INTERIM ACTION WORK PLAN Texaco Strickland Site

Prepared for:

Strickland Real Estate Holdings, LLC and Chevron Environmental Management Company

Project No. 180357 • May 10, 2021 • ECOLOGY REVIEW DRAFT

INTERIM ACTION WORK PLAN Texaco Strickland Site

Prepared for:

Strickland Real Estate Holdings, LLC and Chevron Environmental Management Company

Project No. 180357 • May 10, 2021 • ECOLOGY REVIEW DRAFT

Aspect Consulting, LLC

Breeyn Greer, PE Project Engineer bgreer@aspectconsulting.com Andrew Yonkofski, LHG Project Hydrogeologist ayonkofski@aspectconsulting.com

Adam Griffin, PE Associate Engineer agriffin@aspectconsulting.com

V:\180357 Aloha Cafe\Deliverables\Interim Action Work Plan\Ecology Review Draft\Texaco_Strickland_Site_IAWP_Ecology Draft_2021.05.10.docx

earth + water

Contents

Ac	Acronyms and Abbreviationsiv			
1	Introduction1			1
	1.1	Work	Plan Organization	2
2	Site	e Dese	cription and Subsurface Conditions	3
	2.1	Site	History and Description	3
	2. 2.	.1.1 .1.2	Operational History of the Property Adjacent Property Descriptions	3 3
	2.2	Site	Geology and Hydrogeology	4
	2.3	Sum	mary of Previous Remedial Investigation and Cleanup Actions	5
	2. 2. 2	.3.1 .3.2	Underground Storage Tank Removals and Closures Historical Environmental Investigations	5 7
	2.	.3.3 Sum	mary of 2019 and 2020 Remedial Investigation Results	7
	2.4	4 1	Soil Analytical Results	7
	2.	4.2	Groundwater Elevation and Analytical Results	8
	2.	.4.3	Soil Gas Analytical Results	9
3	Inte	erim A	Action Summary	11
	3.1	Obje	ctives	11
	3.2	Expo	osure Pathways	11
	3.3	Basis	s of Interim Action	11
	3.4	Rem	ediation Levels	12
	3.5	Soil I	Removal	13
4	Inte	erim A	Action Elements	16
	4.1	Cons	struction and Safety Requirements	16
	4.2	Mobi	lization and Site Preparation	16
	4.3	Moni	toring Well Decommissioning and Replacement	17
	4.4 Building Demolition			17
	4.5	UST	and Hoist Removal	17
	4.6	Shor	ing Installation	18
	4.7	Soil	Segregation, Handling, Management, and Monitoring	18
	4.	.7.1	Identification of Impacted and Contaminated Soils	19
	4. 4	7.3	Soil Excavation, Segregation and Stockpling	19 20
	4.	7.4	Soil Profiling and Off-Site Treatment/Disposal	20
	4.8	Wate	er Management	21
	4.9	Exca	vation Backfill	21

5	Con	npliance Monitoring	23
	5.1	Protection Monitoring	23
	5.2	Performance Monitoring and Overexcavation	23
6	Peri	nitting	25
	6.1	Applicable or Relevant and Appropriate Requirements	25
	6.2	Permitting and Substantive Requirements	25
	6.2	2.1 City of Lynnwood	
	6.2	2.2 State Environmental Policy Act (SEPA)	
	6.2	2.3 Archaeological Resources	
7	Rep	orting	28
8	Sch	edule	29
9	Refe	erences	30
10	Lim	itations	32

List of Tables (in text)

А	UST Summary	6
В	Soil Remediation Levels	13
С	Locations Lacking Vertical Delineation	13
D	Stockpile Sampling Frequency	20
Е	Interim Action Schedule	29

List of Tables (attached)

- 2 Historical Groundwater Analytical Data
- 3 Remedial Investigation Groundwater Elevations
- 4 Remedial Investigation Groundwater Analytical Data
- 5 Remedial Investigation Soil Gas Analytical Data
- 6 Basis of Remedial Excavation Extents
- 7 Estimated Soil Removal Volumes

List of Figures

- 1 Site Location Map
- 2 Site Plan
- 3 Remedial Investigation Soil Analytical Results
- 4 Cross Section A-A'
- 5 Groundwater Analytical Results 2020
- 6 Soil Gas Analytical Results 2020
- 7 Conceptual Soil Excavation Plan
- 8 Conceptual Soil Excavation Sections

List of Appendices

- A Remedial Investigation Boring and Monitoring Well Logs
- B Laboratory Analytical Reports
- C Data Validation Reports
- D Sampling Analysis Plan and Quality Assurance Project Plan
- E State Environmental Policy Act Checklist and Inadvertent Discovery Plan
- F Report Limitations and Guidelines for Use

Acronyms and Abbreviations

AO	Agreed Order
Aspect	Aspect Consulting, LLC
Bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
CEMC	Chevron Environmental Management Company
cVOCs	chlorinated volatile organic compounds
CUL	Cleanup level
Ecology	Washington State Department of Ecology
EDB	1,2-dibromoethane
EDC	ethylene dichloride
ESA	Environmental Site Assessment
gpm	gallons per minute
GPR	ground penetrating radar
mg/kg	milligrams/kilograms
mg/L	milligrams per liter
µg/L	micrograms per liter
LNAPL	light non-aqueous phase liquid
LUST	leaking underground storage tank
MTBE	Methyl tert-butyl ether
MTCA	Model Toxics Control Act
NAVD88	North American Vertical Datum of 1988
NFA	No Further Action
РАН	polycyclic aromatic hydrocarbon
РСВ	polychlorinated biphenyl
PCE	tetrachloroethylene
PLIA	Washington State Pollution Liability Insurance Agency
PLPs	Potentially Liable Parties
PTAP	Petroleum Technical Assistance Program

RI/FS	Remedial Investigation/Feasibility Study
RIWP	Remedial Investigation Work Plan
SAP	Sampling Analysis Plan
SREH	Strickland Real Estate Holdings, LLC
SVE	soil vapor extraction
TCE	trichloroethylene
TEF	toxic equivalency factor
TPHd	total petroleum hydrocarbons as diesel
TPHg	total petroleum hydrocarbons as gasoline
ТРНо	total petroleum hydrocarbons as oil
USGS	U.S. Geological Survey
UST	underground storage tank
VOC	volatile organic compound
WP	Work Plan

٧

1 Introduction

Aspect Consulting, LLC (Aspect) has prepared this Interim Action Work Plan (IAWP), on behalf of Strickland Real Estate Holdings, LLC (SREH) to describe Interim Action cleanup activities to be completed at the Texaco Strickland Cleanup Site (the Site), located at 6808 196th Street SW in Lynnwood, Washington (the Property; Figure 1). The Property is recorded by the Snohomish County Tax Assessor as tax parcel #27042000200600. Two potentially liable parties (PLPs), Strickland Real Estate Holdings, LLC (SREH) and Chevron Environmental Management Company (CEMC), entered into Agreed Order (AO) No. 14315 with the Washington State Department of Ecology (Ecology) on August 28, 2018. On December 14, 2020, Ecology named Jiffy Lube International, Inc. (Jiffy Lube) as a PLP with regard to the Site.

The planned Interim Action is based on the results of the ongoing Remedial Investigation (RI) outlined in the "RI Work Plan" (RIWP, Aspect 2019). The first Remedial Investigation (RI) activities under the AO were completed in June 2019 and documented in the RIWP Addendum dated May 28, 2020 (Aspect, 2020). The RI activities were completed in accordance with the Ecology-approved RIWP and RIWP Addendum (Aspect, 2019 and 2020) and consisted of characterizing the nature and extent of residual light non-aqueous phase liquid (LNAPL), and petroleum-contaminated soil and groundwater exceeding the Model Toxics Control Act (MTCA) Method A cleanup levels (CULs) at the Site. Additional RI activities were necessary to define extent of LNAPL and petroleum-contaminated groundwater (Aspect, 2020). The investigation results will be compiled in the AO-required deliverable Remedial Investigation Report. The RI results form the basis of the planned Interim Action described herein.

Historical operations resulted in the release of petroleum hydrocarbons to the subsurface, impacting soil and groundwater on the Property. Contaminated groundwater has migrated off-Property. Remedial investigations have identified LNAPL in monitoring wells at the Property. The LNAPL at the Site is a hazardous substance which must be treated or removed if it cannot be reliably contained (Washington Administrative Code [WAC] 173-340-360(2)(c) (ii)(A)).

The primary purpose of the Interim Action is to remove LNAPL and contaminated soils from the Property to the maximum extent practicable (considering Site constraints) and mitigate the potential exposure pathways at the Site. A gasoline service station was operated at the Property for approximately 18 years (1959 to 1977) and a Jiffy Lube/Equilon lube facility operated at the Property for approximately 26 years (1977 to 2006). Ecology has determined that releases from the gasoline service station and the lube facility have commingled at the Site. LNAPL has accumulated at the groundwater interface and is a continuing source of contamination to groundwater and soil gas at the Site.

Concurrent with the Interim Action, the PLPs will close the remaining RI data gaps and satisfy the RI-requirements in the AO. The Interim Action will be implemented on a separate track from RI activities. The RI results, and the conduct of the Interim Action

will serve as the basis of the final cleanup action to be selected in the next AOdeliverable, the Feasibility Study (FS) Report.

1.1 Work Plan Organization

This IAWP is organized as follows:

- Section 2 Site Description and Subsurface Conditions
- Section 3 Interim Action Summary
- Section 4 Interim Action Elements
- Section 5 Compliance Monitoring
- Section 6 Permitting
- Section 7 Reporting
- Section 8 Schedule
- Section 9 References
- Section 10 Limitations

2 Site Description and Subsurface Conditions

2.1 Site History and Description

The Property is zoned as commercial and currently developed with one unoccupied building. The Property is identified by Snohomish County Parcel Number 27042000200600. The following subsections summarize the operational history of the Property and the land use of the adjacent properties.

2.1.1 Operational History of the Property

Based on the construction date of the service station building, the Property was first developed in approximately 1959. A review of historical documents has established the following operational history for the Site (Conestoga-Rovers & Associates [CRA], 2011; Aspect, 2019; Aspect, 2020):

• **1959 to 1977 – Texaco-branded Service Station:** The property was initially developed with a Texaco-branded service station in 1959. Based on construction drawings, the service station consisted of two 4,000-gallon leaded gasoline underground storage tanks (UST); one 6,000-gallon leaded gasoline UST; a single pump island with three pumps; associated product conveyance piping; an in-ground vehicle hoist; a 550-gallon used oil UST; and a 1,000-gallon heating oil UST.

Historical Site features are shown on Figure 2. The three gasoline USTs were removed by 1977 (Aspect, 2020). The 550-gallon waste oil and 1,000-gallon heating oil USTs remain in place, but it is unknown if they were decommissioned.

- 1977 to 2006 Jiffy Lube/Equilon Lube Facilities: In 1977, the property was converted to a lube facility, which operated continuously until approximately 2006. During this time, two additional USTs were installed on the property. According to Ecology's UST database, a 500-gallon used oil UST and a 3,000-gallon motor oil UST were installed in June of 1982. In 1995, these two USTs were decommissioned: the 500-gallon used oil UST was closed in place, and the 3,000-gallon motor oil UST was removed (see following section).
- **2006 to 2018 Aloha Café:** In 2006, the building was renovated into a restaurant, Aloha Café, which operated until 2018.
- **2018 to Present** The property has been vacant since 2018 to allow for ongoing remedial investigations.

2.1.2 Adjacent Property Descriptions

The parcel to the west of the Property (tax parcel 27042000200800) is commercially occupied by a strip mall, where a dry cleaner (Slater's One Hour Cleaners) historically operated. According to city directory records, Slater's One Hour Cleaners operated from at least 1971 through at least 2013.

The parcels to the south (tax parcel 27042000201000 and 27042000200900) are occupied by a multi-family residential apartment building owned by FWAK, LLC and operated as Chri-Mar Apartments. The presence of chlorinated solvents in soil and groundwater occur on this property based on environmental characterization work performed by Environmental Associates, Inc. (EA) on behalf of that property owner (EA, 2016a and 2018; see Section 2.3.3).

A commercial strip mall is located to the north of the Property across 196th Street SW. This property (tax parcel 27041700307000) was historically occupied by a Shell-branded service station with confirmed releases of petroleum and impacts to soil and groundwater. Shell is pursuing an opinion through the Washington State Pollution Liability Insurance Agency's (PLIA's) Petroleum Technical Assistance Program (PTAP).

The parcel to the east of the Property (tax parcel 27042000103100), across 68th Ave West, is currently used as parking for Edmonds Community College. This parcel was previously occupied by an Exxon-branded service station, which had confirmed releases of petroleum hydrocarbons to soil and groundwater. A remedial excavation was conducted on the property in 2005, and a No Further Action (NFA) determination was issued by Ecology in 2007.

2.2 Site Geology and Hydrogeology

The geology at the Site is imported fill to depths of approximately 10 feet below ground surface (bgs). This fill soil is underlain by unconsolidated silt, sand, gravel, and clay characteristic of a weathered glacial till deposit. The till deposit increases in density from 18 feet bgs to 32.5 feet bgs, the maximum depth explored at the Site. A cross section depicting these geologic strata are shown in Figure 4.

Fill material was encountered in all 26 soil borings advanced as part of the RIWP and RIWP Addendum implementations to depths ranging between 4 and 10 feet bgs. Boring logs are included as Appendix A. Fill material at the Site is comprised of sand with gravel and sand with silt and gravel. The sand content varied from poor- to well-graded, and the sand and gravel were subangular to subrounded. The fill was generally loose, and the fines (where present) were low plasticity.

Beneath the fill, Vashon till was encountered in all borings, which is consistent with the mapped geologic unit of the area (USGS, 1983). The till encountered during subsurface explorations had a variable composition and included silt (MH); sandy silt with gravel (ML); silty sand and silty sand with gravel (SM); sand with silt and sand with silt and gravel (SW/SP-SM); and sand with gravel (SP). The density of the till was consistent across the Site, ranging from medium dense at the fill-till interface and grading to very dense within a few feet below the interface.

The majority of the subsurface explorations were completed using a hollow-stem auger drilling rig, and geotechnical information was collected for nearly all borings. Based on the observed blow counts, the weathered, medium dense top of till varied in thickness between 2.5 and 15 feet. The underlying unweathered till is differentiated based on the blow counts and inferred density during drilling (Appendix A).

Groundwater is present at the Site and encountered at depths ranging from 7 to 15 feet bgs in the Vashon till unit. The horizontal hydraulic gradient is steep (5 percent). Groundwater flow at the Site and adjacent properties is generally to the southwest, with some minor seasonal variation.

2.3 Summary of Previous Remedial Investigation and Cleanup Actions

2.3.1 Underground Storage Tank Removals and Closures

To date, at least seven USTs have been installed on the Property. Four of the USTs have been removed; one was closed in place; and two confirmed to be present at the Property by a geophysical survey (Aspect, 2020). A description of installation date, decommissioning date and method, and tank operator is included below and summarized in Table A.

2.3.1.1 1977 UST Closure

The three gasoline USTs associated with the Texaco-branded service station were decommissioned (removed) in 1977 when the Property was converted to a Jiffy Lube/Equilon lube oil facility (Aspect, 2020). Based on the building plans for the original service station, these USTs were located in the northeastern corner of the Property, and the dispenser islands were located in the north-central portion of the Property (Figure 2). Decommissioning details are not available; however, a Snohomish County tax assessor indicates the tanks were indeed removed in 1977 (Aspect, 2020).

2.3.1.2 1995 UST Closure

Petroleum-impacted soil related to the former Jiffy Lube/Equilon lube oil facility was discovered in 1995 during removal of a 3,000-gallon new oil UST and closure-in-place of a 500-gallon waste oil UST (Figure 2). Nowicki & Associates (Nowicki) oversaw the removal of approximately 65 tons of soil impacted with total petroleum hydrocarbons as oil (TPHo) above the MTCA Method A cleanup level from the area of the former 3,000-gallon new oil UST (Nowicki, 1995a). Post-excavation sidewall and bottom samples collected by Nowicki concluded that soils impacted by TPHo exceeding the MTCA Method A cleanup levels had been removed.

The 500-gallon waste oil UST located beneath the building was decommissioned by cleaning and slurry filling. A soil boring was advanced approximately 4 feet south of the tank (location SB, Figure 2), and samples were analyzed for TPHo and TPH as gasoline (TPHg). Both TPHo and TPHg were detected at concentrations exceeding MTCA Method A cleanup levels at depths of 1.3 and 2 feet bgs.

The releases were reported to Ecology in 1995. The Site was subsequently listed with Ecology's leaking underground storage tank (LUST) program, as Site ID #6802.

2.3.1.3 Geophysical Survey and UST Inventory Summary

Aspect subcontracted Philip Duoos to conduct electromagnetic and ground penetrating radar (GPR) geophysical surveys at the Property. The purpose of these surveys was to evaluate the potential presence of any remaining subsurface service station infrastructure,

including potential USTs and product/vent lines. The geophysical survey was completed on June 3, 2019.

The geophysical survey noted that a large excavation was present in the northeast portion of the Property where station construction drawings indicated the three gasoline USTs were located. The results of the geophysical survey confirmed that the three gasoline USTs were removed from the Property. The gasoline contents of the USTs are documented in station construction diagrams and tax assessor records.

Two probable concrete slabs were encountered in the north central portion of the Property, at the location of the former pump islands. Numerous probable pipes were encountered extending from the excavation extents to the concrete slabs, indicating that product conveyance piping still exists. The depths of these probable pipes ranged from approximately 2.5 to 4 feet bgs.

What appeared to be an unknown UST was also detected on the north side of the existing building, which was not identified in the Final RIWP. The unknown UST was located at approximately 3.2 feet bgs. Another UST was detected at the southeast corner of the existing building and is assumed to be the 500-gallon heating oil UST based on the station construction diagrams.

A summary of all USTs at the Site is included below as Table A. The geophysical survey report is included as Appendix B in the RIWP Addendum (Aspect, 2020). The results of the geophysical survey were evaluated prior to mobilizing for other RIWP activities.

UST	Contents	Installation Date	Decommissioning Date and Method	Tank Operator
4,000-gallon	Gasoline	1959	1977 – Removed	Service Station Dealer
4,000-gallon	Gasoline	1959	1977 – Removed	Service Station Dealer
6,000-gallon	Gasoline	1959	1977 – Removed	Service Station Dealer
3,000-gallon	New Oil	1982	1995 – Removed	Jiffy Lube/Equilon
500-gallon	Waste oil	1982	1995 – Closed In-Place	Jiffy Lube/Equilon
500-gallon ^(a)	Heating Oil	Unknown	Unknown – Unknown	Jiffy Lube/Equilon
Unknown UST ^(b)	Unknown	Unknown	Unknown – Unknown	Unknown

Table A. UST Summary

Notes:

(a) The installation date of the 500- gallon heating oil UST cannot be confirmed but was reported to be 1989 (CRA, 2011). However, station construction diagrams show it was likely installed along with the station in the 1950s.

(b) The unknown UST was identified on the north side of the building during the geophysical survey. Station construction diagrams indicate this was likely used as waste oil storage tank.

2.3.2 Historical Environmental Investigations

Environmental investigations were completed at the Site between 1995 and 2012:

- Nowicki, 1995b Nowicki advanced two soil borings (SB1 and SB2) to the north of the existing building.
- FINEnvironmental, Inc. (FINE), 2003 FINE completed a Phase I Environmental Site Assessment (ESA) that identified the Property had operated as a Texaco-branded gasoline service station prior to 1977.
- GeoEngineers, Inc. (GeoEngineers), 2004 GeoEngineers completed a Phase I ESA which resulted in similar findings to the Phase I conducted by FINE.
- Cambria Environmental Technology (Cambria), 2006 Cambria installed five monitoring wells (MW-1 through MW-5) and advanced one soil boring (SB-1) at the Property.
- Conestoga-Rovers & Associates, Inc. (CRA), 2007 CRA installed five monitoring wells (MW-6 though MW-10) on the Property.
- CRA, 2011 CRA advanced two soil borings (SB-3 and SB-4) and summarized Site characterization data collected to date.
- CRA, 2014 CRA advanced three additional soil borings (SB-5 through SB-7).

A complete summary of historical environmental investigations completed at the Site served as the primary basis of the data gaps identified in the Final RIWP (Aspect, 2019).

2.3.3 Off-Property Environmental Investigations

In February 2016, EA conducted a limited subsurface investigation and subsequent indoor air sampling at the adjacent property to the south, Chri-Mar Apartments. No TPHg, TPH as diesel (TPHd), TPHo, or benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds were detected in soil or groundwater at the five boring locations (B-01 through B-05, Figure 2). Grab soil vapor samples were collected from borings B-01 and B-03, and concentrations of benzene exceeded the MTCA Method B subslab soil gas screening level at both locations (EA, 2016a).

In March 2016, EA returned to the Chri-Mar Apartments property to conduct indoor and outdoor air sampling. Two indoor air samples were collected from the interior of the Chri-Mar complex, and one outdoor air sample was collected. Samples were collected over a 24-hour period. Benzene was detected in both indoor air samples and the outdoor air sample at concentrations exceeding the MTCA Method B indoor air cleanup levels (EA, 2016b). The benzene concentrations in the outdoor air sample indicate a background source to indoor air in this suburban area with lots of vehicle traffic.

2.4 Summary of 2019 and 2020 Remedial Investigation Results

SREH and CEMC entered into AO No. 14315 with Ecology on August 28, 2018, in order to select a cleanup action for the Site. The first AO-deliverable, the RIWP was finalized by Aspect on March 6, 2019 and approved by Ecology on March 20, 2019 (Aspect, 2019). Based on the RIWP results, an RIWP Addendum was produced to address the

outstanding data gaps for completion of the RI, and was finalized on May 28, 2020 (Aspect, 2020). The results of RI activities conducted under the AO are summarized below.

2.4.1 Soil Analytical Results

A total of 52 unique soil samples (not including quality control samples) were submitted to Friedman & Bruya, Inc., a state-certified laboratory, for chemical analysis of the following COPCs:

- TPHg by Northwest Method NWTPH-Gx
- TPHd and TPHo by Northwest Method NWTPH-Dx
- BTEX and naphthalene by EPA Method 8260C

Additionally, select soil samples were analyzed for the following:

- 8 of the 52 samples were analyzed for EDB, EDC, and MTBE by EPA Method 8260C.
- 4 of the 52 samples were analyzed for lead by EPA Method 6010C at locations where TPHg concentrations were elevated.
- 6 of the 52 samples were analyzed for chlorinated volatile organic compounds (cVOCs) by EPA Method 8260C from locations along the western Property boundary.

Soil analytical results are summarized in Table 1 and presented on Figure 3. Based on the analytical data, TPHg, TPHd, TPHo, benzene, ethylbenzene, total xylenes, and naphthalene were detected above their respective MTCA Method A cleanup levels, and these analytes comprise the chemicals of potential concern (COPCs) in soil at the Site. The following locations and depths contained one or more COPCs at concentrations greater than their respective MTCA Method A cleanup level (Table 1, Figure 3):

- B-07 at a depth of 8 feet bgs
- MW-11 at depths of 1 and 6 feet bgs
- MW-15 at depths of 10.5, 13, and 17.5 feet bgs
- MW-22 at a depth of 16 feet bgs
- MW-23 at depths of 18 and 25 feet bgs

The remaining soil borings did not contain detectable concentrations of TPHg or other Site COPCs. Additionally, no cVOCs were detected in soil from borings along the western Property boundary (B-08, GP-04, MW-12, MW-13, MW-14, MW-18, and MW-19; Table 1) and closest to the former dry cleaner. Laboratory analytical reports are included as Appendix B. Data validation reports are included as Appendix C.

2.4.2 Groundwater Elevation and Analytical Results

Groundwater occurs in the fill and weathered glacial till at the Site (Figure 4). Groundwater was gauged at depths ranging between approximately 8 and 16 feet bgs, corresponding to elevations of 431 to 442 feet (NAVD88¹) during the four monitoring events performed from August 2019 to November 2020 (Table 3). During each event, the groundwater flow direction was to the southwest at an average horizontal hydraulic gradient of 0.05 foot/foot (Figure 5).

During three of the four groundwater sampling events, LNAPL was present in monitoring wells MW-3, MW-4, MW-5, MW-8, and MW-15, and these monitoring wells were therefore not sampled. In August 2020, no LNAPL was measured at MW-4 or MW-8, and groundwater samples were collected. Groundwater samples were submitted to Friedman & Bruya, Inc. and analyzed for the following COPCs:

- TPHg by Northwest Method NWTPH-Gx
- TPHd and TPHo by Northwest Method NWTPH-Dx
- Naphthalene by EPA Method 8260C
- BTEX, EDB, EDC, and MTBE by EPA Method 8260C (August and November 2019 only)
- Total lead by EPA Method 6010C (August and November 2019 only)

Additionally, samples from monitoring wells closest to the former dry cleaner operation were analyzed for cVOCs by EPA Method 8260C. Laboratory analytical reports are included as Appendix B; data validation reports are included in Appendix C.

Groundwater analytical results are summarized in Table 4. Analytical results from the two 2020 events are presented on Figure 5. Based on the analytical data, TPHg, TPHd, TPHo, BTEX, and naphthalene were detected above their respective MTCA Method A cleanup levels. The following locations contained one or more COPCs at concentrations greater than the respective MTCA Method A cleanup levels (Table 4, Figure 5):

Based on recent groundwater data, the groundwater plume has been delineated to the east and southeast (Figure 5). Based on the results of the two sampling events, it is apparent that results at the edges of the groundwater plume show seasonal variability (Figure 4). This may be due to groundwater contacting more residual, sorbed-phase petroleum hydrocarbon impacts present in the smear zone during certain seasons and also may be attributable to increased groundwater flow during certain conditions.

2.4.3 Soil Gas Analytical Results

A total of 16 unique soil gas samples (not including quality control samples) were collected in July 2019, August 2020, and November 2020 events and submitted to Friedman & Bruya, Inc. for analysis of the following:

- BTEX and naphthalene by EPA Method TO-15
- Aliphatic and aromatic hydrocarbons by Massachusetts Department of Environmental Protection Air-Phase Petroleum Hydrocarbons (MA APH)

¹ Elevations presented in feet referenced to North American Vertical Datum of 1988 (NAVD88).

Additionally, samples collected during the July 2019 event were analyzed for EDB, EDC, and MTBE by EPA Method TO-15.

Soil gas sampling results are summarized in Table 5 and the August 2020 and November 2020 results presented on Figure 6. The concentration for TPH was calculated as the sum of aliphatic hydrocarbons, aromatic hydrocarbons, and gas-range VOCs and compared to the generic total petroleum hydrocarbon screening level.² Total petroleum hydrocarbons exceeded the MTCA Method B subslab screening level for unrestricted use at the following locations:

- GP-03 during all three both events.
- GP-05 during the November 2020 sampling event (the only sampling event for this location).
- SVS-01 during the August 2020 sampling event.

Individual analytes, including carcinogenic compounds, were not detected above their respective MTCA Method B subslab screening levels (Table 5). EDB, EDC, and MTBE were not detected in soil gas. Laboratory analytical reports are included as Appendix B and data validation reports are included in Appendix C.

 $^{^{2}}$ The generic subslab TPH screening level is based on the generic TPH indoor air cleanup level of 140 ug/m³ and an attenuation factor of 0.03 in accordance with Ecology's Implementation Memo No. 18 (Ecology, 2018a).

3 Interim Action Summary

The purpose of the Interim Action is to remove LNAPL and contaminated soils from the Property to the maximum extent practicable (considering Site constraints) and mitigate the potential exposure pathways at the Site. Excavation of the LNAPL source and surrounding soils exceeding MTCA cleanup levels will be performed as an Interim Action under AO No. 14315.

The Interim Action will consist of a planned excavation to an average depth of 18 feet bgs with the ability to overexcavate deeper to an average maximum depth of 30 feet bgs, if warranted based on soil performance monitoring. Demolition of the building and temporary shoring on the northern and western Property extents is required to remove the LNAPL source from the Property. The remedial excavation will be backfilled to original grade.

3.1 Objectives

The Interim Action will be conducted to achieve the following objectives:

- Remove the LNAPL source of contamination at the Site.
- Achieve soil remediation levels at the excavation limits, to the extent practicable.
- Remove source of contamination to groundwater and soil gas, mitigating potential off-Property soil vapor intrusion risks.

3.2 Exposure Pathways

The goal of an Interim Action is "to reduce a threat to human health or the environment by eliminating or substantially reducing one or more pathways for exposure to a hazardous substance" (WAC 173-340-430(1)(a)). The following exposure pathways are determined to be complete or potentially complete at the Site:

- **LNAPL to Groundwater:** The LNAPL to groundwater pathway is complete at the Site. LNAPL has accumulated at the water table and dissolves into groundwater.
- Soil to Groundwater: The soil to groundwater pathway is complete at the Site. Sorbed-phase contamination is present in and surrounding the LNAPL body and leaches to groundwater.
- **Vapor Intrusion:** The vapor intrusion pathway is potentially complete at the Site.

These exposure pathways serve as a basis of the Interim Action. The exposure pathway assessment for the Site will be presented in the RI Report.

3.3 Basis of Interim Action

The primary purpose of the Interim Action is to remove LNAPL and contaminated soils from the Property to mitigate the potential exposure pathways at the Site. LNAPL has accumulated at the groundwater interface and is a continuing source of contamination to

groundwater and soil gas at the Site. Based on environmental investigations conducted to date, the product released migrated vertically through the vadose zone (which consists of loose fill material) and pooled at capillary contacts (the fill/till interface and/or groundwater table). The LNAPL migrated downgradient to the southwest through gravity and capillary forces on the surface of the water table.

Groundwater monitoring at the Site has observed LNAPL at thicknesses up to

- 0.39 feet in MW-3,
- 0.32 feet in MW-4,
- 1.12 feet in MW-5,
- 0.61 feet in MW-8, and
- 0.66 feet in MW-15.

LNAPL has not accumulated at MW-23, which bounds the downgradient LNAPL extent to the Property. The LNAPL extent is estimated as 3,100 square feet (sf) and is shown on Figure 2. A large portion of the LNAPL extent is underneath the existing building at the Property.

Seasonally, the thickness in LNAPL wells can decrease to 0 feet during high groundwater elevations. Seasonal groundwater elevation fluctuations are significant at the Site, varying 5.02 feet at MW-08 up to 7.25 feet at MW-09 over the 13-year monitoring record. This groundwater seasonality controls the observed LNAPL thicknesses in monitoring wells.

Based on the groundwater seasonality, the estimated LNAPL smear zone thickness is approximately 5 to 7 feet. The bottom of the smear zone was observed between 6 and 13 feet bgs in the vicinity of the release, and 10 to 18 feet bgs at the most downgradient LNAPL well, MW-15. It is possible that LNAPL pooled at the groundwater interface upgradient of MW-5 and MW-8 and potentially off the Property to the north.

The excavation and off-Site disposal of the contaminated soils associated with the LNAPL source zone at the Site is the basis of the Interim Action.

3.4 Remediation Levels

Contaminants of potential concern (COPCs) at the Site were refined based on the analytical data collected during historical and current RI activities³. The following COPCs were identified for each environmental media:

- Soil: BTEX, TPHg, TPHd, TPHo, and naphthalene
- Groundwater: BTEX, TPHg, TPHd, TPHo, and naphthalene
- Indoor Air: TPH

³ EDB, EDC, MTBE, Lead, PAHs, and PCBs have all been eliminated as COPCs at the Site and approved by Ecology in the RIWP Addendum (Aspect, 2020).

For the purposes of this interim soil removal action, soil remediation levels have been established. Because cleanup levels have not yet been determined for the Site, the Interim Action will target soil compliance with remediation levels defined for the Interim Action in accordance with WAC 173-340-355 and 173-340-360. The soil remediation levels for Site COPCs are the MTCA Method A cleanup levels, as shown in Table B.

Analyte	Soil Remediation Level (mg/kg)
TPHg	30
TPHd	2,000
TPHo	2,000
Benzene	0.03
Toluene	7
Ethylbenzene	6
Total Xylenes	9
Naphthalene	5

Table B. Soil Remediation Levels

3.5 Soil Removal

The excavation and off-Site disposal of the contaminated soils associated with the LNAPL source zone at the Site is the first Interim Action objective. The second Interim Action objective is to achieve the remediation levels at the excavation extents, to the extent practicable. This section estimates to the soil excavation extents, in order to meet this objective.

Soil exceedances have been laterally delineated in all directions (Figure 3). The RI soil analytical results have vertically delineated cleanup level exceedances at depths of 16 to 25 feet bgs in areas close to the LNAPL footprint (MW-15 and MW-22) and at depths up to 8 feet bgs outside the LNAPL footprint (B-07 and MW-11).

Soil was not vertically delineated at locations MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-8, MW-9, MW-10, and MW-23. At these locations, only benzene exceeded the MTCA Method A cleanup level in each of the deepest analytical results from each boring. Table C shows the maximum depth where analytical data was acquired for each of these locations; all soil analytical results are available in Table 1.

Location	Depth (feet bgs)	Benzene Soil Concentration (mg/kg)
MW-1	27.5	0.14
MW-2	17.5	0.33
MW-3	17.5	0.53
MW-4	17.5	0.24
MW-5	17.5	0.09
MW-6	20	0.0921

Table C. Locations Lacking Vertical Delineation

Location	Depth (feet bgs)	Benzene Soil Concentration (mg/kg)
MW-8	20	0.0486
MW-9	20	0.104
MW-10	20	0.0532
MW-23	25	0.047

Results from the 2019 RI investigations showed that benzene concentrations in soil had attenuated to below the remediation levels at the southeast edge of the Site; MW-2 and MW-6 were confirmed by analytical results from MW-12 and B-5, respectively (Table 1). Therefore, these locations were not used to determine excavation limits.

At the remaining locations (MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, and MW-23), the benzene concentrations observed in the deepest soil sample fall within one order of magnitude of the remediation level. Additionally, these benzene exceedances are orders of magnitude less than the exceedances detected at shallower depths within each soil boring. These shallower, larger magnitude benzene exceedances coincide with relatively high exceedances of other Site COPCs, including TPHg. Based on observed geology, groundwater flow is not expected to be significant in the very dense, unweathered glacial till from which these samples were collected. These exceedances may be due to drag down of shallower LNAPL and/or higher-concentration soils and groundwater during drilling.

The planned remedial excavation targets higher concentration exceedances of benzene that occur with TPHg exceedances and are located within the fill and weathered till that is present in the subsurface at the Site. The planned remedial excavation is also based on the expectation that compliance with remediation levels can potentially be achieved at or near the top of the unweathered glacial till. The IAWP remedial excavation design accommodates overexcavation of soils exceeding remediation levels to a maximum depth into the unweathered glacial till, if warranted by soil performance monitoring. The basis for the depths across the remedial excavation is presented in Table 6.

• Planned Excavation Limits – The planned excavation depth is based on analytical results indicative of LNAPL and the Site geology as presented in Table 6. In cases where low-level benzene exceedances were detected, the blow counts presented in the boring logs (Appendix A) were used to infer the depth to the unweathered glacial till.

The areal planned excavation limits will be advanced to the maximum extent practicable. The practical limitations of soil excavation are 1) the right-of-way (ROW) and utilities in the ROW at the northern excavation limits and 2) the adjacent property and building at the western excavation limits. The temporary shoring will be designed to allow for the maximum areal extent of soil removal based on these practical constraints.

• Maximum Overexcavation Depth – The shoring has been designed so that if compliance with the remediation levels is not achieved at the bottom of the planned excavation depth, the shoring can be extended vertically to accommodate overexcavation of soil exceeding remediation levels. The basis for the maximum

overexcavation depth at each location presented in Table 6 are the low-level benzene exceedances observed in historical borings.

The planned excavation depth for the majority of the excavation is 18 to 20 feet bgs (Table 6; Figure 7). Compliance with soil remediation levels will be confirmed during performance sampling associated with the excavation (Section 5), and the shoring has been designed to allow overexcavation to depths up to 30 feet bgs along the western shoring wall (near MW-1) and depths up to 22 feet bgs along the northern shoring wall (Table 6; Figure 8). Excavation will be conducted below the groundwater table and limited groundwater to be managed is anticipated in the glacial till soils.

Based on the historical and current RI analytical data, approximately 1,000 cubic yards of potentially clean soil (as described further in Section 4.7) exists as overburden above the contaminated soil to be removed. The estimated volume of contaminated soil to be removed for the planned excavation is approximately 4,800 cubic yards. Up to an additional 3,000 cubic yards may be removed if the maximum possible overexcavation is conducted in order to achieve soil remediation levels (Table 7).

4 Interim Action Elements

This section describes specific work elements of the Interim Action.

4.1 Construction and Safety Requirements

The following is a summary of construction and safety requirements to be employed at the Site when contamination is encountered during redevelopment construction:

- All persons performing Site activities where they may contact hazardous materials, including petroleum hydrocarbon-impacted soil or groundwater, must have completed Hazardous Waste Operations and Emergency Response (HAZWOPER) training in accordance with the Occupational Safety and Health Administration Part 1910.120 of Title 29 of the Code of Federal Regulations, and be in possession of a current HAZWOPER certification card.
- All work must be performed in accordance with the contractor's site-specific health and safety plan (HASP). The HASP will include guidelines to reduce the potential for injury, as well as incident preparedness and response procedures, emergency response and evacuation procedures, local and project emergency contact information, appropriate precautions for potential airborne contaminants, and Site hazards, and expected characteristics of generated waste. The general contractor will operate under its own HASP, as will any subcontractor performing site activities where hazardous materials may be contacted. The Aspect HASP establishes procedures and practices to protect employees of Aspect from potential hazards associated with Interim Action activities. The HASP will be updated prior to the start of construction.
- A safety meeting will be conducted prior to the start of each workday to inform workers of changing work conditions, and to reinforce key safety requirements.

All work must be conducted in a manner consistent with federal, state, and local construction and health and safety standards applicable to the Site and to the work being performed. All companies are responsible for the health and safety of their own workers.

4.2 Mobilization and Site Preparation

Mobilization and construction site preparation activities include:

- Mobilize construction equipment, materials, and utilities (e.g., electrical generators).
- Install temporary construction fencing.
- Building demolition, described below.
- Construct bermed and lined soil stockpile area(s) for soil handling.
- Construct TESCs per the TESC Plan.
- Remove or reroute any active utilities that may be impacted by the cleanup including water, gas, electric, and communication. This includes coordination with utility owners and deactivation as necessary.

• Decommission monitoring wells that are within the footprint of the planned excavation (Figure 7), as described in Section 4.3.

4.3 Monitoring Well Decommissioning and Replacement

Groundwater monitoring wells located within the footprint of the Interim Action excavation will be properly decommissioned, prior to the start of excavation, in accordance with the requirements of Chapter 173-160 WAC.

Fourteen monitoring wells will be decommissioned – MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, MW-11, MW-13, MW-14, MW-15, MW-20, MW-22, and MW-23 (Figure 7). Off-Property monitoring wells located outside of the planned excavation footprint will be protected if practicable; otherwise, they will be decommissioned.

After the completion of the excavation and backfill, four monitoring wells will be installed in accordance with the procedures outlined in the Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP; Appendix D). The replacement monitoring wells will be located based on the results of a groundwater monitoring event at remaining wells after the interim action. Replacement monitoring well locations will be proposed in the Interim Action Report for Ecology approval.

4.4 Building Demolition

Demolition of the existing building is required to conduct the Interim Action. Prior to demolition, the contractor will subcontract a survey of regulated building materials (RBMs), including potentially asbestos-containing materials, lead-containing paints, PCB-containing light ballasts, and mercury-containing fluorescent light bulbs and thermostat switches. All RBMs will be abated prior to demolition in accordance with local, state, and federal regulations. Building demolition requires a City of Lynnwood demolition permit, discussed in Section 6.2 below.

Following abatement, Aspect will oversee the demolition of the aboveground portion of the building, and direct segregation of building materials potentially contaminated with petroleum hydrocarbons in accordance with Section 5.7. During demolition of the floor slab, Aspect will closely observe the underlying soils for evidence of petroleum hydrocarbon source zones and unanticipated subsurface structures such as USTs.

4.5 UST and Hoist Removal

The contractor will remove the remaining three USTs during the Interim Action in accordance with Ecology's UST regulations (WAC 173-360-200 and WAC 173-360-385). One of the USTs was closed-in-place, and the closure status of the remaining two USTs is unknown (Table A). During removal, their condition, including whether they were previously abandoned-in-place, will be documented. If any additional USTs are encountered during soil excavation activities, they will be removed in accordance with Ecology's UST regulations.

The condition and presence of the in-ground hoist shown on the original building construction diagrams is unknown. While hoists are not subject to the same regulations as USTs, the hoist may still contain hydraulic oil. Therefore, the hoist will be removed at the

same time as the three remaining USTs and using similar means and methods. Any UST contents discovered during decommissioning, will be removed, handled, and disposed of in accordance with all state and federal regulations. Waste characterization sampling of contents will be conducted, if required for applicable disposal requirements.

4.6 Shoring Installation

Temporary shoring of the northern and western property boundaries is required to conduct the Interim Action. The shoring wall alignments, shown in plan view on Figure 7 and in section on Figure 8, are conceptual. Actual shoring wall alignments will be determined during design and permitting and be constrained by the ROW and utilities on the north wall, and the building on the adjacent property on the west wall. The design will target alignments as far north and west as possible, and as close to property boundary as these constraints, setbacks, and City permitting allows. The northern and western extents of contaminated soil excavation will be to the maximum extent practicable.

It is anticipated that a temporary soldier pile wall system will consist of wide-flange steel beams set into vertically drilled shafts typically installed at 6- to 8-foot horizontal spacing. Thick timber lagging would be placed to span between the soldier piles. The space behind the timber lagging would be backfilled with sand and gravel or controlled density fill (CDF) between the wall and surrounding sidewalks or buildings. The temporary shoring design will be prepared by a Washington-licensed geotechnical engineer, based on the remedial excavation requirements in this IAWP.

The estimated total length of temporary shoring is approximately 235 feet along the northern and western walls (Figure 7). The planned excavation limits require an exposed (retained) wall height of 20 feet on the northern and western walls. The temporary shoring will be designed to accommodate removal to the maximum overexcavation depth. Shoring will be designed to allow for a maximum of 22 feet exposure (bgs) on the north wall and 30 feet exposure (bgs) on the west wall. Section views shown on Figure 8 indicate the planned and maximum excavation extents.

4.7 Soil Segregation, Handling, Management, and Monitoring

Soil within the remedial excavation and from the locations of the soldier piles has been delineated into management categories according to the results of past environmental sampling. Two soil management categories will be used during the Interim Action:

- **1**. Petroleum Contaminated Soil (PCS)
- 2. Impacted Soil
- 3. Potentially Clean Soil

The following sections define each management category, describe handling requirements, and provide acceptable soil disposal facilities for each.

4.7.1 Identification of Impacted and Contaminated Soils

An Aspect field representative will be on-Site full-time to monitor excavation activities for evidence of contamination, including potentially unanticipated sources. Criteria to be used include, but are not limited to:

- Petroleum hydrocarbon staining, sheen, or chemical color hues in soil or standing water.
- The presence of separate-phase petroleum hydrocarbon product or other chemicals.
- The presence of utility pipelines with sludge or trapped liquid indicating petroleum hydrocarbon product.
- The presence of buried pipes, conduits, or tanks.
- Vapors causing eye irritation or nose tingling or burning.
- The presence of gasoline- or oil-like odors.

When evidence of PCS is encountered, an Aspect field representative will use visual and PID field screening techniques to assess the extent of contamination and instruct the contractor in segregation of PCS vs. potentially clean soils. Field screening methods include visual (staining and sheen testing), olfactory indications, and headspace vapor screening using a photoionization detector (PID). Field segregation of soils will follow Ecology guidance, and soils impacted with petroleum hydrocarbons will be managed in accordance with Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology, 2016) and as outlined below. If other soil contaminants or other conditions are encountered, an appropriate environmental response will be developed on a case-by-case basis.

4.7.2 Soil Excavation, Segregation and Stockpiling

The estimated extents of excavation for the Interim Action are shown on Figure 7 and in section views on Figure 8. Excavation will be implemented to first remove the delineated LNAPL source zone and continue to the planned excavation limits, or until field screening indicates the absence of petroleum hydrocarbon impacts, whichever is shallower. This remedial excavation design is based on the current understanding of subsurface conditions and the Interim Action objectives in Section 3.1.

Throughout the excavation, an Aspect representative will field screen for evidence of contamination and direct segregation of all excavated materials. Excavated soils that are known to be contaminated based on analytical data presented herein (or field-determined) may be direct-loaded and hauled to the selected off-Site treatment/disposal facility. It may be necessary to temporarily stockpile soils for final categorization and subsequent handling based on laboratory analytical results. Any stockpiling will include the following requirements:

• If stockpiles are staged on pavement, the stockpiles must be underlain with plastic sheeting of 10-mil minimum thickness, with adjacent sheeting sections overlapping a minimum of 3 feet.

- If stockpiles are staged on pervious surfaces (soil), all stockpiles must be separated from underlying soil if the underlying soil is not known to be PCS based on previous environmental sampling.
- The perimeter of stockpiles will be surrounded by a berm or other erosion control measure as identified in the TESC to prevent run-on and/or runoff of precipitation.
- All stockpiles will be covered with plastic sheeting of 6-mil minimum thickness when not in use, and the cover will be anchored to prevent it from being disturbed by wind.
- Analytical testing will be conducted at the frequency prescribed in Ecology's guidance (2016).

4.7.3 Soil Sampling and Analysis

Stockpiles will be sampled at the frequency prescribed in Ecology's guidance (2016) and provided in Table D, below.

Cubic Yards of Soil	Number of Analytical Samples
0 – 100	3
101 – 500	5
501 – 1,000	7
1,001 – 2,000	10
> 2,000	10 + 1 for each additional 500 cubic yards

Table D. Stockpile Sampling Frequency

Stockpile samples will be collected and submitted for laboratory analysis of Site COPCs in accordance with the SAP/QAPP (Appendix D).

4.7.4 Soil Profiling and Off-Site Treatment/Disposal

The soil removal action has been designed and permitted in compliance with Washington State Dangerous Waste Regulations (WAC 173-303).

cVOCs have not been detected in soil samples collected from the Property. Samples have been analyzed for cVOCs on the west and south portions of the Site, near the former Slater's One Hour Cleaners at locations GP-04, B-08, MW-12, MW-13, MW-14, and MW-18 (Table 1). Similarly, cVOCs were not detected in groundwater at on-Property monitoring wells MW-13 and MW-18. Vinyl chloride was detected in groundwater at monitoring MW-14, which is in the southwest portion of the Property (Table 4). At this location, the sloping for the remedial excavation is expected to remain in the vadose zone. Therefore, a Contained-In Determination will not be required to dispose of the PCS soils.

All soil and debris removed that is designated as PCS will be loaded and transported off-Site for disposal. Excavated materials that are known to be contaminated and are direct loaded will be disposed of at a permitted Subtitle D landfill. Trucks transporting contaminated materials from the Site will comply with applicable state and federal regulations and local ordinances and will be covered from the time they are loaded on-Site until they off-load at the designated off-Site disposal facility.

If suspected PCS is stockpiled, and analytical testing indicates that Site COPCs are detected at concentrations less than remediation levels, the soil may be designated as petroleum-impacted in accordance with Ecology's guidance (2016). Petroleum-impacted soil is not suitable for reuse at the Site due to the shallow depth to groundwater. However, petroleum-impacted soil may be disposed of at alternative disposal facility, such as Cadman's permitted Class 2 landfill, provided that petroleum-impacted soil meets the selected disposal facility's permit criteria in accordance with WAC 173-340.

4.8 Water Management

Management of water is necessary to advance the remedial excavation to the planned excavation limits. Water generated during the cleanup action will consist of groundwater and any stormwater entering the excavation. The groundwater quantities anticipated are low, and excavation water will be managed with sumps installed in the bottom of the excavation. IAWP implementation will target dry season to minimize water quantities to be managed.

All generated water will be pumped to tanks and handled in accordance with all local and state requirements by either hauling for disposal off-Site, or a permitted discharge sanitary sewer in accordance with applicable permit requirements by the City and/or Snohomish County. If a permitted discharge is required, all permit treatment, monitoring and discharge requirements will be met.

4.9 Excavation Backfill

The backfill of the excavation will be conducted in phases during and following completion of discrete areas of remedial excavations. Assuming that the base of excavation is completely dewatered, these areas will be backfilled within 1 foot of final grade with material meeting the requirements for WSDOT Standard Specification for Gravel Borrow 9-03.14(1). Within 1 foot of final grade, the excavation will be backfilled with material meeting WSDOT Standard Specification for Crushed Surfacing 9-03.9(3).

The backfill material should only be placed on a relatively firm and unyielding subgrade, free from soft or disturbed material, standing water or organic material. The exposed subgrade soils will be compacted (in place) to a dense and unyielding condition prior to placement of backfill. The subgrade preparation should be observed by the geotechnical engineer prior to placement of backfill.

The backfill will be compacted to a relatively firm an unyielding condition to a minimum density of 95 percent of the maximum dry density as determined by ASTM International (ASTM) D1557 (ASTM, 2020). Backfill should be placed in lifts with a loose thickness no greater than 12 inches when using relatively large compaction equipment, such as a vibrating plate attachment to an excavator (hoe pack) or a drum roller). If small, hand-

operated compaction equipment is used to compact structural fill, lifts should not exceed 6 inches in loose thickness.

Moisture content of the fill will be controlled to within 3 percent of optimum moisture during placement and will be wet of optimum moisture below the static groundwater table. Optimum moisture content shall correspond to the laboratory determined maximum modified proctor density.

5 Compliance Monitoring

In accordance with WAC 173-340-410, compliance monitoring includes the following elements:

- **Protection monitoring** confirms that human health and the environment are adequately protected during the Interim Action.
- **Performance monitoring** confirms that the cleanup action has attained Interim Action remediation levels and/or other performance standards, such as permit requirements.
- **Confirmation monitoring** confirms the long-term effectiveness of the cleanup action once cleanup levels and/or other performance standards have been attained.

For this Interim Action, protection and performance monitoring will be conducted, as outlined below. Confirmation monitoring will be conducted as part of the final cleanup action for the Site, not as part of this Interim Action.

5.1 Protection Monitoring

Protection monitoring of human health will be conducted during the Interim Action by requiring that on-Site workers conducting the soil handling and management are appropriately trained and aware of environmental exposure hazards with conduct of the work. Aspect's HASP for the Interim Action will be updated prior to the initiation of any field work. The contractor will prepare and comply with their own HASP.

Protection monitoring includes real-time air monitoring within the worker breathing zone and at the downgradient property boundary. The air monitoring is discussed in Aspect's HASP. Air monitoring data will be made available to on-Site workers and Ecology. Nothing in this IAWP precludes contractors/consultants on-Site from choosing to conduct additional air monitoring. Fugitive dust emissions will be monitored and managed by the Contractor and as required by the City of Lynnwood.

Protection monitoring of the environment will occur via implementation and regular inspection of the TESC, complying with any dewatering discharge authorization requirements, and soil profiling and disposal in accordance with Washington State Dangerous Waste Regulations (WAC 173-303).

5.2 Performance Monitoring and Overexcavation

Soil performance monitoring will include laboratory analysis of both excavation sidewall and excavation bottom samples. The distance between soil samples will not exceed 20 feet laterally or 5 feet vertically, and closer sample spacing may be necessary. The samples will be submitted for laboratory analysis of Site COPCs described in Section 3.4 and in accordance with the SAP/QAPP (Appendix D).

Once the planned excavation limits are reached or when field screening indicates the absence of petroleum hydrocarbon impacts, excavation confirmation soil samples will be

collected for laboratory analysis to confirm compliance with the Interim Action remediation levels (Section 3.4). The soil samples will be collected from within the excavation using the excavator bucket or by hand if safely accessible to a worker in accordance with the SAP/QAPP (Appendix D). Excavation bottom samples will be collected on a systematic grid coinciding with pile locations in the final shoring design; bottom grid spacing will not exceed 20 feet by 20 feet. The sampling grid boundary will correspond to the PCS excavation area, and bottom samples will be collected from within the base of the excavation. Sidewall samples will be collected from behind the shoring wall and from the slope cuts on the south and east sides of the excavation; sidewall grid spacing will not exceed 20 feet laterally or 5 feet vertically. Within each grid area, Aspect will field-screen the soil for evidence of contamination.

Soil samples will be obtained at the bottom elevations, as follows:

- If there are no field screening indicators of contamination within the entire grid area, a single soil sample will be collected for analysis from the approximate center of the square area (one sample per maximum 20-foot by 20-foot square) to document the remediation levels (Table B) have been met at depth.
- If field screening indications of contamination are observed at the planned excavation limit, the area will be immediately overexcavated by approximately 2 feet deep, and field screened.⁴
- This overexcavation process will be repeated until there are no field indications of contamination, or until the maximum overexcavation depth is reached, whichever occurs first. Then excavation performance bottom samples will be collected as indicated above.

The shoring limits will be designed to accommodate overexcavation of contaminated soils to the maximum overexcavation depth. If contaminated soil cannot be safely or practicably overexcavated, it will be left in place and documented in the Interim Action Report (IAR). In areas where overexcavation is practicable and performed, a new bottom soil sample will be collected and evaluated for compliance with remediation levels.

The soil sampling and chemical analysis described above will be conducted in accordance with the SAP/QAPP (Appendix D).

⁴ Preliminary samples will be dual purposed; to document soil quality at the base of the planned excavation and to profile the stockpile as described above.

6 Permitting

6.1 Applicable or Relevant and Appropriate Requirements

The Interim Action will be performed under the Agreed Order, and it is therefore exempt from the procedural requirements of Chapters 70.94 (Washington Clean Air Act), 70.95 (Solid Waste Management Act), 70.105 (Hazardous Waste Management Act), 90.48 (Water Pollution Control), and 90.58 (Shoreline Management Act) Revised Code of Washington (RCW), and of laws requiring or authorizing local government permits or approvals. However, the Interim Action must still comply with the substantive requirements of such permits or approvals (WAC 173-340-520). In addition, the Interim Action is not exempt from federal permits.

The starting point for Applicable or Relevant and Appropriate Requirements (ARARs) is MTCA regulations (Chapter 173-340 WAC) that address implementation of a cleanup and define cleanup standards under the MTCA statute (Chapter 173.105D RCW). Other ARARs include, but are not limited, to the following:

- 1. State Water Pollution Control Act (Chapter 90.48 RCW)
- 2. Water Resources Act (Chapter 90.54 RCW)
- **3.** Applicable surface water quality criteria published in the water quality standards for surface waters of the State of Washington (Chapter 173-201A WAC)
- **4.** Applicable surface water quality criteria published under Sections 303(c) and 304 of the Clean Water Act
- 5. Washington State Hazardous Waste Management Act (Chapter 70.105 RCW)
- 6. State Dangerous Waste Regulations (Chapter 173-303 WAC)
- 7. Solid Waste Management-Reduction and Recycling (Chapter 70.95 RCW)
- Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 RCW)
- **9**. Washington Clean Air Act (Chapter 70.94 RCW)
- **10.** Puget Sound Clean Air Agency Regulations (http://www.pscleanair.org)
- 11. Occupational Safety and Health Act (OSHA), 29 CFR Subpart 1910.120
- 12. Washington Industrial Safety and Health Act (WISHA)
- **13.** Archaeological and Cultural Resources Act (Chapter 27.53 RCW)
- **14.** State Environmental Policy Act (SEPA; Chapter 43.21C RCW, Chapter 197-11 WAC, and Chapter WAC 173-802)

6.2 Permitting and Substantive Requirements

The following permits have been identified for the Interim Action.

6.2.1 City of Lynnwood

The City of Lynnwood (City) will require permits for the building demolition, shoring installation, and remedial excavation.

Upon Ecology approval of the Draft IAWP, a plan submittal to the City will initiate the City permit review and issuance outlined in this Section. The following permits will be required by the City for IAWP implementation:

- **Right-of-Way (ROW) Use** Limited closure of lanes surrounding the Property may be necessary for equipment mobilizations, trucking and removal of soils, and equipment staging. The Contractor will apply for an ROW Use permit at a future date, as the need is identified.
- **Tree Removal Class II** Based on the number of trees to be removed, a class II tree removal permit will be required. The tree removal permit will be submitted with the Public Works Permit application. Replanting of trees will be required as part of post-construction site restoration.
- **Building Demolition** The building demolition permit will be required to remove the former service station building.
- **Grading** The grading permit will cover earthworks and shoring requirements for the project. The grading permit will be submitted with the Public Works Permit application.
- **Industrial Waste, Limited Discharge** The industrial waste permit (if necessary) for the excavation dewatering discharge to the public sewer system. The industrial waste permit will be submitted with the Public Works Permit application.
- Sewer Capping Once dewatering for the remedial excavation is complete, the sewer will need to be capped in accordance with the local, applicable code. The sewer capping permit will be submitted under the umbrella of a Public Works Permit application.

The permitting timeline is anticipated to be completed on a parallel schedule with the Ecology public comment process for the IAWP.

6.2.2 State Environmental Policy Act (SEPA)

The Interim Action activities comply with SEPA, Chapter 43.21C RCW by conducting a review in accordance with applicable regulatory requirements, including WAC 197-11-268, and Ecology Policy 130A (Ecology, 2004). A SEPA checklist for the Interim Action is included as Appendix E. Ecology will prepare the SEPA determination and coordinate a public review and comment period to coincide with public review of the IAWP. A SEPA determination will be issued by Ecology and included in the Ecology-approved Final IAWP.

6.2.3 Archaeological Resources

A Cultural Resources Assessment and Inadvertent Discovery Plan (IDP) will be submitted to Ecology with the Final IAWP. In accordance with the IDP, if potential archaeological materials are observed in the excavation, work will be stopped, and a professional archaeologist will be mobilized to the excavation location to observe and assess the materials encountered and determine the appropriate path forward in accordance with applicable laws and regulations. The Washington State Archaeologist will be notified in accordance with requirements of the Department of Archaeology and Historic Preservation (DAHP).

7 Reporting

Within 90 days of completing the Interim Action construction activities and receipt of all construction reporting and laboratory analytical data, the PLPs will submit to Ecology the Draft Interim Action Report required by the Agreed Order. Information provided in the Draft Interim Action Report will include a description of the lateral and vertical limits of excavations, the volume of contaminated material removed/landfilled, how the contaminated media was managed, volume of water managed during excavation, and the performance monitoring data. Certificates of Disposal for the waste disposition will also be included. Ecology's comments will be addressed in a Final Interim Action Report. The Final Interim Action Report will complete satisfaction of the Agreed Order requirements for the interim action.

The analytical data collected during the Interim Action will also be uploaded to Ecology's Environmental Information Management (EIM) database within 60 days after it being validated in accordance with WAC 173-340-840(5) and Ecology's Toxics Cleanup Program Policy 840 (Data Submittal Requirements).
8 Schedule

The anticipated schedule of the IAWP implementation follows the schedule set forth in the AO, Exhibit C, Table 2, as outlined below:

Deliverable	Due Date
Ecology Review Draft IAWP and SEPA Checklist	By May 10, 2021
Public Review Draft IAWP and Ecology SEPA Determination	Due no later than 30 days after receipt of Ecology comments on IAWP
Final Interim Action Work Plan	Due no later than 30 days after public notice and comment period closes
Implement Final Interim Action Work Plan	Initiated no later than 30 days following Ecology approval of Final IAWP and City of Lynnwood permit issuance
Ecology Review Draft Interim Action Report	Due no later than 90 days after IAWP completion
Final Interim Action Report	30 days after Ecology's approval of the Agency Review draft IA Report

The Final IAWP cannot be implemented until the City has issued permits required to satisfy local substantive requirements as identified in Section 6.2. Upon Ecology approval of the Public Review Draft IAWP, the design and permitting of the project will be initiated and with the goal of completing project permitting and contractor selection at the same time as the Final IAWP. Once permits have been issued by the City of Lynnwood, Ecology will be notified of the Final IAWP implementation schedule. The IAWP implementation schedule will target the dry season to minimize water management during implementation.

The completion of the IAWP will be reported in the Interim Action Report satisfying the interim action requirements of the Agreed Order.

9 References

- American Petroleum Institute (API), 2016, API LNAPL Transmissivity Workbook: A Tool for Baildown Test Analysis User Guide, Publication 4762, dated April 2016.
- Aspect Consulting, LLC (Aspect), 2019, Remedial Investigation Work Plan, Texaco Strickland Cleanup Site, 6808 196th Street Southwest, Lynnwood, Washington. March 6, 2019.
- Aspect Consulting, LLC (Aspect), 2020, Remedial Investigation Work Plan Addendum, Texaco Strickland Cleanup Site, 6808 196th Street Southwest, Lynnwood, Washington. Dated May 28, 2020.
- ASTM International (ASTM), 2018, 2018 Annual Book of ASTM Standards, West Conshohocken, Pennsylvania.
- Conestoga-Rovers & Associates (CRA), 2011, Remedial Investigation Report, Former Jiffy Lube Facility, 6808 196th Street Southwest, Lynnwood, Washington. August 17, 2011.
- Conestoga-Rovers & Associates (CRA), 2014, Subsurface Investigation Report, Former Jiffy Lube Facility, 6808 196th Street Southwest, Lynnwood, Washington. October 2014.
- Environmental Associates, Inc. (EA), 2016a, Limited Subsurface Sampling & Testing, Chri-Mar Apartments, 19618-19628 68th Avenue West, Lynnwood, Washington. February 19, 2016.
- Environmental Associates, Inc. (EA), 2016b, Limited Air Sampling and Testing, Chri-Mar Apartments, 19618-19628 68th Avenue West, Lynnwood, Washington. March 22, 2016.
- Environmental Associates, Inc. (EA), 2018, Well Installation and Soil Boring Report, Chri-Mar Apartments, 19618-19628 68th Ave West, Lynnwood, Washington. October 24, 2018.
- FINEnvironmental (FINE), 2003, Phase I Environmental Site Assessment Limited Compliance Audit, January 28, 2003.
- GeoEngineers, Inc., 2004, Limited Phase I Environmental Site Assessment, February 11, 2004.
- Nowicki & Associates (Nowicki), 1995a, UST Closure Site Characterization, Lynnwood Quaker State Lube, 6808 196th Street Southwest, Lynnwood, Washington. September 27, 1995.
- Nowicki & Associates (Nowicki), 1995b, Waste Oil UST Characterization Soil Boring, Lynnwood Q Lube, 6808 196th Street Southwest, Lynnwood, Washington. November 20, 1995.
- United States Geologic Survey (USGS), 1983, Geologic Map of the Edmonds East and Part of the Edmonds West Quadrangles, Washington.

- Washington State Department of Ecology (Ecology), 2016, Guidance for Remediation of Petroleum Contaminated Soils, Publication 10-09-057, Revised June 2016.
- Washington State Department of Ecology (Ecology), 2018a, Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings, Implementation Memorandum No. 18, Publication No. 17-09-043, dated January 10, 2018.
- Washington State Department of Ecology (Ecology) 2018b, Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Publication No. 09-09-047, dated DRAFT, October 2009 and revised February 2016 and April 2018. Conestoga-Rovers & Associates (CRA), 2011, Remedial Investigation Report, Former Jiffy Lube Facility, 6808 196th Street Southwest, Lynnwood, Washington. August 17, 2011.

10 Limitations

Work for this project was performed for Strickland Real Estate Holdings, LLC (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Please refer to Appendix F titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

TABLES

		Location	S	В	SB1		SB1-	CAM
		Date	08/24/1995	08/24/1995	11/06/1995	11/06/1995	11/16/2006	11/16/2006
		Sample Name	SB-16"	SB-24"	SB1-12.5'	SB1-16'	SB1-CAM-7.5	SB1-CAM-12.5
	Dept	h Below Ground Surface	1.33 ft	2 ft	12.5 ft	16 ft	7.5 ft	12.5 ft
		MTCA Method A						
Analyte	Unit	Cleanup Level						
TPHs								
Gasoline-Range Organics	ma/ka	30			4100	< 5 U	4.51	12.3
Diesel-Range Organics	mg/kg	2000	1400	630	< 50 U		< 10.8 U	< 11.4 U
Motor Oil-Range Organics	mg/kg	2000	5200	2000	< 100 U		< 27.1 U	< 28.6 U
Diesel and Oil Extended-Range Organics	mg/kg	2000						
BTEX								
Benzene	mg/kg	0.03			18	< 0.1 U	0.14	0.73
Toluene	mg/kg	7			150	< 0.1 U	0.42	1.7
Ethylbenzene	mg/kg	6			57	< 0.1 U	< 0.08 U	0.18
Total Xylenes	mg/kg	9			280	< 0.3 U	< 0.24 U	0.9
Metals	-							
Lead	mg/kg	250					1.71	2.06
PAHs	_							-
Naphthalene	mg/kg	5					0.1138	0.0152
Total cPAHs TEQ	mg/kg	0.1					< 0.0195 U	< 0.0208 U
PCBs								
Total PCBs (Sum of Aroclors)	mg/kg	1					< 0.0108 U	< 0.0115 U
VOCs	1							
1,1,1-Trichloroethane	mg/kg	2						
1,1,2,2-Tetrachloroethane	mg/kg							
1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene	mg/kg							
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4- I rimethylbenzene	mg/kg							
1,2-Dibromo-3-chioropropane	mg/kg	0.005						
1,2-Dibromoetnane (EDB)	mg/kg	0.005					< 0.04 U	< 0.04 U
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC)	mg/kg						< 0.04 0	< 0.04 0
1,2-Dichloropropane	mg/kg							
1,3,5-i rimetnyibenzene	mg/kg							
1,3-Dichloropenzene	mg/kg							
1,3-Dichloropropane	mg/kg							
1,4-Dichloropenzene	mg/kg							
2,2-Dicilioroproparie	mg/kg							
2-Butanone	mg/kg							
2 Hovanono	mg/kg							
	mg/kg							
4-Cillorotoldelle	mg/kg							
Acetone	mg/kg							
Bromobenzene	mg/kg							
Bromodichloromethane	mg/kg							
Bromoform	mg/kg							
Bromomethane	mg/kg							
Carbon Tetrachloride	ma/ka							
Chlorobenzene	ma/ka							
Chloroethane	ma/ka							
Chloroform	mg/ka							
Chloromethane	ma/ka							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane	mg/kg							
Dichlorodifluoromethane	mg/kg							
Isopropylbenzene	mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1					< 0.41 U	< 0.39 U
Methylene Chloride	mg/kg	0.02						
n-Hexane	mg/kg							
n-Propylbenzene	mg/kg							
p-Isopropyltoluene	mg/kg							
sec-Butylbenzene	mg/kg							
Styrene	mg/kg							
tert-Butylbenzene	mg/kg							
Tetrachloroethene (PCE)	mg/kg	0.05						
trans-1,2-Dichloroethene	mg/kg							
trans-1,3-Dichloropropene	mg/kg							
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg							
Vinyl Chloride	mg/kg							

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Table 1. Soil Analytical Data Project No. 180357, Lynnwood, Washington

		Location	SB2	SW	ww	WW2	WW4	BOT
		Date	11/06/1995	08/22/1995	08/22/1995	08/22/1995	08/24/1995	08/24/1995
		Sample Name	SB2-15'	SW	ww	WW2	WW4	BOT
	Dept	h Below Ground Surface	15 ft	6 ft	6 ft	-	10 ft	9 ft
		MTCA Method A						
Analyte	Unit	Cleanup Level						
TPHs	1							
Gasoline-Range Organics	mg/kg	30	640					
Diesei-Range Organics	mg/kg	2000		< 25 U	5100		< 25 U	27
Motor Oil-Range Organics	mg/kg	2000		< 50 0	13000		< 50 0	00
BTEY	ilig/kg	2000						
Benzene	ma/ka	0.03	2.4			< 0.1 U		
Toluene	mg/kg	7	15			< 0.1 U		
Ethylbenzene	mg/kg	6	7			< 0.1 U		
Total Xylenes	mg/kg	9	33			< 0.3 U		
Metals	•							
Lead	mg/kg	250						
PAHs		_						
Naphthalene	mg/kg	5						
Total CPAHS TEQ	mg/kg	0.1						
Total PCRs (Sum of Araclars)	ma/ka	1						
	iiig/kg	1	-					
1,1,1-Trichloroethane	ma/ka	2						
1,1,2,2-Tetrachloroethane	mg/kg	_						
1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene	mg/kg							
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-11methylbenzene	mg/kg							
1.2-Dibromoethane (EDB)	mg/kg	0.005						
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC)	mg/kg					< 0.1 U		
1,2-Dichloropropane	mg/kg							
1,3,5-Trimethylbenzene	mg/kg							
1,3-Dichlorobenzene	mg/kg							
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane	mg/kg							
2-Butanone	mg/kg							
2-Chiorototuene	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	ma/ka							
Acetone	mg/kg							
Bromobenzene	mg/kg							
Bromodichloromethane	mg/kg							
Bromoform	mg/kg							
Bromomethane	mg/kg							
Carbon Tetrachloride	mg/kg							
Chlorobenzene	mg/kg							
Chloroform	mg/kg							
Chloromethane	ma/ka							
cis-1.2-Dichloroethene (cDCE)	ma/ka							
cis-1.3-Dichloropropene	ma/ka							
Dibromochloromethane	mg/kg							
Dibromomethane	mg/kg							
Dichlorodifluoromethane	mg/kg							
Isopropylbenzene	mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1						
Methylene Chloride	mg/kg	0.02						
n-Hexane	mg/kg							
	ing/Kg							
p-isopi opyitoidelle sec-Butvlbenzene	ma/ka							
Styrene	ma/ka							
tert-Butylbenzene	mg/ka							
Tetrachloroethene (PCE)	mg/kg	0.05						
trans-1,2-Dichloroethene	mg/kg							
trans-1,3-Dichloropropene	mg/kg							
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg							
Vinyl Chloride	mg/kg							

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Location	BOT2	MW-1		MW-2		
		Date	08/24/1995	11/16/2006	11/16/2006	11/17/2006	11/17/2006	
		Sample Name	BOT2	GW1-17 5	GW1-27.5	GW2-12.5	GW2-17.5	
	Dept	th Below Ground Surface	12.5 ft	17.5 ft	27.5.ft	12.5 ft	17.5 ft	
	200		12.5 1	17.510	27.510	12.5 1	17.510	
		MTCA Method A						
Analyte	Unit	Cleanup Level						
TPHs							· · · ·	
Gasoline-Range Organics	mg/kg	30		< 3.54 U	4.54	< 3.68 U	9.49	
Diesel-Range Organics	mg/kg	2000	< 25 U	< 10.9 U	< 10.6 U	< 11 U	< 11.2 U	
Motor Oil-Range Organics	mg/kg	2000	< 50 U	< 27.2 U	< 26.4 U	< 27.4 U	< 28.1 U	
Diesel and Oil Extended-Range Organics	mg/kg	2000						
BTEX								
Benzene	mg/kg	0.03		0.16	0.14	0.02	0.33	
Toluene	mg/kg	7		0.34	0.38	< 0.07 U	1	
Ethylbenzene	mg/kg	6		< 0.07 U	< 0.07 U	< 0.07 U	0.87	
Total Xylenes	mg/kg	9		< 0.21 U	< 0.21 U	< 0.22 U	0.34	
Metals								
Lead	mg/kg	250		1.48	0.962	1.6	1.4	
PAHs							-	
Naphthalene	mg/kg	5		< 0.0108 U	< 0.0106 U	< 0.0111 U	< 0.0113 U	
Total cPAHs TEQ	mg/kg	0.1		< 0.0195 U	< 0.0192 U	< 0.0201 U	< 0.0205 U	
PCBs								
Total PCBs (Sum of Aroclors)	mg/kg	1		< 0.0108 U	< 0.0106 U	< 0.0111 U	< 0.0113 U	
VOCs								
1,1,1-Trichloroethane	mg/kg	2						
1,1,2,2-Tetrachloroethane	mg/kg							
1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene	mg/kg							
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene	mg/kg							
1,2-Dibromo-3-chloropropane	mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005		< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC)	mg/kg			< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	
1.2-Dichloropropane	ma/ka							
1.3.5-Trimethylbenzene	ma/ka							
1.3-Dichlorobenzene	mg/kg							
1.3-Dichloropropane	mg/kg							
1.4-Dichlorobenzene	ma/ka							
2.2-Dichloropropane	mg/kg							
2-Butanone	ma/ka							
2-Chlorotoluene	mg/kg							
2-Hexanone	ma/ka							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone	mg/kg							
Bromobenzene	mg/kg							
Bromodichloromethane	ma/ka							
Bromoform	ma/ka							
Bromomethane	ma/ka							
Carbon Tetrachloride	ma/ka							
Chlorobenzene	ma/ka							
Chloroethane	ma/ka							
Chloroform	ma/ka							
Chloromethane	ma/ka							
cis-1.2-Dichloroethene (cDCF)	ma/ka							
cis-1,3-Dichloropropene	ma/ka							
Dibromochloromethane	ma/ka							
Dibromomethane	ma/ka							
Dichlorodifluoromethane	ma/ka							
Isopropylbenzene	ma/ka							
Methyl tert-hutyl ether (MTRE)	mg/kg	0.1		< 0.3511	< 0.36 11	< 0.37 11	< 0.4311	
Methylene Chloride	mg/kg	0.1		- 0.00 0	- 0.00 0	- 0.07 0	- 00	
n-Hexane	mg/kg	0.02						
n-Pronvibenzene	mg/kg							
	mg/kg							
p-isopropyitoidelle soc-Butylbonzeno	mg/kg							
Storana	mg/kg							
tort Butylbonzene	mg/kg							
Totrachloroothers (PCE)	mg/kg	0.05						
trans 1.2 Dichlerosthans	mg/kg	0.05						
	mg/kg							
uans-1,3-Dichloropropene	mg/Kg	0.02						
	mg/kg	0.03						
Vinyl Chlorido	mg/Kg							
vinyi Chionae	ing/kg							

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Location	MV	V-3	MW-4		MW-5		
		Date	11/16/2006	11/16/2006	11/17/2006	11/17/2006	11/17/2006	11/17/2006	
		Sample Name	GW3-7.5	GW3-17.5	GW4-7.5	GW4-17.5	GW5-7.5	GW5-17.5	
	Dept	h Below Ground Surface	7.5 ft	17.5 ft	7.5 ft	17.5 ft	7.5 ft	17.5 ft	
			7.0 10	17.0 10	7.0 10	17.010	7.0 10	17.0 10	
		MICA Method A							
Analyte	Unit	Cleanup Level							
TPHs	T								
Gasoline-Range Organics	mg/kg	30	1820	8.39	1060	8.57	1550	23.9	
Diesel-Range Organics	mg/kg	2000	63.3	< 11.1 U	30.9	< 11 U	62.4	< 11 U	
Motor Oil-Range Organics	mg/kg	2000	< 27.9 U	< 27.8 U	< 26.8 U	< 27.5 U	< 26.9 U	< 27.5 U	
Diesel and Oil Extended-Range Organics	mg/kg	2000							
BTEX									
Benzene	mg/kg	0.03	8.6	0.53	0.48	0.24	0.97	0.09	
Toluene	mg/kg	7	99	0.85	12	0.44	24	0.52	
Ethylbenzene	mg/kg	6	25	0.12	8.2	< 0.08 U	14	0.19	
Total Xylenes	mg/kg	9	160	0.39	54	0.31	90	0.9	
Metals		•				•			
Lead	mg/kg	250	6.69	1.55	2.35	1.58	4.64	1.33	
PAHs									
Naphthalene	ma/ka	5	5.86	< 0.0111 U	4.1	< 0.011 U	6.34	0.0127	
Total cPAHs TEQ	ma/ka	0.1	< 0.0201 U	< 0.0201 U	< 0.0194 U	< 0.01991 U	< 0.0195 U	< 0.0201 U	
PCBs	5 5								
Total PCBs (Sum of Aroclors)	ma/ka	1	< 0.0111 []	0.109	< 0.0107 []	< 0.011 []	< 0.0108 U	< 0.0111 []	
VOCs		· ·							
1.1.1-Trichloroethane	ma/ka	2							
1.1.2.2-Tetrachloroethane	ma/ka	-							
1 1 2-Trichloroethane	ma/ka								
1 1-Dichloroethane	mg/kg								
1 1-Dichloroethono	mg/kg								
1 1-Dichloropropage	mg/Kg								
	ing/Kg								
1,2,3-Trichlorobenzene	mg/kg								
1,2,3-Trichloropropane	mg/kg								
1,2,4-Trichlorobenzene	mg/kg								
1,2,4- I rimethylbenzene	mg/kg								
1,2-Dibromo-3-chloropropane	mg/kg								
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	
1,2-Dichlorobenzene	mg/kg								
1,2-Dichloroethane (EDC)	mg/kg		< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	
1,2-Dichloropropane	mg/kg								
1,3,5-Trimethylbenzene	mg/kg								
1,3-Dichlorobenzene	mg/kg								
1,3-Dichloropropane	mg/kg								
1,4-Dichlorobenzene	mg/kg								
2,2-Dichloropropane	mg/kg								
2-Butanone	mg/kg								
2-Chlorotoluene	mg/kg								
2-Hexanone	mg/kg								
4-Chlorotoluene	mg/kg								
4-Methyl-2-pentanone	ma/ka								
Acetone	ma/ka								
Bromobenzene	ma/ka								
Bromodichloromethane	ma/ka								
Bromoform	ma/ka								
Bromomethane	ma/ka								
Carbon Tetrachloride	ma/ka								
Chlorobenzene	ma/ka								
Chloroethane	ma/ka		-						
Chloroform	mg/kg								
Chloromethane	mg/kg								
cis-1 2-Dichloroethene (cDCE)	mg/kg								
cis-1,2-Dichloropropopo	mg/kg								
Dibromochloromothana	mg/Kg								
Dibromomothano	mg/kg								
Dibromometnane	mg/kg								
	mg/kg								
Isopropyidenzene	mg/kg								
Methylere Oble	mg/kg	0.1	< 0.4 U	< 0.39 U	< 0.38 U	< 0.38 U	< 0.39 U	< 0.37 U	
methylene Chloride	mg/kg	0.02							
n-Hexane	mg/kg								
n-Propylbenzene	mg/kg								
p-Isopropyltoluene	mg/kg								
sec-Butylbenzene	mg/kg								
Styrene	mg/kg								
tert-Butylbenzene	mg/kg								
Tetrachloroethene (PCE)	mg/kg	0.05							
trans-1,2-Dichloroethene	mg/kg								
trans-1,3-Dichloropropene	mg/kg								
Trichloroethene (TCE)	mg/kg	0.03							
Trichlorofluoromethane	mg/kg								
Vinyl Chloride	mg/kg								

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

L - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Location	M	N-6	MW-7		MW-8	
		Date	07/05/2007	07/05/2007	07/05/2007	07/05/2007	07/05/2007	07/05/2007
		Date Comula Nome	MW6@15'	MW6@20'	MW7@5'	MW7@20'	MW8@15'	MW8@20'
	Dont	Sample Name	101000015	INI VO@20	101007@5	101007@20	101000015	10100020
	Dept	in Delow Ground Surface	15 T	20 ft	5π	20 ft	15 T	20 π
		MTCA Method A						
Analyte	Unit	Cleanup Level						
TPHs								
Gasoline-Range Organics	mg/kg	30	< 3.95 U	< 3.54 U	< 4.11 U	< 4.36 U	834	< 4.19 U
Diesel-Range Organics	ma/ka	2000						
Motor Oil-Range Organics	ma/ka	2000						
Discol and Oil Extended Bango Organics	mg/kg	2000						
Diesel and On Extended-Kange Organics	iiig/kg	2000						
	1 a		0.0450.11		0.040444	0.0477.44		
Benzene	mg/kg	0.03	< 0.0158 0	0.0921	< 0.0164 0	< 0.0177 U	2.91	0.0486
Toluene	mg/kg	7	< 0.079 U	< 0.0708 U	0.214	< 0.0886 U	30.9	0.161
Ethylbenzene	mg/kg	6	< 0.079 U	< 0.0708 U	< 0.0822 U	< 0.0886 U	7.76	< 0.0838 U
Total Xylenes	mg/kg	9	< 0.237 U	< 0.212 U	< 0.247 U	< 0.266 U	49.7	< 0.252 U
Metals	•							•
Lead	ma/ka	250	1.49	1.93	2.34	1.85	3.29	1.46
PAHs		1						
Nanhthalene	ma/ka	5						
Total CPAHs TEO	ma/ka	0.1						
	ilig/kg	0.1						
Total PCBS (Sum of Arociors)	mg/kg	1						
VOCs								
1,1,1-Trichloroethane	mg/kg	2						
1,1,2,2-Tetrachloroethane	mg/kg							
1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene	mg/ka							
1.1-Dichloropropene	ma/ka							
1 2 3-Trichlorobenzene	ma/ka							
1.2.3-Trichloropropage	mg/kg							
1,2,3-Trichlenshansen	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene	mg/kg							
1,2-Dibromo-3-chloropropane	mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.079 U	< 0.0708 U	< 0.0822 U	< 0.0886 U	< 0.0789 U	< 0.0838 U
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC)	mg/kg		< 0.079 U	< 0.0708 U	< 0.0822 U	< 0.0886 U	< 0.0789 U	< 0.0838 U
1.2-Dichloropropane	ma/ka							
1.3.5-Trimethylbenzene	ma/ka							
1 3 Dichlorobonzono	mg/kg							
1,3-Dichloropenzene	mg/kg							
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane	mg/kg							
2-Butanone	mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone	ma/ka							
Bromobenzene	ma/ka							
Bromodichloromethane	ma/ka							
Bromoform	ma/ka							
Bromomethene	mg/kg							
	ing/Kg							
	mg/kg							
Uniorobenzene	mg/kg							
Chloroethane	mg/kg							
Chloroform	mg/kg							
Chloromethane	mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane	ma/ka							
Dichlorodifluoromethane	ma/ka							
Isopropylbenzene	ma/ka							
Methyl tert-butyl other (MTPE)	ma/ka	0.1	< 0.3011	< 0.3511	< 0 /1 11	< 0.1/1.11	< 0.3011	< 0.4211
Mothylana Chlorida	mg/kg	0.1	- 0.00 0	- 0.00 0	- 0 1 0	- 0 + 0	- 0.00 0	- 0.72 0
	ing/Kg	0.02						
n-Hexane	mg/kg							
n-Propylbenzene	mg/kg							
p-lsopropyltoluene	mg/kg							
sec-Butylbenzene	mg/kg							
Styrene	mg/kg							
tert-Butylbenzene	mg/kg							
Tetrachloroethene (PCE)	ma/ka	0.05						
trans-1.2-Dichloroethene	ma/ka							
trans-1.3-Dichloropropene	ma/ka							
Trichloroothone (TCE)	mg/kg	0.02		-				
	ing/Kg	0.03						
	ing/Kg							
VIIIVI CIIIOFIQE	I ING/KG							

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

L - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Table 1. Soil Analytical Data Project No. 180357, Lynnwood, Washington

		Location	M	N-9	MM	/-10	HB-SB-3
		Date	07/06/2007	07/06/2007	07/06/2007	07/06/2007	05/10/2010
		Sample Name	MW9@10'	MW9@20'	MW10@5'	MW10@20'	SO-241739-051010-HB-SB-3-5.0
	Dent	h Below Ground Surface	10 ft	20 ft	5 ft	20 ft	5 #
	Dept	I Delow Ground Surface	10 11	2011	อแ	20 11	511
		MTCA Method A					
Analyte	Unit	Cleanup Level					
TPHs							
Gasoline-Range Organics	mg/kg	30	< 0.0364 U	< 3.72 U	8.16	3.99	< 0.2 U
Diesel-Range Organics	ma/ka	2000					< 5 U
Motor Oil-Range Organics	ma/ka	2000					<5U
Discol and Oil Extended Bango Organics	mg/kg	2000					
Diesel and On Extended-Kange Organics	iiig/kg	2000					
BIEX							
Benzene	mg/kg	0.03	0.248	0.104	0.119	0.0532	< 0.00083 U
Toluene	mg/kg	7	< 0.0854 U	< 0.0744 U	0.359	0.102	< 0.00083 U
Ethylbenzene	mg/kg	6	0.0854	< 0.0744 U	< 0.0756 U	0.131	< 0.00083 U
Total Xylenes	mg/kg	9	< 0.256 U	0.327	< 0.227 U	< 0.228 U	< 0.0017 U
Metals	•			•		•	
Lead	mg/kg	250	1.96	1.29	5.91	1.54	
PAHs							
Nanhthalono	ma/ka	5					
	mg/kg	5					
	mg/kg	0.1					
PCBs							
Total PCBs (Sum of Aroclors)	mg/kg	1					
VOCs							
1,1,1-Trichloroethane	mg/kg	2					
1,1,2,2-Tetrachloroethane	mg/kg						
1,1,2-Trichloroethane	mg/ka						
1.1-Dichloroethane	ma/ka						
1 1-Dichloroethene	ma/ka						
1 1-Dichloropropopo	ma/ka						
	mg/Kg						
1,2,3-Trichlorobenzene	mg/kg						
1,2,3-Trichloropropane	mg/kg						
1,2,4-Trichlorobenzene	mg/kg						
1,2,4-Trimethylbenzene	mg/kg						
1,2-Dibromo-3-chloropropane	mg/kg						
1.2-Dibromoethane (EDB)	ma/ka	0.005	< 0.0854 U	< 0.0744 U	< 0.0756 U	< 0.0795 U	
1 2-Dichlorobenzene	mg/kg						
1.2 Dichloroothana (EDC)	mg/kg		< 0.095411	< 0.074411	< 0.0756.11	< 0.0704.11	
1,2-Dichloroethane (EDC)	mg/kg		< 0.0654 0	< 0.0744 0	< 0.0756 0	< 0.0794 0	
1,2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene	mg/kg						
1,3-Dichlorobenzene	mg/kg						
1,3-Dichloropropane	mg/kg						
1,4-Dichlorobenzene	mg/kg						
2.2-Dichloropropane	ma/ka						
2-Butanone	ma/ka						
2-Chlorotoluene	mg/kg						
	mg/kg						
	mg/kg						
4-Chlorotoluene	mg/kg						
4-Methyl-2-pentanone	mg/kg						
Acetone	mg/kg						
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromoform	mg/kg						
Bromomethane	ma/ka				i		
Carbon Tetrachloride	ma/ka						
Chlorobenzene	ma/ka						
Chloroothano	malka						
Chloroform	ing/kg						
	mg/kg						
Chloromethane	mg/kg						
cis-1,2-Dichloroethene (cDCE)	mg/kg						
cis-1,3-Dichloropropene	mg/kg						
Dibromochloromethane	mg/kg						
Dibromomethane	mg/kg						
Dichlorodifluoromethane	ma/ka						
Isopropylbenzene	ma/ka						
Methyl tert-butyl other (MTRE)	ma/ka	0.1	< 0.4311	< 0.3711	< 0.3811	< 0.4]	
Mothylana Chlorida	mg/kg	0.1	- 0.+0 0	- 0.07 0	- 0.00 0	- 0 0	
	ing/kg	0.02					
n-nexane	mg/kg						
n-Propylbenzene	mg/kg						
p-Isopropyltoluene	mg/kg						
sec-Butylbenzene	mg/kg						
Styrene	mg/kg						
tert-Butylbenzene	ma/ka						
Tetrachloroethene (PCE)	ma/ka	0.05					
trans.1 2-Dichloroethono	ma/ka	0.00					
	mg/kg						
	ing/kg						
Irichloroethene (TCE)	mg/kg	0.03					
Trichlorofluoromethane	mg/kg						
Vinyl Chloride	mg/kg						

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Table 1. Soil Analytical Data Project No. 180357, Lynnwood, Washington

		Location	HB-SB-4	B-05	B-06	B-	07
		Date	05/10/2010	06/10/2019	06/11/2019	06/12/2019	06/12/2019
		Sample Name	SO-241739-051010-HB-SB-4-5.0	B-05-16	B-06-13	B-07-8	B-07-12.5
	Dept	h Below Ground Surface	5 ft	16 ft	13 ft	8 ft	12.5 ft
		MTCA Method A					
Analyte	Unit	Cleanup Level					
TPHs	1	· ·					
Gasoline-Range Organics	mg/kg	30	< 0.24 U	< 5 U	< 5 U	87 J	< 5 U
Diesel-Range Organics	mg/kg	2000	6.1	< 50 U	< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics	ma/ka	2000	47	< 250 U	< 250 U	< 250 U	< 250 U
Diesel and Oil Extended-Range Organics	mg/kg	2000		< 250 U	< 250 U	< 250 U	< 250 U
BTEX							
Benzene	mg/kg	0.03	< 0.001 U	< 0.02 U	< 0.02 U		
Toluene	mg/kg	7	0.0018	< 0.02 U	< 0.02 U		
Ethylbenzene	mg/kg	6	< 0.001 U	< 0.02 U	< 0.02 U		
Total Xylenes	mg/kg	9	0.002	< 0.06 U	< 0.06 U		
Metals		•					•
Lead	mg/kg	250				1.44	
PAHs							
Naphthalene	mg/kg	5				< 0.005 UJ	< 0.005 UJ
Total cPAHs TEQ	mg/kg	0.1				-	
PCBs							
Total PCBs (Sum of Aroclors)	mg/kg	1				-	
VOCs							
1,1,1-Trichloroethane	mg/kg	2					
1,1,2,2-Tetrachloroethane	mg/kg						
1,1,2-Trichloroethane	mg/kg						
1,1-Dichloroethane	mg/kg						
1,1-Dichloroethene	mg/kg						
1,1-Dichloropropene	mg/kg						
1,2,3-Trichlorobenzene	mg/kg						
1,2,3-Trichloropropane	mg/kg						
1,2,4-Trichlorobenzene	mg/kg						
1,2,4-Trimethylbenzene	mg/kg						
1,2-Dibromo-3-chloropropane	mg/kg						
1,2-Dibromoethane (EDB)	mg/kg	0.005				< 0.005 U	< 0.005 U
1,2-Dichlorobenzene	mg/kg						
1,2-Dichloroethane (EDC)	mg/kg					< 0.005 U	< 0.005 U
1,2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene	mg/kg						
1,3-Dichlorobenzene	mg/kg						
1,3-Dichloropropane	mg/kg						
1,4-Dichlorobenzene	mg/kg						
2,2-Dichloropropane	mg/kg						
2-Butanone	mg/kg						
2-Chlorotoluene	mg/kg						
2-Hexanone	mg/kg						
4-Chlorotoluene	mg/kg						
4-Methyl-2-pentanone	mg/kg						
Acetone	mg/kg						
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromotorm	mg/kg						
Bromometnane	mg/kg						
Chlerchonzene	mg/kg						
	mg/kg						
Chloroform	mg/kg						
Chloromothons	ing/kg						
cis-1 2-Dichloreethene (cDCE)	mg/kg						
cis-1 3-Dichloropropens	mg/kg						
Dibromochloromothana	mg/kg						
Dibromomethano	mg/kg						
Dichlorodifluoromethane	mg/kg						
Isonronvihenzene	mg/kg						
	mg/kg	0.4				< 0.005.11	 < 0.005.11
Methylene Chloride	mg/kg	0.1				< 0.003 U	- 0.003 0
n-Hovano	mg/kg	0.02					
n-Pronylbenzene	mg/kg						
n-Isonronvitoluene	mg/kg						
p-isopi opyitoidelle sec-Butvlhenzene	mg/kg						
Styrene	mg/kg						
tert-Butylbenzene	mg/kg						
Tetrachloroethone (PCE)	mg/kg	0.05					
trans_1 2-Dichloroethene	mg/kg	0.00					
trans-1,3-Dichloropropene	mg/kg						
Trichloroethene (TCE)	mg/kg	0.03					
Trichlorofluoromethane	mg/kg	0.05					
Vinyl Chloride	mg/ka						

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

L - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Looption	B 08	в	00	B 10		B 11	
		Location	B-00	D-	-03	B-10	07/00/0000	B-11	07/00/0000
		Date	07/16/2019	08/05/2020	08/05/2020	07/30/2020	07/28/2020	07/28/2020	07/28/2020
		Sample Name	B-08-13.5	B-09-2.5	B-09-6	B-10-12.5	B-11-5.5	B-11-10.5	B-11-15
	Dept	h Below Ground Surface	13.5 ft	2.5 ft	6 ft	12.5 ft	5.5 ft	10.5 ft	15 ft
		MICA Method A							
Analyte	Unit	Cleanup Level							
TPHs									
Gasoline-Range Organics	ma/ka	30	< 5 U	< 5 U	<5U	< 5 U	12	< 5 U	< 5 U
Discol Dongo Organico		2000	< 50 11	< 50 11	< 50 11	< 50 11	< 50.11	< 50 11	< 50 11
Diesei-Range Organics	nig/kg	2000	< 30 0	< 30 0	< 30 0	< 30 0	< 30 0	< 30 0	< 30 0
Motor Oil-Range Organics	mg/kg	2000	< 250 U						
Diesel and Oil Extended-Range Organics	mg/kg	2000	< 250 U						
BTEX									
Benzene	ma/ka	0.03	< 0.0211	< 0.0311	< 0.0311	< 0.0311	< 0.0311	< 0.0311	< 0.0311
Talaas	ing/kg	0.00	+ 0.02 U	+ 0.05 U	+ 0.05 U	+ 0.05 U	+ 0.05 U	+ 0.00 U	+ 0.05 U
loiuene	mg/kg	1	< 0.02 0	< 0.05 0	< 0.05 0	< 0.05 0	< 0.05 0	< 0.05 0	< 0.05 0
Ethylbenzene	mg/kg	6	< 0.02 U	< 0.05 U					
Total Xylenes	mg/kg	9	< 0.06 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Metals		•							
Lood	ma/ka	250						1	
	ilig/kg	250							
PAHs									
Naphthalene	mg/kg	5		< 0.05 U	< 0.05 U	< 0.05 U	0.082	< 0.05 U	< 0.05 U
Total cPAHs TEQ	mg/kg	0.1							
PCBs									
Total DODa (Overs of Anaplana)		4							
TOTAL FODS (SUITI OF AFOCIOIS)	ing/kg	1							
VOCs					1				
1,1,1-Trichloroethane	mg/kg	2	< 0.05 U						
1,1,2,2-Tetrachloroethane	mg/kg								
1.1.2-Trichloroethane	ma/ka	1							
1 1 Dichloroothone	malka								
	ing/kg		< 0.05 U						
1,1-Dichloroethene	mg/kg		< 0.05 U						
1,1-Dichloropropene	mg/kg								
1.2.3-Trichlorobenzene	ma/ka								
1 2 3-Trichloropropage	ma/ka								
	iiig/kg								
1,2,4-Trichlorobenzene	mg/kg								
1,2,4-Trimethylbenzene	mg/kg								
1,2-Dibromo-3-chloropropane	mg/kg								
1 2-Dibromoethane (EDB)	ma/ka	0.005							
1.2 Distorio citario (200)	mg/kg	0.000							
1,2-Dicitioroberizene	iiig/kg								
1,2-Dichloroethane (EDC)	mg/kg		< 0.05 U						
1,2-Dichloropropane	mg/kg								
1,3,5-Trimethylbenzene	mg/kg								
1 3-Dichlorobenzene	ma/ka								
1.2 Dishloropropago	mg/kg								
	iiig/kg								
1,4-Dichlorobenzene	mg/kg								
2,2-Dichloropropane	mg/kg								
2-Butanone	mg/kg								
2-Chlorotoluene	ma/ka								
	mg/kg							ł	ł
	iiig/kg								
4-Chlorotoluene	mg/kg								
4-Methyl-2-pentanone	mg/kg								
Acetone	mg/kg								
Bromobenzene	ma/ka								
Bromodichloromothano	mg/kg								
Bromodicinorometriane	iiig/kg								
Bromotorm	mg/kg								
Bromomethane	mg/kg	<u> </u>							
Carbon Tetrachloride	mg/kg								
Chlorobenzene	ma/ka								
Chloroethane	ma/ka		< 0.511						
Chloroform	mailua		0						
Chioroform	mg/kg								
Chloromethane	mg/kg								
cis-1,2-Dichloroethene (cDCE)	mg/kg		< 0.05 U						
cis-1.3-Dichloropropene	ma/ka								
Dibromochloromethane	mg/kg								
Dibromocinoromethane	iiig/kg								
Dibromometnane	mg/kg								
Dichlorodifluoromethane	mg/kg								
Isopropylbenzene	mg/kg								
Methyl tert-butyl ether (MTRF)	ma/ka	0.1							
Methylene Chloride	ma/ka	0.02	< 0.5.11						
	ilig/Kg	0.02	- 0.0 U						
n-нехапе	mg/kg								
n-Propylbenzene	mg/kg								
p-lsopropyltoluene	mg/kg								
sec-Butvlbenzene	ma/ka								
Sturono	ma//cm								
	ing/kg								
tert-Butylbenzene	mg/kg								
Tetrachloroethene (PCE)	mg/kg	0.05	< 0.025 U						
trans-1,2-Dichloroethene	mg/ka		< 0.05 U						
trans-1.3-Dichloropropene	ma/ka								
	mg/kg	0.02	< 0.0211						
	ing/kg	0.03	< 0.02 U						
I richlorofluoromethane	mg/kg								
Vinyl Chloride	mg/kg		< 0.05 U						

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Table 1. Soil Analytical Data Project No. 180357, Lynnwood, Washington

		Location	GP-04	GP	-05	GP-06	MW-11			
		Date	06/05/2019	11/10/2020	11/10/2020	11/10/2020	06/10/2019	06/10/2019	06/10/2019	
		Sample Name	GP-04-2	GP-05-1.25	GP-05-6	GP-06-2.5	MW-11-1	MW-11-6	MW-11-13	
	Dept	h Below Ground Surface	2 ft	1.25 ft	6 ft	2.5 ft	1 ft	6 ft	13 ft	
		MTCA Method A								
Analyte	Unit	Cleanup Level								
TPHs		-								
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	280	2600	< 5 U	
Diesel-Range Organics	mg/kg	2000	< 50 U	< 50 U	< 50 U	< 50 U		240 X		
Motor Oil-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U		< 250 U		
Diesel and Oil Extended-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U		240 X		
BTEX										
Benzene	mg/kg	0.03	< 0.03 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.2 U	0.63	< 0.02 U	
Toluene	mg/kg	7	< 0.05 U	< 0.02 U	< 0.02 U	< 0.02 U	0.99	4.1	0.031	
Ethylbenzene	mg/kg	6	< 0.05 U	< 0.02 U	< 0.02 U	< 0.02 U	2	38	0.025	
Total Xylenes	mg/kg	9	< 0.1 U	< 0.06 U	< 0.06 U	< 0.06 U	11	140	0.12	
Metals	•									
Lead	mg/kg	250						8.76		
PAHs										
Naphthalene	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	1.5	7.4		
Total cPAHs TEQ	mg/kg	0.1					-			
PCBs										
Total PCBs (Sum of Aroclors)	mg/kg	1								
VOCs	-									
1,1,1-Trichloroethane	mg/kg	2	< 0.05 U							
1,1,2,2-Tetrachloroethane	mg/kg		< 0.05 U							
1,1,2-Trichloroethane	mg/kg		< 0.05 U							
1,1-Dichloroethane	mg/kg		< 0.05 U							
1,1-Dichloroethene	mg/kg		< 0.05 U							
1,1-Dichloropropene	mg/kg		< 0.05 U							
1,2,3-Trichlorobenzene	mg/kg		< 0.25 U							
1,2,3-Trichloropropane	mg/kg		< 0.05 U							
1,2,4-Irichlorobenzene	mg/kg		< 0.25 U							
1,2,4- I rimethylbenzene	mg/kg		< 0.05 U							
1,2-Dibromo-3-chioropropane	mg/kg	0.005	< 0.5 U							
1,2-Dibromoetnane (EDB)	mg/kg	0.005	< 0.05 U				< 0.005 0	< 0.005 0		
1,2-Dichlorobenzene	mg/kg		< 0.05 U							
1,2-Dichloroethane (EDC)	mg/kg		< 0.05 U				< 0.005 0	< 0.005 U		
1,2-Dichloropropane	mg/kg		< 0.05 U							
1,3,5-i rimetnyibenzene	mg/kg		< 0.05 U							
1,3-Dichloropenzene	mg/kg		< 0.05 U							
1,3-Dichloropopane	mg/kg		< 0.05 U							
1,4-Dicilioropenzene	mg/kg		< 0.05 U							
2,2-Dicinioropropane	mg/kg		< 0.05 U							
2-Chlorotoluene	mg/kg		< 0.05							
2-Gillorotoldene	mg/kg		< 0.05 0							
4-Chlorotoluene	mg/kg		< 0.05 U							
4-Methyl-2-pentanone	mg/kg		< 0.511							
	mg/kg		< 0.5 U							
Bromobenzene	mg/kg		< 0.05 U							
Bromodichloromethane	ma/ka		< 0.05 U							
Bromoform	ma/ka		< 0.05 U							
Bromomethane	ma/ka		< 0.5 U							
Carbon Tetrachloride	mg/kg		< 0.05 U							
Chlorobenzene	mg/kg		< 0.05 U							
Chloroethane	mg/kg		< 0.5 U							
Chloroform	mg/kg		< 0.05 U							
Chloromethane	mg/kg		< 0.5 U							
cis-1,2-Dichloroethene (cDCE)	mg/kg		< 0.05 U				-			
cis-1,3-Dichloropropene	mg/kg		< 0.05 U							
Dibromochloromethane	mg/kg		< 0.05 U				-			
Dibromomethane	mg/kg		< 0.05 U							
Dichlorodifluoromethane	mg/kg		< 0.5 U				-			
Isopropylbenzene	mg/kg		< 0.05 U							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.05 U				< 0.005 U	< 0.005 U		
Methylene Chloride	mg/kg	0.02	< 0.5 U							
n-Hexane	mg/kg		< 0.25 U							
n-Propylbenzene	mg/kg		< 0.05 U							
p-lsopropyltoluene	mg/kg		< 0.05 U							
sec-Butylbenzene	mg/kg		< 0.05 U							
Styrene	mg/kg		< 0.05 U							
tert-Butylbenzene	mg/kg		< 0.05 U							
Tetrachloroethene (PCE)	mg/kg	0.05	< 0.025 U							
trans-1,2-Dichloroethene	mg/kg		< 0.05 U							
trans-1,3-Dichloropropene	mg/kg		< 0.05 U							
Trichloroethene (TCE)	mg/kg	0.03	< 0.02 U							
Trichlorofluoromethane	mg/kg		< 0.5 U							
Vinyl Chloride	mg/kg		< 0.05 U							

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Location		MW-12	MW-13	MW-14	MW-15		
		Date	06/10/2019	06/11/2019	06/11/2019	06/12/2019	06/12/2019
		Sample Name	MW-12-15	MW-13-12.5	MW-14-12.5	MW-15-7.5	MW-15-10.5
	Dept	h Below Ground Surface	15 ft	12.5 ft	12.5 ft	7.5 ft	10.5 ft
			1011	12.010	12.0 11	7.010	10.0 10
		MICA Method A					
Analyte	Unit	Cleanup Level					
TPHs			- • •				
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	6500 J
Diesel-Range Organics	mg/kg	2000	< 50 U	< 50 U	< 50 U	< 50 U	1500 X
Motor Oil-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U	590
Diesel and Oil Extended-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U	2090 X
BTEX	-	-					
Benzene	mg/kg	0.03	< 0.02 U	< 0.02 U	< 0.02 U		
Toluene	mg/kg	7	< 0.02 U	< 0.02 U	< 0.02 U		
Ethylbenzene	mg/kg	6	< 0.02 U	< 0.02 U	< 0.02 U		
Total Xylenes	mg/kg	9	< 0.06 U	< 0.06 U	< 0.06 U		
Metals	•						•
Lead	mg/kg	250					1.88
PAHs							
Naphthalene	mg/kg	5				< 0.005 UJ	6.3 J
Total cPAHs TEQ	mg/kg	0.1					
PCBs							
Total PCBs (Sum of Aroclors)	ma/ka	1					
VOCs		· · · · ·					L
1.1.1-Trichloroethane	ma/ka	2	< 0.05 []	< 0.05 []	< 0.05 []		
1.1.2.2-Tetrachloroethane	ma/ka	-	-		-		
1.1.2-Trichloroethane	ma/ka						
1.1-Dichloroethane	ma/ka		< 0.0511	< 0.0511	< 0.0511		
1 1-Dichloroethene	mg/kg		< 0.05 0	< 0.05 U	< 0.05 U		
1 1-Dichloropropene	mg/kg		< 0.03 U	- 0.03 0	~ 0.03 U		
	mg/kg						
1,2,3-memoropenzene	ilig/Kg						
1,2,3-Trichlandhanana	mg/kg						
1,2,4-Tricniorobenzene	mg/kg						
1,2,4- I rimetnyibenzene	mg/kg						
1,2-Dibromo-3-chloropropane	mg/kg						
1,2-Dibromoethane (EDB)	mg/kg	0.005				< 0.005 U	< 0.005 U
1,2-Dichlorobenzene	mg/kg						
1,2-Dichloroethane (EDC)	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.005 U	< 0.005 U
1,2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene	mg/kg						
1,3-Dichlorobenzene	mg/kg						
1,3-Dichloropropane	mg/kg						
1,4-Dichlorobenzene	mg/kg						
2,2-Dichloropropane	mg/kg						
2-Butanone	mg/kg						
2-Chlorotoluene	mg/kg						
2-Hexanone	mg/kg						
4-Chlorotoluene	mg/kg						
4-Methyl-2-pentanone	mg/kg						
Acetone	mg/kg						
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromoform	mg/kg						
Bromomethane	ma/ka						
Carbon Tetrachloride	mg/kg						
Chlorobenzene	mg/ka						
Chloroethane	mg/ka		< 0.5 U	< 0.5 U	< 0.5 U		
Chloroform	ma/ka	1					
Chloromethane	ma/ka						
cis-1.2-Dichloroethene (cDCE)	ma/ka		< 0.05 U	< 0.05 []	< 0.05 []		
cis-1.3-Dichloropropene	ma/ka			-			
Dibromochloromethane	ma/ka						
Dibromomethane	ma/ka						
Dichlorodifluoromethane	ma/ka						
Isopropylbenzene	mg/kg						
Methyl tert-hutyl ether (MTRE)	mg/kg	0.1				< 0.005.11	< 0.005.11
Methylene Chloride	mg/kg	0.1	<0511	< 0.5.11	< 0.5.11	- 0.000 0	- 0.000 0
	mg/kg	0.02		- 0.5 0	~ 0.0 U		
n Propylhonzono	mg/kg						
	ilig/Kg						
	ing/Kg						
	ing/Kg						
Styrene	mg/kg						
tert-Butylbenzene	mg/kg						
letrachloroethene (PCE)	mg/kg	0.05	< 0.025 U	< 0.025 U	< 0.025 U		
trans-1,2-Dichloroethene	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U		
trans-1,3-Dichloropropene	mg/kg						
Trichloroethene (TCE)	mg/kg	0.03	< 0.02 U	< 0.02 U	< 0.02 U		
Trichlorofluoromethane	mg/kg						
Vinyl Chloride	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U		

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Location		MW-15	MW-16	MW-17	
		Date	06/12/2019	06/12/2019	06/12/2019	06/14/2019	06/14/2019
		Sample Name	MW-15-13	MW-15-17.5	MW-15-25	MW-16-7.5	MW-17-8.5
	Dept	h Below Ground Surface	13 ft	17.5 ft	25 ft	7.5 ft	8.5 ft
		MTCA Method A					
Analyte	Unit	Cleanup Level					
TPHs	•						
Gasoline-Range Organics	mg/kg	30	3400	200	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	990 X	< 50 U	< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics	ma/ka	2000	370	< 250 U	< 250 U	< 250 U	< 250 U
Diesel and Oil Extended-Range Organics	ma/ka	2000	1360 X	< 250 U	< 250 U	< 250 U	< 250 U
BTEX							
Benzene	ma/ka	0.03	0.7 J	0.22	0.026		
Toluene	ma/ka	7	4.7 J	0.096	< 0.005 U		
Ethylbenzene	ma/ka	6	10 J	0.19	< 0.005 U.I		
Total Xylenes	mg/kg	9	64.1	1 19	< 0.01 []		
Motals	mgrig	, i i i i i i i i i i i i i i i i i i i			0.01.0		
Lead	ma/ka	250	1 93				
BAHs	ing/kg	200	1.00				
rans Nanhthalong	ma/ka	5	49				
Total cDAHs TEO	mg/kg	0.1	4.3				
	iiig/kg	0.1					
Total PCBs (Sum of Arcolors)	malka	4	-				
	ing/kg	1					
1 1 1 Trichlorosthere	man/le	2					
	ing/Kg	۷					
	ing/Kg						
1,1,2-1 richloroethane	mg/kg						
	mg/kg						
	mg/kg						
	mg/kg						
1,2,3-Trichlorobenzene	mg/kg						
1,2,3-Trichloropropane	mg/kg						
1,2,4-Trichlorobenzene	mg/kg						
1,2,4-Trimethylbenzene	mg/kg						
1,2-Dibromo-3-chloropropane	mg/kg						
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.005 U				
1,2-Dichlorobenzene	mg/kg						
1,2-Dichloroethane (EDC)	mg/kg		< 0.005 U				
1,2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene	mg/kg						
1,3-Dichlorobenzene	mg/kg						
1,3-Dichloropropane	mg/kg						
1,4-Dichlorobenzene	mg/kg						
2,2-Dichloropropane	mg/kg						
2-Butanone	mg/kg						
2-Chlorotoluene	mg/kg						
2-Hexanone	mg/kg						
4-Chlorotoluene	mg/kg						
4-Methyl-2-pentanone	mg/kg						
Acetone	mg/kg						
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromoform	mg/kg						
Bromomethane	mg/kg						
Carbon Tetrachloride	mg/kg						
Chlorobenzene	mg/kg						
Chloroethane	mg/kg						
Chloroform	mg/kg						
Chloromethane	mg/kg						
cis-1,2-Dichloroethene (cDCE)	mg/kg						
cis-1,3-Dichloropropene	mg/kg						
Dibromochloromethane	mg/kg						
Dibromomethane	mg/kg						
Dichlorodifluoromethane	mg/kg						
Isopropylbenzene	mg/kg						
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.005 U				
Methylene Chloride	mg/kg	0.02					
n-Hexane	mg/ka						
n-Propylbenzene	mg/kg						
p-lsopropyltoluene	mg/ka						
sec-Butylbenzene	ma/ka						
Styrene	ma/ka						
tert-Butvlbenzene	ma/ka						
Tetrachloroethene (PCF)	ma/ka	0.05					
trans-1 2-Dichloroethene	ma/ka	0.00					
trans-1,2-Dichloropropene	ma/ka						
Trichloroethene (TCE)	ma/ka	0.03					
Trichlorofluoromethana	mg/kg	0.05					
Vinvl Chloride	ma/ka						
The second se	iiig/kg	1					

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Location	MW-18	MW-19		MW-20	
		Date	07/15/2019	07/16/2019	07/30/2020	07/30/2020	07/30/2020
		Sample Name	MW-18-10	MW-19-8.5	MW-20-5'	MW-20-8'	MW-20-13'
	Dept	h Below Ground Surface	10 ft	8.5 ft	5 ft	8 ft	13 ft
		MTCA Method A					
Analyte	Unit	Cleanup Level					
TPHs	1	-					
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	< 50 U				
Motor Oil-Range Organics	mg/kg	2000	< 250 U				
Diesel and Oil Extended-Range Organics	mg/kg	2000	< 250 U				
BTEX							
Benzene	mg/kg	0.03	< 0.02 U	< 0.02 U	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg	7	< 0.02 U	< 0.02 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6	< 0.02 U	< 0.02 U	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes	mg/kg	9	< 0.06 U	< 0.06 U	< 0.1 U	< 0.1 U	< 0.1 U
Metals		•					•
Lead	mg/kg	250					
PAHs							-
Naphthalene	mg/kg	5			< 0.05 U	0.065	< 0.05 U
Total cPAHs TEQ	mg/kg	0.1					
PCBs							
Total PCBs (Sum of Aroclors)	mg/kg	1					
VOCs		-					
1,1,1-Trichloroethane	mg/kg	2	< 0.05 U	< 0.05 U			
1,1,2,2- l etrachloroethane	mg/kg						
1,1,2-I richloroethane	mg/kg						
	mg/kg		< 0.05 U	< 0.05 U			
	ing/Kg		< 0.05 U	< 0.05 U			
1,1-Dichloropropene	mg/kg						
	mg/kg						
1,2,3-Trichloropropane	mg/kg						
1,2,4-Trimethylbenzene	mg/kg						
1,2,4-Trimetryisenzene	mg/kg						
1 2-Dibromoethane (EDB)	mg/kg	0.005					
1,2-Dichlorobenzene	mg/kg	0.000					
1.2-Dichloroethane (EDC)	ma/ka		< 0.05 U	< 0.05 U			
1.2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene	mg/kg						
1,3-Dichlorobenzene	mg/kg						
1,3-Dichloropropane	mg/kg						
1,4-Dichlorobenzene	mg/kg						
2,2-Dichloropropane	mg/kg						
2-Butanone	mg/kg						
2-Chlorotoluene	mg/kg						
2-Hexanone	mg/kg		-				
4-Chlorotoluene	mg/kg						
4-Methyl-2-pentanone	mg/kg						
Acetone	mg/kg						
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromotorm	mg/kg						
Bromometnane	mg/kg						
	ing/Kg						
Chloroethane	mg/kg						
Chloroform	mg/kg		- 0.3 0	- 0.3 0			
Chloromethane	mg/kg						
cis-1 2-Dichloroethene (cDCE)	mg/kg		< 0.05 U	< 0.05 U			
cis-1.3-Dichloropropene	ma/ka						
Dibromochloromethane	mg/ka						
Dibromomethane	mg/kg						
Dichlorodifluoromethane	mg/kg						
Isopropylbenzene	mg/kg						
Methyl tert-butyl ether (MTBE)	mg/kg	0.1					
Methylene Chloride	mg/kg	0.02	< 0.5 U	< 0.5 U			
n-Hexane	mg/kg						
n-Propylbenzene	mg/kg						
p-IsopropyItoluene	mg/kg						
sec-Butylbenzene	mg/kg						
Styrene	mg/kg						
tert-Butylbenzene	mg/kg						
Tetrachloroethene (PCE)	mg/kg	0.05	< 0.025 U	< 0.025 U			
trans-1,2-Dichloroethene	mg/kg		< 0.05 U	< 0.05 U			
trans-1,3-Dichloropropene	mg/kg						
Trichloroethene (TCE)	mg/kg	0.03	< 0.02 U	< 0.02 U			
I richlorofluoromethane	mg/kg						
winyi omonue	IIIY/KQ		< 0.05 U	< 0.05 U			

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Table 1. Soil Analytical Data Project No. 180357, Lynnwood, Washington

	Locati			MM	/-21		MW-22	
		Date	07/30/2020	07/28/2020	07/28/2020	07/28/2020	07/30/2020	07/30/2020
		Sample Name	MW-21A-2.5	MW-21-5	MW-21-10	MW-21-17.5	MW-22A-2.5	MW-22B-5'
	Dept	h Below Ground Surface	25 ft	5 ft	10 ft	17.5 ft	2.5 ft	5 ft
	Dept		2.5 IL	511	10 11	17.5 1	2.5 ft	511
		MTCA Method A						
Analyte	Unit	Cleanup Level						
TPHs								
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	90 X	< 50 U				
Motor Oil-Range Organics	ma/ka	2000	360	< 250 U	< 250 U	< 250 U	< 250 U	680
Diesel and Oil Extended-Range Organics	ma/ka	2000	450 X	< 250 U	< 250 U	< 250 U	< 250 U	680
BTEY				200 0	200 0	200 0	200 0	
Benzene	ma/ka	0.03	< 0.0311	< 0.0311	< 0.0311	< 0.0311	< 0.0311	< 0.0311
Teluene	mg/kg	0.05	< 0.05 U					
Toluelle Ethollhamana	iiig/kg	1	< 0.05 U					
	mg/kg	0	< 0.05 0	< 0.05 0	< 0.05 0	< 0.05 0	< 0.05 0	< 0.05 0
l otal Xylenes	mg/kg	9	< 0.1 U	< 0.1 0	< 0.1 0	< 0.1 U	< 0.1 0	< 0.1 U
Metals	1				r			
Lead	mg/kg	250						
PAHs								
Naphthalene	mg/kg	5	< 0.05 U	< 0.05 U	0.097	< 0.05 U	< 0.05 U	< 0.05 U
Total cPAHs TEQ	mg/kg	0.1						
PCBs								
Total PCBs (Sum of Aroclors)	ma/ka	1						
VOCs					•			
1.1.1-Trichloroethane	ma/ka	2						
1.1.2.2-Tetrachloroethane	ma/ka	-						
1 1 2-Trichloroethane	ma/ka							
1 1-Dichloroothano	mg/kg							
1 1 Dichloroothara	iliy/Kg							
	mg/ĸg							
	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene	mg/kg							
1,2-Dibromo-3-chloropropane	mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005						
1,2-Dichlorobenzene	mg/kg							
1.2-Dichloroethane (EDC)	ma/ka							
1 2-Dichloropropane	ma/ka							
1 3 5-Trimethylbenzene	mg/kg							
	mg/kg							
1,3-Dichloropenzene	mg/kg							
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane	mg/kg							
2-Butanone	mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone	mg/kg							
Bromobenzene	ma/ka							
Bromodichloromethane	ma/ka							
Bromoform	ma/ka							
Bromomethane	ma/ka							
Carbon Tatrachlorida	mg/kg							
	mg/Kg							
	тg/кg 							
Chioroethane	mg/kg							
Chloroform	mg/kg							
Chloromethane	mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane	mg/kg							
Dichlorodifluoromethane	mg/kg							
Isopropylbenzene	mg/kg							
Methyl tert-butyl ether (MTBE)	mg/ka	0.1						
Methylene Chloride	ma/ka	0.02						
n-Hexane	ma/ka							
n-Propylbenzene	ma/ka							
n-Isopropyltoluono	mg/kg							
	mg/kg							
	ing/kg							
Styrene	mg/кg 							
tert-Butylbenzene	mg/kg							
Tetrachloroethene (PCE)	mg/kg	0.05						
trans-1,2-Dichloroethene	mg/kg							
trans-1,3-Dichloropropene	mg/kg							
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg							
Vinyl Chloride	mg/kg							

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

L - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Table 1. Soil Analytical Data Project No. 180357, Lynnwood, Washington

