Geotechnical Field Investigation and Bench Scale Treatability Study

USG Interiors Highway 99 Site Milton, Washington

> Prepared for: USG Corporation 550 West Adams Street Chicago, Illinois 60661-3676

August 11, 2021

A Report Prepared for:

USG Corporation 550 West Adams Street Chicago, Illinois 60661-3676

GEOTECHNICAL FIELD INVESTIGATION AND BENCH SCALE TREATABILITY STUDY USG INTERIORS HIGHWAY 99 SITE MILTON, WASHINGTON

August 11, 2021

Meredith L. Passaro Geotechnical Engineer

mlt an

Pamela Mørrill, LHG, PMP Project Manager

Prepared by: 14432 SE Eastgate Way, Suite 100 Bellevue, Washington 98007 425-519-8300

CDM Smith Project No. 19921.251008

Table of Contents

Table of Contents	i
Section 1 Introduction	1-1
1.1 Project Background	
1.1.1 Site Location and Description	
1.1.2 Site History	
1.2 Purpose and Scope of Work	
1.3 Bench Scale Testing Goals and Performance Criteria	
1.4 Report Organization	
Section 2 Summary of Field Activities	2-1
2.1 Field Investigation	
2.1.1 Test Pits	
2.1.2 Geotechnical Test Borings	
2.1.3 Bench Scale Treatability Borings	
2.1.4 Groundwater Collection	
2.1.5 Decontamination and IDW Handling	2-3
2.2 Site Survey	
Section 3 Bench Scale Treatability Study Rationale	
3.1 Reagent Evaluation	
3.2 Solidification/Stabilization Mix Design and Procedures	
Section 4 Summary of Laboratory Test Methods	4-1
4.1 Geotechnical Index Testing	4-1
4.2 Preliminary Composite Sample Characterization	
4.2.1 Geotechnical Index Testing	4-1
4.2.2 Baseline Soil Composite Analytical Testing	4-2
4.3 Groundwater Chemistry Characterization	4-2
4.4 Compatibility Testing	4-2
4.5 S/S Sample Testing	4-2
4.5.1 Physical Testing	4-2
4.5.2 Arsenic Leaching Tests	
4.5.2.1 SPLP Modified	4-3
4.5.2.2 Semi-Dynamic Leaching Tests	4-4
Section 5 Summary of Results	5-1
5.1 Geotechnical Field Investigation	
5.2 Geotechnical Index Testing	5-1
5.2.1 Grain Size Analyses and USCS Classification	5-2
5.2.2 Moisture Content	5-2
5.2.3 Dry Density	5-2
5.2.4 Specific Gravity	5-2
5.3. Baseline Soil Composite Analytical Test Results	5-2
5.4 Groundwater Chemistry Characterization Results	5-3
CDM Smith	i

5.6.3.1 SPLP Results for Arsenic in S/S Soils	5-4
Section 6 Conclusions and Recommendations	6-1
6.1 Conclusions	
6.2 Recommendations	
6.3 Impacts to the Conceptual Design	6-2
Section 7 References	

List of Tables

Table 1 Summary of Bench Scale Study Mix Design
Table 2 Summary of Subsurface Exploration Findings
Table 3 Summary of Geotechnical Laboratory Test Results
Table 4 Baseline Composite Soil Analytical Results
Table 5 Groundwater Chemistry Characterization - Monitoring Well 99-1
Table 6 Sumary of Solidified Composite Sample Geotechnical Laboratory Test Results
Table 7 Total Arsenic in Solidified Composite Soils and SPLP Leachate Results
Table 8 Semi-Dynamic Leach Testing Results

List of Figures

Figure 1 Vicinity Map Figure 2 Site Plan Figure 3 Test Boring Location Plan Figure 4 Soil Profile Cross Section Figure 5 Summary UCS Versus Days Cured All Cases Figure 6 Summary UCS Versus Days Cured NewCem Slag Mixes Figure 7 Summary UCS Versus Days Cured Portland Cement Mixes Figure 8 Summary Hydraulic Conductivity vs Wet Density

Appendices

Appendix A Boring Logs Appendix B Field Investigation and Laboratory Photo Logs Appendix C Site Survey Appendix D Geotechnical Laboratory Test Results Appendix E Chemical Analytical Laboratory Reports Appendix F Semi-Dynamic Leach Evaluation

Section 1

Introduction

This document presents the findings and evaluation of CDM Smith Inc.'s (CDM Smith) geotechnical field investigation and bench scale treatability study to support in-situ solidification/stabilization (ISS) of residual arsenic-impacted soil at the USG Interiors (USGI) Highway 99 site located in Milton, Washington (site). CDM Smith, Inc. completed this work on behalf of USGI in support of planned cleanup actions being performed under Washington State Department of Ecology (Ecology) Agreed Order No DE 11099. This work was completed in general accordance with the Ecology-approved Geotechnical Field Investigation and Bench Scale Treatability Study Work Plan (CDM Smith 2020b) for USG's Highway 99 and Puyallup sites. The geotechnical field investigation and bench scale studies for both sites were conducted concurrently. The results of the field investigation and treatability testing for the Puyallup site are reported separately.

1.1 Project Background

1.1.1 Site Location and Description

The USGI Highway 99 site is between Pacific Highway East and Interstate 5 (**Figure 1**). It is in a commercial area situated along the east side of Pacific Highway East and is addressed as 7110 Pacific Highway East. Commercial businesses are located to the north and south and residences are located west of the property across Pacific Highway East. The relatively level site is asphalt-paved and is presently occupied by a recreational vehicle (RV) dealership, Discount RV. A mobile office building and a small storage building are situated on the west side of the site. The remainder of the property serves as a lot for RVs. The site plan is presented on **Figure 2**.

Geologically, the site is situated in a north-trending valley that is the floodplain of Hylebos Creek and its tributaries. The valley is located just north of the lower Puyallup River Valley. Hylebos creek presently bounds the east side of the site. Alluvium associated with Hylebos Creek and the lower Puyallup River forms the uppermost native soil at the site. The alluvium consists predominantly of overbank flood, slack water, and bar accretion deposits. Glacially consolidated glacial drift and interglacial deposits hundreds to thousands of feet thick underlie the alluvial deposits.

Above the native sediments, the site is underlain by three different sources of fill, which range from 4.5 to 14 feet below ground surface (bgs). The uppermost fill, Fill-3, was placed during remedial excavation backfilling that occurred in 1985 (Section 1.1.2). Below Fill-3, Fill-2 includes soil mixed with manmade materials and is likely residual fill representative of material that was not excavated during the 1984/1985 remedial excavation. Fill-1 includes soil that as placed during the initial development of the site.

1.1.2 Site History

Industrial waste from USGI's Tacoma plant was used to fill the Highway 99 site (source material) At the time, USGI was using arsenic bearing ASARCO slag as manufacturing feedstock and was the

source of arsenic contamination that exists in soil and groundwater today. The source material was largely removed in 1984/1985, along with some of the impacted native soil in the southern portion of the property in the vicinity of monitoring well 99-1. However, relatively high arsenic concentrations occur in soil below the clean fill; some of which is residual source material and some which leached from the original source material and redeposited on deeper soils and appears to be a continuing source of groundwater contamination.

The final Remedial Investigation (RI), Feasibility Study (FS), and Cleanup Action Plan (CAP) were issued for the Highway 99 site in June 2016 (CDM Smith 2016b; CDM Smith 2016a; and Ecology 2016, respectively). These documents provide a detailed description of the history of the site, source of contamination, interim remedial actions completed, residual contaminant concentrations, remedial actions considered, and the proposed cleanup action. In June 2016, Agreed Order DE 11099 was issued, which provided for implementation of the remedial action at the site as outlined in the CAP. The CAP, issued on June 23, 2016 for the Highway 99 site presented the preferred alternative (Remedial Action Alternative 2) and included the following components:

- ISS of the fill/soils exceeding 500 milligrams per kilogram (mg/kg) by injection of a reagent via auger mixing in the vadose zone;
- Groundwater treatment by in situ chemical oxidation (ISCO) and installing permeable pavement in the core remediation area;
- Excavation and offsite disposal of impacted sediment in Hylebos Creek;
- Groundwater monitoring; and
- Monitored natural attenuation (MNA), and institutional controls.

The CAP included the need for the following studies prior to full scale implementation:

- Delineation of the fill/soil hot spot.
- A bench scale study to assess the optimal solidification/stabilization (S/S) mix design.
- Bench scale and pilot testing to assess soil oxidant demand, select the best oxidant, and determine the delivery system for groundwater treatment with ISCO.

USGI completed the Hot-Spot Characterization and Bench Scale Testing in December 2016 and issued the report on March 23, 2018 to satisfy implementation of the fill/soil hot spot delineation and bench scale testing (CDM Smith 2018b). Bench scale testing was conducted to evaluate S/S mixtures and chemical oxidants for groundwater. Results from the study indicated that cement-based S/S mixtures containing Portland cement (20 percent), bentonite (1 percent), and a 4 to 1 (4:1) iron (FeII) to arsenic mass ratio were most effective in reducing arsenic mobility in soil for purposes of ISS.

The ISCO bench scale study concluded that permanganate and persulfate were more effective chemical oxidants in removing arsenic than hydrogen peroxide and that significant pH reduction occurred with persulfate, but not permanganate. No significant improvements in arsenic removal

efficiency were observed at concentrations of permanganate and persulfate greater than 1 times the soil oxidant demand. Recommendations from the bench scale testing included conducting a pilot study to determine the effects of ISCO to remediate site groundwater.

The ISCO pilot study field work at the Highway 99 site was conducted in January through March 2019. It was found to be highly complicated to implement and did not reduce arsenic concentrations in groundwater to the levels desired (CDM Smith 2020c).

Based on the findings from the ISCO pilot study, USGI developed an alternative approach to the cleanup actions that would be less reliant on ISCO. This included enlarging the area for ISS, particularly targeting high arsenic concentration soils situated in the saturated zone. USGI proposed modifications to the CAP as presented in a Conceptual Design Report (CDR) (CDM Smith 2020a), based on the findings from the ISCO pilot study. The proposed modifications included conducting ISS over a larger area of the site and targeting all soils with arsenic concentrations exceeding 500 mg/kg to treat residual source material in the core remediation area. Groundwater monitoring will be performed after implementation of the ISS to evaluate the effectiveness of the ISS on the groundwater contaminant plume. These modifications were accepted by Ecology on April 15, 2020.

As part of the CDR, a data gap assessment was performed to identify outstanding data needs for design of the ISS at Highway 99. The data gap assessment resulted in recommendations to complete geotechnical and additional bench scale studies to further support the design of the ISS, the results of which are presented in this report.

1.2 Purpose and Scope of Work

The purpose of these studies was to provide sufficient physical and analytical data to design and implement an ISS pilot study with the intent of proceeding to full scale implementation onsite. To achieve this purpose, the scope of work was divided into three tasks: (1) geotechnical investigation; (2) update the site survey; and (3) and bench scale treatability study. More specifically, the purpose of each of these tasks was as follows:

<u>Geotechnical Investigation</u> - The objective of the geotechnical investigation was to identify subsurface soil conditions and characterize the engineering properties of soils. These data were used to finalize design of the bench scale treatability study, and later, will be used to plan the subsequent pilot study and to conduct a constructability evaluation for implementation of the ISS at the site.

<u>Updated Site Survey</u> - The objective of the updated site survey was to identify site topography and existing features and to provide a base map for future design phases of the project.

<u>Bench Scale Treatability Study</u> - The objective of this task was to evaluate the physical and analytical properties of various S/S mix designs to identify a S/S mix design that meets the project performance criteria, as presented in Section 1.3. Data collected from the bench scale treatability study were used to compare and evaluate similarities in mix designs between the Highway 99 and Puyallup sites. The feasibility of conducting a single pilot study for both sites is assessed, based on the degree of similarity in subsurface geotechnical conditions, and consequently, mix designs for the two sites.

CDM Smith conducted the following tasks to complete this geotechnical field investigation and bench scale study:

- Geotechnical Field Investigation drilled nine borings, excavated three test pits, and collected soil samples to observe and log the soil profile and collect samples for needed for the geotechnical evaluation and bench scale testing.
- Groundwater Sampling collected groundwater from an existing monitoring well for use in the bench scale testing.
- Geotechnical Index Testing of Site Soils conducted testing of soil samples collected from various depth intervals to determine geotechnical properties of the untreated soils.
- Baseline Chemical Analytical Testing conducted baseline chemical analytical testing of soil and groundwater samples.
- Bench Scale Sample Preparation composited collected soils, prepared various solidification mixes, conducted reagent evaluation, and prepared test cylinders to be subjected for the bench scale testing.
- Bench Scale Testing –S/S test cylinders were cured and then subjected to various testing of geotechnical properties and chemical analyses to evaluate performance.

1.3 Bench Scale Testing Goals and Performance Criteria

The performance criteria of the bench scale testing were as follows:

- 1. Unconfined Compressive Strength (UCS) UCS of the S/S test samples were measured to evaluate strength properties using American Society of Testing and Materials International (ASTM) method D2166. The UCS performance criteria of the bench scale treatability study is greater than or equal to 50 pounds per square inch after a curing period of 28 days.
- 2. Hydraulic Conductivity Hydraulic conductivities of the S/S test samples were measured using ASTM D5084 method to evaluate the reduction of groundwater flow through the treated material. The estimated hydraulic conductivity of the site soils is currently 1E-04 centimeters per second (cm/s). The hydraulic conductivity performance criteria of the bench scale treatability study is less than or equal to 1E-06 cm/s (EPA 2009).

3. Leaching and Extraction Tests – The samples were subjected to leaching and extraction tests to assist in determining the amount of arsenic that can leach from S/S treated soils. The S/S test sample that best met UCS and hydraulic conductivity standards was subjected to the synthetic precipitation leaching procedure (SPLP) and semi-dynamic leaching (SDL) testing. The performance goal is the Model Toxics Control Act (MTCA) Method A cleanup level of 5 micrograms per liter (µg/L).

1.4 Report Organization

This geotechnical investigation and bench scale study report is organized into the following sections:

Section 1: Introduction – This section provides a summary of site location, scope of work, and project performance criteria.

Section 2: Summary of Field Activities – This section provides a summary of the field activities including test pits, geotechnical test borings, bench scale treatability borings, groundwater collection, and site survey.

Section 3: Bench Scale Treatability Study Rationale – This section describes the bench scale treatability plan rationale including reagent evaluation and mix design.

Section 4: Summary of Laboratory Test Methods– This section provides a summary of the laboratory testing including geotechnical, analytical, and compatibility testing.

Section 5: Summary of Results – This section provides a summary of the laboratory testing and bench scale treatability study results.

Section 6: Conclusions and Recommendations – This section provides conclusions and recommendations based on data provided in this report.

Section 7: References – This section provides a list of references cited within this report.

Section 2

Summary of Field Activities

2.1 Field Investigation

A subsurface exploration program was conducted to conduct the geotechnical evaluation of subsurface conditions and to collect a sufficient volume of soil for physical and analytical samples needed for the bench scale testing. The subsurface exploration program consisted of three different methods of obtaining soil and data: (1) test pits to observe subsurface conditions on a macro scale and collect soils for potential laboratory testing; (2) hollow-stem auger drilling to collect geotechnical data; and (3) sonic drilling to collect soil for bench scale treatability testing. The test pit, auger drilling boring, and sonic boring logs are included in **Appendix A** and the field investigation photolog is included in **Appendix B**. Boring locations and test pits locations are shown in **Figure 3**.

2.1.1 Test Pits

Three test pits (99-TP-1, 99-TP-2, and 99-TP-3) were excavated at the site by IO Environmental of Redmond, Washington using a CAT 307.5 backhoe on July 29, 2020. The test pit excavations were overseen and logged by a CDM Smith geologist.

The test pits were advanced to depths between 8 and 11 feet bgs. Test pits were excavated in lifts to separate material type for classification and logging. Grab samples of each material type were collected for subsequent review and potential laboratory testing. Upon completion, each test pit was backfilled with the excavated soil in the same depth intervals as the material was removed and compacted in 12-inch lifts.

2.1.2 Geotechnical Test Borings

Three borings (99-GEO-1, 99-GEO-2, and 99-GEO-3) were extended using hollow stem auger drilling techniques. The test borings were drilled by Holt Services Inc. of Edgewood, Washington on August 4 and 5, 2020. The drilling was overseen and logged by a CDM Smith geologist. Each boring was advanced to a depth of 32 feet bgs.

Standard Penetration Tests (SPTs) with split-spoon sampling were performed on a continuous basis beginning at the ground surface to a depth of 15 feet, then at 5-foot intervals thereafter. SPTs were conducted in general accordance with ASTM D1586 using a 2-inch-outside diameter (O.D.) split-spoon sampler driven 24 inches by blows from a 140-pound hammer falling freely for 30 inches. The number of blows required to drive the sampler each 6-inch increment was recorded and the SPT N-value was determined as the sum of the blows required to drive the sampler from 6 to 18 inches of penetration. The N-value is defined as the standard penetration resistance, which provides an indication of soil density and is used to empirically correlate geotechnical engineering properties of a soil.

Upon split-spoon sampler retrieval, the soils were examined for visual (i.e., staining, discoloration) or olfactory indications of contamination and arsenic concentrations were

screened using X-ray fluorescence (XRF) spectrometry equipment. XRF readings were recorded on the boring logs. Representative soil samples from each split-spoon were collected and stored in jars for subsequent review and potential laboratory testing.

Upon completion of drilling, boreholes were backfilled to the ground surface with bentonite chips and cement grout.

2.1.3 Bench Scale Treatability Borings

Six borings (99-BS-1, 99-BS-1a, 99-BS-2, 99-BS-3, 99-BS-4, and 99-BS-4a) were extended using sonic drilling techniques. The test borings were drilled by Holt Services Inc. of Edgewood, Washington on August 7, 2020. The drilling was overseen and logged by a CDM Smith geologist. Borings were advanced to depths between 15 feet and 20 feet bgs.

Soil borings were continuously sampled from the ground surface to total depth of the borehole in 5-foot cores. Upon retrieval of the cores, the bags were split open and soils were observed and classified using the Modified Burmeister soil classification and United Soil Classification System (USCS) system. Arsenic concentrations in each soil core sample were also screened with an XRF. Bulk samples for the bench scale study were extracted and separated into five-gallon buckets by material type, XRF readings, and sample depth. Buckets were sealed and transferred to the CDM Smith geotechnical testing laboratory in Bellevue, Washington.

At the completion of sampling activities, each borehole was backfilled to the ground surface using bentonite chips and grout.

2.1.4 Groundwater Collection

Groundwater was collected from an existing on-site monitoring well (99-1) during the field investigation for laboratory analysis and use in the bench scale study. The well was purged and sampled using a peristaltic pump with disposable tubing. The well was purged at a rate of approximately 200 milliliters per minute. Physical parameters were monitored during purging using a YSI meter. The YSI meter was secured in a flow-through cell that was situated after the pump and before the purge water tubing discharge. Parameters measured during purging included: pH, temperature; specific conductance; oxidation-reduction potential (ORP); dissolved oxygen ; and turbidity. The well was purged until the physical parameter measurements stabilized, after which the groundwater collected by disconnecting the tubing from the flowthrough cell and directly discharging the water into the sample container.

Samples to be submitted for analytical testing were collected in laboratory-supplied containers containing preservatives appropriate for the analyses to be conducted. Collected samples were stored in chilled coolers and delivered under chain-of-custody protocol to OnSite Environmental, Inc. (OnSite) in Redmond, Washington for analysis.

The groundwater to be used in the bench scale study was discharged into a clean 5-gallon pail, secured with a lid, transported to CDM Smith's Bellevue treatability laboratory, and held in refrigeration until use.

2.1.5 Decontamination and IDW Handling

Decontamination of the drilling and sampling equipment was conducted in accordance with the Site-specific health and safety plan. Investigative derived waste including soil, decontamination water, and drilling wash water were collected in 55-gallon drums. This material was profiled and picked up for disposal by Clean Harbors on December 28, 2020 and January 11, 2021.

2.2 Site Survey

An updated site survey was performed by APEX Engineering in Tacoma, Washington on August 5, 2020. The updated site survey is shown in **Appendix C**. Elevations noted herein are in feet and referenced to the North America Vertical Datum 1988 (NAVD88).

Section 3

Bench Scale Treatability Study Rationale

The USGI Highway 99 bench scale study was designed to evaluate the mixing of contaminated soils with a series of reagents to achieve a product that meets the performance criteria of the project, as identified in Section 1.3. The details of the bench scale study are described herein.

3.1 Reagent Evaluation

CDM Smith considered the following inorganic binding reagents as potential solidification additives.

- Portland cement (PC)
- NewCem Slag

CDM Smith considered the following inorganic binding reagents as potential stabilization additives.

- Ferrous sulfate heptahydrate
- Ferrous chloride

CDM Smith evaluated the aforementioned solidification and stabilization additives against the following selection criteria:

- Ability to achieve the objectives of the remediation program and physical properties suitable for use as fill material on-site;
- Local availability and supply; and
- Usage/Establishment in Remediation.

Based on the results of the reagent evaluation, both PC and NewCem Slag were selected as reagents for solidification additives and both ferrous chloride and ferrous sulfate heptahydrate were evaluated as stabilization additives. Bentonite was also used as a binding agent in low dosages for all mixes performed and the amount of bentonite used was further evaluated.

3.2 Solidification/Stabilization Mix Design and Procedures

Solidification/Stabilization mixing was performed at the CDM Smith geotechnical laboratory in Bellevue. Prior to S/S mixing, a representative composite sample was prepared by combining soil material collected from 99-BS-1, 99-BS-1a, 99-BS-4 and 99-BS-4a that exhibited an average XRF reading of greater than 500 parts per million (ppm) total arsenic. All materials larger than 3/8-inch in diameter were removed from the composite sample. Physical and analytical testing was conducted on the composite sample 99-1 (C1) for preliminary characterization purposes as is summarized in Section 4.2.

S/S mixes were prepared in accordance with the mix design matrix for each design case, as presented in **Table 1**. The mix design matrix provides a summary of the composites, reagents, reagent dosage, cure time and laboratory testing for each mix design evaluation. S/S mixes were prepared in two phases. The first phase focused on achieving two goals. The first goal was to evaluate the effectiveness of ferrous sulfate heptahydrate and NewCem Slag as part of the mix design. The second goal was to vary amounts of PC and bentonite to compare with the mix design identified in the 2018 bench scale study (CDM Smith 2018b). The second phase of S/S mixing focused on optimizing the mix design and refining the additions of PC and bentonite.

During the mixing, reagents were added to the composite samples as a percent by weight and were added as a dry powder or hydrated "grout." A hydrated grout is used for relatively dry soil samples and reagents are generally added as a dry powder for more wet soil samples. Site groundwater collected during the field investigation was the only water source used during the soil mixing process. Once the reagents were added to the composites, samples of the mixes were cast into seven 2-inch by 4-inch cylinder molds and one 3-inch by 6-inch mold per mix design and allowed to cure for various time increments up to 28 days prior to physical and analytical testing. A summary of the physical and analytical testing is presented in Section 4. During the mixing, it was observed that the samples became visibly more dry, stiff, and difficult to work with after the addition of each reagent. The higher the percentage of PC or NewCem Slag added, the more difficult the mixing of the samples became.

Section 4

Summary of Laboratory Test Methods

4.1 Geotechnical Index Testing

Samples collected from the geotechnical test borings were transported to the CDM Smith geotechnical laboratory in Chelmsford, Massachusetts and submitted for preliminary geotechnical index testing. Geotechnical index tests were performed on representative samples collected from the borings. The following laboratory tests were performed as part of the preliminary sample characterization:

- Grain Size without Hydrometer (ASTM D6913 and ASTM D1140) 8 tests
- Grain Size with Hydrometer (ASTM D7928 and ASTM D1140) 7 tests
- Moisture Content (ASTM D2216) 14 tests
- Atterberg Limits (ASTM D4318) 3 tests
- Organic Content (ASTM D2974) 1 test

4.2 Preliminary Composite Sample Characterization

As described in Section 3.2, soils collected from borings 99-BS-1, 99-BS-1a, 99-BS-4 and 99-BS-4a that exhibited average XRF readings greater than 500 ppm arsenic were collected for use in the bench scale testing. These soils were combined and mixed to create a composite sample.

4.2.1 Geotechnical Index Testing

A sample of the composited soil was submitted for geotechnical index testing. The following laboratory tests were performed on the composited sample as part of the preliminary sample characterization:

- Grain Size no Hydrometer (ASTM D6913 and ASTM D1140)
- Grain Size with Hydrometer (ASTM D7928 and ASTM D1140)
- Moisture Content (ASTM D2216)
- USCS Classification (ASTM D2488)
- Dry Density (ASTM D7263)
- Specific Gravity (ASTM D854)
- Organic Content (ASTM D2974)

4.2.2 Baseline Soil Composite Analytical Testing

A sample of the composited soil was also submitted to OnSite for laboratory analysis of the following:

- Total Metals (EPA 6010D/7471B)
- SPLP arsenic (EPA 1312/6010D)

4.3 Groundwater Chemistry Characterization

The groundwater sample was submitted to OnSite for laboratory analysis. OnSite subcontracted some of the analyses to AM Test Inc. in Kirkland, Washington. The groundwater sample was analyzed for the following:

- Total Suspended Solids SM 2540D
- Total Arsenic EPA 200.8
- Total Dissolved Solids– SM 2540C
- Dissolved Metals EPA 6010D/200.8/7470A
- Dissolved Silica EPA 200.7
- Alkalinity SM 2320B
- Nitrate + Nitrite (as Nitrogen) EPA 353.2
- Bromide, Chloride, Fluoride, Sulfate EPA 300.0

4.4 Compatibility Testing

Compatibility titration testing was conducted at the CDM Smith geotechnical laboratory in Bellevue by adding the selected reagents, PC (Type I/II) and NewCem slag, to site groundwater samples and then monitoring continuously over a 24-hour period to observe if any reactions occurred between the site groundwater and selected reagents. A total of two tests were conducted for each reagent type.

4.5 S/S Sample Testing

4.5.1 Physical Testing

The following physical tests were performed on S/S specimen cylinders at the CDM Smith geotechnical laboratory in Chelmsford:

- Unconfined Compression Test (ASTM D2166) A total of 30 tests; 10 conducted after 7 days of curing, 10 conducted after 14 days of curing, and 10 conducted after 28 days of curing.
- Hydraulic Conductivity using Flexible Wall Permeameter (ASTM D5084) A total of 10 tests were conducted on cylinders after 21 days of curing.

4.5.2 Arsenic Leaching Tests

Analytical testing was performed on S/S soil mixture samples to evaluate the potential leaching of arsenic. Two types of leaching tests were conducted: SPLP and SDL. The SPLP procedure is an aggressive single-point-in-time leaching performed by mixing (tumbling) the treated material that has been disaggregated to less than 2-millimeter grain size. The stated purpose of the SPLP test method is to evaluate leaching of soils by rain (precipitation). The SPLP conditions (aggressive mixing and material grain reduction) are not representative of the in-situ environment. The SDL leaching procedure is designed to evaluate the mass transfer rates (release rates) of inorganic analytes contained in a monolithic or compacted granular material as a function of leaching time. The conditions of the SDL procedure better represent conditions at the site because: (1) treated material is in place and not subjected to artificial disaggregation; (2) the leaching solution (rainwater and/or surface water) is replaced in the environment periodically; and (3) aggressive mixing of the leaching solution and the treated soil is not a condition observed at the site.

Analytical testing methods and the laboratories responsible for conducting the analytical testing and evaluations are described in further detail in the following sections.

4.5.2.1 SPLP Modified

Soil mixture samples that met the project performance criteria for compressive strength and permeability were selected for analytical testing by the SPLP method. The following mixes were selected for leachate testing:

- C1-H4 Phase 1 mix that had the lowest percent addition of bentonite.
- C1-H9 Phase 2 mix that had the lowest percent addition of PC.

The SPLP leaching test was performed using a modified EPA method 1312. The standard leaching procedure method was modified by changing the solid to water (precipitation) ratio from 1:20 (grams per milliliter) to 1:2. This modification was performed to better represent typical leaching conditions in the field by groundwater. The solution ("synthetic precipitation") used for leaching was the method's extraction fluid #2 at a pH of 5.0 ± 0.05 standard units. This solution is intended to represent rain in the Western United States.

S/S samples were received at the CDM Smith Denver Treatability Laboratory (DTL) as 2-inch X 4inch monoliths molded in a cylinder. Each monolith was removed from its mold and the top 1.5inch was removed using a hacksaw with a new blade. The 1.5-inch removed portions of the monolith were disaggregated using a ceramic mortar and pestle to less than 2 millimeters prior to leaching (standard procedure for SPLP).

The leaching fluid was added to the disaggregated samples in a 500-milliliter polyethylene bottle and placed in a rotary tumbler for 18 hours (standard SPLP procedure). Measurements of pH and conductivity were performed on each leachate before leaching and after the 18-hour tumbling period. The leachate was then filtered through a 0.45-micron filter, preserved with nitric acid and sent to OnSite for analysis of dissolved arsenic by EPA method 6020B.

4.5.2.2 Semi-Dynamic Leaching Tests

To determine leaching mechanisms, the potential of long-term leaching, and to calculate release rates, SDL tests were performed using a modified SW-846 method 1315 (SOP 1-10, Synthetic Precipitation Leaching Procedure and Semi-Dynamic Leaching Procedure for Amended Soils). The selected molded mixture (C1-H4) was placed into a glass jar with a cap and synthetic rainwater (SW-846 Method 1312 Western rainwater at pH 5.0) was added to the container. As with the SPLP method, this solution is intended to represent rainwater in the Western United States. The treated-sample surface-area-to-water ratio was 1:10 (square centimeters to milliliter). On average, approximately 1,620 milliliters of SPLP water was added to the container for each leaching period. The leachate was removed from the container and filtered through a 0.45-micron filter and replaced with fresh SPLP water at the following time intervals, as detailed in DTL SOP 1-10 and modified from SW-846 Method 1315: 2 hours, 24 hours, 48 hours, 72 hours, 7 days, 14 days, 21 days, 28 days, and 42 days. Leachate samples were submitted to Onsite for analysis of dissolved arsenic.

Section 5

Summary of Results

5.1 Geotechnical Field Investigation

The geotechnical investigation performed by CDM Smith indicated the following subsurface conditions based on the engineering properties of the soils, as described below and summarized on **Table 2**. The interpreted soil profile is presented on **Figure 4**.

- Pavement: The site is mostly paved. Three to six inches of asphalt or concrete pavement was encountered at five test boring locations and three test pits.
- Upper Sand and Gravel: This unit was encountered at the ground surface or just below pavement at eight test borings and three test pit locations and ranged from 4 to 10.7 feet thick. This layer consists of medium dense to very dense, gray or brown, fine to coarse SAND with varying amounts of fine to coarse gravel and silt. USCS classifications included SM and GM.
- Upper Clay & Silt: This unit was encountered immediately below the Upper Sand and Gravel layer at three test boring locations and ranged from 2.25to 5 feet thick. This layer consists of medium stiff, gray, CLAY & SILT with trace fine sand with a USCS classification of CL.
- Sand and Silt: This unit typically occurs just below the upper sand and gravel layer and was encountered at all nine test boring locations and one test pit location. The Sand and Silt unit ranged from 1 to 25 feet thick. This layer consists of loose to medium dense or very soft to hard, brown to dark brown, fine to medium SAND and SILT with trace fine gravel. USCS classifications included SM, SP-SM, and ML.
- Lower Clay & Silt: This unit was encountered below the sand and silt layer at two test boring locations with thicknesses of 0.5 foot and 5.4 feet. This layer consists of stiff to hard, light brown or gray, CLAY & SILT with trace fine sand with a USCS classifications of CL.
- Lower Sand and Gravel: This unit was encountered below the Lower Clay and Silt unit at two test boring locations with thickness of 1.5 foot and 5 feet. This layer consisted of medium dense to dense, gray or brown, fine to coarse GRAVEL with some fine to coarse sand and trace silt with a USCS classification of GW-GM.

Groundwater levels measured in the test borings ranged from 8.0 feet bgs (Elevation 13.2 feet) to 14.0 feet bgs (Elevation. 7.2 feet).

5.2 Geotechnical Index Testing

Geotechnical index testing results for test boring samples and the composite sample are included in **Table 3** and are described in the following paragraphs. Laboratory data sheets are included in **Appendix D**.

5.2.1 Grain Size Analyses and USCS Classification

The grain size distributions were measured using sieve analyses with and without hydrometers in accordance with ASTM D6913, ASTM D7928, and ASTM D1140. Results of this testing are summarized as follows:

- Test Boring Samples (99-GEO-1, 99-GEO-2, and 99-GEO-3): sand content ranged from 3.3 percent to 89.7 percent, fines content from 9.9 percent to 96.7 percent, and gravel content from 0 percent to 46.8 percent. USCS Classifications were identified as GM, ML, SM, SP-SM, CL, and GW-GM.
- Composite-1: sand content was 56.7 percent, fines content was 42.5 percent, and gravel content was 0.8 percent. USCS Classification was identified as SM.

5.2.2 Moisture Content

Moisture contents were measured in accordance with ASTM D2216. Results of this testing are summarized as follows:

- Test Boring Samples (99-GEO-1, 99-GEO-2, and 99-GEO-3): results ranged from 5.7 percent to 40.3 percent.
- Composite-1: result was 39.1 percent.

5.2.3 Dry Density

The dry density was measured only in the composite sample, in accordance with ASTM D7263. The result of this testing is summarized as follows:

• Composite-1: result was 77 pounds per cubic foot.

5.2.4 Specific Gravity

Specific gravity was measured only in the composite sample, in accordance with ASTM D854. The result of this testing is summarized as follows:

• Composite-1: result was 2.60.

5.3. Baseline Soil Composite Analytical Test Results

The soil analytical results for the composite sample prior to additive mixing are presented in **Table 4.** The results of the analytical testing are summarized as follows:

- The concentration of total arsenic concentration was 270 milligrams per kilogram (mg/kg). As noted previously, during the field investigation, samples were screened with the XRF and segregated by arsenic concentration. Samples exceeding 500 ppm were collected in buckets. At the lab, a composite sample was created. During composition, larger pieces of debris and gravel were screened out. The C1 sample, created in the laboratory, resulted in a lower concentration of total arsenic than what was originally screened in the field.
- The SPLP arsenic concentration was 680 μg/L.

 Concentrations of the other analytes did not indicate compatibility issues with the proposed mix design and results will be provided to the contractor as part of the baseline data package.

The analytical laboratory report is included in Appendix E.

5.4 Groundwater Chemistry Characterization Results

The groundwater analytical results for well 99-1 are summarized in **Table 5.** The dissolved arsenic concentration in this groundwater sample was $3,600 \ \mu g/L$. Concentrations of the other analytes did not indicate compatibility issues with the proposed mix design and results will be provided to the contractor as part of the baseline data package.

The analytical laboratory report is included in Appendix E.

5.5 Compatibility Test Results

Compatibility testing of site groundwater with PC and NewCem Slag indicated no observed reactions between the reagents and site groundwater. Photographs of titration samples were collected at various times and are included in **Appendix B**.

5.6 S/S Composite Sample Results

5.6.1 Unconfined Compression Strength

UCS tests were performed in accordance with ASTM D1633. Testing was performed on samples after 7, 14, and 28 days of curing. The results from the laboratory tests are summarized in **Table 6.** Laboratory test reports are included in **Appendix D.** The laboratory test photolog is included in **Appendix B.** Plots of the results of the UCS tests for each composite sample are included in **Figure 5** through **Figure 8**. The following subsections summarize the results of the UCS laboratory testing for each mix.

5.6.1.1 PC with Bentonite and Ferrous Sulfate/Ferrous Chloride Additives

- Compressive strengths after 7 days of curing ranged from 54.6 psi (C1-H9) to 408 psi (C1-H1).
- Compressive strengths after 14 days of curing ranged from 63.6 psi (C1-H9) to 490 psi (C1-H1).
- Compressive strengths after 28 days of curing ranged from 69.0 psi (C1-H10) to 469 psi (C1-H1).

All of these mixes reached the desired 50 psi compressive strength after 7, 14, and 28 days.

5.6.1.2 PC with Ferrous Sulfate Additive

- Compressive strength after 7 days of curing was 222 psi (C1-H3).
- Compressive strength after 14 days of curing was 234 psi (C1-H3).
- Compressive strength after 28 days of curing was 279 psi (C1-H3).

The one mix with 20 percent PC and ferrous sulfate additive met the desired 50 psi criteria after 7, 14, and 28 days.

5.6.1.3 NewCem Slag with Bentonite and Ferrous Sulfate Additives

- Compressive strengths after 7 days of curing were 4.5 psi (C1-H6) and 28.5 psi (C1-H5).
- Compressive strengths after 14 days of curing were 4.7 psi (C1-H6) and 44.6 psi (C1-H5).
- Compressive strengths after 28 days of curing were 6.7 psi (C1-H6) and 39.5 psi (C1-H5).

Both of these mixes recorded compressive strengths below the desired 50 psi strength.

5.6.2 Hydraulic Conductivity

Hydraulic conductivity tests were performed in accordance with ASTM D5084. A summary of the results is presented in **Table 6**. Laboratory test reports are included in **Appendix D**. The hydraulic conductivity measured in the lab ranged from 4.06E-07 cm/s (C1-H4) to 1.81E-03 cm/s (C1-H1). Seven samples (C1-H3, C1-H4, C1-H6, C1-H7, C1-H8, C1-H9, and C1-H10) indicated that the required hydraulic conductivity of 1.0E-06 cm/s or less was achieved.

5.6.3 Potential Leaching of Arsenic in S/S Soil Mixtures

The results of the SPLP and SDL tests are discussed in the following sections. The laboratory reports are included in **Appendix E**.

5.6.3.1 SPLP Results for Arsenic in S/S Soil

Table 7 summarizes the results of the total arsenic in each of the S/S samples, dissolved arsenic in each SPLP leachate, the percentage of available arsenic that was leached from each sample and the percent leaching decrease between the treated soil and the untreated soil (baseline composite soil result). **Table 7** also summarizes starting and ending measurement parameters, including pH and ORP and the mass of S/S material and leaching solution used.

The concentration of total arsenic in the S/S samples (as measured by XRF in the DTL) were 178 ppm in C1-H4 and 188 ppm in C1-H9). The concentration of arsenic in the leachates were 190 μ g/L in C1-H4 and 200 μ g/L in C1-H9. Note that the arsenic concentration in the SPLP in the untreated composite sample was 680 μ g/L (**Table 4**).

Sample C1-H4, solidified with 13 percent PC, 1 percent bentonite and stabilized with ferrous sulfate heptahydrate, performed best at decreasing the amount of available arsenic leached. C1-H4 showed a 72 percent decrease of the available arsenic leached. In sample C1-H9, solidified with 10 percent PC, 3 percent bentonite and stabilized with ferrous sulfate heptahydrate, arsenic leaching was reduced by 70 percent.

Due to the disaggregation and rotary tumbling, the SPLP tests do not represent actual leaching of solidified soil by groundwater. However, the SPLP test results were used as a screening test to select the most appropriate sample for the more extensive and representative SDL testing. Based on the SPLP test results, sample C1-H4 was selected for additional leach testing following the SDL procedures.

5.6.3.2 SDL Results for Arsenic in S/S Soil

This section presents a summary of the results of the SDL testing on the S/S soil. The full evaluation is detailed in **Appendix F. Table 8** summarizes the results for the dissolved arsenic analysis performed by Onsite and the measurement parameters pH and ORP performed at the DTL during this procedure. As shown in **Table 8**, dissolved arsenic concentrations ranged from $3.6 \ \mu g/L$ (2 hours) to $22 \ \mu g/L$ (7 days).

Starting at 24 hours after the initial leachate (2 hours) was collected, all remaining dissolved arsenic concentrations for all plots were consistent, ranging from 8.7 to 22 μ g/L. In addition to the measured concentrations at each time interval, additional calculations and evaluations were performed to determine leaching mechanisms, the potential of long-term leaching and to calculate release rates for arsenic. The calculations and conclusions for the SDL test for mixture C1-H4 is provided in **Appendix F**. In summary, the initial arsenic concentration result of 3.6 µg/L is the result of delayed diffusion or dissolution. After the 2-hours measurement, arsenic concentrations ranged between 8.7 μ g/L (42 days) and 22 μ g/L (7 days). The primary release mechanisms after 2-hour is mainly because of diffusion from the core. Appendix F provides graphs of the log of the cumulative mass released versus the log of the leaching time. As shown, the coefficient of determination (r^2) is excellent at 0.99. The resulting equations were used to predict leachate concentrations of dissolved arsenic at future time periods between 1 and 10 years at the interface between the treated soil and the aqueous phase (surface water). The concentrations for Year 1 through Year 10 were calculated to be less than the practical quantitation limit (2 to 3 μ g/L). These concentrations would decrease as the water at the interface migrates and mixes with additional surface or groundwater.

Section 6

Conclusions and Recommendations

6.1 Conclusions

Based on the results of the geotechnical field investigation and treatability study with respect to the evaluation criteria, the following conclusions are made for the Highway 99 site:

- The site soils predominantly consist of silty sand with varying amounts of fine to coarse gravel. The Composite 1 soil sample is representative of the silty sand with an average arsenic concentration of about 200 ppm. Gravels observed at the site were sieved out to enable preparation of the small-scale test cylinders but could account for a range of 15 to 30 percent of the site soils during in situ mixing, based on observed soil conditions.
- PC was found to be the most consistent and effective reagent to meet the project performance criteria for unconfined compressive strength and permeability. This reagent is locally available. PC was effective in controlling leaching of arsenic, as indicated by the SPLP test results.
- NewCem slag was evaluated as part of the bench scale study due to local availability and potential cost savings. NewCem slag resulted in the lowest UCS results and did not meet the project performance criteria of 50 psi after 28 days. Permeability results for the two mixes were not consistent and the additive did not appear to make a significant impact in lowering the permeability of the soil matrix.
- The bentonite addition was evaluated for the various mixes at 1-percent, 3-percent and 6-percent by weight. Mixes at all percent additions met the project performance criteria. Results at the higher additions of 3 and 6-percent bentonite appeared to yield more consistent results as all four mixes from the phase 2 mixing effort exceeded the performance criteria for the project.
- Ferrous sulfate heptahydrate was evaluated as part of the bench scale study because it is a more cost-effective alternative to the previously evaluated ferrous chloride. Based on results of the SPLP and SDL testing, ferrous sulfate heptahydrate appears to be effective in stabilizing arsenic.
- The UCS test results indicate that additional water may be required for complete curing of the PC if the natural moisture content of the soils is below the optimum (standard proctor) moisture content.
- The UCS test results indicate that of the reagents tests, soil-PC mixtures exhibited the highest strengths after curing.
- The SDL test results indicate that mixture C1-H4 will result in very low leaching of arsenic over time. Concentrations of dissolved arsenic in Years 1 to 10 will be less than the MTCA

Method A cleanup level and concentrations will continue decrease as the water at the interface migrates and mixes with additional groundwater.

6.2 Recommendations

Based on the results of the geotechnical field investigation and treatability study and an evaluation of site information with respect to the evaluation criteria, the following is recommended for future pilot testing on the Highway 99 site:

- PC at a dosage rate of 13 percent by weight, bentonite at a dosage of 1 percent by weight, and ferrous sulfate heptahydrate at a molar ratio of 4:1 to the arsenic concentration is recommended to achieve the project objectives of achieving adequate strength and permeability reduction of site soils.
- The soils may be mixed with the reagent at their natural moisture content for stabilization purposes. However, additional water may need to be added to the soil-reagent mixture to achieve moisture contents equal to or up to 2 percent greater than the optimum (standard proctor) moisture content of the soils to achieve complete curing and strength gain.
- Prior to soils being treated on site, a pilot study should be performed to qualify the following factors prior to design and full-scale production:
 - Confirm the proposed mix design is feasible and compatible with site conditions,
 - Understand how implementation affects construction aspects such as auger diameter, rate of mixing, and column overlaps to meet the project criteria.
 - Identify the additional volume of water needed to fully cure the in-situ soils during mixing.
 - Identify the "swell" or soil bulking factor after in-situ mixing is complete.
 - Develop the appropriate quality assurance procedures to assess compliance with the project performance criteria.

6.3 Impacts to the Conceptual Design

The conclusions and recommendations presented above do not indicate any significant changes to the conceptual design approach presented in the Highway 99 - Conceptual Design Report (CDM Smith 2020a) will be required. Based on the results of the field investigation, it is recommended that the extents of the proposed treatment area be increased (compared to the Conceptual Design Report) to fully encapsulate the highly impacted source area. The proposed treatment area will be further developed as part of the ISS design.

The recommended mix design was optimized based on cost effectiveness, local availability of reagents, and performance and will be further evaluated during the pilot study implementation. Based on the results of both the Highway 99 and Puyallup bench scale treatability studies, it is recommended that only one pilot study be performed to evaluate both sites. This was concluded by confirming consistency between the subsurface conditions encountered at both sites and

similarity in the overall recommended mix design approach. It is also recommended that the pilot study be conducted at the Puyallup site to reduce impacts to ongoing operations at the Highway 99 site.

Section 7

References

Camp Dresser & McKee, Inc. (CDM, now CDM Smith). 2007. *Soil and Groundwater Quality Assessment/Source Evaluation Report, USG-Fife Site, 7110 Pacific Highway East, Milton, Washington*. Prepared for USG Corporation. January 31, 2007.

CDM Smith Inc. 2016a. *Feasibility Study, USG Interiors Highway 99 Site, Milton, Washington.* June 23, 2016.

CDM Smith Inc. 2016b. *Remedial Investigation Report, USG Interiors Highway 99 Site, Milton, Washington*. June 23, 2016.

CDM Smith Inc. 2018a. *Field Pilot Study Work Plan, USG Interiors Highway 99 Site, 7110 Pacific Highway East, Milton, Washington, 98354.* July 25, 2018.

CDM Smith Inc. 2018b. *Hot-Spot Characterization and Bench-Testing, USG Interiors Highway* 99 *Site, 7110 Pacific Highway East, Milton, WA* 98354. March 23, 2018.

CDM Smith, 2020a. *Conceptual Design Report, USG Interiors Highway 99 Site, Milton, Washington.* April 16, 2020.

CDM Smith, 2020b. *Geotechnical Field Investigation and Bench Scale Treatability Study Work Plan, USG Interiors Highway 99 Site, Milton Washington and USG Interior Puyallup Site, Puyallup, Washington.* May 26, 2020.

CDM Smith 2020c. Field Pilot Study Evaluation Report, USG Interiors Highway 99 Site, 7110 Pacific Highway East, Milton, WA 98354. June 12, 2020.

Ecology, 2016. *Cleanup Action Plan, USG Interiors Highway 99 Site, Milton, Washington*. Prepared for USG Corporation. Issued by Washington State Department of Ecology Toxics Cleanup Program, Southwest Regional Office. June 23, 2016.

Environmental Protection Agency (EPA), Office of Research and Development, et al. 2009. *Technology Performance Review: Selecting and Using Solidification/Stabilization Treatment for Site Remediation.* Publication No. EPA/600/R-09/148.

