravel, 20% silt), fine to coarse sand, fine and coarse gravel, dark brown, moist, no odor, no sheen. SM 100 0.4 B27-3.0 3 0.5-5.0': Silty SAND with gravel (50% sand, 30% gravel, 20% silt), fine to coarse sand, fine and coarse gravel, dark brown, moist, no odor, no sheen. SM 100 0.4 B27-3.0 5 - - - - - - - - 6 - - - - - - - - 100 - - - - - - - - 5 - - - - - - - - - - 6 - <t< th=""><th>Projec Locati Farall</th><th>t: Woodworth Lakeview Facility ion: 2800 104th St Ct S, Lakewood ion PN: 188-002</th><th>Date/Time Comp Equipment: Drilling Compan Drilling Foremar</th><th>oleted: ny: n:</th><th>12/5/1 Geopr Holt D Louie</th><th>9 @ 1 obe 78 rilling Ferne</th><th>550 300</th><th>ם כ ד</th><th>Drive Hammer (I Depth of Water A Total Boring Dep</th><th>bs.): ATD oth (</th><th>: (ft bgs) ft bgs):</th><th>15.0</th></t<>	Projec Locati Farall	t: Woodworth Lakeview Facility ion: 2800 104th St Ct S, Lakewood ion PN: 188-002	Date/Time Comp Equipment: Drilling Compan Drilling Foremar	oleted: ny: n:	12/5/1 Geopr Holt D Louie	9 @ 1 obe 78 rilling Ferne	550 300	ם כ ד	Drive Hammer (I Depth of Water A Total Boring Dep	bs.): ATD oth (: (ft bgs) ft bgs):	15.0
10 0.30.6 C Concrete. CO C	Depth (feet bgs.) Sample Interval	Lithologic Description		nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8 PID (nom)		Sample ID	Sample Analyzed	Cons	ing/Well struction etails
		 0.3-0.6': Concrete. 0.6-3.0': Silty SAND with gravel (50% sand, 30% grav fine to coarse sand, fine and coarse gravel, dark brow odor, no sheen. 3.0-3.5': Silty SAND with gravel (50% sand, 30% grav fine to coarse sand, fine and coarse gravel, dark brow odor, no sheen. 3.5-5.0': Silty SAND with gravel (50% sand, 30% grav fine to coarse sand, fine and coarse gravel, brown, me sheen. 5.0-6.7': Silty SAND with gravel (50% sand, 30% grav fine to coarse sand, fine and coarse gravel, brown, me sheen. 6.7-8.8': Silty SAND (80% sand, 15% silt, 5% gravel), sand, fine and coarse gravel, brown, moist, no odor, r 8.8-9.0': Wood debris. 9.0-10.0': Silty SAND (80% sand, 20% silt), fine and n brown, moist, no odor, no sheen. 10.0-12.7': Silty SAND (80% sand, 20% silt), fine and brown, moist, no odor, no sheen. 12.7-15.0': Silty GRAVEL (65% sand, 25% silt, 10% s 	rel, 20% silt), rel, 20% silt), rel, 20% silt), oist, no odor, no rel, 20% silt), oist, no odor, no fine to coarse no sheen.	SM SM SM SM SM SM SM SM		100	0.	2	B27-12.0			Asphalt

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA	

	FARALLON		- 9				B-28		Page 1 of 1
	et: Woodworth Lakeview Facility ion: 2800 104th St Ct S, Lakewood	Date/Time Started: Date/Time Completed Equipment: Drilling Company: Drilling Foreman:	12/6/ Geop Holt	/19 @ (/19 @ (probe 7 Drilling e Ferne	0905 7800		Sampler Type: Drive Hammer (Depth of Water Total Boring De Total Well Dept	lbs.): ATD pth (i	Auto (ft bgs): NE ft bgs): 15.0
		Drilling Method:		t Push					·93). 11/1
Sample Interval	Lithologic Description	RSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/We Constructio Details
	0.0-0.3': Asphalt. Vac clear to 3.8' for utilities.			100					Asphalt
	0.5-3.8': Silty SAND with gravel (55% sand, 30% gravel, to coarse sand, fine and coarse gravel, brown, moist, no sheen.	, 15% silt), fine SM				0.2	B28-3.0		
	3.8-5.0': Silty SAND with gravel (55% sand, 30% gravel, to coarse sand, fine and coarse gravel, brown, moist, no sheen.			100					
5-(5.0-6.5': Silty SAND with gravel (60% sand, 20% gravel, to coarse sand, fine and coarse gravel, dark brown, mois sheen.			100					
$\left \right\rangle$	6.5-7.5': Asphalt.	AC							
	7.5-10.0': Silty SAND (80% sand, 15% silt, 5% gravel), sand, fine and coarse gravel, brown, moist, no odor, no	fine to coarse SM sheen.				0.1	B28-9.0	x	Bentoni
	10.0-13.5': Silty SAND (80% sand, 15% silt, 5% gravel) sand, fine and coarse gravel, brown, moist, no odor, no	, fine to coarse SM sheen.		100					
	13.5-15.0': SILT with sand (80% silt, 15% sand, 5% gra and gravel, tan, moist, no odor, no sheen.	Ivel), fine sand ML							
;									

	Well Construction Information									
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA					
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA					
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA					
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA						

	FARALLON		L	og (of E	Boriı	ng:	B-29		Page 1 of 1	
	 Woodworth Lakeview Facility 2800 104th St Ct S, Lakewood Ion PN: 188-002 	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:		npleted: 12/6/19 @ 1020 Geoprobe 7800 any: Holt Drilling an: Louie Ferner		1020 7800 J er		-	er (lbs.): Auto er ATD (ft bgs): NE Depth (ft bgs): 15.0		
Depth (feet bgs.) Sample Interval	Lithologic Description	n	NSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
	0.0-0.1': Asphalt. Vac clear to 3.8' for utilities. 0.1-3.25': Silty GRAVEL with sand (65% gravel, 15% fine and coarse gravel, fine and medium sand, brow no sheen. Subrounded gray gravel. Air knife to 3.25' utilities. Subrounded 4 to 6-inch gray cobbles from 3 3.25-5.0': Silty GRAVEL with sand (65% gravel, 15% fine and coarse gravel, fine and medium sand, brow odor, no sheen. Subrounded gray gravel. 5.0-7.2': Silty SAND with gravel (60% sand, 25% silt fine to coarse sand, fine and coarse gravel, brown, r sheen. 7.2-9.5': Sandy SILT (60% silt, 30% sand, 10% grav coarse sand, fine and coarse gravel, tan, moist, no c Subrounded gray gravel.	n, dry, no odor, bgs to clear for to 3.25' bgs. 5 silt, 20% sand), n, moist, no , 15% gravel), noist, no odor, no	GM GM SM		100		0.2	B29-3.0		Asphalt	
	9.5-10.0:' No Recovery: 10.0-12.2': Silty SAND with gravel (65% sand, 20% since the coarse sand, fine and coarse gravel, tan, mois sheen. Subrounded gray gravel. 12.2-15.0:' No Recovery:	silt, 15% gravel), st, no odor, no	SM				0.1	B29-9.0 B29-12.0	x	Bentonite	

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA	

		FARALLON CONSULTING		Lo	bg	of E	Boriı	ng:	B-30		Page	1 of 1
Clic Pro Loc	ojec		Date/Time Start Date/Time Com Equipment: Drilling Compar	pleted	: 12/6 Geo	/19 @ /19 @ probe Drilline	1115 7800		Sampler Type: Drive Hammer (Depth of Water Total Boring De	lbs.) ATD	: Au (ft bgs): NE	
		on PN: 188-002	Drilling Forema Drilling Method			e Fern ct Pusl			Total Well Dept	h (ft∣	bgs): NA	
Depth (feet bgs.)	Sample Interval	ed By: Ken Scott Lithologic Description	-	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring Constru Deta	uction
0		0.0-5.0': Silty SAND with gravel (70% sand, 15% silt fine to coarse sand, fine and coarse gravel, brown, n sheen. Air knife to 5.0' bgs to clear for utilities.		SM		100		0.2	B30-3.0	x	So	il
5-	-	 5.0-8.3': Silty SAND with gravel (70% sand, 25% silt fine to coarse sand, fine and coarse gravel, brown, n sheen. Subrounded and subangular gravel. 8.3-10.0': Silty SAND with gravel (60% sand, 25% si fine to coarse sand, fine and coarse gravel, tan, mois sheen. 	noist, no odor, no It, 15% gravel),	SM		100					Ве	ntonite
10 -								0.1	B30-10.0	x		

	Well Construction Information									
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA					
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA					
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA					
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA						

		FARALLON		L	bg	of E	Boriı	ng:	B-31		Ραί	ge 1 of 1
Clie Pro Loc	jec		Date/Time Start Date/Time Com Equipment: Drilling Compa	pleted	: 12/6 Geo	/19 @ /19 @ probe Drillin	1150 7800		Sampler Type: Drive Hammer Depth of Water Total Boring De	lbs.) ATD	: (ft bgs):	
Fa	rall	lon PN: 188-002	Drilling Forema	n:		e Fern			Total Well Dept	h (ft l	bgs): NA	
Lo	gge	ed By: Ken Scott	Drilling Method	:	Dire	ct Pus	h	1	I			
Depth (feet bgs.)	Sample Interval	Lithologic Description		nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ng/Well truction etails
0		0.0-0.6': Asphalt (100% asphalt), black. Air Knife to 5 for utilities.	.5' bgs to clear	AC								Asphalt
-		0.6-3.0': Silty SAND with gravel (55% sand, 25% silt, fine to coarse sand, fine and coarse gravel, brown, m sheen. Subrounded gray gravel. 3.0-5.5': Well-graded GRAVEL with silt and sand (75'	oist, no odor, no	SM GW-		100		0.2	B31-3.0	x		
5-		silt,15% sand), fine and coarse gravel, fine to coarse moist, no odor, no sheen. Subrounded gray gravel. S 4 to 6-inch gray cobbles.	sand, brown,	GM				0.2	B31-3.0			
-		5.5-7.2': Well-graded GRAVEL with silt and sand (75 ⁶ silt,15% sand), fine and coarse gravel, fine to coarse moist, no odor, no sheen. Subrounded gray gravel. S 4 to 6-inch gray cobbles.	sand, brown,	GW- GM								
-		7.2-7.8': SILT with gravel (80% silt, 5% sand, 15% gra fine and coarse gravel, brown with red mottling, moist no odor, no sheen. Subrounded gray and black grave 7.8-10.0': Well-graded GRAVEL (90% gravel,5% silt, and coarse gravel, fine to coarse sand, brown, moist, sheen. Subrounded gray, black and white gravel.	t to slight wet, l. 5% sand), fine	ML GW		100						
- 10 -								0.0	B31-10.0	x		Bentonite

Well Construction Information									
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA				
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA				
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA				
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA					

	V	CONSULTING									Page 1 of 1			
lie roj oca	ec	t: Woodworth Lakeview Facility on: 2800 104th St Ct S. Lakewood	Date/Time Star Date/Time Com Equipment: Drilling Compa	pleted	: 12/6 Geo	/19 @ /19 @ probe [°] Drilling	1220 7800		Drive Hammer Depth of Water	Type: 5' Macrocore mmer (Ibs.): Auto Water ATD (ft bgs): NE ring Depth (ft bgs): 10.0				
ara	all	on PN: 188-002	Drilling Forema	illing Foreman: Louie Ferner			Total Well Depth (ft bgs): NA							
ogged By: Ken Scott			Drilling Method	:	Dire	ct Pusi	n	1						
	Sample Interval	Lithologic Description		nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Wel Constructio Details			
0	\langle	0.0-0.8': Asphalt (100% asphalt), black. Air Knife to 1. for utilities.	0	AC		100					Asphalt			
		0.8-1.5': Silty GRAVEL with sand (55% gravel,15% sil fine and coarse gravel, fine to coarse sand, brown, mo sheen. Subrounded gray gravel.	oist, no odor, no	GM AC		100								
-		 1.5-2.0': Asphalt (100% asphalt), black. Observe 2nd asphalt. 2.0-4.2': Silty SAND with gravel (65% sand, 20% silt, fine to coarse sand, fine and coarse gravel, tan, moist sheen. Subrounded gray gravel. 	15% gravel),	SM		100		0.1	B32-3.0	x				
		4.2-5.0': Silty GRAVEL with sand (60% gravel, 20% si fine and coarse gravel, fine to coarse sand, tan, moist sheen. Subrounded gray gravel.	ilt, 20% sand), t, no odor, no	GM										
5		5.0-7.8': Silty SAND with gravel (65% sand, 20% silt, fine to coarse sand, fine and coarse gravel, dark brow odor, no sheen. Subrounded gray gravel.	15% gravel), /n, moist, no	SM		100								
		7.8-10.0': Silty GRAVEL with sand (60% gravel, 20% fine and coarse gravel, fine to coarse sand, tan, moist sheen. Subrounded gray gravel.		GM							Bentonit			

	Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA							
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

		FARALLON		Lo	og i	of E	Bori	ng:	B-33		Page 1 of 1
Clie Pro Loc	jec	· · · · · · · · · · · · · · · · · · ·	Date/Time Start Date/Time Com Equipment: Drilling Compat	pleted:	12/6/19 @ 1235Sampler Type: 5' Macrocordd: 12/6/19 @ 1255Drive Hammer (lbs.):Geoprobe 7800Depth of Water ATD (ft bgs)Holt DrillingTotal Boring Depth (ft bgs)					Auto (ft bgs): NE	
Fa	rall	on PN: 188-002	Drilling Foreman:Louie FernerTotal Well DepthDrilling Method:Direct Push					h (ft l	ogs): NA		
Lo	gge	ed By: Ken Scott		•				1	T		
Depth (feet bgs.)	Sample Interval	Lithologic Description		nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		0.0-0.7': Asphalt (100% asphalt), black. Air Knife to 5.3 utilities.	' bgs to clear for	AC							Asphalt
-		0.7-3.0': Silty SAND with gravel (60% sand, 15% silt, 2 to coarse sand, fine and coarse gravel, brown, moist, n sheen. Subrounded gray gravel. Subrounded 4 to 6-inc	o odor, no	SM		100					
- 5-		3.0-5.3': Silty SAND with gravel (60% sand, 15% silt, 2 to coarse sand, fine and coarse gravel, brown, moist, n sheen. Subrounded gray gravel. Subrounded 4 to 6-inc	o odor, no	SM		100		0.4	B33-3.0	x	
-		5.3-8.3': Well-graded SAND with gravel (75% sand, 5% gravel), fine to coarse sand, fine and coarse gravel, dar no odor, no sheen. Subrounded gray gravel.		SW							
		8.3-10.0': Silty GRAVEL with sand (60% gravel, 20% s fine and coarse gravel, fine to coarse sand, tannish-bro odor, no sheen. Subrounded gray gravel.		GM	8: 8: 8: 8: 8: 8 8 8 8 8 8 8	100					Bentonite
								0.1	B33-10.0	x	

	Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft): NA								
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft): NA								
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA Y: NA								
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

		FARALLON		L	og	of I	Boriı	ng:	B-34		Ра	ge 1 of 1	
	ojec cati		Date/Time Started:12/6/19 @ 1345Date/Time Completed:12/6/19 @ 1410Equipment:Geoprobe 7800Drilling Company:Holt DrillingDrilling Foreman:Louie Ferner						Sampler Type: 5' MacrocoreDrive Hammer (Ibs.):AutoDepth of Water ATD (ft bgs):NETotal Boring Depth (ft bgs):10.0Total Well Depth (ft bgs):NA				
Lo	gge	ed By: Ken Scott	Drilling Method	1:	Dire	Direct Push							
Depth (feet bgs.)	Sample Interval	Lithologic Description	I	NSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ng/Well struction etails	
0		0.0-0.4': Asphalt (100% asphalt), black. Air Knife to 5 for utilities. 0.4-3.0': Well-graded SAND with silt and gravel (70% 20% gravel), fine to coarse sand, fine and coarse gra moist, no odor, no sheen. Subrounded gray gravel.	sand, 10% silt,	AC SW- SM		100						Asphalt	
5-		3.0-5.0': Well-graded SAND with silt and gravel (60% 30% gravel), fine to coarse sand, fine and coarse gra moist, no odor, no sheen. Subrounded gray gravel.		SW- SM				0.4	B34-3.0	x			
	-	5.0-7.5': Silty SAND with gravel (60% sand, 15% silt, fine to coarse sand, fine and coarse gravel, dark brow odor, no sheen. Subrounded gray gravel.	vn, moist, no	SM		100							
		 7.5-8.5': Well-graded SAND (90% sand, 5% silt, 5% g coarse sand, fine and coarse gravel, light-brown, more sheen. Subrounded gray gravel. 8.5-10.0': Silty GRAVEL with SAND (65% gravel, 20% sand), fine and coarse gravel, fine to coarse sand, ta odor, no sheen. Subangular gray, black and white gravel. 	st, no odor, no % silt, 15% n, moist, no	GW				0.1				Bentonite	
10 -								0.1	B34-10.0	x			

	Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA							
Casing Diameter (inches):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

		FARALLON CONSULTING		L	og	of I	Boriı	ng:	B-35		Pa	age 1 of 1
Pro Loc			Date/Time Started:12/19/19 @ 1130Date/Time Completed:12/19/19 @ 1155Equipment:Geoprobe 7822Drilling Company:Holt DrillingDrilling Foreman:Michael Running					Sampler Type: 5' MacrocoreDrive Hammer (Ibs.):AutoDepth of Water ATD (ft bgs):NETotal Boring Depth (ft bgs):9.0Total Well Depth (ft bgs):NA				
Lo	gge	d By: Ken Scott	Drilling Method	1:	Direct Push							
Depth (feet bgs.)	Sample Interval	Lithologic Description	ı	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
0		0.0-2.5': Concrete (100% concrete), blackish-white. (to clear for utilities.	Core to 2.5' bgs	СО		100						Asphalt
-		 2.5-3.5': Silty GRAVEL with SAND (60% gravel, 20% sand), fine and coarse gravel, fine to coarse sand, be odor, no sheen. Subangular gray gravel. 3.5-5.0': Silty SAND with gravel (60% sand, 20% silt, fine to coarse sand, fine and coarse gravel, light-brow odor, no sheen. Subrounded gray and black gravel. 	rown, moist, no , 20% gravel),	GM SM		100		0.0				
5-		5.0-8.5': Silty SAND with gravel (60% sand, 20% silt, fine to coarse sand, fine and coarse gravel, light-bro odor, no sheen. Subrounded gray and black gravel.		SM		100		2.5	B35-5.0			Bentonite
10 -		8.5-9.0': SILT with gravel (80% silt, 15% gravel, 5% s coarse gravel, fine and medium sand, light-brown, m sheen. Subangular gray gravel. Driller stated soil ver refusal at 9.0' bgs at two locations.	oist, no odor, no	ML				0.5	B35-9.0	x		

	Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA							
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

		FARALLON CONSULTING		Lo	og (of I	Borir	ng:	B-36		Ра	ge 1 of 1
Clie Pro Loc	ojec		Date/Time Start Date/Time Com Equipment: Drilling Compa	pleted	12/1 Geor		7822		Sampler Type: 5 Drive Hammer (I Depth of Water <i>I</i> Total Boring Dep	bs.): ATD (ft bgs)	
Fa	rall	on PN: 188-002	Drilling Forema Drilling Method			ael Ri ct Pus	unning		Total Well Depth	(ft b	gs): NA	N
Lo	gge	d By: Ken Scott		•		JI F US	II I	[1			
Depth (feet bgs.)	Sample Interval	Lithologic Description	ı	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ing/Well struction etails
0		0.0-3.5': Well-graded GRAVEL Fill (90% gravel, 5% fine and coarse gravel, fine to coarse sand, grayish- with ponded water from surface to 1.2' bgs, no odor, Subangular gray gravel. Hand auger to 3.5' bgs to cl	prown, moist no sheen.	GW		100		0.0				Soil
5-		 3.5-4.0': Asphalt (100% asphalt), black, 4.0-5.0': Silty SAND with gravel (60% sand, 20% silt, fine to coarse sand, fine and coarse gravel, brown, n sheen. Subrounded gray gravel. 5.0-15.0': Silty SAND with gravel (60% sand, 20% si fine to coarse sand, fine and coarse gravel, brown, n sheen. Subrounded gray gravel. 	noist, no odor, no lt, 20% gravel),	AC SM SM		100 100		0.0	B36-5.0	x		
		Shoon. Subjounded gray graves.						0.0	B36-10.0	x		Bentonite
- 15 -									B36-13.5 B36-121919-	x x		☑ Water level
								0.0	GW			

	Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA							
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	10-15	Boring Abandonment:	Bentonite	Unique Well ID: NA								

		FARALLON CONSULTING		Lo	bg	of E	Borir	ng:	B-37		Ρ	age 1 of 1	
Clie Pro Loc	jec	t: Woodworth Lakeview Facility on: 2800 104th St Ct S Lakewood	Date/Time Start Date/Time Com Equipment: Drilling Compa	pleted	12/1 Geo	9/19 @	e 7822 Depth of Water ATD (ft bgs)					Auto 5): 13.5	
Fa	rall		Drilling Forema Drilling Method			iael Ru ct Pusł	Ũ		Total Well Dept	h (ft	bgs): N	A	
Lo	gge	d By: Ken Scott			Dire		1		I				
Depth (feet bgs.)	Sample Interval	Lithologic Description		nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details	
0		0.0-1.9': Silty SAND with gravel Fill (60% sand, 20% s gravel), fine to coarse sand, fine and coarse gravel, gr moist, no odor, no sheen. Subrounded gray gravel. Ha 1.9' bgs to clear for utilities.	rayish-brown,	SM		100						Soil	
-	V	1.9-2.4': Asphalt (100% asphalt), black.		AC									
-		2.4-5.0': Silty SAND with gravel (65% sand, 20% silt, fine to coarse sand, fine and coarse gravel, gray, mois sheen. Subrounded gray gravel.		SM	• •			0.0					
5-		5.0-8.1': Silty SAND with gravel (65% sand, 20% silt, fine to coarse sand, fine and coarse gravel, gray, mois sheen. Subrounded gray gravel.		SM		100		0.0	B37-5.0	x			
-		8.1-8.6': Well-graded GRAVEL (95% gravel, 5% sand) coarse gravel, fine to coarse sand, dark gray, moist, n		GW								Bentonite	
-		sheen. Subangular gray and black gravel. 8.6-10.0': SILT with sand (80% silt, 20% sand), fine ar		ML									
10		sand, gray, moist, no odor, no sheen. 10.0-12.3': SILT with sand (80% silt, 20% sand), fine a sand, gray, moist, no odor, no sheen.		ML		100		0.0	B37-10.0	x			
-		12.3-13.4': Silty SAND with gravel (60% sand, 25% sil fine to coarse sand, fine and coarse gravel, dark gray, at 13.5' bgs, no odor, no sheen. Subrounded gray gra	, moist to wet vel.	SM				0.0	B37-13.0	x			
-		13.4-15.0': SILT with sand (60% silt, 25% sand, 15% g and medium sand, fine and coarse gravel, dark gray, v sheen.		ML								⊠ Water level	
15 –								0.0			للتين		

	Well Construction Information												
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA								
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA								
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA								
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA									

	FARALLON CONSULTING		L	bg	of E	Borir	ng:	B-38		P	age 1 of 1
	·····	Date/Time Star Date/Time Con Equipment: Drilling Compa Drilling Forema	npleted iny: an:	: 12/1 Geoj Holt Mich	probe Drilling ael Ru) 1505 7822) Inning		Sampler Type: Drive Hammer Depth of Water Total Boring De Total Well Dept	(Ibs.) ATD epth (: (ft bgs ft bgs)	Auto): 14.0 : 15.0
.ogge	ed By: Ken Scott	Drilling Method	1:	Direo	ct Pusł	ר					
Sample Interval	Lithologic Description	I	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
0	0.0-4.5': Silty GRAVEL with sand (60% gravel, 20% s fine and coarse gravel, fine to coarse sand, dark gray moist, no odor, no sheen. Subangular gray and black	/ish-brown,	GM	8:8:8:8:8:8:8:8:8:8:8:8	100		0.0				Soil
5	 4.5-5.0': Silty SAND with gravel (65% sand, 20% silt, fine to coarse sand, fine and coarse gravel, brown, m sheen. Subrounded and subangular gravel. 5.0-7.6': Silt SAND with gravel (65% sand, 20% silt, 7 fine to coarse sand, fine and coarse gravel, gray, mo sheen. Subrounded and subangular gravel. 	noist, no odor, no 15% gravel),	SM SM		100		0.0	B38-5.0	x		
	7.6-8.4': Well-graded GRAVEL (90% gravel, 5% silt, and coarse gravel, fine and coarse sand, gray, moist sheen. Subrounded and subangular gray gravel. 8.4-10.0': SILT with sand (80% silt, 20% sand), fine a sand, gray, moist, no odor, no sheen.	, no odor, no	GW ML								Bentonite
	 10.0-10.8': SILT with sand (80% silt, 20% sand), fine sand, gray, moist, no odor, no sheen. 10.8-11.8': Silty SAND with gravel (60% sand, 20% s fine to coarse sand, fine and coarse gravel, gray, mo sheen. Subrounded gray gravel. 11.8-14.0': Silty SAND (80% sand, 15% silt, 5% grav 	ilt, 20% gravel), ist, no odor, no el), fine and	ML SM SM		100		0.0	B38-10.0	x		
	medium sand, fine and coarse gravel, brown, moist to bgs, no odor, no sheen. Subrounded gray gravel. 14.0-15.0': SILT with gravel (80% silt, 15% gravel, 5% sand, fine and coarse gravel, gray, wet, no odor, no s	6 sand), fine	ML				0.0	B38-13.0	×		≭ Water Le
5							0.0				

Well Construction Information												
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA							
Casing Diameter (inches):	NA	Surface Seal:	Soil	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

	FARALLON CONSULTING		L	og	of E	Borir	ng:	B-39		Ра	ge 1 of 1
	ct: Woodworth Lakeview Facility ion: 2800 104th St Ct S, Lakewood	Date/Time Start Date/Time Com Equipment: Drilling Compa	pleted	: 12/2 Hand Holt	0/19 @ d Auge Drilling	er g		Sampler Type: I Drive Hammer (Depth of Water Total Boring De	lbs.): ATD pth ((ft bgs) ft bgs):	3.5
	Ion PN: 188-002 ed By: Ken Scott	Drilling Forema Drilling Method		Mich NA	ael Ru	inning		Total Well Dept	1 (IL I	bys). ™	,
Depth (feet bgs.)		ı	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ing/Well struction etails
	 0.0-0.4': Organic SILT (90% silt, 5% sand, 5% grave gravel, brown, moist, no odor, no sheen. Subrounde low plasticity. Forest duff surface with pine needles a 0.4-1.2': Silty SAND with gravel (60% sand, 20% silt fine to coarse sand, fine and coarse gravel, dark bro odor, no sheen. Subrounded gray gravel. 1.2-1.8': Silty SAND with gravel (60% sand, 20% silt fine to coarse sand, fine and coarse gravel, dark bro odor, no sheen. Subrounded gray gravel. Observe 4 rounded gray cobbles. 1.8-3.5': Silty SAND with gravel (50% sand, 30% gra fine to coarse sand, fine and coarse gravel, brown, n sheen. Subrounded gray gravel. Refusal at 3.5' bgs. 	d gray gravel, and moss. , 20% gravel), wn, moist, no , 20% gravel), wn, moist, no to 6-inch	OL SM SM		100		0.0	B39-1.0 B39-3.5	x		Soil

Well Construction Information												
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA							
Casing Diameter (inches):	NA	Surface Seal:	Soil	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

		FARALLON CONSULTING		Log	of	Borir	ng:	B-40		Ра	ge 1 of 1
Pro	ent ojec cati		Date/Time Started Date/Time Comple Equipment: Drilling Company	e ted: 12/ Ha		er		Sampler Type: N Drive Hammer (I Depth of Water / Total Boring Dep	bs.): ATD	(ft bgs)	
Fa	ral	lon PN: 188-002	Drilling Foreman:			unning		Total Well Depth	(ft b	ogs): NA	·
Lo	gge	ed By: Ken Scott	Drilling Method:	NA		1		T			
Depth (feet bgs.)	Sample Interval	Lithologic Description		USCS USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ng/Well struction etails
		0.0-2.3': Silty SAND with gravel Fill (60% sand, 15% gravel), fine to coarse sand, fine and coarse gravel, lodor, no sheen. Subrounded gray gravel.	orown, moist, no	SM			0.0	B40-2.0 B40-4.0	x		Soil

Well Construction Information												
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA							
Casing Diameter (inches):	NA	Surface Seal:	Soil	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

	FARALLON CONSULTING Log of					-41	Page	1 of 1	
	Woodworth Capital, Inc. Woodworth Lakeview Facility Lakewood, WA PN: 188-002	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman:	1/3/20 @1223 1/3/20 @1235 Backhoe Miles Ed	De Te Ex	epth o otal E xcava	of Wate xcavat tion Di	: Bucket er (ft bgs): ion Depth (ft bgs): ameter (ft): ce Elevation (ft):	NA 5.0 7.0 NA	
Logged E	3y: M. Gehring	Excavating Method:	Backhoe	B	ackfil	Mater	ial: Native Soil		
Depth (feet bgs) Sample Interval	Depth (feet bgs) Sample Interval Lithologic Description					PID (ppm)	Sample ID		Sample Analyzed

0		0.0-5.0': Well graded SAND with silt (80% sand, 10% silt, 10% gravel), fine to coarse sand, fine gravel, brown, moist, no odor, no sheen.	SW- SM	<u></u>		
		gravel, brown, moist, no odor, no sheen.	SM	<u></u>		
				⊡÷⊡		
-	1 /			. <u>.</u>		
				÷÷÷		
				⊡÷⊡		
				<u></u>		
	I V			÷÷÷		
	1 1			.÷.⊡		
				<u></u>		
				\vdots		
	L A			⊡÷⊡		
				÷÷÷		
	1//			<u></u>		
	$ \rangle$.÷		
				÷Ξ÷		
				- <u>-</u>		
				⊡÷⊡		
-	1/ \					
				<u>. </u>		
				.÷⊡		
				<u></u>		
5-						
0					B-41-5.0	X
-	4					
-	-					
-	-					
-	ł					
10 _						
··· _	J				I	-

FARALLON CONSULTING	CONSULTING					Page	1 of 1	
Client:Woodworth Capital, Inc.Project:Woodworth Lakeview FacilityLocation:Lakewood, WAFarallon PN: 188-002Logged By:M. Gehring	Do To Ex Gi	epth o otal E xcava round	of Wate xcavat tion Di	: Bucket er (ft bgs): ion Depth (ft bgs): ameter (ft): ce Elevation (ft): ial: Native Soil	NA 5.0 7.0 NA			
Depth (feet bgs) Sample Interval Tithologic De	USCS	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed		

	0	0.0-5.0': Well graded SAND with silt (80% sand, 10% silt, 10% gravel), fine to coarse sand, fine gravel, brown, moist, no odor, no sheen.	SW- SM	<u></u> .		
		gravel, brown, moist, no odor, no sheen.	SM	<u></u>		
				÷÷÷		
				i i i i i		
	-11 /			÷Ξ÷		
				<u></u>		
				<u></u>		
				÷Ξ÷		
				÷±÷		
	- 11			⊡÷⊡		
	I V			÷÷÷:		
				÷Ξ÷		
				. <u>.</u>		
				<u></u>		
	- //			<u></u>		
				\vdots		
				<u>i</u> ÷i		
				<u></u>		
				÷÷÷		
	-1/ \			÷±÷:		
				÷÷÷:		
				<u>.</u> ÷		
				÷÷÷:		
	5			<u></u>		
	Ũ				B-42-5.0	X
	-					
	1					
	1					
	-					
10	10					

FARALLON CONSULTING	CONSULTING					Page	1 of 1	
Client:Woodworth Capital, Inc.Date/Time Started:1/3/20 @1247Project:Woodworth Lakeview FacilityDate/Time Completed:1/3/20 @1250Location:Lakewood, WAEquipment:BackhoeFarallon PN: 188-002Excavation Foreman:EdLogged By:M. GehringBackhoe					of Wate xcavat tion Di I Surfa	: Bucket er (ft bgs): ion Depth (ft bgs): ameter (ft): ce Elevation (ft): ial: Native Soil	NA 5.0 7.0 NA	
Depth (feet bgs) Sample Interval Tithologic De	uscs	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed		