		Location		MW	1-22	
		Date	07/28/2020	07/28/2020	07/28/2020	07/28/2020
		Sample Name	MW-22-10	MW-22-12.5	MW-22-16	MW-22-25
	Dept	h Below Ground Surface	10 ft	12.5 ft	16 ft	25 ft
		MTCA Method A				
Analyte	Unit	Cleanup Level				
TPHs	<u> </u>					
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	< 50 U	< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U
Diesel and Oil Extended-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U
BTEX						
Benzene	mg/kg	0.03	< 0.03 U	< 0.03 U	0.069	< 0.03 U
Toluene	mg/kg	7	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6	< 0.05 U	0.068	0.12	< 0.05 U
Total Xylenes	mg/kg	9	< 0.1 U	0.11	0.63	< 0.1 U
Metals				4	4	•
Lead	mg/kg	250				
PAHs						
Naphthalene	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Total cPAHs TEQ	mg/kg	0.1				
PCBs						
Total PCBs (Sum of Aroclors)	mg/kg	1				
VOCs						
1,1,1-Trichloroethane	mg/kg	2				
1,1,2,2-Tetrachloroethane	mg/kg					
1,1,2-Trichloroethane	mg/kg					
1,1-Dichloroethane	mg/kg					
1,1-Dichloroethene	mg/kg					
1,1-Dichloropropene	mg/kg					
1,2,3-Trichlorobenzene	mg/kg					
1,2,3-Trichloropropane	mg/kg					
1,2,4-Trichlorobenzene	mg/kg					
1,2,4-Trimethylbenzene	mg/kg					
1,2-Dibromo-3-chloropropane	mg/kg					
1,2-Dibromoethane (EDB)	mg/kg	0.005				
1,2-Dichlorobenzene	mg/kg					
1,2-Dichloroethane (EDC)	mg/kg					
1,2-Dichloropropane	mg/kg					
1,3,5-i rimetnyibenzene	mg/kg					
1,3-Dichloropenzene	mg/kg					
1,3-Dicilioropropalle	mg/kg					
1,4-Dichloropropage	mg/kg					
2,2-Dicinioropropane	mg/kg					
2-Chlorotoluene	mg/kg					
2-Hexanone	mg/kg					
4-Chlorotoluene	mg/kg					
4-Methyl-2-pentanone	mg/kg					
Acetone	ma/ka					
Bromobenzene	mg/kg					
Bromodichloromethane	mg/kg					
Bromoform	mg/kg					
Bromomethane	mg/kg					
Carbon Tetrachloride	mg/kg					
Chlorobenzene	mg/kg					
Chloroethane	mg/kg					
Chloroform	mg/kg					
Chloromethane	mg/kg					
cis-1,2-Dichloroethene (cDCE)	mg/kg					
cis-1,3-Dichloropropene	mg/kg					
Dibromochloromethane	mg/kg					
Dibromomethane	mg/kg					
Dicnlorodifluoromethane	mg/kg					
Isopropylbenzene	mg/kg					
Methylene Chloride	mg/kg	0.1				
methylene Unioride	mg/kg	0.02				
n-nexalle	ing/Kg					
	mg/kg					
p-isopi opyitoidelle soc-Butylhonzono	mg/kg					
Styrene	ma/ka					
tert-Butylbenzene	ma/ka					
Tetrachloroethene (PCE)	ma/ka	0.05				
trans-1.2-Dichloroethene	ma/ka	0.00				
trans-1,3-Dichloropropene	ma/ka					
Trichloroethene (TCE)	ma/ka	0.03				
Trichlorofluoromethane	ma/ka					
Vinyl Chloride	mg/kg					
				1	1	

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Location		MW-24			
		Date	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/29/2020
		Sample Name	MW-23-8	MW-23-12.5	MW-23-18	MW-23-25	MW-24-10.5
	Dept	h Below Ground Surface	8 ft	12.5 ft	18 ft	25 ft	10.5 ft
		MTCA Method A					
Analyte	Unit	Cleanup Level					
TPHs	1			1	-	I	
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	< 50 U				
Motor Oil-Range Organics	mg/kg	2000	< 250 U				
Diesel and Oil Extended-Range Organics	mg/kg	2000	< 250 U				
BTEX			0.00.11	0.00.11	• • •		0.00.11
Benzene	mg/kg	0.03	< 0.03 U	< 0.03 U	0.44	0.047	< 0.03 U
Toluene	mg/kg	7	< 0.05 U				
Ethylbenzene	mg/kg	6	< 0.05 U				
l otal Xylenes	mg/kg	9	< 0.1 0	< 0.1 0	< 0.1 0	< 0.1 0	< 0.1 U
Metals	1	050		1		-	
Lead	mg/kg	250					
PAHs Norbéholone	ma/ka	E	< 0.05 11	< 0.05 11	< 0.0511	< 0.0511	< 0.05 11
	mg/kg	5	< 0.05 0	< 0.05 0	< 0.05 0	< 0.05 0	< 0.05 0
	ing/kg	0.1					
Total PCPa (Sum of Araplara)	ma/ka	4					
	тулку	I I					
1 1 1-Trichloroethane	ma/ka	2					
1 1 2 2-Tetrachloroethane	mg/kg	۷					
1 1 2-Trichloroethane	mg/kg						
1.1-Dichloroethane	ma/ka						
1 1-Dichloroethene	ma/ka						
1.1-Dichloropropene	ma/ka						
1 2 3-Trichlorobenzene	mg/kg						
1 2 3-Trichloropronane	mg/kg						
1 2 4-Trichlorobenzene	mg/kg						
1 2 4-Trimethylbenzene	mg/kg						
1,2,4 Trimetriyisenzene	mg/kg						
1,2-Dibromoethane (EDB)	mg/kg	0.005					
1,2-Dichlorobenzene	mg/kg	0.000					
1,2-Dichloroethane (EDC)	mg/kg						
1.2-Dichloropropane	ma/ka						
1.3.5-Trimethylbenzene	ma/ka						
1.3-Dichlorobenzene	ma/ka						
1.3-Dichloropropane	ma/ka						
1.4-Dichlorobenzene	ma/ka						
2,2-Dichloropropane	mg/kg						
2-Butanone	ma/ka						
2-Chlorotoluene	mg/kg						
2-Hexanone	mg/kg						
4-Chlorotoluene	mg/kg						
4-Methyl-2-pentanone	mg/kg						
Acetone	mg/kg						
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromoform	mg/kg						
Bromomethane	mg/kg						
Carbon Tetrachloride	mg/kg						
Chlorobenzene	mg/kg						
Chloroethane	mg/kg						
Chloroform	mg/kg						
Chloromethane	mg/kg						
cis-1,2-Dichloroethene (cDCE)	mg/kg						
cis-1,3-Dichloropropene	mg/kg						
Dibromochloromethane	mg/kg						
Dibromomethane	mg/kg						
Dichlorodifluoromethane	mg/kg						
Isopropylbenzene	mg/kg						
Methyl tert-butyl ether (MTBE)	mg/kg	0.1					
Methylene Chloride	mg/kg	0.02					
n-Hexane	mg/kg						
n-Propylbenzene	mg/kg						
p-lsopropyltoluene	mg/kg						
sec-Butylbenzene	mg/kg						
Styrene	mg/kg						
tert-Butylbenzene	mg/kg						
Tetrachloroethene (PCE)	mg/kg	0.05					
trans-1,2-Dichloroethene	mg/kg						
trans-1,3-Dichloropropene	mg/kg						
Trichloroethene (TCE)	mg/kg	0.03					
Trichlorofluoromethane	mg/kg						
Vinyl Chloride	mg/kg						

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

DRAFT

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Location	MW-25	MW-26	MW-27
		Date	07/30/2020	07/29/2020	07/29/2020
		Sample Name	MW-25-8'	MW-26-12.5	MW-27-10.5
	Dept	h Below Ground Surface	8 ft	12.5 ft	10.5 ft
		MTCA Method A			
Analyte	Unit	Cleanup Level			
TPHs Capalina Banga Organiaa	ma ar // c ar	20	< E 11	< 5 11	< E 11
	mg/kg	2000	< 50 11	< 50 11	< 50 11
Motor Oil-Range Organics	mg/kg	2000	< 250 11	< 250 U	< 250 11
Diesel and Oil Extended-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U
BTEX	ingrig	1000	200 0	200 0	200 0
Benzene	mg/kg	0.03	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg	7	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes	mg/kg	9	< 0.1 U	< 0.1 U	< 0.1 U
Metals					
Lead	mg/kg	250			
PAHs					
Naphthalene	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U
Total cPAHs TEQ	mg/kg	0.1			
PCBs					
Total PCBs (Sum of Aroclors)	mg/kg	1			
VOCs					
1,1,1-1 richloroethane	mg/kg	2			
1 1 2-Trichloroethane	mg/kg				
1.1-Dichloroethane	ma/ka				
1.1-Dichloroethene	ma/ka				
1,1-Dichloropropene	ma/ka				
1.2.3-Trichlorobenzene	mg/kg				
1,2,3-Trichloropropane	mg/kg				
1,2,4-Trichlorobenzene	mg/kg				
1,2,4-Trimethylbenzene	mg/kg				
1,2-Dibromo-3-chloropropane	mg/kg				
1,2-Dibromoethane (EDB)	mg/kg	0.005			
1,2-Dichlorobenzene	mg/kg				
1,2-Dichloroethane (EDC)	mg/kg				
1,2-Dichloropropane	mg/kg				
1,3,5-Trimethylbenzene	mg/kg				
1,3-Dichlorobenzene	mg/kg				
1,3-Dichloropropane	mg/kg				
1,4-Dichloropenzene	mg/kg				
2,2-Dichloropropane	mg/kg				
2-Dutatione	mg/kg				
2-United and a second	mg/kg				
4-Chlorotoluene	mg/kg				
4-Methyl-2-pentanone	mg/kg				
Acetone	mg/kg				
Bromobenzene	mg/kg				
Bromodichloromethane	mg/kg				
Bromoform	mg/kg				
Bromomethane	mg/kg				
Carbon Tetrachloride	mg/kg				
Chlorobenzene	mg/kg				
Chloroform	mg/kg				
Chloromothene	mg/kg				
cis-1 2-Dichloroethene (cDCE)	mg/kg				
cis-1.3-Dichloropropene	ma/ka				
Dibromochloromethane	ma/ka				
Dibromomethane	mg/kg				
Dichlorodifluoromethane	mg/kg				
Isopropylbenzene	mg/kg				
Methyl tert-butyl ether (MTBE)	mg/kg	0.1			
Methylene Chloride	mg/kg	0.02			
n-Hexane	mg/kg				
n-Propylbenzene	mg/kg				
p-lsopropyltoluene	mg/kg				
sec-Butylbenzene	mg/kg				
Styrene	mg/kg				
tert-Butylbenzene	mg/kg	0.05			
retrachioroethene (PCE)	mg/kg	0.05			
	mg/kg				
Trichloroethono (TCE)	mg/kg	0.02			
Trichlorofluoromethane	mg/kg	0.00			
Vinvl Chloride	ma/ka				
· · · · ·	.99	1			

Notes: Bold - Analyte detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

I - Result value estimated

 UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Project No. 180357, Lynnwood, Washington

		Location	ocation MW-1										
		Sample	MW-1-39080	MW-1-39128	MW-1-39178	MW-1-39291	MW-1-39356	MW-1-39457	MW-1-39639	MW-1-39819	MW-1-40007	MW-1-40388	MW-1-40563
		Date	12/29/2006	02/15/2007	04/06/2007	07/28/2007	10/01/2007	01/10/2008	07/10/2008	01/06/2009	07/13/2009	07/29/2010	01/20/2011
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	42100	41200	30200	5850	23900	73000	800	< 100 U	7500		
Diesel-nge Organics	ug/L	500	< 255 U	< 269 U	< 258 U	< 258 U	1540 X	< 243 U	1400	190	2800 X	320 X	2550
Motor Oil-Range Organics	ug/L	500	< 510 U	< 538 U	< 515 U	< 515 U	< 105 U	< 485 U	< 300 U	< 380 U	< 100 U	110	725
втех					•				-	-			
Benzene	ug/L	5	9190	9230	7450	2400	6270	16500	280	1	1200	32	13400
Toluene	ug/L	1000	2140	1840	732	32.4	196	4010	13	< 1 U	60	2.9	3950
Ethylbenzene	ug/L	700	1090	938	718	131	653	1610	2	< 1 U	220	17	1700
Total Xylenes	ug/L	1000	4100	3710	2310	190	1340	6790	33	< 1 U	470	48	7240
Metals													
Lead	ug/L	15									3.33		
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01									< 0.01 U		
1,2-Dichloroethane (EDC)	ug/L	5									< 0.29 U		
Diisopropyl ether (DIPE)	ug/L			< 1 U						< 2 U			< 1 U
Ethyl t-butyl ether (ETBE)	ug/L			< 1 U						< 2 U			< 1 U
Methyl tert-butyl ether (MTBE)	ug/L	20		< 5 U						< 1 U			< 1 U
t-Amyl methyl ether (TAME)	ug/L			< 1 U						< 2 U			< 1 U
t-Butyl alcohol (TBA)	ug/L			54.6						< 10 U			132

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

Project No. 180357, Lynnwood, Washington

	Location MW-1						MW-2							
		Sample	MW-1-41220	MW-1-41394	MW-1-41571	MW-2-39080	MW-2-39128	MW-2-39178	MW-2-39291	MW-2-39356	MW-2-39457	MW-2-39639	MW-2-39819	
		Date	11/07/2012	04/30/2013	10/24/2013	12/29/2006	02/15/2007	04/06/2007	07/28/2007	10/01/2007	01/10/2008	07/10/2008	01/06/2009	
Analyte	Unit	MTCA Method A Cleanup Level												
TPHs														
Gasoline-Range Organics	ug/L	800	16700	7300	445	2640	249	180	3200	3980	5000	540	9200	
Diesel-nge Organics	ug/L	500	1460	1600	898	< 253 U	< 278 U	< 258 U	< 255 U	1080 X	< 243 U	< 500 U	< 100 U	
Motor Oil-Range Organics	ug/L	500	163	818	172	< 505 U	< 556 U	< 515 U	< 510 U	< 105 U	< 485 U	< 200 U	< 100 U	
втех		-		-	-		-	-	-			-		
Benzene	ug/L	5	4880	1590	28.8	21.7	2.06	1.83	66.1	175	214	4.9	390	
Toluene	ug/L	1000	361	100	< 1 U	6.75	< 0.5 U	0.518	7.86	13.7	9.85	< 1 U	16	
Ethylbenzene	ug/L	700	525	374	7.91	55.1	4.36	2.61	137	331	502	9.4	840	
Total Xylenes	ug/L	1000	1530	445	7.82	9.91	< 1 U	< 1 U	20.4	47.4	71.0	< 1 U	62.0	
Metals														
Lead	ug/L	15												
VOCs				-					-	-				
1,2-Dibromoethane (EDB)	ug/L	0.01												
1,2-Dichloroethane (EDC)	ug/L	5												
Diisopropyl ether (DIPE)	ug/L						< 1 U						< 20 U	
Ethyl t-butyl ether (ETBE)	ug/L						< 1 U						< 20 U	
Methyl tert-butyl ether (MTBE)	ug/L	20					< 5 U						< 10 U	
t-Amyl methyl ether (TAME)	ug/L						< 1 U						< 20 U	
t-Butyl alcohol (TBA)	ug/L						< 50 U						< 100 U	

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

Project No. 180357, Lynnwood, Washington

		Location			MM	1-2			MW-3				
		Sample	MW-2-40007	MW-2-40388	MW-2-40563	MW-2-41220	MW-2-41394	MW-2-41571	MW-3-39080	MW-3-39128	MW-3-39178	MW-3-39291	MW-3-39356
		Date	07/13/2009	07/29/2010	01/20/2011	11/07/2012	04/30/2013	10/24/2013	12/29/2006	02/15/2007	04/06/2007	07/28/2007	10/01/2007
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	320			4070	< 100 U	2350	171000	263000	214000	248000	252000
Diesel-nge Organics	ug/L	500	210 X	200 X	689	757	261	527	608	2580 X	867 X	8340	185000 X
Motor Oil-Range Organics	ug/L	500	< 100 U	< 100 U	402	< 94.3 U	198	181	< 510 U	< 2750 U	< 495 U	< 5.05 U	< 10500 U
втех	-			-		-	-	-		-	-	-	-
Benzene	ug/L	5	3.8	2.1	25.1	228	< 1 U	61.3	28500	29200	26600	28600	29300
Toluene	ug/L	1000	< 1 U	< 1 U	< 1 U	4.99	< 1 U	1.03	29200	37400	37500	37400	35200
Ethylbenzene	ug/L	700	3.3	< 1 U	54.4	125	< 1 U	6.49	2950	3140	2850	2810	3260
Total Xylenes	ug/L	1000	< 1 U	< 1 U	5.42	40.3	< 3 U	3.52	15900	18600	16800	12800	19300
Metals													
Lead	ug/L	15	< 1 U										
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01	< 0.01 U										
1,2-Dichloroethane (EDC)	ug/L	5	< 0.5 U										
Diisopropyl ether (DIPE)	ug/L				< 1 U					< 100 U			
Ethyl t-butyl ether (ETBE)	ug/L				< 1 U					< 100 U			
Methyl tert-butyl ether (MTBE)	ug/L	20			< 1 U					< 500 U			
t-Amyl methyl ether (TAME)	ug/L				< 1 U					< 100 U			
t-Butyl alcohol (TBA)	ug/L				< 20 U					< 5000 U			

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

Project No. 180357, Lynnwood, Washington

		Location	MW-3		MW-4			MW-5			M	W-6	
		Sample	MW-3-40563	MW-4-39080	MW-4-39128	MW-4-40563	MW-5-39080	MW-5-39128	MW-5-40563	MW-6-39291	MW-6-39356	MW-6-39457	MW-6-39639
		Date	01/20/2011	12/29/2006	02/15/2007	01/20/2011	12/29/2006	02/15/2007	01/20/2011	07/28/2007	10/01/2007	01/10/2008	07/10/2008
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	87800	207000	253000	313000	122000	771000	327000	52.4	< 250 U	< 50 U	< 50 U
Diesel-nge Organics	ug/L	500		1810	72100 X		603	49200 X		< 253 U	< 105 U	< 250 U	< 500 U
Motor Oil-Range Organics	ug/L	500	7690	< 510 U	< 50000 U	< 9520 U	< 515 U	< 5000 U	109005	< 505 U	< 105 U	< 500 U	< 200 U
втех					-	-		-	-		-	-	-
Benzene	ug/L	5	12100	32400	31500	12800	7220	12800	3710	< 0.5 U	< 1 U	< 0.5 U	< 1 U
Toluene	ug/L	1000	23200	39700	40500	28700	24400	43600	16200	1.25	< 1 U	< 0.5 U	< 1 U
Ethylbenzene	ug/L	700	3020	3200	2990	3180	2280	6000	2690	< 0.5 U	< 1 U	< 0.5 U	< 1 U
Total Xylenes	ug/L	1000	19700	18800	18100	21200	13200	40700	15800	< 1 U	< 3 U	< 3 U	< 1 U
Metals													
Lead	ug/L	15											
VOCs								-				-	-
1,2-Dibromoethane (EDB)	ug/L	0.01	< 1 U			< 1 U			< 1 U				
1,2-Dichloroethane (EDC)	ug/L	5											
Diisopropyl ether (DIPE)	ug/L		1.24		< 100 U	< 1.00 U		< 100 U	< 1 U				
Ethyl t-butyl ether (ETBE)	ug/L		< 1 U		< 100 U	< 1 U		< 100 U	< 1 U				
Methyl tert-butyl ether (MTBE)	ug/L	20			< 500 U			< 500 U					
t-Amyl methyl ether (TAME)	ug/L		< 1 U		< 100 U	< 1 U		< 100 U	< 1 U				
t-Butyl alcohol (TBA)	ug/L		101		< 5000 U	61.8		< 5000 U	45.4				

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

Project No. 180357, Lynnwood, Washington

	Location					MW-6					M	N-7	
		Sample	MW-6-39819	MW-6-40007	MW-6-40388	MW-6-40563	MW-6-41220	MW-6-41394	MW-6-41571	MW-7-39291	MW-7-39356	MW-7-39457	MW-7-39639
		Date	01/06/2009	07/13/2009	07/29/2010	01/20/2011	11/07/2012	04/30/2013	10/24/2013	07/28/2007	10/01/2007	01/10/2008	07/10/2008
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	< 100 U			201	< 100 U	< 100 U	< 100 U	< 50 U	< 250 U	51.2	< 50 U
Diesel-nge Organics	ug/L	500	< 100 U		< 100 U		< 94.3 U	97.8	124	< 253 U	< 111 U	< 250 U	< 500 U
Motor Oil-Range Organics	ug/L	500	< 100 U		190	472	< 94.3 U	< 93.5 U	123	< 495 U	< 111 U	< 500 U	< 200 U
втех	-				•				-				
Benzene	ug/L	5	< 0.5 U		< 0.5 U	< 1 U	< 1 U	< 1 U	< 1 U	< 0.5 U	1.78	68.4	< 1 U
Toluene	ug/L	1000	< 1 U		< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 0.5 U	< 1 U	1.26	< 1 U
Ethylbenzene	ug/L	700	< 1 U		< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 0.5 U	< 1 U	79.7	< 1 U
Total Xylenes	ug/L	1000	< 1 U		< 1 U	< 3 U	< 3 U	< 3 U	< 2 U	< 1 U	< 3 U	110	< 1 U
Metals													
Lead	ug/L	15		< 1 U									
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01				< 1 U							
1,2-Dichloroethane (EDC)	ug/L	5											
Diisopropyl ether (DIPE)	ug/L		< 2 U			< 1 U							
Ethyl t-butyl ether (ETBE)	ug/L		< 2 U			< 1 U							
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U										
t-Amyl methyl ether (TAME)	ug/L		< 2 U			< 1 U							
t-Butyl alcohol (TBA)	ug/L		< 10 U			< 20 U							

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

Project No. 180357, Lynnwood, Washington

		Location				MW-7					MV	V-8	
		Sample	MW-7-39819	MW-7-40007	MW-7-40388	MW-7-40563	MW-7-41220	MW-7-41394	MW-7-41571	MW-8-39291	MW-8-39356	MW-8-39457	MW-8-39819
		Date	01/06/2009	07/13/2009	07/29/2010	01/20/2011	11/07/2012	04/30/2013	10/24/2013	07/28/2007	10/01/2007	01/10/2008	01/06/2009
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	< 100 U			119	< 100 U	< 100 U	< 100 U	266000	181000	202000	22000
Diesel-nge Organics	ug/L	500	< 100 U		< 100 U		94.3	115	< 93.5 U	8580	6540 X	9190 X	6900
Motor Oil-Range Organics	ug/L	500	< 100 U		< 100 U	174	< 94.3 U	< 93.5 U	106	< 5210 U	< 1110 U	< 4850 U	440
втех				-		-	-	-			-		-
Benzene	ug/L	5	< 0.5 U	2.7	< 0.5 U	< 1 U	< 1 U	< 1 U	< 1 U	20500	18000	13400	2700
Toluene	ug/L	1000	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	43600	32000	29600	6300
Ethylbenzene	ug/L	700	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	3550	2250	2200	390
Total Xylenes	ug/L	1000	< 1 U	< 1 U	< 1 U	< 3 U	< 3 U	< 3 U	< 2 U	23000	14900	14000	4300
Metals													
Lead	ug/L	15		< 1 U									
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01				< 1 U							
1,2-Dichloroethane (EDC)	ug/L	5											
Diisopropyl ether (DIPE)	ug/L		< 2 U			< 1 U							< 40 U
Ethyl t-butyl ether (ETBE)	ug/L		< 2 U			< 1 U							< 40 U
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U										< 20 U
t-Amyl methyl ether (TAME)	ug/L		< 2 U			< 1 U							< 40 U
t-Butyl alcohol (TBA)	ug/L		< 10 U			< 20 U							< 200 U

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

Project No. 180357, Lynnwood, Washington

		Location		MV	V-8		MW-9							
		Sample	MW-8-40388	MW-8-40563	MW-8-41220	MW-8-41394	MW-9-39291	MW-9-39356	MW-9-39457	MW-9-39639	MW-9-39819	MW-9-40007	MW-9-40388	
		Date	07/29/2010	01/20/2011	11/07/2012	04/30/2013	07/28/2007	10/01/2007	01/10/2008	07/10/2008	01/06/2009	07/13/2009	07/29/2010	
Analyte	Unit	MTCA Method A Cleanup Level												
TPHs														
Gasoline-Range Organics	ug/L	800			75300	103000	< 50 U	299	< 50 U	< 50 U	< 100 U			
Diesel-nge Organics	ug/L	500	5300 X	6570	3160	3820	< 248 U	174 X	< 238 U	< 500 U	< 100 U		< 100 U	
Motor Oil-Range Organics	ug/L	500	2000 X	1550	< 94.3 U	309	< 495 U	< 111 U	< 476 U	< 1000 U	< 100 U		< 100 U	
втех										-				
Benzene	ug/L	5	18000	13800	7630	8830	< 0.5 U	5.52	< 0.5 U	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	
Toluene	ug/L	1000	40000	31500	15200	29400	< 0.5 U	< 1 U	< 0.5 U	< 1 U	< 1 U	< 1 U	< 1 U	
Ethylbenzene	ug/L	700	17000	3290	1140	1950	< 0.5 U	< 1 U	< 0.5 U	< 1 U	< 1 U	< 1 U	< 1 U	
Total Xylenes	ug/L	1000	110000	21900	6120	11200	< 1 U	< 3 U	< 3 U	< 1 U	< 1 U	< 1 U	< 1 U	
Metals														
Lead	ug/L	15										< 1 U		
VOCs														
1,2-Dibromoethane (EDB)	ug/L	0.01		< 1 U										
1,2-Dichloroethane (EDC)	ug/L	5												
Diisopropyl ether (DIPE)	ug/L			< 1 U							< 2 U			
Ethyl t-butyl ether (ETBE)	ug/L			< 1 U							< 2 U			
Methyl tert-butyl ether (MTBE)	ug/L	20									< 1 U			
t-Amyl methyl ether (TAME)	ug/L			< 1 U							< 2 U			
t-Butyl alcohol (TBA)	ug/L			128							< 10 U			

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

Project No. 180357, Lynnwood, Washington

		Location		MV	V-9		MW-10							
		Sample	MW-9-40563	MW-9-41220	MW-9-41394	MW-9-41571	MW-10-39291	MW-10-39356	MW-10-39457	MW-10-39639	MW-10-39819	MW-10-40007	MW-10-40388	
		Date	01/20/2011	11/07/2012	04/30/2013	10/24/2013	07/28/2007	10/01/2007	01/10/2008	07/10/2008	01/06/2009	07/13/2009	07/29/2010	
Analyte	Unit	MTCA Method A Cleanup Level												
TPHs														
Gasoline-Range Organics	ug/L	800		< 100 U	< 100 U	< 100 U	6570	27100	11400	1400	29000	4800		
Diesel-nge Organics	ug/L	500	141	< 94.3 U	< 93.5 U	< 94.3 U	307 X	1820 X	< 248 U	< 500 U	120	< 100 U	< 100 U	
Motor Oil-Range Organics	ug/L	500	463	< 94.3 U	< 93.5 U	< 94.3 U	< 505 U	< 556 U	< 495 U	< 1000 U	< 100 U	< 100 U	< 100 U	
втех														
Benzene	ug/L	5	< 1 U	< 1 U	< 1.00 U	< 1.00 U	299	1510	316	1400	4800	1600	240	
Toluene	ug/L	1000	< 1 U	< 1 U	< 1 U	< 1 U	179	1220	237	1200	1400	260	9.9	
Ethylbenzene	ug/L	700	< 1 U	< 1 U	< 1 U	< 1 U	237	1210	842	710	1800	190	45	
Total Xylenes	ug/L	1000	< 3 U	< 3 U	< 3 U	< 2 U	615	2650	604	2310	5100	1000	89	
Metals														
Lead	ug/L	15										1.02		
VOCs														
1,2-Dibromoethane (EDB)	ug/L	0.01										< 0.01 U		
1,2-Dichloroethane (EDC)	ug/L	5										< 1.5 U		
Diisopropyl ether (DIPE)	ug/L		< 1 U								< 20 U			
Ethyl t-butyl ether (ETBE)	ug/L		< 1 U								< 20 U			
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U								< 10 U			
t-Amyl methyl ether (TAME)	ug/L		< 1 U								< 20 U			
t-Butyl alcohol (TBA)	ug/L		< 20 U								< 100 U			

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

Project No. 180357, Lynnwood, Washington

		Location		MW	/-10		SB-3	SB-4
		Sample	MW-10-40563	MW-10-41220	MW-10-41394	MW-10-41571	SB-3-40308	SB-4-40308
		Date	01/20/2011	11/07/2012	04/30/2013	10/24/2013	05/10/2010	05/10/2010
Analyte	Unit	MTCA Method A Cleanup Level						
TPHs								
Gasoline-Range Organics	ug/L	800		17300	590	6890	360	180
Diesel-nge Organics	ug/L	500	707	2710	346	2080	1600 X	2400 X
Motor Oil-Range Organics	ug/L	500	394	< 94.3 U	148	109	< 100 U	< 100 U
втех				-	-			
Benzene	ug/L	5	938	5920	48.1	5630	170	< 0.5 U
Toluene	ug/L	1000	16.6	78.3	1.22	188	< 1 U	< 1 U
Ethylbenzene	ug/L	700	108	594	15.1	582	< 1 U	< 1 U
Total Xylenes	ug/L	1000	115	1060	21.4	1230	< 1 U	< 1 U
Metals								
Lead	ug/L	15						
VOCs								
1,2-Dibromoethane (EDB)	ug/L	0.01						
1,2-Dichloroethane (EDC)	ug/L	5						
Diisopropyl ether (DIPE)	ug/L		< 1 U					
Ethyl t-butyl ether (ETBE)	ug/L		< 1 U					
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U					
t-Amyl methyl ether (TAME)	ug/L		< 1 U					
t-Butyl alcohol (TBA)	ug/L		< 20 U					

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard

DRAFT

Table 2Interim Action Work PlanPage 9 of 9

Table 3. Remedial Investigation Groundwater Elevations

Project No. 180357, Lynnwood, Washington

Monitoring	тос	Date	DTNAPL	DTW	Water Table	Groundwater
Well	Elevation	5410	51104 2	5.00	(ft BTOC) ¹	Elevation
		7/31/2019		12.86	12.86	438.88
M/M_1	451 74	11/19/2019		13.81	13.81	437.93
10100-1	401.74	8/17/2020		11.82	11.82	439.92
		11/16/2020		12.85	12.85	438.89
		7/31/2019		11.51	11.51	439.08
MM/_2	150 59	11/19/2019		11.76	11.76	438.83
10100-2	400.00	8/17/2020		10.77	10.77	439.82
		11/16/2020		11.3	11.30	439.29
		7/31/2019	10.45	10.75	10.52	441.17
	451 60	11/19/2019	11.62	12.00	11.71	439.98
10100-3	451.09	8/17/2020	9.69	9.94	9.75	441.94
		11/16/2020	10.93	11.09	10.97	440.72
		7/31/2019	11.22	11.33	11.25	440.76
	452.01	11/19/2019	12.36	12.67	12.43	439.58
10100-4	452.01	8/17/2020		10.41	10.41	441.60
		11/16/2020	11.69	11.71	11.69	440.32
		7/31/2019	9.87	10.69	10.07	441.31
	454.00	11/19/2019	11.37	11.73	11.46	439.92
IVIV-5	451.38	8/17/2020	9.23	9.33	9.25	442.13
		11/16/2020	10.56	10.71	10.60	440.78
		7/31/2019		9.01	9.01	440.39
	440.4	11/19/2019		9.10	9.10	440.30
MVV-6	449.4	8/17/2020		8.44	8.44	440.96
		11/16/2020		8.62	8.62	440.78
		7/31/2019		8.29	8.29	441.85
	450.44	11/19/2019		9.12	9.12	441.02
IVIVV-7	450.14	8/17/2020		7.79	7.79	442.35
		11/16/2020		8.4	8.40	441.74
		7/31/2019	9.41	9.92	9.53	441.78
	454.04	11/19/2019	10.66	11.07	10.76	440.55
MVV-8	451.31	8/17/2020		8.84	8.84	442.47
		11/16/2020	9.89	10.02	9.92	441.39
		7/31/2019		11.9	11.90	439.85
	454 75	11/19/2019		13.25	13.25	438.50
MW-9	451.75	8/17/2020		10.87	10.87	440.88
		11/16/2020		12.37	12.37	439.38
		7/31/2019		13.53	13.53	437.81
	454.04	11/20/2019		13.99	13.99	437.35
IVIVV-10	451.34	8/17/2020		12.59	12.59	438.75
		11/16/2020		13.35	13.35	437.99
		7/31/2019		9.81	9.81	441.00
	450.04	11/19/2019		10.83	10.83	439.98
1/1/1	450.81	8/17/2020		9.19	9.19	441.62
		11/16/2020		10.02	10.02	440.79
		7/31/2019		10.93	10.93	438.49
	446.49	11/19/2019		10.87	10.87	438.55
IVIVV-12	449.42	8/17/2020		10.26	10.26	439.16
		11/16/2020		10.52	10.52	438.90

Table 3. Remedial Investigation Groundwater Elevations

Project No. 180357, Lynnwood, Washington

Well	Elevation	Date	DTNAPL	DTW	Water Table (ft BTOC) ¹	Groundwater Elevation
		7/31/2019		13.67	13.67	436.90
	450.57	11/19/2019		13.83	13.83	436.74
IVIVV-13	450.57	8/17/2020		12.76	12.76	437.81
		11/16/2020		13.28	13.28	437.29
		7/31/2019		14.64	14.64	436.21
	450.05	11/19/2019		14.73	14.73	436.12
10100-14	450.85	8/17/2020		13.65	13.65	437.20
		11/16/2020		14.14	14.14	436.71
		7/31/2019	12.40	12.42	12.40	438.76
	454.40	11/19/2019	13.97	14.15	14.01	437.15
MVV-15	451.16	8/17/2020	12.27	12.96	12.44	438.72
		11/16/2020	13.22	13.88	13.38	437.78
		7/31/2019		9.15	9.15	441.45
	450.0	11/19/2019		10.58	10.58	440.02
MVV-16	450.6	8/17/2020		8.40	8.40	442.20
		11/16/2020		9.69	9.69	440.91
		7/31/2019		8.47	8.47	441.71
	450.40	11/19/2019		9.70	9.70	440.48
IVIVV-17	450.18	8/17/2020		7.90	7.90	442.28
		11/16/2020		8.83	8.83	441.35
		7/31/2019		12.08	12.08	437.20
	4.40.00	11/19/2019		12.96	12.96	436.32
MVV-18	449.28	8/17/2020		11.04	11.04	438.24
		11/16/2020		12.07	12.07	437.21
		7/31/2019		11.54	11.54	434.48
	440.00	11/19/2019		10.31	10.31	435.71
10100-19	446.02	8/17/2020		9.76	9.76	436.26
		11/16/2020		9.67	9.67	436.35
	450.50	8/17/2020		8.54	8.54	442.05
IVIVV-20	450.59	11/16/2020		9.32	9.32	441.27
	450.000	8/17/2020		11.41	11.41	439.19
IVIVV-21	450.603	11/16/2020		10.16	10.16	440.44
	454.054	8/17/2020		11.38	11.38	439.87
MVV-22	451.254	11/16/2020		12.31	12.31	438.94
	454.050	8/17/2020		13.16	13.16	437.92
MW-23	451.079	11/16/2020		13.90	13.90	437.18
		8/17/2020		12.31	12.31	436.78
MW-24	449.094	11/16/2020		12.02	12.02	437.07
		8/17/2020		9.87	9.87	439.83
MW-25	449.701	11/16/2020		11.43	11.43	438.27
104/22		8/17/2020		14.92	14.92	434.21
MW-26	449.13	11/16/2020		15.73	15.73	433.40
		8/17/2020		DRY		
MW-27	447.27	11/16/2020		15.94	15.94	431.33
		8/17/2020		DRY		
MW-28		11/16/2020		DRY		

Notes

TOC = Top of Casing elevation in ft above mean sea level (NAVD88); NAPL = Non-aqueous phase liquid

DTNAPL = Depth to NAPL below TOC (ft); DTW = Depth to water below TOC (ft); btoc = below TOC

 $^{\rm 1}$ - In wells where NAPL is present, the depth to water table was calculated as Water Table = DTW + 0.76*(DTNAPL-DTW)

Project No. 180357, Lynnwood, Washington

Locati Di			CMW-1	CMW-4		MV	N-1			MV	N-2		MW-4	MV	V-6
		Date	11/17/2020	11/17/2020	08/01/2019	11/20/2019	08/18/2020	11/18/2020	08/01/2019	11/20/2019	08/17/2020	11/17/2020	08/18/2020	07/31/2019	11/20/2019
		Sample	111720	111720	080119	112019	081820	111820	080119	112019	081720	111720	081820	073119	112019
		MTCA Method A													
Analyte	Unit	Cleanup Level													
TPHs															
Gasoline Range Organics	ug/L	800	< 100 U	< 100 U	24000	44000	14000	31000	1600	4600	770	4100	170000	< 100 U	< 100 U
Diesel Range Organics	ug/L	500	< 50 U	< 50 U	2100 X	3200 X	2100 X	1800 X	790 X	2200 X	660 X	1300 X	4500 X	68 X	< 50 U
Motor Oil Range Organics	ug/L	500	< 250 U	< 250 U	1000 X	570 X	1100 X	810 X	< 250 U	260 X	310 X	< 250 U	1000 X	< 250 U	< 250 U
Diesel and Oil Extended Range Organics	ug/L	500	< 250 U	< 250 U	3100 X	3770 X	3200 X	2610 X	790 X	2460 X	970 X	1300 X	5500 X	68 X	< 250 U
BTEX															
Benzene	ug/L	5	< 0.35 U	< 0.35 U	4200	6700	2200	5600	13	30	4.5	29	6000	< 0.35 U	< 0.35 U
Toluene	ug/L	1000	< 1 U	<1U	410	1500	180	740	2.2	6.5	< 1 U	7.8	21000	<1U	<1U
Ethylbenzene	ug/L	700	< 1 U	<1U	520	860	300	720	6.5	28	2.8	49	2300	<1U	<1U
Total Xylenes	ug/L	1000	< 2 U	< 2 U	1650	3680	750	2780	7.4	23.9	2.1	24.4	14100	< 2 U	< 2 U
Metals															
Lead	ug/L	15		-	< 1 UJ	<1U			< 1 UJ	<1U				< 1 UJ	<1U
PAHs															
Naphthalene	ug/L	160	< 1 U	<1U	130	210	84	200	33	150	15	150	500	<1U	<1U
VOCs															
1,1,1-Trichloroethane	ug/L	200		-										-	
1,1-Dichloroethane	ug/L														
1,1-Dichloroethene	ug/L			-										-	
1,2-Dibromoethane (EDB)	ug/L	0.01			< 1 U	< 100 U			< 1 U	<1U				<1U	<1U
1,2-Dichloroethane (EDC)	ug/L	5			< 1 U	< 100 U			< 1 U	<1U				<1U	<1U
Chloroethane	ug/L														
cis-1,2-Dichloroethene (cDCE)	ug/L														
m,p-Xylenes	ug/L		< 2 U	< 2 U	1300	2800	580	2200	5.6	19	2.1	20	10000	< 2 U	< 2 U
Methyl tert-butyl ether (MTBE)	ug/L	20			< 1 U	< 100 U			< 1 U	<1U				<1U	<1U
Methylene Chloride	ug/L	5													
o-Xylene	ug/L		< 1 U	< 1 U	350	880	170	580	1.8	4.9	<1U	4.4	4100	<1U	< 1 U
Tetrachloroethene (PCE)	ug/L	5													
trans-1,2-Dichloroethene	ug/L														
Trichloroethene (TCE)	ug/L	5													
Vinyl Chloride	ug/L	0.2													

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard

DRAFT	
-------	--

Table 4

Project No. 180357, Lynnwood, Washington

Locatio			MV	V-6		MV	N-7		MW-8		MV	V-9		MW	/-10
		Date	08/17/2020	11/16/2020	07/31/2019	11/19/2019	08/17/2020	11/17/2020	08/18/2020	08/01/2019	11/20/2019	08/18/2020	11/16/2020	08/01/2019	11/20/2019
		Sample	081720	111620	073119	111920	081720	111720	081820	080119	112019	081820	111620	080119	112019
		MTCA Method A													
Analyte	Unit	Cleanup Level													
TPHs															
Gasoline Range Organics	ug/L	800	< 100 U	130000	< 100 U	560	< 100 U	< 100 U	19000	21000					
Diesel Range Organics	ug/L	500	170 X	< 50 U	83 X	< 50 U	110 X	< 50 U	3200 X	88 X	290 X	80 X	< 54 U	1900 X	3900 X
Motor Oil Range Organics	ug/L	500	< 250 U	< 250 U	< 250 U	< 250 U	< 260 U	< 250 U	550 X	< 250 U	< 250 U	< 250 U	< 250 U	260 X	340 X
Diesel and Oil Extended Range Organics	ug/L	500	170 X	< 250 U	83 X	< 250 U	110 X	< 250 U	3750 X	88 X	290 X	80 X	< 250 U	2160 X	4240 X
BTEX															
Benzene	ug/L	5	< 0.35 U	4800	< 0.35 U	6.4	< 0.35 U	< 0.35 U	2400	2800					
Toluene	ug/L	1000	<1U	<1U	<1U	2.7	<1U	<1U	18000	<1U	<1U	<1U	< 1 U	44	< 100 U
Ethylbenzene	ug/L	700	<1U	<1U	<1U	1.6	<1U	<1U	1600	<1U	6.6	<1U	< 1 U	670	1000
Total Xylenes	ug/L	1000	< 2 U	< 2 U	< 2 U	8.8	< 2 U	< 2 U	10300	< 2 U	3.3	< 2 U	< 2 U	1102.7	1500
Metals															
Lead	ug/L	15			< 1 UJ	<1U				< 1 UJ	<1U			< 1 UJ	<1U
PAHs															
Naphthalene	ug/L	160	< 1 U	<1U	< 1 U	<1U	< 1 U	<1U	400	< 1 U	<1U	<1U	<1U	160	270
VOCs															
1,1,1-Trichloroethane	ug/L	200									-				
1,1-Dichloroethane	ug/L														
1,1-Dichloroethene	ug/L														
1,2-Dibromoethane (EDB)	ug/L	0.01			< 1 U	<1U				< 1 U	<1U			< 1 U	< 100 U
1,2-Dichloroethane (EDC)	ug/L	5			<1U	<1U				<1U	<1U			< 1 U	< 100 U
Chloroethane	ug/L														
cis-1,2-Dichloroethene (cDCE)	ug/L										-				
m,p-Xylenes	ug/L		< 2 U	< 2 U	< 2 U	7.1	< 2 U	< 2 U	7500	< 2 U	< 2 U	< 2 U	< 2 U	1100	1500
Methyl tert-butyl ether (MTBE)	ug/L	20			< 1 U	<1U				< 1 U	<1U			< 1 U	< 100 U
Methylene Chloride	ug/L	5													
o-Xylene	ug/L		<1U	<1U	<1U	1.7	<1U	<1U	2800	<1U	3.3	<1U	< 1 U	2.7	< 100 U
Tetrachloroethene (PCE)	ug/L	5													
trans-1,2-Dichloroethene	ug/L														
Trichloroethene (TCE)	ug/L	5													
Vinyl Chloride	ug/L	0.2													

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard

Table 4

Project No. 180357, Lynnwood, Washington

Locat			MW	/-10		MV	V-11			MV	/-12			MW-13	
		Date	08/18/2020	11/17/2020	07/31/2019	11/19/2019	08/17/2020	11/17/2020	08/01/2019	11/20/2019	08/17/2020	11/16/2020	07/31/2019	11/20/2019	08/17/2020
		Sample	081820	111720	073119	111919	081720	111720	080119	112019	081720	111620	073119	112019	081720
Analyte	Unit	MTCA Method A Cleanup Level													
TPHs	Unit														<u> </u>
Gasoline Range Organics	ua/L	800	5100	12000	13000	20000	27000	5400	240	540	230	410	1400	1800	420
Diesel Range Organics	ua/L	500	1100 X	1400 X	1100 X	2400 X	1600 X	720 X	310 X	370 X	240 X	230 X	530 X	780 X	320 X
Motor Oil Range Organics	ug/L	500	360 X	< 250 U	< 250 U	310 X	260 X	< 250 U							
Diesel and Oil Extended Range Organics	ug/L	500	1460 X	1400 X	1100 X	2710 X	1860 X	720 X	310 X	370 X	240 X	230 X	530 X	780 X	320 X
BTEX															
Benzene	ug/L	5	490	1800	320	270	330	160	0.59	1.1	< 0.35 U	0.65	7.5	4	0.75
Toluene	ug/L	1000	< 10 U	31	1800	1500	2200	290	<1U	<1U	<1U	< 1 U	< 1 U	<1U	< 1 U
Ethylbenzene	ug/L	700	200	630	410	690	790	220	<1U	<1U	< 1 U	< 1 U	< 1 U	<1U	< 1 U
Total Xylenes	ug/L	1000	240	620	1400	2580	3400	400	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Metals															
Lead	ug/L	15			3.49 J	1.85			< 1 UJ	<1U			< 1 UJ	<1U	
PAHs															
Naphthalene	ug/L	160	60	220	42	130	140	110	<1U	<1U	<1U	< 1 U	< 1 U	< 1 U	< 1 U
VOCs	-	-													
1,1,1-Trichloroethane	ug/L	200											< 1 U	< 1 U	
1,1-Dichloroethane	ug/L												< 1 U	<1U	
1,1-Dichloroethene	ug/L												< 1 U	<1U	
1,2-Dibromoethane (EDB)	ug/L	0.01			< 1 U	< 100 U			<1U	<1U			< 1 U	<1U	
1,2-Dichloroethane (EDC)	ug/L	5			< 1 U	< 100 U			<1U	<1U			< 1 U	<1U	
Chloroethane	ug/L												<1U	<1U	
cis-1,2-Dichloroethene (cDCE)	ug/L												< 1 U	<1U	
m,p-Xylenes	ug/L		240	620	1000	2100	2700	280	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methyl tert-butyl ether (MTBE)	ug/L	20			< 1 U	< 100 U			<1U	<1U			< 1 U	<1U	
Methylene Chloride	ug/L	5											< 5 U	< 5 U	
o-Xylene	ug/L		< 10 U	< 10 U	400	480	700	120	<1U	<1U	<10	<10	<10	<10	<10
Tetrachloroethene (PCE)	ug/L	5											< 1 U	<10	
trans-1,2-Dichloroethene	ug/L												<10	<10	
Trichloroethene (TCE)	ug/L	5											< 1 U	<10	
vinyi Chioride	ug/L	0.2											< 0.2 U	< 0.2 U	

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

DRAFT	
-------	--

Project No. 180357, Lynnwood, Washington

	Location	MW-13		MM	V-14			MV	V-16			MV	V-17		
		Date	11/17/2020	07/31/2019	11/20/2019	08/18/2020	11/18/2020	07/31/2019	11/19/2019	08/17/2020	11/16/2020	07/31/2019	11/19/2019	08/17/2020	11/17/2020
		Sample	111720	073119	112019	081820	111820	073119	111919	081720	111620	073119	111919	081720	111720
Analysia	Unit	MTCA Method A													
	Unit														
Gasoline Range Organics	ug/l	800	1200	7500	11000	5000	6400	< 100 []	< 100 []	< 100 []	< 100 []	1800	1100	550	1200
Diesel Range Organics		500	490 X	1200 X	1600 X	570 X	780 X	84 X	< 50 U	130 X	< 50 U	320 X	560 X	270 X	550 X
Motor Oil Range Organics	ug/L	500	260 X	330 X	300 X	< 250 U	290 X	< 250 U							
Diesel and Oil Extended Range Organics	ua/L	500	750 X	1530 X	1900 X	570 X	1070 X	84 X	< 250 U	130 X	< 250 U	320 X	560 X	270 X	550 X
BTEX	• 9 =														
Benzene	ug/L	5	1.5	2400	2700	1200	2000	< 0.35 U	4.2	1.1	5.7				
Toluene	ug/L	1000	<1U	32	< 100 U	9.8	19	<1U	<1U	<1U	<1U	<1U	2.8	<1U	6.9
Ethylbenzene	ug/L	700	<1U	130	< 100 U	32	31	<1U	< 1 U	<1U	<1U	< 1 U	< 1 U	<1U	< 1 U
Total Xylenes	ug/L	1000	< 2 U	90	< 200 U	22.9	< 20 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	6.3	< 2 U	16
Metals															
Lead	ug/L	15		< 1 UJ	< 1 U			< 1 UJ	1.02			< 1 UJ	< 1 U		
PAHs															
Naphthalene	ug/L	160	<1U	50	< 100 U	31	46	<1U	< 1 U	<1U	<1U	< 1 U	1.6	<1U	1.9
VOCs															
1,1,1-Trichloroethane	ug/L	200		< 1 U	< 100 U										
1,1-Dichloroethane	ug/L			< 1 U	< 100 U										
1,1-Dichloroethene	ug/L			< 1 U	< 100 U										
1,2-Dibromoethane (EDB)	ug/L	0.01		< 1 U	< 100 U			<1U	< 1 U			< 1 U	< 1 U		
1,2-Dichloroethane (EDC)	ug/L	5		< 1 U	< 100 U			<1U	< 1 U			< 1 U	< 1 U		
Chloroethane	ug/L			<1U	< 100 U										
cis-1,2-Dichloroethene (cDCE)	ug/L			<1U	< 100 U										
m,p-Xylenes	ug/L		< 2 U	72	< 200 U	19	< 20 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	4.2	< 2 U	16
Methyl tert-butyl ether (MTBE)	ug/L	20		< 1 U	< 100 U			<1U	<10			<10	<10		
Methylene Chloride	ug/L	5		< 5 U	< 500 U										
o-Xylene	ug/L		<10	18	< 100 U	3.9	< 10 U	<10	<10	<10	<10	<10	2.1	<10	<10
Letrachloroethene (PCE)	ug/L	5		<10	< 100 U										
trans-1,2-Dichloroethene	ug/L			<10	< 100 U										
I richloroethene (ICE)	ug/L	5		< 1 U	< 100 U										
vinyi Chioride	ug/L	0.2		2.7	< 20 U										

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard

Table 4
Table 4. Remedial Investigation Groundwater Analytical Data

Project No. 180357, Lynnwood, Washington

		Location		MM	/-18			MV	V-19		MM	V-20	MV	V-21	MW-22
		Date	07/31/2019	11/19/2019	08/18/2020	11/16/2020	07/31/2019	11/20/2019	08/18/2020	11/17/2020	08/17/2020	11/17/2020	08/17/2020	11/17/2020	08/17/2020
		Sample	073119	111919	081820	111620	073119	112019	081820	111720	081720	111720	081720	111720	081720
		MTCA Method A													
Analyte	Unit	Cleanup Level													
TPHs															
Gasoline Range Organics	ug/L	800	< 100 U	1300	< 100 U	340	< 100 U	< 100 U	< 100 U	< 100 U	120	< 100 U	7400	6600	14000
Diesel Range Organics	ug/L	500	55 X	260 X	< 50 U	59 X	< 50 U	< 50 U	< 50 U	< 50 U	180 X	< 50 U	3200 X	2800 X	2500 X
Motor Oil Range Organics	ug/L	500	< 250 U	260 X	360 X	< 250 U									
Diesel and Oil Extended Range Organics	ug/L	500	55 X	260 X	< 250 U	59 X	< 250 U	< 250 U	< 250 U	< 250 U	180 X	< 250 U	3460 X	3160 X	2500 X
BTEX															
Benzene	ug/L	5	1	240	1.2	61	< 0.35 U	21	25	540					
Toluene	ug/L	1000	< 1 U	8.2	<1U	<1U	<1U	<1U	< 1 U	<1U	<1U	< 1 U	< 10 U	12	56
Ethylbenzene	ug/L	700	< 1 U	14	< 1 U	2.1	<1U	<1U	< 1 U	<1U	< 1 U	< 1 U	400	620	630
Total Xylenes	ug/L	1000	< 2 U	65	< 2 U	11.9	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	48	43	1350
Metals															
Lead	ug/L	15	< 1 UJ	<1U			< 1 UJ	<1U							
PAHs															
Naphthalene	ug/L	160	< 1 U	5.2	< 1 U	2.4	<1U	<1U	< 1 U	<1U	< 1 U	< 1 U	470	440	220
VOCs															
1,1,1-Trichloroethane	ug/L	200	< 1 U	<1U			<1U	<1U							
1,1-Dichloroethane	ug/L		< 1 U	<1U			<1U	<1U							
1,1-Dichloroethene	ug/L		< 1 U	<1U			<1U	<1U							
1,2-Dibromoethane (EDB)	ug/L	0.01	< 1 U	<1U			<1U	< 1 U							
1,2-Dichloroethane (EDC)	ug/L	5	< 1 U	<1U			<1U	< 1 U							
Chloroethane	ug/L		< 1 U	<1U			<1U	<1U							
cis-1,2-Dichloroethene (cDCE)	ug/L		< 1 U	<1U			<1U	<1U							
m,p-Xylenes	ug/L		< 2 U	48	< 2 U	9.8	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	48	43	1200
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U	<1U			<1U	< 1 U							
Methylene Chloride	ug/L	5	< 5 U	< 5 U			< 5 U	< 5 U							
o-Xylene	ug/L		<1U	17	<1U	2.1	<1U	< 1 U	< 1 U	<1U	<1U	< 1 U	< 10 U	< 10 U	150
Tetrachloroethene (PCE)	ug/L	5	<1U	<1U			17	12							
trans-1,2-Dichloroethene	ug/L		<1U	<1U			<1U	< 1 U							
Trichloroethene (TCE)	ug/L	5	<1U	< 1 U			1	< 1 U							
Vinyl Chloride	ug/L	0.2	< 0.2 U	< 0.2 U			< 0.2 U	< 0.2 U							

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard

Table 4

Table 4. Remedial Investigation Groundwater Analytical Data

Project No. 180357, Lynnwood, Washington

		Location	MW-22	MW	/-23	MM	V-24	MV	V-25	MM	/-26
		Date	11/16/2020	08/18/2020	11/18/2020	08/18/2020	11/17/2020	08/18/2020	11/16/2020	08/18/2020	11/16/20
		Sample	111620	081820	111820	081820	111720	081820	111620	081820	11162
		MTCA Method A									
Analyte	Unit	Cleanup Level									
TPHs		•									
Gasoline Range Organics	ug/L	800	24000	21000	27000	< 100 U	< 100				
Diesel Range Organics	ug/L	500	3000 X	1900 X	2600 X	76 X	< 50 U	55 X	< 50 U	< 50 U	< 50 l
Motor Oil Range Organics	ug/L	500	410 X	< 250 U	390 X	< 250 U	< 250				
Diesel and Oil Extended Range Organics	ug/L	500	3410 X	1900 X	2990 X	76 X	< 250 U	55 X	< 250 U	< 250 U	< 250
BTEX					•		•		•		
Benzene	ug/L	5	1000	3100	5300	< 0.35 U	< 0.35 U	< 0.35 U	0.53	< 0.35 U	< 0.35
Toluene	ug/L	1000	240	210	120	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Ethylbenzene	ug/L	700	1300	400	640	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Total Xylenes	ug/L	1000	3880	900	930	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 L
Metals							•		•		
Lead	ug/L	15									
PAHs		-									
Naphthalene	ug/L	160	390	110	170	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
VOCs							•		•		
1,1,1-Trichloroethane	ug/L	200									
1,1-Dichloroethane	ug/L										
1,1-Dichloroethene	ug/L										
1,2-Dibromoethane (EDB)	ug/L	0.01									
1,2-Dichloroethane (EDC)	ug/L	5									
Chloroethane	ug/L										
cis-1,2-Dichloroethene (cDCE)	ug/L										
m,p-Xylenes	ug/L		3500	790	930	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methyl tert-butyl ether (MTBE)	ug/L	20									
Methylene Chloride	ug/L	5									
o-Xylene	ug/L		380	110	< 50 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Tetrachloroethene (PCE)	ug/L	5									
trans-1,2-Dichloroethene	ug/L										
Trichloroethene (TCE)	ug/L	5									
Vinyl Chloride	ug/L	0.2									

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard

MW-27 2020 11/20/2020 620 112020) U < 100 U U < 50 U 0 U < 250 U 0 U < 250 U 5 U < 0.35 U U <1U U < 1 U U < 2 U --< 1 U -------------------< 2 U U ------U <1U ---------

--

DRAFT

Table 4Interim Action Work PlanPage 6 of 6

Table 5. Remedial Investigation Soil Gas Analytical Data

Project No. 180357, Lynnwood, Washington

				Location	GF	2-01		GP-02			GP-03	
				Date	07/25/2019	08/20/2020	07/25/2019	08/20/2020	11/20/2020	07/25/2019	08/20/2020	11/20/2020
				Sample Name	GP-01-072519	GP-01-082020	GP-02-072519	GP-02-082020	GP-02-112020	GP-03-072519	GP-03-082020	GP-03-112020
			MTCA Method B	MTCA Method B								
		Risk	Subslab Screening	Subslab Screening								
Analyte	Unit	Driver	Level (Unrestricted) ¹	Level (Commercial) ²								
BTEX												
Benzene	ug/m3	С	11	37	3.8	< 1.1 U	1.5	< 1.1 U	< 1.1 U	3.4	6.4	< 2.7 U
Toluene	ug/m3	NC	76000	560,000	28	< 64 U	12	< 62 U	< 64 U	15	< 170 U	< 160 U
Ethylbenzene	ug/m3	NC	15000	110,000	6	< 1.5 U	3.4	3.1	2.2	3.9	60	< 3.6 U
Total Xylenes	ug/m3	NC	1500	11,000	32.9	< 3 U	18.3	16.7	12	21.5	293	10
PAHs												
Naphthalene	ug/m3	С	2.5	8.4	< 0.84 U	< 0.89 U	< 0.81 U	1.2	< 0.89 U	< 2 U	< 2.3 U	< 2.2 U
VOCs												
1,2-Dibromoethane (EDB)	ug/m3	NC	0.14	0.47	< 0.25 U		< 0.24 U			< 0.6 U		
1,2-Dichloroethane (EDC)	ug/m3	NC	3.2	10.7	< 0.13 U		< 0.13 U			< 0.32 U		
Methyl tert-butyl ether (MTBE)	ug/m3	NC	320	1070	< 5.8 U		< 5.6 U			< 14 U		
АРН												
C5 - C8 Aliphatic Hydrocarbons	ug/m3				410	580	350	630	210	9,100	15,000	3,700
C9 - C12 Aliphatic Hydrocarbons	ug/m3				2,200	680	2,600	890	480	11,000	2,300	1,100
C9 - C10 Aromatic Hydrocarbons	ug/m3				< 80 U	< 85 U	< 77 U	< 82 U	< 85 U	< 190 U	< 220 U	< 210 U
Total Petroleum Hydrocarbons (ND = 1/2 RL)	ug/m3	NC	4,700	35,000	2,721	1,338	3,024	1,614	780	20,240	17,856	5,001

Notes

(1) Model Toxic Control Act (MTCA) Method B Subslab Soil Gas Screening Levels (SLs).

(2) Commercial screening levels calculated by adjusting exposure frequency for both noncarcinogens and carcinogens to 0.30, and average body weight and breathing rate for noncarcinogens to 70 kg and 20 m³/day, respectively. These adjustments are in accordance with MTCA Equations 750-1 and 750-2 and Ecology's Implementation Memorandum No. 21 (FAQs Regarding VI and Ecology's 2009 Draft VI Guidance).

(3) Total petroleum hydrocarbon concentration is the sum total of VOCs and APHs, one-half of the laboratory detection limit was used for non-detects.

(4) Generic sub-slab TPH screening level based on generic TPH indoor air cleanup level of 140 ug/m3 and an attenuation factor of 0.03 (Ecology Implementation Memo #18.)

Bold - Analyte Detected

Blue Shaded - Detected result exceeded unrestricted use MTCA Method B Subslab Screening Level

BTEX = benzene, toleuene, ethylbenzene, and total xylenes

PAHs = polycyclic aromatic hydrocarbons

VOCs = volatile organic compounds

- APH = air petroleum hydrocarbon
- μ g/m³ = micrograms per cubic meter

-- = Not Analyzed

- U = Analyte was not detected at or above the Reporting Limit shown.
- C = Carcinogenic; NC = Non carcinogenic

DRAFT

Table 5Interim Action Work PlanPage 1 of 2

Table 5. Remedial Investigation Soil Gas Analytical Data

Project No. 180357, Lynnwood, Washington

				Location	GF	P-04	GP-05	GP-06	SVS	S-01	SV	S-02
				Date	07/25/2019	08/20/2020	11/20/2020	11/20/2020	07/25/2019	08/20/2020	07/25/2019	08/20/2020
				Sample Name	GP-04-072519	GP-04-082020	GP-05-112020	GP-06-112020	SVS-01-072519	SVS-01-082020	SVS-02-072519	SVS-02-082020
			MTCA Method B	MTCA Method B								
		Risk	Subslab Screening	Subslab Screening								
Analyte	Unit	Driver	Level (Unrestricted) ¹	Level (Commercial) ²								
BTEX												
Benzene	ug/m3	С	11	37	1.2	1.7	< 14 U	2.7	2.2	17	3.3	1.8
Toluene	ug/m3	NC	76000	560,000	11	< 68 U	< 810 U	< 64 U	9.3	< 160 U	13	< 64 U
Ethylbenzene	ug/m3	NC	15000	110,000	3.4	5.1	< 19 U	5	2.6	7	2.9	5.8
Total Xylenes	ug/m3	NC	1500	11,000	18.7	28.3	< 37 U	25.8	14.4	57	14.2	31.3
PAHs												
Naphthalene	ug/m3	С	2.5	8.4	< 0.84 U	< 0.94 U	< 11 U	< 0.89 U	< 0.81 U	< 2.2 U	< 0.81 U	< 0.89 U
VOCs												
1,2-Dibromoethane (EDB)	ug/m3	NC	0.14	0.47	< 0.25 U				< 0.24 U		< 0.24 U	
1,2-Dichloroethane (EDC)	ug/m3	NC	3.2	10.7	< 0.13 U				< 0.13 U		< 0.13 U	
Methyl tert-butyl ether (MTBE)	ug/m3	NC	320	1070	< 5.8 U				< 5.6 U		< 5.6 U	
АРН												
C5 - C8 Aliphatic Hydrocarbons	ug/m3				510	650	22,000	160	1,000	4,100	1,700	750
C9 - C12 Aliphatic Hydrocarbons	ug/m3				1,800	470	5,000	390	1,300	6,700	1,100	670
C9 - C10 Aromatic Hydrocarbons	ug/m3				100	< 90 U	< 1100 U	< 85 U	78	< 210 U	100	< 85 U
Total Petroleum Hydrocarbons (ND = 1/2 RL)	ug/m3	NC	4,700	35,000	2,445	1,235	28,005	658	2,407	11,067	2,934	1,534

Notes

(1) Model Toxic Control Act (MTCA) Method B Subslab Soil Gas Screening Levels (SLs).

(2) Commercial screening levels calculated by adjusting exposure frequency for both noncarcinogens and carcinogens to 0.30, and average body weight and breathing rate for noncarcinogens to 70 kg and 20 m³/day, respectively. These adjustments are in accordance with MTCA Equations 750-1 and 750-2 and Ecology's Implementation Memorandum No. 21 (FAQs Regarding VI and Ecology's 2009 Draft VI Guidance).

(3) Total petroleum hydrocarbon concentration is the sum total of VOCs and APHs, one-half of the laboratory detection limit was used for non-detects.

(4) Generic sub-slab TPH screening level based on generic TPH indoor air cleanup level of 140 ug/m3 and an attenuation factor of 0.03 (Ecology Implementation Memo #18.)

Bold - Analyte Detected

Blue Shaded - Detected result exceeded unrestricted use MTCA Method B Subslab Screening Level

BTEX = benzene, toleuene, ethylbenzene, and total xylenes

PAHs = polycyclic aromatic hydrocarbons

VOCs = volatile organic compounds

- APH = air petroleum hydrocarbon
- μ g/m³ = micrograms per cubic meter

-- = Not Analyzed

- U = Analyte was not detected at or above the Reporting Limit shown.
- C = Carcinogenic; NC = Non carcinogenic

Table 5Interim Action Work PlanPage 2 of 2

Area of Site	Location	Depth of First Impacted Soil (feet bgs)	Depth to Unweathered Till (feet bgs)	Depth of Deepest Soil CUL Exceedance (feet bgs)	Depth of Soil Compliance (feet bgs)	Depth of Planned Excavation (feet bgs)	Depth of Maximum Possible Overexcavation (feet bgs)	Notes
	MW-3	0	17	17.5	Not Delineated	18	> 25	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. Due to the distance from the shoring wall, the maximum possible overexcavation depth is greater than 25 feet bgs. Depth of first impacted soil based on PID readings.
	MW-4	0	17	17.5	Not Delineated	18	> 25	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. Due to the distance from the shoring wall, the maximum possible overexcavation depth is greater than 25 feet bgs. Depth of first impacted soil based on PID readings.
Source Area	MW-5	0	17.5	17.5	Not Delineated	18	22	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. Due to the distance from the shoring wall, the maximum possible overexcavation depth at this location is 22 feet bgs. Depth of first impacted soil based on PID readings.
	MW-8	0	20	20	Not Delineated	20	22	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. Due to the distance from the shoring wall, the maximum possible overexcavation depth at this location is 22 feet bgs. Depth of first impacted soil based on PID readings.
	SB1	10	17.5	12.5	16	16	> 25	Overexcavation is not anticipated at this location. However, due to the layout of the shoring and slope cuts, overexcavation in this area is possible to the depth indicated. Depth of first impacted soil based on PID readings.
	SB2	0	15	15	Not Delineated	16	> 25	Due to the distance from the shoring wall, the maximum possible overexcavation depth is greater than 25 feet bgs. Depth of first impacted soil based on PID readings.
	SB	-	-	2	Not Delineated	-	-	Too shallow to be used for the purpose of defining excavation extents.
	B-7	7	16	8	12.5	10	18	Due to its position near MW-5, and the slope requirements from the NW corner of the two shoring walls, the maximum possible overexcavation in this area is expected to be 18 feet bgs. Depth of first impacted soil based on PID readings.
Northwest	B-10	> 12.5	15	No Exceedances	Ground Surface	As needed for sloping	10	Due to its position near the corner of the two shoring walls, some excavation of clean soil may be necessary to meet sloping requirements within the interior of the excavation.
Corner	MW-9	0	10	20	Not Delineated	18	25	The soil CUL exceedance at both 10 and 20 feet was for benzene only, and may have been caused by dragdown during drilling. The planned excavation depth is based on nearby locations and the relative order of magnitude of CUL exceedances at 10 feet bgs versus 20 feet bgs. Due to the proximity of this location to both MW-1 and the NW corner where the two shoring walls meet, the maximum possible overexcavation at this location will be 25 feet bgs.

Area of Site	Location	Depth of First Impacted Soil (feet bgs)	Depth to Unweathered Till (feet bgs)	Depth of Deepest Soil CUL Exceedance (feet bgs)	Depth of Soil Compliance (feet bgs)	Depth of Planned Excavation (feet bgs)	Depth of Maximum Possible Overexcavation (feet bgs)	Notes
	MW-1	0	17.5	27.5	Not Delineated	18	30	The soil CUL exceedance at 27.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. The planned excavation depth is to the top of unweathered till at this location. However, the shoring wall has been designed to extend 2.5 feet below the deepest historical soil CUL exceedance.
Southwest Area	MW-10	0	20	20	Not Delineated	20	> 25	The soil CUL exceedance at 20 feet was for benzene only, and may have been caused by dragdown during drilling. The depth to unweathered till forms the basis of the remedial excavation depth. Due to the distance from the shoring wall, the maximum possible overexcavation depth is greater than 25 feet bgs.
	MW-15	10.5	13	17.5	25	18	> 25	Based on its distance from the shoring wall, the maximum possible overexcavation depth at this location is greater than 25 feet bgs.
	MW-23	18	12.5	25	Not Delineated	20	30	The soil CUL exceedance at 25 feet was for benzene only, and may have been caused by dragdown during drilling. The planned excavation depth is based on the order of magntiude of the soil exceedance at 18 feet as compared to the soil exceedance at 25 feet bgs. However, based on the proximity of this location to MW-1, the maximum possible overexcavation depth at this location will be 30 feet bgs.
	B-11	> 15	18	No Exceedances	Ground Surface	As needed for sloping	As needed for sloping	This location establishes the eastern edge of soil compliance. Excavation in this area will only be performed as necessary to meet sloping requirements for larger excavation area.
	MW-11	0	18	6	13	8	13	This location will be part of the slope cut. Based on the boring logs, an excavation depth of 8 feet is expected, though the shoring has been designed to reach depths of up to 13 feet bgs in this area.
Eastern Extents	MW-20	> 13	18	No Exceedances	Ground Surface	As needed for sloping	As needed for sloping	This location establishes the eastern edge of soil compliance. Excavation in this area will only be performed as necessary to meet sloping requirements for larger excavation area.
	MW-21	> 17.5	17.5	No Exceedances	Ground Surface	As needed for sloping	As needed for sloping	This location establishes the eastern edge of soil compliance. Excavation in this area will only be performed as necessary to meet sloping requirements for larger excavation area.
	MW-22	16	17.5	16	25	17.5	> 25	The soil CUL exceedance at 16 feet was for benzene only. Based on its distance from the shoring wall, the maximum possible overexcavation depth at this location is greater than 25 feet bgs.

Notes:

bgs = below ground surface CUL = MTCA Method A Cleanup Levels

Table 7. Estimated Soil Removal Volumes

Project No. 180357, Lynnwood, Washington

	Elevation	Area	Volume	
Feature	(feet ¹)	(square feet)	(cubic yards)	Notes
Planned Excavation Top	451	10,900	N/A	Area at ground surface
Planed Excavation Bottom	431-433	5,800	N/A	Area at planned bottom
Maximum Overexcavation Top	451	12,500	N/A	Area to achieve Practical Limit
Overexcavation Bottom	421	5,560	N/A	Practical Limit Bottom Area
Planned Soil Removal	431-433	N/A	5,800	Assumed 1.5:1 side slopes
	Pote	ntially Clean Soil	1,000	Based depth to first impacted soil
	Petroleum Co	ontaminated Soil	4,800	Planned Soil Removal less Potentially Clean
Additional Overexcavation	421	N/A	3,020	Assumed 1.5:1 side slopes

Notes:

1) Elevation feet in NAVD88

Table areas and volumes assume a 1-foot offset from the property line and 3-foot offset from utilities to the shoring wall.

FIGURES

Basemap Layer Credits || Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

Basemap Layer Credits || EagleView Technologies

snect	FEB-2021	BY: WVG / TDR	FIGURE NO.
DNSULTING	PROJECT NO. 180357	REVISED BY: AJY / WEG	2

3

AJY / WEG / SBM

PROJECT NO. 180357

IS Path: T:\projects_8\AlohaCafe\Working\PLP Technical Meeting 2020

August 2020

Analyte and it's concentration

in micrograms per liter

Analytes not detected. Building

- DRO = Diesel Range Organics

- B = Benzene

- Only locations that exceed the MTCA Method A Cleanup Levels are shown

November 2020

Aspect	FEB-2021	^{ву:} WVG / TDR	FIGURE NO.
CONSULTING	PROJECT NO. 180357	REVISED BY: SBM / AJY / WEG	5

Total Petroleum Hydrocarbons detected at concentrations greater than the MTCA Method B Subslab Soil Screening Levels for Unrestricted Use.

Total Petroleum Hydrocarbons detected at concentrations less than the MTCA Method B Subslab Soil Screening Levels for Unrestricted Use.

Total Petroleum Hydrocarbons not detected.

○ Soil Vapor Sample

• Soil Vapor Sample (Not Sampled During Event)

XN

- **Building**
- Subject Property

Former UST (Removed)

Existing UST (Closed-In-Place or Abandoned)

-Concentration of TPH in µg/m³

Snohomish County Tax Parcel

Notes: - TPH = Total Petroleum Hydrocarbons - µg/m³ = Micrograms per cubic meter - Total petroleum hydrocarbon concentration is the sum total of VOCs and APHs; one-half of the laboratory detection limit was used for non-detects.

Soil Gas Analytical Results - 2020

DRAFT

Interim Action Work Plan Texaco Strickland Site 6808 196th Street SW Lynnwood, WA

Aspect	FEB-2021	^{ву:} WVG / TDR	FIGURE NO.
CONSULTING	PROJECT NO. 180357	REVISED BY: SBM / AJY / WEG	3

Notes: - LNAPL = Light Non-aqueous Phase Liquid

DRAFT

** The soil sample collected at MW-2 in 2006 contained an exceedance of benzene at 17.5 feet bgs. The soil sample collected from MW-12 in 2019 from 15 feet bgs did not contain detectable concentrations of benzene and has established soil confirmation.

*** The soil sample collected at MW-6 in 2007 contained an exceedance of benzene at 20 feet bgs. The soil sample collected from B-05 in 2010 did not contain detectable concentrations of benzene and has established soil confirmation.

Texaco Strickland Site 6808 196th Street SW Lynnwood, WA

Aspect	FEB-2021	BY: WVG / TDR	FIGURE NO.
CONSULTING	PROJECT NO. 180357	REVISED BY: BMG / WEG	7

LEGEND:

SOIL REMAINING IN PLACE EXPOSED SHORING WALL MAXIMUM OVEREXCAVATION AREA MAXIMUM OVEREXCAVATION EXTENTS EXISTING AND FINAL GRADE PROPOSED EXCAVATION BOUNDARY

SHORING WALL

Cross Section Scale

Conceptual Soil Excavation Sections

Interim Action Work Plan Texaco Strickland Site 6808 196th Street SW Lynwood, WA

	FEB-2021	BY: BMG / RAC	FIGURE NO.		
CONSULTING	PR 0JECT NO. 180357	REV BY:	8		

APPENDIX A

Remedial Investigation Boring and Monitoring Well Logs

No. 200 Sieve	an 50% ¹ of Coarse Fraction d on No. 4 Sieve	≦5% Fines		GW	Well-graded GRAVEL Well-graded GRAVEL WITH SAND Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND	MC=Natural Moisture Content PSGEOTECHNICAL LAB TESTSPS=Particle Size Distribution FCEFC=Fines Content (% < 0.075 mm) GHHydrometer TestAL=Hydrometer Test Limits C=C=Consolidation Test StrStrength TestOC=Organic Content (% Loss by Ignition) Comp=Proctor Test K=Hydraulic Conductivity TestSG=Specific Gravity Test				
Coarse-Grained Soils - More than 50%1 Retained on	Aore tha Retainec	Z 215% Fines		GM	SILTY GRAVEL SILTY GRAVEL WITH SAND	Organic Chemicals CHEMICAL LAB TESTS				
	Gravels - N			GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	TPH-Dx = Diesel and Oil-Range Petroleum Hydrocarbons TPH-G = Gasoline-Range Petroleum Hydrocarbons VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds				
	e Fraction	Fines		SW	Well-graded SAND Well-graded SAND WITH GRAVEL	PAHs = Polycyclic Aromatic Hydrocarbon Compounds PCBs = Polychlorinated Biphenyls <u>Metals</u> RCRA8 = As, Ba, Cd, Cr, Pb, Hg, Se, Ag, (d = dissolved, t = total)				
	of Coars 4 Sieve	≦5%		SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL	MTCA5 = As, Cd, Cr, Hg, Pb (d = dissolved, t = total) PP-13 = Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl, Zn (d=dissolved, t=total)				
	50% ¹ or More Passes No.	Fines		SM	SILTY SAND SILTY SAND WITH GRAVEL	PID = Photoionization Detector FIELD TESTS Sheen = Oil Sheen Test SPT ² SPT ² = Standard Penetration Test NSPT = Non-Standard Penetration Test DCPT = Dynamic Cone Penetration Test				
s No. 200 Sieve	Sands -	≧15% I		sc	CLAYEY SAND CLAYEY SAND WITH GRAVEL	Descriptive Term BouldersSize Range and Sieve Number Larger than 12 inchesCOMPONENT DEFINITIONSCobbles=3 inches to 12 inchesDEFINITIONS				
	lys Par F0%		·//////	ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL	Coarse Gravel = 3 incres to 3/4 incres Fine Gravel = 3/4 incres to No. 4 (4.75 mm) Coarse Sand = No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand = No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand = No. 40 (0.425 mm) to No. 200 (0.075 mm)				
	ts and Cla			CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL	Silt and Clay = Smaller than No. 200 (0.075 mm) <u>% by Weight</u> Modifier % by Weight Modifier ESTIMATED ¹ <u>Subtrace</u> % by Weight Little PERCENTAGE				
fore Passe	Sil	Liquiu Lii		ORGANIC SILT SANDY or GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND		$1 \text{ to } <5 = \text{Trace} \qquad 30 \text{ to } 45 = \text{Some} \\ 5 \text{ to } 10 = \text{Few} \qquad >50 = \text{Mostly} $				
trained Soils - 50%1 or Mc	ys More			мн	ELASTIC SILT WITH GRAVEL ELASTIC SILT SANDY OF GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL	Slightly Moist = Perceptible moisture, disty, diry to the tottor CONTENT Moist = Damp but no visible water CONTENT Very Moist = Water visible but not free draining Very below water table				
	ilts and Cla			СН	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL	Non-Cohesive or Coarse-Grained SoilsRELATIVE DENSITYDensity³SPT² Blows/FootPenetration with $1/2"$ Diameter RodVery Loose= 0 to 4 $\geq 2'$ Very Loose= 0 to 4 $\geq 1000000000000000000000000000000000000$				
Fine-G	S Listing	ridnia I		ridaia	רולמומ		он	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL	Loose = 5 to 10 1' to 2' Medium Dense = 11 to 30 3" to 1' Dense = 31 to 50 1" to 3" Very Dense = > 50 < 1"	
PEAT and other mostly organic soils			PT	PEAT and other mostly organic soils	Cohesive or Fine-Grained Soils CONSISTENCY $Consistency^3$ SPT^2 Blows/Foot Manual Test Very Soft = 0 to 1 Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Soft = 2 to 4 Penetrated 1/4" to 1" easily by thumb. Easily molded.					
"WITH SILT" or "WITH CLAY" means 5 to 15% silt and clay, denoted by a "-" in the group name; e.g., SP-SM = 'SILTY' or "CLAYEY" means >15% silt and clay • "WITH SAND" or "WITH GRAVEL" means 15 to 30% sand and gravel. • "SANDY" or "GRAVELLY" means >30% sand and gravel. • "Well-graded" means approximately equal amounts of fine to coarse drain sizes • "Pondy"				5 to 15% AYEY" me nd gravel roximatel	6 silt and clay, denoted by a "-" in the group rans >15% silt and clay • "WITH SAND" or "WITH • "SANDY" or "GRAVELLY" means >30% sand and y equal amounts of fine to coarse grain sizes • "Poorly	Stiff= 9 to 15Indented $\sim 1/4^{\circ}$ with effort by thumb.Very Stiff= 16 to 30Hard= > 30Indented with difficulty by thumbnail.				
graded" means unequal amounts of grain sizes • Group names separated by "/" means soil contains layers of the two soil types; e.g., SM/ML. Soils were described and identified in the field in general accordance with the methods described in ASTM D2488. Where indicated in the log, soils were classified using ASTM D2487 or other laboratory tests as appropriate. Refer to the report accompanying these exploration logs for details.				of grain si s; e.g., SM I in the fie he log, so fer to the	zes • Group names separated by "/" means soil //ML. id in general accordance with the methods described in ils were classified using ASTM D2487 or other report accompanying these exploration logs for details.	Observed and Distinct Observed and Gradual Inferred				
,					-					

Aspect

10.0.0

Estimated or measured percentage by dry weight
 (SPT) Standard Penetration Test (ASTM D1586)
 Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

Exploration Log Key

	+		Aloha Cafe	- 180357	Environmental Exploration Log					
	6808 1961	Project Address & Site Specific Location 6808 196th Street Southwest, Lynwood, Washington, 98036, E of former					Coordinates	Exploration Number		
Contractor	Equ	uipment	Duliul	Sampling Method			Ground Surface Elev. (NAVD88)	B-04		
Holocene	Direct	t push rig		Percussion hammer			440' (est)			
Operator	Explorati	ion Method(s) V	Work Start/Completion Dates			Top of Casing Elev. (NAVD88)	Depth to Water (Below GS)		
Matt	Dire	ect push		8/5/2020			NA	No Water Encountered		
Depth Elev. Exploration (feet) (feet) Complete C	on Notes and tion Details	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)	
1 -439						SAND V asticity, DF	VITH SILT (SW-SM); dry, light sand fine to coarse, subangula	grey; fines low ar; appears to be	- 1	
2 -438						SAND V asticy, s	VITH SILT (SW-SM); dry, light sand fine to coarse, subangular	grey; fines low	- 2	
3 -437									- 3	
4 -436									- 4	
5 -435									- 5	
6 - 434					° ° °				- 6	
8 -432					Bo	concrete	e f exploration at 7.5 ft. bgs.		- 8	
9 -431									- 9	
10-430									- 10	
11-429									-11	
12-428									- 12	
13-427									- 13	
14-426									- 14	
15-425									- 15	
17-423									- 10	
18-422									- 18	
19-421									- 19	
20-420									-20	
21-419									-21	
22-418									-22	
23-417									-23	
24-416									-24	
Legend Sample Type			No Wate	r Encountered	Sec of s Loç Ap	e Explor symbols gged by proved	ration Log Key for explanation c DRB by: AY	Exploration Log B-04 Sheet 1 of 1	on	

NEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/180357 ALOHA CAFE1.GPJ January 28, 2021

P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ **NEW STANDARD EXPLORATION LOG TEMPLATE**

P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ JEW STANDARD EXPLORATION LOG TEMPLATE

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/180357 ALOHA CAFE1.GPJ January 28, 202-

VEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ

P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ **NEW STANDARD EXPLORATION LOG TEMPLATE**

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/180357 ALOHA CAFE1.GPJ January 28, 202

NEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ January 28, 202

NEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ January 28, 202

NEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ January 28, 202

VEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ January 28, 202

VEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ January 28, 202

VEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ January 28, 202

P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ **NEW STANDARD EXPLORATION LOG TEMPLATE**

P:\GINTW\PROJECTS\180357 ALOHA CAFE1.GPJ **NEW STANDARD EXPLORATION LOG TEMPLATE**

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/180357 ALOHA CAFE1.GPJ

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/180357 ALOHA CAFE1.GPJ January 28, 202-

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/180357 ALOHA CAFE1.GPJ January 28, 202-

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/180357 ALOHA CAFE1.GPJ January 28, 202-

APPENDIX B

Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 11, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on June 5, 2019 from the Aloha Cafe 180357, F&BI 906075 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0611R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 5, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906075 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
906075 -01	GP-04-1
906075 -02	GP-04-2
906075 -03	AB-01-2
906075 -04	AB-01-5.5
906075 -05	AB-01-4
906075 -06	AB-01-11

The 8260C matrix spike and matrix spike duplicate failed the relative percent difference for dichlorodifluoromethane and cis-1,3-dichloropropene. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19 Project: Aloha Cafe 180357, F&BI 906075 Date Extracted: 06/06/19 Date Analyzed: 06/06/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
GP-04-2 906075-02	<5	108
Method Blank ^{09-1285 MB}	<5	101

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19 Project: Aloha Cafe 180357, F&BI 906075 Date Extracted: 06/07/19 Date Analyzed: 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
GP-04-2 906075-02	<50	<250	115
Method Blank ^{09-1347 MB}	<50	<250	100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	GP-04-2		Client:	Aspect Consulting, Ll	LC
Date Received:	06/05/19		Project:	Aloha Cafe 180357, F	$\& BI \ 906075$
Date Extracted:	06/06/19		Lab ID:	906075-02	
Date Analyzed:	06/06/19		Data File:	060612.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppn	n) Dry Weight	Operator :	MS	
	0 0 11	, , ,	- T	TT	
Sumocatoa		0/ Decourant:	Lower	Upper Limit:	
1.9 Dichleroothono	d 4	[%] necovery.	Lillitt.	145	
Toluono de	·u4	101	02 55	140	
1 Bromofluorohong	200	97 100	55 65	140	
4-Dromonuorobenze	ene	100	60	199	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluorometh	nane	< 0.5	Ethylber	nzene	< 0.05
Acetone		< 0.5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	9	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	r (MTBE)	< 0.05	Isopropy	vlbenzene	< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	е	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		< 0.5	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	э	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	е	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	ane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentance	one	< 0.5	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloroprop	oene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	ropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received:Not ApplicableProject:Aloha Cafe 180357, F&BI 906075Date Extracted:06/06/19Lab ID:09-1316 mbDate Analyzei06/06/19Data File:06008.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MSSurrogates:% Recovery:Limit:Limit:1.2-Dichloroethane-d498621454-Bromofluorobenzene9665139Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.51,3-Dichloropethane<0.05Chloromethane<0.51,2-Dibromoethane<0.05Chloromethane<0.5Chloropethane<0.05Chloromethane<0.5Chloropethane<0.05Chloromethane<0.5Chlorobenzene<0.05Chlorodifluoromethane<0.5Chlorobenzene<0.05Chlorodethane<0.5Chlorobenzene<0.05Chlorodethane<0.5Chlorobenzene<0.05Chloropfuoromethane<0.5Styrene<0.05Chloropfuoromethane<0.5Styrene<0.05Chloropfuoromethane<0.5Styrene<0.05Chloropfuoromethane<0.5Styrene<0.05Chloropfuoromethane<0.05Mathylene<0.05Chloropfuoromethane<0.05Styrene<0.05Chloropfuoromethane<0.05Styrene<0.05Chloropfuorome	Client Sample ID:	nt Sample ID: Method Blank		Client:	Aspect Consulting, LLC					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Date Received:	Not Applic	able	Project:	Aloha Cafe 180357, F	&BI 906075				
Date Analyzed: $06/06/19$ Data File: $060608.D$ Matrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MSSurrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d49862145Toluene-d894551454-Bromofluorobenzene9665139Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5	Date Extracted:	06/06/19		Lab ID:	09-1316 mb					
Matrix:SoilInstrument:GCMS4 Operator:Units:mg/kg (ppm) Dry WeightOperator:MSSurrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d49862145Toluene-d894551454-Bromofluorobenzene9665139Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5	Date Analyzed:	06/06/19		Data File:	060608.D					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Matrix:	Soil		Instrument:	GCMS4					
LowerUpper Limit:12-Dichloroethane-d49862145Toluene-d89455145Toluene-d8944-Bromofluorobenzene9665139Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5	Units:	mg/kg (ppr	n) Dry Weight	Operator:	MS					
LowerUpperSurrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d49862145Toluene-d894551454-Bromofluorobenzene9665139Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5		0 0 11	/ / 0	- -						
Surrogates: % Recovery: Limit: Limit: Limit: 1,2-Dichloroethane-d4 98 62 145 Toluene-d8 94 55 145 4-Bromofluorobenzene 96 65 139 $ $	C .			Lower	Upper					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Surrogates:	1.4	% Recovery:	Limit:	Limit:					
$ Toluene-d8 94 55 145 \\ 4-Bromofluorobenzene 96 65 139 \\ Compounds: $	1,2-Dichloroethane	·d4	98	62	145					
4-Bromofluorobenzene9665139Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5	Toluene-d8		94	55	145					
Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5	4-Bromofluorobenze	ene	96	65	139					
Dichlorodifluoromethane<0.51,3-Dichloropropane<0.05Chloromethane<0.5	Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05				
Vinyl chloride<0.05Dibromochloromethane<0.05Bromomethane<0.5	Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025				
Bromomethane < 0.5 $1,2$ -Dibromoethane (EDB) < 0.05 Chloroethane < 0.5 Chlorobenzene < 0.05 Trichlorofluoromethane < 0.5 Ethylbenzene < 0.05 Acetone < 0.5 $1,1,1,2$ -Tetrachloroethane < 0.05 $1,1$ -Dichloroethene < 0.05 m_p -Xylene < 0.05 Hexane < 0.25 o -Xylene < 0.05 Methylene chloride < 0.5 Styrene < 0.05 Methylene chloride < 0.05 Isopropylbenzene < 0.05 trans-1,2-Dichloroethene < 0.05 Bromoform < 0.05 1,1-Dichloroethane < 0.05 n-Propylbenzene < 0.05 $2,2$ -Dichloroethene < 0.05 n-Propylbenzene < 0.05 $2,2$ -Dichloroethene < 0.05 $1,3,5$ -Trimethylbenzene < 0.05 $2,2$ -Dichloroethene < 0.05 $1,2,2$ -Tetrachloroethane < 0.05 $2,2$ -Dichloroethene < 0.05 $1,2,3$ -Trichloroethane < 0.05 $2,2$ -Dichloroethane < 0.05 $1,2,3$ -Trichloroethane < 0.05 $2,2$ -Dichloroethane < 0.05 $1,2,2$ -Tetrachloroethane < 0.05 $2,2$ -Dichloroethane < 0.05 $1,2,2$ -Tetrachloroethane < 0.05 $1,1$ -Dichloroethane < 0.05 $1,2,2$ -Tetrachloroethane < 0.05 $1,1,1$ -Trichloroethane < 0.05 $1,2,4$ -Trimethylbenzene < 0.05 $1,1$ -Dichloropopane < 0.05 $1,2,4$ -Trimethylbenzene < 0.05 $1,1$ -Dichloropopane < 0.05 $1,2,4$ -Trimethylbenzene	Vinvl chloride		< 0.05	Dibromo	ochloromethane	< 0.05				
Chlorothane < 0.5 Chlorobenzene < 0.05 Trichlorofluoromethane < 0.5 Ethylbenzene < 0.05 Acetone < 0.5 $1,1,1,2$ -Tetrachlorothane < 0.05 1,1-Dichloroethene < 0.05 m,p-Xylene < 0.1 Hexane < 0.25 o -Xylene < 0.05 Methylene chloride < 0.5 Styrene < 0.05 Methyl t-butyl ether (MTBE) < 0.05 Isomoform < 0.05 trans-1,2-Dichloroethene < 0.05 Bromoform < 0.05 1,1-Dichloroethane < 0.05 n-Propylbenzene < 0.05 2,2-Dichloropthane < 0.05 Bromobenzene < 0.05 2,2-Dichloroethene < 0.05 1,3,5-Trimethylbenzene < 0.05 Chloroform < 0.05 1,1,2,2-Tetrachloroethane < 0.05 2,2-Dichloroethane < 0.05 1,2,3-Trichloropropane < 0.05 2,2-Dichloroethane < 0.05 2-Chlorotoluene < 0.05 1,1-Dichloroethane < 0.05 1,2,3-Trichloropropane < 0.05 1,2-Dichloroethane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,1-Trichloroethane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,1-Dichloropropane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,1-Dichloroptopane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,1-Dichloroptopane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,2-Dichloroptopane < 0.05 1,3-Dichlorobenzene < 0.05 1,2-Dichloroptopane $< $	Bromomethane		< 0.5	1.2-Dibr	omoethane (EDB)	< 0.05				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Chloroethane		< 0.5	Chlorobe	enzene	< 0.05				
Acteone (0.5) $1,1,1,2$ -Tetrachloroethane (0.05) $1,1$ -Dichloroethene (0.5) m,p -Xylene (0.1) Hexane (0.25) o -Xylene (0.5) Methylene chloride (0.5) Styrene (0.5) Methyl t-butyl ether (MTBE) (0.05) Isopropylbenzene (0.05) trans-1,2-Dichloroethene (0.05) Bromoform (0.05) 1,1-Dichloroethane (0.05) n-Propylbenzene (0.05) 2,2-Dichloropthene (0.05) Bromobenzene (0.05) 2,2-Dichloroethene (0.05) $1,3,5$ -Trimethylbenzene (0.05) Chloroform (0.05) $1,1,2,2$ -Tetrachloroethane (0.05) 2-Butanone (MEK) (0.5) $1,2,3$ -Trichloroptopane (0.05) 1,1-Dichloroethane (0.05) 2 -Chlorotoluene (0.05) 1,1,1-Trichloroethane (0.05) 4 -Chlorotoluene (0.05) 1,1-Dichloropopene (0.05) $1,2,4$ -Trimethylbenzene (0.05) 1,1-Dichloropopene (0.05) $1,2,4$ -Trimethylbenzene (0.05) Carbon tetrachloride (0.02) p -Isopropyltoluene (0.05) 1,2-Dichloropopane (0.05) $1,3$ -Dichlorobenzene (0.05) <t< td=""><td>Trichlorofluorometh</td><td>nane</td><td>< 0.5</td><td>Ethylbei</td><td>nzene</td><td>< 0.05</td></t<>	Trichlorofluorometh	nane	< 0.5	Ethylbei	nzene	< 0.05				
1.1-Dichloroethene < 0.05 $n,p-Xylene$ < 0.1 Hexane < 0.25 $o-Xylene$ < 0.05 Methylene chloride < 0.5 Styrene < 0.05 Methyl t-butyl ether (MTBE) < 0.05 Isopropylbenzene < 0.05 trans-1,2-Dichloroethene < 0.05 Bromoform < 0.05 1,1-Dichloroethane < 0.05 n-Propylbenzene < 0.05 2,2-Dichloroptopane < 0.05 Bromobenzene < 0.05 2,2-Dichloroethene < 0.05 1,3,5-Trimethylbenzene < 0.05 Chloroform < 0.05 1,2,2-Tetrachloroethane < 0.05 2-Butanone (MEK) < 0.5 1,2,3-Trichloroptopane < 0.05 1,1-Dichloroethane < 0.05 2-Chlorotoluene < 0.05 1,1,1-Trichloroethane < 0.05 4-Chlorotoluene < 0.05 1,1-Dichloroptopane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,1-Dichloroptopane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,1-Dichloroptopane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,2-Dichloroptopane < 0.05 1,3-Dichlorobenzene < 0.05 1,2-Dichloroptopane < 0.05 1,4-Dichlorobenzene < 0.05 1,2-Dichloroptopane < 0.05 1,2-Dichlorobenzene < 0.05 1,2-Dichl	Acetone	lano	<0.5	1.1.1.2-7	'etrachloroethane	< 0.05				
HyperbolicHyperbolicHyperbolicHexane < 0.25 o -Xylene < 0.05 Methylene chloride < 0.5 Styrene < 0.05 Methyl t-butyl ether (MTBE) < 0.05 Isopropylbenzene < 0.05 trans-1,2-Dichloroethene < 0.05 Bromoform < 0.05 1,1-Dichloroethane < 0.05 n-Propylbenzene < 0.05 2,2-Dichloropropane < 0.05 Bromobenzene < 0.05 2,2-Dichloroethene < 0.05 1,3,5-Trimethylbenzene < 0.05 Chloroform < 0.05 1,2,2-Tetrachloroethane < 0.05 2-Butanone (MEK) < 0.5 1,2,3-Trichloropropane < 0.05 1,1-Dichloroethane (EDC) < 0.05 2-Chlorotoluene < 0.05 1,1-Dichloropropene < 0.05 4-Chlorotoluene < 0.05 1,1-Dichloropropene < 0.05 1,2,4-Trimethylbenzene < 0.05 1,1-Dichloropropene < 0.05 1,2,4-Trimethylbenzene < 0.05 1,1-Dichloropropene < 0.05 1,2,4-Trimethylbenzene < 0.05 1,2-Dichloropropane < 0.05 1,2,4-Trimethylbenzene < 0.05 1,2-Dichloropropane < 0.05 1,3-Dichlorobenzene < 0.05 1,2-Dichloropropane < 0.05 1,3-Dichlorobenzene < 0.05 1,2-Dichloropropane < 0.05 1,4-Dichlorobenzene < 0.05 1,2-Dichloropropane < 0.05 1,2-Dichlorobenzene < 0.05 1,2-Dichloropropane < 0.05 1,2-Dichlorobenzene < 0.05	1 1-Dichloroethene		<0.05	m n-Xvle	ene	<0.1				
Mathie 0.125 0.1760 0.050 Methylen chloride 0.05 Styrene 0.050 Methyl t-butyl ether (MTBE) 0.05 Isopropylbenzene 0.05 trans-1,2-Dichloroethene 0.05 Bromoform 0.051 1,1-Dichloroethane 0.05 n-Propylbenzene 0.052 2,2-Dichloropropane 0.055 Bromobenzene 0.052 cis-1,2-Dichloroethene 0.055 $1,3,5$ -Trimethylbenzene 0.052 Chloroform 0.055 $1,1,2,2$ -Tetrachloroethane 0.052 2-Butanone (MEK) 0.055 $1,2,3$ -Trichloropropane 0.052 1,2-Dichloroethane 0.055 2 -Chlorotoluene 0.052 1,2-Dichloroethane 0.055 4 -Chlorotoluene 0.052 1,1-Trichloroethane 0.055 $1,2,4$ -Trimethylbenzene 0.052 1,1-Dichloropropene 0.055 $1,2,4$ -Trimethylbenzene 0.052 1,2-Dichloropropane 0.052 $1,3$ -Dichlorobenzene 0.052 1,2-Dichloropropane 0.055 $1,3$ -Dichlorobenzene 0.052 1,2-Dichloropropane 0.055 $1,3$ -Dichlorobenzene 0.052 1,2-Dichloropropane 0.055 $1,4$ -Dichlorobenzene 0.052 1,2-Dichloropenthane 0.055 $1,2$ -Dichlorobenzene 0.052 1,2-Dichloropenthane 0.055 $1,2$ -Dichlorobenzene 0.052 1,2-Dichloropenthane 0.055 $1,2$ -Dichlorobenzene 0.052	Hexane		<0.25	o-Xvlene	<u> </u>	<0.05				
Methyl tr-butyl ether (MTBE)<0.05Isopropylbenzene<0.05trans-1,2-Dichloroethene<0.05	Methylene chloride		<0.5	Styrene	, ,	<0.05				
InterpretationConstructionConstructionConstructiontrans-1,2-Dichloroethane <0.05 Bromoform <0.05 1,1-Dichloroethane <0.05 n-Propylbenzene <0.05 2,2-Dichloropropane <0.05 Bromobenzene <0.05 cis-1,2-Dichloroethene <0.05 $1,3,5$ -Trimethylbenzene <0.05 Chloroform <0.05 $1,1,2,2$ -Tetrachloroethane <0.05 2-Butanone (MEK) <0.5 $1,2,3$ -Trichloropropane <0.05 1,2-Dichloroethane (EDC) <0.05 2 -Chlorotoluene <0.05 1,1-Dichloropropene <0.05 4 -Chlorotoluene <0.05 1,1-Dichloropropene <0.05 $1,2,4$ -Trimethylbenzene <0.05 Carbon tetrachloride <0.05 $1,2,4$ -Trimethylbenzene <0.05 Benzene <0.02 p -Isopropyltoluene <0.05 Trichloroptopane <0.05 $1,3$ -Dichlorobenzene <0.05 1,2-Dichloropthane <0.05 $1,3$ -Dichlorobenzene <0.05 Dibromomethane <0.05 $1,4$ -Dichlorobenzene <0.05	Methyl t-butyl ethe	r (MTBE)	<0.05	Isopropy	lbenzene	<0.05				
InterpretationInterpretationInterpretation1,1-Dichloroethane < 0.05 n-Propylbenzene < 0.05 2,2-Dichloropropane < 0.05 Bromobenzene < 0.05 cis-1,2-Dichloroethene < 0.05 $1,3,5$ -Trimethylbenzene < 0.05 Chloroform < 0.05 $1,1,2,2$ -Tetrachloroethane < 0.05 2-Butanone (MEK) < 0.5 $1,2,3$ -Trichloropropane < 0.05 1,2-Dichloroethane (EDC) < 0.05 2 -Chlorotoluene < 0.05 1,1-Trichloroethane < 0.05 4 -Chlorotoluene < 0.05 1,1-Dichloropropene < 0.05 4 -Chlorotoluene < 0.05 1,1-Dichloropropene < 0.05 $1,2,4$ -Trimethylbenzene < 0.05 1,1-Dichloropropene < 0.05 $1,2,4$ -Trimethylbenzene < 0.05 Benzene < 0.03 sec-Butylbenzene < 0.05 Trichloroethene < 0.02 p-Isopropyltoluene < 0.05 1,2-Dichloropropane < 0.05 $1,3$ -Dichlorobenzene < 0.05 Dibromomethane < 0.05 $1,4$ -Dichlorobenzene < 0.05	trans-1 2-Dichloroe	thene	<0.05	Bromofo	rm	<0.05				
1,1 Distribution 0.05 $1.1 \operatorname{ropp}$ iterment 0.05 2,2-Dichloropropane <0.05 Bromobenzene <0.05 cis-1,2-Dichloroethene <0.05 $1,3,5$ -Trimethylbenzene <0.05 Chloroform <0.05 $1,1,2,2$ -Tetrachloroethane <0.05 2-Butanone (MEK) <0.5 $1,2,3$ -Trichloropropane <0.05 1,2-Dichloroethane (EDC) <0.05 2 -Chlorotoluene <0.05 1,1-Trichloroethane <0.05 4 -Chlorotoluene <0.05 1,1-Dichloropropene <0.05 4 -Chlorotoluene <0.05 1,1-Dichloropropene <0.05 $1,2,4$ -Trimethylbenzene <0.05 Carbon tetrachloride <0.05 $1,2,4$ -Trimethylbenzene <0.05 Benzene <0.02 p -Isopropyltoluene <0.05 Trichloroethene <0.05 $1,3$ -Dichlorobenzene <0.05 1,2-Dichloropropane <0.05 $1,4$ -Dichlorobenzene <0.05 Dibromomethane <0.05 $1,2$ -Dichlorobenzene <0.05	1 1-Dichloroethane		<0.05	n-Propy	lbenzene	<0.05				
1,2-Dichlorophopho0.051,3,5-Trimethylbenzene <0.05 Chloroform <0.05 $1,1,2,2$ -Tetrachloroethane <0.05 2-Butanone (MEK) <0.5 $1,2,3$ -Trichloropropane <0.05 1,2-Dichloroethane (EDC) <0.05 2 -Chlorotoluene <0.05 1,1-Trichloroethane <0.05 4 -Chlorotoluene <0.05 1,1-Dichloropropene <0.05 4 -Chlorotoluene <0.05 1,1-Dichloropropene <0.05 $1,2,4$ -Trimethylbenzene <0.05 Carbon tetrachloride <0.05 $1,2,4$ -Trimethylbenzene <0.05 Benzene <0.03 sec-Butylbenzene <0.05 Trichloroethene <0.05 $1,3$ -Dichlorobenzene <0.05 1,2-Dichloropropane <0.05 $1,4$ -Dichlorobenzene <0.05 Dibromomethane <0.05 $1,4$ -Dichlorobenzene <0.05	2.2-Dichloropropan	e	<0.05	Bromobe	enzene	< 0.05				
Chloroform<0.051,1,2,2-Tetrachloroethane<0.052-Butanone (MEK)<0.5	cis-1.2-Dichloroethe	ene	<0.05	1.3.5-Tri	imethylbenzene	< 0.05				
2-Butanone (MEK)<0.51,2,3-Trichloropropane<0.051,2-Dichloroethane (EDC)<0.05	Chloroform		<0.05	1 1 2 2-7	'etrachloroethane	<0.05				
1,2-Dichloroethane (EDC)<0.052-Chlorotoluene<0.051,1-Dichloropropene<0.05	2-Butanone (MEK)		<0.5	1 2 3-Tri	chloropropane	<0.05				
1,1,1-Trichloroethane<0.054-Chlorotoluene<0.051,1-Dichloropropene<0.05	1 2-Dichloroethane	(EDC)	<0.05	2-Chloro	otoluene	<0.05				
1,1-Dichloropropene<0.05tert-Butylbenzene<0.05Carbon tetrachloride<0.05	1 1 1-Trichloroetha	ne	<0.05	4-Chloro	otoluene	<0.05				
Carbon tetrachloride<0.051,2,4-Trimethylbenzene<0.05Benzene<0.03	1.1-Dichloropropen	2	<0.05	tert-But	vlbenzene	< 0.05				
Benzene<0.03sec-Butylbenzene<0.05Trichloroethene<0.02	Carbon tetrachlorid	e	<0.05	1 2 4-Tri	methylbenzene	<0.05				
DefinitionSolutionSolutionSolutionTrichloroethene<0.02	Benzene		<0.03	sec-Buty	lbenzene	<0.05				
1.2-Dichloropropane<0.051.3-Dichlorobenzene<0.05Bromodichloromethane<0.05	Trichloroethene		<0.02	n-Isopro	pyltoluene	<0.05				
Bromodichloromethane<0.051,4-Dichlorobenzene<0.05Dibromomethane<0.05	1 2-Dichloropropan	9	<0.05	1 3-Dich	lorobenzene	<0.05				
Dibromomethane<0.051,1 Dichlorobenzene<0.050.051,2-Dichlorobenzene<0.05	Bromodichlorometh	ane	<0.05	1,0 Dich	lorobenzene	<0.05				
	Dibromomethane	lane	<0.05	1,1 Dich	lorobenzene	<0.05				
4-Methyl-2-pentanone <0.5 1.2-Dibromo-3-chloropropane <0.5	4-Methyl-2-pentanc	ne	<0.5	1, 2 Dien 1 2-Dibr	omo-3-chloropropane	<0.00				
cis-1 3-Dichloropropene < 0.05 1.2.4-Trichlorobenzene < 0.25	cis-1 3-Dichloropror	lene	<0.05	1,2 DIDI 1 2 4-Tri	ichlorobenzene	<0.25				
Toluene <0.05 Hexachlorobutadiene <0.25	Toluene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<0.05	Hexachl	orobutadiene	<0.25				
trans-1 3-Dichloropropene <0.05 Naphthalene <0.05	trans-1 3-Dichloron	ronene	<0.05	Nanhtha	alene	<0.05				
1.1.2-Trichloroethane <0.05 $1.2.3$ -Trichlorobenzene <0.25	1 1 2-Trichloroetha	ne	<0.05	1 2 3.Tri	ichlorobenzene	<0.25				
2-Hexanone <0.5	2-Hexanone		<0.5	1,2,0 111						

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19 Project: Aloha Cafe 180357, F&BI 906075

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code:	906063-03 (Duplic	eate)			
		Samp	ole Du	plicate	
	Reporting	Resu	lt R	lesult	RPD
Analyte	Units	(Wet V	Wt) (W	et Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	280	1	160	$56~\mathrm{hr}$
Laboratory Code:	Laboratory Contro	ol Sample	e		
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	mg/kg (ppm)	20	120	71-131	

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19 Project: Aloha Cafe 180357, F&BI 906075

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	906120-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	190	92	92	64-133	0
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	;			
	Reporting	Spike	Recover	ery Acceptance			
Analyte	Units	Level	LCS	LCS Crite			
Diesel Extended	mg/kg (ppm)	5 000	90	58-1	147		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19 Project: Aloha Cafe 180357, F&BI 906075

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 905585-02 (Matrix Spike)

	······································		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recoverv	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	20	16	10-142	22 vo
Chloromethane	mg/kg (ppm)	2.5	< 0.5	42	36	10-126	15
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	42	39	10-138	7
Bromomethane	mg/kg (ppm)	2.5	< 0.5	48	46	10-163	4
Chloroethane	mg/kg (ppm)	2.5	<0.5	49	47	10-176	4
Agotono	mg/kg (ppm)	2.5	<0.5	43	41	10-176	Ð
1 1-Dichloroethene	mg/kg (ppm)	2.5	<0.0	69	69	10-160	4
Hexane	mg/kg (ppm)	2.5	<0.25	36	34	10-137	ő
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	66	66	10-156	0
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	69	69	21-145	0
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	68	67	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	70	69	19-140	1
2,2-Dichloropropane	mg/kg (ppm)	2.5	<0.05	68	71	10-158	4
Cls-1,2-Dichloroethene	mg/kg (ppm)	2.0	<0.05	73 71	71 70	20-130	3 1
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.05	97	95	19-147	2
1.2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	<0.05	68	68	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	70	70	10-156	0
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	68	67	17-140	1
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	67	66	9-164	2
Benzene	mg/kg (ppm)	2.5	< 0.03	69	68	29-129	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	67	66	21-139	2
1,2-Dichloropropane Bromodiabloromothano	mg/kg (ppm)	2.5	<0.05	71	70	30-135	1
Dibromomethane	mg/kg (ppm)	2.5	<0.05	74	79	23-135	3
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.05	85	84	24-155	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	74	75	28-144	1
Toluene	mg/kg (ppm)	2.5	< 0.05	119	79	35-130	40 vo
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	78	78	26-149	0
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	91	80	10-205	13
2-Hexanone	mg/kg (ppm)	12.5	<0.5	90	87	15-166	3
1,3-Dichloropropane	mg/kg (ppm)	2.5	<0.05	73	74	31-137	1
Dibromochloromethane	mg/kg (ppm)	2.5	<0.025	78	78	20-155	0
1.2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	<0.05	74	74	28-142	0
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	69	69	32-129	0
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	88	74	32-137	17
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	79	76	31-143	4
m,p-Xylene	mg/kg (ppm)	5	<0.1	69	67	34-136	3
o-Aylene Starron	mg/kg (ppm)	2.5	<0.05	70	68 75	33-134	3
Isopropylhenzene	mg/kg (ppm)	2.5	<0.05	70	69	31.149	1
Bromoform	mg/kg (ppm)	2.5	< 0.05	82	83	21-156	1
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	67	66	23-146	2
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	71	72	34-130	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	66	66	18-149	0
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	81	82	28-140	1
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	74	76	25-144 21.194	3
4-Chlorotoluene	mg/kg (ppm)	2.5	<0.05	71 70	71 70	31-134	0
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	69	66	30-137	4
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	66	66	10-182	0
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	66	64	23-145	3
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	64	63	21-149	2
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	68	69	30-131	1
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	67	68 70	29-129	1
1,2-Dichlorodenzene	mg/kg (ppm)	2.5	<0.05	70	70	31-132 11 161	0
1.2 4-Trichlorohenzene	mg/kg (ppm)	2.0	<0.0	63	63	22.142	0
Hexachlorobutadiene	mg/kg (ppm)	2.5	<0.25	59	55	10-142	7
Naphthalene	mg/kg (ppm)	2.5	< 0.05	64	65	14-157	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	60	60	20-144	0

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19 Project: Aloha Cafe 180357, F&BI 906075