Tables

Table 1 Summary of Bench Scale Study Mix Design

	-		A deltation of	Unconfin	ed Compressio	on Testing	CD1 D	Dennis el Ille Test	CD1	22	Factors	Detterrale				
Sample ID	Mix ID	Additive	Additive %-	7-day	14-day	28-day	SPLP	Permeability Test	SDL	PP	Extra	Rationale				
Phase 1																
		Portland Cement	20													
	H1	Bentonite	1	x	x	х	x	x	х	x	x	CONTROL MIX - ORIGINAL BASELINE BENCH SCALE TUDY				
		Ferrous Chloride Portland Cement	4:1 (FE(II))													
		Bentonite	20 1													
	H2	Ferrous Sulfate Heptahydrate		x	x	x	x	x	х	х	x	Control Mix - With Ferrous Sulfate				
		Portland Cement	20													
	H3	Ferrous Sulfate Heptahydrate		x	x	x	x	x	x	x	x	Control Mix - Without Bentonite and using Ferrous Sulfate instead of Ferrous Chloride				
		Portland Cement	13													
Composite 1		Bentonite	1									Control Mix - With lower % of Portland Cement (matches				
	H4			х	x	x	х	x	х	х	х	Puyallup) and Ferrous Sulfate				
		Ferrous Sulfate Heptahydrate										.,				
		NewCem Slag	30 1									Control Mix - With NewCem Slag (upper bound) instead of				
	H5	H5 Bentonite		x	x	x	x	x	x	x	x	Portland Cement and Ferrous Sulfate instead of Ferrous				
		Ferrous Sulfate Heptahydrate	4:1 (FE(II))									Chloride				
		NewCem Slag	10									Control Mix - With lower % NewCem Slag (lower bound)				
	H6	Bentonite	1	x	x	x	x	x	x	x	x	instead of Portland Cement and Ferrous Sulfate instead of				
		Ferrous Sulfate Heptahydrate	4:1 (FE(II))									Ferrous Chloride				
Phase 2								1 1								
		Portland Cement	13													
	H7	Bentonite	3	x	x	x	x	x	x	x	x	Mix mimicking C1-P8 from Puyallup Mix Design for pilot				
		Ferrous Sulfate Heptahydrate	4:1 (FE(II))									study evaluation				
		Portland Cement	13													
	H8	Bentonite	6	x	x	x	x	x	x	x	x	Mix mimicking C1-P9 from Puyallup Mix Design for pilot				
	110	Ferrous Sulfate Heptahydrate	4:1 (FE(II))	X	~	~	^	~	X	~	X	study evaluation				
Composite 1		Portland Cement	10									Minutiniality - C1 D10 forms Dunally a Min Davies for silet				
	Н9	Bentonite	3	x	x	x	x	x	x	x	x	Mix mimicking C1-P10 from Puyallup Mix Design for pilot study evaluation and also to evaluate lower % Portland				
	19	Ferrous Sulfate Heptahydrate	4:1 (FE(II))	*	^	^	^	^	^	^	^	Cement at the site.				
		Portland Cement	10									Mix mimicking C1-P11 from Puyallup Mix Design for pilot				
	H10	Bentonite	6	x	x	x	x	x	x	x	x	Mix mimicking CI-P11 from Puyaliup Mix Design for pilot study evaluation and also to evaluate lower % Portland				
	1110	Ferrous Sulfate Heptahydrate	4:1 (FE(II))	^	Â	Â	Â	^	^	^	^	Cement at the site.				

Notes:

Mixes that met the project goals for unconfined compressive strength and hydraulic conductivity.

SPLP Synthetic Precipitation Leaching Procedure

SDL Semi-dynamic Leaching Test

PP Pocket Penetrometer

% - percent

Table 2 Summary of Subsurface Exploration Findings

	Approximate								Strata						
Exploration Ground Surface Explo		Exploration	Asphalt		Upper Sand & Gravel		Upper Clay & Silt		Sand and Silt		Lower Clay & Silt		Lower Sand and Gravel		Depth to
ID	Elevation. ¹	Depth –	Depth Interval	Thickness De		epth Interval Thickness Depth Interval Thickness		Depth Interval	epth Interval Thickness		Thickness	Depth Interval	Thickness	- Groundwater	
	(ft)	(ft)	(ft bgs)	(ft)	(ft bgs)	(ft)	(ft bgs)	(ft)	(ft bgs)	(ft)	(ft bgs)	(ft)	(ft bgs)	(ft)	(ft bgs) ²
99-BS-1	22.6	20	0-0.3	0.3	0.3-8.0	7.7	8.0-13.0	5	13.0-20	+7					NR
99-BS-1a	22.6	15					10.0-13.0	3	13.0-15.0	+2					NR
99-BS-2	22.0	20	0-0.2	0.2	0.2-10.0	9.8			10.0-20.0	+10					NR
99-BS-3	21.4	20			0-6.0	6			6.0-20.0	+14					NR
99-BS-4	22.3	20	0-0.3	0.3	0.3-9.0	8.7			9.0-20.0	+11					NR
99-BS-4a	22.1	15			5.0-8.5	3.5			8.5-15.0	+7.5					NR
99-GEO-1	22.7	32	0-0.3	0.3	0.3-9.0	8.7	9.0-11.25	2.25	11.25-21.5	10.25	21.5-27	5.5	27.0-32.0	+5	14.0
99-GEO-2	22.1	32	0-0.3	0.3	0.3-11.0	10.7			11.0-30.0	19	30.0-30.5	0.5	30.5-32.0	+1.5	8.0
99-GEO-3	21.2	32			0-7.0	7			7.0-32.0	+25					8.5
99-TP-1	21.7	8.5	0-0.3	0.3	0.3-8.5	+8.2									NR
99-TP-2	22.1	11	0-0.3	0.3	0.3-10.0	9.7			10.0-11.0	+1					NR
99-TP-3	21.2	8	0-0.5	0.5	0.5-8.0	+7.5									NR

Notes:

1. Elevations are approximate and referenced to the North American Vertical Datum of 1988 (NAVD88).

2. Groundwater level readings were taken upon completion of the test boring.

+ Indicates strata not fully penetrated

-- Indicates no value

NR - Indicates not recorded

ft - feet

bgs - below ground surface

Table 3 Summary of Geotechnical Laboratory Test Results

	Furthernation Comple						Gra	in Size Analysis	At	terberg Limi	- Water (
Exploration Number	Sample Number	Sample Depth (ft)	Strata	USCS 1	Grave	l (%)		Sand (%)		Fine	s (%)		DI (0/)	DI(0/)	 Water Content (%) ⁴ 	Organic Content (%) ⁵
					Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	- LL(%)	PL(%)	PI(%)		content (70)
99-GEO-1	S-2	3-5	Silty Gravel w/ sand	GM	23.1	21.5	7.0	9.5	13.6	25.3					5.7	
99-GEO-1	S-4	7-9	Silty Gravel w/ sand	GM	9.2	24.8	10.0	8.2	14.7	25.7	7.4				12.2	
99-GEO-1	S-5	9-11	Silt w/ sand	ML								47.0	28.0	19.0	29.1	1.1
99-GEO-1	S-7	13-15	Silty Sand	SM	0.0	0.0	0.0	0.6	54.7	44.7					27.2	
99-GEO-1	S-8a	20-22	Sand w/ silt	SP-SM	0.0	0.0	3.8	22.5	63.4	9.0	1.3				23.3	
99-GEO-1	S-9	25-27	Clay	CL	0.0	0.0	0.0	0.2	3.1	49.0	47.7	36.0	24.0	12.0	40.3	
99-GEO-1	S-10	30-32	Gravel w/ silt and sand	GW-GM	5.2	41.6	12.6	20.9	9.8	9.9					10.9	
99-GEO-2	S-4	7-9	Silty Sand w/ gravel	SM	6.2	32.4	11.3	15.7	12.2	22.2					12.7	
99-GEO-2	S-6	11-13	Silt w/ sand	ML	0.0	1.0	0.2	0.7	15.4	76.5	6.2				26.3	
99-GEO-2	S-8	20-22	Silty Sand	SM	0.0	1.2	1.1	11.5	72.4	13.8					20.6	
99-GEO-2	S-9	25-27	Silty Sand	SM	0.0	0.8	0.8	4.7	77.4	14.6	1.7				25.9	
99-GEO-3	S-1	1-3	Silty Sand w/ gravel	SM	0.0	18.9	10.7	15.2	19.0	36.2					13.7	
99-GEO-3	S-4	7-9	Silty Sand w/ gravel	SM	4.9	16.9	8.4	11.3	18.6	29.7	10.2				27.3	
99-GEO-3	S-7	13-15	Silt w/ sand	ML	0.0	0.0	0.1	0.2	21.6	72.2	5.9				28.1	
99-GEO-3	S-8	20-22	Silty Sand	SM	0.0	0.0	0.2	3.0	70.6	26.2					27.9	
99-GEO-3	S-9	25-27	Silty Sand	SM	0.0	0.0	0.7	9.6	63.6	23.2	2.9	NP	NP	NP	22.4	
Composite	C1	(note 6)	SIlty Sand	SM	0.0	0.8	0.1	2.4	54.2	34.6	7.9				39.1	2.9

Notes:

1. USCS performed in accordance with ASTM D 2487.

2. Grain size analysis performed in accordance with ASTM D7928 & D6913 and ASTM D1140.

3. Atterberg limit performed in accordance with ASTM D4318.

4. Water Content performed in accorfance with ASTM D2216

5. Organic Content performed in accordance with ASTM D2974

6. Composite sample includes soil from the following borings 99-BS-1 (10-15 ft), 99-BS-1a (10-15 ft), 99-BS-4 (5-10 ft), 99-BS-4a (10-15 ft)

-- Not conducted

LL - Liquid Limit % - percent

PL - Plastic Limit USCS - Unified Soil Classification System

- PI Plasticity Index
- NP Non plastic

Table 4 Baseline Composite Soil Analytical Results

Analyte and Analytical Method	Unit	Result
Leachable Arsenic (SPL	.P) (EPA 1312/6010D)	
SPLP Arsenic	μg/L	680
Total Metals (EPA 601	<u>0D/7471B)</u>	
Aluminum	mg/kg	6,100
Antimony	mg/kg	<6.8
Arsenic	mg/kg	270
Barium	mg/kg	33
Beryllium	mg/kg	<0.68
Cadmium	mg/kg	<0.68
Calcium	mg/kg	3,000
Chromium	mg/kg	17
Cobalt	mg/kg	4.9
Copper	mg/kg	14
Iron	mg/kg	7,700
Lead	mg/kg	<6.8
Magnesium	mg/kg	1,900
Manganese	mg/kg	140
Mercury	mg/kg	<0.34
Nickel	mg/kg	12
Potassium	mg/kg	440
Selenium	mg/kg	<14
Silver	mg/kg	<1.4
Sodium	mg/kg	760
Thallium	mg/kg	<3.4
Vanadium	mg/kg	47
Zinc	mg/kg	26

Notes:

SPLP - Synthetic Precipitation Leaching Procedure

 μ g/L - micrograms per liter

mg/kg - milligrams per kilogram

< - not detected at or greater than the listed concentration

Table 5 Groundwater Chemistry Characterization - Monitoring Well 99-1

Analytical Method and		Decili
Analyte	Unit	Result
<u>SM 2540D/2540C</u>		
TSS	mg/L	16
TDS	mg/L	230
SM 2320B		
Carbonate Alkalinity	mg CaCO3/L	<2.0
Bicarbonate Alkalinity	mg CaCO3/L	200
EPA 353.2	-	
Nitrate + Nitrite	mg/L	<0.050
EPA 300.0		
Bromide	mg/L	0.05
Chloride	mg/L	9.59
Fluoride	mg/L	0.48
Sulfate	mg/L	2.95
<u>EPA 200.7</u>		
Dissolved Silica	μg/L	44,000
Dissolved Metals (EPA Methods		
Aluminum	μg/L	<110
Antimony	μg/L	<5.0
Arsenic	μg/L	3,600
Barium	μg/L	<25
Beryllium	μg/L	<10
Cadmium	μg/L	<4.0
Calcium	μg/L	33,000
Chromium	μg/L	<10
Cobalt	μg/L	<10
Copper	μg/L	<10
Iron	μg/L	9,400
Lead	μg/L	<1.0
Magnesium	μg/L	18,000
Manganese	μg/L	860
Mercury	μg/L	<0.50
Nickel	μg/L	<20
Potassium	μg/L	3,400
Selenium	μg/L	<5.0
Silver	μg/L	<10
Sodium	μg/L	16,000
Thallium	μg/L	<5.0
Vanadium	μg/L	<10
Zinc	μg/L	<25

Notes:

TSS - Total Suspended Solids

TDS - Total Dissolved Solids

 μ g/L - micrograms per liter

mg/L milligrams per liter

mg CaCO3/L - milligrams per liter as calcium carbonate

< - not detected at or greater than the listed concentration

Table 6 Summary of S/S Composite Sample Geotechnical Laboratory Test Results

									UCS Tes	ting ¹							
	7 Day Cure								14 Day C	Cure			Hydraulic				
Mix Designation	Date Mixed	UCS Strength	Dry Bulk Density	Wet Bulk Density	Moisture Content	Pocket Penetrometer Reading	UCS Strength	Dry Bulk Density	Wet Bulk Density	Moisture Content	Pocket Penetrometer Reading	UCS Strength	Dry Bulk Density	Wet Bulk Density	Moisture Content	Pocket Penetrometer Reading	Conductivity ²
		(psi)	(pcf)	(pcf)	(%)	(psi)	(psi)	(pcf)	(pcf)	(%)	(psi)	(psi)	(pcf)	(pcf)	(%)	(psi)	(cm/s)
Phase 1																	
C1-H1	8/17/2020	408	93.4	116	24.2	>62.5	490	92.2	114	24.2	>62.5	469	90.4	112	23.7	>62.5	1.81E-03
C1-H2	8/17/2020	97.4	84.7	106	24.4	>62.5	105	85.0	106	24.3	>62.5	149	87.0	107	23.5	>62.5	3.27E-04
C1-H3	8/17/2020	223	90.7	113	24.3	>62.5	234	89.3	111	24.1	>62.5	279	89.1	110	23.4	>62.5	4.24E-06
C1-H4	8/17/2020	111	88.4	113	28.0	>62.5	151	88.5	113	27.8	>62.5	189	88.1	112	27.4	>62.5	4.06E-07
C1-H5	8/17/2020	28.5	86.5	109	26.2	>62.5	44.6	87.8	111	25.8	>62.5	39.5	85.9	108	25.4	>62.5	2.43E-04
C1-H6	8/17/2020	4.50	87.6	116	32.3	13.9	4.70	87.3	115	32.0	20.8	6.70	84.7	112	32.0	27.8	1.76E-06
Phase 2																	
C1-H7	10/28/2020	74.6	82.6	112	35.0	>62.5	100	81.5	109	34.2	>62.5	130	81.5	110	34.5	>62.5	2.10E-07
C1-H8	10/28/2020	79.7	82.5	111	33.9	>62.5	113	84.1	112	33.4	>62.5	144	83.4	111	32.8	>62.5	1.03E-07
C1-H9	10/28/2020	54.6	81.3	111	36.4	>62.5	63.6	80.2	109	35.7	>62.5	98.6	81.4	110	35.5	>62.5	3.96E-07
C1-H10	10/28/2020	55.8	80.3	110	36.4	>62.5	75.9	80.4	110	36.4	>62.5	69.0	80.0	109	36.4	>62.5	2.41E-07

Notes:

Mixes that met the project goals for unconfined compressive strength and hydraulic conductivity and were selected for Synthetic Precipitation Leaching Procedure (SPLP) testing (Table 7)

1. Unconfined compressive strength testing was conducted in accordance with ASTM D1633.

2. Hydraulic Conductivity testing was conducted in accordance with ASTM D5084.

psi - pounds per square inch

pcf - pounds per cubic foot

cm/s - centimeter per second

% - percent

> - exceeds

Table 7 Total Arsenic in S/S Composite Soils and SPLP Leachate Results

			Solids Results	SPLP Leaching Data											
Mix Designation	Date Mixed	Date Leached	Arsenic ¹	Solid Mass	SPLP Extraction Fluid # 2 Mass	Initial pH	Final pH	Initial ORP	Final ORP	SPLP Arsenic Result	Available Arsenic Leached	Leaching Decrease Between Treated and Untreated Soil			
			(ppm)	(g)	(g)	(su)	(su)	(mv)	(mv)	(µg/L)	(%)	(%)			
C1-H4	8/17/2020	3/8/2021	178	91.7	181.9	10.9	11.6	214	172	190	0.21	72.06%			
C1-H9	10/28/2020	3/8/2021	188	128.2	261.2	10.5	11.1	224	160	200	0.21	70.59%			

Notes:

1. As measured by an X-Ray Fluorescence meter

mg/kg - milligram per kilogram

 $\mu g/L$ - micrograms per liter

g - grams

su - standard unit

mv - millivolt

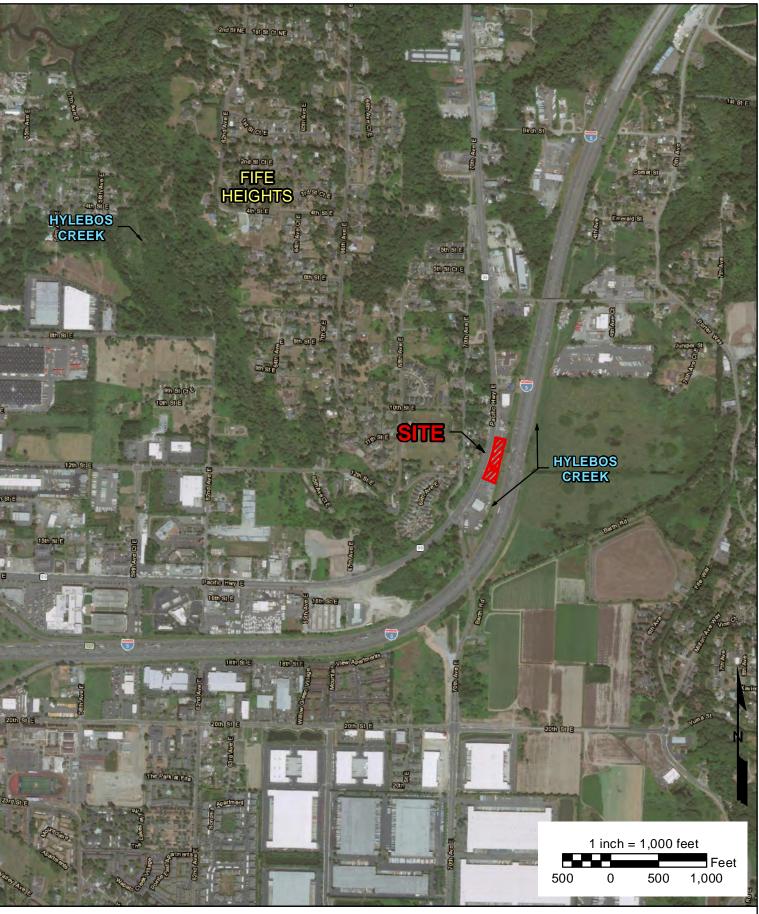
% - percent

ORP - oxidation reduction potential

SPLP - Synthetic Precipitation Leaching Procedure

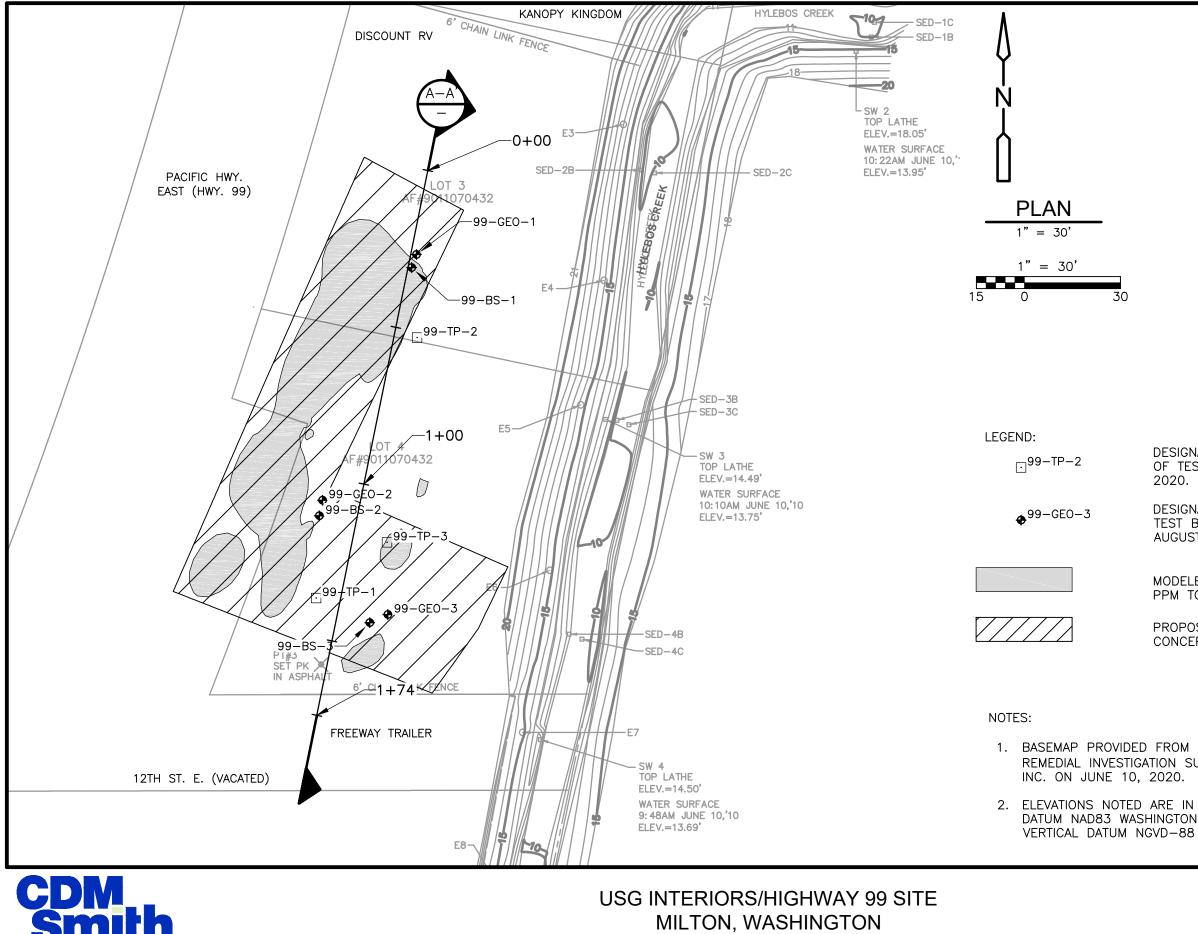
Table 8 Semi-Dynamic Leach Testing Results

Mix Designation	Sample ID	Date Leachate	SDL Arsenic Result	рН	ORP	Observations
			μg/L	(su)	(mv)	
	C1-H4-SDL-2-Hour	3/29/2021	3.6	11.23	205	
	C1-H4-SDL-24-Hour	3/30/2021	11	11.06	184	Sediment Observed in the bottom of the container
	C1-H4-SDL-48-Hour	3/31/2021	9.7	10.96	211	Sediment stable
	C1-H4-SDL-72-Hour	4/1/2021	9.6	11.06	206	Sediment stable
C1-H4	C1-H4-SDL-72-Hour-Dup	4/1/2021	9.9	11.41	209	
C1-H4	C1-H4-SDL-7-Day	4/5/2021	22	11.23	215	Sediment increasing
	C1-H4-SDL-14-Day	4/12/2021	18	11.11	211	Sediment Stable
	C1-H4-SDL-21-Day	4/19/2021	16	11.08	211	Sediment Stable
	C1-H4-SDL-28-Day	4/26/2021	13	10.98	204	Sediment stable
	C1-H4-SDL-42-Day	5/10/2021	8.7	11.22	221	Sediment stable


Notes:

Core Dimension before SDL 2"x3" Core Dimension before SDL 2"x3" Core Mass - beginning 266.68g, ending 262.31g Core surface area - 162 cm² Volume of SPLP water used - 1620 mL mg/kg - milligrams per kilogram g - grams µg/L - micrograms per liter ppm - parts per million su - standard unit mv - millivolt ORP - oxidation reduction potential

Figures

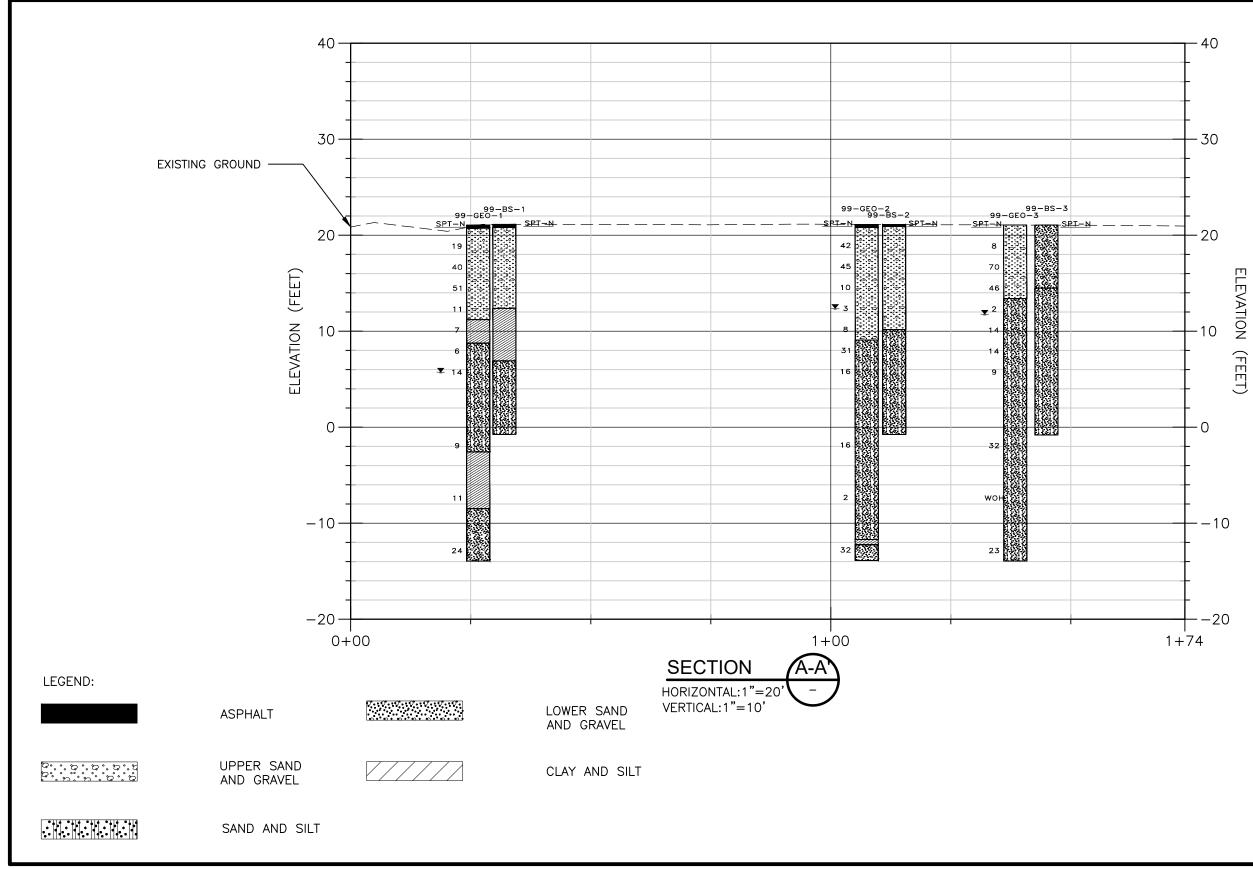

SOURCE: ESRI WORLD IMAGERY, 2020

USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON Figure 1 Vicinity Map

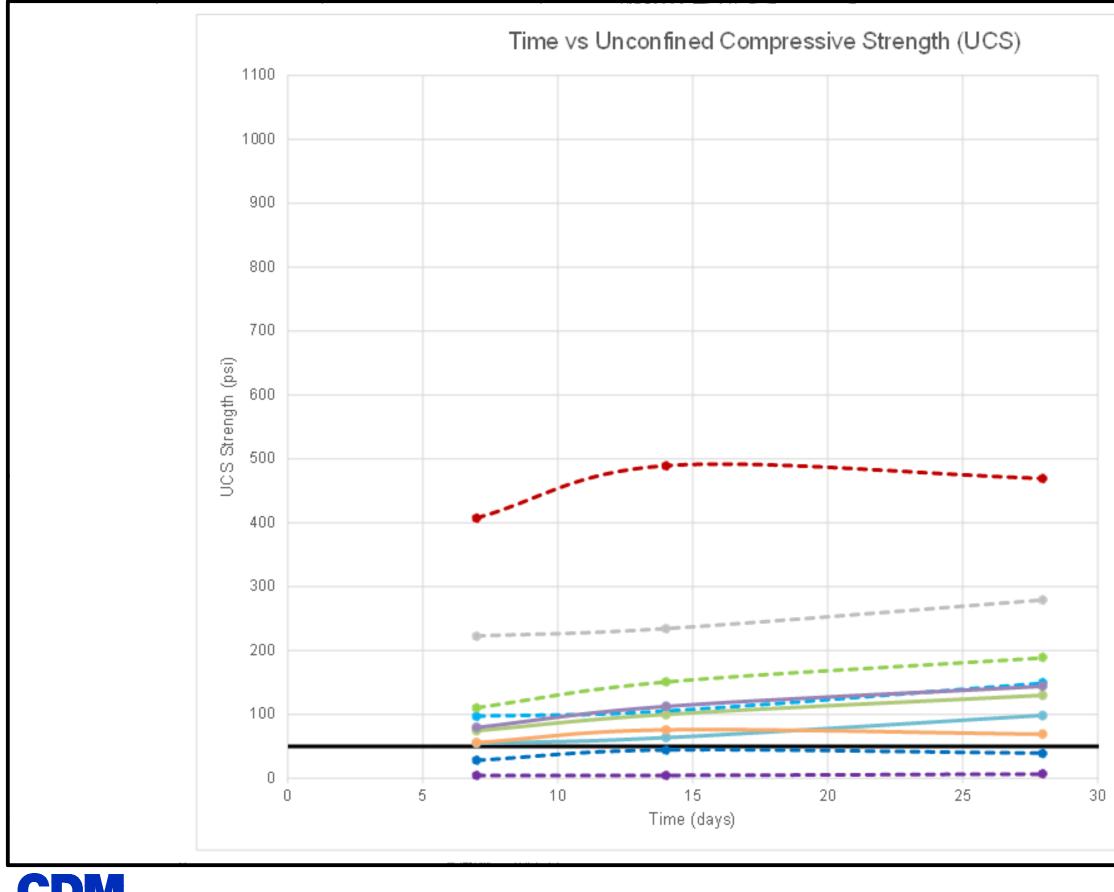
Study/Figure-2_HWY-99-Site-Plan.mxd; 3/26/2021 10:59:35 AM; PCDPINGS\ ŏ Interiors - Hwy 99\Map SENIC-SITEBASE, FIG à DOCUMENT PATH: E:_ CAD XREFS: ARSENIC:

USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON

DESIGNATION AND APPROXIMATE LOCATION OF TEST PITS EXCAVATED ON JULY 29, 2020.


DESIGNATION AND APPROXIMATE LOCATION OF TEST BORINGS DRILLED ON AUGUST 4 AND AUGUST 5, 2020.

MODELED IMPACTED SOILS EXCEEDING 500 PPM TOTAL ARSENIC


PROPOSED EXTENTS OF ISS BASED ON CONCEPTUAL DESIGN REPORT

1. BASEMAP PROVIDED FROM DRAWING ENTITLED "USG HWY 99 REMEDIAL INVESTIGATION SURVEY" PREPARED BY WH PACIFIC

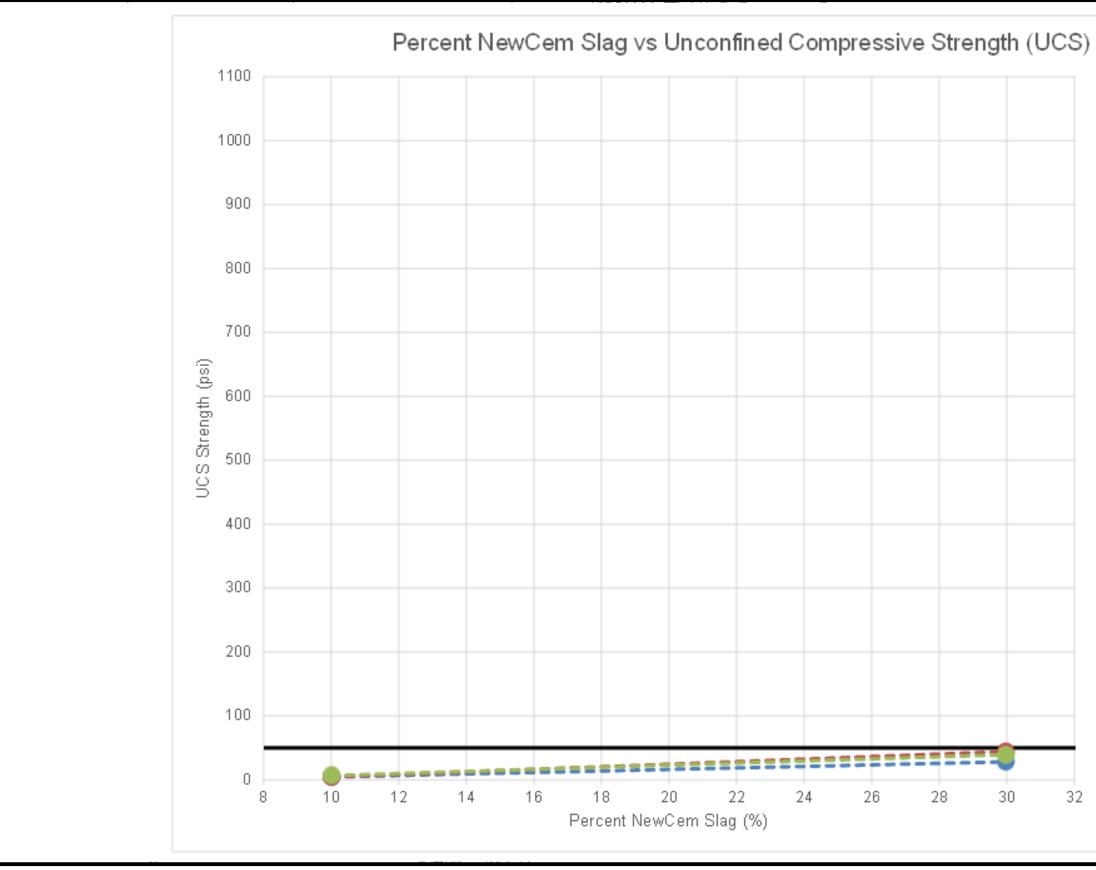
2. ELEVATIONS NOTED ARE IN FEET AND BASED ON HORIZONTAL DATUM NAD83 WASHINGTON STATE PLANE, SOUTH ZONE AND

CDM Smith

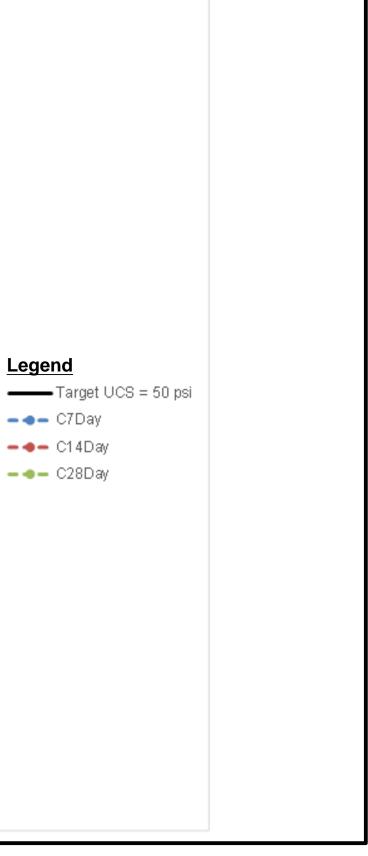
CDM Smi

USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON

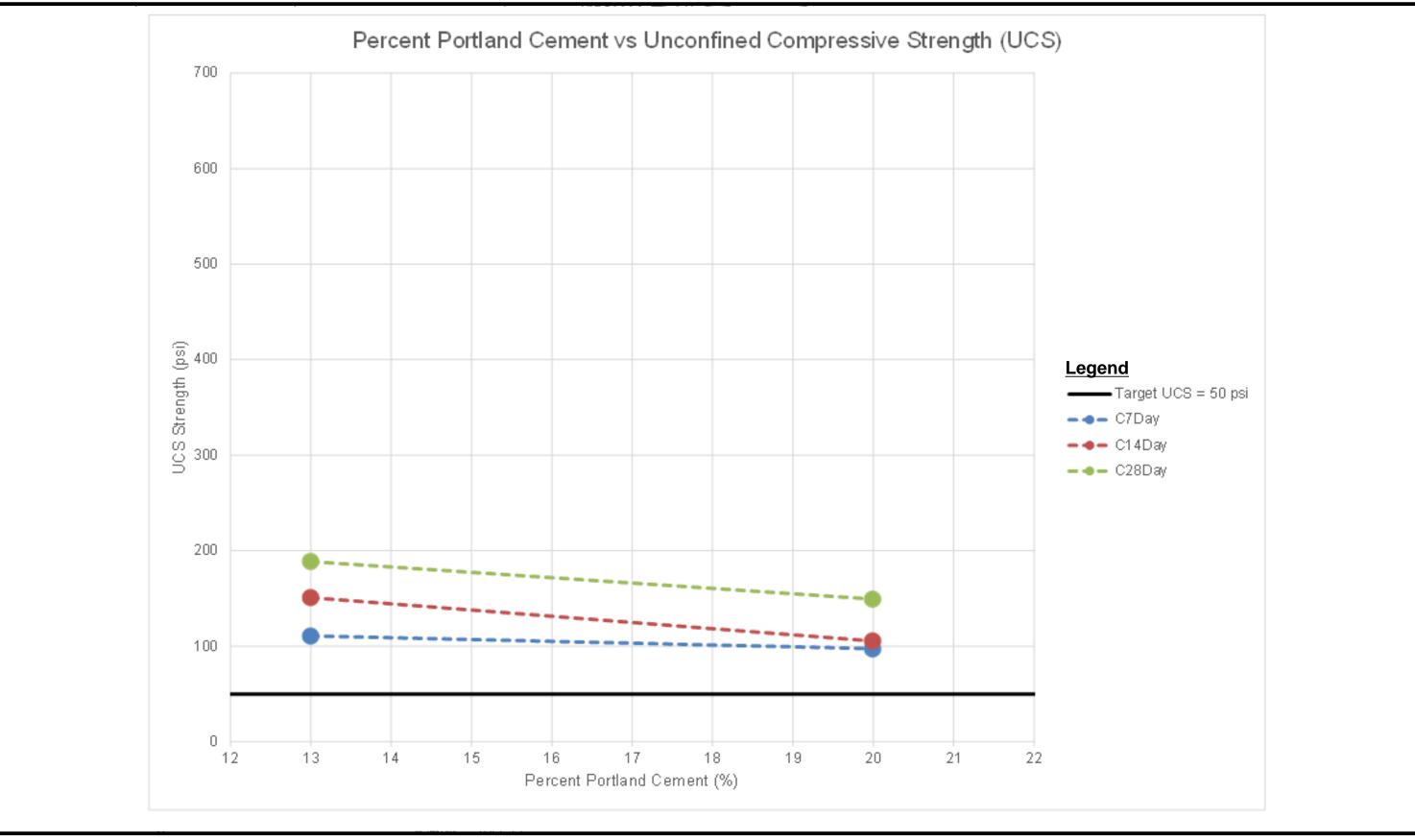
FIGURE 5 SUMMARY OF UCS VERSUS DAYS CURED - ALL CASES

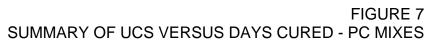


Legend


------ Target UCS = 50 psi

Mix ID


--- C1-H1



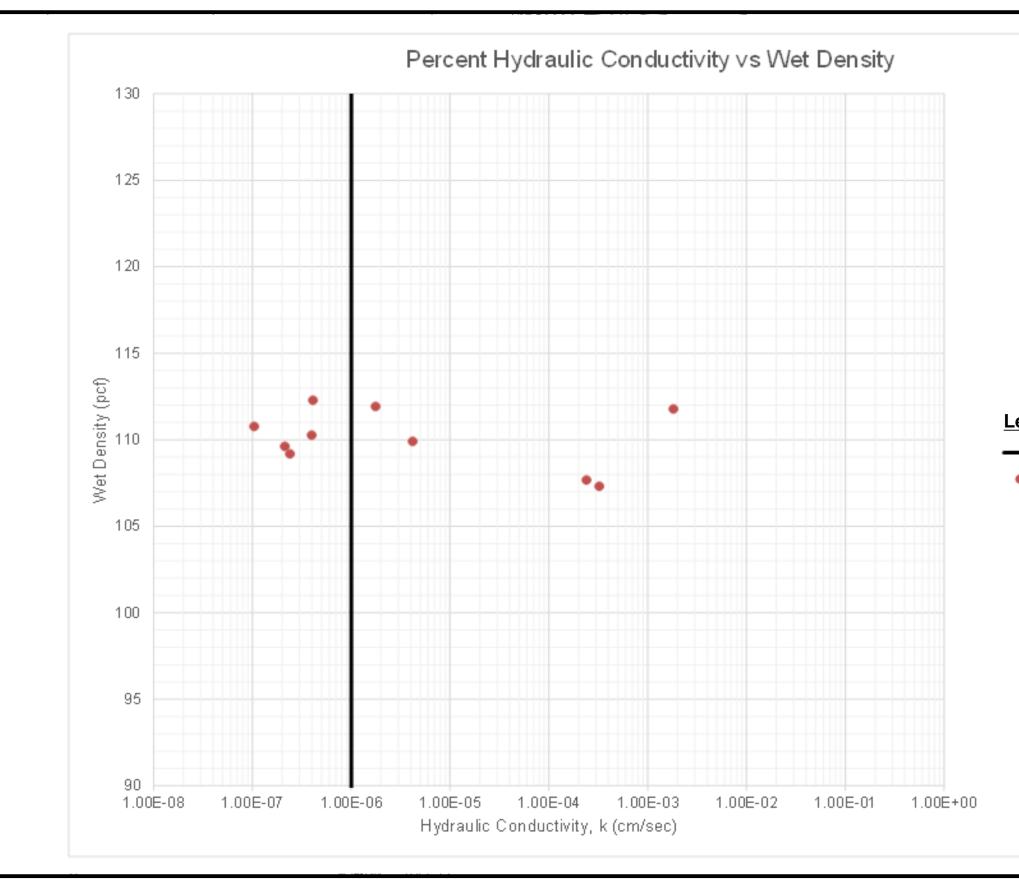
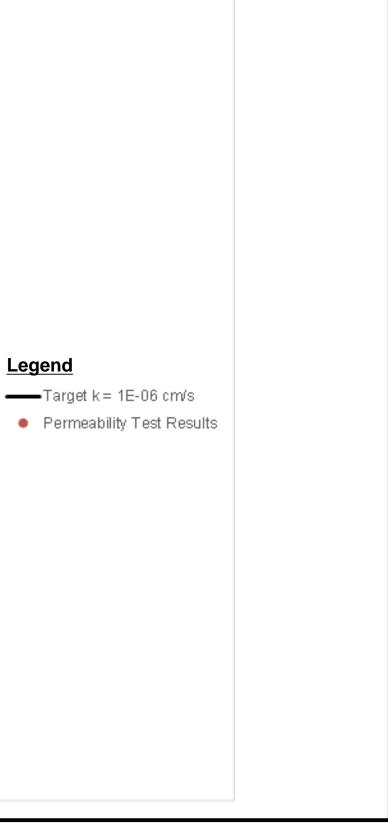


FIGURE 6 SUMMARY OF UCS VERSUS DAYS CURED - NEWCEM SLAG MIXES



Appendix A

Boring Logs

Boring Number: 99-BS-1

	C				1						
	ent: l oject	JSG Location	: Milt	on, Wa	ash	ingto	on		-		ne: Highway 99 PDI and Bench Scale Study nber: 251008
Drilli	ing Co	ntractor/Dril	ller: Ho	olt Service	es /	J. Jor	nes				Surface Elevation (ft.): 22.61
Drilli	ing Me	thod/Casing	J/Core I	Barrel Siz	ze:	Soni	c / 6 i	n /			Total Depth (ft.): 20
Ham	mer W	leight/Drop	Height/	Spoon S	size:	NA	lb / N	IA in /l	NA in (D.D.	Depth to Initial Water Level (ft):
Bore	Hole	Location: 7	03082.	02, 11847	720.	05					Depth Date Time
Drilli	ing Da	te: Start: 8/	/7/2020	End: 8	3/7/2	2020					NR
											Abandonment Method: Backfilled with grout
											Logged By: H.Provinsal
<u>Elev.</u> Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches Sample	Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
22.6 0					-			<u> </u>			_ Top 3": Asphalt
											Middle 4": Moist, tan-brown, fine to coarse GRAVEI
- - 17.6	SC	Core 1	60	5	57		NA	0		Sand and Gravel	and fine to coarse SAND (GM) Bottom 52": Moist, gray, fine to coarse GRAVEL and fine to coarse SAND (GM)
5										ers	Top 40": Moist, gray, fine to coarse GRAVEL and
										Upper	fine to coarse SAND, trace silt, trace cobbles (4")
											(GM)
_											
	SC	Core 2	60	6	50		NA	144			
											Bottom 20": Moist, gray-green, Slightly Organic CLAY & SILT, some fine to coarse sand (organic
_										±	matter consists of wood fragments) (CL)
12.6										& Silt	
10	SC	Core 3	60	5	58		NA	1271		Upper Clay	Top 38": Wet, dark brown, Slightly Organic CLAY & SILT (organic matter consists of wood fragments) (CL)
4									<u> </u>		Bottom 20": Wet, dark brown, Slightly Organic fine
											to coarse SAND, some silt (organic matter consists
70											of wood) (SM)
7.6 15											Wet, dark brown, fine to coarse SAND, some silt
										Silt	(SM)
										and	
_		0 1	000	.			N1.4	10		Sand	
	SC	Core 4	60	4	8		NA	46		s l	
-											
2.6											
		Sample Ty	pes							-	s Blowcount/Foot Burmister Classifica
AS - A	uger/G Sonic Co	rab Sample S	SS - Spl	it Spoon elby Tube		/ 1 -			(Sand)		Fine Grained (Clay): some 20-35%
	Geoprot			ash Samp	ole L	/. Loos .oose:	4		Dense: √. Dens	30-50 e: >50	Soft: 2-4 V. Stiff: 15-30 trace <10%
											M. Stiff: 4-8 Hard: >30 moisture, density, col

Boring Number: 99-BS-1

		ocation				in igr			-		imber: 251008
<u>epth</u> (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
-											Test boring 99-BS-1 terminated at 20 ft bgs.
- 25 -											
- <u>7.4</u> 30 -											
- 1 <u>2.4</u> 35 - -											
- <u>17.4</u> 40 -											
- 22.4 45 -											