0		0.0-5.0': Well graded SAND with silt (80% sand, 10% silt, 10% gravel), fine to coarse sand, fine gravel, brown, moist, no odor, no sheen.	SW- SM			
		gravel, brown, moist, no odor, no sheen.	SM			
				<u></u>		
	1 1					
-	11 /			÷Ξ÷		
				÷÷÷÷		
				<u></u>		
-	11			⊡÷⊡		
	I V			±÷±		
				÷Ξ÷		
				. <u>.</u>		
	ΙA			<u></u>		
-	1 //			<u></u>		
				<u></u>		
				÷÷÷		
-	1/ \					
				- <u>-</u>		
5-				<u></u> .		
Ũ					B-43-5.0	X
-	+					
-	1					
-	1					
-	{					
10 _						

		FARALLON		Lo	og (of I	Boriı	ng: MW-9A	F	Page 1 of 6	
Clie Pro Loc	ojec		Date/Time Started: Date/Time Completed: Equipment: Drilling Company:					Drive Hammer (Ib CC Depth of Water A	Sampler Type: 10' Core BarrelDrive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):32.0, 23.0Total Boring Depth (ft bgs):115.0		
Fa	rall	lon PN: 188-002	Drilling Foreman:			Rodri	guez	Total Well Depth	Total Well Depth (ft bgs): 32.0		
Lo	gge	ed By: Elise Bugge	Drilling Method	l:	Soni	0					
Depth (feet bgs.)	Sample Interval	Lithologic Descriptior	1	nscs	USCS Graphic	% Recovery	PID (ppm)	Sample ID		ring/Well Istruction Details	
0		0.0-3.0': Poorly graded SAND with silt (80% sand, 10% gravel), fine sand, brown, dry to moist.	6 silt, 10%	SP- SM		80				Flush monument in concrete	
5-		3.0-6.0': Silty SAND with gravel (70% sand, 15% silt, 1 sand, fine and coarse gravel, brown, moist.	5% gravel), fine	SM							
-		6.0-8.0': Silty SAND (80% sand, 20% silt), fine sand, t 8.0-10.0': No Recovery	vrown, moist.	SM			0.2				
10		10.0-15.5': Silty SAND with gravel (60% sand, 25% sil fine sand, brown, moist, no odor, trace wood debris.	t, 15% gravel),	SM		100		MW-9A-10.0 (Soil)		Bentonite	
15		15.5-20.0': Well-graded SAND with gravel (70% sand, fine to coarse sand, fine and coarse gravel, brown, dry odor, brick debris, asphalt debris, and white/yellow pov present.	to moist, no	SP			0.1			Casing Sand pack	

		Well Constructi	on Information						
Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM									
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM				
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:				
Screened Interval (ft bgs):	22.0-32.0	Boring Abandonment:	NA	Unique Well ID: BLZ-465					

		FARALLON		Lo	og (of I	Borin	ig: MW-9A		Page 2 of 6
Proj	Client: Woodworth Capital Inc. Project: Woodworth Lakeview Facility Location: Lakewood, WA		Date/Time Com Equipment:	te/Time Started: te/Time Completed: uipment: Iling Company:			910 300 TSI 150 (Drive Hammer (I CC Depth of Water A	Sampler Type: 10' Core Drive Hammer (Ibs.): Depth of Water ATD (ft Total Boring Depth (ft t	
		on PN: 188-002 d By: Elise Bugge	Drilling Forema Drilling Method		Rico Sonio	Rodri c	guez	Total Well Depth	n (ft l	ogs): 32.0
epth (I	Sample Interval	Lithologic Description	n	uscs	USCS Graphic	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
		20.0-22.5': Silty SAND (60% sand, 35% silt, 5% grave sand, brownish gray, moist, no odor.	l), fine to coarse	SM		100	0.1	MW-9A-20.0 (Soil)		

	sand, brownish gray, moist, no odor.		100	0.1	WW-9A-20.0 (30h)	
	22.5-24.5': Sandy SILT (60% silt, 40% sand), fine sand, gray, moist, no odor.	ML				∽ Water Level After Stabilization
25	24.5-26.5': Silty SAND (60% sand, 35% silt, 5% gravel), fine to coarse sand, gray, moist, no odor.	SM				
30	 26.5-30.0': Silty SAND with gravel (70% sand, 15% gravel, 15% silt), fine to coarse sand, fine and coarse gravel, grayish brown, moist, no odor.	SM				PVC screen
	30.0-32.5': Well-graded SAND with silt and gravel (60% sand, 30% gravel, 10% silt), fine to coarse sand, fine and coarse gravel, brownish gray, wet, no odor, trace white powder debris at 30.0-31.0'.	SW- SM	100	2.1 0.6	MW-9A-30.0 (Soil) MW-9A-32.0 (Soil)	×
	32.5-40.0': Well-graded SAND with gravel (70% sand, 30% gravel), fine to coarse sand, fine and coarse gravel, brown, dry, no odor.	SW			MW-9A-32.0 (GW)	Water Level
35						Bentonite
					MW-9A-35.0 (Soil)	
40	1					

Well Construction Information									
Monument Type: Flush		Filter Pack:	12/20 Sand	Ground Surface Elevation (ft):	NM				
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM				
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:				
Screened Interval (ft bgs):	22.0-32.0	Boring Abandonment:	NA	Unique Well ID: BLZ-465					

•	FARALLON CONSULTING		L	og	of I	Borin	g: MW-9A		Page 3 of 6	
Client: Woodworth Capital Inc. Project: Woodworth Lakeview Facility Location: Lakewood, WA Farallon PN: 188-002		Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman:		1/4/2021 0910 1/5/2021 1300 Terrasonic TSI 150 CC Cascade Rico Rodriguez			Drive Hammer (C Depth of Water Total Boring De	Sampler Type: 10' Core E Drive Hammer (Ibs.): Depth of Water ATD (ft b Total Boring Depth (ft bg Total Well Depth (ft bgs)		
Logged	By: Elise Bugge	Drilling Method:	:	Soni	с					
Depth (feet bgs.) Sample Interval	Lithologic Description	n	USCS	USCS Graphic	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	

45	40.0-45.0': Poorly graded SAND (95% sand, 5% silt), fine sand, grayish brown, moist, no odor.	SP	100		MW-9A-40.0 (Soil)	
2	45.0-49.0': Sandy SILT (90% silt, 10% sand), grayish brown, wet at 45.0' then dry at 48.0', no odor.	ML	100			
50 -	49.0-55.0': Well-graded SAND with gravel (60% sand, 40% gravel), fine to coarse sand, fine and coarse gravel, grayish brown, dry to moist, no odor.	SW		1.3	MW-9A-50.0 (Soil)	Bentonite
55	55.0-64.0': Well-graded SAND with silt and gravel (50% sand, 40% gravel, 10% silt), fine to coarse sand, fine and coarse gravel, grayish brown, moist to wet, no odor.	SW	90		MW-9A-55.0 (GW)	

	Well Construction Information										
Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM											
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs): 22.0-32.0 Boring Abandonment: NA Unique Well ID: BLZ-465											

		7	FARALLON		L	og	of	Borir	n g: MW-9A	Page 4 of 6
Pro Loo	Client: Woodworth Capital Inc. Project: Woodworth Lakeview Facility Location: Lakewood, WA Farallon PN: 188-002			Date/Time Start Date/Time Com Equipment: Drilling Compa Drilling Forema	pleted:	1/4/2021 0910 d: 1/5/2021 1300 Terrasonic TSI 150 CC Cascade Rico Rodriguez			Sampler Type: 10' C Drive Hammer (Ibs.): CC Depth of Water ATD Total Boring Depth (Total Well Depth (ft I	: Auto (ft bgs): 32.0, 23.0 ft bgs): 115.0
Lo	gge	ed By:	Elise Bugge	Drilling Method	:	Soni	С			
Depth (feet bgs.)	Sample Interval		Lithologic Description	n	nscs	USCS Graphic	% Recovery	PID (ppm)	Samble ID Sample Analyzed	Boring/Well Construction Details

65	64.0-65.0': No Recovery 65.0-74.5': Well-graded GRAVEL with sand (60% gravel, 40% sand), fine and coarse gravel, fine to coarse sand, grayish brown, moist to wet, no odor, charcoal debris at 70.0'.	GW	No No No No	95	0.7	MW-9A-60.0 (Soil)	
						MW-9A-70.0 (Soil)	Bentonite
75	74.5-75.0': No Recovery 75.0-80.0': Well-graded SAND with gravel (70% sand, 30% gravel), fine to coarse sand, fine and coarse gravel, grayish brown, moist to wet, no odor.	SW		100		MW-9A-75.0 (GW)	

	Well Construction Information										
Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM											
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	22.0-32.0	Boring Abandonment:	NA	Unique Well ID: BLZ-465							

	FARALLON		L	og	of I	3orin	g: MW-9A		Page 5 of 6
Client Projec Locat		Date/Time Starte Date/Time Comp Equipment: Drilling Compan	pleted	: 1/5/2	asonic		Sampler Type: 1 Drive Hammer (II CC Depth of Water A Total Boring Dep	os.): \TD (ft bg	Auto s): 32.0, 23.0
Faral	lon PN: 188-002	Drilling Forema			Rodrig	guez	Total Well Depth	(ft bgs):	32.0
Logg	ed By: Elise Bugge	Drilling Method:		Sonio	C				
Depth (feet bgs.) Sample Interval	Lithologic Descriptior	1	nscs	USCS Graphic	% Recovery	PID (ppm)	Sample ID		oring/Well nstruction Details
	80.0-85.0': Well-graded GRAVEL (90% gravel, 10% sc coarse gravel, grayish brown, wet, no odor. 85.0-95.0': Well-graded GRAVEL with sand (70% gravel, fine and coarse gravel, coarse sand, grayish brown, methics and coarse gravel, sand the sand sand sand sand sand sand sand sand	/el, 30% sand), bist, no odor.	GW		100	0.7	MW-9A-80.0 (Soil) MW-9A-90.0 (Soil) MW-9A-95.0 (GW)		Bentonite

	Well Construction Information										
Monument Type: Flush	Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM										
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	22.0-32.0	Boring Abandonment:	NA	Unique Well ID: BLZ-465							

		FARALLON		L	og	of I	Borir	ng: MW-9A	Page 6 of 6
Pro		Woodworth Capital Inc. Woodworth Lakeview Facility on: Lakewood, WA	Date/Time Start Date/Time Com Equipment: Drilling Compa	pleted:	1/5/2	asonic		Sampler Type: 10' Core Drive Hammer (Ibs.): CC Depth of Water ATD (ft Total Boring Depth (ft	Auto t bgs): 32.0, 23.0
		on PN: 188-002 d By: Elise Bugge	Drilling Forema Drilling Method		Rico Soni	Rodri c	guez	Total Well Depth (ft bg	s): 32.0
Depth (feet bgs.)	Sample Interval	Lithologic Description	ı	nscs	USCS Graphic	% Recovery	PID (mpg)	Sample ID Sample Juarks	Boring/Well Construction Details

105	102.0-105.0': Well-graded GRAVEL (90% gravel, 10% sand), fine and coarse gravel, brownish gray, moist to wet, no odor. 105.0-107.0': Well-graded GRAVEL (90% gravel, 10% sand), fine and	GW	95	0.4	MW-9A-100.0 (Soil) MW-9A-102.0 (GW)	
	coarse gravel, brownish gray, moist to wet, no odor. 107.0-110.5': Well-graded SAND with gravel (80% sand, 20% gravel), fine and coarse gravel, fine to coarse sand, brownish gray, moist to	sw	90			
110 -	wet, no odor.				MW-9A-110.0 (Soil)	Bentonite
115	110.5-115.0': Well-graded GRAVEL (90% gravel, 10% sand), fine and coarse gravel, coarse sand, brownish gray, moist to wet, no odor.	GW				
				0.3	MW-9A-115.0 (GW)	

	Well Construction Information										
Monument Type: Flush	Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM										
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	oncrete Top of Casing Elevation (ft): N							
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	Screened Interval (ft bgs): 22.0-32.0 Boring Abandonment: NA Unique Well ID: BLZ-465										

		FARALLON		L	og	of	Boring	I: MW-9C)	Page 1 of 6
Clic Pro	oje		Date/Time Star Date/Time Com Equipment: Drilling Compa	pleted	02/1	8/202 [,] asonic	1 @ 915 1 @ 1053 : TSI 150 CC	Sampler Type: Drive Hammer Depth of Water Total Boring De	(Ibs.): ATD (ft	Auto bgs): 32.0
Fa	ral	llon PN: 188-002	Drilling Forema			Rodri	guez	Total Well Dept	h (ft bg:	s): 119
Lo	gg	ed By: Emi Smith	Drilling Methoo	ı:	Soni	с 	1			
Depth (feet bgs.)	Sample Interval	Lithologic Descriptior	1	nscs	USCS Graphic	% Recovery	PID (ppm)	Sample ID		Boring/Well Construction Details
0		0.0-3.0': Poorly graded SAND with silt (80% sand, 10% gravel), fine sand, brown, dry to moist.	6 silt, 10%	SP- SM		80				Monument
5-		3.0-6.0': Silty SAND with gravel (70% sand, 15% silt, 1 sand, fine and coarse gravel, brown, moist.	5% gravel), fine	SM						Bentonite
		6.0-8.0': Silty SAND (80% sand, 20% silt), fine sand, b	prown, moist.	SM						
	-	8.0-10.0': No Recovery								
10 -		10.0-15.5': Silty SAND with gravel (60% sand, 25% sil fine sand, brown, moist, no odor, trace wood debris.	t, 15% gravel),	SM		100		(GW)		
20_		15.5-20.0': Well-graded SAND with gravel (70% sand, fine to coarse sand, fine and coarse gravel, brown, dry odor, brick debris, asphalt debris, white/yellow powder	to moist, no	SP						Casing

	Well Construction Information										
Monument Type: Flush	Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM										
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	109-119	Boring Abandonment:	NA	Unique Well ID: BLC-380							

		FARALLON		L	og (of I	Boring:	MW-9E)	Page 2 of 6
Pro	ent ojec cati		Date/Time Corr Equipment:	Date/Time Completed:0Equipment:TDrilling Company:C		8/2021	1 @ 915 1 @ 1053 5 TSI 150 CC	Sampler Type: Drive Hammer Depth of Water Total Boring De	Auto 9 gs): 32.0	
Fa	ral	lon PN: 188-002	Drilling Forema Drilling Method		Rico Soni	Rodri	guez	Total Well Dept	th (ft bgs)	: 119
Lo	gge	ed By: Emi Smith		J.			1			
Depth (feet bgs.)	Sample Interval	Lithologic Description	1	USCS	USCS Graphic	% Recovery	(mqq) DIA	Sample ID		Boring/Well onstruction Details
		20.0-22.5': Silty SAND (60% sand, 35% silt, 5% grave sand, brownish gray, moist, no odor.	I), fine to coarse	SM		100				
		22.5-24.5': Sandy SILT (60% silt, 40% sand), fine san no odor.	d, gray, moist,	ML						
25 -		24.5-26.5': Silty SAND (60% sand, 35% silt, 5% grave sand, gray, moist, no odor.	I), fine to coarse	SM						
		26.5-30.0': Silty SAND with gravel (70% sand, 15% gr fine to coarse sand, fine and coarse gravel, grayish bro odor.		SM						Bentonite
30 -		30.0-32.5': Well-graded SAND with silt and gravel (60 gravel, 10% silt), fine to coarse sand, fine and coarse gray, wet, no odor, trace white powder debris at 30.0-3	gravel, brownish	SW- SM		100				≭ Water Level
35 -		32.5-40.0': Well-graded SAND with gravel (70% sand, fine to coarse sand, fine and coarse gravel, brown, dry		SW						ATD

	Well Construction Information										
Monument Type: Flush	Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM										
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	109-119	Boring Abandonment:	NA	Unique Well ID: BLC-380							