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

ReportingSpikeRecoveryAcceptanceAnalyteUnitsLevelLCSCriteriaDehlordinzomethanemg/kg (pm)2.56527.133Wijt chordémg/kg (pm)2.57522.139Bromonethanemg/kg (pm)2.5179.139Choromethanemg/kg (pm)2.510012.111Choromethanemg/kg (pm)2.510012.111Testimmg/kg (pm)2.510347.128Hexanemg/kg (pm)2.57843.122Methylen choridemg/kg (pm)2.58469.123Inna 1.2 Urbichorothanemg/kg (pm)2.58469.1291.3 behorothanemg/kg (pm)2.58469.1291.4 behorothanemg/kg (pm)2.59064.1291.5 behorothanemg/kg (pm)2.59064.1291.6 behorothanemg/kg (pm)2.58469.1101.7 behorothanemg/kg (pm)2.59064.1292.8 butanoe (MEK)mg/kg (pm)2.58564.1311.4 behorothanemg/kg (pm)2.58972.127Chlorothanemg/kg (pm)2.58972.1271.5 behorophanemg/kg (pm)2.58972.1271.6 behorophanemg/kg (pm)2.58764.1171.7 behorophanemg/kg (pm)2.58764.1171.9 behorophanemg/kg (pm)2.58972.127 <td< th=""><th></th><th>_</th><th></th><th>Percent</th><th></th></td<>		_		Percent	
Analyte Units Level LCS Criteria Dehrondinaromsthane mg/kg (pp) 2.5 65 10-146 Ohlorondinaromsthane mg/kg (pp) 2.5 67 22-133 Bromonethane mg/kg (pp) 2.5 67 38-114 Chloronthane mg/kg (pp) 2.5 79 9-163 Trchlorofthare mg/kg (pp) 2.5 76 10-196 Acetone mg/kg (pp) 2.5 10 47-142 Methyle chlorofthane mg/kg (pp) 2.5 81 42-132 Methyle chlorofthane mg/kg (pp) 2.5 84 60-123 Trans 1.2 Dichlororothane mg/kg (pp) 2.5 94 67-129 1.1 Dichlorothane mg/kg (pp) 2.5 86 62-131 1.2 Dichlororothane mg/kg (pp) 2.5 86 62-131 1.1 Dichlorothane mg/kg (pp) 2.5 86 62-131 1.1 Dichlorothane mg/kg (pp) 2.5 86 62-131		Reporting	Spike	Recovery	Acceptance
Dethondifluoromethane mg/kg (ppm) 2.5 46 10-146 Chloromethane mg/kg (ppm) 2.5 75 22-139 Bromomethane mg/kg (ppm) 2.5 77 38-114 Chloromethane mg/kg (ppm) 2.5 77 38-114 Chloromethane mg/kg (ppm) 2.5 76 10-164 1.1 Drichloromethane mg/kg (ppm) 2.5 78 44-142 Methylene chloride mg/kg (ppm) 2.5 78 44-142 Methyl b-totyl (per (MTBE) mg/kg (ppm) 2.5 89 60-123 trans.1.2.3 Drichloroethene mg/kg (ppm) 2.5 89 60-123 trans.1.2.3 Drichloroethene mg/kg (ppm) 2.5 94 68-115 2.3.0 Drichlorophane mg/kg (ppm) 2.5 94 68-115 2.4.3 Drichlorophane mg/kg (ppm) 2.5 95 65-135 1.1.1 Trichloroethane mg/kg (ppm) 2.5 95 62-131 1.1.1 Drichlorophane mg/kg (ppm) </th <th>Analyte</th> <th>Units</th> <th>Level</th> <th>LCS</th> <th>Criteria</th>	Analyte	Units	Level	LCS	Criteria
Chlorosethane mg/kg (ppm) 2.5 65 27:133 Bromonethane mg/kg (ppm) 2.5 75 22:139 Bromonethane mg/kg (ppm) 2.5 75 22:139 Trobborothane mg/kg (ppm) 2.5 77 38:114 1.1-Dichlorosethane mg/kg (ppm) 2.5 78 43:142 Methylenechnene mg/kg (ppm) 2.5 89 60:123 Trabborothane mg/kg (ppm) 2.5 94 67:129 1.1-Dichlorosethane mg/kg (ppm) 2.5 94 67:129 2.2-Dichloropropane mg/kg (ppm) 2.5 98 52:170 2.2-Dichloropropane mg/kg (ppm) 2.5 88 74:185 2.2-Dichloropropane mg/kg (ppm) 2.5 88 74:185 1.1-Dichlorosethane mg/kg (ppm) 2.5 98 62:170 2.2-Dichloropropane mg/kg (ppm) 2.5 98 62:170 2.2-Dichloropropane mg/kg (ppm) 2.5 98 62:170 1.2-Dichlorosethane (DDC) mg/kg (ppm) 2.5 98 62:181 1.1-Dichlorosethane (DDC) mg/kg (ppm) 2.5 98 62:181 1.1-Dichlorosethane mg/kg (ppm) 2.5 98 62:181 1.1-Dichlorosethane (DDC) mg/kg (ppm) 2.5 97 60:139 Benzene mg/kg (ppm) 2.5 98 72:187 1.2-Dichlorosethane mg/kg (ppm) 2.5 98 72:181 1.1-Dichlorosethane mg/kg (ppm) 2.5 98 72:181 1.1-Dichlorosethane mg/kg (ppm) 2.5 98 72:181 1.2-Dichlorosethane mg/kg (ppm) 2.5 98 72:182 1.2-Dichlorosethane mg/kg (ppm) 2.5 98 77.182 1.2-Dichlorosethane mg/kg (ppm) 2.5 98 77.182 1.2-Dichl	Dichlorodifluoromethane	mg/kg (ppm)	2.5	46	10-146
Vayle choridemg/kg (ppm)2.57522-180Remomenthanemg/kg (ppm)2.5778-114Chlorowatthanemg/kg (ppm)2.5769-160Actionemg/kg (ppm)2.51405-1411.1-Dichlorowthanemg/kg (ppm)2.510347-128Hexanemg/kg (ppm)2.57843-142Methyl Lowid (rhor MTB)mg/kg (ppm)2.58960-123trans. 1.2-Dichlorowthanemg/kg (ppm)2.59467-1291.1-Dicklorowthanemg/kg (ppm)2.59468-1152.2-Dichlorowthanemg/kg (ppm)2.59468-1152.4-Dichlorowthanemg/kg (ppm)2.59666-1202.4-Dichlorowthanemg/kg (ppm)2.59066-1202.4-Dichlorowthanemg/kg (ppm)2.59066-1202.4-Dichlorowthanemg/kg (ppm)2.59368-1311.1-Dichlorowthanemg/kg (ppm)2.59666-1311.1-Dichlorowthanemg/kg (ppm)2.59666-1311.1-Dichlorowthanemg/kg (ppm)2.59666-1311.1-Dichlorowthanemg/kg (ppm)2.59666-1311.1-Dichlorowthanemg/kg (ppm)2.59666-1311.1-Dichlorowthanemg/kg (ppm)2.59676-1321.1-Dichlorowthanemg/kg (ppm)2.59672-130Dibomomthanemg/kg (ppm)2.59775-136 <t< td=""><td>Chloromethane</td><td>mg/kg (ppm)</td><td>2.5</td><td>65</td><td>27-133</td></t<>	Chloromethane	mg/kg (ppm)	2.5	65	27-133
Bromonethane mg/sk (ppm) 2.5 6.7 9-114 Colorecthane mg/sk (ppm) 2.5 74 9-116 Tochow mg/sk (ppm) 2.5 74 9-116 Tochow mg/sk (ppm) 2.5 160 47-128 Hexane mg/sk (ppm) 2.5 81 42-132 Methyl chord mg/sk (ppm) 2.5 89 60-123 Tann -1.3-Dichorosthane mg/sk (ppm) 2.5 94 67-129 1.1-Dichorosthane mg/sk (ppm) 2.5 94 67-129 1.1-Dichorosthane mg/sk (ppm) 2.5 94 67-129 1.1-Dichorosthane mg/sk (ppm) 2.5 94 62-131 1.1-Dichorosthane mg/sk (ppm) 2.5 96 62-131 1.1-Dichorosthane mg/sk (ppm) 2.5 96 62-131 1.1-Dichorosthane mg/sk (ppm) 2.5 97 60-139 Benzene mg/sk (ppm) 2.5 97 61-137 1.2-	Vinyl chloride	mg/kg (ppm)	2.5	75	22-139
Catoretinano mg/kg (ppm) 2.5 79 91.19.5 Trichlorduromethane mg/kg (ppm) 2.5 10 10.19.11 1.1. Dichlorothene mg/kg (ppm) 2.5 10 10.19.11 Hexane mg/kg (ppm) 2.5 81 42.132 Methylene chloride mg/kg (ppm) 2.5 84 42.132 Methylene chloride mg/kg (ppm) 2.5 94 65.123 Linbichorothene mg/kg (ppm) 2.5 94 65.123 1.1. Dichlorothene mg/kg (ppm) 2.5 94 65.131 1.2. Dichlorothene mg/kg (ppm) 2.5 96 66.130 2.2. Dichlorothene mg/kg (ppm) 2.5 97 60.139 Benzane mg/kg (ppm) 2.5 97 60.139 Lin Dichloropropane mg/kg (ppm) 2.5 97 60.139 Benzane mg/kg (ppm) 2.5 97 61.131 1.1. Dichloropropropropane mg/kg (ppm) 2.5 90 66.128 </td <td>Bromomethane</td> <td>mg/kg (ppm)</td> <td>2.5</td> <td>67</td> <td>38-114</td>	Bromomethane	mg/kg (ppm)	2.5	67	38-114
Acctron mg/kg (ppm) 1.5 1.0 6.0 55.11 1.1 Orbinorechene mg/kg (ppm) 2.5 7.8 43.132 Methyl echloride mg/kg (ppm) 2.5 8.1 42.132 Methyl echloride mg/kg (ppm) 2.5 8.1 42.132 Methyl echloride mg/kg (ppm) 2.5 9.4 67.129 1.1 Dichloroethane mg/kg (ppm) 2.5 9.4 68.115 2.3 Dichloropropane mg/kg (ppm) 2.5 9.4 68.115 2.3 Dichloropropane mg/kg (ppm) 2.5 9.0 66.120 2.3 Dichloropropane mg/kg (ppm) 2.5 9.0 66.120 2.4 Dichloroethane mg/kg (ppm) 2.5 80 62.131 1.1 Dichloropropene mg/kg (ppm) 2.5 80 62.131 1.1 Dichloropropene mg/kg (ppm) 2.5 87 64.117 1.2 Dichloropropene mg/kg (ppm) 2.5 90 70.130 Achotos mg/kg (ppm) 2.5	Trichlorofluoromothano	mg/kg (ppm)	2.0	19 76	9-165
1.1-Dichloroschene mg/kg (ppm) 2.5 103 47-128 Metaylene chloride mg/kg (ppm) 2.5 81 42.132 Methyl-betyl ether (MTBE) mg/kg (ppm) 2.5 89 60.123 trans-1.2-Dichloroschene mg/kg (ppm) 2.5 94 67.129 1.1-Dichloroschene mg/kg (ppm) 2.5 94 68.115 2.2-Dichloroschene mg/kg (ppm) 2.5 92 72.127 Chloroschene mg/kg (ppm) 2.5 90 66.120 2.2-Dichloroschene mg/kg (ppm) 2.5 90 66.120 2.2-Intance (MK) mg/kg (ppm) 2.5 93 66.128 2.1-Dichloroschene mg/kg (ppm) 2.5 90 66.131 1.1.1-Dichloroschene mg/kg (ppm) 2.5 90 66.132 Carbon tetrachloride mg/kg (ppm) 2.5 90 66.132 Dichoroschene mg/kg (ppm) 2.5 90 66.132 1.1.Dichloroschene mg/kg (ppm) 2.5	Acetone	mg/kg (ppm)	12.5	140	52-141
Hexane mg/kg (ppm) 2.5 78 43.142 Methyl - buryl ether (MTBE) mg/kg (ppm) 2.5 81 42.132 Methyl - buryl ether (MTBE) mg/kg (ppm) 2.5 94 67.129 1,1 Dichloroethane mg/kg (ppm) 2.5 94 68.115 2.2 Dichloropropane mg/kg (ppm) 2.5 94 68.115 2.2 Dichloropropane mg/kg (ppm) 2.5 90 66.120 2.2 Dichloropropane mg/kg (ppm) 2.5 85 66.135 1,1 Dichloroethane mg/kg (ppm) 2.5 80 62.131 1,2 Dichloroethane mg/kg (ppm) 2.5 80 62.131 1,1 Frichloroethane mg/kg (ppm) 2.5 80 62.131 1,1 Frichloroethane mg/kg (ppm) 2.5 80 62.131 1,2 Dichloroethane mg/kg (ppm) 2.5 80 62.131 1,2 Dichloroethane mg/kg (ppm) 2.5 80 72.130 Benzene mg/kg (ppm) 2.5	1,1-Dichloroethene	mg/kg (ppm)	2.5	103	47-128
Methylene chloride mg/kg (ppm) 2.5 81 42.132 trans.1.2.Dichloroethene mg/kg (ppm) 2.5 94 67.129 1.1.Dichloroethane mg/kg (ppm) 2.5 94 68.115 2.2.Dichloroethane mg/kg (ppm) 2.5 92 72.127 Chloroform mg/kg (ppm) 2.5 90 66.120 2.3.Dichloroethane (BOC) mg/kg (ppm) 2.5 85 66.131 1.1.Dichloroethane (BOC) mg/kg (ppm) 2.5 87 60.139 1.2.Dichloroethane mg/kg (ppm) 2.5 87 66.131 1.1.Dichloroethane mg/kg (ppm) 2.5 87 66.131 1.1.Dichloroethane mg/kg (ppm) 2.5 87 67.131 Benzene mg/kg (ppm) 2.5 87 67.131 Dichoroethane mg/kg (ppm) 2.5 87 67.132 Dichoroethane mg/kg (ppm) 2.5 90 72.130 Dichoroethane mg/kg (ppm) 2.5	Hexane	mg/kg (ppm)	2.5	78	43-142
Methyl i-butyl ether (MTBE) mg/kg (ppm) 2.5 89 60-123 1,1-Dichloroethane mg/kg (ppm) 2.5 94 67-129 1,1-Dichloroethane mg/kg (ppm) 2.5 98 62-170 cis-1.2-Dichloroethane mg/kg (ppm) 2.5 92 72-127 Chloroform mg/kg (ppm) 2.5 90 66-120 2-Butanone (MEK) mg/kg (ppm) 2.5 85 66-135 1,1.1-Trichloroethane mg/kg (ppm) 2.5 96 62-131 1,1-Dichloropopane mg/kg (ppm) 2.5 97 60-139 Benzene mg/kg (ppm) 2.5 90 68-114 Trichloroeppane mg/kg (ppm) 2.5 90 70-129 Dirhomorethane mg/kg (ppm) 2.5 90 70-120 Trichloroeppane mg/kg (ppm) 2.5 90 70-120 L2-Dichloroeppane mg/kg (ppm) 2.5 90 70-120 Dirhomorethane mg/kg (ppm) 2.5 90	Methylene chloride	mg/kg (ppm)	2.5	81	42-132
trans.1.3.Dichloropethene mg/kg (ppm) 2.5 94 67.129 1.4.Dichloropethane mg/kg (ppm) 2.5 94 68.115 2.3.Dichloropethane mg/kg (ppm) 2.5 98 62.170 cis.1.2.Dichloropethane mg/kg (ppm) 2.5 80 66.120 2.3.Dichloropethane mg/kg (ppm) 2.5 85 66.133 1.1.Dichloropethane mg/kg (ppm) 2.5 85 66.138 1.1.Dichloropethane mg/kg (ppm) 2.5 87 64.149 Dichloropethane mg/kg (ppm) 2.5 87 64.117 1.2.Dichloropropene mg/kg (ppm) 2.5 90 66.149 Dichloropropene mg/kg (ppm) 2.5 90 72.130 Dichloropropene mg/kg (ppm) 2.5 90 72.130 Dichloropropene mg/kg (ppm) 2.5 90 72.130 Tars.1.3.Dichloropropene mg/kg (ppm) 2.5 95 72.132 1.3.Dichloropropene mg/kg (ppm) 2.5	Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	89	60-123
1,1.1.Dechloropethane mg/kg (ppm) 2.5 94 68-110 cis-1,2.Dichloropepane mg/kg (ppm) 2.5 92 72-127 Chloroform mg/kg (ppm) 2.5 90 66-120 2.Butchoropetane mg/kg (ppm) 2.5 90 66-120 2.Butchoroethane mg/kg (ppm) 2.5 85 56-135 1.1.1.Pichloropetane mg/kg (ppm) 2.5 96 62-131 1.1.1.Pichloropetane mg/kg (ppm) 2.5 96 62-131 1.1.1.Pichloropetane mg/kg (ppm) 2.5 97 66-139 Benezene mg/kg (ppm) 2.5 87 64-117 1.Dechloropetane mg/kg (ppm) 2.5 80 72.130 Britter mg/kg (ppm) 2.5 80 72.130 Britter mg/kg (ppm) 2.5 90 76.145 Scientane mg/kg (ppm) 2.5 90 76.145 Britter mg/kg (ppm) 2.5 93 75.146 Dechloropropane mg/kg (ppm) 2.5 93 75.143 Dischoropropane mg/kg (ppm) 2.5 93 75.113 Dischoropropane mg/kg (ppm) 2.5 93 7	trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	94	67-129
2.4.9.Interopropane mg/kg (ppm) 2.5 98 02-1/0 chi.p.2.Dichloroethene mg/kg (ppm) 2.5 90 66-120 2.Butanone (MEK) mg/kg (ppm) 2.5 110 72-127 1.2.Dichloroethane (DC) mg/kg (ppm) 2.5 96 66-133 1.1.Dichloropropene mg/kg (ppm) 2.5 97 60-139 Renzene mg/kg (ppm) 2.5 87 64-117 1.2.Dichloroptone mg/kg (ppm) 2.5 87 64-117 1.2.Dichloropropane mg/kg (ppm) 2.5 87 64-117 1.2.Dichloropropane mg/kg (ppm) 2.5 90 66-126 trans-1.3.Dichloropropene mg/kg (ppm) 2.5 90 76-130 Dibromotichane mg/kg (ppm) 2.5 90 76-145 cit-1.3.Dichloropropene mg/kg (ppm) 2.5 90 76-146 cit-1.3.Dichloropropene mg/kg (ppm) 2.5 90 72-130 Dibromochoroptane mg/kg (ppm) 2.5	1,1-Dichloroethane	mg/kg (ppm)	2.5	94	68-115
1.1.1.2.55. 1.2.1.55. 1.2.1.55. 1.4.1.55. 1.2.1.1.1.1.57. 1.5.1.5. 1.5.1.5. 1.5.1.5. 1.1.1.1.1.1.57. 1.5.1.5.5. 1.5.1.5.5. 1.5.1.5.5.5.5.5. 1.1.1.1.1.57. 1.5.1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	2,2-Dichloropropane	mg/kg (ppm)	2.0	98	02-170 72 127
2-Bratanone (MEK) mg/kg (ppm) 12.5 11.0 72-127 1.2-Dichlorowethane (BDC) mg/kg (ppm) 2.5 96 62-131 1.1-Dichlorowethane mg/kg (ppm) 2.5 97 60-139 Carbon tetrachloride mg/kg (ppm) 2.5 97 60-139 Benzzene mg/kg (ppm) 2.5 87 64-117 1.2-Dichlorowethane mg/kg (ppm) 2.5 87 64-117 1.2-Dichlorowethane mg/kg (ppm) 2.5 95 72-127 Bromodichloromethane mg/kg (ppm) 2.5 90 76-130 Dibromomethane mg/kg (ppm) 2.5 90 75-136 Toilsene mg/kg (ppm) 2.5 90 66-126 tras 1.3-Dichloropropane mg/kg (ppm) 2.5 90 75-136 2.1 Brochinowethane mg/kg (ppm) 2.5 90 72-127 Dibromomethane mg/kg (ppm) 2.5 90 72-132 1.1.3 Dichoropropane mg/kg (ppm) 2.5 90<	Chloroform	mg/kg (ppm)	2.5	90	66-120
1.2-Dichloroethane $mg/kg (ppn)$ 2.58556-1351.1-Dichloropropene $mg/kg (ppn)$ 2.59369-128Carbon tetrachhoride $mg/kg (ppn)$ 2.59760-139Benzene $mg/kg (ppn)$ 2.59068-114Trichloroethane $mg/kg (ppn)$ 2.58764-1171.2-Dichloropropane $mg/kg (ppn)$ 2.58072-120Bromodichloromethane $mg/kg (ppn)$ 2.58072-130Diromomethane $mg/kg (ppn)$ 2.59068-134Diromomethane $mg/kg (ppn)$ 2.59068-126Trans-1, 3-Dichloropropene $mg/kg (ppn)$ 2.59672-130Diromomethane $mg/kg (ppn)$ 2.59672-132Toluene $mg/kg (ppn)$ 2.59672-1322.1.3.2.Dichloropropene $mg/kg (ppn)$ 2.59672-1322.1.4.2.Tichloroethane $mg/kg (ppn)$ 2.59672-1302.1.3.Dichloropropane $mg/kg (ppn)$ 2.59572-1142.1.3.Dichloroethane $mg/kg (ppn)$ 2.59274-1322.1.3.Dichloroethane $mg/kg (ppn)$ 2.59274-1321.3.Dichloropropane $mg/kg (ppn)$ 2.59164-1231.3.Dichloroethane $mg/kg (ppn)$ 2.59274-1321.3.Dichloroethane $mg/kg (ppn)$ 2.59274-1321.3.Dichloroethane $mg/kg (ppn)$ 2.59574-1261.3.Dichloroethane <td>2-Butanone (MEK)</td> <td>mg/kg (ppm)</td> <td>12.5</td> <td>110</td> <td>72-127</td>	2-Butanone (MEK)	mg/kg (ppm)	12.5	110	72-127
1,1.1-Trichloropopane mg/kg (ppm) 2.5 96 62-131 1.1-Dichloropopane mg/kg (ppm) 2.5 97 60-139 Benzzne mg/kg (ppm) 2.5 97 60-139 Benzzne mg/kg (ppm) 2.5 87 64-117 1.2-Dichloropropane mg/kg (ppm) 2.5 80 72-127 Bromodichloromethane mg/kg (ppm) 2.5 95 72-130 Dibromomethane mg/kg (ppm) 2.5 90 66-126 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 93 75-113 1.1-2.Trichloropropene mg/kg (ppm) 2.5 96 72-132 1.1-2.Trichloropropene mg/kg (ppm) 2.5 96 72-132 1.1-2.Trichloropropene mg/kg (ppm) 2.5 96 72-132 1.1-2.Trichloropropane mg/kg (ppm) 2.5 97 75-113 2.Hexanone mg/kg (ppm) 2.5 97 74-125 1.2-Dibromochane mg/kg (ppm) 2.5 97 74-126 1.2-Dibromochane mg/kg (ppm) 2.5 <t< td=""><td>1,2-Dichloroethane (EDC)</td><td>mg/kg (ppm)</td><td>2.5</td><td>85</td><td>56-135</td></t<>	1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	85	56-135
1.1-Dichloropropene mg/kg (ppm) 2.5 93 60-128 Carbon tetrachloride mg/kg (ppm) 2.5 97 60-139 Benzene mg/kg (ppm) 2.5 87 64-117 1.2-Dichloropropane mg/kg (ppm) 2.5 87 64-117 1.2-Dichloropropane mg/kg (ppm) 2.5 95 72-130 Dibromomethane mg/kg (ppm) 2.5 97 45-145 Gis-J.3-Dichloropropene mg/kg (ppm) 2.5 93 75-136 Tolucare mg/kg (ppm) 2.5 93 75-136 Tolucare mg/kg (ppm) 2.5 93 75-136 Tolucare mg/kg (ppm) 2.5 93 75-136 Tablehoropropane mg/kg (ppm) 2.5 93 75-136 Tatrachloroethane mg/kg (ppm) 2.5 93 75-132 Tatrachloroethane mg/kg (ppm) 2.5 93 74-123 Tatrachloroethane mg/kg (ppm) 2.5 91 64-123 1.3-Dichloropropane mg/kg (ppm) 2.5 92 74-126 <td>1,1,1-Trichloroethane</td> <td>mg/kg (ppm)</td> <td>2.5</td> <td>96</td> <td>62-131</td>	1,1,1-Trichloroethane	mg/kg (ppm)	2.5	96	62-131
Carbon tetrachloride mg/kg (ppm) 2.5 97 60-139 Benzene mg/kg (ppm) 2.5 90 68-114 Trichloroethene mg/kg (ppm) 2.5 87 64-117 1.2.Dichloropropane mg/kg (ppm) 2.5 89 72-127 Bromodichloromethane mg/kg (ppm) 2.5 90 70-120 4.Methyl-2-pentanone mg/kg (ppm) 2.5 93 75-136 Tolucne mg/kg (ppm) 2.5 96 72-132 1.2.P.Trichloropropane mg/kg (ppm) 2.5 93 75-136 1.2.P.Trichloropropane mg/kg (ppm) 2.5 93 75-136 1.2.P.Trichloropethane mg/kg (ppm) 2.5 90 72-130 Tetrachloroethane mg/kg (ppm) 2.5 90 72-130 Tetrachloroethane mg/kg (ppm) 2.5 92 74-132 1.2.Dibromochenae mg/kg (ppm) 2.5 91 64-123 1.1.P.Tetrachloroethane mg/kg (ppm) 2.5 91 </td <td>1,1-Dichloropropene</td> <td>mg/kg (ppm)</td> <td>2.5</td> <td>93</td> <td>69-128</td>	1,1-Dichloropropene	mg/kg (ppm)	2.5	93	69-128
Benzene mg/kg (ppm) 2.5 90 68-114 1/chloropropane mg/kg (ppm) 2.5 87 64-117 1,2-Dichloropropane mg/kg (ppm) 2.5 89 72-127 Dibromodichloromethane mg/kg (ppm) 2.5 90 70-120 A/Methyl-2-pentanone mg/kg (ppm) 2.5 97 45-145 Gis-1,3-Dichloropropene mg/kg (ppm) 2.5 90 66-126 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 96 72-132 1,1,2-Trichloroethane mg/kg (ppm) 2.5 96 72-132 1,2-Trichloroethane mg/kg (ppm) 2.5 96 72-132 1,3-Dichloropropane mg/kg (ppm) 2.5 90 72-130 Tetrachloroethane mg/kg (ppm) 2.5 91 64-123 1,3-Dichloropropane mg/kg (ppm) 2.5 92 74-132 Chlorobenzene mg/kg (ppm) 2.5 91 64-123 1,1,2-Detrachloroethane mg/kg (ppm) 2.5	Carbon tetrachloride	mg/kg (ppm)	2.5	97	60-139
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzene	mg/kg (ppm)	2.5	90	68-114
1.2-Difficultmg/kg (ppm)2.5951.2-14Bromodichloromethanemg/kg (ppm)2.59572-130Dibromodichloromethanemg/kg (ppm)2.59745-145cis-1.3-Dichloropropenemg/kg (ppm)2.59375-136Toluenemg/kg (ppm)2.59066-126trans.1.3-Dichloropropenemg/kg (ppm)2.59375-1331.1.2-Tricholorobenzenemg/kg (ppm)2.59375-1332.Hexanonemg/kg (ppm)2.59375-1332.Hexanonemg/kg (ppm)2.59375-1331.3-Dichloropropanemg/kg (ppm)2.59072-130Tetrachloroethanemg/kg (ppm)2.59072-130Tetrachloroethane (EDB)mg/kg (ppm)2.59164-1231.1.1.2-Tetrachloroethanemg/kg (ppm)2.58776-111Ethylbenzenemg/kg (ppm)2.59164-1231.1.1.2-Tetrachloroethanemg/kg (ppm)2.59274-132Chlorobenzenemg/kg (ppm)2.59164-1231.1.1.2-Tetrachloroethanemg/kg (ppm)2.59164-1231.1.1.2-Tetrachloroethanemg/kg (ppm)2.59776-111Ethylbenzenemg/kg (ppm)2.59776-127Bromodicfinmg/kg (ppm)2.59776-127Bromodorfinmg/kg (ppm)2.59776-127Bromodorfinmg/kg (ppm)2.594 <td< td=""><td>1 2 Disklauppenene</td><td>mg/kg (ppm)</td><td>2.5</td><td>87</td><td>64-117</td></td<>	1 2 Disklauppenene	mg/kg (ppm)	2.5	87	64-117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromodichloromethane	mg/kg (ppm)	2.5	09 95	72-127
4-Methyl-2-pentanonemg/kg (ppm)12.5974.5 1.45cis-1,3-Dichloropropenemg/kg (ppm)2.59375 1.136Toluenemg/kg (ppm)2.59672 1.32trans-1,3-Dichloropropenemg/kg (ppm)2.59672 1.321,1.2-Trichloroethanemg/kg (ppm)2.59072 1.132-Hexanonemg/kg (ppm)2.59072 1.132-Hexanonemg/kg (ppm)2.59072 1.131.3-Dichloropropanemg/kg (ppm)2.59072 1.13Dibromochloromethanemg/kg (ppm)2.59974 1.251.2-Dibromochlane (EDB)mg/kg (ppm)2.59274 1.32Chlorobenzenemg/kg (ppm)2.59164 1.231,1.1.2-Tetrachloroethanemg/kg (ppm)2.59164 1.231,1.1.2-Tetrachloroethanemg/kg (ppm)2.59277 1.24Styrenemg/kg (ppm)2.59277 1.24Styrenemg/kg (ppm)2.59574 1.26Loporopylenzenemg/kg (ppm)2.59574 1.26Bromoformmg/kg (ppm)2.59174 1.24Bromoformmg/kg (ppm)2.59174 1.24Bromoformmg/kg (ppm)2.59476 1.131,1.2-2-Tetrachloroethanemg/kg (ppm)2.59174 1.24Bromoformmg/kg (ppm)2.59476 1.27Bromoformmg/kg (ppm)2.59476 1.27	Dibromomethane	mg/kg (ppm)	2.5	90	70-120
cis-1.3-Dichloropropene mg/kg (ppm) 2.5 93 75-136 Toluene mg/kg (ppm) 2.5 90 66-126 Trans-1.3-Dichloropropene mg/kg (ppm) 2.5 93 75-132 1,1.2-Trichloroethane mg/kg (ppm) 2.5 93 75-132 1,3-Dichloropropane mg/kg (ppm) 2.5 93 75-132 1,3-Dichloropropane mg/kg (ppm) 2.5 90 72-132 Dibromochloromethane mg/kg (ppm) 2.5 95 72-114 Dibromochloromethane (EDB) mg/kg (ppm) 2.5 92 74-132 Chlorobenzene mg/kg (ppm) 2.5 91 64-123 1,1.2-Tetrakloroethane mg/kg (ppm) 2.5 92 78-124 Styrene mg/kg (ppm) 2.5 92 78-124 Botropylbenzene mg/kg (ppm) 2.5 95 74+126 Styrene mg/kg (ppm) 2.5 95 74+126 Isopropylbenzene mg/kg (ppm) 2.5 94	4-Methyl-2-pentanone	mg/kg (ppm)	12.5	97	45-145
Toluene mg/kg (ppm) 2.5 90 66-126 trans-1.3-Dichoropropene mg/kg (ppm) 2.5 96 72-132 1,1.2-Trichloroethane mg/kg (ppm) 2.5 93 75-113 2-Hexanone mg/kg (ppm) 2.5 98 33-152 1.3-Dichloropropane mg/kg (ppm) 2.5 95 72-130 Tetrachloroethene mg/kg (ppm) 2.5 99 74-132 Dibromochhane (EDB) mg/kg (ppm) 2.5 92 74-132 Chlorobenzene mg/kg (ppm) 2.5 92 74-132 Chlorobenzene mg/kg (ppm) 2.5 92 74-132 Lyzhene mg/kg (ppm) 2.5 92 74-125 J.1,1.2-Tetrachloroethane mg/kg (ppm) 2.5 92 77-124 Styrene mg/kg (ppm) 2.5 92 77-124 Styrene mg/kg (ppm) 2.5 92 77-124 Styrene mg/kg (ppm) 2.5 97 76-127 Bromoform mg/kg (ppm) 2.5 94 74-124	cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	93	75-136
trans-1,3-Dichloropropene mg/kg (ppm) 2.5 96 72-132 1,1.2-Trichloroethane mg/kg (ppm) 12.5 93 75-113 2-Hexanone mg/kg (ppm) 2.5 90 72-130 Tetrachloropropane mg/kg (ppm) 2.5 95 72-114 Dibromochloromethane mg/kg (ppm) 2.5 92 74-125 1,2-Dibromochloromethane mg/kg (ppm) 2.5 92 74-132 Chlorobenzene mg/kg (ppm) 2.5 91 64-123 1,1,1.2-Tetrachloroethane mg/kg (ppm) 2.5 92 78-122 o-Xylene mg/kg (ppm) 2.5 92 78-122 o-Xylene mg/kg (ppm) 2.5 92 78-122 Styrene mg/kg (ppm) 2.5 92 74-124 Isopropylbenzene mg/kg (ppm) 2.5 92 74-124 Bromoform mg/kg (ppm) 2.5 91 74-124 Bromobenzene mg/kg (ppm) 2.5 94 74-124 Bromobenzene mg/kg (ppm) 2.5 94 74-124	Toluene	mg/kg (ppm)	2.5	90	66-126
1,1,2-Trichloroethane mg/kg (ppm) 2.5 93 75-113 2-Hexanone mg/kg (ppm) 2.5 98 33-152 1,3-Dichloropropane mg/kg (ppm) 2.5 90 72-130 Tetrachloroethene mg/kg (ppm) 2.5 99 74-125 1,2-Dibromoethane (EDB) mg/kg (ppm) 2.5 92 74-125 Chlorobenzene mg/kg (ppm) 2.5 91 64-123 1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 92 78-122 Chlorobenzene mg/kg (ppm) 2.5 92 78-122 o-Xylene mg/kg (ppm) 2.5 92 78-126 Styrene mg/kg (ppm) 2.5 95 74-126 Isopropylbenzene mg/kg (ppm) 2.5 95 74-126 Isopropylbenzene mg/kg (ppm) 2.5 95 74-126 Bromohorare mg/kg (ppm) 2.5 94 74-126 Isopropylbenzene mg/kg (ppm) 2.5 94 74-124 Bromohorare mg/kg (ppm) 2.5 96 76-126 <	trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	96	72-132
2-Hexanonemg/kg (ppm)12.598 $33-162$ 1,3-Dichloropropanemg/kg (ppm)2.59072-130Tetrachloroethenemg/kg (ppm)2.59974-125Dibromochloromethanemg/kg (ppm)2.59974-1251,2-Dibromochlane (EDB)mg/kg (ppm)2.59164-1231,1,1-2-Tetrachloroethanemg/kg (ppm)2.59164-1231,1,1,2-Tetrachloroethanemg/kg (ppm)2.59277-1241,1,1,2-Tetrachloroethanemg/kg (ppm)2.59277-124Styrenemg/kg (ppm)2.59574-126Isopropylbenzenemg/kg (ppm)2.59776-127Bromoformmg/kg (ppm)2.59776-127Bromoformmg/kg (ppm)2.59474-124Bromoformmg/kg (ppm)2.59474-1241,3,5-Trimethylbenzenemg/kg (ppm)2.59676-1261,1,2,2-Tetrachloroethanemg/kg (ppm)2.59574-1241,2,3-Trimethylbenzenemg/kg (ppm)2.59574-1241,3,5-Trimethylbenzenemg/kg (ppm)2.59676-1261,2,3-Tetrachloroethanemg/kg (ppm)2.59574-1214-Chlorotoluenemg/kg (ppm)2.59574-1211,2,4-Trimethylbenzenemg/kg (ppm)2.59574-1211,2,4-Trimethylbenzenemg/kg (ppm)2.59571-130p-Isopropyltoluenemg/kg (ppm)	1,1,2-Trichloroethane	mg/kg (ppm)	2.5	93	75-113
1,3-Diction/propaneIng/kg (ppm)2.59012-130Tetrachloroethanemg/kg (ppm)2.59572-114Dibromochloromethanemg/kg (ppm)2.59974-1251,2-Dibromochlaromethanemg/kg (ppm)2.59274-132Chlorobenzenemg/kg (ppm)2.59164-1231,1,1,2-Tetrachloroethanemg/kg (ppm)2.59277-124Typ-Kylenemg/kg (ppm)59277-124Styrenemg/kg (ppm)2.59574-126Isopropylbenzenemg/kg (ppm)2.59776-127Bromoformmg/kg (ppm)2.59474-124Bromoformmg/kg (ppm)2.59474-124Isopropylbenzenemg/kg (ppm)2.59474-124Bromoformmg/kg (ppm)2.59172-1221,3,5-Trimethylbenzenemg/kg (ppm)2.59476-127Bromobenzenemg/kg (ppm)2.59476-1431,2,2-Tetrachloroethanemg/kg (ppm)2.59476-1261,1,2,2-Tetrachloroethanemg/kg (ppm)2.59456-1431,2,3-Trichloropropanemg/kg (ppm)2.59574-1212-Chlorotoluenemg/kg (ppm)2.59571-1202,4-Trimethylbenzenemg/kg (ppm)2.59571-1301,2,4-Trimethylbenzenemg/kg (ppm)2.59571-1211,3-Dichlorobenzenemg/kg (ppm)2.59376-121 </td <td>2-Hexanone</td> <td>mg/kg (ppm)</td> <td>12.5</td> <td>98</td> <td>33-152</td>	2-Hexanone	mg/kg (ppm)	12.5	98	33-152
Inclusion of the problemInclusion of problemInclusion of problemInclusion of problem1,2-Dibromechane (EDB)mg/kg (ppm)2.59974-1251,2-Dibromechane (EDB)mg/kg (ppm)2.58776-111Ethylbenzenemg/kg (ppm)2.59164-1231,1,1,2-Tetrachloroethanemg/kg (ppm)2.59277-124mp-Xylenemg/kg (ppm)2.59277-124Styrenemg/kg (ppm)2.59574-126Isopropylbenzenemg/kg (ppm)2.59776-127Bromoformmg/kg (ppm)2.59172-122an-Propylbenzenemg/kg (ppm)2.59172-122Bromoformmg/kg (ppm)2.59172-1221,3.5-Trimethylbenzenemg/kg (ppm)2.59172-1221,3.2-Tetrachloroethanemg/kg (ppm)2.59476-1131,2.3-Trichloropropanemg/kg (ppm)2.59476-1262.4-Chlorotoluenemg/kg (ppm)2.59574-1242.5-Trimethylbenzenemg/kg (ppm)2.59476-1272.4-Trinderopropanemg/kg (ppm)2.59476-1262.4-Trinderopropanemg/kg (ppm)2.59476-1272.5-Trinderopropanemg/kg (ppm)2.59574-1242.6-Torotoluenemg/kg (ppm)2.59574-1242.7-Torhoropropanemg/kg (ppm)2.59571-1302.1,2.2-Tetrachloroethanemg/kg	Tetrachloroethene	mg/kg (ppm)	2.5	90 95	72-130
1.2-Dibromoethane (EDB)mg/kg (ppm)2.59274-132Chlorobenzenemg/kg (ppm)2.58776-111Ethylbenzenemg/kg (ppm)2.59164-1231,1,2-Tetrachloroethanemg/kg (ppm)2.510069-135m.p.Xylenemg/kg (ppm)2.59277-124Styrenemg/kg (ppm)2.59277-124Styrenemg/kg (ppm)2.59574-126Isopropylbenzenemg/kg (ppm)2.59574-126Bromoformmg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124Styrenethylbenzenemg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124J.3-Trinethylbenzenemg/kg (ppm)2.59474-124J.2-Tetrachloroethanemg/kg (ppm)2.59474-124J.2-Tetrachlorooptopanemg/kg (ppm)2.59474-124J.2-Tetrachlorooptopanemg/kg (ppm)2.59574-1214-Chlorotoluenemg/kg (ppm)2.59574-1211,2-Hrimethylbenzenemg/kg (ppm)2.59571-1301,2-Mithenzenem	Dibromochloromethane	mg/kg (ppm)	2.5	99	74-125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	92	74-132
Ethylbenzene mg/kg (ppm) 2.5 91 64.123 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 100 69.135 m.p-Xylene mg/kg (ppm) 2.5 92 78.122 o-Xylene mg/kg (ppm) 2.5 92 77.124 Styrene mg/kg (ppm) 2.5 97 76.127 Bromoform mg/kg (ppm) 2.5 94 74.126 Bromobenzene mg/kg (ppm) 2.5 94 74.124 Bromobenzene mg/kg (ppm) 2.5 94 74.124 Bromobenzene mg/kg (ppm) 2.5 91 72.122 1,3.5-Trimethylbenzene mg/kg (ppm) 2.5 94 76.126 1,2,3-Trichloroppane mg/kg (ppm) 2.5 94 76.126 1,2,3-Trichloroppane mg/kg (ppm) 2.5 95 74.121 2-Chlorotoluene mg/kg (ppm) 2.5 95 74.121 4-Chlorotoluene mg/kg (ppm) 2.5 95 76.122 tert-Butylbenzene mg/kg (ppm) 2.5 95 76.123	Chlorobenzene	mg/kg (ppm)	2.5	87	76-111
1,1,1,2-Tetrachloroethanemg/kg (ppm)2.5100 69.135 m,p-Xylenemg/kg (ppm)59278-122o-Xylenemg/kg (ppm)2.59277-124Styrenemg/kg (ppm)2.59574-126Isopropylbenzenemg/kg (ppm)2.59776-127Bromoformmg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59676-1271,3,5-Trimethylbenzenemg/kg (ppm)2.59676-1271,3,5-Trimethylbenzenemg/kg (ppm)2.59676-1261,2,2-Tetrachloroethanemg/kg (ppm)2.59676-1272,2-Totrachloroptopanemg/kg (ppm)2.59261-1372-Chlorotoluenemg/kg (ppm)2.59261-1372-Chlorotoluenemg/kg (ppm)2.59375-1224-Chlorotoluenemg/kg (ppm)2.59576-125sec-Butylbenzenemg/kg (ppm)2.59571-130p-Isopropyltoluenemg/kg (ppm)2.59375-1211,4-Dichlorobenzenemg/kg (ppm)2.59376-1211,2-Dichlorobenzenemg/kg (ppm)2.59376-1211,2-Dichlorobenzenemg/kg (ppm)2.59958-1381,2-Artrichlorobenzenemg/kg (ppm)2.59958-1381,2-Dichlorobenzenemg/kg (ppm)2.59958-138 <td>Ethylbenzene</td> <td>mg/kg (ppm)</td> <td>2.5</td> <td>91</td> <td>64-123</td>	Ethylbenzene	mg/kg (ppm)	2.5	91	64-123
m.p. Xylenemg/kg (ppm)59278-122C-Xylenemg/kg (ppm)2.59277-124Styrenemg/kg (ppm)2.59574-126Isoproylbenzenemg/kg (ppm)2.59776-127Bromoformmg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59474-124Bromobenzenemg/kg (ppm)2.59676-1261,1,2,2-Tetrachloroethanemg/kg (ppm)2.59456-1431,2,3-Trichloropropanemg/kg (ppm)2.59574-1214-Chlorotoluenemg/kg (ppm)2.59576-1252-Chlorotoluenemg/kg (ppm)2.59375-1224-Chlorotoluenemg/kg (ppm)2.59571-1301,2,4-Trimethylbenzenemg/kg (ppm)2.59571-130p-Isopropyltoluenemg/kg (ppm)2.59375-1211,4-Dichlorobenzenemg/kg (ppm)2.59375-1211,4-Dichlorobenzenemg/kg (ppm)2.59375-1211,2-Dibrinovbanzenemg/kg (ppm)2.59376-1211,2-Dichlorobenzenemg/kg (ppm)2.59958-1381,2,4-Trichlorobenzenemg/kg (ppm)2.59958-1381,2-Dirborobenzenemg/kg (ppm)2.59958-1381,2-Dirborobenzenemg/kg (ppm)2.59664-1351,2-Dir	1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	100	69-135
o-Xylenemg/kg (ppm)2.592 $7/-124$ Styrenemg/kg (ppm)2.595 74.126 Isopropylbenzenemg/kg (ppm)2.597 76.127 Bromoformmg/kg (ppm)2.594 74.124 Bromobenzenemg/kg (ppm)2.594 74.124 Bromobenzenemg/kg (ppm)2.594 72.122 1,3.5.Trimethylbenzenemg/kg (ppm)2.596 76.126 1,2.3.Trichloropanemg/kg (ppm)2.594 56.143 2.Chlorotoluenemg/kg (ppm)2.592 61.137 2-Chlorotoluenemg/kg (ppm)2.595 74.121 4-Chlorotoluenemg/kg (ppm)2.597 73.130 1,2.4.Trimethylbenzenemg/kg (ppm)2.595 76.122 p-Isopropyloluenemg/kg (ppm)2.595 76.125 sec-Butylbenzenemg/kg (ppm)2.593 75.121 1,3.Dichlorobenzenemg/kg (ppm)2.593 75.121 1,4.Dichlorobenzenemg/kg (ppm)2.593 76.121 1,2.Dirhorobenzenemg/kg (ppm)2.5 <td< td=""><td>m,p-Xylene</td><td>mg/kg (ppm)</td><td>5</td><td>92</td><td>78-122</td></td<>	m,p-Xylene	mg/kg (ppm)	5	92	78-122
StyreneIngrkg (ppn) 2.5 93 $74+120$ Isopropylbenzenemg/kg (ppn) 2.5 97 $76+127$ Bromoformmg/kg (ppn) 2.5 94 $74+124$ Bromobrazenemg/kg (ppn) 2.5 94 $74+124$ Bromobrazenemg/kg (ppn) 2.5 94 $74+124$ 1,3,5-Trimethylbenzenemg/kg (ppn) 2.5 96 $76+126$ 1,2,3-Trichloropopanemg/kg (ppn) 2.5 94 $56+143$ 1,2,3-Trichloropopanemg/kg (ppn) 2.5 92 $61+137$ 2-Chlorotoluenemg/kg (ppn) 2.5 95 $74+121$ 4-Chlorotoluenemg/kg (ppn) 2.5 95 $74+121$ 4-Chlorotoluenemg/kg (ppn) 2.5 97 $73+130$ 1,2,4-Trimethylbenzenemg/kg (ppn) 2.5 95 $76+125$ sec-Butylbenzenemg/kg (ppn) 2.5 95 $76+125$ p-Isopropyloluenemg/kg (ppn) 2.5 93 $75+121$ 1,3-Dichlorobenzenemg/kg (ppn) 2.5 93 $75+121$ 1,4-Dichlorobenzenemg/kg (ppn) 2.5 93 $76+121$ 1,2-Dichlorobenzenemg/kg (ppn) 2.5 <	o-Aylene Sturromo	mg/kg (ppm)	2.5	92	77-124
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Isopropylhenzene	mg/kg (ppm)	2.5	95 97	74-120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromoform	mg/kg (ppm)	2.5	106	56-132
Bromobenzene m_g/kg (ppm) 2.5 91 72.122 $1,3.5$ -Trimethylbenzene m_g/kg (ppm) 2.5 96 76.126 $1,1.2.5$ -Tetrachloroethane m_g/kg (ppm) 2.5 94 66.143 $1,2.3$ -Trichloroppane m_g/kg (ppm) 2.5 92 61.137 2 -Chlorotoluene m_g/kg (ppm) 2.5 93 75.122 4 -Chlorotoluene m_g/kg (ppm) 2.5 93 75.122 4 -Chlorotoluene m_g/kg (ppm) 2.5 97 73.130 $1,2,4$ -Trimethylbenzene m_g/kg (ppm) 2.5 95 76.125 $8ec$ -Butylbenzene m_g/kg (ppm) 2.5 96 70.132 $1,3$ -Dichlorobenzene m_g/kg (ppm) 2.5 96 70.132 $1,3$ -Dichlorobenzene m_g/kg (ppm) 2.5 93 75.121 $1,4$ -Dichlorobenzene m_g/kg (ppm) 2.5 93 76.121 $1,2$ -Dirhorobenzene m_g/kg (ppm) 2.5 93 76.121 $1,2$ -Dirhorobenzene m_g/kg (ppm) 2.5 93 76.121 $1,2$ -Dirhorobenzene m_g/kg (ppm) 2.5 99 58.138 $1,2,4$ -Trichlorobenzene m_g/kg (ppm) 2.5 96 64.135 $1,2,4$ -Trichlorobenzene m_g/kg (ppm) 2.5 97 50.153 $1,2,4$ -Trichlorobenzene m_g/kg (ppm) 2.5 96 64.135 $1,2,4$ -Trichlorobenzene m_g/kg (ppm) 2.5 96 64.135 $1,2,3$ -Trichloro	n-Propylbenzene	mg/kg (ppm)	2.5	94	74-124
1,3.5-Trimethylbenzenemg/kg (ppm)2.59676-1261,1,2,2-Tetrachloroethanemg/kg (ppm)2.59456-1431,2,3-Trichloroppanemg/kg (ppm)2.59261-1372-Chlorotoluenemg/kg (ppm)2.59574-1214-Chlorotoluenemg/kg (ppm)2.59375-1224-Chlorotoluenemg/kg (ppm)2.59773-1301,2,4-Trimethylbenzenemg/kg (ppm)2.59576-125sec-Butylbenzenemg/kg (ppm)2.59670-1321,3-Dichlorobenzenemg/kg (ppm)2.59375-1211,4-Dichlorobenzenemg/kg (ppm)2.59375-1211,2-Dirborobenzenemg/kg (ppm)2.59376-1211,2-Dirborobenzenemg/kg (ppm)2.59376-1211,2-Dirborobenzenemg/kg (ppm)2.59376-1211,2-Dirborobenzenemg/kg (ppm)2.59958-1381,2,4-Trichlorobenzenemg/kg (ppm)2.59958-1381,2-Dirborobenzenemg/kg (ppm)2.59958-1381,2,4-Trichlorobenzenemg/kg (ppm)2.59750-1531,2,4-Trichlorobenzenemg/kg (ppm)2.59750-1531,2,4-Trichlorobenzenemg/kg (ppm)2.59750-1531,2,4-Trichlorobenzenemg/kg (ppm)2.59750-1531,2,3-Trichlorobenzenemg/kg (ppm)2.59263-1401,2,3-Trichlorobenzene<	Bromobenzene	mg/kg (ppm)	2.5	91	72-122
1,1,2,2-Tetrachloroethanemg/kg (ppm)2.59456-1431,2,3-Trichloropropanemg/kg (ppm)2.59261-1372.Chlorotoluenemg/kg (ppm)2.59574-1214-Chlorotoluenemg/kg (ppm)2.59375-122tert-Butylbenzenemg/kg (ppm)2.59576-125sec-Butylbenzenemg/kg (ppm)2.59576-125p-Isopropyltoluenemg/kg (ppm)2.59670-1321,3-Dichlorobenzenemg/kg (ppm)2.59375-1211,4-Dichlorobenzenemg/kg (ppm)2.59375-1211,4-Dichlorobenzenemg/kg (ppm)2.59376-1211,2-Dirborno-3-chloropropanemg/kg (ppm)2.59376-1211,2-Dirborno-3-chloropropanemg/kg (ppm)2.59958-1381,2,4-Trichlorobenzenemg/kg (ppm)2.59664-1351,2,3-Trichlorobenzenemg/kg (ppm)2.59750-1531,2,3-Trichlorobenzenemg/kg (ppm)2.59263-1401,2,3-Trichlorobenzenemg/kg (ppm)2.59163-138	1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	96	76-126
1,2,3-Trichloropropanemg/kg (ppm)2.592 $61\cdot13'$ 2-Chlorotoluenemg/kg (ppm)2.59574·1214-Chlorotoluenemg/kg (ppm)2.59375·122tert-Butylbenzenemg/kg (ppm)2.59773·1301,2,4-Trimethylbenzenemg/kg (ppm)2.59576·125sec-Butylbenzenemg/kg (ppm)2.59571·130p-Isopropyltoluenemg/kg (ppm)2.59375·1211,3-Dichlorobenzenemg/kg (ppm)2.59375·1211,4-Dichlorobenzenemg/kg (ppm)2.59376·1211,2-Dichlorobenzenemg/kg (ppm)2.59958·1381,2-Dichlorobenzenemg/kg (ppm)2.59664·1351,2-Liromo-3-chloropropanemg/kg (ppm)2.59664·1351,2-ArTrichlorobenzenemg/kg (ppm)2.59750·153Naphthalenemg/kg (ppm)2.59263·1401,2,3-Trichlorobenzenemg/kg (ppm)2.59163·138	1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	94	56-143
2-Chlorotoluene mg/kg (ppm) 2.5 93 74-121 4-Chlorotoluene mg/kg (ppm) 2.5 93 75-122 tert-Butylbenzene mg/kg (ppm) 2.5 97 73-130 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 95 76-125 sec-Butylbenzene mg/kg (ppm) 2.5 95 71-130 p-Isopropyltoluene mg/kg (ppm) 2.5 96 70-132 1,3-Dichlorobenzene mg/kg (ppm) 2.5 93 75-121 1,4-Dichlorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Dichlorobenzene mg/kg (ppm) 2.5 93 75-121 1,2-Dichlorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Dichlorobenzene mg/kg (ppm) 2.5<	1,2,3-Trichloropropane	mg/kg (ppm)	2.5	92	61-137
Archiotocheme mg/kg (ppn) 2.5 95 16/122 tert-Butylbenzene mg/kg (ppn) 2.5 97 73/130 1,2,4-Trimethylbenzene mg/kg (ppn) 2.5 95 76/125 sec-Butylbenzene mg/kg (ppn) 2.5 95 76/125 p-Isopropyltoluene mg/kg (ppn) 2.5 96 70/132 1,3-Dichlorobenzene mg/kg (ppn) 2.5 93 75/121 1,4-Dichlorobenzene mg/kg (ppn) 2.5 93 76/121 1,2-Dichlorobenzene mg/kg (ppn) 2.5 93 76/121 1,2-Dichlorobenzene mg/kg (ppn) 2.5 93 76/121 1,2-Dichlorobenzene mg/kg (ppn) 2.5 99 58/138 1,2-Liromo-3-chloropropane mg/kg (ppn) 2.5 96 64/135 Hexachlorobutadiene mg/kg (ppn) 2.5 97 50/153 Naphthalene mg/kg (ppn) 2.5 92 63/140 1,2,3-Trichlorobenzene mg/kg (ppn) 2.5 91 63/138	2-Chiorotoluene	mg/kg (ppm)	2.0	90	74-121
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tert-Butylbenzene	mg/kg (ppm)	2.5	97	73-130
sec-Butylbenzene mg/kg (ppm) 2.5 95 71-130 p-Isopropyltoluene mg/kg (ppm) 2.5 96 70-132 1,3-Dichlorobenzene mg/kg (ppm) 2.5 93 75-121 1,4-Dichlorobenzene mg/kg (ppm) 2.5 89 74-117 1,2-Dichlorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Dichlorobenzene mg/kg (ppm) 2.5 99 58-138 1,2-Dichlorobenzene mg/kg (ppm) 2.5 96 64-135 1,2-Dirborobenzene mg/kg (ppm) 2.5 97 50-153 Naghthalene mg/kg (ppm) 2.5 92 63-140 1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 91 63-138	1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	95	76-125
p-Isopropyltoluene mg/kg (ppm) 2.5 96 70-132 1,3-Dichlorobenzene mg/kg (ppm) 2.5 93 75-121 1,4-Dichlorobenzene mg/kg (ppm) 2.5 89 74-117 1,2-Dichlorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Diblorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 99 58-138 1,2.4-Trichlorobenzene mg/kg (ppm) 2.5 96 64-135 Hexachlorobutadiene mg/kg (ppm) 2.5 97 50-153 Naphthalene mg/kg (ppm) 2.5 92 63-140 1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 91 63-138	sec-Butylbenzene	mg/kg (ppm)	2.5	95	71-130
1,3-Dichlorobenzene mg/kg (ppm) 2.5 93 75-121 1,4-Dichlorobenzene mg/kg (ppm) 2.5 89 74-117 1,2-Dichlorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Dichlorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Diblorobenzene mg/kg (ppm) 2.5 99 58-138 1,2-4-Trichlorobenzene mg/kg (ppm) 2.5 96 64-135 Hexachlorobutadiene mg/kg (ppm) 2.5 97 50-153 Naphthalene mg/kg (ppm) 2.5 92 63-140 1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 91 63-138	p-Isopropyltoluene	mg/kg (ppm)	2.5	96	70-132
1.4-Dichlorobenzene mg/kg (ppm) 2.5 89 74-117 1,2-Dichlorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Diromo-3-chloropropane mg/kg (ppm) 2.5 99 58-138 1,2.4-Trichlorobenzene mg/kg (ppm) 2.5 96 64-135 Hexachlorobutadiene mg/kg (ppm) 2.5 97 50-153 Naphthalene mg/kg (ppm) 2.5 92 63-140 1,2.3-Trichlorobenzene mg/kg (ppm) 2.5 91 63-138	1,3-Dichlorobenzene	mg/kg (ppm)	2.5	93	75-121
1,2-Dichlorobenzene mg/kg (ppm) 2.5 93 76-121 1,2-Dichnorobenzene mg/kg (ppm) 2.5 99 58-138 1,2.4-Trichlorobenzene mg/kg (ppm) 2.5 96 64-135 Hexachlorobutadiene mg/kg (ppm) 2.5 97 50-153 Naphthalene mg/kg (ppm) 2.5 92 63-140 1,2.3-Trichlorobenzene mg/kg (ppm) 2.5 91 63-138	1,4-Dichlorobenzene	mg/kg (ppm)	2.5	89	74-117
1,2-bit onto-scient opropane ing kg (ppm) 2.5 99 58-138 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 96 64-135 Hexachlorobutadiene mg/kg (ppm) 2.5 97 50-153 Naphthalene mg/kg (ppm) 2.5 92 63-140 1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 91 63-138	1,2-Dichiorobenzene	mg/kg (ppm)	2.5	93	76-121
Hzachlorobutatiene mg/kg (ppm) 2.5 97 50-153 Naphthalene mg/kg (ppm) 2.5 97 50-153 1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 92 63-140	1.2.4-Trichlorohonzono	mg/kg (ppm)	4.0 2.5	99 96	00-138 64-135
Naphthalene mg/kg (ppm) 2.5 92 63-140 1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 91 63-138	Hexachlorobutadiene	mg/kg (nnm)	2.5	97	50-153
1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 91 63-138	Naphthalene	mg/kg (ppm)	2.5	92	63-140
	1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	91	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

916075			SAMPLE	CHAIN	OF O	CUS	STO	DY	-	ME	0,e	50	15-	-19	>		ADI NA	The
Report To Addan? Yo	nla stale		SAMPL	ERS (signa	ture)									ΤΓ	ן ר	Page # FURN	AROUND T	'IME
Report To Prove 10	1 HT		PROJEC	CT NAME	<i>Yni</i>	MUT	<u>а</u> (~				PO)#			Star RUS	ndard SH	Turnaround	l
Company 17 pcc 1 Cor	54 550		ALL	([.						180	357	,		R	Rush	charge	es authorize	d by:
Address <u>10 4 Address</u>	1 11 AVION		REMAR	ks						IN	VOI	CEJ	0	┥┝═		SAM	PLE DISPO	SAL
City, State, ZIP Searr	W4, 90109		-							1-	1p				l Disp	nive S	amples	
Phone <u>l (106) 913-544</u> En	nail <u>Aymholshill</u>	ospectorsalt	sign			:					VOI				Othe	er		
	`		[1							rs ki ≥		LOIL				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 82701	PAHs 8270D SIN	Hold Pendras				Ńo	tes
67-04-1	GIA.E	615114	1234	اده	5								X					
67-04-2	02 T		1230				χ	X		Х								
43-01-2	03		1303										X					
A13-01-55	G4	,	133															
AB-01-4	05		1316															F
A13-01-11	<i>96</i>	od∕	1328	*	¥								¥					
	<u>-</u>			-														
																re na	VIOJOT 80	Idmed
-													r	10-			•••••	15
			1								-							
L		CNATIDE	L		PRIN		IAM	н. Г.				(COM	 PAN	ý Y		DATE	TIME
Friedman & Bruya, Inc.	SI Relinquished by:			5	$\frac{1}{\sqrt{2}}$	<u></u>		<u></u>			A	5.7ec .	f c	onsu	1/02		515114	1578
3012 16 th Avenue West	Received by:	Arin year	Ź	11200	Rad	for	Ì				Ŧ	BI			\rightarrow		6/5/19	1518
Seattle, WA 98119-2029	Relinquished by	par	<u> </u>	- usa raujou							V V							
Ph. (206) 285-8282	Received by:	¥	<u>, , , , , , , , , , , , , , , , , , , </u>									ç	Sam	ples	rec	eive	l at <u>3</u>	٥C

.

.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 21, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on June 11, 2019 from the Aloha Cafe 180357, F&BI 906200 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0621R.DOC
ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 11, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906200 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
906200 -01	MW-11-1
906200 -02	MW-11-6
906200 -03	MW-11-13
906200 -04	MW-11-18
906200 -05	MW-11-25
906200 -06	B-05-3
906200 -07	B-05-6
906200 -08	B-05-10.5
906200 -09	B-05-16
906200 -10	B-05-25
906200 -11	MW-12-3
906200 -12	MW-12-8
906200 -13	MW-12-11.5
906200 -14	MW-12-15
906200 -15	MW-12-25
906200 -16	B-06-6
906200 -17	B-06-8.5
906200 -18	B-06-10
906200 -19	B-06-13
906200 -20	B-06-25
906200 -21	MW-13-6
906200 -22	MW-13-11
906200 -23	MW-13-12.5
906200 -24	MW-13-18
906200 -25	MW-13-25
906200 -26	MW-14-10.5
906200 -27	MW-14-12.5
906200 -28	MW-14-17.5
906200 -29	MW-14-17.5-D
906200 -30	MW-14-22.5
906200 -31	MW-14-25
906200 -32	MW-14-27.5
906200 -33	MW-14-30

ENVIRONMENTAL CHEMISTS

An 8260C internal standard failed the acceptance criteria for the direct sparge analysis of samples MW-11-1 and MW-11-6. The samples were diluted by methanolic extraction and reanalyzed with acceptable results. Both data sets were reported.

CASE NARRATIVE (continued)

Several compounds in the 8260C direct sparge laboratory control sample and laboratory control sample duplicate failed the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200 Date Extracted: 06/13/19 Date Analyzed: 06/13/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-11-1 906200-01 1/10	< 0.2	0.99	2.0	11	280	102
MW-11-6 906200-02 1/20	0.63	4.1	38	140	2,600	115
MW-11-13 906200-03	< 0.02	0.031	0.025	0.12	<5	99
B-05-16 906200-09	< 0.02	< 0.02	< 0.02	< 0.06	<5	98
MW-12-15 906200-14	< 0.02	< 0.02	< 0.02	< 0.06	<5	100
B-06-13 906200-19	< 0.02	< 0.02	< 0.02	< 0.06	<5	100
MW-13-12.5 906200-23	< 0.02	< 0.02	< 0.02	< 0.06	<5	99
MW-14-12.5 906200-27	< 0.02	< 0.02	< 0.02	< 0.06	<5	99
Method Blank ^{09-1298 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<5	99

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200 Date Extracted: 06/13/19 Date Analyzed: 06/13/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW-11-6 906200-02	240 x	<250	93
B-05-16 906200-09	<50	<250	92
MW-12-15 906200-14	<50	<250	91
B-06-13 906200-19	<50	<250	91
MW-13-12.5 906200-23	<50	<250	92
MW-14-12.5 906200-27	<50	<250	91
Method Blank 09-1385 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-11-6	Client:	Aspect Consulting, LLC
Date Received:	06/11/19	Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/13/19	Lab ID:	906200-02
Date Analyzed:	06/13/19	Data File:	906200-02.056
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
	Concentration		
Analyte:	mg/kg (ppm)		

Lead

8.76

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	NA	Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/13/19	Lab ID:	I9-365 mb
Date Analyzed:	06/13/19	Data File:	I9-365 mb.070
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	MW-11-1		Client:	Aspect Consulting, LLC
Date Received:	06/11/19		Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/13/19		Lab ID:	906200-01
Date Analyzed:	06/14/19		Data File:	061426.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppn	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	97	50	150
Toluene-d8		255 ip	50	150
4-Bromofluorobenz	ene	$148\mathrm{J}$	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.005		
1,2-Dibromoethane	(EDB)	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
Naphthalene		0.31 ve J jl		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Direct Sparge

Client Sample ID:	MW-11-6		Client:	Aspect Consulting, LLC
Date Received:	06/11/19		Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/14/19		Lab ID:	906200-02
Date Analyzed:	06/14/19		Data File:	061427.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppr	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	118	50	150
Toluene-d8		741 ip	50	150
4-Bromofluorobenz	ene	$428 \mathrm{~ip}$	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	<0.005 J		
1,2-Dibromoethane	(EDB)	<0.005 J		
1,2-Dichloroethane	(EDC)	<0.005 J		
Naphthalene		0.36 ve J jl		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Direct Sparge

< 0.005

Naphthalene

Client Sample ID:	Method Bl	ank	Client:	Aspect Consulting, LLC
Date Received:	Not Applic	able	Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/14/19		Lab ID:	09-1332 mb
Date Analyzed:	06/14/19		Data File:	061408.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppr	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		99	50	150
4-Bromofluorobenz	ene	96	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.005		
1,2-Dibromoethane	(EDB)	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-1		Client:	Aspect Consulting, LLC
Date Received:	06/11/19		Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/13/19		Lab ID:	906200-01
Date Analyzed:	06/18/19		Data File:	061813.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppr	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	62	145
Toluene-d8		98	55	145
4-Bromofluorobenz	ene	95	65	139
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.05		
1,2-Dibromoethane	(EDB)	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
Naphthalene		1.5		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-6		Client:	Aspect Consulting, LLC
Date Received:	06/11/19		Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/13/19		Lab ID:	906200-02
Date Analyzed:	06/18/19		Data File:	061814.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppn	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	62	145
Toluene-d8		101	55	145
4-Bromofluorobenz	ene	107	65	139
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.05		
1,2-Dibromoethane	(EDB)	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
Naphthalene		7.4		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-12-15 06/11/19 06/12/19 06/12/19 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906200 906200-14 061219.D GCMS9 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	93	107
Toluene-d8		100	87	110
4-Bromofluorobenze	ene	99	85	112
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		< 0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		< 0.5		
trans-1,2-Dichloroet	thene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroethe	ne	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroethar	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-13-12.5 06/11/19 06/12/19 06/12/19 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Cons Aloha Cafe 906200-23 061220.D GCMS9 MS	sulting, 180357,	LLC F&BI 906200
			Lower	1	Upper	
Surrogates:		% Recovery:	Limit:		Limit:	
1,2-Dichloroethane-	d4	101	93		107	
Toluene-d8		100	87		110	
4-Bromofluorobenze	ene	99	85		112	
Compounds:	(Concentration mg/kg (ppm)				
Vinyl chloride		< 0.05				
Chloroethane		< 0.5				
1,1-Dichloroethene		< 0.05				
Methylene chloride		< 0.5				
trans-1,2-Dichloroet	thene	< 0.05				
1,1-Dichloroethane		< 0.05				
cis-1,2-Dichloroethe	ne	< 0.05				
1,2-Dichloroethane	(EDC)	< 0.05				
1,1,1-Trichloroethar	ne	< 0.05				
Trichloroethene		< 0.02				
Tetrachloroethene		< 0.025				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-14-12.5 06/11/19 06/12/19 06/12/19 Soil		Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906200 906200-27 061221.D GCMS9
Units:	mg/kg (ppm)) Dry Weight	Operator:	MS
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-	d4	101	93	107
Toluene-d8		100	87	110
4-Bromofluorobenze	ene	98	85	112
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		< 0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		< 0.5		
trans-1,2-Dichloroet	thene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroethe	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroethan	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Naphthalene

Client Sample ID:	Method Bla	ank	Client:	Aspect Consulting, LLC
Date Received:	Not Applic	able	Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/18/19		Lab ID:	09-1431 mb
Date Analyzed:	06/18/19		Data File:	061808.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppr	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	62	145
Toluene-d8		99	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ether	r (MTBE)	< 0.05		
1,2-Dibromoethane	(EDB)	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		

< 0.05

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blaz	nk	Client:	Aspect Consulting, LLC
Date Received:	Not Applica	ble	Project:	Aloha Cafe 180357, F&BI 906200
Date Extracted:	06/12/19		Lab ID:	09-1327 mb
Date Analyzed:	06/12/19		Data File:	061211.D
Matrix:	Soil		Instrument:	GCMS9
Units:	mg/kg (ppm) Dry Weight	Operator:	MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	93	107
Toluene-d8		98	87	110
4-Bromofluorobenze	ene	99	85	112
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		< 0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		< 0.5		
trans-1,2-Dichloroe	thene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroethe	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroethan	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906200-09 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	89	69-120
Toluene	mg/kg (ppm)	0.5	91	70-117
Ethylbenzene	mg/kg (ppm)	0.5	94	65 - 123
Xylenes	mg/kg (ppm)	1.5	95	66-120
Gasoline	mg/kg (ppm)	20	85	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	906228-02 (Matri	x Spike)	G 1	D (
	Reporting	Spike	Sample Result	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	86	100	63-146	15
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	88	79-1	144		

18

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906200-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	8.10	93	89	75 - 125	4

U	U U	1	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D DIRECT SPARGE

Laboratory Code: 906232-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.005	< 0.005	nm
Naphthalene	mg/kg (ppm)	< 0.005	< 0.005	nm

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	0.05	85	80	49-148	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	86	84	69-137	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	0.05	99	98	70-130	1
Naphthalene	mg/kg (ppm)	0.05	136 vo	99	70-130	31

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906094-01 (Matrix Spike)

	au apino)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	41	38	10-91	8
Chloroethane	mg/kg (ppm)	2.5	< 0.5	53	50	10-101	6
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	57	56	22 - 107	2
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	66	61	14 - 128	8
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	66	65	13 - 112	2
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	72	69	23 - 115	4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	73	71	25 - 120	3
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	72	72	22 - 124	0
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	70	65	27 - 112	7
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	68	67	30 - 112	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	68	68	25 - 114	0

<i>v v</i>	1			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	88	42-107
Chloroethane	mg/kg (ppm)	2.5	95	47 - 115
1,1-Dichloroethene	mg/kg (ppm)	2.5	99	65 - 110
Methylene chloride	mg/kg (ppm)	2.5	97	50 - 127
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	101	74-109
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	101	73-110
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	104	72 - 116
Trichloroethene	mg/kg (ppm)	2.5	94	72 - 107
Tetrachloroethene	mg/kg (ppm)	2.5	97	73-111

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906312-01 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	\mathbf{MS}	Criteria
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	95	21 - 145
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	88	12 - 160
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	87	28 - 142
Naphthalene	mg/kg (ppm)	2.5	< 0.05	91	14 - 157

	Roporting	Spileo	Percent	Percent	Accontance	RDD
A 1 /	iteporting	Spike	LOC	LCCD	Acceptance	
Analyte	Units	Level	LUS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	104	106	60-123	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	99	56 - 135	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	95	98	74 - 132	3
Naphthalene	mg/kg (ppm)	2.5	104	106	63-140	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

906200			SAMPLE	CHAI	N OF	CU	STO	DY	•	МŁ	E 91	5_1	1_	19		8I	4 /Vs4	Do		
Report To Andrew Yor	uhofski		SAMPL	ERS (sig	nature)	\mathcal{D}	Man	L							F T	age # 'URN	AROUND T	<u>34</u> IME	٦	
Company Aspect Cons	Company Aspect Consulting					<i>f</i>		•			PC) #			Standard Turnaround					
Address 710 2nd Auz	, ste 550		Aloh	na Cofe						180357					Rush charges authorized by:					
City, State, ZIP Seattle	cs 1NA. 9811	24	REMAR	KS						INVOICE TO					SAMPLE DISPOSAL Dispose after 30 days					
Phone (206) 413-5411Er	nail a Jorhofshi	Daguetions	Ita con							1-	Ð				Arch Othe	ive Sa r	amples			
ANALYSES REQUE									ESTE	D		· · · · · · · · · · · · · · · · · · ·]						
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	e # of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Hold Dend Ta	Photo polo	MTDE, EDU, EU Nadh.		Not	zes		
$m\omega - 11 - 1$	UIA-E	6/10/14	0826	500	5			Χ	Х											
mw-11-6	02-		0834		1		8	Х	Х					•	X		• perAY			
mw-11-13	0.3		0848					Х	X								6/11/14	9 ME		
mw-11-18	04	*	0904										Х			(X)-pe AY		۰Y		
Mw -11-25	05		0923										İ				6/12/	lame		
1305- B-05-3	66		1113																	
13-05-6	07		1119																	
B-05-105	08		1128										4					_		
13-12-05-16	09		1144				\otimes	Х	Х					Sam	ples	rece	ived at	<u>2</u> •C		
13-05-25	10	*	1212	J	4								χ							
SIGNATURE PRINT N.												(COM	PAN	IPANY DATE TI					
3012 16 th Avenue West	Received hv	Prondland		Da	u'd ()na	ih_			, ,	14	pee	t l	, 	olto	rg	6/11/19	1.56		
Seattle WA 98119-2020	110 2020 Relinquished by:				HONG NGWIEN FBD						, <u> </u>									
Ph. (206) 285-8282	Received by:	\bigcirc									-		·							

•

906200	<u>_</u>		SAMPLE	E CHAIN	OF (CUS	STO	DY	M	E	06-	- 11	-/0	2	•	BEL	1/2	20		
Report To Traver York Company Aspect Corso Address 7/0 2nd Ave	Aspect Consultons 710 2nd Ave, Ste. 550 Ak					PROJECT NAME PO# Alcha Cole 180357									TURNAROUND TIME Standard Turnaround RUSH Rush charges authorized by:					
City, State, ZIP_ Seattle Phone (206) 4/3 - 5 - 4/1 En	- REMAR	HEMARKS INVOICE TO								SAMPLE DISPOSAL Dispose after 30 days Archive Samples										
		T	1		г				A	NAI		S RI	EQUI	ESTE	D					
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Hold Pendry	CUCLS 5, 1200			No	tes		
mu-12-3	11A-1E	6/10/19	1331	Soil	5								X							
mw - 12 - 8	12 T	}	1345	1	1															
mw -12-115	13		1350										Ŧ							
Mw - 12-15	14		1356				\otimes	Х	Х					X						
mw-12-25	12	\$	1432	*	¥								X							
B-06-6	16	6/11/19	0835	501	5								1							
13-06 - 85	17		0842	1	1												· · · · · · · · · · · · · · · · · · ·			
13-06-10	18		0847										♦					~		
B-06-13	19		0852				\otimes	Х	X				San	ples	rec	eive	dat _	<u>_•</u> C		
13-06-25	20	\$	0920	*	¥								χ							
	SI	GNATURE			PRIN	NT N	AM:	E				(COM	PAN	Y		DATE	TIME		
Friedman & Bruya, Inc.	Relinquished by:	malling		Dar	nd ())nr.	h			·	1-	SPE	c + l	unsa	Hon		6/11/14	1656/		
3012 16 th Avenue West	Received by:	nela		- HOA	72	\mathcal{N}	ξı	M,	EL)		FP	D				V	V		
Seattle, WA 98119-2029	Relinquished by:	0				<u>, </u>		_ <u></u>									<u>. </u>			
Ph. (206) 285-8282	Received by:	~									†									

906200	,		SAMPLE	CHAI	N OF	CUS	STO	DY	1	IE (06-	-71	-1	9	ß	ΣY	1)ن ال الح	, 184
Report To Andrew Yor	hold:		SAMPL	ERS (sig	nature)	Zocus	had	۱ ~		•					н н Т	Pago#	AROUND	of 7 TIME	
Company Aspect Con	selfm		PROJEC	CT NAM	E						PO	#		- ж	Stan RUS	dard H	Turnarou	nd	
Address 710 2nd Ave	str. 550		Aloh	n Col	e					18	63	57			ush c	harge	es authoriz	zed by:	_
City, State, ZIP Seattler	WA, 98104		REMAR	KS						IN	VOI	CEI	0		Disp	SAM ose at	PLE DISP fter 30 day	OSAL 'S	
Phone 20, 43-541 En	nailoyortotkia	spectionse	Hon con								A;	>			Arch Othe	ive S r	amples	-	
			a							NAL	YSE	SRE	EQUI	ESTE	D				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	e #of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Holl Dudy	LIVES by BUD	•		N	lotes	
mw-13-6	21 A.E	G/1/14	6953	Soil	5								Х					i	
mw -13-11	22 T]	1005	1									ł						
mw -13 - 125	23		1011				\otimes	X	Х					x					
mw - 13 - 18	24		1025										χ						
mw - 13 - 25	25		1041																
mw - 13 - 10.5	26		D04										+						
mw-14-125	27		BII				8	X	×					x					
mw-14- 17.5	28		1323									S	χ mn	<u></u>	acai	rad	+ 2/	°C	
Mw -14 - 17.5-D	29															rcu -			
mw-14-22.5	30 1	V	1337	*	4								¥						
Friedman & Bruya, Inc. 3012 16 th Avenue West Seattle, WA 98119-2029	SI Relinquished by: Received by: Relinquished by:	GNATURE Ind Luni MOUL	2	Day HON	PRI 12 (DG A	NT N JAI	JAM L	E VEN	ソ		l F	lipe Bj	COM ect	PAN Lor	۲ الانعام الم	3	DATE 6/11/19 V		ME Z
Ph. (206) 285-8282	Received by:																		

906200			SAMPLE	CHAIN	OF	CUS	бто	DY	/	ΥE	ØE	5-1	/-/	19		Bī	Y, /1	64		
Report To / Ind lew You	hotski		SAMPL	ERS (signa	iture)	De.	1	L							P T	age # URN	<u> </u>	<u>7</u> IME		
Company Aspect Consi	ifina		PROJEC	CT NAME				-		PO #					Stand	lard '	Furnaround			
Address 710 2nd Ave,	5+B, 550		1	Iloha (مهكور	_				13	'03'	57		R	ush cl	harge	s authorize	1 by:		
City, State, ZIP Seaffle,	WA, 98104		REMAR	KS	-010	-				IN	VOI	CE	Ю	SAMPLE DISPOSAL						
Phone (20)413 - 5411 En	nail a yonholski	aspetions	Haim											□ Archive Samples						
			·····	*					A	NAI	JYSI	ES RI	EQUE		D					
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Hold Pendra)			Not	:es		
Mcv - 14 - 25	31AE	G/11/19	B47	500	5															
mw -14 - 27.5	32 T)	1408	1																
mw -14-30	33	\downarrow	1423	+	6															
													E							
												q	9 m 1	109	roco	ived	at 2	۰C		
												×	am	100	****	.+	. 	·		
	SI	GNATURE			PRI	NT N	IAM	E				(СОМІ	PAN	Y		DATE	TIME		
Friedman & Bruya, Inc.	Relinquished by:	andland		Dav	201)na	ih			1	A	per	tio	mselfing GHII			GA14	1656		
3012 16 th Avenue West	Received by:	Youge	V	HONE	T	N	FU	u	-l	J	F	M		VV				0		
Seattle, WA 98119-2029	1					<u> </u>														

Ph.	(206)	285-	8282
-----	-------	------	------

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 21, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on June 12, 2019 from the Aloha Cafe 180357, F&BI 906232 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0621R.DOC
ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 12, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
906232 -01	MW-15-7.5
906232 -02	MW-15-10.5
906232 -03	MW-15-13
906232 -04	MW-15-17.5
906232 -05	MW-15-25
906232 -06	B-07-6
906232 -07	B-07-8
906232 -08	B-07-12.5
906232 -09	B-07-22.5
906232 -10	B-07-25

An 8260C internal standard failed the acceptance criteria for the direct sparge analysis of samples MW-15-10.5 and MW-15-13. The samples were diluted by methanolic extraction and reanalyzed with acceptable results. Both data sets were reported.

Several compounds in the 8260C direct sparge laboratory control sample and laboratory control sample duplicate failed the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232 Date Extracted: 06/17/19 Date Analyzed: 06/17/19 and 06/18/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW-15-7.5 906232-01	<5	88
MW-15-10.5 906232-02 1/20	6,500	ip
MW-15-13 906232-03 1/50	3,400	120
$\frac{\text{MW-15-25}}{_{906232-05}}$	<5	89
B-07-8 906232-07	87	ip
B-07-12.5 906232-08	<5	86
Method Blank ^{09-1405 MB}	<5	83

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232 Date Extracted: 06/13/19 Date Analyzed: 06/13/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW-15-7.5 906232-01	<50	<250	84
MW-15-10.5 906232-02	1,500 x	590	81
MW-15-13 906232-03	990 x	370	84
MW-15-25 906232-05	<50	<250	86
B-07-8 906232-07	<50	<250	84
B-07-12.5 906232-08	<50	<250	85
Method Blank ^{09-1393 MB}	<50	<250	84

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-15-10.5	Client:	Aspect Consulting, LLC
Date Received:	06/12/19	Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/13/19	Lab ID:	906232-02
Date Analyzed:	06/18/19	Data File:	906232-02.059
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
	Concentration		
Analyte:	mg/kg (ppm)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-15-13	Client:	Aspect Consulting, LLC
Date Received:	06/12/19	Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/13/19	Lab ID:	906232-03
Date Analyzed:	06/18/19	Data File:	906232-03.060
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
	Concentration		
Analyte:	mg/kg (ppm)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-07-8	Client:	Aspect Consulting, LLC
Date Received:	06/12/19	Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/13/19	Lab ID:	906232-07
Date Analyzed:	06/18/19	Data File:	906232-07.061
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
	Concentration		
Analyte:	mg/kg (ppm)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	NA	Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/13/19	Lab ID:	I9-365 mb
Date Analyzed:	06/13/19	Data File:	I9-365 mb.070
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

< 0.005

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-15-7.5 06/12/19 06/14/19 06/14/19 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 906232-01 061419.D GCMS4 MS/AEN
0 111001		, 21, Hoight	operatori	
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	50	150
Toluene-d8		103	50	150
4-Bromofluorobenz	ene	103	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.005		
1,2-Dibromoethane	e (EDB)	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-15-10.8 06/12/19 06/14/19 06/14/19 Soil		Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 906232-02 061425.D GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	MS/AEN
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4 ene	% Recovery: 95 J 608 J ip 2673 J ip	Lower Limit: 50 50 150	Upper Limit: 150 150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	<0.005 J		
1,2-Dibromoethane	(EDB)	<0.005 J		
1,2-Dichloroethane	(EDC)	<0.005 J		
Naphthalene		0.091 J jl		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	MW-15-13		Client:	Aspect Consulting, LLC
Date Received:	06/12/19		Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/14/19		Lab ID:	906232-03
Date Analyzed:	06/14/19		Data File:	061424.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppn	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	108	50	150
Toluene-d8		273 ip	50	150
4-Bromofluorobenz	ene	1029 J ip	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.005		
1,2-Dibromoethane	(EDB)	<0.005 J		
1,2-Dichloroethane	(EDC)	< 0.005		
Naphthalene		0.19 J ve jl		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Direct Sparge

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-15-25 06/12/19 06/14/19 06/14/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 906232-05 061422.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		103	50	150
4-Bromofluorobenz	ene	101	50	150
Compounds:		Concentration mg/kg (ppm)		
Benzene		0.026		
Toluene		< 0.005		
Ethylbenzene		< 0.005		
m,p-Xylene		< 0.01		
o-Xylene		< 0.005		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

< 0.005

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-07-8 06/12/19 06/14/19 06/14/19 Soil	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 906232-07 061423.D GCMS4 MS/4EN
011105.	mg/kg (ppi	ii) Diy Weight	operator.	
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	50	150
Toluene-d8		117	50	150
4-Bromofluorobenz	ene	116	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.005		
1,2-Dibromoethane	(EDB)	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

< 0.005

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B-07-12.5 06/12/19 06/14/19 06/14/19 Soil) Dur Weicht	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 906232-08 061421.D GCMS4 MS44 EN
Units:	mg/kg (ppn	h) Dry weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	50	150
Toluene-d8		104	50	150
4-Bromofluorobenz	ene	100	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.005		
1,2-Dibromoethane	(EDB)	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

< 0.005

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applic 06/14/19 06/14/19 Soil mg/kg (ppr	ank able n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 09-1332 mb 061408.D GCMS4 MS/A EN
Omus.	mg/ng (ppi	n) Dry Weight	-	
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		99	50	150
4-Bromofluorobenz	ene	96	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,2-Dibromoethane	(EDB)	< 0.005		
Benzene		< 0.003		
Toluene		< 0.005		
Ethylbenzene		< 0.005		
m,p-Xylene		< 0.01		
o-Xvlene		<0.005		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-15-10.5	5	Client:	Aspect Consulting, LLC
Date Received:	06/12/19		Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/18/19		Lab ID:	906232-02
Date Analyzed:	06/19/19		Data File:	061913.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	105	62	145
Toluene-d8		103	55	145
4-Bromofluorobenz	ene	130	65	139
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.05		
1,2-Dibromoethane	(EDB)	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
Naphthalene		6.3		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-15-13		Client:	Aspect Consulting, LLC
Date Received:	06/12/19		Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/18/19		Lab ID:	906232-03
Date Analyzed:	06/19/19		Data File:	061914.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppn	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	62	145
Toluene-d8		102	55	145
4-Bromofluorobenz	ene	116	65	139
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.05		
1,2-Dibromoethane	(EDB)	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
Naphthalene		4.9		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Naphthalene

Client Sample ID: Method Bla		ınk	Client:	Aspect Consulting, LLC
Date Received:	Not Applica	able	Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/18/19		Lab ID:	09-1431 mb
Date Analyzed:	06/18/19		Data File:	061808.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppn	n) Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d	14	100	62	145
Toluene-d8		99	55	145
4-Bromofluorobenzer	ne	96	65	139
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ether	(MTBE)	< 0.05		
1,2 Dibromoethane (EDB)	< 0.05		
1,2-Dichloroethane (EDC)	< 0.05		

< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code:	906262-01 (Duplic	eate)			
		Samp	ole Du	plicate	
	Reporting	Resu	ılt R	lesult	RPD
Analyte	Units	(Wet V	Wt) (W	fet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code:	Laboratory Contro	ol Sample	e		
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	$\overline{20}$	95	71-131	

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	906230-02 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	94	90	90	73-135	0
Laboratory Code:	Laboratory Contro	ol Sampl	le				
			Percent				
	Reporting	Spike	Recovery	Acceptan	ice		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	84	74-139	1		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906200-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	8.10	93	89	75 - 125	4

Laboratory Code: Laboratory Control Sample

U U	·	1	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 906232-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
Benzene	mg/kg (ppm)	< 0.003	0.0034	nm
Toluene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.005	< 0.005	nm
Ethylbenzene	mg/kg (ppm)	< 0.005	< 0.005	nm
m,p-Xylene	mg/kg (ppm)	< 0.01	< 0.01	nm
o-Xylene	mg/kg (ppm)	< 0.005	< 0.005	nm
Naphthalene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	mg/kg (ppm)	0.05	60 vo	62 vo	70-130	3
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	0.05	85	80	49-148	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	86	84	69 - 137	2
Benzene	mg/kg (ppm)	0.05	90	87	67 - 138	3
Toluene	mg/kg (ppm)	0.05	95	90	12 - 185	5
1,2-Dibromoethane (EDB)	mg/kg (ppm)	0.05	99	98	70 - 130	1
Ethylbenzene	mg/kg (ppm)	0.05	126	95	70 - 130	28 vo
m,p-Xylene	mg/kg (ppm)	0.1	163 vo	96	70 - 130	52 vo
o-Xylene	mg/kg (ppm)	0.05	100	94	70 - 130	6
Naphthalene	mg/kg (ppm)	0.05	136 vo	99	70-130	31 vo

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906312-01 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	\mathbf{MS}	Criteria
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	95	21 - 145
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	88	12 - 160
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	87	28 - 142
Naphthalene	mg/kg (ppm)	2.5	< 0.05	91	14 - 157

Laboratory Code: Laboratory Control Sample

0 0	Benorting	Sniko	Percent	Percent	Accentance	BDD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	104	106	60-123	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	99	56 - 135	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	95	98	74-132	3
Naphthalene	mg/kg (ppm)	2.5	104	106	63-140	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

906233	2		SAMPL	E CHAI	N OF	CU	STO	ODY		ME	0	6-	12-	10	1	VS2	1 BO3	
Report To Andrew Yor	hofski		SAMPI	LEBS (sign	ature)				····-		-				Tage	<u>#</u>	1	<u> </u>
Company Aspect Lo	nolfmy		PROJE	CT NAME]					P	0#			X Sta	indar	d Turnaro	D TIME und	
Address 710 2nd Au	e. ste 550		Aloha	. Cole						1503	57			⊔ R∪ Rush	SH char	ges author	ized by:	-
City, State, ZIP Seattle	-, WA, 98104		REMAI	RKS						NVO	ICE	TO			SAM	IPLE DISI	POSAL	=
Phone (206) 413-5411	Email a youhofsk	Dospector	sollis com							AP				ΔD_{1s}	pose a hive S	after 30 da Samples	ys	
	/				<u></u>	r –			AN	ALYSI	ESR	EQU		J Oth	er]
Sample ID ,	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	WOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	bld persona o	CUCK by \$200	Ph by 60/0	MTSE, EDB, EDK,	1	Notes	
Miv-15-7.5	01 A-E	6/12/14	0914	ادى	5		X	Х				X	Ť			<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	in lia mé	-
miv-15-10.5	02		0470	1	i		X	X	-	$\left \right $				χ	X		. 9/14 110	
mw - 15 - 13	03		0926				X	X	1-			\parallel		χ	X			-
mw -15 - 17.5	04		0937									╢╢			<u> </u>			-
mw -15 - 25	05		0956				X	xХ	-		-†							-
13-07-6	06		1331															
B-07-8	07		1337				X	×				╏┤		X	Y			
3-07-125	08		1349				X	X				┟┼			$\hat{\mathbf{X}}$			-
3-07-225	09		14/9									╟┼			-			-
13-07-25	10 1	V	1425	+	V													-
Friedman & Bruya, Inc. 3012 16 th Avenue West Seattle, WA 98119-2029	SIC Relinquished by: Received by: Relinquished by:	INATURE		Day. HONC	PRIN SLUM TVZ		AME - YE	N	· · · ·	As, Fl	C(Dee VI		ANY	olls	24 1	DATE 6/12/14	TIME 703 V	
Ph. (206) 285-8282	Received by:						<u> </u>			/ k.	Sam	ples	rec	eive	d at	<u></u> 0(

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 2, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the additional results from the testing of material submitted on June 12, 2019 from the Aloha Cafe 180357, F&BI 906232 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0702R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 12, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
906232 -01	MW-15-7.5
906232 -02	MW-15-10.5
906232 -03	MW-15-13
906232 -04	MW-15-17.5
906232 -05	MW-15-25
906232 -06	B-07-6
906232 -07	B-07-8
906232 -08	B-07-12.5
906232 -09	B-07-22.5
906232 -10	B-07-25

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232 Date Extracted: 06/26/19 Date Analyzed: 06/26/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 58-139)		
MW-15-17.5 906232-04	200	133		
Method Blank ^{09-1491 mb}	<5	116		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232 Date Extracted: 06/26/19 Date Analyzed: 06/26/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
MW-15-17.5 906232-04	<50	<250	100
Method Blank ^{09-1536 MB}	<50	<250	104
ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-15-13		Client:	Aspect Consulting, LLC
Date Received:	06/12/19		Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/27/19		Lab ID:	906232-03 1/5
Date Analyzed:	06/27/19		Data File:	062720.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm)	Dry Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		98	55	145
4-Bromofluorobenze	ene	104	65	139
Compounds:		Concentration mg/kg (ppm)		
Benzene		0.70		
Toluene		4.7		
Ethylbenzene		10		
m,p-Xylene		46		
o-Xylene		18		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-15-17.5 06/12/19 06/26/19 06/26/19 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 906232-04 062612.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	62	145
Toluene-d8		99	55	145
4-Bromofluorobenze	ene	100	65	139
Compounds:		Concentration mg/kg (ppm)		
Benzene		0.22		
Toluene		0.096		
Ethylbenzene		0.19		
m,p-Xylene		0.88		
o-Xylene		0.31		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank		Client:	Aspect Consulting, LLC
Date Received:	Not Applicable		Project:	Aloha Cafe 180357, F&BI 906232
Date Extracted:	06/26/19		Lab ID:	09-1500 mb
Date Analyzed:	06/26/19		Data File:	062609.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm) Dr	y Weight	Operator:	MS/AEN
			Lower	Upper
Surrogates:	%	Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	62	145
Toluene-d8		98	55	145
4-Bromofluorobenze	ene	98	65	139
Compounds:	Con mg	centration g/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 9	906512-03 (Duplic	eate)			
		Samp	ole Du	plicate	
	Reporting	Resu	lt R	lesult	RPD
Analyte	Units	(Wet V	et Wt)	(Limit 20)	
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: 1	Laboratory Contro	ol Sample	e		
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	$\overline{20}$	100	71-131	

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	906512-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	104	106	64-133	2
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	108	58-1	147		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906266-01 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Benzene	mg/kg (ppm)	2.5	< 0.03	69	29-129
Toluene	mg/kg (ppm)	2.5	< 0.05	64	35 - 130
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	68	32 - 137
m,p-Xylene	mg/kg (ppm)	5	< 0.1	68	34 - 136
o-Xylene	mg/kg (ppm)	2.5	< 0.05	72	33 - 134

Laboratory Code: Laboratory Control Sample

-	<i>v</i> 1		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2.5	95	100	68-114	5
Toluene	mg/kg (ppm)	2.5	93	96	66-126	3
Ethylbenzene	mg/kg (ppm)	2.5	97	102	64-123	5
m,p-Xylene	mg/kg (ppm)	5	99	104	78 - 122	5
o-Xylene	mg/kg (ppm)	2.5	101	103	77 - 124	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

906230	2_		SAMPL	E CHAII	NOF	CUS	FOD	Y	M/=	0/	h -	12	19		VS21	1 BO3	
Report To Andrew Yo	nho fski		SAMP	LERS (sign	qture)		,		,			l r		age #	<u>l'</u>	1	
Company Aspect 6	molfma		PROJE	CT NAME					P	'O#			x Stan	dard	AROONI Turnarou) TIME ind	
Address 710 22 Au	e. ste 550		Aloha	. Cole					1203	\$57			J RUS. Rush c	H harge	es authori	zed by:	
City, State, ZIP_Scatt	e, WA, 98104		REMAI	RKS					INVO	ICEI	го			SAMI	LE DISF	'OSAL	
Phone (201) 413-54/1	Email a yorkotsh	Dospection	ellow						AP] Archi l Othou	ve Sa	imples	/5	
	······································		-r-					A	NALYS	ES RE	QU		ED				<u> </u>
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Gasoline	BTEX by 8021B-	VOCs by 8260C VOCs by 8270D	AHs 8270D SIM	old sending	UCCS by X200	0 by 6010	Nuple Inc	Ň	lotes	
Mw-15-75	01 A-E	6/12/14	0914	1002	5	>	X		. 01	<u> </u>	X	\sim			<u> X-pu</u>	<u>- Ay</u>	
miv-15-10.5	02	1	0920	1	Ì	X	' X						$\frac{1}{\chi}$	× ×	<u> </u>	3/19 ME	_
mw-15-13	03		0926			X	X	\bigotimes					X	χľ	<u>s-per</u> chr	- 110	\neg
mw -15-17.5	oy		0937			X	Ø	8						÷		ME	
mw -15-25	05		0956			X	X	X				1					
13-07-6	06		1331														-
13-07-8	07		1337			X	X						X	$\overline{\mathbf{x}}$			
3-07-125	- 08		1349			X	X							X			
B-07- 225	09		14/9														-
13-07-25	10	<u> </u>	1425	ł	\mathbf{V}					V					<u> </u>		
Friedman & Bruya, Inc.	SIG Relinquished by:	NATURE		Dais	PRIN'	<u>r NAM</u>	E		- n-	co)MP/	ANY			DATE	TIME	
3012 16 th Avenue West	Received by: He	nege	\sim	HONG	The second	in	EN		Fl	Deel D		. 00	21124	$\frac{1}{\nu}$	72/14	1	-
Seattle, WA 98119-2029	Relinguished by:	0	-		-	1				-				-	3		Ì
Ph. (206) 285-8282	Received by:									Sam	ples	rec	eived	at-	0		- *

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 3, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on June 14, 2019 from the Aloha Café 180357, F&BI 906279 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0703R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 14, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Café 180357, F&BI 906279 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-17-6
MW-17-8.5
MW-17-10
MW-17-20
MW-17-25
MW-16-6.5
MW-16-7.5
MW-16-12.5
MW-17-17.5
MW-17-25

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/14/19 Project: Aloha Cafe 180357, F&BI 906279 Date Extracted: 06/28/19 Date Analyzed: 06/28/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 58-139)
MW-17-8.5 906279-02	<5	81
MW-16-7.5 906279-07	<5	80
Method Blank ^{09-1521 MB}	<5	78

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/14/19 Project: Aloha Cafe 180357, F&BI 906279 Date Extracted: 06/28/19 Date Analyzed: 06/28/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW-17-8.5 906279-02	<50	<250	99
MW-16-7.5 906279-07	<50	<250	102
Method Blank	<50	<250	97

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/14/19 Project: Aloha Cafe 180357, F&BI 906279

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 9	906590-03 (Duplic	ate)			
		Samp	ole Du	plicate	
	Reporting	Resu	lt R	lesult	RPD
Analyte	Units	(Wet V	et Wt)	(Limit 20)	
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: I	Laboratory Contro	ol Sample	e		
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	mg/kg (ppm)	$\overline{20}$	110	71-131	

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/14/19 Project: Aloha Cafe 180357, F&BI 906279

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 9	906519-06 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	8,400	72	92	63-146	24 b
Laboratory Code: I	Laboratory Contr	ol Sampl	le				
			Percent	i			
	Reporting	Spike	Recovery	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	112	79-1	144		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

906279		SAMPL	E CHAIN	OFC	UST	DDY	ME 06	-14-1	'9	ß	02/1/	× 9
Report To And Pui	lonkots/12	SAMP 1	LERS (signo	tµre)					•••)	Page ;		of
Company Aspect L	onsulfing HL	PROJ	ECT NAME	<u> </u>			P	0#	- XSt	andard	l Turnarour	id IIIIE
Address 7/0 2nd A	12, SFR-550	Ala	ha fefr				1803	57	Rus	h charg	es authoriz	ed by:
City, State, ZIP Scaf	He, WA, 98104	REMA	RKS				INVO	ICE TO		SAM	PLE DISPO)SAL
Phone (28) 413-54	Email wyonkotski Ousper	Consulting. co	7N				Ap			spose a chive S her	amples	3
		······					ANALYSI	ES REQU	ESTED			
Sample ID	Lab ID Date Sample	Time d Sampled	Sample Type	# of Jars	TPH-HCID TPH-Diesel	TPH-Gasoline BTEX by 8021B	VOCs by 8260C SVOCs by 8270D	PAHs 8270D SIM	brs tagt vols		No	otes
mw-17-6	01A.E 6/14/	19 0644	50.1	5				X			X-De	Αγ
MW-17-85	12 T	0655		j	\bigotimes	\otimes					6/21/1	5 ME
mw -17 - 10	03	0658			X	X			X		Fxtat	en & Hild
MW -17 - 20	04	0715								1	(4)	A(
mw-17-25	05	0726	*	1							<u> </u>	VIICA
mw-16-6.5	06 6/14/14	0852	5001	5				╾┼╢╽				<u> </u>
mw -16 - 7.5	171	0858			Good	$\overline{\mathbf{a}}$				┼──╂	<u> </u>	
mw -16 - 12.5	08	0909			X	X			×	┼─╂		
mw-17-17.5	09	0920			+	·		S	mples	ecerv	ved at _{	⅀ℯⅇ
mw - 17 - 25	10	0937		J-		++				┼─╀		
Friedman & Bruya, Inc. 3012 16 th Avenue West	SIGNATURE Relinquished by: Received by:	2	Durid	PRINT Unic	NAME SK		As	COMF Dear L	PANY onsolf	ng 6	DATE //4//9	TIME [22] [2.2]
Seattle, WA 98119-2029 Ph. (206) 285-8282	Received by:	-										

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 24, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on July 17, 2019 from the Aloha Cafe 180357, F&BI 907276 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0724R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 17, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907276 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
907276 -01	MW-18-6.5
907276 -02	MW-18-8
907276 -03	MW-18-10
907276 -04	MW-18-15
907276 -05	MW-18-20
907276 -06	B-08-6.0
907276 -07	B-08-8.5
907276 -08	B-08-13.5
907276 -09	B-08-18.5
907276 -10	B-08-23.5
907276 -11	MW-19-6.0
907276 -12	MW-19-8.5
907276 -13	MW-19-13.5
907276 -14	MW-19-18.5
907276 -15	MW-19-23.5
907276 -16	Dup-2
907276 -17	Trip Blank
907276 -18	FD1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276 Date Extracted: 07/22/19 Date Analyzed: 07/23/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
MW-18-10 907276-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	93
B-08-13.5 907276-08	< 0.02	< 0.02	< 0.02	<0.06	<5	94
MW-19-8.5 907276-12	< 0.02	< 0.02	< 0.02	<0.06	<5	93
Dup-2 907276-16	< 0.02	< 0.02	< 0.02	<0.06	<5	95
Method Blank ^{09-1723 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<5	74

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276 Date Extracted: 07/18/19 Date Analyzed: 07/18/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
Trip Blank 907276-17	<1	<1	<1	<3	<100	100
Method Blank ^{09-1712 MB}	<1	<1	<1	<3	<100	102

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276 Date Extracted: 07/18/19 Date Analyzed: 07/18/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW-18-10 907276-03	<50	<250	94
B-08-13.5 907276-08	<50	<250	92
MW-19-8.5 907276-12	<50	<250	92
Dup-2 907276-16	<50	<250	93
Method Blank	<50	<250	98

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-18-10 07/17/19 07/18/19 07/18/19 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Cons Aloha Cafe 907276-03 071815.D GCMS9 MS/AEN	sulting, 180357,	LLC F&BI 907276
			Lower	1	Upper	
Surrogates:		% Recovery:	Limit:]	Limit:	
1,2-Dichloroethane-	d4	96	93		107	
Toluene-d8		100	87		110	
4-Bromofluorobenze	ene	97	85		112	
Compounds:		Concentration mg/kg (ppm)				
Vinyl chloride		< 0.05				
Chloroethane		< 0.5				
1,1-Dichloroethene		< 0.05				
Methylene chloride		< 0.5				
trans-1,2-Dichloroet	thene	< 0.05				
1,1-Dichloroethane		< 0.05				
cis-1,2-Dichloroethe	ne	< 0.05				
1,2-Dichloroethane	(EDC)	< 0.05				
1,1,1-Trichloroethar	ne	< 0.05				
Trichloroethene		< 0.02				
Tetrachloroethene		< 0.025				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-08-13.5 07/17/19 07/18/19 07/18/19 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907276 907276-08 071816.D GCMS9 MS/AEN
	8 8 41	/ / / 8 -	- <u>-</u> -	
C .		0/ D	Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	93	107
Toluene-d8		97	87	110
4-Bromofluorobenze	ene	96	85	112
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		< 0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		< 0.5		
trans-1,2-Dichloroe	thene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroethe	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-19-8.5 07/17/19 07/18/19 07/18/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907276 907276-12 071817.D GCMS9 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	93	107
Toluene-d8		97	87	110
4-Bromofluorobenze	ene	98	85	112
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		< 0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		< 0.5		
trans-1,2-Dichloroet	thene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroethe	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroethan	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Dup-2 07/17/19 07/18/19 07/18/19 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907276 907276-16 071818.D GCMS9 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	93	107
Toluene-d8		97	87	110
4-Bromofluorobenze	ene	96	85	112
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		< 0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		< 0.5		
trans-1,2-Dichloroet	thene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroethe	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroethan	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Bla Not Applica 07/18/19 07/18/19 Soil	nk ıble	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907276 09-1684 mb 071814.D GCMS4
Units:	mg/kg (ppm	n) Dry Weight	Operator:	MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8	-d4	% Recovery: 99 98	Lower Limit: 62 55	Upper Limit: 145 145
4-Bromofluorobenze	ene	97	65	139
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		< 0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		< 0.5		
trans-1,2-Dichloroe	thene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroethe	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 907338-06 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	15	nm

Laboratory Code: Laboratory Control Sample

	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	mg/kg (ppm)	0.5	109	69-120		
Toluene	mg/kg (ppm)	0.5	114	70-117		
Ethylbenzene	mg/kg (ppm)	0.5	113	65 - 123		
Xylenes	mg/kg (ppm)	1.5	114	66-120		
Gasoline	mg/kg (ppm)	20	90	71-131		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 907267-03 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	2.4	1.6	38 a
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	100	65-118		
Toluene	ug/L (ppb)	50	106	72 - 122		
Ethylbenzene	ug/L (ppb)	50	109	73 - 126		
Xylenes	ug/L (ppb)	150	108	74-118		
Gasoline	ug/L (ppb)	1,000	105	69 - 134		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	907241-02 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	88	88	73-135	0
Laboratory Code: Laboratory Control Sample							
			Percent				
	Reporting	Spike	Recovery	Acceptan	ice		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	100	74-139)		
ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 907276-12 (Matrix Spike)

	au apino)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	49	51	10-91	4
Chloroethane	mg/kg (ppm)	2.5	< 0.5	65	68	10-101	5
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	67	71	22 - 107	6
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	68	71	14 - 128	4
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	71	76	13 - 112	7
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	74	79	23 - 115	7
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	80	25 - 120	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	80	82	22 - 124	2
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	78	82	27 - 112	5
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	80	81	30 - 112	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	82	83	25 - 114	1

Laboratory Code: Laboratory Control Sample

		Domoort	
		rercent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
mg/kg (ppm)	2.5	95	42-107
mg/kg (ppm)	2.5	92	47 - 115
mg/kg (ppm)	2.5	91	65 - 110
mg/kg (ppm)	2.5	104	50 - 127
mg/kg (ppm)	2.5	101	71-113
mg/kg (ppm)	2.5	99	74-109
mg/kg (ppm)	2.5	105	73-110
mg/kg (ppm)	2.5	96	73-111
mg/kg (ppm)	2.5	104	72 - 116
mg/kg (ppm)	2.5	95	72-107
mg/kg (ppm)	2.5	102	73-111
	Reporting Units mg/kg (ppm) mg/kg (ppm)	Reporting Units Spike Level mg/kg (ppm) 2.5 mg/kg (ppm) 2.5	Reporting Units Spike Level Recovery LCS mg/kg (ppm) 2.5 95 mg/kg (ppm) 2.5 92 mg/kg (ppm) 2.5 91 mg/kg (ppm) 2.5 104 mg/kg (ppm) 2.5 101 mg/kg (ppm) 2.5 101 mg/kg (ppm) 2.5 99 mg/kg (ppm) 2.5 105 mg/kg (ppm) 2.5 104 mg/kg (ppm) 2.5 105 mg/kg (ppm) 2.5 104 mg/kg (ppm) 2.5 96 mg/kg (ppm) 2.5 104 mg/kg (ppm) 2.5 95 mg/kg (ppm) 2.5 102

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

						CIT	2776	זתו	<i>r</i> ,	ME	<u>x</u> -		マノ	10		Ĥ	21=	, , , /	JE STATE	, 41-
9077	276		SAMPLE	E UHAIN			$\frac{510}{7}$	<u>י ת</u>	. /		01 					ن Page	XUS #	1	<u>'4 2</u>	
Report To Andrew Yor	tothe Han	nbolton	SAMI L		Kal	d fu	ab	9	- <u>[</u>	Zni	<u>e1</u>	B-		_ [TURI	NARO	UND '	ГІМЕ]
Company ASDRet Con	setting		PROJE	PROJECT NAME							$PO # \square RUSH_{_}$				ndarc SH	d Turn	aroun	1 		
Address 7/0 2nd Ave	Address 76 29 Are Ste SSD				-					ÍÝ.	12357 Rush ch				charg	ges au	thorize	ed by:		
	1 JA 98 112	/ / / / / / / / / / / / / / / /	REMAR	KS						ÎN	IVOI	ICE '	Ю		P Dis	SAM	IPLE I after 3	DISPO 0 days	SAL	
Uity, State, ZIP_ <u>Scal</u>		o . set	a ilm. com	-							Æ			1	\Box Arc	hive S	Sampl	es		
Phone <u>(9(;)7())7(</u> En	nail MOKOFA	DRS+BUILON	Sutorycon	<u> </u>								ESR	EQU		ED	<u>ier</u>				ר ר
								е	B		B	IM	A A				Γ			
		Data	Time	Sample	# of	ICID	iesel	Isolin	802	8260	y 827	0DS	the second							
Sample ID	Lab ID	Sampled	Sampled	Туре	Jars	PH-F	PH-D	H-Ga	X by	Os by	Cs by	s 827	la l	1			ļ	No	tes	
						T	Ē	TP	BTF	*V00	SVO	PAH	191							
MW-18-6.5	OIA-F-	7/15/14	1053	S	5												7	pe 1	١Y	_
MW -18 - 8	02		1/02															7/	7/19	
mw -18-10	03		1108				×	×	x	X									ME	_
miu -18-15	04		1121																	
MW -18-20	05-	×	1144	-	Þ															_
B-08-6.0	06	7/16/19	1010	28 2 Soil	5															
B-08-8.5	Ø7		1015																	4
B-08-135	08		1030				×	X	×	×										4
B-08-18.5	09		1040														_			
B-08-23,5	io F		1050	4	*								¥							
	SI	GNATURE			PRIN	NT N	IAM	E				(COM	PAl	NY		DA	ATE	TIME]
Friedman & Bruya, Inc.	Relinquished b <u>y:</u>	20		Panel	Bola	ixK					A	Spe	ct		siltin	5	7/17	2/19	0940	_
3012 16 th Avenue West	Received by:	alaw		Mhar	<u>n </u>	^{2}hc	in				Fe	: B_	7				7/1	7/19	0940	
Seattle, WA 98119-2029	Relinquished by:	1															ļ			
Ph. (206) 285-8282	Received by:													S	ampl	es rec	eived	at _4	oc	

Ph. (2	206)	285-8282	
--------	------	----------	--

907	276		SAMPLI	E CHAIN	OF	CUS	STC	DD	Y	ME	Ē	7-2	źiź	-10	₹ 1⁄	54/6	Bo B 7/	
Benort To ANISCU TOOK	PSK TAda Sis	Æm	SAMPL	ERS (signo	iture) 11. Å	- Ve	inle	13		(J7.	-17	-14		Pag TUI	e #'K RNAROUNI	O TIME	
	w		PROJE	CT NAME	<u>U:</u> v		.,,,				P	0 # C			Standa	rd Turnaroı	ind	
Company ASPECT Consi	nting		Aid	sa lafe	/					180	035	7			ush cha	rges author	zed by:	
Address	REMAR				ABKS					IN	INVOICE TO				SA	MPLE DISI	POSAL	
City, State, ZIP <u>SexHe WA</u>														8	PDispose after 30 days			
Phone 206 - 413 - 5411 Er	nail work of the	aspectionsoil	ngrom												Other			
		1		T	1				4	ANA	LYSI	ES RE	CQUE I	STEI	D			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	LVOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIN	HULL Tentra	>]	Jotes	
MW-19-60	1 (A-E	7/16/19	1320	50;	5													
MW-19-8.5	12		1330				Х	\checkmark	Х	X							tela-l	
MW-19-13.5	13		1340													VOMIA	a-2	
MW-19-18.5	14		1350													VOA!	abeled at	
MW-19-23.5	15		1410															
Dup-2	16	\checkmark		\checkmark	\checkmark		X	1.	X	Х								
TripBlank	7AB	-		Vater	4			Х	х				V					
FDI	TO AVE	7/15/19														addes	m/45	
		· ,														V?	5	
	SI	GNATURE			PRIN	JT N	AM	E				С	OMF	ANY	r	DATE	TIME	
Friedman & Bruya, Inc.	Relinquished by	TRA		Frone	el B	hat	'c				A	SPE	ct	-008	solter	7/17/1	0940	
3012 16 th Avenue West	Received by:	Mans		Nha	\sim	pho	Ίv	١			FEBI					7/17/1	10940	
Seattle, WA 98119-2029	Relinquished by:	1																
Ph. (206) 285-8282	Received by:													8	amples	received a	t <u>fo</u> c	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 9, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on July 30, 2019 from the Aloha Cafe 180357, F&BI 907561 project. There are 22 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0809R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 30, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907561 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
907561 -01	GP-01-072519
907561 -02	GP-02-072519
907561 -03	GP-03-072519
907561 -04	Dup-1-072519
907561 -05	GP-04-072519
907561 -06	SVS-02-072519
907561 -07	SVS-01-072519
907561 -08	Trip Blank

The APH EC5-8 aliphatics concentrations in samples GP-03-072519, Dup-1-072519, and SVS-02-072519 exceeded the calibration range of the instrument. The data were flagged accordingly.