Boring Number: 99-BS-1A

				6							5-00-1A
		USG Locatio	n: Milt	on, V	Vasł	ningt	on		-		me: Highway 99 PDI and Bench Scale Study mber: 251008
Drill	ing Co	ontractor/Dr	iller: Ho	olt Ser	vices	/ J. Jor	nes				Surface Elevation (ft.): 22.61
Drill	ing Me	ethod/Casin	g/Core I	Barrel	Size:	Soni	c / 6 ii	n /			Total Depth (ft.): 15
Ham	nmer V	Neight/Drop	Height/	Spool	n Size	: NA	lb / N	IA in /I	NA in (D.D.	Depth to Initial Water Level (ft):
Bore	e Hole	Location:	703077.	13, 11	84720	.05					Depth Date Time
Drill	ing Da	ate: Start: 8	8/7/2020	End	: 8/7/	2020					NR
											Abandonment Method: Backfilled with grout Logged By: H.Provinsal
<u>Elev.</u> Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
22.6			Ľ	8	Re		•	X	້ອ		
0 -											Discrete sample interval from 10 to 15 feet bgs. No samples collected from ground surface to 10 feet bgs.
- - 17.6 5											
-											
- - 12.6									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
10 - -	SC	Core 1	60		48		NA	748		Upper Clay &Silt	Top 30": Wet, dark brown, Slightly Organic CLAY & SILT, little fine to coarse sand (organic matter consists of wood) (CL)
- 7.6										Sand and Silt	Bottom 18": Wet, dark brown, Slightly Organic fine to coarse SAND, some silt (organic matter consists of wood) (SM)
15										0	Test boring 99-BS-1A terminated at 15 ft bgs.
]											
_											
-											
- - 2.6		Samula T							Conci	etonor	ve Blowcount/Foot
		Sample T		it Spa			Gra				vs Blowcount/Foot Burmister Classificat Fine Grained (Clav): and 35-50%
SC - S	Auger/C Sonic C Geopro	Grab Sample		elby Tu	be mple	V. Loos Loose: M. Den	se: 4	nular 0-4 C I-10 V	(<u>Sand</u>))ense:	<u>:</u> 30-	Fine Grained (Clay): and 35-50% some 20-35% 50 V. Soft: <2

Boring Number: 99-BS-2

	•	Location		-				-	Tojec	, nui	mber: 251008
	-	ntractor/Dri						~ /			Surface Elevation (ft.): 22
	-	thod/Casing	-						NA in C		Total Depth (ft.): 20
		/eight/Drop	-	-			10/1	IA IN /I	NAINC	J.D.	Depth to Initial Water Level (ft):
		Location: 7 te: Start: 8									Depth Date Time NR
2	ing bu					2020					Abandonment Method: Backfilled with grout
											Logged By: H.Provinsal
<u>lev.</u> epth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
2.0				-	Å		_	×	U		
0										$ \rightarrow $	Top 2": Asphalt Top 10": Dry, gray, fine to coarse SAND and fine to
- - - -	SC	Core 1	60		58		NA	12		Sand and Gravel	coarse GRAVEL, trace cobbles (3") (SM) Middle 8": Dry, red-orange, fine to coarse SAND and fine to coarse GRAVEL, little silt (SM) Middle 20": Moist, gray, fine to coarse SAND and fine to coarse GRAVEL, little silt, trace debris (fabric liner) (SM) Bottom 20": Moist, light gray, fine to coarse SAND, some fine to coarse gravel, little silt (SM)
7.0 5										id an	Moist, gray, fine to coarse GRAVEL and fine to
-										San	coarse SAND, some silt, little cobbles (3") (SM)
_										Upper	
_	SC	Core 2	60		25		NA	7		đ	
2.0											
10											Wet, gray, SILT, little fine to coarse sand (ML)
- - - 7.0	SC	Core 3	60		60		NA	80		Sand and Silt	
15										nda	Wet, dark brown, SILT, little fine to coarse sand (ML)
-	SC	Core 4	60		56		NA	38		Sa	(191-)
2.0											1
		Sample Ty								-	VS Blowcount/Foot Burmister Classification Bur
SC - S	Auger/G Sonic Co Geoprob		SS - Spl ST - She WS - W	elby Tub	be \ mple	V. Loo Loose:	se:	0-4 E	<u>(Sand):</u> Dense: /. Dense	30-5	50 V. Soft: <2 Stiff: 8-15 little 10-20%

Boring Number: 99-BS-2

Cli Pro	ocation	: Milt	on, V	Vasł	ningt	on	P	rojeo	ct Nu	imber: 251008
<u>Elev.</u> Depth (ft)	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
2.0 20 										Test boring 99-BS-2 terminated at 20 ft bgs.
<u>- 13.0</u> 35 <u>- 18.0</u> 40										
- 2 <u>3.0</u> 45 -										

Boring Number: 99-BS-3

Sheet 1 of 2

Drill Ham Bore	ing Met nmer W e Hole I	ntractor/Dri thod/Casing eight/Drop Location: 7 te: Start: 8	g/Core I Height/ 02973.0	Barrel Spoor 60, 118	Size: 1 Size : 84712	Son : NA .62	ic / 6 i		NA in C).D.	Surface Elevation (ft.): 21.35 Total Depth (ft.): 20 Depth to Initial Water Level (ft): Depth Date Time NR Abandonment Method: Backfilled with grout Logged By: H.Provinsal
<u>Elev.</u> epth (ft) 21.4	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
	SC	Core 1	60		48		NA	12		Upper Sand and Gravel	Top 16": Dry, tan-brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt (SM) Middle 23": Moist, gray, Slightly Organic Silty CLAY, some fine to coarse gravel (organic matter consists of wood) (CL)
- 1 <u>6.4</u> 5 -									0 0 0 0	Upper	Bottom 9": Moist, gray, fine to coarse SAND, little silt, little fine to coarse gravel (SM) Top 6": Moist, brown-gray, fine to coarse SAND, some fine to coarse gravel (SM) Middle 8": Moist, gray, SILT and fine to coarse SAND, some fine to coarse gravel (ML)
- - - 1.4	SC	Core 2	60		44		NA	6			Bottom 30": Wet, gray, SILT and fine to coarse SAND, little fine to coarse gravel (ML)
10 - - -	SC	Core 3	60		60		NA	74		Sand and Silt	Top 30": Wet, gray, fine SAND, little silt (ML) Bottom 30": Wet, gray, SILT and fine SAND (ML)
<u>6.4</u> 15 - -	SC	Core 4	60		50		NA	25			Top 32": Wet, gray, SILT and fine SAND (ML) Bottom 18": Wet, dark gray, SILT and fine to coarse SAND (ML)
1.4		Sample Ty	vpes							-	s Blowcount/Foot Burmister Classificat
SC - S	Auger/Gi Sonic Co Geoprob		SS - Spl ST - She WS - Wa	elby Tul	be \\ mple	V. Loo Loose:	se:	0-4 E -10 \	(<u>Sand)</u>)ense: /. Dense	30-5	Fine Grained (Clay): and 35-50% some 20-35% V. Soft: <2 Stiff:

Boring Number: 99-BS-3

Sheet 2 of 2

		ocation				inigi			-		imber: 251008
<u>Elev.</u> Depth (ft) 1.4	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
<u>1.4</u> 20 - - - - - - - - - - - - - - - - - -											Test boring 99-BS-3 terminated at 20 ft bgs.
- <u>-8.7</u> 30 -											
- <u>13.7</u> 35 -											
- <u>18.7</u> 40 -											
- 2 <u>3.7</u> 45 -											

Boring Number: 99-BS-4

Sheet 1 of 2

Drill Drill Ham Bore	ing Col ing Mei nmer W e Hole I	Location ntractor/Dri thod/Casing leight/Drop Location: 7 te: Start: 8	ller: Ho g/Core I Height/ 03055.	olt Serv Barrel Spoor 54, 118	vices / Size: n Size 84705	J. Jo Son NA	nes ic / 6 i	n /			nber: 251008 Surface Elevation (ft.): 22.3 Total Depth (ft.): 20 Depth to Initial Water Level (ft): Depth Date Time NR Abandonment Method: Backfilled with grout Logged By: H.Provinsal	
<u>Elev.</u> Jepth (ft) 22.3	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description	
0 -	SC	Core 1	60		46		NA	9		and Gravel	Top 3": Asphalt Bottom 46": Dry, gray, fine to coarse SAND and f to coarse GRAVEL, trace silt (SM)	fine
17.3 5 - -	SC	Core 2	60		45		NA	236		Upper Sand and	Top 33": Moist, gray, fine to coarse SAND, some fine to coarse gravel, trace silt (SM)	!
<u>2.3</u> 10 - - 7.3	SC	Core 3	60		60		NA	392		Sand and Silt	Bottom 12": Moist, green-gray, Slightly Organic SILT and fine SAND, little cobbles (3") (organic matter consists of roots) (ML) Top 30": Wet, dark gray, fine SAND, some silt (S Bottom 30" Wet, dark brown, fine to coarse SAN some silt (SM)	iΜ) D,
2.3	SC	Core 4	60		60		NA	57		San	Wet, dark brown, SILT and fine to coarse SAND (ML)	
		Sample Ty	-				Gra	nular	Consis (Sand):	-	Blowcount/Foot Burmister Classif Fine Grained (Clay): and 35-50°	
SC - S	Auger/Gi Sonic Co Geoprob	rab Sample : ore oe	SS - Spl ST - She WS - W	elby Tu	be N mple I	V. Loo: Loose:	se:	0-4 [-10 \	(<u>Sand):</u>)ense: /. Dense	30-50	0 V. Soft: <2 Stiff: 8-15 ittle 10-209	% %

Boring Number: 99-BS-4

Sheet 2 of 2

		ocation				inige			-		imber: 251008
<u>Elev.</u> epth (ft) 2.3	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
20 -											Test boring 99-BS-4 terminated at 20 ft bgs.
- 25 -											
- <u>-7.7</u> 30 _											
- 35 -											
- 40 -											
- 2 <u>2.7</u> 45 -											

Boring Number: 99-BS-4A

Sheet 1 of 1

Dec		ocation	. N.A.14	on W	Nach	in at	on				me: Highway 99 PDI and Be	-
	•	Location		-		•		P	roje		mber: 251008	
Drill	ing Cor	ntractor/Dri	ller: Ho	olt Serv	vices /	J. Joi	nes				Surface Elevation (ft.): 22.3	
Drill	ing Met	thod/Casing	g/Core I	Barrel	Size:	Son	ic / 6 i	n /			Total Depth (ft.): 15	
Ham	mer W	eight/Drop	Height/	Spoor	n Size:	: NA	lb / N	IA in /I	NA in (D.D.	Depth to Initial Water Level (f	it):
Bore	e Hole L	_ocation: 7	03050.4	45, 118	84705	.26					Depth Date Tin	ne
Drill	ing Dat	e: Start: 8	/7/2020	End	: 8/7/2	2020					NR	C 11 1 1 1 1 1
											Abandonment Method: Back Logged By: H.Provinsal	filled with grout
			_								Logged By. H.FTovinsai	
	a	e 2	ij.	er s	Sample Recovery (in)	e	Ê	XRF Reading (ppm)	Log	_		
<u>lev.</u> epth	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	hpl /ery	N-Value	PID (ppm)	F Read	Graphic Log	Strata	Material Descrip	tion
(ft)	Sai	Saı Nuı	Sai	8 in V	Sai	ہ۔ z	Ģ	ц ц	rapł	St	······	
22.3					Re			X	Ū			
0											Discrete sample interval from 5 t	o 15 feet bgs. No
_											samples collected from ground s bgs.	urface to 5 feet
											~yo.	
-												
_												
-												
7.3										_		0.115
5									0	Gravel	Top 24": Wet, gray, fine to coars to coarse gravel, trace silt (SM)	e SAND, some fine
-									(· · ()	0 P	to coarse graver, trace sitt (SM)	
									, 	and		
-	sc	Core 1	60		43		NA	177	<u>ہ</u> .0	Sanc		
_	50	Cole I			43				•: 🗘	pper Sand		
									<u>)</u> 	5	Bottom 19": Wet, brown-green, S	Slightly Organic
-											SILT and fine to coarse SAND (c	organic matter
2.3											consists of wood fragments) (ML	•
10											Wet, brown, Slightly Organic fine some silt (organic matter consist	
-										Silt	fragments) (SM)	
										and		
	sc	Core 2	60		50		NA	355		Sand		
-										Ö		
-												
7.3 15											Test horing 00 BS 14 terminates	hat 15 ft bac
13											Test boring 99-BS-4A terminated	a no no no s.
-												
_												
-												
2.3		Sample Ty	Ines						Consi	stenci	vs Blowcount/Foot	Burmister Classifica
							0			-		and 35-50%
SC - S	Sonic Co	ab Sample : pre	SS - Spl ST - She			/. Loo:			(<u>Sand)</u>)ense:		50 V. Soft: <2 Stiff: 8-15	some 20-35%
GP - C	Geoprob		WS-W		mple [_oose:		I-10 V	. Dens			trace <10%
					r		.J.C. I	0-00			W. Jun. 4-0 Halu. 730	moisture, density, col

	V										
	ent: L bject I	JSG L ocatior	n: Milt	on, V	Vasł	ningt	on		-		me: Highway 99 PDI and Bench Scale Study mber: 251008
Drill	ing Cor	ntractor/Dri	ller: Ho	olt Ser	vices /	R. Da	arling/	K. Os	borne		Surface Elevation (ft.): 22.65
Drill	ing Met	hod/Casing	g/Core I	Barrel	Size:	HSA	. / 4 in	1			Total Depth (ft.): 32
Harr	nmer W	eight/Drop	Height/	Spool	n Size	: 14	0 lbs II	b / 30"	' in /2"	in O.E	Depth to Initial Water Level (ft):
		-ocation: 7 e: Start: 8		-							DepthDateTime148/5/20200915Abandonment Method:Backfilled with bentonite chipsLogged By:H.Provinsal
<u>Elev.</u> Depth (ft) 22.7	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description
0											Top 4": Asphalt
	SS	S-1	24	16 10 9	16	19	NA	10			Top 9": Dry, medium dense, brown-gray, fine to coarse SAND and fine to coarse GRAVEL, trace silt
-	SS	S-2	24	17 14 21 19	10	40	NA	6		and Gravel	Bottom 7": Moist, very stiff, brown, Silty CLAY, trace coarse gravel (CL) Moist, dense, gray, fine to coarse GRAVEL, some fine to coarse sand, some silt (GM)
17.7 5 -	SS	S-3	24	16 9 21 30 15	14	51	NA	6		Upper Sand ar	Moist, very dense, gray, fine to coarse GRAVEL, some fine to coarse sand, some silt (GM)
_	SS	S-4	24	15 1 5 6 1	3	11	NA	8			Moist, medium dense, gray, fine to coarse GRAVEL, some fine to coarse sand, some silt (GM)
<u> 2.7</u> 10	SS	S-5	24	1 3 4 3	13	7	NA	235		er Clay & Sil	Moist, medium stiff, gray, CLAY & SILT, trace fine sand (CL)
_	SS	S-6	24	1 3 3 6	22	6	NA	269		Upper	Top 3": Moist, medium stiff, gray, CLAY & SILT, trace fine sand (CL) Bottom 19": Moist, loose, brown, fine SAND and SILT (SM)
₹ 7.7	SS	S-7	24	3 6 8 8	18	14	NA	42		Silt	Wet, loose, brown, fine SAND and SILT (SM)
15 -										Sand and S	
2.7		Sample T	ines						Consi	store	vs Blowcount/Foot Burmistor Classification
SC - S	Auger/Gr Sonic Co Geoprob			elby Tu	be mple	V. Loo: Loose: M. Der	se: 4	nular 0-4 C I-10 V	<u>(Sand)</u> Dense: /. Dens	<u>):</u> 30	Image: Non-State State St
Rev	/ieweo	d by: M.	Passa	ro	I					Date	: 11/1/2020 Boring Number: 99-GEO-1

Sheet 2 of 2

Client: USG Project Location: Milton, Washington Project Location: Milton, Washington Project Number: 251008 and the set of the se	Project Location: Milton, WashingtonWith r pa a a a a a a b pa b a a a a a b a a a b a a a b a a b a a b a a b a b a b a b a b b a b a b a b b a b b a b b a b<	Project Number: 251008 Image: Stress of the state of th	AND,
20 - SS S-8 24 9 NA 104 Top 19": Wet, loose, brown, fine to coarse SAND, little silt (SP-SM) 24 - - - - - - - - 25 - - - - - - - - - - 24 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IA 104 Top 19": Wet, loose, brown, fine to coarse SA little silt (SP-SM) Bottom 5": Wet, stiff, light brown, CLAY & SIL trace fine sand (CL) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
20 -SS S-8 24 9 NA 104 Top 19": Wet, loose, brown, fine to coarse SAND, little silt (SP-SM) 24 - - - - - - - - 25 - - - - - - - - - - - 24 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IA 104 Top 19": Wet, loose, brown, fine to coarse SA little silt (SP-SM) Bottom 5": Wet, stiff, light brown, CLAY & SIL trace fine sand (CL) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
24 33 - - -<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	trace fine sand (CL)	LT,
7.4 8 8 8 9 9 30 SS S-10 24 $\frac{12}{12}$ 22 24 NA 9 12.4 13 22 24 NA 9 SS SOME fine to coarse GRAVEL, some fine to coarse sand, trace silt (GW-GM) 12.4 13 1 1 1 1 1 1 12.4 13 1 1 1 1 1 1	4 - SS S-10 24 12 12 22 24 NA	A 33	ne sano
Image: Part of the second s		Image: Second system Image: Second system Image: Second	It

Sheet 1 of 2

	V									J	5-020-2			
	Project Location: Milton, Washington Project										Project Name: Highway 99 PDI and Bench Scale Study Project Number: 251008			
Drilling Contractor/Driller: Holt Services / R. Darling/ K. Osbo Drilling Method/Casing/Core Barrel Size: HSA / 4 in / Hammer Weight/Drop Height/ Spoon Size: 140 lbs lb / 30" in Bore Hole Location: 703004.46, 1184691.19 Drilling Date: Start: 8/5/2020 End: 8/5/2020										in O.D	Surface Elevation (ft.): 22.13 Total Depth (ft.): 32 Depth to Initial Water Level (ft): Depth Date Time 8 8/5/2020 1140 Abandonment Method: Backfilled with bentonite ch Logged By: H.Provinsal			
<u>Elev.</u> Depth (ft) 22.1	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description			
0											Top 4": Asphalt			
_	SS	S-1	24	20 22 20 21	20	42	NA	9			Top 13": Dry, dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt (SM) Bottom 7": Moist, dense, gray, fine to coarse SAND, some fine to coarse gravel, little silt (SM)			
_ 17.1	SS	S-2	24	20 24 21 19	12	45	NA	21		ت ravel	Moist, dense, gray, fine to coarse SAND, some fine to coarse gravel, little silt (SM)			
5 -	SS	S-3	24	8 7 3 3	7	10	NA	105		r Sand and Gravel	Moist, medium dense, gray, fine to coarse SAND, little silt, trace fine to coarse gravel (SM)			
- ¥ -	SS	S-4	24	3 1 1 2 2	13	3	NA	10		Upper	Uppe	Wet, very loose, gray, fine to coarse SAND and fine to coarse GRAVEL, some silt (SM)		
- 1 <u>2.1</u> 10	SS	S-5	24	0 4 4 9	14	8	NA	131			Top 12": Wet, very loose, gray, fine to coarse SAND and fine to coarse GRAVEL, some silt (SM) Bottom 2": Wet, loose, brown, fine to coarse SAND, trace silt (SM)			
_	SS	S-6	24	6 17 14 15	16	31	NA	79			Wet, hard, brown, SILT, little fine to coarse sand, trace fine gravel (ML)			
- 7.1	SS	S-7	24	7 10 6 6	10	16	NA	44		Sit	Wet, very stiff, brown, SILT, little fine to coarse sand (ML)			
15 - - 2.1										Sand and				
۲.۱	I	Sample T	ypes			I	I	1	Consi	stency	vs Blowcount/Foot Burmister Classificat			
SC - S	Auger/Gi Sonic Co Geoprob		SS - Spl ST - She WS - W	elby Tu	be mple l	V. Loo: Loose: M. Der	se:	0-4 E 1-10 \	<u>(Sand</u> Dense: /. Dens					
Rev	/ieweo	d by: M.	Passa	ro						Date:	11/1/2020 Boring Number: 99-GEO-2			

Sheet 2 of 2

JIIIII									33-0L0-2					
Client: USG Project Location: Milton, Washington									Project Name: Highway 99 PDI and Bench Scale Study Project Number: 251008					
<u>Elev.</u> Depth (ft) 2.1	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description			
20 -	SS	S-8	24	4 7 9 12	24	16	NA	11			Wet, medium dense, dark brown, fine to coarse SAND, little silt, trace fine gravel (SM)			
- 25 -	SS	S-9	24	2 1 1	24	2	NA	25		Sand and Silt	Wet, very loose, dark brown, fine to coarse SAND, little silt, trace fine gravel (SM)			
- 7.9 30 -	SS	S-10	24	12 17 15 18	24	32	NA	14			Top 6": Wet, hard, gray, CLAY & SILT, trace fine sand (CL) [Lower Clay & Silt] Bottom 18": Wet, dense, gray, fine to coarse GRAVEL, some fine to coarse sand, trace silt (GW-GM) [Lower Sand and Gravel] Terminated test boring at 32 ft bgs.			
- 1 <u>2.9</u> 35 -														
- 1 <u>17.9</u> 40 -														
- 2 <u>2.9</u> 45 -														
											Boring Number: 99-GEO-2			

Sheet 1 of 2

-										roject Name: Highway 99 PDI and Bench Scale Study roject Number: 251008				
Drilling Contractor/Driller: Holt Services / R. Darling/ K. Osborne											Surface Elevation (ft.): 21.21			
Drilling Method/Casing/Core Barrel Size: HSA / 4 in /											Total Depth (ft.): 32			
Ham	mer W	eight/Drop	- Height/	Spoor	n Size	: 14	0 lbs l	b / 30"	' in /2"	in O.D	Depth to Initial Water Level (ft):			
		ocation: 7	-	-							Depth Date Time			
Drilli	ing Dat	e: Start: 8	/4/2020	End	: 8/4/2	2020					8.5 8/4/2020 1340			
											Abandonment Method: Backfilled with bentonite chip			
			_								Logged By: H.Provinsal			
<u>Elev.</u> Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	PID (ppm)	XRF Reading (ppm)	Graphic Log	Strata	Material Description			
<u>21.2</u> 0					œ			×						
Ũ														
				3							Dry, loose, brown, fine to coarse SAND and SILT,			
	SS	S-1	24	3 5	10	8	NA	7		Gravel	little fine gravel (SM)			
				5						d Gr				
				7 32						d and	Dry to moist, very dense, gray, fine to coarse SAND, some fine to coarse gravel, little silt (SM)			
	SS	S-2	24	38	15	70	NA	12		Sand	SAND, Some line to coarse gravel, little sin (SW)			
16.2				42						Upper				
5				13 26						D. dn	Moist, dense, gray, fine to coarse SAND, some fine to coarse gravel, little silt (SM)			
	SS	S-3	24	20	16	46	NA	7						
				19										
				1 1							Moist to wet, soft, gray, SILT and fine to coarse SAND, little fine to coarse gravel (SM)			
▲	SS	S-4	24	1	9	2	NA							
. * _				1										
11.2				3 8							Wet, stiff, gray, SILT and fine to coarse SAND, little fine to coarse gravel (ML)			
10	SS	S-5	24	6	16	14	NA				5 ()			
				6 5							Wet, stiff, brown, SILT and fine to coarse SAND			
	_			6							(ML)			
- 1	SS	S-6	24	8	15	14	NA	40		t l				
- +				6 2				<u> </u>		d Silt	Wet, stiff, brown, SILT, some fine to coarse sand			
	SS	S-7	24	4	10	9	NI A	35		d and	(ML)			
[33	3-1	24	5 6	19	Э	NA	30		Sand				
6.2 15				O										
1.2														
		Sample Ty	/pes								vs Blowcount/Foot Burmister Classificatio			
AS - A SC - S	uger/Gr Sonic Co	ab Sample re	SS - Spl ST - She	it Spoo		V. Loo:			<u>(Sand</u> Dense:	_	Fine Grained (Clay): and 35-50% -50 V. Soft: <2 Stiff: 8-15			
	Geoprob		WS - Wa		mple I	Loose: Loose: M. Der	4	I-10 ∖	/. Dense:		50 Soft: 2-4 V. Stiff: 15-30 trace <10%			
P		J Inc				vi. Def	13C. I	0-30		Deti	moistaic, density, oolor			
Kev	lewe	by: M.	Passa	rO						Date	11/1/2020Boring Number: 99-GEO-3			

Sheet 2 of 2

	Client: USG Project Location: Milton, Washington								Project Name: Highway 99 PDI and Bench Scale Study Project Number: 251008				
Elev. Depth (ft)	Sample Number	Sample Length (in)		Sample Recovery (in)		PID (ppm)	XRF Reading (ppm)	-	Strata	Material Description			
20 SS 	S-8	24	6 14 18 16	24	32	NA	14			Wet, medium dense, brown, fine SAND, some silt (SM)			
- <u>-3.8</u> 25 SS	S-9	24	WOH WOH WOH WOH	24	WOH	NA	24		Sand and Silt	Wet, very loose, brown, fine to medium SAND, some silt (SM)			
	S-10	24	6 11 12 10	24	23	NA	5			Wet, medium dense, brown, fine to coarse SAND, some silt, trace fine gravel (SM) Termination of test boring at 32 ft bgs.			
 - <u>-13.8</u> 													
 - <u>-18.8</u> 													
 -23.8 45 													
										Boring Number: 99-GEO-3			

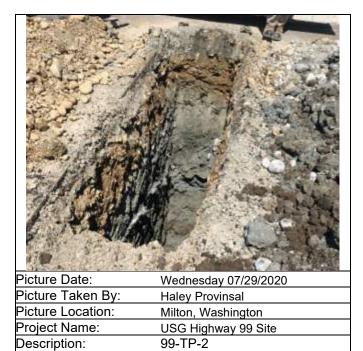
CDI Sm	ith.		1	4432 SE Eastegate Way Suite 100
		Test Pit Log		Bellevue, WA 98007
Client:	USG Interiors	Contractor: G. Smith/ IO Environmental	Test Pit No.	99-TP-1
Project Name:	Highway 99 Site	Equipment: CAT 307.5 Backhoe	Logged By:	H. Provinsal
Project Location:	Milton, WA	Depth to Water: NE	Date:	7/29/2020
Project Number: DEPTH	251008	Ground Surface EL (ft): 21.68 SOIL	Page: STRATA	1 of 1 EXCAV.
(feet)		DESCRIPTION	CHANGE	EFFORT
Top 3	" Asphalt		Upper Sand	-
1 Dry, I	ight brown, fine to coars	se GRAVEL and fine to coarse SAND, little cobbles	and Gravel	м
2				
3				
Moist	, gray, fine to coarse S/	AND, some gravel, trace cobbles		м
4		-		
5				
6				
0				
7				
′ <u> </u>				
8Wet,	gray, line to coarse SA	ND, some gravel, trace cobbles		М
		Actorial collection in		
9End c	of test pit at 8.5 ft bgs. N	naterial collapsing in.		
10				
_				
11				
12				
T.P. DIMENSIONS Width (ft): 3		<u>TEST PIT PLAN</u>	6 in-12 in:	OULDER COUNT 50
Length (ft): 1		Please refer to Figure 2-1 for test pit	12 in-18 in:	2
Depth (ft): 8.	5	location.	18 in-24 in:	0
Vol (ft ³): 382	2.5		24 in-30 in:	0
DESCRIPTION			EXC AV/AT	ION EFFORT
and : 35 to 50 %				
some : 20 to 35 %			E	: Easy
little : 10 to 20 %				Voderate
trace : 1 to 10 %	Povious d Bu	M. Passaro 11/1/2020	D :	Difficult
	Reviewed By:	M. Passaro 11/1/2020		

Width (ft): 3 6 in-12 in: Length (ft): 15 Please refer to Figure 2-1 for test pit location. 12 in-18 in: Depth (ft): 11 18 in-24 in: 18 in-24 in:	14432 SE Eastegate Way Suite 100 Bellevue, WA 98007
Project Name: Highway 99 Sile Equipment: CAT 307.5 Backhoe Logged By: Project Location: Milton, WA Depth to Water: NE Date: Project Number: 251008 Ground Surface EL (ft): 22.10 Page: DEPTH (feet) SOIL STRATA CHANGE Upper Sand 1 Top 3" Asphalt DESCRIPTION Upper Sand 2	99-TP-2
Inspect Number Experiments Experiments Experiments Date: Project Number: Date: Page: DEPTH 21008 Ground Surface EL (ft): 22.10 Page: STRATA DEPTH CHANGE SOIL STRATA CHANGE 1 DEPTH SOIL STRATA CHANGE 2 Top 3" Asphalt DESCRIPTION Upper Sand 2 - - - - 3 - Moist, gray, fine to coarse GRAVEL and fine to coarse SAND, little cobbles and Gravel 4 - Cloth liner present across the test pit - - 5 - - - - 6 - - - - 10 - - - - 11 End of test pit at 11.0 ft bgs. - - - 12 - - - - - 11 - End of test pit at 11.0 ft bgs. - - - 12 - - - - - -	
Project Number: 251008 Ground Surface EL (ft): 22.10 Page: DEPTH (feet) SOIL DESCRIPTION STRATA CHANGE STRATA CHANGE 1 Top 3" Asphalt Dry, light brown, fine to coarse GRAVEL and fine to coarse SAND, little cobbles Upper Sand and Gravel 2	H. Provinsal
DEPTH (feet) SOIL DESCRIPTION STRATA CHANGE 1 Top 3" Asphalt Dry, light brown, fine to coarse GRAVEL and fine to coarse SAND, little cobbles Upper Sand and Gravel 2	7/29/2020
(feet) DESCRIPTION CHANGE 1 Top 3" Asphalt Upper Sand 2	1 of 1
1 Dry, light brown, fine to coarse GRAVEL and fine to coarse SAND, little cobbles and Gravel 2 3 Moist, gray, fine to coarse SAND, some gravel, trace cobbles 4 4 Cloth liner present across the test pit 5 6 7 6 7 8 9 10 Moist, dark brown, fine to coarse SAND and SILT (Foul Odor, Fe Staining) Sand and Sit 11 End of test pit at 11.0 ft bgs. 12 T.P. DIMENSIONS TEST PIT PLAN COBBLE/BG Width (ft): 3 Please refer to Figure 2-1 for test pit 12 12. 12.	EXCAV. EFFORT
10	M
12 T.P. DIMENSIONS TEST PIT PLAN COBBLE/BO Width (ft): 3 6 in-12 in: 12 Length (ft): 15 Please refer to Figure 2-1 for test pit location. 12 in-18 in: Depth (ft): 11 18 in-24 in: 18 in-24 in:	н
Width (ft): 3 6 in-12 in: Length (ft): 15 Please refer to Figure 2-1 for test pit location. 12 in-18 in: Depth (ft): 11 Interval 18 in-24 in:	
Vol (ft ³): 495 24 in-30 in:	OULDER COUNT 50 4 0 0
and : 35 to 50 % E some : 20 to 35 % E little : 10 to 20 % M :	ATION EFFORT E : Easy : Moderate : Difficult

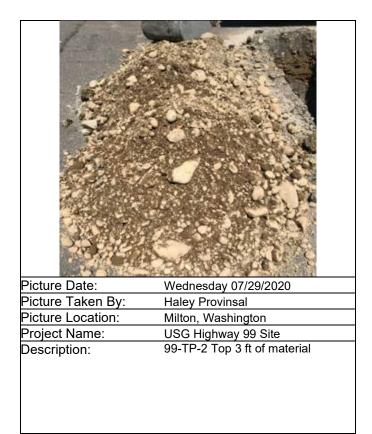
CD	M							
CD Sn						14432 SE Eastegate Way		
50		Tos	t Dit I og			Suite 100		
			t Pit Log			Bellevue, WA 98007		
Client:	USG Interiors	Contractor:	G. Smith/ IO Environm	ental T	est Pit No.	99-TP-3		
Project Name:	Highway 99 Site	Equipment:	CAT 307.5 Backhoe	L	ogged By:	H. Provinsal		
Project Locatio <u>n:</u>	Milton, WA	Depth to Water:	NE	C)ate:	7/29/2020		
Project Number:	251008	Ground Surface	e EL (ft): 21.21	P	age:	1 of 1		
DEPTH (feet)			SOIL CRIPTION		STRATA CHANGE	EXCAV. EFFORT		
3 4	3 Moist, gray, fine to coarse SAND, some gravel, trace cobbles M							
5 6 7								
8	, gray, fine to coarse SA					M		
9End								
11 								
T.P. DIMENSIONS Width (ft): Length (ft): Depth (ft):	3 15 8 360	Please refer to	PIT PLAN Figure 2-1 for test pit ocation.		COBBLE/B 6 in-12 in: 12 in-18 in: 18 in-24 in: 24 in-30 in:	OULDER COUNT 50 4 0 0		
DESCRIPTION and : 35 to 50 % some : 20 to 35 % little : 10 to 20 % trace : 1 to 10 % Reviewed By: M. Passaro 11/1/2020					E : Easy Moderate			
	t Pit Location: with spoils	N: 702996.15	E:	1184712.36				

Appendix B

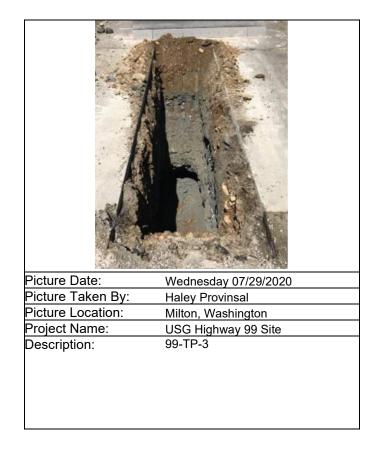
Field Investigation and Laboratory Photolog


CDM Smith

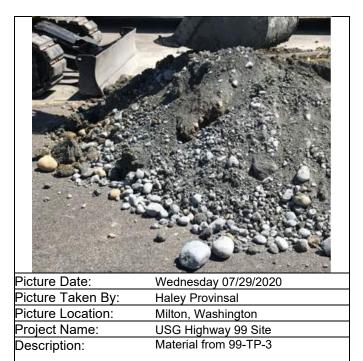
APPENDIX B-1 FIELD INVESTIGATION PHOTOLOG



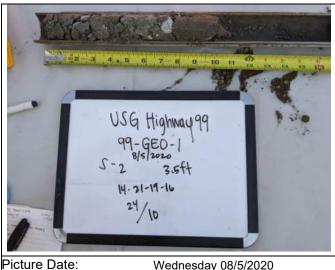
Picture Date:	Wednesday 07/29/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-TP-1 Material from 3 to 8.5 ft
	bgs

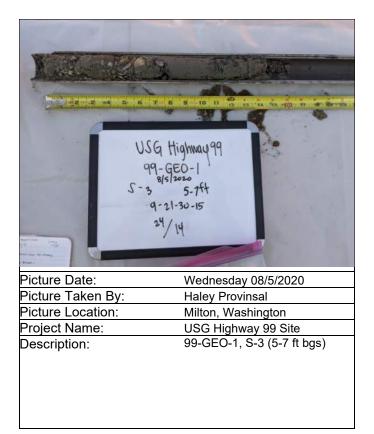

Picture Date:	Wednesday 07/29/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-TP-2

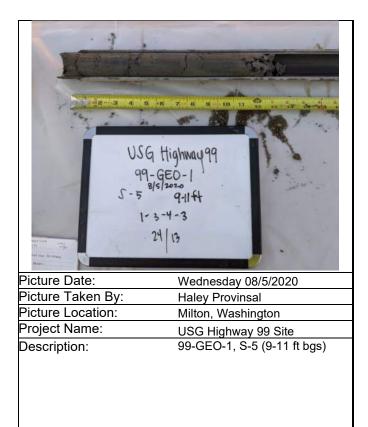
Description:

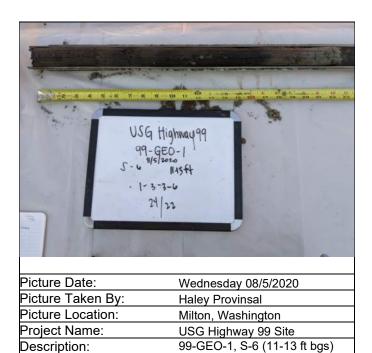


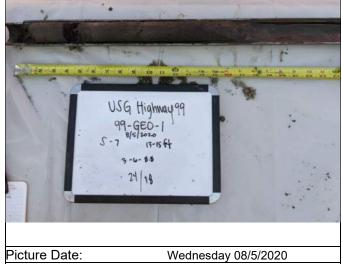
Picture Date:	Wednesday 07/29/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-TP-2 Material from 3 ft to 11 ft bgs



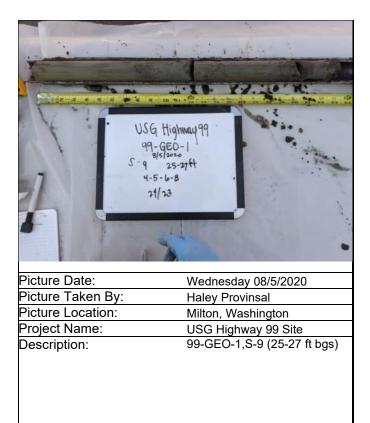

Picture Date:	Wednesday 07/29/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-TP-3

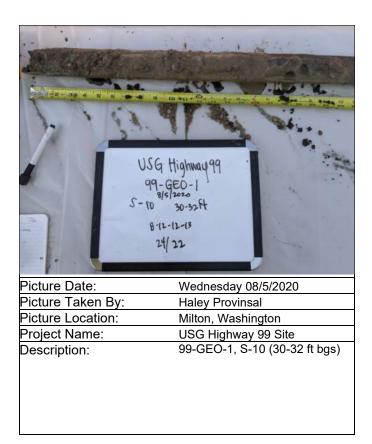





Picture Date:	Wednesday 08/5/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-1, S-2 (3.5 ft bgs)

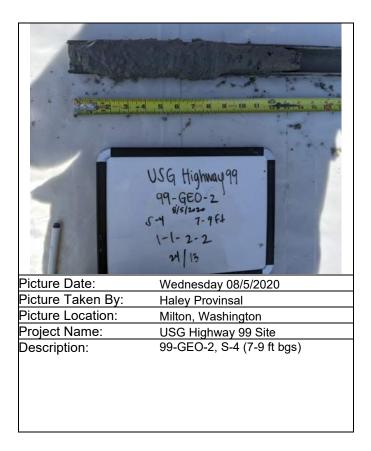
	USG Highway 99 99-GEO-1 5-4 7-9ft 1-5-6-1 24/3
Picture Date:	Wednesday 08/5/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-1, S-4 (7-9 ft bgs)

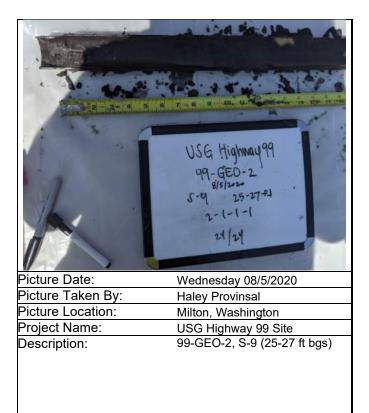


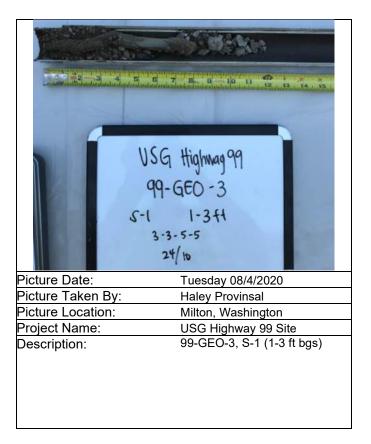


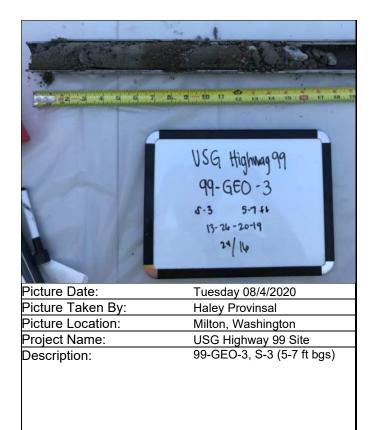
Picture Date:	Wednesday 08/5/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-1, S-7 (13-15 ft bgs)

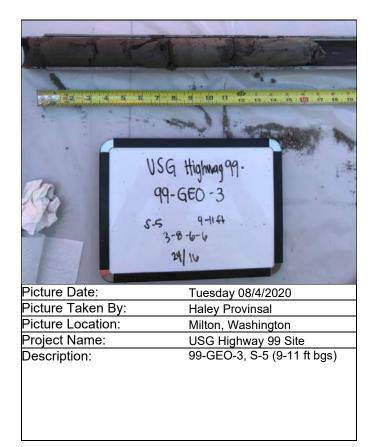
USG Highway 99-GEO-1 5-8 20-22H 6-5-t-3 74/24	99
Picture Date:	Wednesday 08/5/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-1, S-8 (20-22 ft bgs)




	USG Highway 99 99-GEO-2 8/5/222 5-2 3-5 Ft 20-2t-21=19 24/12
Picture Date:	Wednesday 08/5/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-2, S-2 (3-5 ft bgs)




	USG Highway99 99-GEO-2 5-8 120-22-43 4-7-9-12 21/24
Picture Date:	Wednesday 08/5/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-2, S-8 (20-22 ft bgs)




2-2-3-4-5-6	2 - Bit. 9 - 110 - 11 - 12 - 2 - 2 - 4 - 2 - 2 - 2 - 2 - 2 - 2 -
9	9-GEO - 3 2-3-5+4 1-32-30-42 24/15
Picture Date:	Tuesday 08/4/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-3, S-2 (3-5 ft bgs)

1	
	USG Highwag 99. 99-GEO - 3 5-6 11-13 3-8-6-9 24
Picture Date:	Tuesday 08/4/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-3, S-6 (11-13 ft bgs)

Picture Date:	Tuesday 08/4/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-3, S-8 (20-22 ft bgs)

1	USG Highmag99 99-GEO-3 5-10 30-5283 10-11-12-10 24/24
Picture Date:	Tuesday 08/4/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-GEO-3, S-10 (30-32 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-1, C-1 (0-5 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-1, C-2 (5-10 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-1, C-3 (10-15 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-1, C-4 (15-20 ft bgs)

Picture Date:Friday 08/7/2020Picture Taken By:Haley ProvinsalPicture Location:Milton, WashingtonProject Name:USG Highway 99 SiteDescription:99-BS-1, C-4 wood debris

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-1a, C-1 (10-15 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
,Description:	99-BS-2, C-1 (0-5 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-2, C-2 (5-10 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-2, C-4 (15 20 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-2

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-3, C-1 (0-5 ft bgs)
1	

Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-3, C-2 (5-10 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-3, C-3 (10-15 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-3, C-3 coloration

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-3, C-4 (15-20 ft bgs)

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-3

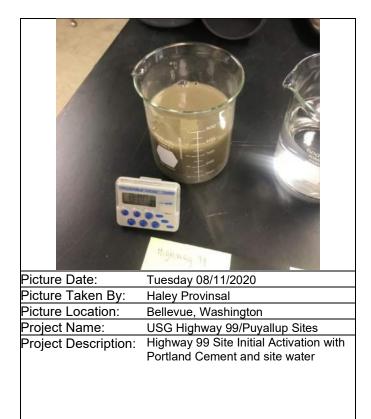
Friday 08/7/2020
Haley Provinsal
Milton, Washington
USG Highway 99 Site
99-BS-4, C-1 (0-5 ft bgs)

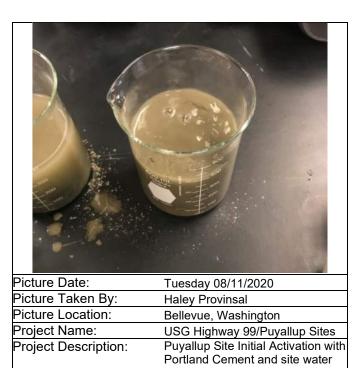
Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-4, C-2 (5-10 ft bgs)

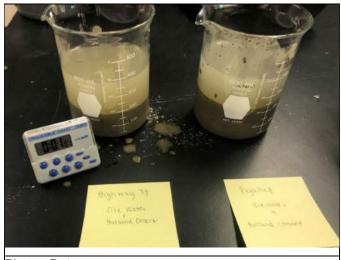
Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Project Description:	99-BS-4, C-2 roots and coloration

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-4, C-3 (10-15 ft bgs)
-	

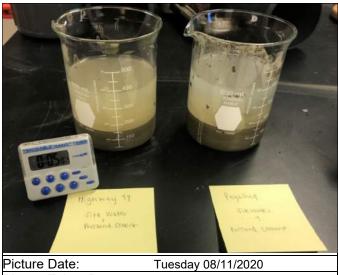
Friday 08/7/2020
Haley Provinsal
Milton, Washington
USG Highway 99 Site
99-BS-4a, C-1 (5-10 ft bgs) (mislabeled in picture)
-

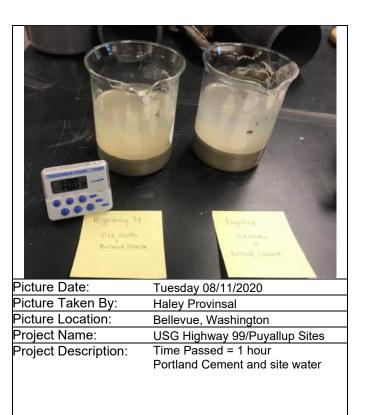


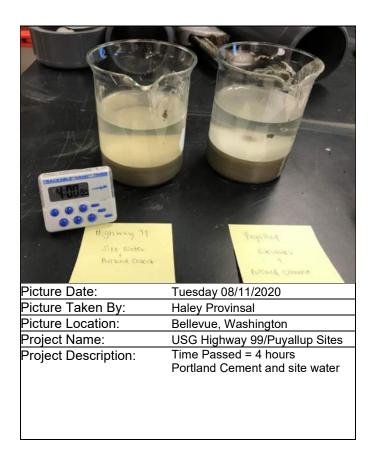

Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-4a, C-2 coloration

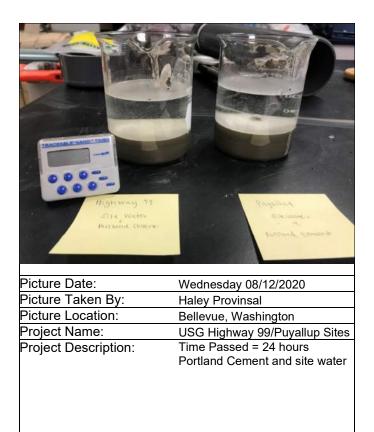


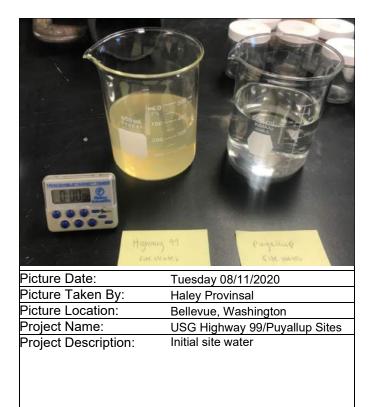
Picture Date:	Friday 08/7/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Milton, Washington
Project Name:	USG Highway 99 Site
Description:	99-BS-4a, C-2 (10-15 ft bgs) (mislabeled in picture)

