Field Pilot Study Evaluation Report

USG Interiors Highway 99 Site 7110 Pacific Highway East Milton, WA 98354

> USG CORPORATION 550 WEST ADAMS STREET CHICAGO, ILLINOIS 60661-3676

June 12, 2020

A Report Prepared For:

USG Corporation 550 W. Adams St. Chicago, Illinois 60661-36761

FIELD PILOT STUDY EVALUATION REPORT 7110 PACIFIC HIGHWAY EAST MILTON, WASHINGTON

June 12, 2020

h

Brendan Miller, LG Project Geologist

oom Nguyen Øung Nguyen Project Engineer

Pamela J. Morrill, LHG, PMP

Pamela J. Morrill, LHG, PMI Project Manager

14432 SE Eastgate Way, Suite 100 Bellevue, Washington 98007 425/519-8300

CDM Smith Project No. 19921.233028

Table of Contents

Executive Summary	ES-1
Section 1 Introduction	
1.1 Purpose and Scope of Work	
1.2 Report Organization	
Section 2 Site Setting and Background Information	
2.1 Site Location and Description	
2.2 Site History	2-1
2.3 Geology and Hydrogeology	
2.3.1 Geology	
2.3.2 Hydrogeology	
2.4 Nature and Extent of Contamination	
2.4.1 Soil	
2.4.2 Groundwater	
Section 3 Pre-Installation Activities	
3.1 Hydraulic Characterization	
3.2 Permitting	
3.3 Subsurface Utility Clearance	
Section 4 Pilot Study Field Implementation	
4.1 Drilling and Well Installation	
4.2 Well Development	
4.3 Well Survey	
4.4 Pre-Pilot Activities	
4.4.1 Air Sparging ROI Testing	
4.4.2 Ferrous Iron Amendment	
4.5 Pilot Test Activities	
4.6 IDW Management	
Section 5 Monitoring	
5.1 Process Monitoring	
5.1.1 Air Sparging Monitoring	
5.1.2 Amendment Injection Monitoring	5-1
5.2 Performance Monitoring	
5.2.1 Groundwater Sampling Methods	5-1
5.2.2 Analytical and Field Parameters	5-2
5.2.3 Performance Evaluation	
Section 6 Pilot Results Summary and Discussion	6-1
6.1 Injection and Sparging ROI	
6.2 Geochemical Evaluation	
6.3 Arsenic Reduction Effectiveness	
Section 7 Conclusions	

Section & References	Section 8 References	. 8-:	1
----------------------	----------------------	-------	---

List of Tables

Table 1 Summary of Groundwater Elevation Measurements Hwy 99 Site Table 2 Field Measured Parameters During Air Sparging Table 3 Field Measured Parameters Table 4 Arsenic and Iron in Groundwater Table 5 Total Metals and Bromate in Groundwater

List of Figures

Figure 1 Vicinity Map Figure 2 Site Plan and Pilot Study Area Figure 3 Arsenic Concentrations in Groundwater Figure 4 Iron Concentrations in Groundwater Figure 5 Dissolved Oxygen and Redox Conditions in Groundwater

Appendices

Appendix A UIC Permit Appendix B Well Installation Logs Appendix C Analytical Reports

Acronyms

%	percent by volume
µg/L	micrograms per liter
bgs	below ground surface
CAP	Cleanup Action Plan
CDM Smith	CDM Smith Inc.
DO	dissolved oxygen
Ecology	Washington State Department of Ecology
EPA	Environmental Protection Agency
IDW	investigation derived waste
ISCO	In Situ Chemical Oxidation
ISS	In situ soil solidification/stabilization
OnSite	OnSite Environmental, Inc.
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MTCA	Model Toxics Control Act
ORP	oxidation reduction potential
ppb	parts per billion
psig	pounds per square inch gauge
RI/FS	Remedial Investigation/Feasibility Study
ROI	radius of influence
scfm	standard cubic feet per minute
SOP	standard operating procedure
TAL	target analyte list
UIC	Underground Injection Control
USG	USG Interiors, LLC

Executive Summary

This report presents CDM Smith Inc.'s (CDM Smith) summary of a field pilot study at USG Interiors, LLC's (USG) Highway 99 property located in Milton, Washington (site). The purpose of this report is to document and summarize the field methods for the pilot study and to evaluate the effectiveness of air sparging in reducing dissolved arsenic concentrations in groundwater at the site. CDM Smith completed this pilot study on behalf of USG in support of a Cleanup Action Plan (CAP) issued by the Washington State Department of Ecology (Ecology) on June 24, 2016. This work is being performed in accordance with Agreed Order No. DE 11099 between Ecology and USG.

The site is located between Pacific Highway East and Interstate 5 in Milton, Washington in a commercial area situated along the east side of Pacific Highway East. From 1971 through 1973, industrial waste from USG's Tacoma mineral fiber manufacturing plant was used as fill on the site. At that time, ASARCO slag was being used as a raw material. ASARCO slag, and the waste products thereof, contained elevated arsenic concentrations. Industrial waste fill that served as the original source of arsenic at the site was largely removed in 1984/1985, along with some of the impacted native soil located in the southern portion of the property. However, some of the original fill containing industrial waste remains at the site, which contains variable and high concentrations of arsenic and groundwater continues to be impacted by arsenic that leached from source material.

In July 2018, CDM Smith prepared a Field Pilot Study Work Plan (Work Plan) for treatment of arsenic in groundwater at the site. After the Work Plan was completed, CDM Smith completed two additional studies: 1) a bench-scale sparge test with and without the addition of iron and 2) slug testing. Based on the results of those studies, CDM Smith recommended modifications to the pilot testing, including amending the groundwater with ferrous iron prior to the air sparge test, in a proposal dated October 10, 2018.

CDM Smith's Work Plan and proposal included field pilot studies for both air sparging and in situ chemical oxidation (ISCO) using permanganate. Ultimately, ICSO was not pilot tested due to observed limitations in the distribution of ferrous iron amendment injected into groundwater and out of concern for potentially deleterious environmental effects should permanganate injection solution migrate into Hylebos Creek.

Pilot study field activities began in November 2018 with the installation and development of four monitoring wells, two air sparging wells, and two injection wells. The injection wells were registered through Ecology's Underground Injection Control (UIC) Program. Prior to commencement of the actual pilot test, an air sparging radius of influence (ROI) test was conducted to determine the appropriate injection pressure and flow rate. One week prior to the pilot test, approximately 7,000 gallons of amendment solution consisting of iron as ferrous sulfate heptahydrate and potable water was prepared and injected into the subsurface through the new injection wells. The air sparging pilot test occurred on February 14 and 15, 2019.

Process monitoring tools were used during the ROI and air sparging tests to facilitate evaluation of injection pressures, flow rates, injection ROI, distribution of amendment, and short- and long-term effectiveness of treatment. Performance monitoring consisting of groundwater sampling was performed at existing and new monitoring wells before, during, and after pilot testing to evaluate remedial progress. The remedial performance of air sparging was evaluated by assessing indicators of dissolved oxygen (DO) distribution and longevity in the subsurface, redox parameters including oxidation-reduction potential (ORP) and ferrous iron, general water quality parameters, and dissolved arsenic removal.

During the ROI test, it was observed that connection of the wells was highly variable, and treatment was following preferential pathways due to the semi-confined field conditions.

Injection of the ferrous iron following the ROI was problematic and the desired concentrations were not achieved due to the iron coming out of the solution as it was being injected. Based on the pilot study results CDM Smith has concluded the following:

- Sufficient ROI for full-scale implementation of pilot tested technology was not achieved.
- Where amendment was delivered, reasonable reduction in arsenic concentration was achieved.
- Geochemical conditions conducive to oxidative treatment of arsenic were not maintained, likely due to the presence of high organic content in soil at the site including wood fragments observed in soil borings.
- Overall, lithologic, hydrogeological, and geochemical conditions at the site do not appear to be amenable to the air sparging treatment technology that was pilot tested.

CDM Smith is currently developing an alternative approach to address arsenic contamination in soil and groundwater by conducting in situ soil solidification/stabilization (ISS) over a larger area of the site. The extension of the ISS area will now include the majority of area that was previously identified for groundwater remediation with ISCO and/or air sparging. The increased area of ISS will greatly reduce the permeability of soils, in effect causing groundwater to go around, instead of through, soils containing high arsenic concentrations. This should greatly reduce and potentially eliminate the need for treatment by ISCO and/or air sparging.

Introduction

This report presents CDM Smith Inc.'s (CDM Smith) summary of a field pilot study at USG Interiors, LLC's (USG) Highway 99 property located in Milton, Washington (site). The site location is shown on **Figure 1**. CDM Smith completed this pilot study on behalf of USG in support of a Cleanup Action Plan (CAP) issued by the Washington State Department of Ecology (Ecology) on June 24, 2016 and as a follow-up to our bench scale study completed in March 2018 (CDM Smith, 2018a). This work is being performed in accordance with Agreed Order No. DE 11099 between Ecology and USG.

1.1 Purpose and Scope of Work

The purpose of the pilot study was to evaluate the effectiveness of air sparging in removing dissolved arsenic concentrations in site groundwater.

The scope of work to complete this field pilot study included the following:

- Conducted a private utility locate to clear the planned drilling locations for subsurface utilities.
- Completed application for the Underground Injection Control (UIC) Program and submitted it to Ecology.
- Drilled eight soil borings using hollow-stem auger methods. Four groundwater monitoring, two air sparging, and two injection wells were completed in the drilled borings.
- Collected groundwater samples from site wells for baseline and performance analyses.
- Performed a stepwise air sparging radius of influence (ROI) test.
- Amended groundwater with ferrous iron and performed an air sparging pilot test.
- Evaluated the analytical data and prepared this report summarizing our findings.

1.2 Report Organization

This report is organized as follows:

- **Section 1:** Introduction, provides an overview of the purpose of this document, and the organization of this report.
- **Section 2:** Site Setting and Background Information, presents a summary of the site location, site history, geology and hydrogeology, and nature and extent of contamination.

- Section 3: Pre-Installation Activities, describes activities performed prior to installation of pilot study wells and initiation of the pilot study to address potential data gaps, as well as other pre-field activities such as site access coordination permitting, and subsurface utility clearance.
- Section 4: Pilot Study Field Implementation, provides details regarding various components of the pilot system installation and operation, including well installation, well development, sparging/injection system construction and testing, decontamination, environmental protection and investigation derived waste (IDW) management.
- **Section 5:** Monitoring, discusses how process and performance monitoring were performed to facilitate evaluation of the pilot system and remedial progress.
- **Section 6:** Pilot Results Summary and Discussion, provides a summary the results of field pilot study and discussion with respect to the pilot efficacy.
- **Section 7:** Conclusions, provides CDM Smith's conclusions as a result of the findings from this pilot study.
- **Section 8:** References, provides a list of documents used as references throughout this report.

Site Setting and Background Information

2.1 Site Location and Description

The USG Highway 99 property is located between Pacific Highway East and Interstate 5 in Milton, Washington. It is located in a commercial area situated along the east side of Pacific Highway East. Residences are located west of the property across Pacific Highway East. Two businesses currently operate on the site, Discount RV and Kanopy Kingdom, as shown on **Figure 2**. A chain link fence separates the businesses and the western property line along Pacific Highway East. Interstate 5 marks the eastern boundary of the site. Hylebos Creek is located east of the property adjacent to Interstate 5. The western, paved portion of the site is relatively flat, but drops off sharply east of the paved area where the surface slopes down either to Hylebos Creek (Discount RV) or a roadside ditch (Kanopy Kingdom). The site is located at an elevation of approximately 20 feet above Mean Sea Level.

2.2 Site History

Interstate 5, situated immediately to the east of the site, was constructed through this area in 1961. Hylebos Creek was re-routed to its current location, adjacent to the eastern side of the site, as part of the construction. The freeway construction and re-routing of Hylebos Creek cut the site off from the adjoining agricultural land to the east.

Fill was imported to bring the Highway 99 site up to grade with Pacific Highway East. This fill included industrial waste from USG's Tacoma plant. From 1959 through 1973, the USG Tacoma plant used ASARCO slag as a raw material for mineral fiber production. Baghouse dust and off-specification product was reportedly used as fill at the Highway 99 site from 1971 through 1973.

In the early 1980s, USG became aware of the association between ASARCO slag and arsenic contamination. Subsequently, in 1982 USG purchased the site. That same year USG voluntarily approached Ecology to negotiate an administrative process to govern removal of fill from the property. Soil and groundwater cleanup standards had not been established in Washington State at this time. Accordingly, Agreed Order No. DE 84-506 established project-specific arsenic cleanup standards of 0.5 milligrams per liter (mg/L) for soil (by the Environmental Protection Agency's [EPA] Toxicity [leaching] method) and for groundwater. The 1984 Order also required USG to conduct post-cleanup groundwater monitoring.

The initial cleanup action on the Highway 99 site occurred between October 1984 and January 1985. Detailed records of the cleanup, termed the source removal action, have not been located. Ecology estimated that 20,000 to 30,000 cubic yards of material was excavated and disposed of off-site. Native soil exceeding the project-specific cleanup standard was reportedly excavated in the southern portion of the property in the vicinity of monitoring well 99-1. This is referred to as the contaminant source area. It is inferred that the 20,000 to 30,000 cubic yards of waste excavated from the site included soil fill mixed with waste insulation, baghouse dust, and native soil, which exceeded the cleanup standard.

USG sold the property to Herbert Rendell in 1986 and it subsequently underwent commercial development. By 1989 it had been developed to its current configuration; it is now owned and occupied by Kanopy Kingdom, a portion of which is leased and occupied by Discount RV. USG maintained responsibility for verification monitoring at wells 99-1 and 99-2, as specified in Agreed Order No. DE87-506 issued in 1987. The 1987 Order retained the 0.5 mg/L groundwater cleanup level for the site. Post-source removal action verification groundwater sampling was performed by USG from June 1985 to April 2006.

The Washington State Model Toxics Control Act (MTCA) was enacted and went into effect in March 1989. In 1991, Ecology established MTCA Method A arsenic cleanup levels of 20 milligrams per kilogram (mg/kg) for soil and 5 micrograms per liter (μ g/L) for groundwater. In early 2006, arsenic concentrations in monitoring well 99-1 exceeded the MTCA Method A cleanup level and Ecology required that USG conduct a soil and groundwater assessment for arsenic in the vicinity of well 99-1. This assessment showed that arsenic in soil and groundwater exceeded MTCA Method A cleanup standards. This led to Agreed Order No. DE 6333, dated October 19, 2009, which required USG to perform a Remedial Investigation/Feasibility Study (RI/FS) and CAP.

RI fieldwork was conducted between 2010 and 2012 and characterized the nature and extent of arsenic in soil, sediment, groundwater, and surface water. The FS screened remedial technologies for the various impacted media and developed remedial action alternatives. The final RI, FS and CAP were issued in June 2016 (CDM Smith, 2016a, b; Ecology 2016). The proposed cleanup action generally consisted of in situ soil solidification/stabilization (ISS) to treat the vadose fill/soil hot spot area and treating the groundwater hot spot by in situ chemical oxidation (ISCO), combined with groundwater monitoring, installation of permeable pavement, excavation of contaminated sediment, natural attenuation, and institutional controls. In June 2016, Agreed Order DE 11099 was issued, which provided for the implementation of the remedial action at the site as outlined in the CAP.

In July 2018, CDM Smith prepared a Field Pilot Study Work Plan (Work Plan) for treatment of arsenic in groundwater at the site (CDM Smith, 2018b). After the Work Plan was completed, CDM Smith completed two additional studies: 1) a bench-scale sparge test with and without the addition of iron and 2) slug testing. Based on the results of those studies, CDM Smith recommended modifications to the pilot testing, including amending the groundwater with ferrous iron prior to the air sparge test, in a proposal dated October 10, 2018 (CDM Smith, 2018c).

CDM Smith's Work Plan and proposal included field pilot studies for both air sparging and in situ chemical oxidation (ISCO) using permanganate. Ultimately, ICSO was not pilot tested due to observed limitations in the distribution of ferrous iron amendment injected into groundwater and out of concern for potentially deleterious environmental effects should permanganate injection solution migrate into Hylebos Creek.

2.3 Geology and Hydrogeology

Information relevant to site geology and hydrogeology is presented in the following sub-sections.

2.3.1 Geology

The site is situated in a north-trending valley that is the floodplain of Hylebos Creek and its tributaries. The valley is located just north of the lower Puyallup River Valley. Alluvium associated with Hylebos Creek and lower Puyallup River forms the uppermost native soil at the site. The alluvium consists predominantly of overbank flood, slack water, and bar accretion deposits. Glacially consolidated glacial drift and interglacial deposits hundreds to thousands of feet thick underlie the alluvial deposits. Generalized stratigraphy consists of fill overlying alluvium, over glacial drift. Each of these units is described in more detail in the Work Plan (CDM Smith, 2018b).

In the pilot study area, fill consisting of brown silty sand is present from the surface to a depth of 11 to 14 feet below ground surface (bgs). In some borings the base of the fill includes sandy silt which was mottled gray and brown with occasional fibers and cinders/slag. This sandy silt contains suspected waste material high in arsenic. From 11 to 14 feet bgs to approximately 35 feet bgs in the pilot study area, saturated, sometimes slightly silty, dark brown sand interpreted as alluvium occurs. The alluvium contains occasional wood fragments. During drilling of the pilot study wells, heaving sands were encountered in the deeper alluvium. Below the alluvium, hard gray silt interpreted as a glacial deposit was encountered in the deepest borings to a depth of 37 feet bgs.

2.3.2 Hydrogeology

Groundwater occurs under semi-confined conditions within the alluvial sand and slightly silty sand. The overlying relatively low permeability fill soils consisting of silty to very silty sand act as an upper semi-confining layer. Low permeability soil consisting of silt of the glacial drift acts as a lower confining layer to the alluvial aquifer, restricting vertical flow. During the RI, groundwater was encountered at depths ranging from 4 to 14 feet bgs. During the pilot study, static water levels in the pilot study area were generally around 7 to 8 feet bgs. The groundwater flows east toward Hylebos Creek and south parallel to the creek. The horizontal hydraulic gradient during the RI ranged from 0.003 foot/foot in the central area of the site, steepening to 0.03 foot/foot at the west bank of Hylebos Creek.