APH EC9-12 aliphatics was detected in the TO-15 method blank at a level greater than one tenth the concentration detected in sample Dup-1-072519 and SVS-02-072519. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-01-	072519	Clie	ent:	Aspect Consulting, LLC
Date Received:	07/30/1	9	Pro	ject:	Aloha Cafe 180357
Date Collected:	07/25/1	07/25/19		DID:	907561-01 1/3.2
Date Analyzed:	08/02/1	9	Dat	a File:	080214.D
Matrix:	Air		Inst	trument:	GCMS7
Units:	ug/m3		Ope	erator:	bat
		%	Lower	Upper	
Surrogates:]	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene	95	70	130	
	Conc	entration			
Compounds:		ug/m3			
APH EC5-8 alipha	tics	410			
APH EC9-12 aliphatics		2,200			
APH EC9-10 arom	atics	<80			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-02-072519	Clie	ent:	Aspect Consulting, LLC
Date Received:	07/30/19	Pro	ject:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab	ID:	907561-02 1/3.1
Date Analyzed:	08/03/19	Dat	a File:	080216.D
Matrix:	Air	Inst	rument:	GCMS7
Units:	ug/m3	Ope	erator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 96	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 350			
APH EC9-12 aliph	atics 2,600			
APH EC9-10 arom	atics <77			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-03	8-072519	Clier	nt:	Aspect Consulting, LLC
Date Received:	07/30/	07/30/19		ect:	Aloha Cafe 180357
Date Collected:	07/25/	'19	Lab 1	[D:	907561-03 1/7.5
Date Analyzed:	08/03/	'19	Data	File:	080220.D
Matrix:	Air		Instr	rument:	GCMS7
Units:	ug/m3	}	Oper	ator:	bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene	94	70	130	
	Con	centration			
Compounds:		ug/m3			
APH EC5-8 alipha	tics	12.000 ve			
APH EC9-12 aliph	atics	3,600			
APH EC9-10 arom	atics	<190			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Dup-1	-072519	Clien	t:	Aspect Consulting, LLC
Date Received:	07/30/	07/30/19		ct:	Aloha Cafe 180357
Date Collected:	07/25/	19	Lab I	D:	907561-04 1/7.8
Date Analyzed:	08/03/	19	Data	File:	080221.D
Matrix:	Air		Instr	ument:	GCMS7
Units:	ug/m3	5	Opera	ator:	bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene	76	70	130	
	Con	centration			
Compounds:		ug/m3			
APH EC5-8 alipha	tics	12,000 ve			
APH EC9-12 aliphatics		2,700 fb			
APH EC9-10 arom	atics	<190			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-04-072	2519	Clier	nt:	Aspect Consulting, LLC
Date Received:	07/30/19	07/30/19		ect:	Aloha Cafe 180357
Date Collected:	07/25/19	07/25/19		ID:	907561-05 1/3.2
Date Analyzed:	08/03/19		Data	ı File:	080217.D
Matrix:	Air		Insti	rument:	GCMS7
Units:	ug/m3		Oper	rator:	bat
		%	Lower	Upper	
Surrogates:	Rec	covery:	Limit:	Limit:	
4-Bromofluorobenz	ene	92	70	130	
	Concent	tration			
Compounds:		ug/m3			
APH EC5-8 alipha	tics	510			
APH EC9-12 aliphatics 1.800		1,800			
APH EC9-10 arom	atics	100			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SVS-0	2-072519	Clier	nt:	Aspect Consulting, LLC
Date Received:	07/30/	07/30/19		ect:	Aloha Cafe 180357
Date Collected:	07/25/	07/25/19		ID:	907561-06 1/3.1
Date Analyzed:	08/03/	19	Data	File:	080218.D
Matrix:	Air		Instr	rument:	GCMS7
Units:	ug/m3	5	Oper	ator:	bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	88	70	130	
	Con	centration			
Compounds:		ug/m3			
APH EC5-8 alipha	tics	2.200 ve			
APH EC9-12 aliphatics 1.1		1,100 fb			
APH EC9-10 arom	atics	100			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SVS-01-072519	Client		Aspect Consulting, LLC
Date Received:	07/30/19	Projec	et:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab II	D:	907561-07 1/3.1
Date Analyzed:	08/03/19	Data	File:	080219.D
Matrix:	Air	Instru	iment:	GCMS7
Units:	ug/m3	Opera	tor:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 94	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 1,000			
APH EC9-12 aliph	atics 1,300			
APH EC9-10 arom	atics 78			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank	Clien	t:	Aspect Consulting, LLC
Date Received:	07/30/19	Proje	ct:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab I	D:	907561-08
Date Analyzed:	08/02/19	Data	File:	080213.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Opera	ator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 83	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 aliphatics <46				
APH EC9-12 aliphatics <33				
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Method	Method Blank		nt:	Aspect Consulting, LLC
Not App	olicable	Proje	ect:	Aloha Cafe 180357
Not App	olicable	Lab I	[D:	09-1852 mb
08/02/19)	Data	File:	080212.D
Air		Instr	rument:	GCMS7
ug/m3		Oper	ator:	bat
	%	Lower	Upper	
R	lecovery:	Limit:	Limit:	
zene	93	70	130	
Conce	ntration			
	ug/m3			
APH EC5-8 aliphatics <46				
APH EC9-12 aliphatics				
atics	<25			
	Method Not App Not App 08/02/19 Air ug/m3 R cene Conce tics atics atics	Method Blank Not Applicable Not Applicable 08/02/19 Air ug/m3 % Recovery: zene 93 Concentration ug/m3 tics <46 atics 37 lc atics <25	Method BlankClierNot ApplicableProjeNot ApplicableLab I08/02/19DataAirInstrug/m3Oper%LowerRecovery:Limit:zene9370Concentrationug/m3tics446atics37 lcatics37 lcatics<25	Method BlankClient:Not ApplicableProject:Not ApplicableLab ID:08/02/19Data File:AirInstrument:ug/m3Operator:%LowerUpperRecovery:Limit:Limit:zene9370130Concentration ug/m3tics<46

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-01-072 07/30/19 07/25/19 08/02/19 Air ug/m3	2519	Clien Proje Lab I Data Instr Oper	at: ect: ID: File: ument: ator:	Aspect Consulting, LLC Aloha Cafe 180357 907561-01 1/3.2 080214.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	ecovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	92	70	130	
Compounds:		Concent ug/m3	tration ppbv		
Methyl t-butyl ethe	er (MTBE)	<5.8	<1.6		
1,2-Dichloroethane	(EDC)	< 0.13	< 0.032		
Benzene		3.8	1.2		
Toluene		28	7.4		
1,2-Dibromoethane	(EDB)	< 0.25	< 0.032		
Ethylbenzene		6.0	1.4		
m,p-Xylene		24	5.4		
o-Xylene		8.9	2.1		
Naphthalene		< 0.84	< 0.16		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-02-072 07/30/19 07/25/19 08/03/19 Air ug/m3	2519	Clien Proje Lab I Data Instr Oper	at: inct: iD: File: ument: ator:	Aspect Consulting, LLC Aloha Cafe 180357 907561-02 1/3.1 080216.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	ecovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	94	70	130	
Compounds:		Concent ug/m3	tration ppbv		
Methyl t-butyl ethe	er (MTBE)	<5.6	<1.5		
1,2-Dichloroethane	(EDC)	< 0.13	< 0.031		
Benzene		1.5	0.47		
Toluene		12	3.2		
1,2-Dibromoethane	(EDB)	< 0.24	< 0.031		
Ethylbenzene		3.4	0.78		
m,p-Xylene		13	3.0		
o-Xylene		5.3	1.2		
Naphthalene		< 0.81	< 0.15		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-03-072 07/30/19 07/25/19 08/03/19 Air ug/m3	2519	Client: Project: Lab ID: Data File: Instrument: Operator:		Aspect Consulting, LLC Aloha Cafe 180357 907561-03 1/7.5 080220.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	covery:	Limit:	Limit:	
4-Bromofluorobenz	ene	92	70	130	
Compounds:		Concent ug/m3	tration ppbv		
Methyl t-butyl ethe	er (MTBE)	<14	<3.7		
1,2-Dichloroethane	(EDC)	< 0.3	< 0.075		
Benzene		3.9	1.2		
Toluene		17	4.6		
1,2-Dibromoethane	(EDB)	< 0.58	< 0.075		
Ethylbenzene		4.9	1.1		
m,p-Xylene		19	4.4		
o-Xylene		8.1	1.9		
Naphthalene		<2	< 0.37		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Dup-1-072 07/30/19 07/25/19 08/03/19 Air ug/m3	2519	Client: Project: Lab ID: Data File: Instrument: Operator:		Aspect Consulting, LLC Aloha Cafe 180357 907561-04 1/7.8 080221.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	covery:	Limit:	Limit:	
4-Bromofluorobenze	ene	74	70	130	
Compounds:		Concent ug/m3	tration ppbv		
Methyl t-butyl ethe	r (MTBE)	<14	<3.9		
1,2-Dichloroethane	(EDC)	< 0.32	< 0.078		
Benzene		3.4	1.1		
Toluene		15	4.0		
1,2-Dibromoethane	(EDB)	< 0.6	< 0.078		
Ethylbenzene		3.9	0.90		
m,p-Xylene		15	3.5		
o-Xylene		6.5	1.5		
Naphthalene		<2	< 0.39		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-04-072 07/30/19 07/25/19 08/03/19 Air ug/m3	2519	Client: Project: Lab ID: Data File: Instrument: Operator:		Aspect Consulting, LLC Aloha Cafe 180357 907561-05 1/3.2 080217.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	ecovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	89	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Methyl t-butyl ethe	er (MTBE)	<5.8	<1.6		
1,2-Dichloroethane	(EDC)	< 0.13	< 0.032		
Benzene		1.2	0.36		
Toluene		11	2.9		
1,2-Dibromoethane	(EDB)	< 0.25	< 0.032		
Ethylbenzene		3.4	0.78		
m,p-Xylene		13	3.1		
o-Xylene		5.7	1.3		
Naphthalene		< 0.84	< 0.16		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVS-02-07 07/30/19 07/25/19 08/03/19 Air ug/m3	72519	Client: Project: Lab ID: Data File: Instrument: Operator:		Aspect Consulting, LLC Aloha Cafe 180357 907561-06 1/3.1 080218.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	covery:	Limit:	Limit:	
4-Bromofluorobenz	ene	86	70	130	
Compounds:		Concent ug/m3	tration ppbv		
Methyl t-butyl ethe	r (MTBE)	< 5.6	<1.5		
1,2-Dichloroethane	(ÈDC)	< 0.13	< 0.031		
Benzene	. ,	3.3	1.0		
Toluene		13	3.3		
1,2-Dibromoethane	(EDB)	< 0.24	< 0.031		
Ethylbenzene		2.9	0.66		
m,p-Xylene		9.5	2.2		
o-Xylene		4.7	1.1		
Naphthalene		< 0.81	< 0.15		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVS-01-0' 07/30/19 07/25/19 08/03/19 Air ug/m3	72519	Clier Proje Lab I Data Instr Oper	nt: ect: ID: File: rument: rator:	Aspect Consulting, LLC Aloha Cafe 180357 907561-07 1/3.1 080219.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	ecovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	92	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Methyl t-butyl ethe	er (MTBE)	<5.6	< 1.5		
1,2-Dichloroethane	(EDC)	< 0.13	< 0.031		
Benzene		2.2	0.68		
Toluene		9.3	2.5		
1,2-Dibromoethane	(EDB)	< 0.24	< 0.031		
Ethylbenzene		2.6	0.61		
m,p-Xylene		9.9	2.3		
o-Xylene		4.5	1.0		
Naphthalene		< 0.81	< 0.15		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Trip Blank 07/30/19 07/25/19 08/02/19 Air ug/m3	Cli Pro La Da Ins Op	ent: oject: b ID: ta File: strument: erator:	Aspect Consulting, LLC Aloha Cafe 180357 907561-08 080213.D GCMS7 bat
	9	6 Lower	Upper	
Surrogates:	Recovery	: Limit:	Limit:	
4-Bromofluorobenze	ene 8	1 70	130	
Compounds:	Conce ug/m	entration 3 ppbv		
Methyl t-butyl ethe	r (MTBE) <1.8	8 < 0.5		
1,2-Dichloroethane	(EDC) <0.04	4 <0.01		
Benzene	< 0.32	2 <0.1		
Toluene	< 0.3	8 < 0.1		
1,2-Dibromoethane	(EDB) <0.07	7 <0.01		
Ethylbenzene	< 0.4	3 <0.1		
m,p-Xylene	< 0.8	7 <0.2		
o-Xylene	< 0.4	3 <0.1		
Naphthalene	< 0.2	6 < 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appli Not Appli 08/02/19 Air ug/m3	Blank icable icable	Client: Project: Lab ID: Data File: Instrument: Operator:		Aspect Consulting, LLC Aloha Cafe 180357 09-1852 mb 080212.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	R	ecovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	91	70	130	
Compounds:		Concent ug/m3	cration ppbv		
Methyl t-butyl ethe	r (MTBE)	<1.8	< 0.5		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
Benzene	, ,	< 0.32	< 0.1		
Toluene		< 0.38	< 0.1		
1,2-Dibromoethane	(EDB)	< 0.077	< 0.01		
Ethylbenzene		< 0.43	< 0.1		
m,p-Xylene		< 0.87	< 0.2		
o-Xylene		< 0.43	< 0.1		
Naphthalene		< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/19 Date Received: 07/30/19 Project: Aloha Cafe 180357, F&BI 907561

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 907561-01 1/3.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	410	440	7
APH EC9-12 aliphatics	ug/m3	2,200	2,100	5
APH EC9-10 aromatics	ug/m3	<80	<80	nm

Laboratory Code: Laboratory Control Sample

assilatory coast Bassilatory (onor or wampio				
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
APH EC5-8 aliphatics	ug/m3	45	96	70-130	
APH EC9-12 aliphatics	ug/m3	45	127	70-130	
APH EC9-10 aromatics	ug/m3	45	92	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/19 Date Received: 07/30/19 Project: Aloha Cafe 180357, F&BI 907561

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

····· J ···· J ···· J ···· J	I			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl t-butyl ether (MTBE)	ppbv	5	83	70-130
1,2-Dichloroethane (EDC)	ppbv	5	105	70-130
Benzene	ppbv	5	94	70-130
Toluene	ppbv	5	91	70-130
1,2-Dibromoethane (EDB)	ppbv	5	103	70-130
Ethylbenzene	ppbv	5	103	70-130
m,p-Xylene	ppbv	10	104	70-130
o-Xylene	ppbv	5	107	70-130
Naphthalene	ppbv	5	81	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				SAMPI			DE CU	STOL)Y	ME	0-7	30	olig Porott of
Report To Andrew Yonk	ofski		<u> </u>	SAMPLERS (signature)						TURNAROUND TIME			
Company Aspect Conse	iling			PROJ	PROJECT NAME					PO#			🗘 Standard
Address 710 2nd Ave	Ste 550) Seeffe	WA	Alol	n Ca	se/				IN I	135	> +	Rush charges authorized by:
City, State, ZIP			REPC	REPORTING LEVEL				INVOICE TO			O SAMPLE DISPOSAL Dispose after 30 days		
Phone 316 617.0499 F	none316.617.0499 Emaile yonKorsKill correctioned they			I Indo	□ Indoor Air □ Deep Soil Gas 54 Sub Slab/Soil Gas □ SVE/Grab				3				Archive Samples Other
		.	·r · · · · · ·		· · · · · · · · · · · · · · · · · · ·	T	·····	·	ANA	LYSI	S RE	QUE	STED
Sample Name	- Lab	Canister	Flow Contr.	Date	Field Initial Press.	Field Initial Time	Field Final Press.	Field Final Time	TO-15 Full Scan	TO-15 BTEXN	TO-15 cVOCs	57. 10-15 BTEX, MT736 DB. EDE, Nurth Hallone	H Notes
GP-01-072519	6(3664	242	7/25/19	30	1010	5	1016				X	All sampled For BTEX, MTBE, EDB, EDC,
GP-02-072519	02	3540	255	7/25/19	30	1102	5	107			4	X	Nephsthalane, & MA NPH
GP-03-072519	03	3667	257	7/25/14	30	1135	5	141				×	
Dup-1-072519	ØH	2302	224	7/25/19	30		5					X	Collected within the time of the other sur
GP-04-072519	05	3287	204	7/25/19	30	1222	5	1227		:	-	X	
SVS-02-072519	04	2297	244	7/25/19	30	1330	5	1335				X	-
SVS-01-072519	67	3387	259	7/25/19	30	1357	5	1403				х	
TripiBlank	08	2432			-		-	-				X	Samples received at 25 °C

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Paniel Bebrak	Aspect Consulting	7/30/14	1576
Seattle, WA 98119-2029	Received by:	LAUSS NICALED	FEDEX	7/20/19	3:76
Ph. (206) 285-8282	Relinquished by:		,		
Fax (206) 283-5044	Received by	Leve all	En a	and	-1536
FORMS\COC\COCTO-15.DOC			pa	7/30/10	1
		·· 1'		1109	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 28, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the additional results from the testing of material submitted on July 30, 2019 from the Aloha Cafe 180357, F&BI 907561 project. There are 7 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0828R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 30, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907561 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
907561 -01	GP-01-072519
907561 -02	GP-02-072519
907561 -03	GP-03-072519
907561 -04	Dup-1-072519
907561 -05	GP-04-072519
907561 -06	SVS-02-072519
907561 -07	SVS-01-072519
907561 -08	Trip Blank

All quality control requirements were acceptable.
ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-0	3-072519	Client	t:	Aspect Consulting, LLC
Date Received:	07/30	/19	Projec	et:	Aloha Cafe 180357, F&BI 907561
Date Collected:	07/25	/19	Lab II	D:	907561-03 1/37
Date Analyzed:	08/14	/19	Data	File:	081328.D
Matrix:	Air		Instru	ument:	GCMS7
Units:	ug/m	3	Opera	itor:	bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	115	70	130	
	Cor	ncentration			
Compounds:		ug/m3			
APH EC5-8 aliphat	tics	8,700			
APH EC9-12 alipha	atics	9,600			
APH EC9-10 aroma	atics	<920			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Dup-1-0725	519	Client	•	Aspect Consulting, LLC
Date Received:	07/30/19		Projec	t:	Aloha Cafe 180357, F&BI 907561
Date Collected:	07/25/19		Lab II):	907561-04 1/39
Date Analyzed:	08/14/19		Data l	File:	081329.D
Matrix:	Air		Instru	iment:	GCMS7
Units:	ug/m3		Opera	tor:	bat
		%	Lower	Upper	
Surrogates:	Reco	very:	Limit:	Limit:	
4-Bromofluorobenz	zene	106	70	130	
	Concentra	ation			
Compounds:	u	g/m3			
APH EC5-8 alipha	tics §	9,100			
APH EC9-12 alipha	atics 11	1,000			
APH EC9-10 arom	atics	<970			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SVS-02-072519	Client	t:	Aspect Consulting, LLC
Date Received:	07/30/19	Projec	et:	Aloha Cafe 180357, F&BI 907561
Date Collected:	07/25/19	Lab I	D:	907561-06 1/7.7
Date Analyzed:	08/14/19	Data	File:	081327.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Opera	ator:	bat
	%	b Lower	Upper	
Surrogates:	Recovery	: Limit:	Limit:	
4-Bromofluorobenz	zene 81	1 70	130	
	Concentration	1		
Compounds:	ug/m3	}		
APH EC5-8 alipha	tics 1,700)		
APH EC9-12 aliph	atics 860)		
APH EC9-10 arom	atics <190)		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	X	Client	:	Aspect Consulting, LLC
Date Received:	Not Applicabl	e	Projec	:t:	Aloha Cafe 180357, F&BI 907561
Date Collected:	Not Applicabl	e	Lab II):	09-1864 mb
Date Analyzed:	08/13/19		Data I	File:	081310.D
Matrix:	Air		Instru	iment:	GCMS7
Units:	ug/m3		Opera	tor:	bat
		%	Lower	Upper	
Surrogates:	Recove	ry:	Limit:	Limit:	
4-Bromofluorobenz	zene 1	.03	70	130	
	Concentrati	ion			
Compounds:	ug/i	m3			
APH EC5-8 alipha	tics <	46			
APH EC9-12 aliph	atics <	35			
APH EC9-10 arom	atics <	25			

ENVIRONMENTAL CHEMISTS

Date of Report: 08/28/19 Date Received: 07/30/19 Project: Aloha Cafe 180357, F&BI 907561

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 908226-03 1/3.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	390	440	12
APH EC9-12 aliphatics	ug/m3	350	340	3
APH EC9-10 aromatics	ug/m3	<82	<82	nm

Laboratory Code: Laboratory Control Sample

Lasoratory coact Lasoratory	on on bounding to				
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
APH EC5-8 aliphatics	ug/m3	45	97	70-130	
APH EC9-12 aliphatics	ug/m3	45	123	70-130	
APH EC9-10 aromatics	ug/m3	45	91	70-130	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				SAMPI			DE CU	STOL)Y	ME	0-7	30	olig Porott of
Report To Andrew Yonk	ofski		<u> </u>	SAMI	LERS (re)			مير 1			TURNAROUND TIME
Company Aspect Conse	iling			PROJ	ECT NA	AME				5	PC)#	🗘 Standard
Address 710 2nd Ave	Ste 550) Seeffe	WA	Alot	n Ca	se .				IN I	135	> +	Rush charges authorized by:
City, State, ZIP				REPC	RTING	LEVEL	1			IN	VOI	CE T	O SAMPLE DISPOSAL Dispose after 30 days
Phone 316 617.0499 F	Email <u>e yon</u> l	KofsKiQcs	recticonsul H	I Indo	oor Air Slab/Soi	l Gas	Deep SVE/C	Soil Gas Brab	3				Archive Samples Other
		.	·r · · · · · ·		· · · · · · · · · · · · · · · · · · ·	T	·····	·	ANA	LYSI	S RE	QUE	STED
Sample Name	Lab	Canister	Flow Contr.	Date	Field Initial Press.	Field Initial Time	Field Final Press.	Field Final Time	TO-15 Full Scan	TO-15 BTEXN	TO-15 cVOCs	5 TO-15 BTEX, MT736	HAY Notes
GP-01-072519	6(3664	242	7/25/19	30	1010	5	1016			-	X	All sampled FOT BTEX, MTBE, EDB, EDC,
GP-02-072519	02	3540	255	7/25/19	30	1102	5	107			4	X	Nephsticker, & MA NPH
GP-03-072519	03	367	257	7/25/14	30	1135	5	141		ĺ		X	
Dup-1-072519	ØH	2302	224	7/25/19	30		5					X	Collected within the time of the other sur
GP-04-072519	05	3287	204	7/25/19	30	1222	5	1227		:	-	X	
SVS-02-072519	04	2297	244	7/25/19	30	1330	5	1335				Х	-
SVS-01-072519	67	3387	259	7/25/19	30	1357	5	1403				х	
TripiBlank	08	2432	-		-	-	-	-				X	Samples received at 25 °C

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Paniel Bebrak	Aspect Consulting	7/30/14	1576
Seattle, WA 98119-2029	Received by:	LAUSS NICALED	FEDEX	7/20/19	3:76
Ph. (206) 285-8282	Relinquished by:		,		
Fax (206) 283-5044	Received by	Leve all	End al	and	-1536
FORMS\COC\COCTO-15.DOC			pa	7/30/10	1
		·· 1'		1109	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 12, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 1, 2019 from the Aloha Cafe 180357, F&BI 908023 project. There are 51 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0812R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 1, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
908023 -01	MW-16-073119
908023 -02	MW-18-073119
908023 -03	MW-14-073119
908023 -04	MW-13-073119
908023 -05	Dup-01-073119
908023 -06	MW-17-073119
908023 -07	MW-19-073119
908023 -08	MW-7-073119
908023 -09	MW-11-073119
908023 -10	MW-6-073119
908023 -11	MW-12-080119
908023 -12	MW-2-080119
908023 -13	MW-10-080119
908023 -14	MW-9-080119
908023 -15	Rinse Blank-080119
908023 -16	MW-1-080119
908023 -17	Trip Blank

The NWTPH-Dx surrogate in sample Rinse Blank-080119 exceeded the acceptance criteria. No material was detected in the sample, therefore the results were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Date Extracted: 08/06/19 Date Analyzed: 08/06/19, 08/07/19, 08/08/19, and 08/12/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-16-073119 908023-01	<100	109
MW-18-073119 908023-02	<100	110
MW-14-073119 908023-03	7,500	106
MW-13-073119 ₉₀₈₀₂₃₋₀₄	1,400	92
Dup-01-073119 908023-05	9,700	107
MW-17-073119 908023-06 1/10	1,800	100
MW-19-073119 908023-07	<100	109
MW-7-073119 908023-08	<100	113
MW-11-073119 908023-09 1/20	13,000	98
MW-6-073119 908023-10	<100	115

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Date Extracted: 08/06/19 Date Analyzed: 08/06/19, 08/07/19, 08/08/19, and 08/12/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-12-080119 908023-11	240	119
MW-2-080119 908023-12	1,600	114
MW-10-080119 908023-13 1/20	19,000	109
MW-9-080119 908023-14	<100	101
Rinse Blank-080119 908023-15	<100	91
MW-1-080119 908023-16 1/20	24,000	105
Trip Blank 908023-17	<100	95
Method Blank ^{09-1950 MB}	<100	99
Method Blank ^{09-1903 MB}	<100	116

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Date Extracted: 08/02/19 Date Analyzed: 08/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-16-073119 908023-01	84 x	<250	119
MW-18-073119 908023-02	55 x	<250	108
MW-14-073119 908023-03	1,200 x	330 x	121
MW-13-073119 908023-04	530 x	<250	131
$\begin{array}{c} \text{Dup-01-073119}\\ _{908023\cdot05}\end{array}$	1,100 x	270 х	116
MW-17-073119 908023-06	320 x	<250	113
MW-19-073119 908023-07	<50	<250	115
MW-7-073119 908023-08	83 x	<250	114
MW-11-073119 908023-09	1,100 x	<250	116
MW-6-073119 908023-10	68 x	<250	118
MW-12-080119 908023-11	310 x	<250	114

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Date Extracted: 08/02/19 Date Analyzed: 08/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-2-080119 908023-12	790 x	<250	128
MW-10-080119 908023-13	1,900 x	260 x	125
MW-9-080119 908023-14	88 x	<250	122
Rinse Blank-080119 908023-15	<50	<250	142 vo
MW-1-080119 908023-16	2,100 x	1,000 x	126
Method Blank 09-1899 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Data Bacaiyad:	MW-16-073119 08/01/19	Client: Project:	Aspect Consulting, LLC
Date Extracted:	08/05/19	Lab ID:	908023-01
Date Analyzed:	08/05/19	Data File:	908023-01.059
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Data Pagaiyadi	MW-18-073119	Client:	Aspect Consulting, LLC
Date Received.	08/05/19	Lah ID.	Alona Cale 100357, F&DI 906025 908023-02
Date Analyzed:	08/05/19	Data File:	908023-02.062
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-14-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-03
Date Analyzed:	08/05/19	Data File:	908023-03.063
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Data Bacaiyad:	MW-13-073119 08/01/19	Client: Project:	Aspect Consulting, LLC
Date Extracted:	08/05/19	Lab ID:	908023-04
Date Analyzed:	08/05/19	Data File:	908023-04.064
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	Dup-01-073119 08/01/19	Client: Proiect:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-05
Date Analyzed:	08/05/19	Data File:	908023-05.065
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte	Concentration		
Analyte.	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-17-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-06
Date Analyzed:	08/05/19	Data File:	908023-06.066
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-19-073119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloba Cafe 180357 F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-07
Date Analyzed:	08/05/19	Data File:	908023-07.069
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-7-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-08
Date Analyzed:	08/05/19	Data File:	908023-08.070
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-11-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-09
Date Analyzed:	08/05/19	Data File:	908023-09.071
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

3.49

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-6-073119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloba Cafe 180357 F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-10
Date Analyzed:	08/05/19	Data File:	908023-10.072
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
	ug 1 (pps)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

MW-12-080119	Client:	Aspect Consulting, LLC
08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
08/05/19	Lab ID:	908023-11
08/05/19	Data File:	908023-11.073
Water	Instrument:	ICPMS2
ug/L (ppb)	Operator:	SP
Concentration		
ug/L (ppb)		
	MW-12-080119 08/01/19 08/05/19 08/05/19 Water ug/L (ppb) Concentration ug/L (ppb)	MW-12-080119Client:08/01/19Project:08/05/19Lab ID:08/05/19Data File:WaterInstrument:ug/L (ppb)Operator:

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-2-080119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-12
Date Analyzed:	08/05/19	Data File:	908023-12.074
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-10-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-13
Date Analyzed:	08/05/19	Data File:	908023-13.075
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-9-080119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloba Cafe 180357 F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-14
Date Analyzed:	08/05/19	Data File:	908023-14.076
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed:	Rinse Blank-080119 08/01/19 08/05/19 08/05/19 Woton	Client: Project: Lab ID: Data File:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-15 908023-15.077 ICDMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)	1	

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-1-080119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-16
Date Analyzed:	08/05/19	Data File:	908023-16.078
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	NA	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	I9-472 mb
Date Analyzed:	08/05/19	Data File:	I9-472 mb.057
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyta	Concentration		
Analyte.	ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-16-073	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-01
Date Analyzed:	08/02/19		Data File:	080221.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	95	50	150
Toluene-d8		104	50	150
4-Bromofluorobenze	ene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-18-073 08/01/19 08/02/19 08/02/19 Water ug/L (ppb)	9119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-02 080222.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 99 105 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Compounds: Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Trichloroethene Toluene	r (MTBE) thene ene (EDC) ne	ug/L (ppb) <0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 1.0 <1 <1		
Tetrachloroethene 1,2-Dibromoethane	(EDB)	<1 <1		
Ethylbenzene m,p-Xylene o-Xylene		<1 <2 <1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-14-073 08/01/19 08/02/19 08/02/19 Water ug/L (ppb)	3119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-03 080223.D GCMS9 MS/AEN
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1.2-Dichloroethane	-d4	98	50	150
Toluene-d8		106	50	150
4-Bromofluorobenze	ene	101	50	150
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		2.7		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	r (MTBE)	<1		
trans-1,2-Dichloroe	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1,2-Dichloroethane	(EDC)	<1		
1,1,1-Trichloroetha	ne	<1		
Benzene		1,300 ve		
Trichloroethene		<1		
Toluene		32		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		130		
m,p-Xylene		72		
o-Xylene		18		
Naphthalene		50		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-14-073 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Aloha Cafe 180357 908023-03 1/100 080543.D GCMS9 MS/AEN	LLC , F&BI 908023
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane-	·d4	96	50	150	
Toluene-d8		100	50	150	
4-Bromofluorobenze	ene	95	50	150	
Compounds		Concentration			
Compounds.		ug/Li (ppb)			
Vinyl chloride		<20			
Chloroethane		<100			
1,1-Dichloroethene		<100			
Methylene chloride		<500			
Methyl t-butyl ether	r (MTBE)	<100			
trans-1,2-Dichloroe	thene	<100			
1,1-Dichloroethane		<100			
cis-1,2-Dichloroethe	ene	<100			
1,2-Dichloroethane	(EDC)	<100			
1,1,1-Trichloroethan	ne	<100			
Benzene		2,400			
Trichloroethene		<100			
Toluene		<100			
Tetrachloroethene		<100			
1,2-Dibromoethane	(EDB)	<100			
Ethylbenzene		120			
m,p-Xylene		<200			
o-Xylene		<100			
Naphthalene		<100			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-13-073 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-04 080530.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	-d4 ene	% Recovery: 99 104 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Compounds: Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Toluene Tetrachloroethene	r (MTBE) thene ene (EDC) ne	ug/L (ppb) <0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 7.5 <1 <1 <1 <1 <1 <1		
1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	(EDB)	<1 <1 <1 <2 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Dup-01-073 08/01/19 08/02/19 08/02/19 Water ug/L (ppb)	3119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-05 080225.D GCMS9 MS/AEN
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1.2-Dichloroethane-	·d4	98	50	150
Toluene-d8		105	50	150
4-Bromofluorobenze	ene	103	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Vinyl chloride		2.8		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	r (MTBE)	<1		
trans-1,2-Dichloroe	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1,2-Dichloroethane	(EDC)	<1		
1,1,1-Trichloroethan	ne	<1		
Benzene		1,400 ve		
Trichloroethene		<1		
Toluene		45		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		190 ve		
m,p-Xylene		120		
o-Xylene		25		
Naphthalene		77		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Dup-01-073 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LL0 Aloha Cafe 180357, F& 908023-05 1/100 080544.D GCMS9 MS/AEN	C BI 908023
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	95	50	150	
Toluene-d8		99	50	150	
4-Bromofluorobenz	ene	96	50	150	
		Concentration			
Compounds:		ug/L (ppb)			
Vinyl chloride		<20			
Chloroethane		<100			
1,1-Dichloroethene		<100			
Methylene chloride		<500			
Methyl t-butyl ethe	er (MTBE)	<100			
trans-1,2-Dichloroe	thene	<100			
1,1-Dichloroethane		<100			
cis-1,2-Dichloroethe	ene	<100			
1,2-Dichloroethane	(EDC)	<100			
1,1,1-Trichloroetha	ne	<100			
Benzene		3,500			
Trichloroethene		<100			
Toluene		<100			
Tetrachloroethene		<100			
1,2-Dibromoethane	(EDB)	<100			
Ethylbenzene		170			
m,p-Xylene		<200			
o-Xylene		<100			
Naphthalene		<100			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-17-0732 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-06 080531.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 99 105 101	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:MVDate Received:08/Date Extracted:08/Date Analyzed:08/Matrix:WaUnits:ug/	V-19-073119 01/19 02/19 05/19 ter L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-07 080532.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 98 105 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether (M trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethane (ED 1,1,1-Trichloroethane Benzene Trichloroethene Toluene Tetrachloroethene 1,2 Dibromoothano (ED	$\begin{array}{c} & < 0.2 \\ < 1 \\ < 1 \\ < 5 \\ TBE \\ (e) < 1 \\ (e) < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 0.35 \\ 1.0 \\ < 1 \\ 17 \\ (B) \\ < 1 \\ \end{array}$		
1,2-Dibromoethane (ED Ethylbenzene m,p-Xylene o-Xylene Naphthalene	B) <1 <1 <2 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-7-07311 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	.9	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-08 080533.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 105 101	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-073	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-09
Date Analyzed:	08/02/19		Data File:	080229.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	50	150
Toluene-d8		106	50	150
4-Bromofluorobenz	ene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		320 ve		
Toluene		1,600 ve		
Ethylbenzene		450 ve		
m,p-Xylene		1,300 ve		
o-Xylene		460 ve		
Naphthalene		42		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-073	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-09 1/100
Date Analyzed:	08/05/19		Data File:	080545.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	ene	95	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
1,2-Dibromoethane	e (EDB)	<100		
Benzene		320		
Toluene		1,800		
Ethylbenzene		410		
m,p-Xylene		1,000		
o-Xylene		400		
Naphthalene		<100		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-6-07311 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	.9	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-10 080534.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 104 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-12-0801 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-11 080535.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 106 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <1 0.59 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-0801 08/01/19 08/02/19 08/02/19 Water ug/L (ppb)	19	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-12 080232.D GCMS9 MS/AEN
Surrogates:		% Recovery	Lower Limit:	Upper Limit:
1.2-Dichloroethane	-d4	97	50	150
Toluene-d8		104	50	150
4-Bromofluorobenze	ene	101	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		13		
Toluene		2.2		
Ethylbenzene		6.5		
m,p-Xylene		5.6		
o-Xylene		1.8		
Naphthalene		33		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-10-080	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-13
Date Analyzed:	08/02/19		Data File:	080233.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	95	50	150
Toluene-d8		104	50	150
4-Bromofluorobenz	ene	102	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		1,200 ve		
Toluene		44		
Ethylbenzene		680 ve		
m,p-Xylene		1,300 ve		
o-Xylene		2.7		
Naphthalene		190 ve		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-10-080	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-13 1/100
Date Analyzed:	08/05/19		Data File:	080546.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	50	150
Toluene-d8		99	50	150
4-Bromofluorobenz	ene	94	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
1,2-Dibromoethane	(EDB)	<100		
Benzene		2,400		
Toluene		<100		
Ethylbenzene		670		
m,p-Xylene		1,100		
o-Xylene		<100		
Naphthalene		160		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-9-0801	19	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-14
Date Analyzed:	08/05/19		Data File:	080536.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	50	150
Toluene-d8		105	50	150
4-Bromofluorobenze	ene	99	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Rinse Blank 08/01/19 08/02/19 08/07/19 Water ug/L (ppb)	-080119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-15 080738.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 97 97	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-1-0801	19	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-16
Date Analyzed:	08/02/19		Data File:	080236.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		104	50	150
4-Bromofluorobenzene		100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		1,400 ve		
Toluene		420 ve		
Ethylbenzene		550 ve		
m,p-Xylene		1,500 ve		
o-Xylene		380 ve		
Naphthalene		130		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-1-0801	19	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-16 1/100
Date Analyzed:	08/05/19		Data File:	080547.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	97	50	150
Toluene-d8		100	50	150
4-Bromofluorobenzene		95	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
1,2-Dibromoethane	(EDB)	<100		
Benzene		4,200		
Toluene		410		
Ethylbenzene		520		
m,p-Xylene		1,300		
o-Xylene		350		
Naphthalene		110		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-17 080537.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ne	% Recovery: 97 104 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Toluene Tetrachloroethene 1,2-Dibromoethane Ethylbenzene m,p-Xylene	r (MTBE) hene ne (EDC) ne (EDB)	< 0.2 < 1 < 2 < 1		
o-Xylene Naphthalene		<1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 08/02/19 08/02/19 Water ug/L (ppb)	nk ble	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 09-1853 mb 080220.D GCMS9 MS/AEN
Surrogates:	14	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-	a 4	100	50 50	150
Toluene-d8		103	50	150
4-Bromofluorobenze	ene	99	50	150
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		< 0.2		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	r (MTBE)	<1		
trans-1,2-Dichloroet	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1,2-Dichloroethane	(EDC)	<1		
1,1,1-Trichloroetha	ne	<1		
Benzene		< 0.35		
Trichloroethene		<1		
Toluene		<1		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 908067-06 (Duplicate)							
	Reporting	Samp	le Du	plicate	RPD		
Analyte	Units	Resul	t R	esult	(Limit 20)		
Gasoline	ug/L (ppb)	<100) <	:100	nm		
Laboratory Code: Lab	oratory Contr	ol Sample					
			Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria	_		
Gasoline	ug/L (ppb)	1,000	95	69-134	_		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	5,000	97	88	61-133	10

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	: 908023-01	(Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	<1	68 b	68 b	75-125	0 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 908023-11 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	98	61-139
Chloroethane	ug/L (ppb)	50	<1	104	55 - 149
1,1-Dichloroethene	ug/L (ppb)	50	<1	113	71-123
Methylene chloride	ug/L (ppb)	50	<5	88	61 - 126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68 - 125
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	99	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	96	63-126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	104	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	103	75 - 121
Benzene	ug/L (ppb)	50	0.72	100	75 - 114
Trichloroethene	ug/L (ppb)	50	<1	100	73 - 122
Toluene	ug/L (ppb)	50	<1	102	73-117
Tetrachloroethene	ug/L (ppb)	50	<1	100	40 - 155
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	110	79-120
Ethylbenzene	ug/L (ppb)	50	<1	103	66 - 124
m,p-Xylene	ug/L (ppb)	100	<2	106	63 - 128
o-Xylene	ug/L (ppb)	50	<1	102	64 - 129
Naphthalene	ug/L (ppb)	50	<1	104	60-145

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

i i	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	96	100	70-128	4
Chloroethane	ug/L (ppb)	50	104	108	66-149	4
1,1-Dichloroethene	ug/L (ppb)	50	109	112	72 - 121	3
Methylene chloride	ug/L (ppb)	50	85	87	63-132	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	92	96	70 - 122	4
trans-1,2-Dichloroethene	ug/L (ppb)	50	98	100	76-118	2
1,1-Dichloroethane	ug/L (ppb)	50	96	98	77-119	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	94	97	76-119	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	103	106	75 - 116	3
1,1,1-Trichloroethane	ug/L (ppb)	50	103	106	80-116	3
Benzene	ug/L (ppb)	50	96	100	75 - 116	4
Trichloroethene	ug/L (ppb)	50	100	103	72 - 119	3
Toluene	ug/L (ppb)	50	100	104	79 - 115	4
Tetrachloroethene	ug/L (ppb)	50	100	103	78-109	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	111	117	82-118	5
Ethylbenzene	ug/L (ppb)	50	102	106	83-111	4
m,p-Xylene	ug/L (ppb)	100	106	110	81-112	4
o-Xylene	ug/L (ppb)	50	101	104	81-117	3
Naphthalene	ug/L (ppb)	50	95	99	72-131	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

90802	3		SAMPLI	E CHAIN	IOF	CUS	ST(DDY	7	М	E	08	10	1/10	1	V	W5/AI	61.005
Report To ANDICA JEN	Kofski		SAMPL	ERS (signe	Hure)	~10	_									Page TUR	# /	TIME
Company ASPect			PROJE	CT NAME	- 120	<u> </u>					Р	O #				ndaro	d Turnarou	nd
Address			Abha	. Cate						180)3	57			lush	charg	ges authori:	sed by:
City, State, ZIP			REMAR	KS						IN	VO	ICE T	O			SAM	IPLE DISP	OSAL
Phone 316 617.0449 En	naila yon Kotstrie	Daspections	Willing Com] Arcl] Oth	hive \$ er	Samples	
									ŀ	ANAI	ANSI	ES RE	QU	ESTE	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	BTEX & LOU	7738, EPB, EDC	Total read 6010	ζυούς	N	otes
MW-16-073119	0(A-H	07/si/19	0830	Wites	8		Х	X					<u>×</u>	X	X			
MW-18-073119	62 A-K		0925		2811		X	X					X	X	X	X		
MW-14-073119	03		1030		P3211		Х	Х					Х	Х	Х	X	HL ador P.	esent
MW-13-073119	04		1240		11		X	X					Х	X	X	X		
Dup-01-073119	05 1				11		Х	X					X	X	X	X		
MW-17-073119	06 A-H		0820		8		Х	χ					X	X	X			
MW-19-073119	67 A-K		0910		11		X	X					Х	X	X	X		
MW-7-073119	DB A-H		1020		8		Х	X					X	X	χ		,	
MW-11-073119	09		1115		8		Х	X					X	X	Х			
MW-6-073119	TD V	V	1245	\checkmark	8		Х	X					χ	X	X			
Friedman & Bruva, Inc.	SI(Relinguished by	GNATURE	-A		PRIN	JT N.	AM	E		L		C	OM	PAN	Ŷ		DATE	TIME
3012 16 th Avenue West	Received by:	De	YXas-	1 ANC	1/2	no no	¥C-		· · · · · ·		A	spe	$\frac{r}{r}$	- Cad	sul	tens	8/14	1717
Seattle, WA 98119-2029	Relinquished by:	Mone		HO	NG	N	(E	en/	1E	\mathcal{N}		FPO	7					~
Ph. (206) 285-8282	Received by:											Sa	mpl	les re	ceive	ed at	<u>4</u> °c	

0 n (1) 3			SAMPLI	E CHAIN	VOF	CUS	STC	DDY	Mt	Ęl	18/0]l	9	VU	151	ATG/LOS
Report To A Data / D	Kofski		SAMPL	ERS (signo	ature)			31	voo			1		I T	Page #	# of NAROUND TIME
Company ASPECT			PROJE	CT NAME	//		E	-01		Р	O #			-Stan	dard	l Turnaround
Address		· · · · · · · · · · · · · · · · · · ·	Alo	he Ca	Fe				12	3039	57			Rush c	harg	ges authorized by:
City State ZIP			REMAR	RKS					I	NVO	ICE 1	ГО		4- T ion	SAM	PLE DISPOSAL
Phone 316.617.0499 Em	ailayonkofski	Casparton	- soliting-con] Arch] Othe	ive S	Samples
				1		r			AN	ALYS	ES RI	EQU		ED		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	BTEX 8210	MTBE, CDB, CDC Anaph talene 820	Total (red 6010		Notes
MU-12-080119	11A-H	8/01/19	1110	Water	8		Х	X				χ	X	X		•
MW-2-080119	12		1205	Ì	8		χ	χ				X	X	Х		HC alor Present
MW-10-090119	13		1330		8		Х	X				χ	X	χ		HC adar Present
MW-9-080119	14		1420		8		Х	Х				X	X	X		
Rinso Blank-080119	15		1455		8		χ	X				Ϋ́	χ	X		
MW-1-080119	16	\checkmark	1530	V	8		Х	χ				Х	\checkmark	Х		the odler Present
Trip Blank 350th AB OF EF	5 17 F				6			Ø	X	X						(X) - Grast + Gr, Gras Taget VOLS (VOLS) PEC DB E/1/10 -
[]														<u> </u>]	
Friedman & Bruya, Inc.	Relinquished by	GNATURE	2/	Dani	$\frac{PRIN}{12}$	Sho	AIVII SCI	<u></u>		As	Pe	=77	ran Sansi	r oltin	9	8/1/19 1/717
3012 16 th Avenue West	Received by: \mathcal{H}	onto		+01	VGi	u		$\overline{\mathcal{N}}$		F	Bj			`	<u></u>	VV
Seattle, WA 98119-2029	Relinquished by:	0			•	1										
Ph. (206) 285-8282	Received by:		•.									San	ples	receiv	veda	at <u>4</u> °C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 11, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included is the amended report from the testing of material submitted on August 1, 2019 from the Aloha Cafe 180357, F&BI 908023 project. The second set of NWTPH-Gx quality assurance was added to the report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0812R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 12, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 1, 2019 from the Aloha Cafe 180357, F&BI 908023 project. There are 52 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0812R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 1, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
908023 -01	MW-16-073119
908023 -02	MW-18-073119
908023 -03	MW-14-073119
908023 -04	MW-13-073119
908023 -05	Dup-01-073119
908023 -06	MW-17-073119
908023 -07	MW-19-073119
908023 -08	MW-7-073119
908023 -09	MW-11-073119
908023 -10	MW-6-073119
908023 -11	MW-12-080119
908023 -12	MW-2-080119
908023 -13	MW-10-080119
908023 -14	MW-9-080119
908023 -15	Rinse Blank-080119
908023 -16	MW-1-080119
908023 -17	Trip Blank

The NWTPH-Dx surrogate in sample Rinse Blank-080119 exceeded the acceptance criteria. No material was detected in the sample, therefore the results were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Date Extracted: 08/06/19 Date Analyzed: 08/06/19, 08/07/19, 08/08/19, and 08/12/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-16-073119 908023-01	<100	109
MW-18-073119 908023-02	<100	110
MW-14-073119 908023-03	7,500	106
MW-13-073119 ₉₀₈₀₂₃₋₀₄	1,400	92
Dup-01-073119 908023-05	9,700	107
MW-17-073119 908023-06 1/10	1,800	100
MW-19-073119 908023-07	<100	109
MW-7-073119 908023-08	<100	113
MW-11-073119 908023-09 1/20	13,000	98
MW-6-073119 908023-10	<100	115

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Date Extracted: 08/06/19 Date Analyzed: 08/06/19, 08/07/19, 08/08/19, and 08/12/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-12-080119 908023-11	240	119
MW-2-080119 908023-12	1,600	114
MW-10-080119 908023-13 1/20	19,000	109
MW-9-080119 908023-14	<100	101
Rinse Blank-080119 908023-15	<100	91
MW-1-080119 908023-16 1/20	24,000	105
Trip Blank 908023-17	<100	95
Method Blank ^{09-1950 MB}	<100	99
Method Blank ^{09-1903 MB}	<100	116

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Date Extracted: 08/02/19 Date Analyzed: 08/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-16-073119 908023-01	84 x	<250	119
MW-18-073119 908023-02	55 x	<250	108
MW-14-073119 908023-03	1,200 x	330 x	121
MW-13-073119 908023-04	530 x	<250	131
$\begin{array}{c} \text{Dup-01-073119}\\ _{908023\cdot05}\end{array}$	1,100 x	270 х	116
MW-17-073119 908023-06	320 x	<250	113
MW-19-073119 908023-07	<50	<250	115
MW-7-073119 908023-08	83 x	<250	114
MW-11-073119 908023-09	1,100 x	<250	116
MW-6-073119 908023-10	68 x	<250	118
MW-12-080119 908023-11	310 x	<250	114

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Date Extracted: 08/02/19 Date Analyzed: 08/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-2-080119 908023-12	790 x	<250	128
MW-10-080119 908023-13	1,900 x	260 x	125
MW-9-080119 908023-14	88 x	<250	122
Rinse Blank-080119 908023-15	<50	<250	142 vo
MW-1-080119 908023-16	2,100 x	1,000 x	126
Method Blank	<50	<250	101

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Data Bacaiyad:	MW-16-073119 08/01/19	Client: Project:	Aspect Consulting, LLC
Date Extracted:	08/05/19	Lab ID:	908023-01
Date Analyzed:	08/05/19	Data File:	908023-01.059
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Data Pagaiyadi	MW-18-073119	Client:	Aspect Consulting, LLC
Date Received.	08/05/19	Lah ID.	Alona Cale 100357, F&DI 906025 908023-02
Date Analyzed:	08/05/19	Data File:	908023-02.062
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-14-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-03
Date Analyzed:	08/05/19	Data File:	908023-03.063
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Data Bacaiyad:	MW-13-073119 08/01/19	Client: Project:	Aspect Consulting, LLC
Date Extracted:	08/05/19	Lab ID:	908023-04
Date Analyzed:	08/05/19	Data File:	908023-04.064
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	Dup-01-073119 08/01/19	Client: Proiect:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-05
Date Analyzed:	08/05/19	Data File:	908023-05.065
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte	Concentration		
Analyte.	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-17-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-06
Date Analyzed:	08/05/19	Data File:	908023-06.066
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-19-073119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloba Cafe 180357 F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-07
Date Analyzed:	08/05/19	Data File:	908023-07.069
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-7-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-08
Date Analyzed:	08/05/19	Data File:	908023-08.070
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-11-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-09
Date Analyzed:	08/05/19	Data File:	908023-09.071
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

3.49

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-6-073119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloba Cafe 180357 F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-10
Date Analyzed:	08/05/19	Data File:	908023-10.072
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
	ug 1 (pps)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

MW-12-080119	Client:	Aspect Consulting, LLC
08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
08/05/19	Lab ID:	908023-11
08/05/19	Data File:	908023-11.073
Water	Instrument:	ICPMS2
ug/L (ppb)	Operator:	SP
Concentration		
ug/L (ppb)		
	MW-12-080119 08/01/19 08/05/19 08/05/19 Water ug/L (ppb) Concentration ug/L (ppb)	MW-12-080119Client:08/01/19Project:08/05/19Lab ID:08/05/19Data File:WaterInstrument:ug/L (ppb)Operator:

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-2-080119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-12
Date Analyzed:	08/05/19	Data File:	908023-12.074
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-10-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-13
Date Analyzed:	08/05/19	Data File:	908023-13.075
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-9-080119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloba Cafe 180357 F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-14
Date Analyzed:	08/05/19	Data File:	908023-14.076
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed:	Rinse Blank-080119 08/01/19 08/05/19 08/05/19 Woton	Client: Project: Lab ID: Data File:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-15 908023-15.077 ICDMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)	1	

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	MW-1-080119 08/01/19	Client: Project:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	908023-16
Date Analyzed:	08/05/19	Data File:	908023-16.078
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	NA	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/05/19	Lab ID:	I9-472 mb
Date Analyzed:	08/05/19	Data File:	I9-472 mb.057
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyta	Concentration		
Analyte.	ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-16-073	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-01
Date Analyzed:	08/02/19		Data File:	080221.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	95	50	150
Toluene-d8		104	50	150
4-Bromofluorobenze	ene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane (EDB)		<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-18-073 08/01/19 08/02/19 08/02/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-02 080222.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 99 105 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Compounds: Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane Benzene Trichloroethene Toluene		ug/L (ppb) <0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 1.0 <1 <1 <1		
Tetrachloroethene 1,2-Dibromoethane Ethylbenzene	(EDB)	<1 <1 <1		
m,p-Xylene o-Xylene Naphthalene		<2 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-14-073 08/01/19 08/02/19 08/02/19 Water ug/L (ppb)	5119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-03 080223.D GCMS9 MS/AEN
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1.2-Dichloroethane	-d4	98	50	150
Toluene-d8		106	50	150
4-Bromofluorobenze	ene	101	50	150
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		2.7		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	er (MTBE)	<1		
trans-1,2-Dichloroe	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1,2-Dichloroethane (EDC)		<1		
1,1,1-Trichloroetha	ne	<1		
Benzene		1,300 ve		
Trichloroethene		<1		
Toluene		32		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		130		
m,p-Xylene		72		
o-Xylene		18		
Naphthalene		50		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-14-073 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Aloha Cafe 180357 908023-03 1/100 080543.D GCMS9 MS/AEN	LLC , F&BI 908023
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane-	·d4	96	50	150	
Toluene-d8		100	50	150	
4-Bromofluorobenze	ene	95	50	150	
Compounds:		Concentration			
Compounds.		ug/Li (ppb)			
Vinyl chloride		<20			
Chloroethane		<100			
1,1-Dichloroethene		<100			
Methylene chloride		<500			
Methyl t-butyl ether	r (MTBE)	<100			
trans-1,2-Dichloroe	thene	<100			
1,1-Dichloroethane		<100			
cis-1,2-Dichloroethe	ene	<100			
1,2-Dichloroethane (EDC)		<100			
1,1,1-Trichloroethan	ne	<100			
Benzene		2,400			
Trichloroethene		<100			
Toluene		<100			
Tetrachloroethene		<100			
1,2-Dibromoethane	(EDB)	<100			
Ethylbenzene		120			
m,p-Xylene		<200			
o-Xylene		<100			
Naphthalene		<100			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-13-073 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	9119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-04 080530.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 99 104 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Compounds: Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane Benzene Trichloroethene Toluene		ug/L (ppb) <0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		
1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	(EDB)	<1 <1 <1 <2 <1 <1		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Dup-01-073 08/01/19 08/02/19 08/02/19 Water ug/L (ppb)	3119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-05 080225.D GCMS9 MS/AEN
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1.2-Dichloroethane	-d4	98	50	150
Toluene-d8		105	50	150
4-Bromofluorobenze	ene	103	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Vinyl chloride		2.8		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	r (MTBE)	<1		
trans-1,2-Dichloroe	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1,2-Dichloroethane	(EDC)	<1		
1,1,1-Trichloroetha	ne	<1		
Benzene		1,400 ve		
Trichloroethene		<1		
Toluene		45		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		190 ve		
m,p-Xylene		120		
o-Xylene		25		
Naphthalene		77		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Dup-01-073 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LL0 Aloha Cafe 180357, F& 908023-05 1/100 080544.D GCMS9 MS/AEN	C BI 908023
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	95	50	150	
Toluene-d8		99	50	150	
4-Bromofluorobenz	ene	96	50	150	
		Concentration			
Compounds:		ug/L (ppb)			
Vinyl chloride		<20			
Chloroethane		<100			
1,1-Dichloroethene		<100			
Methylene chloride		<500			
Methyl t-butyl ethe	er (MTBE)	<100			
trans-1,2-Dichloroe	thene	<100			
1,1-Dichloroethane		<100			
cis-1,2-Dichloroethe	ene	<100			
1,2-Dichloroethane	(EDC)	<100			
1,1,1-Trichloroetha	ne	<100			
Benzene		3,500			
Trichloroethene		<100			
Toluene		<100			
Tetrachloroethene		<100			
1,2-Dibromoethane	(EDB)	<100			
Ethylbenzene		170			
m,p-Xylene		<200			
o-Xylene		<100			
Naphthalene		<100			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-17-0732 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-06 080531.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 99 105 101	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:MVDate Received:08/Date Extracted:08/Date Analyzed:08/Matrix:WaUnits:ug/	V-19-073119 01/19 02/19 05/19 ter L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-07 080532.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 98 105 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether (M trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethane (ED 1,1,1-Trichloroethane Benzene Trichloroethene Toluene Tetrachloroethene	$\begin{array}{c} & < 0.2 \\ < 1 \\ < 1 \\ < 5 \\ TBE \\ (e) < 1 \\ (e) < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 0.35 \\ 1.0 \\ < 1 \\ 17 \\ (B) \\ < 1 \\ \end{array}$		
1,2-Dibromoethane (ED Ethylbenzene m,p-Xylene o-Xylene Naphthalene	B) <1 <1 <2 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-7-07311 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	.9	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-08 080533.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 105 101	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-073	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-09
Date Analyzed:	08/02/19		Data File:	080229.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	50	150
Toluene-d8		106	50	150
4-Bromofluorobenz	ene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		320 ve		
Toluene		1,600 ve		
Ethylbenzene		450 ve		
m,p-Xylene		1,300 ve		
o-Xylene		460 ve		
Naphthalene		42		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-073	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-09 1/100
Date Analyzed:	08/05/19		Data File:	080545.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	ene	95	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
1,2-Dibromoethane	e (EDB)	<100		
Benzene		320		
Toluene		1,800		
Ethylbenzene		410		
m,p-Xylene		1,000		
o-Xylene		400		
Naphthalene		<100		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-6-07311 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	.9	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-10 080534.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 104 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-12-0801 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)	119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-11 080535.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 106 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <1 0.59 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-0801 08/01/19 08/02/19 08/02/19 Water ug/L (ppb)	19	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-12 080232.D GCMS9 MS/AEN
Surrogates:		% Recovery	Lower Limit:	Upper Limit:
1.2-Dichloroethane	-d4	97	50	150
Toluene-d8		104	50	150
4-Bromofluorobenze	ene	101	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		13		
Toluene		2.2		
Ethylbenzene		6.5		
m,p-Xylene		5.6		
o-Xylene		1.8		
Naphthalene		33		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-10-080	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-13
Date Analyzed:	08/02/19		Data File:	080233.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	95	50	150
Toluene-d8		104	50	150
4-Bromofluorobenz	ene	102	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		1,200 ve		
Toluene		44		
Ethylbenzene		680 ve		
m,p-Xylene		1,300 ve		
o-Xylene		2.7		
Naphthalene		190 ve		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-10-080	119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-13 1/100
Date Analyzed:	08/05/19		Data File:	080546.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	50	150
Toluene-d8		99	50	150
4-Bromofluorobenz	ene	94	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
1,2-Dibromoethane	(EDB)	<100		
Benzene		2,400		
Toluene		<100		
Ethylbenzene		670		
m,p-Xylene		1,100		
o-Xylene		<100		
Naphthalene		160		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-9-0801	19	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-14
Date Analyzed:	08/05/19		Data File:	080536.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	50	150
Toluene-d8		105	50	150
4-Bromofluorobenze	ene	99	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Rinse Blank 08/01/19 08/02/19 08/07/19 Water ug/L (ppb)	-080119	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-15 080738.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 97 97	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-1-0801	19	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-16
Date Analyzed:	08/02/19		Data File:	080236.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		104	50	150
4-Bromofluorobenzene		100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		1,400 ve		
Toluene		420 ve		
Ethylbenzene		550 ve		
m,p-Xylene		1,500 ve		
o-Xylene		380 ve		
Naphthalene		130		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-1-0801	19	Client:	Aspect Consulting, LLC
Date Received:	08/01/19		Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19		Lab ID:	908023-16 1/100
Date Analyzed:	08/05/19		Data File:	080547.D
Matrix:	Water		Instrument:	GCMS9
Units:	ug/L (ppb)		Operator:	MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	97	50	150
Toluene-d8		100	50	150
4-Bromofluorobenzene		95	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
1,2-Dibromoethane	e (EDB)	<100		
Benzene		4,200		
Toluene		410		
Ethylbenzene		520		
m,p-Xylene		1,300		
o-Xylene		350		
Naphthalene		110		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 08/01/19 08/02/19 08/05/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 908023-17 080537.D GCMS9 MS/AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 97 104 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether trans-1,2-Dichloroeth 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Toluene Tetrachloroethene 1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene	r (MTBE) chene ne (EDC) ne (EDB)	< 0.2 < 1 < 1 < 5 < 1 < 2 < 1 < 1 < 2 < 1 < 1 < 1 < 2 < 1 < 1 < 2 < 1 < 1 < 1 < 2 < 1 < 1 < 2 < 1 < 1		
o-Xylene Naphthalene		<1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 08/02/19 08/02/19 Water ug/L (ppb)	nk ble	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 09-1853 mb 080220.D GCMS9 MS/AEN
Surrogates:	14	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-	a 4	100	50 50	150
Toluene-d8		103	50	150
4-Bromofluorobenze	ene	99	50	150
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		< 0.2		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	r (MTBE)	<1		
trans-1,2-Dichloroet	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1,2-Dichloroethane	(EDC)	<1		
1,1,1-Trichloroetha	ne	<1		
Benzene		< 0.35		
Trichloroethene		<1		
Toluene		<1		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 908	067-06 (Duplie	cate)			
	Reporting	Samp	le Du	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100) <	<100	nm
Laboratory Code: Lab	oratory Contr	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	95	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 9081	77-09 (Duplica	te)			
	Reporting	Samp	le Du	iplicate	RPD
Analyte	Units	Resul	Result Result		(Limit 20)
Gasoline	ug/L (ppb)	<100) .	<100	nm
Laboratory Code: Labo	oratory Contro	l Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	88	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	5,000	97	88	61-133	10

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	: 908023-01	(Matrix Sp	ike)				
A 1 .	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	68 b	68 b	75-125	0 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 908023-11 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	98	61-139
Chloroethane	ug/L (ppb)	50	<1	104	55 - 149
1,1-Dichloroethene	ug/L (ppb)	50	<1	113	71 - 123
Methylene chloride	ug/L (ppb)	50	<5	88	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68 - 125
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	99	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	96	63 - 126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	104	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	103	75 - 121
Benzene	ug/L (ppb)	50	0.72	100	75 - 114
Trichloroethene	ug/L (ppb)	50	<1	100	73 - 122
Toluene	ug/L (ppb)	50	<1	102	73-117
Tetrachloroethene	ug/L (ppb)	50	<1	100	40 - 155
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	110	79-120
Ethylbenzene	ug/L (ppb)	50	<1	103	66 - 124
m,p-Xylene	ug/L (ppb)	100	<2	106	63 - 128
o-Xylene	ug/L (ppb)	50	<1	102	64 - 129
Naphthalene	ug/L (ppb)	50	<1	104	60-145

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

	1		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	96	100	70-128	4
Chloroethane	ug/L (ppb)	50	104	108	66-149	4
1,1-Dichloroethene	ug/L (ppb)	50	109	112	72-121	3
Methylene chloride	ug/L (ppb)	50	85	87	63-132	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	92	96	70 - 122	4
trans-1,2-Dichloroethene	ug/L (ppb)	50	98	100	76-118	2
1,1-Dichloroethane	ug/L (ppb)	50	96	98	77-119	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	94	97	76-119	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	103	106	75 - 116	3
1,1,1-Trichloroethane	ug/L (ppb)	50	103	106	80-116	3
Benzene	ug/L (ppb)	50	96	100	75 - 116	4
Trichloroethene	ug/L (ppb)	50	100	103	72 - 119	3
Toluene	ug/L (ppb)	50	100	104	79 - 115	4
Tetrachloroethene	ug/L (ppb)	50	100	103	78-109	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	111	117	82-118	5
Ethylbenzene	ug/L (ppb)	50	102	106	83-111	4
m,p-Xylene	ug/L (ppb)	100	106	110	81-112	4
o-Xylene	ug/L (ppb)	50	101	104	81-117	3
Naphthalene	ug/L (ppb)	50	95	99	72 - 131	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

90802	3		SAMPLI	E CHAIN	IOF	CUS	ST(DDY	7	М	E	08	10	1/10	1	V	W5/AI	61.005
Report To ANDICA JEN	Kofski		SAMPL	ERS (signe	Hure)	~10	_									Page TUR	# /	TIME
Company ASPect			PROJE	CT NAME	- 120	<u> </u>					Р	O #				ndaro	d Turnarou	nd
Address			Abha	. Cate						180)3	57			lush	charg	ges authori:	sed by:
City, State, ZIP			REMAR	KS						IN	VO	ICE T	O			SAM	IPLE DISP	OSAL
Phone 316 617.0449 En	naila yon Kotstrie	Daspections	Willing Com] Arcl] Oth	hive \$ er	Samples	
									ŀ	ANAI	ANSI	ES RE	QU	ESTE	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	BTEX & LOU	7738, EPB, EDC	Total read 6010	ζυούς	N	otes
MW-16-073119	0(A-H	07/si/19	0830	Wites	8		Х	X					<u>×</u>	X	X			
MW-18-073119	62 A-K		0925		2811		X	X					X	X	X	X		
MW-14-073119	03		1030		P2,11		Х	Х					Х	Х	Х	X	HL ador P.	esent
MW-13-073119	04		1240		11		X	X					Х	X	X	X		
Dup-01-073119	05 1				11		Х	X					X	X	X	X		
MW-17-073119	06 A-H		0820		8		Х	χ					X	X	X			
MW-19-073119	67 A-K		0910		11		X	X					Х	X	X	X		
MW-7-073119	DB A-H		1020		8		Х	X					X	X	χ		,	
MW-11-073119	09		1115		8		Х	X					X	X	Х			
MW-6-073119	TD V	V	1245	\checkmark	8		Х	X					χ	X	X			
Friedman & Bruva, Inc.	SI(Relinguished by	GNATURE	-A		PRIN	JT N.	AM	E		L		C	OM	PAN	Ŷ		DATE	TIME
3012 16 th Avenue West	Received by:	De	YXas-	1 ANC	1/2	no no	¥C-				A	spe	$\frac{r}{r}$	- Cad	sul	tens	8/14	1717
Seattle, WA 98119-2029	Relinquished by:	Mone		HO	NG	N	(E	en/	1E	\mathcal{N}		FPO	7					~
Ph. (206) 285-8282	Received by:											Sa	mpl	les re	ceive	ed at	<u>4</u> °c	

0 n (1) 3			SAMPLI	E CHAIN	NOF	CUS	STC	DDY	Mt	Ęl	18/0]l	9	VU	151	ATG/LOS
Report To A Data / D	Kofski		SAMPL	ERS (signo	ature)			31	voo			1		I T	Page #	# of NAROUND TIME
Company ASPECT			PROJE	CT NAME	//		E	-01		Р	O #			-Stan	dard	l Turnaround
Address		· · · · · · · · · · · · · · · · · · ·	Alo	he Ca	Fe				12	3039	57			Rush c	harg	ges authorized by:
City State ZIP			REMAR	RKS					I	NVO	ICE 1	ГО		4- T ion	SAM	PLE DISPOSAL
Phone 316.617.0499 Em	ailayonkofski	Casparton	- soliting-con] Arch] Othe	ive S	Samples
				1		r			AN	ALYS	ES RI	EQU		ED		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	BTEX 8210	MTBE, CDB, CDC Anaph talene 820	Total (red 6010		Notes
MU-12-080119	11A-H	8/01/19	1110	Water	8		Х	X				χ	X	X		•
MW-2-080119	12		1205	İ	8		χ	χ				X	X	Х		HC alor Present
MW-10-090119	13		1330		8		Х	X				χ	X	χ		HC adar Present
MW-9-080119	14		1420		8		Х	Х				X	X	X		
Rinso Blank-080119	15		1455		8		χ	X				Ϋ́	χ	X		
MW-1-080119	16	\checkmark	1530	V	8		Х	X				Х	\checkmark	Х		the odler Present
Trip Blank 350t AB OF EF	5 17 F				6			Ø	X	X						(X) - Grast + Gr, Gras Taget VOLS (VOLS) PEC DB E/1/10 -
[]														<u> </u>]	
Friedman & Bruya, Inc.	Relinquished by	GNATURE	2/	Dani	$\frac{PRIN}{12}$	Sho	AIVII SCI	<u></u>		As	Pe	$\frac{1}{2}$	ran Sansi	r oltin	9	8/1/19 1/717
3012 16 th Avenue West	D12 16th Avenue West Received by: How			HONGINIEN F			F	FBZ			<u></u>	VV				
Seattle, WA 98119-2029	Relinquished by:	elinquished by:														
Ph. (206) 285-8282	Received by:		•.									San	ples	receiv	veda	at <u>4</u> °C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 2, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 20, 2019 from the Aloha Cafe 180357, F&BI 911310 project. There are 47 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP1202R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
911310 -01	MW-1-112019
911310 -02	MW-2-112019
911310 -03	MW-6-112019
911310 -04	MW-7-112019
911310 -05	MW-9-112019
911310 -06	MW-10-112019
911310 -07	MW-11-112019
911310 -08	MW-12-112019
911310 -09	MW-13-112019
911310 -10	MW-14-112019
911310 -11	MW-16-112019
911310 -12	MW-17-112019
911310 -13	MW-18-112019
911310 -14	MW-19-112019
911310 -15	DUP-01-112019
911310 -16	Rinseblank-112019
911310 -17	Trip blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 and 11/25/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-1-112019 911310-01 1/20	44,000	98
MW-2-112019 911310-02	4,600	86
MW-6-112019 911310-03	<100	86
MW-7-112019 911310-04	<100	89
MW-9-112019 911310-05	560	100
MW-10-112019 911310-06 1/20	21,000	97
MW-11-112019 911310-07 1/10	20,000	108
MW-12-112019 911310-08	540	96
MW-13-112019 911310-09	1,800	104
MW-14-112019 911310-10 1/10	11,000	94
MW-16-112019	<100	88

911310-11

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 and 11/25/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-17-112019 911310-12	1,100	116
MW-18-112019 911310-13	1,300	96
MW-19-112019 911310-14	<100	86
DUP-01-112019 911310-15	<100	94
Rinseblank-112019 911310-16	<100	87
Trip blank 911310-17	<100	89
Method Blank ^{09-2735 MB}	<100	81

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310 Date Extracted: 11/21/19 Date Analyzed: 11/21/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-1-112019 911310-01	3,200 x	570 x	112
MW-2-112019 911310-02	2,200 x	260 x	125
MW-6-112019 911310-03	<50	<250	108
MW-7-112019 911310-04	<50	<250	122
MW-9-112019 911310-05	290 x	<250	121
MW-10-112019 911310-06	3,900 x	340 x	127
MW-11-112019 911310-07	2,400 x	310 x	125
MW-12-112019 911310-08	370 x	<250	126
MW-13-112019 911310-09	780 x	<250	117
MW-14-112019 911310-10	1,600 x	300 x	119
$\underset{\substack{11310-11}}{\text{MW-16-112019}}$	<50	<250	120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310 Date Extracted: 11/21/19 Date Analyzed: 11/21/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-17-112019 911310-12	560 x	<250	124
MW-18-112019 911310-13	260 x	<250	134
MW-19-112019 911310-14	<50	<250	134
DUP-01-112019 911310-15	<50	<250	137
Rinseblank-112019 911310-16	<50	<250	117
Method Blank 09-2869 MB	<50	<250	124

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-1-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-01
Date Analyzed:	11/21/19	Data File:	911310-01.050
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

MW-2-112019	Client:	Aspect Consulting, LLC
11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
11/21/19	Lab ID:	911310-02
11/21/19	Data File:	911310-02.053
Water	Instrument:	ICPMS2
ug/L (ppb)	Operator:	SP
Concentration		
ug/L (ppb)		
	MW-2-112019 11/20/19 11/21/19 11/21/19 Water ug/L (ppb) Concentration ug/L (ppb)	MW-2-112019Client:11/20/19Project:11/21/19Lab ID:11/21/19Data File:WaterInstrument:ug/L (ppb)Operator:

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-6-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-03
Date Analyzed:	11/21/19	Data File:	911310-03.054
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-7-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-04
Date Analyzed:	11/21/19	Data File:	911310-04.055
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		
Date Analyzed: Matrix: Units: Analyte:	11/21/19 Water ug/L (ppb) Concentration ug/L (ppb)	Data File: Instrument: Operator:	911310-04.055 ICPMS2 SP

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

MW-9-112019	Client:	Aspect Consulting, LLC
11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
11/21/19	Lab ID:	911310-05
11/21/19	Data File:	911310-05.056
Water	Instrument:	ICPMS2
ug/L (ppb)	Operator:	SP
Concentration		
ug/L (ppb)		
	MW-9-112019 11/20/19 11/21/19 11/21/19 Water ug/L (ppb) Concentration ug/L (ppb)	MW-9-112019Client:11/20/19Project:11/21/19Lab ID:11/21/19Data File:WaterInstrument:ug/L (ppb)Operator:

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

7-10-112019	Client:	Aspect Consulting, LLC
20/19	Project:	Aloha Cafe 180357, F&BI 911310
21/19	Lab ID:	911310-06
21/19	Data File:	911310-06.057
ter	Instrument:	ICPMS2
(ppb)	Operator:	SP
Concentration		
ug/L (ppb)		
	-10-112019 20/19 1/19 1/19 2er 2 (ppb) Concentration ug/L (ppb)	-10-112019 Client: 20/19 Project: 21/19 Lab ID: 21/19 Data File: 2er Instrument: 2 (ppb) Operator: Concentration ug/L (ppb)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-11-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-07
Date Analyzed:	11/21/19	Data File:	911310-07.060
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		
Matrix: Units: Analyte:	Water ug/L (ppb) Concentration ug/L (ppb)	Instrument: Operator:	ICPMS2 SP

Lead

1.85

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

MW-12-112019	Client:	Aspect Consulting, LLC
11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
11/21/19	Lab ID:	911310-08
11/21/19	Data File:	911310-08.061
Water	Instrument:	ICPMS2
ug/L (ppb)	Operator:	SP
Concentration		
ug/L (ppb)		
	MW-12-112019 11/20/19 11/21/19 11/21/19 Water ug/L (ppb) Concentration ug/L (ppb)	MW-12-112019Client:11/20/19Project:11/21/19Lab ID:11/21/19Data File:WaterInstrument:ug/L (ppb)Operator:

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

11310
)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-14-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-10
Date Analyzed:	11/21/19	Data File:	911310-10.063
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-16-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-11
Date Analyzed:	11/21/19	Data File:	911310-11.064
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		
-			

Lead

1.02

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-17-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-12
Date Analyzed:	11/21/19	Data File:	911310-12.065
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-18-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-13
Date Analyzed:	11/21/19	Data File:	911310-13.066
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-19-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-14
Date Analyzed:	11/21/19	Data File:	911310-14.067
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

1310

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	Rinseblank-112019 11/20/19	Client: Proiect:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	911310-16
Date Analyzed:	11/21/19	Data File:	911310-16.069
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	Method Blank NA	Client: Project:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/21/19	Lab ID:	I9-744 mb
Date Analyzed:	11/21/19	Data File:	I9-744 mb.048
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-1-1120 11/20/19 11/25/19 11/26/19 Water	19	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-01 1/100 112545.D GCMS4
Units:	ug/L (ppb)		Operator:	MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenze	-d4 ene	% Recovery: 99 98 99	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe 1 2-Dichloroethane	er (MTBE) (EDC)	<100 <100		
Benzene		6,700 1,500		
1,2-Dibromoethane	(EDB)	<100		
m,p-Xylene		2,800		
o-Xylene Naphthalene		$\frac{880}{210}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-11202 11/20/19 11/25/19 11/25/19 Water ug/L (ppb)	19	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-02 112534.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	57	121
Toluene-d8		96	63	127
4-Bromofluorobenze	ene	96	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ether	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
Benzene		30		
Toluene		6.5		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		28		
m,p-Xylene		19		
o-Xylene		4.9		
Naphthalene		150		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-6-11201 11/20/19 11/25/19 11/25/19 Water ug/L (ppb)	19	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-03 112535.D GCMS4 MS
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1.2-Dichloroethane-	d4	100	57	121
Toluene-d8		97	63	127
4-Bromofluorobenze	ene	98	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ether	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
Benzene		< 0.35		
Toluene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-7-11201 11/20/19 11/25/19 11/25/19 Water ug/L (ppb)	.9	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-04 112536.D GCMS4 MS
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 99 95 96	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
Benzene		< 0.35		
Toluene		2.7		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		1.6		
m,p-Xylene		7.1		
o-Xylene		1.7		
Naphthalene		<1		
ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-9-1120	19	Client:	Aspect Consulting, LLC
Date Received:	11/20/19		Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19		Lab ID:	911310-05
Date Analyzed:	11/25/19		Data File:	112537.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	57	121
Toluene-d8		98	63	127
4-Bromofluorobenz	ene	95	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
Benzene		6.4		
Toluene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		6.6		
m,p-Xylene		<2		
o-Xylene		3.3		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-10-112	019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19		Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19		Lab ID:	911310-06 1/100
Date Analyzed:	11/26/19		Data File:	112546.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		97	63	127
4-Bromofluorobenzene		95	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
Benzene		2,800		
Toluene		<100		
1,2-Dibromoethane	(EDB)	<100		
Ethylbenzene		1,000		
m,p-Xylene		1,500		
o-Xylene		<100		
Naphthalene		270		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-112	019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19		Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19		Lab ID:	911310-07 1/100
Date Analyzed:	11/26/19		Data File:	112547.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	57	121
Toluene-d8		97	63	127
4-Bromofluorobenzene		102	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
Benzene		270		
Toluene		1,500		
1,2-Dibromoethane	(EDB)	<100		
Ethylbenzene		690		
m,p-Xylene		2,100		
o-Xylene		480		
Naphthalene		130		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-12-112	019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19		Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19		Lab ID:	911310-08
Date Analyzed:	11/25/19		Data File:	112538.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		96	63	127
4-Bromofluorobenz	ene	98	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
Benzene		1.1		
Toluene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-13-112 11/20/19 11/25/19 11/25/19 Water ug/L (ppb)	019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-09 112539.D GCMS4 MS
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-	d4	99	57	121
Toluene-d8		97	63	127
4-Bromofluorobenze	ene	98	60	133
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		< 0.2		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	r (MTBE)	<1		
trans-1,2-Dichloroet	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1,2-Dichloroethane	(EDC)	<1		
1,1,1-Trichloroethan	ne	<1		
Benzene		4.0		
Trichloroethene		<1		
Toluene		<1		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-14-112 11/20/19 11/25/19 11/26/19 Water ug/L (ppb)	019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-10 1/100 112548.D GCMS4 MS
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 101 97 96	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		<20		
Chloroethane		<100		
1,1-Dichloroethene		<100		
Methylene chloride		<500		
Methyl t-butyl ether	r (MTBE)	<100		
trans-1,2-Dichloroet	thene	<100		
1.1-Dichloroethane		<100		
cis-1,2-Dichloroethe	ene	<100		
1,2-Dichloroethane	(EDC)	<100		
1,1,1-Trichloroethar	ne	<100		
Benzene		2,700		
Trichloroethene		<100		
Toluene		<100		
Tetrachloroethene		<100		
1,2-Dibromoethane	(EDB)	<100		
Ethylbenzene	. ,	<100		
m,p-Xylene		<200		
o-Xylene		<100		
Naphthalene		<100		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-16-1120 11/20/19 11/25/19 11/25/19 Water ug/L (ppb)	019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-11 112540.D GCMS4 MS
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 96 97	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane Benzene Toluene 1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Data Bacaiyad:	MW-17-112	2019	Client: Project:	Aspect Consulting, LLC Aloba Cafe 180357 F&BI 911310
Date Received.	11/25/19		Lah ID.	911310-12
Date Analyzed:	11/25/19		Data File:	112541.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	97	57	121
Toluene-d8		96	63	127
4-Bromofluorobenz	ene	96	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
Benzene		4.2		
Toluene		2.8		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		<1		
m,p-Xylene		4.2		
o-Xylene		2.1		
Naphthalene		1.6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-18-112 11/20/19 11/25/19 11/25/19 Water ug/L (ppb)	019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Con Aloha Cafe 911310-13 112542.D GCMS4 MS	sulting, LLC 180357, F&BI 911310
9		0/ D	Lower		Upper
Surrogates:	14	% Recovery:			Limit:
1,2-Dichloroethane-	d4	100	57		121
Toluene-d8		98	63		127
4-Bromofluorobenze	ene	99	60		133
		Concentration			
Compounds:		ug/L (ppb)			
Vinyl chloride		< 0.2			
Chloroethane		<1			
1,1-Dichloroethene		<1			
Methylene chloride		<5			
Methyl t-butyl ethe	r (MTBE)	<1			
trans-1,2-Dichloroet	thene	<1			
1,1-Dichloroethane		<1			
cis-1,2-Dichloroethe	ene	<1			
1,2-Dichloroethane	(EDC)	<1			
1,1,1-Trichloroethan	ne	<1			
Benzene		230 ve			
Trichloroethene		<1			
Toluene		8.2			
Tetrachloroethene		<1			
1,2-Dibromoethane	(EDB)	<1			
Ethylbenzene		14			
m,p-Xylene		48			
o-Xylene		17			
Naphthalene		5.2			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-18-112 11/20/19 11/25/19 11/26/19 Water ug/L (ppb)	019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-13 1/10 112626.D GCMS4 MS
Surrogatas		% Rocovoru:	Lower	Upper Limit:
1.9 Dichloroothono	44	70 necovery.	57	191
Toluono de	·u4	101	07 69	121 197
1 Bromofluorohonza	200	98 07	60	127
4-Dromonuorobenze	ene	97	60	155
		Concentration		
Compounds:		ug/L (ppb)		
Vinyl chloride		<2		
Chloroethane		<10		
1,1-Dichloroethene		<10		
Methylene chloride		<50		
Methyl t-butyl ether	r (MTBE)	<10		
trans-1,2-Dichloroet	thene	<10		
1,1-Dichloroethane		<10		
cis-1,2-Dichloroethe	ene	<10		
1,2-Dichloroethane	(EDC)	<10		
1,1,1-Trichloroethan	ne	<10		
Benzene		240		
Trichloroethene		<10		
Toluene		<10		
Tetrachloroethene		<10		
1,2-Dibromoethane	(EDB)	<10		
Ethylbenzene		15		
m,p-Xylene		52		
o-Xylene		18		
Naphthalene		<10		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-19-112 11/20/19 11/25/19 11/25/19 Water ug/L (ppb)	019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Con Aloha Cafe 911310-14 112543.D GCMS4 MS	sulting, LLC 180357, F&BI 911310
Surrogates:		% Recovery:	Lower Limit:		Upper Limit:
1,2-Dichloroethane-	d4	102	57		121
Toluene-d8		96	63		127
4-Bromofluorobenze	ene	97	60		133
Compounds:		Concentration ug/L (ppb)			
Vinyl chloride		< 0.2			
Chloroethane		<1			
1,1-Dichloroethene		<1			
Methylene chloride		<5			
Methyl t-butyl ethe	r (MTBE)	<1			
trans-1,2-Dichloroe	thene	<1			
1,1-Dichloroethane		<1			
cis-1,2-Dichloroethe	ene	<1			
1,2-Dichloroethane	(EDC)	<1			
1,1,1-Trichloroethan	ne	<1			
Benzene		< 0.35			
Trichloroethene		<1			
Toluene		<1			
Tetrachloroethene		12			
1,2-Dibromoethane	(EDB)	<1			
Ethylbenzene		<1			
m,p-Xylene		<2			
o-Xylene		<1			
Naphthalene		<1			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DUP-01-112 11/20/19 11/25/19 11/26/19 Water ug/L (ppb)	2019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consult Aloha Cafe 180 911310-15 112625.D GCMS4 MS	ting, LLC 0357, F&BI 911310
Surrogates:		% Recovery:	Lower Limit:	Up] Lin	per nit:
1,2-Dichloroethane-	d4	100	57	12	21
Toluene-d8		98	63	12	27
4-Bromofluorobenze	ene	99	60	13	33
Compounds:		Concentration ug/L (ppb)			
Vinyl chloride		< 0.2			
Chloroethane		<1			
1,1-Dichloroethene		<1			
Methylene chloride		<5			
Methyl t-butyl ethe	r (MTBE)	<1			
trans-1,2-Dichloroe	thene	<1			
1,1-Dichloroethane		<1			
cis-1,2-Dichloroethe	ene	<1			
1,2-Dichloroethane	(EDC)	<1			
1,1,1-Trichloroethan	ne	<1			
Benzene		< 0.35			
Trichloroethene		<1			
Toluene		<1			
Tetrachloroethene		15			
1,2-Dibromoethane	(EDB)	<1			
Ethylbenzene		<1			
m,p-Xylene		<2			
o-Xylene		<1			
Naphthalene		<1			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Rinseblank- 11/20/19 11/25/19 11/26/19 Water ug/L (ppb)	112019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-16 112544.D GCMS4 MS
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 98 96 101	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane Benzene Toluene 1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	r (MTBE) (EDC) (EDB)	<1 <1 <0.35 <1 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip blank 11/20/19 11/25/19 11/25/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 911310-17 112533.D GCMS4 MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenze	-d4 ene	% Recovery: 98 95 96	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		< 0.2		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	er (MTBE)	<1		
trans-1,2-Dichloroe	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1,2-Dichloroethane	(EDC)	<1		
1,1,1-Trichloroetha	ne	<1		
Benzene		< 0.35		
Trichloroethene		<1		
Toluene		<1		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 11/25/19 11/25/19 Water ug/L (ppb)	nk ble	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 09-2843 mb 112512.D GCMS4 MS
Surrogates: 1,2-Dichloroethane- Toluene-d8	d4	% Recovery: 99 95	Lower Limit: 57 63	Upper Limit: 121 127
4-Bromofluorobenze	ene	97	60	133
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		< 0.2		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride		<5		
Methyl t-butyl ethe	r (MTBE)	<1		
trans-1,2-Dichloroe	thene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroethe	ene	<1		
1.2-Dichloroethane	(EDC)	<1		
1.1.1-Trichloroetha	ne	<1		
Benzene		< 0.35		
Trichloroethene		<1		
Toluene		<1		
Tetrachloroethene		<1		
1,2-Dibromoethane	(EDB)	<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 911	310-03 (Duplie	cate)			
	Reporting	Sampl	le Du	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100	<	<100	nm
Laboratory Code: Lab	oratory Contr	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	102	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	96	61-133	0

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 911310-01 (Matrix Spike)								
	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD	
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)	
Lead	ug/L (ppb)	10	<1	84	89	75-125	6	

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	93	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 911310-02 (Matrix Spike)

-				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	90	36-166
Chloroethane	ug/L (ppb)	50	<1	102	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	107	60-136
Methylene chloride	ug/L (ppb)	50	<5	101	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	103	74 - 127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	100	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	103	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	101	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	102	60-146
Benzene	ug/L (ppb)	50	30	101 b	76 - 125
Trichloroethene	ug/L (ppb)	50	<1	95	66 - 135
Toluene	ug/L (ppb)	50	6.5	104	76 - 122
Tetrachloroethene	ug/L (ppb)	50	<1	105	10-226
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	98	69-134
Ethylbenzene	ug/L (ppb)	50	28	104 b	69 - 135
m,p-Xylene	ug/L (ppb)	100	19	104	69 - 135
o-Xylene	ug/L (ppb)	50	4.9	104	60-140
Naphthalene	ug/L (ppb)	50	150	126 b	44-164

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

	I I I I I I I		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	93	83	50-154	11
Chloroethane	ug/L (ppb)	50	104	92	58-146	12
1,1-Dichloroethene	ug/L (ppb)	50	103	93	67-136	10
Methylene chloride	ug/L (ppb)	50	99	91	39-148	8
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	103	92	64-147	11
trans-1,2-Dichloroethene	ug/L (ppb)	50	98	88	68-128	11
1,1-Dichloroethane	ug/L (ppb)	50	99	90	79-121	10
cis-1,2-Dichloroethene	ug/L (ppb)	50	99	90	80-123	10
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	96	88	73 - 132	9
1,1,1-Trichloroethane	ug/L (ppb)	50	102	92	81 - 125	10
Benzene	ug/L (ppb)	50	95	87	69-134	9
Trichloroethene	ug/L (ppb)	50	92	84	79-113	9
Toluene	ug/L (ppb)	50	107	96	72 - 122	11
Tetrachloroethene	ug/L (ppb)	50	109	99	76 - 121	10
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	102	94	82-115	8
Ethylbenzene	ug/L (ppb)	50	107	97	77 - 124	10
m,p-Xylene	ug/L (ppb)	100	107	96	81-112	11
o-Xylene	ug/L (ppb)	50	109	98	81-121	11
Naphthalene	ug/L (ppb)	50	105	95	64-133	10

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

911310			SAMPLE	CHAI	N OF (CUS	STC	DY	M	Ē	u]	20	/14	7 V	'ul	5/	ROST	AT	5	
Report To Andrew Yor	mhotchi / Ada	n broffm	SAMPL	ERS (sign	ature <u>)</u>	7	1	1		-	/					age #		_of_		-
Company Aspert La	meritina	<u> </u>	PROJEC	T NAME	/	<u>MUU</u>	144			P	0#			- ¢	(Stai	ndard	turnaro	und	VLE	
Address TIP 2nd Aug Stranger /			Aloh	a Costo	•)	1472000			F	RUSH Rush charges authorized by:							
City State ZTD Con	$\rightarrow 1.10$ (10) (1	<u>, , , , , , , , , , , , , , , , , , , </u>	REMAR	KS							ICE	TO		_		SAM	PLE DIS	POSA	L	
Dham 1200413-5411	- WH. MSIO	a S.L. a	-				6		Δi	b] Arel] Oth	hive s er	amples			·
	manayonaargad	gespeer consoff	Broject s	specific RI	<u>_s? - Ye</u>	es /	Xb		• <i>T</i> F			< <u>,</u>	·		Defau	ult: D	ispose a	fter (30 days	·
					T				A		JYSE ol	S RE	លោ	ESTE NO	ଅଚ		I		······································	-
		Data	Time	Corren 1a	4.6	I-Dx	I-Gx	A 802	HCII	4 826	A 827	A 808	ŝ	あが) Q	2261				
Sample ID	Lab ID	Sampled	Sampled	Башріе Туре	Jars	VTPF	VTPF	K EP.	IPH.	s EP,	s EP,	s EP/	1 80	三日	d	2		Note	8	
	(no)					NN	NN	BTE	NW'	VOC	PAH	PCB	3E	Haro Haro	La La	3				ν.
MW-1-112019	GI A-B	11/20/14	0935x	Wuter	8	χ	X						χ	X	X					
mw-2-112014	02 T		1320	1	i	ï	ì	:					1	1	1					
$m \omega - 6 - 112019$	03	4	1020			Τ												<u> </u>		1
mw-7-111414	04	11/19/14	1335																	
MW-9-112019	05	11/2014	1120%								T									
mw-10-112014	06	4	1130 x																	1
MW-11-111414	67	1/19/19	1235																	1
MW-12-112019	08	11/20114	1220 x																	
MW-13-112014	09		1225										Þa	mple	sred	eive X	at	°C		
MW-14-112019	10	\checkmark	1035p	Ý	*	\mathbf{V}	\mathbf{V}						\mathbf{V}	¥	$\mathbf{A}_{\mathbf{a}}$	γ				
Ent	SIC	GNATURE			PRIN	IT N	AM	E				C	OM]	PAN	Y		DATE	2	TIME	1
Prieaman & Bruya, Inc.	Reinquished by:	may buch		Dau	rd)	NU	h		``		A77	De:	4	njo	Im	$ \downarrow$	indi	1	1438	-
Seattle WA agi 10 2020	Relinguished hu	Zaro		<u> </u>	dr	10					Ē	86	22				11-20-	19	14:	18
Dh (906) 985-2929	Received by								· · · · · · · ·											*
1 n. (200) 200-0202																				

 $\{j^k\}$

911310			SAMPLE	CHAIN	OF (CUS	SТО	DY		ME	11	-2	0-	19		V	NS BO	T/AS	25
Report To Antre Vonto	fili / Adam (~	then.	SAMPL	ERS (signo	iture)	2		•		-				F]	Page #		<u>H</u> TME	T
Company Aspect Lo	nsultong		PROJEC	CT NAME	//	any j				PC)#					ndard	l turnaround		
Address 710 2nd Au	ie, Ste 550)	Alol	n Cafe					ľxi	935	7			F	lush	charg	es authorize	d by:	
City, State, ZIP Seuff.	e, 1, 17, 98101	Ì.	REMAR	KS					IN	IVOI	CET	0] Are	SAM	PLE DISPO	SAL	
Phone 200 413-5411 E	mailayonhofchi	Dospections	Project s	specific RL	<u>s? - Y</u> e	es /	6		4P	1 	Cerna ina	and when) Oth Defau	er ilt: D	vispose after	: 30 days	ten et al el como con
			inge com			Ĺ			A	NAL	YSES	RE	QUE	STE	D				1
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	BTEX X260	m10 B, EU3, EV + /uPha/a/ X20	Tahi Po 10/0	CUOUS P260	Not	es	
MW-16-111414	11A-B	11/19/14	0920	Water	8	Х	χ						X	X	X				
MW-17-111919	12+		1005	j			1		eler (-	i	ſ	i				
MW -18-111919	13	6	1110					Ī						1	T	x			
MW -19 - 112014	14	11/20/14	0410											T		X			-
DUP-01-112014	12	Ï											\prod	1		X			
Rinseblank - 112019	16	+	******		*	\downarrow	Π							T	¥				
Trop blonk	17×1.B	_		Ŧ	2		Ţ						5	Ť		X			
																			-
													Sam	ples	rece	ived	at°C		
									ľ										1
	SI	GNATURE			PRIN	JT N	AMF	Ē					OMF	AN	Y		DATE	TIME	ן. ר
Friedman & Bruya, Inc.	Relinquished by:	ud en		Da	und .	()m	_ار	- <u>-</u>			Ax) Veri	+1	-(77]5	- ار بر	7/15	11/2/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	1438	_
3012 16 th Avenue West	Received by:	$\sum u$	2	5	$\nabla \pi$	1	<u>)</u>				F	÷.	 ?~			2	11-21-19	14.	12
Seattle, WA 98119-2029	Relinquished by:				-0-											[<u> </u>	<u>_</u>	40
Ph. (206) 285-8282	Received by:							· · · · · ·											

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 4, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on July 29, 2020 from the Texaco Strickland PO 180357, F&BI 007493 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0804R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 29, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 007493 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
007493 -01	MW-22-7.5
007493 -02	MW-22-10
007493 -03	MW-22-12.5
007493 -04	MW-22-16
007493 -05	MW-22-25
007493 -06	MW-23-8
007493 -07	MW-23-12.5
007493 -08	MW-23-15
007493 -09	MW-23-18
007493 -10	MW-23-25
007493 -11	MW-21-5
007493 -12	MW-21-10
007493 -13	MW-21-17.5
007493 -14	MW-21-25
007493 -15	B-11-5.5
007493 -16	B-11-10.5
007493 -17	B-11-15
007493 -18	B-11-18
007493 -19	B-11-22.5
007493 -20	MW-26-5
007493 -21	MW-26-10.5
007493 -22	MW-26-12.5
007493 -23	MW-26-22.5
007493 -24	MW-27-8
007493 - 25	MW-27-10.5
007493 -26	MW-27-15
007493 -27	MW-27-22.5
007493 -28	MW-24-8
007493 -29	MW-24-10.5
007493 -30	MW-24-13
007493 -31	MW-24-22.5
007493 -32	DUP-3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493 Date Extracted: 07/30/20 Date Analyzed: 07/30/20 and 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 58-139)
MW-22-16 007493-04	<5	97
MW-22-25 007493-05	<5	95
MW-23-8 007493-06	<5	95
MW-23-12.5 007493-07	<5	97
MW-23-18 007493-09	<5	95
MW-21-5 007493-11	<5	96
MW-21-10 007493-12	<5	97
MW-21-17.5 007493-13	<5	97
B-11-5.5 007493-15	12	96
B-11-10.5 007493-16	<5	98

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493 Date Extracted: 07/30/20 Date Analyzed: 07/30/20 and 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 58-139)
B-11-15 007493-17	<5	90
MW-26-12.5 007493-22	<5	99
$\underset{007493\cdot25}{\text{MW-}27\text{-}10.5}$	<5	97
MW-24-10.5 007493-29	<5	94
DUP-3 007493-32	<5	97
Method Blank 00-1390 MB	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493 Date Extracted: 07/31/20 Date Analyzed: 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
MW-22-16 007493-04	<50	<250	94
MW-22-25 007493-05	<50	<250	91
MW-23-8 007493-06	<50	<250	92
MW-23-12.5 007493-07	<50	<250	90
MW-23-18 007493-09	<50	<250	84
MW-21-5 007493-11	<50	<250	86
MW-21-10 007493-12	<50	<250	88
$\underset{007493-13}{\text{MW-21-17.5}}$	<50	<250	91
B-11-5.5 007493-15	<50	<250	91
B-11-10.5 007493-16	<50	<250	55

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493 Date Extracted: 07/31/20 Date Analyzed: 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
B-11-15 007493-17	<50	<250	94
MW-26-12.5 007493-22	<50	<250	84
MW-27-10.5 007493-25	<50	<250	90
MW-24-10.5 007493-29	<50	<250	94
DUP-3 007493-32	<50	<250	94
Method Blank 00-1713 MB	<50	<250	89

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-22-16 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-04 073015.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		100	55	145
4-Bromofluorobenze	ene	97	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		0.069		
Toluene		< 0.05		
Ethylbenzene		0.12		
m,p-Xylene		0.50		
o-Xylene		0.13		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-22-25 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-05 073016.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	98	62	145
Toluene-d8		99	55	145
4-Bromofluorobenze	ene	95	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-23-8 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-06 073017.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	103	62	145
Toluene-d8		96	55	145
4-Bromofluorobenze	ene	94	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-23-12.5 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-07 073018.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	62	145
Toluene-d8		97	55	145
4-Bromofluorobenze	ene	95	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-23-18 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-09 073019.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	62	145
Toluene-d8		97	55	145
4-Bromofluorobenze	ene	95	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		0.44		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-21-5 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-11 073020.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:		Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-21-10 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-12 073021.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:		Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		0.097		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-21-17.5 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-13 073022.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	101	62	145
Toluene-d8		99	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-11-5.5 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-15 073023.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	62	145
Toluene-d8		97	55	145
4-Bromofluorobenze	ene	94	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		0.082		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-11-10.5 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-16 073024.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	99	62	145
Toluene-d8		100	55	145
4-Bromofluorobenze	ene	97	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-11-15 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-17 073025.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-26-12.5 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-22 073026.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	99	62	145
Toluene-d8		100	55	145
4-Bromofluorobenze	ene	98	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-27-10.5 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-25 073027.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	96	62	145
Toluene-d8		97	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-24-10.5 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-29 073028.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	62	145
Toluene-d8		102	55	145
4-Bromofluorobenze	ene	97	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DUP-3 07/29/20 07/30/20 07/30/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-32 073029.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	62	145
Toluene-d8		98	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:	(Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ient Sample ID: Method Blank		Client: Aspect Consulting, LLC	
Date Received:	Not Applicable		Project:	Texaco Strickland PO 180357
Date Extracted:	07/30/20		Lab ID:	00-1688 mb
Date Analyzed:	07/30/20		Data File:	073010.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm) Di	ry Weight	Operator:	MS
			Lower	Upper
Surrogates:	%	Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		99	55	145
4-Bromofluorobenze	ene	94	65	139
Compounds:	Com	ncentration g/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 007470-02 (Duplicate)							
		Samp	ole Du	plicate			
	Reporting	Resu	lt R	lesult	RPD		
Analyte	Units	(Wet V	Wt) (W	(et Wt)	(Limit 20)		
Gasoline	mg/kg (ppm)	xg (ppm) <5		<5	nm		
Laboratory Code: L	aboratory Contro	ol Sample	e				
			Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Gasoline	mg/kg (ppm)	$\overline{20}$	90	71-131	_		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 007493-04 (Matrix Spike)								
			Sample	Percent	Percent			
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)	
Diesel Extended	mg/kg (ppm)	5,000	<50	114	110	64-133	4	
Laboratory Code: Laboratory Control Sample								
			Percent	5				
	Reporting	Spike	Recover	y Accep	tance			
Analyte	Units	Level	LCS	Crit	eria			
Diesel Extended	mg/kg (ppm)	5.000	104	58-	47			

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 007470-08 (Matrix Spike)

	nation aprilo)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2.5	< 0.03	80	74	29-129	8
Toluene	mg/kg (ppm)	2.5	< 0.05	79	74	35 - 130	7
Ethylbenzene	mg/kg (ppm)	2.5	0.35	66	60	32 - 137	10
m,p-Xylene	mg/kg (ppm)	5	0.71	65	61	34-136	6
o-Xylene	mg/kg (ppm)	2.5	0.054	83	78	33-134	6
Naphthalene	mg/kg (ppm)	2.5	0.59	$59 \mathrm{b}$	$54 \mathrm{b}$	14 - 157	9 b

Laboratory Code: Laboratory Control Sample

	J	Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Benzene	mg/kg (ppm)	2.5	99	68-114	
Toluene	mg/kg (ppm)	2.5	97	66-126	
Ethylbenzene	mg/kg (ppm)	2.5	100	64-123	
m,p-Xylene	mg/kg (ppm)	5	102	78-122	
o-Xylene	mg/kg (ppm)	2.5	104	77-124	
Naphthalene	mg/kg (ppm)	2.5	106	63-140	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

J 1 0 2 1 21 1 .


	~~~-	4493	SAMPLE	CHAIN	I OF (	CUS	STO	DY	ME		07.	-29-	20	VS	5/Bos	<b>****</b>	
	i lo (n)		SAMPL	ERS (signo	iture)	T	77	it.	1					Page	<u> </u>	of	<u> </u>
Report To Annew York	11	n branton	PROJEC	CT NAME			mf.	Lun	5	PO	#		-  ×	TUR Standar	NAROUI d turnar	ND TI ound	IME
Company Aspect Lor	wolting	~~	Ta	c c l	1.1	)		)	807	257				RUSH	ges auth	orízeo	by:
Address /// Jor Hu	<u>z, ste.ss</u>	<u>0</u>	- PEMAD	ARKS JTRICKlund 'A				INVOICE TO				_  _					
City, State, ZIP <u>Sent</u> +/e	, WA, 981C	94	-								Archive	ive samples					
Phone 202413-54/1 Email a york shi Daspect and Project specific RLs? - Yes / XO							···· /·	AP Default: Dispose after 30 days				30 days					
			I			<b> </b>			A	NALY	SES	REQU	ESTE	D			-
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	TARS BLA 02/0	BTEXN BOOL	Hold Pendon	-		Not	es
MW-22-7.5	014-5	7/28/20	0848	5001	5								X				
MW-22-10	021		0653	,	1								X				
MW-22-125	03		0859										X				
mw-22-16	04		0906			X	X					X	ſ				
mw - 22 - 25	05		0928			X	X					X					
Mw - 23 - 8	06		1102			X	X					Ťχ					
Mw-23-125	07		1/12			X	X					X			1		
mw-23-15	68		1120			1							X				
MW -23 - 18	09		127			X	X					X			1		
mw-23-25	10	4	1139	$\overline{\mathbf{A}}$	4	ŕ					-	-	X		1		
Lange	SI	GNATURE		L	PRI	NT N	[AM]	¹ E	I.	<b>I</b>		COM	PANY	<u> </u>	DAT	Έ	TIME
Friedman & Bruya, Inc.	Relinquished by: -	Paul bush		Dass	l Ur	wh					An	ei-	Low	HIA	2/29	120	1207
3012 16 th Avenue West	Received by:	Received by:					Q	510	2		`\	213	)		7/29	10	17:07
Seattle, WA 98119-2029 Relinquished by:									2							i 7	
Ph. (206) 285-8282	Received by:	e									1	Samr	les r	eceive	at_	<u> </u>	C
م - ۱۰۰۰ بین میں میں میں اور اور اور اور اور اور اور اور اور اور	and an an an an an an an an an an an an an		-														

	007	493	SAMPLE	E CHAIN	OF (	CUS	бТО	DX	ME	÷		0Ŧ	!-2	9	10	vs51	80	511	
D. Ada 1V	media /A	Call-	SAMPL	ERS (signo	uture) 1	-	1	1	+		1 1				Page	<u># 2</u>	of _	<u> </u>	-
Report 10 / 16 Cas je	ineshi/ bo	un a liter	PROJE	CT NAME	/	þ	ed 1	hay	<u> </u>	P	0#			×	TUR Standa	NAROUN rd turnar	VD TI ound	IME	
Company <u><i>ftspeet</i></u> L	n cl m	~~	To	a	11	1			10	(17)					RUSH_ ush chai	rges autho	orized	l by:	
Address //O d	<u>404 DE.00</u>		$ \frac{1}{8}$	<u>NO JHA</u>	Chlon	1			/// TN			<u></u>		┥┝━	SVI		SDUC	AT	-
City, State, ZIP	e, WH, 981	109	- <i>II</i> .	110					<u> </u>	₩¥₩U.	□ Archive samples			51.00					
Phone 2057413-5411-En	nailayonhofsk	i@aspætu	Project s	╾ specific RL	<u>s? - Y</u> e	es /	@	8986 K. N. 192	H	<b>)</b>		er, 354e			Other_ efault:	Dispose	after	30 days	n an
	······	1	<b>I</b>	[	1	<b> </b>			A	NAI	YSF	SRE	QUI	ESTE	D			``````````````````````````````````````	]
						Ď	Gx	8021	CID	8260	8270	8082	<u>N</u>	J.	۱ I				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	I'PH.	.Hq.I	EPA	PH-H	EPA	EPA	EPA	NE	A	-		Not	es	
		<b>r</b>	,	-JF-		NM	NW	TEX	(TW)	0Cs	AHs	CBs	TEX	the lot					
marie		70400	17.0	CAY1	6			Å		<u>&gt;</u>		<u> </u>	<u>a</u>						-
mw-d1-0 m, 21.10	114-12	11dord	8/61	2001	0		Λ					·	X						-
111W -d1-10	12		1820		<u>     </u>	X	X						X						-
11165-d1-11.0	13		1340			X	X						Д			-	••••••		_
$m\omega - dl - d\delta$	/14		353											X					-
13-11-55	15		1459			X	Х						X						
B-11-105	16 1		1511			X	X						X						
B-11-15	17		1526			X	X						X						
13-11-18	10		1533											X					1
B-11-22.5	19	4	1544	$\mathbf{J}$	4									X			,		1
Mw-26-5	20	2/29/20	027	soil	5					-				X					
	SI	GNATURE,			PRIN	VT N	[AM]	E				С	OM	PANY	[	DAT	E	TIME	
rrieaman & Bruya, Inc.	Reanquished by:	Ladling	•••	Vau,	d Un	wh	~				Ą,	pee	+(	onsu	Hoz	7/20/	20	1707	
South WA and the second	Received by:	$n \leq$	~~~~		and		lez	<u>518</u>	1			F	31			7/19	20	17:07	 -
DL (200) 207 2020	Penninguisned by:			· · · · · · · · · · · · · · · · · · ·				N	<u> </u>					Som	<u>nlee =</u>	havian	at	3.	
rn. (206) 285-8282	neceivea by:							' ·,						Sam	hica u	CLEIVEU	au		

•	007	7493	SAMPLE	E CHAIN	OF	CUS	ŞTC	DY	ME	Ś	Ć	97	-2'	9-2		V55/BO	5.	
Report To Arkey Y	mbofsh ? TA	hom Cost	SAMPL	ERS (signo	uture)	7.1									Page		<u>е                                     </u>	1
Company Aspect Co	msulting		PROJE	CT NAME		<u>mu n</u>	1977 <b>-</b>	<b>–</b>	<u>н </u>	P	0#				Standa	rd turnaround	l	
Address 7/0 2nd Ac	n, Stesse	)	Tex	no St	nzklos	1								B	ush cha	ges authorized by:		
City, State, ZIP Seeffl	4 WA, 18104	/	REMAR	KS					II	VVO	ICE	TO			SAI Archive	MPLE DISPO	SAL	
Phone 206 743-5411 E	mailayonkoth	Despecto	Project	m specific RL	s? • Ye	es 7	X0	the server of	n in special de	elle Antolae i					Other) Ofault:	Dispose afte	r 30 davs	
			· · · · · · · · · · · · · · · · · · ·						Ē	NAJ	LYSI	ES R	EQU	ESTE	D		<u> </u>	]
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	BTEN N 2016	Hold pending	1	No	tes	
MW-26-10.5	21A-5	7/29/20	082	501	5									X				
MW-26-125	22 A-D		0818	l i		x	X						Х			NO 402	JAR	
mw-26-22.5	23 A-D		ONSS											X		NU 402	Jai (N	9
mw-27-8	24 8 5		1056											X				
mw-27-105	25		1100			X	X						X					
mw-27-15	26		1/12	÷										X				
MW-27-225	27		1200											Ĭ				
Mw-24-8	25		1410											Ý				
MW - 24 - 105	2.9		1417			X	X						X					
MW-24-13	30	┢	1420	*	¥									X				
Enindre an P. Danie T.	SI(	GNATURE			PRIN	VT N	AM	E				(	OM	PAN	Y	DATE	TIME	]
2012 16th Avenue West	Received by	Lough with		Dave	J Di	N	~				Æ	Pee	Ł	Lons	olfor	2/29/20	1207	
Seattle, WA 98119-2029	Relinguished by:	mat C	25	150	ivee	(	lez	810	<b>}</b>			F	BI	~~~~	···	<u> </u>	17:07	
Ph. (206) 285-8282	Received by:								<u> </u>				S	amp	les rec	eived at	≥ •C	
																		1

٠

÷

	0071	493	SAMPLI	E CHAIN	IOF	CU	STC	DY	Mé	5	07	7	19-	20		V	5/!	805	
Report To Antres Vo	that / Ala	n Loffor	SAMPL	ERS (signo	ature)	T	21	1			(				]	Page #	<u>4</u>	of	/ 
Company Aspect (	onsollina		PROJE	CT NAME		y	n de	the		P	0#			- 2	Sta	ndard	l turnar	ound	5
Address 710 and A	12, Ste.STC	)	Texa	co Stak	lond				l	80	5	7		R	lush	SH charg	es autho	orized by	<i>r</i> :
City, State, ZIP_Seaff	e, WA. 98/0	14	REMAR	RKS		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			IÌ	NVO	ICE	ТО			Arc	SAM	PLE DI	SPOSAI	
Phone (206) 413-5411 E	mailayonhosk	Ouspections	Project	specific RL	s? - Y	es /	Ð		anna casacia	H	P.	1115 (K.)			) Oth	er	isnose	after 30	dave
	·····								À	NAI	LYSE	IS RI	EQUI	ESTE	D				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	BTENJKNOC	1bld				Notes	
Mw -24-225	3(A#	7/24/20	1441	501	5									$\times$					
DUP-3	32	7/20/20		ł	7	γ	X						X						· · · · · · · · · · · · · · · · · · ·
1						4													
														<u> </u>			· · ·		
																		· · · · · · · · · · · · · · · · · · ·	
Friedman & Bruya, Inc.	Relinquished by: 1	<u>GNATURE</u>			PRIN	T N	AMF	]			^	C	OME	PANY	r 11		DATI	<u> </u>	ME
3012 16 th Avenue West	Received by:	se war	······	1200sd	Uhre	4					H	pee	$\frac{+l}{2}$	msul	the		1/29/	20 12	67
Seattle, WA 98119-2029	Relinquished by:	<u>~~~</u>	<del>Z</del> S	<u>152</u>	ac	4	<u>~%</u>	ng	<u> </u>			F	151	ī			4/19/1	10/17	07
Ph. (206) 285-8282	Received by:												Sa	mpl	es r	ecei	ved at	$\frac{2}{1}$	• <b>c</b>

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 11, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the additional results from the testing of material submitted on July 29, 2020 from the Texaco Strickland PO 180357, F&BI 007493 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0811R.DOC

#### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on July 29, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 007493 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
007493 -01	MW-22-7.5
007493 -02	MW-22-10
007493 -03	MW-22-12.5
007493 -04	MW-22-16
007493 -05	MW-22-25
007493 -06	MW-23-8
007493 -07	MW-23-12.5
007493 -08	MW-23-15
007493 -09	MW-23-18
007493 -10	MW-23-25
007493 -11	MW-21-5
007493 -12	MW-21-10
007493 -13	MW-21-17.5
007493 -14	MW-21-25
007493 -15	B-11-5.5
007493 -16	B-11-10.5
007493 -17	B-11-15
007493 -18	B-11-18
007493 -19	B-11-22.5
007493 -20	MW-26-5
007493 -21	MW-26-10.5
007493 -22	MW-26-12.5
007493 -23	MW-26-22.5
007493 -24	MW-27-8
007493 - $25$	MW-27-10.5
007493 -26	MW-27-15
007493 -27	MW-27-22.5
007493 -28	MW-24-8
007493 -29	MW-24-10.5
007493 -30	MW-24-13
007493 -31	MW-24-22.5
007493 -32	DUP-3

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493 Date Extracted: 08/05/20 Date Analyzed: 08/05/20

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 58-139)
MW-22-10 007493-02	<5	90
MW-22-12.5 007493-03	<5	90
MW-23-25 007493-10	<5	92
Method Blank 00-1395 MB	<5	89

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493 Date Extracted: 08/04/20 Date Analyzed: 08/04/20

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆ )	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW-22-10 007493-02	<50	<250	90
$\underset{007493-03}{\text{MW-22-12.5}}$	<50	<250	91
MW-23-25 007493-10	<50	<250	91
Method Blank 00-1762 MB	<50	<250	102

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-22-10 07/29/20 08/04/20 08/05/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-02 080510.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	62	145
Toluene-d8		102	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-22-12.5 07/29/20 08/04/20 08/05/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-03 080511.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	95	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		0.068		
m,p-Xylene		0.11		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-23-25 07/29/20 08/04/20 08/05/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007493-10 080512.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		100	55	145
4-Bromofluorobenze	ene	95	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		0.047		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed:	Method Blank Not Applicable 08/04/20 08/04/20	9	Client: Project: Lab ID: Data File:	Aspect Consulting, LLC Texaco Strickland PO 180357 00-1719 mb 080409 D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm) I	Ory Weight	Operator:	AEN
			Lower	Upper
Surrogates:	0	6 Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		99	55	145
4-Bromofluorobenze	ene	95	65	139
Compounds:	Con	oncentration ng/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 00	7493-02 (Duplic	ate)			
		Samp	le Di	uplicate	
	Reporting	Resu	lt I	Result	RPD
Analyte	Units	(Wet V	Vt) (V	Vet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: La	aboratory Contro	ol Sample	e		
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	$\overline{20}$	100	61-153	_

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493

### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 008002-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	14,000	93 b	154 b	73-135	49 b
Laboratory Code: 1	Laboratory Contr	ol Sampl	le				
			Percent				
	Reporting	Spike	Recovery	Acceptan	ce		
Analyte	Units	Level	LCS	Criteria	ι <u> </u>		
Diesel Extended	mg/kg (ppm)	5,000	88	74-139			

#### ENVIRONMENTAL CHEMISTS

### Date of Report: 08/11/20 Date Received: 07/29/20 Project: Texaco Strickland PO 180357, F&BI 007493

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 007432-02 (Matrix Spike)

	(Linder in Spino)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2.5	< 0.03	93	96	29 - 129	3
Toluene	mg/kg (ppm)	2.5	< 0.05	90	92	35 - 130	2
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	90	92	32 - 137	2
m,p-Xylene	mg/kg (ppm)	<b>5</b>	< 0.1	90	91	34-136	1
o-Xylene	mg/kg (ppm)	2.5	< 0.05	92	94	33 - 134	2
Naphthalene	mg/kg (ppm)	2.5	0.26	96	95	14 - 157	1

Laboratory Code: Laboratory Control Sample

	_		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	2.5	97	68-114
Toluene	mg/kg (ppm)	2.5	91	66-126
Ethylbenzene	mg/kg (ppm)	2.5	94	64-123
m,p-Xylene	mg/kg (ppm)	<b>5</b>	97	78 - 122
o-Xylene	mg/kg (ppm)	2.5	98	77 - 124
Naphthalene	mg/kg (ppm)	2.5	94	63-140

### ENVIRONMENTAL CHEMISTS

## **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.











	00	7493	SAMPL	E CHAII	NOF	CUS'	rod	Y	(	1+-2	<u>~</u> 1- <u>_</u>	.U 1	155/ 100	5 -
Report To Antres Yo	nhotshi/Ada	m Graffon	SAMPI	LERS (sign	ature)	TZ		j				F	'age # (	<b>0</b> f
Company Aspect C	multing		PROJE	CT NAME	 }	Jan .	7 LAPO		PO #	<b>#</b>		T XStan	URNAROU	ND TIME ound
Address 7/0 2nd A	Address 7/0 2rd Ave, Str. 550			aco Stri	rkh	nd		1803	57	57 RUSH Rush cha				orized by:
City, State, ZIP Sent	le WA, 98/1	04	REMAI	RKS	C YU			IN	VOIC	E TO			SAMPLE DI	SPOSAL
Phone 200413-5411	Email Work Sch	Dasset	tes con			مى درد م		A	JD			□ Arch □ Othe	ive samples er	
		- pro la	Project	specific RI	<u></u>	es / X	0		<u>л</u>			Defau	lt: Dispose	after 30 days
			1	T	T				OL O		QUEST	RED	<del></del>	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx BTEX EPA 802	NWTPH-HCII	VOCs EPA 826 PAHs EPA 827	PCBs EPA 808	STEXN 8201	uning man		Notes
MW-22-7.5	01A-E	7/28/20	0848	5001	5			╞──╂╸			$\frac{1}{\lambda}$	7		
MW-22-10	021	1	0853	i	1	XV	त <u>ि</u>			5			Additional :	samples added by Andrew
MW-22-125	03		0859			XX							Additional s	amples added by Andrew
mw-22-16	04		CAN			XX						╉	Yonkotski or	1,08/04/2020
mw - 22 - 25	05		OTX			X			-			╉┯╋		
Mw-23-8	06		1/02						-		-	╉╌╌┟		
Mw-23-125	07		1//2			$\frac{2}{\sqrt{2}}$						╉╾╂		
mw-23-15	68		1120			$\gamma$			-			+		
MW -23 - 18	09		701		╌╂╌╂							╉┯╌╂╴		
mw-23-25	10	4	1120				$\rightarrow$					+-+	Additional sa	added by Andrew
	SIG	NATTER	1	Y[	DDIN						<u>́</u> ТХ	1	Yonkelstei on	09/04/2020
Friedman & Bruya, Inc.	Relinquished by:	Zullunk		D. 1			115		1		MPAN	<u>IY</u>	DATE	TIME
3012 16th Avenue West	Received by:	m-	-> &	100		100	0.>	······································	11	Pert	- Long	itter	1/1/0	
Seattle, WA 98119-2029	Relinquished by:	<u> </u>	->	- 172	une	10	2710	7-		+I	21		<u>-1104</u>	+0:17 0
Ph. (206) 285-8282	Received by:									Sam	ples:	receiv	ed at	oC
1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -		·····				·····					-			- 12

-

	903	1493	SAMPL	E CHAI	N OF	CU	STO	DD3	m	1	(	77-	L1-	w	1551	023 71
Report To Andrea	Yonhotsh: /A	am broks	SAMPI	ERS (sign	ature)	T	7.1	1	1					Pa	age # <u>2</u>	<u>of</u>
Company Aspect	Consulting		PROJE	CT NAME	2 .		ng pr	rag	7 <b></b> -	PC	)#			Stan	URNAROU dard turnar	ND TIME ound
Address 710 2nd	Aug Ste. S.	50	_ Tes	aco An	Achton	1			18	UZS	7			🗆 RUSI Rush cl	H 1arges auth	orized by:
City, State, ZIP_Seef	4e, WA, 98	104	REMAI	RKS				†	IJ	NVOI	CET	0		S	AMPLE DI	SPOSAL
Phone 205413-5411	Emailaymhotst	ionspata	- Protect	specific RI	<u>ε? γ</u>	es /	ക		A	P		. بر به بو ه ادمه		O Archi	ve samples	e og a det er tretter som e
		1	·····			<u>co /</u> T		I		NAL	YSES	REQU		Uefault 2D	t: Dispose	after 30 days
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	STEXA) BAKY	Held Dude			Notes
mw-21-5	11A-5	7/28/20	1318	5007	5	X	X									and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec
mw-21-10	IR (	ì	1328	1	1	X	X					X				
Mw-21-17.5	13		1340			X	X	$\neg \uparrow$			+	X				
MW-21-25	14		1353										Y			
13-11-55	15		1459			χ	X				1	x				
B-11-105	16		1571			X	X				-	X				
13-11-15	17		1526			X	X					x				
B-11-18	15		1533		2								x			
B-11-225	19	4	1544	¥	4						1		x			
Mw-26-5	20	7/29/20	420	soil	5						1		x			
Friedman & Bruya, Inc.	SIG Relinquished by: 7	NATURE,			PRIN	TN	AME					COMI	PANY		DATE	TIME
3012 16th Avenue West	Received by:	heeplant-		Jauro	(Un	wh-	-				tipe	et (	anju	Hory	7/20/2	0 1207
Seattle, WA 98119-2029	Relinquished by:	$\sqrt{-2}$	*	19	nore	_ [	Res (	aig d			F	131			7/19/2	0 17:07
Ph. (206) 285-8282	Received by:						•				r	{	Samj	ples r	eceived a	t <u>3</u> •C

	00	7493	SAMPL	E CHAI	N OF	CU	STO	)D3	₇ W	ß		vτ	~	. 1 -		V	ر/ در	805-	
Report To Andrew V	mhofsh? TA	dam ( d	L. SAMPI	LERS (sign	ature)	71	f f	r	·····						F	Page #	3	_of_4	
Company Aspect Co	nselfing		PROJE	CT NAME		lou k	hog L	Í.		1	PO #				T Star □ RUS	TURN odard SH	VAROUNI l turnarou	D TIME nd	
Address //0 2110 /40	e Acst	<u>)</u>	- Te	talo St	ncklo	nd									Rush c	charg	es authori	zed by:	
City, State, ZIP Scentle	, WA, 180	4		RKS					11	NVC	DICE	TO			Arch	SAM	PLE DISP	OSAL	1
Phone 2643-541 Em	ailajonkotk	Despet	Project	specific RI	.s? • Y	es /	XD.		يغارب	inan di karan	e de la				] Othe	er	in the second second second second second second second second second second second second second second second		
						<u> </u>		I		NA	LYSI	SR	FOII		Jetau	It: D	ispose af	er 30 days	يا م
								51	A	60	2	82							-
Sample ID	Lab ID	Date	Time	Sample	# of	H-D	Ъ. Н	A 80	ΩH ₁	A 82	A 82	A 80	18	- The					
		Sampled	Sampled	Туре	Jars	WTP	ЧТW	X EI	HdT	s EP	s EP	S EP	N N N	d			N	otes	
						ź	Ź	BTE	MN	VOC	PAH	PCB	5	A.M					
MW-26-10.5	21A-5	7/24/20	ORA	الدي	5									Y					-
MW-26-125	22 A-D	1	0818		,	x	×			$\neg$			V	$\sim$		}			-
mw-26-22.5	23 A-D		0855					+	-+			-	X			<u> </u>	NO 40	2 JAR	4~
mw-27-8	2405		1050				$\rightarrow$		$\rightarrow$	-+				X			NU YO	- Jar ((r	Þ
mw-27-105	26		1100			$\mathbf{v}$			-+	-+			10	X					4
MW-27-15	24					۸	Ž-	-+	_		-+		X						
MW-27-725	AP		111a						-+					X					
Mu 24 Q			Jaco Illio											$\downarrow$					
$\frac{100-44-0}{105}$	- 28		1410											$\downarrow$					
111W - d4 - 100	29	-1	1417			X	$X \mid$						X						
11100-07-15	30	Y.	1420	¥	¥									X					
Friedman & Bruva Inc R	SIG	NATURE			PRIN	ΤŅ	ME			Τ		C	OMF	ANY			DATE	TIME	/ ]
3012 16th Avenue West R	eceived by:	loud hul		David	$(U_{h})$	wh	<u> </u>				Ari	ret	- (	onsu	for	Ī	2/29/20	1207	
Seattle, WA 98119-2020 R	elínguished by	m	25,	150	eee	Ĺ	<u> </u>	NA			17	FR	31			1	H29/10	17:07	
Ph. (206) 285-8282	eceived by:							4									t-1-	, ····	
	· · · · · · · · · · · · · · · · · · ·												Sa	mple	es re	ceiv	ed at _	2°C	

· · · · · ·	007	493	SAMPL	E CHAI	N OF	CL	IST	0D	YM	К	0'	<i>t~</i>	29	-20	>	V.	15/5	05		
Report To Andrew	Vorhoty / Ado	m Loffon	SAMP	LERS (sign	ature)	T	71	1								Page #	# 4	4		
Company Aspert	Consulting		PROJE	CT NAME	}	4	ett.	y.	<u> </u>	]	PO #				<b>X</b> Ste	TURN	NAROUN d turnaro	D TIME		
Address 710 2nd	Ave, ste. 57	2	Texa	Terrica Stabil 1 1					Km					O RU Rush	RUSH					
City, State, ZIP Scattle, WA 98/04				RKS	WTH			<u> </u>	I	NVOICE TO				┥┝	SAMPLE DISPOSAL					
Phone (206) 413-5411 Email a York of shapes prove to sum				ويعادد	a			H	P				□ Archive samples							
Def								Defa	ult: D	ispose at	fter 30 day	5								
			[	T	1	<b>†</b>	T					ES R	EQU	ESTR	ED	<b>T</b>	T	······································		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 802	NWTPH-HCID	VOCa EPA 826(	PAHs EPA 8270	CBs EPA 8082	STEXN 82C	1/b/l			r	Notes		
Mus-24-225	3(A#	7/24/20	1441	Soul	5									$\mathbf{x}$				••••••••••••••••••••••••••••••••••••••	-	
DUP-3	32	7/20/20		¥	+	$\overline{\mathbf{v}}$	X						v						-	
						4			-+								,			
							-+			-+										
										-+	-+	-+								
										_										
					}															
												_								
				l												T				
Friedman & Bruya, Inc.	Relinquished by: 1	NATURE			PRIN	r na	ME					CÇ	OMPA	ANY			DATE	TIME	1	
3012 16th Avenue West	Received by:	de vol		Low sd	Unrul	-					Aų.	eet	- 6	relt	rg.	2	129/20	1207		
Seattle, WA 98119-2029	Relinquished by:	n -	20	Isac	re	6	58)	9	A		FBI					7	hgho	17:07		
Ph. (206) 285-8282	Received by:			*******									Sar	nple	s re	ceive	ed at	₽ • <b>C</b>		
														.T						

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 6, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on July 30, 2020 from the Texaco Strickland PO 180357, F&BI 007523 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0806R.DOC

#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on July 30, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 007523 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
007523 -01	MW-20-5'
007523 -02	MW-20-8'
007523 -03	MW-20-10.5'
007523 -04	MW-20-13'
007523 -05	MW-20-15.5'
007523 -06	MW-20-17.5'
007523 -07	MW-20-20'
007523 -08	MW-20-22.5
007523 -09	MW-20-25'
007523 -10	MW-25-2.5
007523 -11	MW-25-5'
007523 -12	MW-25-8'
007523 -13	MW-25-10.5'
007523 -14	MW-25-13'
007523 -15	MW-25-15'
007523 -16	MW-25-17.5'
007523 -17	MW-25-20'
007523 -18	MW-25-22.5'
007523 -19	MW-25-25
007523 -20	B-10-2.5
007523 -21	B-10-6
007523 -22	B-10-7.5
007523 -23	B-10-12.5
007523 -24	B-10-16
007523 -25	B-10-17.5
007523 -26	B-10-20
007523 -27	B-10-22.5
007523 -28	B-10-25
007523 -29	MW-21A-2.5
007523 -30	MW-22A-2.5
007523 -31	MW-22B-5'
007523 -32	DUP-4
007523 -33	DUP-5
007523 -34	Trip Blank

The 8260D matrix sample and matrix sample duplicate failed the relative percent difference for several compounds. The laboratory control sample met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20 Project: Texaco Strickland PO 180357, F&BI 007523 Date Extracted: 07/31/20 Date Analyzed: 08/03/20

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 50-150)
MW-20-5' 007523-01	<5	99
MW-20-8' 007523-02	<5	101
MW-20-13' 007523-04	<5	99
MW-25-8' 007523-12	<5	93
B-10-12.5 007523-23	<5	100
MW-21A-2.5 007523-29	<5	99
MW-22A-2.5 007523-30	<5	100
MW-22B-5' 007523-31	<5	98
DUP-4 007523-32	9.2	105
Method Blank 00-1392 MB	<5	92
#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20 Project: Texaco Strickland PO 180357, F&BI 007523 Date Extracted: 08/03/20 Date Analyzed: 08/04/20

## RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate ( <u>% Recovery)</u> (Limit 51-134)
Trip Blank 007523-34	<100	93
Method Blank 00-1393 MB	<100	108

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20 Project: Texaco Strickland PO 180357, F&BI 007523 Date Extracted: 07/31/20 Date Analyzed: 07/31/20

#### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW-20-5' 007523-01	<50	<250	97
MW-20-8' 007523-02	<50	<250	93
MW-20-13' 007523-04	<50	<250	91
MW-25-8' 007523-12	<50	<250	93
B-10-12.5 007523-23	<50	<250	92
MW-21A-2.5 007523-29	90 x	360	90
MW-22A-2.5 007523-30	<50	<250	91
MW-22B-5' 007523-31	<50	680	88
DUP-4 007523-32	<50	<250	90
Method Blank 00-1754 MB	<50	<250	92

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-20-5' 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-01 073121.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	100	62	145
Toluene-d8		99	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-20-8' 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-02 073122.D GCMS4 MS
	e eur ,		T	TT
C 4		0/ D	Lower	Upper
Surrogates:	_	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	62	145
Toluene-d8		100	55	145
4-Bromofluorobenze	ene	97	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		0.065		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-20-13' 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-04 073123.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	95	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-25-8' 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-12 073124.D GCMS4 MS
	e eur ,		T	TT
C 4		0/ D	Lower	Upper
Surrogates:	_	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	62	145
Toluene-d8		100	55	145
4-Bromofluorobenze	ene	97	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-10-12.5 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-23 073125.D GCMS4 MS
			Lower	Unner
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	94	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	97	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-21A-2.5 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-29 073126.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	101	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	95	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-22A-2.5 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-30 073127.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	102	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	96	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-22B-5' 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-31 073128.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	62	145
Toluene-d8		102	55	145
4-Bromofluorobenze	ene	97	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DUP-4 07/30/20 07/31/20 07/31/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-32 073129.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		101	55	145
4-Bromofluorobenze	ene	97	65	139
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		0.098		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank Not Applicable 07/31/20 07/31/20 Soil	9	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357 00-1718 mb 073110.D GCMS4
Units:	mg/kg (ppm) I	Ory Weight	Operator:	MS
			Lower	Upper
Surrogates:	9	6 Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	62	145
Toluene-d8		97	55	145
4-Bromofluorobenze	ene	93	65	139
Compounds:	Con	oncentration ng/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 07/30/20 08/03/20 08/03/20 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 007523-34 080315.D GCMS4 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	57	121
Toluene-d8		99	63	127
4-Bromofluorobenz	ene	94	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

# ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	X	Client:	Aspect Consulting, LLC
Date Received:	Not Applicabl	e	Project:	Texaco Strickland PO 180357
Date Extracted:	08/03/20		Lab ID:	00-1684 mb
Date Analyzed:	08/03/20		Data File:	080310.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	103	57	121
Toluene-d8		99	63	127
4-Bromofluorobenze	ene	96	60	133
	C	oncentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20 Project: Texaco Strickland PO 180357, F&BI 007523

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 00	)7511-01 (Duplic	eate)			
		Samp	le Du	plicate	
	Reporting	Resu	lt R	esult	$\operatorname{RPD}$
Analyte	Units	(Wet V	Vt) (W	et Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: La	aboratory Contro	ol Sample	9		
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	mg/kg (ppm)	$\overline{20}$	95	71-131	

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20 Project: Texaco Strickland PO 180357, F&BI 007523

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 007	463-01 (Duplic	cate)			
	Reporting	Samp	le Du	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100	) <	:100	nm
Laboratory Code: Lab	oratory Contro	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	108	69-134	_

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20 Project: Texaco Strickland PO 180357, F&BI 007523

#### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	007523-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	(Wet Wt)	$\mathbf{MS}$	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	112	106	63-146	6
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	-			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	108	79-1	44		

#### ENVIRONMENTAL CHEMISTS

#### Date of Report: 08/06/20 Date Received: 07/30/20 Project: Texaco Strickland PO 180357, F&BI 007523

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 007477-01 (Matrix Spike)

	(intertime princ)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2.5	< 0.03	78	62	29 - 129	23 vo
Toluene	mg/kg (ppm)	2.5	< 0.05	77	61	35 - 130	23 vo
Ethylbenzene	mg/kg (ppm)	2.5	0.075	78	62	32 - 137	23 vo
m,p-Xylene	mg/kg (ppm)	<b>5</b>	1.2	$74 \mathrm{b}$	$58 \mathrm{b}$	34 - 136	$24 \mathrm{b}$
o-Xylene	mg/kg (ppm)	2.5	0.061	85	67	33 - 134	24 vo
Naphthalene	mg/kg (ppm)	2.5	1.8	73 b	$50 \mathrm{b}$	14 - 157	37 b

Laboratory Code: Laboratory Control Sample

	I I I I I I I I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	2.5	104	68-114
Toluene	mg/kg (ppm)	2.5	101	66-126
Ethylbenzene	mg/kg (ppm)	2.5	104	64-123
m,p-Xylene	mg/kg (ppm)	<b>5</b>	105	78 - 122
o-Xylene	mg/kg (ppm)	2.5	108	77 - 124
Naphthalene	mg/kg (ppm)	2.5	109	63-140

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20 Project: Texaco Strickland PO 180357, F&BI 007523

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 007524-01 (Matrix Spike)

· · · · · ·	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	$\mathbf{MS}$	Criteria
Benzene	ug/L (ppb)	50	< 0.35	101	76 - 125
Toluene	ug/L (ppb)	50	<1	95	76 - 122
Ethylbenzene	ug/L (ppb)	50	<1	95	69 - 135
m,p-Xylene	ug/L (ppb)	100	<2	96	69 - 135
o-Xylene	ug/L (ppb)	50	<1	98	60-140
Naphthalene	ug/L (ppb)	50	<1	99	44-164

Laboratory Code: Laboratory Control Sample

····· , ···· ,	,		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	101	94	69-134	7
Toluene	ug/L (ppb)	50	95	88	72 - 122	8
Ethylbenzene	ug/L (ppb)	50	98	90	77 - 124	9
m,p-Xylene	ug/L (ppb)	100	100	91	81-112	9
o-Xylene	ug/L (ppb)	50	101	92	81-121	9
Naphthalene	ug/L (ppb)	50	97	94	64-133	3

#### ENVIRONMENTAL CHEMISTS

#### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.























20752	23			SAMPLE	CH	AIN	OF (	US	ТО	DY		1	_1_	me	<u> </u>	)7-3	30 -	20	1	of (	4 BOS
Andiany	unko Eski/A	Edicia	Guit	SAMELE	CRS (s	signa	ture)				The	ulter	L	1			T	uRN	AROUND	TIM	EVWI
Report To MULLO 10	IIPO IGIO//	Tum		PROJEC	T NA	ME						P	) #			]   X	Stan RUS	idard SH	turnarour	ıd	
Company Aspect Consul	the	<u> </u>		Texac	oSt	rick	land			[^	80	35	57			R	ush c	harg	es authoriz	zed by	y:
Address TIO 2nd Ave	, Ste. 530	)		REMARI	KS						IN	IVO.	ICE	TO				SAM!	PLE DISP	OSAI	
City, State, ZIP_Seatte	-, WA 98	104		-		4.4						Aí	2				Arch Othe	iive s er	amples		
Phone (206)413-54	il ayonkofs	ki@	aspect	CUProject s	pecifi	ic RL	<u>s? - Ye</u>	es /	No							D	<u>efau</u>	<u>lt: D</u>	ispose aft	<u>er 3(</u>	) days
	۲ 										A	NAL	YSE	IS RI	EQUE	ESTE	D 7				
Sample ID	Lab ID	D San	ate npled	Time Sampled	San Ty	nple vpe	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	BTEXN SZLA	Huld Pendina			N	otes	
MW-20-255'	OL A-E	713	0/20	0914	501	Í	5	X	$\times$						X			<u> </u>			
MW - 10 - 8'	021			0921	•			X	X						X						
MIN - 20 - 10,5'	03			0928												$\sim$					
Mul-20-131	×4			0933				X	X						$\times$						
MW 20 15				0936												X					
MW = L0 = 13.3	1			119112												X					
NIW-20-1113	06			0145												X		1			
MW -20-20'	07 A-D	1	<b> </b>	0444	ļ		7	+-								V	<u> </u>	+			
MW-20-22.5	08 A-12		<u> </u>	0951		<u>  </u>	5	╂								$\frac{1}{X}$		+			
MW - 20 - 25'	09		<u> </u>	1007	<u> </u>	<u> </u>	5	_								R.	<u> </u>				
MW-25-2.5	10		1	0710		1	5									X					
	/S	IGNA'	TURE				PRI	NT I	NAM	E			<u> </u>		COM	IPAN	Y		DATE		TIME
Friedman & Bruya, Inc.	Relinquished by:	lan	N	2	+	Ra	.chu)	Con	M	vel			<u>  A</u>	spe	<u>ct Ci</u>	onsi	<u>川口</u>	<u>ng</u>	113074	) 17	220
3012 16 th Avenue West	Received by:	n D.	M-	B		6	2V	Jeb	ber	-Bi	w	a			<u>F</u> ?	в			7/30/22	<u>   I</u>	228
Seattle, WA 98119-2029	Relinquished by:			<u> </u>											Sa	lamı	les 1	ece	ved at	3	•C
Ph. (206) 285-8282	Received by:															•					

00752	SAMPLE	CHA	AIN	OF (	CUS	бто	DY			M	Ć	0	2-30	0-2	0	1	B05	5			
Report To Andrew YON K	ofski /Adum	Griffin		ERS (s	igna	ture)		1	Jun	from	L	-				Pa T	TURNAROUND TIME				
Company Aspect CONSI	itika		PROJEC	CT NA	ME						P	0#				Stan RUS	daro H	l turnaround			
Address This Find And	Ste. 550	<b></b>	Texau	s Str	rick	lang	\$			18	03	5	I			ush cl	harg	ges authorized	d by:		
Address IIV DVG / V-	11A 9811	<u></u>	REMAR	KS						Π	NVO	ICE	TO			SAMPLE DISPOSAL					
City, State, ZIP	· · · · · · · · · · · · · · · · · · ·	"A associe	-	y.un					AP							□ Other					
Phone[100)413-5411 Em	nail ay worsk	· waspear	Project s	specific	: RL	<u>s? - Ye</u>	es /	(No)	L		N A I	VSE	SRI	EOTI		D		nspose after	50 days	」 】	
									21		09	2	82	200		5				1	
		Dete	Time	Sam	nlo	# of	H-Dx	H-Gx	A 80	-HCI	A 82	A 82	A 80	ろう	div						
Sample ID	Lab ID	Sampled	Sampled	Туре		Jars	NTP	NTP]	X EF	TPH	S EP	ls EP	s EP	X	I Pa			Not	es		
							Ń	ź	BTE	NN	VOC	PAH	PCE	BTE	Huk						
MW-25-5'	11 A-D	7130/20	0716	501	١	4									X						
MW-25-8'	12 AG	1	0723			5	X	Х				_		X							
MW-25-10.5'	13		0729			5									X						
MW-25-13'	14		0734			5									X						
MW-25-15'	15		0740			5									X						
MW-25-1715'	16 A-D		0745			4									X						
MW-25-20'	17 A-B		0750			5	ļ								X						
MW - 25 - 22.5'	18		0757			5									X					╡,	
MW-25-25	19 A-D		0804			5									X			014300	AULEOS	ľ	
B-10-25	20 A-13	$\checkmark$	1134	<u> </u>	$\overline{\gamma}$	5									X					]	
	SI	GNATURE				PRIN	NT N	JAM	E				(	COM	PAN	Y		DATE	TIME		
Friedman & Bruya, Inc.	Relinquished by:	us	~	Ra	th	YCI	)√N	we	U		<u>.                                    </u>	128	pec	tα	msi	ina	Ý	7/30/20	1538	_	
3012 16 th Avenue West	Received by:	2 D. M.	ß	Liz Webber. Bru			Bruya F?B							7/30/20	1558						
Seattle, WA 98119-2029	Relinquished by:	(	5																	-	
Ph. (206) 285-8282	Received by:	ceived by:																			

007523	3		SAMPLE	CHAI	NOF	CUS	бто	DY		į	A	ME	5 3	- 7	30 -	-20	) 7	U BOS
Barry To ATAMPIN YIL	nkotski lAdu	un Givitta	SAMPLI	ERS (sign	uature)		_	Ĩ	7	al lla	n.				-Callensee	Page # FURN	of IAROUND T	IME 101
Report 10 1. VIOV CCC IN	()		PROJEC	T NAME	<u> </u>		-		1000	P	0#			1  >	<b>《</b> Sta	ndard	turnaround	
Company Aspect Cons	ULTING		Texa	a Shar	Jestin	<b>1</b> .2		15	٣'n	25	1				RU: lush	SH charg	es authorize	d by:
Address 710 2nd Ave	1 Stc. 550		- I-Ma			~~				<u> </u>		<u> </u>		_		0 4 3 4		
City, State, ZIP Seattu	LIWA 781	04	REMAR	REMARKS						ICE	ТО		ſ	amples	SAL			
Phone (206) 413-5411 Em	ailayoukofi	rie aspect	Cov Project s	Project specific RLs? - Yes /(Np AP					- ♀ □ Other Default: Dispose after 30 ¢							30 days		
Г		•							A	NAI	LYSE	SRI	EQUE	ESTE	D			]
								21	А	60	70	82	J	Ŕ	7			
			TT:	Comula	# of	H-Dx	H-Gx	A 80	HCI	A 82	A 82	A 80	260	NAN				
Sample ID	Lab ID	Date Sampled	Sampled	Sample Type	Jars	T'PF	TPI	EP	.HH.	EP	EP	EP	is n	Per			Not	es
		-				MN	MN	STEX	LWN	70Cs	3HA	PCB	A Constant	<b>V</b> H				
D to 1		-11		sail	5									<u>ح</u>				
8-10-6	2( A.E	1130/20	1140	5011				-+						$\overline{}$		<u> </u>		
B-10-7.5	22		1148		5									X		<u> </u>		
B-10-12.5	23		1200		5	X	X						X					
B-10-16	24		1207		5									χ			01 11-0	105
B-10-17.5	25 A D		1247		4									X		ļ	140 402	J4/
B-10-20	26A.E		1253		5									X				
B-10-22.5	27 1		1300		5									X				
B-10-25	28		1313		5									X				
MW-21A-2.5	29		1341		5	X	Х						$\mathbf{X}$					
MW-22A-2.5	5 30	4	1355	J	5	Х	χ						X					
	SI	GNATURE			PRI	NT N	[AM]	E				(	COM	PAN	Y		DATE	TIME
Friedman & Bruya, Inc.	Relinquished by:	adri	$\sim$	Rad	rel Co	M	vel				AS	pec	<u>7 C</u>	onsi	小	ng	7/30/20	1558
3012 16th Avenue West Received by:				Liz Wehber Brung				FIB						7/30/20	1858			
Seattle, WA 98119-2029	Relinquished by:		5						!									
Ph. (206) 285-8282	Received by:																	

8A7523			SAMPLE	CHAIN	OF (	CUS	бто	DY	-	Λ	, ,	νE	0	17-3	0-7	20	. 1	BO		
	SAMPL	SAMPLERS (signature)								استدی معکدی	n an		<b>באייייי</b> [ ר	Page #	<u> </u>	$\frac{\mathbf{Y}}{\mathbf{TIME}}$				
Report To TY ON W Y	NKEFDEL/ HOW	WENTIN	PROJEC	CT NAME	<				PO #						Standard turnaround					
Company Aspect CUNSVITING			Terar	TAXARD SHOTICIMINA					1971257						RUSH Rush charges authorized by:					
Address 710 2nd Ave, Ste. 550			That of the area																	
City, State, ZIP Seuttle, WA 98104			REMAR	REMARKS					INVOICE TO					E	□ Archive samples					
Phono/2010/413-5411 Fr	nailarunakafs	kiQasaect	anovitine	J.Com	c? . Va		(Ja)			A	r				Oth Defau	.er 1lt: D	ispose afte	er 30 davs		
					<u>15 10</u>	<u>,,, ,</u>				NAI	YSF	ES RI	EQUE	L L	D					
								21	A	60	70	82	ည်	£	7					
		Dete	Time	Sample	# of	XQ-F	H-G _X	A 80	-HCI	A 82	A 82	A 80	826	MAN						
Sample ID	Lab ID	Date Sampled	Sampled	Type	Jars	VTPI	ITPI	X EP	ΓΡΗ	s EP	s EP	s EP	Ż	d Re			N	otes		
						N	ΝV	BTE	NW'	VOC	PAH	PCB	El C	HOK						
	2/10	710.00	111-221	<ົກ.)	15	X	X		-	-			X					<u>, ., .</u>		
MM- 778-2	3(14.)	1/30/20	19 29	2011	4	$\frac{1}{1}$					_									
DUP-4	32 A-E	7/30/20		5011	5		X						X							
DUP-5	33	7130/20		soil	5									X						
Trip blank	34A-B	71		AQ	2		X						X					<u></u>		
					1															
				<u></u>																
					<u> </u>															
	SI		PRINT NAME						СОМРА							DATE	TIME			
Friedman & Bruya, Inc.	Relinquished by: Kunc			-Rachel Conwell							Aspect Consulting						7/30/22	1558		
3012 16 th Avenue West	Received by:	Liz Webber-Bruyg						Fib					7/30/20	158						
Seattle, WA 98119-2029	Relinquished by:	(	5						ι											
Ph. (206) 285-8282	Received by:																			

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 11, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 5, 2020 from the Texaco Strickland PO 180357, F&BI 008076 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0811R.DOC
#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on August 5, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 008076 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
008076 -01	B-09-2.5
008076 -02	B-09-4
008076 -03	B-09-6
008076 -04	B-12-2.5
008076 -05	B-12-5
008076 -06	Trip Blank

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20 Project: Texaco Strickland PO 180357, F&BI 008076 Date Extracted: 08/07/20 Date Analyzed: 08/07/20

#### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 50-150)
B-09-2.5 008076-01	<5	96
B-09-6 008076-03	<5	96
Method Blank 00-1400 MB	<5	97

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20 Project: Texaco Strickland PO 180357, F&BI 008076 Date Extracted: 08/07/20 Date Analyzed: 08/07/20

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate ( <u>% Recovery)</u> (Limit 51-134)
Trip Blank 008076-06	<100	95
Method Blank 00-1781 MB	<100	95

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20 Project: Texaco Strickland PO 180357, F&BI 008076 Date Extracted: 08/06/20 Date Analyzed: 08/06/20

#### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅ )	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆ )	Surrogate <u>(% Recovery)</u> (Limit 48-168)
B-09-2.5 008076-01	<50	<250	92
<b>B-09-6</b> 008076-03	<50	<250	93
Method Blank 00-1777 MB	<50	<250	92

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-09-2.5 08/05/20 08/06/20 08/06/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008076-01 080325.D GCMS13 AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	95	50	150
Toluene-d8		95	50	150
4-Bromofluorobenze	ene	97	50	150
Compounds:	(	Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-09-6 08/05/20 08/06/20 08/06/20 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008076-03 080326.D GCMS13 AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	98	50	150
Toluene-d8		98	50	150
4-Bromofluorobenze	ene	99	50	150
Compounds:		Concentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

### ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	X	Client:	Aspect Consulting, LLC
Date Received:	Not Applicabl	e	Project:	Texaco Strickland PO 180357
Date Extracted:	08/06/20		Lab ID:	00-1728 mb
Date Analyzed:	08/06/20		Data File:	080310.D
Matrix:	Soil		Instrument:	GCMS13
Units:	mg/kg (ppm)	Dry Weight	Operator:	AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	50	150
Toluene-d8		98	50	150
4-Bromofluorobenze	ene	99	50	150
Compounds:	C	oncentration mg/kg (ppm)		
Benzene		< 0.03		
Toluene		< 0.05		
Ethylbenzene		< 0.05		
m,p-Xylene		< 0.1		
o-Xylene		< 0.05		
Naphthalene		< 0.05		

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 08/05/20 08/06/20 08/06/20 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008076-06 080324.D GCMS13 AEN
			Lower	Upper
Surrogates:		% Recoverv:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		99	50	150
4-Bromofluorobenze	ene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 08/06/20 08/06/20 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 00-1729 mb 080309.D GCMS13 AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	% d4 ene	Recovery: 101 100 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	Cor u	ncentration g/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20 Project: Texaco Strickland PO 180357, F&BI 008076

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: (	008076-01 (Duplic	eate)			
		Samp	ole Du	plicate	
	Reporting	Resu	ılt R	lesult	RPD
Analyte	Units	(Wet V	Wt) (W	(et Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code:	Laboratory Contro	ol Sample	e		
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	$\overline{20}$	90	71-131	

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20 Project: Texaco Strickland PO 180357, F&BI 008076

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 008	040-01 (Duplie	cate)			
	Reporting	Sampl	le Du	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100	) <	<100	nm
Laboratory Code: Lab	ooratory Contr	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	108	69-134	_

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20 Project: Texaco Strickland PO 180357, F&BI 008076

#### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 008076-01 (Matrix Spike)

Laboratory Code:	008076-01 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	(Wet Wt)	$\mathbf{MS}$	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	86	96	73-135	11
Laboratory Code:	Laboratory Contro	ol Sampl	le				
			Percent				
	Reporting	Spike	Recovery	Acceptan	ice		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	84	74-139	)		

#### ENVIRONMENTAL CHEMISTS

#### Date of Report: 08/11/20 Date Received: 08/05/20 Project: Texaco Strickland PO 180357, F&BI 008076

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008076-01 (Matrix Spike)

Haboratory coact	(inacim opino)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	1.0	< 0.03	88	84	50 - 150	5
Toluene	mg/kg (ppm)	1.0	< 0.05	90	84	50 - 150	7
Ethylbenzene	mg/kg (ppm)	1.0	< 0.05	92	86	50 - 150	7
m,p-Xylene	mg/kg (ppm)	2.0	< 0.1	88	82	50 - 150	7
o-Xylene	mg/kg (ppm)	1.0	< 0.05	90	83	50 - 150	8
Naphthalene	mg/kg (ppm)	1.0	< 0.05	95	87	50 - 150	9

Laboratory Code: Laboratory Control Sample

U U	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	1.0	101	70-130
Toluene	mg/kg (ppm)	1.0	104	70-130
Ethylbenzene	mg/kg (ppm)	1.0	105	70-130
m,p-Xylene	mg/kg (ppm)	2.0	100	70-130
o-Xylene	mg/kg (ppm)	1.0	102	70-130
Naphthalene	mg/kg (ppm)	1.0	106	70-130

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20 Project: Texaco Strickland PO 180357, F&BI 008076

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008091-01 (Matrix Spike)

-	_	Percent				
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Benzene	ug/L (ppb)	10	< 0.35	98	50 - 150	
Toluene	ug/L (ppb)	10	2.3	94 b	50 - 150	
Ethylbenzene	ug/L (ppb)	10	<1	97	50 - 150	
m,p-Xylene	ug/L (ppb)	20	<2	94	50 - 150	
o-Xylene	ug/L (ppb)	10	<1	95	50 - 150	
Naphthalene	ug/L (ppb)	10	<1	100	50 - 150	

Laboratory Code: Laboratory Control Sample

	I I I I I I I		Percent	Percent		
	Reporting	$\operatorname{Spike}$	Recovery	Recovery	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	98	98	70-130	0
Toluene	ug/L (ppb)	10	97	99	70-130	2
Ethylbenzene	ug/L (ppb)	10	98	99	70-130	1
m,p-Xylene	ug/L (ppb)	20	95	96	70-130	1
o-Xylene	ug/L (ppb)	10	96	97	70-130	1
Naphthalene	ug/L (ppb)	10	101	102	70-130	1

#### ENVIRONMENTAL CHEMISTS

### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.









0080	076		SAMPLE	CHAIN	OF (	CUS	TO	DY			м	E	08	3-05	-20	>	1	1 151
- Adamt Vad	Sels/Ala	m Grafts	SAMPL	ERS (signa	ture)	TZ	in l	lunt	1				nt, nt,tu		T	urn	AROUND TI	ME (02
Report To Marcon Or	- Il-		PROJEC	T NAME			-90	<u> </u>	<u> </u>	PC	)#				Stan RUS	dard H	turnaround	JWI
Company Hyper Com	T FEA	<u> </u>	Tora	n (Ind	1				180	)35	7			R	ush c	harge	es authorized	by:
Address 1/0 d Ave	- TROSC	) V 1	REMAR	KS	11070				IN	IOV	CE	ſO			<u> </u>	SAMI	PLE DISPOS	AL
City, State, ZIP Soffle,	, WA, 1810	<u>iy</u>	il int							1.D	•				Othe	er		
Phone (206) 413-5411 En	ailayonkobh?	Jospeet lense	Project s	specific RL	<u>s? - Y</u> e	es /	(v)			FT		ant	OTT		efau D	lt: D	ispose after	30 days
				I		<b> </b>				NAL ol	ASE 0	S KE	3	STE.			<u>.</u>	
						Ă	Š	A 802	HCIL	A 826	A 827	A 808	826	- E				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH	HGT.	EP/	-Hd	EP/	EP/	EP/	X	d			Note	es
		~~~p~~~				MN	MN	STEX	<b>L</b> MN	VOC	PAH _s	PCB	ß	19(H				
3 05	A	81Cha	11/27	6.21	-	v	X						X					
13-09-20	0(A-6	010/00	1700	3011		A	<i>^</i>						~	Y				
13-04-4	02		14d1		$\left - \right $								$\overline{\mathbf{v}}$					
B-09-6	03		1445		$\left \right $	X	X						<u>^</u>		5 			
B-12-25	-04		1342				*****							<u> </u>		-		
B-12-5	05	4	1554	*	*	_								X			Run NWTPH-	Gx and 8260C
Trop Block	06 A-B			AQ	2	×	Х						X				do not run NW	TPH-Dx.
	· · · ·			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1 Parts - 1	1 a							Jul	í.	- Andrew Yonk 08/06/2020	otski,
															/			
						I									San	ple	received	at _
					1	T												
		CNATIPE	<u> </u>	1	PRI	NT N	IAM	Ē	·····	I	ł		OM	PAN	Y		DATE	TIME
Friedman & Bruya, Inc.	Bl Relinquished by:	Z		Da		Ina	L				A;	pec	FL	onse	y lle	lq	815120	1711
3012 16th Avenue West	Received by:	D -		BI	SPA	-7	Ī	ADE	55	E		-7	FR	31				
Seattle, WA 98119-2029	Relinquished by:	F																
Ph. (206) 285-8282	Received by:		t,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															

