Remedial Investigation Report USG Interiors Highway 99 Site Milton, Washington

> Prepared for: USG Corporation 550 West Adams Street Chicago, Illinois 60661-3676

June 23, 2016

This page intentionally left blank to allow for double-sided printing.

A Report Prepared For :

USG Corporation 500 West Adams Street Post Office Box 6721 Chicago, Illinois 60661-3676

Remedial Investigation Report USG Interiors Highway 99 Site Milton, Washington

June 23, 2016

m

Howard S. Young, L Senior Geologist

Alan D. Carey, LHG Project Manager

Prepared by:

CDM Smith

14432 SE Eastgate Way, Suite 100 Bellevue, Washington 98007

CDM Project No. 19921.77628

Nash sed G Howard S. Young

This page intentionally left blank to allow for double-sided printing.

Table of Contents

Section 1 Intro	luction	1-1
1.1	Agreed Order	1-1
1.2	Site Location and Description	1-1
	1.2.1 Climate	1-1
	1.2.2 Surface Water	1-2
	1.2.3 Geologic Setting	1-2
1.3	Site History	1-2
1.4	Sources of Contamination	
1.5	Remedial Investigation Objectives	1-3
Section 2 Field	Investigation	2-1
2.1	Phase 1 RI Field Investigation	
	2.1.1 Site Preparation	
	2.1.2 Soil Investigation	2-2
	Surface Soil Sampling	
	Subsurface Sampling	
	Field XRF Analysis	2-3
	2.1.3 Groundwater Investigation	
	Monitoring Well Installation	
	Groundwater Level Measurements	
	Groundwater Sampling	
	2.1.4 Surface Water Investigation	
	2.1.5 Sediment Investigation	
	Topographic Survey	
2.2	Sediment Sampling	
2.2	Supplemental RI Field Investigations	
	2.2.1 Groundwater Reconnaissance Borings	
	2.2.2 Arsenic Characterization in Groundwater (East)	
	2.2.3 Arsenic Characterization in Groundwater (West, South, and North).	
	2.2.4 Arsenic Characterization in Soil	
2.3	Land Survey	
2.4	Investigation Derived Waste	
2.5	Deviations from the Sampling and Analysis Plan	2-9
	eologic and Hydrogeologic Findings	
3.1	Site Geology	3-1
	3.1.1 Fill 3-1	
	3.1.2 Alluvium	3-1
	3.1.3 Glacial Units	3-2
	Lower Silt Aquitard	
	Glacial Aquifer	
3.2	Site Hydrogeology	
	3.2.1 Alluvial Aquifer	
	3.2.2 Glacial Aquifer	3-3
Section 4 Analy	tical Results	
4.1	Soil Results	4-1

4.1.2 Grain Size Distribution 4-1 4.1.3 Analysis 4-2 4.2 Groundwater Results 4-2 4.2.1 Arsenic Distribution and Geochemical Indicator Parameters 4-2 4.2.2 Analysis 4-2 4.2.3 Surface Water Results 4-3 4.4 Sediment Results 4-3 5.1 Guality Control Data 5-1 5.1 Equipment Calibration 5-1 5.1.1 Equipment Calibration 5-1 5.2 Field QA/QC Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Laboratory Method Blanks 5-2 5.3 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3 Laboratory Control Samples and Standard Reference Materials 5-3 5.4 Overall Data Usability 5-4 5.4 Overall Data Usability 5-4 6.1 Arsenic Geochemistry 6-1 6.1.4 Effect of Silica 6-6 <th></th> <th>4.1.1 Arsenic in Soil</th> <th></th>		4.1.1 Arsenic in Soil	
4.2 Groundwater Results 4-2 4.2.1 Arsenic Distribution and Geochemical Indicator Parameters 4-2 4.3 Surface Water Results 4-3 4.3 Surface Water Results 4-3 4.4 Sediment Results 4-3 5 Fvaluation of Quality Control Data 5-1 5.1 Quality Assurance/Quality Control Procedures 5-1 5.1.1 Equipment Decontamination 5-1 5.2 Field QA/QC Samples 5-1 5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Laboratory Method Blanks 5-2 5.3.2 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surgate Recoveries 5-4 5.4 Overall Data Usability 5-4 5.4 Overall Data Usability 5-4 5.4 Overall Data Usability 6-1 6.1 Arsenic Geochemistry 6-1 6.1 Arsenic Geochemistry 6-1 6.1.1		4.1.2 Grain Size Distribution	
4.2 Groundwater Results. 4-2 4.2.1 Arsenic Distribution and Geochemical Indicator Parameters. 4-2 4.3 Surface Water Results. 4-3 4.3 Surface Water Results. 4-3 5 Section 5 Evaluation of Quality Control Data 5-1 5.1 Quality Assurance/Quality Control Procedures 5-1 5.1.1 Equipment Decontamination 5-1 5.2 Field QA/QC Samples. 5-1 5.2.1 Duplicate Samples. 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3 Laboratory McMod Blanks. 5-2 5.3.1 Sample Holding Times. 5-2 5.3.2 Laboratory Method Blanks. 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates. 5-3 5.3.5 Surrogate Recoveries. 5-4 5.4 Overall Data Usability. 5-4 5.4 Overall Data Usability. 5-4 5.4 Overall Data Usability. 5-4 6.1 Arsenic Geochemistry 6-1 6.1 Arsenic Geochemistry 6-1 <		4.1.3 Analysis	
4.2.2 Analysis	4.2		
4.3 Surface Water Results 4-3 4.4 Section 5 Evaluation of Quality Control Data 5-1 5.1 Quality Assurance/Quality Control Procedures 5-1 5.1 Equipment Calibration 5-1 5.1.1 Equipment Calibration 5-1 5.2 Field QA/QC Samples 5-1 5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3 Laboratory Method Blanks 5-2 5.3 Laboratory Method Blanks 5-2 5.3 Surgate Recoveries 5-3 5.4 Overall Data Usability 5-4 6.1 Arsenic Actoration Phases 6-2 6.1.1 Arsenic Adsorption		4.2.1 Arsenic Distribution and Geochemical Indicator Parameters	
4.4 Section 5 Evaluation of Quality Control Data 5-1 5.1 Quality Assurance/Quality Control Procedures 5-1 5.1 Equipment Decontamination 5-1 5.1.1 Equipment Calibration 5-1 5.2 Field QA/QC Samples 5-1 5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.1 Sample Holding Times 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 Section 6 Site Conceptual Model 6-1 6.1 Arsenic Geochemistry 6-1 6.1.4 Arsenic Calcoshemistry 6-2 6.1.2 Arsenic Solid-Solution Phases 6-2 6.1.3 Arsenic Calcoshemistry 6-1 6.1.4 Effect of Silica 6-6		4.2.2 Analysis	
Section 5 Evaluation of Quality Control Data 5-1 5.1 Quality Assurance/Quality Control Procedures 5-1 5.1.1 Equipment Decontamination 5-1 5.2 Field QA/QC Samples 5-1 5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.4 Overall Data Usability 5-4 Section 6 Site Conceptual Model 6-1 6.1 Arsenic Geochemistry 6-1 6.1.4 Arsenic Adsorption 6-3 6.2 Arsenic Adsorption 6-3 6.3.1 Coprecipitation with Iron Phases 6-6 6.3 Arsenic Transport 6-7 7 6.2.1 Arsenic Transport Velocity 6-11 6.3 Arsenic Stron, Dissolved Oxygen, and Redox Potential <	4.3	Surface Water Results	
5.1 Quality Assurance/Quality Control Procedures 5-1 5.1.1 Equipment Decontamination 5-1 5.1.2 Equipment Calibration 5-1 5.2 Field QA/QC Samples 5-1 5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 Section 6 Site Conceptual Model 6-1 6.1 Arsenic Geochemistry 6-1 6.1 Arsenic Geochemistry 6-2 6.1.2 Arsenic Adsorption 6-3 6.1.4 Effect of Silica 6-2 6.2 Arsenic Speciation 6-7 6.2.1 Arsenic Speciation 6-7 6.2.1 Arsenic Speciation with	4.4	Sediment Results	
5.1.1 Equipment Decontamination 5-1 5.1.2 Equipment Calibration 5-1 5.2 Field QA/QC Samples 5-1 5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 Section 6 Site Conceptual Model 6-1 6.1 Arsenic Geochemistry 6-1 6.1.1 Arsenic Oblic-Solution Phases 6-2 6.1.2 Arsenic Gold-Solution Phases 6-2 6.1.4 Effect of Silica 6-6 6.2 Arsenic Speciation 6-7 Measured Values 6-7 6-7 6.3.1 Coprecipitation with Iron Phases 6-8 6.3.1 Coprecipitation wi	Section 5 Evalu	uation of Quality Control Data	5-1
5.1.2 Equipment Calibration 5-1 5.2 Field QA/QC Samples 5-1 5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 6-1 6.1 Arsenic Geochemistry 6-1 6.1.1 Arsenic Adsorption 6-2 6.1.3 Arsenic Adsorption 6-3 6.1.4 Effect of Silica 6-6 6.2 Arsenic Speciation 6-7	5.1	Quality Assurance/Quality Control Procedures	5-1
5.2 Field QA/QC Samples 5-1 5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.4 Overall Data Usability 5-4 5.4 Overall Data Usability 5-4 5.4 Overall Model 6-1 6.1 Arsenic Geochemistry 6-1 6.1.1 Arsenic Pure-Phase Minerals 6-2 6.1.2 Arsenic Adsorption 6-3 6.1.3 Arsenic Adsorption 6-3 6.1.4 Effect of Silica 6-6 6.2 Arsenic Attenuation 6-7 6.3 Arsenic Attenuation 6-7 6.4 Galared Values 6-7		5.1.1 Equipment Decontamination	5-1
5.2.1 Duplicate Samples 5-1 5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 5.4 Overall Data Usability 5-4 6.1 Arsenic Geochemistry 6-1 6.1 Arsenic Geochemistry 6-1 6.1.2 Arsenic Old-Solution Phases 6-2 6.1.3 Arsenic Adsorption 6-3 6.4 Arsenic Adsorption 6-6 6.2 Arsenic Adsorption 6-7 6.1.4 Effect of Silica 6-6 6.2 Arsenic Attenuation 6-7 Measured Values 6-7		5.1.2 Equipment Calibration	5-1
5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 5.4 Arsenic Geochemistry 6-1 6.1 Arsenic Solid-Solution Phases 6-2 6.1.2 Arsenic Solid-Solution Phases 6-6 6.2 Arsenic Fate and Transp	5.2	Field QA/QC Samples	5-1
5.2.2 Blanks 5-2 5.3 Laboratory QA/QC and Data Evaluation 5-2 5.3.1 Sample Holding Times 5-2 5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 5.4 Arsenic Geochemistry 6-1 6.1 Arsenic Solid-Solution Phases 6-2 6.1.2 Arsenic Solid-Solution Phases 6-6 6.2 Arsenic Fate and Transp		5.2.1 Duplicate Samples	5-1
5.3.1Sample Holding Times.5-25.3.2Laboratory Method Blanks.5-25.3.3Matrix Spike/Matrix Spike Duplicates.5-35.3.4Laboratory Control Samples and Standard Reference Materials.5-35.3.5Surrogate Recoveries.5-45.4Overall Data Usability.5-4Section 6Site Conceptual Model.6-16.1Arsenic Geochemistry6-16.1.1Arsenic Geochemistry6-16.1.2Arsenic Nure-Phase Minerals6-26.1.3Arsenic Adsorption6-36.1.4Effect of Silica6-66.2Arsenic Fate and Transport6-76.2.1Arsenic Speciation6-76.2.1Arsenic Adsorption6-76.3Arsenic Attenuation6-86.3Arsenic Attenuation6-86.3.1Coprecipitation with Iron Phases6-86.3.2Adsorption6-116.3.3Total Organic Carbon, Dissolved Oxygen, and Redox Potential6-116.3.4Arsenic Transport Velocity.6-12Section 7Terrestrial Ecological Evaluation7-1Section 8Summary8-1Section 9References9-1TablesTable 1Well Construction Details		5.2.2 Blanks	5-2
5.3.1Sample Holding Times.5-25.3.2Laboratory Method Blanks.5-25.3.3Matrix Spike/Matrix Spike Duplicates.5-35.3.4Laboratory Control Samples and Standard Reference Materials.5-35.3.5Surrogate Recoveries.5-45.4Overall Data Usability.5-4Section 6Site Conceptual Model.6-16.1Arsenic Geochemistry6-16.1.1Arsenic Geochemistry6-16.1.2Arsenic Nure-Phase Minerals6-26.1.3Arsenic Adsorption6-36.1.4Effect of Silica6-66.2Arsenic Fate and Transport6-76.2.1Arsenic Speciation6-76.2.1Arsenic Adsorption6-76.3Arsenic Attenuation6-86.3Arsenic Attenuation6-86.3.1Coprecipitation with Iron Phases6-86.3.2Adsorption6-116.3.3Total Organic Carbon, Dissolved Oxygen, and Redox Potential6-116.3.4Arsenic Transport Velocity.6-12Section 7Terrestrial Ecological Evaluation7-1Section 8Summary8-1Section 9References9-1TablesTable 1Well Construction Details	5.3	Laboratory QA/QC and Data Evaluation	5-2
5.3.2 Laboratory Method Blanks 5-2 5.3.3 Matrix Spike/Matrix Spike Duplicates 5-3 5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 Section 6 Site Conceptual Model 6-1 6.1 Arsenic Geochemistry 6-1 6.1.1 Arsenic Oruce Phase Minerals 6-2 6.1.2 Arsenic Coldsorption 6-3 6.1.4 Effect of Silica 6-6 6.2 Arsenic Adsorption 6-6 6.2 Arsenic Speciation 6-7 6.3 Arsenic Speciation 6-7 6.3 Arsenic Attenuation 6-8 6.3.1 Coprecipitation with Iron Phases 6-8 6.3.2 Adsorption 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-12 Section 7 Terrestrial Ecological Evaluation 7-1 Section 8 Summary 8-1			
5.3.3 Matrix Spike/Matrix Spike Duplicates			
5.3.4 Laboratory Control Samples and Standard Reference Materials 5-3 5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 Section 6 Site Conceptual Model 6-1 6.1 Arsenic Geochemistry 6-1 6.1.1 Arsenic Pure-Phase Minerals 6-2 6.1.2 Arsenic Solid-Solution Phases 6-2 6.1.3 Arsenic Adsorption 6-3 6.1.4 Effect of Silica 6-6 6.2 Arsenic Fate and Transport 6-7 6.1.4 Effect of Silica 6-7 6.2 Arsenic Speciation 6-7 6.3 Arsenic Attenuation 6-8 6.3.1 Coprecipitation with Iron Phases 6-8 6.3.2 Adsorption 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.4 Arsenic Transport Velocity 6-12 Section 7 Terrestrial Ecological Evaluation 7-1 Section 8 Summary 8-1 Section 9 References 9-1 Table 1		•	
5.3.5 Surrogate Recoveries 5-4 5.4 Overall Data Usability 5-4 Section 6 Site Conceptual Model 6-1 6.1 Arsenic Geochemistry 6-1 6.1.1 Arsenic Pure-Phase Minerals 6-2 6.1.2 Arsenic Solid-Solution Phases 6-2 6.1.3 Arsenic Adsorption 6-3 6.1.4 Effect of Silica 6-6 6.2 Arsenic Fate and Transport 6-7 6.2.1 Arsenic Speciation 6-7 6.2.1 Arsenic Speciation 6-7 6.2.1 Arsenic Speciation 6-7 6.2.1 Arsenic Speciation 6-7 Measured Values 6-7 6-7 6.3 Arsenic Attenuation 6-8 6.3.1 Coprecipitation with Iron Phases 6-8 6.3.2 Adsorption 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.4 Arsenic Transport Velocity 6-12 Section 7 T			
5.4 Overall Data Usability			
6.1Arsenic Geochemistry6-16.1.1Arsenic Pure-Phase Minerals6-26.1.2Arsenic Solid-Solution Phases6-26.1.3Arsenic Adsorption6-36.1.4Effect of Silica6-66.2Arsenic Fate and Transport6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.3Arsenic Attenuation6-86.3Arsenic Attenuation6-86.3.1Coprecipitation with Iron Phases6-86.3.2Adsorption6-116.3.3Total Organic Carbon, Dissolved Oxygen, and Redox Potential6-12Section 7Terrestrial Ecological Evaluation7-1Section 8Summary8-1Section 9References9-1TablesTable 1Well Construction Details	5.4	Overall Data Usability	5-4
6.1Arsenic Geochemistry6-16.1.1Arsenic Pure-Phase Minerals6-26.1.2Arsenic Solid-Solution Phases6-26.1.3Arsenic Adsorption6-36.1.4Effect of Silica6-66.2Arsenic Fate and Transport6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-76.3Arsenic Attenuation6-86.3Arsenic Attenuation6-86.3.1Coprecipitation with Iron Phases6-86.3.2Adsorption6-116.3.3Total Organic Carbon, Dissolved Oxygen, and Redox Potential6-12Section 7Terrestrial Ecological Evaluation7-1Section 8Summary8-1Section 9References9-1TablesTable 1Well Construction Details	Section 6 Site	Conceptual Model	6-1
6.1.1Arsenic Pure-Phase Minerals6-26.1.2Arsenic Solid-Solution Phases6-26.1.3Arsenic Adsorption6-36.1.4Effect of Silica6-66.2Arsenic Fate and Transport6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-79.1Measured Values6-79.2Predictions from Eh and pH6-86.3Arsenic Attenuation6-86.3.1Coprecipitation with Iron Phases6-86.3.2Adsorption6-116.3.3Total Organic Carbon, Dissolved Oxygen, and Redox Potential6-12Section 7Terrestrial Ecological Evaluation7-1Section 8Summary8-1Section 9References9-1TablesTable 1Well Construction Details			
6.1.2Arsenic Solid-Solution Phases.6-26.1.3Arsenic Adsorption6-36.1.4Effect of Silica6-66.2Arsenic Fate and Transport6-76.2.1Arsenic Speciation6-7Measured Values6-7Predictions from Eh and pH6-86.3Arsenic Attenuation6-86.3.1Coprecipitation with Iron Phases6-86.3.2Adsorption6-116.3.3Total Organic Carbon, Dissolved Oxygen, and Redox Potential6-12Section 7Terrestrial Ecological Evaluation7-1Section 8Summary8-1Section 9References9-1TablesTable 1Well Construction Details	0.1		
6.1.3Arsenic Adsorption6-36.1.4Effect of Silica6-66.2Arsenic Fate and Transport6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-7Measured Values6-7Predictions from Eh and pH6-86.3Arsenic Attenuation6-86.3.1Coprecipitation with Iron Phases6-86.3.2Adsorption6-116.3.3Total Organic Carbon, Dissolved Oxygen, and Redox Potential6-116.3.4Arsenic Transport Velocity6-12Section 7Terrestrial Ecological Evaluation7-1Section 8Summary8-1Section 9References9-1TablesTable 1Well Construction Details			
6.1.4Effect of Silica6-66.2Arsenic Fate and Transport6-76.2.1Arsenic Speciation6-76.2.1Arsenic Speciation6-7Measured Values6-7Predictions from Eh and pH6-86.3Arsenic Attenuation6-86.3.1Coprecipitation with Iron Phases6-86.3.2Adsorption6-116.3.3Total Organic Carbon, Dissolved Oxygen, and Redox Potential6-12Section 7Terrestrial Ecological Evaluation7-1Section 8Summary8-1Section 9References9-1TablesTable 1Well Construction Details			
6.2 Arsenic Fate and Transport		•	
6.2.1 Arsenic Speciation 6-7 Measured Values 6-7 Predictions from Eh and pH 6-8 6.3 Arsenic Attenuation 6-8 6.3 Arsenic Attenuation with Iron Phases 6-8 6.3.1 Coprecipitation with Iron Phases 6-8 6.3.2 Adsorption 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.4 Arsenic Transport Velocity 6-12 Section 7 Terrestrial Ecological Evaluation 7-1 Section 8 Summary 8-1 Section 9 References 9-1 Tables Table 1 Well Construction Details	62		
Measured Values 6-7 Predictions from Eh and pH 6-8 6.3 Arsenic Attenuation 6-8 6.3 Arsenic Attenuation with Iron Phases 6-8 6.3.1 Coprecipitation with Iron Phases 6-8 6.3.2 Adsorption 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.4 Arsenic Transport Velocity 6-12 Section 7 Terrestrial Ecological Evaluation 7-1 Section 8 Summary 8-1 Section 9 References 9-1 Tables Table 1 Well Construction Details	012		
Predictions from Eh and pH		•	
6.3 Arsenic Attenuation 6-8 6.3.1 Coprecipitation with Iron Phases 6-8 6.3.2 Adsorption 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.4 Arsenic Transport Velocity 6-12 Section 7 Terrestrial Ecological Evaluation 7-1 Section 8 Summary 8-1 Section 9 References 9-1 Tables Table 1 Well Construction Details			
6.3.2 Adsorption	6.3		
6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential 6-11 6.3.4 Arsenic Transport Velocity		6.3.1 Coprecipitation with Iron Phases	6-8
6.3.4 Arsenic Transport Velocity		6.3.2 Adsorption	6-11
Section 7 Terrestrial Ecological Evaluation		6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential	6-11
Section 8 Summary		6.3.4 Arsenic Transport Velocity	6-12
Section 9 References	Section 7 Terr	estrial Ecological Evaluation	7-1
TablesTable 1Well Construction Details	Section 8 Sum	mary	8-1
Table 1Well Construction Details	Section 9 Refe	rences	9-1
	Tables		
	Table 1	Well Construction Details	
		Summary of Groundwater Elevations Measurements	

- Table 3Groundwater General Parameters
- Table 4Surface Water General Parameters

Table 5	Vertical Hydraulic Gradient Between Shallow and Deeper Groundwater Monitoring
	Points
Table 6	Arsenic in Soil
Table 7	Arsenic in Sediment
Table 8	Analytical Results - Groundwater
Table 9	Analytical Results - Surface Water
Table 10	pH of the Zero-Point-of-Charge (pH _{ZPC}) for Various Minerals6-3
Table 11	Adsorption Capacity of Arsenate and Arsenite vs. pH6-5
Table 12	Summary of Measured As (3) and As (5) Concentrations
Table 13	Summary of PHREEQC Results for the Highway 99 Site6-10
Table 14	Comparison of Groundwater TOC, DO, Iron, Arsenic, and Eh Data6-11
Table 15	Calculated K _d Values for the Highway 99 site6-13
res	
D· 4	

Figures

Figure 1	Site Vicinity Map	
Figure 2A	Site Plan	
Figure 2B	Site Plan	
Figure 3	Geologic Cross Section A – A'	
Figure 4	Geologic Cross Section B – B'	
Figure 5	Groundwater Elevation Contour Map, Alluvial Aquifer, July 15, 2010	
Figure 6	Arsenic in Soil from 0-2 Feet Below Ground Surface	
Figure 7	Arsenic in Soil from 4-6 Feet Below Ground Surface	
Figure 8	Arsenic in Soil from 6-8 Feet Below Ground Surface	
Figure 9	Arsenic in Soil from 8-10 Feet Below Ground Surface	
Figure 10	Arsenic in Soil from 10-12 Feet Below Ground Surface	
Figure 11	Arsenic in Soil from 12-14 Feet Below Ground Surface	
Figure 12	Arsenic in Soil from 14-16 Feet Below Ground Surface	
Figure 13	Arsenic in Soil from 16-18 Feet Below Ground Surface	
Figure 14	Dissolved Arsenic in Groundwater	
Figure 15	Arsenic +3 in Groundwater	
Figure 16	Arsenic +5 in Groundwater	
Figure 17	Dissolved Iron in Groundwater	
Figure 18	Oxidation-Reduction Potential in Groundwater	
Figure 19	Total Organic Carbon in Groundwater	
Figure 20	Arsenate Speciation as a Function of pH (alpha is the fraction of the	
	total dissolved arsenate consisting of the given species)	6-1
Figure 21	Eh-pH Diagram for the System As-O-H at 25°C and 1 atm	6-2
Figure 22	Langmuir Isotherms Illustrating Arsenate Adsorption Capacities	
	of $Fe(OH)_3(s)$, Kaolinite, and Montmorillonite at a pH of 5 su	6-4
Figure 23	Silica Speciation as a Function of Ph	
Figure 24	Arsenic Eh-Ph Diagram Showing the Site Data (green diamonds)	
Figure 25	Iron/Sulfur Eh-pH Diagram Showing the site Data (green diamonds)	6-9

Appendices

Boring Logs and Well Construction Logs
Groundwater Purge and Sampling Logs
Bathymetric and Land Survey Report
Hydrogeologic Calculation
Analytical Laboratory Reports (on CD)
XRF Data Confirmation

Section 1

Introduction

This report presents the results of a remedial investigation (RI) performed for USG Interiors (USG) at the former USG property located at 7110 Pacific Highway East in Milton, Washington. The site location is shown on **Figure 1**.

1.1 Agreed Order

The RI was performed to satisfy the requirements of Agreed Order DE 84-506 (Order) between the Washington Department of the Ecology (Ecology) and USG. A final RI Work Plan dated March 5, 2010 was submitted to Ecology, which addressed comments from Ecology on CDM's draft RI Work Plan. The RI was conducted in accordance with the final Work Plan.

1.2 Site Location and Description

The USG Highway 99 site is located between Pacific Highway East and Interstate 5 in Milton, Washington. **Figure 2A** shows the entire groundwater investigation area for the RI. For clarity, the extent of the exploration points shown on **Figure 2A** is referred to as the "site" throughout this report. The majority of RI fieldwork occurred in the core investigation area shown on **Figure 2B**, which is used to illustrate the RI results.

Freeway Trailer, Kanopy Kingdom, General Trailer, and Linwood Custom Homes currently operate at the site; their business locations are shown on **Figure 2A**. Chain link fence separates each business and the western property line along Pacific Highway East. Interstate 5 marks the eastern boundary of the site.

1.2.1 Climate

The site climate is typical of the Puget Sound Lowlands and other marine regions. Summers are typically cool and comparatively dry and winters are mild, wet, and cloudy. The climate information presented in this section was obtained from weather station KWAMILTO1 in Milton, Washington. The data was posted at http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KWAMILTO1

The warmest months are July and August, when the high temperatures average around 85 degrees Fahrenheit (°F). The coldest month is December, when the high averages around 45 $^{\circ}$ F and lows average 30°F.

Based on local rainfall data, in 2009 the City of Milton received 32 inches of rain for the year and averaged 130 days of measurable precipitation. On average, winter months are wetter than summer months. The wettest month of the year was November, with a monthly rainfall total of approximately 7 inches.

The predominant wind direction is from the south.

1.2.2 Surface Water

The site is located in the watershed of Hylebos Creek. The two main branches of Hylebos Creek known as East Hylebos Creek and West Hylebos Creek—originate in south King County and generally flow south. These two branches join in Milton at Porter Way (**Figure 1**), just north of the Highway 99 site on the east side of Interstate 5 (I-5).

As shown on **Figure 2B**, Hylebos Creek crosses under I-5 adjacent to the Highway 99 site. It continues flowing generally south and again crosses under Pacific Highway East before swinging to the northwest as it flows around the southern end of Fife Heights. Hylebos Creek then flows into the Hylebos Waterway, where it enters Commencement Bay as shown on **Figure 1**. The Hylebos Creek drainage basin as a whole is approximately 17 square miles. The average discharge of Hylebos Creek is approximately 20 cubic feet per second (TPCHD, 1993).

1.2.3 Geologic Setting

The site is situated in a north-trending valley that is the floodplain of Hylebos Creek and its tributaries. The valley is located just north of the lower Puyallup River valley. Alluvium associated with Hylebos Creek and the lower Puyallup River form the uppermost native soil at the property. This alluvium consists of predominantly overbank flood and slack water deposits. Glacially consolidated glacial drift and interglacial deposits hundreds to thousands of feet thick underlie the alluvial deposits. Fife Heights, the upland region northwest of the property, is largely comprised of glacial drift.

1.3 Site History

History of the Highway 99 site is poorly documented. The historical description that follows is based on CDM's interpretation of historical aerial photographs and a title search.

Industrial waste from USG's Tacoma plant was used to fill the Highway 99site. It is known that from about 1959 to 1973, the USG Tacoma plant used ASARCO slag as a raw material for mineral fiber production. Baghouse dust enriched in arsenic was reportedly used as fill at the Highway 99 site from 1971 through 1973 (Ecology, 1986). USG did not own the property during the period when this fill was placed on it.

In the early 1980s, USG became aware of the association between ASARCO slag and arsenic contamination. Subsequently, USG purchased the Highway 99 site from Partner's Financial Incorporated on August 18, 1982. That same year USG voluntarily approached Ecology to negotiate an administrative process to govern removal of fill from the property.

Cleanup of the Highway 99 site occurred between October 12, 1984 and January 25, 1985 (Ecology, 1986) under Agreed Order No. DE 84-506. The Order established an arsenic cleanup standard for soil of 5 milligrams per liter (mg/L) by the EP Toxicity (leaching) method, and required USG to conduct post-cleanup groundwater monitoring. Detailed records of the cleanup, termed the source removal action, have not been located. Ecology estimated that 20,000 to 30,000 cubic yards of material was excavated and disposed of off-site (Ecology, 1986). Native soil exceeding this cleanup standard was reportedly over-excavated in the southern portion of the property in the vicinity of monitoring well 99-1 (**Figure 2B**). This is referred to as the contaminant source area.

According to Ecology, approximately 10% of the total waste that was excavated and disposed of offsite was baghouse dust. We infer that the 20,000 to 30,000 cubic yards of waste included: 1) soil fill mixed with waste insulation; 2) baghouse dust; and 3) native soil exceeding the cleanup standard excavated from the vicinity of 99-1.

USG sold the property to Hebert Rendell in 1986. USG maintained responsibility for verification monitoring, as specified in Agreed Order No. DE 87-506.

A review of historical aerial photographs shows that the property was cleared and regraded before June 1985 (approximately 5 months after completion of the source removal action). With the exception of environmental monitoring, no remediation activities have occurred at the property since 1985.Used car, trailer, and truck canopy sales businesses currently occupy the property.

1.4 Sources of Contamination

Arsenic concentrations in site soil and groundwater exceed Model Toxics Control Act (MTCA) cleanup levels. This arsenic originated from industrial waste from the USG mineral fiber insulation manufacturing plant in Tacoma. The Tacoma plant used arsenic bearing ASARCO slag as a manufacturing feedstock. Waste and off-specification product generated from mineral fiber insulation manufacturing was used as fill at the site.

USG conducted cleanup in 1984 and 1985 to excavate and remove industrial waste fill from the Highway 99 site. Subsequent long-term groundwater sampling performed by USG showed that residual arsenic remained in groundwater at the site above the current MTCA Method A cleanup level.

1.5 Remedial Investigation Objectives

The RI was implemented to:

- Characterize arsenic in surface soil between the paved areas and Hylebos Creek.
- Characterize the extent of arsenic contamination in soil, groundwater, sediment, and surface water.
- Characterize the potential contaminant migration pathway of arsenic in soil and groundwater to Hylebos Creek.
- Gather additional environmental data affecting arsenic fate and transport to help select a cleanup action that will meet MTCA requirements.
- Evaluate exposure to terrestrial and ecological receptors.

This page intentionally left blank to allow for double-sided printing.

Section 2

Field Investigation

This section describes the field work and investigation methods completed during the RI. Field work included site preparation, underground utility location, soil investigation, groundwater investigation, sediment investigation, surface water investigation, and a site survey.

The scope of work for the RI field investigation is described in the RI Work Plan (CDM, 2010). The work was completed over 16 days in April, May, and July 2010. This first phase of field investigation, described in more detail below, focused on the contaminant source area and comprised the majority of RI field work. Subsequent field investigation phases were conducted to fully define the extent of contamination (primarily groundwater; soil to a lesser extent) beyond the core investigation area shown on **Figure 2B**. Subsequent field investigations included:

- <u>Groundwater Reconnaissance Borings:</u> Groundwater reconnaissance samples for arsenic were collected north and south of the core investigation area using direct-push technology (DPT) samples. These borings are shown on Figure 2A and have the prefix "GW." This work was completed in April 2011.
- <u>Characterize Arsenic Extent in Groundwater (East)</u>: Groundwater monitoring wells MW-10 and MW-11were installed between the paved portion of Kanopy Kingdom and Interstate 5 to characterize arsenic concentrations east of the contaminant source. These monitoring wells, shown on **Figure 2A**, were completed and sampled in October 2011.
- <u>Characterize Arsenic Extent in Groundwater (West, South, and North):</u> Groundwater monitoring wells MW-12, MW-13, and MW-14 were drilled to characterize arsenic concentrations to the west, south, and north (respectively). These monitoring wells are shown on Figure 2A. In addition, two soil borings were drilled in the Pacific Highway East Highway 99 right-of-way (ROW) to delineate arsenic contamination in soil to the east.

2.1 Phase 1 RI Field Investigation

2.1.1 Site Preparation

On April 20, 2010, CDM located the planned soil boring and groundwater monitoring well locations using measuring tape and compass methods. Each location was marked on the ground using white marking paint. Arrangements were made with Kanopy Kingdom, Freeway Auto, and Freeway Trailer managements to gain access to the site and have them move vehicles and equipment away from the drilling locations during the investigation.

Utilities Underground Location Center (UULC) was notified 3 days prior to drilling, as required by state law. The entire site was checked for possible underground utility conflicts at boring locations. On April 26, 2010, each of the proposed boring and monitoring well locations were cleared for underground utilities by Applied Professional Services (APS).

2.1.2 Soil Investigation

The soil investigation consisted of collecting surface and subsurface soil samples. Samples were analyzed for total arsenic by field portable x-ray fluorescence (XRF) and laboratory methods. The purpose of the soil investigation was to delineate the lateral and vertical extent of arsenic in soil. The soil investigation was completed between April 26 and 29, 2010.

Surface Soil Sampling

Six surface soil samples were collected from the vegetated area between the west bank of the Hylebos Creek and the paved parking surfaces to characterize arsenic concentrations in surface soil. **Figure 2B** shows the location of the surface soil samples.

The samples were taken at 50-foot increments in a row parallel to the direction of river flow. Sample locations were identified with a measuring tape and marked with stakes. Vegetation was cleared at each sample location before soil was collected from the ground surface and placed directly in plastic XRF measurement cups or 4-ounce glass jars. Each sample was collected by hand with a new pair of nitrile gloves. The soil in the XRF measurement cup was used for field XRF analysis of total arsenic and the sample in the 4-ounce jar was retained for possible analysis of arsenic at the off-site analytical laboratory.

The samples were labeled and placed in a cooler on ice and transported back to CDM's Bellevue office. The samples were stored under refrigeration at the CDM office until selected samples were sent to the laboratory under chain of custody protocol.

Subsurface Sampling

Thirty soil borings arrayed on a 50-foot offset grid were advanced to depths ranging from 12 feet to 24 feet below ground surface (bgs) during the RI. The purpose of the borings was to characterize the lateral and vertical distribution of arsenic in soil and to characterize the geology of the site. CDM's subcontractor—Environmental Services Northwest (ESN) of Tacoma, Washington—completed the RI soil borings using direct push technology (DPT) sampling methods. A CDM geologist supervised the DPT sampling and was responsible for soil classification and soil sample collection.

The RI soil data supplements soil assessment data collected in June 2006. **Figure 2B** shows the soil boring locations. RI borings have alpha-numeric grid designations (e.g., C-6) and the 2006 assessment borings have a "GP" prefix.

The borings were advanced using truck-mounted DPT equipment. The soil samples were collected continuously using a 4-foot-long, 1.5-inch inside-diameter sampler fitted with acetate liners. The sampler was attached to the end of DPT drive rods and pneumatically driven into the ground. After each sampler drive, the acetate liners were removed from the sampler and split open to examine the soil and collect soil samples.

Soil types were classified according to the Unified Soil Classification System (USCS). Soil samples were also inspected for evidence of vitreous slag material or other evidence of contamination. Soil descriptions were recorded on boring logs, which are provided in **Appendix A**. The DPT sampler and rods were decontaminated between each sample drive using a three-bucket Alconox wash and distilled water rinse system.