2.4 Nature and Extent of Contamination

2.4.1 Soil

Industrial waste fill that served as the original source of arsenic at the site was largely removed in 1984/1985, along with some of the impacted native soil in the southern portion of the property in the vicinity of monitoring well 99-1. However, some residual fill containing industrial waste remains at the site. Soil boring data indicate that the highest arsenic concentrations at the site typically occur in the interval between 5 and 14 feet bgs. This reflects the 1984/1985 contaminant source removal action as the shallower industrial waste fill was removed and replaced with clean soil fill.

2.4.2 Groundwater

The highest arsenic concentrations, identified as the groundwater hot spot, occur in the area bound by wells MW-4, MW-5, 99-1, MW-1, and MW-3 (screened between 14-19, 15-20, 16-26, 13-18, and 15-20 feet bgs, respectively). The dissolved arsenic concentrations in these wells ranged from 630 to 2,490 µg/L in 2010 (CDM Smith, 2016a). The highest concentrations of arsenic in groundwater are observed in well 99-1, which is located in the original contaminant source area. From there, arsenic migrates in the direction of groundwater flow to the east and south.

Pre-Installation Activities

Activities performed prior to pilot system installation, including hydraulic characterization, site access and coordination, permitting, subsurface utility clearance, and identifying/coordinating site utilities are described in the following sub-sections.

3.1 Hydraulic Characterization

Since CDM Smith completed the July 2018 Field Pilot Study Work Plan (CDM Smith, 2018b), sitespecific hydraulic characterization activities were performed at the site to determine hydraulic conductivity and groundwater velocity. Such information was necessary to determine the placement of the pilot cell relative to existing and new monitoring wells, as well as relative to Hylebos Creek. In addition, the local groundwater flow regime (i.e., groundwater velocity, gradient, and flow direction) may be subject to change following potential highway construction. Therefore, hydraulic testing was performed to facilitate both the refinement of the pilot study design and subsequent implementation as well as future full-scale consideration.

On September 11, 2018, a round of synoptic groundwater level measurements was performed at select wells located within the pilot testing area to determine the groundwater flow direction and horizontal gradient. **Table 1** presents a summary of water levels measured prior to the pilot study. On September 11 and 12, 2018, slug tests were performed at wells located within the hotspot treatment area to determine the hydraulic conductivity. The collected data represent baseline hydraulic conditions at the site and would be compared to those obtained following any Hylebos Creek rerouting associated with highway construction. Hydraulic testing was performed in accordance with CDM Smith's standard operating procedure.

3.2 Permitting

The injection wells for the pilot study were registered through Ecology's UIC Program prior to initiation of field activities (**Appendix A**). All installed wells were registered with Ecology and well construction logs uploaded to Ecology's well log database. Another permit was obtained by a subcontractor to gain access to a public hydrant for amendment injections.

3.3 Subsurface Utility Clearance

Standard underground utility clearance practices were performed prior to the start of any intrusive subsurface work at the site. Specifically, Washington Utility Notification Center was notified to obtain utility clearance at least 72 hours prior to commencement of intrusive activities. A geophysical subcontractor, Applied Professional Services Inc., was used to verify the underground utility locations.

Pilot Study Field Implementation

A description of field activities implemented as part of the pilot study including drilling and well installation, well development, well survey, pre-pilot and pilot activities, decontamination, and management of IDW is provided in this section.

4.1 Drilling and Well Installation

All drilling operations in support of the pilot study were conducted under an approved health and safety program, by a Washington State-licensed driller (Holt Services Inc.), and under the supervision of a CDM Smith geologist. Hollow-stem auger drilling technology was utilized to facilitate collection of soil samples for lithologic logging in accordance with the Unified Soil Classification System as described in **Appendix B**. A total of four monitoring wells, two air sparging wells, and two injection wells were installed at the locations shown on **Figure 2**. These eight pilot study wells were constructed as depicted on boring/well construction logs provided in **Appendix B**.

4.2 Well Development

Following a minimum of 48 hours upon completion of all well installation activities, the injection and monitoring wells were developed using a combination of surging, bailing, and pumping techniques. The wells were considered properly developed following stabilization of field parameters including pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), and specific conductivity, and until visual turbidity had improved. At least 20-gallons of groundwater were purged from each well during development. At one of the air sparging wells (AS2), anomalous drawdown to the top of the screened interval was observed during pumping, possibly indicating limited hydraulic connectivity between the aquifer and the well screen.

4.3 Well Survey

All new wells were surveyed by a Washington State-licensed surveyor using the appropriate city and county benchmarks. The wellhead casing elevations were surveyed to the nearest 0.01 foot. The top of each well casing was notched at the survey point at which subsequent groundwater level measurements were obtained. Survey information is included on the well construction logs in **Appendix B**.

4.4 Pre-Pilot Activities

Pre-air sparging pilot activities, consisting of an air sparging ROI test and injection of ferrous iron amendment, were conducted to support the air sparging pilot test, as described below.

4.4.1 Air Sparging ROI Testing

ROI testing activities were performed prior to commencement of the actual pilot test. Specifically, a step injection test was conducted to determine the appropriate injection pressure and flow rate for the air sparging pilot test. ROI testing was completed in two days starting on January 16, 2019.

Prior to the step injection testing, water levels at the injection and nearby monitoring wells were measured and recorded. At the start of the step injection testing, air was injected into each air sparging well (AS1 and AS2) individually at a flow rate of approximately 1 to 4 standard cubic feet per minute (scfm) using an air compressor. Helium was utilized as a tracer gas to facilitate evaluating the effective air sparging ROI. The helium flow rate was adjusted manually at the gas cylinder in order to target an influent helium concentration of approximately 5 percent by volume (%), which was measured at the influent sampling port of each injection well using a MGD-2002 Dielectric Helium Detector. In practice, during initial ROI testing, injected helium concentrations varied between 5-15% and stable helium readings were only achievable at approximately 7%.

Due to the increased helium concentration and concerns about its effect on the density of injected air, helium was shut off for the initial ROI testing at AS1. While helium was shut off, ROI was assessed using visual observation of bubbling in monitoring wells and water level measurements. Air sparging wellhead pressures were measured using pressure gauges installed on the air sparging manifold at each wellhead. Monitoring wellhead pressures were obtained using an Extech differential pressure manometer through specialty J-plugs with built-in valves obtained for the pilot testing. When feasible, helium and wellhead pressure were measured hourly, at a minimum, or as often as practicable at the nearby monitoring wellheads. Water levels were also measured at least every 2 hours following system startup and 15 minutes after system shutdown, or as often as practicable. Pressure was measured prior to removing the J-plugs and taking manual water level measurements through the drop tube. Once the drop tube was opened, the next set of pressure measurements were not taken until at least 1 hour after the tube had been sealed to allow for collection of representative pressure readings.

During the tests, ROI effects were observed almost immediately at most wells, with built-up pressure occasionally ejecting the J-plugs. The J-plugs were then removed from the drop tubes for safety, to observe bubbling, and to measure water levels. Surfacing of bubbling groundwater from monitoring wells sometimes required the replacement of the J-plug and well lid for the remainder of the test, preventing the measurement of water levels.

The upward displacement of water caused by introduction of air into a saturated formation can create a transient groundwater mound (USACE, 2013). Significant groundwater mounding (>1-foot) was observed during the ROI, even at the lowest achievable flow rate of 1.1 scfm. Wellhead pressures at the air sparging wells were closely monitored. The air sparge wellheads injection pressure was maintained well below 20 pounds per square inch gauge (psig) at all times to avoid fracturing the aquifer unintentionally.

An iterative series of tests were conducted to determine the injection rate that corresponds to the largest possible ROI while minimizing significant groundwater mounding/displacement and aquifer pressurization caused by high flow rates. Based on helium, pressure, and water level readings in the monitoring wells, an injection flow rate of approximately 1 scfm was selected for actual pilot testing.

4.4.2 Ferrous Iron Amendment

Approximately one week prior to the pilot test, on February 5, 7, and 8, 2019, a solution of ferrous iron as ferrous sulfate heptahydrate was prepared and subsequently injected into the subsurface through the new injection wells. Ferrous iron amendment enhances coprecipitation of iron with oxidized arsenic species to form arsenic-iron-oxyhydroxide precipitate (see Work Plan-CDM Smith, 2018b).

Injection was completed using a positive-displacement diaphragm pump at low pressure (<10 psig). Injection rates ranged between 4 and 10 gallons per minute. Ferrous iron solution was prepared in multiple small batches of 175-gallons each using water obtained from a fire hydrant and ferrous sulfate heptahydrate mixed and solubilized via recirculation. Precipitation from the solution, possibly due to water quality issues, resulted in lower-than-anticipated ferrous iron concentrations as measured by a field test kit from grab samples occasionally taken from batches. Batch concentrations averaged approximately 60% below the anticipated concentration. In-line filters (5-micron) were employed on February 7 and 8 to remove precipitates from the solution before delivery to the injection wells. In total, approximately 7,000 gallons of amendment solution containing approximately 110 pounds of ferrous sulfate heptahydrate was injected into both injection wells in approximately equal portions (i.e., 3,500 gallons into each well).

4.5 Pilot Test Activities

Pilot testing occurred on February 14 and 15, 2019. Like the ROI test, air was injected into both air sparging wells using an air compressor. The procedure was identical to the ROI but without the addition of or monitoring for helium. Both wells were sparged simultaneously for the pilot test. Based on the ROI test, the lowest achievable flow rate of approximately 1.1 scfm was used to sparge the wells. On February 14, 2019 the wells were sparged continuously for 3 hours at a flow rate of 1.1 scfm. On February 15, 2019, after initially sparging for approximately 1 hour, sparging was cycled on and off in 20-minute intervals at a flow rate just below 1 scfm in an attempt to surge DO into the formation more effectively. The monitoring wells were left opened for the duration of the air sparing pilot to facilitate monitoring.

Groundwater monitoring during the pilot test consisted of grab sampling of groundwater using a peristaltic pump in order to monitor changes in redox parameters (e.g., DO, ORP) and concentrations of arsenic and ferrous iron using field test kits. Starting one week after the pilot test, monitoring wells were sampled monthly to assess the persistence of redox conditions and changes in arsenic concentrations from the pilot test. Further details of the groundwater monitoring used to determine the effectiveness of the pilot test are presented in **Section 5**.

4.6 IDW Management

IDW generated during field implementation, including drill cuttings, development water, purged water, and decontamination rinse water, was containerized and temporarily stored onsite in a designated area. Drill cuttings were placed directly into 55-gallon drums pending waste profiling. A composite soil sample was collected from the soil drums on December 10, 2018 and submitted to OnSite Environmental, Inc. (OnSite) of Redmond, Washington for waste profiling purposes. Similarly, purged groundwater from sampling, decontamination water, and well development water was containerized in drums. Following waste characterization, all IDW drums were transported under manifest documentation to an appropriately licensed disposal facility by Clean Harbors Environmental Services Inc.

Monitoring

A variety of monitoring tools were used to facilitate evaluation of injection pressures, flow rates, injection ROI, distribution of the amendment, and short- and long-term effectiveness of treatment. Additionally, groundwater sampling was performed at existing and newly installed monitoring wells to evaluate remedial progress. This section provides a summary of the results of monitoring activities and performance evaluation processes that were conducted.

5.1 Process Monitoring

5.1.1 Air Sparging Monitoring

When the air sparging pilot test was in progress, pH, DO, specific conductance, ORP, ferrous iron, arsenic, pressure, and water levels were measured at nearby monitoring wells. Groundwater parameters measured immediately before, during, and after the air sparging pilot test are presented on **Table 2**. In addition, gas leak checks were performed at each connection in the sparging manifold prior to each sparging event.

5.1.2 Amendment Injection Monitoring

During ferrous iron amendment injection prior to air sparging, amendment batch injection duration, number of batches prepared, and pressure readings were recorded to allow for determination of the accumulative injection volume, injection flow rate, and injection pressures. In addition, visual inspection for leaks and condition of the injection equipment was conducted every hour or more frequently. Grab samples of the prepared injection solutions were also collected and analyzed for ferrous iron using a Hach field test kit.

5.2 Performance Monitoring

Prior to commencement of any pilot testing activities, baseline groundwater sampling at select existing and new wells was performed on December 7 and 10, 2018. In February 2019, sampling was conducted prior to amendment injection, during air sparging, and post-air sparging. Follow-up groundwater monitoring was subsequently performed at wells located within the treatment area one week following air sparging (sampled February 21-22, 2019), and 5-weeks following air sparging (sampled March 21-22, 2019).

5.2.1 Groundwater Sampling Methods

Depth to groundwater from the top of the well casing at each well was measured using an electronic water level indicator prior to beginning sampling. Low-stress, low-flow groundwater sampling techniques using dedicated sample tubing was used to collect formation-representative groundwater samples in accordance with CDM Smith's standard operating procedure (SOP).

A peristaltic pump with dedicated tubing was used to withdraw groundwater from the screened interval of the well casing at a rate of less than 0.5 liters per minute. Depth to water during purging was measured to ensure that draw-down during pumping was minimal. Purge water was

passed through a flow-through-cell equipped with a water quality meter that measures parameters of temperature, specific conductance, pH, DO, and ORP. A separate portable turbidimeter was used to measure turbidity of the sample prior to collection. Water quality parameters were recorded at 3 to 5-minute intervals and purging was performed until parameters had stabilized to within approximately 10 percent over three consecutive readings. The tubing was then disconnected from the flow-through-cell apparatus and groundwater was discharged directly from the pump outlet into the appropriate sample containers. Groundwater to be collected for dissolved metals analysis was field-filtered using disposable 0.45-micron filters discharged directly into laboratory supplied bottles for analysis of dissolved metals rather than total metals.

Groundwater samples to be submitted for laboratory analysis were collected directly into laboratory-supplied pre-cleaned bottles containing preservatives as appropriate per the analytical methods. Sample containers were labeled with an identification number, date, and time of collection, and project name. Groundwater samples were immediately packed in an iced cooler pending transport to the analytical laboratory.

5.2.2 Analytical and Field Parameters

A variety of field and analytical parameters were measured at existing and newly installed monitoring wells during baseline sampling, prior to amendment injection, during air-sparging, and post-air sparging to facilitate performance evaluation of the pilot-tested treatment techniques. A brief description of the various field and analytical parameters that were measured and their associated rationale are provided as follows:

- Standard field parameters: Temperature, pH, DO, ORP, and specific conductivity were measured during groundwater purging and sampling using a multi-parameter groundwater quality meter. Wells were purged until the indicator parameters stabilized in accordance with CDM Smith's SOP. Field parameters measured during both baseline and subsequent groundwater sampling are summarized on Table 3.
- Dissolved and total arsenic: Samples were collected from formation-representative groundwater and submitted for analysis of dissolved (filtered in the field using 0.45-micron in-line filter) and total arsenic periodically to aid in evaluation of remedial performance. The samples were analyzed using EPA Method 200.8 by OnSite. Hach and Quick[™] arsenic field test kits were also used to aid in determination of dissolved arsenic concentrations in groundwater as appropriate. Analytical lab data for dissolved and total arsenic are summarized on Table 4 and displayed on Figure 3. Arsenic data collected using field test kits are provided in Tables 2 and 3. During the first sampling event of the pilot study, total arsenic was analyzed at all the pilot study monitoring and injection wells and at monitoring well 99-1. Dissolved arsenic was analyzed at three of these wells. The results from the three wells show that total and dissolved arsenic concentrations are similar regardless of filtering, indicating the success in achieving non turbid samples as the totals analyses were reporting arsenic that was only in the dissolved phase.

- Dissolved and total iron: Samples were collected from formation-representative groundwater and submitted for analysis of dissolved (field filtered) and total iron to monitor the delivery of the ferrous iron amendment injected into the pilot area. These data are summarized on Table 4 and presented on Figure 4.
- Ferrous iron: Ferrous iron was measured using a HACH test kit. Changes in ferrous iron concentrations are indicative of changes in redox conditions; as soluble ferrous iron is oxidized to insoluble ferric iron under aerobic conditions, ferrous iron monitoring is used as an indirect line of evidence of the ROI of the sparging. Ferrous iron data collected throughout the pilot test are summarized in Tables 2 and 3 and presented on Figure 4.
- Target analyte list (TAL) metals¹ and bromate: Changes in pH and ORP as a result of air sparging may result in significant, albeit generally transient, metal mobilization in monitoring wells located within the anticipated injection ROI. Therefore, TAL metals were monitored at the start of the pilot study. Introduction of oxygen to groundwater with bromide may lead to the production of bromate; therefore, bromate was monitored at the start of the pilot study. Subsequent analysis for TAL metals and bromate was not required due to stable pH and ORP during the pilot study and the absence of detectable bromate at the start of the pilot study. TAL metals and bromate data collected during baseline sampling are summarized on Table 5. Total iron results are shown on Table 4.
- Groundwater level: Depth to water was manually recorded at each monitoring well using a water level indicator. Groundwater levels measured before and after the pilot are presented on Table 1. Groundwater levels measured during the air sparging test are presented on Table 2.

Laboratory analysis of all water samples was performed by OnSite. OnSite's laboratory reports are provided in **Appendix C**. An internal quality assurance review was conducted by CDM Smith on the analytical data from OnSite and it appears that OnSite followed their appropriate quality assurance/quality control procedures and the target method reporting limits were met. None of the results were presented with any laboratory qualifier flags. All laboratory control data appear to be within control limits (i.e., matrix spike/matrix spike duplicate, duplicate quality control, surrogate recoveries). Nothing was detected in the method blanks. Field duplicate samples were collected from monitoring well M2 on December 7, 2018 and submitted to OnSite. Duplicate sampling data are presented on **Tables 4** and **5** and exhibited normal variation that occurs within groundwater samples.

5.2.3 Performance Evaluation

The remedial performance of air sparging was evaluated by assessing indicators of DO distribution and longevity in the subsurface, redox parameters including ORP and ferrous iron, general water quality parameters, and dissolved arsenic removal. Several key parameters were used to aid evaluation of remedial performance as described below:

¹ Silver, Aluminum, Arsenic, Barium, Beryllium, Calcium, Cadmium, Cobalt, Chromium, Copper, Iron, Mercury, Potassium, Magnesium, Manganese, Sodium, Nickel, Lead, Antimony, Selenium, Thallium, Vanadium, Zinc.