• • • • • • • •

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 1, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 18, 2020 from the Texaco Strickland PO 180357, F&BI 008261 project. There are 51 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0901R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 18, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 008261 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-1-081820
MW-2-081720
MW-4-081820
MW-6-081720
MW-7-081720
MW-8-081820
MW-9-081820
MW-10-081820
MW-11-081720
MW-12-081720
MW-13-081720
MW-14-081820
MW-16-081720
MW-17-081720
MW-18-081820
MW-19-081820
MW-20-081720
MW-21-081720
MW-22-081720
MW-23-081820
MW-24-081820
MW-25-081820
MW-26-081820
DUP-01-081720
DUP-02-081820
RB-01-081720
RB-02-081820
Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261 Date Extracted: 08/24/20 Date Analyzed: 08/24/20 and 08/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-1-081820 008261-01 1/10	14,000	102
MW-2-081720 008261-02	770	106
MW-4-081820 008261-03 1/100	170,000	104
$\underset{008261\text{-}04}{\text{MW-6-}081720}$	<100	95
$\frac{\text{MW-7-081720}}{_{008261-05}}$	<100	92
MW-8-081820 008261-06 1/100	130,000	100
MW-9-081820 008261-07	<100	94
MW-10-081820 008261-08	5,100	102
MW-11-081720 008261-09 1/20	27,000	106
MW-12-081720 008261-10	230	100
MW-13-081720 008261-11	420	104
$\underset{008261\cdot12}{\text{MW-14-081820}}$	5,000	92

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261 Date Extracted: 08/24/20 Date Analyzed: 08/24/20 and 08/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

~

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
$\underset{008261-13}{\text{MW-16-081720}}$	<100	96
$\underset{008261-14}{\text{MW-17-081720}}$	550	104
$\underset{008261-15}{\text{MW-18-081820}}$	<100	94
$\underset{008261-16}{\text{MW-19-081820}}$	<100	96
$\underset{008261-17}{\text{MW-20-081720}}$	120	99
$\underset{008261-18}{\text{MW-21-081720}}$	7,400	132
MW-22-081720 008261-19 1/10	14,000	106
MW-23-081820 008261-20 1/10	21,000	99
$\underset{008261-21}{\text{MW-}24-081820}$	<100	95
$\underset{008261-22}{\text{MW-25-081820}}$	<100	95
$\underset{008261-23}{\text{MW-26-081820}}$	<100	90
DUP-01-081720	13,000	110

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261 Date Extracted: 08/24/20 Date Analyzed: 08/24/20 and 08/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
DUP-02-081820 008261-25	<100	95
RB-01-081720 008261-26	<100	94
RB-02-081820 008261-27	<100	93
Trip Blank 008261-28	<100	94
Method Blank 00-1800 MB	<100	95
Method Blank 00-1801 MB	<100	86

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261 Date Extracted: 08/19/20 Date Analyzed: 08/21/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-1-081820 008261-01	2,100 x	1,100 x	95
MW-2-081720 008261-02	660 x	310 x	84
MW-4-081820 008261-03	4,500 x	1,000 x	86
$\underset{008261-04}{\text{MW-6-081720}}$	170 x	<250	105
$\underset{008261-05}{\text{MW-7-081720}}$	110 x	<260	86
MW-8-081820 008261-06	3,200 x	550 x	68
MW-9-081820 008261-07	80 x	<250	112
MW-10-081820 008261-08	1,100 x	360 x	98
$\underset{008261-09}{\text{MW-11-081720}}$	1,600 x	260 x	106
MW-12-081720 008261-10	240 x	<250	97
$\underset{008261-11}{\text{MW-13-081720}}$	320 x	<250	84

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261 Date Extracted: 08/19/20 Date Analyzed: 08/21/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-14-081820 008261-12	570 x	<250	80
$\underset{008261-13}{\text{MW-16-081720}}$	130 x	<250	100
$\underset{008261-14}{\text{MW-17-081720}}$	270 x	<250	89
$\underset{008261-15}{\text{MW-18-081820}}$	<50	<250	83
MW-19-081820 008261-16	<50	<250	92
$\underset{008261-17}{\text{MW-20-081720}}$	180 x	<250	94
MW-21-081720 008261-18	3,200 x	260 x	80
MW-22-081720 008261-19	2,500 x	<250	86
MW-23-081820 008261-20	1,900 x	<250	90
MW-24-081820 008261-21	76 x	<250	106
$\frac{\text{MW-25-081820}}{_{008261-22}}$	55 x	<250	119

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261 Date Extracted: 08/19/20 Date Analyzed: 08/21/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-26-081820 008261-23	<50	<250	119
DUP-01-081720 008261-24	3,100 x	260 x	91
DUP-02-081820 008261-25	53 x	<250	111
RB-01-081720 008261-26	67 x	<250	114
RB-02-081820 008261-27	<50	<250	96
Method Blank 00-1892 MB	<50	<250	82
Method Blank 00-1893 MB	<50	<250	107

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-081820 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	0	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-01 081935.D GCMS13 AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	88	50	150
Toluene-d8		105	50	150
4-Bromofluorobenze	ene	101	50	150
	(Concentration		
Compounds:		ug/L (ppb)		
Benzene		860 ve		
Toluene		170 ve		
Ethylbenzene		280 ve		
m,p-Xylene		560 ve		
o-Xylene		170 ve		
Naphthalene		84		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-08182 08/18/20 08/24/20 08/26/20 Water ug/L (ppb)	0	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-01 1/100 082635.D GCMS4 AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	57	121
Toluene-d8		99	63	127
4-Bromofluorobenze	ene	96	60	133
	(Concentration		
Compounds:		ug/L (ppb)		
Benzene		2,200		
Toluene		180		
Ethylbenzene		300		
m,p-Xylene		580		
o-Xylene		170		
Naphthalene		<100		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-2-081720 08/18/20 08/19/20 08/19/20 Water)	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-02 081931.D GCMS13 AEN
Units:	ug/L (ppb)		Operator:	AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	94	50	150
Toluene-d8		99	50	150
4-Bromofluorobenze	ene	98	50	150
	C	Concentration		
Compounds:		ug/L (ppb)		
Benzene		4.5		
Toluene		<1		
Ethylbenzene		2.8		
m,p-Xylene		2.1		
o-Xylene		<1		
Naphthalene		15		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-08182 08/18/20 08/19/20 08/24/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-03 1/100 082430.D GCMS4 VM
	0 11 /		Lowon	Upper
Surrogatoa		0/ Decorrows:	Lower	Upper Limit:
1 9 Dichlemeethere	44	⁷⁰ necovery.	57	101
1,2-Dichloroethane-	u 4	99	57	121
Toluene-d8		97	63	127
4-Bromofluorobenze	ene	94	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		6,000		
Toluene		21,000 ve		
Ethylbenzene		2,300		
m,p-Xylene		10,000		
o-Xylene		4,100		
Naphthalene		500		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-08182 08/18/20 08/24/20 08/26/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-03 1/1000 082637.D GCMS4 AEN
	0 11 /		Lowon	Upper
Surrogatos		% Bocovory:	Lower	Limit:
1 2 Dichloroothano	44	100 1000 100	57	191
Toluono de	u4	100	69	121
		90	05	127
4-Bromofluorobenze	ene	95	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		6,400		
Toluene		21,000		
Ethylbenzene		2,400		
m,p-Xylene		11,000		
o-Xylene		4,300		
Naphthalene		<1,000		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-6-0817 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-04 081931.D GCMS11 AEN
			Lower	Unner
Surrogates:		% Recovery:	Limit:	Limit:
1.2-Dichloroethane-	-d4	101	50	150
Toluene-d8		105	50	150
4-Bromofluorobenze	ene	98	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-7-0817 08/18/20 08/19/20 08/19/20 Water	20	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-05 081932.D GCMS11
Units:	ug/L (ppb)		Operator:	AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	104	50	150
Toluene-d8		103	50	150
4-Bromofluorobenze	ene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-8-08182 08/18/20 08/19/20 08/24/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-06 1/100 082431.D GCMS4 VM
	8 (FF)		Т	TT
~			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	57	121
Toluene-d8		98	63	127
4-Bromofluorobenze	ene	96	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		4,800		
Toluene		18,000 ve		
Ethylbenzene		1,600		
m,p-Xylene		7,500		
o-Xylene		2,800		
Naphthalene		400		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-8-08182 08/18/20 08/24/20 08/26/20 Water ug/L (ppb)	0	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-06 1/1000 082638.D GCMS4 AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	57	121
Toluene-d8		97	63	127
4-Bromofluorobenze	ene	95	60	133
	(Concentration		
Compounds:		ug/L (ppb)		
Benzene		4,900		
Toluene		18,000		
Ethylbenzene		1,600		
m,p-Xylene		7,400		
o-Xylene		2,700		
Naphthalene		<1,000		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-9-081820 08/18/20 08/19/20 08/19/20 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-07 081933.D GCMS11 AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	106	50	150
Toluene-d8		103	50	150
4-Bromofluorobenze	ene	99	50	150
	C	oncentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-10-08182 08/18/20 08/19/20 08/24/20 Water ug/L (ppb)	:0	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-08 1/10 082424.D GCMS4 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	57	121
Toluene-d8		98	63	127
4-Bromofluorobenze	ene	95	60	133
	С	oncentration		
Compounds:		ug/L (ppb)		
Benzene		490		
Toluene		<10		
Ethylbenzene		200		
m,p-Xylene		240		
o-Xylene		<10		
Naphthalene		60		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-11-08172 08/18/20 08/19/20 08/24/20 Water ug/L (ppb)	:0	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-09 1/100 082432.D GCMS4 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	57	121
Toluene-d8		99	63	127
4-Bromofluorobenze	ene	94	60	133
	С	oncentration		
Compounds:		ug/L (ppb)		
Benzene		330		
Toluene		2,200		
Ethylbenzene		790		
m,p-Xylene		2,700		
o-Xylene		700		
Naphthalene		140		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-12-081720 08/18/20 08/19/20 08/19/20 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-10 081934.D GCMS11 AEN
	8 (FF)		Lowor	Unnor
Surrogates.	0/	Becoverv	Limit	Limit:
1 2-Dichloroethane-	d4	98	50	150
Toluene-d8	uı	103	50 50	150
4-Bromofluorobenze	ene	101	50	150
	Co	oncentration		
Compounds:	1	ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-13-081720 08/18/20 08/19/20 08/19/20 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-11 081935.D GCMS11 AEN
			Lower	Upper
Surrogates:	%	6 Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	50	150
Toluene-d8		104	50	150
4-Bromofluorobenze	ene	100	50	150
	Co	oncentration		
Compounds:		ug/L (ppb)		
Benzene		0.75		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Unite:	MW-14-0818 08/18/20 08/19/20 08/19/20 Water ug/L (app)	320	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-12 081936.D GCMS11 AFN
emits.	agin (bbo)		operator.	
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	50	150
Toluene-d8		106	50	150
4-Bromofluorobenze	ene	97	50	150
	1	Concentration		
Compounds:		ug/L (ppb)		
Benzene		380 ve		
Toluene		9.8		
Ethylbenzene		32		
m,p-Xylene		19		
o-Xylene		3.9		
Naphthalene		31		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-14-08182 08/18/20 08/19/20 08/24/20 Water ug/L (ppb)	0	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-12 1/10 082425.D GCMS4 VM
			Lower	Upper
Surrogates:	(% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	57	121
Toluene-d8		95	63	127
4-Bromofluorobenze	ene	93	60	133
	С	oncentration		
Compounds:		ug/L (ppb)		
Benzene		1,200		
Toluene		<10		
Ethylbenzene		29		
m,p-Xylene		<20		
o-Xylene		<10		
Naphthalene		25		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-16-081 08/18/20 08/19/20 08/19/20 Water	720	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-13 081917.D GCMS13
Units:	ug/L (ppb)		Operator:	AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	50	150
Toluene-d8		99	50	150
4-Bromofluorobenze	ene	98	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-17-08172 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-14 081932.D GCMS13 AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	50	150
Toluene-d8		103	50	150
4-Bromofluorobenze	ene	101	50	150
	С	oncentration		
Compounds:		ug/L (ppb)		
Benzene		1.1		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-18-081820 08/18/20 08/19/20 08/19/20 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-15 081918.D GCMS13 AEN
C .	0		Lower	Upper
Surrogates:	%	• Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	50	150
Toluene-d8		100	50	150
4-Bromofluorobenze	ene	95	50	150
Compounds:	Co	oncentration ug/L (ppb)		
Benzene		1.2		
Toluene		<1		
Ethvlbenzene		<1		
m.p-Xvlene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-19-0813 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	820	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-16 081919.D GCMS13 AEN
	8 (11-7)		T	TT
~			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	50	150
Toluene-d8		98	50	150
4-Bromofluorobenze	ene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-20-081720 08/18/20 08/19/20 08/19/20 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-17 081920.D GCMS13 AEN
			Lower	Unner
Surrogates:	0/	6 Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	102	50	150
Toluene-d8		102	50	150
4-Bromofluorobenze	ene	99	50	150
	Co	oncentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-21-0817 08/18/20 08/19/20 08/24/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-18 1/10 082426.D GCMS4 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	57	121
Toluene-d8		99	63	127
4-Bromofluorobenze	ene	94	60	133
	(Concentration		
Compounds:		ug/L (ppb)		
Benzene		21		
Toluene		<10		
Ethylbenzene		400		
m,p-Xylene		48		
o-Xylene		<10		
Naphthalene		470		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-22-08172 08/18/20 08/19/20 08/24/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-19 1/10 082427.D GCMS4 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	57	121
Toluene-d8		99	63	127
4-Bromofluorobenze	ene	95	60	133
	C	oncentration		
Compounds:		ug/L (ppb)		
Benzene		540		
Toluene		56		
Ethylbenzene		630		
m,p-Xylene		1,200		
o-Xylene		150		
Naphthalene		220		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-23-08182 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	0	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-20 081933.D GCMS13 AEN
			Lower	Upper
Surrogates:	ç	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	50	150
Toluene-d8		106	50	150
4-Bromofluorobenze	ene	103	50	150
	С	oncentration		
Compounds:		ug/L (ppb)		
Benzene		880 ve		
Toluene		200 ve		
Ethylbenzene		330 ve		
m,p-Xylene		690 ve		
o-Xylene		110		
Naphthalene		110		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-23-08182 08/18/20 08/24/20 08/26/20 Water ug/L (ppb)	0	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-20 1/100 082636.D GCMS4 AEN
			Lower	Upper
Surrogates:	(% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	96	57	121
Toluene-d8		97	63	127
4-Bromofluorobenze	ene	97	60	133
	\mathbf{C}	oncentration		
Compounds:		ug/L (ppb)		
Benzene		3,100		
Toluene		210		
Ethylbenzene		400		
m,p-Xylene		790		
o-Xylene		110		
Naphthalene		<100		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-24-0818 08/18/20 08/19/20 08/19/20 Water	820	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-21 081926.D GCMS13
Units:	ug/L (ppb)		Operator:	AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	50	150
Toluene-d8		99	50	150
4-Bromofluorobenze	ene	97	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-25-081 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	820	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-22 081927.D GCMS13 AEN
			Lower	Unner
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	97	50	150
Toluene-d8		99	50	150
4-Bromofluorobenze	ene	96	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-26-0813 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	820	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-23 081911.D GCMS13 AEN
			Lower	Unner
Surrogates:		% Recoverv:	Limit:	Limit:
1,2-Dichloroethane-	-d4	100	50	150
Toluene-d8		101	50	150
4-Bromofluorobenze	ene	98	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DUP-01-081 08/18/20 08/19/20 08/24/20 Water ug/L (ppb)	720	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-24 1/10 082429.D GCMS4 VM
			- L ouror	Upper
Surrogatos		% Rocovory:	Lower	Limit:
1 2-Dichloroethane-	d4	99	57	121
Toluene-d8	ui	98	63	127
4-Bromofluorobenze	ene	96	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		500		
Toluene		52		
Ethylbenzene		570		
m,p-Xylene		1,100		
o-Xylene		140		
Naphthalene		200		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DUP-02-08182 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-25 081928.D GCMS13 AEN
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze	d4 ene	% Recovery: 102 100 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds: Benzene Toluene Ethylbenzene	С	oncentration ug/L (ppb) 1.2 <1 <1		
m,p-Xylene o-Xylene Naphthalene		<2 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	RB-01-08172 08/18/20 08/19/20 08/19/20 Water	20	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-26 081929.D GCMS13
Units:	ug/L (ppb)		Operator:	AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	89	50	150
Toluene-d8		93	50	150
4-Bromofluorobenze	ene	97	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	RB-02-0818 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-27 081930.D GCMS13 AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	101	50	150
Toluene-d8		102	50	150
4-Bromofluorobenze	ene	98	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 08/18/20 08/19/20 08/19/20 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357 008261-28 081912.D GCMS13 AEN
			Lower	Unner
Surrogates:		% Recovery:	Limit:	Limit:
1.2-Dichloroethane	-d4	98	50	150
Toluene-d8		99	50	150
4-Bromofluorobenze	ene	99	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	X	Client:	Aspect Consulting, LLC
Date Received:	Not Applicabl	e	Project:	Texaco Strickland PO 180357
Date Extracted:	08/26/20		Lab ID:	00-1868 mb
Date Analyzed:	08/26/20		Data File:	082609.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	57	121
Toluene-d8		98	63	127
4-Bromofluorobenze	ene	96	60	133
	C	oncentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blan	k	Client:	Aspect Consulting, LLC
Date Received:	Not Applicab	le	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20		Lab ID:	00-1852 mb
Date Analyzed:	08/19/20		Data File:	081909.D
Matrix:	Water		Instrument:	GCMS11
Units:	ug/L (ppb)		Operator:	AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	103	50	150
Toluene-d8		95	50	150
4-Bromofluorobenze	ene	97	50	150
	(Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Σ	Client:	Aspect Consulting, LLC
Date Received:	Not Applicabl	e	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20		Lab ID:	00-1853 mb
Date Analyzed:	08/19/20		Data File:	081910.D
Matrix:	Water		Instrument:	GCMS13
Units:	ug/L (ppb)		Operator:	AEN
			Lower	Upper
Surrogates:	(% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	96	50	150
Toluene-d8		101	50	150
4-Bromofluorobenze	ene	98	50	150
	С	oncentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 008	261-05 (Duplie	cate)			
	Reporting	Sampl	le Du	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100	<	<100	nm
Laboratory Code: Lab	ooratory Contr	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	93	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 0082	261-21 (Duplic	cate)								
	Reporting	Samp	le Du	plicate	RPD					
Analyte	Units	Resu	lt R	esult	(Limit 20)					
Gasoline	ug/L (ppb)	<100) <	<100	nm					
Laboratory Code: Laboratory Control Sample										
			Percent							
	Reporting	Spike	Recovery	Acceptance						
Analyte	Units	Level	LCS	Criteria	_					
Gasoline	ug/L (ppb)	1,000	95	69-134	_					

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	100	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	96	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008261-04 (Matrix Spike)

-				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	10	< 0.35	106	50 - 150
Toluene	ug/L (ppb)	10	<1	100	50 - 150
Ethylbenzene	ug/L (ppb)	10	<1	103	50 - 150
m,p-Xylene	ug/L (ppb)	20	<2	102	50 - 150
o-Xylene	ug/L (ppb)	10	<1	102	50 - 150
Naphthalene	ug/L (ppb)	10	<1	104	50 - 150

	I		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	106	104	70-130	2
Toluene	ug/L (ppb)	10	101	101	70-130	0
Ethylbenzene	ug/L (ppb)	10	102	100	70-130	2
m,p-Xylene	ug/L (ppb)	20	100	98	70-130	2
o-Xylene	ug/L (ppb)	10	101	100	70-130	1
Naphthalene	ug/L (ppb)	10	109	105	70-130	4

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008261-23 (Matrix Spike)

e x	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	\mathbf{MS}	Criteria
Benzene	ug/L (ppb)	10	< 0.35	100	50 - 150
Toluene	ug/L (ppb)	10	<1	98	50 - 150
Ethylbenzene	ug/L (ppb)	10	<1	100	50 - 150
m,p-Xylene	ug/L (ppb)	20	<2	96	50 - 150
o-Xylene	ug/L (ppb)	10	<1	97	50 - 150
Naphthalene	ug/L (ppb)	10	<1	103	50 - 150

5	Ĩ		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	98	103	70-130	5
Toluene	ug/L (ppb)	10	95	100	70-130	5
Ethylbenzene	ug/L (ppb)	10	97	102	70-130	5
m,p-Xylene	ug/L (ppb)	20	94	98	70-130	4
o-Xylene	ug/L (ppb)	10	95	100	70-130	5
Naphthalene	ug/L (ppb)	10	101	103	70-130	2

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20 Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008381-01 (Matrix Spike)

· · · · · ·	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	\mathbf{MS}	Criteria
Benzene	ug/L (ppb)	50	< 0.35	94	76 - 125
Toluene	ug/L (ppb)	50	<1	93	76 - 122
Ethylbenzene	ug/L (ppb)	50	<1	95	69 - 135
m,p-Xylene	ug/L (ppb)	100	<2	96	69 - 135
o-Xylene	ug/L (ppb)	50	<1	96	60-140
Naphthalene	ug/L (ppb)	50	<1	91	44-164

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	92	91	69-134	1
Toluene	ug/L (ppb)	50	99	98	72 - 122	1
Ethylbenzene	ug/L (ppb)	50	98	95	77 - 124	3
m,p-Xylene	ug/L (ppb)	100	101	100	81-112	1
o-Xylene	ug/L (ppb)	50	96	94	81-121	2
Naphthalene	ug/L (ppb)	50	104	104	64-133	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

÷...

t de la comp

tinta an ea

.

and the second

1 A A

· • . •

. . . .

· . . .

. .

e ta a a

. **

1. <u>1</u>.

·.·.

a da esta de la

. .

e De la compositione

tite.

	108261				SAMPLE	E CHAIN	OF	CU	STO	DY	M	Ec	08/	18	<u>bo</u>	_	VW.	5/	D	oy	>
-	Byont To Andreed Vor	hokki	14	lam boot	SAMPL	ERS (signo	uture)	1		Las		<i>4</i>						Page TUR	# NARO	UND 7	f FIME
•	Company Assect Cor	solfma			PROJE	CT NAME						Ρ	0#			٦k	Sta RU	ndar SH	d turn	around	1
	Address 7/0 2nd Au	re, Ste.	Ś'n	0	Texa	o Store	slin				18	039	7				Rush	char	ges au	thorize	ed by:
	City State 71D Carlille	WAAXI	24		REMAR	KS	<u> </u>				I.	NVO	ICE	то			⊐ A ma	SAN	IPLE	DISPO	SAL
	Phone (7)6)413-51/4-	ail a scale	 Li v	an-ha	alfra con	\sim	0 37					AP	>				\Box Oth	ier	Sampi		
	Phone (all in) o in the in	an <u>ayong</u>	יחקיי	gaspaqui	Project s	specific RL	<u>s? - `Y</u> (es /					VQI	PC D	FOII		Detai	11t: 1	Jispos	se atte	r 30 days
	*									21		00	2	20 AL			T T	1	1		
	Sample ID	Lab	Œ	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 80	NWTPH-HCI	VOCs EPA 82	PAHs EPA 82	PCBs EPA 800	DIFEXN X26					No	tes
м ^а *	MW-1-081820	OI A.	ŢĠ	8/18/20	1430	Wb	7	Х	X						X						
	MW-2-081720	02		8/17/20	1425	WL			ĩ						1			L			
	MW-4-081820	03		8/18/20	1415	1														y.	
	mw-6-08120	04		8/17/20	1225															· · ·	
•	mw-7-081720	05		1	1135																
	MW-8-081820	06	1	8/18120	B20																1. 1. 1.
	mW - 9 - 08/820	07		1	1215																·.·
	MW-10-081820	08		$\overline{\mathbf{A}}$	1330													ŀ			
	MW-11-081720	09		OXINIZO	1132																
	mw-12-081720	10		L L	1330	+	\checkmark	¥	Y						1						
1			SIC	GNATURE		1	PRIN	IT N	AM	E					COM	PAN	Y	•••••	DA	TE	TIME
	Friedman & Bruya, Inc.	Relinquished l	y:	alle		- Rad	rel C	ΰŴ	W	11			k	spe	t				8/19	512000	1600
•	3012 16 th Avenue West	Received by:		m		KHO	i Ho	m	<u>~9</u>					F	ΒĽ	•		, * .	8/	8/20	16 00
	Seattle, WA 98119-2029	Relinguished t	ey:						V .							San	ples	rece	ived a	<u>+</u>	c
,	Ph. (206) 285-8282	leceived by:				-											- · ·				

	008261			S	SAMPLE	CHAIN	OF (US	ΤO	DY	M	E	08	18	120	o V	w	\mathcal{P}	5	3		
4		[.1.0 /	nl.	1 Ar	SAMPLE	ERS (signa	ture) 7	1]		<u>ب</u> ة 6				TURNAROUND TIME						
	Report To AnNew Yonke	tsh.11	4007	L WARD	PROJECT NAME PO)#	# Standar					1 turnaround				
. (Company Aspect Lor	solfn	9		F All							1819387						Rush charges authorized by:				
	Address 7/0 2nd 4	1 <u>< 5</u>	tes)	<u>)U</u>	REMAR	<u>o Sfitt</u> Ks	slong				IN	VOI	CE '	го			Anab	SAME	PLE DISPOSA	T.		
i 	City, State, ZIP Seaffle,	WA	981	<u>4</u>	Mar in						1	10					Other					
	Phone (206) 413-5411 Emai	ilayork	oth	Ousput a	Project s	pecific RL	<u>s? - Y</u> e	s /	<u></u>		<u>r.</u>		37(17)	Default: Dispose after 30								
Ē				r T			Ī						2 2	S KI S KI	<u>s</u>	2010						
	× ,							L-Dx	I-Gx	A 802	HCII	A 826	A 827	A 80	\mathcal{Z}				. .			
	Sample ID	Lal	o ID	Date Sampled	Time Sampled	Sample Type	# of Jars	/TPF	VTPE	X EP.	IPH	s EP.	s EP	s EP	JXV				Note	S		
					-			NN	ΝΛ	BTE	NW/	VOC	PAH	PCB	5							
	Mallo Acion	11 4	.1.0	811700	1435	616	7	X	X						X							
	111W-13-0811 do		4_	4/18/20	n_{2}	i		ľ,	1						1							
	MW-14-081820	12		5/10/00	Ann		┼┼─	╂┼╴														
	MW-16-081/20	- 15		011/120	DIO																	
	MW-17-081720	14	<u> </u>	+	0905	<u> </u>	┢╌┠─	╂╂	┼┼													
	MW-18-08/820	দ্য		8/18/20	0110				┼╋						┝╋		<u> </u>	<u> </u>				
	MW-19-081820	16	<u> </u>		620		<u></u>	\square	╞╌┨╸						╟╋		<u> </u>					
	MW-20-081720	17		8/17/20	1030	<u> </u>		<u> </u> -	\downarrow													
	m11-21-08/720) 18			1238												_					
	MU1-22-081720	5 19		ŢŢ	1340					<u> </u>	ļ				<u> </u>	-	<u> </u>	<u> </u>				
	Mu - 23 - 18/1821	5 20	-	8/18/20	1115	*	4	4	4						+	<u> </u>	<u> </u>	<u> </u>				
	<u></u>		S	IGNATURE			PRI	NT I	NAM	IE			 		COM	IPAN	JY		DATE	TIME		
	Friedman & Bruya, Inc.	Friedman & Bruya, Inc. 3012 16 th Avenue West Received by:				Rac	hel	Cor	nu	<u>ve11</u>		· · · ·	<u> </u> A	sp	ect				8/18/20	1600		
	3012 16th Avenue West					Kh	01_t	100	m	ĵ				F	B	L			8/18/20	160C		
	Seattle, WA 98119-2029	Relinquish	ed by:						0	,						<u></u>	ampl	es re	ceived at 4	<u>oc</u>		
	Ph. (206) 285-8282	Received b	y:	······································																		

		S	SAMPLE	CHAIN	OF C	US	TO	ŊΥ		ME	0	8/1	8/2	()	VU	15/	Doy	ج ،	•	
008261	() IN	1.01-	SAMPLE	RS (signa	ture)	17	· //		1						Pa TU	ge # JRNA	ROUND	TIME	<u> </u>	
Report To An New York	report To Andrew Yonkratsh? 1 Ham Loston							PROJECT NAME P)# X Standard turnaround				
Company Aspect Lons	oltma		T	et []	I				18/)35	7			Ru	Rush charges authorized by:					
Address 7/0 2nd Au	R, Str. S.	50	REMARK	<u>>hrlmh</u> (S	nel				IN	VOI	CE	ſO			SAMPLE DISPOSAL					
City, State, ZIP Seaffle,	WA, 9804	·	1						A						Arcn: Othe	r				
Phone (206) 413-5411 Ems	ilayonhotsky	paspeet 10	Project s	pecific RLs	<u>s? - Ye</u>	s /	6		竹	<u>Р</u>		~ ~ ~			Default: Dispose after 30 days					
					`					NAL	LYSES REQUES									
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 802	NWTPH-HCID	VOCs EPA 826	PAHs EPA 827	PCBs EPA 808	otex unato]	Notes		
M12-24-081820	214-9	8/18/20	PO 1401/15	WL	7	X	X						X							
min-25-081820	22	4	0900			<u> </u>							<u> </u>							
MW-26-081820	23	¥	KO																	
NUD-01-081720	24	8/17/20																		
DUD-07- 18/820	25	8118/20		4														<u> </u>		
DE N- 681720	26.	8/17/20	1450	AQ													· · · ·			
RR-M- allon	27 A-Fi	8/18/20	1500	AQ	Ţ	4										ļ				
n5-02-081020	28A-D			AQ	N		Ł						✦		ļ	ļ	· · ·		· .	
Trop Blonk			l		1	T														
······································		· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		1			 					n. 1. 1 1. 1 1 1						
			L	1	PRI	NT 1	VAM	E			 	(COM	PAN	Y		DAT	E	TIME	
Friedman & Bruya, Inc.	Relinquished by:	anature	2	Rack	ul C	'ori	W	ell			A	rsp	ect	- 8/18/20 1600						
3012 16 th Avenue West	Received by:	m		1/4		Но	an	<u>16</u>				FB	5				8/18/	20	600	
Seattle, WA 98119-2029	Relinquished by:			- <~r u		<u> </u>		/					- 54 ⁻	<u>ę</u>	amn	00 -	noiwal -		0.0	
Ph. (206) 285-8282	Received by:												~				*	; u		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 4, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 20, 2020 from the Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318 project. There are 26 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0904R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 20, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
008318 -01	SVS-01-082020
008318 -02	SVS-02-082020
008318 -03	GP-01-082020
008318 -04	GP-02-082020
008318 -05	GP-03-082020
008318 -06	GP-04-082020
008318 -07	GP-DUP-082020
008318 -08	Trip Blank

Samples SVS-01-082020, SVS-02-082020, GP-01-082020, GP-02-082020, GP-03-082020, and GP-04-082020 were sent to Fremont Analytical for carbon dioxide, methane, and oxygen analyses. The report is enclosed.

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The APH EC5-8 aliphatics concentration in samples GP-03-082020 and GP-DUP-082020 exceeded the calibration range of the instrument. The samples were diluted and reanalyzed. Both data sets were reported.

The sample Trip Blank was prepared at the laboratory. The presence of low level laboratory solvents were noted in the APH range. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID:	SVS-01-082020	Client	:	Aspect Consulting, LLC							
Date Received:	Received: 08/20/20		t:	Texaco Strickland Lynwood, WA PO 1803							
Date Collected:	Collected: 08/27/20):	008318-01 1/8.5							
Date Analyzed:	Analyzed: 08/28/20		File:	082715.D							
Matrix:	Air		ment:	GCMS12							
Units:	ug/m3	Opera	tor:	VM							
	%	Lower	Upper								
Surrogates:	Recovery:	Limit:	Limit:								
4-Bromofluorobenz	zene 97	70	130								
	Concentration										
Compounds:	ug/m3										
APH EC5-8 alipha	tics 4,100										
APH EC9-12 aliph	atics 6,700										
APH EC9-10 arom	atics <210										

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID:	SVS-02-082020	Client	:	Aspect Consulting, LLC							
Date Received:	te Received: 08/20/20		t:	Texaco Strickland Lynwood, WA PO 180357							
Date Collected:	08/27/20	Lab II):	008318-02 1/3.4							
Date Analyzed:	e Analyzed: 08/28/20		File:	082716.D							
Matrix:	x: Air		ment:	GCMS12							
Units:	ug/m3	Opera	tor:	VM							
	%	Lower	Upper								
Surrogates:	Recovery:	Limit:	Limit:								
4-Bromofluorobenz	zene 104	70	130								
	Concentration										
Compounds:	ug/m3										
APH EC5-8 alipha	tics 750										
APH EC9-12 aliph	atics 670										
APH EC9-10 arom	atics <85										
ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-01-082020	Client:		Aspect Consulting, LLC
Date Received:	08/20/20	Project:		Texaco Strickland Lynwood, WA PO 180357
Date Collected:	08/27/20	Lab II):	008318-03 1/3.4
Date Analyzed:	08/28/20	Data H	File:	082717.D
Matrix:	Air	Instru	ment:	GCMS12
Units:	ug/m3	Operator:		VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 94	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 580			
APH EC9-12 aliph	atics 680			
APH EC9-10 arom	atics <85			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-02-082020	Client:		Aspect Consulting, LLC
Date Received:	08/20/20	Project:		Texaco Strickland Lynwood, WA PO 180357
Date Collected:	08/27/20	Lab ID:		008318-04 1/3.3
Date Analyzed:	08/28/20	Data l	File:	082718.D
Matrix:	Air	Instru	ment:	GCMS12
Units:	ug/m3	Operator:		VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 100	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 630			
APH EC9-12 aliph	atics 890			
APH EC9-10 arom	atics <82			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-03-082020	Client:		Aspect Consulting, LLC
Date Received:	08/20/20	Project:		Texaco Strickland Lynwood, WA PO 180357
Date Collected:	08/20/20	Lab II):	008318-05 1/8.8
Date Analyzed:	08/28/20	Data l	File:	082719.D
Matrix:	Air	Instru	ment:	GCMS12
Units:	ug/m3	Opera	tor:	VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 107	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	tics 11,000 ve atics 2,200 atics 220			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<1,100

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-03-082020 08/20/20 08/19/20 09/02/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	:: ct: D: File: ument: tor:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-05 1/44 090213.D GCMS12 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph	tics 13,000 atics 3,300			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-04-082020	Client:		Aspect Consulting, LLC
Date Received:	08/20/20	Project:		Texaco Strickland Lynwood, WA PO 180357
Date Collected:	08/27/20	Lab II):	008318-06 1/3.6
Date Analyzed:	08/28/20	Data F	File:	082720.D
Matrix:	Air	Instru	ment:	GCMS12
Units:	ug/m3	Operator:		VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 89	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 650			
APH EC9-12 aliph	atics 470			
APH EC9-10 arom	atics <90			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-DUP-082020	Client:		Aspect Consulting, LLC
Date Received:	08/20/20	Project:		Texaco Strickland Lynwood, WA PO 180357
Date Collected:	08/27/20	Lab ID	:	008318-07 1/8.8
Date Analyzed:	08/28/20	Data F	ile:	082721.D
Matrix:	Air	Instrur	nent:	GCMS12
Units:	ug/m3	Operat	or:	VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 96	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 12,000 ve			
APH EC9-12 aliph	atics 2,300			
APH EC9-10 arom	atics <220			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

3,500

<1,100

APH EC9-12 aliphatics

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-DUP-082020 08/20/20 08/19/20 09/02/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-07 1/44 090214.D GCMS12 bat
a	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 93	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 15,000			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank	Client:		Aspect Consulting, LLC
Date Received:	08/20/20	Project:		Texaco Strickland Lynwood, WA PO 180357
Date Collected:	08/27/20	Lab ID:		008318-08 1/2.8
Date Analyzed:	08/28/20	Data F	'ile:	082722.D
Matrix:	Air	Instru	ment:	GCMS12
Units:	ug/m3	Operator:		VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 96	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 390 lc			
APH EC9-12 aliphatics <140				
APH EC9-10 arom	atics <70			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:		Aspect Consulting, LLC
Date Received:	Not Applicable	Project:		Texaco Strickland Lynwood, WA PO 180357
Date Collected:	Not Applicable	Lab ID:		00-1933 MB
Date Analyzed:	08/27/20	Data I	File:	082709.D
Matrix:	Air	Instru	iment:	GCMS12
Units:	ug/m3	Operator:		VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 98	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <40			
APH EC9-12 aliph	atics <50			
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVS-01-082020 08/20/20 08/27/20 08/28/20 Air ug/m3	Client Projec Lab I Data Instru Opera	t: ct: D: File: ament: ator:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-01 1/8.5 082715.D GCMS12 VM
C	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 95	70	130	
Concent		ration		
Compounds:	ug/m3	ppbv		
Benzene	17	5.4		
Toluene	<160	<42		
Ethylbenzene	7.0	1.6		
m.p-Xylene	45	10		
o-Xvlene	12	2.8		
Naphthalene	<2.2	< 0.42		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVS-02-082020 08/20/20 08/27/20 08/28/20 Air ug/m3	Client Projec Lab II Data Instru Opera	:: D: File: ument: ttor:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-02 1/3.4 082716.D GCMS12 VM
Surrogates: 4-Bromofluorobenze	% Recovery: ene 102	Lower Limit: 70	Upper Limit: 130	
Concent		ration		
Compounds:	ug/m3	ppbv		
Benzene	1.8	0.55		
Toluene	<64	<17		
Ethylbenzene	5.8	1.3		
m,p-Xylene	23	5.4		
o-Xylene	8.3	1.9		
Naphthalene	< 0.89	< 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-01-082020 08/20/20 08/27/20 08/28/20 Air ug/m3	Client Projec Lab II Data Instru Opera	:: et: D: File: ument: utor:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-03 1/3.4 082717.D GCMS12 VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene 92	70	130	
Concent		ration		
Compounds:	ug/m3	ppbv		
Benzene	<1.1	< 0.34		
Toluene	<64	<17		
Ethylbenzene	<1.5	< 0.34		
m,p-Xylene	<3	< 0.68		
o-Xylene	<1.5	< 0.34		
Naphthalene	< 0.89	< 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-02-082020 08/20/20 08/27/20 08/28/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	:: ot: D: File: ument: tor:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-04 1/3.3 082718.D GCMS12 VM
Surrogates: 4-Bromofluorobenz	% Recovery: 98	Lower Limit: 70	Upper Limit: 130	
4-Diomondorobenz	ene 50	10	150	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	<1.1	< 0.33		
Toluene	<62	<16		
Ethylbenzene	3.1	0.71		
m,p-Xylene	12	2.7		
o-Xylene	4.7	1.1		
Naphthalene	1.2	0.23		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-03-082020 08/20/20 08/20/20 08/28/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	:: pt: D: File: ument: ttor:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-05 1/8.8 082719.D GCMS12 VM
Surrogates: 4-Bromofluorobenze	% Recovery: 104	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv	150	
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	$5.7 < 170 \\ 80 \\ 300 \\ 82 < 2.3$	1.8 <44 18 70 19 <0.44		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-04-082020 08/20/20 08/27/20 08/28/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	:: ot: D: File: ument: tor:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-06 1/3.6 082720.D GCMS12 VM
Surrogates: 4-Bromofluorobenze	% Recovery: ne 88	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	$ \begin{array}{r} 1.7 \\ <68 \\ 5.1 \\ 21 \\ 7.3 \\ <0.94 \end{array} $	0.53 <18 1.2 4.8 1.7 <0.18		

ENVIRONMENTAL CHEMISTS

Client Sample ID:GP-DUP-082020Date Received:08/20/20Date Collected:08/27/20Date Analyzed:08/28/20Matrix:AirUnits:ug/m3	Client Projec Lab II Data I Instru Opera	:: et: D: File: ument: utor:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-07 1/8.8 082721.D GCMS12 VM
% Surrogatos: Bocovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenzene 94	70	130	
Concen	tration		
Compounds: ug/m3	ppbv		
Benzene 6.4	2.0		
Toluene <170	<44		
Ethylbenzene 60	14		
m,p-Xylene 230	52		
o-Xylene 63	14		
Naphthalene <2.3	< 0.44		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Trip Blank 08/20/20 08/27/20 08/28/20 Air ug/m3	Client Projec Lab II Data Instru Opera	:: ct: D: File: ument: utor:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 008318-08 1/2.8 082722.D GCMS12 VM
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 94	70	130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.89	< 0.28		
Toluene	<53	<14		
Ethylbenzene	<1.2	< 0.28		
m,p-Xylene	<2.4	< 0.56		
o-Xylene	<1.2	< 0.28		
Naphthalene	< 0.73	< 0.14		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 08/27/20 Air ug/m3	Clien Projec Lab I Data Instru Opera	t: ct: D: File: ament: ator:	Aspect Consulting, LLC Texaco Strickland Lynwood, WA PO 180357 00-1933 MB 082709.D GCMS12 VM
a .	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 96	70	130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
D	0.00	0.4		
Benzene	< 0.32	<0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xvlene	< 0.43	< 0.1		
Nanhthalene	<0.26	<0.05		
- apintinaiono		0.00		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/04/20 Date Received: 08/20/20 Project: Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318 Date Extracted: 08/31/20 Date Analyzed: 08/31/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
SVS-01-082020 008318-01	<0.6
SVS-02-082020 008318-02	<0.6
GP-01-082020 008318-03	<0.6
GP-02-082020 008318-04	<0.6
GP-03-082020 008318-05	<0.6
GP-04-082020 008318-06	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 09/04/20 Date Received: 08/20/20 Project: Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 008378-01 1/2.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	100	86	15
APH EC9-12 aliphatics	ug/m3	580	570	2
APH EC9-10 aromatics	ug/m3	<67	<67	nm

Laboratory Code: Laboratory Control Sample

Baseratory coact Baseratory	on on bounding to				
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
APH EC5-8 aliphatics	ug/m3	67	90	70-130	
APH EC9-12 aliphatics	ug/m3	67	117	70-130	
APH EC9-10 aromatics	ug/m3	67	124	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/04/20 Date Received: 08/20/20 Project: Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 008378-01 1/2.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	< 0.86	< 0.86	nm
Toluene	ug/m3	<51	<51	nm
Ethylbenzene	ug/m3	<1.2	<1.2	nm
m,p-Xylene	ug/m3	<2.3	<2.3	nm
o-Xylene	ug/m3	<1.2	<1.2	nm
Naphthalene	ug/m3	< 0.71	< 0.71	nm

Laboratory Code: Laboratory Control Sample

	Percent						
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/m3	43	95	70-130			
Toluene	ug/m3	51	93	70-130			
Ethylbenzene	ug/m3	59	100	70-130			
m,p-Xylene	ug/m3	120	105	70-130			
o-Xylene	ug/m3	59	107	70 - 130			
Naphthalene	ug/m3	71	96	70-130			

ENVIRONMENTAL CHEMISTS

Date of Report: 09/04/20 Date Received: 08/20/20 Project: Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code:	008226-07 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
-	(%)	(%)	Difference	Criteria
Helium	<0.6	<0.6	nm	0-20
Laboratory Code:	008318-01 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	<0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 008318 Work Order Number: 2008283

August 27, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 6 sample(s) on 8/20/2020 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 008318 2008283	Work Order Sample Summary					
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received				
2008283-001	SVS-01-082020	08/20/2020 9:55 AM	08/20/2020 4:30 PM				
2008283-002	SVS-02-082020	08/20/2020 9:16 AM	08/20/2020 4:30 PM				
2008283-003	GP-01-082020	08/20/2020 12:20 PM	08/20/2020 4:30 PM				
2008283-004	GP-02-082020	08/20/2020 12:54 PM	08/20/2020 4:30 PM				
2008283-005	GP-03-082020	08/20/2020 1:35 PM	08/20/2020 4:30 PM				
2008283-006	GP-04-082020	08/20/2020 10:38 AM	08/20/2020 4:30 PM				

Case Narrative

WO#: **2008283** Date: **8/27/2020**

CLIENT:Friedman & BruyaProject:008318

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

 WO#:
 2008283

 Date Reported:
 8/27/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2008283

 Date Reported:
 8/27/2020

CLIENT:	Friedman & Bruya
Project:	008318

Lab ID: 2008283-001 Client Sample ID: SVS-01-082020)		Collection Date: 8/20/2020 9:55:00 AM Matrix: Air					
Analyses	Result	RL Qual	Units	DF	Date Analyzed			
Major Gases by EPA Method 3C			Batc	h ID: R6	1354 Analyst: MS			
Carbon Dioxide	0.121	0.0500	%	1	8/21/2020 1:48:00 PM			
Methane	ND	0.0500	%	1	8/21/2020 1:48:00 PM			
Oxygen	21.6	0.0500	%	1	8/21/2020 1:48:00 PM			

Lab ID:	2008283-002
	2000203 002

Collection Date: 8/20/2020 9:16:00 AM

Client Sample ID:	SVS-02-082020			Matrix: Air					
Analyses		Result	RL Qual	Units	DF	Date Analyzed			
Major Gases by EF	A Method 3C			Batch	n ID: R6	1354 Analyst: MS			
Carbon Dioxide		0.0698	0.0500	%	1	8/21/2020 2:05:00 PM			
Methane		ND	0.0500	%	1	8/21/2020 2:05:00 PM			
Oxygen		22.9	0.0500	%	1	8/21/2020 2:05:00 PM			

Lab ID: 2008283-003 Client Sample ID: GP-01-082020			Collection Matrix: A	8/20/2020 12:20:00 PM	
Analyses	Result	RL Qual	Date Analyzed		
Major Gases by EPA Method 3C			Batc	h ID: R6	1354 Analyst: MS
Carbon Dioxide	24.6	0.0500	%	1	8/21/2020 2:17:00 PM
Methane	ND	0.0500	%	1	8/21/2020 2:17:00 PM
Oxygen	3.44	0.0500	%	1	8/21/2020 2:17:00 PM

Analytical Report

 Work Order:
 2008283

 Date Reported:
 8/27/2020

CLIENT:	Friedman & Bruya
Project:	008318

Lab ID: 2008283-004 Client Sample ID: GP-02-082020			Collection Date: 8/20/2020 12:54:00 PM Matrix: Air					
Analyses	Result	RL Qual	Date Analyzed					
Major Gases by EPA Method 3C			Batch	n ID: Re	1354 Analyst: MS			
Carbon Dioxide	20.0	0.0500	%	1	8/21/2020 2:31:00 PM			
Methane	ND	0.0500	%	1	8/21/2020 2:31:00 PM			
Oxygen	6.95	0.0500	%	1	8/21/2020 2:31:00 PM			

Lab ID:	2008283-005
---------	-------------

Collection Date: 8/20/2020 1:35:00 PM

Client Sample ID: GP	-03-082020	Matrix: Air						
Analyses	Result	Result RL Qual			Date Analyzed			
<u>Major Gases by EPA M</u>	ethod 3C		Batc	h ID: R6	1354 Analyst: MS			
Carbon Dioxide	22.8	0.0500	%	1	8/21/2020 3:04:00 PM			
Methane	0.157	0.0500	%	1	8/21/2020 3:04:00 PM			
Oxygen	1.90	0.0500	%	1	8/21/2020 3:04:00 PM			

Lab ID: 2008283-006	Collection Date: 8/20/2020 10:38:00 AM						
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Major Gases by EPA Method 3C			Batc	h ID: R6	1354 Analyst: MS		
Carbon Dioxide Methane Oxygen	8.53 ND 15.9	0.0500 0.0500 0.0500	% % %	1 1 1	8/21/2020 3:29:00 PM 8/21/2020 3:29:00 PM 8/21/2020 3:29:00 PM		

Work Order: CLIENT: Proiect:	2008283 Friedman & E 008318	Bruya								QC S Major C	SUMMA Gases by E	RY REP	PORT od 3C
Sample ID: LCS-R Client ID: LCSW Analyte	61354	SampType Batch ID:	E LCS R61354 Result	RL	SPK value	Units: %	%REC	Prep Dat Analysis Dat LowLimit	te: 8/21/20 te: 8/21/20 HighLimit	20 20 RPD Ref Val	RunNo: 613 SeqNo: 123 %RPD	54 0886 RPDLimit	Qual
Carbon Dioxide Methane Oxygen			100 99.6 100	0.0500 0.0500 0.0500	100.0 100.0 100.0	0 0 0	100 99.6 100	70 70 70	130 130 130				
Sample ID: 200828 Client ID: SVS-0 Analyte	33-001AREP 1-082020	SampType Batch ID:	E REP R61354 Result	RL	SPK value	Units: %	%REC	Prep Dat Analysis Dat LowLimit	te: 8/21/20 te: 8/21/20 HighLimit	20 20 RPD Ref Val	RunNo: 613 SeqNo: 123 %RPD	54 0880 RPDLimit	Qual
Carbon Dioxide Methane Oxygen			0.102 ND 21.9	0.0500 0.0500 0.0500						0.1214 0 21.57	17.4 1.35	30 30 30	

Sample Log-In Check List

С	lient Name:	FB	Work Order Numbe	r: 2008283	2008283					
L	ogged by:	Gabrielle Coeuille	Date Received:	8/20/2020) 4:30:00 PM					
<u>Cha</u>	ain of Cust	ody								
1.	Is Chain of Cu	ustody complete?	Yes 🖌	No	Not Present					
2.	How was the	sample delivered?	Client							
Log	<u>ı In</u>									
3.	Coolers are p	resent?	Yes	No 🖌	NA 🗌					
-			Air samples							
4.	Shipping cont	ainer/cooler in good condition?	Yes 🔽	No 🗌						
5.	Custody Seals (Refer to com	s present on shipping container/cooler? ments for Custody Seals not intact)	Yes	No 🗌	Not Present					
6.	Was an attem	pt made to cool the samples?	Yes	No 🗌	NA 🗸					
7.	Were all items	s received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🗹					
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌						
9.	Sufficient san	nple volume for indicated test(s)?	Yes 🖌	No 🗌						
10	Are samples	properly preserved?	Yes 🖌	No 🗌						
11	Was preserva	tive added to bottles?	Yes	No 🗹	NA 🗌					
12	Is there heads	space in the VOA vials?	Yes	No 🗌	NA 🗸					
13	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌						
14	Does paperwo	ork match bottle labels?	Yes 🔽	No 🗌						
15	Are matrices	correctly identified on Chain of Custody?	Yes 🔽	No 🗌						
16	Is it clear what	t analyses were requested?	Yes 🗹	No 🗌						
17	Were all holdi	ng times able to be met?	Yes 🔽	No 🗌						
Spe	cial Handl	ing (if applicable)								
18	Was client no	tified of all discrepancies with this order?	Yes	No 🗌	NA 🗸					
	Person I	Notified: Date	e:							
	By Who	m: Via:	eMail Pho	ne 🗌 Fax	In Person					
	Regardi	ng:								
	Client In	structions:								

19. Additional remarks:

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY 2008283

						SUBCONTRACTER									٦	J	Page #	0	of		
Send Report To	Send Report To Michael Erdahl						SUDCONTRACTER								TURNAROUND TIME						
Company Friedman and Bruya, Inc						PROJECT NAME/NO. PO#								□ Standard TAT □ RUSH Rush charges authorized by:							
Address 3	012 16	th Ave	W			000010 4-30							50					AMPLE DISPOSAL			
City, State, ZIP <u>Seattle, WA 98119</u> Phone # <u>(206) 285-8282</u> merdahl@friedmanandbruya.com						REMARKS Please Email Results								 Dispose after 30 days Return samples Will call with instructions 							
					ANALYSES REQUES									TED							
Sample ID	Lab ID	D. San	ate ipled	Time Sampled	Mat	rix	# of jars	Dioxins/Furans	EPH	HdV	(02, CH4, 02, 3C				×				tes		
515-01-082020		8/20	1/20	955	Air		1				×			_	_						
SVS-02-082020				916	1		1				×		_	_							
GP-01-082020				1220			1				×				_						
GP-02-082020				1254	V.		1				×			_							
GP-03 - 082020				1335			l				×		_				- F				
GP - 04 - 08 2020				1038			1				X			_							
6P-DUP-082020							1	•					_	-+							
Trip Blank ENB													_	-+	_						
														_	1						
							_														
					-									-							
														_			_				
									DDIN	DATAN			<u>, l</u> ;	- CO	MPA	NY	T	DATE	TIME		
Friedman & Bruya, Inc. SIGNATURE 3012 16th Avenue West Relinquished by						Mich	ael Er	dahl /	iz 1	lebber	- Brune	Fried	dmar	nan & Bruya 8/20/20							
Seattle, WA 98119-2	2029	Receiv	ed by:	C.J.G.F	2		Co	inte	N Z	Joh	nsor	1	FA	FAI				8/20/20	1630		
Ph. (206) 285-8282		Relinq	uished t	by:							_		-			_			~		
Fax (206) 283-5044		Receiv	ed by:															<	74		

	002218				SAMPL	E CI	HAI	N OF	CUST	ODY)	M	e	08	3-7	0-2	o	1	ï	
	GUSSID Adams Vid	L	1/ phan	(Lal	SAMPI	ERS	(sign	iature)	17		a]						Page			=
- K	Aspert 1 Aspert 1	a ll	n.		PROJE	CT Ņ	IAMI	& AD	DRESS	all prov	1	PO	#		-)	X Sta	ndar	d	0 TIME	
U	ompany riper con	> stochlad 18035					-7		RUSH Rush charges authorized by:											
A	ddress <u>110 & F</u>	(6 ^{rr} St. SW, Wnwood, WH 10					NVOICE TO S					SAN	MPLE DISPOSAL							
C	City, State, ZIP Seattle, W/t, 90109										A> □ Default: Clean after 3 days							er 3 days		
P	Phone (200)413-5411 Email a yonhotsh: O aspec (ensulting con 17																			
SA	SAMPLE INFORMATION ANALYSIS REQUESTED																			
			·									an	z	<u>.</u> zé			3			
					Reporting							ull Sc	TEX	NOC	H	mm	0	-		
				Flow	Level: IA=Indoor Air			Initial	Field	Final	Field	15 F1	15 B)15 c	AF	Heli	5			
	~ 1.15	Lab	Canister	Cont.	SG=Soil Gas	Da	ate	Vac.	Initial	Vac.	Final	LOT DT	TC	ΤC			2	~	Tetee.	
$\left \right _{\zeta}$	Sample Name		3387	255	(Circle One)	Gin	s/Da	(ng) 	MC			╆╴╢	X		X	X		251		-
	$\frac{1}{1}$	101	21170	000	IA / SG	O'av	JAX	2	200	2	000	$\left \right $	~		<u></u>) IGUINY	<u>bay</u>	-
	NS-02-082020	02	0424	209	IA / (\$9			-00	Dyld	-0	016	$\left \right $			+		<u> </u>			_
	5P-01-082020	03	7360	142	IA / SO			-30	1215	-2	1990									_
	-P-02-082020	04	2433	105	IA / 🕅			-30	1254	-5	1254									_
	FP-03-082020	05	3260	101	IA / 🕥		a A second from a	-30	1331	5	1335									
	-P-04-082020	06	3540	88	IA / 🚱			-28	1032	-5	1038					D				
	-P-DUD-082020	07	2438	109	IA / 60	V	1	-30	-	-5			Ţ		Ļ	K	W	DIEXA	+ APH ;	
	Linia Black	02	2305	N9X	TA / SG	, <u></u>				· · · · ·		*	\$		Ļ	X	N/		2	<i>/////////////////////////////////////</i>
	rop istories		1490	.00				<u> </u>		l		. I l	لىسىس			1	L			
F_{i}	Friedman & Bruya, Inc. SIGNATURE						· · · · · · · · · · · · · · · · · · ·	PRIN	IT NAM	E		COMPANY DATE TIME					TIME			
3(3012 16th Avenue West Relinquished by: Dian with					L Î	au	rd_	Una	ih_		As	Sle	<u>+ L</u>	MS	Alt	1/13 8/20/20 1445			
Se	Seattle, WA 98119-2029 Received by:						-K	hei	_Ha	ing		- 1	F	BI				8 /20/20	1445	
P	Ph. (206) 285-8282 Relinquished by:												un			Sam	oles	received a	25 og	
Fc	ax (206) 283-5044	Receiv	ed by:							·····										
FORI	MS\COC\COCTO-15.DOC																			

,

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 17, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 10, 2020 from the Texaco Strickland PO 180357, F&BI 011185 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1117R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 10, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011185 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
011185 -01	GP-05-1.25
011185 -02	GP-05-6
011185 -03	GP-06-2.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185 Date Extracted: 11/13/20 Date Analyzed: 11/13/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
GP-05-1.25 011185-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
GP-06-2.5 011185-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
Method Blank 00-2418 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185 Date Extracted: 11/10/20 Date Analyzed: 11/10/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
GP-05-1.25 011185-01	<50	<250	80
GP-06-2.5 011185-03	<50	<250	84
Method Blank 00-2494 MB	<50	<250	83

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-05-1.25		Client:	Aspect Consulting, LLC
Date Received:	11/10/20		Project:	Texaco Strickland PO 180357
Date Extracted:	11/10/20		Lab ID:	011185-01
Date Analyzed:	11/10/20		Data File:	111033.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	62	145
Toluene-d8		104	55	145
4-Bromofluorobenz	ene	100	65	139
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-06-2.5		Client:	Aspect Consulting, LLC
Date Received:	11/10/20		Project:	Texaco Strickland PO 180357
Date Extracted:	11/10/20		Lab ID:	011185-03
Date Analyzed:	11/10/20		Data File:	111034.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	62	145
Toluene-d8		104	55	145
4-Bromofluorobenz	ene	101	65	139
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Bla	nk	Client:	Aspect Consulting, LLC
Date Received:	Not Applica	ble	Project:	Texaco Strickland PO 180357
Date Extracted:	11/10/20		Lab ID:	00-2668 mb
Date Analyzed:	11/10/20		Data File:	111009.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	62	145
Toluene-d8		104	55	145
4-Bromofluorobenz	ene	99	65	139
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 011185-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	88	69-120
Toluene	mg/kg (ppm)	0.5	90	70-117
Ethylbenzene	mg/kg (ppm)	0.5	92	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	90	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	011154-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	26,000	180 b	177 b	64-133	2 b
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	;			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	98	58-1	147		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011140-01 (Matrix Spike)

Haboratory coact	(inderin Spino)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	1	< 0.05	98	104	14 - 157	6

Laboratory Code: Laboratory Control Sample

····· 5	J J J J J J J J J J J J J J J J J J J	Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Naphthalene	mg/kg (ppm)	1	86	63-140			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

01118	5					SAMPL	E CHAIN	VOF	CU	STO	ру	r . j		r	1E	11-1	10 -	20	7	VSI	'AO	1	
Report To Andrew Y	un ko	fski				SAMPI	ERS (sign	ature).	Zu	all	in L	†							Page i TURI	#) IME	<u> </u>
Company Aspect C	ons	UIH	ng		******	PROJE	CT NAME	£		<u>yv</u> Çr		····	P	°O #				Sta	ndar SU	d turna	round	han Valerahad	
Address 710 2nd Au	re, St	1 55	D.			Texas	io Micklai	nd			1	80	35	7			F	ush	char	ges aut	horized	ł by:	
City, State, ZIP_Seatt	le, n	<i>V</i> A 9	810	4		REMAR	RKS		4		· · ·	I	NVO	ICE	ТО			Arc	SAM hive	(PLE D sample	ISPOS	;AL	
Phone(206)413-5411 H	Email_	ayon	Kofz	skia	aspec	tansulty	vg - CUW	s? - Y	es /	No			AP) Oth)efai	ier	Jisnose	after	- 30 day	-
				·····		Leven 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			T			1	ANAI	LYSI	ESR	EQU		D				<u> </u>	
Sample ID		Lab	ID	L Sar	ate npled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	PEX EPA 8021	WTPH-HCID	OCs EPA 8260	AHs EPA 8270	CBs EPA 8082	lapticulare	loid				Note	es	
GIP-05-1.25	4.3r-	01.,	A-E	11/1) 120	0928	Soul	5	X	X	M X	2	Ň			$\frac{2}{\chi}$	<u> </u>				. c		_
GIP-05-6		0ż	}	4		0936	Soil	5									X						
GIP-06-2.5	·	03	V		13	1226	Soti	5	X	X	X					X.				<u> </u>			
· · · · · · · · · · · · · · · · · · ·															·						-		
	,																19	1.1					
			:									•											
								4											1.5				
														5	Sam	ples	rede	ive	d at	<u> </u>	•C		
						**														st.			
Friedman & Briva Inc	Reline	nuished	SIC	INAT	URE			PRIN	T N	AME	i 1			A	C	OMI 1	PANY			DAI	ſE	TIME	
3012 16th Avenue West	Receiv	ved by:	T	aud p	happy		Davis	st l	<u>/h/</u>	<u>uh</u>	-	·*		<u> </u>	pce	+ l	msi	lfa	g	11/10	2/20	1448	
Seattle, WA 98119-2029	Reling	uished l	 by:	160	m		<u> Nha</u>	in_	<u>Ph</u>	nr	<u> </u>			F.	<u>D1</u>	-			*\$	140/	<u>)</u>	1445	_
Ph. (206) 285-8282	Receiv	red by:			· · · · ·			o •				•								*.	-		
	L							• •					I_				· · · · · ·			و مع د.	L]

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 24, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the additional results from the testing of material submitted on November 10, 2020 from the Texaco Strickland PO 180357, F&BI 011185 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1124R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 10, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011185 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
011185 -01	GP-05-1.25
011185 -02	GP-05-6
011185 -03	GP-06-2.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185 Date Extracted: 11/18/20 Date Analyzed: 11/18/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
GP-05-6 011185-02	< 0.02	< 0.02	< 0.02	<0.06	<5	82
Method Blank 00-2419 MB2	< 0.02	< 0.02	< 0.02	< 0.06	<5	81

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185 Date Extracted: 11/18/20 Date Analyzed: 11/18/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
GP-05-6 011185-02	<50	<250	90
Method Blank 00-2532 MB	<50	<250	98

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed:	GP-05-6 11/10/20 11/19/20 11/19/20		Client: Project: Lab ID: Data File:	Aspect Consulting, LLC Texaco Strickland PO 180357 011185-02 111919.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm)	Dry Weight	Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	94	62	145
Toluene-d8		100	55	145
4-Bromofluorobenz	ene	102	65	139
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Bla	nk	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable		Project:	Texaco Strickland PO 180357
Date Extracted:	11/19/20		Lab ID:	00-2697 mb
Date Analyzed:	11/19/20		Data File:	111909.D
Matrix:	Soil		Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	62	145
Toluene-d8		101	55	145
4-Bromofluorobenz	ene	102	65	139
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 011312-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	92	69-120
Toluene	mg/kg (ppm)	0.5	94	70-117
Ethylbenzene	mg/kg (ppm)	0.5	94	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	011185-02 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	98	94	73-135	4
Laboratory Code:	Laboratory Contro	ol Sampl	le				
			Percent				
	Reporting	Spike	Recovery	Acceptan	ice		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	90	74-139	1		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20 Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011324-01 (Matrix Spike)

Haboratory could	0110 1 1 01 (11401111 Spino)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	1	< 0.05	86	78	14 - 157	10

Laboratory Code: Laboratory Control Sample

····· 5	J J J J J J J J J J J J J J J J J J J		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Naphthalene	mg/kg (ppm)	1	91	63-140

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

المراجعة والمعودة والمعودة الم

. .

011185			SAMPL	E CHAIN	N OF	CUS	STO	φş	ζ,		μ	15	11-1	10-	-20	2	VSI/A	<i>]</i>	
Report To Andrew Yun 1	kotski		SAMPI	ERS (sign	ature).	Zou	alle	inst	/		,			Г	<u>ر</u> ر	age TURI	# NAROUND	e <u>1</u> TIME	_
Company Aspect Cur	sulting		PROJE	CT NAME	£		<u>, , , , , , , , , , , , , , , , , , , </u>			F	PO #				Star	ndar	d turnarour	d	
Address 7 10 2nd Ave	54 550		- Texa	io Micklai	nd.			ľ	807	35	7				a noc Rush c	sn char	ges authoriz	ed by:	
City State ZIP Sellth 1.	WA ast	4	REMAI	RKS		, ,			n	IVO	ICE	ТО			<u></u>	SAM	IPLE DISPO	SAL	
Phone (200) 413-5411 Ema	il ayonkofz	ski@aspec	- tansulty	rg - cemi		 	No		i	AP					□ Arel □ Oth	nive er	samples	- 90	-
	d			specific tri		<u>es /</u> 1	110		A	NAI	I YSI	R 25	ROIT			<u></u>	Jispose and	er ou day	78_] /
						×	×	021	<u>a</u>	260	270	082	3					-	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-D	NWTPH-G	FEX EPA 8	IWTPH-HC	OCs EPA 8	AHs EPA 8	CBs EPA 8	Sapticular	Loid			No	otes	
GIP-05-1.25	01.A.E	11/10/20	0928	Sort	5	X	X	™ X		5	<u>A</u>	<u>, ñ</u> ,	2 X	- }-			•	<i>, , , , , , , , , , , , , , , , , , , </i>	_
CIP-05-6	02	1	0936	Soil	5		3	S					S.	×	·····		(n)-no	AY	
GIP-06-2.5	03 V	· • •	1226	SOTI	5	X	X	X					X.	****			11/17	20 ME	
				· · · ·											,			`	
· ,	,	-												j.		ði			
										1									
· · · · · · · · · · · · · · · · · · ·	:				<i>.</i> .				•		T						· ·		-
					4			-			,					· · · · ·	· ·		
							·				S	am	ples	rec	eivec	Iat	-H oc	·····	
··		-	*	1	·····					1							A2		
	SIC	NATURE	-		PRIN	Ť N⁄	4ME					C	omp	AN	, i 77		DATE	TIME	
Priedman & Bruya, Inc. Reb	inquished by:	and pro-	. Trig	Dave	LU	Inc	sh				As	pee	+ a	n MSL	olfen	3	11/10/20	1448	1
Seattle WA ORIIO PAD	inquished by:	Impant		pha	m_	Phi	<u>hn</u>	· _ `	- 15		Fr	BI	-		· ·	. *	14/10/20	1445	
Ph (206) 285, 8989 Ren	eived hy:	1 	``.		······································		,		•	<u> </u>			<u>`</u>				<i>L</i>		
100/200/202		N#				-								,	1.10		د تي بد خ	-	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 30, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 18, 2020 from the Texaco Strickland PO 180357, F&BI 011339 project. There are 46 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data, Adam Griffin ASP1130R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
011339 -01	MW-1-111820
011339 -02	MW-2-111720
011339 -03	MW-6-111620
011339 -04	MW-7-111720
011339 -05	MW-9-111620
011339 -06	MW-10-111720
011339 -07	MW-11-111720
011339 -08	MW-12-111620
011339 -09	MW-13-111720
011339 -10	MW-14-111820
011339 -11	MW-16-111620
011339 -12	MW-17-111620
011339 -13	MW-18-111620
011339 -14	MW-19-111720
011339 -15	MW-20-111720
011339 -16	MW-21-111720
011339 -17	MW-22-111620
011339 -18	MW-23-111820
011339 -19	MW-24-111720
011339 -20	MW-25-111620
011339 -21	MW-26-111620
011339 -22	CMW-1-111720
011339 -23	CMW-4-111720
011339 -24	DUP-01-111620
011339 -25	DUP-02-111720
011339 -26	RB-01-111720
011339 -27	RB-02-111820
011339 -28	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339 Date Extracted: 11/19/20 Date Analyzed: 11/20/20 and 11/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 51-134)
MW-1-111820 011339-01 1/10	31,000	105
MW-2-111720 011339-02	4,100	93
MW-6-111620 011339-03	<100	92
MW-7-111720 011339-04	<100	90
MW-9-111620 011339-05	<100	93
MW-10-111720 011339-06 1/10	12,000	107
MW-11-111720 011339-07 1/10	5,400	97
MW-12-111620 011339-08	410	101
MW-13-111720 011339-09	1,200	105
MW-14-111820 011339-10	6,400	85
MW-16-111620 011339-11	<100	90

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339 Date Extracted: 11/19/20 Date Analyzed: 11/20/20 and 11/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-17-111620 011339-12	1,200	89
MW-18-111620 011339-13	340	93
MW-19-111720 011339-14	<100	91
MW-20-111720 011339-15	<100	90
MW-21-111720 011339-16	6,600	121
MW-22-111620 011339-17 1/10	24,000	117
MW-23-111820 011339-18 1/10	27,000	105
MW-24-111720 011339-19	<100	93
MW-25-111620 011339-20	<100	91
MW-26-111620 011339-21	<100	89
CMW-1-111720 011339-22	<100	87

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339 Date Extracted: 11/19/20 Date Analyzed: 11/20/20 and 11/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
CMW-4-111720 011339-23	<100	90
DUP-01-111620 011339-24	370	91
DUP-02-111720 011339-25 1/20	13,000	72
RB-01-111720 011339-26	<100	92
RB-02-111820 011339-27	<100	92
Trip Blank 011339-28	<100	90
Method Blank 00-2424 MB	<100	91
Method Blank ^{00-2426 MB}	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339 Date Extracted: 11/20/20 Date Analyzed: 11/20/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1-111820 011339-01	1,800 x	810 x	107
MW-2-111720 011339-02	1,300 x	<250	103
MW-6-111620 011339-03	<50	<250	111
MW-7-111720 011339-04	<50	<250	114
MW-9-111620 011339-05	<54	<250	106
MW-10-111720 011339-06	1,400 x	<250	100
MW-11-111720 011339-07	720 x	<250	104
MW-12-111620 011339-08	230 x	<250	101
MW-13-111720 011339-09	490 x	260 x	124
MW-14-111820 011339-10	780 x	290 x	102
MW-16-111620 011339-11	<50	<250	102
$\underset{\substack{011339-12}}{\text{MW-17-111620}}$	550 x	<250	128

 $\mathbf{5}$

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339 Date Extracted: 11/20/20 Date Analyzed: 11/20/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-18-111620 011339-13	59 x	<250	133
MW-19-111720 011339-14	<50	<250	126
MW-20-111720 011339-15	<50	<250	119
MW-21-111720 011339-16	2,800 x	360 x	127
MW-22-111620 011339-17	3,000 x	410 x	117
MW-23-111820 011339-18	2,600 x	390 x	126
MW-24-111720 011339-19	<50	<250	123
MW-25-111620 011339-20	<50	<250	120
MW-26-111620 011339-21	<50	<250	108
CMW-1-111720 011339-22	<50	<250	109
CMW-4-111720 011339-23	<50	<250	118
DUP-01-111620 011339-24	59 x	<250	131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339 Date Extracted: 11/20/20 Date Analyzed: 11/20/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
DUP-02-111720 011339-25	1,700 x	280 x	115
RB-01-111720 011339-26	<50	<250	111
RB-02-111820 011339-27	<50	<250	129
Method Blank 00-2573 MB	<50	<250	103
Method Blank 00-2542 MB2	<50	<250	102

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-1118 11/18/20 11/19/20 11/20/20 Water ug/L (ppb)	320	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-01 1/50 111947.D GCMS11 JCM
	8 (11-7)		Lowor	Uppor
Surrogatos		% Rocovoru:	Lower	Upper Limit:
1 2 Dichloroothana	d4	108	50	150
Toluono d8	-44	00	50	150
1 Dueme-uo		99 00	50	150
4-Dromonuorobenzo	ene	90	50	150
Company		Concentration		
Compounds:		ug/L (ppb)		
Benzene		5,600		
Toluene		740		
Ethylbenzene		720		
m,p-Xylene		2,200		
o-Xylene		580		
Naphthalene		200		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-2-1117 11/18/20 11/19/20 11/19/20 Water	20	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-02 111936.D GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	90	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	ene	103	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		29		
Toluene		7.8		
Ethylbenzene		49		
m,p-Xylene		20		
o-Xylene		4.4		
Naphthalene		150		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-6-1116	320	Client:	Aspect Consulting, LLC
Date Received:	11/18/20		Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	011339-03
Date Analyzed:	11/19/20		Data File:	111937.D
Matrix:	Water		Instrument:	GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	121	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	ene	101	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-7-1117 11/18/20 11/19/20 11/19/20 Water	220	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-04 111938.D GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	116	50	150
Toluene-d8		99	50	150
4-Bromofluorobenz	ene	96	50	150
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-9-1116 11/18/20 11/19/20 11/19/20 Water	320	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-05 111939.D GCMS11 JCM
Omus.	ug/LI (ppb)		operator.	
~			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	87	50	150
Toluene-d8		103	50	150
4-Bromofluorobenz	ene	101	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m.p-Xylene		<2		
o-Xvlene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-10-111 11/18/20 11/19/20 11/20/20 Water	720	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-06 1/10 111948.D GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	50	150
Toluene-d8		97	50	150
4-Bromofluorobenze	ene	99	50	150
Compounds:		Concentration ug/L (ppb)		
Benzene		1,600 ve		
Toluene		31		
Ethylbenzene		630		
m,p-Xylene		620		
o-Xylene		<10		
Naphthalene		220		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-10-111	720	Client:	Aspect Consulting, LLC
Date Received:	11/18/20		Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	011339-06 1/50
Date Analyzed:	11/21/20		Data File:	112030.D
Matrix:	Water		Instrument:	GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	131	50	150
Toluene-d8		96	50	150
4-Bromofluorobenz	ene	98	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		1,800		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-11-111 11/18/20 11/19/20 11/20/20 Water ug/L (ppb)	720	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-07 1/50 111949.D GCMS11 JCM
	0 11 /		Lower	Unner
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	113	50	150
Toluene-d8		100	50	150
4-Bromofluorobenze	ene	107	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		160		
Toluene		290		
Ethylbenzene		220		
m,p-Xylene		280		
o-Xylene		120		
Naphthalene		110		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-12-111 11/18/20 11/19/20 11/19/20 Water	620	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-08 111940.D GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	96	50	150
Toluene-d8		100	50	150
4-Bromofluorobenz	ene	99	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		0.65		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		
- aprillatorio		· -		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-13-111 11/18/20 11/19/20 11/19/20 Water	720	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-09 111941.D GCMS11 ICM
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	113	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	zene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		1.5		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-14-111 11/18/20 11/19/20 11/20/20 Water	820	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-10 1/10 111950.D GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	118	50	150
Toluene-d8		101	50	150
4-Bromofluorobenze	ene	96	50	150
Companyates		Concentration		
Compounds:		ug/L (ppb)		
Benzene		1,800 ve		
Toluene		19		
Ethylbenzene		31		
m,p-Xylene		<20		
o-Xylene		<10		
Naphthalene		46		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-14-111	820	Client:	Aspect Consulting, LLC
Date Received:	11/18/20		Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	011339-10 1/50
Date Analyzed:	11/21/20		Data File:	112031.D
Matrix:	Water		Instrument:	GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	109	50	150
Toluene-d8		107	50	150
4-Bromofluorobenz	zene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		2,000		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-16-111 11/18/20 11/19/20 11/19/20 Water	620	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-11 111942.D GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	106	50	150
Toluene-d8		100	50	150
4-Bromofluorobenz	ene	99	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-17-111 11/18/20 11/19/20 11/20/20 Water	620	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-12 111943.D GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	115	50	150
Toluene-d8		95	50	150
4-Bromofluorobenze	ene	103	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		5.7		
Toluene		6.9		
Ethylbenzene		<1		
m,p-Xylene		16		
o-Xylene		<1		
Naphthalene		1.9		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-18-111 11/18/20 11/19/20 11/20/20 Water ug/L (ppb)	620	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-13 111944.D GCMS11 JCM
	0 11 /		Lower	Unner
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	121	50	150
Toluene-d8		94	50	150
4-Bromofluorobenze	ene	101	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		61		
Toluene		<1		
Ethylbenzene		2.1		
m,p-Xylene		9.8		
o-Xylene		2.1		
Naphthalene		2.4		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-19-111	720	Client:	Aspect Consulting, LLC
Date Received:	11/18/20		Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	011339-14
Date Analyzed:	11/20/20		Data File:	111945.D
Matrix:	Water		Instrument:	GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	109	50	150
Toluene-d8		105	50	150
4-Bromofluorobenz	ene	101	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-20-111	720	Client:	Aspect Consulting, LLC
Date Received:	11/18/20		Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	011339-15
Date Analyzed:	11/20/20		Data File:	111946.D
Matrix:	Water		Instrument:	GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	99	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	zene	105	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-21-111 11/18/20 11/19/20 11/19/20 Water ug/L (ppb)	720	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-16 1/10 111938.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	57	121
Toluene-d8		101	63	127
4-Bromofluorobenze	ene	107	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		25		
Toluene		12		
Ethylbenzene		620		
m,p-Xylene		43		
o-Xylene		<10		
Naphthalene		440		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-22-111 11/18/20 11/19/20 11/19/20 Water ug/L (ppb)	620	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-17 1/20 111939.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	57	121
Toluene-d8		99	63	127
4-Bromofluorobenze	ene	103	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		1,000		
Toluene		240		
Ethylbenzene		1,300		
m,p-Xylene		3,500		
o-Xylene		380		
Naphthalene		390		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-23-111 11/18/20 11/19/20 11/19/20 Water ug/L (ppb)	820	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-18 1/50 111940.D GCMS4 JCM
	8 (11-7)		Lowor	Uppor
Surrogates		% Recovery	Limit:	Limit:
1 2-Dichloroethane	-d4	95	57	121
Toluene-d8	u i	101	63	127
4-Bromofluorobenze	ene	104	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		5,300		
Toluene		120		
Ethylbenzene		640		
m,p-Xylene		930		
o-Xylene		<50		
Naphthalene		170		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-24-111	720	Client:	Aspect Consulting, LLC
Date Received:	11/18/20		Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	011339-19
Date Analyzed:	11/19/20		Data File:	111935.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	100	57	121
Toluene-d8		102	63	127
4-Bromofluorobenz	zene	105	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-25-111 11/18/20 11/19/20 11/19/20 Water ug(L (ppb)	.620	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-20 111936.D GCMS4 JCM
011105.	ug/LI (ppb)		operator.	
~			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	100	57	121
Toluene-d8		101	63	127
4-Bromofluorobenz	ene	101	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		0.53		
Toluene		<1		
Ethylbenzene		<1		
m.p-Xylene		<2		
o-Xvlene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-26-111 11/18/20 11/19/20 11/19/20 Water	.620	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-21 111937.D GCMS4 JCM
Onits.	ug/Li (ppb)			50M
~			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	99	57	121
Toluene-d8		100	63	127
4-Bromofluorobenz	ene	103	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xvlene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	CMW-1-112 11/18/20 11/19/20 11/19/20 Water	1720	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-22 111943.D GCMS4
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	99	57	121
Toluene-d8		102	63	127
4-Bromofluorobenz	ene	104	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	CMW-4-111	1720	Client:	Aspect Consulting, LLC
Date Received:	11/18/20		Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	011339-23
Date Analyzed:	11/19/20		Data File:	111944.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	98	57	121
Toluene-d8		102	63	127
4-Bromofluorobenz	zene	105	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DUP-01-111 11/18/20 11/19/20 11/21/20 Water ug/L (ppb)	1620	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-24 112029.D GCMS11 JCM
			Lower	Unner
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	107	50	150
Toluene-d8		102	50	150
4-Bromofluorobenze	ene	104	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		83		
Toluene		1.3		
Ethylbenzene		3.3		
m,p-Xylene		15		
o-Xylene		2.9		
Naphthalene		3.0		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DUP-02-11 11/18/20 11/19/20 11/19/20 Water ug/L (ppb)	1720	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-25 1/50 111942.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	57	121
Toluene-d8		100	63	127
4-Bromofluorobenze	ene	105	60	133
Compounds:		Concentration ug/L (ppb)		
Benzene		1,800		
Toluene		32		
Ethylbenzene		710		
m,p-Xylene		690		
o-Xylene		<50		
Naphthalene		200		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	RB-01-1117 11/18/20 11/19/20 11/19/20 Water	20	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-26 111932.D GCMS4 JCM
Onits.	ug/Li (ppb)		operator.	
~			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		101	63	127
4-Bromofluorobenz	ene	106	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xvlene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	RB-02-1118	320	Client:	Aspect Consulting, LLC
Date Received:	11/18/20		Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	011339-27
Date Analyzed:	11/19/20		Data File:	111933.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		103	63	127
4-Bromofluorobenz	ene	105	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 11/18/20 11/19/20 11/19/20 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 011339-28 111934.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	57	121
Toluene-d8		99	63	127
4-Bromofluorobenz	ene	104	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Method Blank		Client:	Aspect Consulting, LLC	
Date Received:	Not Applica	able	Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	00-2696 mb
Date Analyzed:	11/19/20		Data File:	111908.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	95	57	121
Toluene-d8		99	63	127
4-Bromofluorobenz	ene	104	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		< 0.5		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Method Blank		Client:	Aspect Consulting, LLC	
Date Received:	Not Applica	able	Project:	Texaco Strickland PO 180357, F&BI 011339
Date Extracted:	11/19/20		Lab ID:	00-2545 mb
Date Analyzed:	11/19/20		Data File:	111907.D
Matrix:	Water		Instrument:	GCMS11
Units:	ug/L (ppb)		Operator:	JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	125	50	150
Toluene-d8		101	50	150
4-Bromofluorobenze	ene	97	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 011	1333-05 (Duplie	cate)				
	Reporting	Sampl	le Du	plicate	RPD	
Analyte	Units	Resul	t R	esult	(Limit 20)	
Gasoline	ug/L (ppb)	<100	<	<100	nm	
Laboratory Code: Lab	boratory Contr	ol Sample				
			Percent			
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria	_	
Gasoline	ug/L (ppb)	1,000	97	69-134	_	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 011	339-11 (Duplic	cate)			
	Reporting	Samp	le Du	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100) <	:100	nm
Laboratory Code: Lab	oratory Contro	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	93	69-134	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	92	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	89	108	63-142	19

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011340-01 (Matrix Spike)

-				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	10	< 0.35	105	50 - 150
Toluene	ug/L (ppb)	10	<1	104	50 - 150
Ethylbenzene	ug/L (ppb)	10	<1	106	50 - 150
m,p-Xylene	ug/L (ppb)	20	<2	104	50 - 150
o-Xylene	ug/L (ppb)	10	<1	105	50 - 150
Naphthalene	ug/L (ppb)	10	<1	108	50 - 150

Laboratory Code: Laboratory Control Sample

····· ··· ··· ··· ··· ··· ··· ··· ···	Reporting	Spiko	Percent	Percent	Accontance	RDD
Analyta	Unita	Lovel			Critorio	(I imit 20)
Analyte	Units	Level	LCS	LCSD	Orneria	(LIIIIII 20)
Benzene	ug/L (ppb)	10	99	106	70 - 130	7
Toluene	ug/L (ppb)	10	103	107	70-130	4
Ethylbenzene	ug/L (ppb)	10	104	105	70-130	1
m,p-Xylene	ug/L (ppb)	20	102	104	70-130	2
o-Xylene	ug/L (ppb)	10	103	105	70-130	2
Naphthalene	ug/L (ppb)	10	108	107	70-130	1
ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011339-19 (Matrix Spike)

Č (1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	\mathbf{MS}	Criteria
Benzene	ug/L (ppb)	10	< 0.35	99	76 - 125
Toluene	ug/L (ppb)	10	<1	98	76 - 122
Ethylbenzene	ug/L (ppb)	10	<1	99	69 - 135
m,p-Xylene	ug/L (ppb)	20	<2	99	69 - 135
o-Xylene	ug/L (ppb)	10	<1	97	60-140
Naphthalene	ug/L (ppb)	10	<1	90	44-164

Laboratory Code: Laboratory Control Sample

	I I I I I I I I		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	102	100	69-134	2
Toluene	ug/L (ppb)	10	99	97	72 - 122	2
Ethylbenzene	ug/L (ppb)	10	99	98	77 - 124	1
m,p-Xylene	ug/L (ppb)	20	99	96	81-112	3
o-Xylene	ug/L (ppb)	10	100	96	81-121	4
Naphthalene	ug/L (ppb)	10	100	95	64-133	5

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

011339	SAMPLE CHAIN OF CUSTODY, ME 11-18-20 VW5/E03									5											
Report To Andrew York	Vinhofsky (Adam briffor SAMPLE				ERS (signature)										Page # of						
Company Aspect Consultoria				PROJECT NAME PO							PO # X Standard turnaround							und			
Address 710 2nd Ave	e Ste 550		Texa	10 Sho	hon	l			180)X	Rush chai						ges autho				
City, State, ZIP Scutt	e VA,	41104	REMAR	KS					Π	NVO	DICE TO SAN						MPLE DISPOSAL e samples				
Phone (200) 413-5411 E	mail avorbot de	OD acort	Project	specific RL	s? - Ye	es //	\bigcirc	AP							Default: Dispose after 30 days						
		in per conse	figur		<u> </u>	I	٣		A	NAT	LYSI	ES R	EQUIE		CD		<u>c. Dispose alter 50 days</u>				
								L.	ন	<u>o</u>	2	22	B				T			1	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	XU-HATWN	NWTPH-Gx	BTEX EPA 802	NWTPH-HCI	VOCs EPA 826	PAHs EPA 827	PCBs EPA 808	JEXN 821	-				Notes	- -		
mW-1-111820	OIA-G	11/18/20	0945	W6-	7	X	X						X								
mw-2-111720	02	11/17/20	1500	<u>i</u>	Î	i.															
mW-6-11620	03	11/16/20	1220																		
mw-7-111720	04	11/17/20	1120																		
mw-9-111620	05	11/16/20	1400																		
mw-10-11/720	06	11/17/20	1345																		
mw-11-111720	07	11/17/20	1010												ļ <u>.</u>			·····			
mw-12-111620	OB	11/16/20	1415																		
mw-13-111720	09	11/17/20	1230														ļ				
mw-14-111820	ID	11/18/20	1140	\star	+	*	4						4					•			
	S	SIGNATURE /			PRIN	IT N	AMF	C				C	OME	'AN	Y		DATE	TI	ИE		
Friedman & Bruya, Inc.	Relinquished by:	Trucklark	<	Dies	ll	Ing	,h				A	<u>FpCk</u>	+6	onsc	1/100	4	11/18/20) 144	8	ł	
3012 16 th Avenue West	Keceived by:	m/m/m	N	Nhe	1N	P	Λh	<u>n</u>			Fl	B-		11/18/20 1448						 	
Seattle, WA 98119-2029										Samples received at 3 of											
· Ph. (206) 285-8282	Received by:			<u> </u>										-							

	011339 SAMPLE								E CHAIN OF CUSTODY, ME IL 18-20 VW5/E03																	
	Report Tother Vorhetsky of Alam Grafon SAMPL							LERS (signature)									Īг	Page #								
Company Aspert Consentation							ECT NAME						I	°O #				Standard turnaround								
	Address 7/0 2 ^{NA} A	ve ste	25	50	>	Texa	Œ	Shi	zhla	mÌ				8	D39	7			I	Rush charges authorized by:						
	City State ZIP Sealth	e. 11.	19	IXIN	4	REMAR	KS			-				11	NVC	ICE	TO			SAMPLE DISPOSAL						
Phone MD4B Still Email allockately Berne 1							Se DI	~? `	Vaa	15	6 3		į	AÌ	>				Default: Dispose after 30 days							
Г		1	/	·~ - F	anglet los	Majion	spec		5; -		{	9		*	ANA'	LYSI	ES R	EQUI	LI LI ESTE	TED						
											×	×	021	Ð	260	270	382	30%			ļ					
	Sample ID	Sample ID Lab ID Date		Date	Time	S٤	ample	# ot	£	Q-H-	PH-G	PA 8	Н-НС	PA 8:	PA 8	PA 8(18					Nc	ntee			
					Sampled	Sampled	נין	Гуре	Jar	S	TWN	TWN	EX E	WTP	OCs E	AHs E	CBs E	医文								
-					3 S					_			<u>B</u>	Z	X	PA	PC	2			ļ		·	· · · ·		
Ļ	mw-16-111620	<u> </u>	A-6	3	11/16/20	0850	le	J6-	2	4	X	X						X			<u> </u>					
	mw-11-111620	17	2		11/17/20	0850		ļ	ļļ													<u> </u>				
	MW-18-11100	<u> </u>	3		11/16/20	1110		_														<u> </u>				
	mw-19-111720	<u> </u>	t		11/17/20	1300																<u> </u>				
	mw-20-111720	L:	5			0915																_				
	mw-21-111720	1	>		+	1030																	<u>.</u>			
	mw-22-111620	ι-	7		U/16/20	1315															ļ	<u> </u>		، مر <u>مربع : م</u>		
_	MW-23-111820	[§	3		11/18/20	1040																<u> </u>	·	· · · ·		
	mw-24-111720	19			11/17/20	0900																				
1	mw-25-111620	21	>		11/16/20	1215			4	<u> </u> }	4	\mathbf{A}					·	¥								
r	Triedman & Provide Tree	Relinquis	thed h	SIG	NATURE			<u>م</u>	PRI	NT	NA	MF	}				C	OMI	PANY	Y /I		Dź	TE	TIN	1E	
£ 3	2012 16th Avenue West	Received	by:	hi	Ment.			Jan.	<u>r] (</u>	1	26					\underline{A}	lspe	et l	Loasulfing 11/18/20 1444							
S	Seattle, WA 98119-2029	Relinquis	hed by	<u></u> Д	MMA	15	NWAN PINAN FEBT								11 18/20 1998											
P	Ph. (206) 285-8282	Received	by:		1												<i>,</i>	Sa	mpl	es r	ece	ived	at _	3 0	7	
									<u>]</u>																	

011339			SAMPLI	E CHAIN	I OF	CU	STO	ppy	ζ, Λ	ΫĒ		- 12	8 - ,	20		Vu	151	FO	3,		
Ponent To Antre, Varkete	to / plan	aldim	SAMPL	ERS (sign	ature)	T	7/	1	1					٦ ₋		Page	#	5	$\frac{\text{of}}{\text{TIME}}$		
A Det Could	A Dale Chiller				PROJECT NAME PO #									XStandard turnaround							
Company 1/2012 Consul	J. ST	·····	Ta	d.	1.1				180)3/	7	,].	⊐ RU Rush	USH char	H harges authorized by:				
Address $//$ \land $///$	IN ANI	мI	- ICXA REMAR	<u>(O NAL</u> RKS	hlong				IN	voi	ICE	TO		┥┝	SAMPLE DISPOSAL						
City, State, ZIP Seaffle,	<u>UA, UN(</u> 1 fi	<u>)</u> 9							1	~					□ Archive samples						
Phone (0) 435411_Email_	ayonhatsh	Buspeet Con	Sulfar com	specific RL	<u>s? - Y</u>	<u>es /</u>	Ø/		HP						Default: Dispose after 30 days						
, , , , , , , , , , , , , , , , , , ,	T		- <i>ng</i> I	T			1		AN I	VAL	YSE	SRI	EQUI	ESTI	ED I	Т					
	n na fan an ······································				Ă	ß	802:	8	8260	8270	8082	Salo							<u> </u>		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	I'PH.	LPH.	EPA	PH-H	EPA	EPA	EPA	XIV.					Nc	otes		
		Sumpton	Sambraa	20140	June	MM	NW	TEX	Liwy	0Cs	AHs	CBs									
M11 0(11/00		1111/m					v	А	~	>		<u> </u>		· .		<u> </u>		·····	· · · · · · · · · · · ·		
1110-26-111620	21 A-G	11/6/0	DASS				$\left \begin{array}{c} \\ \\ \end{array} \right $						X 7				-				
(mw-1-111720	22	11111d0	1155												 						
CMW-4-111720	23	+	1345														_	<u></u>			
DUP-01-111620	24	1116/20				\square															
DUP-02-11720	25	11/17/20		*																	
RB-01-11000	26	4	1455	AQ													ŀ				
RB-02-111820	27	11/18/20	1205		\mathbf{A}	₩		, ,				ľ					I				
Top Black	28 A-D	·		*	4								\mathbf{F}								
	2011 2				<u> </u>	* ** ** **			1.				· · · · · · · · · · · ·				1				
	••••••••••••••••••••••••••••••••••••••									+							+	······	· ·		
· · · · · · · · · · · · · · · · · · ·	QT/			I	DDIN			<u> </u>		 		<u>ן</u> ה			7	1		កាត្ត	TYLAN		
Friedman & Bruya, Inc. Relin	quished by: $\frac{1}{7}$	21.1		5		1/2	. [_	4			A	Len -	- 41	2 2 2		i	1/18	20	144/5	7	
3012 16th Avenue West Recei	ved by:	m W M	W	NNAA	\sim	pl	41	<u></u>		-	Fe	Hr BJ		<u>_n</u> y							
Seattle, WA 98119-2029 Relin	quished by:																				
Ph. (206) 285-8282 Recei	, Sample:								es re	received at <u>3</u> °C											
L	,	NF - 14 - 14 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 1														l	······		ł	J	

 $(1, \dots, n, n, n) \in \mathbb{R}$

- 15

÷ ...

t seu l'été

the second

. . . .

1999

and the second second second

. .

. . .

.

and the second

1.1. x 1

· . . .

 $(A, a) = \sum_{i=1}^{n} (a_i a_i + b_i) + \sum_{i=1}^{n} (a_i a_i) + \sum_{i=1}^{n} ($

and the second second

1. A.

and ^{the} constant

.

. . . .

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 9, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 20, 2020 from the Texaco Strickland PO 180357, F&BI 011402 project. There are 21 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1209R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011402 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
011402 -01	GP-02-112020
011402 -02	GP-03-112020
011402 -03	GP-05-112020
011402 -04	GP-06-112020
011402 -05	SV-DUP-112020
011402 -06	Trip Blank

Samples GP-02-112020, GP-03-112020, GP-05-112020 and GP-06-112020 were sent to Fremont Analytical for carbon dioxide, methane, and oxygen analyses. The report is enclosed.

The APH EC5-8 aliphatics in sample SV-DUP-112020 exceeded the calibration range of the instrument. The sample was diluted. Both data sets were reported. The data were flagged accordingly.