At each boring, soil samples were collected at approximate 2-foot depth intervals from the ground surface to depths of between 16 and 24 feet bgs for field XRF analysis of arsenic. The soil was

collected from soil cores and placed directly into plastic XRF measurement cups or 4-ounce glass jars. The soil in the XRF measurement cup was used for field XRF analysis of total arsenic and the sample in the 4-ounce jar was retained for possible analysis at the off-site analytical laboratory. Any borings with measurements above the 20 parts per million (ppm) limit for MTCA Method A cleanup levels at 16 feet bgs were advanced until readings were below 20 ppm or until a total depth of 24 feet bgs was reached.

Samples were labeled and placed in a cooler on ice and transported back to CDM's Bellevue office. The samples were stored under refrigeration at the CDM office until selected samples were sent to the laboratory under chain of custody protocol.

Following completion of sampling at each location, the DPT borings were abandoned by backfilling with bentonite. Hydrated bentonite chips were used at all locations to abandon borings.

Field XRF Analysis

Arsenic concentrations in soil samples were measured in the field using an Innova-X Alpha Series XRF following EPA Method 6200. CDM's Work Plan (CDM, 2010) describes the XRF sample preparation and analysis procedures followed during the RI in detail. Each soil sample was analyzed by covering the XRF sample cup with a Mylar covering, placing the sample cup directly below the XRF projector, and then scanning the sample for a 90-second interval. The displayed arsenic concentration was recorded on an XRF Test Result form.

2.1.3 Groundwater Investigation

The groundwater investigation included installing monitoring wells, collecting groundwater samples at new and existing monitoring wells, and measuring the depth to groundwater at each well.

Monitoring Well Installation

Nine new groundwater monitoring wells were installed at locations shown on **Figure 2B.** Six shallow wells (MW-1 through MW-6) were screened in fine to medium sand within the upper portion of the alluvial aquifer. Two intermediate wells (MW-7 and MW-8) were screened in coarser sand within the deeper portion of the alluvial aquifer. One deep well (MW-9) was screened within sand and gravel of the glacial aquifer that underlies the alluvial aquifer.

The purpose of the shallow monitoring wells was to evaluate the extent of arsenic dissolved in groundwater and determine the groundwater flow direction and horizontal hydraulic gradient. The purpose of the intermediate and deep monitoring wells (MW-7, MW-8, and MW-9) was to evaluate vertical hydraulic gradients at the site and the vertical extent of arsenic in groundwater.

CDM's subcontractor—Environmental Drilling, Inc. (EDI) of Snohomish, Washington—performed the monitoring well drilling and installation using a Mobile B-61 HD truck-mounted hollow-stem auger drill rig equipped with 7-5/8-inch-outside-diameter, 4-1/4-inch-inside diameter drilling augers. Soil samples were collected at 5-foot intervals during drilling.

Soil samples were collected using a Standard Penetration Test (SPT) split-spoon sampler. At each sample depth the sampler was driven 18 inches using a 140-pound auto-hammer. The soil was classified in general accordance with the USCS. Soil descriptions were recorded on a boring log, which is included in **Appendix A**.

Monitoring well construction details are summarized in **Table 1** and shown graphically on the well construction logs included in **Appendix A**. The monitoring wells were constructed using 2-inch-diameter, Schedule 40 PVC flush-threaded pipe and Schedule 40 PVC factory-slotted well screen. The well screens were 5 feet long with 0.010-inch-width milled slots. A filter pack consisting of #10-20 Colorado Silica Sand was placed in the annular space between the well screen and the borehole walls. The filter pack was extended approximately 3 feet above the top of the well screen.

A hydraulic seal was constructed of Pure Gold medium bentonite chips placed from the top of the filter pack to within 2 feet of ground surface. For the intermediate wells and the deep well, a 20 percent solids pumpable bentonite grout mix (Baroid Quik-Grout) was used instead of bentonite chips. The bentonite grout was pumped into the annulus using a tremmie pipe. The top of the annular space was sealed with concrete and an 8-inch-diameter, flush mount, traffic-rated monitoring well vault was installed at the ground surface. Locking well caps were installed at each monitoring well.

The new monitoring wells were developed prior to sampling through a combination of surging, bailing, and pumping. Initially, the screen interval was surged using a surge block and solids were bailed from the bottom of the well using a stainless steel bailer. After bailing the solids from the well, the well was developed by continuous pumping with a submersible pump (Whale pump). The pump was set within the screen interval and field water quality parameters (conductivity, pH, turbidity, and temperature) were measured at regular intervals and recorded on a well development log. A Horiba U-22 water quality meter was used to measure field water quality parameters.

Well development was considered complete after the field parameters had stabilized and a minimum of 10 well casing volumes were removed from the shallow wells (a minimum of 4 casing volumes was removed from each of the intermediate and deep wells). Well development water was contained in 55-gallon drums.

Groundwater Level Measurements

On May 25 and July 15, 2010, CDM performed comprehensive groundwater level monitoring rounds on all newly installed and existing monitoring wells. The purpose of the second monitoring round was to obtain groundwater levels under equilibrium conditions in dry weather conditions. All depth to groundwater measurements were made using a SINCO water level meter, which was decontaminated between wells. The depth to groundwater measurements are summarized in **Table 2**.

Groundwater Sampling

Groundwater monitoring wells were purged and sampled using a peristaltic pump and low-flow sampling methods. Discharge from the peristaltic pump was directed into a flow-through cell. A YSI Model 556 water quality meter was used to measure temperature, conductivity, pH, dissolved oxygen (DO), and oxidation/reduction potential (ORP) in the flow-through cell. A Lamotte 2020 turbidity meter was used to monitor turbidity.

The instruments were calibrated against standards for each field parameter during each day of sampling. The peristaltic pump controller was set to a purge rate of about 0.5 liter per minute and drawdown was generally limited to less than 0.3 foot. Water levels and field parameters were monitored at regular intervals and recorded on a groundwater sampling record.

Copies of the groundwater sampling records are included in **Appendix B**. Purging was continued until field parameters had stabilized for at least three consecutive readings within the following limits:

± 0.1 unit for pH

- ± 5 percent for conductivity
- ± 20 millivolts for ORP
- ± 10% for dissolved oxygen < 10 NTU for turbidity

The final stabilized parameters are provided in **Table 3**.

Groundwater samples were collected immediately after parameters stabilized and all indicator parameter readings were recorded. The flow cell was disconnected and sample containers were filled directly with discharge from the sampling pump. The dissolved metals samples were collected in unpreserved containers and filtered by the laboratory prior to analysis. Sample containers, preservatives, and holding times are described in CDM's Work Plan (CDM, 2010).

Following submittal of the samples, the laboratory noted varying amounts of orange-brown precipitate (determined to be an iron precipitate) in the dissolved metals bottles. The laboratory also determined that arsenic was likely substituting for iron in the precipitate to varying degrees, potentially lowering dissolved arsenic and iron values in some of the samples.

Based on these observations and the varied relative percent differences (RPD) between total and dissolved arsenic values, wells MW3, MW4 (including a field duplicate, MW-0), and 99-1 were resampled on July 15, 2010 for dissolved arsenic and dissolved iron.

During re-sampling the wells were again purged with low-flow technology, with pH, conductivity, ORP, and DO parameters being measured in a flow-through cell. Once these four field parameters had stabilized, the sample tubing was disconnected from the flow through cell and connected to a dedicated, disposable 0.45-micrometer (μ m) filter certified clean for metals. Water that had passed through the filter was transferred directly to a bottle with nitric acid preservative for the dissolved metals analysis. Only the results of the re-sampling, which were consistent with historical data for well 99-1 and showed a comparable RPD for MW4 and field duplicate MW0, were tabulated for the dissolved arsenic and iron analyses of groundwater from these three wells.

2.1.4 Surface Water Investigation

The surface water investigation included collecting surface water samples from Hylebos Creek from six locations between the east edge of I-5 and just downstream of the site as shown on **Figure 2B**. The surface water investigation was conducted to investigate the possibility of impacts to Hylebos Creek from site groundwater by characterizing the water quality in Hylebos Creek.

At each surface water sample location, a YSI Model 556 water quality meter was used to measure temperature, conductivity, pH, DO, and ORP by lowering the probe into the stream. Parameters readings were collected after approximately 2 minutes, when parameters had stabilized. The final stabilized parameters are listed in **Table 4**.

Surface water was collected from each sampling location by extending a sample bottle attached to a swing sampler into the creek from the west bank. Once the collection bottle was filled, water was transferred directly into the remaining bottles for each sample. The surface water investigation was completed on April 25, 2010.

2.1.5 Sediment Investigation

The sediment investigation consisted of collecting bank and center samples from Hylebos Creek. These samples were analyzed for total arsenic by field XRF and laboratory methods. The purpose of the sediment investigation was to characterize arsenic in the sediments of Hylebos Creek. The sediment investigation was initiated on April 29 and completed on April 30, 2010.

Topographic Survey

The bathymetric survey was completed on June 10, 2010. The survey was completed by CDM's subcontracted surveyor, WH Pacific. The surveyor used a TCRA 1101 total station instrument to establish the bathymetry and topography of Hylebos Creek. Horizontal coordinates were referenced to the North American Datum (NAD) 83/91, South Washington Zone. Vertical coordinates were referenced to North American Vertical Datum (NAVD) 88. The elevation contours are shown in the survey plan (**Appendix C**) and **Figure 2B**.

Sediment Sampling

Fourteen sediment samples were collected at the locations shown on **Figure 2B**. The samples were collected from the farthest downstream location first, moving to upstream locations successively each day. At each sediment sample location, a sample was collected from the west bank and bottom of the center of Hylebos Creek. The samples were collected using a 3-inch outside-diameter sampler equipped with a slide hammer. Bank samples were taken from 6 inches below the water level of the creek.

Samples were taken in the bank by angling the drive sampler approximately 45 degrees and driving it into the bank. At each location the sampler was driven approximately 6 inches into the creek bank or bottom and then retracted. The sediment was then transferred directly from the drive sampler into a plastic XRF measurement cup or a 4-ounce pre-cleaned glass jar.

Prior to collecting each sample, the driver sampler was decontaminated using a three-bucket Alconox and distilled water rinse system. The samples were labeled and placed in a cooler on ice and transported back to CDM's Bellevue office. The samples were stored under refrigeration at CDM's office until selected samples were sent to the laboratory under chain of custody protocol.

2.2 Supplemental RI Field Investigations

This section discusses supplemental field investigations conducted after the original RI investigation. These supplemental field investigations were conducted to fully define the extent of arsenic exceeding cleanup standards in groundwater and soil.

2.2.1 Groundwater Reconnaissance Borings

Phase 1 groundwater samples from the northernmost and southernmost monitoring wells (99-2 and MW-6, respectively) exceeded the groundwater cleanup standards. The groundwater reconnaissance borings were drilled to assist in locating future groundwater monitoring wells that would define the extent of arsenic exceeding the groundwater cleanup standard. The groundwater reconnaissance borings, shown on **Figure 2B**, are designated GW-1 through GW-9.

The groundwater reconnaissance borings were drilled on April 7, 2011 using a DPT drill rig equipped with a Hydropunch[™] groundwater sampling device. Borings were advanced to a depth of

approximately 10 to 15 feet bgs until groundwater was noted on the drill string. The casing on the Hydropunch[™] was then retracted, exposing a stainless steel screen.

Groundwater samples were collected using a peristaltic pump, filtered in the field, and placed into 250-milliliter polyethylene bottles preserved with nitric acid. Borings were abandoned with bentonite chips capped with ready-mix concrete or cold asphalt pavement patch. The groundwater samples were analyzed for arsenic by EPA Method 6020 in ESN's laboratory in Olympia, Washington.

2.2.2 Arsenic Characterization in Groundwater (East)

The easternmost monitoring wells and DPT borings ranging from GW-8 in the north to MW-5 in the south had arsenic concentrations ranging from 340 to 1,060 micrograms per liter (ug/L). The topography drops off sharply east of the paved area where these borings and monitoring wells are located, sloping down to either Hylebos Creek or a roadside ditch as shown on **Figure 2B**. East of Hylebos Creek the topography slopes up where it matches the shoulder of southbound I-5. Because of these topographic limitations, there is no place to drill a conventional monitoring well except for the shoulder of I-5. Drilling and sampling monitoring wells on the shoulder of I-5 was ruled out by USG because of safety concerns.

The decision was made to collect groundwater samples east of the paved area by installing groundwater monitoring wells using hand-drilled methods. As shown on **Figure 2B**, MW-10 is located on the east bank of Hylebos Creek, east of MW-4 and MW-5. MW-11 is located east of a ditch that flows into Hylebos Creek, east of 99-2 and GW-8.

ESN personnel worked with CDM to install these monitoring wells on October 14, 2011. Solinst Model 615 drive-point well screens were used. The Solinst drive-point well screens are constructed of ³/₄" stainless steel tubing about 1.1 feet long. Groundwater enters the well screen through circular holes drilled in the tubing that are backed by a 50-mesh stainless steel screen. The top of the well screen is threaded with ³/₄ NPT thread so standard couplings and pipe can be used as risers. The well screens are designed to be driven to depth with a fence post driver.

The well drilling procedure consisted of advancing the well boring using a hand auger to a depth of about 5 feet bgs. The drive point well screen and riser pipe were then driven to depth using a fence post driver. Colorado silica sand was poured into the boring up to about 7 feet bgs. A surface seal was constructed of bentonite chips. The wells were completed with a flush-mounted protective monument.

Wells MW-10 and MW-11 were developed and sampled on October 18, 2011. Well development was accomplished by pumping with a peristaltic pump until the turbidity was reduced. Groundwater purging and sampling procedures were the same as for the Phase 1 RI.

2.2.3 Arsenic Characterization in Groundwater (West, South, and North)

The purpose of this field investigation was to define the limits of groundwater exceeding the groundwater protection standard to the west, south, and north. Elements and methods of the investigation are summarized below.

- MW-12 was located on the west side of Pacific Highway East.
- MW-13 was located based on data gathered during the groundwater reconnaissance borings. The arsenic concentration in GW-5 (located north of Freeway Trailer building) was 21 μg/L.

Consequently, MW-13 was located farther south (approximately 230 feet) of the Freeway Trailer building.

MW-14 was located on the north end of the Kanopy Kingdom property. The arsenic concentration in reconnaissance boring GW-6 was 19 µg/L. CDM planned to drill MW-14 approximately 120 farther north on the General Trailer property. After access negotiations broke down, MW-14 was relocated to the GW-6 location at the north end of the Kanopy Kingdom property.

ESN drilled MW-12, MW-13, and MW-14 using a DPT drill rig on May 11, 2012. The wells were constructed with a pre-packed PVC well screen and completed with flush-mounted protective covers.

MW-12, MW-13, and MW-14 were developed and sampled on May 22, 2012. The wells were developed by pumping with a peristaltic pump until the turbidity was reduced. Groundwater purging and sampling procedures were the same as for the Phase 1 RI.

2.2.4 Arsenic Characterization in Soil

The purpose of this field investigation was to define the western limits of arsenic exceeding the cleanup level between 6 and 14 feet bgs. Two soil borings, AA-6 and AA-7, were drilled on the east side of the Pacific Highway East ROW, as shown on **Figure 2B**. In addition, 4 soil samples were collected from MW-12.

2.3 Land Survey

The location of each Phase 1 RI installed groundwater monitoring well, soil boring, surface soil sample, sediment sample, and surface water sample was surveyed on June 10, 2010. Pre-existing monitoring wells MW-99-1 and MW-99-2 were also surveyed. Supplemental RI groundwater monitoring wells, groundwater reconnaissance borings, and soil borings were surveyed on June 20, 2012. All survey work was completed by WH Pacific. A copy of the survey plan is included in **Appendix C**.

At each soil boring, surface sample, sediment sample, or surface water sample location, the northing and easting of the boring and the ground surface elevation were surveyed. At each surface water sample location, the northing and easting of the sample marking stake, the elevation of the top of the marker stake, and the elevation of the Hylebos Creek water surface were surveyed. At each monitoring well, the northing and easting of the well, the elevation of the top of the PVC well casing, and the elevation of ground surface adjacent to the well were surveyed. The location of site fence lines and creek bank topography were also surveyed.

Horizontal coordinates were referenced to NAD 83/91, South Washington Zone. Vertical coordinates were referenced to NAVD 88.

2.4 Investigation Derived Waste

Soil derived from DPT borings and monitoring well installation was placed in twelve 55-gallon drums, well development and decontamination water was placed in twelve 55-gallon drums, and soiled visqueen from the drilling spill containment pads was placed in one 55-gallon drum. All drums were labeled and placed along the fence line along the northern property boundary of Freeway Trailer for temporary storage pending waste profiling and disposal. The drums were removed from the site by Emerald Services for offsite disposal.

2.5 Deviations from the Sampling and Analysis Plan

This section summarizes deviations from the CDM's Work Plan that occurred during the RI.

- Additional soil borings A4, A5, A6, A8, A9, C9, C10, and D9 were drilled in order to fully delineate the lateral extent of arsenic in soil.
- Additional sediment samples from the SED-7 location (west bank and center channel) were collected downstream of SED-6 in order to confirm the downstream extent of arsenic in sediment.
- Boring C1 was not drilled because the northern extent of arsenic was delineated by boring C2.
- Groundwater reconnaissance borings were used to help locate groundwater monitoring wells during the supplemental RI field investigation.
- Drilling methods and construction materials for groundwater monitoring wells drilled and completed for the supplemental RI deviated from the work plan.

This page intentionally left blank to allow for double-sided printing.

Section 3

Site Geologic and Hydrogeologic Findings

The following subsections describe the geology and hydrogeology of the site based on data collected during the RI field investigation. **Section 4** provides the analytical results for soil, groundwater, surface water, and sediment samples collected during this investigation.

3.1 Site Geology

The site geology is summarized in geologic cross-sections A - A' and B – B', which are shown on **Figures 3** and **4**. Generalized stratigraphy consists of fill overlying alluvium, over glacial drift. These units are described below.

3.1.1 Fill

Fill at the site is differentiated into three units, described from youngest to oldest:

- Fill-3: excavation backfill
- Fill-2: residual fill containing waste from USG's Tacoma plant
- Fill-1: undifferentiated fill

Fill-3 was placed during backfilling of the remedial excavation in 1985. The soil consists of fine- to coarse-grained silty sand with gravel and silty sand (SM). The Fill-3 unit soil extends from the ground surface to maximum depths ranging from 4.5 to 14 feet bgs.

Fill-2 includes soil mixed with manmade materials. Fill-2 is likely residual fill representative of material not excavated in 1984/1985 during USG's removal action. These materials include what appears to be ASARCO slag, black and green glassy needle-like grains, glass-like gravel sized particles, and insulation debris. The ASARCO slag material does not appear to be processed like the other manmade materials. The material is associated with soil types that include poorly graded sand (SP) and sandy silt (ML). The Fill-2 material was encountered in borings A6, B6, B7, C7, and C8 at depths extending from 6 to 12.5 feet bgs.

Fill-1 includes soil that was placed during initial development of the site and consists of silt (ML), sandy silt (ML), organic silt (OH), and silty sand (SM) with traces of debris, including wood chips and gravel. The Fill-1 soil extends to a maximum depth of 9 feet bgs.

3.1.2 Alluvium

Alluvium underlies fill at the site. Alluvium pinches out to the west and was not encountered at MW-12. The alluvium can be subdivided into two units based on soil type and hydraulic properties, including:

- Upper Silt Unit
- Alluvial Aquifer

The Upper Silt Unit is the uppermost alluvial unit. Soil in this unit comprises dark brown to gray brown silt and sandy silt (ML), often with bedding laminations. Minor amounts of wood fragments and rootlets are typically present. The Upper Silt Unit ranges in thickness from 1 to 6 feet. The presence of silt and organic matter indicate deposition in a lower energy depositional environment, such as wetlands.

The Alluvial Aquifer extends from the bottom of the Upper Silt Unit to the top of the Lower Silt Aquitard, which is situated at an approximate depth of 38 feet bgs. Soil in the Alluvial Aquifer consists of fine-grained silty sand (SM), fine- to medium-grained sand (SP), and well-graded sand (SW). The soil includes minor silt (ML) interbeds, which are typically less than 0.25 inch thick. The total thickness of the Alluvial Aquifer is approximately 30 feet.

3.1.3 Glacial Units

Glacial sediments underlie the alluvium east of Pacific Highway East. At MW-12, glacial sediments occurred directly beneath fill.

The glacial sediments are subdivided into the following units based on hydraulic properties:

Lower Silt Aquitard

Glacial Aquifer

Lower Silt Aquitard

The Lower Silt Aquitard underlies the Alluvial Aquifer. Soil in this unit consists of greenish gray silt (MH or ML). The fine-grained nature of the soil indicates a low energy lacustrine (or possibly glaciomarine) depositional environment.

The total thickness of the Lower Silt Aquitard ranges from approximately 5 to 15 feet. The Alluvial Aquifer/Lower Silt Aquitard contact dips sharply to the west as shown on **Figure 4**, Section B-B'. This dipping upper surface to the Lower Silt Aquitard may be the result of erosion.

Glacial Aquifer

Water-bearing sand (SP), silty gravel (GM), and silty sand with gravel (SM) underlie the Lower Silt Aquitard. This soil is classified as glacial drift based on texture and low organic content. The upper 10 feet of this soil is not consolidated and may have been deposited in a glaciofluvial depositional environment (recessional outwash). Below 52.5 feet bgs at MW-9, the soil changes to very dense silty sand (SM) and silty gravel that has a till-like texture. This consolidated soil is interpreted as glacial till.

3.2 Site Hydrogeology

3.2.1 Alluvial Aquifer

Groundwater occurs under unconfined conditions within sand and silty sand of the Alluvial Aquifer. The low permeability soil of the Lower Silt Aquitard acts as a lower confining layer to the Alluvial Aquifer, limiting downward vertical flow. During the RI field investigation, groundwater was encountered at depths ranging from 8 to 14 feet bgs. Groundwater levels measured at each of the site monitoring wells are listed in **Table 2**.

A groundwater elevation contour map for the Alluvial Aquifer, based on the July 15, 2010 depth to groundwater measurements, is shown on **Figure 5**. The groundwater elevation contours were

determined using mathematical interpolation between wells and professional judgment. The contours indicate that groundwater flows east toward Hylebos Creek and south parallel to the creek. The horizontal hydraulic gradient ranges from 0.003 foot/foot in the central area of the site, steepening to 0.03 foot/foot at the west bank of Hylebos Creek.

The vertical hydraulic gradient within the Alluvial Aquifer was calculated at the MW-5/MW-8 and MW-99-1/MW-7 well pairs. Wells in these pairs are completed within the shallow and deeper reaches of the Alluvial Aquifer, respectively. The vertical gradient was calculated by dividing the head differential between the shallow and deeper well by the vertical distance between screen midpoints. The results of the vertical hydraulic gradient calculations, summarized in **Table 5**, indicate upward vertical hydraulic gradients ranging from 0.022 to 0.035 foot/foot, based on the July 15, 2010 groundwater elevation measurements. The upward gradient indicates significant potential for groundwater flow from the deeper to shallow reaches of the aquifer.

The predominant soil types in the Alluvial Aquifer are fine-grained silty sand (SM) and sand (SP). The hydraulic conductivity these soils ranges from 0.3 to 30 feet/day, based on literature-derived hydraulic conductivity values for silty sand and fine sand (Anderson and Woessner, 1992).

Layers of coarser-grained sands (SP and SW) are also present within the Alluvial Aquifer. These sands have hydraulic conductivities ranging from 130 to 200 feet/day, based on an estimate using the Hazen (1911) method and the grain size distribution results for representative soil samples. A copy of the hydraulic calculations is included in **Appendix D** and the grain size distribution results are summarized in **Appendix E**.

The average linear velocity (seepage velocity) of groundwater flow in the Alluvial Aquifer is estimated to range from 2 feet/day in the central area of the site to 20 feet/day at the west bank of Hylebos Creek. This is considered to be a maximum seepage velocity estimate and is based on a hydraulic conductivity of 200 feet/day, which is the maximum hydraulic conductivity estimated for the layers of coarser-grained sand present within the deeper Alluvial Aquifer. The seepage velocity for the fine-grained silty sand (SM) and sand (SP), typical of the shallow Alluvial Aquifer, is expected to be much lower. A copy of the seepage velocity calculation is included in **Appendix D**.

3.2.2 Glacial Aquifer

The head differential between well pairs screened within the Alluvial Aquifer and the Glacial Aquifer (wells MW-99-1 and MW-9, respectively) was 6.58 feet based on the July 15, 2010 measurements. This large head differential indicates that the Glacial Aquifer is confined and exerting considerable hydraulic pressure on the overlying Lower Silt Aquitard. The different hydraulic and geochemical characteristics of the Glacial Aquifer and the Alluvial Aquifer indicate that the two aquifers are not in hydraulic communication.

The Glacial Aquifer comprises soil types ranging from silty sand (SM) to silty gravel (GM). Based on these soil types, the seepage velocity in the Glacial Aquifer is estimated to range from as low as 20 feet/day to as high as 70,000 feet/day. Typical hydraulic conductivity values for glacial aquifers in the site vicinity are at the lower end of this range. A copy of the hydraulic calculations is included in **Appendix D**.

This page intentionally left blank to allow for double-sided printing.

Section 4 Analytical Results

This section discusses the analytical results for soil, groundwater, surface water, and sediment samples collected during the RI investigation.

4.1 Soil Results

The following subsections present the analytical results for chemical and physical testing performed on soil samples collected during the RI.

4.1.1 Arsenic in Soil

Twenty of the soil samples collected during the RI soil investigation were selected for laboratory analysis of total arsenic to confirm the XRF arsenic results. The samples were analyzed for total arsenic by EPA Method 6010B at Analytical Resources Inc.'s (ARI) Tukwila, Washington laboratory. The analytical laboratory results are included in **Appendix E**. The samples selected for laboratory analysis were chosen to represent the complete range of arsenic values measured in the field by XRF. XRF results were compared to laboratory analyzed results following the U.S. Environmental Protection Agency (EPA) guidance for field portable XRF analysis of soil and sediment samples (EPA, 1998). The results of this evaluation, provided in **Appendix F**, indicate a high degree of comparability between the XRF and analytical laboratory data and support the use of the XRF data as definitive level data.

Correlation between the XRF and confirmatory laboratory data was defined by the trendline of the plot of the natural log (Ln) of the laboratory results (on a dry weight basis) (y-axis) versus Ln of the XRF results (on a wet weight basis) (x-axis), yielding the following equation:

Ln (Laboratory Result) = 1.039*(Ln XRF Result) +0.102

The XRF results for those samples not analyzed by the analytical laboratory were corrected using the above equation. The corrected arsenic results are presented in **Table 6**.

Isocontour maps of arsenic in site soil (**Figures 6** through **13**) were prepared using computer software and krieging methods. **Figures 6** through **13** show arsenic contours in soil at depths of 0 to 2, 4 to 6, 6 to 8, 8 to 10, 10 to 12, 12 to 14, 14 to 16, and 16 to 18 feet bgs, respectively. Note that the arsenic values shown in **Figure 13** are from saturated soil samples collected below the water table.

4.1.2 Grain Size Distribution

To confirm the soil classifications assigned by the field geologist, selected soil samples were submitted for grain size distribution analysis in CDM's Bellevue, Washington geotechnical laboratory. Four samples were selected for analysis from the representative soil types encountered at borings A9 and MW9. The results of the grain size distribution analysis are included in **Appendix E** and have been incorporated into the soil description for the A9 and MW9 boring logs, included in **Appendix B**.

4.1.3 Analysis

In general, arsenic concentrations in near-surface soil are lower than at depth. This reflects the contaminant source removal action performed in 1984/1985, when fill containing arsenic bearing material was excavated, disposed of off-site, and replaced with imported fill.

The isocontour plots show elevated arsenic in soil occurring at 6 to 8 feet bgs (**Figure 8**) and continuing down to a depth of 14 to 16 feet bgs (**Figure 12**). Elevated arsenic concentrations at depth are most typically encountered in Fill-1 or alluvium underlying the base of the 1984/1985 contaminant source removal action. This arsenic is interpreted to have leached out of the Fill-2 unit and adsorbed onto the underlying soil. Residual Fill-2 was also encountered at depth as shown on **Figures 3** and **4**. Arsenic concentrations in the residual Fill-2 material are highly variable. Arsenic concentrations in soil attenuate rapidly below the water table as shown on **Figure 13**.

4.2 Groundwater Results

Groundwater samples were analyzed for arsenic and selected geochemical indicator parameters to evaluate fate and transport of arsenic in groundwater at the site. The results are summarized in **Table 7**, along with analytical methods, reporting limits, and cleanup levels for arsenic. Copies of complete laboratory reports are included in **Appendix E**.

4.2.1 Arsenic Distribution and Geochemical Indicator Parameters

Figure 14 is an isoconcentration map that shows the distribution of dissolved arsenic in groundwater at the site. **Figures 15** through **19** are isoconcentration maps showing dissolved iron, arsenic (+3), arsenic (+5), and ORP in groundwater.

4.2.2 Analysis

The highest arsenic concentrations were detected in the area bound by monitoring wells MW-4, MW-5, MW-99-1, MW-1, and MW-3. The dissolved arsenic concentrations in these wells ranged from 630 to 2,490 ug/L. Arsenic concentrations in monitoring well 99-1 are the highest found at the site. This corresponds to historical reports of the disposal of baghouse dust in this location and over-excavation of soil here during the 1984-85 source removal action.

Arsenic concentrations in the Alluvial Aquifer attenuate with distance from MW-99-1. Arsenic concentrations in all Alluvial Aquifer monitoring wells exceed the MTCA Method A cleanup level of 5 ug/L, including the southernmost (MW-13) and northernmost (MW-14) wells.

Arsenic concentrations in groundwater in the deeper Alluvial Aquifer (MW-7 and MW-8) are two orders of magnitude lower than arsenic concentrations in groundwater from the shallow Alluvial Aquifer and are just slightly above the MTCA Method A cleanup level, indicating that arsenic attenuates rapidly with depth within this aquifer.

Dissolved arsenic was detected at a concentration of 44 ug/L in groundwater from the Glacier Aquifer (MW-9). The arsenic detected in the Glacial Aquifer groundwater is considered to be naturally occurring rather than from an arsenic release at the site. This is based on the lower arsenic concentrations detected in the intermediate Alluvial Aquifer monitoring wells (MW-7 and MW-8) and the known natural occurrence of arsenic in nearby off-site wells that are completed in the Glacial Aquifer (e.g. the City of Fife public water supply wells and domestic wells located within the City of Milton).

4.3 Surface Water Results

Surface water samples were analyzed for arsenic and selected geochemical indicator parameters to evaluate impacts to surface water from site groundwater. The results are presented in **Table 8** and complete analytical reports are included in **Appendix E**.

Arsenic was detected in the surface water samples collected from Hylebos Creek at concentrations ranging from 2.9 to 3.1 ug/L. There was no significant variation in arsenic concentrations between the samples collected upriver, adjacent to, and downriver of the site. This indicates that arsenic originating at the site is not impacting the surface water of Hylebos Creek.

4.4 Sediment Results

The 14 samples collected from the center and south bank of Hylebos Creek were analyzed for total arsenic by ARI's Tukwila laboratory. The results are summarized in **Table 9** and complete analytical reports are included in **Appendix E**.

Elevated arsenic concentrations were detected in sediment at sample locations SED-3B, SED-4B, SED-5C, and SED-6B. The arsenic concentrations in sediment at these locations ranged from 30 to 205 milligrams per kilogram (mg/kg). These sample locations are downgradient of where the highest concentrations of arsenic were detected in groundwater, indicating that the elevated arsenic in sediment may be the result of arsenic-impacted groundwater discharging into to Hylebos Creek.

This page intentionally left blank to allow for double-sided printing.

Section 5

Evaluation of Quality Control Data

5.1 Quality Assurance/Quality Control Procedures

Section 5 describes RI quality assurance/quality control (QA/QC) methods and protocol, and our evaluation of QA/QC data usability.

5.1.1 Equipment Decontamination

Small sampling equipment—including the down-hole DPT tooling, groundwater pumps, sampling spoons, driver samplers, and water quality meters—were decontaminated between sample locations to prevent cross-contamination. Decontamination of small sampling equipment included washing the equipment with a brush in Alconox detergent solution followed by a double rinse with tap water and distilled water to remove soil and detergent. Large equipment such as the sonic drill rig drill pipe was decontaminated between well locations using a steam cleaner. All decontamination water was contained and stored in 55-gallon drums pending waste profiling and disposal.

5.1.2 Equipment Calibration

The XRF analyzer was "standardized" using the supplied standardization clip, which contained a mixture of metallic elements, including arsenic, at the beginning of the day and after each battery change. The measurement cup is placed in the XRF analyzer and a direct reading measurement for arsenic is made in accordance with EPA Method 6200.

The XRF was shipped with two NIST standards reference materials: 2702, Inorganics in Marine Sediment, and 2781, Domestic Sludge containing certified amounts of metals in sediment or dried sludge material. These standards were used for accuracy and performance checks of XRF analyses after each standardization, during active sample analyses, and at the end of each working day according to EPA Method 6200. The measured value for each check standard analyte was within ±20 percent (%D) of the true value for the calibration verification check to be acceptable.

The YSI 556 water quality meter and Lamotte 2020 turbidity meter were calibrated at the beginning of each day of groundwater sampling following the manufacturer's instructions and using the standards provided by the equipment supplier.

5.2 Field QA/QC Samples

5.2.1 Duplicate Samples

A minimum of one precision sample was run each day in accordance with EPA Method 6200. Precision samples were collected by re-analyzing one sample seven times with a relative standard deviation of less than 20%. One sample per day was analyzed as a precision sample and the results of the analyses were within the 20% relative standard deviation criteria.

One duplicate groundwater sample was collected during the RI investigation. The duplicate sample was collected at groundwater monitoring well MW4 and analyzed for all analytes. Results of the analysis indicated the relative percent difference (RPD) between the field sample (USGHWY99-MW4-05/10) and duplicate sample (USGHWY99-MW0-05/10) was less than 20%.

5.2.2 Blanks

The XRF was also shipped with a blank sample of "clean" quartz or silicon dioxide matrix that is free of any analytes at concentrations above the established lower limits of detection. The blank sample was analyzed once every 20 samples, according to EPA Method 6200, to monitor for cross-contamination and contamination introduced from non-sample sources.

5.3 Laboratory QA/QC and Data Evaluation

Although formal validation was not performed on data generated during this project, all laboratory analytical data were reviewed and evaluated to ensure that they were usable and met the project objectives. Laboratory data were reviewed for inclusion and frequency of QC supporting information. Supporting QC documentation evaluated for each analytical report included some or all of the following major data:

- Sample holding times
- Method blanks
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries
- RPD between MS and MSD
- Laboratory control sample (LCS) and continuous calibration control (CCV) recoveries
- Surrogate spike recoveries (organic analyses)
- Data assessment/data usability

The review included chemical data generated by ARI's laboratory, which is certified under NELAP (National Environmental Laboratory Accreditation Program).

The following subsections summarize the data evaluation associated with soil and groundwater sample analyses.

5.3.1 Sample Holding Times

The sample holding times for soil and groundwater analysis are presented in the Work Plan (CDM, 2008). These holding times were met for all soil and groundwater analysis except the nitrate and nitrite analyses of sample USGHwy99-SW5-05-10, which was analyzed one day past the 48-hour holding time due to instrument failure. The nitrate and nitrite results for this sample have been qualified with a "J" qualifier, indicating that the numbers are an estimate due to the holding time exceedance.

5.3.2 Laboratory Method Blanks

Method blanks were analyzed along with the project samples at a frequency of one blank per analytical batch. An analytical batch is defined as a maximum of 20 samples of similar matrix from one project that are analyzed together. The method blank is processed through all procedures, materials, reagents, and labware used for sample preparation and analysis. Results from the method blank analyses are presented according to matrix type and discussed in the following subsections. No concentrations of target analytes at concentrations greater than their respective reporting limits were reported in any of the soil/sediment or aqueous method blanks except the total arsenic method blank for the ICP-MS analysis.