		FARALLON		L	bg	of l	Boring:	MW-9E)	Page 3 of 6
Clic Pro	ojec		Date/Time Star Date/Time Con Equipment: Drilling Compa	pleted:	02/1	8/2021 asonic	@ 915 @ 1053 TSI 150 CC	Sampler Type: Drive Hammer Depth of Water Total Boring Do	(lbs.): ATD (f	Auto t bgs): 32.0
		lon PN: 188-002	Drilling Forema Drilling Method		Rico Soni	Rodri c	guez	Total Well Dept	th (ft bg	js): 119
Lo	gge	ed By: Emi Smith	5		<u> </u>					
Depth (feet bgs.)	Sample Interval	Lithologic Descriptior	1	USCS	USCS Graphic	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
		40.0-45.0': Poorly graded SAND (95% sand, 5% silt), grayish brown, moist, no odor.	fine sand,	SP		100				PVC screen
45 -		45.0-49.0': Sandy SILT (90% silt, 10% sand), grayish 45.0' then dry at 48.0', no odor.	brown, wet at	ML		100				
50 -		49.0-55.0': Well-graded SAND with gravel (60% sand, fine to coarse sand, fine and coarse gravel, grayish bro moist, no odor.	40% gravel), own, dry to	SW						Bentonite
55 -		55.0-64.0': Well-graded SAND with silt and gravel (50' gravel, 10% silt), fine to coarse sand, fine and coarse of brown, moist to wet, no odor.		SW		90				Water Level

	Well Construction Information										
Monument Type: Flush	Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM										
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	Screened Interval (ft bgs): 109-119 Boring Abandonment: NA Unique Well ID: BLC-380										

	FARALLON CONSULTING	L	.og	of	Boring:	MW-9D		F	Page 4 of 6
Client Proje Locat		Date/Time Started: Date/Time Complete Equipment: Drilling Company:	1: 02/1 Terr	8/202	1 @ 915 1 @ 1053 c TSI 150 CC	Sampler Type: 1 Drive Hammer (I Depth of Water / Total Boring De	bs.): ATD (ft bgs	Auto): 32.0
Fara	llon PN: 188-002	Drilling Foreman:		Rodri	iguez	Total Well Depth	n (ft b	gs): 1	19
Logg	ed By: Emi Smith	Drilling Method:	Son						
Depth (feet bgs.) Sample Interval	Lithologic Description	n soss	USCS Graphic	% Recovery	PID (mqq) OI A	Sample ID	Sample Analyzed	Cor	ring/Well Istruction Details
	64.0-65.0": No Recovery 65.0-74.5": Well-graded GRAVEL with sand (60% gra fine and coarse gravel, fine to coarse sand, grayish browet, no odor, charcoal debris at 70.0". 74.5-75.0": No Recovery 75.0-80.0": Well-graded SAND with gravel (70% sand fine to coarse sand, fine and coarse gravel, grayish browet, no odor.	own, moist to , 30% gravel), SW		95					Bentonite

	Well Construction Information										
Monument Type: Flush	Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM										
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	109-119	Boring Abandonment:	NA	Unique Well ID: BLC-380							

	FARALLON CONSULTING	Lo	og o	f Boı	ring:	MW-9[D	Page 5 of 6
Clier Proje Loca		Date/Time Started: Date/Time Completed: Equipment: Drilling Company:	02/18/2	onic TSI 1	053	Sampler Type Drive Hammer Depth of Wate Total Boring D	ˈ(lbs.): r ATD (Auto ft bgs): 32.0
Fara	llon PN: 188-002	Drilling Foreman:		odriguez		Total Well Dep	oth (ft b	gs): 119
Log	ged By: Emi Smith	Drilling Method:	Sonic					
Depth (feet bgs.)	Lithologic Description	l SCS D	USCS Graphic	% recovery PID (ppm)		Sample ID	Sample Analyzed	Boring/Well Construction Details
85 - - - - - - - - - - - - - - - - - - -	80.0-85.0': Well-graded GRAVEL (90% gravel, 10% saccoarse gravel, grayish brown, wet, no odor. 85.0-95.0': Well-graded GRAVEL with sand (70% gravel, fine and coarse gravel, coarse sand, grayish brown, methics and coarse gravel, brownish gray, moist to wet, no odor.	rel, 30% sand), bist, no odor.		70				Bentonite

		Well Constructi	Well Construction Information									
Monument Type: Flush	Monument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM											
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM							
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:							
Screened Interval (ft bgs):	109-119	Boring Abandonment:	NA	Unique Well ID: BLC-380								

		FARALLON		L	og	of	Borir	ng: MW-9D	Page 6 of 6
Pro Lo	Client: Woodworth Capital Inc. Project: Woodworth Lakeview Facility Location: Lakewood, WA Farallon PN: 188-002		Date/Time Start Date/Time Com Equipment: Drilling Compar Drilling Forema	pleted: ny:	leted: 02/18/2021 @ 1053 Terrasonic TSI 150 CC y: Cascade			•): Auto D (ft bgs): 32.0 (ft bgs): 120
Lo	gge	d By: Emi Smith	Drilling Method	:	Soni	с			
Depth (feet bgs.)	Sample Interval	Lithologic Description	ו	USCS	USCS Graphic	% Recovery	PID (ppm)	Sample ID Sample Sample Sample ID	Details

105	102.0-105.0': Well-graded GRAVEL (90% gravel, 10% sand), fine and coarse gravel, brownish gray, moist to wet, no odor.	GW	Up Con		
	105.0-107.0': Well-graded GRAVEL (90% gravel, 10% sand), fine and coarse gravel, brownish gray, moist to wet, no odor.	GW	95 0 2 2 0 4 0 4 0	(GW)	Bentonite
-	107.0-110.5': Well-graded SAND with gravel (80% sand, 20% gravel), fine and coarse gravel, fine to coarse sand, brownish gray, moist to wet, no odor.	SW			Sand pack
115	110.5-115.0': Well-graded GRAVEL (90% gravel, 10% sand), fine and coarse gravel, coarse sand, brownish gray, moist to wet, no odor.	GW	2202020202020 27020202020		
					Well Screen

	Well Construction Information										
Monument Type: Flush	Anonument Type: Flush Filter Pack: 12/20 Sand Ground Surface Elevation (ft): NM										
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	Screened Interval (ft bgs): 109-119 Boring Abandonment: NA Unique Well ID: BLC-380										

		FARALLON		Lo	og -	of E	Borin	1g: MW-9F	२	Pa	ige 1 of 1
Pro	ent: ojec cati		Date/Time Completed: 1 Equipment:		12/20/19 @ 1129 12/20/19 @ 1330 Terra Sonic TC-150 HOLT Drilling			Drive Hammer Depth of Wate	Sampler Type: 5' CorebarrelDrive Hammer (Ibs.):AutDepth of Water ATD (ft bgs):17.1Total Boring Depth (ft bgs):25.1		
Fa	rall	on PN: 188-002	Drilling Forema			ur Wis	ehart	Total Well Dep	oth (ft bgs): 25	.0
Lo	gge	d By: R. Ostrom / M. Gehring	Drilling Method	:	Soni	c,					
Depth (feet bgs.)	Sample Interval	Lithologic Description		nscs	USCS Graphic	% Recovery	(mqq) OI9	Sample ID		ons	ing/Well struction Details
0		0.0-3.0': Silty SAND with gravel Fill (60% sand, 20% sil fine to coarse sand, fine to coarse gravel, brown, moist, sheen. Subrounded to subangular gray gravel. Air Knife clear for utilities.	no odor, no	SM		100					Monument Concrete
		 3.0-5.0': Well-graded GRAVEL with sand and silt (50% sand, 10% silt), fine to coarse sand, fine and coarse gramoist, no odor, no sheen. Subrounded gray gravel. Subcobles. 5.0-10.0': Well-graded GRAVEL with sand and silt (50° sand, 10% silt), fine to coarse sand, fine and coarse gramoist, no odor, no sheen. Subrounded gray gravel. 	avel, brown, prounded gray % gravel, 40%	GW- GM GW- GM		100	0.2				Bentonite
- 10 - -		10.0-13.0': Well-graded GRAVEL with sand and silt (60 sand, 10% silt), fine to coarse sand, fine and coarse gra moist, no odor, no sheen. Subrounded gray gravel. Sub cobbles.	avel, brown,	GW- GM		100	1.9				
- 15		 13.0-15.0": Well-graded SAND with gravel and silt (65% gravel,10% silt), fine to coarse sand, fine and coarse gr moist, no odor, no sheen. Subrounded gray gravel. 15.0-17.0": Well-graded SAND with gravel and silt (65% gravel,10% silt), fine to coarse sand, fine and coarse gr 	avel, brown, 6 sand, 25%	SW- SM SW- SM		100	0.4				Sand
-		moist, no odor, no sheen. Subrounded gray gravel. 17.0-20.0': Gravelly SILT (60% silt, 30% gravel,10% sa fine and coarse gravel, gray, wet, no odor, no sheen. Su gravel.	nd), fine sand,	ML							∽ Water Level
20 -		20.0-22.0': Gravelly SILT (60% silt, 30% gravel,10% sa fine and coarse gravel, gray, moist, no odor, no sheen. gray gravel.		ML		100	1.0				Screen
-		22.0-25.0': Gravelly SILT with sand (55% silt, 30% grav fine sand, fine and coarse gravel, gray, dry, no odor, no Subrounded gray gravel.		ML							
25 -							1.3				End Cap

		Well Constructi	on Information								
Monument Type: Morris	Monument Type: Morris Filter Pack: 10/20 Sand Ground Surface Elevation (ft): NA										
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA						
Screened Interval (ft bgs):	15 to 25	Boring Abandonment:	NA	Unique Well ID: BME-520							

		FARALLON		Lo	og -	of E	Borin	ig: MW-16	ŝR	Pa	age 1 of 2	
Pro	ent: ojec cati	ct: Woodworth Lakeview Facility	Date/Time Started:12/19/19 @ 1520Date/Time Completed:12/20/19 @ 1035Equipment:Terra Sonic TC-19Drilling Company:HOLT Drilling			ᡚ 1035 c TC-150	35 Drive Hammer (Ibs.): Auto			: 31.0		
Fa	ral	lon PN: 188-002	Drilling Foreman:			ur Wis	-	Total Well Dep	Total Well Depth (ft bgs): 38.5			
Lo	gge	ed By: R. Ostrom / M. Gehring	Drilling Method	:	Soni	c						
Depth (feet bgs.)	Sample Interval	Lithologic Description		nscs	USCS Graphic	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction Details	
0	-	0.0-3.0': Silty SAND with gravel Fill (60% sand, 20% sill fine to coarse sand, fine to coarse gravel, brown, moist, sheen. Subrounded to subangular gray gravel. Air Knife clear for utilities.	no odor, no	SM	· · · · · · · · · · · · · · · · · · ·	100					Monument Concrete	
5-		3.0-5.0': Well-graded GRAVEL with sand and silt (50% sand, 10% silt), fine to coarse sand, fine and coarse gra moist, no odor, no sheen. Subrounded gray gravel. Subroubles.	avel, brown, rounded gray	GW- GM	0000							
		5.0-10.0': Well-graded GRAVEL with sand and silt (50% sand, 10% silt), fine to coarse sand, fine and coarse gra moist, no odor, no sheen. Subrounded gray gravel.		GW- GM		100	0.4					
10 -		10.0-15.0': Well-graded GRAVEL with sand and silt (60 sand, 10% silt), fine to coarse sand, fine and coarse gra moist, no odor, no sheen. Subrounded gray gravel. Sub cobbles.	avel, brown,	GW- GM	0000000000	100	0.6					
15 -		15.0-20.0': Well-graded SAND with gravel and silt (65% gravel,10% silt), fine to coarse sand, fine and coarse gra moist, no odor, no sheen. Subrounded gray gravel and o	avel, brown,	SW- SM		100	0.3				Bentonite	

		Well Constructi	on Information		
Monument Type: Morris		Filter Pack:	10/20 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	28.5 to 38.5	Boring Abandonment:	NA	Unique Well ID: BME-519	

		FARALLON		L	og -	of I	Borir	וg: MW-16F		age 2 of 2
Clie Pro Loc	ojec	need an oran oup tout, mor	Date/Time Start Date/Time Com Equipment: Drilling Compa	pleted:	12/20 Terra	0/19 🥡	c TC-150	Sampler Type: 5' Drive Hammer (Ib Depth of Water A Total Boring Dep	s.): TD (ft bgs	Auto): 31.0
Fa	ral	lon PN: 188-002	Drilling Forema			ur Wis	ehart	Total Well Depth	(ft bgs): 3	8.5
Lo	gge	ed By: R. Ostrom / M. Gehring	Drilling Method	•	Soni	c				
Depth (feet bgs.)	Sample Interval	Lithologic Descriptior	1	USCS	USCS Graphic	% Recovery	PID (mqq) DIA	Sample ID	Vert Con	ring/Well struction Details
-		20.0-22.0': Gravelly SILT (60% silt, 30% gravel,10% sa fine and coarse gravel, gray, moist, no odor, no sheen. gray gravel.		ML		100	0.4			
-		20.0-24.0': Well-graded SAND with gravel and silt (65% gravel,10% silt), fine to coarse sand, fine and coarse g wet, no odor, no sheen. Subrounded gray gravel.		SW- SM						
25 -		22.0-25.0': Gravelly SILT with sand (55% silt, 30% gra fine sand, fine and coarse gravel, gray, dry, no odor, no Subrounded gray gravel.	o sheen.	ML		100	0.7			
	/	24.0-25.0': Gravelly SILT (60% silt, 30% gravel,10% si fine gravel, gray, wet, no odor, no sheen. Subrounded		GM						
-		25.0-30.0': Silty GRAVEL (60% gravel, 30% silt, 10% coarse sand, fine and coarse gravel, brown, wet, no oc Subrounded gray gravel.			X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:					Sand
30 -		30.0-35.0': Silty GRAVEL (60% gravel, 30% silt, 10% coarse sand, fine and coarse gravel, brown, wet, no oc Subrounded gray gravel.	sand), fine to or, no sheen.	GM	8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:	100	0.8			모 Water Level
35 -		35.0-40.0': Well-graded SAND with gravel and silt (70 ⁴ gravel,10% silt), fine to coarse sand, fine and coarse g no odor, no sheen. Subrounded gray gravel.		SW- SM		100	0.7			Screen
- - 40										End Cap

		Well Constructi	on Information								
Monument Type: Morris	Aonument Type: Morris Filter Pack: 10/20 Sand Ground Surface Elevation (ft): NA										
Casing Diameter (inches):	Casing Diameter (inches): 2.0 Surface Seal: Concrete Top of Casing Elevation (ft): NA										
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA						
Screened Interval (ft bgs):	28.5 to 38.5	Boring Abandonment:	NA	Unique Well ID: BME-519							

		FARALLON		L	og	of I	Borin	g: MW-36	,)	Page 1 of 1
	jec atio	t: Woodworth Lakeview Facility on: Lakewood, WA	Equipment: Drilling Compa	02/18/2021 @ 1130 I: 02/18/2021 @ 1520 Terrasonic TSI 150 CC Cascade			Drive Hammer C Depth of Water Total Boring D	Sampler Type: 5' Core Barre Drive Hammer (Ibs.): C Depth of Water ATD (ft bgs) Total Boring Depth (ft bgs): Total Well Depth (ft bgs): 16		
	Farallon PN: 188-002 Logged By: Emi Smith		3			Rodri c	guez	l otal Well Dep	in (π ε	ogs): 16.5
Depth (feet bgs.)	Sample Interval	Lithologic Description	n	nscs	USCS Graphic	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		0.0-0.5': Asphalt. Hand clear to 5.0' bgs to clear for ut 0.5-5.0': Well-graded GRAVEL with sand (60% grave to coarse sand, fine and coarse gravel, brown, moist,	l, 40% sand), fine	AS GW		100				Monument Bentonite