All other quality control requirements were acceptable.
ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-02-112020	Clien	t:	Aspect Consulting, LLC
Date Received:	11/20/20	Proje	ct:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab I	D:	011402-01 1/3.4
Date Analyzed:	11/25/20	Data	File:	112421.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Opera	ator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 91	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 210			
APH EC9-12 aliph	atics 480			
APH EC9-10 arom	atics <85			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-03-112020	Clien	t:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:		Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab I	D:	011402-02 1/8.4
Date Analyzed:	12/03/20	Data	File:	120325.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Opera	ator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 106	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 3,700			
APH EC9-12 aliph	atics 1,100			
APH EC9-10 arom	atics <210			

ENVIRONMENTAL CHEMISTS Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-05-112020		Clie	nt:	Aspect Consulting, LLC
Date Received: 11/20/20		Proj	ect:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab	ID:	011402-03 1/43
Date Analyzed:	12/04/20	Data	a File:	120326.D
Matrix:	Air	Inst	rument:	GCMS7
Units:	ug/m3	Ope	rator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 97	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 22.000			
APH EC9-12 aliph	atics 5,000			
APH EC9-10 arom	atics <1,100			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-06-112020	Clien	t:	Aspect Consulting, LLC
Date Received:	11/20/20	Proje	ct:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab I	D:	011402-04 1/3.4
Date Analyzed:	11/25/20	Data	File:	112423.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Operator:		bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 97	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 160			
APH EC9-12 aliph	atics 390			
APH EC9-10 arom	atics <85			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SV-DUP	-112020	Client:		Aspect Consulting, LLC
Date Received:	Date Received: 11/20/20		Project:		Texaco Strickland PO 180357
Date Collected:	11/20/20		Lab ID:		011402-05 1/41
Date Analyzed:	12/04/20		Data Fi	le:	120327.D
Matrix:	Air		Instrun	nent:	GCMS7
Units:	ug/m3		Operate	or:	bat
		%	Lower	Upper	
Surrogates:	R	ecovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	102	70	130	
	Conce	ntration			
Compounds:		ug/m3			
APH EC5-8 alipha APH EC9-12 alipha APH EC9-10 aroma	tics 2- atics atics	4,000 ve 6,000 <1,000			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SV-DUP-112020	Client:		Aspect Consulting, LLC
Date Received:	11/20/20	Project:		Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:		011402-05 1/490
Date Analyzed:	11/25/20	Data Fi	le:	112428.D
Matrix:	Air	Instrun	ient:	GCMS7
Units:	ug/m3	Operato	or:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics <20,000			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank	Clien	t:	Aspect Consulting, LLC
Date Received:	11/20/20	Proje	et:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab I	D:	011402-06
Date Analyzed:	11/25/20	Data	File:	112420.D
Matrix:	Air	Instru	ament:	GCMS7
Units:	ug/m3	Opera	ator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 89	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <40			
APH EC9-12 aliph	atics <50			
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client		Aspect Consulting, LLC
Date Received:	Not Applicable	Project:		Texaco Strickland PO 180357
Date Collected:	Not Applicable	Lab II	D:	00-2555 MB
Date Analyzed:	11/24/20	Data 1	File:	112410.D
Matrix:	Air	Instru	iment:	GCMS7
Units:	ug/m3	Opera	tor:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 91	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <40			
APH EC9-12 aliph	atics <50			
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-02-112020 11/20/20 11/20/20 11/25/20 Air ug/m3	Clien Proje Lab I Data Instr Oper	t: ct: D: File: ument: ator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-01 1/3.4 112421.D GCMS7 bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
Concentr		ration		
Compounds:	ug/m3	ppbv		
Benzene	<1.1	< 0.34		
Toluene	<64	<17		
Ethylbenzene	2.2	0.51		
m,p-Xylene	9.3	2.1		
o-Xylene	2.7	0.63		
Naphthalene	< 0.89	< 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-03-112020 11/20/20 11/20/20 12/03/20 Air ug/m3	Clier Proje Lab J Data Instr Oper	at: ect: ID: File: rument: ator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-02 1/8.4 120325.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 101	Lower Limit: 70	Upper Limit: 130	
	Concent	tration		
Compounds:	ug/m3	ppbv		
Benzene	<2.7	< 0.84		
Toluene	<160	<42		
Ethylbenzene	<3.6	< 0.84		
m,p-Xylene	10	2.4		
o-Xylene	<3.6	< 0.84		
Naphthalene	<2.2	< 0.42		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-05-112020 11/20/20 11/20/20 12/04/20 Air ug/m3	Clien Proje Lab I Data Instr Oper	at: ect: ID: File: rument: ator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-03 1/43 120326.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
Concentr		tration		
Compounds:	ug/m3	ppbv		
Benzene	<14	<4.3		
Toluene	<810	<210		
Ethylbenzene	<19	<4.3		
m,p-Xylene	<37	<8.6		
o-Xylene	<19	<4.3		
Naphthalene	<11	<2.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-06-112020 11/20/20 11/20/20 11/25/20 Air ug/m3	Clier Proje Lab Data Instr Oper	nt: ect: ID: t File: rument: rator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-04 1/3.4 112423.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 99	Lower Limit: 70	Upper Limit: 130	
	ration			
Compounds:	ug/m3	ppbv		
Benzene	2.7	0.84		
Toluene	<64	<17		
Ethylbenzene	5.0	1.2		
m,p-Xylene	20	4.7		
o-Xylene	5.8	1.3		
Naphthalene	< 0.89	< 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix:	SV-DUP-112020 11/20/20 11/20/20 12/04/20 Air	Clier Proje Lab Data Instr	nt: ect: ID: File: rument:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-05 1/41 120327.D GCMS7
Units:	ug/m3	Oper	rator:	bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 98	Lower Limit: 70	Upper Limit: 130	
	Concent	tration		
Compounds:	ug/m3	ppbv		
Benzene	<13	<4.1		
Toluene	<770	<200		
Ethylbenzene	<18	<4.1		
m,p-Xylene	37	8.5		
o-Xylene	<18	<4.1		
Naphthalene	<11	<2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Trip Blank 11/20/20 11/20/20 11/25/20 Air ug/m3	Clien Proje Lab I Data Instr Oper	t: ct: D: File: ument: ator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-06 112420.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 91	Lower Limit: 70	Upper Limit: 130	
	Concen	tration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 11/24/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Aspect Consulting, LLC Texaco Strickland PO 180357 00-2555 MB 112410.D GCMS7 bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
	Concent	tration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	$<\!\!5$		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011402 Date Extracted: 11/30/20 Date Analyzed: 11/30/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

< 0.6

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
GP-02-112020 011402-01	<0.6
GP-03-112020 011402-02	<0.6
GP-05-112020 011402-03	<0.6
GP-06-112020 011402-04	<0.6

Method Blank

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 011402-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	210	200	5
APH EC9-12 aliphatics	ug/m3	480	460	4
APH EC9-10 aromatics	ug/m3	$<\!\!85$	<85	nm

Laboratory Code: Laboratory Control Sample

assilatory coust according c	oner or wampie			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	81	70-130
APH EC9-12 aliphatics	ug/m3	67	82	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 011402-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.1	<1.1	nm
Toluene	ug/m3	<64	<64	nm
Ethylbenzene	ug/m3	2.2	2.3	4
m,p-Xylene	ug/m3	9.3	9.8	5
o-Xylene	ug/m3	2.7	3.3	20
Naphthalene	ug/m3	< 0.89	< 0.89	nm

Laboratory Code: Laboratory Control Sample

1			
		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/m3	43	119	70-130
ug/m3	51	84	70-130
ug/m3	59	114	70-130
ug/m3	120	99	70 - 130
ug/m3	59	98	70 - 130
ug/m3	71	82	70-130
	Reporting Units ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Reporting UnitsSpike Levelug/m343ug/m351ug/m359ug/m3120ug/m359ug/m371	Reporting Spike Percent Reporting Spike Recovery Units Level LCS ug/m3 43 119 ug/m3 51 84 ug/m3 59 114 ug/m3 120 99 ug/m3 59 98 ug/m3 71 82

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 0	11402-01 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20
Laboratory Code: 0	11401-05 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	14 ve	19 ve	30 hr	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 011402 Work Order Number: 2011458

December 01, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 11/20/2020 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 011402 2011458	Work Order Sample Summa		
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received	
2011458-001	GP-02-112020	11/20/2020 10:24 AM	11/20/2020 4:24 PM	
2011458-002	GP-03-112020	11/20/2020 11:22 AM	11/20/2020 4:24 PM	
2011458-003	GP-05-112020	11/20/2020 12:15 PM	11/20/2020 4:24 PM	
2011458-004	GP-06-112020	11/20/2020 1:25 PM	11/20/2020 4:24 PM	
2011458-005	SV-DUP-112020	11/20/2020 12:00 AM	11/20/2020 4:24 PM	

Case Narrative

WO#: **2011458** Date: **12/1/2020**

CLIENT:Friedman & BruyaProject:011402

WorkOrder Narrative:

I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

WO#: **2011458** Date Reported: **12/1/2020**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material **ICV - Initial Calibration Verification** LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2011458

 Date Reported:
 12/1/2020

CLIENT:	Friedman & Bruya
Project:	011402

Lab ID: 2011458-001 Client Sample ID: GP-02-112020			Collection Date: 11/20/2020 10:24:00 A Matrix: Air			
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
Major Gases by EPA Method 3C			Batcl	h ID: R6	3578 Analyst: MS	
Carbon Dioxide	27.6	0.0500	%	1	11/23/2020 6:53:00 AM	
Methane	ND	0.0500	%	1	11/23/2020 6:53:00 AM	
Oxygen	4.50	0.0500	%	1	11/23/2020 6:53:00 AM	

Lab ID:	2011458-002
---------	-------------

Collection Date: 11/20/2020 11:22:00 AM Matrix: Air

Client Sample ID: GP-03-11	2020	Matrix: Air								
Analyses	Result	RL Qual	Units	DF	Date Analyzed					
Major Gases by EPA Method	<u>3C</u>		Bato	h ID: R6	3578 Analyst: MS					
Carbon Dioxide	30.3	0.0500	%	1	11/23/2020 7:05:00 AM					
Methane	0.168	0.0500	%	1	11/23/2020 7:05:00 AM					
Oxygen	1.35	0.0500	%	1	11/23/2020 7:05:00 AM					

Lab ID: 2011458-003 Client Sample ID: GP-0	5-112020	Collection Date: 11/20/2 Matrix: Air									
Analyses	Result	RL Qual	Units	DF	Date Analyzed						
Major Gases by EPA Met	hod 3C		Batc	h ID: R6	3578 Analyst: MS						
Carbon Dioxide	29.6	0.0500	%	1	11/23/2020 7:17:00 AM						
Methane	0.515	0.0500	%	1	11/23/2020 7:17:00 AM						
Oxygen	1.27	0.0500	%	1	11/23/2020 7:17:00 AM						

Analytical Report

 Work Order:
 2011458

 Date Reported:
 12/1/2020

CLIENT:Friedman & BruyaProject:011402

Lab ID: 2011458-004 Client Sample ID: GP-06-112020	Collection Date: 11/20/2020 1:25:00 Matrix: Air									
Analyses	Result	RL Qual	Units	DF	Date Analyzed					
Major Gases by EPA Method 3C			Batc	h ID: R6	3578 Analyst: MS					
Carbon Dioxide	17.1	0.0500	%	1	11/23/2020 7:29:00 AM					
Methane	ND	0.0500	%	1	11/23/2020 7:29:00 AM					
Oxygen	8.16	0.0500	%	1	11/23/2020 7:29:00 AM					

Work Order: CLIENT: Project:	2011458 Friedman & I 011402	Bruya							QC S Major (SUMMA Gases by B	RY REF EPA Meth	ORT
Sample ID: LCS-R Client ID: LCSW Analyte	63578	SampType: LCS Batch ID: R63578 Result	RL	SPK value	Units: %	%REC	Prep Dat Analysis Dat LowLimit	e: 11/23/2 e: 11/23/2 HighLimit	2020 2020 RPD Ref Val	RunNo: 635 SeqNo: 127 %RPD	7 8 7 6255 RPDLimit	Qual
Carbon Dioxide Methane Oxygen		100 99.9 101	0.0500 0.0500 0.0500	100.0 100.0 100.0	0 0 0	100 99.9 101	70 70 70	130 130 130				
Sample ID: 20114 Client ID: GP-02 Analyte	58-001AREP -112020	SampType: REP Batch ID: R63578 Result	RL	SPK value	Units: %	%REC	Prep Dat Analysis Dat LowLimit	e: 11/23/2 e: 11/23/2 HighLimit	2020 2020 RPD Ref Val	RunNo: 635 SeqNo: 127 %RPD	578 76251 RPDLimit	Qual
Carbon Dioxide Methane Oxygen		27.9 ND 4.47	0.0500 0.0500 0.0500						27.64 0 4.505	0.905 0.725	30 30 30	

Sample Log-In Check List

Cli	ient Name:	FB	Work Order Numb	per: 2011458		
Lo	gged by:	Carissa True	Date Received:	11/20/2020	0 4:24:00 PM	
Cha	in of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present	
2.	How was the	sample delivered?	<u>Client</u>			
Log	In					
3.	Coolers are p	present?	Yes	No 🔽	NA 🗌	
0.			Air samples			
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌		
5.	Custody Sea (Refer to com	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹	
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗹	
7.	Were all item	ns received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🔽	
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌		
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗹	No 🗌		
10.	Are samples	properly preserved?	Yes 🗹	No 🗌		
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA 🗌	
12.	Is there head	lspace in the VOA vials?	Yes	No 🗌	NA 🔽	
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🖌	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌		
17.	Were all hold	ling times able to be met?	Yes 🖌	No 🗌		
Spe	cial Handl	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🔽	
	Person	Notified: Date:				
	By Who	via:	eMail Ph	one 🗌 Fax 🛛	In Person	
	Regardi	ing:				
	Client Ir	nstructions:				
19.	Additional rer	marks:				

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

2011458

		2			SU	BCONT	RACT	ER								Page	#	_of
Send Report <u>To Michael Erdahl</u>					FREMONA							TURNAROUND TIME						
Company Friedman and Brúya, Inc.						PROJECT NAME/NO. $PO #$							□ Sta □ RU Rush	ndard SH charg	TAT es authoriz	ed by:		
110010350	014 10	1011 1140 .44			DEI	MADIZO								-	-	CAN	מסזת ק זמו	
City, State, ZIP_S	eattle,	WA 98119			LUL	MARKS									Z Dis	pose a	fter 30 day	SAL
Phone #(206) 285	-8282	merdahl@fr	iedmanandbruy	a.com		Ple	ease E	mail l	Result	s					⊂ Ret □ Wil	urn sa l call v	mples with instruc	ctions
						1	17			ANA	LYSE	SRE	QUES	TED			1	
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	rix	# of jars	Dioxins/Furans	EPH	НЧЛ	Co. CH., 02							1	Notes -
GP-02-112020		11/20/20	1024	A						1							5 8 5	
GP-03-112020		1	112-2	A						V								
GP- 05-112020			1215	Δ	_					1				1				**
GP 10-1022			1205	A	-					1					1	-		
5V-OUP-112028				A			_			7	A				h		HOL) JU-010
					3												Eli	20
																1		
																1.14		
														•	1			
								1							1		1	
																1		
Friedman & Bruya,	Inc.		SIGNATURE			1	I	PRINT	NAM	ΓĘ		T	CC	OMPA	NY	1	DATE	TIME
3012 16th Avenue W	Test	Refinquished I	by:			Micha	el Ero	tahl	ar 1	1)	0	Fr	iedma	n & E	Bruya		ulast	1355
Seattle, WA 98119-2029 Received by:			a claure prolivon the					7 ///2010 1024										
Ph. (206) 285-8282	Ì	Relinquished I	by:		1	60	a habit							1			up up up a	- Va l
Fax (206) 283-5044		Received by:															6	

011402		JAMPL	e orai	in Ot	UUUU.	<u>.</u>	11	N	.e_	11-	:20	>-2	0	1 . 1 .		
	11	SAMPI	ERS (sign	nature)	-17	217							Page TUR	#	- 	
Report To Hower Yonhat 1/1/1466	n constation	- PROJE	CT NAMI	E & AD	DRESS	<u>a u</u>		PO	#			Sta	ndar	d		
Company /Type+ Consulting			1	11	1		158	15				Rush charges authorized by:				
Address 7/0 2nd Ave, Sters D		- Jex	uo Sta	Rhon	d		<u> ð</u>	$\frac{1}{2}$	/			SAMPLE DISPOSAL				
City, State, ZIP Scatte, WAY 98/04		- NOTES	3:					* v OIC	95 I V			Def	ault:	Clean after 3 days		
Phone (26)913 5411 Email avertable	n Daspe	21 orallon	an	· ·			F	HP.) Arc	bive	(Fee may apply)		
CAMPLE INFORMATION								ANA	LYSI	S RI	ZQU	IESI	TED]	
	·	I	I					L L				-	ŧÕ			
								Sca	EXP	003		в	2	2		
		Reporting Level:						Full	BI	5 cV	APH	leliu	CH			
	Flow	IA=Indoor Air		Initial	Field	Final	Field	015	[01(TOI		д	Ř			
Sample Name ID ID	er Cont. ID	SG=Soil Gas (Circle One)	Date Sampled	("Hg)	Time	("Hg)	Time	E					3	Notes		
(-P-02-112020 01 2297	204	IA / SG	Wadao	-24	1018	-5	1074		X		X	Х	X	+Tedlor bag		
(-P-03-112020 02 3257	294	IA / (59		-30	1122	-5	1128						1		-	
1-P-05-112020 03 3476	224	IA / 🚱		-30	1215	-5	ادم								-	
127-06-10020 or 3251	230	TA / SG		30	1325	5	1332				+	¥	Ļ		<u></u>	
Sr D.D 10000 05 0301	0.21			-30	-	5										
10-100-10000	dai Dik	IA / Ob						╞╼┼	廿	-	\downarrow				1	
1159 Blonk 00 3416	140	IA / SG						┝──╂	<u>×</u>							
		IA / SG						 		-+	3	am	ples	received at	PC T	
		IA / SG	· · ·													

	·		COMPANY	DATE. 1	TIME
Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMEANI	- United	
3012 16th Avenue West	Relinquished by:	Daved Unich	Aspect consolta	1528	11/20/20
Seattle, WA 98119-2029	Received by	Michael Erchkl	Filling.	11/20/20	K28
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044	Received by:				
FORMS\COC\COCTO-15.DOC	L				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 16, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included is the amended report from the testing of material submitted on November 20, 2020 from the Texaco Strickland PO 180357, F&BI 011402 project. The benzene reporting limit for samples GP-05-112020 and SV-DUP-112020 were lowered, per your request.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1209R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 9, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 20, 2020 from the Texaco Strickland PO 180357, F&BI 011402 project. There are 21 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1209R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011402 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
011402 -01	GP-02-112020
011402 -02	GP-03-112020
011402 -03	GP-05-112020
011402 -04	GP-06-112020
011402 -05	SV-DUP-112020
011402 -06	Trip Blank

Samples GP-02-112020, GP-03-112020, GP-05-112020 and GP-06-112020 were sent to Fremont Analytical for carbon dioxide, methane, and oxygen analyses. The report is enclosed.

The APH EC5-8 aliphatics in sample SV-DUP-112020 exceeded the calibration range of the instrument. The sample was diluted. Both data sets were reported. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-02-112020	Clien	t:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:		Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab I	D:	011402-01 1/3.4
Date Analyzed:	11/25/20	Data	File:	112421.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Opera	ator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 91	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 210			
APH EC9-12 aliph	atics 480			
APH EC9-10 arom	atics <85			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-03-112020	Clien	t:	Aspect Consulting, LLC
Date Received:	11/20/20	Proje	ct:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab I	D:	011402-02 1/8.4
Date Analyzed:	12/03/20	Data	File:	120325.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Opera	ator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 106	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 3,700			
APH EC9-12 aliph	atics 1,100			
APH EC9-10 arom	atics <210			

ENVIRONMENTAL CHEMISTS Analysis For Volatile Compounds By Method MA-APH

Client Sample ID:	GP-05-112020	Clie	nt:	Aspect Consulting, LLC
Date Received: 11/20/20		Project: Lab ID:		Texaco Strickland PO 180357
Date Collected: 11/20/20				011402-03 1/43
Date Analyzed: 12/04/20		Data File:		120326.D
Matrix:	ix: Air		rument:	GCMS7
Units:	ug/m3	Operator:		bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 97	70	130	
Concentration				
Compounds:	ug/m3			
APH EC5-8 aliphatics 22.000				
APH EC9-12 aliphatics 5.000				
APH EC9-10 aromatics <1,100				
ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-06-112020	Client:		Aspect Consulting, LLC
Date Received:	11/20/20	Project:		Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab I	D:	011402-04 1/3.4
Date Analyzed:	11/25/20	Data	File:	112423.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Operator:		bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 97	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 160			
APH EC9-12 aliph	atics 390			
APH EC9-10 arom	atics <85			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SV-DUP	-112020	Client:		Aspect Consulting, LLC
Date Received:	11/20/20		Project:		Texaco Strickland PO 180357
Date Collected:	11/20/20		Lab ID:		011402-05 1/41
Date Analyzed:	12/04/20		Data Fi	le:	120327.D
Matrix:	Air		Instrun	nent:	GCMS7
Units:	ug/m3		Operator:		bat
		%	Lower	Upper	
Surrogates:	R	ecovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	102	70	130	
	Conce	ntration			
Compounds:		ug/m3			
APH EC5-8 alipha APH EC9-12 alipha APH EC9-10 aroma	tics 2- atics atics	4,000 ve 6,000 <1,000			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SV-DUP-112020	Client:		Aspect Consulting, LLC
Date Received:	11/20/20	Project:		Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:		011402-05 1/490
Date Analyzed:	11/25/20	Data Fi	le:	112428.D
Matrix:	Air	Instrun	ient:	GCMS7
Units:	ug/m3	Operator:		bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics <20,000			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank	Client:		Aspect Consulting, LLC
Date Received:	11/20/20	Project:		Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab I	D:	011402-06
Date Analyzed:	11/25/20	Data	File:	112420.D
Matrix:	Air	Instru	ament:	GCMS7
Units:	ug/m3	Opera	ator:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 89	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <40			
APH EC9-12 aliph	atics <50			
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client		Aspect Consulting, LLC
Date Received:	Not Applicable	Project:		Texaco Strickland PO 180357
Date Collected:	Not Applicable	Lab II	D:	00-2555 MB
Date Analyzed:	11/24/20	Data 1	File:	112410.D
Matrix:	Air	Instru	iment:	GCMS7
Units:	ug/m3	Operator:		bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 91	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <40			
APH EC9-12 aliphatics <				
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-02-112020 11/20/20 11/20/20 11/25/20 Air ug/m3	Clien Proje Lab I Data Instr Oper	t: ct: D: File: ument: ator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-01 1/3.4 112421.D GCMS7 bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
Concentr		ration		
Compounds:	ug/m3	ppbv		
Benzene	<1.1	< 0.34		
Toluene	<64	<17		
Ethylbenzene	2.2	0.51		
m,p-Xylene	9.3	2.1		
o-Xylene	2.7	0.63		
Naphthalene	< 0.89	< 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-03-112020 11/20/20 11/20/20 12/03/20 Air ug/m3	Clier Proje Lab J Data Instr Oper	at: ect: ID: File: rument: ator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-02 1/8.4 120325.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 101	Lower Limit: 70	Upper Limit: 130	
Concenti		tration		
Compounds:	ug/m3	ppbv		
Benzene	<2.7	< 0.84		
Toluene	<160	<42		
Ethylbenzene	<3.6	< 0.84		
m,p-Xylene	10	2.4		
o-Xylene	<3.6	< 0.84		
Naphthalene	<2.2	< 0.42		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-05-112020 11/20/20 11/20/20 12/04/20 Air ug/m3	Clien Proje Lab I Data Instr Oper	at: pet: ID: File: ument: ator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-03 1/43 120326.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
Concentr		tration		
Compounds:	ug/m3	ppbv		
Benzene	7.1	2.2		
Toluene	<810	<210		
Ethylbenzene	<19	<4.3		
m,p-Xylene	<37	<8.6		
o-Xylene	<19	<4.3		
Naphthalene	<11	<2.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	GP-06-112020 11/20/20 11/20/20 11/25/20 Air ug/m3	Clier Proje Lab Data Instr Oper	nt: ect: ID: t File: rument: rator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-04 1/3.4 112423.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 99	Lower Limit: 70	Upper Limit: 130	
	Concent			
Compounds:	ug/m3	ppbv		
Benzene	2.7	0.84		
Toluene	<64	<17		
Ethylbenzene	5.0	1.2		
m,p-Xylene	20	4.7		
o-Xylene	5.8	1.3		
Naphthalene	< 0.89	< 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix:	SV-DUP-112020 11/20/20 11/20/20 12/04/20 Air	Clier Proje Lab Data Inst	nt: ect: ID: a File: rument:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-05 1/41 120327.D GCMS7
Units:	ug/m3	Oper	rator:	bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 98	Lower Limit: 70	Upper Limit: 130	
	Concent	tration		
Compounds:	ug/m3	ppbv		
Benzene	5.8	1.8		
Toluene	<770	<200		
Ethylbenzene	<18	<4.1		
m,p-Xylene	37	8.5		
o-Xylene	<18	<4.1		
Naphthalene	<11	<2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Trip Blank 11/20/20 11/20/20 11/25/20 Air ug/m3	Clien Proje Lab I Data Instr Oper	t: ct: D: File: ument: ator:	Aspect Consulting, LLC Texaco Strickland PO 180357 011402-06 112420.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 91	Lower Limit: 70	Upper Limit: 130	
	Concent			
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 11/24/20 Air ug/m3	Clier Proje Lab Data Instr Oper	nt: ect: ID: a File: rument: rator:	Aspect Consulting, LLC Texaco Strickland PO 180357 00-2555 MB 112410.D GCMS7 bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
	Concent	tration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	$<\!\!5$		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011402 Date Extracted: 11/30/20 Date Analyzed: 11/30/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

< 0.6

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
GP-02-112020 011402-01	<0.6
GP-03-112020 011402-02	<0.6
GP-05-112020 011402-03	<0.6
GP-06-112020 011402-04	<0.6

Method Blank

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 011402-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	210	200	5
APH EC9-12 aliphatics	ug/m3	480	460	4
APH EC9-10 aromatics	ug/m3	$<\!\!85$	<85	nm

Laboratory Code: Laboratory Control Sample

assilatory coust according c	oner or wampie			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	81	70-130
APH EC9-12 aliphatics	ug/m3	67	82	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 011402-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.1	<1.1	nm
Toluene	ug/m3	<64	<64	nm
Ethylbenzene	ug/m3	2.2	2.3	4
m,p-Xylene	ug/m3	9.3	9.8	5
o-Xylene	ug/m3	2.7	3.3	20
Naphthalene	ug/m3	< 0.89	< 0.89	nm

Laboratory Code: Laboratory Control Sample

1			
		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/m3	43	119	70-130
ug/m3	51	84	70-130
ug/m3	59	114	70-130
ug/m3	120	99	70 - 130
ug/m3	59	98	70 - 130
ug/m3	71	82	70-130
	Reporting Units ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Reporting UnitsSpike Levelug/m343ug/m351ug/m359ug/m3120ug/m359ug/m371	Reporting Spike Percent Reporting Spike Recovery Units Level LCS ug/m3 43 119 ug/m3 51 84 ug/m3 59 114 ug/m3 120 99 ug/m3 59 98 ug/m3 71 82

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 0	11402-01 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20
Laboratory Code: 0	11401-05 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	14 ve	19 ve	30 hr	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 011402 Work Order Number: 2011458

December 01, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 11/20/2020 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 011402 2011458	Work Order Sample Sum	
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2011458-001	GP-02-112020	11/20/2020 10:24 AM	11/20/2020 4:24 PM
2011458-002	GP-03-112020	11/20/2020 11:22 AM	11/20/2020 4:24 PM
2011458-003	GP-05-112020	11/20/2020 12:15 PM	11/20/2020 4:24 PM
2011458-004	GP-06-112020	11/20/2020 1:25 PM	11/20/2020 4:24 PM
2011458-005	SV-DUP-112020	11/20/2020 12:00 AM	11/20/2020 4:24 PM

Case Narrative

WO#: **2011458** Date: **12/1/2020**

CLIENT:Friedman & BruyaProject:011402

WorkOrder Narrative:

I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

WO#: **2011458** Date Reported: **12/1/2020**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material **ICV - Initial Calibration Verification** LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2011458

 Date Reported:
 12/1/2020

CLIENT:	Friedman & Bruya
Project:	011402

Lab ID: 2011458-001 Client Sample ID: GP-02-112020			Collection Matrix: A	n Date: .ir	11/20/2020 10:24:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batcl	h ID: R6	3578 Analyst: MS
Carbon Dioxide	27.6	0.0500	%	1	11/23/2020 6:53:00 AM
Methane	ND	0.0500	%	1	11/23/2020 6:53:00 AM
Oxygen	4.50	0.0500	%	1	11/23/2020 6:53:00 AM

Lab ID:	2011458-002
---------	-------------

Collection Date: 11/20/2020 11:22:00 AM Matrix: Air

Client Sample ID: GP-03-11	2020	Matrix: Air				
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
Major Gases by EPA Method	<u>3C</u>		Bato	h ID: R6	3578 Analyst: MS	
Carbon Dioxide	30.3	0.0500	%	1	11/23/2020 7:05:00 AM	
Methane	0.168	0.0500	%	1	11/23/2020 7:05:00 AM	
Oxygen	1.35	0.0500	%	1	11/23/2020 7:05:00 AM	

Lab ID: 2011458-003 Client Sample ID: GP-0	5-112020		Collection Matrix: A	n Date:	11/20/2020 12:15:00 PM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Met	hod 3C		Batc	h ID: R6	3578 Analyst: MS
Carbon Dioxide	29.6	0.0500	%	1	11/23/2020 7:17:00 AM
Methane	0.515	0.0500	%	1	11/23/2020 7:17:00 AM
Oxygen	1.27	0.0500	%	1	11/23/2020 7:17:00 AM

Analytical Report

 Work Order:
 2011458

 Date Reported:
 12/1/2020

CLIENT:Friedman & BruyaProject:011402

Lab ID: 2011458-004 Client Sample ID: GP-06-112020			Collectio Matrix: A	n Date: Air	11/20/2020 1:25:00 PM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batc	h ID: R6	3578 Analyst: MS
Carbon Dioxide	17.1	0.0500	%	1	11/23/2020 7:29:00 AM
Methane	ND	0.0500	%	1	11/23/2020 7:29:00 AM
Oxygen	8.16	0.0500	%	1	11/23/2020 7:29:00 AM

Work Order: CLIENT: Project:	2011458 Friedman & I 011402	Bruya							QC S Major (SUMMA Gases by B	RY REF EPA Meth	ORT
Sample ID: LCS-R Client ID: LCSW Analyte	63578	SampType: LCS Batch ID: R63578 Result	RL	SPK value	Units: %	%REC	Prep Dat Analysis Dat LowLimit	e: 11/23/2 e: 11/23/2 HighLimit	2020 2020 RPD Ref Val	RunNo: 635 SeqNo: 127 %RPD	7 8 7 6255 RPDLimit	Qual
Carbon Dioxide Methane Oxygen		100 99.9 101	0.0500 0.0500 0.0500	100.0 100.0 100.0	0 0 0	100 99.9 101	70 70 70	130 130 130				
Sample ID: 20114 Client ID: GP-02 Analyte	58-001AREP -112020	SampType: REP Batch ID: R63578 Result	RL	SPK value	Units: %	%REC	Prep Dat Analysis Dat LowLimit	e: 11/23/2 e: 11/23/2 HighLimit	2020 2020 RPD Ref Val	RunNo: 635 SeqNo: 127 %RPD	578 76251 RPDLimit	Qual
Carbon Dioxide Methane Oxygen		27.9 ND 4.47	0.0500 0.0500 0.0500						27.64 0 4.505	0.905 0.725	30 30 30	

Sample Log-In Check List

Cli	ient Name:	FB	Work Order Numb	per: 2011458		
Lo	gged by:	Carissa True	Date Received:	11/20/2020	0 4:24:00 PM	
Cha	in of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present	
2.	How was the	sample delivered?	Client			
Log	In					
3.	Coolers are p	present?	Yes	No 🔽	NA 🗌	
0.			Air samples			
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌		
5.	Custody Sea (Refer to com	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹	
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗹	
7.	Were all item	ns received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🔽	
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌		
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗹	No 🗌		
10.	Are samples	properly preserved?	Yes 🗹	No 🗌		
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA 🗌	
12.	Is there head	lspace in the VOA vials?	Yes	No 🗌	NA 🔽	
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🖌	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌		
17.	Were all hold	ling times able to be met?	Yes 🖌	No 🗌		
Spe	cial Handl	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🔽	
	Person	Notified: Date:				
	By Who	via:	eMail Ph	one 🗌 Fax 🛛	In Person	
	Regardi	ing:				
	Client Ir	nstructions:				
19.	Additional rer	marks:				

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

834Nal	Page #of	Standard TAT	Rush charges authorized by:	Z Dispose after 30 days	Return samples Will call with instructions	ED	Notes	*		1		+ HOLD SU-OND	21120			IPANY DATE TIME	& Bruya (1/20/6 1355	. tegi which	
ADV		PO#	ZtJ			REQUESTI										COM	Friedman &	Lad	
IN OF CUST		3	A-L	-	sults	ANALYSES	-cother Cos	7	7	7	>	1				IAME	c Chunz-	deven	
MPLE CHA	TRACTER	F NAME/NO.	2	S	lease Email Re		Dioxins/Furans					_	_			PRINT N	hael Erdahl Eq	aug m	
CT SAI	SUBCON	PROJECT	0410	REMARK	д,	_	x jars					_		 			Mich	2	
ONTRA					a.com		Matri	4	Ł	Ł	Ł	Ŧ						ral	
SUBCO		a, Inc.	•		edmanandbruy		Time Sampled	1024	2211	1215	1325	ĺ				SIGNATURE		and will	
	Erdahl	ın and Brüy,	th Ave W	WA 98119	merdahl@fri		Date Sampled	01/20 /20					-				Refinquished b	Relinquished b	Received by:
	Michael	riedma	3012 16	seattle.	5-8282		Lab ID									Inc.	Vest	5029	
ų	Send Report <u>To</u>	Company]	Address	City, State, ZIP 5	Phone # (206) 28		Sample ID	GP-02-112020	GP. 03-112020	GP- 05-112020	GP. 06-1222	SV-OUP-112028				Friedman & Bruya,	3012 16th Avenue V	Seattle, WA 98119 Ph. (206) 285-8282	Fax (206) 283-5044

ort To Anlew pany Appel Less 710 2 m ress 710 2 m ae (200413 541 ae (200413 541 be	Ol1402 DAMETLE URALIV UP UNDALLA ME 11-20-20 1 0	at the Anter of Main Coldin SAMELERS (SEGNOLLE) 1 and Level The TURNAROUND TIME	American for the second standard PROJECT NAME & ADDRESS PO# OStandard	The manual and the short of the light of the	NOTES: The Call M. AVA NOTES: NOTES: NOTES: NOTES: DIVOICE TO Default: Clean after 3 days	, otate, Lit 2-44 11, 1944 Letter Das Peer Vate, I have and APA Das Ree may apply)	and the second	PLE INFORMATION Reporting PLE INFORMATION PLE INFORMATION PLE INFORMATION	Level: Level: Flow IA=Indoor Air Initial Field Field <th>POZ-10020 11 2347 304 IA 1 60 11/20/20 - 24 1018 -5 1034 X X X X X + Tellerbay</th> <th>0-03-112020 02 3257 244 IA 169 1 -30 1122 -5 1128 1 1 1 1 1</th> <th>-02-12020 03 3476 224 IN 14 160 -30 (215 -50 (215 -5 (211 - 20-0</th> <th>-06-10020 04 3356 330 IA 1 80 1 30 1375 5 1222 1 1 4 4</th> <th>-DD-1000 05 2301 731 IS 100 - 5 - 5 - 02 - 5 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 100</th> <th>37 Zhonk do 3416 246 IA / SG + + + +</th> <th>IA / SG</th> <th>IA / SG</th> <th>PRINT NAME COMPANY DATE</th> <th>16th Avenue West Relinquished by 7, 1 and 0 Dured Unit 15per Contral 15 28 11/20/2</th> <th>ile, WA 98119-2029 Recepted by Michael Endli Endli & Am. 11/24/2 828</th> <th>206) 285-8282 Relinquished by:</th> <th></th>	POZ-10020 11 2347 304 IA 1 60 11/20/20 - 24 1018 -5 1034 X X X X X + Tellerbay	0-03-112020 02 3257 244 IA 169 1 -30 1122 -5 1128 1 1 1 1 1	-02-12020 03 3476 224 IN 14 160 -30 (215 -50 (215 -5 (211 - 20-0	-06-10020 04 3356 330 IA 1 80 1 30 1375 5 1222 1 1 4 4	-DD-1000 05 2301 731 IS 100 - 5 - 5 - 02 - 5 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 100	37 Zhonk do 3416 246 IA / SG + + + +	IA / SG	IA / SG	PRINT NAME COMPANY DATE	16th Avenue West Relinquished by 7, 1 and 0 Dured Unit 15per Contral 15 28 11/20/2	ile, WA 98119-2029 Recepted by Michael Endli Endli & Am. 11/24/2 828	206) 285-8282 Relinquished by:	
---	--	---	---	--	---	--	---	---	--	--	---	--	--	--	--------------------------------------	---------	---------	-------------------------	--	--	--------------------------------	--

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 1, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 20, 2020 from the Texaco Strickland PO 180357, F&BI 011403 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011403 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
011403 -01	MW-27-112020

The NWTPH-Dx surrogate in sample MW-27-112020 exceeded the acceptance criteria. No material was detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011403 Date Extracted: 11/25/20 Date Analyzed: 11/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-27-112020 011403-01	<100	97
Method Blank 00-2593 MB	<100	90

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011403 Date Extracted: 11/23/20 Date Analyzed: 11/23/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-27-112020 011403-01	<50	<250	151 vo
Method Blank 00-2585 MB	<50	<250	130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW-27-112	020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20		Project:	Texaco Strickland PO 180357
Date Extracted:	11/23/20		Lab ID:	011403-01
Date Analyzed:	11/23/20		Data File:	112316.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	·d4	95	57	121
Toluene-d8		102	63	127
4-Bromofluorobenze	ene	104	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Blan	X	Client:	Aspect Consulting, LLC
Date Received:	Not Applicabl	e	Project:	Texaco Strickland PO 180357
Date Extracted:	11/23/20		Lab ID:	00-2550 mb
Date Analyzed:	11/23/20		Data File:	112318.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	99	57	121
Toluene-d8		100	63	127
4-Bromofluorobenze	ene	104	60	133
	C	oncentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011403

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 011	391-01 (Duplic	cate)			
	Reporting	Sampl	e Du	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	360		370	1
Laboratory Code: Lab	oratory Contr	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	98	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011403

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	104	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20 Project: Texaco Strickland PO 180357, F&BI 011403

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011411-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	\mathbf{MS}	Criteria
Benzene	ug/L (ppb)	10	< 0.35	91	76 - 125
Toluene	ug/L (ppb)	10	<1	91	76 - 122
Ethylbenzene	ug/L (ppb)	10	<1	95	69 - 135
m,p-Xylene	ug/L (ppb)	20	<2	95	69 - 135
o-Xylene	ug/L (ppb)	10	<1	94	60-140
Naphthalene	ug/L (ppb)	10	<1	88	44-164

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	96	93	69-134	3
Toluene	ug/L (ppb)	10	90	91	72 - 122	1
Ethylbenzene	ug/L (ppb)	10	95	95	77 - 124	0
m,p-Xylene	ug/L (ppb)	20	94	94	81-112	0
o-Xylene	ug/L (ppb)	10	93	94	81-121	1
Naphthalene	ug/L (ppb)	10	89	92	64-133	3
FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

. . .

011403			SAMPLI	E CHAIN	IOF	CUS	STO) DY	7/	1										
	(1. Ini	r pr	SAMPL	ERS (sign	ature)	$\overline{\mathcal{T}}$	7	1	/	/	<u> </u>	<u>1 E</u>	-11	20		Page #	¥	_of	Eoc	12
Report To HAKew York	SK / He	in 6-170		OT NAME		1	all.	100	ML		0#				T Y Star	rurn	NAROUNI) TIM	E	
Company Hypert Conse	itma		-		11					1 	0π 			4		SH				
Address 110 2 M Aur,	Je.550)	- Texac	OSTR	hlord				18D	55					cnarg	zes-autnori	zea by	<i></i>	<u> </u>	
City, State, ZIP_Seutte,	WA, 13	101	_ REMAR	RKS	,				· II	VV0	VOICE TO				SAMPLE DISPOSAL □ Archive samples					
Phone (206) +13-5+11 Email	avortably	Ouspel-	Project specific RLs? - Ves /No					AP					Other Default: Dispose after 30 days				davs			
	*	- min 100	WARY, TO	\sim		<u></u> ,	٣	· .	ANALYSES REQUES					STI	STED					1
	T	· ·				×	×	021	g	260	270	082	POL-							
Sample ID	LabID	Date	Time '	Sample	# of	DH-D	0-H-	PA 8	H-HC	PA 8	PA 8	PA 8	8				۸ ۱	Inton		
		Sampled	Sampled	Туре	Jars	T.W.	ITWI	EX E	IT'PI	Cs E	Hs E	Bs E	N.				1,	otes		8
,							~	BTJ	N	2	PA	PC	Ø							
MW-27-112026	OIA-G	MADAD	6400	Wh	7	X	У						X							2
anna 1999 ann an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna a											T						-			
 · · · · · · · · · · · · · · · · · · ·																				
······································		<u>+</u>		*										Ŧ						
									-											
				v :																í
					·*						_									
· · · · ·													s	amı	les r	eceiv	4.	<u>oc</u>		
	· .									-	-									
· · · ·											·									
	SIC	JNATURE/	1		PRIN	IT N	AME	Y.				1 C	OMP	AN	Y		DATE	T	IME	
Friedman & Bruya, Inc.	iquished by:	tool (m	int -	Dad	sh.	Un	ol_	-			4	p	et.				1V20/2	<u>0 k</u>	T al	
SU12 16 th Avenue West	VEO DY	<u>li</u>	\checkmark	Miche	el Ec	<u>(()</u>						'iŖ	<u></u>				11/20/2	10	2r.	
Seattle, WA 98119-2029 Rein	iquished by:		1																	
p. (206) 285-8282 Rece	wed by:																			ŀ

APPENDIX C

Data Validation Reports

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com September 13, 2019

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 15, 2019. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #45754:

SDG #Fraction906075, 906200Volatiles, TPH as Gasoline, TPH as Diesel & Motor Oil, Lead906232, 906279907276, 908023

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4, October 2014
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christing Rink

Christina Rink CRink@lab-data.com Project Manager/Senior Chemist

	206 pages-EM													At	tach	mer	nt 1																				
	Stage 2A / EDD)			L	DC	#4	575	4 (Asp	bec	t Co	ons	sult	ing	, LI	LC	- S	eat	tle,	W	A / /	Alo	ha	Ca	fe)											
LDC	SDG#	DATE REC'D	(3) DATE DUE	VC (82 C/	DA 260 D)	P (602	b 20B)	TPI (NW G	H-G TPH x)	TPI (NW D	l-E TPH x)	BT (802	EX 21B)																								
Matri	c: Water/Soil			W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	S	W	s	W	S	W	s
А	906075	08/15/19	09/05/19	0	1	-	-	0	1	0	1	-	-																								
В	906200	08/15/19	09/05/19	0	7	0	1	0	8	0	6	0	8																								
С	906232	08/15/19	09/05/19	0	9	0	3	0	7	0	7	-	-																								
D	906279	08/15/19	09/05/19	-	-	-	-	0	2	0	2	-	-																								
Е	907276	08/15/19	09/05/19	0	4	-	-	1	4	0	4	1	4																								
F	908023	08/15/19	09/05/19	22	0	16	0	17	0	16	0	-	-																								
Total	J/CR			22	21	16	4	18	22	16	20	1	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	152

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: Aloha Café
- LDC Report Date: September 9, 2019
- Parameters: Volatiles
- Validation Level: Stage 2A
- Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906075

Sample Identification	Laboratory Sample	Motrix	Collection
Sample Identification		Iviatrix	Date
GP-04-2	906075-02	Soil	06/05/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

SDG #:_ <u>906075</u> _	Level II	Page: <u>(</u> of <u>)</u>
Laboratory: <u>Friedman & Bruya, Inc.</u>		Reviewer: <u>17</u>
		2nd Reviewer:
METHOD: GC/MS Volatiles (EPA SW 846 I	Method 8260C)	\mathcal{O}

VALIDATION COMPLETENESS WORKSHEET

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A.A	
<u> </u>	GC/MS Instrument performance check	N	
	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	Non gient
IX.	Laboratory control samples	A	VCS
Х.	Field duplicates	N	
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

LDC #: <u>45754A1a</u>

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Date: 09/04/19

	Client ID	Lab ID	Matrix	Date
1	GP-04-2	906075-02	Soil	06/05/19
2				
3				
4				
5				
6				
7				
8				
Note	S:			

	09-1316 MB				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906075

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-04-2	906075-02	Soil	06/05/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation,* SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

LDC #: <u>45754A7</u> VAI	IDATION COMPLETENESS WORKSHEET	Date: <u>69/64/1</u> 1
SDG #:_906075	Level II	Page: <u>(</u> of <u></u>
Laboratory: Friedman & Bruya, Inc.		Reviewer: 17
		2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
П.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ี้ มี	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	Non client
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	2	
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank **२**:

키

0	T	Η	E	F

	Client ID		Lab ID	Matrix	Date
1	GP-04-2		906075-02	Soil	06/05/19
2					
3					
4		 			
5					
6					
7					
8					
9					
10					
11					
Note	s:	 			
1	09-1285 MB		 		

	09-1285 MB			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Diesel & Motor Oil
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906075

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-04-2	906075-02	Soil	06/05/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation*, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

L:\Aspect	Consulting\Aloha	Cafe\45754A8W.wpd
L. 0 (0)000(oonounding v liona	00101-01011.000

Sample receipt/Technical holding times	A,A	
Initial calibration/ICV	N/N	
Continuing calibration	N	
Laboratory Blanks	A	
Field blanks	2	
Surrogate spikes	A	
Matrix spike/Matrix spike duplicates	Ň	Non Client
Laboratory control samples	A	LCS
Field duplicates	.2	
Compound quantitation RL/LOQ/LODs	N	
Target compound identification	N	

and Molor Oil

LDC #:<u>45754A8</u>_____

Laboratory: Friedman & Bruya, Inc.

Overall assessment of data

A = Acceptable

Client ID

GP-04-2

SDG #: 906075

١.

11. Ш.

IV.

V.

VI.

VII.

VIII.

IX. Х.

XI.

XII

Note:

1

MI

Validation Area

VALIDATI

ETHOD: GC TPH as Dieser (INW TPH-I	JX)	
ne samples listed below were reviewed lidation findings worksheets.	for each of the following validation areas.	Validation findings are noted in attached

N = Not provided/applicable SW = See worksheet R = Rinsat FB = Field

ND = No compounds detected	
R = Rinsate	
FB = Field blank	

D = Duplicate
TB = Trip blank
EB = Equipment blank

Lab ID

906075-02

Comments

SB=Source blank

Date

06/05/19

OTHER:

Matrix

Soil

2				
3				
4				
5				
6				
7				
8				
9				
1	o			
	1	· · · · · · · · · · · · · · · · · · ·		
No	otes:			
	1 09-1347-MB			
1				

ON	COMP	LETENESS	WORKSHEET	

Level II

Date: 09/14/1 Page:___of___ Reviewer: 2nd Reviewer:

Laboratory Data Consultants, Inc. Data Validation Report

Proiect/Site	Name:	Aloha	Café

LDC Report Date: September 9, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-11-1	906200-01	Soil	06/10/19
MW-11-1DL	906200-01DL	Soil	06/10/19
MW-11-6	906200-02	Soil	06/10/19
MW-11-6DL	906200-02DL	Soil	06/10/19
MW-12-15	906200-14	Soil	06/10/19
MW-13-12.5	906200-23	Soil	06/11/19
MW-14-12.5	906200-27	Soil	06/11/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry*, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Methods 8260C/8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-11-1	Toluene-d8	255 (50-150)	All compounds	J (all detects)	А
MW-11-6	Toluene-d8 Bromofluorobenzene	741 (50-150) 428 (50-150)	All compounds	J (all detects)	A

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/D (061419) (MW-11-1 MW-11-6)	Naphthalene	136 (70-130)	-	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LCS/D (061419) (MW-11-1 MW-11-6)	Naphthalene	31 (≤20)	J (all detects)	Ρ

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Flag	A or P
MW-11-1	Naphthalene	DNR	-
MW-11-1DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-
MW-11-6	Naphthalene	DNR	-
MW-11-6DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 906200

Sample	Compound	Flag	A or P	Reason
MW-11-1	Naphthalene	DNR	-	Overall assessment of data
MW-11-1DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-	Overall assessment of data
MW-11-6	Naphthalene	DNR	-	Overall assessment of data
MW-11-6DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-	Overall assessment of data

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG
LDC #: <u>45754B1a</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 09/04/19
SDG #:_906200	Level II	Page:
Laboratory: Friedman & Bruya,	Inc.	Reviewer: <u>L7</u>
		2nd Reviewer;
METHOD, CC/MS Valatilaa (E	DA SIN/ 846 Mathad 8260C/D)	

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C/D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A,A	
11.	GC/MS Instrument performance check	N	
- 111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	SW	
VIII.	Matrix spike/Matrix spike duplicates	A	SDG 906232
IX.	Laboratory control samples	SW	LCS/D
Х.	Field duplicates	N	
XI.	Internal standards	, V	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	 Date		
1 ·	MW-11-1					906200-01	Soil	06/10/19
2 .	MW-11-1REDL					906200-01BED L	Soil	06/10/19
3 '	MW-11-6					906200-02	Soil	06/10/19
4	MW-11-6BEDL					906200-02RED	Soil	 06/10/19
5 ·	MW-12-15				906200-14	Soil	 06/10/19	
6.	MW-13-12.5					906200-23	Soil	 06/11/19
7 ·	MW-14-12.5					906200-27	Soil	 06/11/19
88								
Note	S:							

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chlor	omethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Brom	omethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl	choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chlor	roethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methy	ylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Aceto	one	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carb	on disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-D	Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Di	chloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-D	ichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chlor	roform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L.)1,2-D	Dichloroethane (LL.) Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Bu	tanone	MM. 1,2-Dibromo-3-chloropropane	MMM.) Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1	-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. Iodomethane	N1. 2-Methylpentane
O. Carb	oon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Brom	nodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-D	Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1	,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trich	loroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibro	omochloromethane (TT/ 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2	2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benz	zene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans	s-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Brom	noform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Me	thyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-He	xanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:	<u>of</u>
Reviewer:	5
2nd Reviewe	
_	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were all surrogate %R within QC limits?

<u>(ŶŇ N/A</u>

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

	Date	Sample ID	Surrogate	1%Recovery (Limits)1	Qualifications
		I (ND/DOT)	TOL	255 (50-150)	JIA Dets
				()	1
		3 (M)(201)	TOL	741 ()	
			BFB	428 ()	
				()	
				()	
				()	
				()	
				()	
	ļ			()	· · · · · · · · · · · · · · · · · · ·
				()	
				()	
	l			()	
				()	
				()	
				· ()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	

(TOL) = Toluene-d8 (BFB) = Bromofluorobenzene (DCE) = 1,2-Dichloroethane-d4 (DFM) = Dibromofluoromethane

SUR.1SB

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		LC5/D (061419)	MMM	136 (70-130)	()	()	1,3 colt)	JIP RUS
			V	()	()	31 (20)	Υ L	JIJP
				()	()	()		
				()	()	()		
)	()	()		
				()	()	()		
				()	()	()		
				()	(()_		
				()	()	()		
				()	()	()		
				()	_ ()	()		
				()	()	()		
))	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				_()	_()	()		

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>V N N/A</u> Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
			MMM	DL higher result	DNR
		2	LL, HT, L	original run lower PL	
		3	MMM	DL higher result	
		Ц	LI TT, L	original run lawer RL	V
		, 			
	l		l		1

Comments: ______

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: Aloha Café
- LDC Report Date: September 9, 2019
- Parameters: Lead
- Validation Level: Stage 2A
- Laboratory: Friedman & Bruya, Inc.
- Sample Delivery Group (SDG): 906200

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-11-6	906200-02	Soil	06/10/19
MW-11-6MS	906200-02MS	Soil	06/10/19
MW-11-6MSD	906200-02MSD	Soil	06/10/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program,* SOP HW-2b, Revision 15 (December 2012), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument performance check data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Lead - Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café Lead - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café Lead - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

LDC #: <u>45754B4a</u>	_ VALIDATION COMPLETENESS WORKSHEET	Date: <u>ઢવ/૦૫ /</u> ાવ
SDG #:_906200	_ Level II	Page: <u>(</u> of <u>)</u>
Laboratory: Friedman & Bruya	a, Inc.	Reviewer: <u>17</u>
<u> </u>		2nd Reviewer:
		<i>v</i>

METHOD: Lead (EPA SW 846 Method 6020B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A,A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	A	(2:3)
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	105
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
xiv	Overall Assessment of Data	K	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date			
1	MW-11-6	906200-02	Soil	06/10/19			
2	MW-11-6MS	906200-02MS	Soil	06/10/19			
3	MW-11-6MSD	906200-02MSD	Soil	06/10/19			
4							
5							
6							
7		- 					
8							
9							
10							
11							
12							
Votes	otes:						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-11-1	906200-01	Soil	06/10/19
MW-11-6	906200-02	Soil	06/10/19
MW-11-13	906200-03	Soil	06/10/19
B-05-16	906200-09	Soil	06/10/19
MW-12-15	906200-14	Soil	06/10/19
B-06-13	906200-19	Soil	06/11/19
MW-13-12.5	906200-23	Soil	06/11/19
MW-14-12.5	906200-27	Soil	06/11/19
B-05-16DUP	906200-09DUP	Soil	06/10/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation*, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

LDC #: <u>45754B7</u>	VALIDATION COMPLETENESS WORKSHEET	Date: <u>סץ/ס</u> י
SDG #: <u>906200</u>	Level II	Page: <u>l</u> of <u>l</u>
Laboratory: Friedman & Bruya	, <u>Inc.</u>	Reviewer:
		2nd Reviewer

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
١١.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	Å	
VII.	Matrix spike/Matrix spike duplicates / DVP	N'/A	(<i>a</i>)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate				
TB = Trip blank				
EB = Equipment blank				

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date		
1	MW-11-1		906200-01	Soil	06/10/19		
2	MW-11-6		906200-02	Soil	06/10/19		
3	MW-11-13		906200-03	Soil	06/10/19		
4	B-05-16		906200-09	Soil	06/10/19		
5	MW-12-15		906200-14	Soil	06/10/19		
6	B-06-13		906200-19	Soil	06/11/19		
7	MW-13-12.5		906200-23	Soil	06/11/19		
8	MW-14-12.5		906200-27	Soil	06/11/19		
9	B-05-16DUP		906200-09DUP	Soil	06/10/19		
10							
11							
Note	Notes:						
	09-12.98MB						

04 12 48 1019			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Diesel & Motor Oil
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-11-6	906200-02	Soil	06/10/19
B-05-16	906200-09	Soil	06/10/19
MW-12-15	906200-14	Soil	06/10/19
B-06-13	906200-19	Soil	06/11/19
MW-13-12.5	906200-23	Soil	06/11/19
MW-14-12.5	906200-27	Soil	06/11/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation,* SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

	L:\Aspect	Consulting\Aloha	Cafe\45754B8W.wpd
--	-----------	------------------	-------------------

VALIDATION	COMPLE	TENESS	WORKSHEET

Level II

Laboratory: Friedman & Bruya, Inc.

LDC #: 45754B8

SDG #: 906200

مد البناية من METHOD: GC TPH as Diesel⁴(NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area **Comments** k A Sample receipt/Technical holding times ١. N/N П. Initial calibration/ICV Ш. Continuing calibration Ν A IV. Laboratory Blanks N V. Field blanks A VI. Surrogate spikes N Non Client VII. Matrix spike/Matrix spike duplicates A 1,08 VIII. Laboratory control samples N IX. **Field duplicates** Х. Compound quantitation RL/LOQ/LODs Ν XI. Target compound identification Ν XII Overall assessment of data

Note:

Client ID

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Lab ID

e blank

Date

SB=Source
OTHER:

Matrix

1	MW-11-6	906200-02	Soil	06/10/19
2	B-05-16	906200-09	Soil	06/10/19
3	MW-12-15	906200-14	Soil	06/10/19
4	B-06-13	906200-19	Soil	06/11/19
5	MW-13-12.5	906200-23	Soil	06/11/19
6	MW-14-12.5	906200-27	Soil	06/11/19
7				
8				
9				
10				
11				
Note	s:			
1	09-1385 MB			

Date: <u>ઇવ/<i>6</i>પ/</u> ા૧
Page: (of)
Reviewer: <u>L7</u>
2nd Reviewer:

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: Aloha Café
- LDC Report Date: September 9, 2019
- Parameters: Volatiles
- Validation Level: Stage 2A
- Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-11-1	906200-01	Soil	06/10/19
MW-11-6	906200-02	Soil	06/10/19
MW-11-13	906200-03	Soil	06/10/19
B-05-16	906200-09	Soil	06/10/19
MW-12-15	906200-14	Soil	06/10/19
B-06-13	906200-19	Soil	06/11/19
MW-13-12.5	906200-23	Soil	06/11/19
MW-14-12.5	906200-27	Soil	06/11/19
B-05-16DUP	906200-09DUP	Soil	06/10/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8021B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

L:\Aspect Consulting\Aloha Cafe\45754B23W.wpd

LDC #: <u>45754B23</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: 906200	Level II
Laboratory: Friedman & Bruya,	Inc.

METHOD: GC Volatiles (BTEX) (EPA SW 846 Method 8021B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area **Comments** Sample receipt/Technical holding times Ι. N /N11. Initial calibration/ICV Ш. Continuing calibration Λ IV. Laboratory Blanks N Field blanks V. VI. Surrogate spikes N A (9) tUP VII. Matrix spike/Matrix spike duplicates / LCS A VIII. Laboratory control samples N IX. **Field duplicates** Compound quantitation RL/LOQ/LODs Ν Х. XI. Target compound identification Ν A XII Overall assessment of data

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate	
TB = Trip blank	
EB = Equipment blan	k

SB=Source blank

OTHER:

	Client ID		Lab ID	Matrix	Date
1	MW-11-1		906200-01	Soil	06/10/19
2	MW-11-6	 	906200-02	Soil	06/10/19
3	MW-11-13	 	906200-03	Soil	06/10/19
4	B-05-16		906200-09	Soil	06/10/19
5	MW-12-15	 	906200-14	Soil	06/10/19
6	B-06-13		906200-19	Soil	06/11/19
7	MW-13-12.5		906200-23	Soil	06/11/19
8	MW-14-12.5		906200-27	Soil	06/11/19
9	B-05-16DUP	 	906200-09DUP	Soil	06/10/19
10					
11					
lote	IS:				
1	(79-1298 MB				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: September 9, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906232

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-15-7.5	906232-01	Soil	06/12/19
MW-15-10.5	906232-02	Soil	06/12/19
MW-15-10.5DL	906232-02DL	Soil	06/12/19
MW-15-13	906232-03	Soil	06/12/19
MW-15-13DL	906232-03DL	Soil	06/12/19
MW-15-25	906232-05	Soil	06/12/19
B-07-8	906232-07	Soil	06/12/19
B-07-12.5	906232-08	Soil	06/12/19
MW-15-7.5DUP	906232-01DUP	Soil	06/12/19
MW-15-17.5	906232-04	Soil	06/12/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Methods 8260C/8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.
I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
MW-15-13	Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	15	14	J (all detects) UJ (all non-detects)	A

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-15-10.5	Toluene-d8 Bromofluorobenzene	608 (50-150) 2673 (50-150)	All compounds	J (all detects)	А

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-15-13 Toluene-d8 Bromofluorobenzen		273 (50-150) 1029 (50-150)	All compounds	J (all detects)	A

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/D (061419) (MW-15-25)	m,p-Xylenes	163 (70-130)	-	NA	-
LCS/D (061419) (MW-15-10.5 MW-15-13)	Naphthalene	136 (70-130)	-	J (all detects)	Ρ
LCS/D (061419) (MW-15-7.5 B-07-8 B-07-12.5)	Naphthalene	136 (70-130)	-	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LCS/D (061419) (MW-15-25)	Ethylbenzene m,p-Xylenes	28 (≤20) 52 (≤20)	UJ (all non-detects) UJ (all non-detects)	Р
LCS/D (061419) (MW-15-7.5 MW-15-10.5 MW-15-10.5DL MW-15-13 B-07-8 B-07-12.5)	Naphthalene	31 (≤20)	J (all detects) UJ (all non-detects)	Ρ

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Flag	A or P
MW-15-10.5	Naphthalene	DNR	-
MW-15-10.5DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-
MW-15-13	Naphthalene	DNR	-
MW-15-13DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-

Due to technical holding time, surrogate %R, and LCS/LCSD %R and RPD, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Aloha Café Volatiles - Data Qualification Summary - SDG 906232

Sample	Compound	Flag	A or P	Reason
MW-15-13	Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	J (all detects) UJ (all non-detects)	A	Technical holding times
MW-15-25	Ethylbenzene m,p-Xylenes	UJ (all non-detects) UJ (all non-detects)	Р	Laboratory control samples (RPD)
MW-15-7.5 MW-15-10.5DL B-07-8 B-07-12.5	Naphthalene	J (all detects) UJ (all non-detects)	Р	Laboratory control samples (RPD)
MW-15-10.5	Naphthalene	DNR	-	Overall assessment of data
MW-15-10.5DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-	Overall assessment of data
MW-15-13	Naphthalene	DNR	-	Overall assessment of data
MW-15-13DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-	Overall assessment of data

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Date: 09/04/19
Page: <u></u> of <u>2</u>
eviewer:
eviewer:
6

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C/D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A,SA	
11.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	SW	
VIII.	Matrix spike/Matrix spike duplicates	N/A	(9)
IX.	Laboratory control samples	5~	LCS/D
Х.	Field duplicates	Ν	
XI.	Internal standards	2	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SAT	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-15-7.5	906232-01	Soil	06/12/19
2 ·	MW-15-10.5	906232-02	Soil	06/12/19
3 ·	MW-15-10.5BED	906232-02BE-D	Soil	06/12/19
4 ·	MW-15-13	906232-03	Soil	06/12/19
5	MW-15-13RED	906232-03RE-PL	Soil	06/12/19
6 ·	MW-15-25	906232-05	Soil	06/12/19
7 ·	B-07-8	906232-07	Soil	06/12/19
8 ·	B-07-12.5	906232-08	Soil	06/12/19
9	MW-15-7.5DUP	906232-01DUP	Soil	06/12/19
10	MW-15-17.5	V-04	4	\checkmark
11				
12				
13				

LDC #: 45754C1a VALIDATION COMPLETENESS WORKSHEET Level II

SDG #: 906232 Laboratory: Friedman & Bruya, Inc.

Date: 09/04/(9 Page: 2of 2 Reviewer: 0 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C/D)

Notes:

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1.) Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE.)Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethył pentane
L) 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM.) Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR.)m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

VALIDATION FINDINGS WORKSHEET **Technical Holding Times**

Page:_	of
Reviewer:	LT
2nd Reviewer:	\sim
	\mathcal{O}

All circled dates have exceeded the technical holding times.

N N/A Were all cooler temperatures within validation criteria? Y N N/A Were air bubbles > 1/4 inch or was headspace present in the vials?

METHOD : GC/N	IS Volatiles (EP	A SW 846 Met	hod 8260C/D)				
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
4 (pet)*+1	WS	N	06/12/19	06/27/19	06/27/19	15	JUJ/
* V, CC, EE, PPA-isis Only							
							┥───┤
							╀────┦
			· · · · · · · · · · · · · · · · · · ·				
				1			<u> </u>
							<u> </u>
			· · · · · · · · · · · · · · · · · · ·				
				1			
							+
							+
							┼───╢
	1			I			

TECHNICAL HOLDING TIME CRITERIA

Water unpreserved: Water preserved: Soil:

Aromatic within 7 days, non-aromatic within 14 days of sample collection. Within 14 days of sample collection. Within 14 days of sample collection.

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:_	<u>l_of</u>
Reviewer:	17
2nd Reviewer:	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>MN/A</u> Were all surrogate %R within QC limits?

<u>V N N/A</u> If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Date	Sample ID	Surrogate	%Recovery (Limits)	Qualifications
		2 (NOIDET)	to-	608 (50-150)	TIA Dets
			BFB	2673 ()	
				()	
		4 (ND/Ret)	tol	273 ()	
			BFB	1029 (1)	
				()	
				()	
				()	
				()	
				()	
				()	
		· · · · · · · · · · · · · · · · · · ·		()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	

(TOL) = Toluene-d8 (BFB) = Bromofluorobenzene

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
			<u></u> B1	60 (70-120)	102 (70-130)	(J/05/P
		LOS/D (0/1419)	PER	163 ()	()	()	6 (ND)	JIP pets
			MMM	136(1)	()	()	1,7,8 (ND) 2,4 (Act	
			EE	()	()	28 (20)	6(ND)	TNJIP
			ppp	()	()	52 () 649	17,8(M) 2,4 (00)	
			MMM	()	()	31 ()	117,8(NO) 2,4 (Det	
				()	()	()		Ψ
				()		()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()		()		
				()	()	()		
				()	()	()		
		·····		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	1_of_]
Reviewer:	67
2nd Reviewer:	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>N N/A</u> Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		2	MMM	to high a regult	
			· · · · · · · · · · · · · · · · · · ·		
		3	μ, π, μ	original typ lawar RL	
		4	MMM	DL higher result	
		5	LL, TTI L	origination lower PL	· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·	
			·		
 					

Comments: _____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	Aloha	Café

LDC Report Date: September 9, 2019

Parameters: Lead

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906232

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-15-10.5	906232-02	Soil	06/12/19
MW-15-13	906232-03	Soil	06/12/19
B-07-8	906232-07	Soil	06/12/19

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program,* SOP HW-2b, Revision 15 (December 2012), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument performance check data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Lead - Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café Lead - Laboratory Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café Lead - Field Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

LDC #: <u>45754C4a</u> VALI	DATION COMPLETENESS WORKSHEET	Date: <u>69/04/(</u> 9
SDG #: 906232	Level II	Page:of
Laboratory: Friedman & Bruya, Inc.		Reviewer: 17
		2nd Reviewer

METHOD: Lead (EPA SW 846 Method 6020B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	A	SDG- 906210
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	A	Lus
XI.	Field Duplicates	Ň	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date				
1	MW-15-10.5	906232-02	Soil	06/12/19				
2	MW-15-13	906232-03	Soil	06/12/19				
3	B-07-8	906232-07	Soil	06/12/19				
4								
5								
6								
7								
8								
9								
10								
11								
12								
Vote	otes:							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: September 9, 2019

Parameters:Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906232

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-15-7.5	906232-01	Soil	06/12/19
MW-15-10.5	906232-02	Soil	06/12/19
MW-15-13	906232-03	Soil	06/12/19
MW-15-25	906232-05	Soil	06/12/19
B-07-8	906232-07	Soil	06/12/19
B-07-12.5	906232-08	Soil	06/12/19
MW-15-17.5	906232-04	Soil	06/12/19

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation*, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-15-10.5	Bromobenzene	218 (50-150)	All compounds	J (all detects)	Р
B-07-8	Bromobenzene	251 (50-150)	All compounds	J (all detects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to surrogate %R, data were qualified as estimated in two samples.

No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 906232

Sample	Compound	Flag	A or P	Reason
MW-15-10.5 B-07-8	All compounds	J (all detects)	Р	Surrogates (%R)

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

LDC #: <u>45754C7</u>	VALIDATION COMPLETENESS WORKSHEET	Date: <u>ଜ/୶/୳/</u> ୲୳
SDG #: 906232	Level II	Page: <u>(</u> of)
Laboratory: Friedman & Bruya,	Inc.	Reviewer:
		2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
11.	Initial calibration/ICV	N/N	
	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	.2	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	2	Van client
VIII.	Laboratory control samples	A	Les
IX.	Field duplicates	N	
<u>x.</u>	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date				
1	MW-15-7.5	906232-01	Soil	06/12/19				
2	MW-15-10.5	906232-02	Soil	06/12/19				
3	MW-15-13	906232-03	Soil	06/12/19				
4	MW-15-25	906232-05	Soil	06/12/19				
5	B-07-8	906232-07	Soil	06/12/19				
6	B-07-12.5	906232-08	Soil	06/12/19				
7	MW-15-17.5	1 -04	1	V				
8								
9								
10								
11								
Note	lotes:							
1	1 D9-1405 MB							

179-1405 MB			

LDC #: 457526

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

METH	OD: <u> </u>	;	<u> </u>						
Are su	rrogates required by the	method	<pre>? Yes or No</pre>						
Please	see qualifications below	/ for all c	questions answered "N". N	lot appl	icable questions are identified	l as "N	I/A".		
Y/N M	Vere surrogat	es spike	ed into all samples and bla	nks?					
<u>1(M) Y</u>	<u>V/A</u> Did all surroga	ate recov	veries (%R) meet the QC	limits?					
M	Sample	Detec	ctor/ Surrogate	T					
#	ID	Colu	imn Compound	1	%R (Limits)			Qua	alifications
	7 (Det)		Bread		218 (50-	-150 1	TIA	1PDDLe
			- First -					319	1 della
	+ (nor)			<u> </u>	751				
╞━╤	<u> </u>				251 (<u> </u>	<u>{/</u>		
					()		
					(
					()		
					(
╟──┼╴		<u></u>					/		
					(· · · · · · · · · · · · · · · · · · ·)		
┡──┾					()		
					()		
					()		
)		
						a			
┣──┼-) [······
					()		
					()		
					()		
					()		
					(
		·							
┠──┼			•••••••••••••••••••••••••••••••••••••••						·····
							,	-	· · · · · · · · · · · · · · · · · · ·
	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	s	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
в	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyl-D14	т	3,4-Dinitrotoluene	z	1,2-Dinitrobenzene
С	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	1	
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	v	Tri-n-propyltin		
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate		
E	1.4-Difluorobenzene (DFB)	\Box	Bromobenzene	R	4-Nitrophenol	х	Triphenyl Phosphate		

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: September 9, 2019

Parameters: Total Petroleum Hydrocarbons as Diesel & Motor Oil

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906232

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-15-7.5	906232-01	Soil	06/12/19
MW-15-10.5	906232-02	Soil	06/12/19
MW-15-13	906232-03	Soil	06/12/19
MW-15-25	906232-05	Soil	06/12/19
B-07-8	906232-07	Soil	06/12/19
B-07-12.5	906232-08	Soil	06/12/19

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation*, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

L:VASDECT CONSULTING VAIONA CATE 45754C8W.WD	L:\Aspect	Consulting\Aloha	Cafe\45754C8W.wp
--	-----------	------------------	------------------

VAI IDATION	COMPL	ETENESS	WORKSHEFT
VALIDATION	CONFL	EIENE33	WORKSHELI

Level II

2nd Reviewer

Laboratory: Friedman & Bruya, Inc.

and Motor Oil **METHOD:** GC TPH as Diesel⁴(NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area Comments A Sample receipt/Technical holding times I. Initial calibration/ICV N/N II. Ш. Continuing calibration Ν A IV. Laboratory Blanks N V. Field blanks A VI. Surrogate spikes N Non Giert VII. Matrix spike/Matrix spike duplicates S A VIII. Laboratory control samples N IX. Field duplicates Compound quantitation RL/LOQ/LODs Ν Х. XI. Target compound identification Ν A хII Overall assessment of data

Note:

1

2

3

4

5

6

7 8 0

B-07-8

B-07-12.5

MW-15-17.5

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

906232-08

1 -04

SB=Source blank

Date

06/12/19

06/12/19

06/12/19

06/12/19

06/12/19

06/12/19

L

от	H	E	R

Soil

V

Client ID	Lab ID	Matrix	
MW-15-7.5	906232-01	Soil	
MW-15-10.5	906232-02	Soil	
MW-15-13	906232-03	Soil	
MW-15-25	906232-05	Soil	
B-07-8	906232-07	Soil	

ll v		 	 		
10					
11					
Note	es:	 			

Date:	02/04/17
Page:_	L_of
Reviewer:	Ú
	~-

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906279

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-17-8.5	906279-02	Soil	06/14/19
MW-16-7.5	906279-07	Soil	06/14/19

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation*, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.
I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

LDC #: <u>45754D7</u>	_ VALIDATION COMPLETENESS WORKSHEET	Date: <u>o٩/64/เ</u> ٩
SDG #: 906279	_ Level II	Page: <u> l of </u> \
Laboratory: Friedman & Bruya	i, Inc.	Reviewer:
		2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area Comments A,A Sample receipt/Technical holding times ١. П. Initial calibration/ICV N/N 111. Continuing calibration Ν A IV. Laboratory Blanks N V. Field blanks VI. Surrogate spikes A N Non Cirent VII. Matrix spike/Matrix spike duplicates A 5 VIII. Laboratory control samples N IX. Field duplicates Compound quantitation RL/LOQ/LODs Х. Ν XI. Target compound identification Ν A XII Overall assessment of data

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:	

	Client ID			Lab ID	Matri	x	Date
1	MW-17-8.5			906279-02	Soil		06/14/19
2	MW-16-7.5	 		906279-07	Soil		06/14/19
3		 					
4		 					
5							
6							
7							
8							
9							
10							
11							
Note	s:						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Diesel & Motor Oil
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906279

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-17-8.5	906279-02	Soil	06/14/19
MW-16-7.5	906279-07	Soil	06/14/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation*, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

LDC #:	45754D8	VALIDATION
SDG #:	906279	

COMPLETENESS WORKSHEET Level II

Laboratory: Friedman & Bruya, Inc.

Date: 09/04/19 Page: \of \ Reviewer: LT 2nd Reviewer:

and Motor oil **METHOD:** GC TPH as Dieser (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area Comments A/A Sample receipt/Technical holding times I. N/N 11. Initial calibration/ICV Ν III. Continuing calibration A IV. Laboratory Blanks N V. Field blanks A VI. Surrogate spikes N Non client VII. Matrix spike/Matrix spike duplicates LGS A VIII. Laboratory control samples N IX. Field duplicates Compound quantitation RL/LOQ/LODs Х. Ν XI. Target compound identification Ν A XII Overall assessment of data D - Dunliget

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank

_ .

OTHER:

|

	Client ID				Lab ID	Matrix	Dat	te
1	MW-17-8.5				906279-02	Soil	06/	14/19
2	MW-16-7.5				906279-07	Soil	06/	14/19
3								
4				 				
5				 				
6								
7								
8								
9				 				-
10								
11				 				
Vote	s:							
		\square	,					
					and the second second second second second second second second second second second second second second second			

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: Aloha Café
- LDC Report Date: September 9, 2019
- Parameters: Volatiles
- Validation Level: Stage 2A
- Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907276

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-18-10	907276-03	Soil	07/15/19
B-08-13.5	907276-08	Soil	07/16/19
MW-19-8.5	907276-12	Soil	07/16/19
Dup-2	907276-16	Soil	07/16/19
MW-19-8.5MS	907276-12MS	Soil	07/16/19
MW-19-8.5MSD	907276-12MSD	Soil	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

V:\LOGIN\ASPECT CONSULTING\ALOHA CAFE\45754E1A_AS2.DOC

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples MW-19-8.5 and Dup-2 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

LDC #: <u>45754E1a</u>	VALIDATION COMPLETENESS WORKSHEET	Date: <u>09/64/</u> 1
SDG #: 907276	Level II	Page: <u>1</u> of <u></u>
Laboratory: Friedman & Bruya	<u>, Inc.</u>	Reviewer: <u>LT</u>
		2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
Ш.	GC/MS Instrument performance check	N	
- 111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Â	(5,6)
IX.	Laboratory control samples	A _	Los
Х.	Field duplicates	ND	D = 3+4
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ĩ

	Client ID	 	Lab ID	Matrix	Date
1	MW-18-10		907276-03	Soil	07/15/19
2 `	B-08-13.5	 	907276-08	Soil	07/16/19
3 •	MW-19-8.5		907276-12	Soil	07/16/19
4 ·	Dup-2	 	907276-16	Soil	07/16/19
5	MW-19-8.5MS	 	907276-12MS	Soil	07/16/19
6	MW-19-8.5MSD	 	907276-12MSD	Soil	07/16/19
7		 			· · · · · · · · · · · · · · · · · · ·
8		 			
Note	s:	 			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907276

Sample Identification	Laboratory Sample	Matrix	Collection
Sample identification	Identification	IVIAUIA	Dale
MW-18-10	907276-03	Soil	07/15/19
B-08-13.5	907276-08	Soil	07/16/19
MW-19-8.5	907276-12	Soil	07/16/19
Dup-2	907276-16	Soil	07/16/19
Trip Blank	907276-17	Water	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation*, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-19-8.5 and Dup-2 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

LDC #: <u>45754E7</u>	VALIDATION COMPLETENESS WORKSHEET	Date: <u>۲/۲/۲/۱</u> ۹
SDG #: 907276	Level II	Page: <u></u> of <u></u>
Laboratory: Friedman & Bruya	, Inc.	Reviewer:
		2nd Reviewer:
METHOD: GC TPH as Gasoli	ne (NWTPH-Gx)	

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
П.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	TB= 5
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	Non Clienq
VIII.	Laboratory control samples	A	LOS
IX.	Field duplicates	ND	D = 3+4
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	OveralLassessment of data	A_	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

Lab ID Matrix **Client ID** Date Soil MW-18-10 907276-03 07/15/19 1 907276-08 Soil 07/16/19 2 B-08-13.5 MW-19-8.5 3 907276-12 Soil 07/16/19 Dup-2 907276-16 Soil 07/16/19 4 5 Trip Blank 907276-17 Water 07/16/19 6 7 8 9 10 11 Notes:

				-		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Diesel & Motor Oil
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907276

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-18-10	907276-03	Soil	07/15/19
B-08-13.5	907276-08	Soil	07/16/19
MW-19-8.5	907276-12	Soil	07/16/19
Dup-2	907276-16	Soil	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation,* SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-19-8.5 and Dup-2 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

LDC #: <u>45754E8</u>	VALIDATION COMPLETENESS WORKSHEET	Date: <u>09/04/</u> 19
SDG #: <u>907276</u>	Level II	Page: <u>(</u> of <u>)</u>
Laboratory: Friedman & Bruya	<u>, Inc.</u>	Reviewer: <u>7</u>
		2nd Reviewer:

METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A,A	
И.	Initial calibration/ICV	N/N	
	Continuing calibration	N	
IV.	Laboratory Blanks	A_	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	Non Cirent
VIII.	Laboratory control samples	Ŕ	LCS
IX.	Field duplicates	ND	D = 3+4
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate	
TB = Trip blank	
EB = Equipment b	lank

SB=Source blank ₹:

	Client ID					Lab ID	N	latrix	Date
1	MW-18-10					907276-03	5	Soil	07/15/19
2	B-08-13.5					907276-08	s	Soil	07/16/19
3	MW-19-8.5					907276-12		Soil	07/16/19
4	Dup-2					907276-16	s	Soil	07/16/19
5									
6						,			
7									
8									
9									
10									
11_									
Note	Notes:								

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: Aloha Café
- LDC Report Date: September 9, 2019
- Parameters: Volatiles
- Validation Level: Stage 2A
- Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907276

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-18-10	907276-03	Soil	07/15/19
B-08-13.5	907276-08	Soil	07/16/19
MW-19-8.5	907276-12	Soil	07/16/19
Dup-2	907276-16	Soil	07/16/19
Trip Blank	907276-17	Water	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8021B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-19-8.5 and Dup-2 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.
XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

5

Aloha Café Volatiles - Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

LDC #: <u>45754E23</u>	VALIDATION COMPLETENESS WORKSHEET	Date: <u>09/04/1</u> 5
SDG #: <u>907276</u>	Level II	Page: <u> </u> of <u> </u>
Laboratory: Friedman & Bruya,	<u>Inc.</u>	Reviewer: UT

2nd Reviewer:

 \leq

METHOD: GC Volatiles (BTEX) (EPA SW 846 Method 8021B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	TB=5
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	Nan Client
VIII.	Laboratory control samples	A	LS
IX.	Field duplicates	ND	D = 3+4
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-18-10	907276-03	Soil	07/15/19
2	B-08-13.5	907276-08	Soil	07/16/19
3	MW-19-8.5	907276-12	Soil	07/16/19
4	Dup-2	907276-16	Soil	07/16/19
5	Trip Blank	907276-17	Water	07/16/19
6				
7				
8				
9				
10				_
11_				
Note	S:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 908023

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-16-073119	908023-01	Water	07/31/19
MW-18-073119	908023-02	Water	07/31/19
MW-14-073119	908023-03	Water	07/31/19
MW-14-073119DL	908023-03DL	Water	07/31/19
MW-13-073119	908023-04	Water	07/31/19
Dup-01-073119	908023-05	Water	07/31/19
Dup-01-073119DL	908023-05DL	Water	07/31/19
MW-17-073119	908023-06	Water	07/31/19
MW-19-073119	908023-07	Water	07/31/19
MW-7-073119	908023-08	Water	07/31/19
MW-11-073119	908023-09	Water	07/31/19
MW-11-073119DL	908023-09DL	Water	07/31/19
MW-6-073119	908023-10	Water	07/31/19
MW-12-080119	908023-11	Water	08/01/19
MW-2-080119	908023-12	Water	08/01/19
MW-10-080119	908023-13	Water	08/01/19
MW-10-080119DL	908023-13DL	Water	08/01/19
MW-9-080119	908023-14	Water	08/01/19
Rinse Blank-080119	908023-15	Water	08/01/19
MW-1-080119	908023-16	Water	08/01/19
MW-1-080119DL	908023-16DL	Water	08/01/19
Trip Blank	908023-17	Water	08/01/19
MW-12-080119MS	908023-11MS	Water	08/01/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

Sample Rinse Blank-080119 was identified as a rinsate blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-14-073119 and Dup-01-073119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/L)			
Compound	MW-14-073119	Dup-01-073119	RPD (Limits)	Flag	A or P
Vinyl chloride	2.7	2.8	4 (≤35)	-	-
Toluene	32	45	34 (≤35)	-	-
m,p-Xylenes	72	120	50 (≤35)	J (all detects)	А
o-Xylene	18	25	33 (≤35)	-	-
Naphthalene	50	77	43 (≤35)	J (all detects)	А

	Concentration (ug/L)				· · · · · ·
Compound	MW-14-073119	Dup-01-073119DL	RPD (Limits)	Flag	A or P
Ethylbenzene	130	170	27 (≤35)	-	-

	Concentrat	tion (ug/L)			
Compound	MW-14-073119DL	Dup-01-073119DL	RPD (Limits)	Flag	A or P
Benzene	2400	3500	37 (≤35)	J (all detects)	A

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Finding	Flag	A or P
MW-14-073119	Benzene	Results exceeded calibration range.	DNR	-
MW-14-073119DL	All compounds except Benzene	Results from undiluted analyses were more usable.	DNR	-
Dup-01-073119	Benzene Ethylbenzene	Results exceeded calibration range.	DNR	-
Dup-01-073119DL	All compounds except Benzene Ethylbenzene	Results from undiluted analyses were more usable.	DNR	-
MW-11-073119 MW-1-080119	Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Results exceeded calibration range.	DNR	-
MW-11-073119DL MW-1-080119DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Results from undiluted analyses were more usable.	DNR	-
MW-10-080119	Benzene Ethylbenzene m,p-Xylenes Naphthalene	Results exceeded calibration range.	DNR	-
MW-10-080119DL	All compounds except Benzene Ethylbenzene m,p-Xylenes Naphthalene	Results from undiluted analyses were more usable.	DNR	-

Due to field duplicate RPD, data were qualified as estimated in two samples.

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 908023

Sample	Compound	Flag	A or P	Reason
MW-14-073119 Dup-01-073119	m,p-Xylenes Naphthalene	J (all detects) J (all detects)	A	Field duplicates (RPD)
MW-14-073119DL Dup-01-073119DL	Benzene	J (all detects)	A	Field duplicates (RPD)
MW-14-073119	Benzene	DNR	-	Overall assessment of data
MW-14-073119DL	All compounds except Benzene	DNR	-	Overall assessment of data
Dup-01-073119	Benzene Ethylbenzene	DNR	-	Overall assessment of data
Dup-01-073119DL	All compounds except Benzene Ethylbenzene	DNR	-	Overall assessment of data
MW-11-073119 MW-1-080119	Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	DNR	-	Overall assessment of data
MW-11-073119DL MW-1-080119DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	DNR		Overall assessment of data
MW-10-080119	Benzene Ethylbenzene m,p-Xylenes Naphthalene	DNR	-	Overall assessment of data
MW-10-080119DL	All compounds except Benzene Ethylbenzene m,p-Xylenes Naphthalene	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

L:\Aspect Consulting\Aloha Cafe\45754F1aW.wpd	
---	--

LDC #:<u>45754F1a</u> SDG #:<u>908023</u>

Laboratory: Friedman & Bruya, Inc.

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

VALIDATION COMPLETENESS WORKSHEET

Level II

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	TB = 22 PB = 19
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(23.) M5 ONLY
IX.	Laboratory control samples	A	LCS/D
Х.	Field duplicates	SW	D= 3+6, 4+7.3+7
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	

Note:

Б

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 .	MW-16-073119	908023-01	Water	07/31/19
2 ·		908023-02	Water	07/31/19
3 .	MW-14-073119	908023-03	Water	07/31/19
4 ·	MW-14-073119BE Dレ	908023-03BEDL	Ŵater	07/31/19
5 ·	MW-13-073119	908023-04	Water	07/31/19
6 ·	Dup-01-073119	908023-05	Water	07/31/19
7 -	Dup-01-073119RE り	908023-05民ビレー	Water	07/31/19
8.	MW-17-073119	908023-06	Water	07/31/19
9 ·	MW-19-073119	908023-07	Water	07/31/19
10·	MW-7-073119	908023-08	Water	07/31/19
11 ·	MW-11-073119	908023-09	Water	07/31/19
12 -	MW-11-073119RE	908023-09REDL	Water	07/31/19
13 -	MW-6-073119	908023-10	Water	07/31/19

Date: <u>09/04/</u>19 Page: <u>lof 2</u> Reviewer: <u>LT</u> 2nd Reviewer:

ET
E

Level II

SDG #:<u>908023</u> Laboratory: <u>Friedman & Bruya, Inc.</u> Date:<u>09/04/</u>19 Page: <u>20</u>f_2 Reviewer: <u>17</u> 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

14 ·	MW-12-080119		908023-11	V	Vater	08/01/19		
15 .	. MW-2-080119			908023-12 Water		Vater	08/01/19	
16 ·	MW-10-080119				908023-13	V	Vater	08/01/19
17 ·	MW-10-080119BE DL		-		908023-13RE-DL	V	Vater	08/01/19
18 ·	MW-9-080119				908023-14	v	Vater	08/01/19
19 -	Rinse Blank-080119				908023-15	١	Vater	08/01/19
20 ·	MW-1-080119			_	908023-16	V	Vater	08/01/19
21 -	MW-1-080119RE-DL			 	908023-16REDL Water		Vater	08/01/19
22·	Trip Blank		······································		908023-17	V	Vater	08/01/19
23	MW-12-080119MS				908023-11MS	<u> </u>	Vater	08/01/19
24								
25				 				
26				 				
Note	S:							
1	09-1853MB							

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C Vinyl choride	(CC) Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM, Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR/ m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	(SSS,) o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
VBenzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:<u>45754F1a</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_l_of_l Reviewer:_____ 2nd Reviewer:_____

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

	Concentration (ug/L)				
Compound	3	6	RPD (≤35)	Diff	
с	2.7	2.8	4		
сс	32	45	34		
RRR	72	120	50		Sdett
SSS	18	25	33		
МММ	50	77	43		Sdet/A

	Concentr		Diff	
Compound	3	RPD (≤35)		
EE	130	170	27	

	Concent				
Compound	4	7	RPD (≤35)	Diff	
V	2400	3500	37		5 detA

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>YNN/A</u> Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		3	\bigvee	xid cal range	DNR
		4	All except V	diluted	
		6	VEFE	xd cal range	
		7	All except V & EE	diluted	
		11,20	V, CC, EE, PML, SSS	Xd cal range	
		·			
		12,21	All except V.CC, FE, PR12,555	s diluted	
		16	V, EE, RPP, MMM	Xd cal range	
				·	
		17	All except V. SE, PPP, MMM	dilutcol	

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: September 9, 2019

Parameters: Lead

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 908023

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-16-073119	908023-01	Water	07/31/19
MW-18-073119	908023-02	Water	07/31/19
MW-14-073119	908023-03	Water	07/31/19
MW-13-073119	908023-04	Water	07/31/19
Dup-01-073119	908023-05	Water	07/31/19
MW-17-073119	908023-06	Water	07/31/19
MW-19-073119	908023-07	Water	07/31/19
MW-7-073119	908023-08	Water	07/31/19
MW-11-073119	908023-09	Water	07/31/19
MW-6-073119	908023-10	Water	07/31/19
MW-12-080119	908023-11	Water	08/01/19
MW-2-080119	908023-12	Water	08/01/19
MW-10-080119	908023-13	Water	08/01/19
MW-9-080119	908023-14	Water	08/01/19
Rinse Blank-080119	908023-15	Water	08/01/19
MW-1-080119	908023-16	Water	08/01/19
MW-16-073119MS	908023-01MS	Water	07/31/19
MW-16-073119MSD	908023-01MSD	Water	07/31/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program,* SOP HW-2b, Revision 15 (December 2012), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument performance check data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Rinse Blank-080119 was identified as a rinsate blank. No contaminants were found.

4

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
MW-16-073119MS/MSD (MW-16-073119 MW-18-073119 MW-14-073119 MW-13-073119 MW-13-073119 MW-17-073119 MW-19-073119 MW-7-073119 MW-7-073119 MW-7-073119 MW-10-073119 MW-2-080119 MW-2-080119 MW-10-080119 MW-1-080119)	Lead	68 (75-125)	68 (75-125)	J (all detects) UJ (all non-detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples MW-14-073119 and Dup-01-073119 were identified as field duplicates. No results were detected in any of the samples.

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD %R, data were qualified as estimated in fifteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Aloha Café Lead - Data Qualification Summary - SDG 908023

Sample	Analyte	Flag	A or P	Reason
MW-16-073119 MW-18-073119 MW-14-073119 MW-13-073119 Dup-01-073119 MW-17-073119 MW-7073119 MW-7-073119 MW-7-073119 MW-6-073119 MW-6-073119 MW-2-080119 MW-12-080119 MW-9-080119 MW-1-080119	Lead	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R)

Aloha Café Lead - Laboratory Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café Lead - Field Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

7

LDC #: <u>45754F4a</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: 908023	Level II
Laboratory: Friedman & Bruya,	Inc.

Date: <u>69/04/1</u> 5
Page: (of <u>~</u>
Reviewer: <u>7</u>
2nd Reviewer:

METHOD: Lead (EPA SW 846 Method 6020B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A.A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	44	PB= 15
VII.	Matrix Spike/Matrix Spike Duplicates	SW	(17,18)
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	A	LCS
XI.	Field Duplicates	ND	D = 3 + 5
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-16-073119	908023-01	Water	07/31/19
2	MW-18-073119	908023-02	Water	07/31/19
3	MW-14-073119	908023-03	Water	07/31/19
4	MW-13-073119	908023-04	Water	07/31/19
5	Dup-01-073119	908023-05	Water	07/31/19
6	MW-17-073119	908023-06	Water	07/31/19
7	MW-19-073119	908023-07	Water	07/31/19
8	MW-7-073119	908023-08	Water	07/31/19
9	MW-11-073119	908023-09	Water	07/31/19
10	MW-6-073119	908023-10	Water	07/31/19
11	MW-12-080119	908023-11	Water	08/01/19
12	MW-2-080119	908023-12	Water	08/01/19
13	MW-10-080119	908023-13	Water	08/01/19
14	MW-9-080119	908023-14	Water	08/01/19
15	Rinse Blank-080119	908023-15	Water	08/01/19

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	of	١
Reviewer:	5	
2nd Reviewer:	\leq	
_		

METHOD: Lead (EPA SW 846 Method 6020B)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

LEVEL IV ONLY: <u>Y N N/A</u> Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

Were all duplicate sample relative percent differences (RPD) \leq 20% for water samples and \leq 35% for soil samples?

MS MSD MS/MSD ID Matrix Analyte %Recovery %Recovery RPD (Limits) Associated Samples Qualifications 17/18 68 (75-125) 68 (75-125) 1-8, 10=10 CM JNJ/A ١N ead atter 16

Comments:_____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 908023

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-16-073119	908023-01	Water	07/31/19
MW-18-073119	908023-02	Water	07/31/19
MW-14-073119	908023-03	Water	07/31/19
MW-13-073119	908023-04	Water	07/31/19
Dup-01-073119	908023-05	Water	07/31/19
MW-17-073119	908023-06	Water	07/31/19
MW-19-073119	908023-07	Water	07/31/19
MW-7-073119	908023-08	Water	07/31/19
MW-11-073119	908023-09	Water	07/31/19
MW-6-073119	908023-10	Water	07/31/19
MW-12-080119	908023-11	Water	08/01/19
MW-2-080119	908023-12	Water	08/01/19
MW-10-080119	908023-13	Water	08/01/19
MW-9-080119	908023-14	Water	08/01/19
Rinse Blank-080119	908023-15	Water	08/01/19
MW-1-080119	908023-16	Water	08/01/19
Trip Blank	908023-17	Water	08/01/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation,* SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

Sample Rinse Blank-080119 was identified as a rinsate blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-14-073119 and Dup-01-073119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	tion (ug/L)	
Compound	MW-14-073119	Dup-01-073119	RPD (Limits)
Gasoline range	7500	9700	26 (≤35)

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

5

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

L:\Aspect Consulting\Aloha Cafe\45754F	7W.wpd

VALIDATION COMPLETENESS WORKSHEET

Level II

Reviewer:_ 2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

Laboratory: Friedman & Bruya, Inc.

LDC #: 45754F7

SDG #: 908023

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A, A	
11.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	PB = 15 $TB = 17$
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	Non Client
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	SW	D=3+5
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-16-073119	908023-01	Water	07/31/19
2	MW-18-073119	908023-02	Water	07/31/19
3	MW-14-073119	908023-03	Water	07/31/19
4	MW-13-073119	908023-04	Water	07/31/19
5	Dup-01-073119	908023-05	Water	07/31/19
3	MW-17-073119	908023-06	Water	07/31/19
7	MW-19-073119	908023-07	Water	07/31/19
3	MW-7-073119	908023-08	Water	07/31/19
9	MW-11-073119	908023-09	Water	07/31/19
10	MW-6-073119	908023-10	Water	07/31/19
1	MW-12-080119	908023-11	Water	08/01/19
2	MW-2-080119	908023-12	Water	08/01/19
3	MW-10-080119	908023-13	Water	08/01/19
4	MW-9-080119	908023-14	Water	08/01/19
5	Rinse Blank-080119	908023-15	Water	08/01/19
6	MW-1-080119	908023-16	Water	08/01/19
17	Trip Blank	908023-17	Water	08/01/19

LDC#:<u>45754F7</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:__lof_(Reviewer:__L_7 2nd Reviewer:____

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Concent		5.4	
Compound	3	5	RPD (≤35)	Diff
Gasoline Range	7500	9700	26	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 9, 2019
Parameters:	Total Petroleum Hydrocarbons as Diesel & Motor Oil
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 908023

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-16-073119	908023-01	Water	07/31/19
MW-18-073119	908023-02	Water	07/31/19
MW-14-073119	908023-03	Water	07/31/19
MW-13-073119	908023-04	Water	07/31/19
Dup-01-073119	908023-05	Water	07/31/19
MW-17-073119	908023-06	Water	07/31/19
MW-19-073119	908023-07	Water	07/31/19
MW-7-073119	908023-08	Water	07/31/19
MW-11-073119	908023-09	Water	07/31/19
MW-6-073119	908023-10	Water	07/31/19
MW-12-080119	908023-11	Water	08/01/19
MW-2-080119	908023-12	Water	08/01/19
MW-10-080119	908023-13	Water	08/01/19
MW-9-080119	908023-14	Water	08/01/19
Rinse Blank-080119	908023-15	Water	08/01/19
MW-1-080119	908023-16	Water	08/01/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Semivolatile Data Validation*, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Rinse Blank-080119 was identified as a rinsate blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
Rinse Blank-080119	Ortho-Terphenyl	142 (47-140)	All compounds	NA	-

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.
IX. Field Duplicates

Samples MW-14-073119 and Dup-01-073119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	tion (ug/L)		
Compound	MW-14-073119	Dup-01-073119	RPD (Limits)	Difference (Limits)
Diesel range	1200	1100	9 (≤35)	_
Motor oil range	330	270	-	60 (≤500)

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

LDC #: 45754 F8

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

				<u>Su</u>	rrogate Recovery				Reviewer: <u>17</u> 2nd Reviewer:
	IOD: GC HPL urrogates required by the e see qualifications belo N/A Were surroga N/A Did all surroga	.C e method w for all c ates spike gate reco	? Yes or No questions answered "N". Not ed into all samples and blank veries (%R) meet the QC lim	applic s? nits?	cable questions are identified	as "N	/A".		
#	Sample ID	Detec Colu	ctor/ Surrogate mn Compound		%R (Limits)			Qua	lifications
	15 (ND)		+		142 (47.	-140)	5/1	2 Pets
					()		
					()		
					()		
┣──┼					(-)		
┞──┼					(
╟──┼				_	<u> </u>)		<u></u>
╟──┼			·····	<u> </u>	(· · · · ·	
╞━━┿									
╟──┼									
╟──┼		·			()		
┢══┿)		
)		
					()		
					()		
					. ()		
				<u> </u>	()		
)		
╟╧┥┥		- <u> </u>			()		······
	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound	<u> </u>	Surrogate Compound
	Chlorobenzene (CBZ)	_ <u>_</u>	Octacosane	М	Benzo(e)Pyrene	s	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)		Ortho-Terphenyl	N	Terphenyl-D14		3,4-Dinitrotoluene	Z	1,2-Dinitrobenzene
	a,a,a-Trifluorotoluene		Fluorobenzene (FBZ)	P	Decachlorobiphenyl (DCB)	V	I ripentyltin Tri-n-propyltin		<u> </u>
E	1,4-Dichlorobutane	K	Hexacosane	Q	Dichlorophenyi Acetic Acid (DCAA)	w	Tributyl Phosphate		
F	1.4-Difluorobenzene (DFB)		Bromobenzene	R	4-Nitrophenol	х	Triphenvl Phosphate		

LDC#:<u>45754F8</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1 of 1 Reviewer: 1-7 2nd Reviewer:

METHOD: GC TPH as Diesel and Motor Oil (NWTPH-Dx)

	Concent	ration (ug/L)		
Compound	3	5	RPD (≤35)	Diff (≤500)
Diesel Range	1200	1100	9	
Motor Oil Range	330	270		60

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com October 2, 2019

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed is the final validation report for the fraction listed below. This SDG was received on September 3, 2019. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #45879:

SDG # Fraction

907561 Volatiles

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Analysis Of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6; September 2016
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Cheiotina Rink

Christina Rink crink@lab-data.com Project Manager/Senior Chemist

	33 pages-EM													At	tach	mer	nt 1																				
	Stage 2A / EDD				L	DC	#4	587	'9 (<i>I</i>	Asp	ec	t C	ons	sult	ing	, LI	LC	- S	eat	tle,	W	A / /	Alo	ha	Ca	fe)											
LDC	SDG#	DATE REC'D	(3) DATE DUE	Vс (то	DA -15)	V((N -AF	DA MA PH)																														
Matri	x: Air/Water/Soil			А	s	А	S	W	s	W	S	W	s	W	S	W	S	W	S	W	S	W	s	W	S	W	s	W	s	W	S	W	S	W	S	W	S
А	907561	09/03/19	09/24/19	8	0	11	0																														\square
																																			\square		\vdash
																																			\mid	\vdash	\mid
																																					$\left - \right $
																																			┢──┦		┝──┦
																																					$\left - \right $
																																			┢──┦	┢──┦	\vdash
																																			┢──┦	┢──┦	
																																				┢──┤	\square
																																					\square
																																					\square
																																					\Box
																																			\square		\square
																																			\mid		\mid
																																			┝──┦	\vdash	┝──┦
																																			┢──┦		\mid
																																			┢──┦		$\left - \right $
																																			┢──┦		\vdash
			ļ																																┢──┦	┢──┤	\vdash
																																			┢──┦	┢──┦	\square
																																				┢──┤	\square
																																				┝──┦	\square
																																					\square
Total	J/CR			8	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19

Laboratory Data Consultants, Inc. Data Validation Report

Proiect/Site	Name:	Aloha	Café
	I TO I TO I	710110	ouio

LDC Report Date: September 24, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907561

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-01-072519	907561-01	Air	07/25/19
GP-02-072519	907561-02	Air	07/25/19
GP-03-072519	907561-03	Air	07/25/19
Dup-1-072519	907561-04	Air	07/25/19
GP-04-072519	907561-05	Air	07/25/19
SVS-02-072519	907561-06	Air	07/25/19
SVS-01-072519	907561-07	Air	07/25/19
Trip Blank	907561-08	Air	07/25/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-03-072519 and Dup-1-072519 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (ug/m³)			
Compound	GP-03-072519	Dup-1-072519	RPD (Limits)	Flag	A or P
Benzene	3.9	3.4	14 (≤35)	-	-
Toluene	17	15	13 (≤35)	-	-
Ethylbenzene	4.9	3.9	23 (≤35)	-	-
m,p-Xylene	19	15	24 (≤35)	-	-
o-Xylene	8.1	6.5	22 (≤35)	-	-

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

LDC #: <u>45879A48a</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #:_907561	Stage 2A
Laboratory: Friedman & Bruya,	Inc.

Date:	09/24/19
Page:_	<u>l of J</u>
Reviewer:	LT
2nd Reviewer:	KA

METHOD: GC/MS Volatiles (EPA Method TO-15)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check	N	
III.	Initial calibration/ICV	5,4	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	A/A	individually certified
VI.	Field blanks	ND	TB = 8
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	A	Los
Х.	Field duplicates	SN	D = 4+3
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	4	
XVI.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	GP-01-072519	907561-01	Air	07/25/19
2 .	GP-02-072519	907561-02	Air	07/25/19
3 ·	GP-03-072519	907561-03	Air	07/25/19
4 .	Dup-1-072519	907561-04	Air	07/25/19
5 -	GP-04-072519	907561-05	Air	07/25/19
6 -	SVS-02-072519	907561-06	Air	07/25/19
7 ·	SVS-01-072519	907561-07	Air	07/25/19
8 -	Trip Blank	907561-08	Air	07/25/19
9				
Note	S:			

D = Duplicate TB = Trip blank EB = Equipment blank

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyi alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:<u>45879A48b</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

METHOD: GC/MS Volatiles (EPA Method TO-15)

	Concentra	tion (ug/m3)		
Compound	3	3 4		Qual
V	3.9	3.4	14	
сс	17	15	13	
EE	4.9	3.9	23	
RRR	19	15	24	
SSS	8.1	6.5	22	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: September 24, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907561

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-01-072519	907561-01	Air	07/25/19
GP-02-072519	907561-02	Air	07/25/19
GP-03-072519	907561-03	Air	07/25/19
GP-03-072519DL	907561-03DL	Air	07/25/19
Dup-1-072519	907561-04	Air	07/25/19
Dup-1-072519DL	907561-04DL	Air	07/25/19
GP-04-072519	907561-05	Air	07/25/19
SVS-02-072519	907561-06	Air	07/25/19
SVS-02-072519DL	907561-06DL	Air	07/25/19
SVS-01-072519	907561-07	Air	07/25/19
Trip Blank	907561-08	Air	07/25/19
GP-01-072519DUP	907561-01DUP	Air	07/25/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by MA-APH

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Compound	Concentration	Associated Samples
09-1852 MB	08/02/19	APH EC9-12 aliphatics	37 ug/m³	GP-01-072519 GP-02-072519 GP-03-072519 Dup-1-072519 GP-04-072519 SVS-02-072519 SVS-01-072519 Trip Blank

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-03-072519 and Dup-1-072519 and samples GP-03-072519DL and Dup-1-072519DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/m³)			
Compound	GP-03-072519DL	Dup-1-072519DL	RPD (Limits)	Flag	A or P
APH EC5-8 aliphatics	8700	9100	4 (≤35)	-	-
APH EC9-12 aliphatics	9600	11000	14 (≤35)	-	-

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
GP-03-072519 Dup-1-072519 SVS-02-072519	APH EC5-8 aliphatics	Results exceeded calibration range.	DNR	-
GP-03-072519 Dup-1-072519	APH EC9-12 aliphatics	Results from diluted analyses were more usable.	DNR	-
GP-03-072519DL Dup-1-072519DL	APH EC9-10 aromatics	Results from undiluted analyses were more usable.	DNR	-
SVS-02-072519DL	APH EC9-12 aliphatics APH EC9-10 aromatics	Results from undiluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 907561

Sample	Compound	Flag	A or P	Reason
GP-03-072519 Dup-1-072519 SVS-02-072519	APH EC5-8 aliphatics	DNR	-	Overall assessment of data
GP-03-072519 Dup-1-072519	APH EC9-12 aliphatics	DNR	-	Overall assessment of data
GP-03-072519DL Dup-1-072519DL	APH EC9-10 aromatics	DNR	-	Overall assessment of data
SVS-02-072519DL	APH EC9-12 aliphatics APH EC9-10 aromatics	DNR	-	Overall assessment of data

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: <u>4/24/14</u> Page: <u>1 of (</u> Reviewer: <u>L1</u> 2nd Reviewer: <u>KM</u>

Laboratory: Friedman & Bruya, Inc.

LDC #: <u>45879A48b</u> SDG #: 907561

METHOD: GC/MS Volatiles (MA-APH)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
١١.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N,N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	SW/A	Individually certified
VI.	Field blanks	ND	TB = 1
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates DVP	N/A	(12)
IX.	Laboratory control samples	A	LG
Х.	Field duplicates	Sw	D = 3+5, 4+6
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	N	
XVI.	Overall assessment of data	SIA	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 •	GP-01-072519	907561-01	Air	07/25/19
2 ·	GP-02-072519	907561-02	Air	07/25/19
3.	GP-03-072519	907561-03	Air	07/25/19
4 ·	GP-03-072519BE	907561-03BEDL	Air	07/25/19
5 ·	Dup-1-072519	907561-04	Air	07/25/19
6 •	Dup-1-072519時をしし	907561-04REDL	Air	07/25/19
7 ·	GP-04-072519	907561-05	Air	07/25/19
8 ·	SVS-02-072519	907561-06	Air	07/25/19
9 ·	SVS-02-072519BEDL	907561-06REDL	Air	07/25/19
10	SVS-01-072519	907561-07	Air	07/25/19
11.	Trip Blank	907561-08	Air	07/25/19
12	GP-01-072519DUP	907561-01DUP	Air	07/25/19

LDC #:	45879	A486
LDC #:	13011	\underline{v}

VALIDATION FINDINGS WORKSHEET

Blanks

METHOD: GC/MS VOA (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

() N N/A Was a method blank associated with every sample in this SDG?

YN N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

 $\overline{(Y)}$ N N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

Blank analysis date: 08/02/19 Conc. units: UA/M³

Associated Samples:	1-3,5,	7,8	10,11	>CROL	or ND
Associated Samples.	• /				

Compound	Blank ID	Sample Identification						
	09-1852 mb							
Methylene chloride								
Acetone								
APH EC9-10								
APH ECQ-12 aliphatics	37							

Blank analysis date:

Conc. units:	. units: Associated Samples:									
Compound	Blank ID		Sample Identification							
Methylene chloride										
Acetone										

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were gualified as not detected, "U". Other contaminants within five times the method blank concentration were also gualified as not detected, "U".

LDC#:<u>45879A48b</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

METHOD: GC/MS Volatiles (MA-APH)

	Concentra				
Compound	4	RPD (≤35)	Qual		
APH EC5-8 aliphatics	8700	9100	4		
APH EC9-12 aliphatics	9600	11000	14		

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	l_of_\
Reviewer:	LT
2nd Reviewer:	RK

METHOD: GC/MS VOA (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>N N/A</u> Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		3,5,8	APHECS-8 aliphatics	xd cal range	DNR
			,	0	
		3,5	Aff EC9-12 aliphatics	biased low results, DL	
				results ano mine acceptable	
		\$ 4,6	APH ECA-10 aromatics	diluted	
		9	APHEC9-12 aliphatizs 3		
			APHEC9-10 aromatics		\sim

Comments:

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com January 6, 2020

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on December 9, 2019. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #46741:

SDG # Fraction

911310 Volatiles, Lead, Total Petroleum Hydrocarbons as Gasoline, Total Petroleum Hydrocarbons as Diesel

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4; October 2014
- USEPA Region 2 Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program, SOP HW-2b, Revision 15; December 2012
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

peisting Rink

Christina Rink <u>crink@lab-data.com</u> Project Manager/Senior Chemist

	206 pages-EM													At	tach	mer	nt 1																				
	Stage 2A / EDI	כ			LI	DC	#4(674	1 (/	Asp	ec	t C	ons	sult	ing	, Ll	LC	- S	eat	tle,	W	4 / /	Alo	ha	Ca	fe)											
LDC	SDG#	DATE REC'D	(3) DATE DUE	VC (826	DA 50C)	P (602	b 20B)	TPI (NW G	H-G TPH x)	TPH (NW D	I-E TPH x)																										
Matrix	: Water/Soil			W	s	W	s	W	s	W	s	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s
А	911310	12/09/19	12/31/19	18	0	16	0	17	0	16	0																										
																																<u> </u>			\vdash	\vdash	<u> </u>
																																<u> </u>				┣	<u> </u> '
																																<u> </u>			\vdash	┣—	<u> </u> '
																																<u> </u> '			\vdash	┝	<u> </u>
																																<u> </u>			┢──┘	<u> </u>	<u> </u> '
\vdash													<u> </u>																<u> </u>			\vdash			┢──┤	┢	<u> </u>
																																<u> </u> '			┢──┤	┣──	<u> </u> '
																																<u> </u>			┟──┦	┢──	┢──╵
																																\vdash			┢──┦	<u> </u>	┢──
																																			┟──┦	<u> </u>	┢──┤
																																			┢──┤		$ \vdash$
						<u> </u>		<u> </u>															<u> </u>				<u> </u>	<u> </u>			<u> </u>	\square			\square	\square	\square
																																<u> </u>				\vdash	<u> </u> '
																																<u> </u>			\vdash	┣—	\vdash
\vdash					<u> </u>		<u> </u>		<u> </u>			<u> </u>	L	<u> </u>							<u> </u>	<u> </u>		<u> </u>	<u> </u>							\vdash			\vdash	⊢	\vdash
-																																 '				┣—	\vdash
\vdash					<u> </u>		<u> </u>		<u> </u>			<u> </u>	<u> </u>								<u> </u>	<u> </u>			<u> </u>							\vdash			\vdash	┣—	\vdash
																													<u> </u>			┣──╵			\vdash	┣—	├ ─'
\vdash																													<u> </u>			<u> </u> '			┢──┘	┣—	<u> </u>
$ \vdash $																																\vdash				┣—	<u> </u> '
Total	J/CR			18	0	16	0	17	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	67

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: January 3, 2020

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 911310

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-112019	911310-01	Water	11/20/19
MW-2-112019	911310-02	Water	11/20/19
MW-6-112019	911310-03	Water	11/20/19
MW-7-111919	911310-04	Water	11/19/19
MW-9-112019	911310-05	Water	11/20/19
MW-10-112019	911310-06	Water	11/20/19
MW-11-111919	911310-07	Water	11/19/19
MW-12-112019	911310-08	Water	11/20/19
MW-13-112019	911310-09	Water	11/20/19
MW-14-112019	911310-10	Water	11/20/19
MW-16-111919	911310-11	Water	11/19/19
MW-17-111919	911310-12	Water	11/19/19
MW-18-111919	911310-13	Water	11/19/19
MW-18-112019DL	911310-13RE	Water	11/20/19
MW-19-112019	911310-14	Water	11/20/19
DUP-01-112019	911310-15	Water	11/20/19
Rinseblank-112019	911310-16	Water	11/20/19
Trip blank	911310-17	Water	11/20/19
MW-2-112019MS	911310-02MS	Water	11/20/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip blank was identified as a trip blank. No contaminants were found.

Sample Rinseblank-112019 was identified as a rinse blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-19-112019 and DUP-01-112019 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (ug/L)			
Compound	MW-19-112019	DUP-01-112019	RPD (Limits)	Flag	A or P
Tetrachloroethene	12	15	22 (≤35)	-	-

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
MW-18-111919	Benzene	Results exceeded calibration range.	DNR	-
MW-18-112019DL	All compounds except Benzene	Results from undiluted analyses were more usable.	DNR	-

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Aloha Café Volatiles - Data Qualification Summary - SDG 911310

Sample	Compound	Flag	A or P	Reason
MW-18-11191\$9	Benzene	DNR	-	Overall assessment of data
MW-18-11201 9 DL	All compounds except Benzene	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

LDC #: <u>46741A1a</u>	ALIDATION COMPLETENESS WORKSHEET	Date: 12/03/11
SDG #:_911310	Level II	Page:of/
Laboratory: Friedman & Bruya, Inc.		Reviewer:
·	-	2nd Reviewer

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
.	GC/MS Instrument performance check	N	
	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	RB=17 TB=18
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(19) - MS only
IX.	Laboratory control samples	A	LCS/D
Х.	Field duplicates	دير	D = 16 + 15
XI.	Internal standards	2	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
xıv.	System performance	N	
XV.	Overall assessment of data	SW	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-112019	911310-01	Water	11/20/19
2 ·	MW-2-112019	911310-02	Water	11/20/19
3 *	MW-6-112019	911310-03	Water	11/20/19
4 ·	MW-7-112019	911310-04	Water	(9 11/20/19
5 ·	MW-9-112019	911310-05	Water	11/20/19
6 ·	MW-10-112019	911310-06	Water	11/20/19
7 ·	l1 MW-11-11 2 019	911310-07	Water	(9 11/20/19
8 ·	MW-12-112019	911310-08	Water	11/20/19
9 [.]	MW-13-112019	911310-09	Water	11/20/19
10 [.]	MW-14-112019	911310-10	Water	11/20/19
11 ·	ارا MW-16-11 20 19	911310-11	Water	11/20 /19
12 .	MW-17-112019	911310-12	Water	<u>/9</u> 11/20/19
13.	МW-18-112019	911310-13	Water	11/ 2 0/19

LDC #:_46741A1a	VALIDATION COMPLETENESS WORKSHEET
SDG #: 911310	Level II
Laboratory: Friedman & Bruya,	Inc.

Date: <u>12/28/19</u> Page: <u>1 of 1</u> Reviewer: <u>1</u> 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

14 [.]	MW-18-112019₽€D∽	911310-13BE D-	Water	11/20/19		
15 -	MW-19-112019	911310-14	Water	11/20/19		
16 ⁻	DUP-01-112019	911310-15	Water	11/20/19		
17`	Rinseblank-112019	911310-16	Water	11/20/19		
18	Trip blank	911310-17	Water	11/20/19		
19	MW-2-112019MS	911310-02MS	Water	11/20/19		
20						
21						
22						
Notes:						

1	09-2843 MB				
TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC, 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#: 46741Ah

VALIDATION FINDINGS WORKSHEET Field_Duplicates

Page: Lof L Reviewer: La 2nd Reviewer:

METHOD: GCMS VOA (EPA Method 8260C)

	Concentra	tion (ug/L)		
Compound	15 16		RPD (<u>≤</u> 35)	
АА	12	15	22	

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2019\46741A1a.wpd

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

	Page: _	<u> </u>	_of <u>∫</u>	
2nd	Reviewer: Reviewer:	2		

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

 $\frac{1}{2}$ N N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Findings	Qualifications
		2		Xd (M Kan al	(DN)B
				per corrange	
		14	All-except V	diluted	
					L

Comments: _____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: January 3, 2020

Parameters: Lead

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 911310

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-112019	911310-01	Water	11/20/19
MW-2-112019	911310-02	Water	11/20/19
MW-6-112019	911310-03	Water	11/20/19
MW-7-111919	911310-04	Water	11/19/19
MW-9-112019	911310-05	Water	11/20/19
MW-10-112019	911310-06	Water	11/20/19
MW-11-111919	911310-07	Water	11/19/19
MW-12-112019	911310-08	Water	11/20/19
MW-13-112019	911310-09	Water	11/20/19
MW-14-112019	911310-10	Water	11/20/19
MW-16-111919	911310-11	Water	11/19/19
MW-17-111919	911310-12	Water	11/19/19
MW-18-111919	911310-13	Water	11/19/19
MW-19-112019	911310-14	Water	11/20/19
DUP-01-112019	911310-15	Water	11/20/19
Rinseblank-112019	911310-16	Water	11/20/19
MW-1-112019MS	911310-01MS	Water	11/20/19
MW-1-112019MSD	911310-01MSD	Water	11/20/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program,* SOP HW-2b, Revision 15 (December 2012), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument performance check data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Rinseblank-112019 was identified as a rinse blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples MW-19-112019 and DUP-01-112019 were identified as field duplicates. No results were detected in any of the samples.

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Lead - Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café Lead - Laboratory Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Lead - Field Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

ALIDATION	COMPL	ETENESS	WORKSHEET
-----------	-------	---------	-----------

Level II

LDC #: <u>46741A4a</u> **VA** SDG #: <u>911310</u> Laboratory: <u>Friedman & Bruya, Inc.</u>

Date:12/14/19 Page: 1_of_2 Reviewer:_DTH 2nd Reviewer:_____

METHOD: Lead (EPA SW 846 Method 6020B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AA	
11.	ICP/MS Tune	N	
Ш.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	ANI	RB=16
VII.	Matrix Spike/Matrix Spike Duplicates	Ϋ́Α	
VIII.	Duplicate sample analysis	Ň	
IX.	Serial Dilution	2	
Х.	Laboratory control samples	A	Las
XI.	Field Duplicates	ND	(14,15)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
xiv	Overall Assessment of Data	Ą	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-112019	911310-01	Water	11/20/19
2	MW-2-112019	911310-02	Water	11/20/19
3	MW-6-112019	911310-03	Water	11/20/19
4	رم MW-7-11 2 019	911310-04	Water	11/20/19
5	MW-9-112019	911310-05	Water	11/20/19
5	MW-10-112019	911310-06	Water	11/20/19
	رم MW-11-11 2 019	911310-07	Water	11/20/19
	MW-12-112019	911310-08	Water	11/20/19
	MW-13-112019	911310-09	Water	11/20/19
0	MW-14-112019	911310-10	Water	11/20/19
1	رم MW-16-112019	911310-11	Water	11/20/19
2	م MW-17-112019	911310-12	Water	11/20/19
3	MW-18-112019	911310-13	Water	11/20/19
4	MW-19-112019	911310-14	Water	11/20/19
5	DUP-01-112019	911310-15	Water	11/20/19

LDC #:_46741A4a	VALIDATION COMPLETENESS WORKSHEET	Date: 12/16/19
SDG #: 911310	Level II	Page: 2of 2
Laboratory: Friedman & Bruya	, <u>Inc.</u>	Reviewer: DIM
		2nd Reviewer
METHOD, Lood (EDA SIM 944	R Mothod 6020P)	\mathcal{O}

METHOD: Lead (EPA SW 846 Method 6020B)

16	Rinseblank	911310-16	Water	11/20/19
17	MW-1-112019MS	911310-01MS	Water	11/20/19
18	MW-1-112019MSD	911310-01MSD	Water	11/20/19
19				
20				
21				
Vote	s:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	January 3, 2020
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 911310

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-112019	911310-01	Water	11/20/19
MW-2-112019	911310-02	Water	11/20/19
MW-6-112019	911310-03	Water	11/20/19
MW-7-111919	911310-04	Water	11/19/19
MW-9-112019	911310-05	Water	11/20/19
MW-10-112019	911310-06	Water	11/20/19
MW-11-111919	911310-07	Water	11/19/19
MW-12-112019	911310-08	Water	11/20/19
MW-13-112019	911310-09	Water	11/20/19
MW-14-112019	911310-10	Water	11/20/19
MW-16-111919	911310-11	Water	11/19/19
MW-17-111919	911310-12	Water	11/19/19
MW-18-111919	911310-13	Water	11/19/19
MW-19-112019	911310-14	Water	11/20/19
DUP-01-112019	911310-15	Water	11/20/19
Rinseblank-112019	911310-16	Water	11/20/19
Trip blank	911310-17	Water	11/20/19
MW-6-112019DUP	911310-03DUP	Water	11/20/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

h

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip blank was identified as a trip blank. No contaminants were found.

Sample Rinseblank-112019 was identified as a rinse blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\R) were within QC limits.

IX. Field Duplicates

Samples MW-19-112019 and DUP-01-112019 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

ALIDATION COMPI	ETENESS	WORKSHEET
-----------------	---------	-----------

Level II

LDC #: <u>46741A7</u> **VA** SDG #: <u>911310</u> Laboratory: <u>Friedman & Bruya, Inc.</u>

Date: <u>12/28/</u>L1 Page:_lof_2 Reviewer:_____ 2nd Reviewer:_____

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
١١.	Initial calibration/ICV	N/N_	
Ш.	Continuing calib r ation	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	PB = 16 $TB = 17$
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N/A	(18-pp
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	ND	D = 15 + 14
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-112019	911310-01	Water	11/20/19
2	MW-2-112019	911310-02	Water	11/20/19
3	MW-6-112019	911310-03	Water	11/20/19
4	L 1 MW-7-11 20 19	911310-04	Water	(1 11/20/19
5	MW-9-112019	911310-05	Water	11/20/19
6	MW-10-112019	911310-06	Water	11/20/19
7	19 MW-11-11 2 019	911310-07	Water	i 1 11/ 2 0/19
8	MW-12-112019	911310-08	Water	11/20/19
9	MW-13-112019	911310-09	Water	11/20/19
10	MW-14-112019	911310-10	Water	11/20/19
11	l9 MW-16-112019	911310-11	Water	11/20/19
12	MW-17-112019	911310-12	Water	رم 11/20/19
13	и МW-18-112019	911310-13	Water	11/2/07 11/2 /07 19
14	MW-19-112019	911310-14	Water	11/20/19
15	DUP-01-112019	911310-15	Water	11/20/19
16	Rinseblank - 1120 19	911310-16	Water	11/20/19
17	Trip blank	911310-17	Water	11/20/19

LDC #: <u>46741A7</u>	VALIDATION COMPLETENESS WORKSHEET	
SDG #:_911310	Level II	
Laboratory: Friedman & Bruya,	Inc.	