5.3.3 Matrix Spike/Matrix Spike Duplicates

Sample matrix spikes (MS) are prepared by adding a known amount of the pure analyte to the sample before extraction. Matrix spike duplicate (MSD) samples are prepared from a second aliquot of the sample analyzed as the matrix spike. MS and MSD results are used to assess background and interferences that may affect the sample analyte. The laboratory, in accordance with the method requirements, established control limits for MS and MSD samples. Percent recoveries for MS and MSD were reported on a QC summary sheet, included as part of the analytical report. Also included with the QC summary sheets was the calculated RPD between the MS and MSD samples and the required RPD control limits.

Based on a review of the QC summary sheets, MS and MSD or sample duplicate (Dup) samples were analyzed for each analytical method. All MS/MSD and RPD results were within the control limits specified by the laboratory, with the following exceptions:

- The arsenic result for the MS performed on soil sample C4-10 showed a spike recovery that was 1.7% less than the control limit and was qualified with an "N." The Dup performed on this same sample showed an RPD that was 4.6% outside the control limits.
- The ICP/MS dissolved arsenic result for the MS performed on aqueous sample USGHwy99-MW5-05/10 showed 0.0% recovery and was qualified with an "H" because the level of the spike (25.0 µg/L) was too low relative to the dissolved arsenic in the native sample (1,280 µg/L) to yield meaningful recovery information.
- The total organic carbon (TOC) results for the MS and MSD performed on aqueous sample USGHwy99-MW6-05/10 showed recoveries of 67.2% and 70.2%, respectively, which are 7.8% and 4.8% (respectively) below the quality control limit of 75%. However, recovery of TOC in the associated standard reference material (SRM) was in control.

5.3.4 Laboratory Control Samples and Standard Reference Materials

Laboratory control samples (LCS), also referred to as blank spikes, are prepared by spiking a known amount of the pure analyte into a method blank, which is then carried along with the samples through the entire sample preparation/analysis sequence. LCS results are used to provide information on the accuracy of the analytical method and on the laboratory's performance.

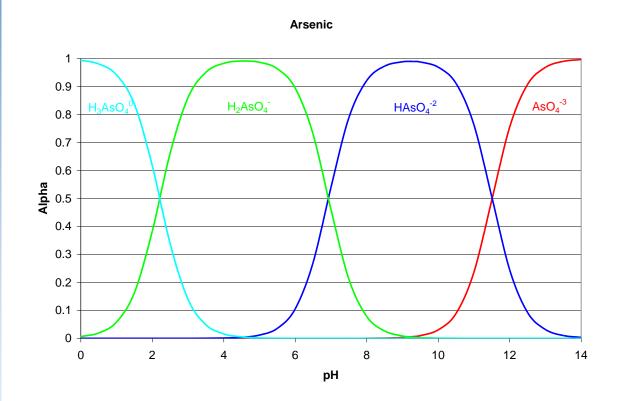
SRMs are solutions or solid materials that contain known concentrations of target analytes purchased from a third party source. Like the LCS, the SRM results are used to provide information on the accuracy of the analytical method and on the laboratory's performance.

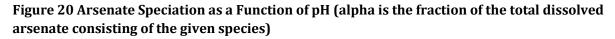
LCS or SRM samples were analyzed with all analyses of the soil/sediment and aqueous samples. The corresponding LCS/SRM recoveries were within acceptable control limits and demonstrate acceptable accuracy. Based on a review of the QC data for the soil samples, no data warranted qualification and the data can be used for the project's intended purposes.

5.3.5 Surrogate Recoveries

Laboratory performance on individual samples is established by means of spiking activities. Surrogates are only used in organic analyses. They are not applicable to the inorganic analyses performed on these soil/sediment and aqueous samples.

5.4 Overall Data Usability


Analytical reports and all available QC data were reviewed and evaluated to assess their overall quality and usability for soil and groundwater samples. Based on these evaluations, no QC issues encountered were significant enough to warrant analytical data qualification. All data were determined to be usable for the intended project purposes.


Section 6

Site Conceptual Model

6.1 Arsenic Geochemistry

Arsenic (As) occurs in two oxidation states in natural waters: +3 (arsenite) and +5 (arsenate). As (+5) exists predominantly as a negatively charged ion (anion) above a pH of about 2. As (+5) is predominantly monovalent (charge of -1) over the pH range of 2 to 7 (H_2AsO_4), divalent from pH 7 to 11.5 ($HAsO_4^{2-}$), and trivalent at pH values above 11.5 (AsO_4^{3-}), as shown on **Figure 20**.

The aqueous arsenate and arsenite species distribution with Eh and pH are shown on **Figure 21**.

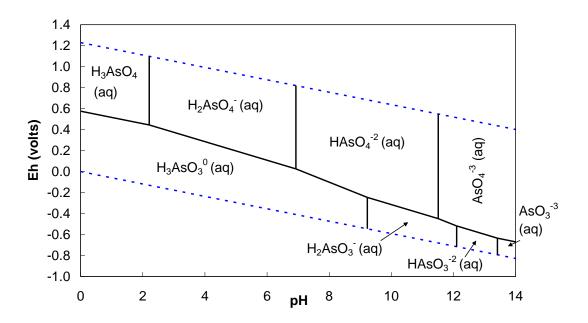


Figure 21 Eh-pH Diagram for the System As-O-H at 25º C and 1 atm

As (+3) is predominantly a neutral species ($H_3AsO_3^0$) below a pH of about 9. $H_2AsO_3^-$ and $HAsO_3^{-2}$ do not become important until the pH exceeds 9 su, which is higher than observed in the vast majority of natural waters.

6.1.1 Arsenic Pure-Phase Minerals

Pure-phase arsenic minerals such as orpiment (As₂S₃), realgar (AsS), and arsenopyrite (FeAsS) occur mainly in ore deposits formed from hydrothermal fluids within the earth's crust. A few pure-phase arsenic minerals occur under low temperature and low pressure conditions at the earth's surface, such as scorodite (FeAsO₄·2H₂O at low pH) and arsenic sulfides (under reducing conditions). However, the vast majority of pure-phase arsenic minerals are too soluble to be present in soils that are in contact with water.

6.1.2 Arsenic Solid-Solution Phases

Arsenic forms solid-solution phases with ferric hydroxide and iron hydroxysulfates such as jarosite $(HFe_3(OH)_6(SO_4)_2)$ and schwertmannite $(Fe_8O_8(OH)_6SO_4)$ and with amorphous silica. Arsenate, like silicate, has a tetrahedral form (a central atom coordinated with four oxygen atoms), which may facilitate the incorporation of arsenate into amorphous silica.

Amorphous phases such as ferric hydroxide or schwertmanite tend to substitute hydroxide or sulfate for arsenate. A reaction to form an iron-arsenic solid-solution is as follows:

$$Fe^{+3} + xAsO_4^{-3} + (3-3x)OH^- \rightarrow [FeAsO_4 2H_2O]_x[Fe(OH)_3]_{1-x}$$
 (1)

The amount of substitution of arsenic into ferric hydroxide is determined by the pH of the solution (more arsenic substitution occurs at lower pH values) and the concentration of arsenic in solution (higher arsenic concentrations result in more substitution).

6.1.3 Arsenic Adsorption

Arsenic adsorbs to solid surfaces due partly to interactions between the negatively charged ions and a positively charged surface. Therefore, arsenic adsorption tends to be favored for solid materials that are positively charged. The surface charge of the material depends on the type of solid, the pH of the water, and the concentration of other anions in solution.

At low pH values, the water and mineral surfaces have higher concentrations of hydronium ion (H_3O^+) , which imparts a positive charge to the surface. As the pH increases, the hydronium ion concentration decreases relative to the hydroxide ion (OH^-) concentration in both the water and the solid materials within the water.

At a specific threshold pH value called the pH of the zero-point-of-charge (ZPC), the surface charge transitions from positive to neutral to negative. Once the surface charge becomes negative, adsorption of the negatively charged arsenate ions become less prevalent. The pH of the ZPC is different for different materials, as shown in **Table 10**.

Material	Formula	pH _{ZPC}
Magnetite	Fe ₃ O ₄	6.5
Goethite	FeOOH	7.8
Hematite	Fe ₂ O ₃	6.7
Amorphous Ferric Hydroxide	Fe(OH) ₃	8.5
Aluminum Hydroxide	ү-АЮОН	8.2
Aluminum Hydroxide	'A-Al(OH) ₃	5.0
Amorphous Silica	SiO ₂	2.0
Manganese Dioxide	δ-MnO ₂	2.8
Montmorillonite Clay	Na _{0.2} Ca _{0.1} Al ₂ Si ₄ O ₁₀ (OH) ₂ •10 H ₂ O	2.5
Kaolinite Clay	$Al_2Si_2O_5(OH)_4$	4.6

Table 10. pH of the Zero-Point-of-Charge (pH_{ZPC}) for Various Minerals

a) Data from Stumm and Morgan (1981)

The materials with a higher pH_{ZPC} are able to maintain a positive charge at a higher pH than those with a lower pH_{ZPC} . Of the materials listed in **Table 10**, amorphous ferric hydroxide is the best anion adsorbent at higher pH values (below 8.5)

(below 8.5).

Under typical Eh/pH conditions, As (+3) is a neutral ion and does not adsorb well to negatively or positively charged surfaces. Therefore, As (+3) is roughly 4 to 10 times more mobile than As (+5) (Duel and Swoboda, 1972). In addition, As (+3) is about 60 times more toxic to humans than arsenate (Hounslow, 1980).

Arsenic has a strong affinity for iron phases and minerals. Strong correlations between arsenic and iron have been found in soils (Woolsen et al., 1971; Duel and Swoboda, 1972), in ores (Shnyukov, 1963), within ferrihydrite impurities in phosphate pebbles (Stow, 1969), and in sediments impacted by arsenic-containing groundwaters (Whiting, 1992).

The solid material properties not only control the degree to which arsenic is adsorbed at a given pH, but also the amount of arsenic that can be adsorbed before the surface of the solid becomes saturated. The process is described mathematically by the Langmuir Isotherm, which is as follows:

$$C (solid) = Kl*Am*C(soln)/(1+Kl*C(soln))$$
(2)

Where,

C(solid)=	concentration of arsenic adsorbed to the solid phase (mg/kg)		
C(soln)	=	concentration of arsenic dissolved in the solution phase (mg/L)	
Am	=	maximum adsorption capacity of the solid (mg/kg)	
Kl	=	Langmuir adsorption constant	

Examples of Langmuir Adsorption Isotherms for three different solid materials are illustrated on **Figure 22**.

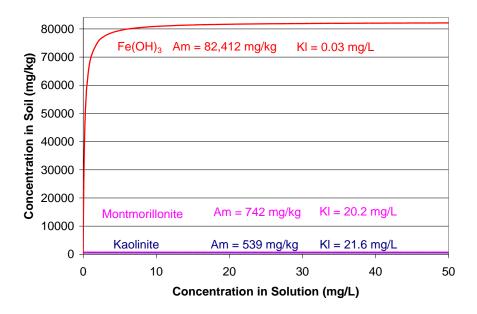


Figure 22 Langmuir Isotherms Illustrating Arsenate Adsorption Capacities of Fe(OH)₃(s), Kaolinite, and Montmorillonite at a pH of 5 su.

Note: Langmuir adsorption constants (Kl and Am) are from Pierce and Moore (1982) for $Fe(OH)_3(s)$ and Frost and Griffin (1977) for kaolinite and montmorillonite.

As illustrated on **Figure 22**, the adsorption of arsenate can be understood by imagining a "clean" soil or sediment that is subjected to waters with increasing arsenate concentrations (such as with the expansion of an arsenate-bearing groundwater plume). As the solution arsenate concentrations increase, increasingly greater amounts of arsenate can be "forced" onto the solid surface. The steep part of the curve is where soils arsenate concentration increases rapidly. As the arsenate concentrations on the soil continue to increase, a point is eventually reached where the solid surfaces are completely saturated with arsenate and there is no more capacity for additional arsenate adsorption.

No matter how high the dissolved arsenate concentrations become, the solid arsenate concentration remains constant. The flat part of the curve describes the saturation point of the solid. The Langmuir Am constant is the adsorption capacity and determines the level of the flat portion of the curve, while the Kl constant determines the rate at which Am is reached (the steepness of the initial segment of the curve).

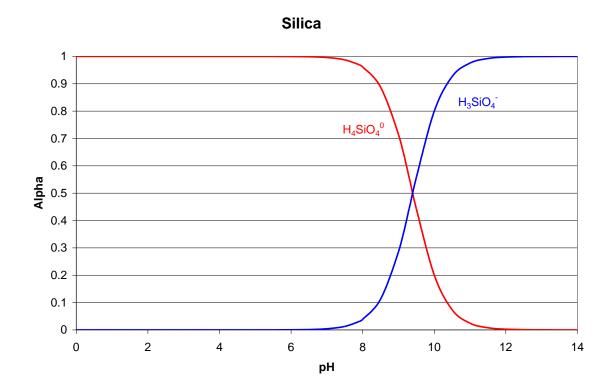
Figure 22 shows that at pH 5 su, iron hydroxide has a much higher arsenate adsorption capacity than montmorillonite or kaolinite clays. Theoretically, a sample of ferric hydroxide could be analyzed, and the concentration of arsenic could be compared to Am. If analysis of the solid shows that the arsenic concentration is significantly higher than Am, then arsenate is likely controlled by coprecipitation rather than adsorption.

In practice, soils and sediments are rarely composed of a single phase, but are instead heterogeneous mixtures of different minerals with varying amounts of iron hydroxide present. However, the affinity of arsenate for iron minerals such as iron hydroxide can be used to evaluate the fate and transport of arsenate when exposed to soils of varying iron contents.

In addition, pH has a significant effect on the adsorption capacity of arsenic, as shown in **Table 11**.

	Arsenate Adsorption Capacity (mg/kg)		Arsenite Adsorption Capacity (mg/kg)
рН	Fe(OH) ₃ (s) ¹	Al(OH) ₃ (s) ²	Fe(OH) ₃ (s) ¹
5	82,412	119,872	34,688
6	63,682	110,732	37,685
7	34,014	88,331	38,434
8	16,932	62,783	36,561
9	10,189	37,535	31,242

1. Pierce and Moore (1982)


2. Anderson et al. (1976)

The pH dependence is due to the speciation of arsenic and the surface charge of the solid at different pH values. Arsenate is a negatively charged ion (anion) at pH values greater than about 2 (**Figure 20**), while the aluminum and iron hydroxides tend to be positively charged. However, as the pH increases, the surfaces of the solids become less positive and the arsenate species become increasingly negative, resulting in fewer adsorption sites. Arsenite, being a neutral species below pH 9 (**Figure 21**), is relatively insensitive to changes in pH.

Phosphate competes with arsenate for adsorption sites, resulting in less arsenate adsorption and greater mobility. Other ions such as chloride, sulfate, and nitrate have little or no effect on arsenic adsorption at low concentrations.

6.1.4 Effect of Silica

Dissolved silica competes with arsenic for adsorption sites, and can affect both the effectiveness and the adsorption capacity of adsorption media such as Sorb33. As the pH of the solution increases (above about 8.5 su), two reactions occur: 1) the surface charge of the media becomes negative, which tends to repel negatively charged arsenic oxyanions, and 2) the dissolved silica species go from neutral species to predominantly charged anions, which compete with arsenic for specific adsorption sites (see **Figure 23**).

Figure 23 Silica Speciation as a Function of pH

Note: alpha is the fraction of the total dissolved silica consisting of the given species.

6.2 Arsenic Fate and Transport

6.2.1 Arsenic Speciation

As discussed previously, the fate and transport of arsenic strongly depend on the oxidation state and speciation of the ions. Arsenic speciation was determined both by direct measurement and from the Eh and pH data.

Measured Values

During the May 2010 sampling round, arsenic (3) and total arsenic were measured by the analytical laboratory, while As (5) was obtained by difference. **Table 12** compares the results of the arsenic speciation analyses with the Eh and pH data.

XAY 11	D .	As(III)	As(V)			
Well	Date	(mg/L)	(mg/L)	%As(III)	рН	Eh (v)
MW-1	5/26/2010	0.46	0.03	93%	6.73	0.200
MW-2	5/25/2010	0.05	0.00	95%	6.79	0.175
MW-3	5/25/2010	0.27	0.02	93%	6.73	0.129
MW-3	7/15/2010	-	-	-	6.66	0.104
MW-4	5/26/2010	1.35	0.03	98%	6.48	0.211
MW-4	7/15/2010	-	-	-	6.61	0.119
MW-5	5/26/2010	1.41	0.04	97%	6.74	0.145
MW-6	5/26/2010	0.35	0.02	96%	6.68	0.157
MW-7	5/27/2010	-	-	-	6.99	0.202
MW-8	5/27/2010	-	-	-	7	0.228
MW-9	5/27/2010	-	-	-	7.72	0.279
99-1	5/26/2010	1.78	0.13	93%	6.92	0.152
99-1	7/15/2010	-	-	-	6.68	0.065
99-2	5/27/2010	0.31	0.04	89%	6.52	0.180
SW1	5/25/2010	0.00	0.00	16%	7.79	0.345
SW2	5/25/2010	-	-	-	7.66	0.362
SW3	5/25/2010	-	-	-	7.58	0.355
SW4	5/25/2010	0.00	0.00	17%	7.7	0.356
SW5	5/25/2010	0.00	0.00	19%	7.73	0.362
SW6	5/25/2010	-	-	-	7.76	0.372

Table 12. Summar	v of Measured As	(3)) and As ((5)	Concentrations
Tubic 12: Summa	y of measure no	10	j unu no j		oncentrations

Eh with respect to the Standard Hydrogen Electrode (SHE) in volts = (ORP in mv + (224 mv – Celsius temperature))/1000mv/v

The results indicate that, with the exception of the surface water locations, most of the arsenic is in the reduced arsenite form.

Predictions from Eh and pH

The Eh and pH data presented in **Table 12** were plotted on an Eh-pH diagram for arsenic (see **Figure 24**). These results are inconsistent with the measured arsenic speciation because the majority of the arsenic is predicted to be in the more oxidized arsenate form ($H_2AsO_4^{-1}$). Note that points that lie directly on a field boundary contain 50 percent of each of the species on either side of the line. The lack of agreement between the arsenic speciation and Eh-pH data indicates that the system is not in redox equilibrium with respect to arsenic.

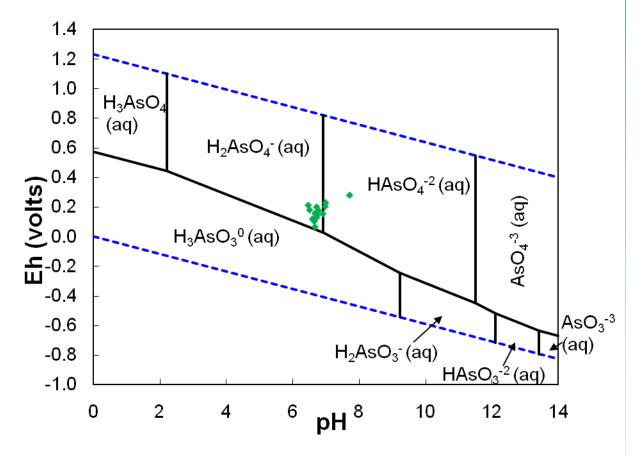
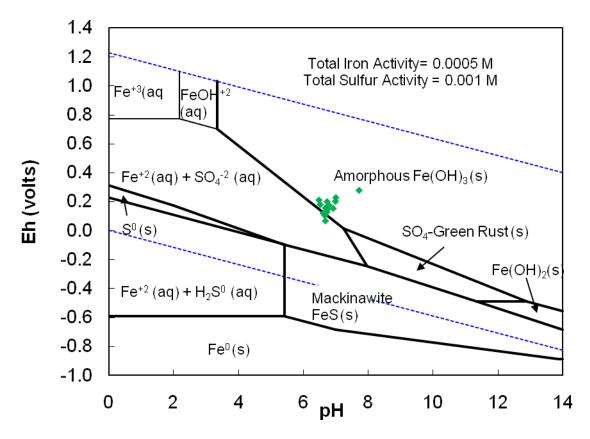


Figure 24 Arsenic Eh-pH Diagram Showing the Site Data (green diamonds)


6.3 Arsenic Attenuation

6.3.1 Coprecipitation with Iron Phases

Aqueous arsenic concentrations are often controlled by coprecipitation with iron oxyhydroxide phases. To determine if iron oxyhydroxides are forming at the site, the Eh and pH data for the wells were plotted on an Eh-pH diagram for the iron/sulfur system (see **Figure 25**). The fact that most of

the points plot along the ferrous iron (Fe^{+2})/ amorphous $Fe(OH)_3$ boundary suggests that iron oxyhydroxide is forming within the aquifer.

The diagram also indicates that the redox conditions are not sulfate-reducing, and that sulfide minerals would not form within the aquifer except in microenvironments adjacent to or within organic matter.

Figure 25 Iron/Sulfur Eh-pH Diagram Showing the Site Data (green diamonds) Total iron = 11 mg/L

In order to more accurately address the iron chemistry of the system, PHREEQC geochemical modeling was performed (Parkhurst and Appelo, 1999). PHREEQC is a thermodynamic equilibrium program designed to model chemical speciation in aqueous solutions, determine the saturation states of solutions with minerals and gases, and predict the results of various reactions, such as dissolution of minerals and oxidation.

The modeling shows which phases or minerals are saturated (if any) for each well. Generally, if a solution is at saturation with respect to a mineral, that mineral would be expected to be present within the aquifer matrix in which the water is in contact. Minerals which are undersaturated would dissolve when placed in contact with the solution, while minerals that are supersaturated would eventually precipitate the material (assuming the mineral forms at low temperature).

PHREEQC uses a term called the saturation index (SI) to quantify the degree of saturation of a mineral. SI is defined as follows:

SI = Log (IAP/Ksp)

(3)

Where IAP is the ion activity product and Ksp is the solubility product constant for the phase in question.

For phases at saturation, IAP = Ksp and SI = 0. A negative SI indicates that the phase is unsaturated (IAP<Ksp) while a positive SI (IAP>Ksp) indicates the phase is supersaturated. In practice, a range of 0 ± 0.5 SI units is considered saturated due to uncertainties in analytical and thermodynamic data (Hem, 1971).

The results of the modeling are presented in **Table 13**.

	Saturation Index				
Well	Calcite (CaCO3)	pCO ₂	Gypsum (CaSO4)	Amorphous Fe(OH) ₃	Siderite (FeCO ₃)
MW-1	1.51	100.03	-0.84	1.72	2.48
MW-2	1.45	10-0.04	-0.55	1.10	2.13
MW-3	1.50	100.02	-0.17	1.37	3.32
MW-4	1.55	100.45	-0.87	1.88	3.12
MW-5	1.55	100.08	-2.62	0.81	2.53
MW-6	1.64	100.20	-2.57	0.92	2.62
MW-7	1.67	10-0.10	-2.79	2.09	2.40
MW-8	1.76	10-0.10	-2.12	2.25	2.12
MW-9	2.04	10-1.04	-0.70	2.71	0.06
99-1	1.86	10-0.08	-1.05	1.52	2.77
99-2	2.01	100.72	-2.57	1.37	3.36
SW-1	2.26	10-1.21	-0.42	4.84	0.85
SW-4	2.15	10-1.11	-0.43	4.81	0.84
SW-5	2.17	10-1.15	-0.44	4.85	0.69

Table 13. Summary of PHREEQC Results for the Highway 99 Site

Shading indicates phases at saturation according to the criteria of Hem (1971).

Bold indicates phases are supersaturated.

The most important phases to consider when evaluating arsenic fate and transport are the iron minerals, due to the high affinity of arsenic for iron-bearing phases. The modeling indicates that the iron phases that are likely forming include iron oxyhydroxides and siderite. The partial pressures for carbon dioxide (pCO_2) are elevated in the groundwater compared to the atmospheric value ($10^{-3.5}$ atm at sea level), indicating that carbon dioxide degassing is predicted to occur when the groundwaters are pumped to the surface and exposed to the atmosphere. Carbon dioxide degassing results in a pH increase, which can cause the precipitation of carbonate minerals such as calcite and siderite. The

supersaturation of the carbonate minerals is likely due to the pH increase resulting from CO₂ degassing.

6.3.2 Adsorption

In addition to coprecipitation with iron oxyhydroxides, arsenic is also likely adsorbing to the surfaces of iron-bearing minerals within the aquifer such as magnetite, pyroxenes, amphiboles, and biotite.

The implication of the study for the Highway 99 site is that attenuation of arsenic within the aquifer begins with adsorption of arsenic (5), which results in the groundwater system re-equilibrating by oxidizing some of the arsenic (3) to arsenic (5).

6.3.3 Total Organic Carbon, Dissolved Oxygen, and Redox Potential

The total organic carbon and other data for comparison are presented in **Table 14**.

				Total Dissolved	Dissolved	
		тос		Arsenic	Oxygen	Dissolved
Well	Date	(mg/L)	Eh (v)	(mg/L)	(mg/L)	Iron (mg/L)
MW-1	5/26/2010	12.4	0.200	0.63	0.25	4.29
MW-2	5/25/2010	2.71	0.175	0.034	0.22	1.56
MW-3	5/25/2010	19.9	0.129	0.78	0.2	29.9
MW-3	7/15/2010	-	0.104	-	0.13	-
MW-4	5/26/2010	11.1	0.211	1.03	0.26	31.5
MW-4	7/15/2010	-	0.119	-	0.15	-
MW-5	5/26/2010	5.05	0.145	1.09	0.3	5.07
MW-6	5/26/2010	9.27	0.157	0.31	0.39	6.2
MW-7	5/27/2010	4.17	0.202	0.01	0.21	1.8
MW-8	5/27/2010	3.83	0.228	0.013	0.27	0.98
MW-9	5/27/2010	<1.50	0.279	0.044	0.19	0.025
99-1	5/26/2010	4.83	0.152	2.49	0.32	6.34
99-1	7/15/2010	-	0.065	-	0.22	-
99-2	5/27/2010	25.3	0.180	0.41	0.29	45.7
SW1	5/25/2010	5.22	0.345	0.003	10.23	0.28
SW2	5/25/2010	-	0.362	0.0029	10	-
SW3	5/25/2010	-	0.355	0.003	9.36	-
SW4	5/25/2010	5.19	0.356	0.0031	9.56	0.27
SW5	5/25/2010	7.38	0.362	0.003	9.24	0.28
SW6	5/25/2010	-	0.372	0.003	9.18	-

Table 14. Comparison of Groundwater TOC, DO, Iron, Arsenic, and Eh Data

The DOC concentrations do not appear to correlate (either positively or negatively) with ORP, total dissolved As, or DO, indicating that the system is not in equilibrium. For a system in complete equilibrium, the TOC would consume the DO in the water and the ORP would decrease. At equilibrium, TOC would also reduce As (5) to As (3) and dissolve iron minerals (both by reducing ferric iron to ferrous and by forming aqueous complexes with iron), which would tend to increase total dissolved

arsenic concentrations. There is a rough correlation between TOC and total arsenic, although the highest TOC does not correspond to the highest total dissolved arsenic. The correlation between Eh and dissolved iron is closer, with Eh values in excess of 0.2 volts resulting in dissolved iron concentrations of less than 1 mg/L, and Eh values of less than 0.2 volts resulting in dissolved iron concentrations of greater than 1 mg/L.

The general lack of equilibrium with respect to redox, DO, TOC, arsenic, and iron is likely the result of a redox gradient in which more oxidizing infiltration water mixes with more reducing groundwater. At favorable locations along the gradient, iron oxidizes or partially oxidizes to form ferric oxyhydroxides or green rusts, respectively. The formation of these phases is the most likely control on dissolved arsenic concentrations.

6.3.4 Arsenic Transport Velocity

Arsenic attenuation is often described by the partition coefficient (Kd), which includes all attenuation, including adsorption, precipitation, and coprecipitation processes. The partition coefficient expression is as follows:

$$K_{d} = C_{soil}/C_{soln}$$
(4)

Where,

 C_{soln} = The concentration of arsenic in solution (i.e., groundwater) (mg/L)

The K_d is useful because it can be used to calculate the retardation factor (R), which is a measure of the transport velocity of arsenic at the site relative to the groundwater. The retardation factor is calculated using the following:

$$R = 1 + (\rho/n) K_d = V/V_c$$
(5)

Where,

ρ	=	The dry bulk density of the aquifer matrix (L/kg)
n	=	The total porosity of the aquifer matrix (volume fraction)
V	=	The groundwater velocity (ft/day)
V_{c}	=	The velocity of the arsenic (ft/day)

Once R is known, the transport velocity of arsenic at the site can be determined.

The partition coefficient is typically determined by performing a bench-scale test using clean aquifer material and impacted groundwater from the site. K_d values for arsenic reported in literature vary by orders of magnitude, depending on the properties of the aquifer sediment or soil (iron content, grain size, mineralogy) and the nature of the groundwater (pH, Eh, concentration of competing ions).

Because a site-specific K_d value has not been determined for the Highway 99 site, an estimate using available site data was made. The calculations were made using equation 4, along with the

groundwater data and the closest available soil data, both aerially and in terms of depth. The results are summarized in **Table 15**.

		Soil	Soil As	Soil	Well Screen	
Groundwater	Groundwater	Boring	Result	Depth	Interval	K _d
ID	As (mg/L)	ID	(mg/kg)	(ft)	(ft)	(L/kg)
	0.63		7430	14		11,794
MW-1	0.63	B5	64.5	16	13-18	102
	0.63		48.5	18		77
	0.034		18.5	12		544
MW-2	0.034	A6	12.1	14	12-19	356
	0.034		10.9	16		321
MW-3		D5			14.7-	
	0.78	D3	3.5	16	19.7	4.5
MW-4	1.03	D6	5.9	14	14-19	5.7
	1.03	20	7.1	16		6.9
MW-5	1.09	D7	7.1	14	14.5-	6.5
	1.09	07	8.4	16	19.5	7.7
MW-6	0.31	C8	10.9	14	14.1-	35
	0.31	0	3.5	16	19.1	11
	0.41		30.1	16		73
	0.41		51.1	18		125
	0.41	D3	39.2	20	15-25	96
99-2	0.41	25	37.9	20	15 25	92
))- <u>L</u>	0.41		18.5	22		45
	0.41		12.1	24		30
	0.41	D2	8.4	16		20
	0.41	C2	9.6	16		23
Minimum*					4	
Maximum*				544		
Average*				99		
Median*					40	

Tabla 15	Calculated K	. Values fo	r the Highwa	v OO Sito
Table 15.	calculated K	d values lo	п ше підпwa	y 99 Sile

* Excludes the K_d value of 11,794, which is a statistical outlier.

The K_d values are variable, but in general are quite high.

Using an arsenic K_d of 4 L/kg (the minimum), a dry bulk density of 1.65 L/kg, a porosity of 0.2, and a groundwater velocity of 2.0 ft/day results in an R of (1+[1.65/0.2]*4 = 34) and an arsenic velocity of 0.059 ft/day (2.0/34 = 0.059).

The time required for the groundwater to travel the approximately 50 feet from MW-99-1 to the groundwater beneath Hylebos Creek is approximately 17 years (50 ft/0.059 ft/d = 847 days = 2.3 yrs). Using the median K_d value of 44 L/kg results in an R value of 364, an arsenic velocity of 0.00549

ft/day, and an MW99-1 to Hylebos Creek travel time of 25 years. Given that the contaminant source was in place for about 10 years before removal in 1985, and the fact that the residual arsenic has been in place for about 37 years, it makes sense that the arsenic would have reached the groundwater beneath the Hylebos Creek by now, which is confirmed by the presence of arsenic in wells MW-5 (1,060 μ g/L) and MW-10 (366 μ g/L).

Section 7

Terrestrial Ecological Evaluation

A simplified terrestrial ecological evaluation (TEE) was conducted to assess the potential risk of exposure to wildlife from potential site contamination. The simplified TEE exposure analysis concluded that land use at the site and surrounding area makes substantial wildlife exposure unlikely (WAC 173-340-7492(2)(ii)).

Interstate 5, Pacific Highway East, and the site's paved surfaces and commercial land use form significant barriers to terrestrial wildlife movement and use (including birds) and would prevent most species from accessing the site. The site contamination is quite isolated from potential terrestrial wildlife use by highways and the risk to exposure is low. In addition, the habitats within 500 feet of the site are separated from the site by these major roadways. Species that would be expected in the forested hillside area to the west would not be attracted to the fields to the east or vice versa. Therefore, wildlife that might use the undeveloped lands to the west or east would not be expected to traverse the site.

This page intentionally left blank to allow for double-sided printing.

Section 8

Summary

Findings of the RI are summarized below.

- Based on our evaluation of the overall quality and usability of soil and groundwater samples, no
 QC issues encountered were significant enough to warrant analytical data of analytical reports
 and available QC data from the field investigation. All data were determined to be usable for the
 intended project purposes without qualification.
- Industrial waste containing arsenic was used as fill on the site from about 1971 to 1973. The
 majority of this fill was excavated and disposed off-site by USG in a 1984/1985 contaminant
 source removal action. Arsenic impacted native soil in the vicinity of 99-1 was also removed at
 this time.
- The site is underlain by fill, alluvium, and glacial deposits to a depth of at least 59 feet bgs.
- Two aquifers were identified at the site: the Alluvial Aquifer and Glacial Aquifer.
- The Alluvial Aquifer is the uppermost aquifer at the site and is impacted by arsenic. There is a strong upward hydraulic gradient from the underlying Glacial Aquifer.
- The estimated average linear groundwater flow velocity in the Alluvial Aquifer is estimated to range from 2 to 20 feet/day.
- The distribution of residual arsenic in soil at the site reflects the results of the 1984/1985 contaminant source removal action. Arsenic concentrations are relatively low at ground surface. Soil excavated in 1984/1985 was restored with clean fill. The RI fully defined the lateral and vertical extent of arsenic exceeding MTCA soil cleanup levels.
- Arsenic concentrations in Alluvial Aquifer groundwater are highest at monitoring well 99-1. This well was drilled where the highest arsenic concentrations were encountered in fill and native soil during the 1984/1985 contaminant source removal action.
- Arsenic concentrations in groundwater attenuate significantly to the north and south of 99-1. However, arsenic exceeds MTCA Method A groundwater cleanup levels at the north end of the Kanopy Kingdom property and the south end of the Freeway Trailer property.
- The Alluvial Aquifer pinches out to the west of Pacific Highway East. Arsenic in groundwater east of Hylebos Creek could not be defined because of the location of Interstate 5.
- Arsenic within the Alluvial Aquifer attenuates with depth. Arsenic in the underlying Glacial Aquifer exceeds MTCA Method A cleanup standards but this exceedence does not appear to be related site activities.
- Arsenic transport in the Alluvial Aquifer is at least 34 times slower than the groundwater velocity, resulting in long travel times for arsenic to migrate downgradient from the contaminant source area.

- Arsenic in the Alluvial Aquifer does not appear to be impacting Hylebos Creek water quality.
- Hylebos Creek sediment downgradient of the contaminant source area has arsenic exceeding ecological screening criteria
- The simplified TEE exposure analysis concluded that land use at the site and surrounding area makes substantial wildlife exposure unlikely.

Section 9

References

Anderson, M.A., J.F. Ferguson and J. Gavis. 1976. *Arsenate Adsorption on Amorphous Aluminum Hydroxides*. J. Colloid & Interface Sci. v. 54 p. 391-399.

Anderson, M.P., and Woessner, W.W. 1992. *Applied Groundwater Modeling – Simulation of Flow and Advective Transport.* San Diego: Academic Press, Inc.

Camp Dresser & McKee, Inc. (CDM) 2010. *Remedial Investigation Work Plan, USG Interiors Highway 99 Site, Milton, Washington*. Dated March 5, 2010.

Duel, L.E. and A. R. Swoboda. 1972. *Arsenic Solubility in a Reducted Environment*. Soil Sci. Soc. Am. Proc. 36:276-278.