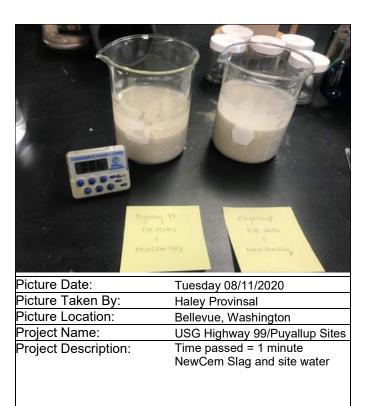

APPENDIX B-2 COMPATABILITY TESTING PHOTOLOG

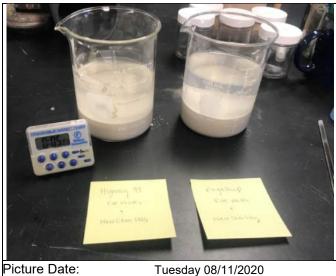


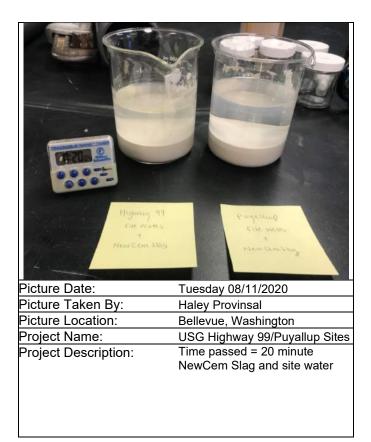

Picture Date:	Tuesday 08/11/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Bellevue, Washington
Project Name:	USG Highway 99/Puyallup Sites
Project Description:	Time passed = 1 minute Portland Cement and site water

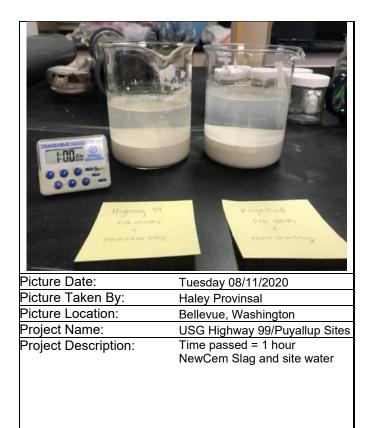


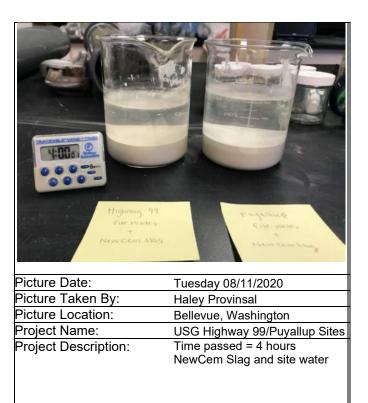

Picture Date:	Tuesday 08/11/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Bellevue, Washington
Project Name:	USG Highway 99/Puyallup Sites
Project Description:	Time Passed = 5 minutes Portland Cement and site water

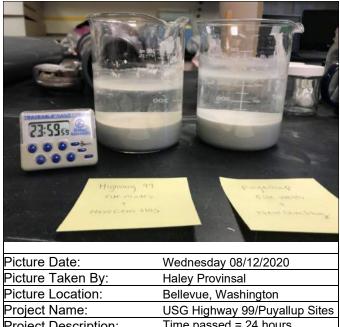

Highway 4 Site Mater Artend Open	Paralitadi Britadi Britadi Britadi Britadi Britadi
Picture Date:	Tuesday 08/11/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Bellevue, Washington
Project Name:	USG Highway 99/Puyallup Sites
Project Description:	Time Passed = 20 minutes Portland Cement and site water





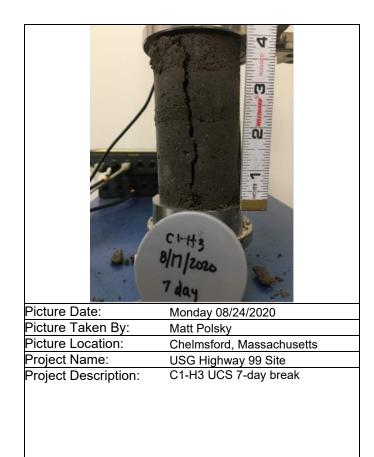


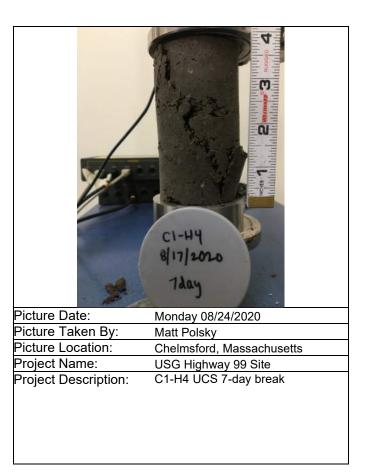




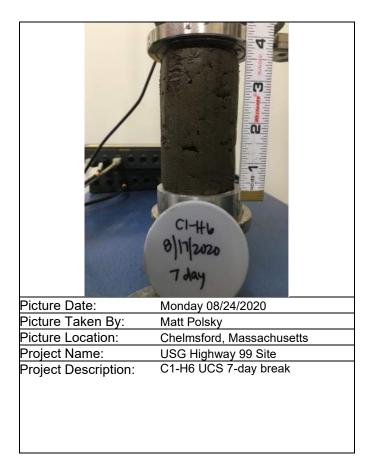
Picture Date:	Tuesday 08/11/2020
Picture Taken By:	Haley Provinsal
Picture Location:	Bellevue, Washington
Project Name:	USG Highway 99/Puyallup Sites
Project Description:	Time passed = 5 minute NewCem Slag and site water

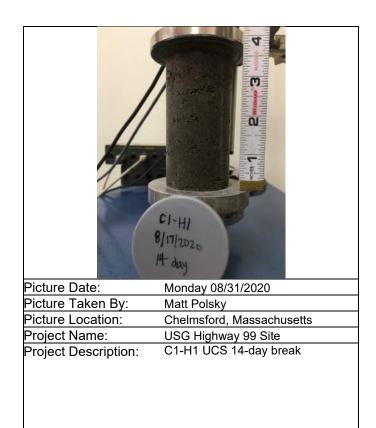


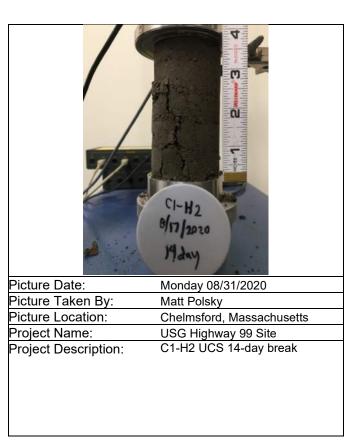


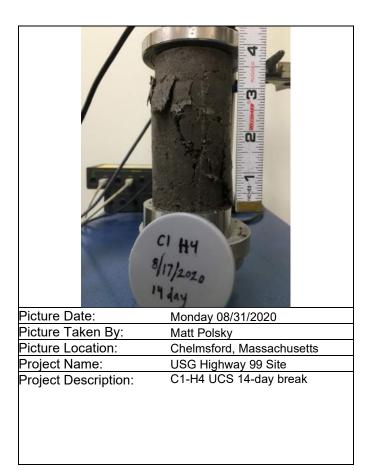

Picture Location:	Bellevue, Washington
Project Name:	USG Highway 99/Puyallup Sites
Project Description:	Time passed = 24 hours NewCem Slag and site water

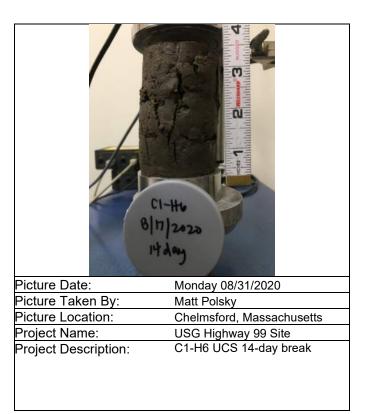
APPENDIX B-3 UCS LABORATORY TESTING PHOTOLOG

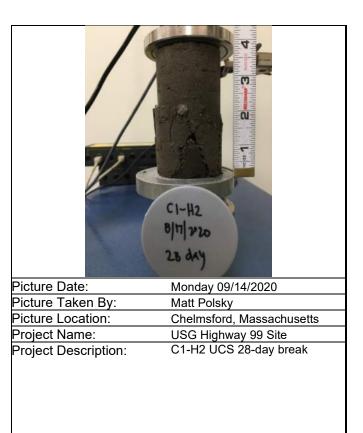

	CI-HI B/ 17/2020 7 Jay
Picture Date:	Monday 08/24/2020
Picture Taken By:	Matt Polsky
Picture Location:	Chelmsford, Massachusetts
Project Name:	USG Highway 99 Site C1-H1 UCS 7-day break

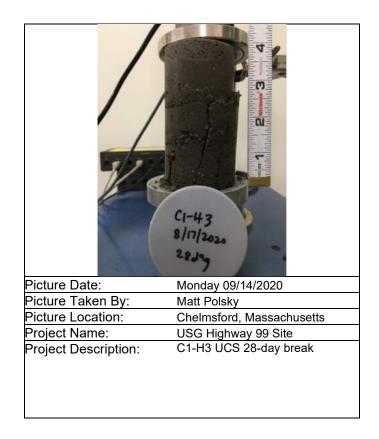


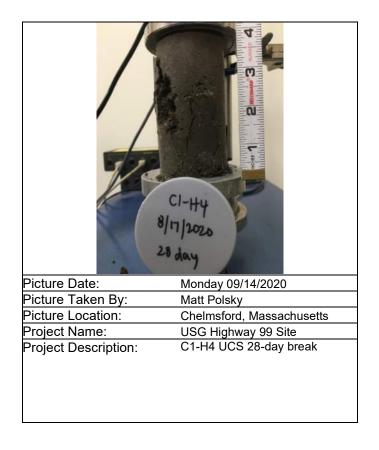


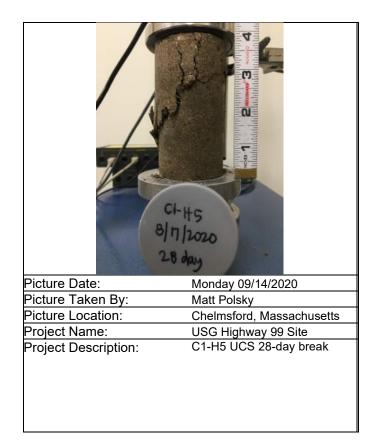

	Li−H5 8 T1 2020 T day)
Picture Date:	Monday 08/24/2020
Picture Taken By:	Matt Polsky
Picture Location:	Chelmsford, Massachusetts
Project Name:	USG Highway 99 Site
Project Description:	C1-H5 UCS 7-day break

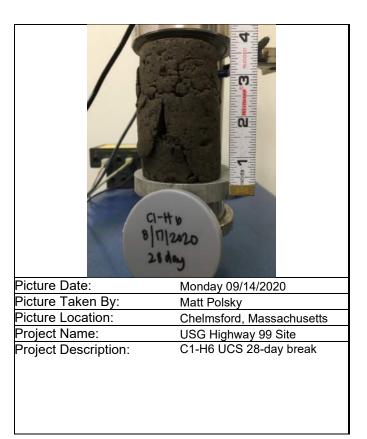


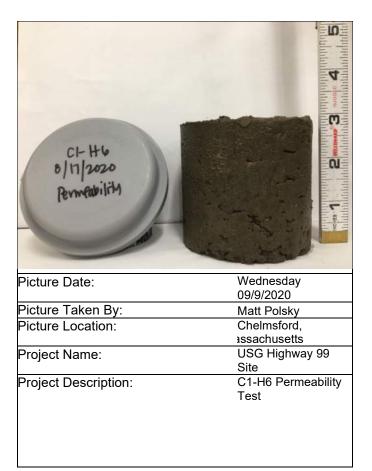

	-H3 17/2020 day
	onday 08/31/2020
	att Polsky
	helmsford, Massachusetts
	SG Highway 99 Site
Project Description: C	1-H3 UCS 14-day break

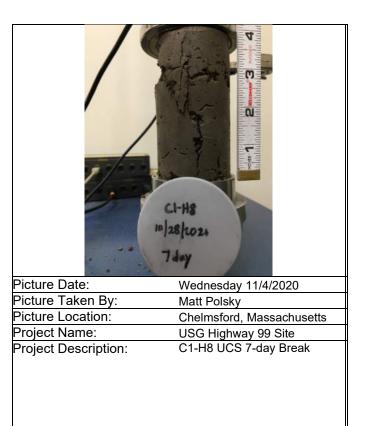


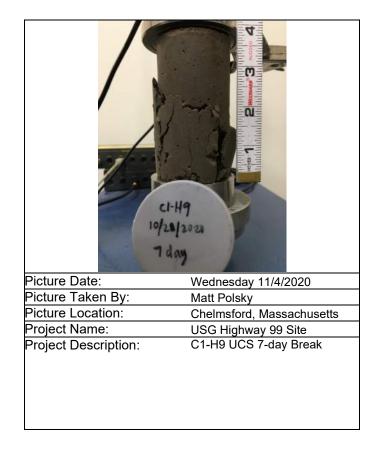


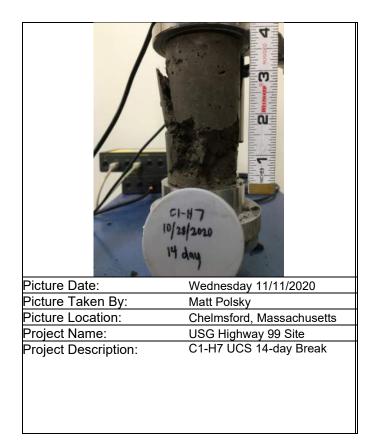


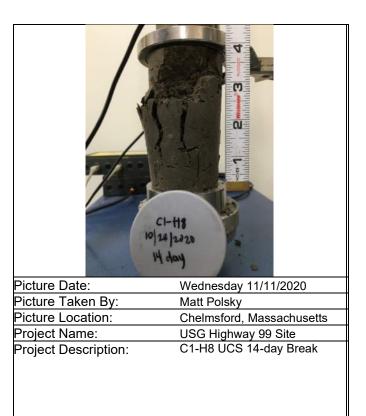

- 61	I-HI Maria Barrana Maria Barana Maria Barrana Maria Barrana Maria Barrana Maria Barran
Picture Date:	Monday 09/14/2020
Picture Taken By:	Matt Polsky
Picture Location:	Chelmsford, Massachusetts
Project Name:	USG Highway 99 Site
Project Description:	C1-H1 ŬCS 28-day break

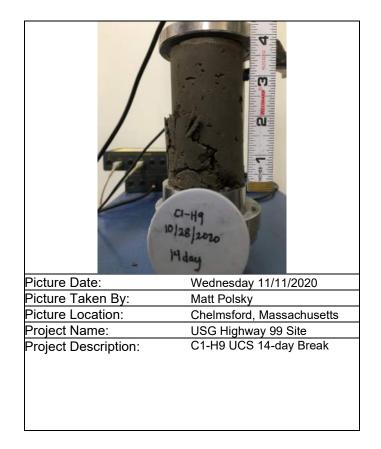


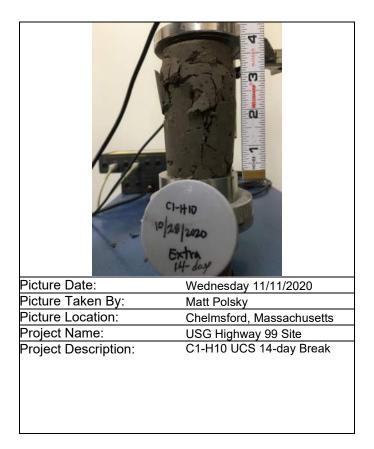

CI-H3 B/17/2020 Penmeability	
Picture Date:	Tuesday 09/8/2020
Picture Taken By:	Matt Polsky
Picture Taken By: Picture Location:	Matt Polsky Chelmsford, Massachusetts
Picture Taken By:	Matt Polsky

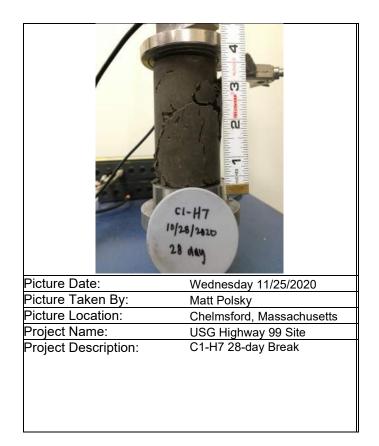


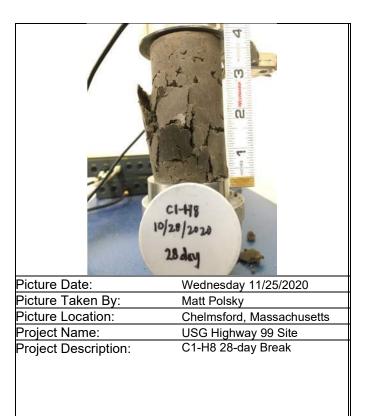


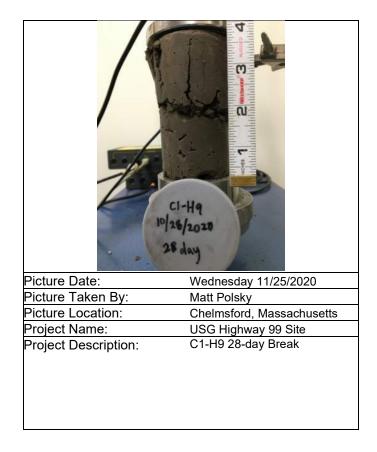


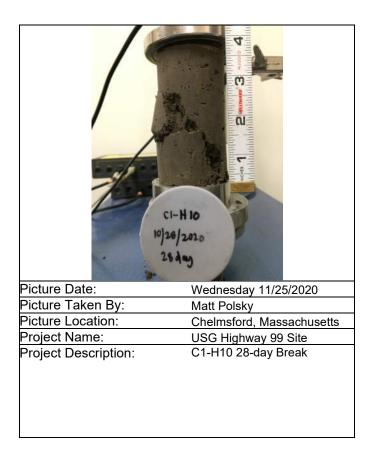


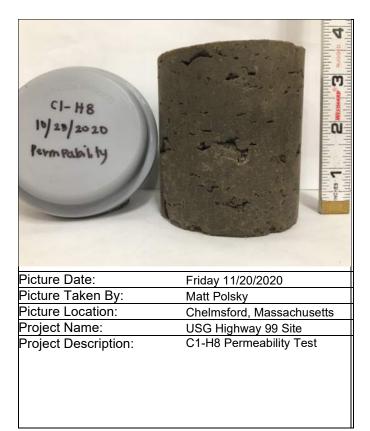




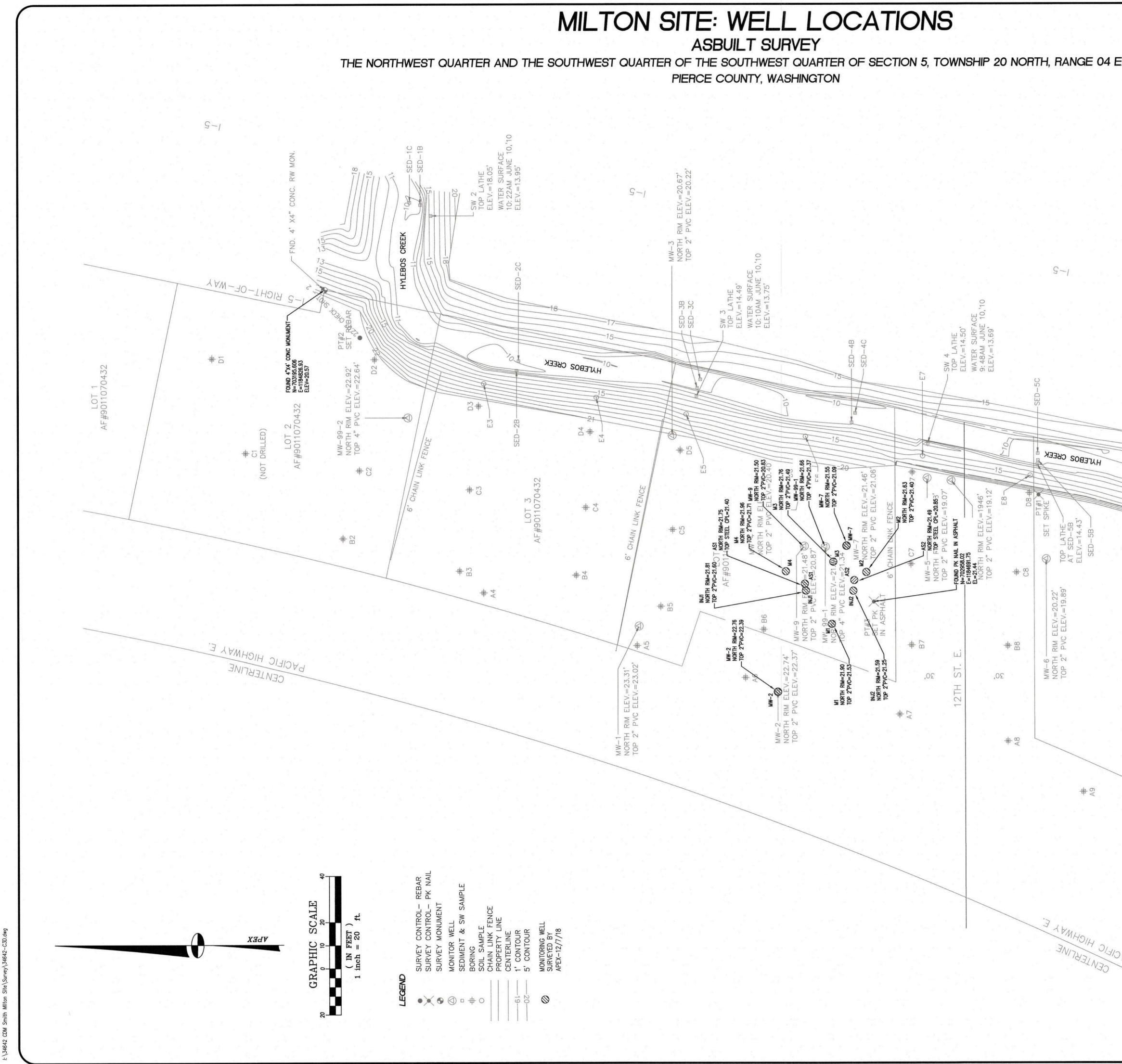








CI-H7 10/28/2020 Remability	
Picture Date:	Thursday 11/19/2020
Picture Taken By:	Matt Polsky
Picture Taken By: Picture Location:	
Picture Taken By:	Matt Polsky



Appendix C

Site Survey

-

ADDRIZONTAL DATUM HORIZONTAL DATUM NaD '83 '11, WASHINGTON COORDINATE SYSTEM SOUTH ZONE. BASED ON RTK GPS MEASUREMENTS CONSTRAINED TO THE WASHINGTON STATE REFERENCE NETWORK. MACHINGTON STATE REFERENCE NETWORK AND GEOD 2012 MODEL.	METHODS AND EQUIPMENT SURVEY PERFORMED WITH A 1"TOPCON TOTAL STATION, USING TRAVERSE AND RADIAL SURVEY METHODS AND SUPPLEMENTED WITH A TOPCON HYPERLITE OPS RECEIVER UTILIZING RTK METHODS AND THE WASHINGTON STATE REFERENCE NETWORK. SURVEY MEETS OR EXCEEDS ACCURACY REQUIREMENTS CONTAINED IN W.A.C. 332.130.090. REFERENCES	 BASE MAP BY W.H. PACIFIC NAMED USG HWY 99 REMEDIAL INVESTIGATION SURVEY. UNDER JOB NUMBER 36146.0010 AND DRAWING NAME: 36146-SURV-TP01. MILTON SHORT PLAT, AF#9011070432-A.H.R. ENGINEERS, INC. RECORDS OF PIERCE COUNTY, WA NOVEMBER 7, 1990 CITY OF MILTON LOT LINE ADJUSTMENT AF#9111270607 BASELINE, RECORDS OF PIERCE COUNTY, WA NOVEMBER 27, 1991 	 SURVEY NOTES I. DATA FOR THIS SURVEY WAS GATHERED BY FIELD TRAVERSE UTILIZING ELECTRONIC DATA COLLECTION ON 12-7-2018. 2. THE PURPOSE OF THIS SURVEY IS TO PROVIDE A AS-BUILT BASE MAP OF THE EXISTING MONITORING WELLS 3. ALL DISTANCES AND DIMENSIONS SHOWN ARE U.S. SURVEY FEET GROUND MEASUREMENTS. 		REV NO REVISION DESCRIPTION DATE BY	Imgineering ≣ 01 South 35th, Suite 200 washington 98409-7479 4 FAX: (253) 473-0599
						2601 Tacoma, W (253) 473-4494
	14 10 10 11 15 10 10 10 10 10 10 10 10 10 10			ED ON THE	MILTON SITE 7110 PACIFIC HIGHWAY E MILTON, WA	CDM SMITH 32 SE EASTGATE WAY, SUITE 100 BELLEVUE, WA 98007 ATTN: PAMELA J. MORRILL
PARCEL A AF#9111270607			ELEVATION DESC 21.63 N. RIM MONITORING WELL 21.59 N. RIM MONITORING WELL 21.59 N. RIM MONITORING WELL 21.50 N. RIM MONITORING WELL 21.55 N. RIM MONITORING WELL 21.56 N. RIM MONITORING WELL 21.55 N. RIM MONITORING WELL 22.56 N. RIM MONITORING WELL 22.56 N. RIM MELL VALUE 21.56 N. RIM NEW WELL VALUE 21.56 N. RIM NEW WELL VALUE	e the wells with new values bas		14432 A
			LONGTUDE ELEVA W122.334956 ELEVA W122.334966 21.63 W122.35048 21.59 W122.354991 21.49 W122.334991 21.81 W122.334958 21.96 W122.334913 21.76 W122.334913 21.50 W122.334913 21.56	client requested that apex update the wells with new values based on the		CLIENT
			LATITUDE N47.246419 N47.246433 N47.246459 N47.246490 N47.246490 N47.246492 N47.246492 N47.246493 N47.246433 N47.246493 N47.246493 N47.246468	and MW-7 are existing wells. Clif	ATE SEALEL	WASH AND
		TABLE	EAST 1184704.51 1184704.51 1184696.45 1184696.52 1184699.53 1184706.99 1184715.91 1184715.91 1184715.91 1184715.54	MW-9, MW-99-1 AND MW-7 AF	PROJECT MAN	AGER
DAC		3 WELL	NORTH 702961.20 702966.85 702966.85 702987.81 702995.02 702999.56 702999.56 702988.01 702988.01 702988.01	Monitoring Wells MW-2, MW-9, Current Survey.	DESIGN DRAWN DAL CHECKED	JM
		NEW MON	NUMBER M2 AS2 NJ1 M1 NJ1 AS1 NJ1 AS1 MW-2 MW-2 MW-2 MW-99-1	* MONITO CURREN	FILE NO <u>34642</u> DATE <u>12/11/20</u> SCALE <u>1"=20</u> SHEET FILE NO	-C3D.dwg

Appendix D

Geotechnical Laboratory Test Results

CDM Smith Geotechnical Laboratory Testing Summary Sheet

	Client:					Project Number: <u>19921-251008</u>							Reviewed By: M. Polsky - Lab Manager					
	oject Name: ect Location:					Task: <u>Task 3</u> Assigned By: M. Passaro/H. Provinsal						neal	Date Reviewed: 9/10/2020					
											1501	-	th Tests					
Sample Date	Boring Number	Sample	Depth (ft)	Water Content %	LL %	PL %	Gravel			Org. %	Dry unit wt. pcf	- σ _c psi	Failure Criteria (CIU)	$\sigma_1 - \sigma_3$ or τ psi	Strain %	Soil Description		
8/5/2020	99-GEO-1	S-2	3-5	5.7			44.6	30.1	25.3							Gray silty gravel with sand		
8/5/2020	99-GEO-1	S-4	7-9	12.2			34.0	32.9	33.1							Gray silty gravel with sand		
8/5/2020	99-GEO-1	S-5	9-11	29.1	47	28				1.1						Gray silt with sand		
8/5/2020	99-GEO-1	S-7	13-15	27.2			0.0	55.3	44.7							Dark gray silty sand		
8/5/2020	99-GEO-1	S-8a	20-22	23.3			0.0	89.7	10.3							Dark gray poorly graded sand with silt		
8/5/2020	99-GEO-1	S-9	25-27	40.3	36	24	0.0	3.3	96.7							Gray lean clay		
8/5/2020	99-GEO-1	S-10	30-32	10.9			46.8	43.3	9.9							Gray-brown well-graded gravel with silt and sand		
8/5/2020	99-GEO-2	S-4	7-9	12.7			38.6	39.2	22.2							Gray silty sand with gravel		
8/5/2020	99-GEO-2	S-6	11-13	26.3			1.0	16.3	82.7							Brown silt with sand		
8/5/2020	99-GEO-2	S-8	20-22	20.6			1.2	85.0	13.8							Dark brown silty sand		
8/5/2020	99-GEO-2	S-9	25-27	25.9			0.8	82.9	16.3							Gray silty sand		
8/4/2020	99-GEO-3	S-1	1-3	13.7			18.9	44.9	36.2							Brown silty sand with gravel		
8/4/2020	99-GEO-3	S-4	7-9	27.3			21.8	38.3	39.9							Gray-brown silty sand with gravel		
8/4/2020	99-GEO-3	S-7	13-15	28.1			0.0	21.9	78.1							Dark brown silt with sand		
8/4/2020	99-GEO-3	S-8	20-22	27.9			0.0	73.8	26.2							Dark gray silty sand		
8/4/2020	99-GEO-3	S-9	25-27	22.4	NP	NP	0.0	73.9	26.1							Dark gray silty sand		

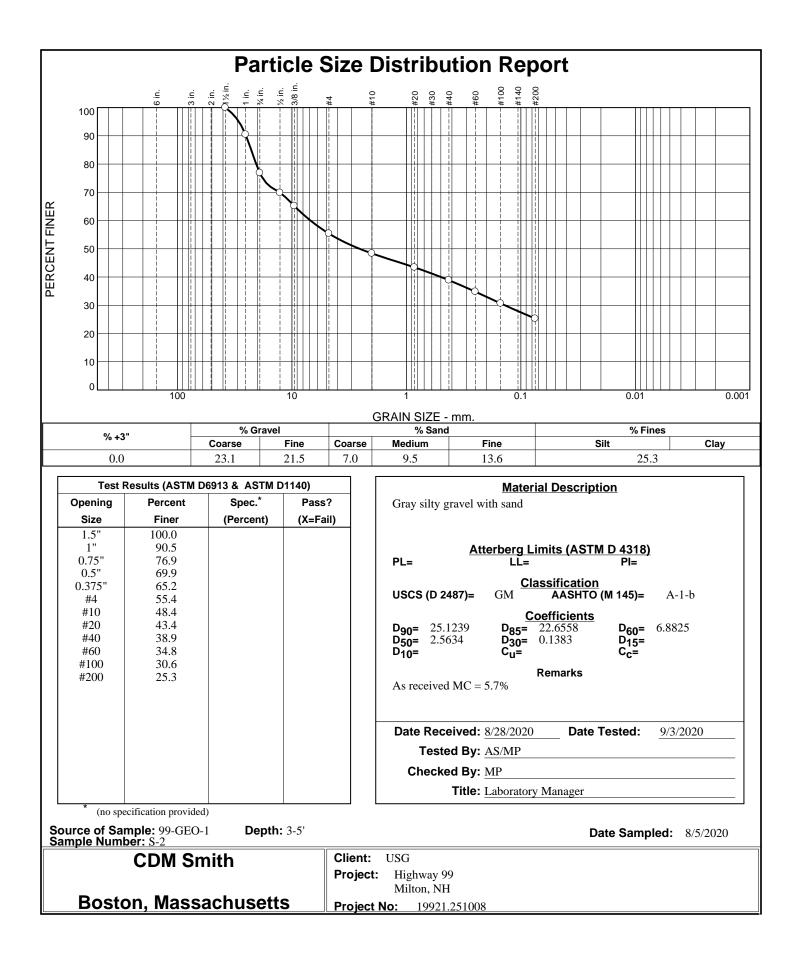
CDM Smith Geotechnical Laboratory Testing Summary Sheet

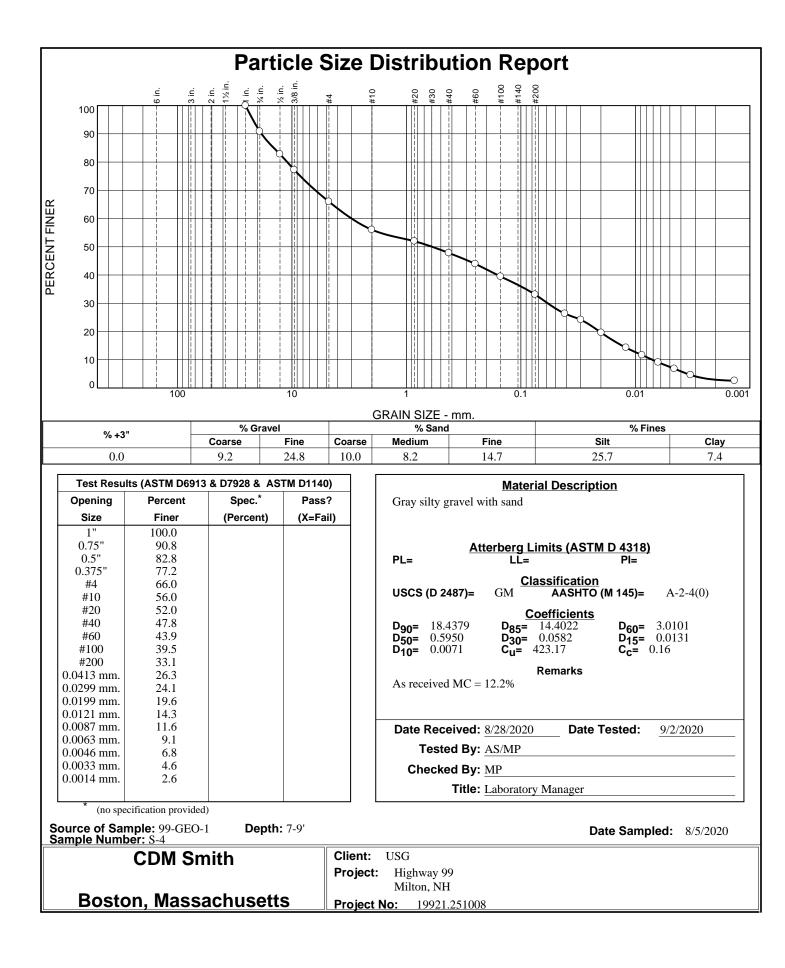
Client: USG

Project Number: 19921-251008

Reviewed By: M. Polsky - Lab Manager

Project Name: Highway 99


Task: Task 3

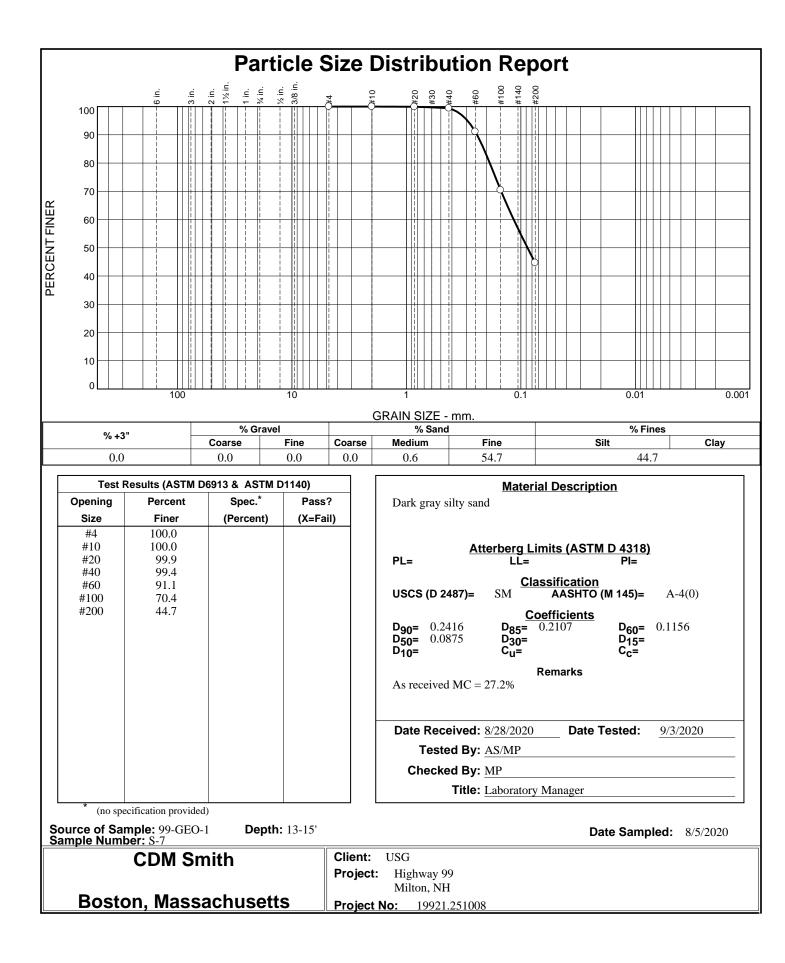

Project Location: Milton, WA

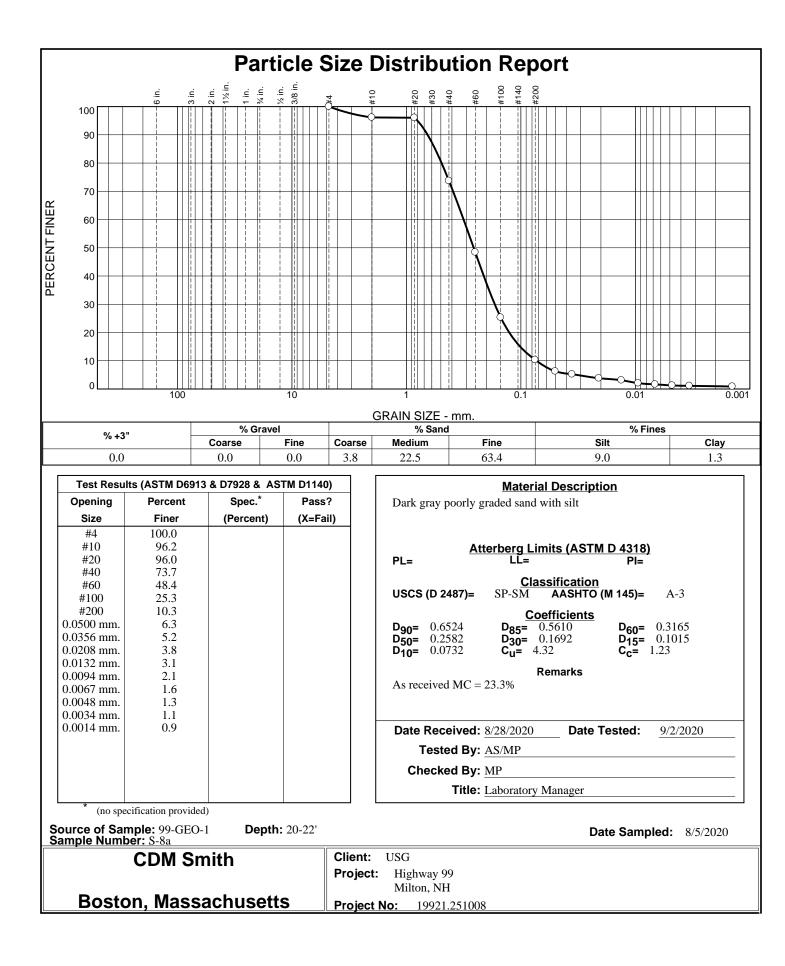
Assigned By: M. Passaro/H. Provinsal

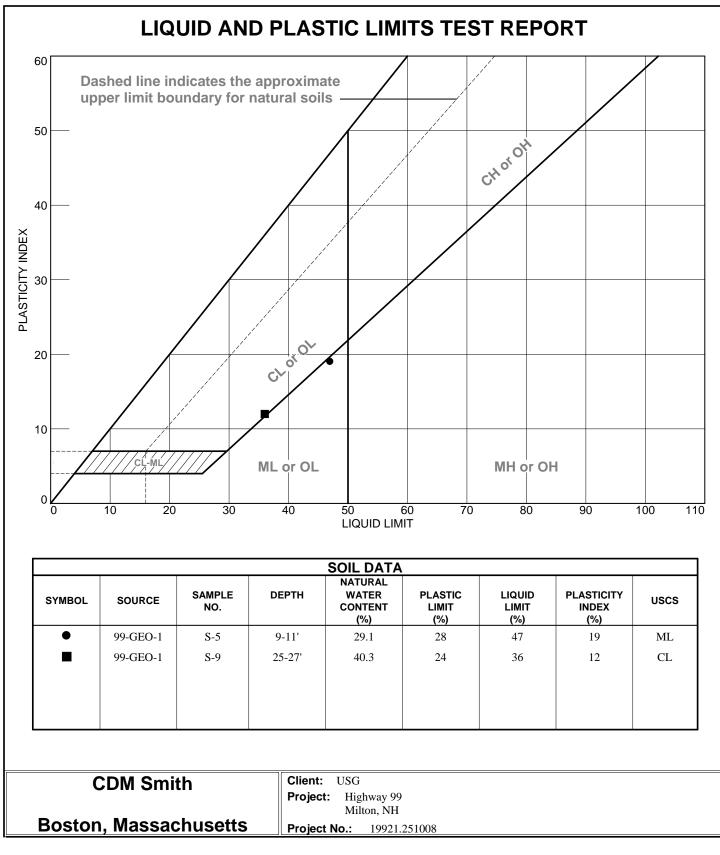
Date Reviewed: 9/28/2020

						lde	ntificati	on Tes	sts				Stre	ngth Te	sts	
Sample Date	Boring Number	Sample	Depth (ft)	Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	Org. %	Dry unit wt. pcf	Specific Gravity	Failure Criteria (CIU)		Strain %	Soil Description
8/5/2020	Composite		N/A	39.1			0.8	56.7	42.5		77.2	2.603				Gray-brown silty sand with organics

CDM Smith

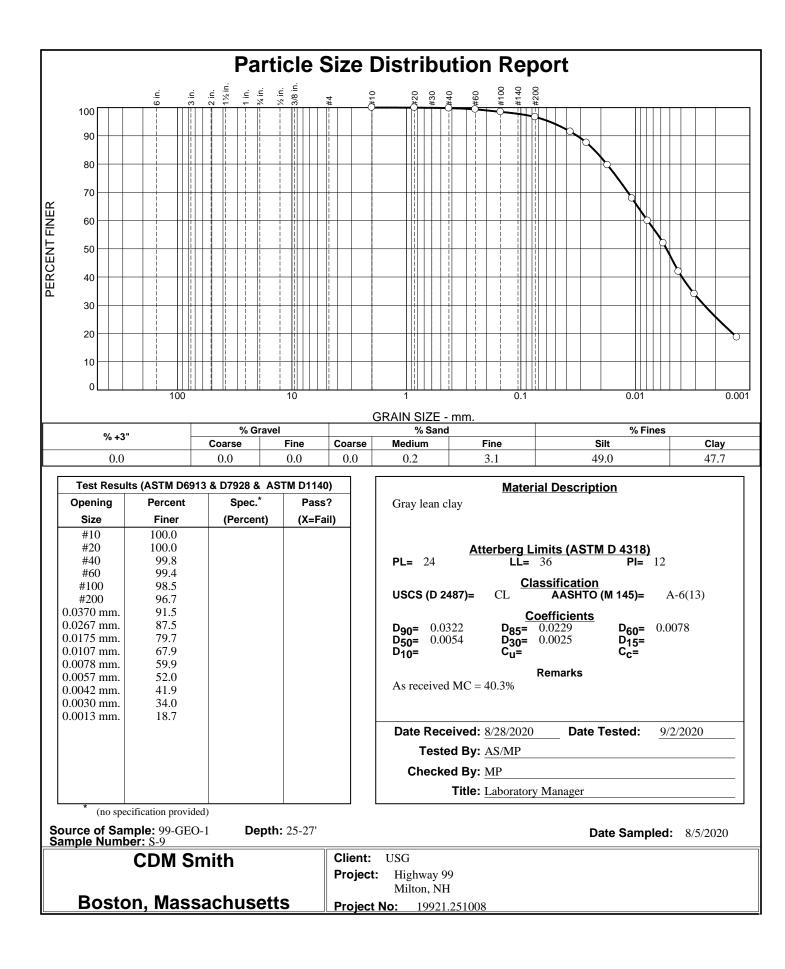

Geotechnical Engineering Laboratory

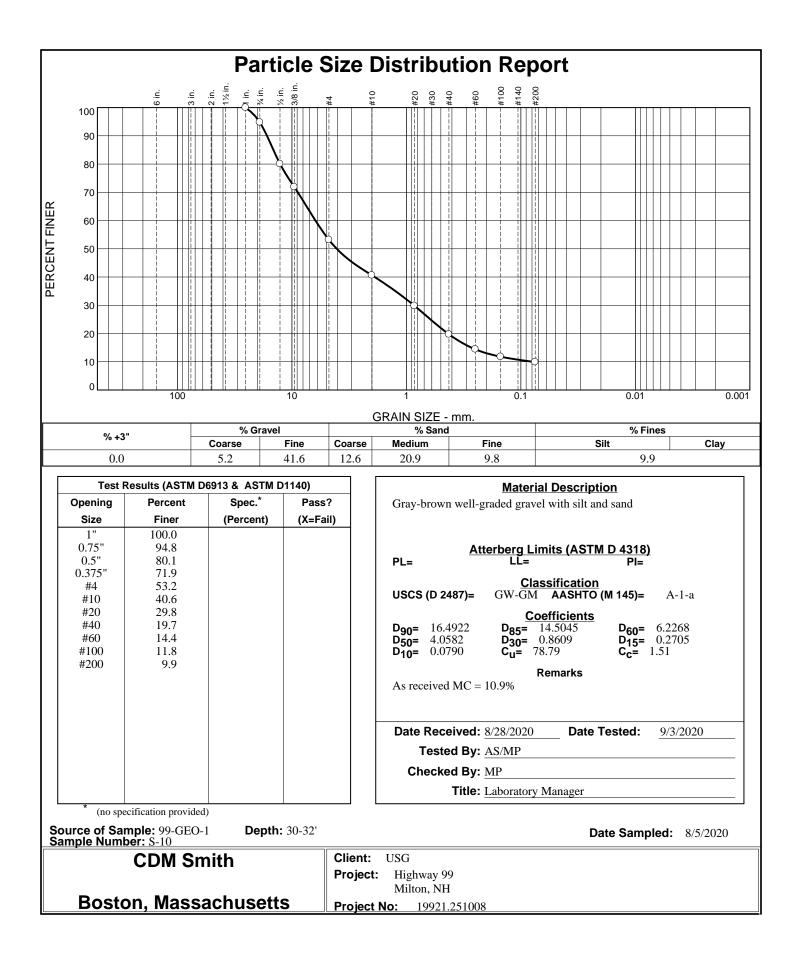

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils (ASTM D2974)