5	5.0-10.0': Well-graded GRAVEL with sand (60% gravel, 40% sand), fine to coarse sand, fine and coarse gravel, brown, moist, no odor.	GW	100	0.0	MW-36-5.0	x	Casing
- 10 -	10.0-10.5': Silty SAND with gravel (70% sand, 15% silt, 15% gravel), fine to coarse sand, fine gravel, brown, moist, no odor.	SM GW-	100	0.0	MW-36-10.0	x	Sand Pack Screen
	10.5-15.0': Well-graded GRAVEL with silt and sand (50% gravel, 40% sand, 10% silt), fine to coarse sand, fine and coarse gravel, grayish brown, dry, no odor.	GM					Σ
- 61	15.0-16.5': Silty SAND with gravel (65% sand, 20% silt, 15% gravel), fine to caorse sand, fine gravel, gray, wet, no odor.	SM SW-	100	20.0	MW-36-15.0	x	Water Level
-	16.5-20.0': Well-graded SAND with silt and gravel (65% sand, 25% gravel, 10% silt), fine to coarse sand, fine gravel, grayish brown, moist, no odor.	SW- SM					Bentonite
20 -				0.0	MW-36-20.0	x	

Well Construction Information											
Monument Type: Flush		Filter Pack:	12/20 Sand	Ground Surface Elevation (ft):	NM						
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NM						
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location: X:	Y:						
Screened Interval (ft bgs):	6.5-16.5	Boring Abandonment:	NA	Unique Well ID: BLC 380							

ATTACHMENT C WORKSHEETS FOR SITE-SPECIFIC GROUNDWATER CLEANUP LEVELS

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

Farallon PN: 188-002

(Method B only) WAC 17	3-340-720			_						TEST CU	URRENT	CONDITI	ON	
1. Enter Site Information										Measured	TPH GW C	Conc, ug/L =	301.775	
Date:	1/12/2021												5.819E-01	
Site Name:	Woodworth La		ty 188-002;V	PH and EPH d	ata analysis;	ND = zero out							6.110E-06	
Sample info:	<u>GW sample: M</u>	<u>W-9R</u>								=		Pass or Fail?	Pass	
2. Enter Ground Water Concentra	tion Measured		(Notes for Data	a Entry									
			Cur	rent Condi	tion		Adjusted	Condition						
		GW			D	CIW C			n	CALCULATE	PROTEC	TIVE CO	NDITION	
Chemical of Concern	Measured GW Conc	Cleanup	HQ	RISK	Pass or Fail?	GW Conc being tested	HQ	RISK	Pass or Fail?	This tool allows the user to calcula ground water concentration based	te a protectiv	re TPH		
or EC Group		Level				8				water quality criteria. The Workbo	ok uses the s	same Ca	alculate Prot	
	ug/L	ug/L	unitless	unitless		ug/L	unitless	unitless		composition ratio as for the measu	ired data.		TPH GW C	onc
Petroleum EC Fraction														
AL_EC >5-6	25		1.84E-03			4.17E+04	3.06E+00			Selected Criterion: To	otal Risk = 11	E-5		
AL_EC >6-8	25		1.84E-03			4.17E+04	3.06E+00			Most Stringent?	YES			
AL_EC >8-10	25]	1.04E-01			4.17E+04	1.74E+02			Protective	e TPH GW (Conc, ug/L =	493.93	
AL_EC >10-12	25	1	1.04E-01			4.17E+04	1.74E+02					HI =	9.52E-01	
AL_EC >12-16	25		5.21E-02			4.17E+04	8.68E+01					RISK =	1.00E-05	
AL_EC >16-21	25		7.81E-04			4.17E+04	1.30E+00							
AL_EC >21-34	25		7.81E-04			4.17E+04	1.30E+00			SUMMARY OF PRO	TECTIVE	GW CONC	ENTRATIC	NS
AR_EC >8-10	25		3.13E-02			4.17E+04	5.21E+01			Protective GW TPH Conc, ug/L	-		493.93	
AR_EC >10-12	25		1.56E-01			4.17E+04	2.60E+02			Most Stringent Criterion		Т	otal Risk = 1	E-5
AR_EC >12-16	25		3.13E-02			4.17E+04	5.21E+01				Most	GW TPH,	DIGIT O	
AR_EC >16-21	25		5.21E-02			4.17E+04	8.68E+01			Ground Water Criteria	Stringent?	ug/L	RISK @	HI @
AR_EC >21-34	25		3.91E-02			4.17E+04	6.51E+01			HI = 1	NO	5.19E+02	1.05E-05	1.00E+00
Benzene	0.1	5	3.13E-03	1.26E-07		1.67E+02	5.21E+00	2.10E-04	Fail	Total Risk = 1E-5	YES	4.94E+02	1.00E-05	9.52E-01
Toluene	0.5	1000	7.81E-04			8.33E+02	1.30E+00			Total Risk = 1E-6	YES	4.94E+01	1.00E-06	9.52E-02
Ethylbenzene	0.1	700	1.25E-04			1.67E+02	2.08E-01			Benzene MCL = 5 ug/L	NO	1.51E+04	3.05E-04	2.91E+01
Total Xylenes	0.6	1000	3.75E-04			1.00E+03	6.25E-01			MTBE = 20 ug/L	NA	NA	NA	NA
Naphthalene	0.0475	160	2.97E-04			7.92E+01	4.95E-01			Risk of cPAHs = 1E-5	NO	5.04E+02	1.02E-05	9.72E-01
1-Methyl Naphthalene	0.0475		1.19E-04			7.92E+01	1.98E-01			Toluene =1000 ug/L	NO	6.04E+05	1.22E-02	1.16E+03
2-Methyl Naphthalene	0.0475		1.48E-03			7.92E+01	2.47E+00			Ethylbenzene = 700 ug/L	NO	2.11E+06	4.28E-02	4.07E+03
n-Hexane										Total Xylenes = 1000 ug/L	NO	5.03E+05	1.02E-02	9.70E+02
MTBE		20												
Ethylene Dibromide (EDB)		0.01												
1,2 Dichloroethane (EDC)		5								TEST AD	JUSTED	CONDITI	ION	
Benzo(a)anthracene	0.0475	for		3.96E-07	for	7.92E+01		6.60E-04	for	This tool allows the user to test wh			T	
Benzo(b)fluoranthene	0.0475	all		3.96E-07	all	7.92E+01		6.60E-04	all	soil concentration is protective of human health. The Test Adjusted Workbook uses the same composition ratio as for the TPH GW Conc				
Benzo(k)fluoranthene	0.0475	cPAHs		3.96E-07	cPAHs	7.92E+01		6.60E-04	cPAHs	measured data.				
Benzo(a)pyrene	0.0475	Risk =		3.96E-06		7.92E+01		6.60E-03	Fail	Teste	d TPH GW	Conc, ug/L=		
Chrysene	0.0475	1E-05		3.96E-08		7.92E+01		6.60E-05				HI=		
Dibenz(a,h)anthracene	0.0475	1		3.96E-07	Σ Risk=	7.92E+01		6.60E-04	Σ Risk=			RISK=		
Indeno(1,2,3-cd)pyrene	0.0475	1		3.96E-07	5.98E-06	7.92E+01		6.60E-04	9.97E-03		P	ass or Fail?		
Sum	301.775		5.82E-01	6.11E-06		5.03E+05	9.70E+02	1.02E-02	Fail	•				

(Method B only) WAC 17	3-340-720									TEST	CURRENT	CONDITI	ON	
1. Enter Site Information										Measur	ed TPH GW	Conc, $ug/L =$	478.47575	
Date:	<u>1/12/2021</u>												7.786E-01	
Site Name:	Woodworth La		ity 188-002;V	PH and EPH d	ata analysis;	ND = zero out							7.241E-07	
Sample info:	<u>GW sample: M</u>	<u>W-13</u>										Pass or Fail?	Pass	
Enter Ground Water Concentration Measured Notes for Data Entry														
			Cur	rent Condi	tion		Adjusted	Condition						
		GW				anta				CALCULAT	E PROTEC	TIVE CO	NDITION	
Chemical of Concern	Measured GW Conc	Cleanup	HQ	RISK	Pass or Fail?	GW Conc being tested	HQ	RISK	Pass or Fail?	This tool allows the user to calc ground water concentration bas	ulate a protecti	ve TPH		
or EC Group	Cone	Level			I un.	being tested			T un.	water quality criteria. The Work	book uses the	same C	alculate Prot	
	ug/L	ug/L	unitless	unitless		ug/L	unitless	unitless		composition ratio as for the mea	asured data.		TPH GW C	onc
Petroleum EC Fraction														
AL_EC >5-6	25]	1.84E-03			4.17E+04	3.06E+00			Selected Criterion:	HI = 1			
AL_EC >6-8	25		1.84E-03			4.17E+04	3.06E+00			Most Stringent?	YES			
AL_EC >8-10	25	1	1.04E-01			4.17E+04	1.74E+02			Protec	tive TPH GW	Conc, ug/L =	614.50	
AL_EC >10-12	25	1	1.04E-01			4.17E+04	1.74E+02					HI =	1.00E+00	
AL_EC >12-16	25		5.21E-02			4.17E+04	8.68E+01					RISK =	9.30E-07	
AL_EC >16-21	25		7.81E-04			4.17E+04	1.30E+00				*****			
AL_EC >21-34	72		2.25E-03			1.20E+05	3.75E+00			SUMMARY OF PI	ROTECTIVE	GW CONC	ENTRATIC	NS
AR_EC >8-10	25		3.13E-02			4.17E+04	5.21E+01			Protective GW TPH Conc, u	g/L		614.50	
AR_EC >10-12	25		1.56E-01			4.17E+04	2.60E+02			Most Stringent Criterion			HI = 1	
AR_EC >12-16	25		3.13E-02			4.17E+04	5.21E+01				Most	GW TPH,	DIGILO	TH O
AR_EC >16-21	25		5.21E-02			4.17E+04	8.68E+01			Ground Water Criteria	Stringent?	ug/L	RISK @	HI @
AR_EC >21-34	150		2.34E-01			2.50E+05	3.91E+02			HI = 1	YES	6.15E+02	9.30E-07	1.00E+00
Benzene	0.1	5	3.13E-03	1.26E-07		1.67E+02	5.21E+00	2.10E-04	Fail	Total Risk = 1E-5	NO	6.61E+03	1.00E-05	1.08E+01
Toluene	0.5	1000	7.81E-04			8.33E+02	1.30E+00			Total Risk = 1E-6	NO	6.61E+02	1.00E-06	1.08E+00
Ethylbenzene	0.1	700	1.25E-04			1.67E+02	2.08E-01			Benzene MCL = 5 ug/L	NO	2.39E+04	3.62E-05	3.89E+01
Total Xylenes	0.6	1000	3.75E-04			1.00E+03	6.25E-01			MTBE = 20 ug/L	NO	1.91E+03	2.90E-06	3.11E+00
Naphthalene	0.0475	160	2.97E-04			7.92E+01	4.95E-01			Risk of cPAHs = 1E-5	NO	8.00E+03	1.21E-05	1.30E+01
1-Methyl Naphthalene	0.0475		1.19E-04			7.92E+01	1.98E-01			Toluene =1000 ug/L	NO	9.57E+05	1.45E-03	1.56E+03
2-Methyl Naphthalene	0.0475		1.48E-03			7.92E+01	2.47E+00			Ethylbenzene = 700 ug/L	NO	3.35E+06	5.07E-03	5.45E+03
n-Hexane										Total Xylenes = 1000 ug/L	NO	7.97E+05	1.21E-03	1.30E+03
MTBE	5	20				8.33E+03			Fail					
Ethylene Dibromide (EDB)		0.01												
1,2 Dichloroethane (EDC)		5								TEST A	ADJUSTED	CONDIT	ION	
Benzo(a)anthracene	0.00475	for		3.96E-08	for	7.92E+00		6.60E-05	for	This tool allows the user to test			T	·
Benzo(b)fluoranthene	0.00475	all		3.96E-08	all	7.92E+00		6.60E-05	all	soil concentration is protective of Workbook uses the same comp			Test Ad TPH GW	
Benzo(k)fluoranthene	0.00475	cPAHs		3.96E-08	cPAHs	7.92E+00		6.60E-05	cPAHs	measured data.				
Benzo(a)pyrene	0.00475	Risk =		3.96E-07		7.92E+00		6.60E-04	Fail	Te	sted TPH GW	Conc, ug/L=		
Chrysene	0.00475	1E-05		3.96E-09		7.92E+00		6.60E-06				HI=		
Dibenz(a,h)anthracene	0.00475	1		3.96E-08	Σ Risk=	7.92E+00		6.60E-05	Σ Risk=			RISK=		
Indeno(1,2,3-cd)pyrene	0.00475	1		3.96E-08	5.98E-07	7.92E+00		6.60E-05	9.97E-04		I	Pass or Fail?		
Sum	478.47575	1	7.79E-01	7.24E-07		7.97E+05	1.30E+03	1.21E-03	Fail					

(Method B only) WAC 17	3-340-720									TEST	CURRENT	CONDITI	ION	
1. Enter Site Information										Measur	ed TPH GW	Conc, ug/L =	369.485	
Date:	1/12/2021												6.316E-01	
Site Name:	Woodworth La		ty 188-002;V	PH and EPH d	ata analysis;	ND = zero out							7.556E-07	
Sample info: <u>GW sample: MW-16R</u>										Pass or Fail?	Pass			
2. Enter Ground Water Concentra	tion Measured		(Notes for Dat	a Entry									
			Cur	rent Condi	tion		Adjusted	Condition						
		GW			D	CIV C			P	CALCULAT	E PROTEC	CTIVE CO	NDITION	
Chemical of Concern	Measured GW Conc	Cleanup	HQ	RISK	Pass or Fail?	GW Conc being tested	HQ	RISK	Pass or Fail?	This tool allows the user to calc ground water concentration bas	culate a protecti	ve TPH		
or EC Group	cone	Level			1 441 1	being tested			1	water quality criteria. The Wor	kbook uses the	same C	alculate Prot	
	ug/L	ug/L	unitless	unitless		ug/L	unitless	unitless		composition ratio as for the me	asured data.		TPH GW C	onc
Petroleum EC Fraction		_												
AL_EC >5-6	25		1.84E-03			4.17E+04	3.06E+00			Selected Criterion:	: HI = 1			
AL_EC >6-8	25		1.84E-03			4.17E+04	3.06E+00			Most Stringent?	YES			
AL_EC >8-10	25		1.04E-01			4.17E+04	1.74E+02			Protec	ctive TPH GW	Conc, ug/L =	585.04	
AL_EC >10-12	25		1.04E-01			4.17E+04	1.74E+02					HI =	1.00E+00	
AL_EC >12-16	25		5.21E-02			4.17E+04	8.68E+01					RISK =	1.20E-06	
AL_EC >16-21	25		7.81E-04			4.17E+04	1.30E+00							
AL_EC >21-34	62		1.94E-03			1.03E+05	3.23E+00			SUMMARY OF P	ROTECTIVE	GW CONC	ENTRATIC	ONS
AR_EC >8-10	25		3.13E-02			4.17E+04	5.21E+01			Protective GW TPH Conc, ug/L 585.04				
AR_EC >10-12	25		1.56E-01			4.17E+04	2.60E+02			Most Stringent Criterion			HI = 1	
AR_EC >12-16	25		3.13E-02			4.17E+04	5.21E+01			Ground Water Criteria	Most	GW TPH,	RISK @	HI @
AR_EC >16-21	25		5.21E-02			4.17E+04	8.68E+01			Glound water Chieria	Stringent?	ug/L	KISK @	111 @
AR_EC >21-34	56		8.75E-02			9.33E+04	1.46E+02			HI = 1	YES	5.85E+02	1.20E-06	1.00E+00
Benzene	0.1	5	3.13E-03	1.26E-07		1.67E+02	5.21E+00	2.10E-04	Fail	Total Risk = 1E-5	NO	4.89E+03	1.00E-05	8.36E+00
Toluene	0.5	1000	7.81E-04			8.33E+02	1.30E+00			Total Risk = 1E-6	YES	4.89E+02	1.00E-06	8.36E-01
Ethylbenzene	0.1	700	1.25E-04			1.67E+02	2.08E-01			Benzene MCL = 5 ug/L	NO	1.85E+04	3.78E-05	3.16E+01
Total Xylenes	0.6	1000	3.75E-04			1.00E+03	6.25E-01			MTBE = 20 ug/L	NA	NA	NA	NA
Naphthalene	0.05	160	3.13E-04			8.33E+01	5.21E-01			Risk of cPAHs = 1E-5	NO	5.87E+03	1.20E-05	1.00E+01
1-Methyl Naphthalene	0.05		1.25E-04			8.33E+01	2.08E-01			Toluene =1000 ug/L	NO	7.39E+05	1.51E-03	1.26E+03
2-Methyl Naphthalene	0.05		1.56E-03			8.33E+01	2.60E+00			Ethylbenzene = 700 ug/L	NO	2.59E+06	5.29E-03	4.42E+03
n-Hexane										Total Xylenes = 1000 ug/L	NO	6.16E+05	1.26E-03	1.05E+03
MTBE		20												
Ethylene Dibromide (EDB)		0.01												
1,2 Dichloroethane (EDC)		5								TEST	ADJUSTED	CONDIT	ION	
Benzo(a)anthracene	0.005	for		4.17E-08	for	8.33E+00		6.95E-05	for	This tool allows the user to test			Test Ad	instad
Benzo(b)fluoranthene	0.005	all		4.17E-08	all	8.33E+00		6.95E-05	all	soil concentration is protective of human health. The Workbook uses the same composition ratio as for the TPH GW Conc				
Benzo(k)fluoranthene	0.005	cPAHs		4.17E-08	cPAHs	8.33E+00		6.95E-05	cPAHs	measured data.				
Benzo(a)pyrene	0.005	Risk =		4.17E-07		8.33E+00		6.95E-04	Fail	Te	ested TPH GW	Conc, ug/L=		
Chrysene	0.005	1E-05		4.17E-09		8.33E+00		6.95E-06				HI=		
Dibenz(a,h)anthracene	0.005			4.17E-08	Σ Risk=	8.33E+00		6.95E-05	Σ Risk=			RISK=		
Indeno(1,2,3-cd)pyrene	0.005			4.17E-08	6.30E-07	8.33E+00		6.95E-05	1.05E-03]	Pass or Fail?		
Sum	369.485	•	6.32E-01	7.56E-07		6.16E+05	1.05E+03	1.26E-03	Fail	1				