Ecology. 1986. *Memorandum to the Project File*. By Dom Reale, Washington Department of Ecology. June 30, 1986

Frost, R.R. and R.A. Griffin. 1977. *Effect of pH on Adsorption of Arsenic and Selenium from Landfill Leachate by Clay Minerals*. Soil Sci. Soc. Am. J. v. 41 p. 53-57.

Hazen. 1911. *Discussion—Dams on sand foundations*. Transactions, American Society of Civil Engineers, v. 73, p. 199.

Hem, J.D. 1971. *Study and Interpretation of the Chemical Characteristics of Natural Water*. Second Edition. USGS Water Supply Paper 1473.

Hounslow, A.W. 1980. *Ground Water Geochemistry: Arsenic in Landfills*. Ground Water v. 18 n. 4 p. 331-333.

Parkhurst, D.L. and Appelo, C.A.J. 1999. User's Guide to PHREEQC (Version 2)- A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. USGS Water-Resources Investigations Report 99-4259.

Pierce, M.L. and C.B. Moore. 1982. *Adsorption of arsenite and arsenate on amorphous iron hydroxide*. Water Res. 16:1247-1253.

Root, R.A., Dixit, S., Campbell, K.M., Jew, A.D., Hering, J.G. and P.A. O'Day. 2007. *Arsenic sequestration by sorption processes in high-iron sediments*. Geochimica et Cosmochimica Acta. v. 71, p. 5782-5803.

Shnyukov, E.F. 1963. *Arsenic in the Cimmerian Iron Ores of the Azov-Black Sea Region*. Geochemistry (Geokhimiya), 87-93.

Stow, S.H. 1969. *The Occurrence of Arsenic and the Color-Causing Components in Florida Land-Pebble Phosphate Rock*. Economic Geology. V. 64, p. 667-671.

Stumm, W. and J.J. Morgan. 1981. *Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters*. 2nd ed. John Wiley and Sons, NY.

Su, C. and R.W. Puls. 2004. *Significance of Iron (II,III) Hydroxycarbonate Green Rust in Arsenic Remediation using Zerovalent Iron in Laboratory Column Tests. Environ. Sci. Technol.* v. 38, p. 5224-5231.

TPCHD. 1993. *Hylebos Creek Water Quality Project. Final Report. Prepared for Tacoma-Pierce County Health Department Water Resources Section.* Prepared by Adolfson Associates, Inc. June 1993.

EPA, 1998. Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. January 1998.

Washington Department of Ecology (Ecology). 2008. *Agreed Order DE 84-506 Between the Washington Department of the Ecology and USG.* August 17, 1984.

Whiting, K.S. 1992. *The Thermodynamics and Geochemistry of Arsenic, with Application to Subsurface Waters at the Sharon Steel Superfund Site at Midvale, Utah.* MS Thesis T-4128 Colorado School of Mines, Golden Colorado.

Woolsen, E.A., J.H. Axley, and P.C. Kearney. 1971. The *Chemistry and Phytotoxicity of Arsenic in Soils: I Contaminated Field Soils*. Soil Sci. Soc. Am. Proc. 35:938-943.

Distribution

1 Сору	Wshington Department of Ecology Toxics Cleanup Program Post Office Box 47775 Olympia, Washington 98504-47775
	Attention: Mr. Jason Landskron
1 Сору	USG Corporation 500 West Adams Street Chicago, Illinois 60661-3676
	Attention: Mr. Greg Kinser

This page intentionally left blank to allow for double-sided printing.

Tables

This page intentionally left blank to allow for double-sided printing.

Table 1 Well Construction Details Highway 99 Site USG Interiors Milton, Washington

Well I.D.	Northing ^a	Easting ^a	TOC Elevation (ft AMSL) ^b	Boring Total Depth (ft)	Screen Depth Interval (ft)	Casing Diameter (in)	Slot Size (in)	Screen Type	Drilled Date
MW-1	703059.65	1184681.28	23.02	19.0	13-18	2	0.01	PVC	05/05/10
MW-2	702999.60	1184652.77	22.37	19.0	12-19	2	0.01	PVC	05/04/10
MW-3	703045.13	1184763.71	20.22	21.0	14.7-19.7	2	0.01	PVC	05/07/10
MW-4	702987.85	1184749.40	20.40	20.0	14-19	2	0.01	PVC	05/05/10
MW-5	702934.84	1184745.18	19.07	20.0	14.5-19.5	2	0.01	PVC	05/06/10
MW-6	702883.36	1184710.13	19.89	20.0	14.1-19.1	2	0.01	PVC	05/06/10
MW-7	702969.79	1184715.93	21.06	39.0	25-30	2	0.01	PVC	05/05/10
MW-8	702924.45	1184744.14	19.12	40.0	34.9-40.1	2	0.01	PVC	05/06/10
MW-9	702988.01	1184715.80	20.87	59.0	43-48	2	0.01	PVC	05/04/10
MW-10	702958.17	1184783.51	14.15	12.6	10.4-11.5	3/4	0.01	Stainless Steel	10/14/11
MW-11	703185.90	1184844.31	15.41	10.5	9.3-10.5	3/4	0.01	Stainless Steel	10/14/11
MW-12	703065.01	1184585.80	21.54	20.0	14-19	1	0.01	Pre-pack PVC	05/11/12
MW-13	702495.10	1184478.55	22.16	16.0	10-15	1	0.01	Pre-pack PVC	05/11/12
MW-14	703437.40	1184781.81	30.30	20.0	13-18	1	0.01	Pre-pack PVC	05/11/12
99-1	702978.95	1184715.54	21.34	28.0	15-25	4	0.01	PVC	05/1985
99-2	703159.55	1184771.51	22.64	25.5	15-25	4	0.01	PVC	05/1985

Notes:

a) Washington State Plane North American Datum of 1983 (NAD 83), Zone 12, feet.

b) ft AMSL - feet above mean sea level. Elevations based on North American Vertical Datum of 1988 (NAVD 88).

TOC - top of casing.

PVC - Polyvinylchloride

Table 2

Summary of Groundwater Elevation Measurements

Hwy 99 Site

USG Interiors

Milton, Washington

Monitoring Well I.D.	Date Measured	Top of Casing Elevation ^a (feet)	Depth to Groundwater (ft below TOC)	Groundwater Elevation (feet)
MW1	05/25/10	23.02	10.19	12.83
	07/15/10		9.85	13.17
	05/22/12		9.04	13.98
MW2	05/25/10	22.37	8.42	13.95
	07/15/10		8.51	13.86
	05/22/12		7.71	14.66
MW3	05/25/10	20.22	7.22	13.00
	07/15/10		7.32	12.90
	05/22/12		6.28	13.94
MW4	05/25/10	20.40	7.41	12.99
	07/15/10		7.51	12.89
	05/22/12		6.63	13.77
MW5	05/25/10	19.07	6.17	12.90
	07/15/10		6.22	12.85
	05/22/12		5.32	13.75
MW6	05/25/10	19.89	7.08	12.81
	07/15/10		7.16	12.73
	05/22/12		6.19	13.70
MW7	05/25/10	21.06	7.81	13.25
	07/15/10		8.02	13.04
	05/22/12		8.15	12.91
MW8	05/25/10	19.12	5.34	13.78
	07/15/10		5.57	13.55
	05/22/12		4.59	14.53
MW9	05/25/10	20.87	1.72	19.15
	07/15/10		1.89	18.98
	05/22/12		0.63	20.25
MW10	05/22/12	14.15	0.79	13.36
MW11	05/22/12	15.41	6.90	8.51
MW12	05/22/12	21.54	0.00	21.54
MW13	05/22/12	22.16	8.27	13.89
MW14	05/22/12	30.30	10.60	19.70
99-1	05/25/10	21.34	8.22	13.12
	07/15/10		8.47	12.87
	05/22/12		7.60	13.74
99-2	05/25/10	22.64	9.62	13.02
	07/15/10		9.71	12.93
	05/22/12		8.89	13.75

Notes:

a) Datum used: NAD 83/91 Washington South Zone NAVD '88, US Feet.
 ft bgs - Feet below ground surface.
 TOC - top of casing.

P:\19921 USG\77628-65021 Hwy 99 Site Rem. Investigation\7-Project Documents\7.1 Draft Documents\July 2012 Draft RI Report\Table 2 Groundwater Elevations RI DRAFT 7-12.xlsx

Table 3Groundwater General Parameters

Hwy 99 Site USG Interiors

Milton, Washington

Monitoring Well	Date Sampled	Time Sampled	Temperature (°C)	Specific Conductance (µs/cm)	рН	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Appearance/ Odor
MW1	05/26/10	1435	12.72	318	6.73	5.79	0.25	-11.7	Clear, colorless/no odor
MW2	05/25/10	1445	13.28	331	6.79	0.57	0.22	-35.4	Clear, colorless/no odor
MW3	05/25/10	1615	12.53	449	6.73	16.6	0.20	-82.8	Yellow tint, slight turbidity/no odor
	07/15/10	1430	13.01	460	6.66	3.3	0.13	-107.4	Slight yellowish color, clear, no odor
MW4	05/26/10	1310	12.22	633	6.48	5.68	0.26	-0.7	Clear, colorless/no odor
	07/15/10	1305	13.51	664	6.61	0.00	0.15	-91.5	Clear, colorless, broken organic sheen /no odor
MW5	05/26/10	1025	11.79	394	6.74	4.58	0.30	-67.1	Clear, colorless/no odor
MW6	05/26/10	0915	12.66	456	6.68	8.96	0.39	-54.5	Clear, colorless/no odor
MW7	05/27/10	1045	13.28	420	6.99	10.15	0.21	-8.3	Clear, colorless/no odor
MW8	05/27/10	0940	12.05	419	7.00	8.62	0.27	16.3	Clear, colorless/no odor
MW9	05/27/10	1200	13.35	265	7.72	9.86	0.19	68.2	Clear, colorless/no odor
MW10	10/18/11	1335	13.44	349	6.88	49.8	0.47	-94.0	Clear, colorless/no odor
MW11	10/18/11	1225	13.90	670	6.48	12.8	0.16	-129.9	Clear, colorless/no odor
MW12	05/22/12	0950	11.91	188	6.67	26.9	2.00	-75	Clear, colorless, odorless, slight turbidity observable in bucket
MW13	05/22/12	1220	13.24	1024	6.56	84	0.98	-102.1	Clear, colorless, odorless, little bit swirled organic sheen
MW14	05/22/12	1440	12.21	1249	6.54	863	0.71	-101.1	Colorless, odorless, water in bucket is slightly muddy
99-1	05/26/10	1200	12.90	415	6.92	5.62	0.32	-58.8	Clear, colorless/no odor
	07/15/10	1210	14.21	406	6.68	5.00	0.22	-144.6	Clear, slight yellowish color, odorless
99-2	05/27/10	1310	13.24	1201	6.52	17.6	0.29	-31	Clear, slight yellowish color, broken organic sheen /no odor

Notes:

°C - degrees Celsius.

µs/cm - microsiemens per centimeter.

mg/L - milligram per liter.

mV - millivolts.

NTU - nephelometric turbidity units.

Table 4Surface Water General ParametersHwy 99 SiteUSG InteriorsMilton, Washington

Monitoring Well	Date Sampled	Time Sampled	Temperature (°C)	Specific Conductance (µs/cm)	рН	Dissolved Oxygen (mg/L)	ORP (mV)	Appearance/ Odor
SW1	05/25/10	1310	11.47	240	7.79	10.23	132.6	Clear/no odor, colorless
SW2	05/25/10	1250	11.35	242	7.66	10.00	149.0	Clear/no odor, colorless
SW3	05/25/10	1230	11.20	242	7.58	9.36	142.1	Clear/no odor, colorless
SW4	05/25/10	1205	11.20	241	7.70	9.56	142.8	Clear/no odor, colorless
SW5	05/25/10	1135	11.13	241	7.73	9.24	149.6	Clear/no odor, colorless
SW6	05/25/10	1110	11.11	241	7.76	9.18	158.7	Clear/no odor, colorless

Notes:

°C - degrees Celsius.

μs/cm - microsiemens per centimeter.

mg/L - milligram per liter.

mV - millivolts.

Table 5Vertical Hydraulic Gradient Between Shallow and Deeper Groundwater Monitoring PointsAlluvial Aquifer

USG Interiors/Remedial Investigation Milton, Washington

		Vertical Gradient Between Shallow and Deeper Groundwater Monitoring Points		
Well Cluster	Date	Upward	Downward	
99-1 / MW7	5/25/2010	0.017		
	7/15/2010	0.022		
MW5 / MW8	5/25/2010	0.044		
	7/15/2010	0.035		

Notes:

Vertical hydraulic gradient was calculated by dividing the head differential by the vertical distance between screen midpoint elevation for wells in each well cluster. Screen midpoint elevations used include: 99-1 = 1.3 feet; MW7 = -6.44 feet; MW5 = 1.57 feet; and MW8 = -18.38 feet.

	Sample		
	Depth		Total Arsenic
Boring I.D.	(ft bgs)	Date Sampled	(mg/kg)
A4-2	2	04/28/10	3.5
A4-4	4	04/28/10	13.4
A4-8	8	04/28/10	2.9
A4-10	10	04/28/10	3.5
A4-12	12	04/28/10	4.1
A4-14	14	04/28/10	3.5
A4-16	16	04/28/10	8.4
A5-2	2	04/28/10	3.5
A5-4	4	04/28/10	3.5
A5-6	6	04/28/10	3.5
A5-12	12	04/28/10	59.1
A5-14	14	04/28/10	44.5
A5-16	16	04/28/10	10.9
A6-2	2	04/28/10	3.5
A6-4	4	04/28/10	9.6
A6-8	8	04/28/10	9.6
A6-10	10	04/28/10	59.1
A6-12	12	04/28/10	18.5
A6-14	14	04/28/10	12.1
A6-16	16	04/28/10	10.9
A7-2	2	04/27/10	3.5
A7-4	4	04/27/10	<5 **
A7-6	6	04/27/10	313.4
A7-12	12	04/27/10	257 **
A7-14	14	04/27/10	75.2
A7-16	16	04/27/10	142.2
A7-18	18	04/27/10	31.4
A7-20	20	04/27/10	8.4
A8-2	2	04/28/10	3.5
A8-4	4	04/28/10	157.4
A8-6	6	04/28/10	160
A8-8	8	04/28/10	47.2
A8-8	8	04/28/10	35.3
A8-8	8	04/28/10	51.1
A8-8	8	04/28/10	53.8
A8-8	8	04/28/10	49.8
A8-8	8	04/28/10	52.5
A8-8	8	04/28/10	48.5
A8-8	8	04/28/10	48.5
A8-8	8	04/28/10	49.8
A8-10	10	04/28/10	3.5
A8-12	12	04/28/10	3.5
A8-14	14	04/28/10	3.5
A8-16	16	04/28/10	3.5

CDM Smith

	Sample		
	Depth		Total Arsenic
Boring I.D.	(ft bgs)	Date Sampled	(mg/kg)
A9-2	2	04/29/10	3.5
A9-4	4	04/29/10	32.7
A9-6	6	04/29/10	8.4
A9-8	8	04/29/10	3.5
A9-10	10	04/29/10	8.4
A9-12	12	04/29/10	7.1
A9-14	14	04/29/10	3.5
A9-16	16	04/29/10	3.5
AA6-6	6	05/11/12	<12 **
AA6-10	10	05/11/12	<15 **
AA6-12	12	05/11/12	<13 **
AA6-14	14	05/11/12	<13 **
AA7-10	10	05/11/12	<19 **
AA7-12	12	05/11/12	<13 **
B2-2	2	04/28/10	3.5
B2-4	4	04/28/10	14.6
B2-6	6	04/28/10	3.5
B2-8	8	04/28/10	3.5
B2-10	10	04/28/10	8.4
B2-12	12	04/28/10	12.1
B2-14	14	04/28/10	8.4
B2-16	16	04/28/10	17.2
B3-2	2	04/28/10	23.6
B3-4	4	04/28/10	101
B3-6	6	04/28/10	3.5
B3-8	8	04/28/10	10.9
B3-10	10	04/27/10	3.5
B3-14	14	04/27/10	3.5
B3-15	15	04/27/10	3.5
B4-2	2	04/26/10	3.5
B4-4	4	04/26/10	3.5
B4-8	8	04/26/10	3.5
B4-10	10	04/26/10	12 **
B4-14	14	04/26/10	1680 **
B4-16	16	04/26/10	80 **
B4-18	18	04/26/10	17.2
B4-20	20	04/26/10	7.1
B5-2	2	04/26/10	43 **
B5-4	4	04/26/10	2.9
B5-6	6	04/26/10	7.1
B5-8	8	04/26/10	3.5
B5-12	12	04/26/10	3.5
B5-14	14	04/26/10	7430 **
B5-16	16	04/26/10	64.5
B5-18	18	04/26/10	48.5
B5-20	20	04/26/10	14.6

CDM Smith

	Sample		
	Depth		Total Arsenic
Boring I.D.	(ft bgs)	Date Sampled	(mg/kg)
B6-2	2	04/27/10	20.0 **
B6-4	4	04/27/10	3.5
B6-6	6	04/27/10	8.4
B6-8	8	04/27/10	8.4 3.5
B6-10	0 10	04/27/10	13.4
B6-12	10	04/27/10	13086.3
B6-14	12	04/27/10	1920 **
B6-16	14	04/27/10	1920 73 **
	18		
B6-18		04/27/10	35.3
B6-20	20	04/27/10	18.5 Dt 0
B6-20	20	04/27/10	21.0
B6-20	20	04/27/10	21.0
B6-20	20	04/27/10	17.2
B6-20	20	04/27/10	17.2
B6-20	20	04/27/10	21.0
B6-20	20	04/27/10	14.6
B7-2	2	04/27/10	8.4
B7-4	4	04/27/10	4.1
B7-4	4	04/27/10	3.5
B7-6	6	04/27/10	158.8
B7-8	8	04/27/10	49.8
B7-10	10	04/27/10	493 **
B7-12	12	04/27/10	63.2
B7-14	14	04/27/10	20.0 **
B7-16	16	04/27/10	15.9
B8-2	2	04/28/10	4.1
B8-4	4	04/28/10	9.6
B8-6	6	04/28/10	9.6
B8-8	8	04/28/10	21
B8-10	10	04/28/10	17.2
B8-12	12	04/28/10	21
B8-14	14	04/28/10	14.6
B8-16	16	04/28/10	10.9
C2-2	2	04/28/10	3.5
C2-4	4	04/28/10	10.9
C2-8	8	04/28/10	3.5
C2-10	10	04/28/10	30.1
C2-12	12	04/28/10	21
C2-14	14	04/28/10	15.9
C2-16	16	04/28/10	9.6
C3-2	2	04/27/10	3.5
C3-4	4	04/27/10	10.9
C3-6	6	04/27/10	5.9
C3-8	8	04/27/10	3.5
C3-12	12	04/27/10	188
C3-14	14	04/27/10	293.6

CDM Smith

Boring I.D.	Sample Depth (ft bgs)	Date Sampled	Total Arsenic (mg/kg)
C3-15	15	04/27/10	199.2
C3-16	16	04/27/10	249.7
C3-18	18	04/27/10	45 **
C3-20	20	04/27/10	36.6
C3-22	22	04/27/10	4.1
C3-24	24	04/27/10	10.9
C4-2	2	04/26/10	8.4
C4-4	4	04/26/10	12.1
C4-4	4	04/26/10	9.6
C4-6	6	04/26/10	8.4
C4-8	8	04/26/10	31.4
C4-10	10	04/26/10	228 **
C4-12	12	04/26/10	40.6
C4-14	14	04/26/10	52.5
C4-16	16	04/26/10	13.4
C5-2	2	04/26/10	9.6
C5-4	4	04/26/10	14.6
C5-6	6	04/26/10	2.9
C5-8	8	04/26/10	3.5
C5-10	10	04/26/10	113.3
C5-12	12	04/26/10	61.8
C5-14	14	04/26/10	24.9
C5-16	16	04/26/10	49.0 **
C5-18	18	04/26/10	14.6
C5-20	20	04/26/10	17.2
C7-4	4	04/27/10	3.5
C7-6	6	04/27/10	4.1
C7-8	8	04/27/10	170 **
C7-10	10	04/27/10	167.1
C7-12	12	04/27/10	28.8
C7-14	14	04/27/10	28.8
C7-16	16	04/27/10	22.3
C8-2	2	04/28/10	3.5
C8-4	4	04/28/10	3.5
C8-5	5	04/28/10	10450
C8-6	6	04/28/10	287.9
C8-8	8	04/28/10	332
C8-10	10	04/28/10	59.1
C8-12	12	04/28/10	57.8
C8-14	14	04/28/10	10.9
C8-16	16	04/28/10	3.5
C9-2	2	04/29/10	57 **
C9-4	4	04/29/10	154.6
C9-6	6	04/29/10	39.2
C9-8	8	04/29/10	15.9
C9-10	10	04/29/10	3.5
C9-12	10	04/29/10	3.5

	Sample		
	Depth		Total Arsenic
Boring I.D.	(ft bgs)	Date Sampled	(mg/kg)
C9-14	14	04/29/10	3.5
C9-16	16	04/29/10	3.5
C10-2	2	04/29/10	69.9
C10-2	1	04/29/10	14.6 *
C10-4	4	04/29/10	15.9
C10-6	6	04/29/10	18.5
C10-8	8	04/29/10	14.6
C10-10	10	04/29/10	3.5
C10-12	12	04/29/10	3.5
D1-2	2	04/29/10	14.6
D1-4	4	04/29/10	3.5
D1-6	6	04/29/10	9.6
D1-8	8	04/29/10	13.4
D1-10	10	04/29/10	3.5
D1-12	12	04/29/10	10.9
D1-14	14	04/29/10	9.6
D2-2	2	04/28/10	3.5
D2-4	4	04/28/10	24.9
D2-8	8	04/28/10	36.6
D2-10	10	04/28/10	3.5
D2-12	12	04/28/10	3.5
D2-14	14	04/28/10	3.5
D2-16	16	04/28/10	8.4
D3-2	2	04/26/10	8.4
D3-4	4	04/26/10	24.9
D3-4	4	04/26/10	23.6
D3-6	6	04/26/10	36.6
D3-8	8	04/26/10	21 **
D3-10	10	04/26/10	3.5
D3-12	12	04/26/10	44.5
D3-16	16	04/26/10	30.1
D3-18	18	04/26/10	51.1
D3-20	20	04/26/10	39.2
D3-20	20	04/26/10	37.9
D3-22	22	04/26/10	18.5
D3-24	24	04/26/10	12.1
D4-2	2	04/26/10	8.4
D4-4	4	04/26/10	7 **
D4-8	8	04/26/10	3.5
D4-10	10	04/26/10	2.3
D4-12	12	04/26/10	17.2
D4-14	14	04/26/10	18.5
D4-16	16	04/26/10	13.4
D5-2	2	04/26/10	10.9
D5-4	4	04/26/10	9.6
D5-6	6	04/26/10	10.9
D5-8	8	04/26/10	8.4
00-0	0	07/20/10	0.4

	Sample		
	Depth		Total Arsenic
Boring I.D.	(ft bgs)	Date Sampled	(mg/kg)
D5-10	10	04/26/10	4.7
D5-12	12	04/26/10	8.4
D5-14	14	04/26/10	3.5
D5-16	16	04/26/10	3.5
D6-2	2	04/27/10	9.6
D6-4	4	04/27/10	10.9
D6-6	6	04/27/10	56.5
D6-8	8	04/27/10	47.2
D6-10	10	04/27/10	2.3
D6-12	12	04/27/10	3.5
D6-14	14	04/27/10	5.9
D6-16	16	04/27/10	7.1
D7-4	4	04/27/10	3.5
D7-6	6	04/27/10	3.5
D7-8	8	04/27/10	3.5
D7-10	10	04/27/10	3.5
D7-12	12	04/27/10	4.1
D7-14	14	04/27/10	7.1
D7-16	16	04/27/10	8.4
D8-1.5	1.5	04/29/10	30.1
D8-5	5	04/29/10	53.8
D8-8	8	04/29/10	45.8
D8-8	8	04/29/10	41.9
D8-8	8	04/29/10	45.8
D8-8	8	04/29/10	48.5
D8-8	8	04/29/10	47.2
D8-8	8	04/29/10	53.8
D8-8	8	04/29/10	48.5
D8-10	10	04/29/10	43.2
D8-12	12	04/29/10	9.6
D8-14	14	04/29/10	4.1
D8-16	16	04/29/10	12.1
D9-1	1	04/29/10	28.8
D9-4.5	4.5	04/29/10	13.4
D9-6	6	04/29/10	8.4
D9-8	8	04/29/10	12.1
D9-10	10	04/29/10	3.5
D9-12	12	04/29/10	3.5
E3	0	04/29/10	4.7
E4	0	04/29/10	13.4
E5	0	04/29/10	13.4
E6	0	04/29/10	22.3
E7	0	04/29/10	3.5
E8	0	04/29/10	18.5
GP1-5	5	06/05/06	310
GP1-10	10	06/05/06	200
GP1-15	15	06/05/06	320

Boring I.D.	Sample Depth (ft bgs)	Date Sampled	Total Arsenic (mg/kg)
GP2-15	15	06/05/06	1400
GP3-12	12	06/05/06	19
GP3-14	14	06/05/06	23
GP4-9.5	9.5	06/05/06	570
GP4-13	13	06/05/06	31
GP5-10	10	06/05/06	240
GP5-13	13	06/05/06	15
GP6-11	11	06/05/06	72
GP7-8	8	06/06/06	<11
GP8-9	9	06/06/06	870
GP8-13	13	06/06/06	160
GP9-9	9	06/06/06	310
GP9-14	14	06/06/06	36
MW12-6	6	05/11/12	<16 **
MW12-8	8	05/11/12	<12 **
MW12-12	12	05/11/12	<13 **
MW12-14	14	05/11/12	<12 **

Notes:

Shaded concentrations exceed Washington Administration Code Chapter 173-340, Model Toxics Control Act, Method A cleanup levels

* Result from a 2nd locaton for Boring C10; moved due to refusal.

** As results from lab data.

Boring I.D.	Sample Depth (ft bgs)	Date Sampled	Total Arsenic (mg/kg)
SED-1B	Surface	04/30/10	2.9
SED-1C	Surface	04/30/10	7 **
SED-2B	Surface	04/29/10	3.5
SED-2C	Surface	04/29/10	2.9
SED-3B	Surface	04/29/10	205 **
SED-3C	Surface	04/29/10	2.9
SED-4B	Surface	04/29/10	90 **
SED-4C	Surface	04/29/10	9.6
SED-5B	Surface	04/29/10	14.6
SED-5C	Surface	04/29/10	45.8
SED-6B	Surface	04/29/10	30 **
SED-6C	Surface	04/29/10	17 **
SED-7B	Surface	04/30/10	2.9
SED-7C	Surface	04/30/10	8.1

Note:

** As results from lab data.

Table 8 Analytical Results - Groundwater Highway 99 Site

USG Interiors

Milton, Washington

	Sample I.D. and Sample Date							
	USGHWY99-MW1-05/10	USGHWY99-MW2-05/10	USGHWY99-MW3-05/10	USGHWY99-MW4-05/10	USGHWY99-MW0-05/10*	USGHWY99-MW5-05/10		
Analyte	05/25/10	05/25/10	05/25/10	05/26/10	05/26/10	05/26/10		
Dissolved Metals (µg/L)								
EPA Methods 200.8/7060A/6010B								
Arsenic (7060A)	630	34	780 **	1,030 **	1,060 **	1,090		
Iron	4,290	1,560	29,900 **	31,500 **	32,000 **	5,070		
Total Metals (µg/L)								
EPA Method 200.8/7090A/6010B								
Arsenic (200.8)		64.2						
Arsenic (7060A)		79						
Calcium	27,100	21,200	30,200	45,300	43,500	26,900		
Iron	6,660	2,970	22,100	9,980	9,670	11,800		
Magnesium	14,600	13,700	16,300	25,300	24,000	17,300		
Potassium	2,830	3,120	4,910	6,240	5,840	3,860		
Sodium	10,500	11,800	15,700	21,700	20,500	15,500		
Arsenic Speciation (µg/L)								
Arsenic (III)	455	45.9	267	1,350	1,260	1,410		
Arsenic (V)	33.5	2.27	19.2	29.8	24.9	36.6		
<u>Conventionals</u>								
Alkalinity (SM 2320; mg/L CaCO ₃)	152	142	175	264	269	178		
Carbonate (SM 2320; mg/L CaCO ₃)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Bicarbonate (SM 2320; mg/L CaCO ₃)	152	142	175	264	269	178		
Hydroxide (SM 2320; mg/L CaCO ₃)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Total Dissolved Solids (EPA 260.1; mg/L)								
Total Suspended Solids (EPA 160.2; mg/L)	2.7	5.7	24.4	11.6	10.3	28.5		
Chloride (EPA 300.0; mg/L)	4.4	6.7	5.2	9.6	10.0	7.6		
N-Nitrate (EPA 300.0; mg-N/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
N-Nitrite (EPA 300.0; mg-N/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Sulfate (EPA 300.0; mg/L)	2.8	6.5	14.7	2.5	2.6	<0.1		
Chemical Oxygen Demand (EPA 410.4; mg/L)	28.7	9.34	55.4	30.3	29.4	11.2		
Total Organic Carbon (EPA 415.1; mg/L)	12.4	2.71	19.9	11.1	11.2	5.05		

Table 8 Analytical Results - Groundwater Highway 99 Site

USG Interiors

Milton, Washington

	Sample I.D. and Sample Date							
	USGHWY99-MW6-05/10	USGHWY99-MW7-05/10	USGHWY99-MW8-05/10	USGHWY99-MW9-05/10	USGHWY99-99-1-05/10	USGHWY99-99-2-05/10		
Analyte	05/26/10	05/27/10	05/27/10	05/27/10	05/26/10	05/27/10		
Dissolved Metals (µg/L)								
EPA Methods 200.8/7060A/6010B								
Arsenic (7060A)	310	10	13	44	2,490 **	410		
Iron	6,200	1,800	980	<50	6,340 **	45,700		
Total Metals (µg/L)								
EPA Method 200.8/7090A/6010B								
Arsenic (200.8)			14		2,220			
Arsenic (7060Å)			15		2,430			
Calcium	35,300	17,600	21,400	11,000	35,600	86,900		
Iron	14,400	7,400	4,870	290	4,840	57,200		
Magnesium	20,200	14,400	12,900	8,230	16,900	53,900		
Potassium	3,490	6,000	7,640	6,590	4,290	7,510		
Sodium	14,300	36,400	35,300	28,500	17,900	31,700		
Arsenic Speciation (µg/L)								
Arsenic (III)	351				1,780	310		
Arsenic (V)	16.5				132	37.7		
Conventionals								
Alkalinity (SM 2320; mg/L CaCO ₃)	207	196	205	118	193	561		
Carbonate (SM 2320; mg/L CaCO ₃)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Bicarbonate (SM 2320; mg/L CaCO ₃)	207	196	205	118	193	561		
Hydroxide (SM 2320; mg/L CaCO ₃)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Total Dissolved Solids (EPA 260.1; mg/L)								
Total Suspended Solids (EPA 160.2; mg/L)	41.5	22.2	18.1	4.3	9.9	50		
Chloride (EPA 300.0; mg/L)	7.3	5.6	6.3	5.4	7.4	9.6		
N-Nitrate (EPA 300.0; mg-N/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
N-Nitrite (EPA 300.0; mg-N/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5		
Sulfate (EPA 300.0; mg/L)	<0.1	<0.1	0.2	7.5	1.6	<0.1		
Chemical Oxygen Demand (EPA 410.4; mg/L)	20.5	10.9	7.75	6.48	7.43	62.7		
Total Organic Carbon (EPA 415.1; mg/L)	9.27	4.17	3.83	<1.50	4.83	25.3		

Table 8 Analytical Results - Groundwater

Highway 99 Site

USG Interiors

Milton, Washington

	Sample I.D. and Sample Date													
	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	GW-9	MW10-10/11	MW11-10/11	MW12-05/12	MW13-05/12	MW14-05/12
Analyte	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	10/18/11	10/18/11	05/22/12	05/22/12	05/22/12
Dissolved Metals (µg/L)														
EPA Method 6020														
Arsenic	55	2.4	38	120	21	19	<2	340	2.1	366	23.5	2.1	14.3	10.3
Iron														
Total Metals (µg/L)														
EPA Method 200.8/7090A/6010B														
Arsenic (200.8)														
Arsenic (7060A)														
Calcium														
Iron														
Magnesium														
Potassium														
Sodium														
Arsenic Speciation (µg/L)														
Arsenic (III)														
Arsenic (V)														
Conventionals														
Alkalinity (SM 2320; mg/L CaCO ₃)														
Carbonate (SM 2320; mg/L CaCO ₃)														
Bicarbonate (SM 2320; mg/L CaCO ₃)														
Hydroxide (SM 2320; mg/L CaCO ₃)														
Total Dissolved Solids (EPA 260.1; mg/L)														
Total Suspended Solids (EPA 160.2; mg/L)														
Chloride (EPA 300.0; mg/L)														
N-Nitrate (EPA 300.0; mg-N/L)														
N-Nitrite (EPA 300.0; mg-N/L)														
Sulfate (EPA 300.0; mg/L)														
Chemical Oxygen Demand (EPA 410.4; mg/L														
Total Organic Carbon (EPA 415.1; mg/L)														

Notes:

*USGHWY-MW0-05/10 is a duplicate of USGHWY-MW4-05/10.

** Value from re-sampling on 7/15/10.

mg/L - milligrams per liter.

μg/L - micrograms per liter.

-- not analyzed.

< - analyte not detected at or greater than the listed concentration.

Table 9Analytical Results - Surface WaterHighway 99 SiteUSG InteriorsMilton, Washington

	Sample I.D. and Sample Date							
	USGHwy99-SW1-05/10	USGHwy99-SW2-05/10	USGHwy99-SW3-05/10	USGHwy99-SW4-05/10	USGHwy99-SW5-05/10	USGHwy99-SW6-05/10		
Analyte	05/25/10	05/25/10	05/25/10	05/25/10	05/25/10	05/25/10		
Dissolved Metals (µg/L)								
EPA Methods 200.8/7060A/6010B								
Arsenic (200.8)	3.0	2.9	3.0	3.1	3.0	3.0		
Arsenic (7060Á)	4	4	4	3	4	4		
Iron	280			270	280			
Total Metals (µg/L) EPA Method 200.8/7090A/6010B								
Arsenic (200.8)	3.4			3.4	3.5			
Arsenic (7060A)	3			4	4			
Calcium	19,000			17,900	18,100			
Iron	410			390	420			
Magnesium	13,100			12,200	12,400			
Potassium	1,760			1,650	1,710			
Sodium	7,500			7,040	7,120			
Arsenic Speciation (µg/L)								
Arsenic (III)	0.403			0.444	0.539			
Arsenic (V)	2.12			2.22	2.36			
Conventionals								
Alkalinity (SM 2320; mg/L CaCO ₃)	99.6			98.9	97.1			
Carbonate (SM 2320; mg/L CaCO ₃)	<1.0			<1.0	<1.0			
Bicarbonate (SM 2320; mg/L CaCO ₃)	99.6			98.9	97.1			
Hydroxide (SM 2320; mg/L CaCO ₃)	<1.0			<1.0	<1.0			
Total Dissolved Solids (EPA 260.1; mg/L)	170			164	164			
Total Suspended Solids (EPA 160.2; mg/L)	1.6			1.9	10.5			
Chloride (EPA 300.0; mg/L)	8.0			8.0	7.8			
N-Nitrate (EPA 300.0; mg-N/L)	0.7			0.7	0.7 J			
N-Nitrite (EPA 300.0; mg-N/L)	<0.1			<0.1	<0.1 J			
Sulfate (EPA 300.0; mg/L)	8.4			8.4	8.2			
Chemical Oxygen Demand (EPA 410.4; mg/L)	14.7			16.0	11.9			
Total Organic Carbon (EPA 415.1; mg/L)	5.22			5.19	7.38			

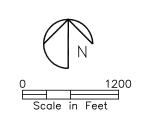
Notes:

J - Value is estimated due to exceedance of holding time

µg/L - micrograms per liter.