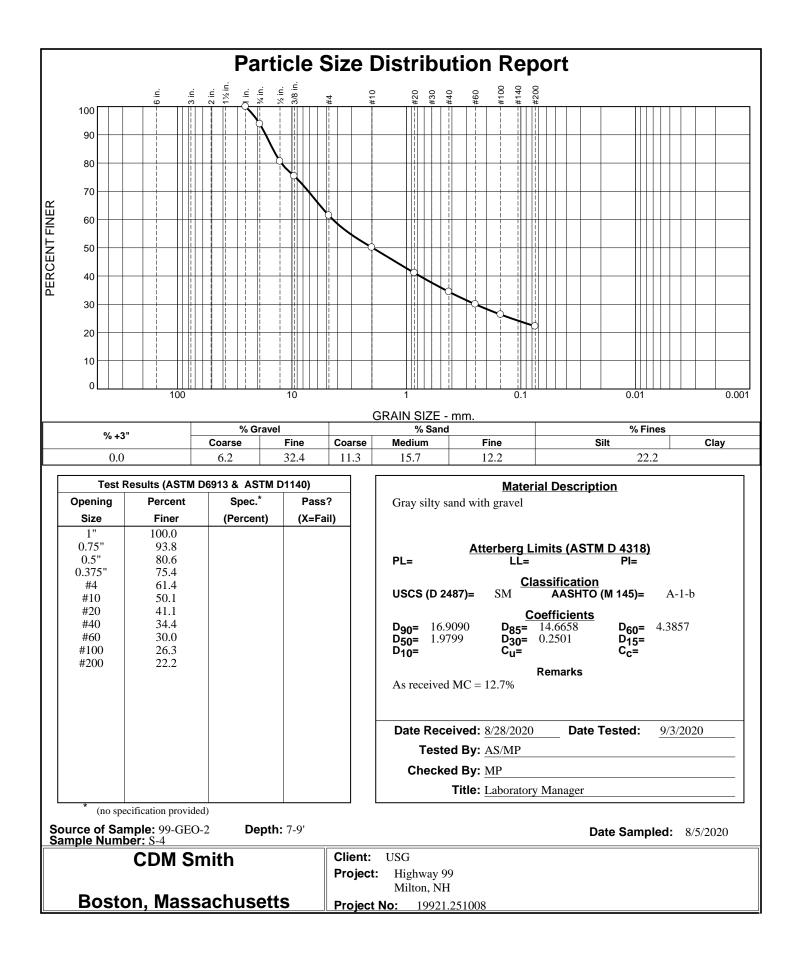

Client:	USG	
Project Name:	Highway 99	Tested By: MP
Project Location:	Milton, NH	Test Date: 9/8/2020
Project Number:	19921-251008	
Boring Number:	99-GEO-1	Procedure: C
Sample Number:	S-5	Temperature: 440° C
Sample Depth (ft):	9-11	
Sample Date:	8/5/2020	

AS RECEIVED MOISTURE CONTENT					
Tin Mass (g)	85.00				
Wet Mass of Sample & Tin (g)	201.53				
Dry Mass of Sample & Tin (g)	175.25				
Mass of Water (g)	26.28				
Mass of Dry Soil (g)	90.25				
Moisture Content (%)	29.1				

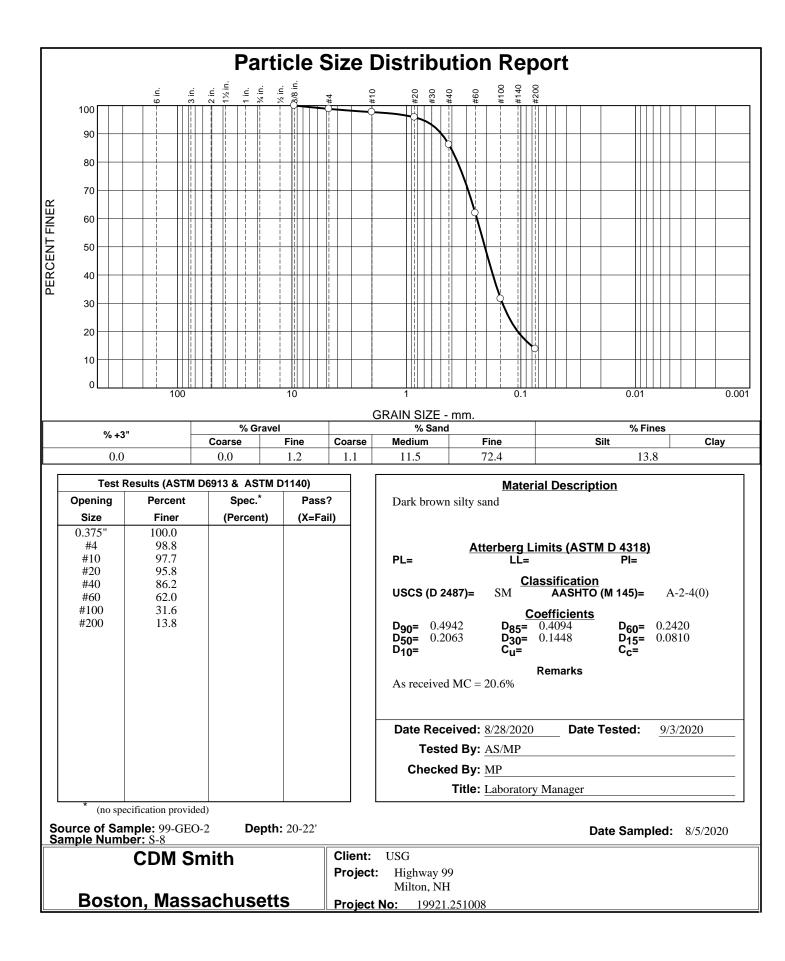
ASH CONTENT						
Porcelain Dish Mass (g)	85.00					
Porcelain Dish + Oven Dried Soil (g)	175.25					
Mass of Oven Dried Soil (g)	90.25					
Mass of Dish & Burned Soil (g)	174.29					
Mass of Burned Soil (g)	89.29					
Mass of Organic Material (g)	0.96					
Ash Content (%)	98.9					
Organic Content (%)	1.1					

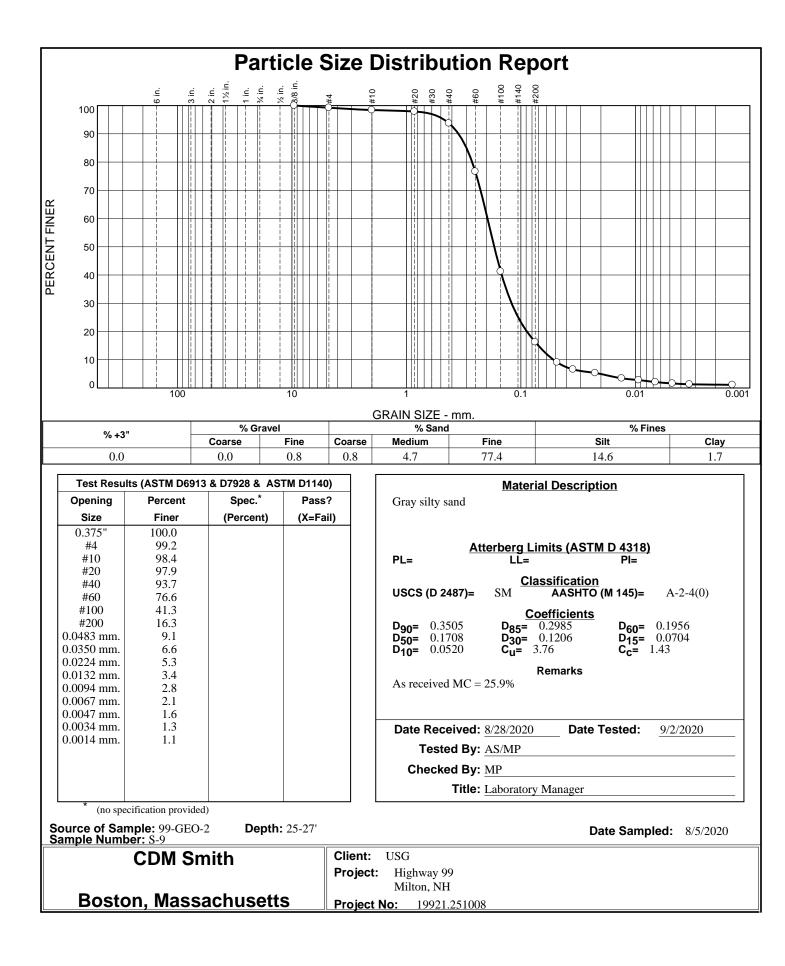

Geotechnical Engineering Laboratory

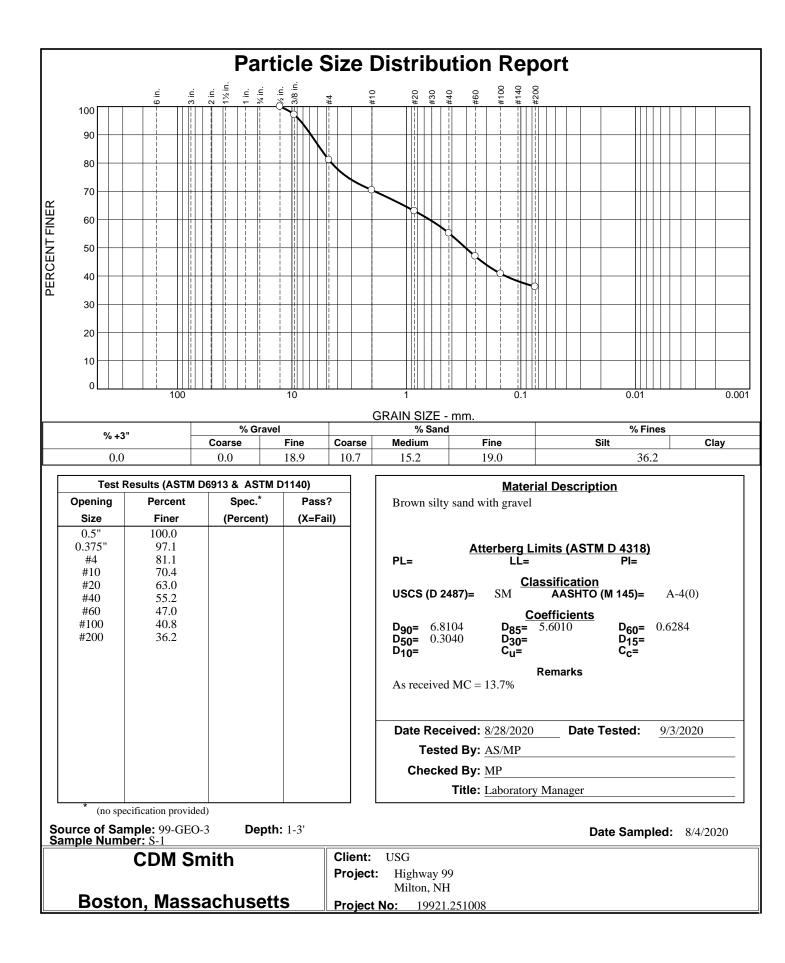

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils (ASTM D2974)

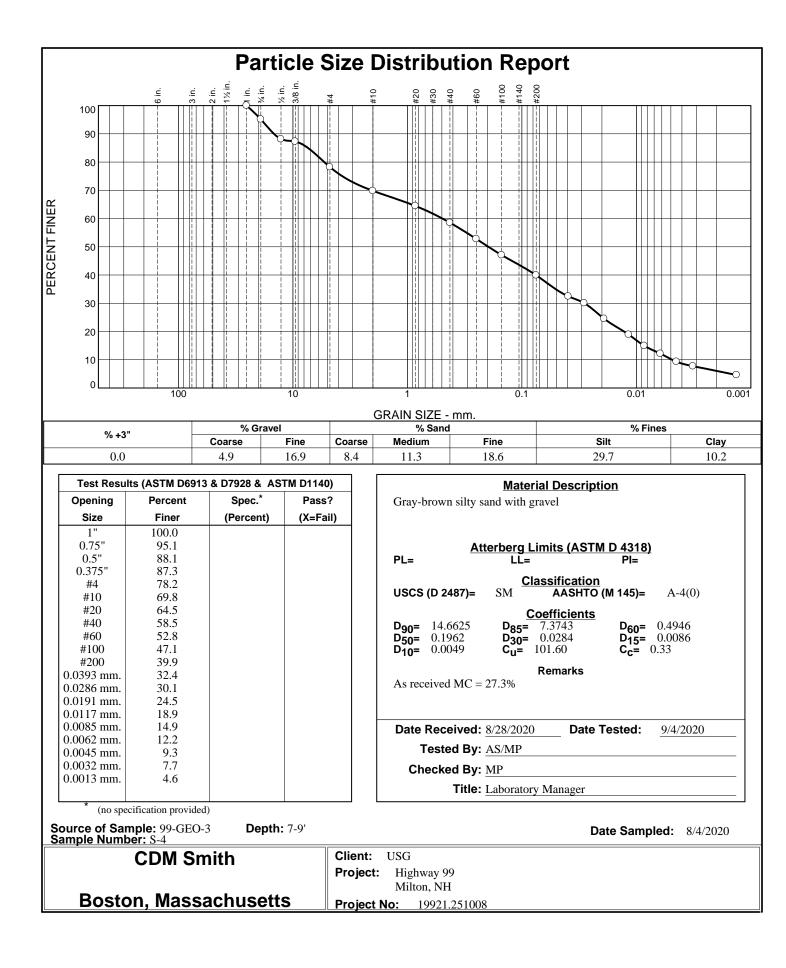

Client:	USG	
Project Name:	Highway 99	Tested By: MP
Project Location:	Milton, NH	Test Date: 9/8/2020
Project Number:	19921-251008	
Boring Number:	99-GEO-1	Procedure: C
Sample Number:	S-5	Temperature: 440° C
Sample Depth (ft):	9-11	
Sample Date:	8/5/2020	

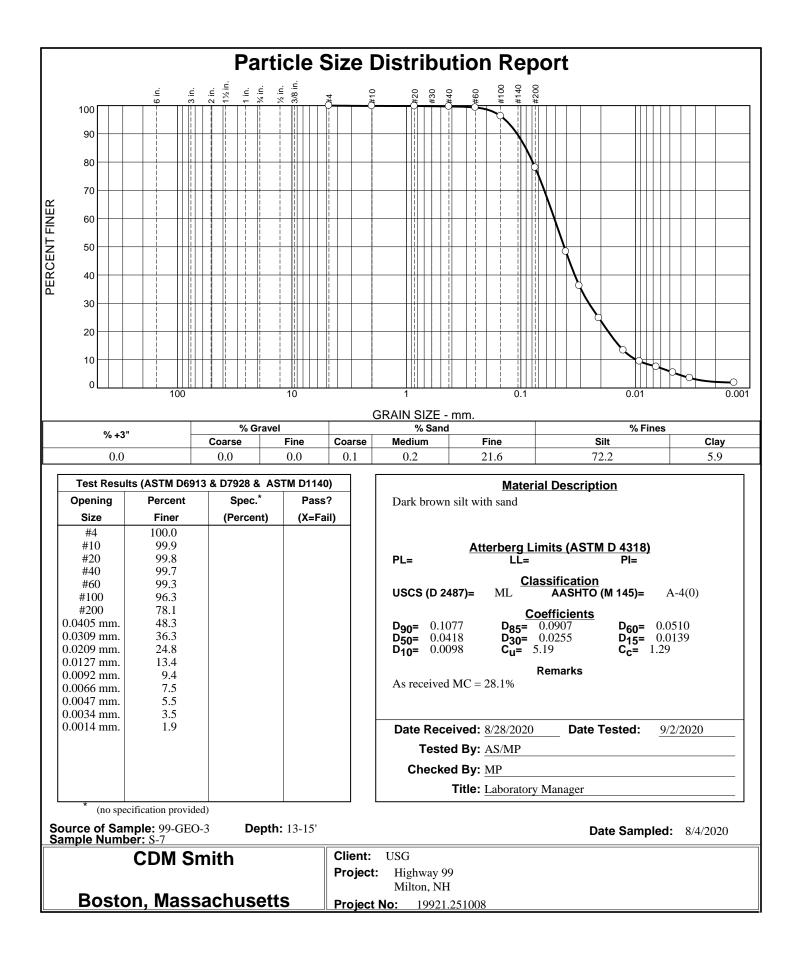

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	85.00
Wet Mass of Sample & Tin (g)	201.53
Dry Mass of Sample & Tin (g)	175.25
Mass of Water (g)	26.28
Mass of Dry Soil (g)	90.25
Moisture Content (%)	29.1

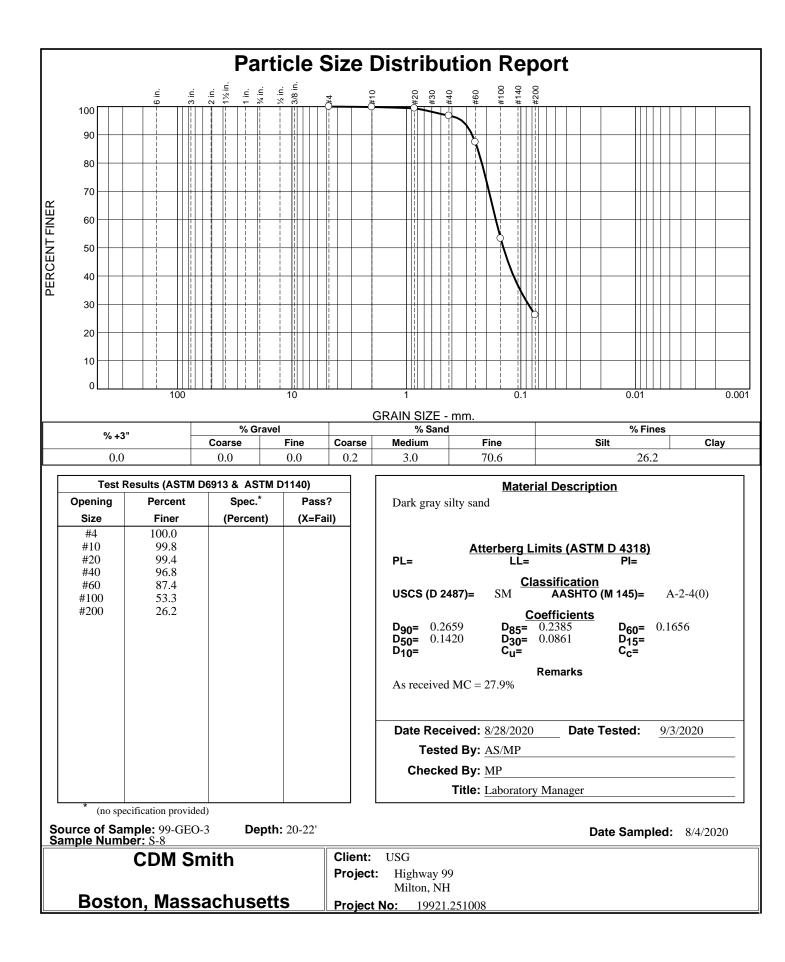

ASH CONTENT							
Porcelain Dish Mass (g)	85.00						
Porcelain Dish + Oven Dried Soil (g)	175.25						
Mass of Oven Dried Soil (g)	90.25						
Mass of Dish & Burned Soil (g)	174.29						
Mass of Burned Soil (g)	89.29						
Mass of Organic Material (g)	0.96						
Ash Content (%)	98.9						
Organic Content (%)	1.1						

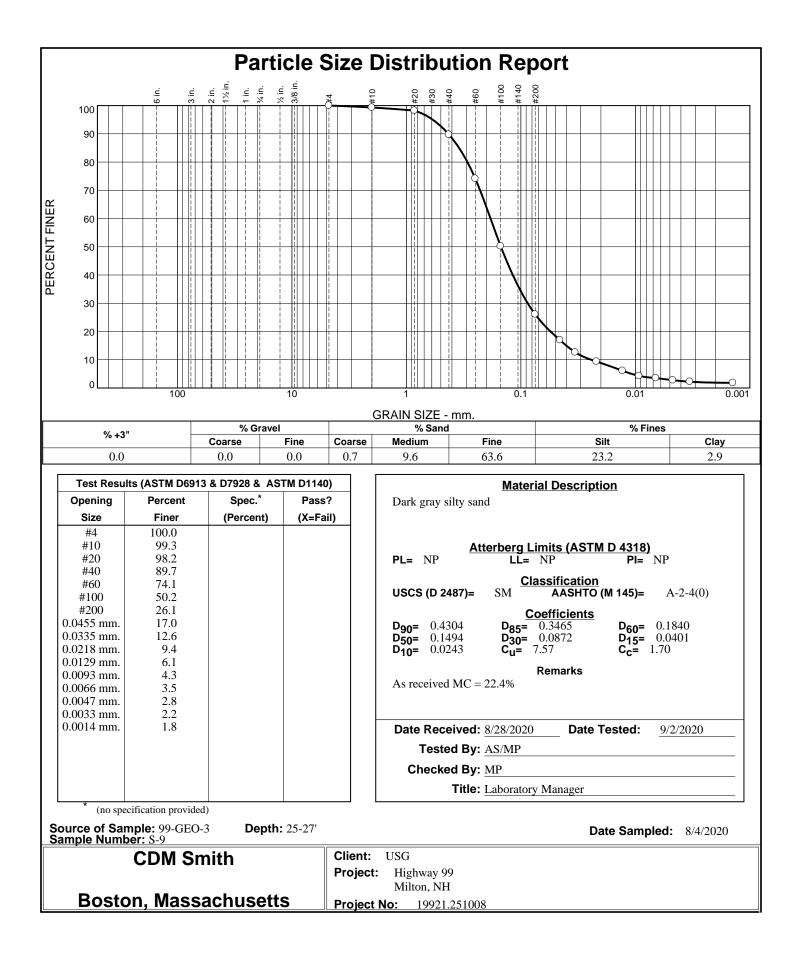


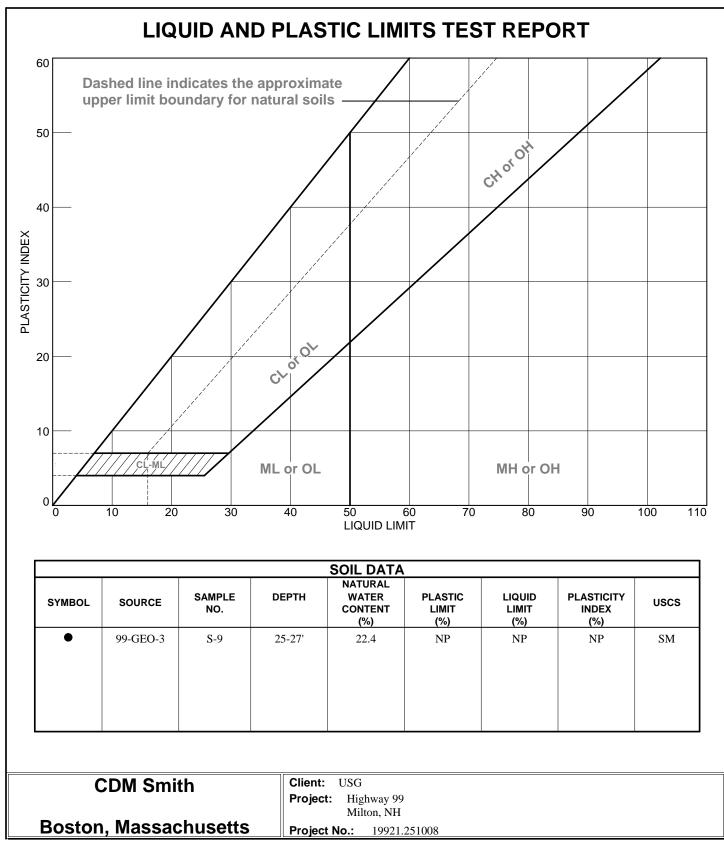


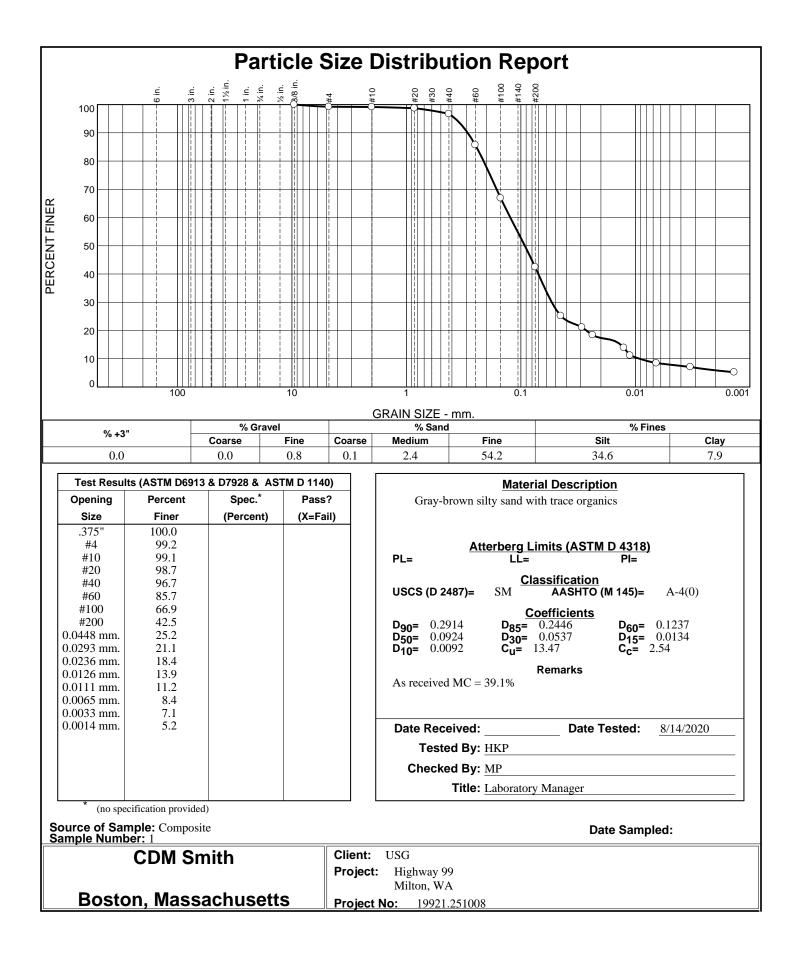












Client: Project Name : Project Location: Project Number: Sample Material : Sample Date: Sample Age: Water Content (%): Mass (g): Area (sq in) : Diameter (in) : Height (in) : Height to Dia. Ratio : Wet Density (pcf) : Dry Density (pcf) :	USG Highway 99 Bench S Milton, W 19921-2510 C1-H1 8/17/202 7 days 24.2 402.7 3.29 2.05 4.01 2.0 116.1 93.4	A 008	Test Performed by : AS Test Date : $8/24/20$ Soil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: $>62.5 \text{ psi}$ Docket Penetrometer: $>62.5 \text{ psi}$ Loading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.27 Strain at Failure (%): 1.04 U. C. Strength (psi) : 407.6 Shear Strength (psi): 203.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sectional Area (in ²) Strain (%) 0.0 3.29 0.00 5 3.29 0.12 5.9 3.29 0.12 5.9 3.29 0.17 0.8 3.29 0.22 6.9 3.29 0.28 3.6 3.29 0.40 5.2 3.29 0.51 3.2 3.29 0.62 0.7 3.29 0.62 0.7 3.29 0.62 0.7 3.29 0.83 8.9 3.29 0.93 42.1 3.29 1.04 8.8 3.29 1.17 0.1 3.29 1.30 5.9 3.29 1.42	Compress Strength (psi) 0.00 1.38 3.73 5.15 6.01 8.18 34.51 104.83 174.09 270.52 347.80 388.44 407.63 397.50 349.31 293.35 180.59 123.11 87.53 58.55 39.14	450.0 400.0 <td< td=""></td<>

Project Project Sample Sample Sample Sample Water O Mass (g Area (so Diamete	Client: Project Name : Project Location: Project Number: Sample Material : Sample Mix: Sample Date: Sample Age: Water Content (%): Mass (g): Area (sq in) : Diameter (in) : Height (in) :		Highway 9 M 19	USG 9 Bench S 921-2510 C1-H2 8/17/202 7 days .4 3.9 29 05	008	Test Performed by : AS Test Date : 8/24/20 Soil Type : Soil - Cement Preparation Method: Smoothed ends Pocket Penetrometer: >62.5 psi Loading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.18 Strain at Failure (%): 1.27		
•	o Dia. Ra		2.		_	U. C. Strength (psi) : 97.4		
	nsity (pcf		105		_	Shear Strength (psi): 48.7		
Dry Der	nsity (pcf)):	84	.7	-			
Time	Displ.	Load	Cross Sectional	Axial Strain	Compress Strength	120.0		
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)			
0	0.000	0.0	3.29	0.00	0.00	100.0		
3	0.003	4.1	3.29	0.06	1.25			
6 9	0.005	8.7 14.6	3.29 3.29	0.12 0.18	2.64 4.45	80.0		
9 12	0.007	23.3	3.29	0.18	7.10			
15	0.012	25.3	3.29	0.30	7.71			
18	0.015	29.8	3.29	0.36	9.05	Compressive Stress (psi)		
21	0.017	38.5	3.29	0.42	11.70			
24	0.020	46.0	3.29	0.49	13.99			
27	0.022	53.8	3.29	0.56	16.36			
33	0.027	92.5	3.29	0.68	28.15			
39	0.032	145.1	3.29	0.80	44.14	20.0		
45	0.037	206.0	3.29	0.91	62.67			
51 57	0.041	261.1	3.29	1.03	79.44	0.0		
57 63	0.046	301.3 320.0	3.29 3.29	1.15 1.27	91.65 97.36	0.0 1.0 2.0 3.0 4.0 5.0		
63 69	0.051	320.0	3.29	1.27	97.36 97.15	Axial Strain (%)		
75	0.061	314.6	3.29	1.52	95.72			
81	0.066	300.2	3.29	1.65	91.34			
87	0.071	285.6	3.29	1.78	86.89	Failure Sketch		
102	0.084	242.4	3.29	2.10	73.75			
117	0.096	198.6	3.29	2.41	60.41			
132	0.109	155.6	3.29	2.72	47.34			
147	0.122	133.3	3.29	3.05	40.55			
162	0.135	113.1	3.29	3.36	34.40			
177 192	0.147 0.160	101.4 94.9	3.29 3.29	3.68 4.00	30.83 28.87			
						Remarks: None.		

Project Loo Project Nu Sample Ma Sample Da Sample Da Sample Ag Water Con Mass (g):	Project Name : Project Location: Project Number: Sample Material : Sample Mix: Sample Date: Sample Age: Water Content (%):		Location: Milton, WA Number: 19921-25100 Material : C1-H3 Mix: Date: 8/17/2020 Age: 7 days Content (%): 24.3 g): 387.4 q in) : 3.29					Test Performed by : AS Test Date : 8/24/20 Soil Type : Soil - Cement Preparation Method: Smoothed ends Pocket Penetrometer: >62.5 psi Loading Rate (in/min) : 0.05 Dial Rate : 5.8
Diameter (Height (in) Height to D Wet Densit Dry Densit)ia. Ra ty (pcf)	:	2.0 3.9 1. 112 90	98 9 2.7	- - - -	Strain Rate (%/min) 1.24 Strain at Failure (%): 1.06 U. C. Strength (psi) : 222.8 Shear Strength (psi): 111.4		
(sec) 0 0 3 0 6 0 9 0 12 0 15 0 18 0 21 0 24 0 27 0 30 0 36 0 42 0 48 0 54 0 60 0 78 0 84 0 90 0 105 0 135 0 165 0	(in) .000 .003 .005 .008 .010 .012 .014 .017 .019 .020 .023 .023 .028 .032 .037 .042 .037 .042 .037 .042 .037 .042 .057 .063 .068 .073 .068 .073 .085 .097 .110 .122 .135 .148	Load (lbs) 0.0 4.0 11.1 19.7 20.6 24.7 50.2 99.9 165.3 229.6 312.9 484.3 608.4 695.0 732.6 719.7 683.4 639.2 583.6 527.8 465.7 331.3 225.6 152.1 93.5 80.2 77.5	Cross Sectional Area (in ²) 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29	Axial Strain (%) 0.00 0.07 0.13 0.19 0.25 0.30 0.36 0.41 0.47 0.51 0.57 0.69 0.81 0.92 1.06 1.17 1.31 1.44 1.58 1.70 1.82 2.15 2.45 2.75 3.07 3.40 3.72	Compress Strength (psi) 0.00 1.23 3.39 5.98 6.27 7.50 15.26 30.40 50.26 69.83 95.16 147.28 185.01 211.35 222.79 218.86 207.85 194.38 177.47 160.51 141.62 100.75 68.61 46.26 28.43 24.40 23.57	Failure Sketch		
						Remarks: <u>None.</u>		

Client: Project Name : Project Location Project Number: Sample Material Sample Mix: Sample Date: Sample Date: Sample Age: Water Content (Mass (g): Area (sq in) : Diameter (in) : Height (in) : Height to Dia. Ra Wet Density (pc)	: %): atio : f) :	N 199	Ailton, W. 921-2510 C1-H4 8/17/202 7 days .0 9.1 29 05 99 9 9. 3.1	008	Test Performed by : AS Test Date : $8/24/20$ Soil Type : Soil - CementSoil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: >62.5 psiDocket Penetrometer: >62.5 psiLoading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.21 Strain at Failure (%): 1.19 U. C. Strength (psi) : 110.8 Shear Strength (psi): 55.4
Time Displ. (sec) (in) 0 0.000 2 0.002 5 0.004 8 0.006 11 0.009 14 0.011 17 0.013 20 0.015 23 0.018 26 0.021 29 0.023 35 0.028 41 0.032 47 0.038 53 0.042 59 0.047 65 0.052 71 0.057 77 0.062 83 0.068 89 0.073 104 0.085 119 0.098 134 0.111 149 0.123 164 0.136 179 0.149 194 0.161 209 0.173	Load (lbs) 0.0 3.1 5.3 10.5 14.1 15.8 20.5 24.6 47.4 84.6 124.6 227.8 301.9 345.5 361.7 364.3 360.0 354.0 345.9 328.3 308.8 225.4 132.9 87.7 68.2 60.2 58.8 60.5 62.5	Cross Sectional Area (in ²) 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29	Axial Strain (%) 0.00 0.04 0.10 0.16 0.21 0.28 0.34 0.39 0.45 0.52 0.58 0.70 0.81 0.94 1.06 1.19 1.31 1.44 1.57 1.70 1.82 2.14 2.14 2.78 3.09 3.41 3.73 4.04 4.35	Compress Strength (psi) 0.00 0.93 1.62 3.20 4.28 4.81 6.23 7.49 14.41 25.74 37.90 69.30 91.86 105.11 110.05 110.82 109.52 107.70 105.22 99.87 93.94 68.56 40.42 26.69 20.76 18.32 17.89 18.40 19.03	1200 1000

Client: Project Name : Project Location: Project Number: Sample Material : Sample Mix: Sample Date: Sample Age: Water Content (% Mass (g): Area (sq in) : Diameter (in) : Height (in) : Height to Dia. Rat Wet Density (pcf) Dry Density (pcf)	6): tio∶	Highway 9 N 19	USG 9 Bench S 921-2510 C1-H5 8/17/2020 7 days .2 .2 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .2 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	Scale Study A 008	Test Performed by : AS Test Date : $8/24/20$ Soil Type : Soil - CementSoil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: >62.5 psiLoading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.23 Strain at Failure (%): 1.55 U. C. Strength (psi) : 28.4 Shear Strength (psi): 14.2
Time Displ. (sec) (in) 0 0.000 3 0.003 6 0.005 9 0.008 12 0.010 15 0.012 18 0.015 21 0.017 24 0.020 27 0.022 33 0.027 39 0.033 45 0.037 51 0.042 57 0.047 63 0.052 69 0.057 75 0.062 81 0.067 87 0.072 102 0.085 117 0.097 132 0.110 147 0.123 162 0.135 177 0.147 192 0.158	Load (lbs) 0.0 2.0 4.1 5.8 9.0 11.9 16.0 20.0 27.0 33.0 46.0 58.2 67.4 77.1 83.6 87.9 91.4 92.8 92.1 90.5 73.7 55.5 39.2 31.5 23.9 21.8 20.0 	Cross Sectional Area (in ²) 3.27	Axial Strain (%) 0.00 0.07 0.13 0.19 0.24 0.30 0.37 0.42 0.50 0.56 0.68 0.81 0.93 1.06 1.18 1.30 1.43 1.55 1.67 1.80 2.12 2.43 2.76 3.07 3.36 3.67 3.96	Compress Strength (psi) 0.00 0.61 1.25 1.77 2.75 3.65 4.89 6.11 8.26 10.07 14.05 17.76 20.59 23.53 25.54 26.84 27.90 28.35 28.12 27.64 22.52 16.95 11.98 9.63 7.31 6.65 6.11	30.0 0

Client:				USG		Test Performed by :AS			
	Name :		Highwav 9		Scale Study	Test Date : 8/24/20			
	Location			Ailton, W					
	Number:			921-2510					
	Material		19	C1-H6		Soil Type : Soil - Cement			
Sample		•		01-110					
				0/17/000	0	Dreparation Mathedu a studie			
Sample			8	3/17/202	0	Preparation Method: Smoothed ends			
Sample	Age:			7 days					
						Pocket Penetrometer: 13.9 psi			
Water (Content (0/.).	32	2					
	•	/0).	-		-	Leading Data (in Insis) . 0.00			
Mass (g			380		-	Loading Rate (in/min) : 0.06			
Area (s	• •		3.3		_	Dial Rate : 5.8			
Diamet	. ,		2.0		-	Strain Rate (%/min) <u>1.49</u>			
Height	. ,		3.7		_	Strain at Failure (%): 8.86			
Height 1	to Dia. Ra	atio :	1.	8	_	U. C. Strength (psi) : 4.5			
Wet De	nsity (pcf	·):	115	5.9		Shear Strength (psi): 2.2			
	nsity (pcf)	,	87		-	<u> </u>			
,	2 (1 27)				-	[
Time	Displ.	Load	Cross	Axial	Compress	50			
			Sectional	Strain	Strength	5.0			
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	4.5			
0	0.000	0.0	3.31	0.00	0.00				
6	0.010	1.0	3.31	0.27	0.30	4.0			
12	0.015	1.5	3.31	0.41	0.47				
18	0.023	1.4	3.31	0.60	0.42	3.5 3.0 2.5 2.0 1.5			
27	0.032	2.2	3.31	0.84	0.68	3 3.0			
39	0.037	1.6	3.31	0.98	0.50	↓ ∃ St			
45	0.042	2.2	3.31	1.12	0.66	y 2.5			
51	0.048	2.4	3.31	1.26	0.73	2.0			
57	0.053	2.2	3.31	1.40	0.65				
63	0.057	2.2	3.31	1.52	0.67				
69	0.063	2.2	3.31	1.66	0.68				
75	0.068	2.2	3.31	1.79	0.66	1.0			
81	0.080	2.7	3.31	2.12	0.81	0.5			
96	0.093	2.8	3.31	2.47	0.86				
111	0.105	4.0	3.31	2.77	1.20	0.0			
126	0.117	3.9	3.31	3.09	1.19	0.0 2.0 4.0 6.0 8.0 10.0			
141	0.130	4.8	3.31	3.43	1.45	Axial Strain (%)			
156	0.142	5.5	3.31	3.77	1.66	L			
171	0.155	6.4	3.31	4.10	1.94				
186	0.167	6.2	3.31	4.43	1.87	Failure Sketch			
201	0.180	6.8	3.31	4.76	2.06				
216	0.193	7.6	3.31	5.12	2.30				
231	0.207	8.5	3.31	5.48	2.58				
246	0.221	9.1	3.31	5.84	2.75				
261	0.234	10.1	3.31	6.18	3.06				
276	0.248	10.5	3.31	6.57	3.19				
291	0.262	11.2	3.31	6.94	3.40				
306	0.277	12.2	3.31	7.33	3.69				
321	0.291	12.9	3.31	7.69	3.89				
336	0.306	13.8	3.31	8.09	4.18				
	0.320	14.4	3.31	8.47	4.36	Remarks: None.			
351									
351 366	0.335	14.8	3.31	8.86	4.47				
		14.8 14.4	3.31 3.31	8.86 9.25	4.47 4.36				

Client								
Client:	Nome		USG			Test Performed by : AS		
Project		_	Highway 99 Bench Scale St			Test Date : <u>8/31/20</u>		
	Project Location:		Milton, WA					
-	Number:		19	921-2510	008			
•	Material	:		C1-H1		Soil Type : <u>Soil - Cement</u>		
Sample								
Sample				3/17/202	0	Preparation Method: Smoothed ends		
Sample	Age:			14 days				
						Pocket Penetrometer: >62.5 psi		
	Content (%):	24		-			
Mass (g			393		-	Loading Rate (in/min) : 0.04		
Area (se			3.2		_	Dial Rate : 5.8		
Diamete	er (in) :		2.0)5	_	Strain Rate (%/min) 1.05		
Height ((in) :		3.9	98		Strain at Failure (%): 0.82		
Height t	to Dia. Ra	atio :	1.	9	_	U. C. Strength (psi) : 489.5		
Wet De	nsity (pcl	f):	114	4.4	-	Shear Strength (psi): 244.7		
	nsity (pcf)		92		-	<u> </u>		
,	- 7 (P*)	,			-			
Time	Displ.	Load	Cross	Axial	Compress	C00.0		
			Sectional	Strain	Strength	600.0		
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)			
0	0.000	0.0	3.29	0.00	0.00	500.0		
3	0.002	4.8	3.29	0.05	1.47			
6	0.004	31.1	3.29	0.10	9.44			
9	0.006	92.5	3.29	0.16	28.10			
12	0.009	173.0	3.29	0.21	52.56	S S S S S S S S S S S S S S S S S S S		
15	0.010	278.3	3.29	0.26	84.54	J → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 →		
18	0.013	402.8	3.29	0.31	122.38	300.0 300.0 200.0 0 0 0 0 0 0 0 0 0 0 0 0 0		
21	0.015	568.6	3.29	0.37	172.75			
24	0.017	743.4	3.29	0.43	225.87			
27	0.019	917.9	3.29	0.49	278.87			
30	0.021	1059.4	3.29	0.54	321.87	Ŭ		
33	0.024	1214.2	3.29	0.59	368.89	100.0		
36	0.026	1348.8	3.29	0.65	409.78			
39	0.028	1474.2	3.29	0.70	447.88			
42	0.030	1564.4	3.29	0.76	475.29	0.0 1.0 2.0 3.0 4.0 5.0		
46	0.032	1611.1	3.29	0.82	489.49			
49	0.035	1576.3	3.29	0.87	478.91	Axial Strain (%)		
52	0.037	1456.6	3.29	0.93	442.54			
58	0.042	1140.1	3.29	1.05	346.38	Failura Skatah		
64	0.047	899.3	3.29	1.19	273.22	Failure Sketch		
70	0.052	724.1	3.29	1.32	220.00	N 71		
76	0.058	566.8	3.29	1.47	172.20			
82	0.063	464.2	3.29	1.59	141.02			
88	0.069	379.2	3.29	1.74	115.22			
94	0.074	319.0	3.29	1.87	96.93			
100	0.079	267.6	3.29	1.99	81.30			
106	0.085	235.0	3.29	2.13	71.40			
112	0.090	208.7	3.29	2.25	63.42			
127 142	0.103	136.3	3.29	2.59 2.91	41.40			
142	0.116	95.0	3.29	2.91	28.85	Remarks: None		
						Remarks: None.		

Cliont						Test Performed by : AS	
Client:	Namo :		USG		Soolo Study		
	bject Name : <u>Highway 99 Bench S</u>			Test Date : <u>8/31/20</u>			
-	Location			Ailton, W			
-	Number:		19	921-2510	800	0.11.7	
	Material	:		C1-H2		Soil Type : <u>Soil - Cement</u>	
Sample				147/000		Dreneration Methods of the	
Sample			8	3/17/202		Preparation Method: Smoothed ends	
Sample	Age:			14 days			
						Pocket Penetrometer: >62.5 psi	
Water (Content (%).	24	.3			
Mass (g		<i>,</i> 0 <i>,</i> 1	365		-	Loading Rate (in/min) : 0.05	
Area (s			3.2		-	Dial Rate : 5.8	
Diamet	• •		2.0		-		
Height	• •		4.(-		
		atio :	4.0		-	Strain at Failure (%): 0.98	
-	to Dia. Ra				-	U. C. Strength (psi): 105.4	
	nsity (pc	,	105		-	Shear Strength (psi): 52.7	
Dry Der	nsity (pcf)):	85	.0	-		
Time	Displ.	Load	Cross	Axial	Compress		
			Sectional	Strain	Strength	120.0	
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)		
0	0.000	0.0	3.28	0.00	0.00	100.0	
3	0.002	2.2	3.28	0.06	0.68		
6	0.005	10.5	3.28	0.12	3.20		
9	0.007	18.8	3.28	0.17	5.72		
12	0.009	32.1	3.28	0.23	9.80		
15	0.012	49.2	3.28	0.29	14.99	Compressive Stress 0.08 (0.09	
18	0.014	65.6	3.28	0.34	20.01		
21	0.016	88.8	3.28	0.39	27.08		
24 27	0.018	115.6	3.28	0.44	35.22	월 40.0	
30	0.020	146.4 180.2	3.28 3.28	0.50 0.56	44.64 54.93		
33	0.023	210.6	3.28	0.62	64.20		
36	0.023	242.2	3.28	0.68	73.82	20.0	
39	0.029	270.3	3.28	0.73	82.39		
42	0.020	299.7	3.28	0.79	91.36	0.0	
45	0.035	324.4	3.28	0.86	98.89	0.0 1.0 2.0 3.0 4.0 5.0	
48	0.037	338.6	3.28	0.93	103.20	Axial Strain (%)	
51	0.040	345.8	3.28	0.98	105.40		
57	0.045	345.5	3.28	1.11	105.30		
63	0.050	321.2	3.28	1.24	97.91	Failure Sketch	
69	0.054	296.0	3.28	1.35	90.23		
75	0.059	268.7	3.28	1.47	81.89		
82	0.064	233.3	3.28	1.60	71.12		
88	0.069	206.7	3.28	1.71	63.00		
94	0.073	179.9	3.28	1.83	54.84		
100	0.078	159.2	3.28	1.95	48.52		
106	0.083	140.0	3.28	2.06	42.67		
112	0.088	125.0	3.28	2.20	38.10		
127	0.100	100.3	3.28	2.48	30.58		
142	0.112	83.9	3.28	2.78	25.58	Demorke: None	
157	0.124 0.136	78.0 71.6	3.28 3.28	3.08 3.38	23.78 21.81	Remarks: None.	
170							
172	0.130	71.0	5.20	5.50	21.01		
172	0.130	71.0	5.20	5.50	21.01		

Client						
Client:	Nome		USG			Test Performed by : AS
•	Dject Name : Highway 99 Bench Sc			Test Date : <u>8/31/20</u>		
	Location			Ailton, W		
	Number:		19	921-2510	800	
•	Material	:		C1-H3		Soil Type : Soil - Cement
Sample						
Sample				3/17/202		Preparation Method: Smoothed ends
Sample	Age:			14 days		
						Pocket Penetrometer: >62.5 psi
Water (Content (¢∕).	24	1		
	•	/0].	384		-	Loading Rate (in/min) : 0.05
Mass (g			3.2		-	Loading Rate (in/min) : 0.05 Dial Rate : 5.8
Area (so					-	
Diamete	• •		2.0		-	Strain Rate (%/min) <u>1.20</u>
Height (atio :	4.0		-	Strain at Failure (%): 1.04 U. C. Strength (psi): 234.4
-	to Dia. Ra				-	S (()
	nsity (pc	,	110		-	Shear Strength (psi):117.2
Dry Der	nsity (pcf)):	89	.3	-	
Time	Displ.	Load	Cross	Axial	Compress	050.0
			Sectional	Strain	Strength	250.0
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	
0	0.000	0.0	3.29	0.00	0.00	
3	0.003	1.7	3.29	0.06	0.52	
6	0.005	4.6	3.29	0.11	1.39	
9	0.007	16.5	3.29	0.18	5.02	
12	0.009	47.7	3.29	0.23	14.49	
15	0.011	89.7	3.29	0.28	27.24	Compressive Stress (DS)
18 21	0.014 0.016	140.2 193.8	3.29 3.29	0.34	42.57 58.87	
24	0.018	243.2	3.29	0.40	73.86	
27	0.021	298.7	3.29	0.51	90.73	
30	0.023	355.8	3.29	0.57	108.05	
33	0.025	417.7	3.29	0.63	126.87	50.0
36	0.028	479.3	3.29	0.69	145.58	
42	0.032	594.0	3.29	0.80	180.41	
48	0.037	702.5	3.29	0.92	213.35	
54	0.042	771.6	3.29	1.04	234.36	0.0 1.0 2.0 3.0 4.0 5.0
60	0.047	759.8	3.29	1.17	230.77	Axial Strain (%)
66	0.052	696.8	3.29	1.29	211.64	
73	0.057	634.0	3.29	1.43	192.56	Failure Sketch
79 85	0.062	579.5	3.29	1.55	176.00	Failure Sketch
85	0.067	524.5 468.6	3.29	1.67	159.29	
91 97	0.072 0.077	468.6	3.29 3.29	1.80 1.92	142.31 124.53	
97 112	0.090	288.8	3.29	2.24	87.71	
112	0.102	237.0	3.29	2.24	71.98	
142	0.115	202.2	3.29	2.86	61.42	
157	0.127	179.0	3.29	3.17	54.38	
172	0.139	168.5	3.29	3.47	51.16	
187	0.152	161.4	3.29	3.78	49.01	
202	0.164	163.9	3.29	4.07	49.76	
						Remarks: None.