(Method B only) WAC 17	3-340-720									TEST	CURRENT	CONDITI	ION	
1. Enter Site Information										Measu	red TPH GW	Conc, ug/L =	1866.487	
Date:	<u>1/12/2021</u>												2.337E+00	
Site Name:	Woodworth La		ty 188-002;VI	PH and EPH d	ata analysis;	ND = zero out							7.723E-07	
Sample info:	GW sample: SV	<u>/E-5</u>								-		Pass or Fail?	Fail	
2. Enter Ground Water Concentra	tion Measured		(Notes for Dat	a Entry									
			Cur	rent Condi	tion		Adjusted	Condition						
		GW			D	CIV C			P	CALCULAT	E PROTEC	CTIVE CO	NDITION	
Chemical of Concern	Measured GW Conc	Cleanup	HQ	RISK	Pass or Fail?	GW Conc being tested	HQ	RISK	Pass or Fail?	This tool allows the user to calc ground water concentration bas	culate a protecti	ve TPH		
or EC Group	Cone	Level			T un.	being tested			T un.	water quality criteria. The Wor	kbook uses the	same C	alculate Prot	
	ug/L	ug/L	unitless	unitless		ug/L	unitless	unitless		composition ratio as for the me	asured data.		TPH GW C	onc
Petroleum EC Fraction														
AL_EC >5-6	25		1.84E-03			4.17E+04	3.06E+00			Selected Criterion	: HI = 1			
AL_EC >6-8	25		1.84E-03			4.17E+04	3.06E+00			Most Stringent?	YES			
AL_EC >8-10	25		1.04E-01			4.17E+04	1.74E+02			Protec	ctive TPH GW	Conc, ug/L =	798.68	
AL_EC >10-12	85		3.54E-01			1.42E+05	5.90E+02					HI =	1.00E+00	
AL_EC >12-16	420		8.75E-01			7.00E+05	1.46E+03					RISK =	3.30E-07	
AL_EC >16-21	470		1.47E-02			7.83E+05	2.45E+01							
AL_EC >21-34	340		1.06E-02			5.67E+05	1.77E+01			SUMMARY OF P	ROTECTIVE	GW CONC	ENTRATIC	ONS
AR_EC >8-10	25		3.13E-02			4.17E+04	5.21E+01			Protective GW TPH Conc, ug/L 798.68				
AR_EC >10-12	25		1.56E-01			4.17E+04	2.60E+02			Most Stringent Criterion HI = 1				
AR_EC >12-16	110		1.38E-01			1.83E+05	2.29E+02			Coursed Western Crittenia	Most	GW TPH,	RISK @	HI @
AR_EC >16-21	290		6.04E-01			4.83E+05	1.01E+03			Ground Water Criteria	Stringent?	ug/L	KISK @	HI @
AR_EC >21-34	25		3.91E-02			4.17E+04	6.51E+01			HI = 1	YES	7.99E+02	3.30E-07	1.00E+00
Benzene	0.1	5	3.13E-03	1.26E-07		1.67E+02	5.21E+00	2.10E-04	Fail	Total Risk = 1E-5	NO	2.42E+04	1.00E-05	3.03E+01
Toluene	0.5	1000	7.81E-04			8.33E+02	1.30E+00			Total Risk = 1E-6	NO	2.42E+03	1.00E-06	3.03E+00
Ethylbenzene	0.1	700	1.25E-04			1.67E+02	2.08E-01			Benzene MCL = 5 ug/L	NO	9.33E+04	3.86E-05	1.17E+02
Total Xylenes	0.6	1000	3.75E-04			1.00E+03	6.25E-01			MTBE = 20 ug/L	NA	NA	NA	NA
Naphthalene	0.05	160	3.13E-04			8.33E+01	5.21E-01			Risk of cPAHs = 1E-5	NO	2.89E+04	1.19E-05	3.61E+01
1-Methyl Naphthalene	0.05		1.25E-04			8.33E+01	2.08E-01			Toluene =1000 ug/L	NO	3.73E+06	1.54E-03	4.67E+03
2-Methyl Naphthalene	0.05		1.56E-03			8.33E+01	2.60E+00			Ethylbenzene = 700 ug/L	NO	1.31E+07	5.41E-03	1.64E+04
n-Hexane]								Total Xylenes = 1000 ug/L	NO	3.11E+06	1.29E-03	3.89E+03
MTBE	0	20												
Ethylene Dibromide (EDB)		0.01												
1,2 Dichloroethane (EDC)		5								TEST	ADJUSTED	CONDIT	ION	
Benzo(a)anthracene	0.005	for		5.84E-08	for	1.17E+01		9.73E-05	for	This tool allows the user to test			Test 4-1	instad
Benzo(b)fluoranthene	0.005	all		4.17E-08	all	8.33E+00		6.95E-05	all	soil concentration is protective of human health. The Test Adjusted Workbook uses the same composition ratio as for the TPH GW Conc				
Benzo(k)fluoranthene	0.005	cPAHs		4.17E-08	cPAHs	8.33E+00		6.95E-05	cPAHs	measured data.				
Benzo(a)pyrene	0.005	Risk =		4.17E-07		8.33E+00		6.95E-04	Fail	Te	ested TPH GW	Conc, ug/L=		
Chrysene	0.005	1E-05		4.17E-09		8.33E+00		6.95E-06				HI=		
Dibenz(a,h)anthracene	0.005	1		4.17E-08	Σ Risk=	8.33E+00		6.95E-05	Σ Risk=			RISK=		
Indeno(1,2,3-cd)pyrene	0.005	1		4.17E-08	6.47E-07	8.33E+00		6.95E-05	1.08E-03]	Pass or Fail?		
Sum	1866.487		2.34E+00	7.72E-07	Fail	3.11E+06	3.89E+03	1.29E-03	Fail					

ATTACHMENT D WELL LOG FOR INDUSTRIAL SUPPLY WELL

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

Farallon PN: 188-002

19/3E-6F

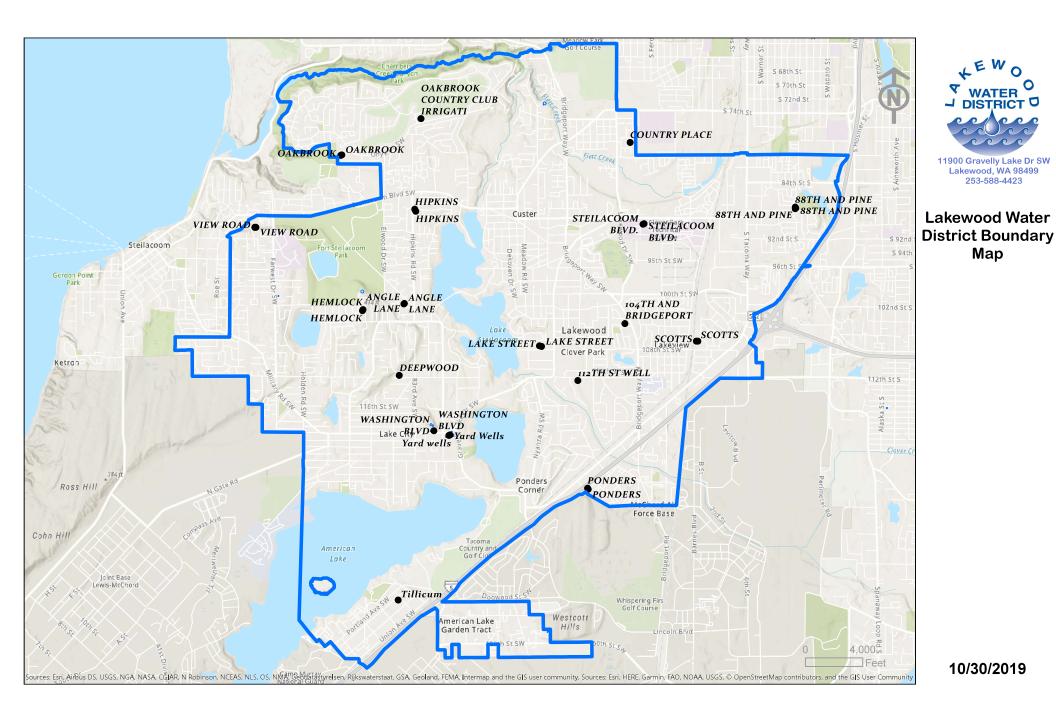
WOODWORTH WELL LOG

DRILLED BY BICHARDSON WELL DRILLING (RATH) SEPT.-OCT. 1969

LOCATED ON STEILACOOM GRAVEL EXCAVATION---IN PIT BUT NOT AT MAXIMUM DEPTH OF PIT.

12-INCH

Sand, gravel, some clay - Brown	0 - 47'
Sand and gravel, water - Brown	~ 47 - 70'
Gray sand and gravel	
Gray sandy clay	70 - 83'
Gray sand	83 - 91'
-	91 - 101'
Brown sand with some clay	101-105'
Gray sand and gravel - water	105-110'
Brown sand and gravel - water	110-130'
Brown hardpan	130-133'
Gray hardpan	133-134'
Gray cemented sand	134-150'
Green cemented sand and gravel	
Brown sand and gravel	150- 164
Brown hardpan	164-187'
erenn nurupan	@ 187'


Screen: 20-slot 167-182' 50-slot 182-187' Shoe approx 170' Shoe approx 170' Static water level 40' 190 gpm @ PWL 161' Q/s = 1.6

Later perforated 107-129'} Static water level 40.5' 503 gpm @ PWL 61.6' Q/s = 24

ATTACHMENT E LAKEWOOD WATER DISTRICT DOCUMENTATION

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

Farallon PN: 188-002

♥ ▲ https://fortress.wa.gov/doh/eh/portal/odw/si/ViewSampleDetail.aspx?SamId=3806243&Src=07&TP=29

(←) → ⊂' ଢ

Division of Environmental Health Office of Drinking Water

View Sample Detail - WSID 45550C - LAK	EWOOD WATER DISTRICT
Collect Date	6/21/2019
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	06684
Source	07
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	g1 ss
Sample Type	Post-Treatment / Finished

and the second se						
Analyte DOH						
Num	Analyte Name	Result Range	Result Quantity	Maximum Contaminant Level	State Reporting Limit	Units
0027	CHLOROFORM	σ	0.5000		0.5000	ug/L
0028	BROMODICHLOROMETHANE	LT	0.5000		0.5000	ug/L
0029	DIBROMOCHLOROMETHANE	σ	0.5000		0.5000	ug/L
0030	BROMOFORM	μ	0.5000		0.5000	ug/L
0045	VINYL CHLORIDE	υ	0.5000	2.0000	0.5000	ug/L
0046	1,1 DICHLOROETHYLENE	UT	0.5000	7.0000	0.5000	ug/L
0047	1,1,1 TRICHLOROETHANE	u ا	0.5000	200.0000	0.5000	ug/L
0048	CARBON TETRACHLORIDE	u	0.5000	5.0000	0.5000	ug/L
0049	BENZENE	υ	0.5000	5.0000	0.5000	ug/L
0050	1,2 DICHLOROETHANE	LT	0.5000	5.0000	0.5000	ug/L
0051	TRICHLOROETHYLENE	ជ	0.5000	5.0000	0.5000	ug/L
0052	1,4 DICHLOROBENZENE	រេ	0.5000	75.0000	0.5000	ug/L
0053	CHLOROMETHANE	u	0.5000		0.5000	ug/L
0054	BROMOMETHANE	u	0.5000		0.5000	ug/L
0056	METHYLENE CHLORIDE(DICHLOROMETHANE)	រេ	0.5000	5.0000	0.5000	ug/L
0057	TRANS- 1,2 DICHLOROETHYLENE	u	0.5000	100.0000	0.5000	ug/L
0058	1,1 DICHLOROETHANE	ιτ	0.5000		0.5000	ug/L
0060	CIS- 1,2 DICHLOROETHYLENE	ιτ	0.5000	70.0000	0.5000	ug/L
0062	1,1 DICHLOROPROPENE	ιτ	0.5000		0.5000	ug/L
0063	1,2 DICHLOROPROPANE	ιτ	0.5000	5.0000	0.5000	ug/L
0064	DIBROMOMETHANE	σ	0.5000		0.5000	ug/L
0066	TOLUENE	ιτ	0.5000	1000.0000	0.5000	ug/L
0067	1,1,2 TRICHLOROETHANE	υ	0.5000	5.0000	0.5000	ug/L
0068	TETRACHLOROETHYLENE	σ	0.5000	5.0000	0.5000	ug/L
0070	1,3 DICHLOROPROPANE	ប	0.5000		0.5000	ug/L

		٥	×
111		0	≡
			^
	_		
Help			

♥ ▲ https://fortress.wa.gov/doh/eh/portal/odw/si/ViewSampleDetail.aspx?SamId=3806243&Src=07&TP=29

(←) → ⊂' @

Division of Environmental Health Office of Drinking Water

View Sample Detail - WSID 45550C - LAKE	EWOOD WATER DISTRICT
Collect Date	6/21/2019
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	06684
Source	07
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	g1 ss
Sample Type	Post-Treatment / Finished

•						
Analyte DOH Num	Analyte Name	Result Range	Result Quantity	Maximum Contaminant Level	State Reporting Limit	Units
0071	CHLOROBENZENE		0.5000			ug/L
0072	1,1,1,2 TETRACHLOROETHANE		0.5000			ug/L
0073	ETHYLBENZENE					ug/L
0074	M/P XYLENES (MCL FOR TOTAL)		0.5000			ug/L
0075	O- XYLENE (MCL FOR TOTAL)		0.5000			ug/L
0076	STYRENE					ug/L
0078	BROMOBENZENE		0.5000			ug/L
0079	1,2,3 TRICHLOROPROPANE		0.5000			ug/L
0080	1,1,2,2 TETRACHLOROETHANE		0.5000			ug/L
0081	O- CHLOROTOLUENE		0.5000			ug/L
0082	P- CHLOROTOLUENE		0.5000			ug/L
0083	M- DICHLOROBENZENE		0.5000			ug/L
0084	1,2 DICHLOROBENZENE					ug/L
0085	TRICHLOROFLUOROMETHANE		0.5000			ug/L
0086	BROMOCHLOROMETHANE		0.5000			ug/L
0087	ISOPROPYLBENZENE		0.5000			ug/L
0088	N-PROPYLBENZENE		0.5000			ug/L
0089	1,3,5 TRIMETHYLBENZENE		0.5000			ug/L
0089	TERT- BUTYLBENZENE		0.5000			
0090	1,2,4 TRIMETHYLBENZENE		0.5000			ug/L
0091	SEC- BUTYLBENZENE		0.5000			ug/L
			0.5000			ug/L
0093	P-ISOPROPYLTOLUENE					ug/L
0094			0.5000			ug/L
0095	1,2,4 TRICHLOROBENZENE					ug/L
0096	NAPHTHALENE	LT	0.5000		0.5000	ug/L

		٥	×
111		0	≡
			^
	_		
Help			

■ https://fortress.wa.gov/doh/eh/portal/odw/si/ViewSampleDetail.aspx?SamId=3806243&Src=07&TP=29

) -> C' 🏠

 (\leftarrow)

Division of Environmental Health **Office of Drinking Water**

View Sample Detail - WSID 45550C - LAKEWOOD W	ATER DISTRICT
Collect Date	6/21/2019
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	06684
Source	07
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	g1 ss
Sample Type	Post-Treatment / Finished

Analyte DOH				
Num	Analyte Name	Result Range	Result Quantity	Maximum Contamin
0097	HEXACHLOROBUTADIENE	ជ	0.5000	
0098	1,2,3 TRICHLOROBENZENE	LT	0.5000	
010 <mark>4</mark>	DICHLORODIFLUOROMETHANE	υ	0.5000	
0154	1,3 DICHLOROPROPENE	ιτ	0.5000	
0160	TOTAL XYLENES	ιτ	0.5000	10000.0000
0427	EDB (screening)	u	0.5000	
0428	DBCP (screening)	μ	0.5000	
0031	TOTAL TRIHALOMETHANE	ND		80.0000
No				

Records 51 - 58 of 58

Home Page | Find Water Systems | Find Water Quality | Downloads/Reports

DOH Home | Community and Environment | Drinking Water Home | Drinking Water Contacts Access Local Health | Privacy Notice | Disclaimer/Copyright Information

Links to external resources are provided as a public service and do not imply endorsement by the Washington State Department of Health

Department of Health, Office of Drinking Water

Street Address:

243 Israel Road S.E. 2nd floor Tumwater, WA 98501

Mail: PO BOX 47822 Olympia, WA 98504-7822

Send inquiries about DOH and its programs to the Health Consumer Assistance Office Comments or questions regarding this Web site? Send email to Environmental Health Application Testing and Support or call 888-457-2467. For technical issues with this website send email to DOH IT Service Desk or call 360-236-4357.