- Arsenic reduction effectiveness: Short- and long-term effectiveness of the treatment technology was evaluated by assessing changes in dissolved arsenic concentrations at monitoring wells located within and immediately outside of the anticipated ROI of the air sparging. Changes in arsenic concentrations throughout the pilot study are summarized on Figure 3.
- Injection and sparging ROI: The ferrous iron amendment injection ROI was evaluated by comparing concentrations of iron (ferrous, total, and dissolved) in groundwater sampled at the monitoring wells located within the anticipated injection ROI to the injected concentration. In addition, concentration trends over time were assessed to determine arrival time and persistence (i.e., longevity) of the added reagent in the subsurface. For air sparging tests, multiple lines of evidence, such as changes in redox conditions as indicated by pH, DO, and ORP, and field observations of groundwater levels were used to aid in evaluation of the effective air sparging ROI. Monitoring of iron concentrations throughout the pilot study are summarized on Figure 4. Field parameters measured at the time of the air sparging test are shown on Table 2.
- Geochemical evaluation: Evaluation of changing geochemical conditions, with DO and ORP parameters indicating establishment of aerobic conditions, was also used as an indicator of the area influenced by amendment injection and air sparging. Monitoring of DO and ORP parameters throughout the pilot study are summarized on Figure 5.

Pilot Results Summary and Discussion

This section summarizes the results of field pilot study with discussion with respect to the amendment injection and air sparging ROIs, geochemical changes as a result of the pilot testing activities, and reduction of arsenic in site groundwater.

6.1 Injection and Sparging ROI

Figure 4 shows the changes in the concentrations of three species of iron (dissolved, total, and ferrous) over the duration of the pilot. Prior to air sparging or amending with ferrous iron, total and ferrous iron concentrations in the pilot study area ranged from 2.6 to 9.2 mg/L total iron and 2.2 to 3.9 mg/L ferrous iron. A decrease in ferrous iron to approximately 1.5 mg/L was apparent following the air sparging ROI test, as observed in monitoring wells M2, M3, and M4. Such decrease was attributable to oxidation of ferrous to ferric iron, and potential coprecipitation with arsenic as oxygen was introduced into the formation.

Following the injection of ferrous iron amendment and air sparging pilot test, increases in the concentrations of total and dissolved iron were most evident at the injection wells, where concentrations were an order of magnitude greater than before the injections. For example, total iron increased from 3.3 mg/L during baseline sampling to 150 mg/L at INJ2 one week following air sparging. Iron concentrations at the nearby monitoring wells did not increase as much or decreased over the same time interval. For example, total iron increased from 3.3 to 5.7 mg/L at M1 and decreased from 8.8 to 3.2 mg/L at 99-1 from baseline sampling to one week following air sparging. These results indicate that the iron delivered to the formation had not been widely distributed into the entire pilot area and was mostly confined to the immediate vicinity of the injection wells.

Table 2 shows groundwater field parameter measurements taken just before, during, and immediately after the air sparging test. Of the parameters monitored, ORP, DO, depth to water, ferrous iron and the arsenic field test are most indicative of the ROI of the air sparging test. Of the two air sparging test days, the greatest ROI was most apparent during the second day when sparging with air was surged into the formation by cycling the air compressor on and off.

The results of the monitoring of each of these parameters are discussed below.

- **ORP:** ORP values became increasing positive over the tests, indicating the transition to conditions favoring oxidation. This was more effective on the second day of testing with positive ORP values that persisted or increased after air sparging ceased.
- DO: DO concentrations were variable during the first day of testing with no clear increase. On the second day, DO increased in the three monitoring wells nearest the air sparing wells (M2, M3, and M4) and persisted after air sparging ceased. Concentrations in wells M1 and 99-1 did not increase significantly.

- Depth to groundwater: Excessive groundwater mounding was observed on the first day of testing. This was less apparent on the second day when using the surging strategy. The depth to groundwater quickly recovered once air sparging ceased.
- **Ferrous iron:** Over both days of testing, decreasing ferrous iron concentrations were observed in the three monitoring wells nearest the air sparing wells (M2, M3, and M4). This is indicative of oxidation of ferrous to ferric iron, and potential coprecipitation with arsenic, due to the oxygen sparged into the formation.
- Arsenic field test: Concentrations of arsenic as measured using the field test kit showed generally decreasing trends in most monitoring wells during air sparging, but results were variable. On the second day of testing, arsenic decreased the most in the three wells nearest the air sparing wells (M2, M3, and M4). At well M1 an increase in arsenic was observed following sparging, possibly indicating advection of groundwater upgradient from the groundwater hotspot due to sparging.

6.2 Geochemical Evaluation

The persistence of aerobic conditions is an indicator of the overall performance of the air sparing pilot test and the extent to which repeated air sparging would be required to achieve cleanup goals. Aerobic conditions are indicated by positive ORP parameters and elevated DO. Monitoring of DO and ORP parameters throughout the duration of the pilot study are summarized on **Figure 5**. DO fell to pre-pilot levels by approximately two weeks following the ROI test and one month following the air sparging test. ORP remained slightly to moderately positive at M2, M3, and M4 two weeks following the ROI test; however, one week following the air sparging test, ORP returned to negative values in all but one well (INJ1). Together, ORP and DO parameters observed during the pilot suggest that geochemical conditions favorable to remediating arsenic could only be maintained with very frequent periodic air sparging.

6.3 Arsenic Reduction Effectiveness

Figure 3 shows the changes in arsenic concentrations in the pilot study area over the duration of the pilot study. Decreases in arsenic concentrations were most evident at the wells nearest the air sparging wells. The two injection wells, INJ1 and INJ2, are located between 3 and 5 feet away from the nearest air sparging well. Concentrations of arsenic in the injection wells decreased from over 2,000 μ g/L prior to the pilot to concentrations that were not detectable using the field test kit for arsenic (5-10 parts per billion [ppb]; 1 ppb is approximately equal to $1 \mu g/L$). Decreases in arsenic were less apparent at monitoring wells further away (5 to 8 feet) from the air sparging wells. For example, at monitoring wells M2 and M4, dissolved arsenic concentrations measured during the 1-month post-pilot monitoring event decreased from 1,100 to 440 and 420 to 320 µg/L, respectively, when compared to baseline results. Arsenic concentrations in the hotspot area downgradient of the air sparging wells at well 99-1 decreased from 2,200 to 560 µg/L over the duration of the pilot study. Upgradient of the air sparging wells, at monitoring well M1, an increase in arsenic concentrations over the duration of the pilot study was observed with a final dissolved arsenic concentration of 2,900 µg/L representing the highest concentration within the pilot area at the conclusion of the study, up from 1,600 μ g/L of total arsenic prior to the test.

Conclusions

The pilot study was performed in general accordance with the proposal to demonstrate the effectiveness in removing dissolved arsenic in site groundwater using air sparging During the ROI test, it was observed that connection of the wells was highly variable and treatment was following preferential pathways due to the semi-confined field conditions.

Injection of the ferrous iron following the ROI was problematic and the desired concentrations were not achieved due to the iron coming out of the solution as it was being injected. Based on the pilot study results CDM Smith has concluded the following:

- Sufficient ROI for full-scale implementation of pilot tested technology was not achieved.
- Where amendment was delivered, reasonable reduction in arsenic concentration was achieved.
- Geochemical conditions conducive to oxidative treatment of arsenic were not maintained, likely due to the presence of high organic content in soil at the site including wood fragments observed in soil borings.
- Overall, lithologic, hydrogeological, and geochemical conditions at the site do not appear to be amenable to the air sparging treatment technology that was pilot tested.

CDM Smith is currently developing an alternative approach to address arsenic contamination in soil and groundwater by conducting ISS over a larger area of the site. The extension of the ISS area will now include the majority of area that was previously identified for groundwater remediation with ISCO and/or air sparging. The increased area of ISS will greatly reduce the permeability of soils, in effect causing groundwater to go around, instead of through, soils containing high arsenic concentrations. This should greatly reduce and potentially eliminate the need for treatment by air sparging and/or ISCO.

Groundwater monitoring after implementation of ISS will be used to evaluate the effectiveness of ISS on the groundwater contaminant plume. When sufficient groundwater data have been obtained, the need for implementation of other groundwater treatment methods around the ISS treatment zone will be evaluated.

References

CDM Smith Inc. 2016a. *Remedial Investigation Report, USG Interiors Highway 99 Site, Milton, Washington.* June 23, 2016.

CDM Smith Inc. 2016b. *Feasibility Study, USG Interiors Highway 99 Site, Milton, Washington.* June 23, 2016.

CDM Smith Inc. 2018a. *Hot-Spot Characterization and Bench-Scale Testing, USG Interiors Highway* 99 Site, 7110 Pacific Highway East, Milton, WA 98354. March 23, 2018.

CDM Smith Inc. 2018b. *Field Pilot Study Work Plan, USG Interiors Highway 99 Site, 7110 Pacific Highway East, Milton, WA 98354.* July 25, 2018.

CDM Smith Inc. 2018c. Letter to Jennifer Brennan, Subject: Proposal, Field Pilot Study, Highway 99 Site, Milton, Washington. October 10, 2018.

Ecology. 2016. Cleanup Action Plan, USG Interiors Highway 99 Site, Milton, Washington. Prepared for USG Corporation. Issued by Washington State Department of Ecology Toxics Cleanup Program, Southwest Regional Office. June 23, 2016.

United States Army Corps of Engineers (USACE). 2013. Environmental Quality: In-Situ Air Sparging. EM 200-1-19. December 31, 2013.

Tables

Table 1Summary of Groundwater Elevation Measurements

Hwy 99 Site

USG Interiors

Milton, Washington

Monitoring Well I.D.	Date Measured	Top of Casing Elevation ^e (feet)	Depth to Groundwater (ft below TOC)	Groundwater Elevation (feet)
INJ1	03/21/19	21.60	8.20	13.40
INJ2	03/21/19	21.25	7.86	13.74
M1	03/21/19	21.53	8.13	13.47
M2	03/21/19	21.40	8.01	13.59
M3	03/21/19	21.49	8.10	13.50
M4	03/21/19	21.71	8.33	13.27
MW1	05/25/10	23.02	10.19	12.83
	07/15/10		9.85	13.17
	05/22/12		9.04	13.98
	09/11/18		9.77	13.25
	03/21/19		9.11	13.91
MW2	05/25/10	22.37	8.42	13.95
	07/15/10		8.51	13.86
	05/22/12		7.71	14.66
	09/11/18		8.29	14.08
	03/21/19	22.39	7.94	14.45
MW3	05/25/10	20.22	7.22	13.00
	07/15/10		7.32	12.90
	05/22/12		6.28	13.94
	09/11/18		7.21	13.01
	03/21/19		6.85	13.37
MW4	05/25/10	20.40	7.41	12.99
	07/15/10		7.51	12.89
	05/22/12		6.63	13.77
	09/11/18		7.35	13.05
	03/21/19	10.07	7.02	13.38
MW5	05/25/10	19.07	6.17	12.90
	07/15/10		6.22	12.85
	05/22/12		5.32	13.75
MW6	09/11/18	40.00	6.02	13.05
IVIVO	05/25/10	19.89	7.08 7.16	12.81
	07/15/10		-	12.73
	05/22/12 09/11/18		6.19	13.70
MW7	05/25/10	21.06	6.88 7.81	13.01 13.25
	07/15/10	21.00	8.02	13.04
	05/22/12		8.15	12.91
	09/11/18		8.49	12.57
	03/21/19	21.09	7.42	13.67
MW8	05/25/10	19.12	5.34	13.78
	07/15/10	10.12	5.57	13.55
	05/22/12		4.59	14.53
	09/11/18		5.61	13.51
MW9	05/25/10	20.87	1.72	19.15
-	07/15/10	-	1.89	18.98
	05/22/12		0.63	20.25
	09/11/18		1.69	19.18
MW10	05/22/12	14.15	0.79	13.36
	09/11/18		1.18	12.97

Table 1 Summary of Groundwater Elevation Measurements

Hwy 99 Site

USG Interiors

Milton, Washington

Monitoring Well I.D.	Date Measured	Top of Casing Elevation ^e (feet)	Depth to Groundwater (ft below TOC)	Groundwater Elevation (feet)
MW11	05/22/12	15.41	6.90	8.51
	09/11/18		1.31	14.10
MW12	05/22/12	21.54	0.00	21.54
	09/11/18		0.00	21.54
MW13	05/22/12	22.16	8.27	13.89
	09/11/18		8.56	13.60
MW14	05/22/12	30.3	10.60	19.70
	09/11/18		10.39	19.91
99-1	05/25/10	21.34	8.22	13.12
	07/15/10		8.47	12.87
	05/22/12		7.60	13.74
	09/11/18		8.28	13.06
	03/21/19	21.37	7.98	13.39
99-2	05/25/10	22.64	9.62	13.02
	07/15/10		9.71	12.93
	05/22/12		8.89	13.75
	09/11/18		9.69	12.95

Notes:

a) Datum used: NAD 83/91 Washington South Zone NAVD '88, US Feet.
 ft bgs - Feet below ground surface.
 TOC - top of casing.

Table 2Field Measured Parameters During Air SpargingUSG Hwy 99

Milton, Washington

		Monitoring Well I.D.						
Analyte		M1	M2	М3	M4	99-1		
Field-Measured Paran	neters							
рН								
2/14/2019	Pre-sparge	6.7		6.6	6.5	5.8		
	During sparge	6.7		6.6		6.7		
	Post-sparge	6.7	6.6	6.7	6.7	6.7		
2/15/2019	Pre-sparge	6.8	6.6	7.1	6.6	6.8		
	During sparge	6.8	6.8	6.7	6.6	6.7		
	Post-sparge	6.8	7.0	6.8	6.7	6.7		
Oxidation-Reduction	Potential (mV)							
2/14/2019	Pre-sparge	-48	-6	-40	-37	62		
	During sparge	-15		-22		-31		
	Post-sparge	-16	-4	-9	-20	-34		
2/15/2019	Pre-sparge	-48	-28	-49	-33	-53		
	During sparge	16	22	44	18	3		
	Post-sparge	36	27	50	44	19		
Specific Conductivity	(µS/cm)							
2/14/2019	Pre-sparge	286	450	328	263	253		
	During sparge	285		341		258		
	Post-sparge	279	458	317	250	260		
2/15/2019	Pre-sparge	286	576	278	234	259		
	During sparge	291	340	287	230	253		
	Post-sparge	294	351	293	229	250		
Dissolved Oxygen (m	g/L)							
2/14/2019	Pre-sparge	0.77	1.17	0.88	1.04	3.19		
	During sparge	0.80		1.37		0.61		
	Post-sparge	0.70	0.76	0.67	0.75	0.54		
2/15/2019	Pre-sparge	0.36	0.59	0.97	1.35	0.57		
	During sparge	0.39	7.99	0.86	1.29	0.39		
	Post-sparge	0.80	2.98	2.44	4.75	0.77		
Depth to water (feet B	STOC)							
2/14/2019	Pre-sparge	5.49	5.42	5.49	5.66	5.36		
	During sparge	4.32		2.47		4.24		
	Post-sparge	5.80	5.85	6.00	4.47	5.85		
2/15/2019	Pre-sparge	6.06	6.03	6.00	6.22	5.96		
	During sparge	6.25	3.89	6.17	6.35	5.03		
	Post-sparge	6.30	6.10	5.47	6.37	6.20		

Table 2Field Measured Parameters During Air SpargingUSG Hwy 99

Milton, Washington

			Monitoring Well I.D.								
Analyte		M1	M2	M3	M4	99-1					
Ferrous Iron (mg/L)											
2/14/2019	Pre-sparge	5.0	>3.3	6.4	7.9	2.0					
	During sparge	5.1		3.5		1.5					
	Post-sparge	4.6	8.8	2.2	6.8	2.5					
2/15/2019	Pre-sparge	4.9	9.4	3.3	4.5	2.6					
	During sparge	4.7	0.3	1.2	3.4	3.0					
	Post-sparge										
Arsenic field test* (ppl	o)										
2/14/2019	Pre-sparge	2,500	>1,000	2,000	500	>1,000					
	During sparge	3,000		3,000		>5,000					
	Post-sparge	1,500	500	2,000	500	800					
2/15/2019	Pre-sparge	1,500	750	1,500	800	1500					
	During sparge	4,000	90	1,000	400	600					
	Post-sparge	2,000	60	300	100	750					

Notes:

-- - Not measured

mV - millivolts

µS/cm - microsiemens per centimeter

mg/L - milligrams per liter

BTOC - below top of casing

*Quick™ Arsenic Test Kit

ppb - parts per billion

> - greater than the concentration given

Table 3 Field Measured Parameters USG Hwy 99 Milton, Washington

					M	onitoring Well I.I	D.			
	Date									
Analyte	Sampled	M1	M2	M3	M4	99-1	AS1	AS2	INJ1	INJ2
Field-Measured Parameters										
рН										
Pre-ROI test		6.8	6.8	6.8	6.5	6.5			6.9	7.0
Pre-Injection			6.6	6.7	6.6					
Post-sparging monitoring		6.8	6.6	6.7	6.7	6.7	7.2	7.0	5.8	6.0
	3/21-22/19	6.5	6.3	6.5	6.3	6.5			5.9	6.1
ORP (mV)										
Pre-ROI test		-65	-59	-80	-67	-67			-57	-78
Pre-Injection			40	19	2					
Post-sparging monitoring		-73	-60	-77	-37	-40	-130	-94	8	-23
	3/21-22/19	-88	-41	-76	-79	-124			11	-34
Temperature (°C)										
Pre-ROI test	12/7-10/18	15.3	14.1	14.2	15.1	14.0			15.7	14.6
Pre-Injection	02/05/19		13.2	13.4	14.1					
Post-sparging monitoring		13.5	13.0	13.3	13.5	12.7	12.2	12.7	11.1	10.6
	3/21-22/19	13.8	12.6	13.4	13.6	12.9			12.8	12.5
Specific Conductivity (µS/cm)										
Pre-ROI test	12/7-10/18	355	483	426	379	396			390	494
Pre-Injection	02/05/19		509	420	320					
Post-sparging monitoring	2/21-22/19	369	591	383	305	337	315	368	660	1150
	3/21-22/19	350	659	382	334	315			985	1350
Dissolved Oxygen (mg/L)										
Pre-ROI test	12/7-10/18	0.24	0.20	0.22	0.24	0.19			0.22	0.24
Pre-Injection	02/05/19		0.14	0.24	0.18					
Post-sparging monitoring	2/21-22/19	1.72 M	1.20 M	3.08 M	3.80 M	1.73 M	4.17 M	1.21 M	0.67 M	3.46 M
	3/21-22/19	0.38	0.20	0.38	0.14	0.14			0.12	0.21
Turbidity (NTU)										
Pre-ROI test	12/7-10/18	9	7	19	4	14			7	12
Pre-Injection	02/05/19									
Post-sparging monitoring	2/21-22/19	0	16	64	0	0	24	4	0	0
	3/21-22/19	2	1	7	3	5			28	6