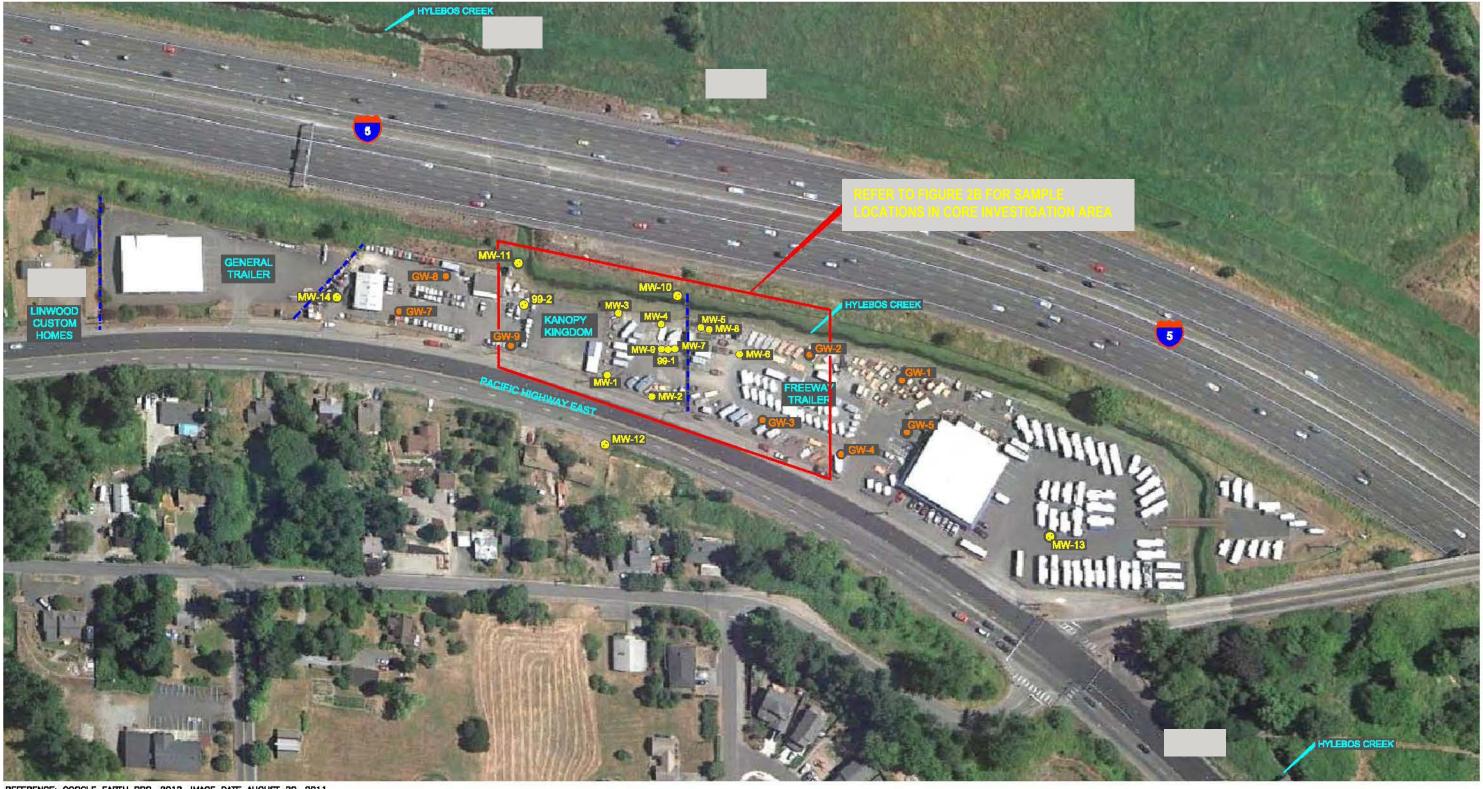

-- not analyzed.

< - analyte not detected at or greater than the listed concentration.



Figures

Source: GOOGLE EARTH PRO, 2009



USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON

Figure No. 1 Vicinity Map

CDM

LEGEND:

PROPERTY LINE

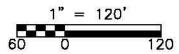
W-12 🕀

MONITORING WELL

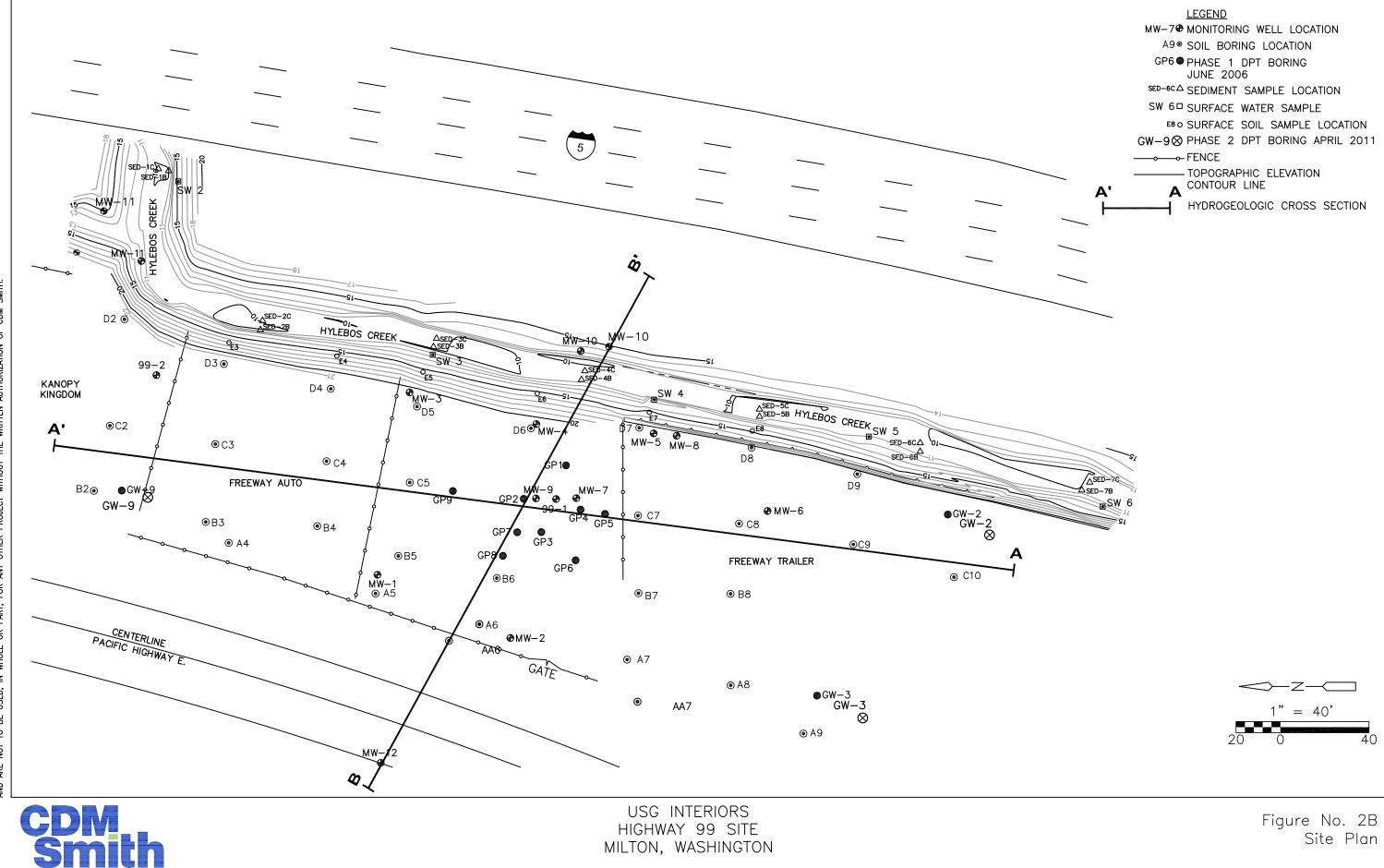
PHASE 2 DPT BORING

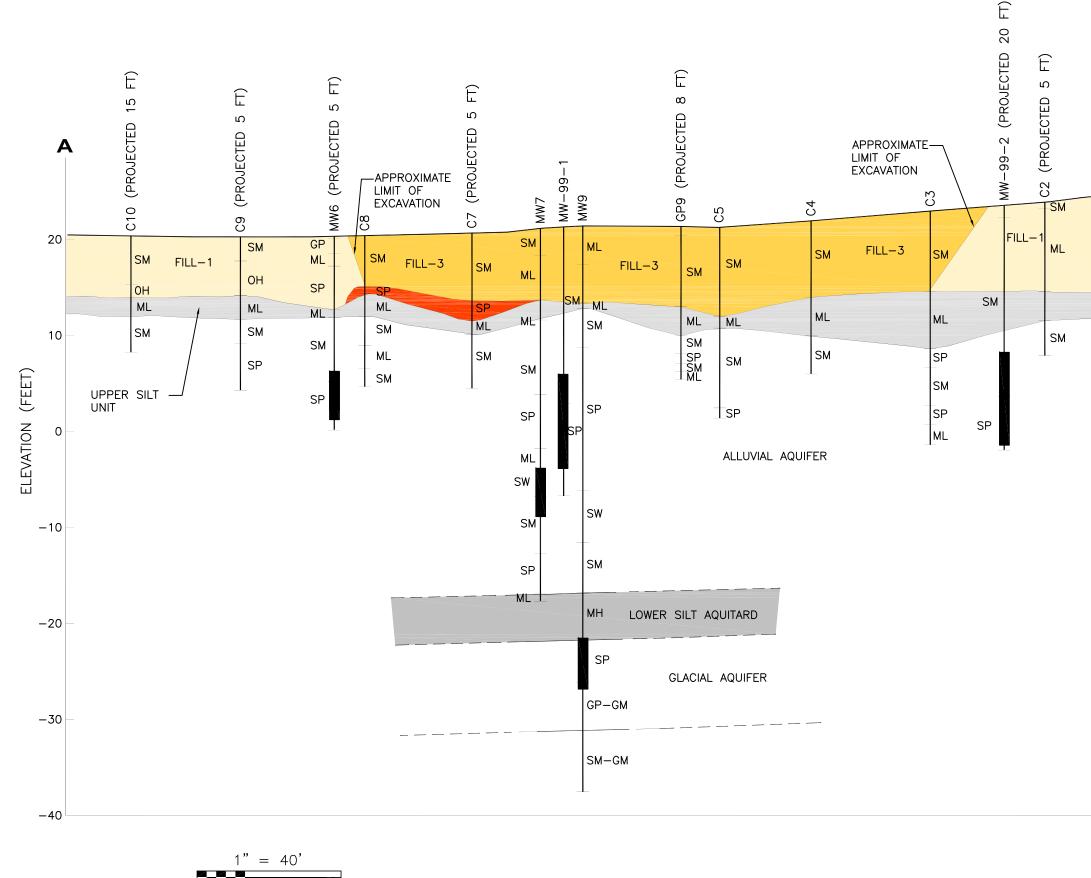
NOTE:

MONITORING WELL MW-14 WAS DRILLED AT THE LOCATION OF GW-6


REFERENCE: GOOGLE EARTH PRO, 2012, IMAGE DATE AUGUST 20, 2011

P:/19921/77628/Hyledros Creek/EXPANDED SITE/ FIGURE-2 05/10/13 11:02 righted) XREFS: SITEBASE-EXPANDED, HC-SITEBASE, S_1117 CDM SMITH ALL RIGHTS RESERVED. REUSE OF DOCUMENTS: THESE DOCUMENTS AND DESIGNS PROVIDED BY PROFESSIONAL SERVICE, INCORPORATED HEREIN, ARE THE PROPERTY OF CDM SMITH AND ARE NOT TO BE USED, IN WHOLE OR PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF CDM SMITH.


USG INTERIORS HIGHWAY 99 SITE MILTON, WASHINGTON


<>−z-⊂

SMITH CDM Ч , S_1117, 36146-SURV-TP01 INCORPORATED HEREIN, ARE THE PROPERTY P:\19921\77628\Hylebros Creek\EXPANDED SITE\ FIGURE-2B 07/11/12 13:14 riehlepj XREFS: HC-SITEBASE, © CDM SMITH ALL RIGHTS RESERVED. REUSE OF DOCUMENTS: THESE DOCUMENTS AND DESIGNS PROVIDED BY PROFESSIONAL SERVICE, II AND ARE NOT TO BE USED, IN WHOLE OR PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF CDM SMITH.

<u>GENERALIZED HYDROGEOLOGIC</u> <u>UNITS:</u>

FILL-3 – EXCAVATION BACKFILL PLACED AT 1985 REMEDIAL EXCAVATION. SOIL TYPES INCLUDE SILTY SAND WITH GRAVEL.

Α'

FILL-2 - FILL ASSOCIATED WITH THE ARSENIC SOURCE MATERIALS, INCLUDING BLACK OR GREEN SAND AND GRAVEL.

FILL-1 - FILL THAT WAS PLACED DURING EARLY DEVELOPMENT OF THE SITE. SOIL TYPES INCLUDE SILT, SANDY SILT, ORGANIC SILT, SILTY SAND WITH TRACES OF MAN-MADE DEBRIS AND WOOD CHIPS.

UPPER SILT UNIT – THE UPPER MOST ALLUVIAL UNIT AT THE SITE. SOIL TYPES INCLUDE SILT AND SANDY SILT.

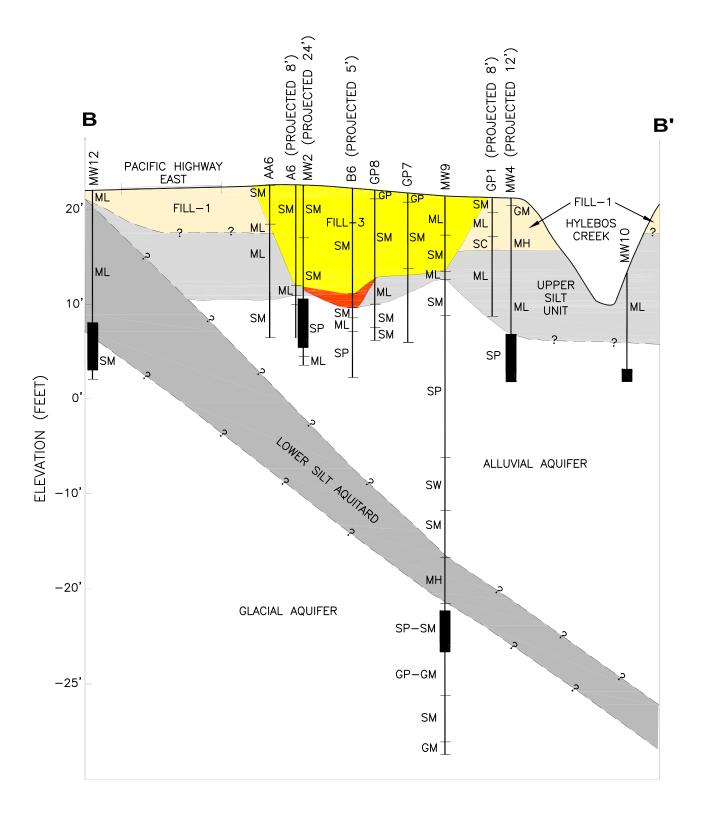
ALLUVIAL AQUIFER – ALLUVIAL DEPOSITS ASSOCIATED WITH HYLEBOS CREEK. SOIL TYPES INCLUDE FINE TO MEDIUM GRAINED SAND AND SILTY SAND WITH MINOR SILT INTERBEDS.

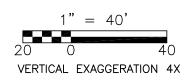
LOWER SILT AQUITARD – CONFINING LAYER OF SILT, WHICH UNDERLIES THE ALLUVIAL AQUIFER.

GLACIAL AQUIFER - DENSE SEQUENCE OF SAND AND GRAVEL.

LEGEND:

GEOLOGIC CONTACT, DASHED WHERE INFERRED




MONITORING WELL

SW UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) SOIL TYPE

Figure No. 3 Geologic Cross Section A-A'

USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON

<u>GENERALIZED HYDROGEOLOGIC</u> <u>UNITS:</u>

FILL-3 – EXCAVATION BACKFILL PLACED AT 1985 REMEDIAL EXCAVATION. SOIL TYPES INCLUDE SILTY SAND WITH GRAVEL.

FILL-2 - FILL ASSOCIATED WITH THE ARSENIC SOURCE MATERIALS, INCLUDING BLACK OR GREEN SAND AND GRAVEL.

FILL-1 - FILL THAT WAS PLACED DURING EARLY DEVELOPMENT OF THE SITE. SOIL TYPES INCLUDE SILT, SANDY SILT, ORGANIC SILT, SILTY SAND WITH TRACES OF MAN-MADE DEBRIS AND WOOD CHIPS.

UPPER SILT UNIT – THE UPPER MOST ALLUVIAL UNIT AT THE SITE. SOIL TYPES INCLUDE SILT AND SANDY SILT.

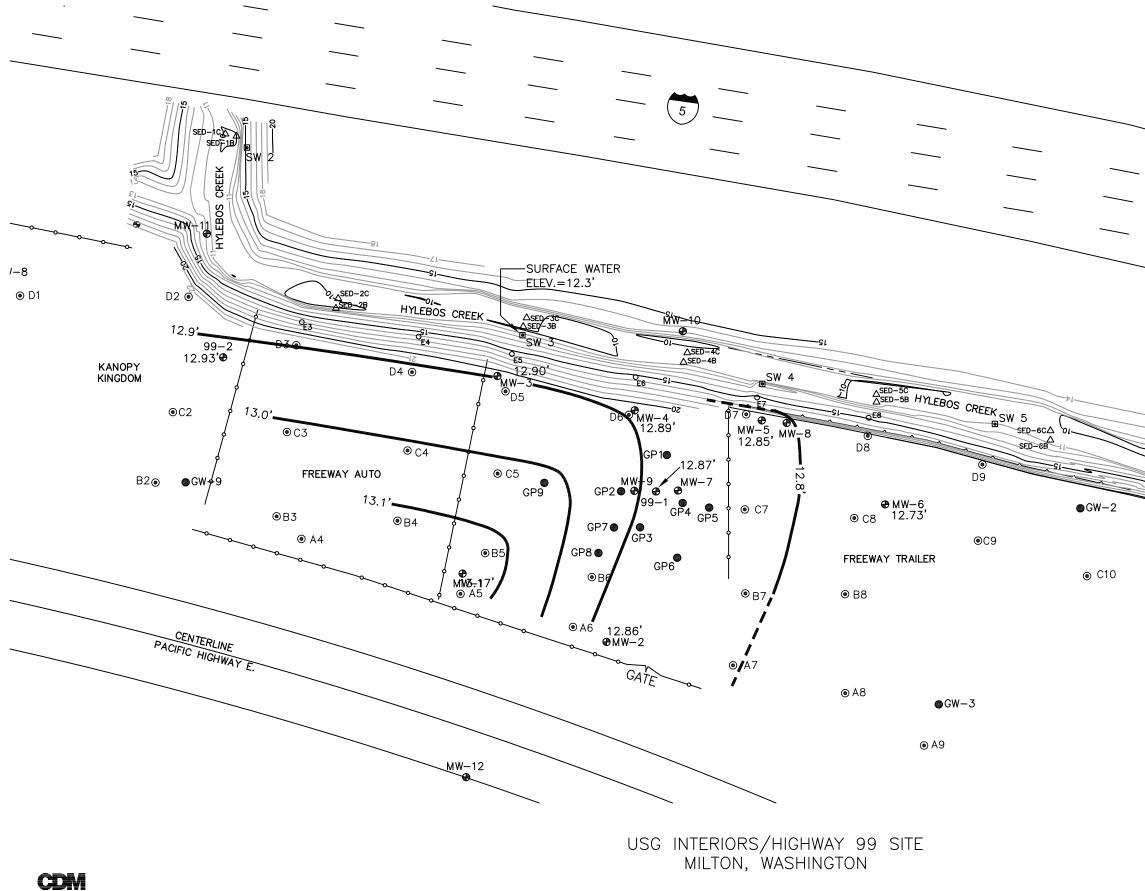
ALLUVIAL AQUIFER – ALLUVIAL DEPOSITS ASSOCIATED WITH HYLEBOS CREEK. SOIL TYPES INCLUDE FINE TO MEDIUM GRAINED SAND AND SILTY SAND WITH MINOR SILT INTERBEDS.

LOWER SILT AQUITARD – CONFINING LAYER OF SILT, WHICH UNDERLIES THE ALLUVIAL AQUIFER.

GLACIAL AQUIFER - DENSE SEQUENCE OF SAND AND GRAVEL.

LEGEND:

GEOLOGIC CONTACT, DASHED WHERE INFERRED

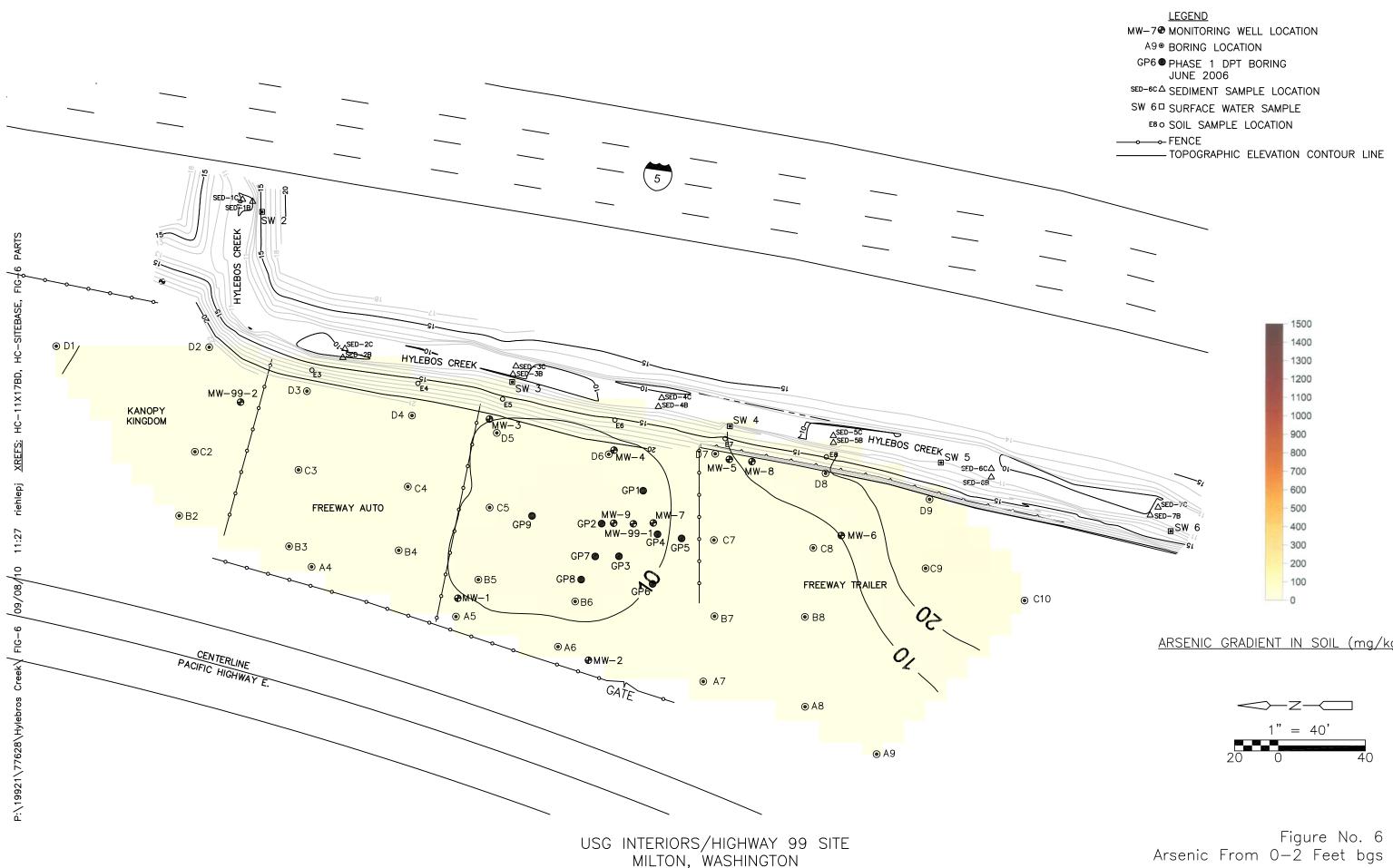

SOIL BORING

MONITORING WELL

SW UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) SOIL TYPE

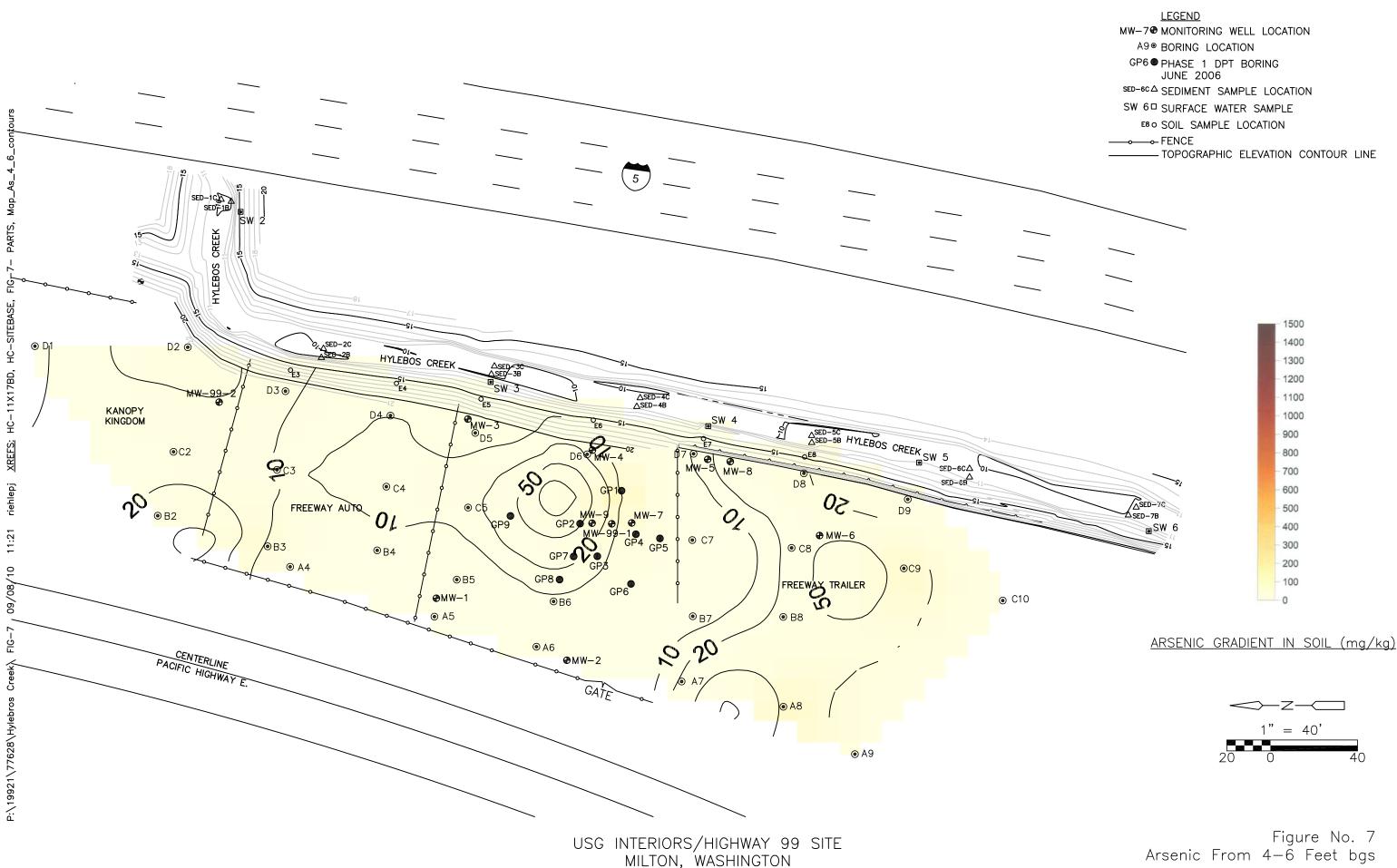
Figure No. 4 Geologic Cross Section B-B'

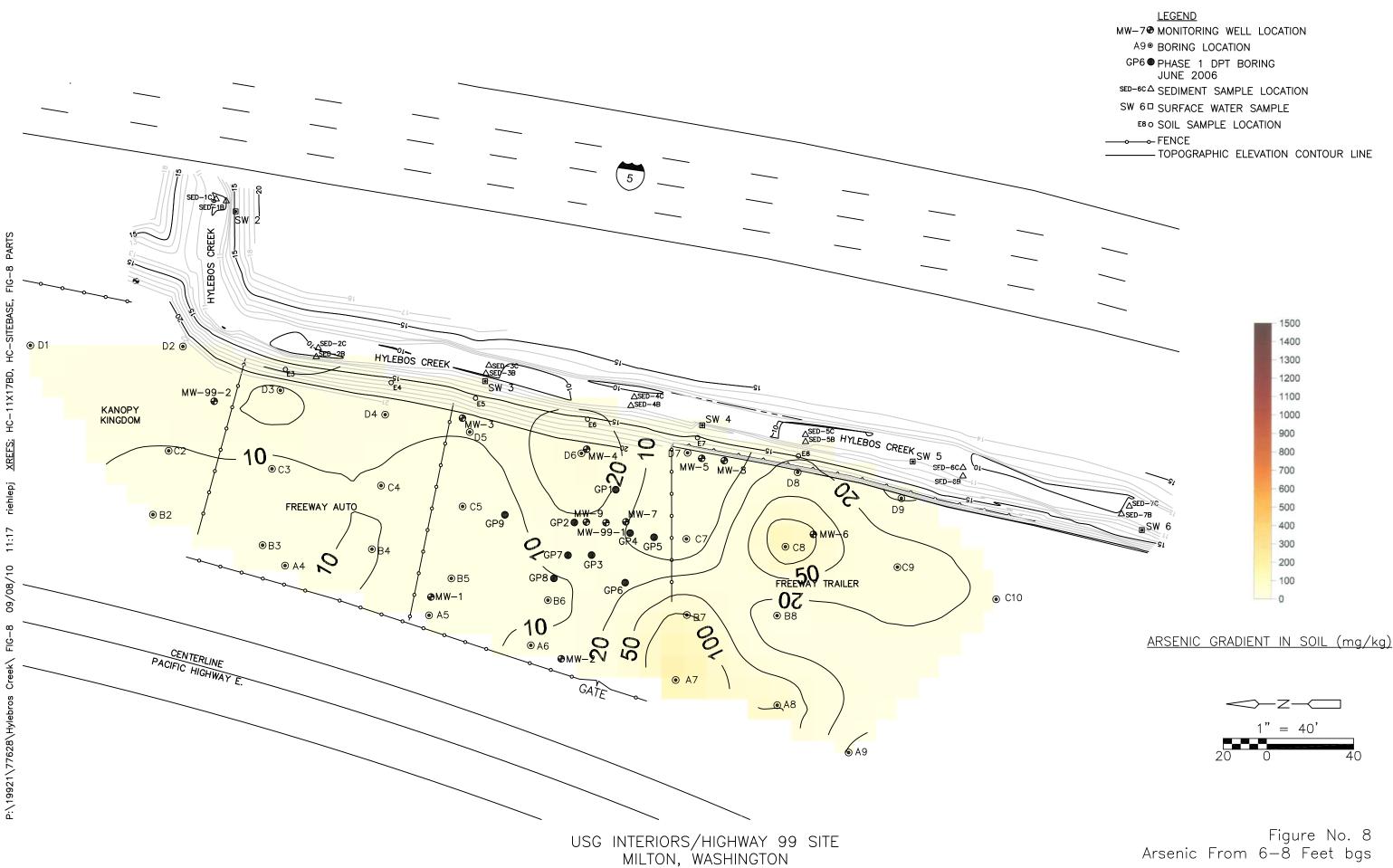
	LEGEND:
MW-7 ⊕	MONITORINIG WELL LOCATION
SW 6 🗆	SURFACE WATER SAMPLE
oo o	FENCE
	TOPOGRAPHIC ELEVATION CONTOUR LINE
—— 12.9 '— —	GROUNDWATER ELEVATION CONTOUR LINE
_	
	-
	_
	SI .
	B
11/ 2000	

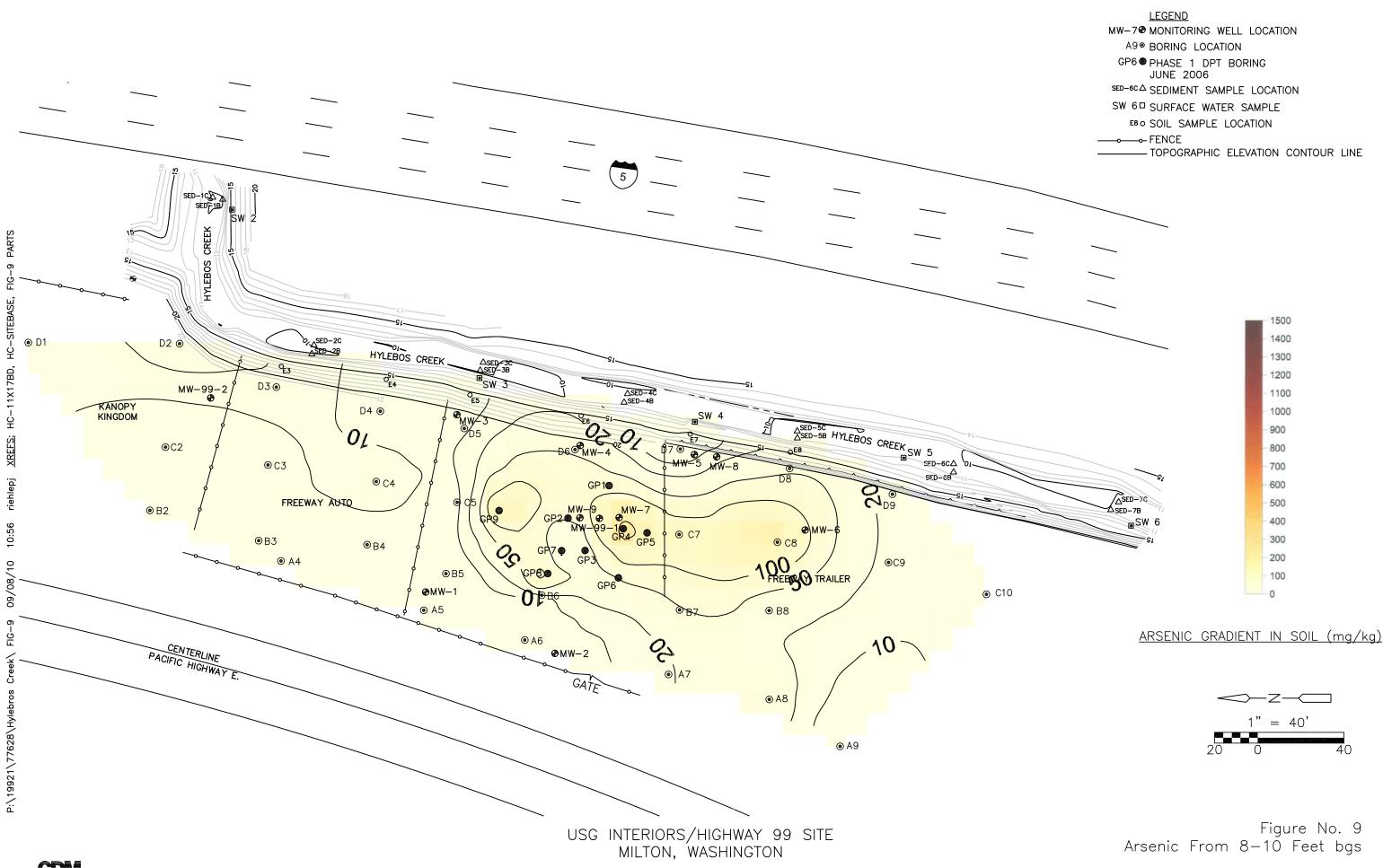

-SURFACE WATER ELEV.=12.3'