			- 0 ×
		▣ … ⊵ ☆	II\ ⊡ ⊖ ≡
			^
			Help
ninant Level	State Reporting Limit	Units	
initialit Level	0.5000	ug/L	
	0.5000	ug/L	

ug/L

ug/L

ug/L

ug/L

mg/L ug/L

0.5000

0.5000

0.5000

0.5000

0.5000

 $(\leftarrow) \rightarrow \bigcirc \bigcirc$ **M1**11111111 ♥ ▲ https://fortress.wa.gov/doh/eh/portal/odw/si/ViewSampleDetail.aspx?SamId=3493847&Src=11&TP=29

Division of Environmental Health Office of Drinking Water

View Sample Detail - WSID 45550C - LAK	EWOOD WATER DISTRICT
Collect Date	8/18/2017
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	77193
Source	11
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	88th/pine j-1 sample point
Sample Type	Post-Treatment / Finished

Analyte DOH						14.4.5
Num	Analyte Name	Result Range	Result Quantity	Maximum Contaminant Level	State Reporting Limit	Units
0027	CHLOROFORM	EQ	1.3000		0.5000	ug/L
0031	TOTAL TRIHALOMETHANE	EQ	1.3000	80.0000		ug/L
0028	BROMODICHLOROMETHANE	ជ	0.5000		0.5000	ug/L
0029	DIBROMOCHLOROMETHANE	ប	0.5000		0.5000	ug/L
0030	BROMOFORM	LT	0.5000		0.5000	ug/L
0045	VINYL CHLORIDE	ι τ	0.5000	2.0000	0.5000	ug/L
0046	1,1 DICHLOROETHYLENE	ព	0.5000	7.0000	0.5000	ug/L
0047	1,1,1 TRICHLOROETHANE	u	0.5000	200.0000	0.5000	ug/L
0048	CARBON TETRACHLORIDE	ι τ	0.5000	5.0000	0.5000	ug/L
0049	BENZENE	LT	0.5000	5.0000	0.5000	ug/L
0050	1,2 DICHLOROETHANE	ព	0.5000	5.0000	0.5000	ug/L
0051	TRICHLOROETHYLENE	UT	0.5000	5.0000	0.5000	ug/L
0052	1,4 DICHLOROBENZENE	LT	0.5000	75.0000	0.5000	ug/L
0053	CHLOROMETHANE	UT	0.5000		0.5000	ug/L
0054	BROMOMETHANE	ព	0.5000		0.5000	ug/L
0056	METHYLENE CHLORIDE(DICHLOROMETHANE)	u	0.5000	5.0000	0.5000	ug/L
0057	TRANS- 1,2 DICHLOROETHYLENE	IT	0.5000	100.0000	0.5000	ug/L
0058	1,1 DICHLOROETHANE	LT	0.5000		0.5000	ug/L
0060	CIS- 1,2 DICHLOROETHYLENE	u	0.5000	70.0000	0.5000	ug/L
0063	1,2 DICHLOROPROPANE	u	0.5000	5.0000	0.5000	ug/L
0066	TOLUENE	LT	0.5000	1000.0000	0.5000	ug/L
0067	1,1,2 TRICHLOROETHANE	u	0.5000	5.0000	0.5000	ug/L
0068	TETRACHLOROETHYLENE	UT	0.5000	5.0000	0.5000	ug/L
0071	CHLOROBENZENE	U	0.5000	100.0000	0.5000	ug/L
0072	1, 1, 1, 2 TETRACHLOROETHANE	LT	0.5000		0.5000	ug/L

Records 1 - 25 of 46

_	ð	×
•) ii	≡
		^
Help		

(←) → C' @

♥ ▲ https://fortress.wa.gov/doh/eh/portal/odw/si/ViewSampleDetail.aspx?SamId=3493847&Src=11&TP=29

Washington State Department of Health

Division of Environmental Health Office of Drinking Water

View Sample Detail - WSID 45550C - LAKEWOOD W	ATER DISTRICT
Collect Date	8/18/2017
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	77193
Source	11
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	88th/pine j-1 sample point
Sample Type	Post-Treatment / Finished

Analyte DOH						
	Analyte Name	Result Range	Result Quantity	Maximum Contaminant Level	State Reporting Limit	Units
0073	ETHYLBENZENE	u	0.5000	700.0000	0.5000	ug/L
0074	M/P XYLENES (MCL FOR TOTAL)	ur	0.5000		0.5000	ug/L
0075	O- XYLENE (MCL FOR TOTAL)	u	0.5000		0.5000	ug/L
0076	STYRENE	ព	0.5000	100.0000	0.5000	ug/L
0078	BROMOBENZENE	u	0.5000		0.5000	ug/L
0079	1,2,3 TRICHLOROPROPANE	u	0.5000		0.5000	ug/L
0081	O- CHLOROTOLUENE	ប	0.5000		0.5000	ug/L
0084	1,2 DICHLOROBENZENE	u	0.5000	600.0000	0.5000	ug/L
0085	TRICHLOROFLUOROMETHANE	u	0.5000		0.5000	ug/L
0086	BROMOCHLOROMETHANE	u	0.5000		0.5000	ug/L
0089	1,3,5 TRIMETHYLBENZENE	u	0.5000		0.5000	ug/L
0091	1,2,4 TRIMETHYLBENZENE	u	0.5000		0.5000	ug/L
0092	SEC- BUTYLBENZENE	LT	0.5000		0.5000	ug/L
0093	P-ISOPROPYLTOLUENE	u	0.5000		0.5000	ug/L
0094	N-BUTYLBENZENE	ប	0.5000		0.5000	ug/L
0095	1,2,4 TRICHLOROBENZENE	រ	0.5000	70.0000	0.5000	ug/L
0096	NAPHTHALENE	u	0.5000		0.5000	ug/L
0104	DICHLORODIFLUOROMETHANE	LT	0.5000		0.5000	ug/L
0160	TOTAL XYLENES	u	0.5000	10000.0000	0.5000	ug/L
0427	EDB (screening)	u	0.5000		0.5000	ug/L
0428	DBCP (screening)	ប	0.5000		0.5000	mg/L

Records 26 - 46 of 46

									ð	×
F	•••	◙	☆		$\underline{\mathbf{v}}$	111		0	11°	≡
										^
							Help	1		

Division of Environmental Health Office of Drinking Water

View Sample Detail - WSID 45550C - LAKEWOOD W	ATER DISTRICT
Collect Date	7/30/2009
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	78109
Source	12
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	yard ss
Sample Type	Post-Treatment / Finished

Washington State Department of Health

Analyte DOH Num	Analyte Name	Result Range	Result Quantity	Maximum Contaminant Level	State Reporting Limit	Units
0027	CHLOROFORM	LT	0.5000	indiana containinant corte	0.5000	ug/L
0028	BROMODICHLOROMETHANE	ιτ	0.5000		0.5000	ug/L
0029	DIBROMOCHLOROMETHANE	ιτ	0.5000		0.5000	ug/L
0030	BROMOFORM	ιτ	0.5000		0.5000	ug/L
0045	VINYL CHLORIDE	σ	0.5000	2.0000	0.5000	ug/L
0046	1,1 DICHLOROETHYLENE	σ	0.5000	7.0000	0.5000	ug/L
0047	1,1,1 TRICHLOROETHANE	σ	0.5000	200.0000	0.5000	ug/L
0048	CARBON TETRACHLORIDE	u	0.5000	5.0000	0.5000	ug/L
0049	BENZENE	ιτ	0.5000	5.0000	0.5000	ug/L
0050	1,2 DICHLOROETHANE	ιτ	0.5000	5.0000	0.5000	ug/L
0051	TRICHLOROETHYLENE	u	0.5000	5.0000	0.5000	ug/L
0052	1,4 DICHLOROBENZENE	u	0.5000	75.0000	0.5000	ug/L
0053	CHLOROMETHANE	u	0.5000		0.5000	ug/L
0054	BROMOMETHANE	u	0.5000		0.5000	ug/L
0056	METHYLENE CHLORIDE(DICHLOROMETHANE)	ប	0.5000	5.0000	0.5000	ug/L
0057	TRANS- 1,2 DICHLOROETHYLENE	u	0.5000	100.0000	0.5000	ug/L
0058	1,1 DICHLOROETHANE	ι τ	0.5000		0.5000	ug/L
0060	CIS- 1,2 DICHLOROETHYLENE	LT	0.5000	70.0000	0.5000	ug/L
0063	1,2 DICHLOROPROPANE	ιτ	0.5000	5.0000	0.5000	ug/L
0066	TOLUENE	u	0.5000	1000.0000	0.5000	ug/L
0067	1,1,2 TRICHLOROETHANE	ιτ	0.5000	5.0000	0.5000	ug/L
0068	TETRACHLOROETHYLENE	σ	0.5000	5.0000	0.5000	ug/L
0071	CHLOROBENZENE	ιτ	0.5000	100.0000	0.5000	ug/L
0072	1,1,1,2 TETRACHLOROETHANE	σ	0.5000		0.5000	ug/L
0073	ETHYLBENZENE	ιτ	0.5000	700.0000	0.5000	ug/L

						_		ð	×
	⋓	☆	1	Ŧ	111		0	11°	≡
									^
						Help	1		
					Lauran				

Division of Environmental Health Office of Drinking Water

View Sample Detail - WSID 45550C - LAKEWOOD W	ATER DISTRICT
Collect Date	7/30/2009
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	78109
Source	12
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	yard ss
Sample Type	Post-Treatment / Finished

Washington State Department of Health

1010 III III III III III III III III III						
Analyte DOH Num	Analyte Name	Result Range	Result Quantity	Maximum Contaminant Level	State Reporting Limit	Units
0027	CHLOROFORM	LT	0.5000	maximum containing cever	0.5000	ug/L
0028	BROMODICHLOROMETHANE	σ	0.5000		0.5000	ug/L
0029	DIBROMOCHLOROMETHANE	u	0.5000		0.5000	ug/L
0030	BROMOFORM	u	0.5000		0.5000	ug/L
0045	VINYL CHLORIDE	u	0.5000	2.0000	0.5000	ug/L
0046	1,1 DICHLOROETHYLENE	u u	0.5000	7.0000	0.5000	ug/L
0048	1,1,1 TRICHLOROETHANE	u u	0.5000	200.0000	0.5000	
						ug/L
0048	CARBON TETRACHLORIDE	u .	0.5000	5.0000	0.5000	ug/L
0049	BENZENE	LT	0.5000	5.0000	0.5000	ug/L
0050	1,2 DICHLOROETHANE	LT	0.5000	5.0000	0.5000	ug/L
0051	TRICHLOROETHYLENE	LT	0.5000	5.0000	0.5000	ug/L
0052	1,4 DICHLOROBENZENE	UT	0.5000	75.0000	0.5000	ug/L
0053	CHLOROMETHANE	LT	0.5000		0.5000	ug/L
0054	BROMOMETHANE	ជ	0.5000		0.5000	ug/L
0056	METHYLENE CHLORIDE(DICHLOROMETHANE)	ជ	0.5000	5.0000	0.5000	ug/L
0057	TRANS- 1,2 DICHLOROETHYLENE	u	0.5000	100.0000	0.5000	ug/L
0058	1,1 DICHLOROETHANE	LT	0.5000		0.5000	ug/L
0060	CIS- 1,2 DICHLOROETHYLENE	μ.	0.5000	70.0000	0.5000	ug/L
0063	1,2 DICHLOROPROPANE	LT	0.5000	5.0000	0.5000	ug/L
0066	TOLUENE	LT	0.5000	1000.0000	0.5000	ug/L
0067	1,1,2 TRICHLOROETHANE	LT	0.5000	5.0000	0.5000	ug/L
0068	TETRACHLOROETHYLENE	U	0.5000	5.0000	0.5000	ug/L
0071	CHLOROBENZENE	LT	0.5000	100.0000	0.5000	ug/L
0072	1,1,1,2 TETRACHLOROETHANE	σ	0.5000		0.5000	ug/L
0073	ETHYLBENZENE	ιτ	0.5000	700.0000	0.5000	ug/L

	_		ð	×
111		0	11°	≡
				^
	Help]		
la constante de		-1		

(←) → ⊂ @

♥ ▲ https://fortress.wa.gov/doh/eh/portal/odw/si/ViewSampleDetail.aspx?SamId=3588884&Src=41&TP=29

Washington State Department of Health

Division of Environmental Health Office of Drinking Water

View Sample Detail - WSID 45550C - LAKEWOOD W/	ATER DISTRICT
Collect Date	3/22/2018
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	77603
Source	41
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	J-3 sample point
Sample Type	Post-Treatment / Finished