Date: <u>المحكوم المع</u> Page: <u>ح</u>of <u>ح</u> Reviewer: <u>ح</u> 2nd Reviewer: <u>ح</u>

METHOD: GC TPH as Gasoline (NWTPH-Gx)

18	MW-6-112019DUP	911310-03DUP	Water	11/20/19
19				
20				
21				
Note	S:			
	09-2735 MB			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	January 3, 2020
Parameters:	Total Petroleum Hydrocarbons as Diesel
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 911310

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-112019	911310-01	Water	11/20/19
MW-2-112019	911310-02	Water	11/20/19
MW-6-112019	911310-03	Water	11/20/19
MW-7-111919	911310-04	Water	11/19/19
MW-9-112019	911310-05	Water	11/20/19
MW-10-112019	911310-06	Water	11/20/19
MW-11-111919	911310-07	Water	11/19/19
MW-12-112019	911310-08	Water	11/20/19
MW-13-112019	911310-09	Water	11/20/19
MW-14-112019	911310-10	Water	11/20/19
MW-16-111919	911310-11	Water	11/19/19
MW-17-111919	911310-12	Water	11/19/19
MW-18-111919	911310-13	Water	11/19/19
MW-19-112019	911310-14	Water	11/20/19
DUP-01-112019	911310-15	Water	11/20/19
Rinseblank-112019	911310-16	Water	11/20/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Rinseblank-112019 was identified as a rinse blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples MW-19-112019 and DUP-01-112019 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel - Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel - Laboratory Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel - Field Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

LDC #: 46741A8	VALIDATION COMPLETENESS WORKSHEET	Date: 12/28/4
SDG #: 911310	Level II	Page: <u>l</u> of <u>}</u>
Laboratory: Friedman & Bruya,	Inc.	Reviewer: <u></u>

2nd Reviewer:

METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A,A	
Ш.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	PB = 16
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	LCS/D
IX.	Field duplicates	ND	D = 15 + 14
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XIL	Overall assessment of data	I A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-112019	911310-01	Water	11/20/19
2	MW-2-112019	911310-02	Water	11/20/19
3	MW-6-112019	911310-03	Water	11/20/19
4	MW-7-112019	911310-04	Water	្រ 11/ 20 /19
5	MW-9-112019	911310-05	Water	11/20/19
6	MW-10-112019	911310-06	Water	11/20/19
7	رم MW-11-112019	911310-07	Water	/ f 11/ 20/ 19
8	MW-12-112019	911310-08	Water	11/20/19
9	MW-13-112019	911310-09	Water	11/20/19
10	MW-14-112019	911310-10	Water	11/20/19
11_	l9 MW-16-112019	911310-11	Water	/1 11/20/19
12	MW-17-112019	911310-12	Water	11/20 /19
13	MW-18-11 20 19	911310-13	Water	11/20/19
14	MW-19-112019	911310-14	Water	11/20/19
15	DUP-01-112019	911310-15	Water	11/20/19
16	Rinseblank-112a9	911310-16	Water	11/20/19
17				

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com December 31, 2020

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on December 4, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49889:

<u>SDG #</u>	<u>Fraction</u>
011185, 011339	Volatiles, Total Petroleum Hydrocarbons as Gasoline, Total
011403	Petroleum Hydrocarbons as Extractables

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4; October 2014
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

heisting Rink

Christina Rink crink@lab-data.com Project Manager/Senior Chemist

0	123 pages-EM													At	tach	men	nt 1																				
	Stage 2A EDD	I			LI	DC	#49	988	9 (Asp	bec.	t Co	ons	sult	ing	, LI	LC	- S	eat	tle,	W	A / .	Alo	ha	Ca	fe)											
LDC	SDG#	DATE REC'D	(3) DATE DUE	(0 V0 (826	6) DA 50D)	(* V0 (826	1) DA 50D)	TPI (NW -G	H-G TPH ix)	TPI (NW -D	H-E TPH vx)	BT (802	EX 21B)																								
Matri	x: Water/Soil			W	s	W	s	W	s	W	s	W	s	W	S	W	S	W	S	W	s	W	S	W	S	W	S	W	s	W	S	W	s	W	S	W	S
А	011185	12/04/20	12/29/20	-	-	0	3	0	3	0	3	0	3																								
В	011339	12/04/20	12/29/20	30	0	-	-	28	0	27	0	-	-																								
С	011403	12/04/20	12/29/20	1	0	-	-	1	0	1	0	-	-																								
																																				\square	
-																																			\vdash		
																																			\vdash	\vdash	\square
																																			\vdash	\square	\square
																																				<u> </u>	
																																		\vdash	\vdash	<u> </u>	\vdash
																																		\vdash	\vdash	<u> </u> '	\vdash
																																		\vdash	\vdash	┣—'	\vdash
																																		\vdash	\vdash	┣—'	\vdash
																																			┝──┘	<u> </u>	\vdash
																																			┢──┤	<u> </u> '	\vdash
																																			\vdash	<u> </u> '	\vdash
																																			┢──┤	<u> </u> '	\vdash
																																			┢──┤	<u> </u> '	┢──┤
																																			┢──┦	┣━╹	+
																																			┟──┤	┝──╵	┨──┦
																																			┟──┤	┝──╵	┨──┦
																																		┝─┤	┢──┤	┢──┙	┟──┤
																																			┢━━┩		
																																					+
																																					+
																																					+
																																					┢─┤
																																					┟─┤
																																					┢──┤
																																					┢╌┦
Total	J/CR			31	0	0	3	29	3	28	3	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: December 29, 2020

Parameters: Naphthalene

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011185

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-05-1.25	011185-01	Soil	11/10/20
GP-05-6	011185-02	Soil	11/10/20
GP-06-2.5	011185-03	Soil	11/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Naphthalene - Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café Naphthalene - Laboratory Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café Naphthalene - Field Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

LDC #:_	49889A1a	VALIDATION COMPLETENESS WORKSHEET
SDG #:	011185	Level II
Laborato	ry: Friedman & Bruya,	Inc.

Date: <u>V</u>	18hs
Page:	(of)
Reviewer:	UT.
2nd Reviewer: 1	XIL

METHOD: GC Naphthalene (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
П.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	2	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	2	Non aient
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	2	
X .	Compound quantitation RL/LOQ/LODs	N	Dry wright basis=1-3
XI.	Target compound identification	N	
	Overall assessment of data	<u> </u>	

Note:

F

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

7

OTHER:	
--------	--

	Client ID	 		Lab ID	N	Aatrix	Date
1	GP-05-1.25	 	 	011185-01	s	Soil	11/10/20
2	GP-05-6	 	 	011185-02	5	Soil	11/10/20
3 *	GP-06-2.5	 		011185-03		Soil	11/10/20
4		 	 				
5		 					
6		 					
7		 	 				
8		 					
9							
10		 					
11		 	 				
12	l		 				
Notes:		 	 	 			
(00-2668 MB						
2	00-2697 MB						

* Collection time discrepancy COC 12:26 vs EDO 09:36

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	December 29, 2020
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011185

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-05-1.25	011185-01	Soil	11/10/20
GP-05-6	011185-02	Soil	11/10/20
GP-06-2.5	011185-03	Soil	11/10/20
GP-05-1.25DUP	011185-01DUP	Soil	11/10/20
Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: 2/2/2 Page: _ of _ Reviewer: _____ 2nd Reviewer: _____

Laboratory: Friedman & Bruya, Inc.

LDC #: 49889A7

SDG #: 011185

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
.	Initial calibration/ICV	N/N	
.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks		
VI.	Surrogate spikes	k	
VII.	Matrix spike/Matrix spike duplicates	NA	(પ)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	2	
Х.	Compound quantitation RL/LOQ/LODs	N	Dwy weight basis = 1-3
XI.	Target compound identification	<u>N</u>	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

-1

OTHER:

	Client ID				 Lab ID	Matrix	Date
1	GP-05-1.25				 011185-01	Soil	11/17/20
2	GP-05-6				011185-02	Soil	نه 11/1 7 /20
3 *	GP-06-2.5				 011185-03	Soil	1 1/1 /1 /20
4	GP-05-1.25DUP				011185-01DUP	Soil	11/17/20
5							
6							
7							
8							
9							
10							
11							
12							
Votes							
1	00-24 R-MB						
2	90-2419 MB2						
\square	······································						
* Cate	otion time discrepancy	COC 12:	20 VS EDI	0 09:35			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name	Aloha Café

LDC Report Date: December 29, 2020

Parameters:Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011185

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-05-1.25	011185-01	Soil	11/10/20
GP-05-6	011185-02	Soil	11/10/20
GP-06-2.5	011185-03	Soil	11/10/20
GP-05-6MS	011185-02MS	Soil	11/10/20
GP-05-6MSD	011185-02MSD	Soil	11/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 011185

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

VALIDATION	COMPLETENESS	WORKSHEET
------------	--------------	-----------

Level II

SDG #: 011185 Laboratory: <u>Friedman & Bruya, Inc.</u>

LDC #: <u>49889A8</u>

METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
н.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	AN	(4,5) Non Client (4,5)
VIII.	Laboratory control samples	A	Las
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis= 1-3
<u></u>	Target compound identification	N	
	Overall assessment of data	<u> </u>	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID				Lab ID	Ν	latrix	Date
1	GP-05-1.25				011185-01	s	Soil	11/1 / /20
2	GP-05-6				011185-02	5	Soil	11/17/20
3 *	GP-06-2.5				011185-03	5	Soil	11/1/7/20
4	GP-05-6MS				011185-02MS	5	Soil	11/17/20
5	GP-05-6MSD	 			011185-02MSD	5	Soil	11/1 7 /20
6								
7								
8							- <u></u>	
9								
10			······					
11								
12								
Notes								
1	10-2494-MB							
2	00-2532 MB							
								-

* Collection time discrepancy coc 12:26 V5 1500 09:30

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

- LDC Report Date: December 29, 2020
- Parameters: Volatiles
- Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011185

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-05-1.25	011185-01	Soil	11/10/20
GP-05-6	011185-02	Soil	11/10/20
GP-06-2.5	011185-03	Soil	11/10/20
GP-05-1.25DUP	011185-01DUP	Soil	11/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8021B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: <u>[428/æ</u> Page:__lof_] Reviewer:______ 2nd Reviewer:_<u>_</u>////___

Laboratory: Friedman & Bruya, Inc.

LDC #: 49889A23

SDG #: 011185

METHOD: GC Volatiles (BTEX) (EPA SW 846 Method 8021B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	Initial calibration/ICV	N/N	
Ш.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks		
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	NA	(u)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	any weight basis = 1-3
XI.	Target compound identification	N	
	Overall assessment of data	LA_	
Note:	A = Acceptable ND = No	o compounds	detected D = Duplicate SB=Source blank

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	GP-05-1.25		011185-01	Soil	11/17/20
2	GP-05-6		 011185-02	Soil	11/12/20
3 *	GP-06-2.5		 011185-03	Soil	io 11/1 7 /20
4	GP-05-1.25DUP		011185-01DUP	Soil	11/1/20
5					
6					
7					
8 .					
9		- <u></u>			
10					
11			-		
12					
Notes:					
\Box	00-2413 MB				
2	W-2419 MB2				

* collection time discrepancy cocl2:20 vs EDD 09:36

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	Aloha	Café
	Hame.	7.010	ouic

LDC Report Date:	December 29, 2020
------------------	-------------------

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011339

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-1-111820	011339-01	Water	11/18/20
MW-2-111720	011339-02	Water	11/17/20
MVV-6-111620	011339-03	Water	11/16/20
MVV-7-111720	011339-04	Water	11/17/20
MVV-9-111620	011339-05	Water	11/16/20
MW-10-111720	011339-06	Water	11/17/20
MW-10-111720DL	011339-06DL	Water	11/17/20
MW-11-111720	011339-07	Water	11/17/20
MW-12-111620	011339-08	Water	11/16/20
MW-13-111720	011339-09	Water	11/17/20
MW-14-111820	011339-10	Water	11/18/20
MW-14-111820DL	011339-10DL	Water	11/18/20
MW-16-111620	011339-11	Water	11/16/20
MW-17-111620	011339-12	Water	11/16/20
MW-18-111620	011339-13	Water	11/16/20
MW-19-111720	011339-14	Water	11/17/20
MW-20-111720	011339-15	Water	11/17/20
MW-21-111720	011339-16	Water	11/17/20
MW-22-111620	011339-17	Water	11/16/20
MW-23-111820	011339-18	Water	11/18/20
MW-24-111720	011339-19	Water	11/17/20
MW-25-111620	011339-20	Water	11/16/20
MW-26-111620	011339-21	Water	11/16/20
CMW-1-111720	011339-22	Water	11/17/20
CMW-4-111720	011339-23	Water	11/17/20
DUP-01-111620	011339-24	Water	11/16/20

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
DUP-02-111720	011339-25	Water	11/17/20
RB-01-111720	011339-26	Water	11/17/20
RB-02-111820	011339-27	Water	11/18/20
Trip Blank	011339-28	Water	11/17/20
MW-24-111720MS	011339-19MS	Water	11/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C*, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

Samples RB-01-111720 and RB-02-111820 were identified as rinsate blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-10-111720 and DUP-02-111720, samples MW-10-111720DL and DUP-02-111720, and samples MW-18-111620 and DUP-01-111620 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)				
Compound	MW-10-111720	DUP-02-111720	RPD (Limits)	Difference (Limits)	
Toluene	31	32	-	1 (≤35)	
Ethylbenzene	630	710	12 (≤35)	-	
m,p-Xylene	620	690	11 (≤35)	-	
Naphthalene	220	200	-	20 (≤100)	

	Concentration (ug/L)				
Compound	MW-10-111720DL	DUP-02-111720	RPD (Limits)	Difference (Limits)	
Benzene	1800	1800	0 (≤35)	-	

	Concentration (ug/L)				
Compound	MW-18-111620	DUP-01-111620	RPD (Limits)	Difference (Limits)	
Benzene	61	83	31 (≤35)	-	
Toluene	1U	1.3	-	0.3 (≤2)	
Ethylbenzene	2.1	3.3	-	1.2 (≤2)	
m,p-Xylene	9.8	15	-	5.2 (≤4)	
o-Xylene	2.1	2.9	-	0.8 (≤2)	
Naphthalene	2.4	3.0	_	0.6 (≤2)	

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
MW-10-111720 MW-14-111820	Benzene	Results exceeded calibration range.	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011339

Sample	Compound	Flag	A or P	Reason
MW-10-111720 MW-14-111820	Benzene	DNR	-	Overall assessment of data

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

Date:12/05/20 Page:__lot Reviewer: 6 2nd Reviewer:_

Laboratory: Friedman & Bruya, Inc.

LDC #: 49889B1a

SDG #: 011339

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
11.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	M	RB=28,29 TB=30
VII.	Surrogate spikes	\star	
VIII.	Matrix spike/Matrix spike duplicates	A	(31) - Mg only
IX.	Laboratory control samples	A	LOSID
Х.	Field duplicates	Św	D = 15 + 26, $6 + 27$, $7 + 27$
XI.	Internal standards	N	,
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW_	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-111820	011339-01	Water	11/18/20
2	MW-2-111720	011339-02	Water	11/17/20
3	MW-6-111620	011339-03	Water	11/16/20
4	MW-7-111720	011339-04	Water	11/17/20
5	MW-9-111620	011339-05	Water	11/16/20
6	MW-10-111720	011339-06	Water	11/17/20
7	MW-10-111720BE DL P2	011339-06BEDL	Water	11/17/20
8	MW-11-111720	011339-07	Water	11/17/20
9	MW-12-111620	011339-08	Water	11/16/20
10	MW-13-111720	011339-09	Water	11/17/20
11	MW-14-111820	011339-10	Water	11/18/20
12	MW-14-111820BE()し	011339-10BE DL	Water	11/18/20
13	MW-16-111620	011339-11	Water	11/16/20
14	MW-17-111620	011339-12	Water	11/16/20

17.5% V 00C 12:15 VS ょ

**

LDC #: 49889B1a VALIDATION COMPLETENESS WORKSHEET

Level II

Laboratory: Friedman & Bruya, Inc.

SDG #: 011339

Date: <u>Pt%/></u> Page:_1of_ Reviewer:_____ 2nd Reviewer:______

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

15	MW-18-111620 P	011339-13	Water	11/16/20
16	MW-19-111720	011339-14	Water	11/17/20
17	MW-20-111720	011339-15	Water	11/17/20
18	MW-21-111720	011339-16	Water	11/17/20
19	MW-22-111620	011339-17	Water	11/16/20
20	MW-23-111820	011339-18	Water	11/18/20
21	MW-24-111720	011339-19	Water	11/17/20
22	MW-25-111620	011339-20	Water	11/16/20
23	MW-26-111620	011339-21	Water	11/16/20
24	CMW-1-111720	011339-22	Water	11/17/20
25	CMW-4-111720	011339-23	Water	11/17/20
26	DUP-01-1116260 111620	011339-24	Water	11/16/20
27_	DUP-02-111720	011339-25	Water	11/17/20
28*	RB-01-111720	011339-26	Water	11/17/20
** 29	RB-02-111820	011339-27	Water	18 11/1 7 /20
30	Trip Blank	011339-28	Water	11/17/20
31	MW-24-111720MS	011339-19MS	Water	11/17/20
32_				
33				
34				
Notes				
1	00-2696 MB			
2	00-2545 V			

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:<u>49889B1a</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT</u>___

1

METHOD: GC/MS VOA (EPA SW846 Method 8260D)

	Concentration (ug/L)				
Compound	6	27	RPD (≤35)	Diff	Diff Limit
сс	31	32		1	(≤35)
EE	630	710	12		
RRR	620	690	11		
MMM	220	200		20	(≤100)

	Concentration (ug/L)				
Compound	7	27	RPD (≤35)		Diff Limit
v	1800	1800	0		

	Concentration (ug/L)						
Compound	15	26	RPD (≤35)	Diff	Diff Limit	Q	
V	61	83	31				
сс	1U	1.3		0.3	(≤2)		
EE	2.1	3.3		1.2	(≤2)		
RRR	9.8	15		5.2	(≤4)	-J#A E	ETS-
SSS	2.1	2.9		0.8	(≤2)		
MMM	2.4	3.0		0.6	(≤2)		

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u>of <u>1</u> Reviewer: <u>LT</u>

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes<u>x</u> No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		6,11	V	exceed calibration range	DNR
-					
	· · · · · · · · · · · · · · · · · · ·				
			``		

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	December 29, 2020
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011339

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-1-111820	011339-01	Water	11/18/20
MW-2-111720	011339-02	Water	11/17/20
MVV-6-111620	011339-03	Water	11/16/20
MW-7-111720	011339-04	Water	11/17/20
MW-9-111620	011339-05	Water	11/16/20
MVV-10-111720	011339-06	Water	11/17/20
MW-11-111720	011339-07	Water	11/17/20
MW-12-111620	011339-08	Water	11/16/20
MW-13-111720	011339-09	Water	11/17/20
MW-14-111820	011339-10	Water	11/18/20
MW-16-111620	011339-11	Water	11/16/20
MW-17-111620	011339-12	Water	11/16/20
MW-18-111620	011339-13	Water	11/16/20
MW-19-111720	011339-14	Water	11/17/20
MW-20-111720	011339-15	Water	11/17/20
MW-21-111720	011339-16	Water	11/17/20
MW-22-111620	011339-17	Water	11/16/20
MW-23-111820	011339-18	Water	11/18/20
MW-24-111720	011339-19	Water	11/17/20
MW-25-111620	011339-20	Water	11/16/20
MW-26-111620	011339-21	Water	11/16/20
CMW-1-111720	011339-22	Water	11/17/20
CMW-4-111720	011339-23	Water	11/17/20
DUP-01-111620	011339-24	Water	11/16/20
DUP-02-111720	011339-25	Water	11/17/20
RB-01-111720	011339-26	Water	11/17/20

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
RB-02-111820	011339-27	Water	11/18/20
Trip Blank	011339-28	Water	11/17/20
MW-16-111620DUP	011339-11DUP	Water	11/16/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.
The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a rinsate. No contaminants were found.

Samples RB-01-111720 and RB-02-111820 were identified as rinsate blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-10-111720 and DUP-02-111720 and samples MW-18-111620 and DUP-01-111620 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/L)		
Compound	MW-10-111720	DUP-02-111720	RPD (Limits)	Difference (Limits)
Gasoline range	12000	13000	8 (≤35)	-

	Concentra	ition (ug/L)		
Compound	MW-18-111620	DUP-01-111620	RPD (Limits)	Difference (Limits)
Gasoline range	340	370	-	30 (≤200)

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: <u>pra/a/2</u> Page: <u>0</u>f2 Reviewer: 6 2nd Reviewer: ////

Laboratory: Friedman & Bruya, Inc.

LDC #: 49889B7

SDG #: 011339

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
п.	Initial calibration/ICV	N/N	
Ш.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	PB = 24, 24 $TB = 28$
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N/A	(29)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	SN/	D = [3+24], 6+25
Х.	Compound quantitation RL/LOQ/LODs	N	1
XI.	Target compound identification	N	
XII	Overall assessment of data	A_	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

O O

Client ID Lab ID Matrix Date 1 MW-1-111820 011339-01 Water 11/18/20 MW-2-111720 011339-02 Water 11/17/20 2 3 MW-6-111620 011339-03 Water 11/16/20 MW-7-111720 4 011339-04 Water 11/17/20 Water 011339-05 5 MW-9-111620 11/16/20 6 MW-10-111720 D2 011339-06 Water 11/17/20 7 MW-11-111720 011339-07 Water 11/17/20 8 MW-12-111620 011339-08 Water 11/16/20 9 MW-13-111720 011339-09 Water 11/17/20 10 MW-14-111820 011339-10 Water 11/18/20 11 MW-16-111620 011339-11 Water 11/16/20 12 MW-17-111620 011339-12 Water 11/16/20 DI 011339-13 13 MW-18-111620 Water 11/16/20 14 MW-19-111720 011339-14 Water 11/17/20 15 MW-20-111720 011339-15 Water 11/17/20 16 MW-21-111720 011339-16 Water 11/17/20 17 MW-22-111620 011339-17 Water 11/16/20 collection time discrepancy 606 14:55 5 ED 0 00:00 ¥

L COC 12:05 VS L

_____VALIDATION COMPLETENESS WORKSHEET

Level II

SDG #: 011339 Laboratory: Friedman & Bruya, Inc.

LDC #: 49889B7

Date: 1/1/1/20 Page: 20f2 Reviewer: 5 2nd Reviewer: 5

METHOD: GC TPH as Gasoline (NWTPH-Gx)

18	MW-23-111820			011339-18	Water	11/18/20
19	MW-24-111720	 		011339-19	Water	11/17/20
20	MW-25-111620	 		011339-20	Water	11/16/20
21	MW-26-111620	 		011339-21	Water	11/16/20
22	CMW-1-111720	 		011339-22	Water	11/17/20
23	CMW-4-111720	 		011339-23	Water	11/17/20
24	DUP-01-1116260	 	D1_	011339-24	Water	11/16/20
25	DUP-02-111720	 ана и стана и с	P2	011339-25	Water	11/17/20
26 *	RB-01-111720			011339-26	Water	11/17/20
** 27	RB-02-111820			011339-27	Water	11/1/20
28	Trip Blank			011339-28	Water	11/17/20
29	MW-16-111620DUP	 		011339-11DUP	Water	11/16/20
30		 				
31		 				
32		 				
Notes						
1	00-2424 MB	 		· · · · · · · · · · · · · · · · · · ·		
2	00 - 2426 L					

LDC#:<u>49889B7</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT</u>___

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Concent	ration (ug/L)		
Compound	6	25	RPD (≤35)	Diff
Gasoline Range	12000	13000	8	

	Concent	ration (ug/L)		
Compound	13 24		RPD	Diff (≤200)
Gasoline Range	340	370		30

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	December 29, 2020
Parameters:	Total Petroleum Hydrocarbons as Extractables
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011339

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-111820	011339-01	Water	11/18/20
MW-2-111720	011339-02	Water	11/17/20
MW-6-111620	011339-03	Water	11/16/20
MW-7-111720	011339-04	Water	11/17/20
MW-9-111620	011339-05	Water	11/16/20
MW-10-111720	011339-06	Water	11/17/20
MW-11-111720	011339-07	Water	11/17/20
MW-12-111620	011339-08	Water	11/16/20
MW-13-111720	011339-09	Water	11/17/20
MW-14-111820	011339-10	Water	11/18/20
MW-16-111620	011339-11	Water	11/16/20
MW-17-111620	011339-12	Water	11/16/20
MW-18-111620	011339-13	Water	11/16/20
MVV-19-111720	011339-14	Water	11/17/20
MW-20-111720	011339-15	Water	11/17/20
MW-21-111720	011339-16	Water	11/17/20
MW-22-111620	011339-17	Water	11/16/20
MW-23-111820	011339-18	Water	11/18/20
MVV-24-111720	011339-19	Water	11/17/20
MW-25-111620	011339-20	Water	11/16/20
MW-26-111620	011339-21	Water	11/16/20
CMW-1-111720	011339-22	Water	11/17/20
CMW-4-111720	011339-23	Water	11/17/20
DUP-01-111620	011339-24	Water	11/16/20
DUP-02-111720	011339-25	Water	11/17/20
RB-01-111720	011339-26	Water	11/17/20
RB-02-111820	011339-27	Water	11/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples RB-01-111720 and RB-02-111820 were identified as rinsate blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples MW-10-111720 and DUP-02-111720 and samples MW-18-111620 and DUP-01-111620 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentratio			
Compound	MW-10-111720	DUP-02-111720	RPD (Limits)	Difference (Limits)
Diesel range (C10-C25)	1400	1700	19 (≤35)	-
Motor oil range (C25-C36)	250U	280	-	30 (≤500)

	Concentratio			
Compound	MW-18-111620	DUP-01-111620	RPD (Limits)	Difference (Limits)
Diesel range (C10-C25)	59	59	-	0 (≤100)

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: phone Page: 1 of Reviewer: 2nd Reviewer:_////

SDG #: 011339 Laboratory: Friedman & Bruya, Inc. TPHE METHOD: GC TPH as Diesel (NWTPH-Dx)

LDC #: 49889B8

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area **Comments** A, A Sample receipt/Technical holding times ١. П. Initial calibration/ICV N/N III. Continuing calibration Ν IV. Laboratory Blanks N) RB= 26,27 Field blanks V. A VI. Surrogate spikes N VII. Matrix spike/Matrix spike duplicates LCSID K VIII Laboratory control samples 13+24 GN D =6+25 IX. Field duplicates Compound quantitation RL/LOQ/LODs Х. Ν XI. Target compound identification Ν A XII Overall assessment of data Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-111820	011339-01	Water	11/18/20
2	MW-2-111720	011339-02	Water	11/17/20
3	MW-6-111620	011339-03	Water	11/16/20
4	MW-7-111720	011339-04	Water	11/17/20
5	MW-9-111620	011339-05	Water	11/16/20
6	MW-10-111720	011339-06	Water	11/17/20
7	MW-11-111720	011339-07	Water	11/17/20
8	MW-12-111620	011339-08	Water	11/16/20
9	MW-13-111720	011339-09	Water	11/17/20
10	MW-14-111820	011339-10	Water	11/18/20
11	MW-16-111620	011339-11	Water	11/16/20
12	MW-17-111620	011339-12	Water	11/16/20
13	MW-18-111620 D	011339-13	Water	11/16/20
14	MW-19-111720	011339-14	Water	11/17/20
15	MW-20-111720	011339-15	Water	11/17/20
16	MW-21-111720	011339-16	Water	11/17/20
17 (all	MW-22-111620	011339-17	Water	11/16/20

WC 12:15 VS V L

VALIDATION COMPLETENESS WORKSHEET

Level II

SDG #:<u>011339</u> Laboratory: <u>Friedman & Bruya, Inc.</u>

LDC #: 49889B8

Date: 1486 Page: 20f 2 Reviewer: 15 2nd Reviewer: 15

METHOD: GC TPH as Diesel (NWTPH-Dx)

18	MW-23-111820	0113 <u>39-1</u> 8	Water	11/18/20
19	MW-24-111720	011339-19	Water	11/17/20
20	MW-25-111620	011339-20	Water	11/16/20
21	MW-26-111620	011339-21	Water	11/16/20
22	CMW-1-111720	011339-22	Water	11/17/20
23	CMW-4-111720	011339-23	Water	11/17/20
24	DUP-01-1116260	011339-24	Water	11/16/20
25	DUP-02-111720	011339-25	Water	11/17/20
26 *	RB-01-111720	011339-26	Water	11/17/20
** 27	RB-02-111820	011339-27	Water	11/1 7 /20
28				
29				
30				
Notes				
1	00-2573-MB			
2	10-2542 J			

LDC#:<u>49889B8</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT</u>___

METHOD: GC TPHE (NWTPH-Dx)

	Concentr			
Compound	6	25	RPD (≤35)	Diff (≤500)
Diesel Range (C10-C25)	1400	1700	19	
Motor Oil Range (C25-C36)	250U	280		30

	Concen			
Compound	13	RPD (≤35)	Diff (≤100)	
Diesel Range (C10-C25)	59	59		0

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	Aloha	Café
--------------	-------	-------	------

LDC Report Date: December 29, 2020

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011403

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-27-112020	011403-01	Water	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: <u>IAR(</u> Page: <u>lof)</u> Reviewer: <u>L</u> 2nd Reviewer: <u>KK</u>

SDG #: 011403 Laboratory: Friedman & Bruya, Inc.

LDC #: 49889C1a

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>I.</u>	Sample receipt/Technical holding times	A, A	
11.	GC/MS Instrument performance check	N	
.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	\$A	
VIII.	Matrix spike/Matrix spike duplicates	N	Non client
IX.	Laboratory control samples	A,	LCSD
Х.	Field duplicates	N	
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date	
1	MW-27-112020	 		011403-01	Water	11/20/2	20
2		 	 				
3		 	 				
4		 	 				
5		 	 				
6			 				
7			 				
8							
g			 				
Notes:		 	 				
1	00-2550 MB						
		· · · · · · · · · · · · · · · · · · ·					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	December 29, 2020
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011403

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-27-112020	011403-01	Water	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

Laboratory: Friedman & Bruya, Inc.

LDC #: <u>49889C7</u> SDG #: <u>011403</u> Date: <u>1770</u> Page: <u>lof l</u> Reviewer: <u>V</u> 2nd Reviewer: <u></u>

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks		
VI.	Surrogate spikes	Á	
VII.	Matrix spike/Matrix spike duplicates	N	Non client
VIII.	Laboratory control samples	+	LCS
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data	<u> </u>	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate				
TB = Trip blank				
EB = Equipment blank				

SB=Source blank OTHER:

	Client ID	 	Lab ID	Matrix	Date
1	MW-27-112020		011403-01	Water	11/20/20
2					
3					
4					
5					
6					
7					
8					
9					
10			 		
11		 ······································			
12			· · · · · · · · · · · · · · · · · · ·		
Notes		 			
1	00-2593 MB				
		· · · · · · · · · · · · · · · · · · ·			

LDC Report# 49889C8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café

LDC Report Date: December 29, 2020

Parameters:Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011403

	Laboratory Sample	Collection	
Sample Identification	Identification	Matrix	Date
MW-27-112020	011403-01	Water	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-27-112020	ortho-Terphenyl	151 (47-140)	All compounds	NA	-

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG
VALIDATION	COMPL	ETENESS	WORKSHEET
------------	-------	----------------	-----------

Level II

SDG #:<u>011403</u> Laboratory: <u>Friedman & Bruya, Inc.</u> TPHE

TPHE METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area Comments A A, Sample receipt/Technical holding times I. N/N 11. Initial calibration/ICV III. Continuing calibration Ν A IV. Laboratory Blanks 1 V. Field blanks SN VI. Surrogate spikes N VII. Matrix spike/Matrix spike duplicates A LCS10 VIII. Laboratory control samples η IX. Field duplicates Compound quantitation RL/LOQ/LODs Ν Х. XI. Target compound identification Ν хII Overall assessment of data

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detecte R = Rinsate FB = Field blank

ed	D = Duplicate
	TB = Trip blank
	EB = Equipment blank

SB=Source blank

-			
\cap	TL	ᅳ	D.
0			n.

01112

	Client ID			Lab ID		latrix	Date
1	MW-27-112020	 		 011403-01	V	Vater	11/20/20
2							
3							
4							
5							
6							
7							
8							
9		· · · · · · · · · · · · · · · · ·					
10							
11							
12				· · · · · · · · · · · · · · · · · · ·			
Notes	\$: 						
1	00-2585 MB						

Date: <u>12+8 /20</u> Page:__lof ____ Reviewer:_____ 2nd Reviewer: ////

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page: <u>1</u> of <u>1</u> Reviewer: <u>LT</u>

METHOD: <u>X</u> GC HPLC

Are surrogates required by the method? Yes x or No____.

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y<u>x</u> N_ N/A ____ Were surrogates spiked into all samples and blanks?

Y____Nx___N/A____ Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID		Detect Colur	tor/ nn	Surrogate Compound		%R (Limits)			Qua	alifications
	1 (ND) (1X)				H		151 (47 - 140)			J	/P DETS
							<u> </u>			· · · · · · · · · · · · · · · · · · ·	
							······································				
						T					
						-					un <u>na n. </u>
					······································		······································				······································
											<u> </u>
╟─┤					·····						
		_									
	··				······································	-	in the second second second second second second second second second second second second second second second				
╟──┤					· · · · · · · · · · · · · · · · · · ·		-97. at 250 at				
						<u> </u>					
							······································				
				C.u.			Surregate Compound		Surregate Company	1	Surrogata Compound
┝──┤	Surrogate Compour	na		Surrog					Surrogate Compound	<u> </u>	Surrogate Compound
A	Chlorobenzene (CBZ)		G	0	ctacosane	M	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene		I etrachloro-m- xylene
B	4-Bromotiuorobenzene (B	F <u>B)</u>	<u> </u>	Or	no-ierphenyl				3,4-Dinitrotoluene	<u> </u>	1,2-Dinitrobenzene
	a,a,a-i muorotoluene						1 mothylpaphthalenc	1 methylapathalapa			
	1.4-Dichlorobutane		ĸ		lexacosane		Dichlorophenyl Acetic Acid (DCAA)	Ŵ	Tributyl Phosphate		
E	1.4-Difluorobenzene (DF	B)		Br	omobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com January 6, 2021

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on December 14, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49980:

SDG # Fraction

011402

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

Volatiles, Helium, Fixed Gases

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6; September 2016
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christing Rink

Christina Rink crink@lab-data.com Project Manager/Senior Chemist

	32 pages-EM													At	tach	men	nt 1																				
	Stage 2A EDD)			LI	DC	#49	998	0 (/	Asp	ec	t Co	ons	ult	ing	, Ll	LC	- S	eat	tle,	W	4 / /	Alo	ha	Ca	fe)											
LDC	SDG#	DATE REC'D	(3) DATE DUE	Vс (то	DA -15)	VC (M AF	DA IA- PH)	Hel (D1	ium 946)	Fix Ga: (3	xed ses C)																										
Matri	x: Air/Water/Soil	1		А	s	А	s	А	s	А	s	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s
А	011402	12/14/20	01/06/21	6	0	7	0	4	0	4	0																									┞	
																																			┝──┦	_	\square
																																			┝──┦	┣—	┝─┦
																																			┝──┦	┣──	┝─┦
																																			┟──┦	├──	┝─┤
																																			┢━┥	 	┝─┦
																																				\vdash	\square
																																			$\left - \right $	┣	\square
																																			┢──┦	┢	┝─┦
																																			┢──┦	┣—	┝─┦
																																			┝──┦	┣──	┝─┦
																																			┢━━┦	├──	┝─┦
																																				\square	
					<u> </u>	<u> </u>	<u> </u>	<u> </u>																<u> </u>					<u> </u>	<u> </u>	<u> </u>					\vdash	
						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>											<u> </u>	<u> </u>		<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>				\square	┣—	\square
			ļ																																┝──┦	┣—	┢─┤
																																			┢━━┦	├──	┢──┤
$\left - \right $																																			┢──┦	├──	┠─┦
\vdash																																			┢──┦	┢──	┝─┦
Total	T/CR			6	0	7	0	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:	Aloha Café
--------------------	------------

-
•

Volatiles Parameters:

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
SV-DUP-112020	011402-05	Air	11/20/20
Trip Blank	011402-06	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-05-112020 and SV-DUP-112020 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/m³)		
Compound	GP-05-112020	SV-DUP-112020	RPD (Limits)	Difference (Limits)
m,p-Xylene	37U	37	_	0 (≤75)

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 011402 Laboratory: Friedman & Bruya, Inc.

LDC #: 49980A48a

Date: 01/05/21 Page: 1_of 1 Reviewer: __LT 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA Method TO-15)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
П.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	A/A	Individually certified
VI.	Field blanks	ND	TB = 6
VII.	Surrogate spikes	А	
VIII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(7)
IX.	Laboratory control samples	A	LCS
Х.	Field duplicates	sw	D = 3 + 5
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	N	
xvi	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	GP-02-112020		011402-01	Air	11/20/20
2	GP-03-112020	 	011402-02	Air	11/20/20
3	GP-05-112020		011402-03	Air	11/20/20
4	GP-06-112020	 	011402-04	Air	11/20/20
5	SV-DUP-112020		011402-05	Air	11/20/20
6	Trip Blank		011402-06	Air	11/20/20
7	GP-02-112020DUP		011402-01DUP	Air	11/20/20
8					
Notes	<u> </u>				
1	00-2555 MB				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:49980A48a VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC/MS VOA (TO-15)

	Concentr	Concentration (ug/m3)		
Compound	3	5	RPD (≤35)	Diff (≤75)
RRR	37U	37		0

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:	Aloha Café
LDC Report Date:	January 6, 2021
Parameters:	Volatiles
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
SV-DUP-112020	011402-05	Air	11/20/20
SV-DUP-112020DL	011402-05DL	Air	11/20/20
Trip Blank	011402-06	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by MA-APH

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-05-112020 and SV-DUP-112020 and samples GP-05-112020 and SV-DUP-112020DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/m³)			
Compound	GP-05-112020	SV-DUP-112020	RPD (Limits)	Difference (Limits)	
APH EC5-8 aliphatics	22000	24000	9 (≤35)	-	
APH EC9-12 aliphatics	5000	6000	-	1000 (≤4300)	

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

All compound quantitations met validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SV-DUP-112020	APH EC5-8 aliphatics	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	A

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
SV-DUP-112020DL	APH EC5-8 aliphatics	Results from undiluted analyses were more usable.	DNR	-

Due to results exceeding the calibration range, data were qualified as estimated in one sample.

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011402

Sample	Compound	Flag	A or P	Reason
SV-DUP-112020	APH EC5-8 aliphatics	J (all detects)	A	Compound quantitation (exceeded range)
SV-DUP-112020DL	APH EC5-8 aliphatics	DNR	-	Overall assessment of data

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Laboratory: Friedman & Bruya, Inc.

.

LDC #: 49980A48b

SDG #: 011402

Date: 01/05/21 Page: 1_of 1 Reviewer: _____ 2nd Reviewer: _____

METHOD: GC/MS Volatiles (MA-APH)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11.	GC/MS Instrument performance check	N	
Ш.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	A/A	Individually certified
VI.	Field blanks	ND	TB = 7
VII.	Surrogate spikes	А	
VIII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(8)
IX.	Laboratory control samples	А	LCS
Х.	Field duplicates	sw	D = 3 + 5, 3 + 6
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	SW	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	N	
	Overall assessment of data	SW	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID				Lab ID	Matrix	Date
1	GP-02-112020				011402-01	Air	11/20/20
2	GP-03-112020				011402-02	Air	11/20/20
3	GP-05-112020			011402-03	Air	11/20/20	
4	GP-06-112020				011402-04	Air	11/20/20
5	SV-DUP-112020				011402-05	Air	11/20/20
6	SV-DUP-112020DL				011402-05DL	Air	11/20/20
7	Trip Blank				011402-06	Air	11/20/20
8	GP-02-112020DUP				011402-01DUP	Air	11/20/20
Notes	:						
1	00-2555 MB						

LDC#:<u>49980A48b</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC/MS VOA (MA-APH)

	Concentra	ntion (ug/m3)		
Compound	3	5	RPD (≤35)	Diff (≤4300)
APH EC5-8 aliphatics	22000	24000	9	
APH EC9-12 aliphatics	5000	6000		1000

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

N/A Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Compound	Finding	Associated Samples	Qualifications
		APH EC5-8 aliphatics	exceeded calibration range	5 (DET)	J/A dets
<u> </u>					

Comments: See sample calculation verification worksheet for recalculations

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u> of <u>1</u> Reviewer: <u>LT</u>

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		6	APH EC5-8 aliphatics	diluted	DNR

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: Aloha Café
- LDC Report Date: January 6, 2021
- Parameters: Helium
- Validation Level: Stage 2A
- Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Helium by American Society for Testing and Materials (ASTM) D1946

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were not required by the method.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Helium - Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Helium - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Helium - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET Stage 2A

SDG #: 011402

LDC #: 49980A50

Laboratory: Friedman & Bruya, Inc.

Date: 01/05/21 Page: 1_of 1 Reviewer: LT 2nd Reviewer:

METHOD: GC Helium (ASTM D1946)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A/A	
П.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks/Canister Blanks	A/A	Individually certified
V.	Field blanks	N	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(5)
VIII.	Laboratory control samples	N	
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data		

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date GP-02-112020 011402-01 Air 11/20/20 1 2 GP-03-112020 011402-02 Air 11/20/20 GP-05-112020 011402-03 11/20/20 3 Air 011402-04 4 GP-06-112020 Air 11/20/20 Air 5 GP-02-112020DUP 011402-01DUP 11/20/20 6 7 8 9 10 11 12 Notes: 1 MB

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	Aloha Café
--------------	-------	------------

LDC Report Date: January 6, 2021

Parameters: Fixed Gases

Validation Level: Stage 2A

Laboratory:Friedman & Bruya, Inc./Fremont Analytical

Sample Delivery Group (SDG): 011402/2011458

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01/2011458-001	Air	11/20/20
GP-03-112020	011402-02/2011458-002	Air	11/20/20
GP-05-112020	011402-03/2011458-003	Air	11/20/20
GP-06-112020	011402-04/2011458-004	Air	11/20/20
GP-02-112020DUP	011402-01/2011458-001DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Fixed Gases by Method 3C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks are not required for this method.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Fixed Gases - Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

Aloha Café Fixed Gases - Laboratory Blank Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

Aloha Café Fixed Gases - Field Blank Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG
LDC #: 49980A51

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 011402/2011458

Laboratory: Friedman & Bruya, Inc./Fremont Analytical

Date: 01/05/21 Page: 1_of 1 Reviewer: LT 2nd Reviewer:

METHOD: GC Fixed Gases (Method 3C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
١١.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	N	Tedlar bags
V.	Field blanks	N	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(5)
VIII.	Laboratory control samples	А	LCS
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data	A	

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Sub lab ID		Lab ID	N	latrix	Date
1	GP-02-112020		2011458-001		011402-01	A	\ir	11/20/20
2	GP-03-112020		2011458-002		011402-02	A	\ir	11/20/20
3	GP-05-112020		2011458-003		011402-03	A	\ir	11/20/20
4	GP-06-112020		2011458-004		011402-04	A	vir	11/20/20
5	GP-02-112020DUP	<u></u>	2011458-001DUP		011402-01DUP	A	\ir	11/20/20
6								
7								
8								
9								
10								
11								
12								
13								
Notes		_ _		 	 			

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com January 14, 2021

SUBJECT: Revised Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the revised validation reports for the fractions listed below. This SDG was received on December 14, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

• FD evaluation updated to include Benzene results.

LDC Project #49980_RV1:

SDG # Fraction

011402 Volatiles, Helium, Fixed Gases

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6; September 2016
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christing Rink

Christina Rink crink@lab-data.com Project Manager/Senior Chemist

	32 pages-EM													At	tach	men	nt 1																				
	Stage 2A EDD)			LI	DC	#49	998	0 (/	Asp	ec	t Co	ons	ult	ing	, Ll	LC	- S	eat	tle,	W	4 / /	Alo	ha	Ca	fe)											
LDC	SDG#	DATE REC'D	(3) DATE DUE	Vс (то	DA -15)	VC (M AF	DA IA- PH)	Hel (D1	ium 946)	Fix Ga: (3	ted ses C)																										
Matri	x: Air/Water/Soil	I		А	s	А	s	А	s	А	s	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s
А	011402	12/14/20	01/06/21	6	0	7	0	4	0	4	0																									┞	
																																			┝──┦	_	\square
																																			┝──┦	┣—	┝─┦
																																			┝──┦	┣──	┝─┦
																																			┟──┦	├──	┝─┤
																																			┢━┥	 	┝─┦
																																					\square
																																			$\left - \right $	┣	\square
																																			┢──┦	┢	┝─┦
																																			┢──┦	┣—	┝─┦
																																			┝──┦	┣──	┝─┦
																																			┢━━┦	├──	┝─┦
																																				\square	
					<u> </u>	<u> </u>	<u> </u>	<u> </u>																					<u> </u>							\vdash	
						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>											<u> </u>	<u> </u>		<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>				\square	┣—	\square
			ļ																																┝──┦	┣—	┢─┦
																																			┢━━┦	├──	┢──┤
$\left - \right $																																			┢──┦	├──	┠─┦
\vdash																																			┢──┦	┢──	┢─┤
Total	T/CR			6	0	7	0	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	January 14, 2021
Parameters:	Volatiles
Validation Level:	Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
SV-DUP-112020	011402-05	Air	11/20/20
Trip Blank	011402-06	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-05-112020 and SV-DUP-112020 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/m³)		
Compound	GP-05-112020	SV-DUP-112020	RPD (Limits)	Difference (Limits)
Benzene	7.1	5.8	-	1.3 (≤28)
m,p-Xylene	37U	37	-	0 (≤74)

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

LDC #: 49980A48a

SDG #: 011402

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: 01/05/21 Page: 1_of 1 Reviewer: _____ 2nd Reviewer: ______

Laboratory: Friedman & Bruya, Inc.

METHOD: GC/MS Volatiles (EPA Method TO-15)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A/A	
И.	GC/MS Instrument performance check	N	
	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	A/A	Individually certified
VI.	Field blanks	ND	TB = 6
VII.	Surrogate spikes	Α	
VIII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(7)
IX.	Laboratory control samples	Α	LCS
X.	Field duplicates	sw	D = 3 + 5
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
xv.	Leak Check Compounds	N	
XVI	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

¶	Client ID	Lab ID	Matrix	Date
1	GP-02-112020	011402-01	Air	11/20/20
2	GP-03-112020	011402-02	Air	11/20/20
3	GP-05-112020	011402-03	Air	11/20/20
4	GP-06-112020	011402-04	Air	11/20/20
5	SV-DUP-112020	011402-05	Air	11/20/20
6	Trip Blank	011402-06	Air	11/20/20
7	GP-02-112020DUP	011402-01DUP	Air	11/20/20
8		·		L
Notes				
1	00-2555 MB			_

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chiorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	11. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. Iodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:<u>49980A48a</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT</u>___

METHOD: GC/MS VOA (TO-15)

	Concentr					
Compound	3	35			Diff Limit	
V	7.1	5.8		1.3	(≤28)	
RRR	37U	37		0	<u>(</u> ≤74)	

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:	Aloha Café
LDC Report Date:	January 6, 2021
Parameters:	Volatiles
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
SV-DUP-112020	011402-05	Air	11/20/20
SV-DUP-112020DL	011402-05DL	Air	11/20/20
Trip Blank	011402-06	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by MA-APH

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-05-112020 and SV-DUP-112020 and samples GP-05-112020 and SV-DUP-112020DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/m³)		
Compound	GP-05-112020	SV-DUP-112020	RPD (Limits)	Difference (Limits)
APH EC5-8 aliphatics	22000	24000	9 (≤35)	-
APH EC9-12 aliphatics	5000	6000	-	1000 (≤4300)

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

All compound quantitations met validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SV-DUP-112020	APH EC5-8 aliphatics	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	A

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
SV-DUP-112020DL	APH EC5-8 aliphatics	Results from undiluted analyses were more usable.	DNR	-

Due to results exceeding the calibration range, data were qualified as estimated in one sample.

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011402

Sample	Compound	Flag	A or P	Reason
SV-DUP-112020	APH EC5-8 aliphatics	J (all detects)	A	Compound quantitation (exceeded range)
SV-DUP-112020DL	APH EC5-8 aliphatics	DNR	-	Overall assessment of data

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Laboratory: Friedman & Bruya, Inc.

Ĵ

LDC #: 49980A48b

SDG #: 011402

Date: 01/05/21 Page: 1 of 1 Reviewer: LT 2nd Reviewer:

METHOD: GC/MS Volatiles (MA-APH)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11.	GC/MS Instrument performance check	N	
Ш.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	A/A	Individually certified
VI.	Field blanks	ND	TB = 7
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(8)
IX.	Laboratory control samples	А	LCS
Х.	Field duplicates	sw	D = 3 + 5, 3 + 6
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	sw	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	N	
	Overall assessment of data	sw	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

					<u> </u>	
	Client ID			Lab ID	Matrix	Date
1	GP-02-112020	GP-02-112020			Air	11/20/20
2	GP-03-112020			011402-02	Air	11/20/20
3	GP-05-112020			011402-03	Air	11/20/20
4	GP-06-112020			011402-04	Air	11/20/20
5	SV-DUP-112020			011402-05	Air	11/20/20
6	SV-DUP-112020DL			011402-05DL	Air	11/20/20
7	Trip Blank			011402-06	Air	11/20/20
8	GP-02-112020DUP			011402-01DUP	Air	11/20/20
Note	5:					
1	00-2555 MB					

LDC#:<u>49980A48b</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC/MS VOA (MA-APH)

	Concentra	tion (ug/m3)		
Compound	3	5	RPD (≤35)	Diff (≤4300)
APH EC5-8 aliphatics	22000	24000	9	
APH EC9-12 aliphatics	5000	6000		1000

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

N/A Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Compound	Finding Associated Samples Qualifications		Qualifications
		APH EC5-8 aliphatics	exceeded calibration range	5 (DET)	J/A dets
<u> </u>					

Comments: See sample calculation verification worksheet for recalculations

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u>of <u>1</u> Reviewer: <u>LT</u>

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		6	APH EC5-8 aliphatics	diluted	DNR

Comments: _____

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: Aloha Café
- LDC Report Date: January 6, 2021
- Parameters: Helium
- Validation Level: Stage 2A
- Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Helium by American Society for Testing and Materials (ASTM) D1946

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were not required by the method.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Helium - Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Helium - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Helium - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

6

VALIDATION COMPLETENESS WORKSHEET Stage 2A

SDG #: 011402

LDC #: 49980A50

Laboratory: Friedman & Bruya, Inc.

Date: 01/05/21 Page: 1 of 1 Reviewer: LT 2nd Reviewer:

METHOD: GC Helium (ASTM D1946)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A/A	
١١.	Initial calibration/ICV	N/N	
	Continuing calibration	N	
IV.	Laboratory Blanks/Canister Blanks	A/A	Individually certified
V.	Field blanks	N	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(5)
VIII.	Laboratory control samples	N	
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID					Lab ID	N	latrix	Date
1	GP-02-112020	011402-01	A	\ir	11/20/20				
2	GP-03-112020	011402-02	A	vir	11/20/20				
3	GP-05-112020	011402-03	A	vir	11/20/20				
4	GP-06-112020					011402-04	A	vir	11/20/20
5	GP-02-112020DUP					011402-01DUP	A	ir	11/20/20
6									
7									
8									
9									
10									
11									
12									
Notes:									
1	MB								

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: January 6, 2021

Parameters: Fixed Gases

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc./Fremont Analytical

Sample Delivery Group (SDG): 011402/2011458

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01/2011458-001	Air	11/20/20
GP-03-112020	011402-02/2011458-002	Air	11/20/20
GP-05-112020	011402-03/2011458-003	Air	11/20/20
GP-06-112020	011402-04/2011458-004	Air	11/20/20
GP-02-112020DUP	011402-01/2011458-001DUP	Air	11/20/20

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Fixed Gases by Method 3C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks are not required for this method.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Fixed Gases - Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

Aloha Café Fixed Gases - Laboratory Blank Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

Aloha Café Fixed Gases - Field Blank Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

LDC #: 49980A51

VALIDATION COMPLETENESS WORKSHEET Stage 2A

SDG #: 011402/2011458 Laboratory: Friedman & Bruya, Inc./Fremont Analytical

METHOD: GC Fixed Gases (Method 3C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
١١.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	N	Tedlar bags
V.	Field blanks	N	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(5)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data	A	

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Sub lab ID		Lab	ID	Matrix	Date		
1	GP-02-112020	2011458-001			02-01	Air	11/20/20			
2	GP-03-112020	2011458-002			02-02	Air	11/20/20			
3	GP-05-112020		2011458-003			02-03	Air	11/20/20		
4	GP-06-112020		2011458-004			02-04	Air	11/20/20		
5	GP-02-112020DUP		2011458-001DUP		0114	02-01DUP	Air	11/20/20		
6										
7										
8										
9										
10										
11										
12										
13										
Notes:	lotes:									

Date: 01/05/21 Page: 1 of 1 Reviewer: LT 2nd Reviewer;

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com October 15, 2020

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 8, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49089:

<u>SDG #</u>

Fraction

008318/2008283Volatiles, Total Petroleum Hydrocarbons as Gasoline, Total008261Petroleum Hydrocarbons as Extractables, Helium, Fixed Gases

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4; October 2014
- USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6; September 2016
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

heisting Rink

Christina Rink crink@lab-data.com Project Manager/Senior Chemist

	92 pages-EM													At	ach	men	nt 1																				
	Stage 2A EDD				L	DC	#49	908	9 (/	Asp	ect	t Co	ons	ult	ing	, LI	LC	- S	eat	tle,	W	A /	Alo	ha	Ca	fe)											
LDC	SDG#	DATE REC'D	(3) DATE DUE	VС (ТО	DA -15)	(6 VC (826	5) DA 50D)	VC (M AP	DA A- PH)	TPI (NW -G	l-G TPH x)	TPI (NW -D	Η-E TPH x)	Heli (D19	um 146)	Fix Gas (30	ed ses C)						-		-		-		-		-		-				
Matri	x: Air/Water/Soil			А	w	А	W	А	w	А	W	А	W	А	W	А	W	А	W	W	S	W	s	W	s	w	s	W	s	W	s	W	s	W	s	W	s
А	008318/2008283	09/08/20	09/29/20	8	0	-	-	10	0	-	-	-	-	6	0	6	0																				
В	008261	09/08/20	09/29/20	-	-	0	33	-	-	0	28	0	27	-	-	-	-																	\square			\square
																																		\square			\vdash
																																		\parallel	\vdash	\vdash	\vdash
																																		\square		\vdash	┢━┥
																																					\vdash
																																		┝─┦	┢──┙	┢──┦	\vdash
																																			┢──┦		┢──┦
																																		\vdash	┢──┦	┢──┦	\vdash
																																			┝──┦	┢──┤	\square
																																			┝──┤	┢──┤	\square
																																					\square
																																					Πİ
																																					\square
																																					\square
																																		\square			\square
																																		\square			\vdash
																																		$\left - \right $	\vdash		\vdash
																													<u> </u>					\vdash	\vdash	\vdash	\square
																													<u> </u>					┝─┦	\vdash	\vdash	\vdash
																																		$\left - \right $	┢──┛		\vdash
		ļ	ļ																										-	-				$\left - \right $			\vdash
			ļ																										<u> </u>					┝─┤		┢──┤	\vdash
																																		\vdash			\vdash
Total	J/CR			8	0	0	33	10	0	0	28	0	27	6	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	118

Laboratory Data Consultants, Inc. Data Validation Report

Aloha Café
September 28, 2020

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008318

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
SVS-01-082020	008318-01	Air	08/20/20
SVS-02-082020	008318-02	Air	08/20/20
GP-01-082020	008318-03	Air	08/20/20
GP-02-082020	008318-04	Air	08/20/20
GP-03-082020	008318-05	Air	08/20/20
GP-04-082020	008318-06	Air	08/20/20
GP-DUP-082020	008318-07	Air	08/20/20
Trip Blank	008318-08	Air	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-03-082020 and GP-DUP-082020 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/m³)		
Compound	GP-03-082020	GP-DUP-082020	RPD (Limits)	Difference (Limits)
Benzene	5.7	6.4	-	0.7 (≤5.6)
Ethylbenzene	80	60	29 (≤35)	-
m,p-Xylene	300	230	26 (≤35)	-
o-Xylene	82	63	26 (≤35)	-

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 008318

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 008318

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 008318

No Sample Data Qualified in this SDG

LDC #:_	49089A48a	VALIDATION COMPLETENESS WORKSHEET
SDG #:	008318	Stage 2A
Laborato	ory: Friedman & Bruva	Inc.

METHOD: GC/MS Volatiles (EPA Method TO-15)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
<u>II.</u>	GC/MS Instrument performance check	N	
	Initial calibration/ICV	N, N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks / Cun'ist & Blanko	A/A	Individually certified
VI.	Field blanks	No	TB=-8
VII.	Surrogate spikes	A_N	
VIII.	Matrix spike/Matrix spike duplicates	N	Non Client
IX.	Laboratory control samples	A	LG
Х.	Field duplicates	52	D= 57
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
xv.	Leak Check Compounds	μ	
XVI_	Overall assessment of data	R	
Note:	A = Acceptable ND = N	o compounds	s detected D = Duplicate SB=Source blank

ND = No compounds detected	
R = Rinsate	
FB = Field blank	

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

, , , , , , , , , , , , , , , , , , ,	
N = Not provided/applicable	
SW = See worksheet	

Client ID					Lab ID	Matrix	Date
SVS-01-082020					008318-01	Air	08/20/20
SVS-02-082020					008318-02	Air	08/20/20
GP-01-082020					008318-03	Air	08/20/20
GP-02-082020					008318-04	Air	08/20/20
GP-03-082020				D	008318-05	Air	08/20/20
GP-04-082020					008318-06	Air	08/20/20
GP-DUP-082020		<u></u>		P	008318-07	Air	08/20/20
Trip Blank					008318-08	Air	08/20/20
		·····					
		<u></u>	<u> </u>	<u> </u>			
00-19137M13							
	Client ID SVS-01-082020 SVS-02-082020 GP-01-082020 GP-02-082020 GP-03-082020 GP-04-082020 GP-DUP-082020 Trip Blank	Client ID SVS-01-082020 SVS-02-082020 GP-01-082020 GP-02-082020 GP-03-082020 GP-04-082020 GP-DUP-082020 Trip Blank の り の ー 「 の り ー し 「 パリー し 「 パリー し 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	Client ID SVS-01-082020 SVS-02-082020 GP-01-082020 GP-03-082020 GP-04-082020 GP-DUP-082020 Trip Blank アリー1937 M3	Client ID SVS-01-082020 SVS-02-082020 GP-01-082020 GP-02-082020 GP-03-082020 GP-04-082020 GP-04-082020 Trip Blank	Client ID SVS-01-082020 SVS-02-082020 GP-01-082020 GP-02-082020 GP-03-082020 GP-04-082020 GP-04-082020 GP-DUP-082020 OU -1937 M/B	Client ID Lab ID SVS-01-082020 008318-01 SVS-02-082020 008318-02 GP-01-082020 008318-03 GP-02-082020 008318-04 GP-03-082020 008318-05 GP-04-082020 008318-06 GP-DUP-082020	Client ID Lab ID Matrix SVS-01-082020 008318-01 Air SVS-02-082020 008318-02 Air GP-01-082020 008318-03 Air GP-02-082020 008318-04 Air GP-02-082020 008318-05 Air GP-03-082020 008318-05 Air GP-04-082020 008318-06 Air GP-04-082020 008318-07 Air GP-DUP-082020 008318-07 Air Trip Blank 008318-08 Air U U U U DV - L٩٦٦٢ Mß U U U

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyitoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:<u>49089A48a</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT</u>____

METHOD: GC/MS VOA (TO-15)

	Concentration (ug/m3)						
Compound	5	7	RPD (≤35)	Diff (≤5.6)			
V	5.7	6.4		0.7			
EE	80	60	29				
RRR	300	230	26				
SSS	82	63	26				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 28, 2020
Parameters:	Volatiles
Validation Level:	Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008318

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SVS-01-082020	008318-01	Air	08/20/20
SVS-02-082020	008318-02	Air	08/20/20
GP-01-082020	008318-03	Air	08/20/20
GP-02-082020	008318-04	Air	08/20/20
GP-03-082020	008318-05	Air	08/20/20
GP-03-082020DL	008318-05DL	Air	08/20/20
GP-04-082020	008318-06	Air	08/20/20
GP-DUP-082020	008318-07	Air	08/20/20
GP-DUP-082020DL	008318-07DL	Air	08/20/20
Trip Blank	008318-08	Air	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by MA-APH

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
Trip Blank	08/20/20	APH EC5-8 aliphatics	390 ug/m³	SVS-01-082020 SVS-02-082020 GP-01-082020 GP-02-082020 GP-03-0820200 GP-03-082020DL GP-04-082020 GP-DUP-0820200 GP-DUP-082020DL

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-03-082020 and GP-DUP-082020 and samples GP-03-082020DL and GP-DUP-082020DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/m³)			
Compound	GP-03-082020	GP-DUP-082020	RPD (Limits)	Difference (Limits)
APH EC9-12 aliphatics	2200	2300	4 (≤35)	-
APH EC9-10 aliphatics	220	220U	-	0 (≤220)

	Concentra	Concentration (ug/m³)		
Compound	GP-03-082020DL	GP-DUP-082020DL	RPD (Limits)	Difference (Limits)
APH EC5-8 aliphatics	13000	15000	14 (≤35)	-

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
GP-03-082020 GP-DUP-082020	APH EC5-8 aliphatics	Results exceeded calibration range.	DNR	-
GP-03-082020DL GP-DUP-082020DL	APH EC9-12 aliphatics APH EC9-10 aromatics	Results from diluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 008318

Sample	Compound	Flag	A or P	Reason
GP-03-082020 GP-DUP-082020	APH EC5-8 aliphatics	DNR	-	Overall assessment of data
GP-03-082020DL GP-DUP-082020DL	APH EC9-12 aliphatics APH EC9-10 aromatics	DNR	-	Overall assessment of data

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 008318

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 008318

No Sample Data Qualified in this SDG

|--|

Stage 2A

LDC #:_	49089A48b	_ VA
SDG #:_	008318	
Laborat	ory: Friedman & Bruya	a, Inc.

Date: 9/11/6 Page: <u>(of)</u> Reviewer: <u>67</u> 2nd Reviewer:

METHOD: GC/MS Volatiles (MA-APH)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A,A	
<u> .</u>	GC/MS Instrument performance check	N	
- 111.	Initial calibration/ICV	N,N	
IV.	Continuing calibration	L L	
V.	Laboratory Blanks / CAMISTON BLAMES	A/A	Individually certified.
VI.	Field blanks	SN	TB=10
VII.	Surrogate spikes	AN	
VIII.	Matrix spike/Matrix spike duplicates	2	Non Client
IX.	Laboratory control samples	A	LOS
Х.	Field duplicates	Sa	D = 518, 619
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	Ч	
XVI	Overall assessment of data	الدى ا	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected	
R = Rinsate	
FB = Field blank	

D =	= C	Duplicate	
ΤВ	=	Trip blank	
EΒ	=	Equipment	blank

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	SVS-01-082020		008318-01	Air	08/20/20
2	SVS-02-082020		008318-02	Air	08/20/20
3	GP-01-082020		008318-03	Air	08/20/20
4	GP-02-082020		008318-04	Air	08/20/20
5	GP-03-082020	,	008318-05	Air	08/20/20
6	GP-03-082020REDL	>	008318-05BEDL	Air	08/20/20
7	GP-04-082020		008318-06	Air	08/20/20
8	GP-DUP-082020		008318-07	Air	08/20/20
9	GP-DUP-082020BE DL	ŗ	008318-07BEDL	Air	08/20/20
10	Trip Blank		008318-08	Air	08/20/20
11					
12	1. W-1933 MB				
13					

LDC #: 49089A48b

VALIDATION FINDINGS WORKSHEET

Field Blanks

TB

Page: 1_of 1_ Reviewer: LT

IN D.V.	* ())	
EDA SIAL SAC	Mathad 000	2

METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Yes x No_ N/A_ Were field blanks identified in this SDG?

Yes<u>x</u> No_ N/A_ Were target compounds detected in the field blanks?

MA-VPH

Blank units: ug/m3 Associated sample units: ug/m3

Sampling date: 08/20/20

Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other:

Associated Samples: <u>1-9 > CRQL and TB</u>

Compound	Blank ID	Sample Identification				_		
	10							
APH EC5-8 aliphatics	390							

Blank units: _____ Associated sample units: _____

Sampling date:

Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other:

Associated Samples:

Compound	Blank ID	Sample Identification						
		 	· · · · · · · · · · · · · · · · · · ·					
Methylene chloride								
Acetone								
Chloroform								
							- 10-2	
					1			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC#:<u>49089A48b</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT</u>___

METHOD: GC/MS VOA (MA-APH)

	Concent			
Compound	5	8	RPD (≤35)	Diff (≤220)
APH EC9-12 aliphatics	2200	2300	. 4	
APH EC9-10 aliphatics	220	220U		0

	Concentr	Concentration (ug/m3)		
Compound	6	9	RPD (≤35)	Diff
APH EC5-8 aliphatics	13000	15000	14	

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u>of <u>1</u> Reviewer: <u>LT</u>

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x	No	N/A	Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		5,8	APH EC5-8 aliphatics	exceed calibration range	DNR
		6,9	APH EC9-12 aliphatics and APH EC9-10 aliphatics	diluted	DNR

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: September 28, 2020

Parameters: Helium

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008318/2008283

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SVS-01-082020	008318-01/2008283-001	Air	08/20/20
SVS-02-082020	008318-02/2008283-002	Air	08/20/20
GP-01-082020	008318-03/2008283-003	Air	08/20/20
GP-02-082020	008318-04/2008283-004	Air	08/20/20
GP-03-082020	008318-05/2008283-005	Air	08/20/20
GP-04-082020	008318-06/2008283-006	Air	08/20/20
SVS-01-082020DUP	008318-01/2008283-001DUP	Air	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Helium by American Society for Testing and Materials (ASTM) D1946

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were not required by the method.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

.

Aloha Café Helium - Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

Aloha Café Helium - Laboratory Blank Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

Aloha Café Helium - Field Blank Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET Stage 2A

LDC #: <u>49089A50</u> VA SDG #: <u>008318 / 2008283</u> Laboratory: <u>Friedman & Bruya, Inc.</u>

Date: <u>٥٩/٩/م</u> Page: <u>۱</u> of <u>)</u> Reviewer: <u>۲</u> 2nd Reviewer:

METHOD: GC Helium (ASTM D1946)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comme	nts	
I.	Sample receipt/Technical holding times	A,A				
11.	Initial calibration/ICV	N/N				
	Continuing calibration	N				
IV.	Laboratory Blanks / Canistor Blang	A/A	Individual	lly certifical		
<u>v</u> .	Field blanks	N				
<u></u> VI.	Surrogate spikes	N				
<u>VII.</u>	Matrix spike/Matrix spike duplicates DVP	NA	(7)			
VIII.	Laboratory control samples	N				
IX.	Field duplicates	N			·····	
<u> </u>	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
	Overall assessment of data	<u> </u>				
Note:	A = AcceptableND = NoN = Not provided/applicableR = RingSW = See worksheetFB = Fig	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source I OTHER:	blank
	Client ID	Sul	s Lab 1D	Lab ID	Matrix	Date
1	SVS-01-082020	2008	283 -001/	008318-01	Air	08/20/20
2	SVS-02-082020		- 002 /	008318-02	Air	08/20/20
3	GP-01-082020		- 203 /	008318-03	Air	08/20/20
4	GP-02-082020		- 004 /	008318-04	Air	08/20/20
5	GP-03-082020		- 005/	008318-05	Air	08/20/20
6	GP-04-082020		- 006 /	008318-06	Air	08/20/20
7	515-01-022020 PUP	<u>\</u>	-OOIDUP	J-OIDUP		\downarrow
8						
9						
10						
11	· · · · · · · · · · · · · · · · · · ·					
12						
	AB II			T		
++ <u>+</u> '						
\vdash		<u> </u>				
\vdash						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: September 28, 2020

Parameters: Fixed Gases

Validation Level: Stage 2A

Laboratory:Friedman & Bruya, Inc./Fremont Analytical

Sample Delivery Group (SDG): 008318/2008283

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SVS-01-082020	008318-01/2008283-001	Air	08/20/20
SVS-02-082020	008318-02/2008283-002	Air	08/20/20
GP-01-082020	008318-03/2008283-003	Air	08/20/20
GP-02-082020	008318-04/2008283-004	Air	08/20/20
GP-03-082020	008318-05/2008283-005	Air	08/20/20
GP-04-082020	008318-06/2008283-006	Air	08/20/20
SVS-01-082020DUP	008318-01/2008283-001DUP	Air	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Fixed Gases by Method 3C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks are not required for this method.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Fixed Gases - Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

Aloha Café Fixed Gases - Laboratory Blank Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

Aloha Café Fixed Gases - Field Blank Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

LDC #: 49089A51

SDG #: 008318/2008283

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Laboratory: Friedman & Bruya, Inc./Fremont Analytical

METHOD: GC Fixed Gases (Method 3C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	N/N	
111.	Continuing calibration	, N,	
IV.	Laboratory Blanks	N/	Tedlar Bags
V.	Field blanks	Ń	, ,
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates	N/A	(7)
VIII.	Laboratory control samples	A	Las
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Sub	lar 10		Lab ID	Matrix	Date
1	SVS-01-082020	200	8283 -001		008318-01	Air	08/20/20
2	SVS-02-082020		-072		008318-02	Air	08/20/20
3	GP-01-082020		-103		008318-03	Air	08/20/20
4	GP-02-082020		-004		008318-04	Air	08/20/20
5	GP-03-082020		-015		008318-05	Air	08/20/20
6	GP-04-082020		-06		008318-06	Air	08/20/20
7	SVS-01-082020DUP		-0010UP		008318-01DUP	Air	08/20/20
8							
9							
10							
11				··· <u>·</u> ····			
12							
Notes:							
			<u> </u>		<u> </u>		

Date:09/19/20 Page: lof Reviewer: 2nd Reviewer:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	Aloha	Café
--------------	-------	-------	------

LDC Report Date: September 28, 2020

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008261

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-081820	008261-01	Water	08/18/20
MW-1-081820DL	008261-01DL	Water	08/18/20
MW-2-081720	008261-02	Water	08/17/20
MW-4-081820	008261-03	Water	08/18/20
MW-4-081820DL	008261-03DL	Water	08/18/20
MW-6-081720	008261-04	Water	08/17/20
MW-7-081720	008261-05	Water	08/17/20
MW-8-081820	008261-06	Water	08/18/20
MW-8-081820DL	008261-06DL	Water	08/18/20
MW-9-081820	008261-07	Water	08/18/20
MW-10-081820	008261-08	Water	08/18/20
MW-11-081720	008261-09	Water	08/17/20
MW-12-081720	008261-10	Water	08/17/20
MVV-13-081720	008261-11	Water	08/17/20
MW-14-081820	008261-12	Water	08/18/20
MW-14-081820DL	008261-12DL	Water	08/18/20
MW-16-081720	008261-13	Water	08/17/20
MW-17-081720	008261-14	Water	08/17/20
MVV-18-081820	008261-15	Water	08/18/20
MVV-19-081820	008261-16	Water	08/18/20
MW-20-081720	008261-17	Water	08/17/20
MW-21-081720	008261-18	Water	08/17/20
MW-22-081720	008261-19	Water	08/17/20
MW-23-081820	008261-20	Water	08/18/20
MW-23-081820DL	008261-20DL	Water	08/18/20
MW-24-081820	008261-21	Water	08/18/20
	Laboratory Sample		Collection
-----------------------	-------------------	--------	------------
Sample Identification	Identification	Matrix	Date
MVV-25-081820	008261-22	Water	08/18/20
MW-26-081820	008261-23	Water	08/18/20
DUP-01-081720	008261-24	Water	08/17/20
DUP-02-0819820	008261-25	Water	08/19/20
RB-01-081720	008261-26	Water	08/17/20
RB-02-081820	008261-27	Water	08/18/20
Trip Blank	008261-28	Water	08/18/20
MW-6-081720MS	008261-04MS	Water	08/17/20
MW-26-081820MS	008261-23MS	Water	08/18/20

.

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

Samples RB-01-081720 and RB-02-081820 were identified as rinsate blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-18-081820 and MW-22-081720 and samples DUP-01-081720 and DUP-02-0819820 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)				
Compound	MW-18-081820	MW-22-081720	RPD (Limits)	Difference (Limits)	
Benzene	1.2	1.2	-	0 (≤0.70)	

	Concentra	tion (ug/L)		
Compound	DUP-01-081720	DUP-02-0819820	RPD (Limits)	Difference (Limits)
Benzene	540	500	8 (≤35)	-
Toluene	56	52	7 (≤35)	-
Ethylbenzene	630	570	10 (≤35)	-
m,p-Xylene	1200	1100	9 (≤35)	-
o-Xylene	150	140	7 (≤35)	-
Naphthalene	220	200	10 (≤35)	_

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

	0	D	F 1	
Sample	Compound	Reason	Flag	A or P
MW-1-081820	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	Results exceeded calibration range.	DNR	-
MW-1-081820DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	Results from undiluted analyses were more usable.	DNR	-
MW-4-081820 MW-8-081820	Toluene	Results exceeded calibration range.	DNR	-
MW-4-081820DL MW-8-081820DL	All compounds except Toluene	Results from undiluted analyses were more usable.	DNR	-
MW-14-081820	Benzene	Results exceeded calibration range.	DNR	-
MW-14-081820DL	All compounds except Benzene	Results from undiluted analyses were more usable.	DNR	-
MW-23-081820	Benzene Toluene Ethylbenzene m,p-Xylene	Results exceeded calibration range.	DNR	-
MW-23-081820DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylene	Results from undiluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 008261

Sample	Compound	Flag	A or P	Reason
MW-1-081820	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	DNR	-	Overall assessment of data
MW-1-081820DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	DNR	-	Overall assessment of data
MW-4-081820 MW-8-081820	Toluene	DNR	-	Overall assessment of data
MW-4-081820DL MW-8-081820DL	All compounds except Toluene	DNR	-	Overall assessment of data
MW-14-081820	Benzene	DNR	-	Overall assessment of data
MW-14-081820DL	All compounds except Benzene	DNR	-	Overall assessment of data
MW-23-081820	Benzene Toluene Ethylbenzene m,p-Xylene	DNR	-	Overall assessment of data
MW-23-081820DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylene	DNR	-	Overall assessment of data

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

LDC #:<u>49089B1a</u> SDG #:<u>008261</u>

Laboratory: Friedman & Bruya, Inc.

Date: <u>v9/19/2</u> Page: <u>lof</u> Reviewer: <u>5</u> 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	NÓ	RB=31,32 TB=33
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(34)* (35)* MS ONLY
IX.	Laboratory control samples	A	LCS/D
Х.	Field duplicates	Sh	D = 23 + 29, $19 + 30$
XI.	Internal standards	2	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Gw	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 ,	MW-1-081820	008261-01	Water	08/18/20
2 .	MW-1-081820REDL	008261-01日 上	Water	08/18/20
3 -	MW-2-081720	008261-02	Water	08/17/20
4 ·	MW-4-081820	008261-03	Water	08/18/20
5	MW-4-081820BED-	008261-03RE PL	Water	08/18/20
6 ·	MW-6-081720	008261-04	Water	08/17/20
7 ·	MW-7-081720	008261-05	Water	08/17/20
8 ·	MW-8-081820	008261-06	Water	08/18/20
9 ·	MW-8-081820RED	008261-06BE DL	Water	08/18/20
10 *	MW-9-081820	008261-07	Water	08/18/20
11 -	MW-10-081820	008261-08	Water	08/18/20
12 -	MW-11-081720	008261-09	Water	08/17/20
13 ·	MW-12-081720	008261-10	Water	08/17/20

LDC #: 49089B1a VALIDATION COMPLETENESS WORKSHEET

Level II

SDG #: 008261

Laboratory: Friedman & Bruya, Inc.

Date: 0/19be Page: 20f 2 Reviewer: 07 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

	Client ID	Lab ID	Matrix	Date
14 .	MW-13-081720	008261-11	Water	08/17/20
15 -	MW-14-081820	008261-12	Water	08/18/20
16 ·	MW-14-081820BEPL	008261-12RE DL	Water	08/18/20
17 ·	MW-16-081720	008261-13	Water	08/17/20
18 ⁻	MW-17-081720	008261-14	Water	08/17/20
19 ⁻	MW-18-081820 Dv	008261-15	Water	08/18/20
20 ⁻	MW-19-081820	008261-16	Water	08/18/20
21 '	MW-20-081720	008261-17	Water	08/17/20
22 ·	MW-21-081720	008261-18	Water	08/17/20
23 ·	MW-22-081720	008261-19	Water	08/17/20
24 `	MW-23-081820	008261-20	Water	08/18/20
25 ⁻	MW-23-081820BE	008261-20REDL	Water	08/18/20
26 ·	MW-24-081820	008261-21	Water	08/18/20
27 ·	MW-25-081820	008261-22	Water	08/18/20
28 ·	MW-26-081820	008261-23	Water	08/18/20
29 ·	DUP-01-081720	008261-24	Water	08/17/20
30 ·	DUP-02-081/9820	008261-25	Water	08/1 / /20
31	RB-01-081720	008261-26	Water	08/17/20
32 [·]	RB-02-081820	008261-27	Water	08/18/20
33 [.]	Trip Blank	008261-28	Water	08/18/20
34	MW-6-081720MS	008261-04MS	Water	08/17/20
35	MW-26-081820MS	008261-23MS	Water	08/18/20
36				
37				
38				
Notes	S:			
	10-1968 MB		_	
20	0-1852 MB			
3	W-1853MB			

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. Iodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:<u>49089B1a</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC/MS VOA (EPA SW846 Method 8260D)

	Concent			
Compound	19	RPD (≤35)	Diff (≤0.70)	
V	1.2	1.2		0

	Concentration (ug/L)			
Compound	23	29	RPD (≤35)	Diff
v	540	500	8	
сс	56	52	7	
EE	630	570	10	
RRR	1200	1100	9	
SSS	150	140	7	
MMM	220	200	10	

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u> of <u>1</u> Reviewer: <u>LT</u>

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes<u>x</u> No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		1	V,CC,EE,RRR,SSS	exceed calibration range	DNR
		2	All except V,CC,EE,RRR,SSS	diluted	DNR
		4,8	сс	exceed calibration range	DNR
		5,9	All except CC	diluted	DNR
				· · · · · · · · · · · · · · · · · · ·	
 		15	V	exceed calibration range	DNR
		16	All except V	diluted	DNR
		24	V,CC,EE,RRR	exceed calibration range	DNR
		25	All except V,CC,EE,RRR	diluted	DNR

Comments: _____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 28, 2020
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008261

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-081820	008261-01	Water	08/18/20
MW-2-081720	008261-02	Water	08/17/20
MW-4-081820	008261-03	Water	08/18/20
MW-6-081720	008261-04	Water	08/17/20
MW-7-081720	008261-05	Water	08/17/20
MVV-8-081820	008261-06	Water	08/18/20
MVV-9-081820	008261-07	Water	08/18/20
MVV-10-081820	008261-08	Water	08/18/20
MVV-11-081720	008261-09	Water	08/17/20
MW-12-081720	008261-10	Water	08/17/20
MW-13-081720	008261-11	Water	08/17/20
MW-14-081820	008261-12	Water	08/18/20
MW-16-081720	008261-13	Water	08/17/20
MW-17-081720	008261-14	Water	08/17/20
MW-18-081820	008261-15	Water	08/18/20
MW-19-081820	008261-16	Water	08/18/20
MW-20-081720	008261-17	Water	08/17/20
MW-21-081720	008261-18	Water	08/17/20
MW-22-081720	008261-19	Water	08/17/20
MW-23-081820	008261-20	Water	08/18/20
MW-24-081820	008261-21	Water	08/18/20
MW-25-081820	008261-22	Water	08/18/20
MW-26-081820	008261-23	Water	08/18/20
DUP-01-081720	008261-24	Water	08/17/20
DUP-02-081820	008261-25	Water	08/18/20
RB-01-081720	008261-26	Water	08/17/20

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
RB-02-081820	008261-27	Water	08/18/20
Trip Blank	008261-28	Water	08/18/20
MW-7-081720DUP	008261-05DUP	Water	08/17/20
MW-24-081820DUP	008261-21DUP	Water	08/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a rinsate. No contaminants were found.

Samples RB-01-081720 and RB-02-081820 were identified as rinsate blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-18-081820 and DUP-02-081820 and samples MW-22-081720 and DUP-01-081720 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/L)			
Compound	MW-22-081720	DUP-01-081720	RPD (Limits)	Difference (Limits)	
Gasoline range	14000	13000	7 (≤35)	-	

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

LDC #: <u>49089B7</u>

SDG #: 008261

Laboratory: Friedman & Bruya, Inc.

Date: <u>69/19/2</u> Page: <u>1 of 2</u> Reviewer: <u>51</u> 2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	PB = 26,27 $TB = 28$
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	NA	(29) (30)
VIII.	Laboratory control samples	A	L95
IX.	Field duplicates	-j-	$D = 15 + 25^{*}, 19 + 24$
Х.	Compound quantitation RL/LOQ/LODs	N	1
XI.	Target compound identification	N	
	Overall assessment of data	A	

Note:

G

A = Acceptable N = Not provided/applicable

SW = See worksheet

HND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-081820	008261-01	Water	08/18/20
2	MW-2-081720	008261-02	Water	08/17/20
3	MW-4-081820	008261-03	Water	08/18/20
4	MW-6-081720	008261-04	Water	08/17/20
5	MW-7-081720	008261-05	Water	08/17/20
6	MW-8-081820	008261-06	Water	08/18/20
7	MW-9-081820	008261-07	Water	08/18/20
8	MW-10-081820	008261-08	Water	08/18/20
9	MW-11-081720	008261-09	Water	08/17/20
10	MW-12-081720	008261-10	Water	08/17/20
11	MW-13-081720	008261-11	Water	08/17/20
12	MW-14-081820	008261-12	Water	08/18/20
13	MW-16-081720	008261-13	Water	08/17/20
14	MW-17-081720	008261-14	Water	08/17/20
15	MW-18-081820	008261-15	Water	08/18/20
16	MW-19-081820	008261-16	Water	08/18/20
17	MW-20-081720	008261-17	Water	08/17/20

VALIDATION COMPLETENESS WORKSHEET

Level II

Laboratory: Friedman & Bruya, Inc.

LDC #: 49089B7

SDG #: 008261

Date:<u>54/4/2</u> Page:<u>zof</u> Reviewer:<u>LT</u> 2nd Reviewer:<u></u>

METHOD: GC TPH as Gasoline (NWTPH-Gx)

18	MW-21-081720		008261-18	Water	08/17/20			
19	MW-22-081720	Pr	008261-19	Water	08/17/20			
20	MW-23-081820		008261-20	Water	08/18/20			
21	MW-24-081820		008261-21	Water	08/18/20			
22	MW-25-081820		008261-22	Water	08/18/20			
23	MW-26-081820		008261-23	Water	08/18/20			
24	DUP-01-081720	Dr	008261-24	Water	08/17/20			
25	DUP-02-0819820	D,	008261-25	Water	8 08/1 ∕9 /20			
26	RB-01-081720		008261-26	Water	08/17/20			
27	RB-02-081820		008261-27	Water	08/18/20			
28	Trip Blank		008261-28	Water	08/18/20			
29	MW-7-081720DUP		008261-05DUP	Water	08/17/20			
30	MW-24-081820DUP		008261-21DUP	Water	08/18/20			
31								
32								
33								
<u>Note</u>	otes:							
1	00-1800 MB							
2	00-1301 MB							

LDC#:<u>49089B7</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Concentration (ug/L)			
Compound	19	24	RPD (≤35)	Dim
Gasoline Range	14000	13000	7	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 28, 2020
Parameters:	Total Petroleum Hydrocarbons as Extractables
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008261

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-081820	008261-01	Water	08/18/20
MW-2-081720	008261-02	Water	08/17/20
MW-4-081820	008261-03	Water	08/18/20
MW-6-081720	008261-04	Water	08/17/20
MW-7-081720	008261-05	Water	08/17/20
MVV-8-081820	008261-06	Water	08/18/20
MVV-9-081820	008261-07	Water	08/18/20
MVV-10-081820	008261-08	Water	08/18/20
MVV-11-081720	008261-09	Water	08/17/20
MVV-12-081720	008261-10	Water	08/17/20
MVV-13-081720	008261-11	Water	08/17/20
MVV-14-081820	008261-12	Water	08/18/20
MVV-16-081720	008261-13	Water	08/17/20
MVV-17-081720	008261-14	Water	08/17/20
MVV-18-081820	008261-15	Water	08/18/20
MVV-19-081820	008261-16	Water	08/18/20
MVV-20-081720	008261-17	Water	08/17/20
MVV-21-081720	008261-18	Water	08/17/20
MVV-22-081720	008261-19	Water	08/17/20
MVV-23-081820	008261-20	Water	08/18/20
MW-24-081820	008261-21	Water	08/18/20
MW-25-081820	008261-22	Water	08/18/20
MW-26-081820	008261-23	Water	08/18/20
DUP-01-081720	008261-24	Water	08/17/20
DUP-02-081820	008261-25	Water	08/18/20
RB-01-081720	008261-26	Water	08/17/20
RB-02-081820	008261-27	Water	08/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples RB-01-081720 and RB-02-081820 were identified as rinsate blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
RB-01-081720	08/17/20	Diesel range (C10-C25)	67 ug/L	MW-2-081720 MW-6-081720 MW-7-081720 MW-11-081720 MW-12-081720 MW-13-081720 MW-16-081720 MW-17-081720 MW-20-081720 MW-21-081720 DUP-01-081720

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-18-081820 and DUP-02-081820 and samples MW-22-081720 and DUP-01-081720 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ition (ug/L)		
Compound	MW-18-081820	DUP-02-081820	RPD (Limits)	Difference (Limits)
Diesel range (C10-C25)	50U	53	-	3 (≤50)

	Concentra	tion (ug/L)		
Compound	MW-22-081720	DUP-01-081720	RPD (Limits)	Difference (Limits)
Diesel range (C10-C25)	2500	3100	21 (≤35)	-

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

LDC #: <u>49089B8</u> SDG #: <u>008261</u>

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: <u>Alama</u> Page: <u>1 of 2</u> Reviewer: <u>1</u> 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

TRHE METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
١١.	Initial calibration/ICV	N/N	
Ш.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	SW	P= 26,27#
VI.	Surrogate spikes	A,	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	LCSIP
IX.	Field duplicates	SW	D = 19+24, 15+25
Х.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-081820	008261-01	Water	08/18/20
2	MW-2-081720	008261-02	Water	08/17/20
3	MW-4-081820	008261-03	Water	08/18/20
4	MW-6-081720	008261-04	Water	08/17/20
5	MW-7-081720	008261-05	Water	08/17/20
6	MW-8-081820	008261-06	Water	08/18/20
7	MW-9-081820	008261-07	Water	08/18/20
8	MW-10-081820	008261-08	Water	08/18/20
9	MW-11-081720	008261-09	Water	08/17/20
10	MW-12-081720	008261-10	Water	08/17/20
11	MW-13-081720	008261-11	Water	08/17/20
12	MW-14-081820	008261-12	Water	08/18/20
13	MW-16-081720	008261-13	Water	08/17/20
14	MW-17-081720	008261-14	Water	08/17/20
15	MW-18-081820 Dz	008261-15	Water	08/18/20
16	MW-19-081820	008261-16	Water	08/18/20
17	MW-20-081720	008261-17	Water	08/17/20

_ VALIDATION COMPLETENESS WORKSHEET

Level II

SDG #:_008261 Laboratory:<u>Friedman & Bruya, Inc.</u>

LDC #: 49089B8

Date: <u>0∜16/2</u> Page: <u>2of 2</u> Reviewer: <u>↓</u> 2nd Reviewer:

METHOD: GC TPH as Diesel (NWTPH-Dx)

18	MW-21-081720				008261-18	w	ater	08/17/20
19	MW-22-081720		1	$)_{1}$	008261-19	w	ater	08/17/20
20	MW-23-081820	 		'	008261-20	w	ater	08/18/20
21	MW-24-081820	 			008261-21	w	ater	08/18/20
22	MW-25-081820	 			008261-22	w	ater	08/18/20
23	MW-26-081820	 ·			008261-23	w	ater	08/18/20
24	DUP-01-081720		<u> </u>)	008261-24	w	ater	08/17/20
25	DUP-02-0819820		1	$\mathcal{I}_{\mathcal{I}}$	008261-25	w	ater	8 08/1 9 /20
26	RB-01-081720	 ·····			008261-26	w	ater	08/17/20
27	RB-02-081820	 ······································			008261-27	w	ater	08/18/20
28		 						
29		 						
30		 						
Note	s:							
1	00-1892 MB							
2	OV - 1893 MB							

.

VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u>

Page: 1_of 1_ Reviewer: <u>LT</u> 2nd Reviewer:

METHOD: X GC HPLC

Were field blanks identified in this SDG?

<u>**WNN/A</u>** Were target compounds detected in the field blanks?</u>

Blank units: ug/L Associated sample units: ug/L

Sampling date: 08/17/20

Field blank type: (circle one) Field Blank / Trip Blank / Atmospheric Blank / Ambient Blank Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other:____RB____

Compound	Blank ID	Blank ID		 Sample Ide	entification	<u> </u>	
	26						
viesel Range (C10-C25)	67						
···							

Blank units:_____ Associated sample units:_____

Sampling date:

Field blank type: (circle one) Field Blank / Trip Blank/ Atmospheric Blank/ Ambient Blank Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other:_ Associated Samples:_____

Compound	Blank ID	Blank ID		 Sample Ide	entification	 	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

Associated Samples: <u>2,4,5,9-11,13,14,17-19,24</u> > CRQL and RB

LDC#:49089B8 VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__<u>LT</u>___

METHOD: GC TPHE (NWTPH-Dx)

	Concen	tration (ug/L)		
Compound	19	24	RPD (≤35)	Diff
Diesel Range (C10-C25)	2500	3100	21	

	Concent	ration (ug/L)		
Compound	15	25	RPD (≤35)	Diff (≤50)
Diesel Range (C10-C25)	50U	53		3

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com September 4, 2020

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 17, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #48872:

<u>SDG #</u>	Fraction
007493, 007523	Volatiles, Total Petroleum Hydrocarbons as Gasoline, Total
008076	Petroleum Hydrocarbons as Extractables

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4; October 2014
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

peioting Rink

Christina Rink crink@lab-data.com Project Manager/Senior Chemist

	123 pages-EM	es-EM Attachment 1																																			
	Stage 2A EDD	ge 2A EDD LDC #48872 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe										fe)																									
LDC	SDG#	DATE REC'D	(3) DATE DUE	() V((826	6) DA 60D)	TPI (NW G	H-G TPH x)	TPH (NW D	l-E TPH x)																				•								
Matri	:: Water/Soil			W	s	W	s	W	s	W	s	W	s	W	S	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s
А	007493	08/17/20	09/08/20	0	18	0	18	0	18																												
В	007523	08/17/20	09/08/20	1	9	1	9	0	9																												
С	008076	08/17/20	09/08/20	1	2	1	2	0	2																									\square			
																																			\square	\square	\square
																																		\square	$\left - \right $	$\left - \right $	\square
																																		\square	\mid	\mid	\vdash
																																		\square	\mid	\mid	\vdash
																																		\square	┝──┦	┝──┦	\vdash
																																		$\left - \right $	┝──┦	┝──┦	\mid
																																		$\left - \right $	┝──┦	┝──┦	\mid
																																		┝─┦	┢━┛┦	┢━┛┦	┝─┦
							-	-														-												┝─┦	┢━┛┦	┢━┛┦	┝─┦
																																		$\left - \right $	┝──┦	┝──┦	┝──┦
																																		$\left - \right $	┢──┦	┢──┦	\vdash
																																		$\left - \right $	┝──┦	┝──┦	\vdash
																																		┝─┦	┢──┦	┢──┦	\vdash
																																		┝─┦	┢──┦	┢──┦	┝─┥
																																		$\left - \right $	┢──┦	┢──┦	┝─┥
																																		┝─┦	┢──┦	┢──┦	┢──┦
																																		┝─┦	┢━━┦	┢━━┦	┢━┥
		ļ			-																									-				\vdash	\vdash	\vdash	\vdash
																																		$\left - \right $	┢──┦	┢──┦	$ \vdash $
																																					\square
																																		\square			\square
																																					\square
																																					\square
																																					\square
																																					\square
																																					\square
Total	T/CR			2	29	2	29	0	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	91

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007493

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-22-10	007493-02	Soil	07/28/20
MVV-22-12.5	007493-03	Soil	07/28/20
MVV-22-16	007493-04	Soil	07/28/20
MVV-22-25	007493-05	Soil	07/28/20
MVV-23-8	007493-06	Soil	07/28/20
MVV-23-12.5	007493-07	Soil	07/28/20
MVV-23-18	007493-09	Soil	07/28/20
MVV-23-25	007493-10	Soil	07/28/20
MVV-21-5	007493-11	Soil	07/28/20
MVV-21-10	007493-12	Soil	07/28/20
MVV-21-17.5	007493-13	Soil	07/28/20
B-11-5.5	007493-15	Soil	07/28/20
B-11-10.5	007493-16	Soil	07/28/20
B-11-15	007493-17	Soil	07/28/20
MVV-26-12.5	007493-22	Soil	07/29/20
MVV-27-10.5	007493-25	Soil	07/29/20
MW-24-10.5	007493-29	Soil	07/29/20
DUP-3	007493-32	Soil	07/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.
The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples MW-27-10.5 and DUP-3 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

LDC #:<u>48872A1a</u> SDG #:<u>007493</u>

Laboratory: Friedman & Bruya, Inc.

Date: <u>Orley</u> 200 Page: <u>lof2</u> Reviewer: 5 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A A	
11.	GC/MS Instrument performance check	. N	
	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	Non airang
IX.	Laboratory control samples	A	LCS
Х.	Field duplicates	ND	D=16+18
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-18
XIII.	Target compound identification	N	
XIV.	System performance	N	
xv.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 .	MW-22-10 '	007493-02	Soil	07/28/20
2 •	MW-22-12.5	007493-03	Soil	07/28/20
3 *	MW-22-16	007493-04	Soil	07/28/20
4 ·	MW-22-25 .	007493-05	Soil	07/28/20
5 ·	MW-23-8	007493-06	Soil	07/28/20
6 ·	MW-23-12.5 ·	007493-07	Soil	07/28/20
7 ·	MW-23-18	007493-09	Soil	07/28/20
8 ·	MW-23-25	007493-10	Soil	07/28/20
9 ·	MW-21-5	007493-11	Soil	07/28/20
10 °	MW-21-10 ·	007493-12	Soil	07/28/20
11 .	MW-21-17.5	007493-13	Soil	07/28/20
12.	B-11-5.5	007493-15	Soil	07/28/20
13 '	В-11-10.5	007493-16	Soil	07/28/20
14	B-11-15	007493-17	Soil	07/28/20

VALIDATION COMPLETENESS WORKSHEET

Level II

LDC #: <u>48872A1a</u> **VA** SDG #: <u>007493</u> Laboratory: <u>Friedman & Bruya, Inc.</u> Date: م٩/٩٠/کټ Page: 2of ک Reviewer: <u>۲</u> 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

	Client ID			Lab ID	Matrix	Date
15 •	MW-26-12.5		•	007493-22	Soil	07/29/20
16 •	MW-27-10.5		D	· 007493-25	Soil	07/29/20
17 •	MW-24-10.5	 	•	007493-29	Soil	07/29/20
18 ·	DUP-3		P	007493-32	Soil	07/29/20
19						
20		 				
21		 				
Notes		 				
	00-1719 MB					
2	M-1688 -MB					
	•					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 3, 2020
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007493

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-22-10	007493-02	Soil	07/28/20
MW-22-12.5	007493-03	Soil	07/28/20
MW-22-16	007493-04	Soil	07/28/20
MW-22-25	007493-05	Soil	07/28/20
MW-23-8	007493-06	Soil	07/28/20
MW-23-12.5	007493-07	Soil	07/28/20
MW-23-18	007493-09	Soil	07/28/20
MW-23-25	007493-10	Soil	07/28/20
MW-21-5	007493-11	Soil	07/28/20
MW-21-10	007493-12	Soil	07/28/20
MW-21-17.5	007493-13	Soil	07/28/20
B-11-5.5	007493-15	Soil	07/28/20
B-11-10.5	007493-16	Soil	07/28/20
B-11-15	007493-17	Soil	07/28/20
MW-26-12.5	007493-22	Soil	07/29/20
MW-27-10.5	007493-25	Soil	07/29/20
MW-24-10.5	007493-29	Soil	07/29/20
DUP-3	007493-32	Soil	07/29/20
MW-22-10DUP	007493-02DUP	Soil	07/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-27-10.5 and DUP-3 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification

Summary - SDG 007493

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

Date:<u>۳/۱۵/۷</u> Page:<u></u>of<u>۲</u> Reviewer:<u>7</u> 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

LDC #: 48872A7

SDG #: 007493

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A,A	
П.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N/A	(19,20) (19)
VIII.	Laboratory control samples	A	LOS
IX.	Field duplicates	ND	D = 16 + 18
Х.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-18
XI.	Target compound identification	N	•
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 .	MW-22-10 .	007493-02	Soil	07/28/20
2 ·	MW-22-12.5	007493-03	Soil	07/28/20
3 ·	MW-22-16 ·	007493-04	Soil	07/28/20
4 ·	MW-22-25	007493-05	Soil	07/28/20
5 ·	MW-23-8	007493-06	Soil	07/28/20
6 ·	MW-23-12.5	007493-07	Soil	07/28/20
7 ·	MW-23-18 ·	007493-09	Soil	07/28/20
8 ·	MW-23-25	007493-10	Soil	07/28/20
9 ·	MW-21-5	007493-11	Soil	07/28/20
10 ·	MW-21-10 ·	007493-12	Soil	07/28/20
11 •	MW-21-17.5	007493-13	Soil	07/28/20
12 •	B-11-5.5	007493-15	Soil	07/28/20
13 °	B-11-10.5	007493-16	Soil	07/28/20
14 '	B-11-15	007493-17	Soil	07/28/20
15 '	MW-26-12.5	007493-22	Soil	07/29/20
16 [•]	MW-27-10.5	007493-25	Soil	07/29/20
17	MW-24-10.5	007493-29	Soil	07/29/20

LDC #: <u>48872A7</u>	VALIDATION COMPLETENESS WORKSHEET
-----------------------	-----------------------------------

Level II

SDG #:<u>007493</u> Laboratory: <u>Friedman & Bruya, Inc.</u> Date: <u>@4/02/2</u> Page: <u>Rof</u> Reviewer: <u>b7</u> 2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Client ID	Lab ID	Matrix	Date
18 ·		, 007493-32	Soil	07/29/20
19	MW-22-101/15 DNP	007493-0214500	Soil	07/28/20
20	MW-22-10MSD	007493-02MSD	Soil	07/28/20
21				
22				
23				
Notes:				
	00-1395 MB			
2	00-1390MB			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 3, 2020
Parameters:	Total Petroleum Hydrocarbons as Extractables
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007493

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-22-10	007493-02	Soil	07/28/20
MW-22-12.5	007493-03	Soil	07/28/20
MW-22-16	007493-04	Soil	07/28/20
MVV-22-25	007493-05	Soil	07/28/20
MVV-23-8	007493-06	Soil	07/28/20
MW-23-12.5	007493-07	Soil	07/28/20
MVV-23-18	007493-09	Soil	07/28/20
MVV-23-25	007493-10	Soil	07/28/20
MVV-21-5	007493-11	Soil	07/28/20
MW-21-10	007493-12	Soil	07/28/20
MW-21-17.5	007493-13	Soil	07/28/20
B-11-5.5	007493-15	Soil	07/28/20
B-11-10.5	007493-16	Soil	07/28/20
B-11-15	007493-17	Soil	07/28/20
MW-26-12.5	007493-22	Soil	07/29/20
MW-27-10.5	007493-25	Soil	07/29/20
MW-24-10.5	007493-29	Soil	07/29/20
DUP-3	007493-32	Soil	07/29/20
MW-22-16MS	007493-04MS	Soil	07/28/20
MW-22-16MSD	007493-04MSD	Soil	07/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-27-10.5 and DUP-3 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

LDC #: 48872A8

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: <u>bq/2/2</u> Page: <u>lof</u> Reviewer: <u></u> 2nd Reviewer:

SDG #: <u>007493</u> Laboratory: <u>Friedman & Bruya</u>, Inc. TPH E **METHOD:** GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
١١.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	Ą	
V.	Field blanks	N	
VI.	Surrogate spikes	L K	
VII.	Matrix spike/Matrix spike duplicates	A	(19120)
VIII.	Laboratory control samples	A	Los
IX.	Field duplicates	ND	D=16+18
Х.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-18
XI.	Target compound identification	N	•
	Overall assessment of data	A	

Note: A

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 •	MW-22-10 .	007493-02	Soil	07/28/20
2 •	MW-22-12.5	007493-03	Soil	07/28/20
3 ·	MW-22-16	007493-04	Soil	07/28/20
4 ·	MW-22-25 ·	007493-05	Soil	07/28/20
5 ·	MW-23-8	007493-06	Soil	07/28/20
6 ·	MW-23-12.5	007493-07	Soil	07/28/20
7 ·	MW-23-18	007493-09	Soil	07/28/20
8 ·	MW-23-25 ·	007493-10	Soil	07/28/20
9 .	MW-21-5	007493-11	Soil	07/28/20
10 °	MW-21-10 ·	007493-12	Soil	07/28/20
11 •	MW-21-17.5	007493-13	Soil	07/28/20
12 •	B-11-5.5	007493-15	Soil	07/28/20
13 *	B-11-10.5	007493-16	Soil	07/28/20
14 •	• B-11-15	007493-17	Soil	07/28/20
15 .	MW-26-12.5	007493-22	Soil	07/29/20
16 '	MW-27-10.5	007493-25	Soil	07/29/20
17	MW-24-10.5	007493-29	Soil	07/29/20

LDC #: 48872A8

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: <u>orlocho</u> Page: <u>2 of </u> Reviewer: <u>6</u> 2nd Reviewer: <u>6</u>

SDG #: <u>007493</u> Laboratory: <u>Friedman & Bruya, Inc.</u> TみE **METHOD:** GC TPH as Diesel (NWTPH-Dx)

	Client ID	Lab ID	Matrix	Date
18.	DUP-3	. 007493-32	Soil	07/29/20
19	MW-22-16MS	007493-04MS	Soil	07/28/20
20	MW-22-16MSD	007493-04MSD	Soil	07/28/20
21				
22				
23				
Notes				
1	00-1762 MB			<u> </u>
2	00-1713 MB			

Laboratory Data Consultants, Inc. Data Validation Report

|--|

LDC Report Date:	September 3, 2020
------------------	-------------------

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007523

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-20-5'	007523-01	Soil	07/30/20
MVV-20-8'	007523-02	Soil	07/30/20
MVV-20-13'	007523-04	Soil	07/30/20
MVV-25-8'	007523-12	Soil	07/30/20
B-10-12.5	007523-23	Soil	07/30/20
MW-21A-2.5'	007523-29	Soil	07/30/20
MW-22A-2.5'	007523-30	Soil	07/30/20
MVV-22B-5'	007523-31	Soil	07/30/20
DUP-4	007523-32	Soil	07/30/20
Trip Blank	007523-34	Water	07/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-20-8' and DUP-4 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	ion (mg/Kg)				
Compound	MW-20-8'	DUP-4	RPD (Limits)	Difference (Limits)	Flag	A or P
Naphthalene	0.065	0.098	-	0.033 (≤0.10)	-	-

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

LDC #:<u>48872B1a</u> SDG #:<u>007523</u>

Laboratory: Friedman & Bruya, Inc.

Date: <u>69 / 52</u>/ 20 Page: <u>67 ا</u> Reviewer: <u>6</u> 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
11.	GC/MS Instrument performance check	N	
- 111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	TB= 10
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Ň	Non client
IX.	Laboratory control samples	A	LC510
Х.	Field duplicates	SW	D = 2 + 0
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-9
XIII.	Target compound identification	<u>N</u>	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1.	MW-20-5'	007523-01	Soil	07/30/20
2 .	MW-20-8'	007523-02	Soil	07/30/20
з •	MW-20-13'	007523-04	Soil	07/30/20
4 ·	MW-25-8'	007523-12	Soil	07/30/20
5 ·	B-10-12.5	007523-23	Soil	07/30/20
6.	MW-21A-2.5′	007523-29	Soil	07/30/20
7 ·	MW-22A-2.5″	007523-30	Soil	07/30/20
8 ·	MW-22B-5'	007523-31	Soil	07/30/20
9 '	DUP-4	007523-32	Soil	07/30/20
10	Trip Blank	007523-34	Water	07/30/20
11				
12	1.00-1718 MB			
13	2.00-1684 MB			
14				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyi alcohoi	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. Iodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:<u>48872B1a</u>

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT_,_

METHOD: GC/MS VOA (EPA SW846 Method 8260D)

	Concentration (mg/kg)			
Compound	2	9	RPD (≤35)	Diff (≤0.10)
МММ	0.065	0.098		0.033

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 3, 2020
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007523

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-20-5'	007523-01	Soil	07/30/20
MVV-20-8'	007523-02	Soil	07/30/20
MW-20-13'	007523-04	Soil	07/30/20
MW-25-8'	007523-12	Soil	07/30/20
B-10-12.5	007523-23	Soil	07/30/20
MW-21A-2.5'	007523-29	Soil	07/30/20
MW-22A-2.5'	007523-30	Soil	07/30/20
MW-22B-5'	007523-31	Soil	07/30/20
DUP-4	007523-32	Soil	07/30/20
Trip Blank	007523-34	Water	07/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-20-8' and DUP-4 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)					
Compound	MW-20-8'	DUP-4	RPD (Limits)	Difference (Limits)	Flag	A or P
Gasoline range	5U	9.2	-	4.2 (≤10)	-	-

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.
Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

LDC #: <u>48872B7</u> SDG #: <u>007523</u>

Laboratory: Friedman & Bruya, Inc.

Date: <u>69/02/2</u> Page: <u>lof l</u> Reviewer: <u>67</u> 2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11.	Initial calibration/ICV	N/N	
Ш.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	TB=10
Vł.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	2	Non Client
VIII.	Laboratory control samples	A	103
IX.	Field duplicates	SW	p=2+9
Х.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 19
XI.	Target compound identification	N	t
XII	Overall assessment of data	A	
lote:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compounds R = Rinsate FB = Field blank	detected D = Duplicate SB=Source blank TB = Trip blank OTHER: EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1.	MW-20-5'	007523-01	Soil	07/30/20
2 .	MW-20-8'	007523-02	Soil	07/30/20
3 .	MW-20-13'	007523-04	Soil	07/30/20
4 ·	MW-25-8'	007523-12	Soil	07/30/20
5 ·	B-10-12.5	007523-23	Soil	07/30/20
6 .	MW-21A-2.5*	007523-29	Soil	07/30/20
7 ·	MW-22A-2.5'	007523-30	Soil	07/30/20
8 .	MW-22B-5'	007523-31	Soil	07/30/20
9 .	DUP-4	007523-32	Soil	07/30/20
10	Trip Blank	007523-34	Water	07/30/20
11				
12				
13			·	
Notes:				
1	m - 1292 MB			

1	00-1392 MB			
2	00-1393 MB			

LDC#:48872B7 VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__<u>LT___</u>

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Concentra			
Compound	2	9	RPD (≤35)	Diff (≤10)
Gasoline Range	5U	9.2		4.2

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 3, 2020
Parameters:	Total Petroleum Hydrocarbons as Extractables
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007523

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MVV-20-5'	007523-01	Soil	07/30/20
MVV-20-8'	007523-02	Soil	07/30/20
MVV-20-13'	007523-04	Soil	07/30/20
MVV-25-8'	007523-12	Soil	07/30/20
B-10-12.5	007523-23	Soil	07/30/20
MW-21A-2.5'	007523-29	Soil	07/30/20
MVV-22A-2.5'	007523-30	Soil	07/30/20
MW-22B-5'	007523-31	Soil	07/30/20
DUP-4	007523-32	Soil	07/30/20
MW-20-5'MS	007523-01MS	Soil	07/30/20
MW-20-5'MSD	007523-01MSD	Soil	07/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-20-8' and DUP-4 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 007523

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHE

Level II

Date:09/2/20 Page: Lof Reviewer:_ 2nd Reviewer

SDG #: 007523 Laboratory: Friedman & Bruya, Inc. METHOD: GC TPH as Diesel (NWTPH-Dx)

LDC #: 48872B8

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
١١.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	K	(10_{11})
VIII.	Laboratory control samples	A	19
IX.	Field duplicates	M	p=2+q
Х.	Compound quantitation RL/LOQ/LODs	, N	Dry weight basis = fg
XI.	Target compound identification	N	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-20-5'	007523-01	Soil	07/30/20
2	MW-20-8'	007523-02	Soil	07/30/20
3	MW-20-13'	007523-04	Soil	07/30/20
4	MW-25-8'	007523-12	Soil	07/30/20
5	B-10-12.5	007523-23	Soil	07/30/20
6	MW-21A-2.5″	007523-29	Soil	07/30/20
7	MW-22A-2.5″	007523-30	Soil	07/30/20
8	MW-22B-5'	007523-31	Soil	07/30/20
9	DUP-4	007523-32	Soil	07/30/20
10	MW-20-5'MS	007523-01MS	Soil	07/30/20
11	MW-20-5'MSD	007523-01MSD	Soil	07/30/20
12				
1.3				
Notes:				
1	00-175MMB			

1	00-175MMB			

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: Aloha Café
- LDC Report Date: September 3, 2020
- Parameters: Volatiles
- Validation Level: Stage 2A
- Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008076

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
B-09-2.5	008076-01	Soil	08/05/20
B-09-6	008076-03	Soil	08/05/20
Trip Blank	008076-06	Water	08/05/20
B-09-2.5MS	008076-01MS	Soil	08/05/20
B-09-2.5MSD	008076-01MSD	Soil	08/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C,* SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

LDC #: <u>48872C1a</u> **VA** SDG #: <u>008076</u> Laboratory: <u>Friedman & Bruya</u>, Inc. Date: <u>Criterion</u> Page: <u>1 of 1</u> Reviewer: <u>Cri</u> 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A A	
١١.	GC/MS Instrument performance check	N	
- 111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	TB= 3
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(4,5)
IX.	Laboratory control samples	A	LC510
Х.	Field duplicates	N	
XI.	Internal standards	7	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry Weight basis = t, 2
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	 		Lab ID	Matrix	Date
1	B-09-2.5	 		008076-01	Soil	08/ 1 5/20
2	B-09-6		 	008076-03	Soil	08/#5/20
3	Trip Blank			008076-06	Water	08/ # 5/20
4	B-09-2.5MS	 		008076-01MS	Soil	0 08//15/20
5	B-09-2.5MSD	 		008076-01MSD	Soil	08/15/20
6						
7						
8						
9		 				
Votes:		 				
1	00-1728 MB					
2	10-1729 MB					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
LDC Report Date:	September 3, 2020
Parameters:	Total Petroleum Hydrocarbons as Gasoline
Validation Level:	Stage 2A
Laboratory:	Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008076

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
B-09-2.5	008076-01	Soil	08/05/20
B-09-6	008076-03	Soil	08/05/20
Trip Blank	008076-06	Water	08/05/20
B-09-2.5DUP	008076-01DUP	Soil	08/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

LDC #: 48872C7

SDG #: 008076

Laboratory: Friedman & Bruya, Inc.

Date:<u>c9/52/2</u> Page:<u>lof</u> Reviewer:<u></u> 2nd Reviewer:____

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A,A	
11.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	TB= 3
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates $/ D \mathcal{W}$	N/A	(4,5) (4)
VIII.	Zaboratory control samples	Á	LOS
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	Dry Neight basis = 1,2
XI.	Target compound identification	N	
	Overall assessment of data	<u>A</u>	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		 		Lab ID	Matrix	Date
1	B-09-2.5		 		008076-01	Soil	08/ 7 5/20
2	B-09-6				008076-03	Soil	08/15/20
3	Trip Blank				008076-06	Water	o 08/ 1 5/20
4	B-09-2.5M& DWP				008076-01145 DUP	Soil	0 08/ / 5/20
5	B-09-2.5MSD		 	 	 -008076-01MSD	Soil	0
6							
7							
8							
9							
10							
11				 			
12							
13							
Notes			 				
1	00-1400MB						
2	10-1781 MB						
		1					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Aloha Café
--------------------	------------

LDC Report Date: September 3, 2020

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008076

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
B-09-2.5	008076-01	Soil	08/05/20
B-09-6	008076-03	Soil	08/05/20
B-09-2.5MS	008076-01MS	Soil	08/05/20
B-09-2.5MSD	008076-01MSD	Soil	08/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 008076

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

VALIDATION COMPLETE	NESS WORKSHEET
---------------------	----------------

Level II

SDG #: 008076 Laboratory: Friedman & Bruya, Inc. · T 대는 METHOD: GC 판H as Diese (NWTPH-Dx)

LDC #: 48872C8

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A A	
١١.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	(3,4)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N	
Х.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1,2
XI.	Target compound identification	N	•
	Overall assessment of data	<u> </u>	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Date: 0/0/2

Page: __of_1

Reviewer:

2nd Reviewer:

	Client ID		Lab ID	Matrix	Date
1	B-09-2.5		008076-01	Soil	0 08/ 1 /5/20
2	B-09-6		008076-03	Soil	o 08/ 1 5/20
3	B-09-2.5MS		008076-01MS	Soil	08/ 1 /5/20
4	B-09-2.5MSD		008076-01MSD	Soil	o 08/ 1 /5/20
5					
6					
7		4			
8					
9					
10					
11					
12					
13					
Notes	S:				

APPENDIX D

Sampling and Analysis Plan / Quality Assurance Project Plan

Contents

D.1. Introd	uction1
D.2. Field S	Sampling Plan1
D.2.1. Soil	Sampling1
D.2.1.1.	Soil Sample Collection and Handling Procedures2
D.2.1.2.	Soil Sample Identification3
D.2.2. Gro	undwater Sampling3
D.2.2.1.	Monitoring Well Installation3
D.2.2.2.	Monitoring Well Development4
D.2.2.3.	Groundwater Sampling Procedure4
D.2.2.4.	Groundwater Sample Laboratory Analyses5
D.2.2.5.	Groundwater Sample Identification
D.2.3. Sam	ple Custody and Field Documentation
D.2.3.1.	Sample Custody
D.2.3.2.	Field Documentation
D.2.4. Dec	ontamination and Investigative-Derived Waste Management/
D.3. Qualit	y Assurance Project Plan7
D.3.1. Purp	pose of the QAPP7
D.3.2. Proj	ect Organization and Responsibilities8
D.3.3. Ana	lytical Methods and Reporting Limits9
D.3.3.1.	Method Detection Limit and Method Reporting Limit9
D.3.4. Data	a Quality Objectives10
D.3.4.1.	Precision
D.3.4.2.	Accuracy11
D.3.4.3.	Representativeness11
D.3.4.4.	Comparability
D.3.4.5.	Completeness
D.3.4.6.	
D.3.5. Qua	lity Control Procedures
D.3.5.1.	Field Quality Control
D.3.5.2.	Laboratory Quality Control
D.3.6. Cori	rective Actions
D.3.7. Data	a Reduction, Quality Review, and Reporting
D.3.7.1.	Minimum Data Reporting Requirements
D.3.8. Data	a Quality Verification and Validation16
D.3.9. Prev	ventative Maintenance Procedures and Schedules18
D.3.10. Perf	ormance and System Audits18

D.3.11. Data	and Records Management	. 18
D.3.11.1.	Field Documentation	18
D.3.11.2.	Analytical Data Management	19
D.4. Referen	ICes	19

List of Tables

- D-1 Analytical Methods, Sample Containers, Preservation, and Holding Times
- D-2 QC Parameters Associated with PARCCS
- D-3 Measurement Quality Objectives for Water Samples, Friedman and Bruya, Inc.
- D-4 Measurement Quality Objectives for Soil Samples, Friedman and Bruya, Inc.

List of Attachments

- D-1 Aspect Field Forms
- D-2 Aspect Field General Procedures

D.1. Introduction

This Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) has been prepared for the of the Texaco Strickland Cleanup Site at 6808 196th Street SW in Lynnwood, Washington (herein referred to as the Site) as Appendix D of the Interim Action Work Plan (IAWP). The purpose of this SAP/QAPP is to ensure that field sample collection, handling, and laboratory analysis will generate data to meet project-specific data quality objectives (DQOs) in accordance with the Model Toxics Control Act (MTCA) requirements (WAC 173-340-350). This SAP/QAPP is comprised of two major components: a Field Sampling Plan (FSP) defining field protocols and a QAPP defining analytical protocols.

Environmental investigation activities to be performed under this SAP/QAPP are on behalf of two parties, Strickland Real Estate, LLC (Strickland) and Chevron Environmental Management Company (CEMC) according to the Agreed Order 14315. The Field Sampling Plan (Section D.2) and Quality Assurance Project Plan (Section D.3) are presented below.

D.2. Field Sampling Plan

D.2.1. Soil Sampling

Soil performance monitoring associated with the interim cleanup action will include laboratory analysis of both excavation sidewall and excavation bottom samples. The distances between soil samples will not exceed 20 feet laterally and 5 feet vertically, and closer sample spacing may be necessary. The samples will be submitted for laboratory analysis of parameters described in the QAPP.

The soldier piles of the shoring system will be used as a reference point in the excavation areas for setting up a sampling grid. For performance monitoring of the assumed excavation bottoms, Aspect will establish a systematic 20-foot sampling grid. Within each grid area, Aspect will field-screen the soil headspace vapor for volatile organic chemicals (VOCs) using a photoionization detector (PID) for evidence of contamination, and samples will be collected for laboratory analysis described in the QAPP. Analytes include gasoline- and diesel-range hydrocarbons, benzene, toluene, ethylbenzene, and total xylenes (BTEX) based on field screening observations at the planned bottom elevations, as follows:

• If there are no field screening indicators of contamination within the entire grid area, a single soil sample will be collected for analysis from the approximate center of the square area (one sample per maximum 20-foot by 20-foot square) to document the remediation levels (Table B) have been met at depth.

- If field screening indications of contamination are observed at the planned excavation limit, the area will be immediately overexcavated by approximately 2 feet deep, and field screened.¹
- This overexcavation process will be repeated until there are no field indications of contamination, or until the maximum overexcavation depth is reached, whichever occurs first. Then excavation performance bottom samples will be collected as indicated above.

Aspect will subcontract with a Washington-licensed resource protection well driller to complete monitoring well installations in accordance with requirements of Chapter 173-160 WAC.

The following subsections detail the procedures for soil sample collection, handling, identification, and sample quality assurance/quality control (QA/QC).

D.2.1.1. Soil Sample Collection and Handling Procedures

Aspect field personnel, under the direction of a licensed geologist or engineer, will oversee the excavation activities. The field representative will visually classify the soils in accordance with ASTM International (ASTM) Method D2488 and record soil descriptions, field screening results, and other relevant details (e.g., staining, debris, odors, etc.) in the field notes. If samples are collected for chemical analysis, the sample ID and depth will also be recorded in the field notes.

The performance monitoring soil samples will be discrete grab samples of soil collected from within the excavation using the excavator bucket, or, if safely accessible to a worker, by hand using a decontaminated stainless-steel spoon or disposable spoon.

Headspace Vapor

Samples will be field screened to obtain a relative estimate of its total VOC concentration. This field screening will be performed by measuring the concentration of VOCs in the headspace above the sample in a closed container using a photoionization detector (PID). The field screening will be performed by placing the soil into a sealed plastic bag (e.g., Ziploc), disaggregating the soil by hand, allowing the sample to equilibrate, and then opening the bag slightly, inserting the instrument probe, and measuring the VOC concentration in the headspace. If the ambient temperature is below 65°F, the sample will be warmed (e.g., in a heated vehicle) before the headspace measurement is made.

The PID will be calibrated daily in the field using the manufacturer's calibration standard (100 parts per million [ppm] isobutylene gas). A calibration test, referred to as a "bump test," will be performed as necessary in the field using the calibration gas to check that the PID remains properly calibrated throughout the day.

Sheen Testing

Sheen testing will be conducted by placing soil in a pan of water and observing the water surface for signs of sheen. Sheens are classified as follows:

¹ Preliminary samples will be dual purposed; to document soil quality at the base of the planned excavation and to profile the stockpile as described above.
- No Sheen: No visible sheen on the surface of the water.
- Slight Sheen: Light, colorless, dull sheen. The spread is irregular and dissipates rapidly.
- **Moderate Sheen:** Light to heavy sheen, may show color/iridescence. The spread is irregular to flowing. Few remaining areas of no sheen are evident on the water surface.
- **Heavy Sheen:** Heavy sheen with color/iridescence. The spread is rapid and the entire water surface may be covered with sheen.