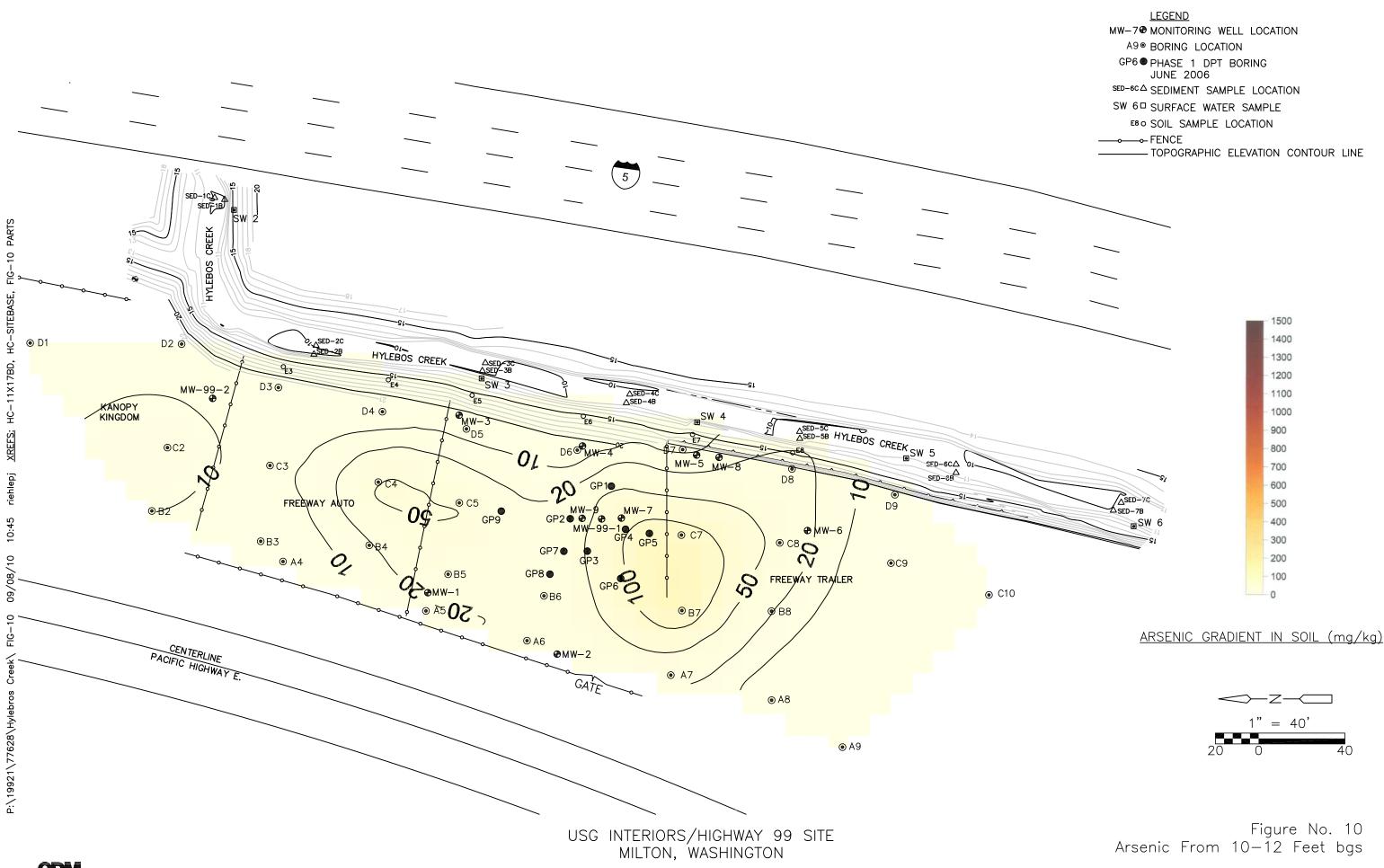
SW 6

-··· ·

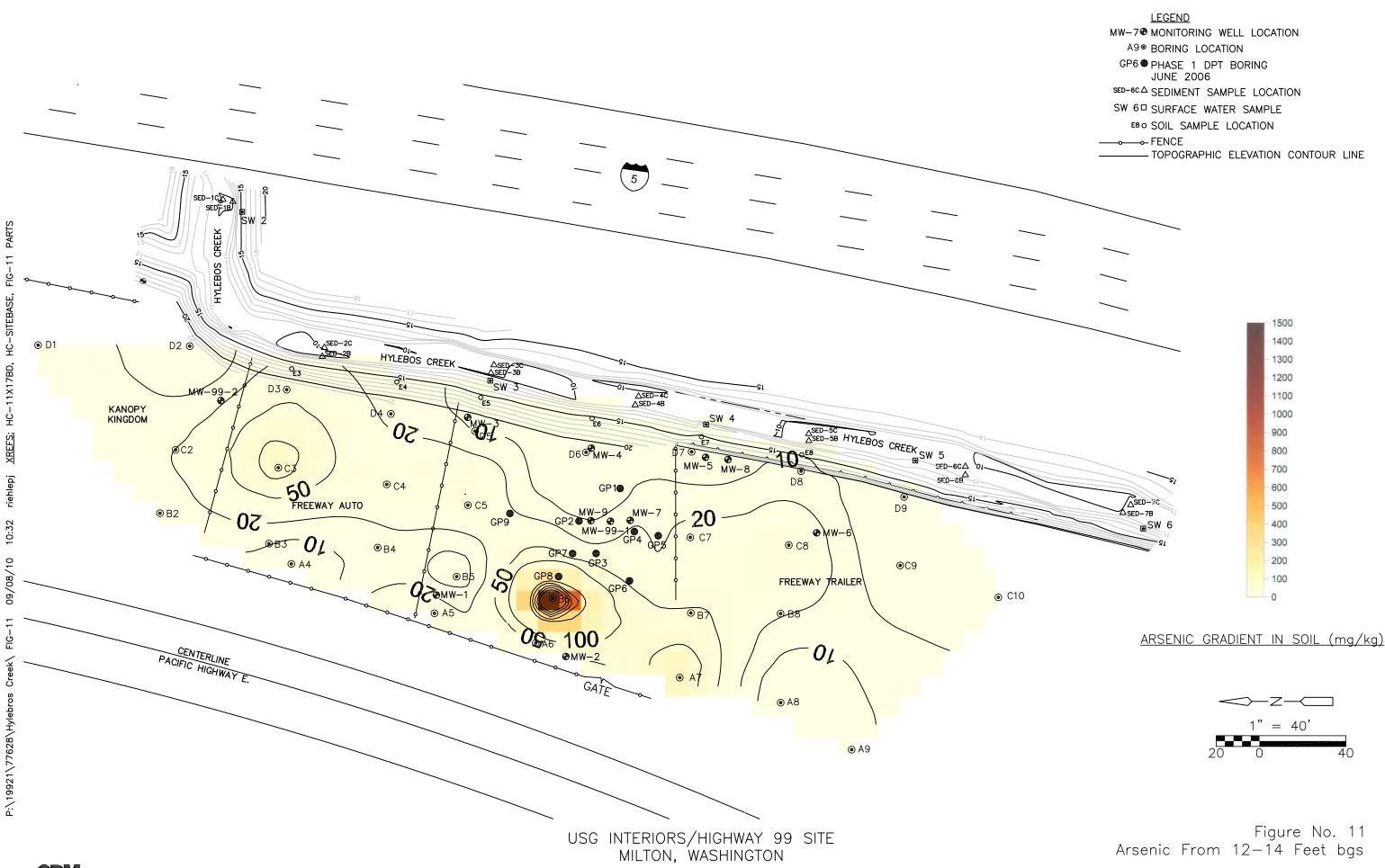

Figure No. 5 Groundwater Elevation Contour Map Alluvial Aquifer July 15, 2010

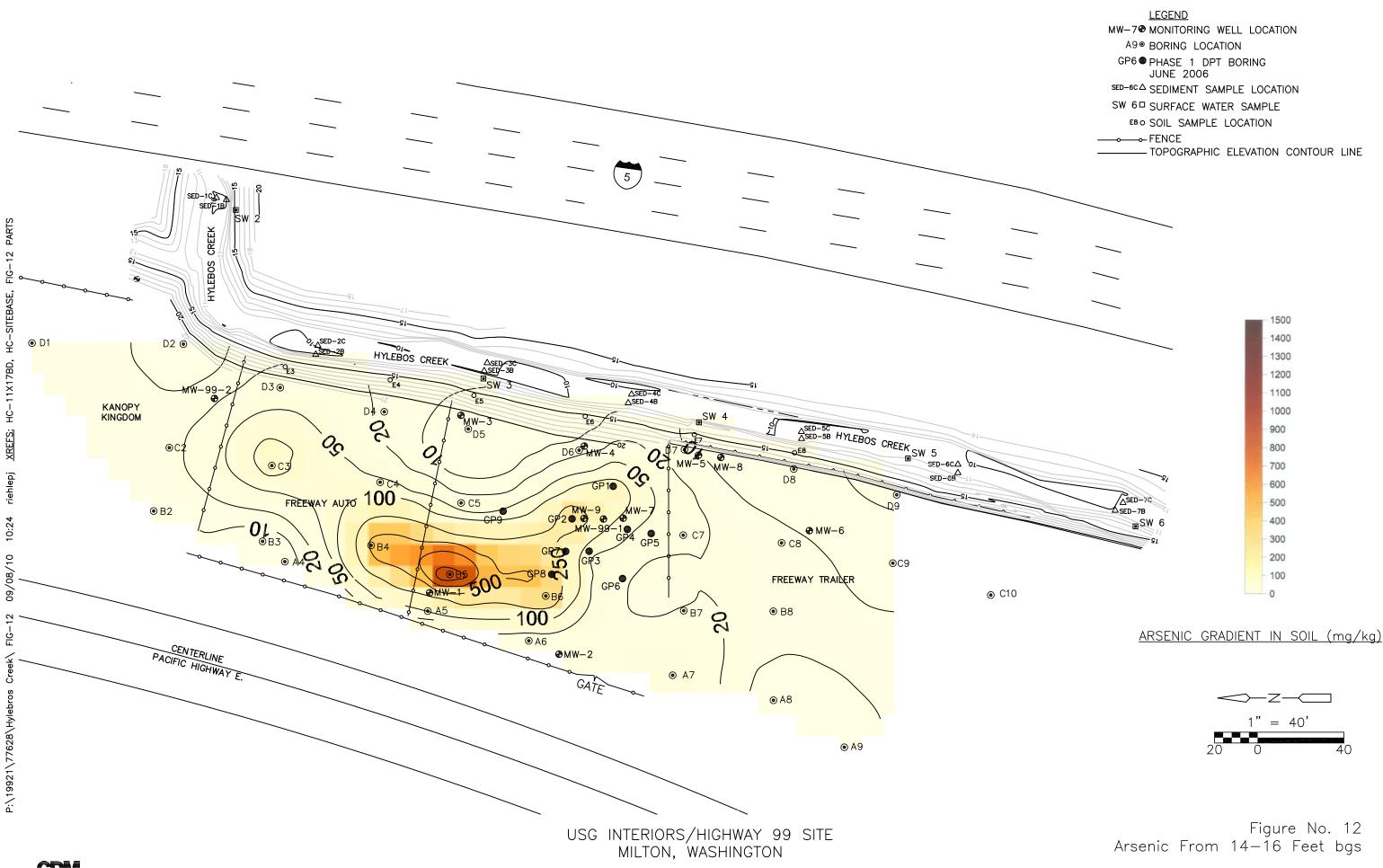

ARSENIC GRADIENT IN SOIL (mg/kg)

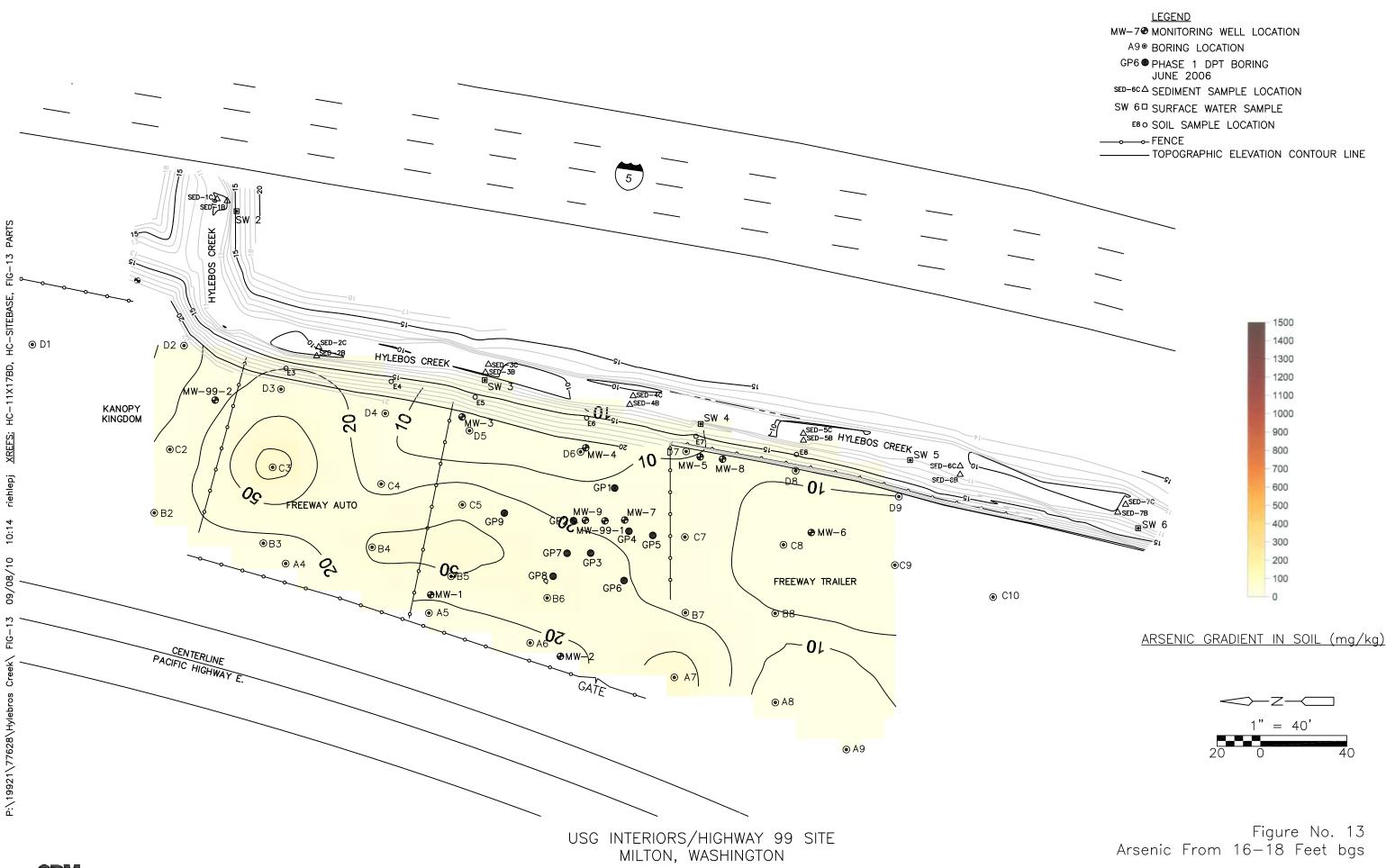

Arsenic From 4-6 Feet bgs



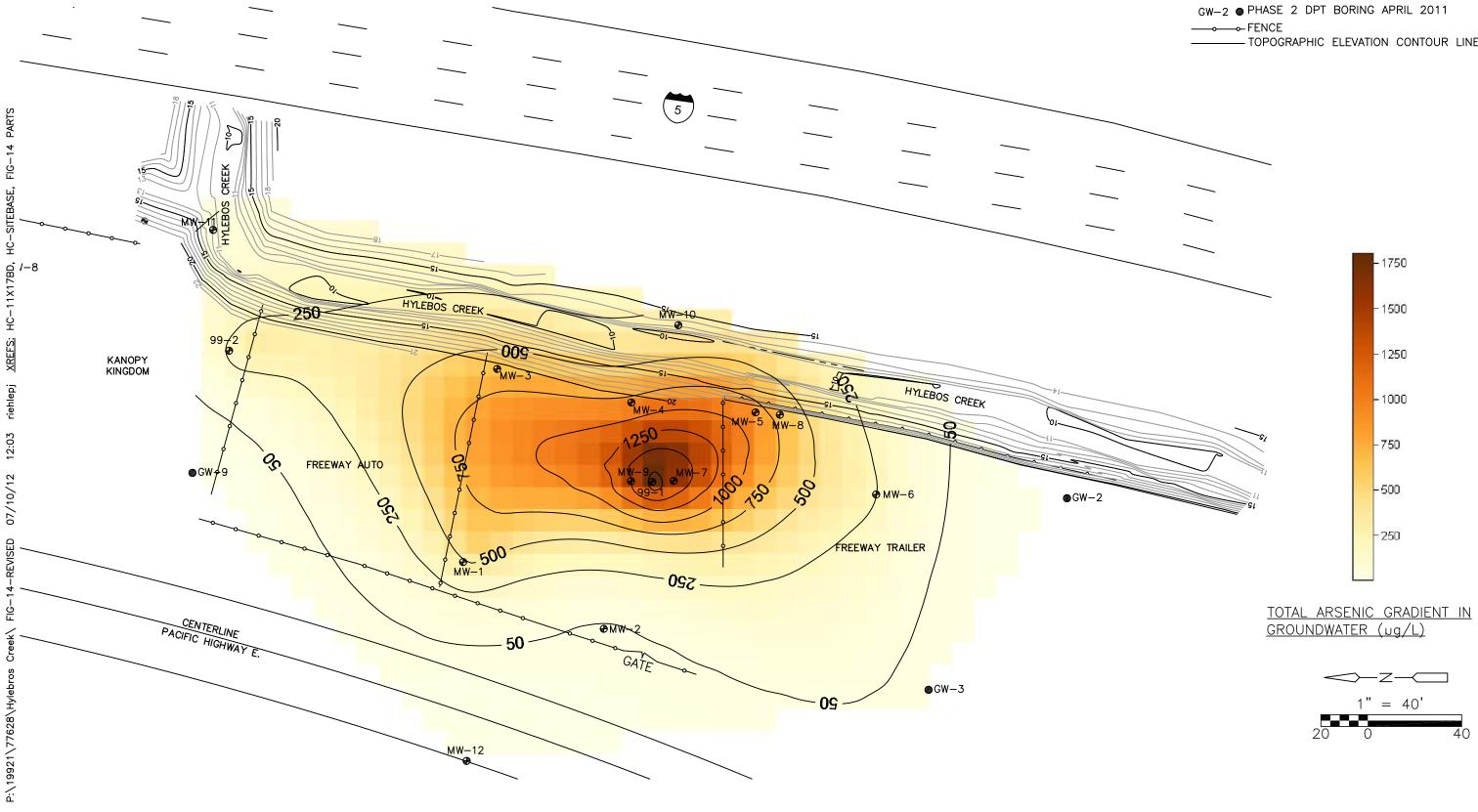
CDM






-D HC-SITEBASE, HC-11X17BD, <u>XREFS:</u> 10:32 09/08/10 FIG-Creek/ P:\19921\77628\Hylebros

CDM



USG INTERIORS/HIGHWAY 99 SITE MILTON, WASHINGTON

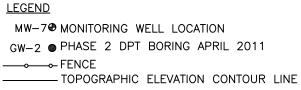
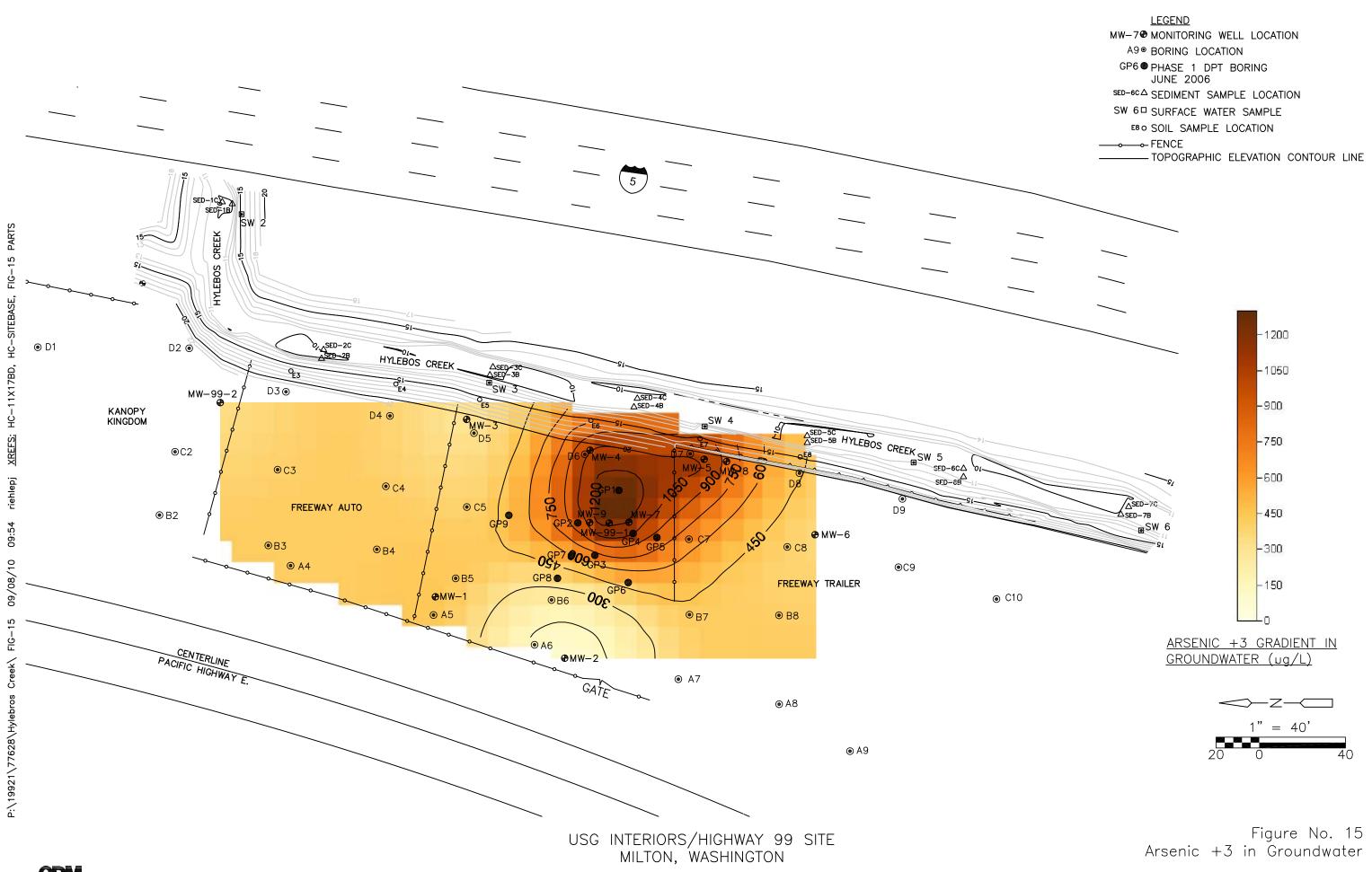
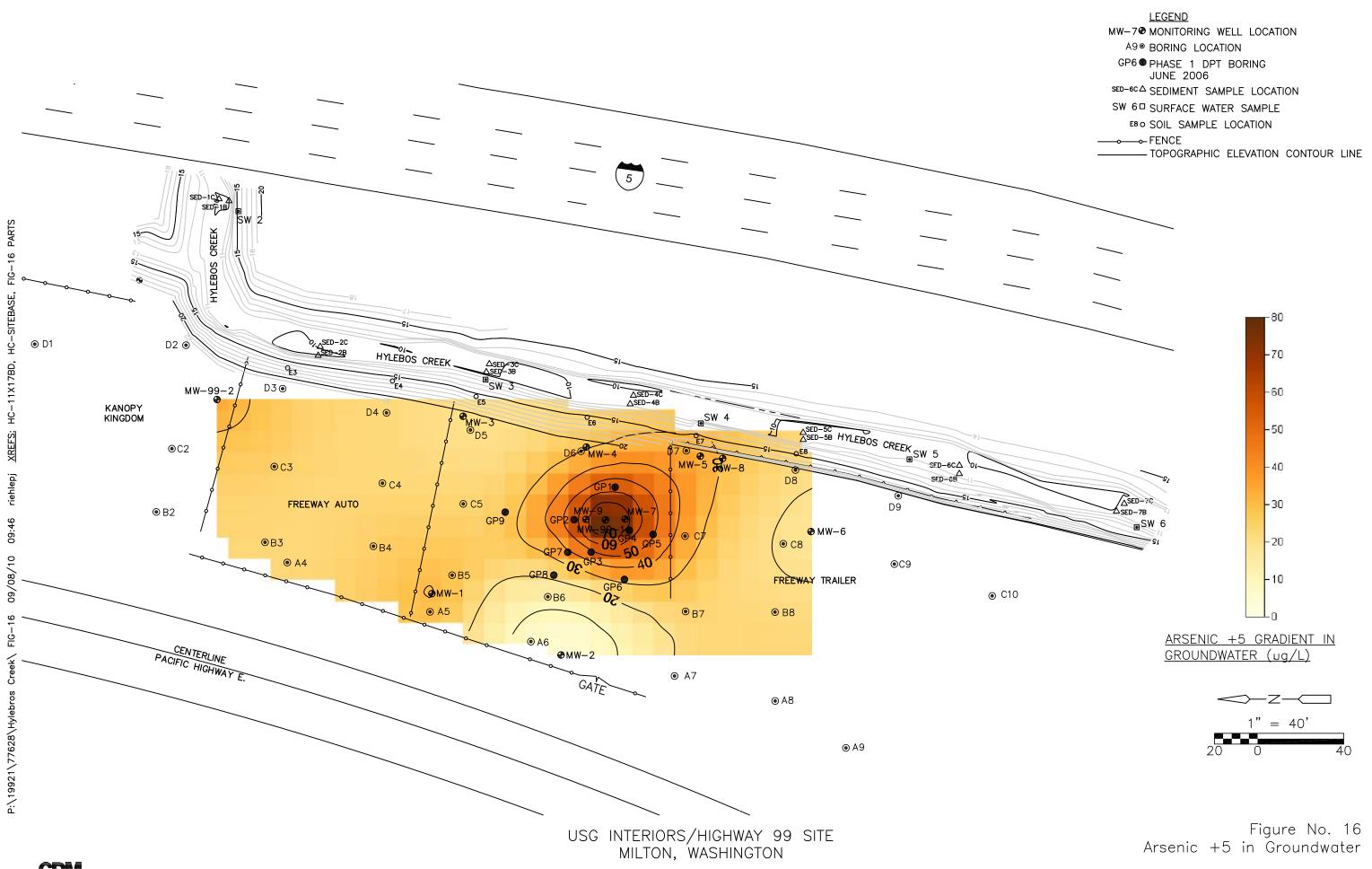
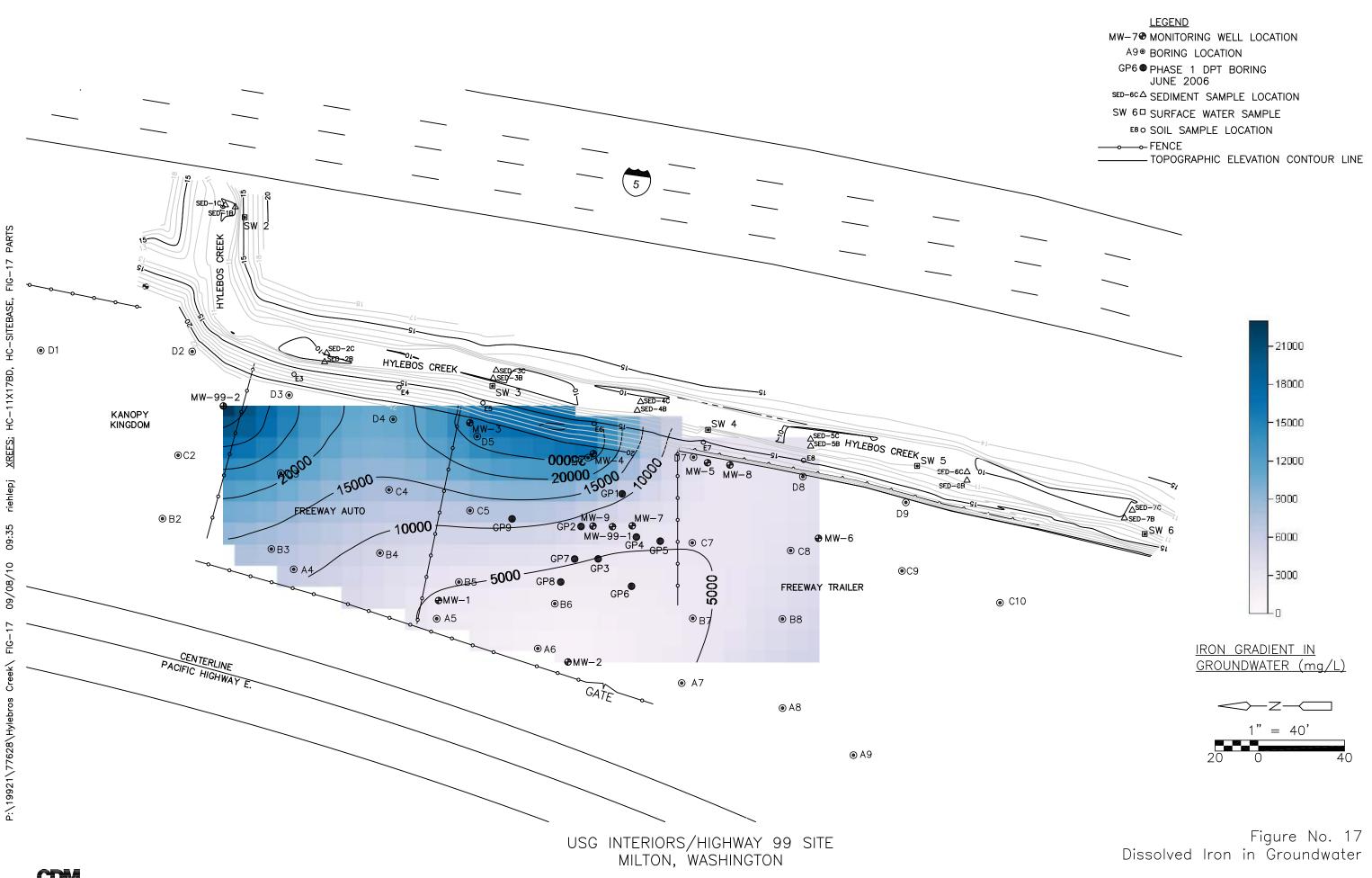
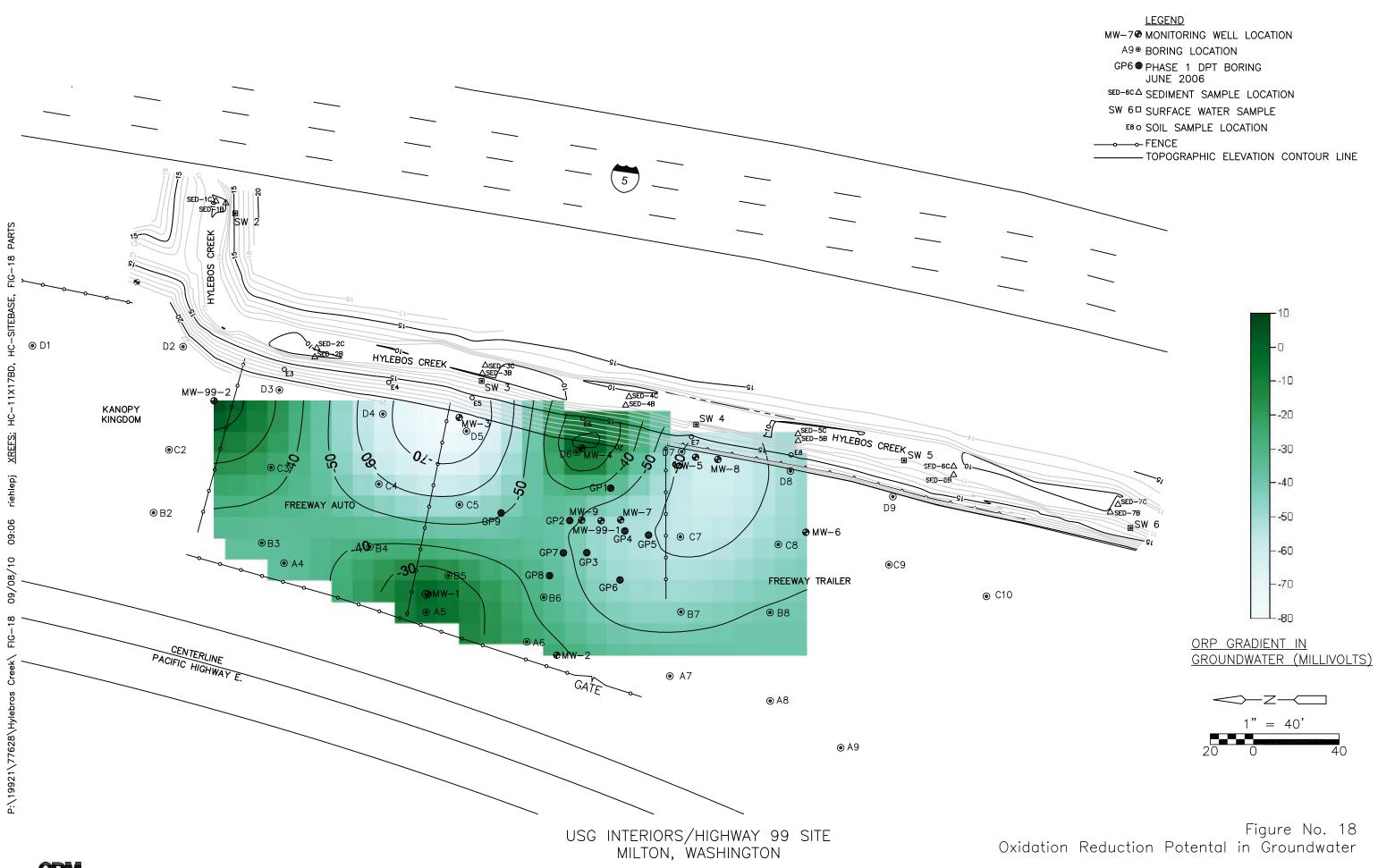
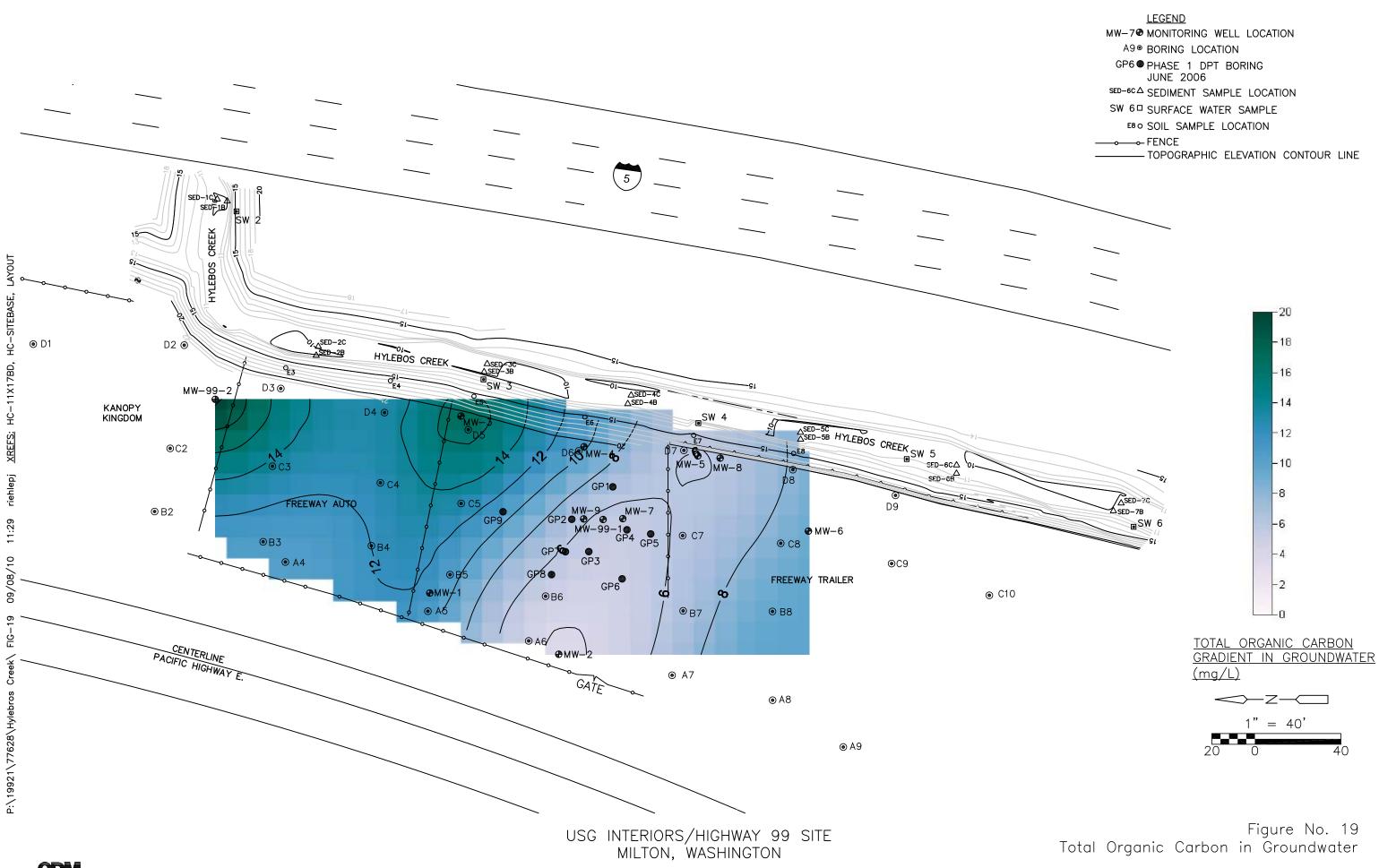