Table 3 Field Measured Parameters USG Hwy 99 Milton, Washington

			Monitoring Well I.D.							
	Date									
Analyte	Sampled	M1	M2	M3	M4	99-1	AS1	AS2	INJ1	INJ2
Alkalinity (mg/L)										
Pre-ROI test	12/7-10/18									
Pre-Injection	02/05/19									
Post-sparging monitoring	2/21-22/19	180	180	200	160	160			100	180
	3/21-22/19	180	280	240	200	180			140	180
Ferrous Iron (mg/L)										
Pre-ROI test	12/7-10/18	2.8	3.1	3.9	3.2	2.9			2.3	2.2
Pre-Injection	02/05/19		1.8	1.5	1.5					
Post-sparging monitoring	2/21-22/19	5.2	3.2	5.1	5.1	2.3	5.0	2.5	6.2	9.7
	3/21-22/19	3.1	4.8	5.4	5.1	2.7			7.4	27.8
Arsenic field test (ppb)										
Pre-ROI test	12/7-10/18	190 K	70 K	40 K	190 K	100 K			400 K	190 K
Pre-Injection	02/05/19		400	1,000	800					
Post-sparging monitoring	2/21-22/19	>1,000	160	1,000	300	800	10	10	<10	<10
	3/21-22/19	>1,000	200	300	100	600			<10	<5

Notes:

-- - Not measured

mV - millivolts

µS/cm - microsiemens per centimeter

µg/L - micrograms per liter

mg/L - milligrams per liter

ppb - parts per billion

> - greater than the concentration given

< - less than the concentration given

M - Value biased high due to suspected meter malfunction

K - Hach field kit for arsenic appears not to be reporting correctly

Table 4 Arsenic and Iron in Groundwater (EPA 200.8/6010D) USG Hwy 99 Milton, Washington

Analyte	Date Sampled	Cleanup Level/Standard	Monitoring Well I.D.								
, ,		(µg/L)	M1	M2	М3	M4	99-1	AS1	AS2	INJ1	INJ2
Total Arsenic (µg/L)		5 ^a									
Pre-ROI test	12/7-10/2018		1,600	1,300/1,400 D	720	1,600	2,400			2,300	2,100
Pre-Injection	2/5/2019										
Post-Air sparge	2/21-22/2019										
	3/21-22/2019										
Dissolved Arsenic (µg	I/L)	5 ^a									
Pre-ROI test	12/7-10/2018				700		2,200				2,100
Pre-Injection	2/5/2019			1,100	310	420					
Post-Air sparge	2/21-22/2019		2,600	420	780	300	530			<10 T	<10 T
	3/21-22/2019		2,900	440	420	320	560			<10 T	<5 T
Total Iron (µg/L)		300 ^b									
Pre-ROI test	12/7-10/2018		3,300	7,800/7,500 D	7,500	9,200	8,800			2,600	3,300
Pre-Injection	2/5/2019										
Post-Air sparge	2/21-22/2019		5,700	5,700	7,700	5,600	3,200	11,000	5,900	49,000	150,000
	3/21-22/2019									86,000	
Dissolved Iron (µg/L)		300 ^b									
Pre-ROI test	12/7-10/2018										
Pre-Injection	2/5/2019										
Post-Air sparge	2/21-22/2019		5,500	5,200	6,200	5,600	3,000	6,100	2,400	49,000	150,000
	3/21-22/2019									78,000	230,000

Notes:

a) Washington Administrative Code Chapter 173-340, Model Toxics Control Act Cleanup Regulation Method A Groundwater Cleanup Level

Method A suggested groundwater cleanup level used when available

b) National Secondary Drinking Water Standard

T - Result of field test kit on filtered sample.

D - Duplicate sample results presented following /

µg/L - micrograms per liter

< - less than the concentration given

Table 5 Total Metals and Bromate in Groundwater USG Highway 99 Milton, WA

	Cleanur	Monitoring Well ID and Sampling Date								
	Cleanup Levels/Standards	M1	M2	M3	M4	99-1	INJ1	INJ2		
Total Metals	Levels/Standards	12/10/2018	12/7/2018*	12/7/2018	12/10/2018	12/7/2018	12/10/2018	12/10/2018		
(EPA 200.8/6010D/7470A)	μg/L				μg/L					
Aluminum	200 ^d	220	110/110 U	680	160	110 U	240	700		
Antimony	6 ^b	5.6 U	5.6/5.6 U	5.6 U	5.6 U	5.6 U	17	5.6 U		
Barium	2000 ^b	45	51/50	58	48	28 U	41	56		
Beryllium	4 ^b	11 U	11/11 U	11 U	11 U	11 U	11 U	11 U		
Cadmium	5 ^a	4.4 U	4.4/4.4 U	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U		
Calcium		29,000	41,000/40,000	27,000	33,000	34,000	37,000	33,000		
Chromium	100 °	11 U	11/11 U	11 U	11 U	11 U	11 U	11 U		
Cobalt		11 U	11/11 U	11 U	11 U	11 U	11 U	11 U		
Copper	1000 ^d	11 U	11/11 U	11 U	11 U	11 U	11 U	11 U		
Lead	15 °	1.1 U	1.1/1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U		
Magnesium		16,000	18,000/18,000	14,000	15,000	17,000	16,000	14,000		
Manganese	50 ^d	1,200	1300/1200	1,100	1,400	1,100	1,100	810		
Mercury	2 ^a	0.5 U	0.5/0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Nickel		22 U	22/22 U	22 U	22 U	22 U	22 U	22 U		
Potassium		4,800	5,300/5,300	6,000	4,200	4,100	4,700	6,100		
Selenium	50 ^b	5.6 U	5.6/5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U		
Silver	100 ^d	11 U	11/11 U	11 U	11 U	11 U	11 U	11 U		
Sodium		17,000	28,000/26,000	34,000	19,000	17,000	18,000	52,000		
Thallium	2 ^b	5.6 U	5.6/5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U		
Vanadium		11 U	11/11 U	11 U	11 U	11 U	11 U	11 U		
Zinc	5000 ^d	28 U	28/28 U	28 U	28 U	28 U	28 U	28 U		
Bromate (EPA 300.1)	10 ^b					10 U	10 U	10 U		

Notes:

Bold and boxed values exceed the listed standard

a) Washington Administrative Code Chapter 173-340, Model Toxics Control Act Cleanup Regulation

Method A suggested groundwater cleanup level used when available

b) National Primary Drinking Water Standard Maximum Contaminant Level (MCL)

c) If hexavalent chromium is not present

d) National Secondary Drinking Water Standard

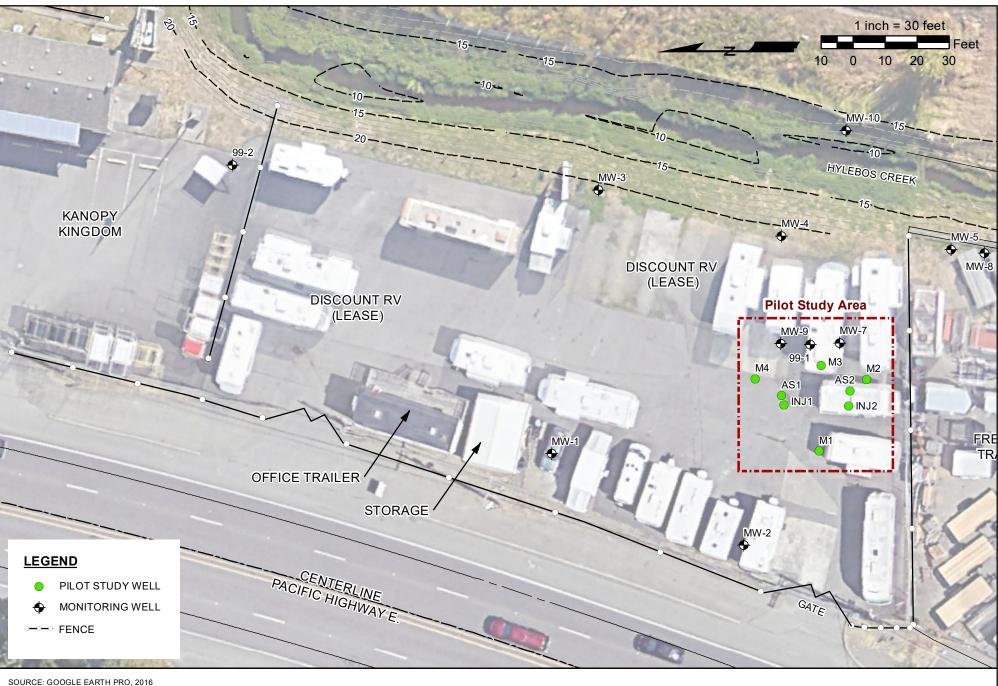
µg/L - micrograms per liter.

U - analyte not detected at or greater than the listed concentration.

* Duplicated sample results reported following /

-- - Not analyzed

Figures



SOURCE: ESRI WORLD IMAGERY, 2018

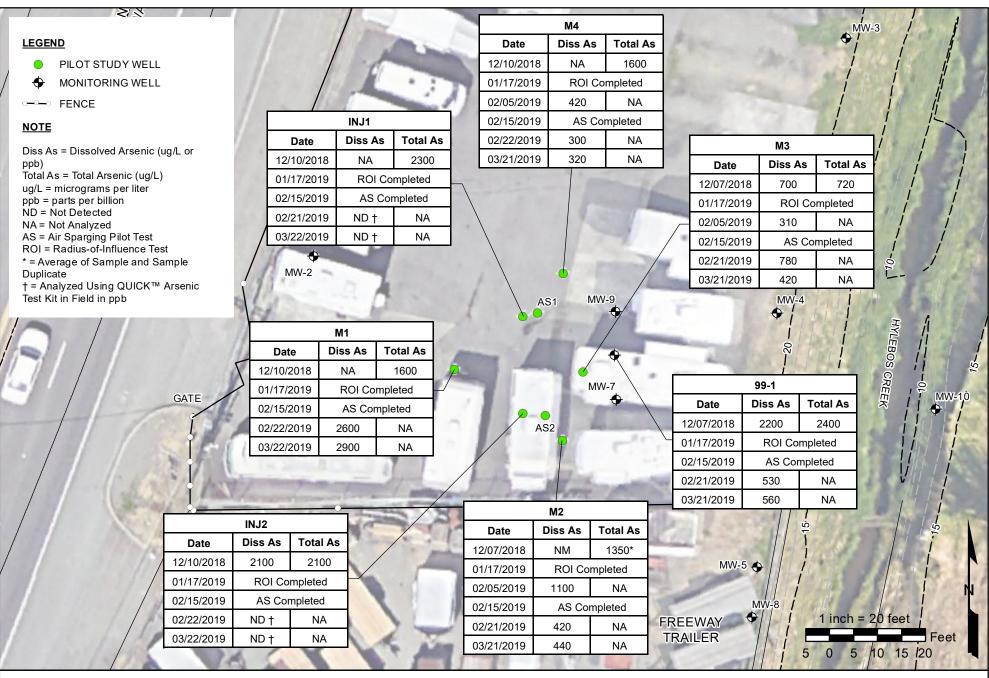
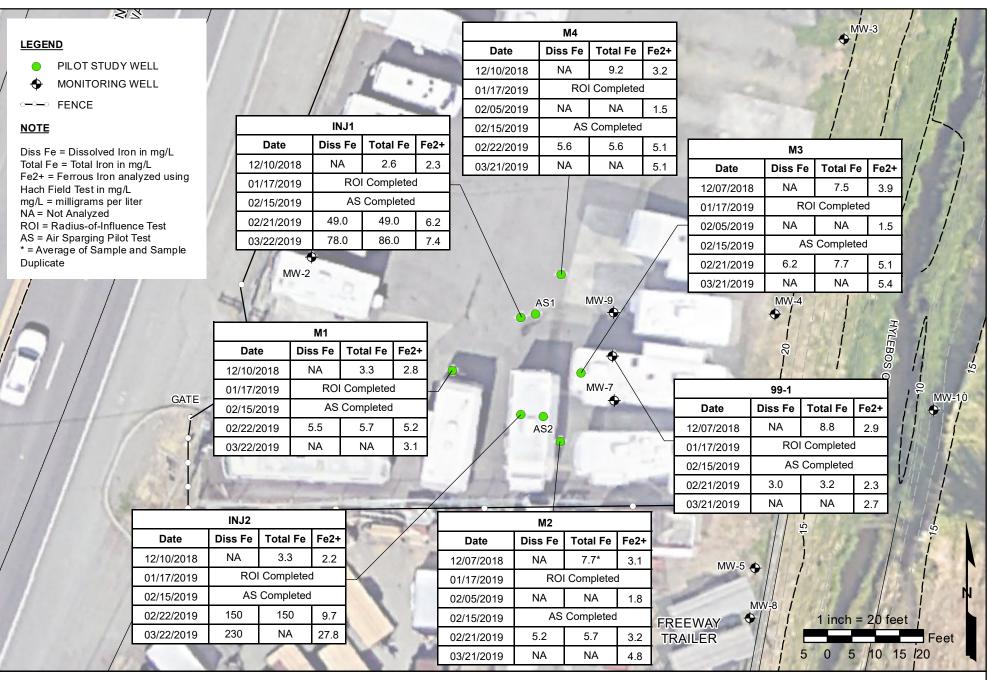

FIELD PILOT STUDY USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON

Figure 1 Vicinity Map

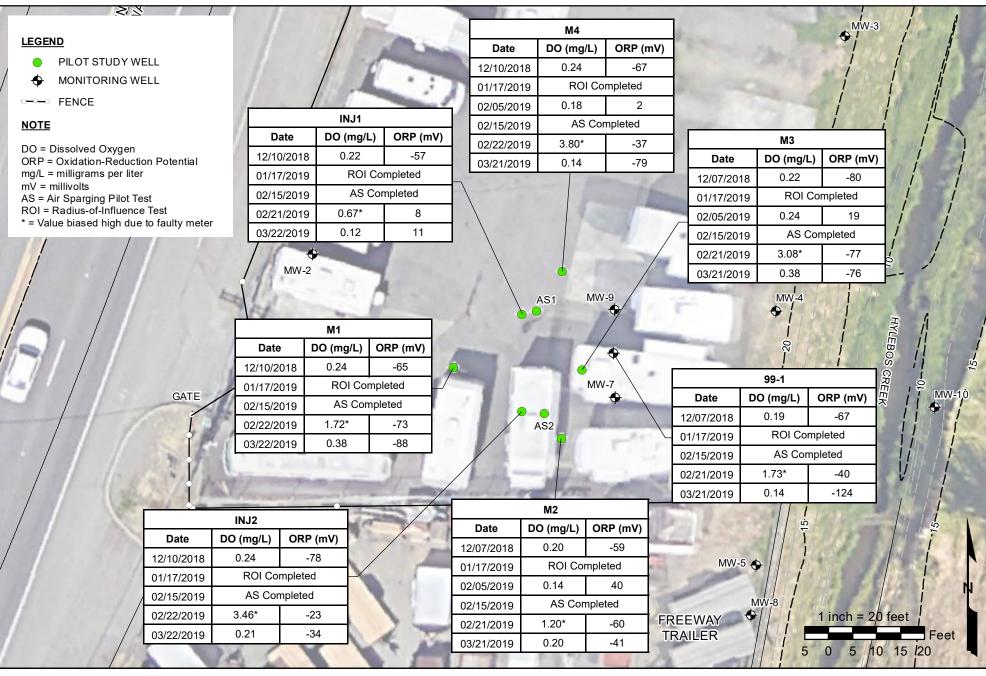
FIELD PILOT STUDY USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON Figure 2 Site Plan and Pilot Study Area



SOURCE: GOOGLE EARTH PRO, 2016

FIELD PILOT STUDY USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON

Figure 3 Arsenic Concentrations in Groundwater



SOURCE: GOOGLE EARTH PRO, 2016

FIELD PILOT STUDY USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON

Figure 4 Iron Concentrations in Groundwater

SOURCE: GOOGLE EARTH PRO, 2016

FIELD PILOT STUDY USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON Figure 5 Dissolved Oxygen and Redox Conditions in Groundwater

Appendix A

UIC Permit

View Friendly

DEPARTMENT OF

ECOLOGY State of Washington

Automatically Meet the Nonendangerment Standard For Class V wells that automatically meet the non endangerment standard in accordance with WAC 173-218-100.