Client: Project Name : Project Location Project Number Sample Materia Sample Mix: Sample Date: Sample Date: Sample Age: Water Content (Mass (g): Area (sq in) : Diameter (in) : Height (in) : Height to Dia. R Wet Density (pcf	%): atio : f) :	N 	Milton, W. 921-2510 C1-H4 3/17/202 14 days 2.1 29 05 01 0 3.1	0	Test Performed by : AS Test Date : $8/31/20$ Soil Type : Soil - CementSoil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: >62.5 psiDotading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.16 Strain at Failure (%): 1.15 U. C. Strength (psi) : 150.9 Shear Strength (psi): 75.5
Time Displ. (sec) (in) 0 0.000 3 0.002 6 0.005 9 0.007 12 0.009 15 0.012 18 0.014 21 0.016 24 0.018 27 0.021 30 0.023 33 0.025 36 0.027 42 0.032 48 0.037 54 0.041 60 0.046 66 0.051 72 0.056 79 0.061 85 0.066 91 0.071 97 0.077 112 0.089 127 0.101 142 0.114 157 0.126 172 0.137 187 0.150	Load (lbs) 0.0 0.9 4.5 15.5 34.0 57.0 86.1 121.7 158.3 202.9 246.3 288.4 326.9 402.0 456.8 483.0 496.8 483.0 496.8 489.1 462.6 432.2 398.0 369.9 339.1 258.9 187.1 132.1 110.9 99.9 91.4	Cross Sectional Area (in ²) 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29	Axial Strain (%) 0.00 0.05 0.12 0.18 0.24 0.29 0.35 0.41 0.46 0.52 0.58 0.63 0.63 0.68 0.80 0.92 1.03 1.15 1.28 1.40 1.53 1.65 1.77 1.91 2.22 2.52 2.84 3.13 3.42 3.73	Compress Strength (psi) 0.00 0.28 1.37 4.72 10.34 17.32 26.17 36.98 48.09 61.65 74.83 87.61 99.31 122.13 138.78 146.73 150.93 148.59 140.55 131.32 120.93 148.59 140.55 131.32 120.93 112.37 103.03 78.66 56.85 40.12 33.69 30.36 27.77	160.0 100.0 120.0 100.0 <td< td=""></td<>

Client: Project Name : Project Location: Project Number: Sample Material : Sample Mix: Sample Date: Sample Age: Water Content (%): Mass (g): Area (sq in) : Diameter (in) : Height (in) : Height to Dia. Ratio : Wet Density (pcf) : Dry Density (pcf) :		USG Highway 99 Bench Scale S Milton, WA 19921-251008 C1-H5 8/17/2020 14 days 25.8 380.1 3.28 2.04 4.00 2.0 110.5 87.8			Test Performed by : AS Test Date : $8/31/20$ Soil Type : Soil - CementSoil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: >62.5 psiDocket Penetrometer: >62.5 psiLoading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.23 Strain at Failure (%): 1.39 U. C. Strength (psi) : 44.6 Shear Strength (psi): 22.3
Time Displ. (sec) (in) 0 0.000 3 0.002 6 0.004 9 0.007 12 0.010 15 0.012 18 0.014 21 0.016 24 0.019 27 0.021 30 0.024 33 0.026 39 0.031 45 0.036 51 0.041 57 0.046 63 0.051 69 0.055 75 0.060 82 0.066 88 0.071 94 0.076 109 0.088 124 0.101 139 0.114 154 0.126 169 0.139	Load (lbs) 0.0 0.6 1.1 2.5 7.0 16.3 26.8 39.9 54.5 70.9 86.3 98.2 116.5 130.2 138.1 143.9 145.3 146.0 144.6 140.8 137.8 132.2 109.4 81.2 58.9 44.8 33.4	Cross Sectional Area (in ²) 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28	Axial Strain (%) 0.00 0.06 0.11 0.19 0.24 0.31 0.36 0.41 0.47 0.53 0.60 0.66 0.78 0.90 1.02 1.14 1.27 1.39 1.51 1.64 1.76 1.90 2.21 2.85 3.16 3.47	Compress Strength (psi) 0.00 0.19 0.33 0.75 2.15 4.97 8.18 12.18 16.64 21.66 26.34 29.99 35.56 39.77 42.16 43.93 44.37 44.57 44.16 43.00 42.07 40.35 33.39 24.78 17.98 13.67 10.19	50.0 0.0

Olianti						Strength (ASTM D1633)		
	Client: Project Name :			USG		Test Performed by : AS		
				/ 99 Bench Scale Study		y Test Date : <u>8/31/20</u>		
•	Location			Milton, W		_		
-	Number:		19	921-2510	800	-		
	Material	:		C1-H6		Soil Type : Soil - Cement		
Sample						_		
Sample	Date:		8	3/17/202	0	Preparation Method: Smoothed ends		
Sample	Age:			14 days		<u> </u>		
	Ũ					Pocket Penetrometer: 20.8 psi		
Water C	Content (%):	32	.0				
Mass (g	g):		378	3.5	_	Loading Rate (in/min) : 0.05		
Area (s			3.3	30	-	Dial Rate : 5.8		
Diamete	• •		2.0		-	Strain Rate (%/min) 1.25		
Height (• •		3.8		_	Strain at Failure (%): 10.08		
•	to Dia. Ra	atio ·	1.		-	U. C. Strength (psi) : 4.7		
-	nsity (pcl		11:		-	Shear Strength (psi): 2.3		
	• •				-			
Dry Der	nsity (pcf)):	87	.3	-			
Time	Displ.	Load	Cross	Axial	Compress	s		
			Sectional	Strain	Strength	5.0		
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	4.5		
0	0.000	0.0	3.30	0.00	0.00			
18	0.014	0.3	3.30	0.36	0.08	4.0		
42	0.033	0.8	3.30	0.88	0.24			
67	0.053	1.3	3.30	1.40	0.40	Compression (Section 1.5)		
91	0.073	2.0	3.30	1.91	0.60			
106	0.084	2.6	3.30	2.21	0.78			
121	0.096	3.1	3.30	2.54	0.94	2.5		
136	0.109	3.7	3.30	2.87	1.12			
151	0.121	4.3	3.30	3.20	1.31			
166	0.134	5.0	3.30	3.53	1.52			
181	0.145	5.4	3.30	3.82	1.65			
196	0.158	6.3	3.30	4.15	1.90			
211	0.170	7.0	3.30	4.47	2.12	0.5		
226	0.182	7.7	3.30	4.78	2.33			
241	0.194	8.4	3.30	5.10	2.56	0.0		
256	0.205	9.1	3.30	5.41	2.77	0.0 2.0 4.0 6.0 8.0 10.0 12.0		
271	0.217	9.7	3.30	5.71	2.95	Axial Strain (%)		
286	0.229	10.5	3.30	6.04	3.19	7		
301	0.242	11.2	3.30	6.37	3.39]		
316	0.255	11.9	3.30	6.70	3.62	Failure Sketch		
331	0.267	12.7	3.30	7.04	3.86	7		
346	0.280	13.4	3.30	7.38	4.05			
361	0.293	13.8	3.30	7.71	4.18	ן א א א א א א א א א א א א א א א א א א א		
376	0.306	14.5	3.30	8.06	4.41] /		
391	0.319	14.9	3.30	8.40	4.52] /		
406	0.331	15.1	3.30	8.72	4.58] /		
421	0.343	15.2	3.30	9.04	4.61	ן <i>ו</i> און ר		
436	0.357	15.3	3.30	9.39	4.65	ן /		
451	0.370	15.4	3.30	9.74	4.66	1		
466	0.383	15.4	3.30	10.08	4.68	7		
482	0.395	15.3	3.30	10.41	4.64	Remarks: None.		
497	0.408	15.1	3.30	10.74	4.59	1		
512	0.421	14.7	3.30	11.07	4.45	1		
527	0.434	14.2	3.30	11.42	4.32	1		

Client:				USG		Test Performed by :AS		
Project	Name :		Highway 9	9 Bench S	Scale Study			
-	Location			Ailton, W				
	Number:			921-2510				
	Material			C1-H1		Soil Type : Soil - Cement		
Sample		•						
Sample				3/17/202	0	Proparation Method: Smoothad and		
						Preparation Method: <u>Smoothed ends</u>		
Sample	Age:			28 days		Desket Denetrometer		
						Pocket Penetrometer: >62.5 psi		
Water (Content (%):	23	.7				
Mass (g	•		384		-	Loading Rate (in/min) : 0.04		
					-			
Area (se	• •		3.3		-			
Diamete	• •		2.0		-	Strain Rate (%/min) <u>1.06</u>		
Height (. ,		3.9		-	Strain at Failure (%): <u>1.01</u>		
-	o Dia. Ra		1.		_	U. C. Strength (psi) : 469.3		
	nsity (pcf		111	1.8	_	Shear Strength (psi): 234.7		
Dry Der	nsity (pcf)	:	90	.4	_			
Time	Displ.	Load	Cross	Axial	Compress			
	Diopi.	2000	Sectional	Strain	Strength	500.0 +		
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)			
(Sec) 0	0.000	0.0	3.30	0.00	(psi) 0.00	450.0		
3	0.000	3.3	3.30	0.05	1.01	400.0		
6	0.002	17.2	3.30	0.03	5.22			
9	0.003	32.1	3.30	0.12	9.73	a 350.0		
9 12	0.007	38.8	3.30	0.17	9.73 11.76	s s s s s s s s		
12	0.008	48.7	3.30	0.21	14.78			
15	0.010	46.7 66.9	3.30	0.25	20.29	2 250.0 ↓ ↓ ↓		
21	0.012	72.2	3.30	0.36	21.90	9 250.0 9 200.0		
24	0.014	99.9	3.30	0.30	30.32			
24	0.018	128.1	3.30	0.41	38.87	150.0		
30	0.010	191.9	3.30	0.40	58.24			
34	0.020	307.5	3.30	0.56	93.30	100.0		
37	0.022	450.5	3.30	0.61	136.68			
40	0.024	430.3 603.3	3.30	0.66	183.07	50.0		
40	0.020	767.8	3.30	0.00	232.97	0.0		
46	0.020	918.2	3.30	0.76	278.61	0.0 1.0 2.0 3.0 4.0 5.0		
49	0.033	1072.7	3.30	0.83	325.50	Axial Strain (%)		
52	0.035	1196.6	3.30	0.88	363.07	L, ,		
55	0.037	1295.8	3.30	0.94	393.18			
58	0.007	1546.7	3.30	1.01	469.32	Failure Sketch		
64	0.046	1046.6	3.30	1.17	317.55			
70	0.052	687.1	3.30	1.30	208.49			
76	0.052	578.5	3.30	1.44	175.53			
82	0.062	508.5	3.30	1.57	154.30			
88	0.068	472.0	3.30	1.70	143.22			
94	0.000	433.8	3.30	1.83	131.62			
100	0.078	407.2	3.30	1.95	123.54			
100	0.083	390.5	3.30	2.08	118.48			
112	0.083	390.3 375.4	3.30	2.00	113.90	<u>V</u> _		
112	0.088	375.4	3.30	2.21	107.30			
133	0.092	334.1	3.30	2.62	107.30	Remarks: None.		
133	0.104	316.6	3.30	2.02	96.05			
140	0.117	510.0	3.30	2.90	50.05			
4								
			1					

Project Sample Sample Sample Sample Water O Mass (g Area (so Diamete Height (Location: Number: Material Mix: Date: Age: Content (⁴ g): q in) : er (in) : (in) : to Dia. Ra	: : %): atio :	Highway 9 N 19 23 23 368 3.2 2.0 3.5 1.	USG 9 Bench S 921-2510 C1-H2 3/17/202 28 days .5 3.6 29 05 98 9	Scale Study A 008 0	Test Performed by : AS Test Date : $9/14/20$ Soil Type : Soil - CementSoil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: >62.5 psiLoading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.25 Strain at Failure (%): 1.32 U. C. Strength (psi) : 149.2
	nsity (pcf nsity (pcf)	,	<u>107</u> 87		-	Shear Strength (psi): 74.6
Time	Displ.	Load	Cross Sectional	.0 Axial Strain	Compress Strength	160.0
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	
0	0.000	0.0	3.29	0.00	0.00	140.0
3	0.003	0.7	3.29	0.06	0.22	·⊋120.0
6 9	0.005 0.007	10.4 30.7	3.29 3.29	0.13 0.18	3.17 9.34	
9 12	0.007	36.3	3.29	0.18	9.34	0.0 40.0 40.0
15	0.000	50.6	3.29	0.27	15.39	š
18	0.013	75.5	3.29	0.34	22.96	
21	0.016	102.4	3.29	0.39	31.15	
24	0.018	136.6	3.29	0.45	41.54	
27	0.020	174.6	3.29	0.50	53.12	
30	0.022	220.0	3.29	0.55	66.94	
33 36	0.025 0.027	267.9 310.9	3.29 3.29	0.62	81.51 94.57	20.0
30	0.027	345.0	3.29	0.68	94.57 104.96	
42	0.029	379.1	3.29	0.80	115.33	0.0
45	0.034	407.2	3.29	0.87	123.86	0.0 1.0 2.0 3.0 4.0 5.0
48	0.037	435.7	3.29	0.93	132.55	Axial Strain (%)
51	0.040	456.1	3.29	1.00	138.74	
54	0.042	471.5	3.29	1.06	143.43	
57	0.045	481.8	3.29	1.13	146.57	Failure Sketch
60 60	0.047	489.9	3.29	1.19	149.02	
66 72	0.052 0.057	490.6 476.6	3.29 3.29	1.32 1.44	149.24 145.00	
72	0.057	476.6	3.29	1.44	145.00	
84	0.063	453.7	3.29	1.57	128.07	
90	0.073	384.5	3.29	1.83	116.96	
96	0.078	342.7	3.29	1.96	104.26	
102	0.084	299.3	3.29	2.10	91.06	
108	0.089	261.9	3.29	2.23	79.69	
114	0.094	233.5	3.29	2.36	71.04	
120	0.099	209.0	3.29	2.48	63.57	Remarks: None.
135	0.112	168.3	3.29	2.81	51.20	
1	0 1 0 5			0 10	44.00	_
150 165	0.125 0.136	138.0 114.5	3.29 3.29	3.13 3.43	41.99 34.85	

Client: USG Test Performed by: AS Project Name : Highway 99 Bench Scale Study Test Performed by: AS Project Number: 19921-251008 Sample Material : C1-H3 Sample Material : C1-H3 Sample Material : Soil Type : Soil - Cement Sample Age: 28 days Project Number: $9021-251008$ Sample Age: 28 days Preparation Method: Smoothed ends Water Content (%): 23.4 Loading Rate (in/min) : 0.05 Mass (g): 381.2 Loading Rate (in/min) : 0.05 Diameter (in) : 2.0 Strain Rate (%/min) 1.14 Weit Density (pcf) : 99.1 Strain Rate (%/min) 1.14 Us Construct (psi) : 3.29 0.00 0.00 0.329 0.00 0.00 0 0.000 0.3 3.29 0.31 126 900 900 900 0 0.000 13.29 0.31 126 900 900 900 900 900 900 900 900 900 900 900 900 <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th>						-			
Project Location: Milton, WA Project Number: 19921-251008 Sample Material : C1-H3 Sample Material : C1-H3 Sample Material : 0.1 -H3 Sample Mix: 0.1 -H3 Sample Material : 0.1 -H3 Sample Mix: 0.1 -H3 Sample Material : 0.1 -H3 Sample Mix: 0.1 -H3 Sample Material : 0.1 -H3 Sample Material : 0.1 -H3 Sample Material : 0.1 -S Water Content (%): 0.1 -S Mass (g): 3.29 Diameter (in) : 2.05 Wet Density (pc1) : 109.9 Dry Density (pc1) : 109.9 Dry Density (pc1) : 109.9 Dry Density (pc1) : 329 0.21 1.49 10 0.000 0.5 3.29 0.00 0.00 30.003 0.5 3.29 0.21 1.49 10 0.002 1.25 3.29 0.21 1.49 113 0.002 1.25 3.29 0.55	Client:				USG		Test Performed by : <u>AS</u>		
Project Number: 19921-251008 Sample Material : C1-H3 Sample Material : C1-H3 Sample Date: $8/17/2020$ Sample Age: 28 days Water Content (%): 23.4 Mass (g): 381.2 Area (sq in) : 3.29 Diameter (in) : 4.02 Height (in) : 4.02 Water Donsity (pcf) : 89.1 Time Displ. Load (in) (b): 89.1 Time Displ. Load Cross (sec) (in) (b): 279.4 Sctional Strain at Failure (%): 1.14 U C. Strength (psi): 133.7 Time Displ. Load Cross (in) (b): 3.29 0.00 0.00 13 0.009 2.5 8.01 19.07 13 0.002 2.29 0.27 9.34 9.02 19 0.012 4.16 3.29 0.35 19.34 22 0.014 63.6 3.29	•						Test Date : <u>9/14/20</u>		
Sample Material : C1-H3 Soil Type :									
Sample Mix: Sample Date: Sample Age: $28 days Preparation Method: Smoothed ends Water Content (%): 331.2 Water Content (%): 32.4 Mass (g): 381.2 Diameter (in): 2.05 Vet Density (pcf): 109.9 Dry Density (pcf): 88.1 Time Displ. Load Cross Axial Compression of the formation o$	Project	Number:		19	921-2510	008			
Sample Mix: Sample Date: Sample Age: Date: Sample Age: Water Content (%): Cast in the interval of the interval	Sample	Material	:		C1-H3		Soil Type : Soil - Cement		
Sample Date: $8/17/2020$ Preparation Method: Smoothed ends Sample Age: $28 days$ Pocket Penetrometer: $>52.5 psi$ Water Content (%): 23.4 Loading Rate (in/min) : 0.05 Mass (g): 322 Dial Rate : 5.8 Diameter (in) : 4.02 Loading Rate (in/min) : 0.05 Height (in) : 4.02 U. C. Strength (psi) : 1.14 Wet Density (pcf) : 109.9 Strain Strength Shear Strength (psi) : $1.39.7$ Time Displ. Load Cross Axial Compress Sectional Strain Strength 50.00 50.00 10 0.007 15.1 3.29 0.02 90.00 50.00 11 0.002 22.5 3.29 0.27 9.34 90.07 <									
Sample Age: 28 days Water Content (%): 23.4 Mass (g): 381.2 Area (sq in) : 2.05 Diameter (in) : 4.02 Height (n) : 4.02 Water Density (pcf) : 109.9 Dry Density (pcf) : 89.1 Time Displ. Load (esc) (in) (lbs) Sectional Artain Strain Area (arg (n) : 3.29 0.00 0 0.000 0.0 3.29 0.000 0.0 3.29 0.006 13 0.009 22.5 3.29 13 0.009 2.5 3.29 0.23 13 0.002 41.5 3.29 0.23 6.84 16 0.011 30.7 3.29 0.23 6.84 16 0.012 41.5 3.29 0.35 19.34 22 0.014 63.66 3.29 0.35 19.34 22 0.018 130.6 3.29 0.67 121.97 31<					3/17/202	0	Preparation Method: Smoothed ends		
Pocket Penetrometer: $\rightarrow 62.5 \text{ psi}$ Water Content (%):381.2Area (sq in) : 3.29 Diameter (in) : 4.02 Height (in) : 4.02 Time Displ. LoadCross Axial StrainCompress Strength (psi) : 1.14 Time Displ. LoadCross Axial Strain (%)Compress Strength (psi) : 39.1 Time Displ. LoadCross Axial Strain (%)Compress Strength (psi) : 39.1 Time Displ. LoadCross Axial Compress Sectional Strain (%) 52.000 0.0									
Water Content (%): 23.4 Mass (g): 381.2 Area (sq in) : 3.29 Diameter (in) : 2.05 Height (in) : 4.02 Height (in) : 4.02 Wet Density (pcf) : 109.9 Dry Density (pcf) : 89.1 Time Displ. Load Sectional Strain Sectional Strain (sec) (in) (bs) 0 0.003 0.5 3.29 0.00 0 0.003 0.5 3.29 0.06 0.00 13 0.009 2.25 3.29 0.31 12.62 22 0.014 63.6 3.29 0.31 12.62 13 0.020 192.9 3.29 0.55 80.19 31 0.021 13.29 0.61 19.07 1.66.43 24 0.024 3.29 0.67 121.97 10.0 31 0.022 28.3.8 3.29 0.55 80.19 37 0.024 32.9	Campic	rige.			20 0030		Pocket Penetrometer:		
Mass (g): 381.2 Area (sq in) : 3.29 Diameter (in) : 2.05 Height (in) : 4.02 Height (in) : 4.02 Wet Density (pcf) : 109.9 Dry Density (pcf) : 89.1 Time Displ. Load Sectional Strain Sectional Strain 0 0.000 0.00 3 3.29 0.06 0.11 30.003 0.5 3 3.29 0.06 13 0.009 22.5 22 0.014 63.6 34 0.022 263.8 34 0.022 263.8 34 0.022 263.8 34 0.022 263.8 34 0.022 263.8 329 0.77 148.40 46 0.031 571.0 329 0.77 148.40 76 0.056 791.3 3.29 13 0.029 488.4 46 0.041 856.6 329 1.14 270.3 1.14 271.0 1.26 28 0.062 669.2 32									
Area (sqi in): 3.29 Diameter (in): 3.29 Diameter (in): 5.8 Diameter (in): 4.02 2.05 Strain Rate (%/min) 1.14 Height (n): 4.02 109.9 Strain Rate (%/min) 1.14 Height (n): 109.9 0.02 109.9 Strain Rate (%/min) 1.14 TimeDispl.LoadCrossAxialCompress(sec)(in)(tbs)Area (in')(%)((psi)) $1.97.9$ 00.0000.0 3.29 0.000.0030.0030.5 3.29 0.02 0.06 130.009 22.5 3.29 0.23 6.84 160.011 30.7 3.29 0.23 6.84 190.012 41.5 3.29 0.39 17.83 280.018 130.6 3.29 0.55 80.19 370.024 429.9 3.29 0.67 121.97 400.027401.2 3.29 0.67 121.97 400.027401.2 3.29 1.14 279.38 700.051 87.70 3.29 1.69 170.58 940.064 691.90 3.29 1.69 170.58 940.074 474.9 3.29 1.83 144.38 1010.079 412.1 3.29 1.69 170.58 940.064 690.0 3.29 2.10 112.47 1130.084 360.0 3.29 <td< td=""><td>Water C</td><td>Content (</td><td>%):</td><td>23</td><td>.4</td><td></td><td></td></td<>	Water C	Content (%):	23	.4				
Area (sqi in) : Diameter (in) : Height (in) : Height (in) : Time Time (sec) (in) (tbs) 10000 3.29 2.0 Dial Rate : 2.0 5.8 Strain Rate (%/min) U. C. Strength (psi) : 11.4 U. C. Strength (psi) : 139.7 Time (sec) (in) (tbs) 0 0.000 0.000 0.0 3.29 0.00 0.00 0.00 0.000 3.29 0.00 0.00 0.000 3 0.003 0.05 4.9 13 0.29 0.22 0.12 1.4 1.4 1.4 10 0.007 0.5 3.29 0.23 0.23 6.84 13 11 10 0.007 15.1 3.29 0.22 0.23 0.39 6.84 12.62 22 20.014 6.36 3.29 0.021 22 0.014 13 0.020 13.29 0.23 0.23 19.34 19.002 12.62 13.002 28 0.011 30.02 192.9 3.29 0.23 0.39 12.62 10.00 22 0.036 31 0.022 0.67 12.89 12.83 13.82 28 0.036 131 0.022 1.14 229 0.23 1.14 249.87 70 0.051 87.70 3.29 1.26 1.262 2.66611 2.26 1.262 68 44 0.022 689.2 3.29 1.14 249.87 70 0.051 87.70 3.29 1.262 1.262 94 0.024 0.322 1.33 1.262 1.484 101 0.072 0.067 1.33 3.29 1.14 249.87 70 10.202 83.29 1.262 1.14	Mass (c	ı):	,	38	1.2	-	Loading Rate (in/min): 0.05		
Diameter (in) : 2.05 Height (in) : 4.02 Height (in) : 4.02 Wet Density (pcf) : 109.9 Dry Density (pcf) : 109.9 TimeDispl.LoadCrossAxialSectionalStrainStrain Rate (%)(min) 1.14 (sec) (in)(tbs) Area (in ²) (%)00.0000.0030.53.290.00100.00715.13.290.121.48160.01130.00922.5220.01463.63.290.02141.53.290.311220.01413.0.00922.5220.01413.0.00922.53.290.3113.0.00922.53.290.5058.661340.0221430.024325.93.290.67121.97430.0274430.0284443290.72148.49700.051877.03.291.520.361.523.291.691.70.58940.034650.132.91.55203.44880.068561.132.91.55203.44880.068561.132.91.55203.44880.062669						_			
Height (in) : 4.02 Strain at Failure (%): 1.14 Height to Dia. Ratio : 2.0 2.0 2.0 1.14 Wet Density (pcf) : 109.9 109.9 $Strain at Failure (%):$ $1.39.7$ TimeDispl.LoadCrossAxialCompress(sec)(in)(lbs)Area (in ²)(%)(psi)00.0000.03.290.060.1560.0054.93.290.121.49130.00922.53.290.236.84160.01130.73.290.279.34130.00219.53.290.3519.34220.01463.63.290.3927.83280.018130.63.290.5580.19310.020192.93.290.67121.97430.022263.83.290.67121.97430.024488.43.290.72148.49700.051877.03.291.62266.61760.056661.13.291.14279.38700.051877.03.291.69170.58940.074474.93.291.83144.381010.079412.13.291.97125.291070.084360.03.292.10115.751280.102287.83.292.5387.501430.114268.8 <td>•</td> <td>• •</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	•	• •				-			
Height to Dia. Ratio : 2.0 Wet Density (pcf) : 109.9 Time Displ. Load (sec) (in) (bs) 0 0.000 0.0 3 0.003 0.5 6 0.0005 4.9 10 0.007 15.1 15.1 3.29 0.018 13 0.002 22.5 22 0.014 63.6 13 0.002 19.3 19 0.012 41.5 3.29 22 0.014 130.6 3.29 0.35 13 0.020 192.9 3.29 0.36 28 0.018 130.6 3.29 0.61 31 0.022 488.4 3.29 0.77 140 0.024 32.59 3.29 0.61 38 0.041 856.6 3.29 0.77 10 0.024 32.9 0.77 173.59 43 0.022 488.4 3.29 1.14 279.38 70		• •				-			
109.9 Shear Strength (psi): 139.7 Time Displ. Load Cross Axial Compress Time Displ. Load Cross Strength (psi): 139.7 Time Displ. Load Cross Strength (psi): 139.7 Out (ibs) Area (in ²) (%) (psi): 139.7 0 0.000 0.0 3.29 0.12 1.49 (psi)	•	· /	atio :			-			
Dry Density (pcf): 89.1 Time Displ. Load Cross Axial Compress Sectional Strain Strength (psi) 0 0 0 0.000 0.0 3.29 0.00 0.00 3 0.003 0.5 3.29 0.06 0.00 13 0.009 22.5 3.29 0.23 6.84 16 0.011 30.7 3.29 0.27 9.34 19 0.012 41.5 3.29 0.31 12.62 22 0.014 63.6 3.29 0.31 12.62 22 0.014 63.6 3.29 0.44 39.70 31 0.022 488.4 3.29 0.55 58.0.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.72 148.49 75 0.034 656.2 3.29 1.01 260.47	-					-			
Time Displ. Load Cross Sectional Axial Strain Compress Strength (psi) 0 0.000 0.0 3.29 0.00 0.00 3 0.003 0.5 3.29 0.06 0.15 6 0.005 4.9 3.29 0.12 1.49 10 0.007 15.1 3.29 0.23 6.84 16 0.011 30.7 3.29 0.23 6.84 19 0.012 41.5 3.29 0.35 19.34 22 0.014 63.6 3.29 0.35 19.34 22 0.018 130.6 3.29 0.35 19.44 23 0.021 9.29 3.29 0.55 80.19 31 0.022 263.8 3.29 0.77 173.59 44 0.027 401.2 3.29 0.67 121.97 43 0.024 827.0 3.29 1.14 279.38 70 0.05			,			_	Snear Strength (psi): 139.7		
(sec)(in)(lbs)Area (in ²)(%)(psi)00.0000.03.290.000.0030.0030.553.290.060.0560.0054.93.290.121.49100.00715.13.290.236.84160.01130.73.290.279.34190.01241.53.290.3112.62220.01463.63.290.3519.34250.01591.53.290.3519.34250.016192.93.290.5580.19310.020192.93.290.67121.97430.022263.83.290.67121.97430.024325.93.290.67121.97430.029488.43.290.77173.59490.034652.23.291.08198.27520.056731.43.291.69222.37580.041856.63.291.01260.42640.046919.03.291.41240.57820.062669.23.291.55203.44840.074474.93.291.83144.381010.072412.13.291.97125.291070.084369.03.292.21112.171330.102267.83.292.5537.50 <td< td=""><td>Dry Der</td><td>nsity (pcf)</td><td>):</td><td>89</td><td>.1</td><td>_</td><td></td></td<>	Dry Der	nsity (pcf)):	89	.1	_			
(sec)(in)(lbs)Area (in ²)(%)(psi)00.0000.03.290.000.0030.0030.553.290.060.0560.0054.93.290.121.49100.00715.13.290.236.84160.01130.73.290.279.34190.01241.53.290.3112.62220.01463.63.290.3519.34250.01591.53.290.3519.34250.016130.63.290.3927.83280.01813.063.290.67121.97310.020192.93.290.67121.97430.022263.83.290.67121.97430.029488.43.290.77173.59490.034652.23.291.08222.37580.041856.63.291.01260.42640.046919.03.291.41240.57820.062669.23.291.55203.44840.068561.13.291.83144.380.100.074474.93.291.83144.380.100.074474.93.291.93145.291070.084369.03.292.10112.171130.0102287.83.292.5337.50 <tr< td=""><td>Time</td><td>Displ.</td><td>Load</td><td>Cross</td><td>Axial</td><td>Compress</td><td></td></tr<>	Time	Displ.	Load	Cross	Axial	Compress			
(sec)(in)(ibs)Area (in ²)(%)(psi)00.0000.03.290.000.0030.0030.53.290.060.1560.0054.93.290.121.49100.00715.13.290.279.34190.01241.53.290.3112.62220.01463.63.290.3519.34220.01591.53.290.3927.83280.018130.63.290.5580.19310.022263.83.290.5580.19370.024325.93.290.6199.07400.027401.23.290.6199.07430.029488.43.290.77173.59520.036731.43.290.83198.27520.066791.33.291.14279.38700.05187.103.291.14240.57820.062669.23.291.55203.44840.074474.93.291.83144.381010.079412.13.291.97125.291070.084369.03.292.10112.171130.089341.83.292.22103.9111430.114263.83.292.5387.501430.114263.83.292.8480.20 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>300.0</td>	-						300.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(sec)	(in)	(lbs)			_			
3 0.003 0.5 3.29 0.06 0.15 6 0.005 4.9 3.29 0.12 1.49 10 0.007 15.1 3.29 0.12 1.49 13 0.009 22.5 3.29 0.23 6.84 16 0.011 30.7 3.29 0.27 9.34 19 0.012 41.5 3.29 0.31 12.62 22 0.014 63.6 3.29 0.35 19.34 25 0.015 91.5 3.29 0.30 27.83 3 0.020 192.9 3.29 0.50 58.66 34 0.022 263.8 3.29 0.72 148.49 46 0.031 571.0 3.29 0.72 148.49 46 0.041 85.6 3.29 0.72 148.49 70 0.051 877.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.062 669.2 3.29									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
19 0.012 41.5 3.29 0.31 12.62 22 0.014 63.6 3.29 0.35 19.34 25 0.015 91.5 3.29 0.39 27.83 28 0.018 130.6 3.29 0.44 39.70 31 0.020 192.9 3.29 0.50 58.66 34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 1.41 279.38 70 0.051 877.0 3.29 1.14 279.38 70 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.83 144.38 101 0.079 412.1 3.29 2.22 103 114 263.8 3.29 2.22 103 114.1 240.57 82 0.102 287.8 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
19 0.012 41.5 3.29 0.31 12.62 22 0.014 63.6 3.29 0.35 19.34 25 0.015 91.5 3.29 0.39 27.83 28 0.018 130.6 3.29 0.44 39.70 31 0.020 192.9 3.29 0.50 58.66 34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 1.41 279.38 70 0.051 877.0 3.29 1.14 279.38 70 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.83 144.38 101 0.079 412.1 3.29 2.22 103 114 263.8 3.29 2.22 103 114.1 240.57 82 0.102 287.8 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-								
19 0.012 41.5 3.29 0.31 12.62 22 0.014 63.6 3.29 0.35 19.34 25 0.015 91.5 3.29 0.39 27.83 28 0.018 130.6 3.29 0.44 39.70 31 0.020 192.9 3.29 0.50 58.66 34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 1.41 279.38 70 0.051 877.0 3.29 1.14 279.38 70 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.83 144.38 101 0.079 412.1 3.29 2.22 103 114 263.8 3.29 2.22 103 114.1 240.57 82 0.102 287.8 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
19 0.012 41.5 3.29 0.31 12.62 22 0.014 63.6 3.29 0.35 19.34 25 0.015 91.5 3.29 0.39 27.83 28 0.018 130.6 3.29 0.44 39.70 31 0.020 192.9 3.29 0.50 58.66 34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 1.41 279.38 70 0.051 877.0 3.29 1.14 279.38 70 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.83 144.38 101 0.079 412.1 3.29 2.22 103 114 263.8 3.29 2.22 103 114.1 240.57 82 0.102 287.8 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> ǯ</td>							ǯ		
34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.72 148.49 46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102							150.0 [
34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.72 148.49 46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102									
34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.72 148.49 46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102				1			ğ		
34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.72 148.49 46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102									
34 0.022 263.8 3.29 0.55 80.19 37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.72 148.49 46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102							∥₿ † ┺╋		
37 0.024 325.9 3.29 0.61 99.07 40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.72 148.49 46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.046 919.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089									
40 0.027 401.2 3.29 0.67 121.97 43 0.029 488.4 3.29 0.72 148.49 46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.046 919.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.53 87.50 143 0.114 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
43 0.029 488.4 3.29 0.72 148.49 46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.046 919.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20				1					
46 0.031 571.0 3.29 0.77 173.59 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.046 919.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.83 144.38 101 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 2.22 103.91 128 0.102 287.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20									
10 0.0301 0110 0.20 0.11 11030 49 0.034 652.2 3.29 0.83 198.27 52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.046 919.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.69 170.58 94 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20				1					
52 0.036 731.4 3.29 0.89 222.37 58 0.041 856.6 3.29 1.01 260.42 64 0.046 919.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.69 170.58 94 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20									
58 0.041 856.6 3.29 1.01 260.42 64 0.046 919.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.69 170.58 94 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 2.10 112.17 113 0.089 341.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20									
64 0.046 919.0 3.29 1.14 279.38 70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.69 170.58 94 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20				1					
70 0.051 877.0 3.29 1.26 266.61 76 0.056 791.3 3.29 1.41 240.57 82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.69 170.58 94 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20						1	Failure Sketch		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1					
82 0.062 669.2 3.29 1.55 203.44 88 0.068 561.1 3.29 1.69 170.58 94 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 287.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20						1			
88 0.068 561.1 3.29 1.69 170.58 94 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 287.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20				1					
94 0.074 474.9 3.29 1.83 144.38 101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 287.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20						1			
101 0.079 412.1 3.29 1.97 125.29 107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 287.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20									
107 0.084 369.0 3.29 2.10 112.17 113 0.089 341.8 3.29 2.22 103.91 128 0.102 287.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20				1					
113 0.089 341.8 3.29 2.22 103.91 128 0.102 287.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20									
128 0.102 287.8 3.29 2.53 87.50 143 0.114 263.8 3.29 2.84 80.20									
143 0.114 263.8 3.29 2.84 80.20				1					
						1			
							Remarks: None		
	100	0.127	240.4	3.29	3.13	74.90			

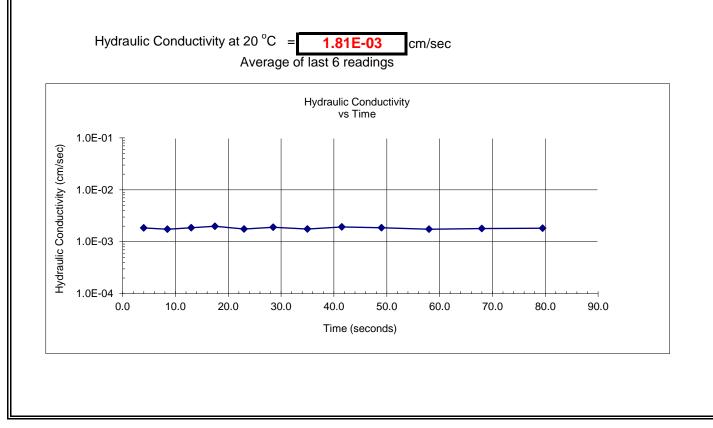
Client:				USG		Test Performed by : AS		
Project	Name :		Highwav 9		Scale Study			
•	Location			Ailton, W				
•	Number:			921-2510				
	Material		19	C1-H4		Soil Tung : Soil Comont		
		•		01-04		Soil Type : <u>Soil - Cement</u>		
Sample				0/47/000	0	Dreparation Mathedu a study t		
Sample				3/17/202		Preparation Method: Smoothed ends		
Sample	Age:			28 days				
						Pocket Penetrometer: >62.5 psi		
Water (Content (0/.).	27					
	•	/0).			_	Looding Data (in/min) · 0.05		
Mass (g			386		-	Loading Rate (in/min) : 0.05		
Area (so	• •		3.2		-	Dial Rate : 5.8		
Diamete	. ,		2.0		_	Strain Rate (%/min) <u>1.17</u>		
Height (. ,		3.9		-	Strain at Failure (%): <u>1.02</u>		
-	o Dia. Ra		1.		_	U. C. Strength (psi) : 188.7		
	nsity (pcf	,	112	2.3	_	Shear Strength (psi): 94.4		
Dry Der	nsity (pcf)):	88	.1	_			
Time	Displ.	Load	Cross	Axial	Compress			
	ызрі.	Luau	Sectional	Strain	Strength	200.0		
(000)	(in)	(lba)	Area (in ²)		_			
(sec)	(in)	(lbs)		(%)	(psi)	180.0		
0 3	0.000 0.003	0.0 2.2	3.29 3.29	0.00	0.00 0.68	160.0		
3 6	0.003	6.7	3.29	0.06	2.03			
9	0.005	14.3	3.29	0.12				
9 12	0.007	22.0	3.29	0.17	4.36 6.69	sisten and a second sec		
12	0.009	30.4	3.29	0.23	9.23			
15	0.011	37.1	3.29	0.28	9.23	u 100.0 [
21	0.013	53.5	3.29	0.32	16.26			
24	0.017	77.3	3.29	0.43	23.49			
27	0.020	105.4	3.29	0.49	32.03			
30	0.022	151.7	3.29	0.55	46.10	8		
33	0.024	207.7	3.29	0.61	63.11	40.0		
36	0.026	273.8	3.29	0.66	83.18	20.0		
39	0.029	342.6	3.29	0.72	104.10			
42	0.031	408.5	3.29	0.78	124.10	0.0		
45	0.033	474.3	3.29	0.84	144.10	0.0 1.0 2.0 3.0 4.0 5.0		
48	0.036	532.2	3.29	0.90	161.68	Axial Strain (%)		
54	0.041	621.2	3.29	1.02	188.72			
61	0.045	593.6	3.29	1.14	180.34			
67	0.051	527.9	3.29	1.27	160.38	Failure Sketch		
73	0.056	488.4	3.29	1.39	148.40			
79	0.061	449.2	3.29	1.52	136.46			
85	0.065	403.8	3.29	1.64	122.69			
91	0.070	359.0	3.29	1.77	109.07			
97	0.076	320.7	3.29	1.90	97.44			
103	0.081	291.5	3.29	2.03	88.56			
109	0.086	270.0	3.29	2.15	82.02			
124	0.099	223.4	3.29	2.48	67.86	\bigvee		
139	0.112	188.9	3.29	2.80	57.39			
154	0.125	164.5	3.29	3.13	49.99			
						Remarks: None.		