Figure No. 14 Dissolved Total Arsenic in Groundwater





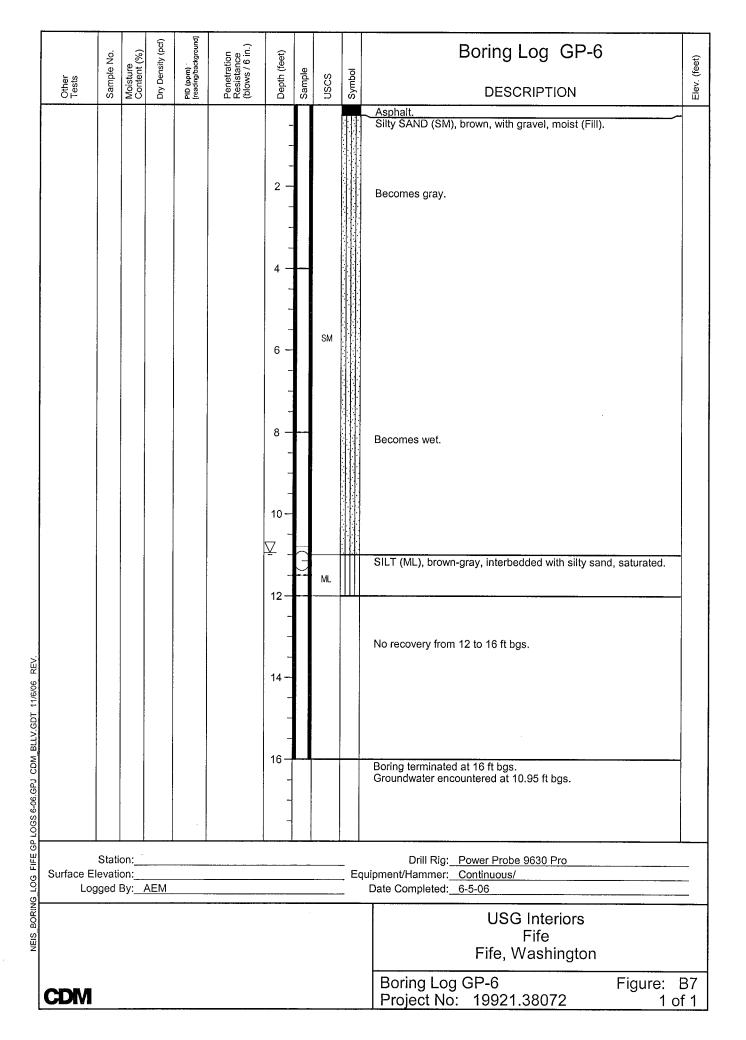


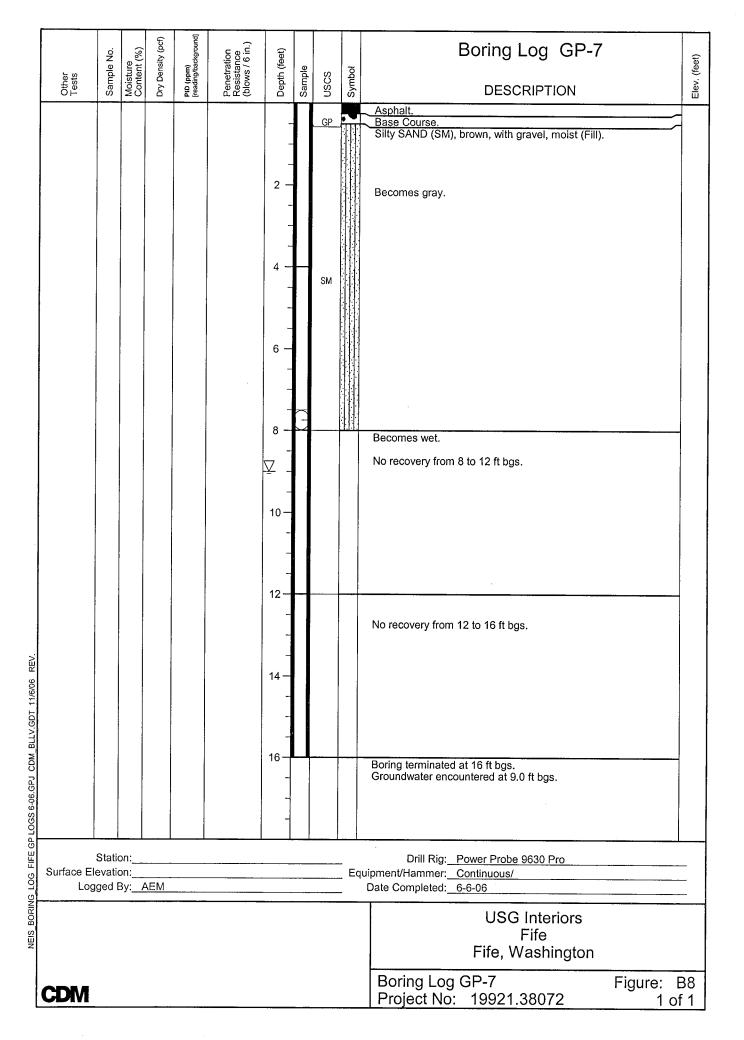
CDM

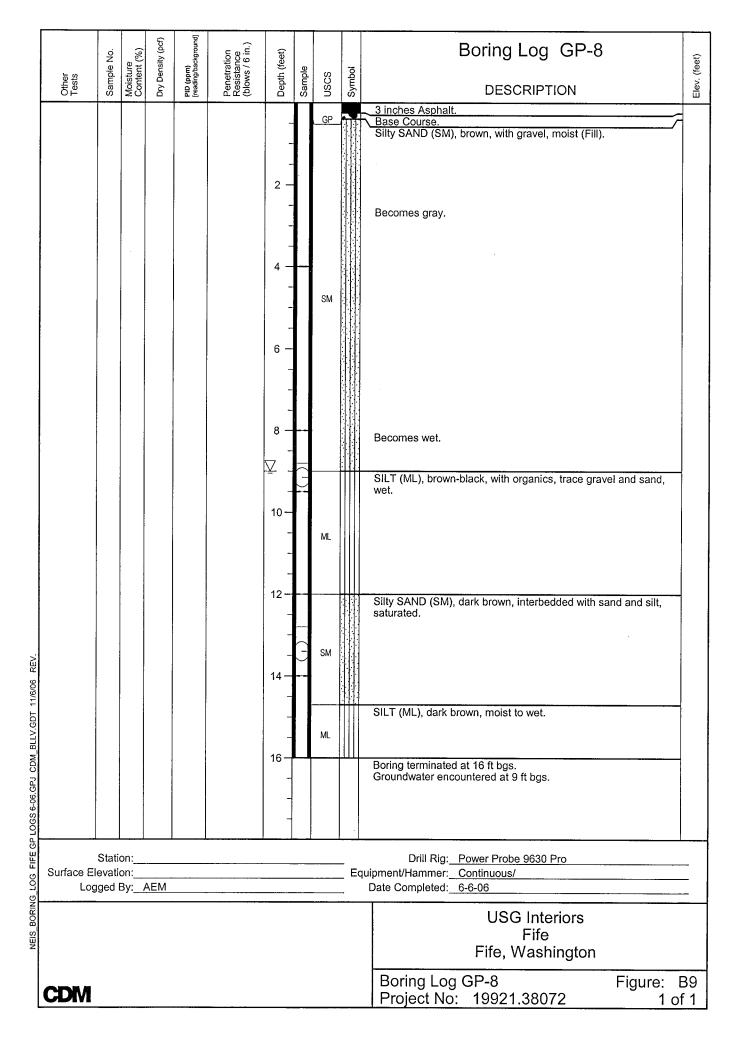
Appendix A Boring Logs and Well Construction Logs

					SC	DIL CLAS	SIFI		ATION	LEC	GEND						
	MAJOF		VISIONS									SA	MPLE T	YPE	SYN	MBOL	S
	GRAVE	9	Clean grav	els with	GW	Well graded						$\exists \square$	Disturbe				-
SOILS Ber	More than	half	little or no		GP	Poorly grad	ed gravel	s, gr	ravel-sand	mixture	S		Std. Per	netrati	ion Tes	st (2.0" C	DD)
ARSE GRAINED SC More than half is larger than No. 200 sieve	is larger the No. 4 sieve	nan	Gravel over 12%		GM	Silty gravels	s, gravel-s	and	I-silt mixtur	es			Type U	Ring (Sample	er (3.25"	OD)
RAIN 200					GC	Clayey grav				xtures		Ā	Californi	a Sar	npler (:	3.0" OD))
COARSE GRAINED More than half is lare than No. 200 sieve	SANDS	-	Clean san little or no		SW	Well graded						-	Undistur	rbed 1	Fube S	ample	
OAR Mor	More than coarse frac is smaller t	tion			SP SM	Poorly grade						G	Grab Sa	Imple			
Ŭ	No. 4 sieve		Sands over 12%		SC //	Clayey sand						1 0	Core Ru	ın			
s.					ML	Inorganic sil				ock flou	r, silty or		Non-sta (with spl			tration Te	est
INE GRAINED SOILS More than half is smaller than No. 200 sieve	SII Lig		AND CLAY		CL	Inorganic cla clays, sandy		_				1 🛱	Bulk Sar			·[····)	
VED alf is s					OL	Organic clay						CO	NTACT	BET	WE	EN UN	ITS
GRAINED than half is a an No. 200 si	011	те /		•	мн	Inorganic sil silty soils, el	ts, micaco astic silts	eou	s or diatom	aceous	fine sandy or	1			-	e in unit in unit v	which
FINE G More th than	Liqui		greater than		СН	Inorganic cla	ays of hig	n pla	asticity, fat	clays			was cle	arly n	oted in	the exp	loration
Ľ≥					ОН	Organic clay	/s of med	ium	to high pla	sticity, c	organic silts		- Change clearly o			ch was no	ot
 			NIC SOILS		PT 24 4	<u>v</u>							СОМ	WE		NS	
	ESCRIPT				TRATA	AND STRI	JCTUF	١E	(ENGL	ISH/N	METRIC)				F		
sse	Parting:	(1/6 (Pocket:	Erratic, disco deposit of lir extent	ontinous nited	e	[0 to 10 deg.		Concrete Well Ca			<u>-</u>	
al Thickne Spacing	Seam: Layer:	1/2 to	to 1/2 in. to 1 1/4 cm) o 12 in.	ture	Lens:	Lenticular de	eposit	Attitude	Low angle High angl		10 to 45 deg. 45 to 80 deg.		nite/Grout				
General Thickness or Spacing	Stratum:		4 to 30 1/2 cm in. (30 1/2 cm	· 15	Varved:	Alternating s of silt and cl	eams	General /	Near Vert	ical:	80 to 90 deg.		undwater L ed Well Ca		Ţ		
Cen	Scattered:	< 1 p	er ft. (30 1/2	cm)	Laminated			Ger					Sand Bac	•		_ [
	Frequent:	>1 p	er ft. (30 1/2)	cm)	Stratified:	Alternating I	ayers						neable Bac				
ST	RUCTU		FSCRIP		(cont)		MOI	57		FSC	RIPTION	or Ben	tonite/Gro				
	Fractured	В	reaks easily	/ along o	definite frac	ctured planes			Free of m						IERS cles pr	> resent a < 5%	t levels
11	kensided ky, Diced	В	olished, glo reaks easily	/ into sm	nall angulai	r lumps	Mois	t -	Damp but free water		ble	Slightly	(Clayey,				
	Sheared ogeneous		isturbed tex ame color a		-		We	t -	Visible fre			Silty	(Glayey, /, Sandy, Gravelly)	estim	lated a	at 5 to 1	2%
	RE	LAT	IVE DEN	SITY (ISISTENC	Y VS.	SP	T N-VA	LUE		Clay Sandy.	/ey, Silty, Gravelly	Partic estim	cles pr	esent a	t levels 30%
			E GRAIN						GRAINE			Very	(Clayey,	Perce	entage	e of mind	or
D	ensity	N (blows/ft)		. Relative sity (%)	Consistency	y	N (t	olows/ft)		x. Undrained ar Str. (psf)		/, Sandy, Gravelly)	> 30%	%		
Very I) to 4		- 15	Very Soft) to 2		<250	AL	SICAL F - Atterb	oera I	imits	TY TE	EST
Loose Mediu	m Dense		to 10 0 to 30		- 35 - 65	Soft Medium Stiff			2 to 4 1 to 8		50 - 500 10 - 1000	FC GSD	- Grain	Size	Distrit	bution	
Dense	e	30) to 50	65	- 85	Stiff		8	to 15		00 - 2000	MC MD SG	- Moist	ure C	Conteni Conteni ravity	it it/Dry De	ensity
Very I	Dense	0	ver 50	85 -	- 100	Very Stiff Hard			5 to 30 ver 30		00 - 4000 >4000	Perm TXP	 Permeter Triaxi 	eabili al Pe	ity rmeab	oility	
Note	s:						l				- 4000	Cons Chem	 Conse Analy 	olidat tical (ion	ical Ana	lysis
1. Sa		tions i	n this report :	are base	d on visual f	field and labora	torv obse	erva	tions, whic	h incluc	le	Corr VS DS	- Vane	Shea	ar ar		
densit imply	y/consistency	y, mois	sture conditio	on, grain	size, and pla	asticity estimate /isual-manual c	es, and s	hou	ld not be c	onstrue		UC TX	 Uncor Triaxi 	nfineo al Co	d Com	npressio ssion	
accord soil cla		STŃ С	2488 were	used as a	an identifica	tion guide. Wh					ole,		 Conso 	olidat	dated, ed, Ur ed, Dr	Undrain ndrained	ned d
			-			s with 5 to 12		Γ			US	G Inte		Jilday	<u>cu</u> , D1	anicu	
	nt fines and f tity chart.	ine-gra	ained units th	at plot in	the CL-ML	area of the						Fife					
	OR = weight	of rod,	WOH = weig	ght of ha	mmer.			L			Fife,	Wash	ington				
CD	X /I							[Proje	ct N	o: 1992	1.380)72	Fi	gure	e: B1	1
	1 VI							1							J 4		

Other Tests	Sample No.	Moisture Content (%)	Dry Density (pcf)	PID (ppm) [reading/background]	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	uscs	Symbol	Boring Log GP-1 DESCRIPTION	Elev. (feet)
						-		SP SM		Gravelly SAND (SP), brown. Silty SAND (SM), brown, with gravel, moist. Silt (ML), brown-gray, with clay, moist.	-
						2		ML			
						4		sc		Clayey SAND (SC), gray, with gravel, moist to wet.	-
						- 6 —	(1)	<u>SM</u>		Silty SAND (SM), black, moist. Gravelly SILT (ML), gray, trace organics, moist.	-
						 8				Becomes dark brown, less gravelly, moist to wet.	
						- - - - -		ML		Becomes light brown, moist. Becomes gray, wet to saturated.	
						- - 12-				Becomes brown.	
						- 14		SP		Sand (SP), dark brown, with organics, saturated.	
						16 —				Boring terminated at 16 ft bgs. Goundwater encountered at 10 ft bgs.	
Surface El			AEM						Eq	Drill Rig: <u>Power Probe 9630 Pro</u> uipment/Hammer: <u>Continuous/</u> Date Completed: <u>6-5-06</u>	
										USG Interiors Fife Fife, Washington	
CDM										Boring Log GP-1Figure:Project No:19921.380721 c	B2 of 1

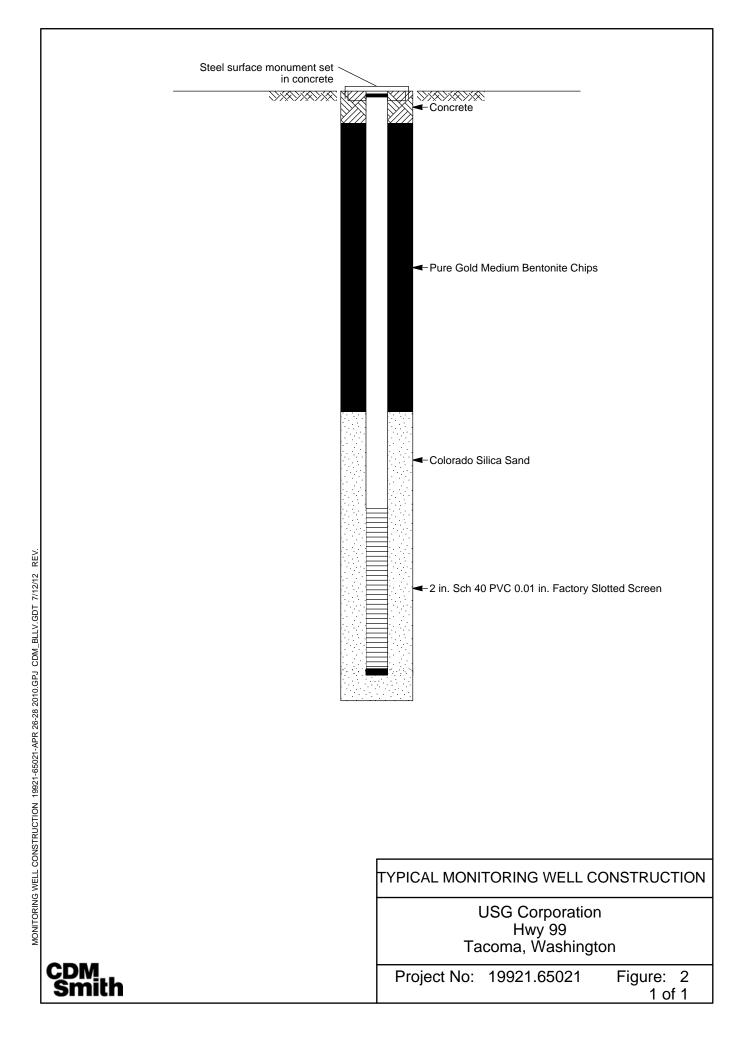

							-					
		e No.	e t (%)	Dry Density (pcf)	PID (ppm) [reading/background]	ation ince / 6 in.)	(feet)				Boring Log GP-2	set)
	Other Tests	Sample No.	Moisture Content (%)	Dry Den	PID (ppm [reading/b	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)
							-		SM		2 inches Concrete. Silty SAND (SM), brown, with gravel, moist (Fill). SILT (ML), gray, with organics, moist (Fill).	
							2		ML			
							4		SM		<u>Trace organics.</u> Silty SAND (SM), gray, with gravel, moist (Fill).	
							8 10 				No recovery from 8 to 12 ft bgs.	
06 REV.							12— - _14—		SM		Silty SAND (SM), gray, with gravel, saturated in shoe.	
CDM_BLLV.GDT 11/6/C					100		- - 16-	(1)	ML SP		SILT (ML), dark gray, saturated. SAND (SP), dark gray, trace silt, saturated, sand is interbedded with silt and silty sand. Boring terminated at 16 ft bgs.	
NEIS_BORING_LOG_FIFE GP_LOGS 6-06.GPJ_CDM_BLLV.GDT_11/6/06_REV.	Surface El									Eq	Groundwater encountered at 13.5 ft bgs. Drill Rig:	
NEIS BORING											USG Interiors Fife Fife, Washington	<u> </u>
	CDM										Boring Log GP-2 Figure: I Project No: 19921.38072 1 or	f 1

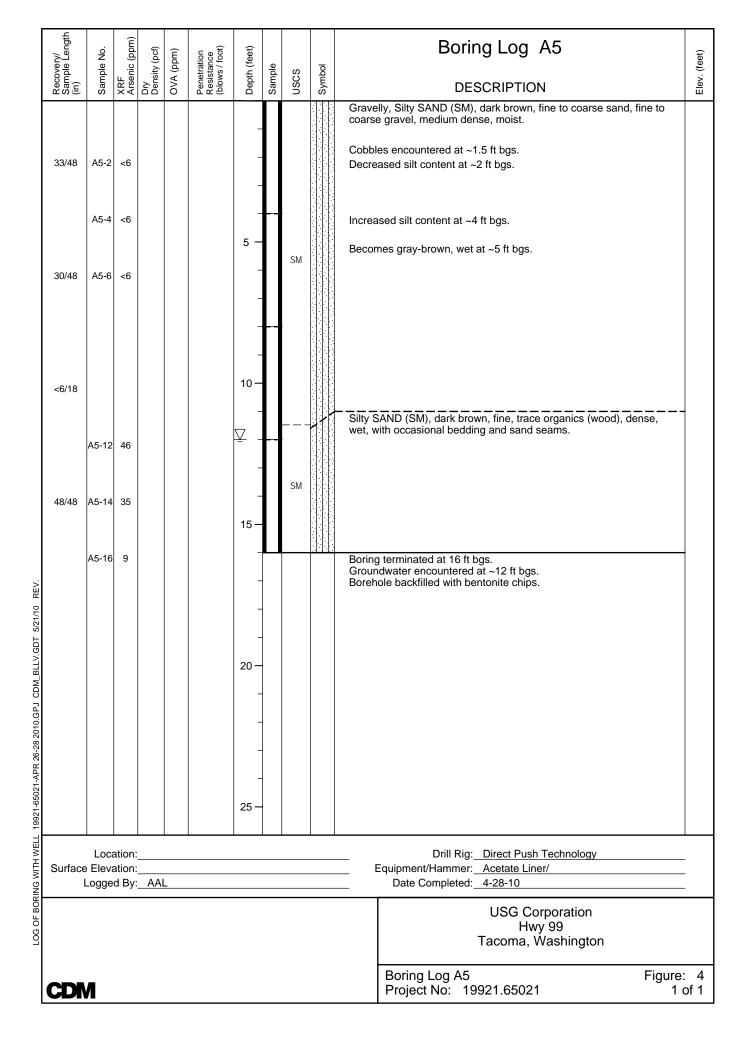

			(9	(pcf)	round]		tì			<u> </u>	Boring Log GP-3	_
	Other Tests	Sample No.	Moisture Content (%)	Dry Density (pcf)	PID (ppm) [reading/background]	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	nscs	Symbol		Elev. (feet)
	đ, đ	Sai	CMO	Dry	PID [read	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Del	Sar	SU	SV SV	DESCRIPTION	Шe
							-				Silty SAND (SM), brown-gray, with gravel, moist (Fill).	
							-					
							2 -		SM			
							-					
							-					
							4 -		ML		<u>SILT (ML), gray, with gravel, moist.</u> Silty SAND (SM), gray, with gravel, moist (Fill).	
							-					
							6					
							_					
							- 8		SM		Becomes wet.	
							-				Becomes wet.	
							Ÿ 10-				Becomes wet to saturated.	
							-					
								_			Silty SAND (SM), brown, wet to saturated, interbedded with	
							12-	(1)	SM		sand.	
							_		SIVI			
REV.							-	\sim			SAND (SP), brown/black/red, fine grained, saturated, interbedded with silty sand and silt.	
1/6/06							14 —	$\overline{)}$	SP			
.GDT 1							-					
M_BLLV							- 16-	Ц	ML		SILT (ML), brown-gray, moist.	
SPJ CDI							-				Boring terminated at 16 ft bgs. Groundwater encountered at 9.9 ft bgs.	
S 6-06.0							_					
NEIS BORING LOG FIFE GP LOGS 6-06.GPJ CDM BLLV.GDT 11/6/06					Ĩ							
3 FIFE	Surface El	Statio evatio								E(Drill Rig: <u>Power Probe 9630 Pro</u> quipment/Hammer: <u>Continuous/</u>	-
NG_LO(Ву:/	AEM						_	Date Completed: 6-5-06	
S_BORI											USG Interiors Fife	
IEN											Fife, Washington	
	CDM										Boring Log GP-3Figure: EProject No: 19921.380721 of	34
l											Project No: 19921.38072 1 of	1


·

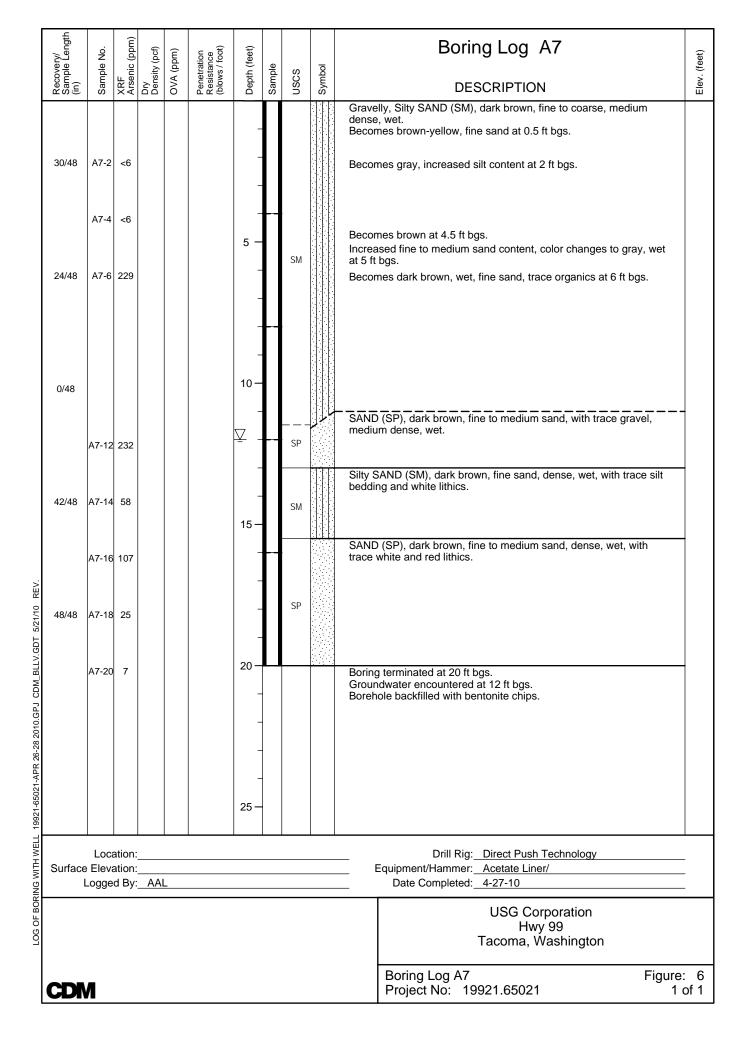
ſ					· · · · ·		1			1		
	L //	Sample No.	Moisture Content (%)	Dry Density (pcf)	PID (ppm) (reading/background)	Penetration Resistance (blows / 6 in.)	Depth (feet)	sle	cs.	20	Boring Log GP-4	Elev. (feet)
	Other Tests	Samp	Moist Conte	Dry De	PID (pp [reading	Pener Resis (blow	Depth	Sample	uscs	Symbol	DESCRIPTION	Elev.
							-		GP		Base Course Grave!. Silty SAND (SM), brown, with gravel, moist.	
							2				Becomes gray, moist to wet (Fill).	
							4		SM			
							6					
							8 - - - -	(Becomes wet. Silt (ML), gray, wet to saturated.	
							10)	ML		Circ (inic), gray, wor to bacdrated.	
REV.							12				SAND (SP), brown-gray, with organics, saturated, interbedded with silt and silty sand.	
BLLV.GDT 11/6/06							14		SP			
NEIS BORING LOG FIFE GP LOGS 6-06.GPJ CDM BLLV.GDT 11/6/06 REV.							16				Boring terminated at 16 ft bgs. Groundwater encountered at 9.3 ft bgs.	
NG_LOG_FIFE GP	Surface El			AEM			· · · · · ·			_ E0	Drill Rig: <u>Power Probe 9630 Pro</u> quipment/Hammer: <u>Continuous/</u> Date Completed: <u>6-5-06</u>	
NEIS BORI											USG Interiors Fife Fife, Washington	<u>. </u>
	CDM										Boring Log GP-4Figure:Project No:19921.380721 c	B5 of 1

		Sample No.	Moisture Content (%)	Dry Density (pcf)	PID (ppm) [reading/background]	Penetration Resistance (blows / 6 in.)	Depth (feet)	ole	S	ool	Boring Log GP-5	Elev. (feet)
	Other Tests	Sam	Moist Conte	å Ča	PID (pp [reading	Pene Resis (blow	Dept	Sample	nscs	Symbol	DESCRIPTION	Elev.
							- - 2 -		GP		Base Course Gravel. Silty SAND (SM), brown, with gravel, wet (Fill).	
							4				Becomes gray.	
							6 —		SM			
							8 - - - - - - - - - - - - - - - - - - -				Becomes wet.	-
							10		ML		SILT (ML), gray, with black sand, moist to wet, interbedded with brown silt and silty sand.	
11/6/06 REV.									SP		SAND (SP), brown-gray, fine grained, saturated.	
NEIS_BORING_LOG_FIFE GP_LOGS 6-06.GPJ_CDM_BLLV.GDT_11/6/06_REV.							- 16		ML		SILT (ML), brown-gray, interbedded with silty sand, moist to wet. Boring terminated at 16 ft bgs. Groundwater encountered at 9.3 ft bgs.	
ING LOG FIFE GP LOG	Surface E									Ec	Drill Rig: <u>Power Probe 9630 Pro</u> quipment/Hammer: <u>Continuous/</u> Date Completed: <u>6-5-06</u>	
NEIS BOR	CDM										USG Interiors Fife Fife, Washington Boring Log GP-5 Project No: 19921.38072 1 o	B6 f 1





1			<u>, </u>				1	<u> </u>		T		
		No.	(%)	Dry Density (pcf)	PID (ppm) [reading/background]	Penetration Resistance (blows / 6 in.)	(eet)				Boring Log GP-9	et)
	Other Tests	Sample No.	Moisture Content (%)	y Dens	D (ppm) ading/ba	enetra esistar Iows /	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)
	0F	S	ΣŰ	<u>ă</u>	II a.	σπ ΰ		ű	Ď	ۍ ا	2-1/2 inches Asphalt.	Ξ
							-		GP		Base Course.	
							-				Silty SAND (SM), brown, with gravel, moist (Fill).	
							_					
							2 -					
							_				Becomes gray.	
							_					
							_					
							4					
							_		SM			
							-		OW			
							6 -					
							_					
							-					
						r.	8 –					
							-				Becomes wet.	
											SILT (ML), dark brown, with organics, trace sand and gravel, moist.	
							_					
							¥0-	J	ML.			
							-		IVIL,		Becomes gray, trace organics.	
							_					
							12-				Silty SAND (SM), dark brown, moist.	
									SM		Becomes gray.	
							-					
>							-	\frown			SAND (SP), dark brown, saturated.	
REV.							14 —	\neg	SP			
1/6/06							-		01	· · · ·		
DT 1							-		ML	Ш	SILT (ML), dark brown, moist to wet.	
D'.							_		SM		Silty SAND (SM), dark brown, moist.	
M BI							16-	Ц	ML		SILT (ML), dark brown, moist.	
2							-				Boring terminated at 16 ft bgs. Groundwater encountered at 10 ft bgs.	
06.GF							-					
GS 6-												
NEIS BORING LOG FIFE GP LOGS 6-06.GPJ CDM BLLV.GDT 11/6/06												
-IFE (Statio				· · · · · · · · · · · · · · · · · · ·					Drill Rig: Power Probe 9630 Pro	_
90	Surface El		on: 3y:/			······				_ E0	quipment/Hammer: <u>Continuous/</u>	-
ING I		yeu i	_y. <u> /</u>							-	Date Completed: <u>6-6-06</u>	
BOR											USG Interiors	
NEIS											Fife	
											Fife, Washington	
	AB -										Boring Log GP-9 Figure: B	10
	CDM										Project No: 19921.38072 1 of	