Registration Status

Site Number: 34241 Authorization Status: Rule-Authorized Comments:

Facility/Site Information

Facility Name:USG Interiors 99 SiteAddress:7110 Pacific Hwy EPO Box/Suite/Building:City:City:MiltonState:WAPhone:253-922-7725County:PierceFacility Site ID:84531356

ZIP: 98354

Contact Information

Well Owner		Property Owner	
Name:	Jennifer Brennan	Name:	Don Miniken
Organization:	USG Interiors LLC	Organization:	Freeway Sales
Address:	550 West Adams St	Address:	7110 Pacific
	550 west Adams St		Hwy E
PO Box/Suite/Building:		PO Box/Suite/Building:	
City:	Chicago	City:	Milton
State:	IL ZIP: 60661	State:	WA ZIP: 98354
E-mail:	jbrennan@usg.com	E-mail:	
Phone:	312-43-5385	Phone:	111-111-1111
Technical Contact			
Name:	Pam Morrill		
Organization:	CDM Smith Inc		
Address:	14432 SE Eastgate Way		
PO Box:	Suite 100		

City: Bellevue State: WA ZIP: 98007 E-mail: morrillpj@cdmsmith.com Phone: 425-248-0215

Well Name	UIC Well Type From Section C (1-12)	Construction Date	EPA Well Type	Status	Depth of UIC Well (ft.)	Latitude	Longitude
INJ2	12	11/28/2018	5B6 - Aquifer remediation	Active	25	47.246434	- 122.334980
INJ1	12	11/28/2018	5B6 - Aquifer remediation	Active	25	47.246490	- 122.334990
AS2	12	11/29/2018	5B6 - Aquifer remediation	Active	35	47.246430	- 122.334970
AS1	12	11/30/2018	5B6 - Aquifer remediation	Active	35	47.246492	- 122.334970

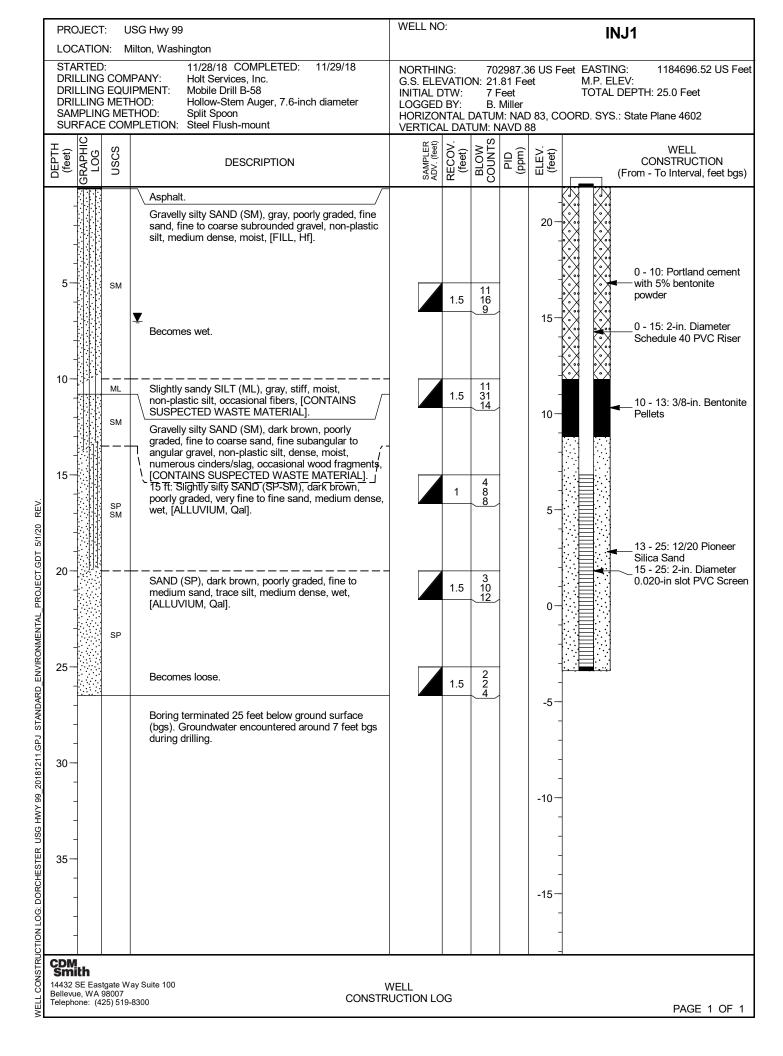
Main Well Information

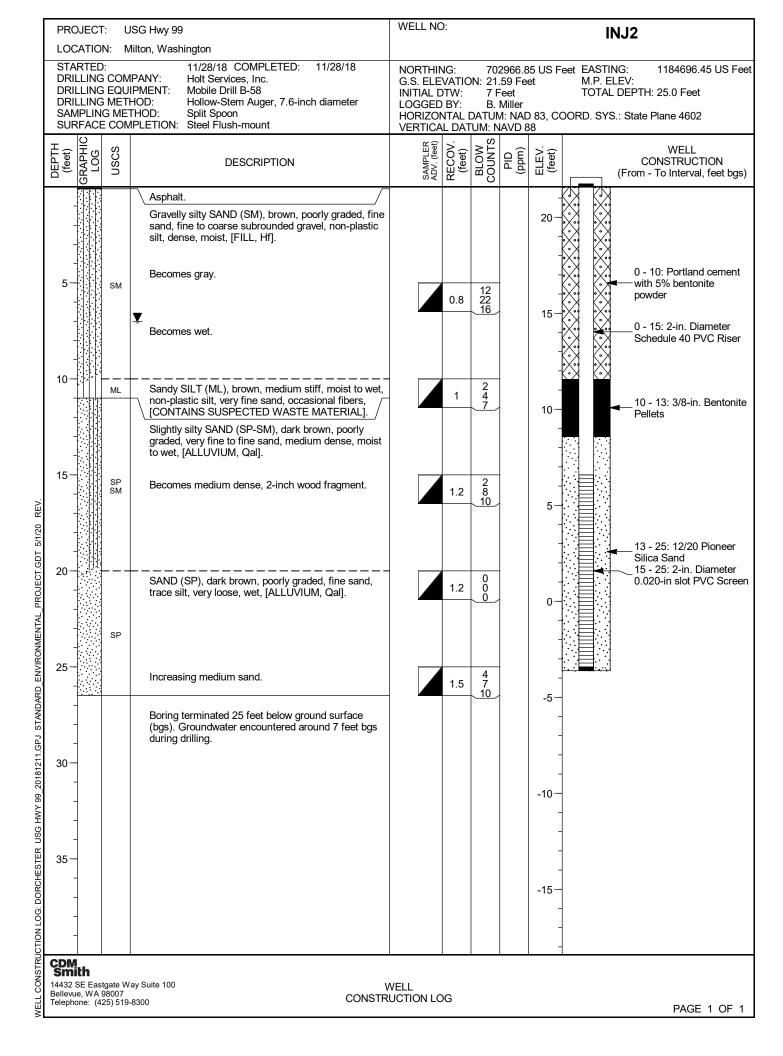
Main Well Information (continued)

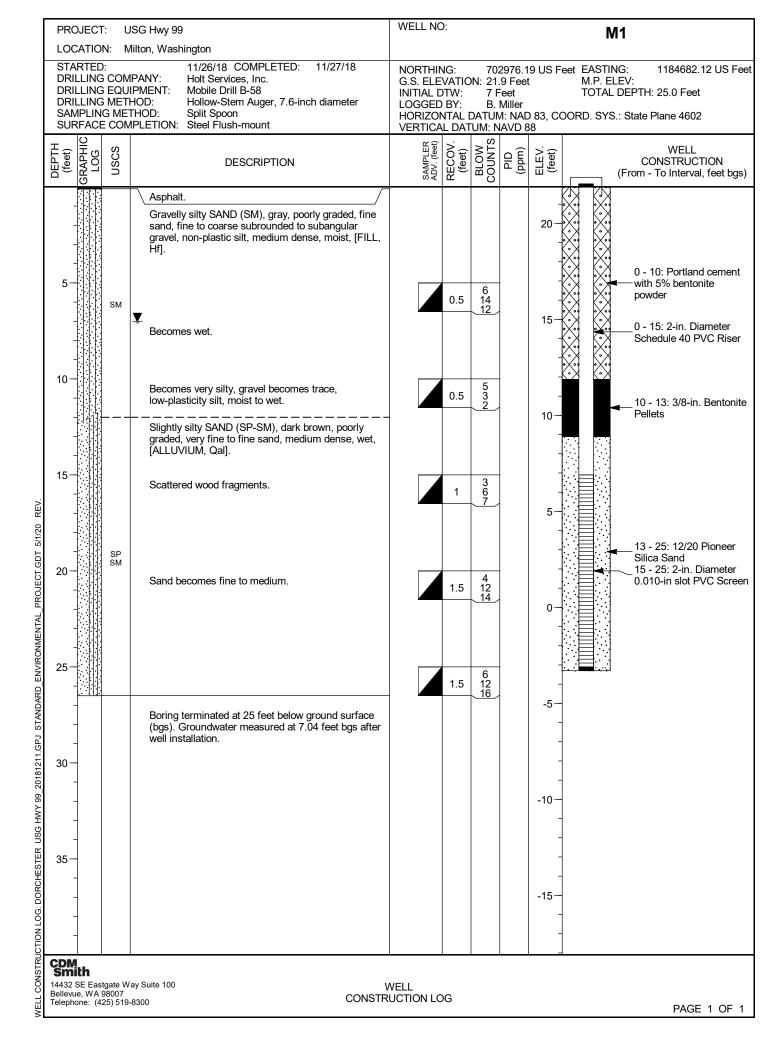
Well Name	Permit Type	Permit ID	Permit Issuer
INJ2	MTCA	84531356	Ecology
INJ1	MTCA	84531356	Ecology
AS2	MTCA	84531356	Ecology
AS1	MTCA	84531356	Ecology

Appendix B

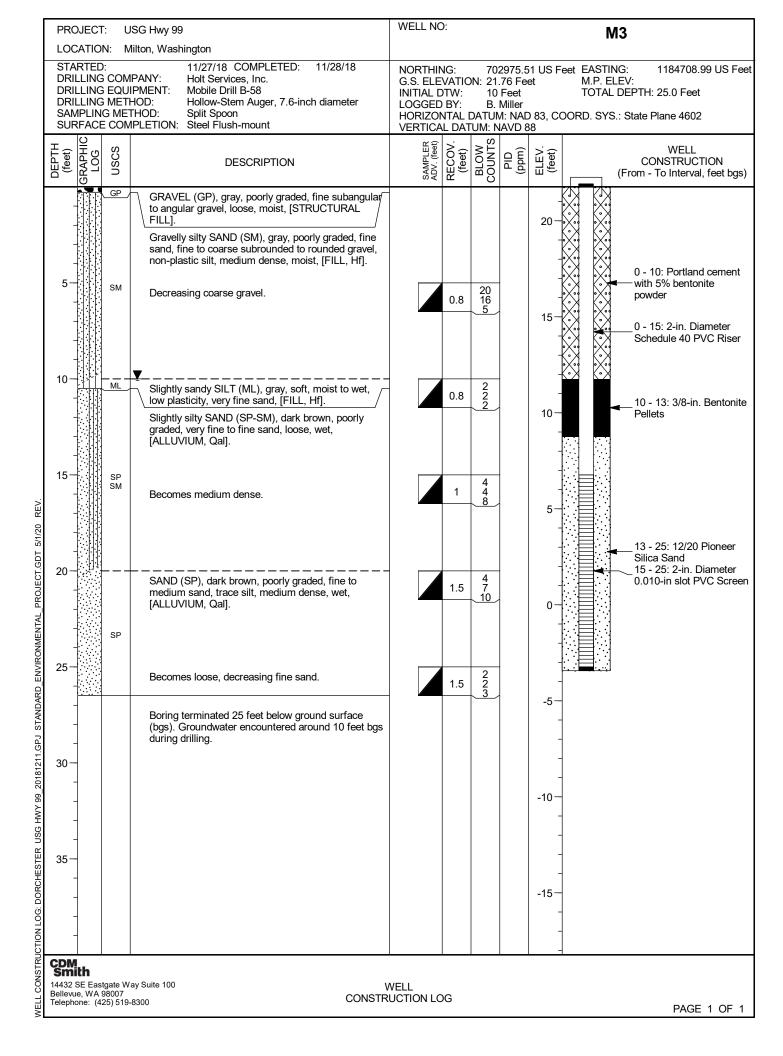
Well Installation Logs

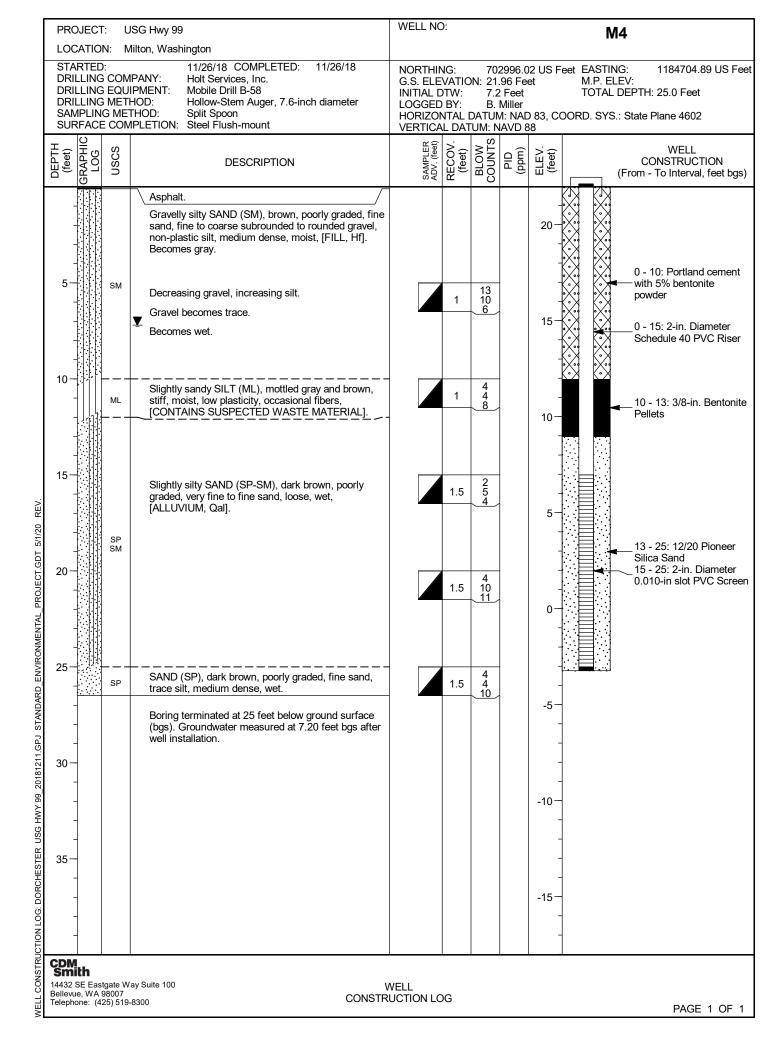

					SO	L CLAS	SIF	CA	41	ΓΙΟΝ	LE	GEND					
	MAJOR DI	VISIONS					TY	PIC	;A		IES		SA	MPLE T	YPE	SYMBOLS	
	GRAVELS	Clean gravel	s with	GW		Well graded	gravels	s, grav	vel	I-sand mi	xtures		G	Disturb	ed baç	g or jar sample	
COARSE GRAINED SOILS More than half is larger than No. 200 sieve	More than half	little or no f		GP		Poorly grade	d grave	els, gr	rav	/el-sand r	nixture	es] 7	Std. Pe	enetrati	ion Test (2.0" OD)	
ED S large eve	coarse fraction is larger than	Gravel w	ith	GM		Silty gravels,	gravel	-sand	d-si	ilt mixture	es			Type U	Ring	Sampler (3.25" OD)	
AINE alf is 200 si	No. 4 sieve size	over 12% f		GC	X	Clayey grave	els, grav	vel-sa	anc	d-clay mix	dures				0	mpler (3.0" OD)	
No. 7	SANDS	Clean sands	s with	SW	0 0	Well graded	sands,	grave	elly	y sands] []		,	
RSE lore the	More than half	little or no f		SP		Poorly grade	d sand	s, gra	ave	elly sands			1 ∐	Undistu	Irbed I	Tube Sample	
¥٥	coarse fraction is smaller than	Sands wi	ith	SM		Silty sand, sa	and-silt	mixtu	ure	s			- G	Grab S	ample		
Ŭ	No. 4 sieve size	over 12% f		SC		Clayey sands	s, sand	-clay	mi	ixtures			1 []	Core R			
ດີ				ML		Inorganic silt clayey fine sa	s and v ands, o	ery fi r clay	ine yey	sands, ro silts with	ock flo slight	ur, silty or plasticity	7 []			l Penetration Test oon sampler)	
SOI malle eve	SILTS . Liquid lin	AND CLAYS nit less than 50		CL		Inorganic clar clays, sandy							1 [Bulk Sa	ample		
FINE GRAINED SOILS More than half is smaller than No. 200 sieve				OL		Organic clays							со	NTACT	BET	WEEN UNITS	5
an ha No. 2				ΜН	ŤŤ	Inorganic silt silty soils, ela	s, mica astic sil	ceou: ts	IS C	or diatoma	aceous	s fine sandy or	1			change in unit	
E G than	SILTS . Liquid limi	AND CLAYS t greater than 5	60	СН		Inorganic cla							1/			change in unit which loted in the exploration	
FIN				ОН		Organic clays	s of me	dium	ı to	high plas	sticity,	organic silts			ge in ur define	nit which was not ed	
	HIGHLY ORG	ANIC SOILS		РТ	6 876 876 876 876 876 876 876 8	Peat and othe	er high	ly org	gan	nic soils					WE		
D	ESCRIPTOR	S FOR SC	NL S	TRA	TAA	ND STRU	СТ	RE	(ENGL	ISH/	METRIC)	_	CON	NPLE	ETIONS	7
	Parting: less	than 1/16 in. cm)		Pock	et.	Erratic, disco	ntinous		N	vear hori:	zontal [.]	0 to 10 deg.		Concrete			
General Thickness or Spacing	e (e	6 to 1/2 in. to 1 1/4 cm)				Erratic, disco deposit of lim extent	nited	lap		ow angle		10 to 45 deg.	Bento	Well C onite/Grou	-		1
al Thickn Spacing	Laver: 1/2	to 12 in. /4 to 30 1/2 cm)	Structure	Lens:		Lenticular de	posit	Attitude		ligh angl	e:	45 to 80 deg.		oundwater		∇	ļ
eral T or Sp		2 in. (30 1/2 cm)	Struc	Varve	ed:	Alternating se of silt and cla	eams	General	Ν	Vear Vert	ical:	80 to 90 deg.		ted Well C			1
Gen	Scattered: < 1	per ft. (30 1/2 cr	n)	Lamii	nated:	Alternating se		9 G						Sand Ba	-		
	Frequent: > 1	per ft. (30 1/2 cr	n)	Strati	fied:	Alternating la	iyers						Imnei	rmeable Ba	ackfill		1
														ntonite/Gr			
	RUCTURE			•	'		MC	DIST	Γι	JRE D	ESC	RIPTION			-	IERS	
		Breaks easily Polished, glos	•			•		,		ree of m				Trace	Parti estin	cles present at leve nated < 5%	əls
Bloc		Breaks easily Disturbed text			•	•	MC	oist -		amp but ree water		sible	Slight	y (Clayey,	Parti	cles present at leve	els
Homo		Same color an	,		0		W	/et -	V	isible fre	e wate	er	SI	ty, Sandy, Gravelly)	estin	nated at 5 to 12%	
	RELAT		SITY	OR	CON	SISTENC	Y VS	. SP	РΤ	N-VA	LUE	•	Cla Sandy	ayey, Silty, , Gravelly	Parti estin	cles present at leven nated at 12 to 30%	els
		SE GRAINE		-						GRAINE			Ver	v (Clavev.	Perc	entage of minor	
D	ensity N	(blows/ft)		x. Rela sity (%		Consistency	'	N (I	blo	ows/ft)		ox. Undrained ear Str. (psf)		Gravelly)	> 309		
Very	Loose	0 to 4		- 15		Very Soft		(0 t	o 2		<250				DPERTY TEST	•
Loose	•	4 to 10	15	- 35		Soft		2	2 t	o 4		250 - 500	FC	C- Fine	rberg l s Con	ntent	
2		10 to 30		- 65		Medium Stiff				8 0		500 - 1000		C - Mois	sture C	e Distribution Content	.,
Dens		30 to 50 Over 50		- 85 - 100		Stiff Very Stiff				o 15 o 30		000 - 2000 000 - 4000	MD SG Perm	3- Spe	cific G	Content/Dry Density Gravity	у
			00	100		Hard				er 30		>4000	TXF	P- Tria∷	xial Pe solida	ermeability	
<u>Note</u>	<u>s:</u>												Cherr Cor	n - Ana r - Corr	lytical rosion	Chemical Analysis	í
2 1. Sa	mple descriptions	in this report a	re base	ed on v	isual fi	eld and laborat	tory ob	serva	atic	ons, whic	h inclu	ude	DS	3 - Dire	e Shea ct She	ear	
~	ty/consistency, mo field or laboratory											ied to	TX	C - Unc (- Tria:	onfine xial C	d Compression	
accor	dance with ASTM assifications are in	D 2488 were u	sed as	an ide	ntificati	on guide. Wh						able,	CL	J- Con	solida	dated, Undrained ted, Undrained	
5		0						Γ				110		<u>con</u> teriors		ted, Drained	
perce	al symbols are us nt fines and fine-g													99 Sit			
plastic	city chart.											•	•	, WA	0		
3. W	OR = weight of roo	d, WOH = weigl	ht of ha	ammer				\vdash						,			