Sample Collection for Laboratory Analysis

All performance monitoring soil samples to be submitted for gasoline-range total petroleum hydrocarbons (by Ecology Method NWTPH-Gx) and VOC analyses (by EPA Methods 8021 or 8260C) and will be collected in accordance with EPA Method 5035A. The soil aliquot for these analyses will be collected using a laboratory-supplied modified disposable plastic syringe from the bucket as required by the EPA Method 5035A and placed in pre-weighed laboratory-supplied vials.

For all other analyses, the performance monitoring soil samples will be removed from the bucket using a stainless-steel spoon and placed in a stainless-steel bowl for homogenization with the stainless-steel spoon. Gravel-sized material greater than approximately 0.5 inches will be removed from the sample during mixing. A representative aliquot of the homogenized soil will be placed into certified-clean jars supplied by the analytical laboratory.

QC soil samples (e.g., field duplicates and trip blanks) will be collected at the respective frequencies prescribed in Section D.3.5 of the QAPP.

D.2.1.2. Soil Sample Identification

Each soil sample collected for chemical analysis will be assigned a unique sample identification number including the location ID and elevation from which the sample was collected. Location IDs will be determined using the shoring piles as reference. Samples will be named using the following conventions:

- Bottom samples: B east/west pile number north/south pile number elevation (e.g., B-P08-P23-425)
- Sidewall samples: SW pile number elevation (e.g., SW-P08-435)

D.2.2. Groundwater Sampling

D.2.2.1. Monitoring Well Installation

Monitoring wells are planned to be installed via hollow-stem auger methods. Soil samples from borings will be collected in stainless steel split spoon samplers using an autohammer prior to the installation of the monitoring well. Soils well be logged and sampled, and an appropriate well screen interval will be selected. Once the appropriate depth has been reached, the well will be constructed in accordance with Washington Administrative Code (WAC) 173-160. As the augers are removed from the boring, the

annulus of the well will be filled with sand and bentonite, as appropriate. Wells will consist of 2-inch-diameter, Schedule 40 PVC blank casing and 0.010-inch slot (10-slot) well screen. Well screens will be 15 feet in length to accommodate seasonal groundwater fluctuations. With documented depths to water of 7 to 15 feet below grade, the well screens are planned to be set from 5 to 20 feet below grade, contingent on field observations. All wells will be completed with an appropriate protective seal and secured with locking well caps.

D.2.2.2. Monitoring Well Development

Following installation, each monitoring well will be developed to remove fine-grained material from inside the well casing and filter pack, and to improve hydraulic communication between the well screen and the surrounding water-bearing formation. Wells containing light non-aqueous phase liquid (LNAPL) will be developed by hand using a bailer. All other wells will be developed using a 12-volt submersible pump. During development, the pump will be surged along the entire length of submerged well screen. Each well will be developed until visual turbidity is reduced to minimal levels, or until a maximum of 10 casing volumes of water has been removed. Field parameters will be recorded on a Well Development Record form. Groundwater produced during well development will be collected and stored at the Site in sealed and labeled 55-gallon drums pending profiling and disposal.

D.2.2.3. Groundwater Sampling Procedure

Groundwater samples will be collected and handled in accordance with the procedures described below:

- The locking well cap will be removed, and the presence of LNAPL will be evaluated in all wells after installation. The depth-to-LNAPL and/or depth-to-water will be measured from the surveyed location to the nearest 0.01 foot using an electronic oil/water interface probe. The oil/water interface probe will be decontaminated between wells.
- 2. Each monitoring well will be purged at a low-flow rate less than 0.5 liter per minute (Puls and Barcelona, 1996; Ecology, 2012) using a peristaltic pump and dedicated tubing (polyethylene tubing with a short length of silicon tubing through the pump head) in order to minimize drawdown. The tubing intake will be placed just below the center of the saturated section of well screen. During purging, field parameters (temperature, pH, specific electrical conductance, dissolved oxygen, and oxidation-reduction potential [ORP]) will be monitored using a Yellow Springs Instrument (YSI) water quality meter and flow-through cell, or equivalent. These field parameters will be recorded at 2- to 5-minute intervals throughout well purging until they stabilize. Stabilization is defined as three successive readings where the parameter values vary by less than 10 percent (or 0.5 milligrams per liter [mg/L] dissolved oxygen if the readings are below 1 mg/L). However, no more than three well casing volumes will also be made before collecting the sample using a Hach 2100Q turbidimeter, or equivalent.

- 3. Samples with a field-measured specific electrical conductance greater than 1,000 microSiemans per centimeter (µS/cm) or turbidity greater than 25 nephelometric turbidity units (NTU) will be denoted as such on the chain-of-custody form, so that the laboratory can employ appropriate sample preparation techniques to avoid analytical interferences for specific analyses.
- **4.** If the monitoring well is completely dewatered during purging, samples will be collected when sufficient recharge has occurred to allow filling of all sample containers.
- 5. Once purging is complete, the ground water samples will be collected using the same low-flow rate directly into laboratory-supplied sample containers. Samples for dissolved metals analyses will be filtered using an in-line 0.45 micrometer (μm) filter.
- 6. In wells that have measurable LNAPL, samples will not be collected.
- **7.** QC ground water samples (e.g., field duplicates and trip blanks) will be collected at the respective frequencies prescribed in Section D.3.5
- **8.** Following sampling, the wells cap and monument cap will be secured. Each well's dedicated tubing will be retained in the monitoring well for subsequent sampling events. Any damaged or defective well caps or monuments will be noted and scheduled for replacement, if necessary.

D.2.2.4. Groundwater Sample Laboratory Analyses

Groundwater samples will be submitted to a state-certified laboratory and analyzed for the following COCs:

- Total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO) by Ecology Method NWTPH-Gx
- Total petroleum hydrocarbons (TPH) as diesel-range organics (DRO) and oilrange organics (ORO) by Ecology Method NWTPH-Dx (without Silica Gel Cleanup)
- Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by U.S. Environmental Protection Agency (EPA) Method 8260

D.2.2.5. Groundwater Sample Identification

Each groundwater sample will be assigned a unique sample identification number that includes the well number and the six-digit date on which the sample was collected. For example, a groundwater sample collected from monitoring well MW-11 on May 30, 2021, would be identified as MW-11-053021.

D.2.3. Sample Custody and Field Documentation

D.2.3.1. Sample Custody

Upon collection, samples will be placed upright in a cooler. For soil and groundwater, ice or blue ice will be placed in each cooler to meet sample preservation requirements. Inert cushioning material will be placed in the remaining space of the cooler as needed to limit movement of the sample containers. If the sample coolers are being shipped, not hand delivered, to the laboratory, the COC form will be placed in a waterproof bag taped to the inside lid of the cooler for shipment.

After collection, samples will be maintained in the consultant's custody until formally transferred to the analytical laboratory, a shipping agency, or a lab-provided courier. For purposes of this work, custody of the samples will be defined as follows:

- In plain view of the field representatives
- Inside a cooler that is in plain view of the field representative
- Inside any locked space such as a cooler, locker, car, or truck to which the field representative has the only immediately available key(s)

A COC record provided by the laboratory will be initiated at the time of sampling for all samples collected. The record will be signed by the field representative and others who subsequently take custody of the sample. Couriers or other professional shipping representatives are not required to sign the COC form; however, shipping receipts will be collected and maintained as a part of custody documentation in project files. A copy of the COC form with appropriate signatures will be kept by the consultants' project manager.

Upon sample receipt, the laboratory will fill out a cooler receipt form to document sample delivery conditions. A designated sample custodian will accept custody of the shipped samples and will verify that the COC form matches the samples received. The laboratory will notify the project manager, as soon as possible, of any issues noted with the sample shipment or custody.

D.2.3.2. Field Documentation

While conducting field work, the field representative will document pertinent observations and events, specific to each activity, on field forms (e.g., boring log form, as-built well completion form, well development form, ground water sampling form, etc.; see Attachment D-1) and/or in a field notebook, and, when warranted, provide photographic documentation of specific sampling efforts. Field notes will include a description of the field activity, sample descriptions, and associated details such as the date, time, and field conditions. General Aspect field procedures are documented in Attachment D-2.

D.2.4. Decontamination and Investigative-Derived Waste Management

All non-disposable sampling equipment (stainless steel spoons and bowls) will be decontaminated before collection of each sample. The decontamination sequence consists of a scrub with a non-phosphate (Alconox or Liquinox) solution, followed by tap water (potable) rinse, and finished with thorough spraying with deionized or distilled water. A solvent rinse – methanol or hexane – may be used to remove petroleum product from sampling equipment prior to the decontamination procedure described above.

Investigation-derived waste (IDW) water generated during equipment decontamination and sampling will be containerized in labeled drums. The containerized IDW water will be disposed of appropriately at a permitted off-site disposal facility.

Soil cuttings from borings and disposable personal protective equipment (PPE) will be placed in labeled Department of Transportation (DOT)-approved drums pending the analytical results to determine appropriate disposal. Each drum will be labeled with the following information:

- Nonclassified IDW
- Content of the drum (soil, water, PPE) and its source (i.e., the exploration[s] from which the contents came)
- Date IDW was generated
- Name and telephone number of the contact person.

The drums of IDW will be temporarily consolidated on-site, profiled (in accordance with applicable waste regulations) based on available analytical data, and disposed of appropriately at a permitted off-site disposal facility. Containers of IDW will be on site less than 90 days from date of generation. Documentation for off-site disposal of IDW will be maintained in the project file.

D.3. Quality Assurance Project Plan

This QAPP identifies QC procedures and criteria required to ensure that data collected are of known quality and acceptable to achieve project objectives. Specific protocols and criteria are also set forth in this QAPP for data quality evaluation, upon the completion of data collection, to determine the level of completeness and usability of the data. It is the responsibility of the project personnel performing or overseeing the sampling and analysis activities to adhere to the requirements of the FSP and this QAPP.

D.3.1. Purpose of the QAPP

As stated in the Washington State Department of Ecology's (Ecology) Guidelines for Preparation of Quality Assurance Project Plans for Environmental Studies (Ecology Publication No. 04-03-030, July 2004), specific goals of this QAPP are as follows:

• Focus project manager and project team to factors affecting data quality during the planning stage of the project

- Facilitate communication among field, laboratory, and management staff as the project progresses
- Document the planning, implementation, and assessment procedures for QA/QC activities for the investigation
- Ensure that the DQOs are achieved
- Provide a record of the project to facilitate final report preparation

The DQOs for the project include both qualitative and quantitative objectives, which define the appropriate type of data and specify the tolerable levels of potential decision errors that will be used as a basis for establishing the quality and quantity of data needed to support the environmental assessment. To ensure that the DQOs are achieved, this QAPP details aspects of data collection including analytical methods, QA/QC procedures, and data quality reviews. This QAPP describes both quantitative and qualitative measures of data to ensure that the DQOs are achieved. DQOs dictate data collection rationale, sampling and analysis designs that are presented in the main body of the IAWP, and sample collection procedures that are presented in the FSP (Section D.2).

D.3.2. Project Organization and Responsibilities

The project organization for completion of the interim action, including identification of key personnel and their responsibilities, is described below.

The current owner of the subject property is Strickland Real Estate Holdings, LLC. Aspect has been contracted by the owner to plan and implement the interim action as part of Ecology Agreed Order No. 14315. The project contact information for the current owner is:

Strickland Real Estate Holdings, LLC 12199 Village Center, Suite 201 Mukilteo, WA 98275

The Project Manager and primary contact for Aspect is Mr. Adam Griffin, PE, Associate Engineer. The document control clerk is Mr. Michael Maisen. The QA/QC officer is Mr. Jason Yabandeh. The contact information for Aspect is:

Aspect Consulting, LLC 710 Second Ave, Suite 550 Seattle, Washington 98104 Telephone: (206) 328-7443

As a named potentially liable person in Ecology Agreed Order No. 14315, Chevron Environmental Management Company (CEMC) will review and approve the IAWP. The Project Manager for CEMC is Mr. Nate Blomgren, and the project contact information for CEMC is:

Chevron Environmental Management and Real Estate Company 6001 Bollinger Canyon Road, C2096 San Ramon, CA 94583 Ecology has jurisdiction over the remedial investigation and cleanup activities at the Site as stipulated in Chapter 70.105 of the Revised Code of Washington, and the MTCA. The remedial investigation is being conducted as part of Ecology's Agreed Order No. 14315. The Project Manager for Ecology is:

Mr. Dale Myers Washington State Department of Ecology Northwest Regional Office 3190 160th Avenue SE Bellevue, Washington 98008

Aspect will contract with Friedman and Bruya, Inc. (F&B), a state-certified laboratory. The laboratory project manager is responsible for ensuring that all laboratory analytical work for soil and water media complies with project requirements, and acting as a liaison with the project manager, field manager, and data quality manager to fulfill project needs on the analytical laboratory work. This responsibility also applies to analyses the laboratory project manager subcontracts to another laboratory. The laboratory contact information is:

Friedman & Bruya, Inc. 3012 16th Ave SW Seattle, WA 98199

D.3.3. Analytical Methods and Reporting Limits

Chemical Group and Analyte	Analytical Method	Matrix
Gasoline Range Organics	NWTPH-Gx	Soil and Groundwater
Diesel & Residual Range Organics	NWTPH-Dx	Soil and Groundwater
BTEX	EPA 8260	Soil and Groundwater
BTEX, MTBE, EDB, EDC, and Naphthalene	EPA TO-15	Soil Vapor
Aliphatic and Aromatic Hydrocarbons	MA APH	Soil Vapor

Laboratory analytical methods for soil and ground water analyses to be performed during this environmental characterization are as follow:

Table E-1 lists samples containers, preservation, and analytical holding times for each analysis.

D.3.3.1. Method Detection Limit and Method Reporting Limit

The method detection limit (MDL) is the minimum concentration of a compound that can be measured and reported with a 99-percent confidence that the analyte concentration is greater than zero. MDLs are established by the laboratory using prepared samples, not samples of environmental media.

The method reporting limit (RL) is defined as the lowest concentration at which a chemical can be accurately and reproducibly quantified, within specified limits of precision and accuracy, for a given environmental sample. The RL can vary from sample

to sample depending on sample size, sample dilution, matrix interferences, moisture content, and other sample-specific conditions. As a minimum requirement for organic analyses, the RL should be equivalent to or greater than the concentration of the lowest calibration standard in the initial calibration curve. The expected MDLs and RLs from F&B laboratory are summarized in Tables D-3, D-4, and D-5 for groundwater, soil, and soil vapor samples, respectively.

D.3.4. Data Quality Objectives

DQOs, including the Measurement Quality Indicators (MQIs)—precision, accuracy, representativeness, comparability, completeness, and sensitivity (namely PARCCS parameters) —and sample-specific RLs are dictated by the data quality objectives, project requirements, and intended uses of the data. For this project, the analytical data must be of sufficient technical quality to determine whether contaminants are present and, if present, whether their concentrations are greater than or less than applicable screening criteria based on protection of human health and the environment.

The quality of data generated will be assessed against the MQIs set forth in this QAPP. Specific QC parameters associated with each of the MQIs are summarized in Table D-2. Specific MQI goals and evaluation criteria (i.e., MDLs, RLs, percent recovery (%R)) for accuracy measurements, relative percent difference (RPD) for precision measurements, are defined in Tables D-3 and D-4. Definitions of these parameters and the applicable QC procedures are presented below.

D.3.4.1. Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared with their average values. Analytical precision is measured through matrix spike/matrix spike duplicate (MS/MSD) samples and laboratory control samples/laboratory control sample duplicate (LCS/LCSD) when there is sufficient sample volume. A laboratory duplicate sample or just an LCS/LCSD may be used in place of an MS/MSD if there is insufficient volume.

Analytical precision is quantitatively expressed as the relative percent difference (RPD) between the LCS/LCSD, MS/MSD, or laboratory duplicate pairs and is calculated with the following formula:

$$RPD(\%) = 100 \times \frac{|S - D|}{(S + D)/2}$$

where: S = analyte concentration in sample D = analyte concentration in duplicate sample

Analytical precision measurements will be carried out at a minimum frequency of 1 per 20 samples for each matrix sampled, or one per laboratory analysis group. Laboratory precision will be evaluated against laboratory quantitative RPD performance criteria as defined in Tables D-3 and D-4 for specific analytical methods and sample matrices. If the control criteria are not met, the laboratory will supply a justification of why the limits

D-10

were exceeded and implement the appropriate corrective actions. The RPD will be evaluated during data review and validation. The data reviewer will note deviations from the specified limits and will comment on the effect of the deviations on reported data.

D.3.4.2. Accuracy

Accuracy measures the closeness of the measured value to the true value. The accuracy of chemical test results is assessed by "spiking" samples with known standards (surrogates, blank spikes, or matrix spikes) and establishing the average recovery. Accuracy is quantified as the %R. The closer the %R is to 100 percent, the more accurate the data.

Surrogate recovery will be calculated as follows:

Recovery (%) = $\frac{MC}{SC} \times 100$ where: SC = spiked concentration MC = measured concentration

MS percent recovery will be calculated as follows:

Recovery (%) = $\frac{MC - USC}{SC} \times 100$ where: SC = spiked concentration MC = measured concentration USC = unspiked sample concentration

Accuracy measurements on MS samples will be carried out at a minimum frequency of 1 in 20 samples per matrix analyzed. Blank spikes will also be analyzed at a minimum frequency of 1 in 20 samples (not including QC samples) per matrix analyzed. Surrogate recoveries for organic compounds will be determined for each sample analyzed for respective compounds. Laboratory accuracy will be evaluated against the performance criteria defined in Tables D-3 and D-4 If the control criteria are not met, the laboratory will supply a justification of why the limits were exceeded and implement the appropriate corrective actions. Percent recoveries will be evaluated during data review and validation, and the data reviewer will comment on the effect of the deviations on the reported data.

D.3.4.3. Representativeness

Representativeness measures how closely the measured results reflect the actual concentration or distribution of the chemical compounds in the matrix sampled. The FSP sampling techniques and sample handling protocols (e.g., homogenizing, storage, preservation, and use of duplicates and blanks) have been developed to ensure representative samples. Only representative data will be deemed usable. Sampling

locations are described in Section 5.2 of the IAWP. The field sampling procedures are described in the FSP (Section D.2) of this SAP.

The representativeness of a data point is determined by assessing the integrity of the sample upon receipt at the laboratory (e.g., consistency of sample ID and collection date/time between container labels versus COC forms, breakage/leakage, cooler temperature, preservation, headspace for VOA containers, etc.); compliance of method required sample preparation and analysis holding times; the conditions of blanks (trip blank, rinsate blank, field blank, method/preparation blank, and calibration blank) associated with the sample; and the overall consistency of the results within a field duplicate pair.

D.3.4.4. Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal will be achieved through the use of standard techniques to collect samples, USEPA-approved standard methods to analyze samples, and consistent units to report analytical results. Data comparability also depends on data quality. Data of unknown quality cannot be compared.

D.3.4.5. Completeness

Completeness is defined as the percentage of measurements made that are judged to be valid. Results will be considered valid if the precision, accuracy, and representativeness objectives are met and if RLs are sufficient for the intended uses of the data. Completeness is calculated as follows:

$$Completeness \ (\%) = \frac{V}{P} \times 100$$

where:

V = number of valid measurements P = number of measurements taken

Valid and invalid data (i.e., data qualified with the R flag [rejected]) will be identified during data validation. The target completeness goal for this project is 95 percent.

D.3.4.6. Sensitivity

Sensitivity depicts the level of ability an analytical system (i.e., sample preparation and instrumental analysis) has in detecting a target component in a given sample matrix with a defined level of confidence. Factors affecting the sensitivity of an analytical system include analytical system background (e.g., laboratory artifact or method blank contamination), sample matrix (e.g., mass spectrometry ion ratio change, co-elution of peaks, or baseline elevation), and instrument instability.

D.3.5. Quality Control Procedures

Field and laboratory QC procedures are outlined below.

D.3.5.1. Field Quality Control

Beyond use of standard sampling protocols defined in the FSP, field QC procedures include maintaining the field instrumentation used. Field instruments (e.g., PID for evaluating presence of VOCs in soil samples, and the YSI meter for measuring field parameters during ground water sampling) are maintained and calibrated regularly prior to use, in accordance with manufacturer recommendations.

In addition, field QC samples will be collected and submitted for analyses to monitor the precision and accuracy associated with field procedures. Field QC samples to be collected and analyzed for this RI include field duplicates, trip blanks, and equipment rinsate blanks. The definition and sampling requirements for field QC samples are presented below.

Blind Field Duplicates

Blind field duplicate samples are used to check for sampling and analysis reproducibility; however, the field duplicate sample results include variability introduced during both field sampling and laboratory preparation and analysis, and EPA data validation guidance provides no specific evaluation criteria for field duplicate samples. Advisory evaluation criteria are set forth at 35 percent for RPD (if both results are greater than five times the RL) and two times the RLs for concentration difference (if either result is less than five times the RL) between the original and field duplicate results.

Field Duplicates will be submitted "blind" to the laboratory as discrete samples (i.e., given unique sample identifiers to keep the duplicate identity unknown to the laboratory), but will be clearly identified in the field log. Field duplicate samples will be collected at a frequency of 5 percent (1 per 20) of the field samples for each matrix and analytical method, but not less than one duplicate per sampling event per matrix.

If a given soil sample depth interval lacks sufficient volume (recovery) to supply material for a planned analysis and its field duplicate analysis, the field duplicate aliquot will be collected for that analysis from another depth interval in that same location if practical.

Equipment Rinsate Blank

Equipment rinsate blanks are collected to determine the potential of cross-contamination introduced by nondedicated equipment (e.g., bladder pump and YSI meter) that is used at multiple sample locations. Deionized water (obtained from the laboratory) is rinsed through the decontaminated sampling equipment and collected into adequate sample containers for analysis. The equipment rinsate blank is then handled in a manner identical to the primary samples collected with that piece of equipment. The blank is then processed, analyzed, and reported as a regular field sample. The rinsate blank collection frequency will be 1 per 20 samples for each matrix and analytical method, but not less than one equipment rinsate per sampling event per matrix. When dedicated equipment is used, equipment rinsate blanks will not be collected.

D.3.5.2. Laboratory Quality Control

The laboratories' analytical procedures must meet requirements specified in the respective analytical methods or approved laboratory standard operating procedures

(SOPs), e.g., instrument performance check, initial calibration, calibration check, blanks, surrogate spikes, internal standards, and/or labeled compound spikes. Specific laboratory QC analyses required for this project will consist of the following at a minimum:

- Instrument tuning, instrument initial calibration, and calibration verification analyses as required in the analytical methods and the laboratory standard operating procedures (SOPs).
- Laboratory and/or instrument method blank measurements at a minimum frequency of 5 percent (1 per 20 samples) or in accordance with method requirements, whichever is more frequent.
- Accuracy and precision measurements as defined in Table D-2, at a minimum frequency of 5 percent (1 per 20 samples) or in accordance with method requirements, whichever is more frequent. In cases where a pair of MS/MSD or MS/laboratory duplicate analyses are not performed on a project sample, a set of LCS/LCSD analyses will be performed to provide sufficient measures for analytical precision and accuracy evaluation.

The laboratory's QA officers are responsible for ensuring that the laboratory implements the internal QC and QA procedures detailed in the laboratory's Quality Assurance Manual.

D.3.6. Corrective Actions

If routine QC audits by the laboratory result in detection of unacceptable conditions or data, actions specified in the laboratory SOPs will be taken. Specific corrective actions are outlined in each SOP used and can include the following:

- Identifying the source of the violation
- Reanalyzing samples if holding time criteria permit
- Resampling and analyzing
- Evaluating and amending sampling and analytical procedures, and/or
- Accepting but qualifying data to indicate the level of uncertainty

If unacceptable conditions occur, the laboratory will contact the project manager to discuss the issues and determine the appropriate corrective action. Corrective actions taken by the laboratory during analysis of samples for this project will be documented by the laboratory in the case narrative associated with the affected samples.

In addition, the project data quality manager will review the laboratory data generated for this investigation to ensure that project DQOs are met. If the review indicates that nonconformances in the data have resulted from field sampling or documentation procedures or laboratory analytical or documentation procedures, the impact of those nonconformances on the overall project data usability will be assessed. Appropriate actions, including re-sampling and/or re-analysis of samples may be recommended to the project manager to achieve project objectives.

D.3.7. Data Reduction, Quality Review, and Reporting

All data will undergo a QA/QC evaluation at the laboratory which will then be reviewed by the responsible data quality manager. Initial data reduction, evaluation, and reporting at the laboratory will be carried out in full compliance with the method requirement and laboratory SOPs. The laboratory internal review will include verification (for correctness and completeness) of electronic data deliverable (EDD) accompanied with each laboratory report. The responsible database manager will verify the completeness and correctness of all laboratory deliverables (i.e., laboratory report and EDDs) before releasing the deliverables for data validation.

D.3.7.1. Minimum Data Reporting Requirements

The following sections specify general and specific requirements for analytical data reporting to provide sufficient deliverables for project documentation and data quality assessment.

General Requirements

The following requirements apply to laboratory reports for all types of analyses:

- A laboratory report will include a cover page signed by the laboratory director, the laboratory QA officer, or his/her designee to certify the eligibility of the reported contents and the conformance with applicable analytical methodology.
- Definitions of abbreviations, data flags and data qualifiers used in the report.
- Cross reference of field sample names and laboratory sample identity for all samples in the SDG.
- Completed COC document signed and dated by parties of acquiring and receiving.
- Completed sample receipt document with record of cooler temperature and sample conditions upon receipt at the laboratory. Anomalies such as inadequate sample preservation, inconsistent bottle counts, and sample container breakage, and communication record and corrective actions in response to the anomalies will be documented and incorporated in the sample receipt document. The document will be initialed and dated by personnel that complete the document.
- Case narrative that addresses any anomalies or QC outliers in relation to sample receiving, sample preparation, and sample analysis on samples in the sample delivery group (SDG). The narrative will be presented separately for each analytical method and each sample matrix.
- All pages in the report are to be paginated. Any insertion of pages after the laboratory report is issued will be paginated with starting page number suffixed with letters (e.g., pages inserted between pages 134 and 135 should be paginated as 134A, 134B, etc.)
- Any resubmitted or revised report pages will be submitted to project manager with a cover page stating the reason(s) and scope of resubmission or revision, and signed by laboratory director, QA officer, or the designee.

Specific Requirements

The following presents specific requirements for laboratory reports:

- Sample results: All soil sample results will be reported on a dry-weight basis. The report pages for sample results (namely Form 1s) will, at minimum, include sample results, RLs, unit, proper data flags, preparation, and analysis, dilution factor, and percent moisture (for solid samples).
- Method blank results.
- LCS and LCSD (if matrix spike duplicate analysis is not performed) results with laboratory acceptance criteria for %R and RPD.
- Surrogate spike results with laboratory acceptance criteria for %R.
- MS and MSD results with laboratory acceptance criteria for %R and RPD. In cases where MS/MSD analyses were not performed on a project sample, LCS/LCSD analyses should be performed and reported instead.

D.3.8. Data Quality Verification and Validation

Reported analytical results will be qualified by the laboratory to identify QC concerns in accordance with the specifications of the analytical methods. Additional laboratory data qualifiers may be defined and reported by the laboratory to more completely explain QC concerns regarding a particular sample result. All data qualifiers will be defined in the laboratory's narrative reports associated with each case.

Data validation will be performed on all data consistent with United States Environmental Protection Agency Stage 2A requirements. In cases where a systematic QC problem is suspected, such as unusual detections of an analyte or consistent outlying results of a QC parameter, a more detailed review will be performed on laboratory records pertinent to the concerned analysis to further evaluate the extend of the QC issue and the final data quality and usability. The actual level of validation for each data point will be entered in the electrical database submitted to the Ecology Environmental Information Management system (EIMs). Data validation will be conducted following the guidance below:

- EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, January 2017, OLEM 9355.0-135, EPA-540-R-2017-001.
- EPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, January 2017, OLEM 9355.0-136, EPA-540-R-2017-002.

The data validation will examine and verify the following parameters against the method requirements and laboratory control limits specified in Tables D-3 and D-5:

- Sample management and holding times
- Laboratory and field blank results
- Detection and reporting limits

- Laboratory replicate results
- MS/MSD results
- LCS and/or standard reference material results
- Field duplicate results
- Surrogate spike recovery (organic analyses only)
- Internal standard recovery (internal calibration methods only)
- Inter-element interference check (ICP analyses only)
- Serial dilution (metals only)

Data qualifiers will be assigned based on outcome of the data validation. Data qualifiers are limited to and defined as follows:

- U—The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- J—The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ—The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- X—The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- R—The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- DNR—Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.

In cases of multiple analyses (such as an undiluted and a diluted analysis) performed on one sample, the optimal result will be determined and only the determined result will be reported for the sample.

The scope and findings of the data validation will be documented and discussed in the Data Validation Report(s). The Data Validation Report(s) will be appended to the RI report.

D.3.9. Preventative Maintenance Procedures and Schedules

Preventative maintenance in the laboratory will be the responsibility of the laboratory personnel and analysts and ensured by the laboratory project manager. This maintenance includes routine care and cleaning of instruments and inspection and monitoring of carrier gases, solvents, and glassware used in analyses. Details of the maintenance procedures are addressed in the respective laboratory SOPs.

Precision and accuracy data are examined for trends and excursions beyond control limits to determine evidence of instrument malfunction. Maintenance will be performed when an instrument begins to change as indicated by the degradation of peak resolution, shift in calibration curves, decrease in sensitivity, or failure to meet one or another of the method-specific QC criteria.

Maintenance and calibration of instruments used in the field for sampling (e.g., PID for evaluating presence of VOCs in soil samples, and the YSI meter for measuring field parameters during ground water sampling) will be conducted regularly in accordance with manufacturer recommendations prior to use.

D.3.10. Performance and System Audits

The project manager has responsibility for reviewing the performance of the laboratory QA program; this review will be achieved through regular contact with the analytical laboratory's project manager. To ensure comparable data, all samples of a given matrix to be analyzed by each specified analytical method will be processed consistently by the same analytical laboratory.

D.3.11. Data and Records Management

Records will be maintained documenting all activities and data related to field sampling and chemical analyses.

D.3.11.1. Field Documentation

Raw data received from the analytical laboratory will be reviewed, entered into a computerized database, and verified for consistency and correctness. The database will be updated based on data review and independent validation if necessary.

The following field data will be included in the database:

- Sample location coordinates
- Sample type (i.e., groundwater or soil)
- Soil or groundwater sampling depth interval

Information regarding whether concentrations represent total phase (unfiltered samples) or dissolved phase (filtered samples) will be compiled and stored in the database. Data will be submitted to Ecology's Environmental Information Management (EIM) database once data have been reviewed and validated.

D.3.11.2. Analytical Data Management

Raw data received from the analytical laboratory will be reviewed, entered into a computerized database, and verified for consistency and correctness. The database will be updated based on data review and independent validation if necessary.

The following field data will be included in the database:

- Sample location coordinates
- Sample type (i.e., groundwater or soil)
- Soil or groundwater sampling depth interval

Information regarding whether concentrations represent total phase (unfiltered samples) or dissolved phase (filtered samples) will be compiled and stored in the database. Data will be submitted to Ecology's Environmental Information Management (EIM) database once data have been reviewed and validated.

D.4. References

- Puls, R.W. and M.J. Barcelona, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA Ground Water Issue, EPA/540/S-95/504.
- U.S. Environmental Protection Agency (EPA), 2009, Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, January 13, 2009. EPA 540-R-08-005.
- U.S. Environmental Protection Agency (EPA), 2017a, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, January 2017, OLEM 9355.0-135, EPA-540-R-2017-001.
- U.S. Environmental Protection Agency (EPA), 2017b, Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, January 2017, OLEM 9355.0-135, EPA-540-R-2017-001.
- Washington State Department of Ecology (Ecology), 2004, Collecting and Preparing Soil Samples for VOC Analysis, Implementation Memorandum Number 5, June 17, 2004.
- Washington State Department of Ecology (Ecology), 2012, Guidance for Groundwater Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC, Publication No. 12-07-072.

TABLES

Table D-1. Analytical Methods, Sample Containers, Preservation, and Holding Times Project No. 180357, Lynnwood, Washington

Sample Matrix	Analytical Parameter	Analytical Method	Sample Container	No. Containers	Preservation Requirements	Holding Time	
	Gasoline Range TPH	NWTPH-Gx	Method 5035A, 40-mL 4 vials		4°C ±2°C, Freeze within 48 hours to <-7°C	14 days	
	Diesel and Motor Oil Range TPH	NWTPH-Dx (without Silica Gel Cleanup)	4 ounce jar	1	4°C ±2°C	14 days for extraction; 40 days for analysis	
Soil	VOCs	Method 8260	Method 5035A, 40-mL vials	4°C ±2°C, Freeze within 48 hours to <-7°C		14 days	
	MTBE, EDC, EDB, Naphthalene	EDC, EDB, lene Method 8260		4	4°C ±2°C, Freeze within 48 hours to <-7°C	14 days	
	Lead	Method 6020	4-ounce jar	1	4°C ±2°C	6 months	
	Gasoline Range TPH	Method NWTPH-Gx	40-mL VOA vials	3	4°C ±2°C, HCl pH < 2	14 days	
	Diesel and Motor Oil Range TPH	NWTPH-Dx (without Silica Gel Cleanup)	500-mL amber glass bottle	1	4°C ±2°C	7 days for extraction, 40 days for analysis	
Water	MTBE, EDC, EDB, Naphthalene	Method 8260	40-mL VOA vials	3	4°C ±2°C, 1 with HCl pH < 2, 2 without HCl	14 days for analysis	
			40-mL VOA	0	4°C ±2°C, 1 with	· 14 days for analysis	
	Halogenated VOCs	Method 8260	vials	3	HCI pH < 2, 2 without HCI		
Soil Vapor	VOCs	Method TO-15	6L SUMMA Canister	1	N/A	28 days	

Notes:

HCI = hydrochloric acid TPH = total petroleum hydrocarbons VOA = volatile organic analysis BTEX = benzene, toluene, ethylbenzene, xylenes MTBE = methyl tert-butyl ether

Table D-2. QC Parameters Associated with PARCCS

Project No. 180357, Lynnwood, Washington

Data Quality Indicators	QC Parameters				
	RPD values of:				
Provision	(1) LCS/LCS Duplicate				
FIECISICII	(2) MS/MSD				
	(3) Field Duplicates				
	Percent Recovery (%R) or Percent Difference (%D) values of:				
	(1) Initial Calibration and Calibration Verification				
	(2) LCS				
	(3) MS				
Accuracy/Bias	(4) Surrogate Spikes				
Accuracy/Dias	Results of:				
	(1) Instrument and Calibration Blank				
	(2) Method (Preparation) Blank				
	(3) Trip Blank				
	(4) Equipment Rinsate Blank (if appropriate)				
	Results of All Blanks				
Representativeness	Sample Integrity (Chain-of-Custody and Sample Receipt Forms)				
	Holding Times				
	Sample-specific Reporting Limits				
Comparability	Sample Collection Methods				
	Laboratory Analytical Methods				
	Data Qualifiers				
Completeness	Laboratory Deliverables				
	Requested/Reported Valid Results				
Sensitivity	MDLs and MRLs				

Notes:

LCS = laboratory control sample MDL = method detection limit MRL = method reporting limit MS/MSD = matrix spike/matrix spike duplicate QC = Quality Control PARCCS = Precision, Accuracy, Representativeness, Comparability, Completeness, Sensistivity

Aspect Consulting March 2021 Table D-2 SAP/QAPP Page 1 of 1

Table D-3. Measurement Quality Objectives for Water Samples

Friedman and Bruya, Inc

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Volatile Organic Compounds (VOCs) by S	W8260C (µg/L)			
1,1,1,2-Tetrachloroethane	0.040	0.2	80 – 128	≤40	n/a
1,1,1-Trichloroethane	0.041	0.2	79 – 124	≤40	n/a
1,1,2,2-Tetrachloroethane	0.060	0.2	80 – 120	≤40	n/a
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.043	0.2	76 – 124	≤40	n/a
1,1,2-Trichloroethane	0.129	0.2	80 – 120	≤40	n/a
1,1-Dichloroethane	0.053	0.2	80 – 120	≤40	n/a
1,1-Dichloroethene	0.054	0.2	74 – 120	≤40	n/a
1,1-Dichloropropene	0.034	0.2	80 – 120	≤40	n/a
1,2,3-Trichlorobenzene	0.110	0.5	80 -125	≤40	n/a
1,2,3-Trichloropropane	0.131	0.5	80 – 120	≤40	n/a
1,2,4-Trichlorobenzene	0.107	0.5	77 – 127	≤40	n/a
1,2,4-Trimethylbenzene	0.024	0.2	80 – 122	≤40	n/a
1,2-Dibromo 3-Chloropropane	0.366	0.5	79 – 129	≤40	n/a
1,2-Dibromoethane (Ethylene Dibromide	0.075	0.2	80 – 120	≤40	n/a
1,2-Dichlorobenzene	0.036	0.2	80 – 120	≤40	n/a
1,2-Dichloroethane	0.072	0.2	80 – 121	≤40	n/a
1,2-Dichloropropane	0.035	0.2	80 - 120	≤40	n/a
1,3,5-Trimethyl Benzene	0.015	0.2	80 - 120	≤40	n/a
1,3-Dichlorobenzene	0.036	0.2	80 - 120	≤40	n/a
1,3-Dichloropropane	0.062	0.2	80 - 120	≤40	n/a
1,4-Dichlorobenzene	0.040	0.2	80 – 120	≤40	n/a
2,2-Dichloropropane	0.052	0.2	72 – 133	≤40	n/a
2-Butanone	0.814	5.0	73 – 123	≤40	n/a
2-Chloro Toluene	0.024	0.2	80 – 120	≤40	n/a
2-Chloroethylvinyl Ether	0.250	1.0	62 – 130	≤40	n/a
2-Hexanone	0.902	5.0	80 – 129	≤40	n/a
4-Chloro Toluene	0.016	0.2	80 - 120	≤40	n/a
4-Isopropyl Toluene	0.026	0.2	80 – 124	≤40	n/a
4-Methyl-2-Pentanone	0.974	5.0	80 – 125	≤40	n/a
Acetone	2.057	5.0	64 – 125	≤40	n/a
Acrolein	2.476	5.0	60 – 124	≤40	n/a
Acrylonitrile	0.604	1.0	76 – 123	≤40	n/a
Benzene	0.027	0.2	80 – 120	≤40	n/a
Bromobenzene	0.060	0.2	80 – 120	≤40	n/a
Bromochloromethane	0.061	0.2	80 - 120	≤40	n/a
Bromodichloromethane	0.051	0.2	80 – 122	≤40	n/a
Bromoethane	0.041	0.2	77 – 122	≤40	n/a
Bromoform	0.062	0.2	62 - 149	≤40	n/a
Bromomethane	0.252	1.0	68 - 130	≤40	n/a
Carbon Disulfide	0.037	0.2	77 – 124	≤40	n/a
Carbon Tetrachloride	0.044	0.2	71 – 139	≤40	n/a
Chlorobenzene	0.023	0.2	80 – 120	≤40	n/a

Table D-3. Measurement Quality Objectives for Water Samples

Friedman and Bruya, Inc

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Volatile Organic Compounds (VOCs) by S	W8260C (µg/L)			
Chloroethane	0.086	0.2	68 – 133	≤40	n/a
Chloroform	0.027	0.2	80 – 120	≤40	n/a
Chloromethane	0.095	0.5	77 – 122	≤40	n/a
cis 1,3-dichloropropene	0.061	0.2	80 – 127	≤40	n/a
cis-1,2-Dichloroethene	0.043	0.2	78 – 120	≤40	n/a
Dibromochloromethane	0.048	0.2	80 – 120	≤40	n/a
Dibromomethane	0.145	0.2	80 – 120	≤40	n/a
Dichlorodifluoromethane	0.052	0.2	68 – 133	≤40	n/a
Ethyl Benzene	0.037	0.2	80 – 120	≤40	n/a
Hexachloro-1,3-Butadiene	0.073	0.5	80 – 135	≤40	n/a
Iodomethane (Methyl Iodide)	0.227	1.0	76 – 123	≤40	n/a
iso-propyl Benzene	0.021	0.2	80 – 120	≤40	n/a
Methylene Chloride	0.485	1.0	71 – 125	≤40	n/a
Methyl-tert-butyl ether	0.073	0.5	79 – 121	≤40	n/a
Naphthalene	0.118	0.5	80 – 128	≤40	n/a
n-Butyl Benzene	0.025	0.2	80 – 125	≤40	n/a
n-Propyl Benzene	0.023	0.2	80 – 120	≤40	n/a
sec-Butyl Benzene	0.024	0.2	80 – 121	≤40	n/a
Styrene	0.045	0.2	80 – 121	≤40	n/a
tert-Butyl Benzene	0.026	0.2	80 – 121	≤40	n/a
Tetrachloroethene	0.047	0.2	80 – 120	≤40	n/a
Toluene	0.040	0.2	80 – 120	≤40	n/a
trans 1,3-Dichloropropene	0.081	0.2	79 – 132	≤40	n/a
trans-1,2-Dichloroethene	0.048	0.2	75 – 120	≤40	n/a
trans-1,4-Dichloro 2-Butene	0.324	1.0	47 – 147	≤40	n/a
Trichloroethene	0.049	0.2	80 – 120	≤40	n/a
Trichlorofluoromethane	0.037	0.2	74 – 135	≤40	n/a
Vinyl Acetate	0.069	0.2	74 – 120	≤40	n/a
Vinyl Chloride	0.069	0.2	74 – 120	≤40	n/a
m,p-xylene	0.052	0.4	80 – 120	≤40	n/a
o-Xylene	0.035	0.2	80 – 120	≤40	n/a
1,2-Dichloroethane-d4	n/a	n/a	80 – 130	≤40	80 – 120
1,2-Dichlorobenzene-d4	n/a	n/a	80 – 120	≤40	80 – 120
Toluene-d8	n/a	n/a	80 – 120	≤40	80 – 120
4-Bromofluorobenzene	n/a	n/a	80 – 120	≤40	80 – 120
Gasoline Range Hydrocarbons by NWTPH	l-Gx (µg/L)		n		
Gasoline Range Hydrocarbons	0.057	0.25	80 – 120	≤40	n/a
Bromobenzene	n/a	n/a	77 – 120	≤40	n/a
Diesel and Motor Oil Range Hydrocarbons	s by NWTPH-D	x without Sili	ca Gel Cleanup (µg/	′L)	
Diesel Range Hydrocarbons	39	100	61-104	≤40	n/a
Oil Range Hydrocarbons	10	200	60 – 130	≤40	n/a
o-Terphenyl	n/a	n/a	50 – 150	≤40	n/a
Metals					
Lead	0.046	0.1	80 – 120	≤20	n/a

Notes:

(A) = Based on current laboratory control criteria. Some values may vary slightly between instruments and can be

subject to change as the laboratory updates the charted values periodically.

%R = percent recovery

LCS/LCSD = laboratory control samples and laboratory control sample duplicate

MDL = method detection limit

MRL = method reporting limit

n/a = not applicable

RPD = relative percent difference

 μ g/L = microgram per liter

(--) = No PSL identified

Table D-4. Measurement Quality Objectives for Soil Samples

Friedman and Bruya, Inc.

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Volatile Organic Compounds (VOCs) by	SW8260C (mg	/kg)			
1,1,1,2-Tetrachloroethane	0.000233	0.001	80 – 120	≤40	n/a
1,1,1-Trichloroethane	0.000226	0.001	78 – 133	≤40	n/a
1,1,2,2-Tetrachloroethane	0.000253	0.001	71 – 120	≤40	n/a
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.000287	0.002	72 – 142	≤40	n/a
1,1,2-Trichloroethane	0.000286	0.001	77 – 120	≤40	n/a
1,1-Dichloroethane	0.000203	0.001	65 – 139	≤40	n/a
1,1-Dichloroethene	0.000336	0.001	73 – 138	≤40	n/a
1,1-Dichloropropene	0.000312	0.001	80 – 123	≤40	n/a
1,2,3-Trichlorobenzene	0.000305	0.005	76 – 122	≤40	n/a
1,2,3-Trichloropropane	0.000517	0.002	75 – 120	≤40	n/a
1,2,4-Trichlorobenzene	0.000332	0.005	75 – 130	≤40	n/a
1,2,4-Trimethylbenzene	0.00023	0.001	77 – 125	≤40	n/a
1,2-Dibromo-3-Chloropropane	0.000586	0.005	61 – 128	≤40	n/a
1,2-Dibromoethane (Ethylene Dibromide)	0.000176	0.001	79 – 120	≤40	n/a
1,2-Dichlorobenzene	0.000293	0.001	77 – 120	≤40	n/a
1,2-Dichloroethane	0.000191	0.001	77 – 120	≤40	n/a
1,2-Dichloropropane	0.000162	0.001	74 – 120	≤40	n/a
1,3,5-Trimethylbenzene	0.000254	0.001	77 – 126	≤40	n/a
1,3-Dichlorobenzene	0.000227	0.001	76 – 120	≤40	n/a
1,3-Dichloropropane	0.000209	0.001	77 – 120	≤40	n/a
1,4-Dichlorobenzene	0.000232	0.001	75 – 120	≤40	n/a
2,2-Dichloropropane	0.000292	0.001	77 – 137	≤40	n/a
2-Butanone	0.000513	0.005	64 – 120	≤40	n/a
2-Chloroethyl Vinyl Ether	0.000276	0.005	20 – 157	≤40	n/a
2-Chlorotoluene	0.0003	0.001	76 – 120	≤40	n/a
2-Hexanone	0.000439	0.005	62 – 128	≤40	n/a
4-Chlorotoluene	0.000277	0.001	75 – 121	≤40	n/a
4-Isopropyl Toluene	0.000236	0.001	78 – 131	≤40	n/a
4-Methyl-2-Pentanone	0.00042	0.005	70 – 124	≤40	n/a
Acetone	0.000482	0.005	48 – 132	≤40	n/a
Acrolein	0.003809	0.05	60 – 130	≤40	n/a
Acrylonitrile	0.001026	0.005	59 – 124	≤40	n/a
Benzene	0.000296	0.001	80 – 120	≤40	n/a
Bromobenzene	0.000153	0.001	75 – 120	≤40	n/a
Bromochloromethane	0.000323	0.001	69 – 133	≤40	n/a
Bromodichloromethane	0.000254	0.001	80 – 122	≤40	n/a
Bromoethane	0.00044	0.002	74 – 132	≤40	n/a
Bromoform	0.000297	0.001	63 – 120	≤40	n/a
Bromomethane	0.000187	0.001	40 – 172	≤40	n/a

Table D-4. Measurement Quality Objectives for Soil Samples

Friedman and Bruya, Inc.

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Volatile Organic Compounds (VOCs) by	SW8260C (mg	ı/kg)			
Carbon Disulfide	0.000559	0.001	72 – 146	≤40	n/a
Carbon Tetrachloride	0.000213	0.001	76 – 136	≤40	n/a
Chlorobenzene	0.000219	0.001	80 – 120	≤40	n/a
Chloroethane	0.000462	0.001	53 – 154	≤40	n/a
Chloroform	0.000234	0.001	75 – 126	≤40	n/a
Chloromethane	0.000263	0.001	65 – 129	≤40	n/a
cis-1,2-Dichloroethene	0.00024	0.001	75 – 124	≤40	n/a
cis-1,3-Dichloropropene	0.000226	0.001	80 – 124	≤40	n/a
Dibromochloromethane	0.000266	0.001	77 – 123	≤40	n/a
Dibromomethane	0.000147	0.001	80 – 120	≤40	n/a
Dichlorodifluoromethane	0.000207	0.001	67 – 142	≤40	n/a
Ethyl Benzene	0.000202	0.001	80 – 120	≤40	n/a
Hexachloro-1,3-Butadiene	0.00041	0.005	72 – 135	≤40	n/a
lodomethane (Methyl lodide)	0.000215	0.001	34 – 181	≤40	n/a
Isopropyl Benzene	0.000233	0.001	77 – 127	≤40	n/a
Methylene Chloride	0.000635	0.002	61 – 128	≤40	n/a
Methyl-t-butyl ether (MTBE)	0.000231	0.001	68 – 124	≤40	n/a
Naphthalene	0.000429	0.005	71 – 122	≤40	n/a
n-Butylbenzene	0.000262	0.001	75 – 134	≤40	n/a
n-Propyl Benzene	0.000272	0.001	76 – 126	≤40	n/a
s-Butylbenzene	0.00024	0.001	77 – 127	≤40	n/a
Styrene	0.000138	0.001	80 – 122	≤40	n/a
t-Butylbenzene	0.000306	0.001	77 – 125	≤40	n/a
Tetrachloroethene	0.000257	0.001	76 – 131	≤40	n/a
Toluene	0.000151	0.001	78 – 120	≤40	n/a
trans-1,2-Dichloroethene	0.000266	0.001	73 – 131	≤40	n/a
trans-1,3-Dichloropropene	0.000216	0.001	80 – 126	≤40	n/a
trans-1,4-Dichloro-2-Butene	0.000437	0.005	62 – 127	≤40	n/a
Trichloroethene	0.000212	0.001	80 – 120	≤40	n/a
Trichlorofluoromethane	0.000266	0.001	57 – 161	≤40	n/a
Vinyl Acetate	0.000381	0.005	54 – 138	≤40	n/a
Vinyl Chloride	0.000235	0.001	74 – 134	≤40	n/a
m,p-Xylene	0.000392	0.001	80 – 123	≤40	n/a
o-Xylene	0.000224	0.001	80 – 120	≤40	n/a
1,2-Dichloroethane-d4	n/a	n/a	80 – 149	≤40	80 – 122
1,2-Dichlorobenzene-d4	n/a	n/a	80 – 120	≤40	80 – 120
Toluene-d8	n/a	n/a	77 – 120	≤40	80 – 120
4-Bromofluorobenzene	n/a	n/a	80 – 120	≤40	80 – 120

Table D-4. Measurement Quality Objectives for Soil Samples

Friedman and Bruya, Inc.

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Gasoline Range Hydrocarbons by NWT	PH-Gx (mg/kg)				
Gasoline Range Hydrocarbons	0.057	0.25	80 – 120	≤40	n/a
Bromobenzene	n/a	n/a	49 – 143	≤40	n/a
Diesel and Motor Oil Range Hydrocarbo	ns by NWTPH-	Dx without Si	lica Gel Cleanup	(mg/kg)	
Diesel Range Hydrocarbons	1.28	5	60 – 108	≤40	n/a
Oil Range Hydrocarbons	1.57	10	60 – 130	≤40	n/a
o-Terphenyl	n/a	n/a	50 – 150	≤40	n/a
Metals					
Lead	n/a	0.1	80-120	≤20	75-125

Notes:

(A) = Based on current laboratory control criteria. Some values may vary slightly between instruments and can be subject to change as the laboratory updates the charted values periodically.

%R = Percent recovery

LCS/LCSD = Laboratory control samples and laboratory control sample duplicate

MDL = Method detection limit

mg/kg = milligram per kilogram

MRL = Method reporting limit

n/a = not applicable

RPD = Relative percent difference

Attachment D-1

Aspect Field Forms

	As-E	Built	We	ell Con	npletion Diagram
Project Number:	:				Boring/Monitoring Well Number: Sheet: of:
Project:					Location:
Elevation:					Drilling Contractor:
Drilling Method a	and Equipment Used:				Logged By:
Water Levels:					Completion Start: Einish:
Ecology Well I	ID				
]		Monument Type/Height
Soil Type/ Depth	Completion Depths		-		Well Cap Type
			Ī		Surface Seal Material
			-		Seal Material (list NSF/ANSI certification)
			-		Well Casing ID
					Type of Connection
			-		Filter Pack/Size
					Filter Pack Interval
					Well Screen ID
					Type of Screen
					Slot Size
					Screen Interval
					Centralizers
			-		Diameter of Borehole
					Sump
	L				
	L		E	Bottom of Bo	ring
		Mater	rials Use	ed:	Screen:
As As	DeCt consulting	Sand	:		Bentonite:
	earth+water ww.aspectconsulting.com	Blank	:		Monument:
	a limited liability company	Conc	rete:		Other:

Q:_ACAD Standards\Standard Details\Well Diagram.dwg

Field Staff:

DAILY REPORT

Date:	Equipment used:
Project Name:	
Project Number:	
Weather:	
Arrival on site:	
Departure from site:	Calibration:

Page __of__

As		G		Sample number						
GROUNI	OWATER	SAMPLING R	ECORD			WELL NUM	BER:			Page: of
Project Name: Date: Sampled by: Measuring Point of Well: Screened Interval (ft. TOC)						Project Number:				
Casing Vol	ume umes: 3/4"= 3/4"= 0	(ft Water = 0.02 gpf 2 .09 Lpf 2" =) x 2" = 0.16 gpf = 0.62 Lpf	(Lpfv) 4" = 4" = 2	(gpf) = = 0.65 gpf .46 Lpf	(L)(gal 6" = 1.47 6" = 5.56 Lp) gpf f		Sample Inta	ake Depth (ft TOC):
PURGIN	G MEASU									
Criteria:	Cumul. Volume (gal or L)	0.1-0.5 Lpm Purge Rate (gpm or Lpm)	Stable Water Level (ft)	na Temp. (°C)	± 3% Specific Conductance (µS/cm)	± 10% Dissolved Oxygen (mg/L)	± 0.1	± 10 mV ORP (mv)	± 10% Turbidity (NTU)	Comments
Total Gallo Ending Wa	ns Purged: _ ter Level (ft [:]	TOC):				Total Casing Ending Total	Volumes R Depth (ft T	Removed:		
SAMPLE Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appea	rance			Remarks
						Color	Sediment			
METHOD	DS									

Parameters measured with	(instrument model & serial number)):
--------------------------	------------------------------------	----

Purging Equipment:	Decon Equipment:					
Disposal of Discharged Water:						
Observations/Comments:						

X:\Aspect Forms\Field Forms\Groundwater Sampling Form.xlsx

								BC	RING LC)G				SHEETC	F
LOCATI	ON OF BO	RING							PROJECT NO.					BORING NO.	
									PROJECT NAME						
SKETCH	H OF LOCA	TION							DRILLING METHOD:						
									LOGGED BY:						
									DRILLER:						
									SAMPLING METHOD	D:					
									HAMMER WEIGHT/S	SAMPLER DIAN	IETER				
									OBSERVATION WE	LL INSTALL	YES	NO	_	START	FINISH
									WATER LEVEL					TIME	TIME
									TIME					_	
									DATE					DATE	DATE
DATUM					GRADE ELEV				CASING DEPTH					_	
	SIZE (%)		ġ/		z /				SURFACE CONDITIO	N N					I
			/	PTH		EET	NON	ARY							
GRAVEL	SAND (SIZE RANGE)	FINES	SAMPLE TYPE	SAMPLE DE	VCHES RECV'D	DEPTH IN F	PENETRATI	USCS SUMM	DESCRIPTION: Den MAJOR CONSTITUE NON-SOIL SUBSTAN	sity, moisture, c NT. NCES: Odor, st	color, minor, aining, sheen, s	scrap, slag, etc.	DRILL ACTIO	DN	
			/_/			1									
			\square			2									
						3									
						4									
						5									
						6									
						_									
						′_									
			/ /			8									
						9									
						0									
						1									
			$\langle - \rangle$		\swarrow	2									
			/ /			³									
						4									
						_									
			/ /			5									
			Ζ,			6									
						7									
			K /		1 /	'—	1								
						8	1								
						_									
			\angle			9									
			\square												

Soil Vapor Port Sample Collection Form

Project Name:	Address:	Aspect Project No.:	
Date:	Field Representative:		
Brand and Model of Field Meters Used: Photoionization Detector:			
Multi-Gas Meter:			
Helium Monitor:			

Soil Vap	or Samp	le Nam	e:			Cannister	ID:			Gauge ID:			
		Shut-li	N Vacuum Test	Readings				Fi	nal Pu	ırge Readi	ngs		
START	ART Time: Vacuum (inches Hg):				PID (pp	PID (ppm) CH ₄ (%LEL)			CO ₂ (%)	O ₂ (%)	He (%)		
END	Time:		Vacuum (inc	Vacuum (inches Hg):									
					Sampli	ing Readin	igs						
		S	TART		Sample Time	Interval				END			
Helium Sh	roud:	Y N	1	(%)	Start:		Helium S	Shroud:	Y	Ν	(%)		
Canister Vacuum (inches Hg): End:						Canister Vacuum (inches Hg):							

Notes:

Soil Vap	or Samp	ole Na	me:			Cannister ID: Gauge ID:						
		Shut	t-In Va	cuum Test Readings				Fir	ial Pu	irge Readi	ngs	
START	Time:		Vacuum (inches Hg):			PID (pp	m)	CH ₄ (%LEL)	(CO ₂ (%)	O ₂ (%)	He (%)
END	Time:			Vacuum (inches Hg):								
					Sampli	ng Readin	gs					
			STAR		Sample Time	Interval				END		
Helium Sh	roud:	Y	Ν	(%)	Start:		Heliu	m Shroud:	Υ	Ν	(%)	
Canister Vacuum (inches Hg): End:					Canister Vacuum (inches Hg):							

Notes:

Soil Vapor Sample Name:								Cannister ID: Gauge ID:					
Shut-In Vacuum Test Readings								Final Purge Readings					
START	Time:				Vacuum (inches Hg):		PID (pp	om)	CH ₄ (%LEL)		CO ₂ (%)	O ₂ (%)	He (%)
END	Time:				Vacuum (inches Hg):								
						Sampli	ing Readir	ngs					
START Sample Time											END		
Helium S	hroud:		Y	Ν	(%)	Start:		Heliur	m Shroud:	Y	Ν	(%)	
Canister Vacuum (inches Hg): End:						Canister Vacuum (inches Hg):							

Notes:

WELL DI	EVELOPMENT	RECORD	1		WELL NUMBER:						
Project Nar	ne:				Project Number: Starting Water Level (ft TOC):						
Date:											
Developed	bv:				Casing Stickur	o (ft BGS):	,				
Measuring	Point of Well				Total Depth (ft						
Soroonod I					Cooing Diama	tor (inchoo)					
					Casing Diame).				
Filter Pack	Interval (ft. BGS):	ft Wator v		anf –							
Casing vol	umes: 2" = 0.16 g	ipf 4" =	= 0.65 gpf	9pi = 6" =	1.47 gpf						
	PMENT MEAS		IS								
Flansed		Purge	Temp	nН	Specific	Turbidity	Imhoff Cone	Comments			
Time (min)	(gallons)	Rate (gpm)	(C or F)	P	Conductance (µmhos/cm)	(NTU)	(ml/L)				
	l .										
		<u> </u>									
		ļ									
		ļ									
Total Disch	arge (gallons):				_Total Casing \	/olumes Re	emoved (gallons	s):			
Ending Wa	ter Level (ft TOC):				_Ending Total D	Depth (ft TC	DC):				
METHOD)S										
Cleaning E	quipment:										
Developme	ent Equipment:										
Disposal of	Discharged Wate	r:									
Observatio	ns/Comments:										
	, o on monto.										

Attachment D-2

Aspect Field General Procedures

FIELD NOTES

Provided below are general field documentation procedures for all environmental field staff. The Project Manager should discuss additional project-specific requirements with staff. Regardless of the documentation needs of the project, all written documentation of field tasks is discoverable as evidence and should be kept neat, professional and factual.

A field logbook or field form should be completed daily for each field job at each Site visited, regardless of the scope of work. Before field notes are provided to the Project Manager, all information should be accurate, complete and neat. The field staff shall sign or initial and date each page/sheet. At a minimum, field notes should include the following, as applicable:

- The times of arrival to and departure from the Site.
- Any unique weather conditions.
- Project name and project number.
- A list of all personnel on the job Site during the day, including contractors, subconsultants, other consultants, clients, regulators, etc.
- A description, and general times for completion, of the activities conducted (however there is no need to duplicate information that may be provided on another field form, i.e. lithology type in a boring that is logged on a boring log or volume of groundwater purged from a well).
- A description of any unanticipated Site conditions.
- A description of any problems encountered and resolutions taken, including times and reasons for work delays.
- Rationale/description for any deviations from the Proposal, Work Plan, Sampling Plan, etc.
- A summary of equipment used (make, model and condition) and calibration information, if applicable (reference calibration log, if applicable).
- A description of waste generated (amount, type, container, location, etc.).
- A description of any photographic documentation of the site conditions and field work.
- A description of the samples collected and procedures to get the samples to the analytical laboratory.

Your field notes should be scanned to a PDF file and saved in the appropriate project folder with the other field documentation from the day. When all field documentation is complete, combine into a single PDF and send the link to the file to the PM.

X:\Aspect Forms\Field Forms\Field Procedures Guidance\Procedures_Field Notes.docx

GROUNDWATER SAMPLING

Field Procedures

Gauging Water Levels

- Decontaminate the water level meter tape and probe.
- Don the appropriate PPE as defined in the Site-specific Health and Safety Plan.
- Unlock and open the well monument and remove the well cap. Observe the well and document any damage to the monument, monument cover, or well cap in the daily field log.
- Remove any water that may have accumulated inside well monument using a hand pump (e.g. thirsty mate).
- Open the well and remove any dedicated equipment.
- Wait at least 30 minutes after opening/removing equipment to allow water levels to equilibrate to atmospheric pressure.
- Measure and record the depth to water from the marked reference point, or the north side of the well casing if no reference point is marked, to the nearest 0.01 foot.
- Record the time and water level measurement in a field logbook or on a field form. All times and water level measurements should be in one place (not on individual purge forms).

Low-Flow Purging and Sample Collection

Unless directed otherwise by the Project Manager or a site-specific work plan, all monitoring wells should be purged using the standard low-flow purge techniques¹. The purging equipment will vary depending on the water level in the well and the screened interval.

- If using an aboveground pump, attach and secure the dedicated tubing to the sampling pump. Lower the tubing or, if using a submersible pump, the pump slowly into the well.
- Set the water intake (end of the tubing or pump intake) at the approximate middle of the saturated screened interval, unless directed otherwise by the Project Manager.
- Slowly lower the water level probe until it is just at the water surface and record initial water level on the purge form.
- Connect the discharge end of the tubing to a flow-through cell containing the water quality meter.

¹ United States Environmental Protection Agency (EPA). 1996. Low Stress (low flow) Purging and Sampling Procedures for the Collection of Ground Water Samples from Monitoring Wells. Revision 2. July 30.

GROUNDWATER SAMPLING

- Start pumping the well by selecting the lowest pump speed. Ideally, the pump rate should equal to the recharge rate with little or no water level drawdown in the well (total drawdown should be 0.3 foot or less).
- The maximum flow rate during purging should be 0.1 to 0.5 liters (100 to 500 milliliters) per minute. Measure the pumping rate using a graduated cylinder and stopwatch. Record the pumping rate and depth to water.
- Allow the flow-through cell to be "flushed" with purged groundwater twice. Monitor field parameters (temperature, pH, ORP, specific conductance and dissolved oxygen) in 3- to 5- minute intervals during purging, maintaining a consistent time interval for a single well.
- The well is considered stabilized and ready for sample collection when the indicator parameters have stabilized for three consecutive readings, as follows²:
 - $\circ \pm 0.1$ for pH
 - \circ ±3-percent for specific conductance
 - $\circ \pm 10$ -percent for dissolved oxygen
 - $\circ \pm 10 \text{mV}$ for ORP
- If the recharge rate of the well is very low, do not purge the well dry. Lower the flow rate if the water level drops more than 0.3 foot or if air bubbles are observed in the purge stream. Do not lower the water intake. Turn off the pump and allow the well to recover before sampling.
- Once the field parameters have stabilized, disconnect the tubing from the flow-through cell in preparation for sampling. Gloves should be changed between purging and sampling.
- Samples should be collected by filling laboratory-supplied containers to the top. Samples for volatiles should be collected first VOAs should be filled with no headspace or bubbles. For dissolved metals analysis, field filtering may be necessary prior to sample collection (check with your Project Manager).
- After samples have been collected, measure and record the final water level.
- Stop the pump and disconnect the tubing from the pump. Dedicated tubing can be left inside the well for future sampling events; secure the tubing so that it doesn't fall down the well.
- Close and lock the well.
- Once samples are collected, label each sample and record them on the COC form. Sample labels should be smudge-proof or covered with transparent tape. Place sample containers

² In some cases, duration of purging may be appropriate to determine sampling. Contact the Project Manager if parameters do not stabilize after 1 hour of purging.
GROUNDWATER SAMPLING

into a Ziploc bag and immediately put into an iced cooler for shipment to the laboratory. Segregate larger bottles with bubble wrap. Ice in coolers should be double-bagged to prevent leakage. Coolers should be paced to the top with bagged ice to prevent warming and bottle breakage.

Documentation

Daily field logbook or field notes Water level summary form (or single logbook page/notes) Groundwater Purge Form COC copy

X:\Aspect Forms\Field Forms\Field Procedures Guidance\Procedures_GW Sampling.docx

Documentation

Field documentation for soil sampling varies depending on the type of work being conducted, but should include, at a minimum:

Daily field logbook or field notes (see Field Notes procedures) Boring log/test pit log (see Soil Description guidance)

Field Procedures

Logging and Soil Descriptions

General soil logging procedures specific to drilling are provided here. These general procedures can also be applied to other types of soil explorations. Site-specific deviations should be discussed with the Project Manager. Soil classification will be addressed in a separate guidance.

- Visually classify the soils in general accordance with ASTM Method D 2488 and record soil descriptions in accordance with Aspect soil logging standards, field screening results, and other relevant details (e.g., staining, debris, odors, etc.) on the boring log.
- Record the total pounded/advanced length of core, the amount of soil recovery within that length, sampler type and diameter, and the blow counts and hammer weight or SPT data (if applicable), on the boring log.
- Note the location of each soil sample collected for potential chemical analysis, including the depth interval represented and the name, time of collection and number of sample containers. These can be noted on the boring log or in the field notes but do not need to be documented in multiple places.
- Document the depth to water at the time of drilling on the boring log, and make any notations about the observed conditions (odors, color, sheen, etc.) of the water on the boring log or in field notes.
- Note whether the water level was measured in an open hole or a cased hole, and if so, the depth of the casing at time of measurement.
- If applicable, document the temporary screened interval and specific depth of water intake (tubing, casing or pump intake) from which a grab groundwater sample is collected in the field notes.
- Document the total boring depth on the boring log.

Field Screening

Field screening procedures may vary from site to site depending on the investigation objectives. At a minimum, field screening of soil samples – whether collected from drilling samplers, test pits/excavations or stockpiles – should consist of the following.

- Visual examination Observe the soil visually for staining and evidence of NAPL. If NAPL is observed, note its occurrence in the context of the soil lithology:
 - Sheen as described below

- Staining Visible brown or black staining on soil. Can be visible as mottling or in bands. Typically associated with fine-grained soil.
- Coating Visible brown or black oil coating soil grains. Typically associated with coarse-grained soil.
- Oil wetted Visible brown or black oil wetting the soil. Oil appears as a liquid and is not held by soil grains.
- Olfactory Observe and document any odor associated with the soil sample. Unless confident in contaminant odor identification, all odor notations should be described as contaminant-**like** (e.g. petroleum-like odor). Odors can be quantified as slight or strong, if applicable.
- Volatile organic vapor screening Measure and record the volatile organic vapors present in the headspace of each soil sample using a photoionization detector (PID).
 - After collecting soil in laboratory-supplied containers for chemical analysis, as described below, place remaining soil into a disposable plastic bag, seal, and gently shake.
 - Let the bag sit for at least 2 minutes.
 - Open or puncture the bag (do not use the tip of the PID, as it may become clogged with plastic from the bag, and do not use the tip of a pen, as the ink may contain volatile compounds) and insert the tip of the PID into the headspace in the Ziploc bag.
 - Record the PID reading.
- Water Sheen Test Test and observe water for the presence of sheen.
 - Place approximately 1 Tablespoon of soil into disposable container or a blackplastic gold plan that is approximately ¼ full of water. For gravel, you may need to use 4 Tablespoons of soil in a larger container that is approximately ¼ full of water.
 - Observe the water surface and sidewalls of the jar for signs of sheen, according to the nomenclature below.
 - Gently agitate the soil and record observations. Naturally-occurring sheen will dissolve or break-up upon agitation. If only naturally-occurring sheen is observed, the recorded observations should be "No Sheen".
 - o Sheen nomenclature:
 - No Sheen (NS) no visible sheen on water surface.
 - Slight Sheen (SS) light, colorless or dull sheen on water. Spotty to globular; spread is irregular, not rapid; areas of no sheen remain; sheen dissipates rapidly.
 - Moderate Sheen (MS) light to heavy sheen. May have some color or iridescence, globular to stringy; spread is irregular to flowing; few remaining areas of no sheen on water surface.
 - Heavy Sheen (HS) Heavy colorful film with iridescence. Spread is rapid; sheen flows off the sample; most of water surface covered with sheen.
 - Organic Sheen (OS) Blocky, irregular sheen with little or no color. Where
 petroleum sheen is fluid looking and flowy, organic sheen is square and
 moves across the surface of the water very little, if at all.
 - If observed, quantify the spatial coverage (as % of total water surface), size/diameter and color of NAPL blebs.

The results of field screening activities should be recorded on the boring log when samples originate from a drilling sampler, on a test pit log or in the field logbook/field forms for other excavation or stockpile sampling.

Soil Sample Collection

As with field screening, soil samples can be collected from drilling samplers, excavator buckets, test pit sidewalls and stockpiles using variable methods. The general procedures described below should be used when collecting soil samples from a potentially-contaminated site for chemical analysis.

- Gloves should be changed between collection of each soil sample.
- If collecting soil for VOC analysis (EPA 5035A), use the laboratory-provided, dedicated sampling syringe to collect approximately 5 grams of soil from an undisturbed soil surface and insert the soil into the 40-mL VOA vial (see Ecology Technical Memoranda #5). Quickly brush off the vial threads and seal immediately with the screw cap.
- From the same soil surface, use a freshly-gloved hand or a decontaminated stainless-steel spoon/hand shovel to collect the rest of the soil into laboratory-prepared sample jars. Fill the jars as full as possible, brush off the jar threads and seal immediately with the screw cap.
- Once sample collection is complete, label each sample and record them on the COC form. Sample labels should be smudge-proof or covered with transparent tape. Place sample containers into a Ziploc bag and immediately put into an iced cooler for shipment to the laboratory. Segregate VOA vials from sample jars. Ice in coolers should be double-bagged to prevent leakage. Coolers should be paced to the top with bagged ice to prevent warming and bottle breakage.

Grab Groundwater Sample Collection

The collection of grab groundwater samples will usually be facilitated by the driller. Once groundwater is encountered and a screened interval is agreed upon, the driller will install a temporary well screen. The driller will install tubing and/or a pump and start purging water from the screen. The general grab groundwater sample collection procedures are as follows:

- Allow the pump to purge at a low-flow rate (100- to 500-mL per minute) until turbidity is reduced as much as possible (i.e., further pumping does not visibly improve groundwater quality).
- Once turbidity stabilizes, measure and record field parameters (check with the Project Manager, this step may be skipped for some projects).
- Gloves should be changed before collecting the sample.
- Fill all sample bottles by allowing the pump discharge to flow gently down the inside of the bottle with minimal turbulence. Samples for volatile analysis should be collected first. VOAs should be filled to just overflowing so that no air bubbles are entrapped inside. Other containers should be filled to nearly the top and capped thereafter.

• Once container filling is complete, label each sample and record them on the COC form. Sample labels should be smudge-proof or covered with transparent tape. Place sample containers into a Ziploc bag and immediately put into an iced cooler for shipment to the laboratory. Segregate larger bottles with bubble wrap. Ice in coolers should be double-bagged to prevent leakage. Coolers should be paced to the top with bagged ice to prevent warming and bottle breakage.

X:\Aspect Forms\Field Forms\Field Procedures Guidance\Procedures_Soil Logging and Sampling.docx

Field Guidance for Installing and Sampling Sub-Slab Soil Gas Using Vapor Monitoring Points

1 Sub-Slab Soil Vapor Point Installation and Sampling Procedures

The purpose of this Field Guidance Procedure Field Guidance Procedure is to provide field personnel with an outline of the specific information needed to collect and document representative sub-slab soil gas samples. The recommended sub-slab soil gas sampling technique, as presented in this Field Guidance Procedure, is based on the assumption that soil gas samples should be representative of chemicals that may volatilize from the uppermost aquifer into the vadose zone.

1.1 Equipment and Materials

Temporary Installation

The following equipment and materials are required for temporary Vapor Pin[™] installation:

- Rotary hammer drill.
- 5/8-inch diameter drill bit.
- $1\frac{1}{2}$ -inch diameter drill bit.
- ³/₄-inch diameter bottle brush.
- Wet/dry vacuum.
- Extension cord.
- Generator (if no power is available on site).
- Assembled Vapor Pin[™].
- Vapor PinTM installation/extraction tool.
- Dead blow hammer.
- VOC-free hole patch material (hydraulic cement) and putty knife, for hole repair after sampling.
- Appropriate personal protective equipment(PPE).

Permanent Installation

The following equipment and materials are necessary for permanent AMS vapor point installation:

- Rotary hammer drill with a 1-inch and a 2-inch carbide tipped bit.
- Extension cord and generator (if no power outlets are available).
- 3-inch (length) stainless steel (SS) screen assembly with locking cap (AMS GVP probe assembly or equivalent).
- Hose barb, stainless steel (1/4-inch).
- Teflon® tape.

- 100% Beeswax, to seal vapor port borehole annulus.
- Quick Set Concrete Patch, to seal vapor port borehole annulus.

Sample Collection

The following equipment and materials are necessary to properly conduct sub-slab soil gas sampling (see Figure 1):

- Air pump and appropriate ¹/₄-inch fluoropolymer and silicone #15 connection tubing, tee fittings, valves, and flow metering device for purging and sampling vapor ports.
- Sufficient number of Summa canisters with appropriate flow controllers.
- Equipment required for collection of samples using Summa canisters, including appropriate wrenches and pressure gauges.
- An accurate and reliable watch that has been properly set.
- A calculator.
- Field notebook, applicable sampling analysis plan, and Chain of Custody.
- Health-and-safety equipment and supplies (e.g., personal protective equipment [PPE]) as described in the relevant site health-and-safety plan (HSP).
- Shipping package for the Summa canisters.

Leak testing equipment and materials include:

- Syringe or vacuum pump for shut-in testing.
- Leak test shroud of sufficient size to cover soil gas vapor probe or vapor pin.
- 1-liter Tedlar® bags to collect purged vapors and test for tracer gas (helium).
- A soft gasket to seal the leak test shroud to the floor.
- Tracer gas (helium).
- Flow regulator with 1/8-inch barbed outlet and tubing to connect the helium gas cylinder to the shroud.
- MGD-2002 helium meter or equivalent.

1.2 Sub-Slab Soil Vapor Point Installation

Temporary Installation

Use the following steps to install Vapor Pins[™]:

- Prior to beginning, clear sampling locations for utilities, verify access agreements are in place, and obtain required permits, as appropriate.
- Set up wet/dry vacuum to collect drill cuttings.
- Drill a 5/8-inch diameter hole through the slab and approximately 1-inch into the underlying soil (if present).
- Remove the drill bit, brush the hole with the bottle brush, and remove loose cuttings with the vacuum.
- Place the lower end of the Vapor Pin[™] assembly into the drilled hole. Unscrew the threaded coupling from the handle of installation/extraction tool, place the small hole located in the handle of the installation/extraction tool over the Vapor Pin[™] to protect the barb fitting/cap, and tap the Vapor Pin[™] into place using a dead blow hammer. Make sure the installation/extraction tool is aligned parallel to the Vapor Pin[™] to avoid damaging the barb fitting.

Permanent Installation

Prior to sampling, it is recommended that the sub-slab vapor point be installed at least one day in advance to allow the seal to set up properly. However, the use of quick-setting concrete will allow for same day sampling if desired.

- Prior to beginning, clear sampling locations for utilities, verify access agreements are in place, and obtain required permits, as appropriate.
- Drill a 2-inch borehole to a depth of approximately 3 inches.
- Drill a 1-inch borehole through the center of the 2-inch borehole through the floor slab of the building foundation to a depth of approximately 12 inches below the surface.
- Construct the vapor point as shown in Figure 1 and insert such that the top of the assembly is set approximately 1/8-inch below the top of the slab.
- Seal the vapor port by melting the beeswax with a small butane torch. Pour the beeswax from the rubber plug up to the bottom ½-inch of the 2-inch borehole.
- Allow beeswax to solidify and harden.
- Mix Quick Set concrete patch and apply from top of beeswax seal to within ¹/₄-inch of the top of the slab.

1.3 Sampling Procedure

Sample Train Assembly

Assemble sampling train. The sampling train will be set up so that the Summa canister is in-line between the vapor port and the air pump, with a valve between the canister and the pump (see Figure 1):

- Verify the Summa canister number engraved on the canister matches the number listed on the certified clean tag to insure proper decontamination of the canister was completed. Fill out the sample tag.
- Verify the canister valve is closed tightly and remove the threaded cap at the inlet of the canister.
- Attach the flow controller to the inlet of the canister; the flow controller will have a built in pressure gauge.
- Connect the tubing from vapor port to inlet of a ¹/₄-inch tee fitting.
- Connect the Summa canister/flow controller to one outlet of the tee fitting.
- Connect air pump to the other outlet of the tee fitting, insert a ¹/₄-inch shutoff valve between the tee fitting and the air pump.

Leak Testing

Where leak testing is required, shut-in testing of the sample train will be conducted to test the sample train (excluding the vapor point) for leaks. A shroud containing tracer gas will be used to test the vapor point. The shroud consists of a plastic PVC cap or equivalent. Three holes will be drilled near the top of the shroud; one for connection of the helium gas cylinder, one for connection of the helium gas meter, and one for connection of the sample train located outside the shroud (see Figure 1).

- Before purging or sampling begins, assemble the sample train and vapor shroud. Crimp or plug the silicon tubing connection at the vapor point.
- Attach either a syringe or vacuum pump to the downstream end of the purge point valve. Draw a vacuum of at least 15 inches of mercury and shut the valve.
- The sample train should hold vacuum for 5 minutes. If the gauge vacuum decreases during this time period, check/tighten all connections and retest.
- After successful shut-in test, remove the crimp or plug and attach to the vapor point. The tubing from the tee connection above the canister will pass through the wall of the shroud to connect with the air pump outside.
- Connect the helium cylinder to the leak test shroud using tubing from the flow regulator on the cylinder, through a hole in the top of the shroud.
- Connect the helium meter to the leak test shroud.
- Use the flow regulator to slowly release helium into the leak test shroud until a concentration of 100% helium is contained within the shroud. The helium

concentration will be measured using the helium meter. Maintain helium concentrations throughout the purging and sampling period by continuously bleeding cylinder gas into the shroud as needed.

Sample Collection

Prior to collecting the canister sample, the vapor port will be purged as described below. If leak testing is performed with helium, purged vapor contained in the Tedlar® bags will be field screened using the helium meter to ensure that the concentration of helium inside the bags is less than 5 percent of the shroud concentration. If leakage is detected, the vapor port seal will be enhanced and connections will be inspected and tightened. This process will be repeated until no significant leakage has been demonstrated.

• Purge the vapor port and sampling train at approximately 100-200 ml/min using the air pump to ensure the sample is representative of subsurface conditions. Capture purged vapor in 1-liter Tedlar® bags at the outlet of the air pump and release the vapor outdoors. Three-to-five tubing volumes should be removed. If the slab is greater than 6-inches thick, the borehole volume should also be purged. Use the following equation to calculate volume to be purged:

$$\mathbf{V} = (\pi \mathbf{x} \mathbf{r}_t^2 \mathbf{x} \mathbf{l}_t) + (\pi \mathbf{x} \mathbf{r}_h^2 \mathbf{x} \mathbf{l}_h)$$

Where:

V = Volume of tubing and sampling train (cubic inches) $\pi = 3.14$

rt = the inner radius of the tubing[inches]

 l_t = the length of the tubing [inches]

 r_h = the inner radius of the hole in the slab beneath vapor pin (inches)

 l_h = the length of the hole in the slab beneath vapor pin (inches)

- Convert to ml using 1-inch³ = 16.387 ml to determine purge volume, then divide it by the pumping rate to determine purge time for one volume.
- If leak testing is performed with helium, purged soil gas collected in the Tedlar® bag will be field screened using the tracer gas (e.g., helium) using handheld meter to ensure that leakage is less than 5 percent of the shroud concentration.
- Begin sample collection by closing the ¹/₄-inch shutoff valve between the Summa canister and the air pump and opening the valve on the Summa canister. Immediately record the pressure on the gauge as the "initial pressure" on the tag attached to the canister.
- After sampling begins and the apparatus is verified to be operating correctly, leave the canister to fill.
- Record all sample information in the field book and applicable field forms including the following:
 - Canister number and sample identification,
 - Weather including barometric pressure,

ASPECT CONSULTING

- Purge time and purge volume, Sample start date and times,
- Location of sample (distance from walls shown on building floorplan),
- Initial and final pressure of canister, and
- Notes regarding leak test, if applicable.
- Monitor canisters continuously to ensure proper operation. It is necessary to check the canister prior to completion because the accuracy of the flow regulators can vary, causing the canisters to fill faster than expected. The final pressure at the end of sampling should be approximately -5 inches mercury (Hg). If the canister has already reached this point, sampling is complete, the canister valve should be closed, and the pressure recorded as the "final pressure" on the sample tag, the field book, and applicable field forms. Sample collection will be considered complete, regardless of final pressure, after the stated sample period has elapsed.
- Record the exact pressure of the canister and time at the end of sampling on the sample tag for that canister, in the field book, and on the applicable field forms.
- Verify that the canister valve is closed tightly, remove the flow controller, and replace the threaded cap at the top of the canister. Discard all sample tubing.
- Replace the vapor point cap using Teflon tape to seal the threads if permanently installed. If using temporary vapor pints, remove them from the hole using the manufacturer-suppled extraction tool. The hole in the slab must be filled with hydraulic cement, fast-cure epoxy, or similar.

Post-Sample-Collection Procedures

Pack all Summa canisters in the original shipping containers, sealed with a custody seal, and send to the lab for analysis. The official holding time for this analysis is 30 days. However, attempt to get samples to the lab as soon as possible to allow lab time to conduct re-runs, dilutions, and low-level analyses, as necessary prior to sample expiration.

Analysis

The soil gas samples should be analyzed using EPA Methods TO-15, and when necessary/possible, low-level analysis or Selective Ion Mode (SIM) analysis to obtain the lowest achievable detection and reporting limits. When leak testing is performed, samples should additionally be analyzed for helium. Other analysis will be included on a project-specific basis. Note the desired analytical methods on the Chain-of-Custody form and be sure analysis for helium is specified for leak-tested samples.

Decontamination

Temporary vapor points must be decontaminated prior to re-use. Decontamination procedures include Alconox[®] wash, deionized water rinse, and heated in an oven to 130C for 30 minutes.

The Summa canisters will be individually cleaned and certified to 0.02 ppbv THC for the project-specific analyte list by the contract laboratory prior to shipment. Ensure that documentation of this certification is included on a tag attached to the canister and in the paperwork that accompanies the canister shipment from the lab.

Documentation

Label all sample containers with the following information: sample identification, date and time sample was collected, the starting and ending canister pressure, the site name, and the company name.

Include all this information in the field book plus the ending time of sample collection and transfer pertinent information to the Chain-of-Custody record. Record all field activities, environmental and building conditions, and sample documentation on the appropriate field forms and field notebook.

2 Related Field Guidance Documents

Related field guidance documents that may be relevant for completing field sampling are listed below.

- Field Notes
- Indoor Air Sampling
- Soil Gas Sampling Using Sorbent Tubes
- Sample Handling

3 References

- Department of Environmental Protection, Commonwealth of Massachusetts, Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430, Boston, Massachusetts, April 2002.
- EPRI, Reference Handbook for Site Specific Assessment of Sub-Surface Vapor Intrusion to Indoor Air, March 2005.
- New Jersey Department of Environmental Protection, Vapor Intrusion Guidance, October 2005.
- New York State Department of Health, Guidance for Evaluation Soil Vapor Intrusion in the State of New York, October 2006.
- USEPA, Center for Environmental Research Information, Office of Research and Development, Compendium of Methods for Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method To-14A, Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography, January 1999.
- USEPA, Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway Form Groundwater and Soils, EPA530-F-02-052, November 2002.

S:\Bremerton School District\Remedy Implementation\Soil Vapor Sampling\SS Vapor Sampling FIELD GUIDANCE PROCEDURE _Nov2015.doc

APPENDIX E

State Environmental Policy Act Checklist and Inadvertent Discovery Plan

SEPA ENVIRONMENTAL CHECKLIST

Purpose of checklist:

Governmental agencies use this checklist to help determine whether the environmental impacts of your proposal are significant. This information is also helpful to determine if available avoidance, minimization or compensatory mitigation measures will address the probable significant impacts or if an environmental impact statement will be prepared to further analyze the proposal.

Instructions for applicants:

This environmental checklist asks you to describe some basic information about your proposal. Please answer each question accurately and carefully, to the best of your knowledge. You may need to consult with an agency specialist or private consultant for some questions. <u>You may use "not applicable" or</u> <u>"does not apply" only when you can explain why it does not apply and not when the answer is unknown</u>. You may also attach or incorporate by reference additional studies reports. Complete and accurate answers to these questions often avoid delays with the SEPA process as well as later in the decision-making process.

The checklist questions apply to <u>all parts of your proposal</u>, even if you plan to do them over a period of time or on different parcels of land. Attach any additional information that will help describe your proposal or its environmental effects. The agency to which you submit this checklist may ask you to explain your answers or provide additional information reasonably related to determining if there may be significant adverse impact.

Instructions for Lead Agencies:

Please adjust the format of this template as needed. Additional information may be necessary to evaluate the existing environment, all interrelated aspects of the proposal and an analysis of adverse impacts. The checklist is considered the first but not necessarily the only source of information needed to make an adequate threshold determination. Once a threshold determination is made, the lead agency is responsible for the completeness and accuracy of the checklist and other supporting documents.

Use of checklist for nonproject proposals:

For nonproject proposals (such as ordinances, regulations, plans and programs), complete the applicable parts of sections A and B plus the <u>SUPPLEMENTAL SHEET FOR NONPROJECT ACTIONS (part D)</u>. Please completely answer all questions that apply and note that the words "project," "applicant," and "property or site" should be read as "proposal," "proponent," and "affected geographic area," respectively. The lead agency may exclude (for non-projects) questions in Part B - Environmental Elements –that do not contribute meaningfully to the analysis of the proposal.

A. Background [HELP]

- 1. Name of proposed project, if applicable: Texaco Strickland Interim Action
- 2. Name of applicant: Rainier Property Management Company, LLC
- 3. Address and phone number of applicant and contact person:

Ryan Megenity 425.252.3626 ryan@rpmcousa.com 12199 Village Center Place, Suite 201, Mukilteo WA, 98275

4. Date checklist prepared: 3/8/2021

5. Agency requesting checklist: Wasthington State Department of Ecology (Ecology) Toxics Cleanup Program

6. Proposed timing or schedule (including phasing, if applicable): Interim Action conducted in dry season after Ecology approval of Interim Action Work Plan.

7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain. No.

8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.

The proposal is an Interim Action Work Plan (IAWP) to be conducted under Agreed Order No. 14315 with Ecology.

9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain. No.

10. List any government approvals or permits that will be needed for your proposal, if known. Permitting with the City of Lynnwood is required for the proposal and is outlined in the IAWP.

11. Give brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.)

The IAWP implementation will consist of a planned excavation to an average depth of 18 feet below ground surface (bgs) with the ability to overexcavate deeper to an average maximum depth of 30 feet bgs, if warranted, based on soil performance monitoring. Contamianted soil will be removed from the Site and transported to a permitted disposal facility. Demolition of the building, removal of underground storage tanks and temporary shoring on the northern and western Property extents is required for IAWP implementation. The remedial excavation will be backfilled and the Site restored to original grade.

12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic

map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist.

Project address is 6808 196th Street NW, Lynnwood WA, 98036. NW 1/4, Section 20, Township 27, Range 4. Parcel Number 27042000200600.

B. Environmental Elements [HELP]

1. Earth [help]

a. General description of the site: The Site is a corner parcel at the intersection of 196th Street NW and 68th Avenue W to the east in Lynnwood. There is a single-story, unoccupied building (former service station) with an asphalt parking lot, curbs, and planter boxes.

(circle one): Flat, rolling, hilly, steep slopes, mountainous, other _____

- b. What is the steepest slope on the site (approximate percent slope)? <10%.
- c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils.

The geology at the Site is imported fill to depths of approximately 10 feet bgs. This fill soil is underlain by unconsolidated silt, sand, gravel, and clay characteristic of a weathered glacial till deposit.

- d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe.
- No.
- e. Describe the purpose, type, total area, and approximate quantities and total affected area of any filling, excavation, and grading proposed. Indicate source of fill.

Planned net-zero export and fill soils. A planned excavation, 5,800 cubic yards will be removed from the Site, and the Site restored with the same quantity of imported virgin backfill will be used to restore the Site to approximately current grade. The imported fill source will be approved by Ecology during the IAWP implementation.

f. Could erosion occur as a result of clearing, construction, or use? If so, generally describe. Contractor will implement a temporary erosion and sediment control (TESC) plan to protect from erosion during construction, and to demonstrate final stabilization at project completion. Limited erosion is anticipated because all earthwork will be conducted subgrade. Erosion of any soil stockpiles will also be managed in acoordance with TESC Plan, and the IAWP contractor requirements. g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)?

Approximately 10 percent of the Site will remain asphalt that is not removed during construction.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any: Contractor will implement a temporary erosion and sediment control (TESC) plan to protect from erosion during construction, and to demonstrate final stabilization at project completion. Standard TESC includes silt fence or straw wattle perimeter, silt sock in vicinity of catch basins, stabilized truck entrance, and street sweeping.

2. Air [help]

a. What types of emissions to the air would result from the proposal during construction. operation, and maintenance when the project is completed? If any, generally describe and give approximate quantities if known.

Construction vehicle emissions, and fugitive dust emissions can temporarily occur during construction, and it's the Contractor responsibility to comply with all local (City of Lynnwood) and state requirements.

b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe.

No.

c. Proposed measures to reduce or control emissions or other impacts to air, if any: The Contractor is responsible for implementing measures to manage fugitive dust emissions in accordance local (City of Lynnwood) and state requirements.

3. Water [help]

- a. Surface Water: [help]
 - Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into.
 No surface water in the immediate Site vicinity.
 - 2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans.

No surface water in immediate Site vicinity.

3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material.

No fill or dredge material associated with proposal.

4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known.

No surface water withdrawals or diversions.

5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan. No, work not within a 100-year floodplain.

6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge.

No discharge to surface water. If construction discharges are required, they will be discharged to sanitary sewer to Public Owned Treatment Works (POTW) prior to any surface water discharge.

- b. Ground Water: [help]
 - Will groundwater be withdrawn from a well for drinking water or other purposes? If so, give a general description of the well, proposed uses and approximate quantities withdrawn from the well. Will water be discharged to groundwater? Give general description, purpose, and approximate quantities if known.

No groundwater withdrawal.

- 2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: Domestic sewage; industrial, containing the following chemicals...; agricultural; etc.). Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve. No waste material discharged into the ground.
- c. Water runoff (including stormwater):
 - Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe.

During construction, the excavation will self-contain any stormwater (via direct precipitation or run-on) and be collected using excavation sumps. The perimeter of the property will be protected with straw wattles and/or silt fence and any runoff that enters a catch basin will pass through a silt sock. Contaminated soils will not come in contact with surface water that may enter the storm system.

2) Could waste materials enter ground or surface waters? If so, generally describe. No waste material discharged onto the ground or to surface water.

3) Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? If so, describe.

After excavation, the Site will be restored to current grade and drainage patterns.

d. Proposed measures to reduce or control surface, ground, and runoff water, and drainage pattern impacts, if any:

Standard TESC measures will be used to prevent any sedimentation of surface waters, groundwater quality will eventually improve as the results of source material excavation.

4. Plants [help]

- a. Check the types of vegetation found on the site:
 - ___X___deciduous tree: alder, maple, aspen, other Purple Plum Trees
 - ____evergreen tree: fir, cedar, pine, other
 - ___X__shrubs: Evergreen
 - ___X___grass: Urban Weeds
 - ____pasture
 - ____crop or grain
 - _____ Orchards, vineyards or other permanent crops.
 - _____ wet soil plants: cattail, buttercup, bullrush, skunk cabbage, other
 - ____water plants: water lily, eelgrass, milfoil, other
 - ____other types of vegetation
- b. What kind and amount of vegetation will be removed or altered?
- Only the vegetation in the northwest corner and along the western property boundary will be removed.

c. List threatened and endangered species known to be on or near the site. None.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any:

None.

e. List all noxious weeds and invasive species known to be on or near the site. None / Unknown.

5. Animals [help]

a. <u>List</u> any birds and <u>other</u> animals which have been observed on or near the site or are known to be on or near the site.

Numerous birds, including hawks, eagles, songbirds, and other bird species.

b. List any threatened and endangered species known to be on or near the site. None known.

c. Is the site part of a migration route? If so, explain. No.

d. Proposed measures to preserve or enhance wildlife, if any: None.

e. List any invasive animal species known to be on or near the site. None known.

6. Energy and Natural Resources [help]

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project's energy needs? Describe whether it will be used for heating, manufacturing, etc.

None. The completed project is a stabilized lot.

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe.

No, the project would not affect potential use of solar energy.

 c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any: None.

7. Environmental Health [help]

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste, that could occur as a result of this proposal? If so, describe.

The proposal is an Interim Action Work Plan (IAWP) to be conducted under Agreed Order No. 14315 with Ecology. All potential exposure hazards and other risks will be mitigated in accordance with the Ecology-approved Final IAWP and contract documents.

- Describe any known or possible contamination at the site from present or past uses. Contamination consists of gasoline-, diesel-, and oil- range organics, as well as benzene, toluene, ethylbenzene, xylenes, and naphthalene in soil and groundwater. The property uses include a Texaco service station (1959-1977) and a Lube Facility (1977-2006).
- Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity. The project will remove the contaminated soil and groundwater that exist at the property. Exposure to hazardous building materials is also possible during building demolition.
- Describe any toxic or hazardous chemicals that might be stored, used, or produced during the project's development or construction, or at any time during the operating life of the project.
 Contaminated soil and groundwater will be produced. Diesel and hydraulic oil will be

Contaminated soil and groundwater will be produced. Diesel and hydraulic oil will be stored on site and used for earth work activities.

- 4) Describe special emergency services that might be required. None.
- 5) Proposed measures to reduce or control environmental health hazards, if any:

Licensed asbestos and lead removal contractor along with undergound storage tank decommissioner, marine chemist (if needed), and environmental consultant oversight during the conduct of the IAWP.

- b. Noise
 - 1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, other)?

Traffic.

2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site.

Noise from dump trucks and other excavation equipment, during business hours.

3) Proposed measures to reduce or control noise impacts, if any:

Contractor will meet City of Lynnwood noise control standards.

8. Land and Shoreline Use [help]

- a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? If so, describe.
 The property is currently a vacant building (former service station). The project will temporarily affect land uses on adjacent properties and in rights-of-way during construction, but it will not permanently impact land uses of adjacent properties.
- b. Has the project site been used as working farmlands or working forest lands? If so, describe. How much agricultural or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to nonfarm or nonforest use?

No – project Site not used as farmland or forest land.

 Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? If so, how: No.

c. Describe any structures on the site.

Vacant one-story building.

d. Will any structures be demolished? If so, what?

Yes, the vacant one-story building will be demolished, and the majority of asphalt will be removed.

e. What is the current zoning classification of the site? College District Mixed Use

f. What is the current comprehensive plan designation of the site? 5508000 – Existing as commercial proposed as local commercial.

g. If applicable, what is the current shoreline master program designation of the site? No shoreline applicable to proposal or site.

h. Has any part of the site been classified as a critical area by the city or county? If so, specify. No.

i. Approximately how many people would reside or work in the completed project? A future commercial use could employ up to 20 people.

j. Approximately how many people would the completed project displace? None, existing property use is vacant.

k. Proposed measures to avoid or reduce displacement impacts, if any: No displacement proposed.

L. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any:

Proposal is compatibale with City of Lynnwood Municipal Code and facilitates property use consistent with projected land uses.

m. Proposed measures to reduce or control impacts to agricultural and forest lands of long-term commercial significance, if any:

No impacts to agriculatural or forest land.

9. Housing [help]

a. Approximately how many units would be provided, if any? Indicate whether high, middle, or low-income housing.

No housing included in proposal.

b. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing.

No units eliminated.

c. Proposed measures to reduce or control housing impacts, if any:

No housing impacts proposed.

10. Aesthetics [help]

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?

No structures proposed.

b. What views in the immediate vicinity would be altered or obstructed?

No views obstructed. Views may be improved by building demolition.

c. Proposed measures to reduce or control aesthetic impacts, if any:

Temporary aesthetic impacts during construction. Completed proposal and cleanup allows for property resuse and improved aesthetic permanently.

11. Light and Glare [help]

a. What type of light or glare will the proposal produce? What time of day would it mainly occur?

No light or glare proposed.

b. Could light or glare from the finished project be a safety hazard or interfere with views? $\ensuremath{\mathrm{No}}$

c. What existing off-site sources of light or glare may affect your proposal? None.

d. Proposed measures to reduce or control light and glare impacts, if any: None.

12. Recreation [help]

a. What designated and informal recreational opportunities are in the immediate vicinity? Informal restreation includes dining, shopping, walking, and public parks are in the immediate vicinity.

b. Would the proposed project displace any existing recreational uses? If so, describe. No, project would not displace any recreational uses.

c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any:

No, the completed project would not impact any recreational uses and no control measures proposed.

13. Historic and cultural preservation [help]

a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers ? If so, specifically describe.

Existing building on Site is over 45 years old and is not on DAHP register.

b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources.

No known.

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archeology and historic preservation, archaeological surveys, historic maps, GIS data, etc.

A DAHP consult was completed to understand any potential impacts to cultural or historical resources. The project is located within the area of interest specified for consultation for the following tribes: Tulalip, Swinomish, Suquamish, Snoqualmie, Sauk Sittle, Samish, Muckleshoot, and Stillaguamish.

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.
 IAWP implementation includes an Inadvertant Discovery Plan (IDP).

14. Transportation [help]

 a. Identify public streets and highways serving the site or affected geographic area and describe proposed access to the existing street system. Show on site plans, if any.

The project is at the southwest corner of the intersection of 196th Street SW and 68th Avenue W.

- b. Is the site or affected geographic area currently served by public transit? If so, generally describe. If not, what is the approximate distance to the nearest transit stop?
 Yes, there are bus routes along 196th Street SW.
- c. How many additional parking spaces would the completed project or non-project proposal have? How many would the project or proposal eliminate?
 None eliminated and none created.
- d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? If so, generally describe (indicate whether public or private).
- No.
- e. Will the project or proposal use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe.

No.

f. How many vehicular trips per day would be generated by the completed project or proposal? If known, indicate when peak volumes would occur and what percentage of the volume would be trucks (such as commercial and nonpassenger vehicles). What data or transportation models were used to make these estimates?

The completed project will result in no change in vehicular trips per day. The completion of the project will require the temporary traffic of 300 trucks for transport of contaminated soil.

g. Will the proposal interfere with, affect or be affected by the movement of agricultural and forest products on roads or streets in the area? If so, generally describe.

No.

h. Proposed measures to reduce or control transportation impacts, if any:

N/A, no transportation impacts involved and no control measures planned.

15. Public Services [help]

a. Would the project result in an increased need for public services (for example: fire protection, police protection, public transit, health care, schools, other)? If so, generally describe.

No.

b. Proposed measures to reduce or control direct impacts on public services, if any. None.

16. Utilities [help]

- a. Circle utilities currently available at the site: electricity, natural gas, water, refuse service, telephone, sanitary sewer, septic system, other ______
- b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed.

No utilities proposed.

C. Signature [HELP]

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

Signature:	(I dan	C	Guff-	
Name of signee	_Adam Griffir	<u>1</u>	00	

Position and Agency/Organization _Project Manager, Aspect Consulting on behalf of Strickland

Real Estate Holdings LLC_

Date Submitted: <u>May 10, 2021</u>

D. Supplemental sheet for nonproject actions [HELP]

(IT IS NOT NECESSARY to use this sheet for project actions)

Because these questions are very general, it may be helpful to read them in conjunction with the list of the elements of the environment.

When answering these questions, be aware of the extent the proposal, or the types of activities likely to result from the proposal, would affect the item at a greater intensity or at a faster rate than if the proposal were not implemented. Respond briefly and in general terms.

1. How would the proposal be likely to increase discharge to water; emissions to air; production, storage, or release of toxic or hazardous substances; or production of noise?

Proposed measures to avoid or reduce such increases are:

2. How would the proposal be likely to affect plants, animals, fish, or marine life?

Proposed measures to protect or conserve plants, animals, fish, or marine life are:

3. How would the proposal be likely to deplete energy or natural resources?

Proposed measures to protect or conserve energy and natural resources are:

4. How would the proposal be likely to use or affect environmentally sensitive areas or areas designated (or eligible or under study) for governmental protection; such as parks, wilderness, wild and scenic rivers, threatened or endangered species habitat, historic or cultural sites, wetlands, floodplains, or prime farmlands?

Proposed measures to protect such resources or to avoid or reduce impacts are:

5. How would the proposal be likely to affect land and shoreline use, including whether it would allow or encourage land or shoreline uses incompatible with existing plans?

Proposed measures to avoid or reduce shoreline and land use impacts are:

6. How would the proposal be likely to increase demands on transportation or public services and utilities?

Proposed measures to reduce or respond to such demand(s) are:

7. Identify, if possible, whether the proposal may conflict with local, state, or federal laws or requirements for the protection of the environment.

INADVERTENT DISCOVERY PLAN PLAN AND PROCEDURES FOR THE DISCOVERY OF CULTURAL RESOURCES AND HUMAN SKELETAL REMAINS

To request ADA accommodation, including materials in a format for the visually impaired, call Ecology at 360-407-6000 or visit <u>https://ecology.wa.gov/accessibility</u>. People with impaired hearing may call Washington Relay Service at 711. People with a speech disability may call TTY at 877-833-6341.

Site Name(s):

Location:

Project Lead/Organization:

County:

If this Inadvertent Discovery Plan (IDP) is for multiple (batched) projects, ensure the location information covers all project areas.

1. INTRODUCTION

The IDP outlines procedures to perform in the event of a discovery of archaeological materials or human remains, in accordance with applicable state and federal laws. An IDP is required, as part of Agency Terms and Conditions for all grants and loans, for any project that creates disturbance above or below the ground. An IDP is not a substitute for a formal cultural resource review (Executive 05-05 or Section 106).

Once completed, **the IDP should always be kept at the project site** during all project activities. All staff, contractors, and volunteers should be familiar with its contents and know where to find it.

2. CULTURAL RESOURCE DISCOVERIES

A cultural resource discovery could be prehistoric or historic. Examples include (see images for further examples):

- An accumulation of shell, burned rocks, or other food related materials.
- Bones, intact or in small pieces.
- An area of charcoal or very dark stained soil with artifacts.
- Stone tools or waste flakes (for example, an arrowhead or stone chips).
- Modified or stripped trees, often cedar or aspen, or other modified natural features, such as rock drawings.
- Agricultural or logging materials that appear older than 50 years. These could include equipment, fencing, canals, spillways, chutes, derelict sawmills, tools, and many other items.
- Clusters of tin cans or bottles, or other debris that appear older than 50 years.
- Old munitions casings. Always assume these are live and never touch or move.
- Buried railroad tracks, decking, foundations, or other industrial materials.
- Remnants of homesteading. These could include bricks, nails, household items, toys, food containers, and other items associated with homes or farming sites.

The above list does not cover every possible cultural resource. When in doubt, assume the material is a cultural resource.

3. ON-SITE RESPONSIBILITIES

If any employee, contractor, or subcontractor believes that they have uncovered cultural resources or human remains at any point in the project, take the following steps to *Stop-Protect-Notify*. If you suspect that the discovery includes human remains, also follow Sections 5 and 6.

STEP A: Stop Work.

All work must stop immediately in the vicinity of the discovery.

STEP B: Protect the Discovery.

Leave the discovery and the surrounding area untouched and create a clear, identifiable, and wide boundary (30 feet or larger) with temporary fencing, flagging, stakes, or other clear markings. Provide protection and ensure integrity of the discovery until cleared by the Department of Archaeological and Historical Preservation (DAHP) or a licensed, professional archaeologist.

Do not permit vehicles, equipment, or unauthorized personnel to traverse the discovery site. Do not allow work to resume within the boundary until the requirements of this IDP are met.

STEP C: Notify Project Archaeologist (if applicable).

If the project has an archaeologist, notify that person. If there is a monitoring plan in place, the archaeologist will follow the outlined procedure.

STEP D: Notify Project and Washington Department of Ecology (Ecology) contacts.

Project Lead Contacts

Primary Contact	Alternate Contact
Name:	Name:
Phone:	Phone:
Email:	Email:

Ecology Contacts (completed by Ecology Project Manager)

Ecology Project Manager	Alternate or Cultural Resource Contact
Name:	Name:
Program:	Program:
Phone:	Phone:
Email:	Email:

STEP E: Ecology will notify DAHP.

Once notified, the Ecology Cultural Resource Contact or the Ecology Project Manager will contact DAHP to report and confirm the discovery. To avoid delay, the Project Lead/Organization will contact DAHP if they are not able to reach Ecology.

DAHP will provide the steps to assist with identification. DAHP, Ecology, and Tribal representatives may coordinate a site visit following any necessary safety protocols. DAHP may also inform the Project Lead/Organization and Ecology of additional steps to further protect the site.

Do not continue work until DAHP has issued an approval for work to proceed in the area of, or near, the discovery.

DAHP Contacts:

Name: Rob Whitlam, PhD Title: State Archaeologist Cell: 360-890-2615 Email: <u>Rob.Whitlam@dahp.wa.gov</u> Main Office: 360-586-3065

Human Remains/Bones:

Name: Guy Tasa, PhD Title: State Anthropologist Cell: 360-790-1633 (24/7) Email: <u>Guy.Tasa@dahp.wa.gov</u>

4. TRIBAL CONTACTS

In the event cultural resources are discovered, the following tribes will be contacted. See Section 10 for Additional Resources.

Tribe:
Name:
Title:
Phone:
Email:
Tribe:
Tribe: Name:
Tribe: Name: Title:
Tribe: Name: Title: Phone:

Please provide contact information for additional tribes within your project area, if needed, in Section 11.

5. FURTHER CONTACTS (if applicable)

If the discovery is confirmed by DAHP as a cultural or archaeological resource, or as human remains, and there is a partnering federal or state agency, Ecology or the Project Lead/Organization will ensure the partnering agency is immediately notified.

Federal Agency:	State Agency:
Agency:	Agency
Name:	Name:
Title:	Title:
Phone:	Phone:
Email:	Email:

6. SPECIAL PROCEDURES FOR THE DISCOVERY OF HUMAN SKELETAL MATERIAL

Any human skeletal remains, regardless of antiquity or ethnic origin, will at all times be treated with dignity and respect. Follow the steps under **Stop-Protect-Notify.** For specific instructions on how to handle a human remains discovery, see: <u>RCW 68.50.645</u>: <u>Skeletal human remains</u>—<u>Duty to notify</u>—<u>Ground disturbing activities</u>—<u>Coroner determination</u>—<u>Definitions</u>.

Suggestion: If you are unsure whether the discovery is human bone or not, contact Guy Tasa with DAHP, for identification and next steps. Do not pick up the discovery.

Guy Tasa, PhD State Physical Anthropologist Guy.Tasa@dahp.wa.gov (360) 790-1633 (Cell/Office)

For discoveries that are confirmed or suspected human remains, follow these steps:

1. Notify law enforcement and the Medical Examiner/Coroner using the contacts below. **Do not call 911** unless it is the only number available to you.

Enter contact information below (required):

- Local Medical Examiner or Coroner name and phone:
- Local Law Enforcement main name and phone:
- Local Non-Emergency phone number (911 if without a non-emergency number):
- 2. The Medical Examiner/Coroner (with assistance of law enforcement personnel) will determine if the remains are human or if the discovery site constitutes a crime scene and will notify DAHP.
- 3. DO NOT speak with the media, allow photography or disturbance of the remains, or release any information about the discovery on social media.
- 4. If the remains are determined to be non-forensic, Cover the remains with a tarp or other materials (not soil or rocks) for temporary protection and to shield them from being photographed by others or disturbed.

Further activities:

- Per <u>RCW 27.44.055</u>, <u>RCW 68.50</u>, and <u>RCW 68.60</u>, DAHP will have jurisdiction over non-forensic human remains. Ecology staff will participate in consultation. Organizations may also participate in consultation.
- Documentation of human skeletal remains and funerary objects will be agreed upon through the consultation process described in <u>RCW 27.44.055</u>, RCW 68.50, and RCW 68.60.
- When consultation and documentation activities are complete, work in the discovery area may resume as described in Section 8.

If the project occurs on federal lands (such as a national forest or park or a military reservation) the provisions of the Native American Graves Protection and Repatriation Act of 1990 (NAGPRA) apply and the responsible federal agency will follow its provisions. Note that state highways that cross federal lands are on an easement and are not owned by the state.

If the project occurs on non-federal lands, the Project Lead/Organization will comply with applicable state and federal laws, and the above protocol.

7. DOCUMENTATION OF ARCHAEOLOGICAL MATERIALS

Archaeological resources discovered during construction are protected by state law <u>RCW 27.56</u> and assumed eligible for inclusion in the National Register of Historic Places under Criterion D until a formal Determination of Eligibility is made.

The Project Lead/Organization must ensure that proper documentation and field assessment are made of all discovered cultural resources in cooperation with all parties: the federal agencies (if any), DAHP, Ecology, affected tribes, and the archaeologist.

The archaeologist will record all prehistoric and historic cultural material discovered during project construction on a standard DAHP archaeological site or isolate inventory form. They will photograph site overviews, features, and artifacts and prepare stratigraphic profiles and soil/sediment descriptions for minimal subsurface exposures. They will document discovery locations on scaled site plans and site location maps.

Cultural features, horizons, and artifacts detected in buried sediments may require the archaeologist to conduct further evaluation using hand-dug test units. They will excavate units in a controlled fashion to expose features, collect samples from undisturbed contexts, or to interpret complex stratigraphy. They may also use a test unit or trench excavation to determine if an intact occupation surface is present. They will only use test units when necessary to gather information on the nature, extent, and integrity of subsurface cultural deposits to evaluate the site's significance. They will conduct excavations using standard archaeological techniques to precisely document the location of cultural deposits, artifacts, and features.

The archaeologist will record spatial information, depth of excavation levels, natural and cultural stratigraphy, presence or absence of cultural material, and depth to sterile soil, regolith, or bedrock for each unit on a standard form. They will complete test excavation unit level forms, which will include plan maps for each excavation level and artifact counts and material types, number, and vertical provenience (depth below surface and stratum association where applicable) for all recovered artifacts. They will draw a stratigraphic profile for at least one wall of each test excavation unit.

The archaeologist will screen sediments excavated for purposes of cultural resources investigation through 1/8-inch mesh, unless soil conditions warrant 1/4-inch mesh.

The archaeologist will analyze, catalogue, and temporarily curate all prehistoric and historic artifacts collected from the surface and from probes and excavation units. The ultimate disposition of cultural materials will be determined in consultation with the federal agencies (if any), DAHP, Ecology, and the affected tribe(s).

Within 90 days of concluding fieldwork, the archaeologist will provide a technical report describing any and all monitoring and resultant archaeological excavations to the Project Lead/Organization, who will forward the report to Ecology, the federal agencies (if any), DAHP, and the affected tribe(s) for review and comment.

If assessment activities expose human remains (burials, isolated teeth, or bones), the archaeologist and Project Lead/Organization will follow the process described in **Section 6**.

8. PROCEEDING WITH WORK

The Project Lead/Organization shall work with the archaeologist, DAHP, and affected tribe(s) to determine the appropriate discovery boundary and where work can continue.

Work may continue at the discovery location only after the process outlined in this plan is followed and the Project Lead/Organization, DAHP, any affected tribe(s), Ecology, and the federal agencies (if any) determine that compliance with state and federal laws is complete.

9. ORGANIZATION RESPONSIBILITY

The Project Lead/Organization is responsible for ensuring:

- This IDP has complete and accurate information.
- This IDP is immediately available to all field staff at the sites and available by request to any party.
- This IDP is implemented to address any discovery at the site.
- That all field staff, contractors, and volunteers are instructed on how to implement this IDP.

10. ADDITIONAL RESOURCES

Informative Video

Ecology recommends that all project staff, contractors, and volunteers view this informative video explaining the value of IDP protocol and what to do in the event of a discovery. The target audience is anyone working on the project who could unexpectedly find cultural resources or human remains while excavating or digging. The video is also posted on DAHP's inadvertent discovery language website.

Ecology's IDP Video (https://www.youtube.com/watch?v=ioX-4cXfbDY)

Informational Resources

DAHP (https://dahp.wa.gov)

Washington State Archeology (DAHP 2003)

(https://dahp.wa.gov/sites/default/files/Field%20Guide%20to%20WA%20Arch_0.pdf)

Association of Washington Archaeologists (https://www.archaeologyinwashington.com)

Potentially Interested Tribes

Interactive Map of Tribes by Area

(https://dahp.wa.gov/archaeology/tribal-consultation-information)

WSDOT Tribal Contact Website

(https://wsdot.wa.gov/tribal/TribalContacts.htm)

11. ADDITIONAL INFORMATION

Please add any additional contact information or other information needed within this IDP.

Implement the IDP if you see...

Chipped stone artifacts.

Examples are:

- Glass-like material.
- Angular material.
- "Unusual" material or shape for the area.
- Regularity of flaking.
- Variability of size.

Stone artifacts from Oregon.

Stone artifacts from Washington.

Biface-knife, scraper, or pre-form found in NE Washington. Thought to be a well knapped object of great antiquity. Courtesy of Methow Salmon Rec. Foundation.
Ground stone artifacts.

Examples are:

- Unusual or unnatural shapes or unusual stone.
- Striations or scratching.
- Etching, perforations, or pecking.
- Regularity in modifications.
- Variability of size, function, or complexity.

Above: Fishing Weight - credit <u>CRITFC</u> Treaty Fishing Rights website.

Artifacts from unknown locations (left and right images).

Bone or shell artifacts, tools, or beads.

Examples are:

- Smooth or carved materials.
- Unusual shape.
- Pointed as if used as a tool.
- Wedge shaped like a "shoehorn".
- Variability of size.
- Beads from shell (------) or tusk.

Upper Left: Bone Awls from Oregon.

Upper Center: Bone Wedge from California.

Upper Right: *Plateau dentalium choker and bracelet, from <u>Nez</u> <u>Perce National Historical Park</u>, 19th century, made using <u>Antalis</u> <u>pretiosa</u> shells Credit: Nez Perce - Nez Perce National Historical Park, NEPE 8762, <u>Public Domain</u>.*

Above: Tooth Pendants. Right: Bone Pendants. Both from Oregon and Washington.

Culturally modified trees, fiber, or wood artifacts.

Examples are:

- Trees with bark stripped or peeled, carvings, axe cuts, de-limbing, wood removal, and other human modifications.
- Fiber or wood artifacts in a wet environment.
- Variability of size, function, and complexity.

Left and Below: *Culturally modified tree and an old carving on an aspen (Courtesy of DAHP).*

Right, Top to Bottom: *Artifacts from Mud Bay, Olympia: Toy war club, two strand cedar rope, wet basketry.*

Strange, different, or interesting looking dirt, rocks, or shells.

Human activities leave traces in the ground that may or may not have artifacts associated with them. Examples are:

- "Unusual" accumulations of rock (especially fire-cracked rock).
- "Unusual" shaped accumulations of rock (such as a shape similar to a fire ring).
- Charcoal or charcoal-stained soils, burnt-looking soils, or soil that has a "layer cake" appearance.
- Accumulations of shell, bones, or artifacts. Shells may be crushed.
- Look for the "unusual" or out of place (for example, rock piles in areas with otherwise few rocks).

Shell Midden pocket in modern fill discovered in sewer trench.

Underground oven. Courtesy of DAHP.

Shell midden with fire cracked rock.

Hearth excavated near Hamilton, WA.

ECY 070-560 (rev. 12/20)

Historic period artifacts (historic archaeology considered older than 50 years).

Examples are:

- Agricultural or logging equipment. May include equipment, fencing, canals, spillways, chutes, derelict sawmills, tools, etc.
- Domestic items including square or wire nails, amethyst colored glass, or painted stoneware.

Left: Top to Bottom: *Willow pattern* serving bowl and slip joint pocket knife discovered during Seattle Smith Cove shantytown (45-KI-1200) excavation.

Right: Collections of historic artifacts discovered during excavations in eastern Washington cities.

Historic period artifacts (historic archaeology considered older than 50 years).

Examples are:

- Railway tokens, coins, and buttons.
- Spectacles, toys, clothing, and personal items.
- Items helping to understand a culture or identity.
- Food containers and dishware.

Main Image: Dishes, bottles, workboot found at the North Shore Japanese bath house (ofuro) site, Courtesy Bob Muckle, Archaeologist, Capilano University, B.C. This is an example of an above ground resource.

Right, from Top to Bottom: *Coins, token, spectacles and Montgomery Ward pitchfork toy discovered during Seattle Smith Cove shantytown (45-KI-1200) excavation.*

- Old munition casings if you see ammunition of any type *always assume they are live and never touch or move!*
- Tin cans or glass bottles with an older manufacturer's technique maker's mark, distinct colors such as turquoise, or an older method of opening the container.

Tatum & Co. between 1924 to 1938 (Lockhart et al. 2016).

Can opening dates, courtesy of W.M. Schroeder.

You see historic foundations or buried structures. Examples are:

- Foundations.
- Railroad and trolley tracks.
- Remnants of structures.

Counter Clockwise, Left to Right: *Historic structure 45Kl924, in WSDOT right of way for SR99 tunnel. Remnants of Smith Cove shantytown (45-Kl-1200) discovered during Ecology CSO excavation, City of Spokane historic trolley tracks uncovered during stormwater project, intact foundation of historic home that survived the Great Ellensburg Fire of July 4, 1889, uncovered beneath parking lot in Ellensburg.*

Potential human remains.

Examples are:

- Grave headstones that appear to be older than 50 years.
- Bones or bone tools--intact or in small pieces. It can be difficult to differentiate animal from human so they must be identified by an expert.
- These are all examples of animal bones and are not human.

Center: Bone wedge tool, courtesy of Smith Cove Shantytown excavation (45KI1200).

Other images (Top Right, Bottom Left, and Bottom) Center: Courtesy of DAHP.

Directly Above: This is a real discovery at an Ecology sewer project site.

What would you do if you found these items at a site? Who would be the first person you would call?

Hint: Read the plan!

APPENDIX F

Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the subject property. The report is not intended to make any representation concerning title or ownership to the subject property. If real property records were reviewed, they were reviewed for the sole purpose of determining the subject property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the subject property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and subject property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the subject property, project or governmental regulatory actions

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Historical Information Provided by Others

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the subject property or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.