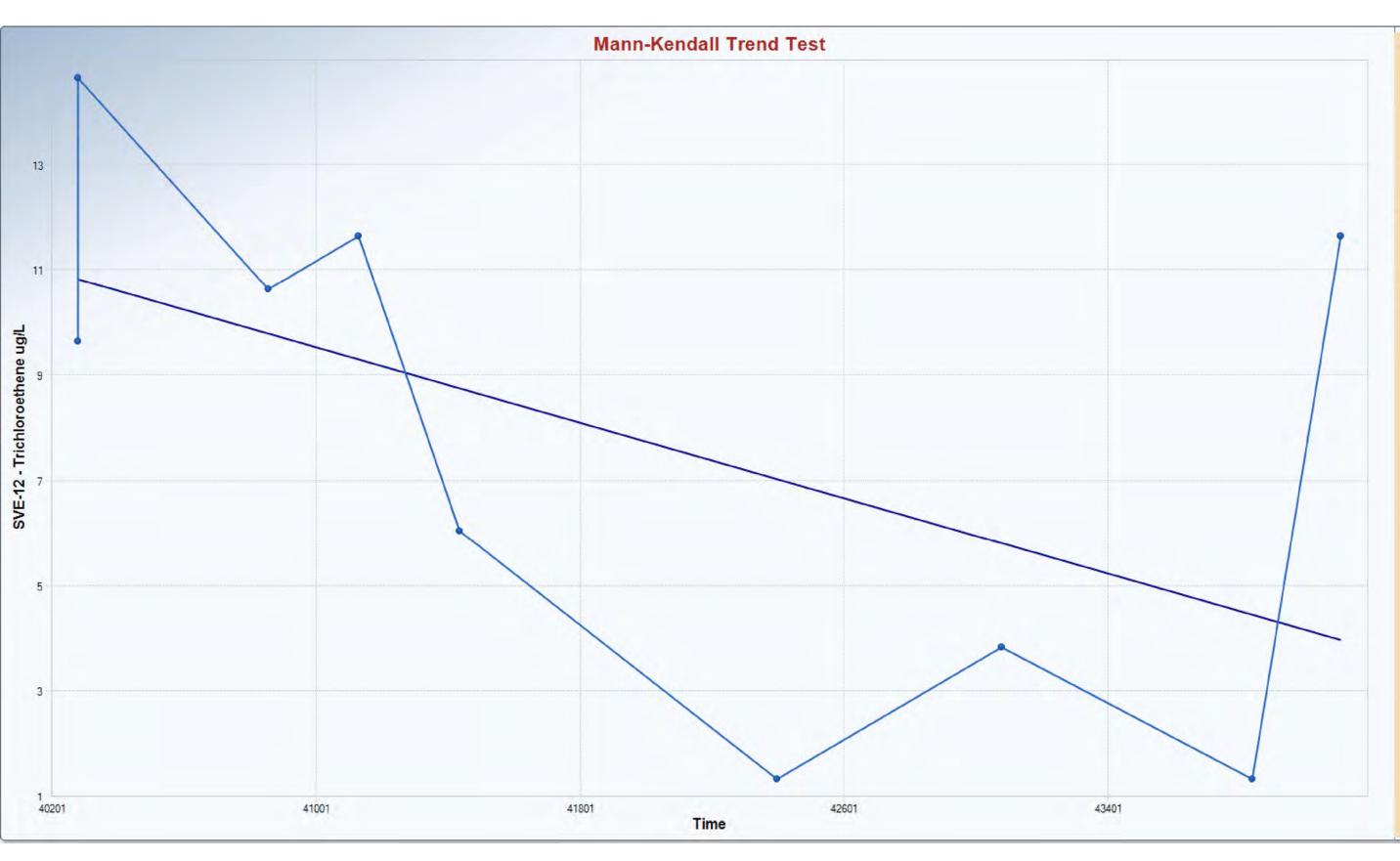
in the second se						
Analyte DOH						
Num	Analyte Name	Result Range	Result Quantity	Maximum Contaminant Level	State Reporting Limit	Units
0027	CHLOROFORM	ពេ	0.5000		0.5000	ug/L
0028	BROMODICHLOROMETHANE	LT	0.5000		0.5000	ug/L
0029	DIBROMOCHLOROMETHANE	រេ	0.5000		0.5000	ug/L
0030	BROMOFORM	វេ	0.5000		0.5000	ug/L
0045	VINYL CHLORIDE	វេ	0.5000	2.0000	0.5000	ug/L
0046	1,1 DICHLOROETHYLENE	u .	0.5000	7.0000	0.5000	ug/L
0047	1,1,1 TRICHLOROETHANE	LT	0.5000	200.0000	0.5000	ug/L
0048	CARBON TETRACHLORIDE	u	0.5000	5.0000	0.5000	ug/L
0049	BENZENE	u	0.5000	5.0000	0.5000	ug/L
0050	1,2 DICHLOROETHANE	LT	0.5000	5.0000	0.5000	ug/L
0051	TRICHLOROETHYLENE	u	0.5000	5.0000	0.5000	ug/L
0052	1,4 DICHLOROBENZENE	u	0.5000	75.0000	0.5000	ug/L
0053	CHLOROMETHANE	LT	0.5000		0.5000	ug/L
0054	BROMOMETHANE	u	0.5000		0.5000	ug/L
0056	METHYLENE CHLORIDE(DICHLOROMETHANE)	LT	0.5000	5.0000	0.5000	ug/L
0057	TRANS- 1,2 DICHLOROETHYLENE	u	0.5000	100.0000	0.5000	ug/L
0058	1,1 DICHLOROETHANE	IT	0.5000		0.5000	ug/L
0060	CIS- 1,2 DICHLOROETHYLENE	LT	0.5000	70.0000	0.5000	ug/L
0063	1,2 DICHLOROPROPANE	ιτ	0.5000	5.0000	0.5000	ug/L
0066	TOLUENE	LT	0.5000	1000.0000	0.5000	ug/L
0067	1,1,2 TRICHLOROETHANE	LT.	0.5000	5.0000	0.5000	ug/L
0068	TETRACHLOROETHYLENE	u	0.5000	5.0000	0.5000	ug/L
0071	CHLOROBENZENE	LT	0.5000	100.0000	0.5000	ug/L
0072	1,1,1,2 TETRACHLOROETHANE	ជ	0.5000		0.5000	ug/L
0073	ETHYLBENZENE	ជ	0.5000	700.0000	0.5000	ug/L

						_		ð	×
	⋓	☆	1	Ŧ	111		0	11°	≡
									^
						Help	1		
					Lauran				

Washington State Department of Health

Division of Environmental Health Office of Drinking Water

View Sample Detail - WSID 45550C - LAKEWOOD W/	ATER DISTRICT
Collect Date	3/22/2018
Lab Number	089
Lab Name	Water Management Laboratory Inc
Sample Number	77603
Source	41
Analyte Group	VOC-VOLATILE ORGANIC CONTAMINANTS
Test Panel	VOC1-VOLATILE ORGANIC
Sample Location	J-3 sample point
Sample Type	Post-Treatment / Finished


Analyte DOH						
Num	Analyte Name	Result Range	Result Quantity	Maximum Contaminant Level	State Reporting Limit	Units
0074	M/P XYLENES (MCL FOR TOTAL)	ព	0.5000		0.5000	ug/L
0075	O- XYLENE (MCL FOR TOTAL)	LT	0.5000		0.5000	ug/L
0076	STYRENE	u	0.5000	100.0000	0.5000	ug/L
0078	BROMOBENZENE	u	0.5000		0.5000	ug/L
0079	1,2,3 TRICHLOROPROPANE	u	0.5000		0.5000	ug/L
0081	O- CHLOROTOLUENE	u	0.5000		0.5000	ug/L
0084	1,2 DICHLOROBENZENE	រេ	0.5000	600.0000	0.5000	ug/L
0085	TRICHLOROFLUOROMETHANE	ព	0.5000		0.5000	ug/L
0086	BROMOCHLOROMETHANE	u	0.5000		0.5000	ug/L
0089	1,3,5 TRIMETHYLBENZENE	u	0.5000		0.5000	ug/L
0091	1,2,4 TRIMETHYLBENZENE	u	0.5000		0.5000	ug/L
0092	SEC- BUTYLBENZENE	u	0.5000		0.5000	ug/L
0093	P-ISOPROPYLTOLUENE	LT	0.5000		0.5000	ug/L
0094	N-BUTYLBENZENE	u	0.5000		0.5000	ug/L
0095	1,2,4 TRICHLOROBENZENE	ប	0.5000	70.0000	0.5000	ug/L
0096	NAPHTHALENE	u	0.5000		0.5000	ug/L
0 <mark>104</mark>	DICHLORODIFLUOROMETHANE	u	0.5000		0.5000	ug/L
0160	TOTAL XYLENES	u	0.5000	10000.0000	0.5000	ug/L
0427	EDB (screening)	ប	0.5000		0.5000	ug/L
0428	DBCP (screening)	u	0.5000			mg/L
0031	TOTAL TRIHALOMETHANE	ND		80.0000		ug/L

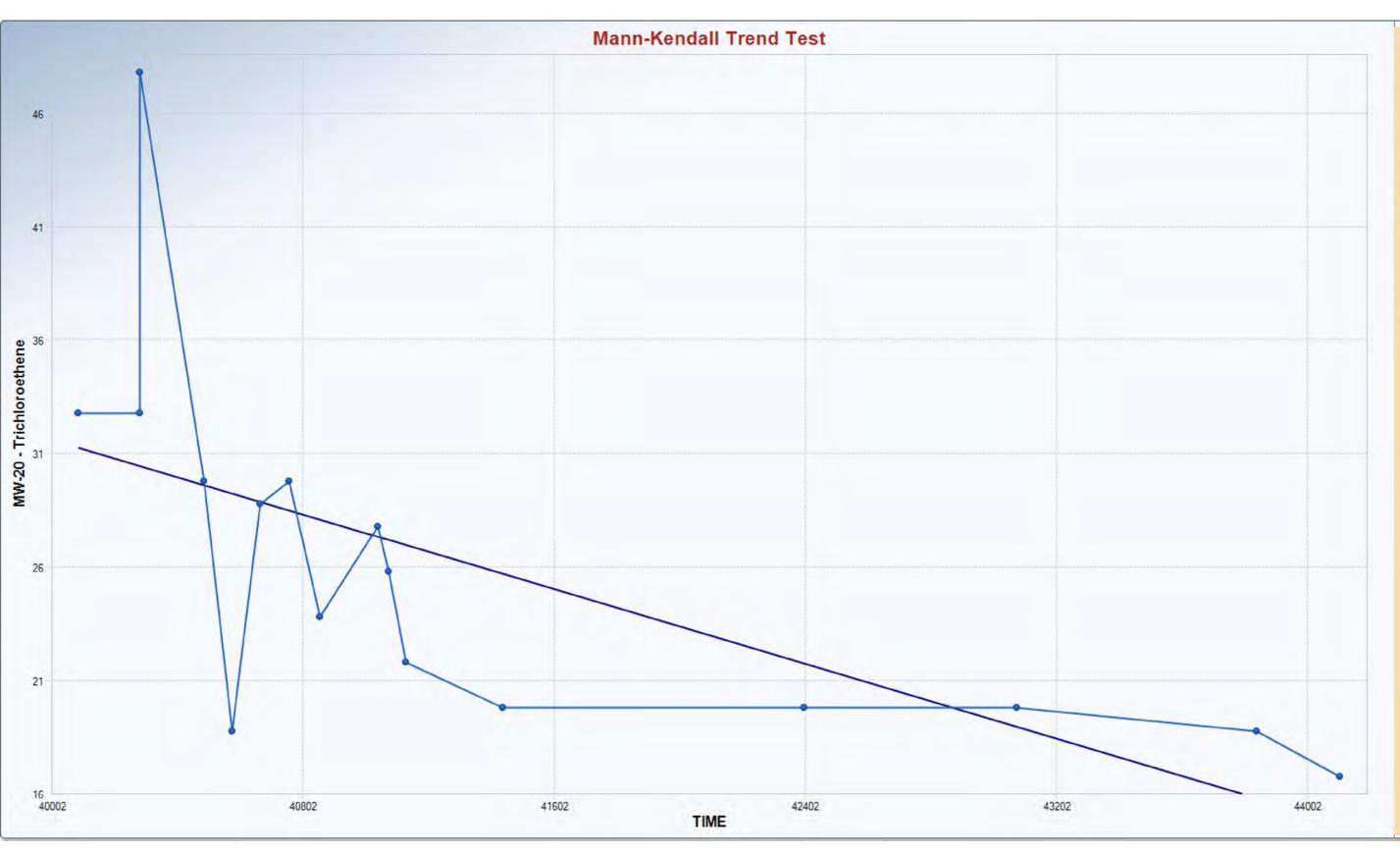
		٥	×
\ 🗊	0	11°	≡
			^
Help]		

ATTACHMENT F MANN-KENDALL TREND ANALYSIS GRAPHS

RESPONSE TO AUGUST 30, 2019 LETTER REGARDING FURTHER ACTION AT THE WOODWORTH & CO INC. LAKEVIEW PLANT 2800 104th Street Court South Lakewood, Washington

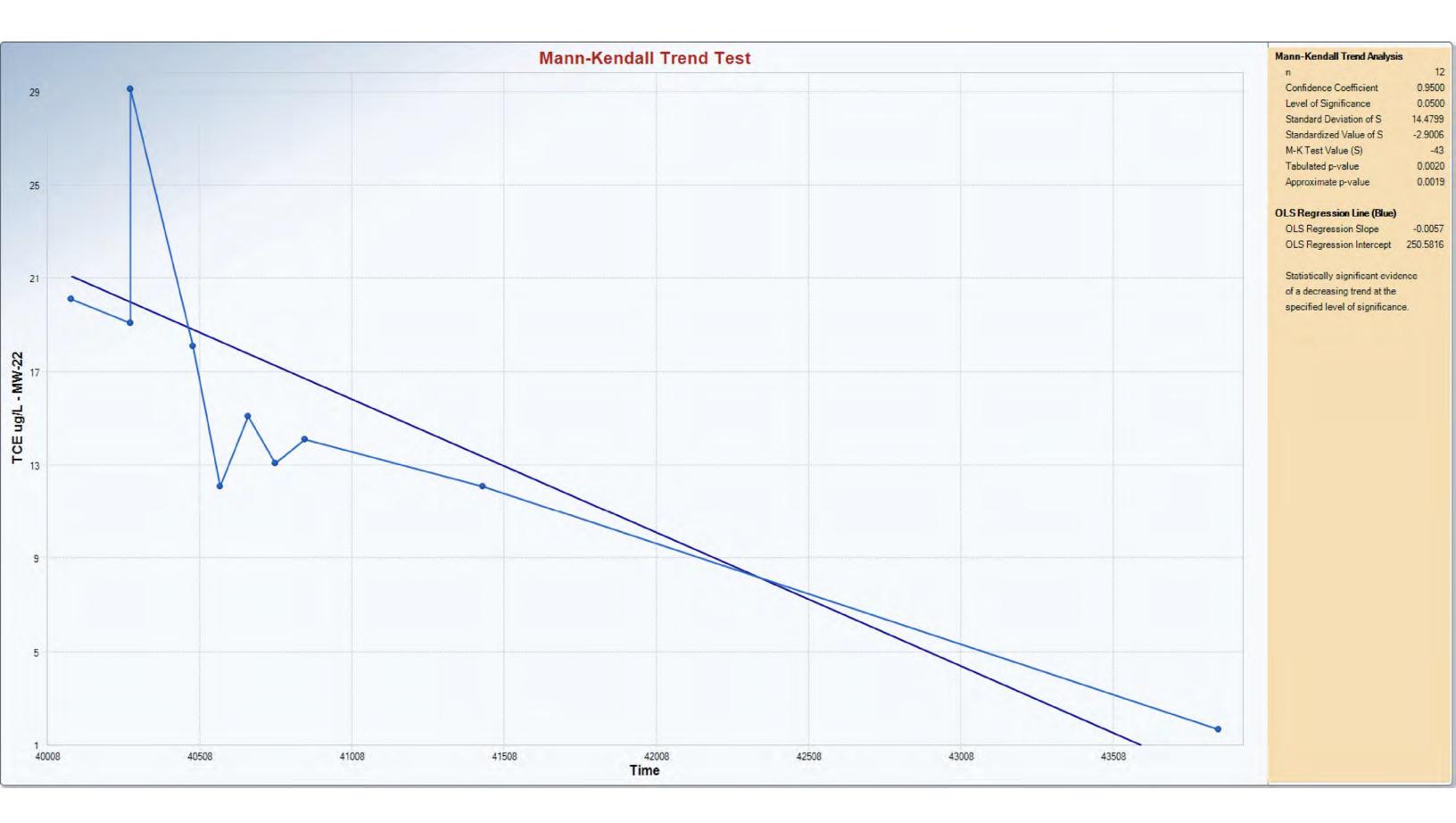
Farallon PN: 188-002

n	9
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	9.4868
Standardized Value of S	-1.1595
M-K Test Value (S)	-12
Tabulated p-value	0.1300
Approximate p-value	0.1231


OLS Regression Line (Blue)

OLS Regression Slope	-0.0018
OLS Regression Intercept	83.2953

Insufficient statistical evidence of a significant trend at the specified level of significance.


Mann-Kendall Trend Analysis

n	16
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	22.0605
Standardized Value of S	-3.8530
M-K Test Value (S)	-86
Tabulated p-value	0.0000
Approximate p-value	0.0001

OLS Regression Line (Blue)

OLS Regression Slope	-0.0041
OLS Regression Intercept	196.7498

Statistically significant evidence of a decreasing trend at the specified level of significance.