SOIL CLASSIFICATION/LEGEND LL307 DATABASE.GPJ STANDARD_ENVIRONMENTAL_PROJECT.GDT 12/20/17 REV.


LOC STA DRI DRI DRI SAM	LLING LLING APLIN	N: N CON CON EQU MET IG ME	JSG Hwy 99 Ailton, Washington 11/30/18 COMPLETED: 11/30/18 IPANY: Holt Services, Inc. IPMENT: Mobile Drill B-58 HOD: Hollow-Stem Auger, 7.6-inch diameter THOD: Split Spoon IPLETION: Steel Flush-mount	NORTHIN G.S. ELE INITIAL E LOGGED HORIZOI VERTICA	NG: VATIC DTW: DBY: NTAL	DN: 21 7 F B. Datui	.75 Fe ⁻ eet Miller ⁄I: NA[et 0 83, C	AS1 Feet EASTING: 1184699.53 US Fe M.P. ELEV: TOTAL DEPTH: 37.0 Feet COORD. SYS.: State Plane 4602
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION	BLOW COUNTS	UIA DId	ELEV. (feet)	WELL CONSTRUCTION (From - To Interval, feet bg:		
-			Asphalt. Gravelly silty SAND (SM), gray, poorly graded, fine sand, fine to coarse subrounded gravel, non-plastic silt, medium dense, moist, [FILL, Hf].					20-	
5- - - -		SM	▼ Becomes wet.					- 15 -	
10- - -		 ML 	Slightly sandy SILT (ML), gray, stiff, moist, non-plastic silt, occasional fibers, [CONTAINS SUSPECTED WASTE MATERIAL]. Gravelly silty SAND (SM), dark brown, poorly graded, fine to coarse sand, fine subangular to angular gravel, non-plastic silt, dense, moist,	-				- - - - -	
15 - -		SP SM	 Numerous cinders/slag, occasional wood fragments, [CONTAINS SUSPECTED WASTE MATERIAL]. 15 ft: Slightly silty SAND (SP-SM), dark brown, poorly graded, very fine to fine sand, medium dense, wet, [ALLUVIUM, Qal]. 					- - - -	- X · · · · · · · · · · · · · · · · · ·
20			SAND (SP), dark brown, poorly graded, fine to medium sand, trace silt, medium dense, wet, [ALLUVIUM, Qal].	_				- - 0	
- 25 -			Becomes loose.					-5-	- 25 - 28: 3/8-in. Benton Pellets
30-		SP						- - -10-	28 - 35: 12/20 Pioneer Silica Sand
- 35-								-	30 - 35: 2-in. Diameter 0.020-in slot Low-carbo Steel Screen
-		ML	SILT (ML), gray, hard, moist to wet, low plasticity, [GLACIAL DRIFT, described from auger response and cuttings]. Boring terminated at 37 feet below ground surface (bgs). Groundwater encountered around 7 feet bgs during drilling. Lithology from 0 to 25 feet bgs is	-				-15- - -	3023005
Bellevu	ith SE Eas Je, WA	tgate W 98007 25) 519	CONSTR	WELL CUCTION LC)G				PAGE 1 OF

PROJI LOCA			ISG Hwy 99 Iilton, Washington	WELL N	IO:				AS1
	LOG	USCS	DESCRIPTION	SAMPLER ADV (feet)	RECOV. (feet)	BLOW COUNTS	DID DId	ELEV. (feet)	WELL CONSTRUCTION (From - To Interval, feet bgs)
-			assumed based on lithology at adjacent (by ~2 feet) boring INJ1.					- -20 -	
45— - - -								- -25	
- 50 - - -								- - -30 -	
- 55— - - -								- -35-	
- 60 - - -								- -40 -	
65								- - -45 -	
70								- -50- -	
- 75 - -								- -55— -	
- 80 — - - -								- -60- -	
CDM Smith 14432 SE Bellevue, Telephone	h East WA 9 e: (42	gate W 98007 25) 519-	ay Suite 100 V -8300 CONSTR	VELL UCTION L	OG	1	1		PAGE 2 OF 2


LOCATIC STARTEL DRILLING DRILLING SAMPLIN SURFAC	D: G COM G EQUI G METH IG MET	PMENT: Mobile Drill B-58 HOD: Hollow-Stem Auger, 7.6-inch diameter	NORTHII G.S. ELE INITIAL E LOGGEE HORIZOI VERTICA	VATIC)TW:) BY: NTAL I)n: 21. 7 F B. Datur	49 Fee eet Miller 1: NAD	t TOTAL DEPTH: 35.0 Feet ler NAD 83, COORD. SYS.: State Plane 4602				
DEPTH (feet) GRAPHIC LOG	NSCS	DESCRIPTION	SAMPLER ADV. (feet)	RECOV. (feet)	S	(mqq) DID	ELEV. (feet)			WELL CONSTRUCTION (From - To Interval, feet bgs	
		Asphalt. Gravelly silty SAND (SM), brown, poorly graded, fine sand, fine to coarse subrounded to rounded gravel, non-plastic silt, dense, moist, [FILL, Hf].					- 20				
5	SM	Becomes gray, increasing silt.		0.5	4 26 8		- - 15- -				
10		Becomes loose.		0.4	334		- - 10-			0 - 25: Portland cement ← with 5% bentonite powder	
15	SP SM	Slightly silty SAND (SP-SM), dark brown, poorly graded, very fine to fine sand, medium dense, moist to wet, [ALLUVIUM, Qal].		0.8	358		- - 5			' 0 - 30: 2-in. Diameter Low-carbon Steel Riser	
20		SAND (SP), dark brown, poorly graded, very fine to fine sand, trace silt, loose, wet, occasional organics [ALLUVIUM, Qal].		1.5	1 2 4		- - - - -				
25-	SP	No samples 25-35 feet due to heave.					- -5 -			 4 25 - 28: 3/8-in. Bentoni Pellets 	
30-							- -10- -			 28 - 35: 12/20 Pioneer Silica Sand 30 - 35: 2-in. Diameter 0.020-in slot Low-carbo Steel Screen 	
35	ML	SILT (ML), gray, hard, moist, low plasticity, [GLACIAL DRIFT, described from auger response and cuttings]. Boring terminated 37 feet below ground surface (bgs). Groundwater encountered around 7 feet bgs during drilling.					- -15- -			■— 35 - 37: Slough	



PRO. LOC/			ISG Hwy 99 filton, Washington	WELL NO: M2								
DRIL DRIL SAMI SURI	LING LING LING PLIN FACE	G COM	11/27/18COMPLETED:11/27/18IPANY:Holt Services, Inc.IPMENT:Mobile Drill B-58HOD:Hollow-Stem Auger, 7.6-inch diameterTHOD:Split SpoonIPLETION:Steel Flush-mount	NORTHING: 702961.20 US Feet EASTING: 1184704.51 U G.S. ELEVATION: 21.63 Feet M.P. ELEV: INITIAL DTW: 7 Feet TOTAL DEPTH: 25.0 Feet LOGGED BY: B. Miller HORIZONTAL DATUM: NAVD 83, COORD. SYS.: State Plane 4602 VERTICAL DATUM: NAVD 88								
DEPTH (feet)	GRAPHIC LOG	NSCS	DESCRIPTION	SAMPLER ADV. (feet)	RECOV. (feet)	BLOW COUNTS	DID DId	ELEV. (feet)	WELL CONSTRUCTION (From - To Interval, feet bgs			
		GP/	GRAVEL (GP), gray, poorly graded fine subangular to angular gravel, loose, moist, [STRUCTURAL FILL]. Gravelly silty SAND (SM), gray, poorly graded, fine sand, fine to coarse subrounded to rounded gravel,					20-				
5		SM	non-plastic silt, very dense, moist, [FILL, Hf]. Decreasing coarse gravel.		1	10 24 29		15-	• • • • • • • • • • • • • • • • • • •			
10			Becomes dense, moist, becomes slightly clayey, increasing silt, gravel absent.		0	5 14 21		10-	• • • • • • • • • • • • • • • • • • •			
15		SP SM	Slightly silty SAND (SP-SM), dark brown, poorly graded, very fine to fine sand, medium dense, wet, [ALLUVIUM, Qal].		1	6 9 10		5-				
20-		SP ML	SAND (SP), dark brown, poorly graded, fine to medium sand, loose, wet, [ALLUVIUM, Qal]. SILT (ML), brown, soft, moist to wet, 2-inch wood fragment, [ALLUVIUM, Qal].		1.5	6 2 2		0-	13 - 25: 12/20 Pioneer Silica Sand 15 - 25: 2-in. Diameter 0.010-in slot PVC Scree			
25-		SP SM	Slightly silty SAND (SP-SM), dark brown, poorly graded, fine sand, loose, wet, [ALLUVIUM, Qal]. Boring terminated 25 feet below ground surface		1.5	232	-	-5-				
- 30- -			(bgs). Groundwater encountered around 7 feet bgs during drilling.					-10-	-			
- 35 - -								-15-	-			
CDM SMit 14432 SI Bellevue Telephor	E Eas	98007	CONSTR	WELL) G							

Appendix C

Analytical Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

January 7, 2019

Pam Morrill CDM Smith, Inc. 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007-6493

Re: Analytical Data for Project 233028 Laboratory Reference No. 1812-096

Dear Pam:

Enclosed are the analytical results and associated quality control data for samples submitted on December 10, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 7, 2019 Samples Submitted: December 10, 2018 Laboratory Reference: 1812-096 Project: 233028

Case Narrative

Samples were collected on December 7 and 10, 2018 and received by the laboratory on December 10, 2018. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

onits. http://tg.(ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	1DW-Comp					
Laboratory ID:	12-096-09					
Arsenic	30	12	EPA 6010D	12-14-18	12-14-18	
Barium	60	3.1	EPA 6010D	12-14-18	12-14-18	
Cadmium	ND	0.61	EPA 6010D	12-14-18	12-14-18	
Chromium	35	0.61	EPA 6010D	12-14-18	12-14-18	
Copper	21	1.2	EPA 6010D	12-14-18	12-14-18	
Lead	ND	6.1	EPA 6010D	12-14-18	12-14-18	
Mercury	ND	0.31	EPA 7471B	12-17-18	12-17-18	
Nickel	16	3.1	EPA 6010D	12-14-18	12-14-18	
Selenium	ND	12	EPA 6010D	12-14-18	12-14-18	
Silver	ND	1.2	EPA 6010D	12-14-18	12-14-18	
Zinc	39	3.1	EPA 6010D	12-14-18	12-14-18	

TOTAL METALS EPA 6010D/7471B METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1214SM1					
Arsenic	ND	10	EPA 6010D	12-14-18	12-14-18	
Barium	ND	2.5	EPA 6010D	12-14-18	12-14-18	
Cadmium	ND	0.50	EPA 6010D	12-14-18	12-14-18	
Chromium	ND	0.50	EPA 6010D	12-14-18	12-14-18	
Copper	ND	1.0	EPA 6010D	12-14-18	12-14-18	
Lead	ND	5.0	EPA 6010D	12-14-18	12-14-18	
Nickel	ND	2.5	EPA 6010D	12-14-18	12-14-18	
Selenium	ND	10	EPA 6010D	12-14-18	12-14-18	
Silver	ND	1.0	EPA 6010D	12-14-18	12-14-18	
Zinc	ND	2.5	EPA 6010D	12-14-18	12-14-18	
Laboratory ID:	MB1217S1					
Mercury	ND	0.25	EPA 7471B	12-17-18	12-17-18	

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	12-06	61-34								
	ORIG	DUP								
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	
Barium	112	120	NA	NA		NA	NA	7	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	13.7	15.1	NA	NA		NA	NA	10	20	
Copper	16.3	16.9	NA	NA		NA	NA	4	20	
Lead	5.95	8.15	NA	NA		NA	NA	31	20	С
Nickel	13.0	13.8	NA	NA		NA	NA	6	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	50.4	52.9	NA	NA		NA	NA	5	20	
Laboratory ID:	12-06	61-34								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	

MATRIX SPIKES

Mercury	0.493	0.518	0.500	0.500	0.00870	97	102	80-120	5	20
Laboratory ID:										
Zinc	149	150	100	100	50.4	99	99	75-125	0	20
Silver	23.1	23.5	25.0	25.0	ND	92	94	75-125	2	20
Selenium	91.3	94.1	100	100	ND	91	94	75-125	3	20
Nickel	113	113	100	100	13.0	100	101	75-125	1	20
Lead	243	248	250	250	5.95	95	97	75-125	2	20
Copper	68.0	68.5	50.0	50.0	16.3	103	104	75-125	1	20
Chromium	111	111	100	100	13.7	98	98	75-125	0	20
Cadmium	47.9	48.2	50.0	50.0	ND	96	96	75-125	1	20
Barium	218	217	100	100	112	106	105	75-125	0	20
Arsenic	92.2	97.0	100	100	ND	92	97	75-125	5	20
	MS	MSD	MS	MSD		MS	MSD			
Laboratory ID:	12-0	61-34								

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	99-1-20181207					
Laboratory ID:	12-096-01					
Aluminum	ND	110	EPA 6010D	12-13-18	12-13-18	
Antimony	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	2400	33	EPA 200.8	12-13-18	12-13-18	
Barium	ND	28	EPA 200.8	12-13-18	12-13-18	
Beryllium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Calcium	34000	1100	EPA 6010D	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Iron	8800	56	EPA 6010D	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Magnesium	17000	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	1100	11	EPA 6010D	12-13-18	12-13-18	
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Potassium	4100	1100	EPA 6010D	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Sodium	17000	1100	EPA 6010D	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	

6

01113. dg/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	M99-20181207					
Laboratory ID:	12-096-02					
Aluminum	ND	110	EPA 6010D	12-13-18	12-13-18	
Antimony	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	1400	33	EPA 200.8	12-13-18	12-13-18	
Barium	50	28	EPA 200.8	12-13-18	12-13-18	
eryllium ND		11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Calcium	40000	1100	EPA 6010D	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Iron	7500	56	EPA 6010D	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Magnesium	18000	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	1200	11	EPA 6010D	12-13-18	12-13-18	
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Potassium	5300	1100	EPA 6010D	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Sodium	26000	1100	EPA 6010D	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	M2-20181207					
Laboratory ID:	12-096-03					
Aluminum	ND	110	EPA 6010D	12-13-18	12-13-18	
Antimony	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	1300	33	EPA 200.8	12-13-18	12-13-18	
Barium	51	28	EPA 200.8	12-13-18	12-13-18	
Beryllium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Calcium	41000	1100	EPA 6010D	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Iron	7800	56	EPA 6010D	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Magnesium	18000	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	1300	11	EPA 6010D	12-13-18	12-13-18	
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Potassium	5300	1100	EPA 6010D	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Sodium	28000	1100	EPA 6010D	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	M3-20181207					
Laboratory ID:	12-096-04					
Aluminum	680	110	EPA 6010D	12-13-18	12-13-18	
Antimony	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	720	33	EPA 200.8	12-13-18	12-13-18	
Barium	58	28	EPA 200.8	12-13-18	12-13-18	
Beryllium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Calcium	27000	1100	EPA 6010D	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Iron	7500	56	EPA 6010D	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Magnesium	14000	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	1100	11	EPA 6010D	12-13-18	12-13-18	
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Potassium	6000	1100	EPA 6010D	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Sodium	34000	1100	EPA 6010D	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	M4-20181210					
Laboratory ID:	12-096-05					
Aluminum	160	110	EPA 6010D	12-13-18	12-13-18	
Antimony	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	1600	33	EPA 200.8	12-13-18	12-13-18	
Barium	48	28	EPA 200.8	12-13-18	12-13-18	
Beryllium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Calcium	33000	1100	EPA 6010D	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Iron	9200	56	EPA 6010D	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Magnesium	15000	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	1400	11	EPA 6010D	12-13-18	12-13-18	
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Potassium	4200	1100	EPA 6010D	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Sodium	19000	1100	EPA 6010D	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	