Client: Project Name : Project Location Project Number: Sample Material Sample Mix: Sample Date: Sample Age: Water Content (Mass (g): Area (sq in) : Diameter (in) : Height (in) : Height to Dia. Re Wet Density (pc	: %): atio : f) :	N 19 8	Milton, W. 921-2510 C1-H5 3/17/202 28 days 5.4 2.6 28 04 02 0 7.7	008	Test Performed by : AS Test Date : $9/14/20$ Soil Type : Soil - CementSoil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: $>62.5 psi$ Docket Penetrometer: $>62.5 psi$ Loading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.30Strain at Failure (%): 0.95 U. C. Strength (psi) : 39.5 Shear Strength (psi): 19.7
Displement Time Displ. (sec) (in) 0 0.000 3 0.002 6 0.005 9 0.007 12 0.009 15 0.011 18 0.013 21 0.015 24 0.018 28 0.020 31 0.022 34 0.025 37 0.028 40 0.030 43 0.033 46 0.035 49 0.038 52 0.041 58 0.046 64 0.051 70 0.056 76 0.061 82 0.072 95 0.077 101 0.083 107 0.087 113 0.092 128 0.105 143 0.118	Load (lbs) 0.0 0.8 3.0 19.6 31.4 39.8 56.7 73.8 86.1 94.7 102.1 108.7 102.1 108.7 115.8 121.5 124.7 128.1 129.3 126.8 120.2 116.5 117.2 116.5 117.2 116.5 117.2 116.2 113.6 110.2 106.1 101.7 96.9 90.8 80.5 67.4	Cross Sectional Area (in ²) 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28	Axial Strain (%) 0.00 0.05 0.12 0.18 0.22 0.26 0.32 0.38 0.44 0.50 0.55 0.62 0.69 0.75 0.62 0.69 0.75 0.62 0.69 0.75 0.81 0.88 0.95 1.02 1.14 1.28 1.40 1.52 1.67 1.78 1.92 2.05 2.17 2.29 2.61 2.93	Compress Strength (psi) 0.00 0.24 0.93 5.97 9.58 12.15 17.30 22.52 26.28 28.91 31.18 33.20 35.36 37.08 38.08 39.11 39.48 38.72 36.69 35.57 35.77 35.48 34.69 33.65 32.40 31.04 29.59 27.74 24.57 20.57	45.0 40.0

Client:	USG					Test Performed by :AS			
Project	Name :		Highway 99 Bench Scale Study				Test Date : 9/14/20		
	Location		Milton, WA						
	Number:			921-2510					
-	Material	:		C1-H6	~~		Soil Type : Soil - Cement		
Sample		•		0110			con type. <u>con coment</u>		
Sample				3/17/202	0	г	Preparation Method: Smoothed ends		
						F	reparation method. Smoothed ends		
Sample	Aye.			28 days			aakat Danatramatari		
						PC	ocket Penetrometer: >62.5 psi		
Water (Content (%):	32	.0					
Mass (g	•	-,-	379		-		Loading Rate (in/min) : 0.05		
Area (se			3/3		-		Dial Rate : 5.8		
•	• •				-				
Diamete	· · /		2.0		-		Strain Rate (%/min) <u>1.36</u>		
Height (3.8		-		Strain at Failure (%): 8.68		
•	to Dia. Ra		1.		_		U. C. Strength (psi) : 6.7		
	nsity (pcf		11 [,]	1.9	_		Shear Strength (psi): 3.3		
Dry Der	nsity (pcf)	:	84	.7	_				
Time	Displ.	Load	Cross	Axial	Compress				
	- 10011	_000	Sectional	Strain	Strength		8.0		
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)				
(Sec) 0	0.000	0.0	3.39	0.00	(psi) 0.00		7.0		
6	0.000	0.0	3.39	0.00	0.00				
12	0.003	0.3	3.39	0.14	0.14	si)	6.0		
12	0.017	1.0	3.39	0.30	0.20	Compressive Stress (psi)			
24	0.017	1.0	3.39	0.44	0.28	SS	5.0		
30	0.022	1.5	3.39	0.71	0.45	Stre			
42	0.027	2.2	3.39	0.99	0.43	e.	4.0		
42 54	0.038	2.2	3.39	1.25	0.83	siv			
66	0.058	3.5	3.39	1.52	1.05	res	3.0		
78	0.058	4.3	3.39	1.77	1.05	du			
93	0.081	5.4	3.39	2.12	1.58	ပို	2.0		
108	0.081	6.3	3.39	2.12	1.38		E 🖌		
123	0.107	7.2	3.39	2.47	2.13		1.0		
138	0.119	8.3	3.39	3.11	2.46				
153	0.113	9.4	3.39	3.48	2.78		0.0		
168	0.135	10.7	3.39	3.82	3.15		0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0		
183	0.140	11.8	3.39	4.18	3.49		Axial Strain (%)		
198	0.173	12.9	3.39	4.53	3.81	L	. ,		
213	0.185	13.9	3.39	4.85	4.09				
228	0.199	15.2	3.39	5.22	4.48		Failure Sketch		
243	0.212	16.2	3.39	5.56	4.79				
258	0.212	17.4	3.39	5.92	5.12				
273	0.238	18.4	3.39	6.24	5.41				
288	0.251	19.3	3.39	6.58	5.70				
303	0.265	20.4	3.39	6.94	6.03				
318	0.278	21.0	3.39	7.30	6.19				
334	0.292	21.6	3.39	7.66	6.38				
349	0.305	22.1	3.39	8.00	6.52				
364	0.318	22.5	3.39	8.32	6.63		L¥		
379	0.331	22.6	3.39	8.68	6.67				
394	0.345	22.2	3.39	9.04	6.54		Remarks: None.		
334	0.358	21.9	3.39	9.39	6.45				
	0.000			2.20					
409			3.39	9,71	6.27				
	0.370	21.3 20.4	3.39 3.39	9.71 10.08	6.27 6.01				

Geotechnical Engineering Laboratory

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)


Client:	USG
Project Name:	Highway 99 Bench Scale Study
Project Location:	Milton, WA
Project Number:	19921-251008
Sample Number:	C1-H1
Sample Date:	8/17/2020
Depth (ft):	
Sample Description:	Soil-cement
Test Type:	ASTM D5084

Tested by:	ACS
Checked by:	MBP
Start Test Date:	9/8/2020
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	3.01	3.01
Avg. dia. of specimen (in)	3.01	3.01
Area (sq in)	7.09	7.09
Volume (cubic in)	21.31	21.31
Moist mass (g)	578.2	620.0
Moist unit weight (pcf)	103.4	110.8
Moisture content (%)	24.0	32.9
Dry density (pcf)	83.4	83.4
Specific gravity (assumed)	2.68	2.68
Void ratio	1.01	1.01

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	3.0
Cell pressure (psi):	85.0
Head pressure (psi):	80.3
Tail pressure (psi):	80.0
Max effective stress (psi):	5.0
Min effective stress (psi):	4.7

Comments:

Geotechnical Engineering Laboratory

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

Client:	USG
Project Name:	Highway 99 Bench Scale Study
Project Location:	Milton, WA
Project Number:	19921-251008
Sample Number:	C1-H2
Sample Date:	8/17/2020
Depth (ft):	
Sample Description:	Soil-cement
Test Type:	ASTM D5084

Tested by:	ACS
Checked by:	MBP
Start Test Date:	9/8/2020
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	

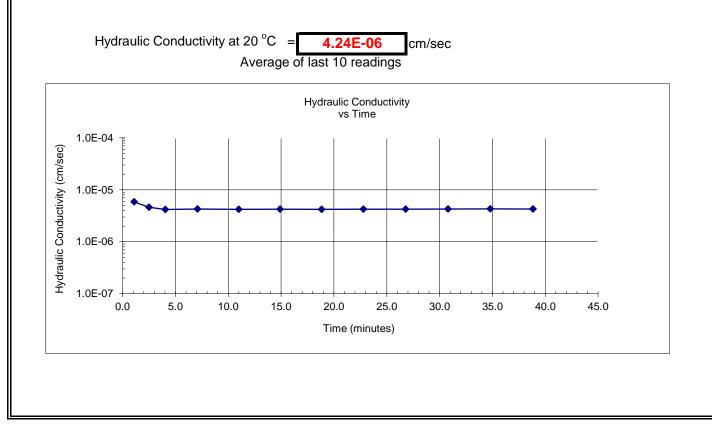
Sample Characteristics	Initial	Final
Avg. length of specimen (in)	3.43	3.43
Avg. dia. of specimen (in)	3.01	3.01
Area (sq in)	7.10	7.10
Volume (cubic in)	24.36	24.36
Moist mass (g)	698.6	731.3
Moist unit weight (pcf)	109.3	114.4
Moisture content (%)	22.8	28.6
Dry density (pcf)	89.0	89.0
Specific gravity (assumed)	2.68	2.68
Void ratio	0.88	0.88

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	6.5
Cell pressure (psi):	85.0
Head pressure (psi):	80.5
Tail pressure (psi):	80.0
Max effective stress (psi):	5.0
Min effective stress (psi):	4.5

Comments:

Geotechnical Engineering Laboratory

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)


Client:	USG
Project Name:	Highway 99 Bench Scale Study
Project Location:	Milton, WA
Project Number:	19921-251008
Sample Number:	C1-H3
Sample Date:	8/17/2020
Depth (ft):	
Sample Description:	Soil-cement
Test Type:	ASTM D5084

Tested by:	ACS
Checked by:	MBP
Start Test Date:	9/8/2020
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	3.22	3.22
Avg. dia. of specimen (in)	3.01	3.01
Area (sq in)	7.11	7.11
Volume (cubic in)	22.86	22.86
Moist mass (g)	622.3	644.4
Moist unit weight (pcf)	103.7	107.4
Moisture content (%)	23.7	28.1
Dry density (pcf)	83.9	83.9
Specific gravity (assumed)	2.68	2.68
Void ratio	1.00	1.00

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	10.8
Cell pressure (psi):	85.0
Head pressure (psi):	81.0
Tail pressure (psi):	80.0
Max effective stress (psi):	5.0
Min effective stress (psi):	4.0

Comments:

Geotechnical Engineering Laboratory

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

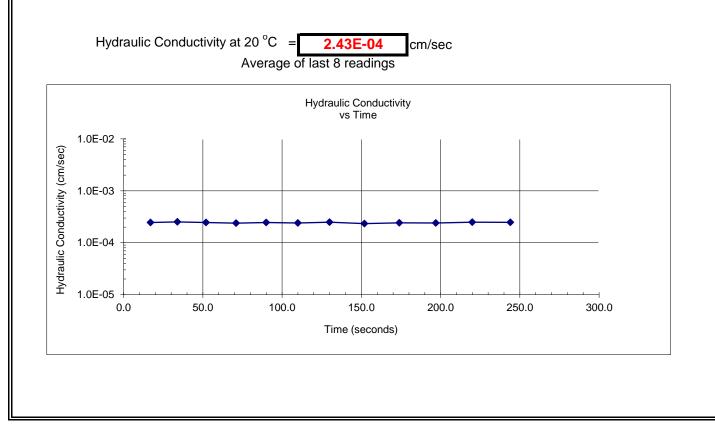
Client:	USG
Project Name:	Highway 99 Bench Scale Study
Project Location:	Milton, WA
Project Number:	19921-251008
Sample Number:	C1-H4
Sample Date:	8/17/2020
Depth (ft):	
Sample Description:	Soil-cement
Test Type:	ASTM D5084

Tested by:	ACS
Checked by:	MBP
Start Test Date:	9/8/2020
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	2.27	2.27
Avg. dia. of specimen (in)	3.01	3.01
Area (sq in)	7.09	7.09
Volume (cubic in)	16.10	16.10
Moist mass (g)	479.5	491.7
Moist unit weight (pcf)	113.5	116.4
Moisture content (%)	27.1	30.4
Dry density (pcf)	89.3	89.3
Specific gravity (assumed)	2.68	2.68
Void ratio	0.87	0.87

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	28.6
Cell pressure (psi):	65.0
Head pressure (psi):	62.0
Tail pressure (psi):	60.0
Max effective stress (psi):	5.0
Min effective stress (psi):	3.0

Geotechnical Engineering Laboratory


Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

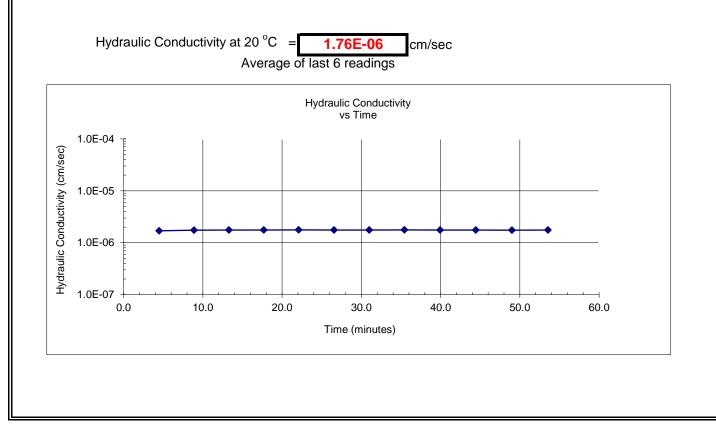
Client:	USG
Project Name:	Highway 99 Bench Scale Study
Project Location:	Milton, WA
Project Number:	19921-251008
Sample Number:	C1-H5
Sample Date:	8/17/2020
Depth (ft):	
Sample Description:	Soil-cement
Test Type:	ASTM D5084

Tested by:	ACS
Checked by:	MBP
Start Test Date:	9/9/2020
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	3.66	3.66
Avg. dia. of specimen (in)	3.01	3.01
Area (sq in)	7.11	7.11
Volume (cubic in)	26.02	26.02
Moist mass (g)	725.0	781.9
Moist unit weight (pcf)	106.1	114.5
Moisture content (%)	26.4	36.3
Dry density (pcf)	84.0	84.0
Specific gravity (assumed)	2.68	2.68
Void ratio	0.99	0.99

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	2.6
Cell pressure (psi):	85.0
Head pressure (psi):	80.3
Tail pressure (psi):	80.0
Max effective stress (psi):	5.0
Min effective stress (psi):	4.7

Geotechnical Engineering Laboratory


Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

Client:	USG
Project Name:	Highway 99 Bench Scale Study
Project Location:	Milton, WA
Project Number:	19921-251008
Sample Number:	C1-H6
Sample Date:	8/17/2020
Depth (ft):	
Sample Description:	Soil-cement
Test Type:	ASTM D5084

Tested by:	ACS
Checked by:	MBP
Start Test Date:	9/9/2020
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	2.84	2.79
Avg. dia. of specimen (in)	3.00	2.98
Area (sq in)	7.07	6.98
Volume (cubic in)	20.05	19.48
Moist mass (g)	607.5	599.3
Moist unit weight (pcf)	115.4	117.2
Moisture content (%)	33.4	31.6
Dry density (pcf)	86.5	89.1
Specific gravity (assumed)	2.68	2.68
Void ratio	0.93	0.88

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	23.4
Cell pressure (psi):	85.0
Head pressure (psi):	82.0
Tail pressure (psi):	80.0
Max effective stress (psi):	5.0
Min effective stress (psi):	3.0

Client: Project Name : Project Location Project Number: Sample Material Sample Mix: Sample Date: Sample Date: Sample Age: Water Content (Mass (g): Area (sq in) : Diameter (in) : Height (in) : Height to Dia. Rei Wet Density (pcf	: %): atio : f) :	N	Alilton, W/ 921-2510 C1-H7 0/28/202 7 days .0 .0 .0 28 04 30 36 1.5	008	Test Performed by : AS Test Date : 11/4/20Soil Type : Soil - CementSoil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: >62.5 psiDotal Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.21 Strain at Failure (%): 1.66 U. C. Strength (psi) : 74.6 Shear Strength (psi): 37.3
Time Displ. (sec) (in) 0 0.000 6 0.003 9 0.005 12 0.008 15 0.010 18 0.012 21 0.015 24 0.017 27 0.019 30 0.021 36 0.026 42 0.031 48 0.035 54 0.040 60 0.044 66 0.049 72 0.054 78 0.058 84 0.063 90 0.069 105 0.081 120 0.093 135 0.106 150 0.118 165 0.131 180 0.143 195 0.156 210 0.166	Load (lbs) 0.0 1.0 3.6 8.3 18.0 26.2 37.5 52.4 71.0 90.3 130.9 162.2 190.2 207.6 218.5 230.2 235.9 242.3 244.6 243.9 237.8 221.4 192.7 169.2 141.2 122.5 105.7 96.4	Cross Sectional Area (in ²) 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28	Axial Strain (%) 0.00 0.07 0.14 0.20 0.27 0.33 0.39 0.44 0.50 0.56 0.69 0.80 0.93 1.05 1.16 1.29 1.41 1.53 1.66 1.80 2.13 2.45 2.78 3.11 3.44 3.77 4.09 4.38	Compress Strength (psi) 0.00 0.30 1.10 2.53 5.50 8.01 11.43 16.00 21.66 27.54 39.93 49.50 58.02 63.33 66.67 70.23 71.98 73.92 74.64 74.42 72.57 67.55 58.78 51.62 43.07 37.38 32.26 29.41	80.0 0.0

Client:			USG			Test Performed by : AS				
Project	Name :		Highway 9	9 Bench S	Scale Study	Test Date : 11/4/20				
-	Location:		-	/lilton, W						
	Number:			921-2510						
-	Material			C1-H8		Soil Type : Soil - Cement				
Sample		•		01110						
Sample			1	0/28/202	20	Preparation Method: Smoothed ends				
•						Freparation Method. Shoothed ends				
Sample	Age.			7 days						
						Pocket Penetrometer: >62.5 psi				
Water 0	Content (%):	33	.9						
Mass (g		-)-	377		_	Loading Rate (in/min) : 0.05				
Area (s	,		3.2		-	Dial Rate : 5.8				
Diamete			2.0		_	Strain Rate (%/min) 1.24				
Height (• •		3.9		-	Strain at Failure (%): 1.53				
-		tio :	1.9		_	U. C. Strength (psi) : 79.7				
Height to Dia. Ratio :			-		-	u ,				
Wet Density (pcf) :		,	110		-	Shear Strength (psi): <u>39.8</u>				
Dry Density (pcf) :		:	82	.5	-					
Time	Displ.	Load	Cross	Axial	Compress					
TITIC	ызрі.	Load	Sectional	Strain	Strength	90.0				
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)					
0	0.000	0.0	3.29	0.00	0.00	80.0				
3	0.003	2.4	3.29	0.00	0.72					
6	0.005	5.4	3.29	0.13	1.66	70.0				
9	0.008	12.1	3.29	0.19	3.67					
12	0.010	20.8	3.29	0.25	6.33					
15	0.012	34.6	3.29	0.31	10.52	50.0				
21	0.017	71.5	3.29	0.42	21.76					
27	0.021	116.7	3.29	0.53	35.50	i ig 40.0				
33	0.026	159.0	3.29	0.66	48.38					
39	0.031	185.2	3.29	0.78	56.35					
45	0.036	206.4	3.29	0.91	62.81	й _{20.0}				
51	0.041	224.4	3.29	1.03	68.27	20.0				
57	0.046	239.2	3.29	1.16	72.80	10.0				
63	0.051	251.4	3.29	1.28	76.51					
69	0.056	259.1	3.29	1.40	78.83	0.0				
75	0.060	261.8	3.29	1.53	79.67	0.0 1.0 2.0 3.0 4.0 5.0				
90	0.073	258.3	3.29	1.84	78.59	Axial Strain (%)				
105	0.085	235.3	3.29	2.15	71.62					
120	0.098	187.3	3.29	2.47	56.99					
135	0.110	130.7	3.29	2.77	39.78	Failure Sketch				
150	0.122	112.8	3.29	3.08	34.34					
165	0.134	103.7	3.29	3.39	31.55					
180	0.146	97.9	3.29	3.69	29.78					
195	0.158	98.7	3.29	4.00	30.03					
					<u> </u>					
					ļ					
					<u> </u>					
					<u> </u>					
					ļ					
					ļ	Remarks: None.				
			├							
					ļ					

Client: Project Name : Project Location Project Number: Sample Material Sample Mix: Sample Date: Sample Age: Water Content (Mass (g): Area (sq in) : Diameter (in) : Height (in) : Height to Dia. Ra Wet Density (pcf	: %): atio : f) :	N 19	Ailton, W/ 921-2510 C1-H9 0/28/202 7 days .4 .4 .7.0 28 04 04 06 04 0.8	008	Test Performed by : AS Test Date : 11/4/20Soil Type : Soil - CementSoil Type : Soil - CementPreparation Method: Smoothed endsPocket Penetrometer: >62.5 psiDocket Penetrometer: >62.5 psiLoading Rate (in/min) : 0.05 Dial Rate : 5.8 Strain Rate (%/min) 1.25 Strain at Failure (%): 1.81 U. C. Strength (psi) : 54.6 Shear Strength (psi): 27.3
Time Displ. (sec) (in) 0 0.000 3 0.003 6 0.005 9 0.008 12 0.010 15 0.012 18 0.014 21 0.017 24 0.019 27 0.022 33 0.026 39 0.032 45 0.037 51 0.042 57 0.047 63 0.052 69 0.056 75 0.062 81 0.066 87 0.072 102 0.084 117 0.096 132 0.108 147 0.120 162 0.133 177 0.145 192 0.157 207 0.170 222 0.182 237 0.194	Load (lbs) 0.0 1.2 4.0 11.0 20.0 30.8 43.6 59.2 74.0 88.7 111.2 130.8 143.2 153.2 159.4 167.1 171.7 174.4 177.1 174.4 177.1 178.9 178.6 168.4 147.5 119.5 104.6 98.7 99.3 100.4 100.8 99.9	Cross Sectional Area (in ²) 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28	Axial Strain (%) 0.00 0.07 0.13 0.20 0.25 0.30 0.36 0.42 0.49 0.55 0.67 0.80 0.93 1.05 1.18 1.30 1.43 1.56 1.68 1.81 2.12 2.42 2.73 3.04 3.35 3.66 3.98 4.29 4.60 4.90	Compress Strength (psi) 0.00 0.37 1.22 3.34 6.12 9.40 13.30 18.07 22.60 27.09 33.96 39.94 43.72 46.79 48.67 51.03 52.42 53.25 54.08 54.62 54.53 51.42 45.03 36.48 31.94 30.13 30.31 30.65 30.77 30.48	60.0 0.0

Client:	USG			USG		Test Performed by :AS			
Project	Name :		Highway 9	9 Bench S	Scale Study	Test Date : 11/4/20			
-	Location			/ilton, W					
-	Number:			921-2510					
-	Material	:		C1-H10		Soil Type : Soil - Cement			
Sample		•		51110					
Sample			1	0/28/202	20	Preparation Method: Smoothed ends			
Sample				7 days		. reparation motion. onobility club			
Sample	ye.			, 4493		Pocket Penetrometer: >62.5 psi			
N/- 1 -	N								
	Content (%):	36		_				
Mass (g	.,		370		_	Loading Rate (in/min) : 0.05			
Area (se			3.2		_	Dial Rate : 5.8			
Diamete	• •		2.0		_	Strain Rate (%/min) 1.27			
Height (3.9		_	Strain at Failure (%): 1.69			
Height t	to Dia. Ra	itio :	1.9	92		U. C. Strength (psi) : 55.8			
Wet De	nsity (pcf):	109	9.5	_	Shear Strength (psi): 27.9			
	nsity (pcf)	•	80		_				
Time	Displ	Load	Cross	Axial	Compress				
TITLE	Displ.	LUdu	Sectional	Strain	Strength	60.0			
(000)	(in)	(lbc)	Area (in ²)	Strain (%)	-				
(sec) 0	(in) 0.000	(lbs) 0.0	3.28	<u>(%)</u> 0.00	(psi) 0.00				
7	0.000	1.3	3.28	0.00	0.00	50.0			
10	0.002	7.0	3.28	0.03	2.13				
13	0.003	18.4	3.28	0.13	5.61	a 40.0			
16	0.007	32.4	3.28	0.19	9.89				
10	0.009	49.2	3.28	0.24	14.99	40.0 30.0 20.0			
22	0.012	65.9	3.28	0.29	20.07	2 30.0			
25	0.014	80.3	3.28	0.30	20.07				
28	0.010	98.1	3.28	0.41	29.90				
31	0.013	112.8	3.28	0.54	34.39				
37	0.021	135.0	3.28	0.67	41.14	Ŭ			
43	0.020	150.2	3.28	0.80	45.78	10.0			
49	0.037	160.5	3.28	0.93	48.91				
55	0.041	168.0	3.28	1.05	51.21				
61	0.047	175.6	3.28	1.18	53.53	0.0			
67	0.051	177.3	3.28	1.31	54.04	0.0 1.0 2.0 3.0 4.0 5.0			
73	0.056	181.0	3.28	1.43	55.19	Axial Strain (%)			
79	0.062	182.0	3.28	1.57	55.48				
85	0.067	183.2	3.28	1.69	55.84				
91	0.071	180.4	3.28	1.81	55.00	Failure Sketch			
106	0.083	174.6	3.28	2.12	53.21	·			
121	0.096	160.3	3.28	2.45	48.87	Ν /			
136	0.108	141.1	3.28	2.75	43.01				
151	0.121	112.8	3.28	3.08	34.40	$ \setminus / $			
166	0.133	92.5	3.28	3.39	28.21	X			
181	0.145	77.0	3.28	3.70	23.48				
196	0.158	68.4	3.28	4.03	20.84				
211	0.170	64.6	3.28	4.33	19.69				
226	0.182	63.7	3.28	4.63	19.42				
241	0.194	57.7	3.28	4.94	17.59				
						Remarks: None.			

Client:			USG			Test Performed by :AS		
	Name :		Highwav 9		Scale Study	Test Date : 11/11/20		
,	Location			/ilton, W				
	Number:			921-2510				
-	Material			C1-H7		Soil Type : Soil - Cement		
Sample		•		01111		con rype . <u>con - content</u>		
Sample			1	0/28/202	20	Preparation Method: Smoothed ends		
•			I	14 days		r reparation method. Smoothed ends		
Sample	Aye.			14 uays		Pocket Penetrometer: >62.5 psi		
						Pocket Penetrometer: >62.5 psi		
Water C	Content (S	%):	34	.2				
Mass (g		,	371		_	Loading Rate (in/min) : 0.05		
Area (s			3.2		_	Dial Rate : 5.8		
Diamete			2.0		-	Strain Rate (%/min) 1.20		
Height (. ,		3.9		_	Strain at Failure (%): 1.14		
-	o Dia. Ra	atio ·			_	U. C. Strength (psi) : 100.2		
-			<u> </u>			• · · · ·		
	Wet Density (pcf) :				_	Shear Strength (psi): 50.1		
Dry Der	nsity (pcf)	:	81	.5	-			
Time	Displ.	Load	Cross	Axial	Compress			
			Sectional	Strain	Strength	120.0		
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)			
0	0.000	0.0	3.29	0.00	0.00			
13	0.003	1.9	3.29	0.07	0.57	100.0		
16	0.005	4.1	3.29	0.13	1.25	😨 👖 🔪		
19	0.008	6.3	3.29	0.20	1.90	Compressive Stress (ps)		
22	0.010	10.8	3.29	0.26	3.29			
25	0.013	19.5	3.29	0.32	5.93	/ <mark>↑</mark>		
28	0.015	37.5	3.29	0.38	11.38	<u>§</u> 60.0		
31	0.017	63.8	3.29	0.43	19.37			
34	0.019	94.1	3.29	0.49	28.57			
37	0.022	133.1	3.29	0.56	40.42	40.0		
43	0.027	202.7	3.29	0.68	61.57	0 		
49	0.031	259.5	3.29	0.78	78.81	20.0		
55	0.035	304.0	3.29	0.90	92.33			
61	0.040	323.5	3.29	1.02	98.25			
67	0.045	329.8	3.29	1.14	100.18			
73	0.050	326.3	3.29	1.26	99.11	0.0 1.0 2.0 3.0 4.0 5.0		
79	0.054	319.7	3.29	1.39	97.11	Axial Strain (%)		
85	0.059	307.6	3.29	1.51	93.42			
91	0.064	296.2	3.29	1.63	89.96			
97	0.069	280.6	3.29	1.76	85.23	Failure Sketch		
112	0.081	232.2	3.29	2.07	70.53			
127	0.094	192.7	3.29	2.39	58.53			
142	0.106	180.6	3.29	2.70	54.85			
157	0.119	170.4	3.29	3.02	51.74			
172	0.131	164.0	3.29	3.33	49.80			
187	0.143	160.1	3.29	3.64	48.64			
202	0.155	158.1	3.29	3.93	48.02			
						Remarks: None.		

			5110011111		P1000100	Strength (ASTM D1633)				
Client:				USG		Test Performed by :AS				
Project	Name :		Highway 9	9 Bench S	Scale Study	Test Date : 11/11/20				
,	Location			/ilton, W		1001 2010 1 11/11/20				
	Number:			921-2510		 Soil Type : Soil - Cement				
-	Material		10	C1-H8						
Sample		•	01-110			Soli Type : <u>Soli - Cement</u>				
•			1	0/20/202	20	Proporation Mathedu Organthad and				
Sample			I	0/28/202		Preparation Method: <u>Smoothed ends</u>				
Sample	Age:			14 days						
						Pocket Penetrometer: >62.5 psi				
Watar (Content (0/.).	33	4						
	•	/0).			-	Looding Data (in/min) · 0.05				
Mass (g			378		_	Loading Rate (in/min) : 0.05				
Area (se			3.2		-	Dial Rate :5.8				
Diamete	• •		2.0		_	Strain Rate (%/min) 1.24				
Height (3.9	95	_	Strain at Failure (%): 1.39				
Height t	o Dia. Ra	atio :	1.9	94	_	U. C. Strength (psi) : 112.5				
Wet De	nsity (pcf):	112	2.2	-	Shear Strength (psi): 56.3				
Dry Density (pcf) :			84		_					
		-								
Time	Displ.	Load	Cross	Axial	Compress					
			Sectional	Strain	Strength	120.0				
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)					
0	0.000	0.0	3.25	0.00	0.00					
3	0.002	2.6	3.25	0.06	0.80					
6	0.005	7.3	3.25	0.12	2.25					
9	0.007	14.3	3.25	0.18	4.40	Compressive Stress (D)				
12	0.009	23.9	3.25	0.23	7.35					
15	0.011	37.8	3.25	0.29	11.65					
18	0.014	60.4	3.25	0.36	18.60	e 60.0				
21	0.016	89.0	3.25	0.41	27.41					
27	0.022	139.8	3.25	0.55	43.04					
33	0.022	217.9	3.25	0.67	67.08					
39	0.031	274.4	3.25	0.78	84.49	S S				
45	0.036	317.7	3.25	0.90	97.84					
51	0.041	342.8	3.25	1.03	105.55	20.0				
57	0.041	356.0	3.25	1.15	109.63					
63	0.043	361.8	3.25	1.13	111.41	0.0				
69	0.055	365.4	3.25	1.39	112.53	0.0 1.0 2.0 3.0 4.0 5.0				
		363.9	3.25	1.59	112.05	Axial Strain (%)				
75 81	0.060 0.065	356.4	3.25	1.64	109.74					
96	0.065			1.64						
96	0.077	332.6 291.7	3.25 3.25	2.26	102.43 89.82	Failure Sketch				
			+ +							
126	0.102	233.4	3.25	2.58	71.87	λ				
141	0.115	180.3	3.25	2.91	55.52					
156	0.127	146.0	3.25	3.21	44.95					
171	0.139	118.8	3.25	3.52	36.58					
186	0.152	105.5	3.25	3.85	32.50					
201	0.165	93.5	3.25	4.16	28.79					
216	0.177	83.7	3.25	4.48	25.76					
						Remarks: None.				
-					-					

Cliant				USG		Test Porformed by
Client:	Nome					Test Performed by : AS
Project			-		Scale Study	Test Date : <u>11/11/20</u>
	Location:			lilton, W		
,	Number:		19	921-2510	800	
•	Material	:		C1-H9		Soil Type : <u>Soil - Cement</u>
Sample			<u> </u>	0/00/00		
Sample			1	0/28/202		Preparation Method: Smoothed ends
Sample	Age:			14 days		
						Pocket Penetrometer: >62.5 psi
Water (Content (%)·	35	7		
Mass (g		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	35		_	Loading Rate (in/min) : 0.05
Area (so			3.2		-	Loading Rate (in/min) : 0.05 Dial Rate : 5.8
Diamete			2.0		_	Strain Rate (%/min) $\frac{5.8}{1.27}$
	• •		3.9		-	
Height (. ,	tio :			-	· · · · · · · · · · · · · · · · · · ·
-	o Dia. Ra		1.9		_	U. C. Strength (psi): 63.6
	nsity (pcf	,	108		_	Shear Strength (psi): <u>31.8</u>
Dry Der	nsity (pcf)	:	80	.2	-	
Time	Displ.	Load	Cross	Axial	Compress	
	-		Sectional	Strain	Strength	70.0
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	
0	0.000	0.0	3.29	0.00	0.00	60.0
3	0.003	0.7	3.29	0.08	0.20	
6	0.005	1.5	3.29	0.13	0.47	8 50.0
9	0.008	6.8	3.29	0.20	2.06	
12	0.011	14.2	3.29	0.27	4.33	50.0 40.0 30.0 20.0
15	0.013	27.0	3.29	0.32	8.23	
18	0.015	46.6	3.29	0.38	14.17	
24	0.020	97.2	3.29	0.49	29.58	S 30.0
30	0.025	146.9	3.29	0.62	44.68	
36	0.029	177.6	3.29	0.74	54.02	5 20.0
42	0.034	197.4	3.29	0.86	60.05	
48	0.039	204.9	3.29	0.98	62.32	10.0
54 60	0.044	208.9	3.29	1.10	63.56	
60 66	0.049	208.9	3.29	1.24	63.54 62.14	0.0
66 72	0.054	204.3 196.6	3.29 3.29	1.36 1.49	62.14 59.80	0.0 1.0 2.0 3.0 4.0 5.0
72	0.059	196.6	3.29	1.62	59.80	Axial Strain (%)
93	0.004	170.1	3.29	1.93	51.75	
108	0.090	163.3	3.29	2.25	49.69	
123	0.103	152.5	3.29	2.57	46.38	Failure Sketch
138	0.115	144.7	3.29	2.88	44.03	
153	0.127	141.1	3.29	3.18	42.92	
168	0.139	139.3	3.29	3.50	42.39	
183	0.152	141.5	3.29	3.80	43.05	
198	0.164	145.9	3.29	4.11	44.39	\mathbf{k}
213	0.176	151.5	3.29	4.43	46.09	
228	0.189	151.7	3.29	4.74	46.16	
						Pomarka: Nano
					-	Remarks: None.
			1		1	

Client						Toot Dorformed by A.
Client:	N			USG		Test Performed by : AS
Project					Scale Study	Test Date : <u>11/11/20</u>
	Location:			Ailton, W		
	Number:		19	921-2510	800	
•	Material	:		C1-H10		Soil Type : <u>Soil - Cement</u>
Sample						
Sample	Date:		1	0/28/202	20	Preparation Method: Smoothed ends
Sample				14 days		·
	J					Pocket Penetrometer: >62.5 psi
Mator (Contact /	0/.).				<u></u>
	Content (9	70 <i>)</i> .	36		-	Leading Data (in/min) ·
Mass (g			362		_	Loading Rate (in/min) : 0.05
Area (so	• •		3.2		_	Dial Rate : 5.8
Diamete	. ,		2.0		_	Strain Rate (%/min) 1.29
Height (• •		3.8		_	Strain at Failure (%): <u>1.73</u>
Height t	o Dia. Ra	atio :	1.8	37	_	U. C. Strength (psi) : 75.9
Wet De	nsity (pcf):	109	9.7		Shear Strength (psi): 38.0
Dry Density (pcf) :		,	80	.4	_	
Time	Direl	1 1		A! - I	0.000	
Time	Displ.	Load	Cross	Axial	Compress	80.0
, .		<i>.</i>	Sectional	Strain	Strength	
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	70.0
0	0.000	0.0	3.28	0.00	0.00	
3	0.002	0.5	3.28	0.06	0.14	60.0
6	0.005	1.7	3.28	0.12	0.51	
9	0.007	4.5	3.28	0.18	1.37	g 50.0
12	0.009	7.9	3.28	0.24	2.42	
15	0.012	11.4	3.28	0.31	3.48	Solution
18	0.014	17.4	3.28	0.37	5.29	
21	0.016	29.9	3.28	0.42	9.12	
24	0.018	47.7	3.28	0.48	14.52	30.0
30	0.023	95.9	3.28	0.60	29.22	
36	0.027	144.3	3.28	0.72	43.96	ö 20.0
42	0.032	183.5	3.28	0.84	55.90	
48	0.037	207.5	3.28	0.96	63.19	
54	0.042	221.6	3.28	1.10	67.51	
60	0.047	230.5	3.28	1.22	70.20	
66	0.052	238.3	3.28	1.35	72.58	0.0 1.0 2.0 3.0 4.0 5.0
72	0.057	242.7	3.28	1.48	73.92	Axial Strain (%)
78	0.062	248.0	3.28	1.61	75.53	
84	0.066	249.3	3.28	1.73	75.94	
99	0.078	246.4	3.28	2.04	75.05	Failure Sketch
114	0.090	227.2	3.28	2.34	69.21	
129	0.101	181.0	3.28	2.64	55.14	
144	0.114	137.8	3.28	2.97	41.96	
159	0.126	109.6	3.28	3.29	33.38	
174	0.138	95.3	3.28	3.59	29.02	
189	0.150	89.7	3.28	3.92	27.32	
204	0.162	86.5	3.28	4.23	26.34	
219	0.175	82.7	3.28	4.57	25.18	
234	0.187	81.4	3.28	4.89	24.79	
					 	Remarks: <u>None.</u>
					<u> </u>	
1						

Client:				USG		Test Performed by : AS
	Name :		Highwav 9		Scale Study	Test Date : 11/25/20
	Location			/ilton, W		
	Number:			921-2510		
-	Material			C1-H7		Soil Type : Soil - Cement
Sample						
Sample			1	0/28/202	20	Preparation Method: Smoothed ends
Sample			. <u> </u>	28 days		
campic				uyu		Pocket Penetrometer: >62.5 psi
Matar	Content /	0/).		E		
	Content (%):	34		_	Leading Data (in/min) · 0.05
Mass (g			376		_	Loading Rate (in/min) : 0.05
Area (s			3.2		_	Dial Rate : 5.8
	Diameter (in) :		2.0		_	Strain Rate (%/min) <u>1.17</u>
Height	• •	<i>.</i> .	3.9		_	Strain at Failure (%): 0.99
Height to Dia. Ratio : Wet Density (pcf) :			1.9			U. C. Strength (psi) : <u>130.2</u>
		,	109		_	Shear Strength (psi):65.1
Dry Density (pcf) :):	81	.5	_	
Time	Displ.	Load	Cross	Axial	Compress	
	-		Sectional	Strain	Strength	
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	
0	0.000	0.0	3.29	0.00	0.00	120.0
3	0.002	2.8	3.29	0.05	0.84	
6	0.004	10.0	3.29	0.11	3.04	0.00 OUD
9	0.007	24.7	3.29	0.17	7.49	
12	0.009	51.5	3.29	0.24	15.66	
15	0.012	88.0	3.29	0.30	26.75	
18	0.014	124.4	3.29	0.35	37.79	
21	0.016	174.6	3.29	0.41	53.04	
24	0.019	219.9	3.29	0.47	66.82	
27	0.021	260.0	3.29	0.52	78.99	5 40.0
33	0.025	328.3	3.29	0.64	99.74	
39	0.030	380.2	3.29	0.76	115.51	20.0
45	0.035	414.0	3.29	0.87	125.79	
51 57	0.039	428.5	3.29	0.99	130.17 130.03	0.0
57 63	0.044	428.0 413.8	3.29 3.29	1.10 1.22	130.03	0.0 1.0 2.0 3.0 4.0 5.0
<u>69</u>	0.049	413.6 392.6	3.29	1.34	125.71	Axial Strain (%)
75	0.058	380.3	3.29	1.46	115.53	
81	0.063	368.0	3.29	1.57	111.82	
87	0.067	362.1	3.29	1.70	110.00	Failure Sketch
102	0.080	338.8	3.29	2.01	102.94	
117	0.092	259.6	3.29	2.32	78.86	
132	0.105	229.7	3.29	2.64	69.79	
147	0.117	211.9	3.29	2.93	64.37	
162	0.129	202.8	3.29	3.24	61.62	
177	0.141	197.1	3.29	3.55	59.90	
192	0.153	189.3	3.29	3.86	57.52	
207	0.166	184.3	3.29	4.17	56.00	
222	0.178	179.3	3.29	4.49	54.48	
						Remarks: None.

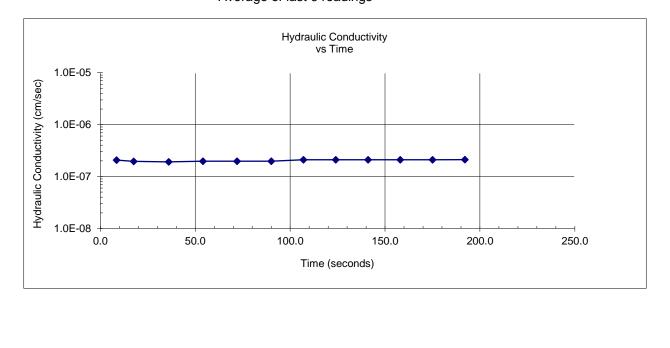
Client:				USG		Test Performed by : AS
	Name :		Highway 9	9 Bench S	Scale Study	Test Date : 11/25/20
Project	Location	:		/lilton, W		
	Number:		19	921-2510	800	
Sample	e Material	:		C1-H8		Soil Type : Soil - Cement
Sample						
Sample			1	0/28/202	20	Preparation Method: Smoothed ends
Sample				28 days		·
•	~					Pocket Penetrometer: >62.5 psi
Water (Content (%).	32	.8		
Mass (g	•	<i>,</i> • • <i>,</i> • <i>, , , , , , , , , ,</i>	382		_	Loading Rate (in/min) : 0.05
Area (s			3.2		_	Dial Rate : 5.8
Diamete			2.0		_	Strain Rate (%/min) 1.24
	• •		3.9		_	Strain at Failure (%): 1.16
Height (in) : Height to Dia. Ratio : Wet Density (pcf) : Dry Density (pcf) :		atio ·	1.9		_	U. C. Strength (psi) : 144.2
			110		_	Shear Strength (psi): 72.1
			83		_	
Uly Der	isity (pcf)	•	83	.4		
Time	Displ.	Load	Cross	Axial	Compress	160.0
			Sectional	Strain	Strength	160.0
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	140.0
0	0.000	0.0	3.29	0.00	0.00	
3	0.003	14.6	3.29	0.06	4.44	
6	0.005	23.8	3.29	0.12	7.22	a 120.0
9	0.007	38.3	3.29	0.18	11.64	8 100.0
12 15	0.009	66.5 105.0	3.29 3.29	0.24 0.29	20.20 31.87	
15	0.011	105.0	3.29	0.29	46.34	80.0 80.0 60.0 40.0 40.0
21	0.014	203.2	3.29	0.39	61.69	
24	0.018	254.1	3.29	0.46	77.11	6 60.0
27	0.021	303.8	3.29	0.53	92.22	
33	0.026	378.8	3.29	0.66	114.99	3 40.0
39	0.031	425.2	3.29	0.79	129.07	
45	0.036	451.9	3.29	0.91	137.16	20.0
51	0.041	466.8	3.29	1.03	141.68	
57	0.046	474.9	3.29	1.16	144.15	
63	0.051	468.8	3.29	1.29	142.28	0.0 1.0 2.0 3.0 4.0 5.0
69	0.056	463.5	3.29	1.41	140.69	Axial Strain (%)
75	0.061	446.1	3.29	1.54	135.39	
81 87	0.066	427.4	3.29	1.65	129.72 124.10	Failure Sketch
87 102	0.071 0.083	408.9 355.1	3.29 3.29	1.78 2.08	124.10	
102	0.085	291.3	3.29	2.08	88.42	
132	0.108	291.5	3.29	2.69	69.66	
147	0.100	172.5	3.29	3.01	52.36	\mathbb{N}
162	0.133	130.6	3.29	3.32	39.65	
177	0.144	106.8	3.29	3.61	32.41	
192	0.157	95.8	3.29	3.93	29.07	
207	0.169	87.7	3.29	4.24	26.63	
222	0.181	81.3	3.29	4.54	24.68	<u></u>
						Pomarke: None
						Remarks: None.

Client:				USG		Test Performed by :AS		
	Name :		Highway 9	9 Bench S	Scale Study	Test Date : 11/25/20		
-	Location			/lilton, W				
	Number:		19921-251008					
	Material			C1-H9		Soil Type : Soil - Cement		
Sample								
Sample			1	0/28/202	20	Preparation Method: Smoothed ends		
Sample			·	28 days		· · · · · · · · · · · · · · · · · · ·		
Sample						Pocket Penetrometer: >62.5 psi		
\\/_+ ^	Nami a 1 //)/).		-				
	Content (%):	35		_			
Mass (g			374		_	Loading Rate (in/min) : 0.05		
Area (s			3.2			Dial Rate : 5.8		
Diamete	• •		2.0			Strain Rate (%/min) <u>1.24</u>		
Height (. ,		3.9		_	Strain at Failure (%): <u>1.33</u>		
-	to Dia. Ra		1.9		_	U. C. Strength (psi) : 98.6		
	nsity (pcf		110		_	Shear Strength (psi): 49.3		
Dry Der	nsity (pcf)	:	81	.4	_			
Time	Displ.	Load	Cross	Axial	Compress			
			Sectional	Strain	Strength	120.0		
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)			
0	0.000	0.0	3.28	0.00	0.00	100.0		
3	0.002	10.7	3.28	0.06	3.27			
6	0.005	26.4	3.28	0.11	8.04	😨 🦨 🥆		
9	0.007	41.0	3.28	0.17	12.52	Compressive Stress (ps)		
12	0.009	62.2	3.28	0.23	18.97	Se		
15	0.011	82.8	3.28	0.28	25.26			
18	0.013	110.2	3.28	0.34	33.62			
24	0.018	173.4	3.28	0.46	52.88			
30	0.023	228.1	3.28	0.59	69.56	40.0 40.0		
36	0.028	267.9	3.28	0.72	81.72			
42	0.033	286.7	3.28	0.83	87.46			
48	0.038	298.8	3.28	0.96	91.15	20.0		
54	0.043	310.8	3.28	1.09	94.79			
60	0.048	316.5	3.28	1.21	96.53			
66	0.053	323.1	3.28	1.33	98.55	0.0 1.0 2.0 3.0 4.0 5.0		
72	0.058	322.9	3.28	1.46	98.49	Axial Strain (%)		
78 93	0.062	317.7 295.1	3.28 3.28	1.58 1.88	96.89 90.02			
93 108	0.074	295.1	3.28	2.20	90.02 83.12			
123	0.087	248.9	3.28	2.20	75.92	Failure Sketch		
138	0.112	232.2	3.28	2.84	70.84			
153	0.125	214.9	3.28	3.15	65.54			
168	0.120	192.3	3.28	3.46	58.66			
183	0.149	178.3	3.28	3.76	54.39			
198	0.161	173.7	3.28	4.07	52.98			
213	0.173	169.4	3.28	4.38	51.68			
	-		-	-				
						Remarks: None.		
		•						

Client:				USG		Test Performed by : AS				
Project	Name ·		Highway 9		Scale Study	Test Date : 11/25/20				
-	Location:			Ailton, W						
	Number:			921-2510						
-	Material		19	C1-H10		Soil Type : Soil Comont				
•						Soil Type : <u>Soil - Cement</u>				
Sample				0/00/000	0	Drongrotion Mathed Organity				
Sample			1	0/28/202		Preparation Method: Smoothed ends				
Sample	Age:			28 days						
						Pocket Penetrometer: >62.5 psi				
Water	Content (%)·	36	4						
		<i>/</i> 0 <i>)</i> .	-		_	Loading Pate (in/min) · 0.05				
Mass (g			374			Loading Rate (in/min) : 0.05				
Area (so Diamato			3.2		_	Dial Rate : 5.8				
Diamete	• •		2.0		_	Strain Rate (%/min) <u>1.25</u>				
Height (. ,		3.9		_	Strain at Failure (%): <u>1.46</u>				
-	Height to Dia. Ratio : Wet Density (pcf) :		1.9		_	U. C. Strength (psi) : 69.0				
			109	9.2	_	Shear Strength (psi): 34.5				
Dry Density (pcf) :		:	80	.0	_					
		-			- T1	[
Time	Displ.	Load	Cross	Axial	Compress	80.0				
			Sectional	Strain	Strength					
(sec)	(in)	(lbs)	Area (in ²)	(%)	(psi)	70.0				
0	0.000	0.0	3.29	0.00	0.00	70.0				
3	0.003	2.6	3.29	0.06	0.80	☐ 60.0				
6	0.004	4.9	3.29	0.11	1.48	(is) 60.0 50.0 40.0 30.0 20.0 20.0				
9	0.007	9.9	3.29	0.16	3.02					
12	0.010	17.0	3.29	0.25	5.18	50.0				
15	0.012	23.7	3.29	0.31	7.21					
18	0.014	36.1	3.29	0.36	11.00	9 40.0				
21	0.017	59.0	3.29	0.43	17.96					
24	0.019	82.9	3.29	0.48	25.22	30.0				
30	0.024	129.2	3.29	0.59	39.32					
36	0.028	161.5	3.29	0.71	49.14	ö 20.0				
42	0.033	186.6	3.29	0.83	56.78					
48	0.038	203.8	3.29	0.96	62.02	10.0				
54	0.043	215.2	3.29	1.07	65.50					
60	0.048	220.1	3.29	1.20	66.98	0.0 1.0 2.0 3.0 4.0 5.0				
66	0.053	225.9	3.29	1.32	68.75					
72	0.058	226.8	3.29	1.46	69.01	Axial Strain (%)				
78	0.063	222.8	3.29	1.58	67.79					
84	0.068	220.3	3.29	1.71	67.04	Failure Sketch				
99	0.080	201.8	3.29	2.02	61.42	railure Skelch				
114	0.093	182.3	3.29	2.34	55.47					
129	0.105	156.1	3.29	2.65	47.51					
144	0.117	147.6	3.29	2.96	44.92	k l				
159	0.130	149.5	3.29	3.26	45.50					
174	0.142	151.8	3.29	3.57	46.20					
189	0.154	148.6	3.29	3.87	45.21					
204	0.167	137.7	3.29	4.20	41.89					
219	0.180	130.6	3.29	4.52	39.75					
234	0.192	127.2	3.29	4.83	38.71					
			+			Pomarka: Nono				
			<u>├</u>		+	Remarks: None.				
			<u>├</u>		+					
			<u>├</u>							

Geotechnical Engineering Laboratory

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

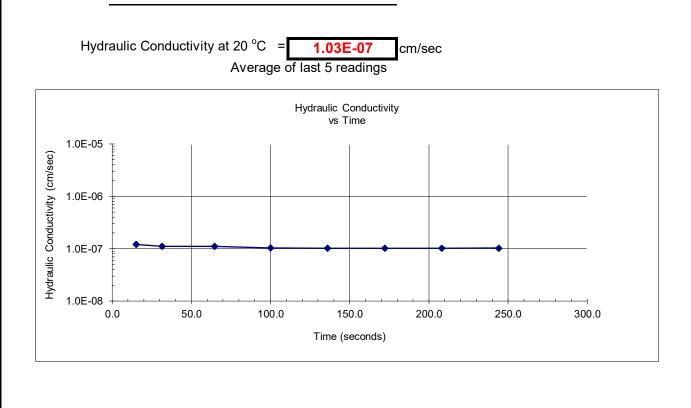

Client:	USG
Project Name:	Highway 99 Bench Scale Study
Project Location:	Milton, WA
Project Number:	19921-251008
Sample Number:	C1-H7
Sample Date:	10/28/2020
Depth (ft):	
Sample Description:	Soil-cement
Test Type:	ASTM D5084

Tested by:	ACS
Checked by:	MBP
Start Test Date:	11/19/2020
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	3.28	3.28
Avg. dia. of specimen (in)	3.02	3.02
Area (sq in)	7.16	7.16
Volume (cubic in)	23.45	23.45
Moist mass (g)	685.9	700.3
Moist unit weight (pcf)	111.4	113.8
Moisture content (%)	33.8	36.6
Dry density (pcf)	83.3	83.3
Specific gravity (assumed)	2.68	2.68
Void ratio	1.01	1.01

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	20.0
Cell pressure (psi):	65.0
Head pressure (psi):	62.0
Tail pressure (psi):	60.0
Max effective stress (psi):	5.0
Min effective stress (psi):	3.0