10

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	M1-20181210					
Laboratory ID:	12-096-06					
Aluminum	220	110	EPA 6010D	12-13-18	12-13-18	
Antimony	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	1600	33	EPA 200.8	12-13-18	12-13-18	
Barium	45	28	EPA 200.8	12-13-18	12-13-18	
Beryllium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Calcium	29000	1100	EPA 6010D	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Iron	3300	56	EPA 6010D	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Magnesium	16000	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	1200	11	EPA 6010D	12-13-18	12-13-18	
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Potassium	4800	1100	EPA 6010D	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Sodium	17000	1100	EPA 6010D	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	

11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	INJ2-20181210					
Laboratory ID:	12-096-07					
Aluminum	700	110	EPA 6010D	12-13-18	12-13-18	
Antimony	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	2100	33	EPA 200.8	12-13-18	12-13-18	
Barium	56	28	EPA 200.8	12-13-18	12-13-18	
Beryllium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Calcium	33000	1100	EPA 6010D	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Iron	3300	56	EPA 6010D	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Magnesium	14000	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	810	11	EPA 6010D	12-13-18	12-13-18	
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Potassium	6100	1100	EPA 6010D	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Sodium	52000	1100	EPA 6010D	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	

onno. ug/E (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	INJ1-20181210					
Laboratory ID:	12-096-08					
Aluminum	240	110	EPA 6010D	12-13-18	12-13-18	
Antimony	17	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	2300	33	EPA 200.8	12-13-18	12-13-18	
Barium	41	28	EPA 200.8	12-13-18	12-13-18	
Beryllium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Calcium	37000	1100	EPA 6010D	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Iron	2600	56	EPA 6010D	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Magnesium	16000	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	1100	11	EPA 6010D	12-13-18	12-13-18	
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Potassium	4700	1100	EPA 6010D	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Sodium	18000	1100	EPA 6010D	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	

TOTAL METALS EPA 200.8/6010D/7470A METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1213WM1					
Antimony	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Arsenic	ND	3.3	EPA 200.8	12-13-18	12-13-18	
Barium	ND	28	EPA 200.8	12-13-18	12-13-18	
Beryllium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cadmium	ND	4.4	EPA 200.8	12-13-18	12-13-18	
Chromium	ND	11	EPA 200.8	12-13-18	12-13-18	
Cobalt	ND	11	EPA 200.8	12-13-18	12-13-18	
Copper	ND	11	EPA 200.8	12-13-18	12-13-18	
Lead	ND	1.1	EPA 200.8	12-13-18	12-13-18	
Nickel	ND	22	EPA 200.8	12-13-18	12-13-18	
Selenium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Silver	ND	11	EPA 200.8	12-13-18	12-13-18	
Thallium	ND	5.6	EPA 200.8	12-13-18	12-13-18	
Vanadium	ND	11	EPA 200.8	12-13-18	12-13-18	
Zinc	ND	28	EPA 200.8	12-13-18	12-13-18	
Laboratory ID:	MB1213WM1					
Aluminum	ND	110	EPA 6010D	12-13-18	12-13-18	
Calcium	ND	1100	EPA 6010D	12-13-18	12-13-18	
Iron	ND	56	EPA 6010D	12-13-18	12-13-18	
Magnesium	ND	1100	EPA 6010D	12-13-18	12-13-18	
Manganese	ND	11	EPA 6010D	12-13-18	12-13-18	
Potassium	ND	1100	EPA 6010D	12-13-18	12-13-18	
Sodium	ND	1100	EPA 6010D	12-13-18	12-13-18	
Laboratory ID:	MB1213W2					
Mercury	ND	0.50	EPA 7470A	12-13-18	12-13-18	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

14

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 200.8/6010D/7470A DUPLICATE QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	12-08	38-06								
	ORIG	DUP								
Antimony	ND	ND	NA	NA		NA	NA	NA	20	
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	
Barium	ND	ND	NA	NA		NA	NA	NA	20	
Beryllium	ND	ND	NA	NA		NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	ND	ND	NA	NA		NA	NA	NA	20	
Cobalt	ND	ND	NA	NA		NA	NA	NA	20	
Copper	ND	ND	NA	NA		NA	NA	NA	20	
Lead	ND	ND	NA	NA		NA	NA	NA	20	
Nickel	ND	ND	NA	NA		NA	NA	NA	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Vanadium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	12-08	38-06								
Aluminum	590	610	NA	NA		NA	NA	3	20	
Calcium	19400	19400	NA	NA		NA	NA	0	20	
Iron	1020	1010	NA	NA		NA	NA	2	20	
Magnesium	6920	6990	NA	NA		NA	NA	1	20	
Manganese	202	204	NA	NA		NA	NA	1	20	
Potassium	2610	2530	NA	NA		NA	NA	3	20	
Sodium	6480	6480	NA	NA		NA	NA	0	20	
Laboratory ID:	12-09	96-01								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 200.8/6010D/7470A MS/MSD QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	12-0	88-06									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	228	229	222	222	ND	103	103	75-125	0	20	
Arsenic	226	219	222	222	ND	102	99	75-125	3	20	
Barium	231	228	222	222	ND	104	103	75-125	1	20	
Beryllium	224	230	222	222	ND	101	104	75-125	3	20	
Cadmium	218	222	222	222	ND	98	100	75-125	2	20	
Chromium	215	214	222	222	ND	97	96	75-125	1	20	
Cobalt	206	202	222	222	ND	93	91	75-125	2	20	
Copper	204	203	222	222	ND	92	92	75-125	1	20	
Lead	223	225	222	222	ND	100	101	75-125	1	20	
Nickel	207	205	222	222	ND	93	92	75-125	1	20	
Selenium	226	223	222	222	ND	102	100	75-125	1	20	
Silver	213	215	222	222	ND	96	97	75-125	1	20	
Thallium	214	210	222	222	ND	96	95	75-125	2	20	
Vanadium	215	214	222	222	ND	97	96	75-125	1	20	
Zinc	251	244	222	222	ND	113	110	75-125	2	20	
Laboratory ID:	12-0	88-06									
Aluminum	20900	21000	22200	22200	590	91	92	75-125	1	20	
Calcium	41200	41300	22200	22200	19400	98	99	75-125	0	20	
Iron	22600	22300	22200	22200	1020	97	96	75-125	1	20	
Magnesium	27700	27600	22200	22200	6920	93	93	75-125	0	20	
Manganese	428	426	222	222	202	102	101	75-125	1	20	
Potassium	24400	24100	22200	22200	2610	98	97	75-125	1	20	
Sodium	27600	27400	22200	22200	6480	95	94	75-125	0	20	
Laboratory ID:	12-0	96-01									
Mercury	10.9	10.9	12.5	12.5	ND	87	87	75-125	0	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	99-1-20181207					
Laboratory ID:	12-096-01					
Arsenic	2200	30	EPA 200.8		12-13-18	
Client ID:	M3-20181207					
Laboratory ID:	12-096-04					
Arsenic	700	30	EPA 200.8		12-13-18	
Client ID:	INJ2-20181210					
Laboratory ID:	12-096-07					
Arsenic	2100	30	EPA 200.8		12-13-18	

DISSOLVED ARSENIC EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1213D1					
Arsenic	ND	3.0	EPA 200.8		12-13-18	

Analyte	Res	sult	Spike	Level	Source Result		rcent overy	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											<u> </u>
Laboratory ID:	12-09	96-04									
	ORIG	DUP									
Arsenic	695	670	NA	NA			NA	NA	4	20	
MATRIX SPIKES											
Laboratory ID:	12-09	96-04									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	2670	2720	2000	2000	695	99	101	75-125	2	20	

Date of Report: January 7, 2019 Samples Submitted: December 10, 2018 Laboratory Reference: 1812-096 Project: 233028

% MOISTURE

Date Analyzed: 12-17-18

Client ID Lab ID % Moisture 1DW-Comp 12-096-09

18

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

David Baumeister Onsite Environmental Incorporated 14648 Northeast 95th Street Redmond, WA 98052

Laboratory Results for: USG HWY 99

Dear David,

Enclosed are the results of the sample(s) submitted to our laboratory December 12, 2018 For your reference, these analyses have been assigned our service request number **K1812143**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2 of 23

Client:	Onsite Environmental Incorporated
Project:	USG HWY 99
Sample Matrix:	Water

Service Request: K1812143 Date Received: 12/12/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS).

Sample Receipt:

Three water samples were received for analysis at ALS Environmental on 12/12/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry:

No significant anomalies were noted with this analysis.

noe D. Oan

Approved by

Date

01/04/2019

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

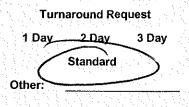
RIGHT SOLUTIONS | RIGHT PARTNER

Page 4 of 23

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	<u>DATE</u>	TIME
K1812143-001	99-1-20181207	12/7/2018	1025
K1812143-002	INJ2-20181210	12/10/2018	1210
K1812143-003	INJ1-20181210	12/10/2018	1330

K1812143


14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Laboratory: ALS Environmental

Attenti Mark Harris

1317 South 13th Avenue, Kelso, WA 98626

Phone Number: (360) 577-7222

Laboratory Reference #: _	12-096
Project Manager:	David Baumeister
email:	dbaumeister@onsite-env.com
Project Number:	233028
Project Name: _	USG HWY 99

Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont	Requested Analyses
1	99-1-20181207	12/7/18	10:25	W	1	Bromate
7	INJ2-20181210	12/10/18	12:10	W	1	Bromate
8	INJ1-20181210	12/10/18	13:30	w	1	Bromate
		i da tertega			HAN BEE	
14, 14						
i Are					Alexandra da Alexandra Alexandra da Alexandra	
· · · · ·						
		No. No. 1 Sector and				
	Signature		ipany		Date	Time Comments/Special Instructions
Relinqu	ished by: Will LTEEU	0E			BUIK	<u> </u>
Receiv	ed by:	AL	<u>5 11</u>		12/12/18	845
Relinqu	iished by:					
Receiv	ed by:					
Relingu	iished by:					
Receive						

A
(ALS)

PC	M	H
	1	

	~ ^			Cooler	Receipt and]	Preservation For	m		· <u> </u>	
Client Received:_	Unsi 12/12	ite	Opened:		By:	Service Request A	K1812143	ß By:	$\overline{\mathcal{A}}$	
2. Sample	es were rece es were rece ustody seal	eived in: (ci	No. of the second	Fed Ex Cooler NA Y	Box Em	velope Other	where?		NA	
If prese	ent, were cu	istody seals	intact?	Y	N	If present, were the	ey signed and dated?		Y	N
Raw Cooler Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Corr. Factor	Thermometer ID	Cooler/COC ID	Tracking I	Number	NA	Filed
2.0	1.9			-Oil	395		12684 EIW	039	137	428
·								· · · · · · · · · · · · · · · · · · ·		L
								··		
4. Packin	ng material:	Inserts	Baggies (Bubble W	rap Gel Packs	Wet Ice Dry Ice	Sleeves			<u> </u>
5. Were	custody pap	pers properl	y filled out	(ink, signed	d, etc.)?			NA	(Y)	N
6. Were	samples rec	0		• •	ture, unbroken)? es were received	Indicate in the table : Frozen Parti	e below. ally Thawed Thawed	NA	હ	N
7. Were a	all sample la	abels comp	lete (i.e ana	lysis, prese	rvation, etc.)?			NA	Ľ	Ν
8. Did all	l sample lab	els and tag	s agree with	n custody p	apers? Indicate	major discrepancies i	n the table on page 2.	NA	Ì	Ν
9. Were	appropriate	bottles/cor	ntainers and	volumes re	eceived for the to	ests indicated?		NA	Ŷ	N
10. Were	the pH-pre	eserved bott	les (see SMG	O GEN SOP) received at the	appropriate pH? Indi	cate in the table below	NA	Ŷ	N
11. Were	VOA vials	s received v	vithout head	lspace? Ind	licate in the tabl	le below.		(NA)	Y	Ν
12. Was	C12/Res ne	gative?						NA	Y	N

Sample ID on Bottle	Sample ID on COC	Identified by:

Sample ID		Out of Temp		Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time
		<u> </u>								
		<u> </u>	<u> </u> -			<u> </u>			<u> </u>	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		L		L <u>. ,. ,. ,. ,.</u>		[

Notes, Discrepancies, & Resolutions:

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 23

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 9 of 23

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client: Project:	Onsite Environmental Incorporated USG HWY 99/233028		Service Request: K1812143
Sample Name: Lab Code: Sample Matrix:	99-1-20181207 K1812143-001 Water		Date Collected: 12/7/18 Date Received: 12/12/18
Analysis Method 300.1		Extracted/Digested By	Analyzed By MRODRIGUEZ
Sample Name: Lab Code: Sample Matrix:	INJ2-20181210 K1812143-002 Water		Date Collected: 12/10/18 Date Received: 12/12/18
Analysis Method 300.1		Extracted/Digested By	Analyzed By MRODRIGUEZ
Sample Name: Lab Code: Sample Matrix:	INJ1-20181210 K1812143-003 Water		Date Collected: 12/10/18 Date Received: 12/12/18
Analysis Method 300.1		Extracted/Digested By	Analyzed By MRODRIGUEZ

Printed 1/4/2019 4:29:57 PM

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 13 of 23

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 14 of 23

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K1812143
Project:	USG HWY 99/233028	Date Collected: 12/07/18 10:25
Sample Matrix:	Water	Date Received: 12/12/18 08:45
Sample Name: Lab Code:	99-1-20181207 K1812143-001	Basis: NA

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Bromate	300.1	ND U	ug/L	10	2	12/13/18 15:03	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K1812143
Project:	USG HWY 99/233028	Date Collected: 12/10/18 12:10
Sample Matrix:	Water	Date Received: 12/12/18 08:45
Sample Name: Lab Code:	INJ2-20181210 K1812143-002	Basis: NA

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Bromate	300.1	ND U	ug/L	10	2	12/13/18 15:26	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K1812143
Project:	USG HWY 99/233028	Date Collected: 12/10/18 13:30
Sample Matrix:	Water	Date Received: 12/12/18 08:45
Sample Name: Lab Code:	INJ1-20181210 K1812143-003	Basis: NA

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Bromate	300.1	ND U	ug/L	10	2	12/13/18 15:48	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 23

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 19 of 23

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K1812143
Project:	USG HWY 99/233028	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K1812143-MB1	Basis: NA

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Bromate	300.1	ND U	ug/L	5.0	1	12/13/18 12:27	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: k	K1812143
Project:	USG HWY 99/233028	Date Collected: N	ΝA
Sample Matrix:	Water	Date Received: N	ΝA
Sample Name: Lab Code:	Method Blank K1812143-MB2	Basis: N	NA

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Bromate	300.1	ND U	ug/L	5.0	1	12/14/18 15:03	

QA/QC Report

Client: Project: Sample Matrix:	Onsite Environmental Incorporate USG HWY 99/233028 Water	d	Service Requ Date Analyz Date Extract	ed:	K181214 12/13/18 NA	-
	La	b Control Sample Summary				
		Bromate				
Analysis Method:	300.1		Units:		ug/L	
Prep Method:	None		Basis:		NA	
			Analysis Lot	•	618673	
Sample Name	Lab Code	Result	Spike Amount	% Rec		% Rec Limits
Lab Control Sample	K1812143-LCS1	23.3	25.0	93		75-125

QA/QC Report

Client: Project: Sample Matrix:	Onsite Environmental Incorporate USG HWY 99/233028 Water	d	Service Requ Date Analyz Date Extract	ed:	K181214 12/14/18 NA	-
	La	b Control Sample Summary Bromate				
		Diomate				
Analysis Method:	300.1		Units:		ug/L	
Prep Method:	None		Basis:		NA	
			Analysis Lot	•	618673	
Sample Name	Lab Code	Result	Spike Amount	% Rec		% Rec Limits
Lab Control Sample	K1812143-LCS2	23.4	25.0	94		75-125

í	OnSit	e onmental inc.		Cha	ain o	f	Cı	IS	to	dy										Pa	ige _	1	_ of				
	Analytical La	boratory Testing Services 95th Street • Redmond, WA 98052		rnaround Req in working da			L	abo	orat	ory	Nun	nbe	r:	12	- (0 9	96										
Comp	Phone: (425	5) 883-3881 • www.onsite-env.com	Sarr	(Check One)						Γ					-				Zn								
Projec	et Number: 233025				3 Days					(dn-u						18	8270D	51A	N.+					AC			
	i Name:	99	-	idard (7 Days)		rs				SG Clean-up)	Juaco	ocooo o	s Unity	/-level)		cides 808	esticides	oicides 81	Cut			1664A	HL		10		
Projec	et Manager: PAM M led by:	AN MILLER				Number of Containers	Q	NWTPH-Gx/BTEX		t (Acid /	Volatiles 8260C	FDB FPA 8011 (Waters Only)	es 8270D/	(with low-level PAHs) PAHs 8270D/SIM (low-level)	A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals + Cu+	Total MTCA Metals	s	HEM (oil and grease) 1664A	NETHL	DISCOLVED	BROMATE		
	BREND,	AN MILLER		(other)		iber of	NWTPH-HCID	PH-G)	NWTPH-Gx	NWTPH-Dx (Volatiles 8260C	PPA 8	ivolatil	s 8270	PCBs 8082A	anochic	oudous	rinated	RCRA	I MTC/	TCLP Metals	1 (oil an	TAL	1550	BR.O.		% Moisture
Lab ID	Sa	ample Identification	Date Sampled	Time Sampled	Matrix	Num	LWN	LMN	LWN	LWN	Vola	EDR	Sem	(with PAH:	PCB	Orga	Orga	Chlo	Tota	Tota	TCLI	HEN	-	2			W %
1	99-1-201		12-7-1	\$ 1025	WG	3																	Х	X	X		
2	M99-201	181207		1200		Z																	X	W			
3	M2-2018	1207		1330		2																	X	X			
4	M3-2018	1207		1500		2	-																X	Х			
5	M4 -2018	1210	12-10-18	0930		2																	X	E			
6	M1-201	81710		1040		Z																		×			
7	1152-20			1210		3																į.	X	X	X		
8	[NJ] - 201	18 12/0		1330		3																		Z	X		
9	10m-con			1450	50	2													X				-				
		Signature A AA	C	ompany				Date			Time			omme							6						
Relin	quished	By Mille	_	din	1 5/4	11	77	12	10	15	16	55	5- ľ)1550 EII	TE	REI	, A1	RSEN V	VIC	S.F. R.B.N	4M, 017	3	SF Exc	- IEI EE	LP =DE	P	
Rece	eived	1	>	On C	DSE	-		12	10	18	16	ß	_	10,	NT	V.	1		/								
Relir	nquished												_														
Rec	eived																										
	nquished																										
	eived												Da	ata Pa	ickag	e: St	anda	rd 🗌	Lev	rel III		Level	IV []			
Revi	ewed/Date			Reviewed/Da	ate	_							Ch	nroma	togra	ms w	ith fin	al rep	oort 🗌	Elec	ctronic	: Data	ı Deliv	erable	es (EDI	Ds) 🗌]

February 8, 2019

Pam Morrill CDM Smith, Inc. 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007-6493

Re: Analytical Data for Project 233028 Laboratory Reference No. 1902-030

Dear Pam:

Enclosed are the analytical results and associated quality control data for samples submitted on February 6, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 8, 2019 Samples Submitted: February 6, 2019 Laboratory Reference: 1902-030 Project: 233028

Case Narrative

Samples were collected on February 5, 2019 and received by the laboratory on February 6, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

DISSOLVED ARSENIC EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20190205-M2					
Laboratory ID:	02-030-01					
Arsenic	1100	12	EPA 200.8		2-7-19	
Client ID:	20190205-M3					
Laboratory ID:	02-030-02					
Arsenic	310	3.0	EPA 200.8		2-7-19	
Client ID:	20190205-M4					
Laboratory ID:	02-030-03					
Arsenic	420	3.0	EPA 200.8		2-7-19	

DISSOLVED ARSENIC EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0207F1					
Arsenic	ND	3.0	EPA 200.8	2-7-19	2-7-19	

Analyte	Res	sult	Spike	Level	Source Result	-	rcent overy	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	02-03	38-06									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	02-03	38-06									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	205	205	200	200	ND	103	103	75-125	0	20	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

OnSite Environmental Inc.			ain o	f														F	age _	1	_ of	1	
Analytical Laboratory Testing Services 14648 NE 95th Street ● Redmond, WA 98052 Phone: (425) 883-3881 ● www.onsite-env.com		naround Requ n working day			L	abo	rate	ory	Nur	nbe	er:	0	2.	- 0	3()							
Company: COM SMITH		(Check One)			-																		
Project Number: 233028	_ L Sam		1 Day											B	1A					*			
Project Name: USG HMY 99	-	dard (7 Days)	_ 5 Days							60C	_	vel)		ss 80811	des 815				34A	AS			
Project Manager:		analysis 5 Da	ys)	ainers		Ļ				ttiles 82	0D/SIN Hs)	(low-le		esticide	Herbicio	s	<u></u>		ise) 166	0			
Project Manager: AM MORRILL Sampled by: B. MILLER		(other)		of Conta	ICID	3X/BTE)	X	X	3260C	ted Vola	iles 827 level PA	MIS/D0	ZA	lorine P	d Acid	IA Meta	A Meta	tals	and grea	OLVE			Ð
	Date	Time	Mathia	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBS 8082A	Organochlorine Pesticides 8081B	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	5510			% Moisture
Lab ID Sample Identification $2\rho I q \rho 2 \rho S = M2$	Sampled 2 - 5 - 14	Sampled	Matrix WG	ž	Z	N	N	Z	N	Ť	Se Se	H C	ř	õÈ	Ó	10	10	T	Ĩ	V			%
1 20190205-M2 2 20190205-M3		1110	1	1											-			-		Î	_	+	_
3 20190205-MY		1140	V																	1	-		
/		.110										+			+	_	-			V	-	+	
																	-	-					
				1											-	1					-		
								_								+							
																1	1						
																	1						
Signature / M. A.A.		ompany				Date			Time			Contract Distribution		s/Spec					1				
Relinquished Ballalle	_ (OM	SM	11	4	2-	-6-	-19	12	38	5	¥	F	IEL	D	FIL	TE	LE	D	[0	1.25 M)	
Received		(Δ)	Æ			H	6	29	lé	23	5	-6	OA	FH	en -	-	to	the	12	-5-	-19	7	
Relinquished												4	SA	MA		5-71	9-	<u>n</u>			10		
Received									-														
Relinquished																							
Received Reviewed/Date		Reviewed/Dat	·0								_												
Data Package: S	tandard 🗌 I				F	lectror	nic Da	ta Del	iverabl	es (FI			nato	grams	with	inal re	eport						

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 4, 2019

Pam Morrill CDM Smith, Inc. 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007-6493

Re: Analytical Data for Project 233028 Laboratory Reference No. 1902-135

Dear Pam:

Enclosed are the analytical results and associated quality control data for samples submitted on February 22, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 4, 2019 Samples Submitted: February 22, 2019 Laboratory Reference: 1902-135 Project: 233028

Case Narrative

Samples were collected on February 21 and 22, 2019 and received by the laboratory on February 22, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL IRON EPA 6010D

Matrix: Water Units: ug/L (ppb)

orinto: ug/_ (pp.)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20190221-99-1					
Laboratory ID:	02-135-01					
Iron	3200	50	EPA 6010D	2-26-19	2-26-19	
Client ID:	20190221-M3					
Laboratory ID:	02-135-02					
Iron	7700	50	EPA 6010D	2-26-19	2-26-19	
Client ID:	20190221-M2					
Laboratory ID:	02-135-03					
Iron	5700	50	EPA 6010D	2-26-19	2-26-19	
Client ID:	20190221-AS2					
Laboratory ID:	02-135-04					
Iron	5900	50	EPA 6010D	2-26-19	2-26-19	
Client ID:	20190221-AS1					
Laboratory ID:	02-135-05					
Iron	11000	50	EPA 6010D	2-26-19	2-26-19	
Client ID:	20190221-INJ1					
Laboratory ID:	02-135-06					
Iron	49000	250	EPA 6010D	2-26-19	3-1-19	
Client ID:	20190222-M4					
Laboratory ID:	02-135-07					
Iron	5600	50	EPA 6010D	2-26-19	3-1-19	
				220-13	01-10	
Client ID:	20190222-M1					
Laboratory ID:	02-135-08					
Iron	5700	50	EPA 6010D	2-26-19	3-1-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL IRON EPA 6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20190222-INJ2					
Laboratory ID:	02-135-09					
Iron	150000	500	EPA 6010D	2-26-19	2-26-19	

TOTAL IRON EPA 6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0226WH1					
ND	50	EPA 6010D	2-26-19	2-26-19	
	MB0226WH1	MB0226WH1	MB0226WH1	Result PQL Method Prepared MB0226WH1	Result PQL Method Prepared Analyzed MB0226WH1 MB0226WH1 Method Metho

	_				Source		rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-1	07-01									
	ORIG	DUP									
Iron	52.5	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	02-1	07-01									
	MS	MSD	MS	MSD		MS	MSD				
Iron	18700	17400	20000	20000	52.5	93	87	75-125	7	20	

DISSOLVED METALS EPA 200.8/6010D

Matrix: Water Units: ug/L (ppb)

5 (T)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20190221-99-1					
aboratory ID:	02-135-01					
Arsenic	530	6.0	EPA 200.8		2-27-19	
Iron	3000	56	EPA 6010D		2-28-19	
Client ID:	20190221-M3					
Laboratory ID:	02-135-02					
Arsenic	780	6.0	EPA 200.8		2-27-19	
Iron	6200	56	EPA 6010D		2-28-19	
Client ID:	20190221-M2					
Laboratory ID:	02-135-03					
Arsenic	420	3.0	EPA 200.8		2-27-19	
Iron	5200	56	EPA 6010D		2-28-19	
Client ID:	20190221-AS2					
Laboratory ID:	02-135-04					
Iron	2400	56	EPA 6010D		2-28-19	
Client ID:	20190221-AS1					
Laboratory ID:	02-135-05					
Iron	6100	56	EPA 6010D		2-28-19	
Client ID:	20190221-INJ1					
Laboratory ID:	02-135-06					
Iron	49000	250	EPA 6010D		2-28-19	
Client ID:	20190222-M4					
_aboratory ID:	02-135-07					
Arsenic	300	3.0	EPA 200.8		2-27-19	
Iron	5600	56	EPA 6010D		2-28-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20190222-M1					
Laboratory ID:	02-135-08					
Arsenic	2600	30	EPA 200.8		2-27-19	
Iron	5500	56	EPA 6010D		2-28-19	
Client ID:	20190222-INJ2					
Laboratory ID:	02-135-09					

Laboratory ID.	02-133-09				
Iron	150000	500	EPA 6010D	2-28-19	

DISSOLVED METALS EPA 200.8/6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

						Date	Date		
Analyte		Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:	Ν	/IB0228DM1							
Iron		ND	56	EPA	6010D		2-28-1	9	
Laboratory ID:		MB1220F1							
Arsenic		ND	3.0	EPA	A 200.8	12-20-18	2-27-1	9	
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Leve	el Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	02-13	35-01							
	ORIG	DUP							
Iron	3030	3150	NA NA	Ą	NA	NA	4	20	
Laboratory ID:	12-20	09-01							
Arsenic	ND	ND	NA NA	1	NA	NA	NA	20	

MATRIX SPIKES

WATKIN SPIKES											
Laboratory ID:	02-13	35-01									
	MS	MSD	MS	MSD		MS	MSD				
Iron	25100	24900	22200	22200	3030	99	98	75-125	1	20	
Laboratory ID:	12-20	09-01									
Arsenic	210	201	200	200	ND	105	101	75-125	4	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite Environmental Inc.		Cha	ain o	f	Cı	IS	t 0(dy										Pa	age _	1	of		1	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req n working da			L	abo	rat	ory	Nur	nbe	ər:		0	2.	- 1	3	5							
Phone: (425) 883-3881 • www.onsite-env.com Company: COM SMITH Project Number: 233028 Project Name: VSGHWY 99 Project Manager: PAM MORRILL Sampled by: B- MILLFRC	Same	,	1 Day 3 Days	Number of Containers	HCID	NWTPH-Gx/BTEX	Gx	NWTPH-Dx (Acid / SG Clean-up)	8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	ruursimi (low-level) 182A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	etals	HEM (oil and grease) 1664A	TOTAL Fe	0	DISSELVED ASK	are
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTPH-HCID	NWTPH	NWTPH-GX	NWTPH	Volatiles 8260C	Halogen	EDB EP,	Semivol (with lov	PCBs 8082A	Organoc	Organop	Chlorina	Total RC	Total MT	TCLP Metals	HEM (oi	5	DISS	ssla	% Moisture
1 20190221-99-1		0930		2	-																X	X	X	
2 20190221-M3 3 20190221-M2		1030		1			-															T	T	
		1140																			\downarrow		V	
4 20190221-452		1300																			X			
5 20190221-ASI		1400		\prod																				
6 20190221-INJI		1500	V	\square						_											Y		. /	
7 20140222 - M4	2-22-19	0930	WG									_									X	X	<u>X</u>	
8 20190222-MI		1030								_											X	X	X	
9 20190222-INJ2		1130	V	V	-								_								X	X	_	
Signature 1 M //	1 0	ampany				Date			Time		_	Com	nents/S	Inecia	Inst	ructio	ns							
Signature Relinquished Received Relinquished		COM OSE	SMI	Te	4		22-		13	47	7							RE. Fle		2	0.	45	- M,	ICRON
Received																								
Relinquished																100000-000								
Received Reviewed/Date		Reviewed/Da	to										Packag										10000	
neviewed/Date		neviewed/Da	ile .									Chron	natogra	ams w	rith fin	nal rep	oort	Ele	ctroni	c Data	a Deliv	/erable	s (EDD	s)

April 3, 2019

Pam Morrill CDM Smith, Inc. 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007-6493

Re: Analytical Data for Project 233028 Laboratory Reference No. 1903-210

Dear Pam:

Enclosed are the analytical results and associated quality control data for samples submitted on March 22, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: April 3, 2019 Samples Submitted: March 22, 2019 Laboratory Reference: 1903-210 Project: 233028

Case Narrative

Samples were collected on March 21 and 22, 2019 and received by the laboratory on March 22, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

TOTAL IRON EPA 6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20190321-INJ1					
Laboratory ID:	03-210-06					
Iron	86000	2000	EPA 6010D	3-28-19	3-28-19	

TOTAL IRON EPA 6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Date	Date		
Analyte	Result	PQL	Method		Prepared	Analyz	ed	Flags
METHOD BLANK								
Laboratory ID:	MB0328WH1							
Iron	ND	200	EPA	6010D	3-28-19	3-28-1	9	
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags

											· · · · · · · · · · · · · · · · · · ·
DUPLICATE											
Laboratory ID:	03-208-03										
	ORIG	DUP									
Iron	583	375	NA	NA			NA	NA	43	20	С
MATRIX SPIKES											
Laboratory ID:	03-2	03-208-03									
	MS	MSD	MS	MSD		MS	MSD				
Iron	19500	19900	20000	20000	583	95	97	75-125	2	20	

DISSOLVED METALS EPA 200.8/6010D

Units: ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20190321-99-1					
Laboratory ID:	03-210-01					
Arsenic	560	15	EPA 200.8		3-26-19	
Client ID:	20190321-M3					
Laboratory ID:	03-210-02					
Arsenic	420	15	EPA 200.8		3-26-19	
Client ID:	20190321-M2					
Laboratory ID:	03-210-03					
Arsenic	440	15	EPA 200.8		3-26-19	
Client ID:	20190321-M4					
Laboratory ID:	03-210-04					
Arsenic	320	6.0	EPA 200.8		3-26-19	
Client ID:	20190321-M1					
Laboratory ID:	03-210-05					
Arsenic	2900	75	EPA 200.8		3-26-19	
Client ID:	20190321-INJ1					
Laboratory ID:	03-210-06					
Iron	78000	250	EPA 6010D		3-26-19	
Client ID:	20190321-INJ2					
Laboratory ID:	03-210-07					
Iron	230000	500	EPA 6010D		3-26-19	

DISSOLVED METALS EPA 200.8/6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0326D1					
Iron	ND	56	EPA 6010D		3-26-19	
Laboratory ID:	MB0326D1					
Arsenic	ND	3.0	EPA 200.8		3-26-19	

					Source	Percent		Recovery		RPD	
Analyte	Re	Result Spike Level Result		Rec	overy	Limits	RPD	Limit	Flags		
DUPLICATE											
Laboratory ID:	03-174-01										
	ORIG	DUP									
Iron	1910	1910	NA	NA		1	NA	NA	0	20	
Laboratory ID:	03-1	74-01									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	03-1	74-01									
	MS	MSD	MS	MSD		MS	MSD				
Iron	25300	25300	22200	22200	1910	105	105	75-125	0	20	
Laboratory ID:	03-1	74-01									
Arsenic	83.6	78.8	80.0	80.0	ND	105	99	75-125	6	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite Environmental Inc.	Chain of Custody											Page of												
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (ir	Turnaround Request (in working days) Laboratory Number: 03-2						21	0															
Phone: (425) 883-3881 • www.onsite-env.com Company:	(Check One)																						rlet	
Project Number: 233025	2 Days 3 Days							(dn-ut						31B	8270I	151A	-	7			L*	¥	Battl	
COM SMITH Project Number: 233025 Project Name: USG HWY 99 Project Manager:	Standard (7 Days) (TPH analysis 5 Days)			ers		Gx/BTEX		I / SG Clean-up)		s 8260C	EDB EPA 8011 (Waters Only) Semivolatiles 8270D/SIM (with Iow-Ievel PAHs)	s) w-level)	W-level	ticides 808	Pesticides	erbicides 8		TRO		e) 1664A		RON	EXTRA 6	
Project Manager: P. MORRILL Sampled by: B. MILLER	(other)			Number of Containers	HCID		DX DX	NWTPH-Dx (Acid /	8260C	Halogenated Volatiles 8260C		(with low-level PAHs) PAHs 8270D/SIM (low-level)	82A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals TRON	tals	HEM (oil and grease) 1664A	-	DISS OLVED	DEA	e
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	-HdTWN	Volatiles 8260C	Halogena	EDB EPA	with low	PCBs 8082A	Organoch	Organopł	Chlorinat	Total RCF	Total MH	TCLP Metals	HEM (oil	DISSOLVED	D155 0	Horn	% Moisture
1 20190321-99-1	3-21-19	1150	WG	1																	X			
2 2019 0321 -M3		1250																			X			
3 20190321 - M2		1350																			X			
4 20190321 - MY	T	1450																			X			
5 20140322-MI	3-22-19			V	-																X			
6 20190322-1151		1010		2													Ć	$\widehat{\mathcal{D}}$				X	X	
7 20190322-1252	X	1120	V	1																		X		
				-	-		-	_	-								_	-	_	_		-		+
				\square		-	_	-		-	+					-	+	-		-	+	-	+	+
Signature	Co	Company				Date Time						Comments/Special Instructions												
Relinquished Bala Milla	COM SMITH			+	3-22-19			13	51	0 -) * ALL SAMPLES					FILTERED IN FIELD								
Received		R	DØE			3/22/18 1500) -															
Relinquished		-0									Ô	DF)da	der	L	3/2	26	10	۹.:	DR	31	STA	(f)	
Received																					-		/	/
Relinquished																								
Received											0	Data Pa	ckage	: Sta	ndaro	1	Leve	el III [] [_evel	IV []		
Reviewed/Date		Reviewed/Date (C	Chromatograms with final report Electronic Data Deliverables (EDDs)													