Geotechnical Engineering Laboratory


Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

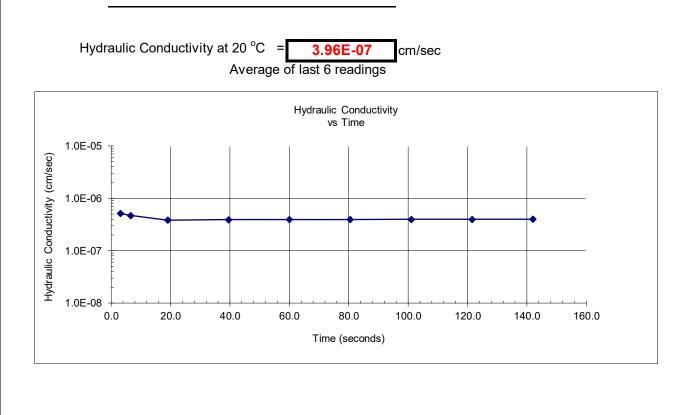
USG
Highway 99 Bench Scale Study
Milton, WA
19921-251008
C1-H8
10/28/2020
Soil-cement
ASTM D5084

Tested by:ACSChecked by:MBPStart Test Date:11/20/2020Permeant Fluid:De-aired waterSample PreparationProcedures:

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	3.37	3.37
Avg. dia. of specimen (in)	3.02	3.02
Area (sq in)	7.15	7.15
Volume (cubic in)	24.10	24.10
Moist mass (g)	711.5	728.4
Moist unit weight (pcf)	112.5	115.1
Moisture content (%)	32.0	35.1
Dry density (pcf)	85.2	85.2
Specific gravity (assumed)	2.68	2.68
Void ratio	0.96	0.96

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	19.3
Cell pressure (psi):	65.0
Head pressure (psi):	62.0
Tail pressure (psi):	60.0
Max effective stress (psi):	5.0
Min effective stress (psi):	3.0

Geotechnical Engineering Laboratory


Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

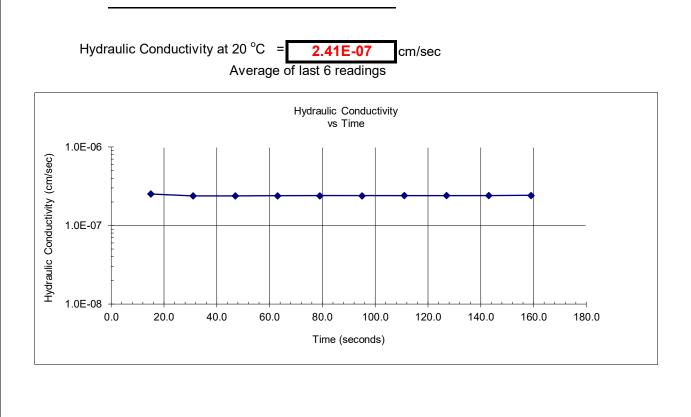
Client:	USG
Project Name:	Highway 99 Bench Scale Study
Project Location:	Milton, WA
Project Number:	19921-251008
Sample Number:	C1-H9
Sample Date:	10/28/2020
Depth (ft):	
Sample Description:	Soil-cement
Test Type:	ASTM D5084

Tested by:ACSChecked by:MBPStart Test Date:11/19/2020Permeant Fluid:De-aired waterSample PreparationProcedures:

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	2.95	2.95
Avg. dia. of specimen (in)	3.02	3.02
Area (sq in)	7.14	7.14
Volume (cubic in)	21.05	21.05
Moist mass (g)	616.0	629.3
Moist unit weight (pcf)	111.5	113.9
Moisture content (%)	35.3	38.2
Dry density (pcf)	82.4	82.4
Specific gravity (assumed)	2.68	2.68
Void ratio	1.03	1.03

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	22.2
Cell pressure (psi):	65.0
Head pressure (psi):	62.0
Tail pressure (psi):	60.0
Max effective stress (psi):	5.0
Min effective stress (psi):	3.0

Geotechnical Engineering Laboratory


Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

USG
Highway 99 Bench Scale Study
Milton, WA
19921-251008
C1-H10
10/28/2020
Soil-cement
ASTM D5084

Tested by:ACSChecked by:MBPStart Test Date:11/24/2020Permeant Fluid:De-aired waterSample PreparationProcedures:

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	3.53	3.53
Avg. dia. of specimen (in)	3.02	3.02
Area (sq in)	7.16	7.16
Volume (cubic in)	25.27	25.27
Moist mass (g)	735.1	750.3
Moist unit weight (pcf)	110.8	113.1
Moisture content (%)	36.3	39.1
Dry density (pcf)	81.3	81.3
Specific gravity (assumed)	2.68	2.68
Void ratio	1.06	1.06

Test Specifications	
B-Value (%):	
Consolidation stress (psi):	5.0
Gradient (in/in):	18.5
Cell pressure (psi):	65.0
Head pressure (psi):	62.0
Tail pressure (psi):	60.0
Max effective stress (psi):	5.0
Min effective stress (psi):	3.0

Appendix E

Chemical Analytical Laboratory Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 25, 2020

Pam Morrill CDM Smith, Inc. 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007-6493

Re: Analytical Data for Project 246239/233028 Laboratory Reference No. 2008-087

Dear Pam:

Enclosed are the analytical results and associated quality control data for samples submitted on August 7, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: August 25, 2020 Samples Submitted: August 7, 2020 Laboratory Reference: 2008-087 Project: 246239/233028

Case Narrative

Samples were collected on August 6 and 7, 2020 and received by the laboratory on August 7, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL ARSENIC EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Purge-1_080620					
Laboratory ID:	08-087-02					
Arsenic	2700	83	EPA 200.8	8-14-20	8-14-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL ARSENIC EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date	•	
Analyte		Result		PQL	M	ethod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:	Ν	//B0814WM1									
Arsenic		ND		3.3	EP	A 200.8	3	8-14-20	8-14-2	20	
Analyte	Po	sult	Spik	e Level	Source Result	_	cent	Recovery Limits	RPD	RPD Limit	Flage
	Ne	Suit	Эріке	Ever	Result	Neu	overy	Liiiiits	KFD	Liiiiit	Flags
DUPLICATE											
Laboratory ID:	07-32	26-03									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		Ν	A	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	07-32	26-03									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	114	126	111	111	ND	103	113	75-125	10	20	

4

TOTAL SUSPENDED SOLIDS SM 2540D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P3-1_08062020					
Laboratory ID:	08-087-01					
Total Suspended Solids	11	4.0	SM 2540D	8-11-20	8-12-20	
Client ID:	99-1_08072020					
Laboratory ID:	08-087-03					
Total Suspended Solids	16	4.0	SM 2540D	8-11-20	8-12-20	

TOTAL SUSPENDED SOLIDS SM 2540D QUALITY CONTROL

Matrix: Water Units: mg/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0811W1					
ND	4.0	SM 2540D	8-11-20	8-12-20	
	MB0811W1	MB0811W1	MB0811W1	Result PQL Method Prepared MB0811W1 MB0811W1 Method Method <td>Result PQL Method Prepared Analyzed MB0811W1 </td>	Result PQL Method Prepared Analyzed MB0811W1

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-08	37-03							
	ORIG	DUP							
Total Suspended Solids	16.0	17.0	NA	NA	NA	NA	6	21	
SPIKE BLANK									
Laboratory ID:	SB08	11W1							
	S	В	SB		SB				
Total Suspended Solids	95	5.0	100	NA	95	57-126	NA	NA	

TOTAL DISSOLVED SOLIDS SM 2540C

Matrix: Water Units: mg/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
P3-1_08062020					
08-087-01					
240	13	SM 2540C	8-12-20	8-13-20	
99-1_08072020					
08-087-03					
230	13	SM 2540C	8-12-20	8-13-20	
	P3-1_08062020 08-087-01 240 99-1_08072020 08-087-03	P3-1_08062020 08-087-01 240 13 99-1_08072020 08-087-03	P3-1_08062020 08-087-01 240 13 SM 2540C 99-1_08072020 08-087-03	Result PQL Method Prepared P3-1_08062020 08-087-01	Result PQL Method Prepared Analyzed P3-1_08062020 08-087-01

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	Flags
Analyte	Result	PQL	Method	Prepared	Analyzed	
METHOD BLANK						
Laboratory ID:	MB0812W1					
Total Dissolved Solids	ND	13	SM 2540C	8-12-20	8-13-20	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-08	87-03							
	ORIG	DUP							
Total Dissolved Solids	229	228	NA	NA	NA	NA	0	21	
SPIKE BLANK									
Laboratory ID:	SB08	12W1							
	S	В	SB		SB				
Total Dissolved Solids	49	92	500	NA	98	84-110	NA	NA	

DISSOLVED METALS EPA 6010D/200.8/7470A

Matrix: Water Units: ug/L (ppb)

Units. ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P3-1_08062020					
Laboratory ID:	08-087-01					
Aluminum	ND	110	EPA 6010D		8-17-20	
Antimony	110	5.0	EPA 200.8		8-17-20	
Arsenic	6000	150	EPA 200.8		8-17-20	
Barium	ND	25	EPA 200.8		8-17-20	
Beryllium	ND	10	EPA 200.8		8-17-20	
Cadmium	ND	4.0	EPA 200.8		8-17-20	
Calcium	39000	1100	EPA 6010D		8-17-20	
Chromium	ND	10	EPA 200.8		8-17-20	
Cobalt	ND	10	EPA 200.8		8-17-20	
Copper	ND	10	EPA 200.8		8-17-20	
Iron	ND	56	EPA 6010D		8-17-20	
Lead	ND	1.0	EPA 200.8		8-17-20	
Magnesium	11000	1100	EPA 6010D		8-17-20	
Manganese	590	500	EPA 200.8		8-17-20	
Mercury	ND	0.50	EPA 7470A		8-14-20	
Nickel	ND	20	EPA 200.8		8-17-20	
Potassium	4400	1100	EPA 6010D		8-17-20	
Selenium	ND	5.0	EPA 200.8		8-17-20	
Silver	ND	10	EPA 200.8		8-17-20	
Sodium	12000	1100	EPA 6010D		8-17-20	
Thallium	ND	5.0	EPA 200.8		8-17-20	
Vanadium	ND	10	EPA 200.8		8-17-20	
Zinc	ND	25	EPA 200.8		8-17-20	

DISSOLVED METALS EPA 6010D/200.8/7470A

Matrix: Water Units: ug/L (ppb)

Units. ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	99-1_08072020					
Laboratory ID:	08-087-03					
Aluminum	ND	110	EPA 6010D		8-17-20	
Antimony	ND	5.0	EPA 200.8		8-17-20	
Arsenic	3600	150	EPA 200.8		8-17-20	
Barium	ND	25	EPA 200.8		8-17-20	
Beryllium	ND	10	EPA 200.8		8-17-20	
Cadmium	ND	4.0	EPA 200.8		8-17-20	
Calcium	33000	1100	EPA 6010D		8-17-20	
Chromium	ND	10	EPA 200.8		8-17-20	
Cobalt	ND	10	EPA 200.8		8-17-20	
Copper	ND	10	EPA 200.8		8-17-20	
Iron	9400	56	EPA 6010D		8-17-20	
Lead	ND	1.0	EPA 200.8		8-17-20	
Magnesium	18000	1100	EPA 6010D		8-17-20	
Manganese	860	500	EPA 200.8		8-17-20	
Mercury	ND	0.50	EPA 7470A		8-14-20	
Nickel	ND	20	EPA 200.8		8-17-20	
Potassium	3400	1100	EPA 6010D		8-17-20	
Selenium	ND	5.0	EPA 200.8		8-17-20	
Silver	ND	10	EPA 200.8		8-17-20	
Sodium	16000	1100	EPA 6010D		8-17-20	
Thallium	ND	5.0	EPA 200.8		8-17-20	
Vanadium	ND	10	EPA 200.8		8-17-20	
Zinc	ND	25	EPA 200.8		8-17-20	

DISSOLVED METALS EPA 6010D/200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0817D1					
Antimony	ND	5.0	EPA 200.8		8-17-20	
Arsenic	ND	3.0	EPA 200.8		8-17-20	
Barium	ND	25	EPA 200.8		8-17-20	
Beryllium	ND	10	EPA 200.8		8-17-20	
Cadmium	ND	4.0	EPA 200.8		8-17-20	
Chromium	ND	10	EPA 200.8		8-17-20	
Cobalt	ND	10	EPA 200.8		8-17-20	
Copper	ND	10	EPA 200.8		8-17-20	
Lead	ND	1.0	EPA 200.8		8-17-20	
Manganese	ND	10	EPA 200.8		8-17-20	
Nickel	ND	20	EPA 200.8		8-17-20	
Selenium	ND	5.0	EPA 200.8		8-17-20	
Silver	ND	10	EPA 200.8		8-17-20	
Thallium	ND	5.0	EPA 200.8		8-17-20	
Vanadium	ND	10	EPA 200.8		8-17-20	
Zinc	ND	25	EPA 200.8		8-17-20	
Laboratory ID:	MB0817D1					
Aluminum	ND	110	EPA 6010D		8-17-20	
Calcium	ND	1100	EPA 6010D		8-17-20	
ron	ND	56	EPA 6010D		8-17-20	
Magnesium	ND	1100	EPA 6010D		8-17-20	
Potassium	ND	1100	EPA 6010D		8-17-20	
Sodium	ND	1100	EPA 6010D		8-17-20	
Laboratory ID:	MB0810F1					
Mercury	ND	0.50	EPA 7470A	8-10-20	8-14-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

DISSOLVED METALS EPA 6010D/200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-08	37-03								
	ORIG	DUP								
Antimony	ND	ND	NA	NA		NA	NA	NA	20	
Arsenic	3590	3550	NA	NA		NA	NA	1	20	
Barium	ND	ND	NA	NA		NA	NA	NA	20	
Beryllium	ND	ND	NA	NA		NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	ND	ND	NA	NA		NA	NA	NA	20	
Cobalt	ND	ND	NA	NA		NA	NA	NA	20	
Copper	ND	ND	NA	NA		NA	NA	NA	20	
Lead	ND	ND	NA	NA		NA	NA	NA	20	
Manganese	859	831	NA	NA		NA	NA	3	20	
Nickel	ND	ND	NA	NA		NA	NA	NA	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Vanadium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	08-08	37-01								
Aluminum	ND	ND	NA	NA		NA	NA	NA	20	
Calcium	38500	37600	NA	NA		NA	NA	2	20	
Iron	ND	ND	NA	NA		NA	NA	NA	20	
Magnesium	11100	10900	NA	NA		NA	NA	1	20	
Potassium	4400	4270	NA	NA		NA	NA	3	20	
Sodium	12000	11900	NA	NA		NA	NA	1	20	
Laboratory ID:	08-07	76-24								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 6010D/200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-08	87-03									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	79.0	79.4	80.0	80.0	ND	99	99	75-125	1	20	
Arsenic	7350	7470	4000	4000	3590	94	97	75-125	2	20	
Barium	90.8	89.0	80.0	80.0	ND	114	111	75-125	2	20	
Beryllium	82.2	79.4	80.0	80.0	ND	103	99	75-125	3	20	
Cadmium	77.0	78.6	80.0	80.0	ND	96	98	75-125	2	20	
Chromium	71.2	70.2	80.0	80.0	ND	89	88	75-125	1	20	
Cobalt	77.2	75.2	80.0	80.0	ND	97	94	75-125	3	20	
Copper	74.6	72.8	80.0	80.0	ND	93	91	75-125	2	20	
Lead	70.4	69.4	80.0	80.0	ND	88	87	75-125	1	20	
Manganese	4430	4490	4000	4000	859	89	91	75-125	1	20	
Nickel	70.6	69.6	80.0	80.0	ND	88	87	75-125	1	20	
Selenium	89.6	88.4	80.0	80.0	ND	112	111	75-125	1	20	
Silver	66.0	65.0	80.0	80.0	ND	83	81	75-125	2	20	
Thallium	69.8	69.0	80.0	80.0	ND	87	86	75-125	1	20	
Vanadium	73.4	71.8	80.0	80.0	ND	92	90	75-125	2	20	
Zinc	80.2	79.2	80.0	80.0	ND	100	99	75-125	1	20	
Laboratory ID:	08-08	87-01									
Aluminum	22500	22900	22200	22200	ND	102	103	75-125	1	20	
Calcium	58400	58800	22200	22200	38500	90	92	75-125	1	20	
Iron	24800	24400	22200	22200	ND	112	110	75-125	1	20	
Magnesium	33900	34200	22200	22200	11100	103	104	75-125	1	20	
Potassium	27200	27600	22200	22200	4400	103	105	75-125	2	20	
Sodium	32600	33000	22200	22200	12000	93	95	75-125	1	20	
Laboratory ID:	08-0	76-24									
Mercury	11.6	11.9	12.5	12.5	ND	93	95	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

manum	00.0	00.0	00.0	00.0		01	00	10 120		20
Vanadium	73.4	71.8	80.0	80.0	ND	92	90	75-125	2	20
Zinc	80.2	79.2	80.0	80.0	ND	100	99	75-125	1	20
Laboratory ID:	08-08	87-01								
Aluminum	22500	22900	22200	22200	ND	102	103	75-125	1	20
Calcium	58400	58800	22200	22200	38500	90	92	75-125	1	20
Iron	24800	24400	22200	22200	ND	112	110	75-125	1	20
Magnesium	33900	34200	22200	22200	11100	103	104	75-125	1	20
Potassium	27200	27600	22200	22200	4400	103	105	75-125	2	20
Sodium	32600	33000	22200	22200	12000	93	95	75-125	1	20

and is intended only for the use of the individual or company to whom it is addressed.

DISSOLVED SILICA EPA 200.7

Matrix: Water Units: ug/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
P3-1_08062020					
08-087-01					
53000	1600	EPA 200.7		8-17-20	
99-1_08072020					
08-087-03					
44000	1600	EPA 200.7		8-17-20	
	P3-1_08062020 08-087-01 53000 99-1_08072020 08-087-03	P3-1_08062020 08-087-01 53000 1600 99-1_08072020 08-087-03	P3-1_08062020 08-087-01 53000 1600 EPA 200.7 99-1_08072020 08-087-03	Result PQL Method Prepared P3-1_08062020 08-087-01 <	Result PQL Method Prepared Analyzed P3-1_08062020 08-087-01

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED SILICA EPA 200.7 QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0817D1					
Silica	ND	360	EPA 200.7		8-17-20	

					Source	Pe	ercent	Recovery		RPD	
Analyte	Result		Spike Level		Result Re		covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-08	87-01									
	ORIG	DUP									
Silica	52700 52800		Ν	IA	NA		NA	NA	0	20	
MATRIX SPIKES											
Laboratory ID:	08-08	87-01									
	MS	MSD	MS	MSD		MS	MSD				
Silica	91000	91500	42800	42800	52700	89	91	75-125	1	20	
SPIKE BLANK											
Laboratory ID:	SB08	317D1									
	S	В	S	B			SB				
Silica	46	50	47	'50	NA		98	85-115	NA	NA	

ALKALINITY SM 2320B

Matrix: Water Units: mg CaCO3/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	P3-1_08062020					
Laboratory ID:	08-087-01					
Carbonate Alkalinity	ND	2.0	SM 2320B	8-11-20	8-11-20	
Bicarbonate Concentration	140	2.0	SM 2320B	8-11-20	8-11-20	

Client ID:	99-1_08072020					
Laboratory ID:	08-087-03					
Carbonate Alkalinity	ND	2.0	SM 2320B	8-11-20	8-11-20	
Bicarbonate Concentration	200	2.0	SM 2320B	8-11-20	8-11-20	

ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0811W1					
Carbonate Alkalinity	ND	2.0	SM 2320B	8-11-20	8-11-20	
Bicarbonate Concentration	ND	2.0	SM 2320B	8-11-20	8-11-20	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-08	37-01							
	ORIG	DUP							
Total Alkalinity	138	136	NA	NA	NA	NA	1	10	
SPIKE BLANK									
Laboratory ID:	SB08	11W1							
	S	В	SB		SB				
Total Alkalinity	96	6.0	100	NA	96	89-110	NA	NA	

NITRATE + NITRITE (as Nitrogen) EPA 353.2

Matrix:	Water
Units:	mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P3-1_08062020					
Laboratory ID:	08-087-01					
Nitrate+Nitrite	0.064	0.050	EPA 353.2	8-11-20	8-11-20	
Client ID:	99-1_08072020					
Laboratory ID:	08-087-03					
Nitrate+Nitrite	ND	0.050	EPA 353.2	8-11-20	8-11-20	
				-	_	

NITRATE + NITRITE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L

						Date	Date	1	
Analyte		Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0811W1							
Nitrate+Nitrite		ND	0.050	EPA	353.2	8-11-20	8-11-2	20	
				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery		RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-08	37-01							
	ORIG	DUP							
Nitrate+Nitrite	0.0635	0.0605	NA	NA	NA	NA	5	15	
MATRIX SPIKE									
Laboratory ID:	08-08	37-01							
	N	IS	MS		MS				
Nitrate+Nitrite	2.	33	2.00	0.0635	113	89-123	NA	NA	

SPIKE BLANK

Laboratory ID:	SB0811W1							
	SB	SB		SB				
Nitrate+Nitrite	2.00	2.00	NA	100	90-119	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Aug 25 2020 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your 246239/233028 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID TEST	
P3-1_08062020	Water	20-A012281 CONV	, MIN
99-1_08072020	Water	20-A012282 CONV	, MIN

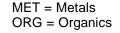
Your samples were received on Tuesday, August 11, 2020. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.


Sincerely,

Aaron W. Young

Vice President

PO Number: 08-087

BACT = Bacteriological CONV = Conventionals

NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Date Received: 08/11/20 Date Reported: 8/25/20

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 246239/233028 PO Number: 08-087 All results reported on an as received basis.

AMTEST Identification Number	20-A012281
Client Identification	P3-1_08062020
Sampling Date	08/06/20, 12:10

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	0.05	mg/l		0.05	EPA 300.0	AY	08/11/20
Chloride	6.62	mg/l		0.05	EPA 300.0	AY	08/11/20
Fluoride	0.12	mg/l		0.05	EPA 300.0	AY	08/11/20
Sulfate	19.4	mg/l		0.1	EPA 300.0	AY	08/12/20

AMTEST Identification Number	20-A012282
Client Identification	99-1_08072020
Sampling Date	08/07/20, 11:37

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	0.05	mg/l		0.05	EPA 300.0	AY	08/11/20
Chloride	9.59	mg/l		0.05	EPA 300.0	AY	08/11/20
Fluoride	0.48	mg/l		0.05	EPA 300.0	AY	08/11/20
Sulfate	2.95	mg/l		0.1	EPA 300.0	AY	08/11/20

on W V Aaron W. Young Vice President

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 20-A012281 to 20-A012282

DUPLICATES

Fluoride

Fluoride

Sulfate

Sulfate

Sulfate

SAMPLE #	ANALYTE	UNITS SAMPLE VALU		UE DUP VAL	UE	RPD
20-A012050	Chloride	mg/l	< 0.05	< 0.05		
MATRIX SF						
SAMPLE #	ANALYTE		SAMPLE VALUE			
20-A012050	Chloride	mg/l	< 0.05	2.11	2.00	105.50 %
STANDARI	D REFERENCE MATERIA	LS				
ANALYTE		UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Bromide		mg/l	2.0	2.1		105. %
Bromide			2.0	2.1		105. %
Chloride		-	2.00	2.12		106. %
Chloride			2.00	2.03		102. %
Fluoride			2.00	1.98		99.0 %
Fluoride			2.00	2.00		100. %
Sulfate		-	2.00	2.11		106. %
Sulfate		-	2.00	2.09		104. %
Sulfate			2.00	2.04		102. %
BLANKS						
ANALYTE		UNITS	RESULT			
Bromide		mg/l	< 0.05			
Bromide		mg/l	< 0.05			
Chloride		mg/l	< 0.05			
Chloride		mg/l	< 0.05			
			< 0.05			

< 0.05

< 0.05

< 0.1

< 0.1

< 0.1

mg/l

mg/l

mg/l

mg/l

mg/l

OnSite Environmental Inc.		n of (Cus	stoc	ly		00				Pa	ge	of	·		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883,3881 • Ways oppide any com	Turnaround Reques (in working days)	t	Lat	oorate	ory N	umber:	300	80	07	-5	08	3-0) 8	7	01	
Phone: (425) 883-3881 · www.onsite-env.com Company: Project Number: 246239/233028 Project Name: Puyallup/Huy99 Project Manager: Pamela Morrill Sampled by: Margan Simon Lab ID Sample Identification 1 P3-1-08062020	2 Days 2 Days 2 Days 3 Standard (7 Days) (other) Date Time Sampled Sampled	1 Day 3 Days Matrix Matrix	NWTPH-HCID	NWTPH-Gx	NWTPH-DX (Acid / SG Clean-up) Volatiles 8260C	Halogenated Volatiles 8260C	Semirolatiles 2200/SIM (with Howritevel Partis) Partie 86760/SIM (Jow Jevel)	PERSONAL SUIFAC SOD.0	Organochlorine Pesticides 8081B Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A Total Roma Metals		X Tell Metals TDS HEM (oil and grease) 1664A	× TAL dissolved		(Nitrute + nitrate	15. 1 1
		rater 1			-			~	-	X		X	X	X		TNO
3 99-1-08072020		vater 5			_	7	XY	L X			X	X	X	X>		
Signature Relinquished Received Received Relinquished Received	Company CDM Sm OS	ith E	CONTRACTOR OF THE OWNER	-1-1	71in 20 5	ne 5115PJ		ents/Spr	cial Inst	ructions						
Relinquished					+											
Received							Data P	ackage	Standa	urd 🗌 L	evel III	Lev	el IV (2		
Reviewed/Date	Reviewed/Date						Chrom	atogram	s with fir	nal report	Elec	tronic Da	ta Deli	verables	(EDDs)	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 27, 2020

Pam Morrill CDM Smith, Inc. 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007-6493

Re: Analytical Data for Project 251008 Laboratory Reference No. 2008-156

Dear Pam:

Enclosed are the analytical results and associated quality control data for samples submitted on August 17, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: August 27, 2020 Samples Submitted: August 17, 2020 Laboratory Reference: 2008-156 Project: 251008

Case Narrative

Samples were collected on August 17, 2020 and received by the laboratory on August 17, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 6010D/7471B Analysis

Due to the high concentration of Aluminum and Iron in the QC sample, the amount spiked was insufficient for meaningful MS/MSD recovery data. The Spike Blank recovery was 100% for Aluminum and 96% for Iron.

The duplicate RPD for Aluminum, Arsenic, Calcium, Iron and Magnesium is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

The Matrix Spike/Matrix Spike Duplicate recoveries for Calcium, Magnesium and Manganese are outside control limits due to matrix inhomogeneity. The samples were re-extracted and re-analyzed with similar results. The Spike Blank recovery was 96 % Calcium, for 101%. Magnesium and 96 % for Manganese.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

2

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

Units. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	99-1					
Laboratory ID:	08-156-01					
Aluminum	6100	1400	EPA 6010D	8-24-20	8-25-20	
Antimony	ND	6.8	EPA 6010D	8-21-20	8-24-20	
Arsenic	270	14	EPA 6010D	8-21-20	8-24-20	
Barium	33	3.4	EPA 6010D	8-24-20	8-25-20	
Beryllium	ND	0.68	EPA 6010D	8-24-20	8-25-20	
Cadmium	ND	0.68	EPA 6010D	8-24-20	8-25-20	
Calcium	3000	1400	EPA 6010D	8-24-20	8-25-20	
Chromium	17	0.68	EPA 6010D	8-24-20	8-25-20	
Cobalt	4.9	0.68	EPA 6010D	8-24-20	8-25-20	
Copper	14	1.4	EPA 6010D	8-24-20	8-25-20	
ron	7700	1400	EPA 6010D	8-24-20	8-25-20	
_ead	ND	6.8	EPA 6010D	8-24-20	8-25-20	
Vagnesium	1900	1400	EPA 6010D	8-24-20	8-25-20	
Vanganese	140	0.68	EPA 6010D	8-24-20	8-25-20	
Vercury	ND	0.34	EPA 7471B	8-25-20	8-25-20	
Nickel	12	3.4	EPA 6010D	8-24-20	8-25-20	
Potassium	440	100	EPA 6010D	8-24-20	8-25-20	
Selenium	ND	14	EPA 6010D	8-24-20	8-25-20	
Silver	ND	1.4	EPA 6010D	8-24-20	8-25-20	
Sodium	760	100	EPA 6010D	8-24-20	8-25-20	
Thallium	ND	3.4	EPA 6010D	8-24-20	8-25-20	
Vanadium	47	0.68	EPA 6010D	8-24-20	8-25-20	
Zinc	26	3.4	EPA 6010D	8-24-20	8-25-20	

3

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

onits. mg/ttg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0821SH1					
Antimony	ND	5.0	EPA 6010D	8-21-20	8-24-20	
Arsenic	ND	10	EPA 6010D	8-21-20	8-24-20	
Laboratory ID:	MB0824SH1					
Aluminum	ND	50	EPA 6010D	8-24-20	8-25-20	
Barium	ND	2.5	EPA 6010D	8-24-20	8-25-20	
Beryllium	ND	0.50	EPA 6010D	8-24-20	8-25-20	
Cadmium	ND	0.50	EPA 6010D	8-24-20	8-25-20	
Calcium	ND	50	EPA 6010D	8-24-20	8-25-20	
Chromium	ND	0.50	EPA 6010D	8-24-20	8-25-20	
Cobalt	ND	0.50	EPA 6010D	8-24-20	8-25-20	
Copper	ND	1.0	EPA 6010D	8-24-20	8-25-20	
Iron	ND	50	EPA 6010D	8-24-20	8-25-20	
Lead	ND	5.0	EPA 6010D	8-24-20	8-25-20	
Magnesium	ND	50	EPA 6010D	8-24-20	8-25-20	
Manganese	ND	0.50	EPA 6010D	8-24-20	8-25-20	
Nickel	ND	2.5	EPA 6010D	8-24-20	8-25-20	
Potassium	ND	75	EPA 6010D	8-24-20	8-25-20	
Selenium	ND	10	EPA 6010D	8-24-20	8-25-20	
Silver	ND	1.0	EPA 6010D	8-24-20	8-25-20	
Sodium	ND	75	EPA 6010D	8-24-20	8-25-20	
Thallium	ND	2.5	EPA 6010D	8-24-20	8-25-20	
Vanadium	ND	0.50	EPA 6010D	8-24-20	8-25-20	
Zinc	ND	2.5	EPA 6010D	8-24-20	8-25-20	
Laboratory ID:	MB0825S1					
Mercury	ND	0.25	EPA 7471B	8-25-20	8-25-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-1	56-01								
	ORIG	DUP								
Aluminum	4510	6030	NA	NA		NA	NA	29	20	К
Barium	24.8	22.6	NA	NA		NA	NA	9	20	
Beryllium	ND	ND	NA	NA		NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Calcium	2240	2970	NA	NA		NA	NA	28	20	К
Chromium	12.3	11.9	NA	NA		NA	NA	4	20	
Cobalt	3.66	3.72	NA	NA		NA	NA	1	20	
Copper	10.1	9.45	NA	NA		NA	NA	6	20	
Iron	5690	7890	NA	NA		NA	NA	32	20	К
Lead	ND	ND	NA	NA		NA	NA	NA	20	
Magnesium	1410	1840	NA	NA		NA	NA	27	20	К
Manganese	103	102	NA	NA		NA	NA	2	20	
Nickel	8.80	8.75	NA	NA		NA	NA	1	20	
Potassium	323	284	NA	NA		NA	NA	13	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Sodium	559	500	NA	NA		NA	NA	11	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Vanadium	34.8	32.7	NA	NA		NA	NA	6	20	
Zinc	19.5	18.9	NA	NA		NA	NA	3	20	
Laboratory ID:	08-1	56-01								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	08-1	56-01								
	ORIG	DUP								
Antimony	ND	ND	NA	NA		NA	NA	NA	20	
Arsenic	203	149	NA	NA		NA	NA	31	20	к
7.1361110	200	173		11/7				51	20	(A

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flage
MATRIX SPIKES											
Laboratory ID:	08-1	56-01									
	MS	MSD	MS	MSD		MS	MSD				
Aluminum	8830	8400	1000	1000	4510	432	389	75-125	5	20	А
Barium	115	113	100	100	24.8	90	88	75-125	1	20	
Beryllium	45.5	45.5	50.0	50.0	ND	91	91	75-125	0	20	
Cadmium	41.4	41.3	50.0	50.0	ND	83	83	75-125	0	20	
Calcium	4710	4550	1000	1000	2240	247	231	75-125	3	20	V
Chromium	99.1	98.6	100	100	12.3	87	86	75-125	1	20	
Cobalt	47.4	47.3	50.0	50.0	3.66	87	87	75-125	0	20	
Copper	54.6	53.8	50.0	50.0	10.1	89	87	75-125	2	20	
Iron	8900	8530	1000	1000	5690	321	284	75-125	4	20	Α
Lead	217	216	250	250	ND	87	86	75-125	1	20	
Magnesium	3130	2990	1000	1000	1410	173	158	75-125	5	20	V
Manganese	121	117	25.0	25.0	103	72	53	75-125	4	20	V
Nickel	94.6	94.4	100	100	8.80	86	86	75-125	0	20	
Potassium	1290	1270	1000	1000	323	97	94	75-125	2	20	
Selenium	89.6	89.1	100	100	ND	90	89	75-125	1	20	
Silver	19.7	19.6	25.0	25.0	ND	79	78	75-125	0	20	
Sodium	1670	1660	1000	1000	559	111	110	75-125	0	20	
Thallium	43.0	42.3	50.0	50.0	ND	86	85	75-125	2	20	
Vanadium	79.2	78.0	50.0	50.0	34.8	89	87	75-125	2	20	
Zinc	107	104	100	100	19.5	88	85	75-125	3	20	
Laboratory ID:		56-01									
Mercury	0.540	0.556	0.500	0.500	0.0105	106	109	80-120	3	20	
Laboratory ID:	08-1	56-01									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	91.8	95.8	100	100	ND	92	96	75-125	4	20	
Arsenic	316	318	100	100	203	112	115	75-125	1	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SPLP ARSENIC EPA 1312/6010D

Matrix: SPLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	99-1					
Laboratory ID:	08-156-01					
Arsenic	0.68	0.40	EPA 6010D	8-25-20	8-25-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SPLP ARSENIC EPA 1312/6010D QUALITY CONTROL

Matrix: SPLP Extract Units: mg/L (ppm)

Analyte		Result		PQL	Me	ethod		Date Prepared	Date Analyz		Flags
METHOD BLANK								•			
Laboratory ID:	Ν	1B0826SPN	/11								
Arsenic		ND		0.40	EPA	6010D)	8-25-20	8-25-2	20	
					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-15	57-01									
	ORIG	DUP									
Arsenic	3.22	3.17	NA	NA		N/	A	NA	1	20	
MATRIX SPIKES											
Laboratory ID:	08-15	57-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	7.32	7.40	4.00	4.00	3.22	103	105	75-125	1	20	

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
99-1	08-156-01	26	8-21-20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com Turnaround Request (in working days) Laboratory Number: 08 - 156 Company: Company: (Check One) (Check One) Project Number: 3 Days 1 Day Project Name: 2 Days 3 Days Project Name: Ogga (or line) USG - HWB99 Standard (7 Days)		
Company: A DM Smith		
Same Day 1 Day		
751008 2 Days 3 Days 8	X	
Total MTCA Metals Sample Identification Date Time Total MTCA Metals Organochlorine Pesticides 8081B Organochlorine Pesticides 8011B Organochlorine Pesticides 8011B	1664A	
Participation Containers And And And And Harbin And	TCLP Metals HEM (oil and grease) 1664A	
Value of Control of Co	letals	
Result Sample Identification Maintee of Contail NWTPH-GX NWTPH-GX Number of Contail NWTPH-GX NWTPH-GX Number of Contail NWTPH-GX NWTPH-GX Number of Contail NWTPH-GX Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Number of Contail Notailies 82700 Number of Contail Number of Contail Corganochlorine Pee Organochlorine Pee Organochlorine Pee Organochlorine Pee Organochlorine Pee Organochlorine Pee Organochlorine Pee Organochlorine Pee Organochlorine Pee	TCLP Metals HEM (oil and	S PL
1 99-1 8/17/20 2023 501 2	X	XX
	_	
Signature Company Date Time Comments/Special Instructions		
Relinquished faillonely CON Smith 8/17/20 425		
Received OSF 817/122 1625		
Relinquished		
Received		
Relinquished		
Received Data Package: Standard Level III	Level IV	
Reviewed/Date Reviewed/Date Chromatograms with final report Electronic Electronic Reviewed/Date Chromatograms with final report Electronic Reviewed/Date Chromatogram Reviewed/Date Chromatogram Reviewed/Date Chromatogram Reviewed/Date Chromatogram Reviewed/Date Chromatogram Revie		

ALL .

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 19, 2021

Todd Burgesser CDM Smith, Inc. 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007-6493

Re: Analytical Data for Project USG Hwy 99 Laboratory Reference No. 2103-124

Dear Todd:

Enclosed are the analytical results and associated quality control data for samples submitted on March 11, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 19, 2021 Samples Submitted: March 11, 2021 Laboratory Reference: 2103-124 Project: USG Hwy 99

Case Narrative

Samples were collected on March 10, 2021 and received by the laboratory on March 11, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 6020B

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C1-H4					
Laboratory ID:	03-124-01					
Arsenic	190	5.0	EPA 6020B		3-19-21	
Client ID:	C1-H9					
Laboratory ID:	03-124-02					
Arsenic	200	5.0	EPA 6020B		3-19-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 6020B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Date	Date)	
Analyte	Result	PQL	M	ethod	Prepared	Analyzed		Flags
METHOD BLANK								
Laboratory ID:	MB0319D1							
Arsenic	ND	2.0	EPA	6020B		3-19-2	21	
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								

DUPLICATE											
Laboratory ID:	03-1	24-05									
	ORIG	DUP									
Arsenic	39.2	40.0	NA	NA			NA	NA	2	20	
MATRIX SPIKES											
Laboratory ID:	03-1	24-05									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	121	124	80.0	80.0	39.2	103	106	75-125	2	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 19, 2021

Todd Burgesser CDM Smith, Inc. 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007-6493

Re: Analytical Data for Project USG Hwy 99 Laboratory Reference No. 2103-124

Dear Todd:

Enclosed are the analytical results and associated quality control data for samples submitted on March 11, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 19, 2021 Samples Submitted: March 11, 2021 Laboratory Reference: 2103-124 Project: USG Hwy 99

Case Narrative

Samples were collected on March 10, 2021 and received by the laboratory on March 11, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 6020B

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C1-H4					
Laboratory ID:	03-124-01					
Arsenic	190	5.0	EPA 6020B		3-19-21	
Client ID:	C1-H9					
Laboratory ID:	03-124-02					
Arsenic	200	5.0	EPA 6020B		3-19-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 6020B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Date	Date)		
Analyte	Result	PQL	Method		Prepared	Analyzed		Flags	
METHOD BLANK									
Laboratory ID:	MB0319D1								
Arsenic	ND	2.0	EPA	6020B		3-19-2	21		
			Source	Percent	Recovery		RPD		
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags	
DUPLICATE									

DUPLICATE											
Laboratory ID:	03-1	24-05									
	ORIG	DUP									
Arsenic	39.2	40.0	NA	NA			NA	NA	2	20	
MATRIX SPIKES											
Laboratory ID:	03-1	24-05									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	121	124	80.0	80.0	39.2	103	106	75-125	2	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

03-124

		С	HAIN	OF CU	STODY RE	COR	D			
CDM Smith			USG Puy	allup and Hwy 99			Analysi	is		
NOTES: Report to Todd Burgesser burgesserte@cdm	smith.com									
COC #: 196	USG Puyal	USG Puyallup and Hwy 99 Treatability Study								
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	No. of Containers	Dissolved Arsenic (6020)				
С1-Н4	3/10/2021	0900	Water	HNO3 and Ice	1	х				
2 С1-Н9	3/10/2021	0900	Water	HNO3 and Ice	1	x				Please email results to
B P12	3/10/2021	0900	Water	HNO3 and Ice	1	х				burgesserte@cdmsmith.com
¥ P13	3/10/2021	0900	Water	HNO3 and Ice	1	х				
5 P10	3/10/2021	0900	Water	HNO3 and Ice	1	X				
Relinquished by: (Signature)	Date/Time	0820		r Laboratory by: (Signature)			, constants	Labora	atory: Onsite
Received by: (Signature)	Date/Time	000	Airbill No.(s)	<u> </u>					
			NA							

Appendix F

Semi-Dynamic Leach Evaluation

Appendix F

Semi-Dynamic Leach Evaluation

The objective of the SW-846 method 1315 leaching procedure is to provide "material parameters" (e.g., concentrations, mass quantities, release rates from the treated soil sample) for the release of the contaminant of concern (arsenic) from the material (treated soil) to the eluent (leaching solution) under controlled leaching conditions. Evaluations of Method 1315 results and total sample concentrations are used to determine the release mechanisms of the arsenic from the treated soil. These mechanisms can include surface wash off, diffusion, depletion of mass, dissolution, or a combination of these mechanisms over different time. The evaluations are based on a plot of the log of the cumulative mass released versus the log of the leaching time. When the mechanism(s) is identified and the release rates are "well behaved" (i.e., the equations from the plots have a reasonable coefficient of determination, r²), contaminant aqueous phase concentrations into the future (years) at the water/exposed surface of the treated soil interface can be predicted.

When diffusion is the controlling mechanism, a plot of the logarithm of the cumulative mass released versus the logarithm of time should have a slope (rc) of 0.5±0.15 (>0.35 to <0.65). In the current evaluation, the slope between each successive interval (called the "EPA slope") was calculated using the interval in question (i) and the previous interval (i-1). Intervals that deviate from the ideal diffusion slope are characterized by another release process. For example, the first leaching intervals may be influenced by "surface wash off." Contaminants of concern (arsenic) that are at the surface of the sample can be released by desorption or dissolution alone without diffusion through the sample matrix. Intervals near the end of the test may be affected by "depletion," in which the near surface contaminant (arsenic) concentrations become depleted. The European Union "TANK" procedure (EA 2005), which is also an SDL test similar to Method 1315, provides a detailed procedure to identify the relevant release processes for specific sets of intervals. The processes were evaluated using the TANK methodology by calculating the slope (rc) between specific time intervals of the plot of the log of the cumulative mass released versus the log of the leaching time for each of the tested samples. Release mechanisms were identified for the various time intervals based on the calculated slope.

To complete the evaluations, several calculations were required and are summarized below.

The mass of contaminant of concern released for each interval (M_{ti}) was calculated as follows:

$$M_{ti} = \frac{C_i V_i}{A}$$

Where,

C_i = The concentration of contaminant within leachate solution for interval i (mg/L)

V_i = The volume of leaching solution used for interval i (L)

A = The surface area of the sample (m^2)

These data were used to calculate the sample volumes using the following:

$$V_{sample} = h\pi r^2$$

Where,

 V_{sample} = The volume of the sample (m³)

h = The height of the sample (m)

r = The radius of the sample (m)

The exposed surface areas of the samples were calculated as follows:

$$A = 2rh\pi + 2\pi r^2$$

Where,

r = The radius of the sample

h = The height of the sample (m)

The resulting calculations and conclusions for the SDL mixture is provided in Table F-1 for mixture C1-H4. The initial arsenic concentration (2-hours) was 3.6 μ g/L. Starting at 24-hours after the initial leachate (2-hours), dissolved arsenic concentrations in all remaining samples ranged from 8.7 μ g/L at 42-days to 22 μ g/L at 7-days and were plotted. The initial arsenic concentration (2-hours) is the result of delayed diffusion or dissolution. After this initial concentration, the remaining concentrations are mainly because of diffusion or depletion of the arsenic in the sample.

Table F-1 provides a graph of the log of the cumulative mass released versus the log of the leaching time for the tested sample. The coefficient of determination (r^2) is excellent at 0.99. Therefore, the equations can be used to predict leachate concentrations at future time periods. Based on the equations, the future concentrations of dissolved arsenic at 1, 2, 5, and 10 years at the interface between the treated soil and the aqueous phase (surface water) were calculated. These calculations included a correction factor for the volume of water that would pass by the interface based on the hydraulic conductivity of 2 ft/day. The concentrations for year 1 through year 10 were less than the practical quantitation limit (2 to 3 µg/L) and ranged from 0.17 µg/L (year 1) to 0.05 µg/L (year 10). These concentrations would decrease as the water at the interface migrates and mixes with additional surface or groundwater.

References

EA. 2005. Leaching Characteristics of Moulded or Monolithic Building and Waste Materials. Determination of Leaching of Inorganic Components with the Diffusion Test. 'The Tank Test'. Environmental Agency EA NEN 7375:2004.

Table F-1 Cummulative Graph and Log Mass Release vs Log of the Leaching

USG Hig	hway 99	As]							EU Tank	Leaching N	/lechanisms	5
D _{obs} =	Observed diffusivity	0.00E+00	m²/s		1.500	y = 0.569x - R ² = 0.9	/	•	Increment	CFa-b	EPA Slope	Std Dev rc	Conclusion
ρ =	Density of the sample	1727	kg/m ³	Log	<u>මී</u> 0.000			2 - 7	28.82	0.478	0.077	Diffusion	
SA =	Surface area of sample	0.0162	m²		0.500	*			5 - 8	34.50	0.321	0.076	Depletion
V =	Volume of Solution	1.62	L		0.00	2.00 4.0	0 6.00	8.00	4 - 7	32.88	0.207	0.063	Depletion
C ₀ =	Constituent in solid (weighted avg.)	270	mg/kg			Log	t		3 - 6	29.73	0.504	0.076	Diffusion
π=		3.14							2 - 5	26.23	0.732	0.107	Dissolution
									1 - 4	17.03	0.723	0.100	Delayed Diffusion or Dissolution
Interval	t (sec interval)	t (sec	Days	M _{ti} (E* _i)	Mt-cumit	Log[Mt]	Log t	C(soln)	C(soln)	D _i ^{obs}	EPA	ε _n	log ε _n
		cumulative)			(ε [*] ")			mg/L	ug/L		slope	(mg/m²)	(mg/m²)
1	7200	7200	0.083333	0.360	0.360	-0.444	3.86	0.00360	3.6	6.50E-17		0.360	-0.444
2	79200	86400	1	1.100	1.460	0.164	4.94	0.01100	11	9.99E-17	0.563	1.546	0.189
3	86400	172800	2	0.970	2.430	0.386	5.24	0.00970	9.7	2.29E-16	0.735	3.312	0.520
4	86400	259200	3	0.975	3.405	0.532	5.41	0.00975	9.75	3.93E-16	0.832	5.313	0.725
5	345600	604800	7	2.200	5.605	0.749	5.78	0.02200	22	2.42E-16	0.588	6.370	0.804
6	604800	1209600	14	1.800	7.405	0.870	6.08	0.01800	18	1.13E-16	0.402	6.146	0.789
7	604800	1814400	21	1.600	9.005	0.954	6.26	0.01600	16	1.51E-16	0.482	8.719	0.940
8	604800	2419200	28	1.300	10.305	1.013	6.38	0.01300	13	1.41E-16	0.469	9.703	0.987
9	1209600	3628800	42	0.870	11.175	1.048	6.56	0.00870	8.7	2.24E-17	0.200	4.741	0.676
		31536000	365	34.420	45.595	1.659	7.50	0.00017	0.17				
		63072000	730	22.045	67.641	1.830	7.80	0.00010	0.10		Values th	at meet EPA	A slope criteria
		157680000	1825	46.289	113.929	2.057	8.20	0.00007	0.07		of 0.5±0.2	15 criteria	
				55.084		2.228	8.50		0.05				