					SOI	L CLASSI	FIC	ATION	I LEGEND		
		MAJOR	DIVISION	5		יד	YPIC		MES	SAN	IPLE TYPE SYMBOLS
		GRAVEL	Clean gra	vels with	GW	Well graded grave	els, gra	vel-sand mi	xtures		Disturbed bag or jar sample
		More than ha	little or n		GP	Poorly graded gra	ivels, g	ravel-sand i	mixtures		Std. Penetration Test (2.0" OD)
	i large	is larger tha	n 7e Grave		GM	Silty gravels, grav	el-sanc	d-silt mixture	es		Type U Ring Sampler (3.25" OD)
AINI	alf is 200 s		over 129	% fines	GC 📈	Clayey gravels, g	ravel-sa	and-clay miz	xtures		California Sampler (3.0" OD)
a C	No. 1	SANDS	Clean sa	nds with	SW	Well graded sand	s, grav	elly sands			
R S F	lore t than	More than ha	alf	o fines	SP	Poorly graded sar	nds, gra	avelly sands	6		
V	2	is smaller that	an Sondo	with	SM	Silty sand, sand-s	ilt mixt	ures		G	Grab Sample
		INO. 4 SIEVE SI			sc ///	Clayey sands, sar	nd-clay	mixtures		† U	Core Run
U.) _				ML	Inorganic silts and	d very fi	ine sands, r	ock flour, silty or	\square	Non-standard Penetration Test (with split spoon sampler)
ļ	naller				CL					CON	TACT BETWEEN LINITS
	is sr 0 sie	Liquic		50	F. K.						TAGT BETWEEN UNITS
AINF	o. 20					· ·	-				 Change in geologic unit
а С	e than				┝──┝┹┹						 Soil type change within geologic unit
UL1	More	Liquid I	imit greater tha	n 50					•		Obscure or gradational change
F	-			•	<u> </u>			0 1			
	DC				<u> </u>						ISTURE DESCRIPTION
Г	DE					AND STRUC		E (ENG		-	ry - Free of moisture, dusty
	sss	Parting: (1/6 cm)		Pocket:	Erratic, discontinu deposit of limited	ious 		Ū	Moi	st - Damp but no visible
	cing cing			nre	Lens:		vttituo		•		free water
	Spar	(1 1/4 to 30 1/2 c	m) (m				0 0	-	W	et - Visible free water, saturated
	or			,			Gene				
				, i	Interbedded	d: Alternating layers					
			1 · · · · · ·	- /							
										Bentor	
				, ,						Grou	ndwater Level 💆
12/12	Bloc				•	•				Slotte	ed Well Casing
. 11	Homo		- ·	. '							Sand Backfill
0. [DEL		ιςιτν							
- C	De		N (blows/ft)	Approx		Consistency			Approx. Undrained		
010.0	Verv	Loose	0 to 4			Very Soft	(0 to 2	<250	GSD	 Grain Size Distribution
6-28 2			4 to 10			Soft			250 - 500	MD	 Moisture Content/Drv Density
PR 2			10 to 30			Medium Stiff			500 - 1000	SĠ	 Specific Gravity
021-A			30 to 50			Stiff			1000 - 2000	RM	 Resilient Modulus
21-65	very	Dense	Over 50	85	- 100	Very Stiff Hard			2000 - 4000 >4000	TXP	 Triaxial Permeability
199.	Note			1					<u> </u>	Chem Corr	 Analytical Chemical Analysis Corrosion
GEN			ions in this repo	ort are ba	sed on visua	I field and laborate	ory obs	ervations.	which	DS	 Direct Shear
0N/LE										TX	 Triaxial Compression
CATIC	metho	ods in accorda	nce with ASTM	D 2488	were used as	s an identification o	guide.			ĊŬ	 Consolidated, Undrained
MAJOR DIVISIONS TYPICAL NAMES SAMPLE TYPE SYMBOLS gravels, gravels, gravels, gravels-and mixtures Disturbed bag or jar sample Disturbed bag or jar sample gravel, gravels, gravels, gravels-and mixtures Sile gravels, gravel-sand mixtures Disturbed bag or jar sample gravel, gravel, gravels, gravel-sand mixtures Sile gravels, gravel-sand-clay mixtures Disturbed bag or jar sample SANDS Gravel with twee stars Gravel with over 12% fines Gravel with sample Sile gravels, gravel-sand-clay mixtures Disturbed bag or jar sample SANDS Clave stars Gravel with over 12% fines Gravel with sands with over 12% fines Gravel with sample Gravel Gr											
L CLA	MAJOR DIVISIONS TYPICAL NAMES MAJOR DIVISIONS Characterization of the construction of the construlin of the construction of the construction of the constru										
Bit More hash hard with or on freed off Weid graded gravels, gravel-and miniates Description State Penetration Test (2) Bit More hash hard with or on freed off Gravel with or on freed off Gravel with or on freed off State Penetration Test (2) Bit More hash hard with or on freed off Gravel with or on freed off Gravel with or on freed off State Penetration Test (2) Bit More hash hard with or on freed off Gravel with or on freed off State Penetration Test (2) Type U Ring Gravel with or on freed off State Penetration Test (2) Bit More hash hard with or on freed off State with or on freed off State Penetration Test (2) Calorian Sampler (3) <											
1	СГ	M					-				
	Ś	mith						Proj	ect No: 1992	21.65	021 Figure: 1

	Recovery/ Sample Length (in)	e No.	XRF Arsenic (ppm)	/ (pcf)	(mqq	ation ance / foot)	(feet)	e		-	Boring Log A4	feet)
	Recov Sampl (in)	Sample No.	XRF Arseni	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)
	24/48	A4-2	<6				-		SM SW		Gravelly, Silty SAND (SM), brown-yellow, fine to medium sand, medium dense, moist. SAND (SW), gray, fine to coarse, loose, moist. Gravelly, Sandy SILT (ML), brown-gray, fine sand, fine to coarse gravel, very stiff, moist.	
	12/48	A4-4	11				5 —		ML		Becomes wet with increased fine to medium sand content at ~4 ft bgs.	
	24/48	A4-8 A4-10	<5 <6				- 10-		 SM		Gravelly, Silty SAND (SM), brown-gray, fine sand, fine to coarse gravel, dense, moist.	
		A4-12	<7				- _ 		 ML		Sandy SILT (ML), dark gray-brown, with trace organics (wood and rootlets) and gravel, medium stiff, wet.	
	42/48	A4-14					- 15 -		SM		with some silt bedding.	
ELL 19921-65021-APK 26-28 2010.6FJ CUM_BLEV.GU1 5/21/10 KEV.		A4-16					- 20 - - 25				Boring terminated at 16 ft bgs. Groundwater encountered at 13 ft bgs. Borehole backfilled with bentonite chips.	
עואפ איוים אבי	Surface										Drill Rig: Direct Push Technology Equipment/Hammer: Acetate Liner/ Date Completed: 4-28-10	
LUG UF BUR											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Ν									Boring Log A4Figure:Project No:19921.650211 c	

							1	-		1		
	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ole	S	0	Boring Log A6	Elev. (feet)
	Reco Samı (in)	Sam	XRF Arsei	Dry Dens	OVA	Pene Resis (blow	Dept	Sample	nscs	Symbol	DESCRIPTION	Elev.
	24/18	A6-2	<6				-				Gravelly, Silty SAND (SM), dark brown, fine to coarse sand, medium dense, moist. Brick debris encountered at ~0.5 ft bgs. Becomes brown at ~0.8 ft bgs.	
	6/48	A6-4	8				5 -		SM			
		A6-8	8				-				At 8 ft bgs, color changes to gray, wet, with increased silt content.	
	48/48	A6-10	46				10-		ML	<u> </u>	Sandy SILT (ML), dark gray, stiff, moist	
			-				<u> </u>		ML		Layer of black slag with solid waste debris up to 3 in. at 9.5 and 10 ft bgs.	
	48/48	A6-12 A6-14					- - 15 —		SM		SILT (ML), dark brown, stiff, moist, with occasional organics. At 10 ft bgs, color changes to gray-brown, trace organics. Silty SAND (SM), dark brown, fine, trace organics, dense, wet, with trace silt bedding.	
LOG OF BORING WITH WELL 19921-65021-APR 26-28 2010.GPJ CDM_BLLV.GDT 5/21/10 REV.		A6-16	9				- - 20 - - 25				Boring terminated at 16 ft bgs. Groundwater encountered at 11 ft bgs. Borehole backfilled with bentonite chips.	
NG WITH WELI	Surface										Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-28-10</u>	
LOG OF BORII											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Л									Boring Log A6Figure:Project No:19921.650211 o	

	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ole	0	lo	Boring Log A7 Abandoned	Elev. (feet)
	Reco Samp (in)	Samp	XRF Arser	Dry Densi	OVA	Penet Resis (blow	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev.
	36/48						-		SM		Gravelly, Silty SAND (SM), dark brown, fine to coarse, dense, moist. Becomes yellow-brown and 0.5 ft bgs. Becomes gray at 1 ft bgs. Increased silt content and decreased gravel at 2 ft bgs. Sandy SILT (ML), gray, fine sand, with trace fine to coarse gravel,	
							_		ML		stiff, moist. Silty SAND (SM), gray-brown, with some gravel, dense, moist.	
	18/48 <6/48						5 — - - - - - - - - - - - -		SM		eny en ale (en), gray eronn, mar como grater, conco, morea	
LOG OF BORING WITH WELL 19921-65021-APR 26-28 2010.GPJ CDM_BLLV.GDT 5/21/10 REV.							- 15 - - - - 20 - - - - - - - - - - - - - - - - - - -				Boring abandoned at 12 ft bgs. Moved south ~2 ft to start over. Borehole backfilled with bentonite chips.	
ZING WITH WEL	Surface L	Eleva									Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-27-10</u>	
LOG OF BOF											USG Corporation Hwy 99 Tacoma, Washington	
	CDN										Boring Log A7 AbandonedFigure:Project No:19921.650211 d	7 5f 1

Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ple	S	lo	Boring Log A8	T1011 (6004)
Recc Sam (in)	Sam	XRF Arse	Dry Dens	OVA	Pene Resis (blow	Dept	Sample	USCS	Symbol	DESCRIPTION	ī
						-				Gravelly, Silty SAND (SM), brown-yellow, fine to medium sand, medium dense, moist. Becomes gray-brown at 0.5 ft bgs.	
48/48	A8-2 A8-4	<6 118				-		SM		Becomes very dark brown, with fine sand and trace gravel, also trace solid waste at 3.5 ft bgs.	
48/48	A8-6	136				5 —				4 in. layer of slag at 6 ft bgs. At 6.5 ft bgs, color changes to gray-brown. Sandy SILT (ML), brown, fine sand with some organics (rootlets)	
	A8-8	28				-		ML		and trace gravel, medium stiff, wet. At 8 ft bgs, color changes to gray-brown. \sim 2 in. sand layer at 9 ft bgs.	
21/48	A8-10	<6				10-		ML		Sandy SILT (ML), dark brown, fine sand, with some organics, medium stiff, moist.	
		_						 		SAND (SP), gray, fine to medium sand, loose, wet.	1
	A8-12	<6				-		ML		Sandy SILT (ML), dark brown, fine sand with some organics, medium stiff, moist.	
42/48	A8-14	<6				⊻ _ 15−		SM		Silty SAND (SM), dark brown, fine, with some fine to medium sand seams, dense, wet.	
	A8-16	<6				-				Boring terminated at 16 ft bgs. Groundwater encountered at 14 ft bgs. Borehole backfilled with bentonite chips.	
						20	-				
						- - 25	-				
Surface I										Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-28-10</u>	-
										USG Corporation Hwy 99 Tacoma, Washington	
										Boring Log A8 Figure	_

	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ole	S	ol	Boring Log A9	Elev. (feet)
	Reco Samp (in)	Samp	XRF Arser	Dry Densi	ΟVΑ	Penet Resis (blow:	Dept	Sample	NSCS	Symbol	DESCRIPTION	Elev.
	24/48	A9-2 A9-4					-	-	SM		Silty SAND (SM), light gray, fine to coarse sand, some coarse gravel, rounded, loose, moist.	
	40/48	A9-6	7				5 —		ML		SILT (ML), gray-brown, trace sand, abundant rootlets, medium stiff, moist, low plasticity.	
		A9-8	<6				-		SM		Silty SAND (SM), gray, fine sand, medium dense, moist, some silt interbeds (1/4 in. thick).	
	48/48	A9-10	7				10 <i>−</i> ⊻		ML		SILT (ML), gray-brown, abundant rootlets and organic material, trace fine sand, moist, low plasticity.	
		A9-12	6				-		SW	0 0 0 0	SAND (SW), dark gray, well graded, fine to coarse sand, subangular to subrounded, medium dense, wet.	
	48/48	A9-14					15-		SM		Silty SAND (SM), gray-brown, fine sand, subangular to subrounded grains, medium dense, wet.	
LOG OF BORING WITH WELL 19921-65021-APR 26-28 2010.GPJ CDM_BLLV.GDT 5/21/10 REV.		A9-16	<6				- - 20 - - - -	-			Boring terminated at 16 ft bgs. Groundwater encountered at 11.5 ft bgs. Borehole backfilled with bentonite chips.	
19921-65							25 —					
JRING WITH WELL	Surface							I		I	Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-29-10</u>	
LOG OF BO											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Л									Boring Log A9Figure:Project No:19921.650211 o	

_			_									
	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ele	0	Q	Boring Log B2	Elev. (feet)
	Reco Samp (in)	Samp	XRF Arser	Dry Densi	OVA	Penet Resis (blows	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev.
	36/48	B2-2 B2-4	<6				-		SM		Gravelly, Silty SAND (SM), brown-yellow, fine to medium sand, fine to coarse gravel, dense, moist. Becomes gray-brown at 1 ft bgs.	
		D2-4	12				5 -					
	36/48	B2-6	<6				-	-	ML		Gravelly, Sandy SILT (ML), gray, fine sand, fine to coarse gravel, medium stiff. Becomes gray-brown at 5.5 ft bgs.	
		B2-8	<6				-				Sand becomes fine to coarse at 8 ft bgs. Sandy SILT (ML), dark brown, with some organics, medium stiff, moist.	
	30/48	B2-10	7				10-		ML		Becomes gray with trace organics at 10 ft bgs.	
		B2-12	10				₽ -	Η			Becomes wet at 12 ft bgs.	
	42/48	B2-14	7						ML		SILT (ML), gray, with occasional iron mottling, very stiff, moist.	
											Becomes light gray (2 in. layer) then light brown at 15.5 ft bgs.	
921-00021-APR 20-28 2010.0PJ CUM_BLEV.GUT 9/21/10 REV.		B2-16	14				- 20 25	-			Boring terminated at 16 ft bgs. Groundwater encountered at 12 ft bgs. Borehole backfilled with bentonite chips.	
	Surface	Eleva									Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u>	
		Logge	и БУ	<u> </u>	L						Date Completed: <u>4-29-10</u>	
LUGULI											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Л									Boring Log B2Figure:Project No:19921.650211 o	10 of 1

							1					
	Recovery/ Sample Length (in)	le No.	XRF Arsenic (ppm)	Dry Density (pcf)	(mqq	ation ance / foot)	Depth (feet)	e		0	Boring Log B3	(feet)
	Recov Sampl (in)	Sample No.	XRF Arseni	Dry Densit	OVA (ppm)	Penetration Resistance (blows / foot)	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)
	36/48	B3-2	19				-				Gravelly, Silty SAND (SM), dark brown, fine to coarse sand, medium dense, moist. Becomes brown-yellow at 0.5 ft bgs. Becomes gray-brown at 2 ft bgs.	
	24/48	B3-4 B3-6	77 <6				5	-	SM		Becomes brown, with decreased gravel content at 5 ft bgs.	
	36/48	B3-8 B3-10	9 <6				- - - - - -		ML		Layer of dark brown, gravelly, silty sand (3 in. thick) with metal pieces, at 8.5 ft bgs. Sandy SILT (ML), gray-brown, with some gravel, medium stiff, moist. Becomes gray and wet, with increased sand content at 10 ft bgs. Gravelly, Silty SAND (SM), gray, fine to coarse sand, medium dense, wet.	
	36/48	B3-14 B3-15					- - 15		SM		4 in. layer of sawdust at 12.3 ft bgs. Silty SAND (SM), dark brown, fine sand, dense, wet, with occasional silt bedding.	
19921-65021-APR 26-28 2010.GPJ CDM_BLLV.GD1 5/21/10 REV.							- - 20 - - - - - - - - - - - - - - - - - -	-			Boring terminated at 16 ft bgs. Groundwater encountered at 10 ft bgs. Borehole backfilled with bentonite chips.	
ING WITH WELL											Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-27-10</u>	
LUG UF BUR.											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Л									Boring Log B3Figure:Project No:19921.650211 c	11 of 1

r	1	-		-		1					
Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ple	S	00	Boring Log B4	Elev. (feet)
Reco Sami (in)	Sam	XRF Arsei	Dry Dens	OVA	Pene Resis (blow	Dept	Sample	nscs	Symbol	DESCRIPTION	Elev.
36/48	B4-2	<6				-				Gravelly, Silty SAND (SM), dark brown, fine to coarse, medium dense, moist. Becomes gray-brown at 1 ft bgs. Increased silt content at 3 ft bgs.	
12/48	B4-4	<6				5		SM			
						 		ML		Sandy SILT (ML), gray, with some gravel, stiff, moist. Wet from 9 to 9.5 ft bgs. Significant wood debris (sawdust?) from 9.5 to 10 ft bgs.	•
30/48	B4-10	10				10	-	SM		Silty SAND (SM), gray, with some gravel, moist, dense.	
24/48	B4-14 B4-16					- 15 -	-			Silty SAND (SM), dark brown, fine, with organics, dense, moist. 3 in. layer of sand at 15 ft bgs. Becomes brown, with silt bedding and white lithics, trace organics at 15.3 ft bgs.	
48/48	B4-18	14				-					
	B4-20	6				20				Boring terminated at 20 ft bgs. Groundwater encountered at 9.5 ft bgs. Borehole backfilled with bentonite chips.	
Surface	e Eleva	ation:								Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-26-10</u>	-
										USG Corporation Hwy 99 Tacoma, Washington	
CD	M									Boring Log B4 Figure: Project No: 19921.65021 1	12 of 1

Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ple	S	pol	Boring Log B5	Elev. (feet)
Reco Samı (in)	Sam	XRF Arsei	Dry Dens	OVA	Pene Resis (blow	Dept	Sample	NSCS	Symbol	DESCRIPTION	Elev.
30/48	B5-2	35				-	-	GP		Sandy GRAVEL (GP), very dark brown, loose, moist. Gravelly, Silty SAND (SM), brown, fine to coarse sand and gravel, medium dense, moist. Becomes gray with fine to medium sand at 1.5 ft bgs.	-
36/48	B5-4 B5-6					5 -	-			Becomes brown-gray at 5 ft bgs.	
						-		SM		Gravel becomes fine to medium at 7 ft bgs.	
24/48	B5-8	<6				- 10 -	-			Becomes wet at 8.5 ft bgs.	
	B5-12	<6				-	-			Becomes loose at 12 ft bgs.	
48/48	B5-14	3140				- 		ML		Sandy SILT (ML), dark brown, with trace organics and bedding features, very stiff, wet, with layers of medium sand and gravelly, silty sand and organics to 0.25 in.	
48/48	B5-16 B5-18					⊻ - -	-	SM		Silty SAND (SM), dark gray-brown, fine, dense, wet, bedding features (6 in. thick).	
	B5-20	12				- 20 —		SP		SAND (SP), dark gray, fine to medium sand, medium dense, wet, with white and red lithics.	
						-	-			Groundwater encountered at 15.5 ft bgs. Borehole backfilled with bentonite chips.	
						25 —					
	e Eleva									Equipment/Hammer: Acetate Liner/	-
										USG Corporation Hwy 99 Tacoma, Washington	
CD	Л									Boring Log B5 Figure: Project No: 19921.65021 1 c	13 of 1

Recovery/ Sample Length (in)	e No.	XRF Arsenic (ppm)	/ (pcf)	(mdd	Penetration Resistance (blows / foot)	(feet)	e		_	Boring Log B6	
Recovi Sampli (in)	Sample No.	XRF Arseni	Dry Density (pcf)	OVA (ppm)	Penetra Resista (blows	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	
										Gravelly, Silty SAND (SM), dark brown, fine to coarse sand and gravel, medium dense, moist.	
						-				Becomes brown-yellow at 1 ft bgs. Becomes gray-brown, fine to medium sand at 1.3 ft bgs.	
30/48	B6-2 B6-4	24				-					
30/48	B6-6	7				5 —		SM		Layer of fine to coarse sand with fine to coarse gravel (3 in. diameter) at 4.5 ft bgs. Increased silt content, cobble encountered at 4.8 ft bgs.	
	B6-8	<6				-				At 9 ft bgs, becomes wet, 2 in. brick fragment.	
36/48	B6-10	11				10 —				At 10 ft bgs, decreased silt content, becomes dark brown.	
						-				SAND (SP), very dark brown-black, fine to medium sand, well	
	B6-12	8311				-	┞┨	SP		rounded sand, with glass-like gravel, loose, wet.	
						_				3 in. layer of sandy silt at 12.5 ft bgs. SAND (SP), gray, medium grained sand, medium dense, wet.	
						$\overline{\Delta}$		SP		Sandy SILT (ML), dark brown, very fine sand, with trace organics,	
45/48	B6-14	1123						ML		Mood debris (1 in.) at 14.4 ft bgs.	
						15 —		SM		Silty SAND (SM), dark brown, with silt bedding features, dense,	
	B6-16	65				-				Wet. SAND (SP), dark gray, fine to medium, dense, wet, with trace white lithics and silt bedding features.	
						-				Small wood fragment at 17 ft bgs.	
48/48	B6-18	28				-		SP			
						-				Increased white grains and some red lithics at 19 ft bgs.	
	B6-20	15				20 —				Boring terminated at 20 ft bgs.	
						-				Groundwater encountered at 13.75 ft bgs. Borehole backfilled with bentonite chips.	
						25 —					
	Loca	ation:								Drill Rig: Direct Push Technology	
Surface I	e Eleva	ation									
	-	-								USG Corporation	
										Hwy 99 Tacoma, Washington	
	Л									Boring Log B6 Figure: Project No: 19921.65021 1 c	

	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	le		ō	Boring Log B7	Elev. (feet)
	Reco ^r Samp (in)	Samp	XRF Arsen	Dry Densi	OVA	Penet Resist (blows	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev.
	36/48	B7-2	7				-	-	SM		Gravelly, Silty SAND (SM), fine to coarse sand, medium dense, dry. Becomes moist with increased silt content, yellow-red at 1 ft bgs. Becomes gray-brown at 1.5 ft bgs. Filter fabric encountered at 2.5 ft bgs. Rock encountered at 3 ft bgs.	
	42/48	B7-4 B7-6 B7-8	<7 119 39				- 5 -		SP		SAND (SP), dark brown, fine to medium sand, with some gravel and vitreous, needle-like grains, medium dense, moist. Layers of insulation-like material at 5 and 7.5 ft bgs. Also particles of the insulation-like material dispersed throughout. Possible hydrogen sulfide odor at 7.5 ft bgs.	
	45/48	B7-10	270				- 10− ⊻		ML		Sandy SILT (ML), dark brown, fine sand, with some organics, medium stiff, wet. Silty SAND (SM), dark brown, fine sand, dense, wet, with some silt	-
	48/48	B7-12 B7-14					-		SM		bedding features and trace white lithics.	
CDM_BLLV.GD1 5/21/10 REV.		B7-16	13				15 — - - 20 —	-			Becomes fine to medium grained at 15.5 ft bgs. Boring terminated at 16 ft bgs. Groundwater encountered at 11 ft bgs. Borehole backfilled with bentonite chips.	
בוע יוחיטיטיע גע-גע-אראר אריש און דעטיטיט איש דו דו דו דער איש דער								-				
	Surface	e Eleva									Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-27-10</u>	- -
LUG UF BUI											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Л									Boring Log B7Figure:Project No:19921.650211	15 of 1

		_							-		
Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ele		0	Boring Log B8	(feet)
Recov Samp (in)	Samp	XRF Arsen	Dry Densit	OVA	Peneti Resist (blows	Depth	Sample	USCS	Symbol	DESCRIPTION	Elev. (feet)
24/48	B8-2	8				-		SM		Gravelly, Silty SAND (SM), dark brown, fine to coarse sand, wet. Becomes yellow-brown at 0.5 ft bgs.	
	B8-4	<7				-				Cobble encountered at 3 ft bgs, becomes gray.	
48/48	B8-6	8				5 -		ML		Sandy SILT (ML), gray-brown, fine sand, with trace fine gravel and sand seams, stiff, moist.	
	B8-8	17				-		ML		Sandy SILT (ML), dark brown, fine sand, with numerous organics, stiff, moist. Becomes gray-brown, with decreased organics at 7.5 ft bgs. Becomes mottled gray-brown and light brown at 8.5 ft bgs.	
45/48	B8-10	14				⊻ 10-				Silty SAND (SM), dark brown, with trace silt bedding and sand layers, dense, wet. 2 in. brown organic-rich layer at 10.3 ft bgs.	
	B8-12	17				-		SM			
48/48	B8-14	12				- 15 —					
0.4.1.10 NEV.	B8-16	9				-				Boring terminated at 16 ft bgs. Groundwater encountered at 9.5 ft bgs. Borehole backfilled with bentonite chips.	
						20					
1 47 1 77 1 77 1 77 1 77 1 77 1 77 1 77						- - 25 –					
		ation								Drill Rig: Direct Push Technology	
Surfac		ation								Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-28-10</u>	
										USG Corporation Hwy 99 Tacoma, Washington	
CD	Μ									Boring Log B8Figure:Project No:19921.650211 c	16 of 1

ء												
Recovery/ Sample Length (in)	No.	XRF Arsenic (ppm)	pcf)	Ê	oot)	set)					Boring Log C2	et)
cover mple l	Sample No.	F enic (Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	Sample	nscs	Symbol			Elev. (feet)
Sar Sar (in)	Sar	XR Ars	DO	S	Per Res (blo	Det	Sar	N.			DESCRIPTION	Ele
								SM			ly, Silty SAND (SM), brown-yellow, fine to medium sand, n dense, moist.	ł
										Sandy	SILT (ML), gray-brown, fine sand, very stiff, moist, with onal iron mottling.	
36/48	C2-2	<6				-						
						-				Decon	nes gray with increased fine to medium sand at 2.5 ft bgs.	
	0.0											
	C2-4	9				5 —					sed gravel content at 4 ft bgs. yer of gravelly , silty sand at 4.5 ft bgs.	
						5		ML				
18/48												
						-						
	C2-9	<6										
						_						
						40					ased sand content at 9.3 ft bgs.	
24/48	C2-10	24				10-				mediu	SILT (ML), dark brown, with some organics, tine sand, m stiff, moist.	
						-		ML				
	C2-12	17								Becom	nes gray and brown mottled at 12 ft bgs.	
						-					AND (SM), dark gray-brown, fine, dense, wet, with some silt g and trace organics.	
42/48	C2-14	13				45		SM				
						15-						
	C2-16	8							:. · ; ;	Boring	terminated at 16 ft bgs.	
						-				Boreho	dwater encountered at 12.5 ft bgs. ble backfilled with bentonite chips.	
						-						
2						20						
						20 -						
						-						
						-						
						_						
						_						
						0.5						
						25 —						
		otion			<u> </u>							
Surfac	ce Eleva									E	Drill Rig: <u>Direct Push Technology</u> quipment/Hammer: <u>Acetate Liner/</u>	-
	Logge	d By:	AA	L							Date Completed: 4-28-10	
2											USG Corporation	
2											Hwy 99 Tacoma, Washington	
												4-
CD	Μ										Boring Log C2Figure:Project No:19921.650211 d	17 of 1

Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	Sample	USCS	Symbol	Boring Log C3 DESCRIPTION	Elev. (feet)
≌ ∽ .≡ 36/48	о С3-2	<8 <8		0		-	S	2	S	Gravelly, Silty SAND (SM), dark brown, fine to coarse sand and gravel, medium dense, moist. Becomes brown-yellow at 0.5 ft bgs. Increased silt, decreased gravel, sand is fine grained from 1.5 to 2 ft bgs. Becomes gray at 2 ft bgs.	ш
36/48	C3-4 C3-6	9 5				5 —		SM		Becomes gray-brown at 4 ft bgs. Filter fabric encountered at 6 ft bgs.	
12/48	C3-8	<6								Sandy SILT (ML), gray, fine sand, with trace gravel, mottling and organics, medium stiff.	_
	C3-12 C3-14					- - 		ML		Becomes dark brown at 13 ft bgs. Wood debris from 13.3 to 13.5 ft bgs. SAND (SP), gray, fine to medium sand, medium dense, wet.	
	C3-15 C3-16					15 —		SP		2 in. brown silty sand layer at 14.5 ft bgs. Silty SAND (SM), dark brown, fine sand, dense, wet, with trace	_
48/48	C3-18	64				-		SM		white lithics and silt bedding. 2 in. yellow discoloration at 17.5 ft bgs.	
	C3-20	29				20-		SP		SAND (SP), dark gray, with trace organics (wood fragments) and white and red lithics, dense, wet.	
42/48	C3-22 C3-24	7 9				-		ML		SILT (ML), gray-brown, with some bedding features, stiff, wet. Becomes dark gray at 23 ft bgs. Becomes gray with iron mottling at 23.5 ft bgs. Boring terminated at 24 ft bgs. Groundwater encountered at 14 ft bgs.	
Surface	e Eleva									Borehole backfilled with bentonite chips Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u>	
CUI	Л									USG Corporation Hwy 99 Tacoma, Washington Boring Log C3 Figure: Project No: 19921.65021 1	18 of 1

Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	sle	0	ğ	Boring Log C4	
Reco Samp (in)	Samp	XRF Arser	Dry Densi	OVA	Penet Resist (blows	Depth	Sample	nscs	Symbol	DESCRIPTION	
						_		SM		Gravelly, Silty SAND (SM), dark brown, fine to coarse, loose, moist. Becomes brown at 1 ft bgs.	
36/48	C4-2	7				-		ML		Sandy SILT (ML), brown-gray, stiff, moist, with some iron mottling and gravel.	
						-		SM		Gravelly, Silty SAND (SM), gray, dense, moist.	
	C4-4	10				-		— — - ML	╂	Sandy SILT (ML), brown, stiff, moist.	
						5 —				Gravelly, Silty SAND (SM), gray, fine sand, fine to coarse gravel, dense, moist.	
42/48	C4-6	7				-		SM		Becomes wet with increased silt content at 7 ft bgs.	
	C4-8	25				_				Sandy SILT (ML), brown-light brown, trace organics and sand layers and mottling, stiff, moist.	
						-					
36/48	C4-10					10-		ML		Becomes dark brown-gray mottled at 10.5 ft bgs.	
	C4-12					<u> </u>	_			Silty SAND (SM), dark brown, fine, trace organics and white lithics, wet, with occasional silt bedding.	
						-				wet, with occasional sit bedding.	
	C4-14					-		SM			
						15 —					
	C4-16	11				-				Boring terminated at 16 ft bgs. Groundwater encountered at 12 ft bgs.	
						-				Borehole backfilled with bentonite chips.	
						-					
						-					
						20 —					
						-					
						-					
						-					
						-					
						25 —					
		. 4: -									1
Surface		ation:									-
	Logge	d By:	AA	-							-
										USG Corporation Hwy 99 Tacoma, Washington	
										Boring Log C4 Figure: Project No: 19921.65021 1	

			_									
	Recovery/ Sample Length (in)	e No.	XRF Arsenic (ppm)	/ (pcf)	(mdc	ation ance / foot)	(feet)	a			Boring Log C5	feet)
	Recovi Sampli (in)	Sample No.	XRF Arseni	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)
	36/48	C5-2	8				-		SM		Gravelly, Silty SAND (SM), very dark brown, fine to coarse sand and gravel, loose, moist. Becomes brown-yellow at 0.5 ft bgs. Becomes brown with fine to medium sand at 2 ft bgs. Becomes gray at 2.5 ft bgs.	
	30/48	C5-4 C5-6 C5-8	12 <5 <6				5		SM		Gravelly, Silty SAND (SM), dark brown, fine to medium sand and gravel, medium dense, moist. Becomes gray, with fine sand and fine to coarse gravel. Trace wood debris encountered at 4.8 ft bgs. Becomes brown at 5 ft bgs. Becomes gray at 5.5 ft bgs.	
	48/48	C5-10	86				- _10- 		ML		Sandy SILT (ML), dark brown, with trace organics and bedding features, stiff, moist.	
		C5-12	48				-				2 in. brown layer at 10.5 ft bgs. Silty SAND (SM), dark brown, fine sand, dense, wet, with occasional silt bedding features.	
	48/48	C5-14	20				- 15 —		SM			
5/24/10 REV.	48/48	C5-16 C5-18					-					
CUM_BLLV.GUI		C5-20	14				20 —		SP		SAND (SP), dark gray, fine to medium, medium dense, wet, with white and red lithics. Boring terminated at 20 ft bgs.	
- 19921-65021-APR 26-28 2010.GPJ CUM							- - 25 —				Groundwater encountered at 10.5 ft bgs. Borehole backfilled with bentonite chips.	
NING WITH WELL		e Eleva									Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-26-10</u>	
											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Л									Boring Log C5Figure: 2Project No: 19921.650211 of	

		-	-	-						· · · · ·		
	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	le	(0	ō	Boring Log C7	Elev. (feet)
	Reco ^v Samp (in)	Samp	XRF Arsen	Dry Densit	OVA	Penet Resist (blows	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev.
	12/48						-		SM		Gravelly, Silty SAND (SM), dark brown, fine to medium sand, fine to coarse gravel, medium dense, moist. Sand becomes fine grained at 0.5 ft bgs.	
	42/48	C7-4					5				Becomes yellow-brown at 4 ft bgs. Becomes gray at 4.5 ft bgs.	
		C7-8	231				-		SP		SAND (SP), dark brown, fine to medium, with some gravel and green vitreous, needle-like grains, medium dense, moist, insulation-like material distributed throughout. Becomes wet at 8 ft bgs.	
	48/48	C7-10	125				10 <i>−</i> ⊻		ML		Sandy SILT (ML), dark brown, fine sand, with some organics, stiff, wet. 4 in. wood debris encountered at 9.3 ft bgs. Becomes brown at 9.5 ft bgs.	
		C7-12	23				-				Silty SAND (SM), dark brown, fine, with trace white lithics and silt bedding features, dense, wet. Trace seams (~0.4 in.) of sand from 12 to 16 ft bgs.	
	48/48	C7-14					- - 15		SM		Wood debris encountered at 15 ft bgs.	
LOG OF BORING WITH WELL 19921-65021-APR 26-28 2010.GPJ CDM_BLLV.GDT 5/24/10 REV.		C7-16	18				- 20 - - 25				Boring terminated at 16 ft bgs. Groundwater encountered at 10.8 ft bgs. Borehole backfilled with bentonite chips.	
RING WITH WELL	Surface										Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-27-10</u>	
LOG OF BOF											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	N									Boring Log C7Figure:Project No:19921.650211 c	21 of 1

		1	-	-		1	1					
	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ole	S	0	Boring Log C8	Elev. (feet)
	Reco Samp (in)	Samp	XRF Arser	Dry Densi	OVA	Penet Resis (blows	Dept	Sample	nscs	Symbol	DESCRIPTION	Elev.
	24/48	C8-2 C8-4	<6						SM		Gravelly, Silty SAND (SM), brown-yellow, fine to coarse, medium dense, moist. Becomes gray-brown with decreased silt and gravel content at 0.5 ft bgs.	
		C8-5.5					_		SP		Gravelly SAND (SP), black, fine to medium, with angular, vitreous	
	27/48	C8-6					- 		ML		gravel, medium dense, moist. Becomes wet at 6 ft bgs. Sandy SILT (ML), dark brown, with some organics (rootlets) and trace silt bedding, stiff, moist. Becomes brown to light brown mottled at 6.3 ft bgs.	
	45/48	C8-10	46				- 10 –	-	SM		Silty SAND (SM), dark gray-brown, with some silt bedding and layers and trace organics, dense, wet.	
		C8-12	45				-		ML		Sandy SILT (ML), dark brown, with some organics and trace silt bedding, medium stiff, moist.	
	48/48	C8-14	-				15		SM		Silty SAND (SM), dark gray-brown, with trace silt bedding and some sand layers, dense, wet.	
19921-65021-APR 26-28 2010.GPJ CDM_BLLV.GDT 5/24/10 REV.		C8-16	<6				- 20 - - - - - 25 -	-			Boring terminated at 16 ft bgs. Groundwater encountered at 8.5 ft bgs. Borehole backfilled with bentonite chips.	
LOG OF BORING WITH WELL	Surface				L			1		1	Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-28-10</u>	
LOG OF BORI											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	N									Boring Log C8 Figure: Project No: 19921.65021 1 o	

Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ole	0		Boring Log C9	Elev. (feet)
Reco Samp (in)	Samp	XRF Arser	Dry Densi	OVA	Penet Resis (blows	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev.
24/48	C9-2	59				-	-	SM		Silty SAND (SM), gray, fine to coarse, some coarse gravel and concrete debris, loose, moist.	
	C9-4	116				-		ОН		Organic SILT (OH), dark brown,soft, moist, abundant wood chips and decomposed wood.	
46/48	C9-6	31				5 —				SILT (ML), brown mottled with pale green, trace fine sand, medium	
	C9-8	13				-		ML		stiff, moist, low plasticity, abundant rootlets and wood fragments.	
48/48	C9-10	<6				- 10 -		SM		Silty SAND (SM), gray-brown, fine sand, subangular to subrounded, medium dense, wet, abundant interlayers of gray silt up to 1/4 in. thick.	
								SP		SAND (SP), gray, poorly graded, medium grained, subangular to subrounded, moist.	
	C9-12	<6				<u> </u>		SM		Silty SAND (SM), as at 8.5 ft bgs. SAND (SP), gray, poorly graded, fine sand, subangular to subrounded, trace silt, medium dense, wet.	
48/48	C9-14	<6				15 —		SP		2 in. fragment of wood.	
L 1992.1-6002.1-AFK 20-28.2010.0FJ CUM_BLLV.GU1 3/24/10 KEV.	C9-16	<6				20				Boring terminated at 16 ft bgs. Groundwater encountered at 12 ft bgs. Borehole backfilled with medium bentonite chips.	
Surfac	Loca ce Eleva Logge									Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-29-10</u>	
L06 01 B04										USG Corporation Hwy 99 Tacoma, Washington	
CD	Μ									Boring Log C9Figure:Project No:19921.650211 c	23 of 1

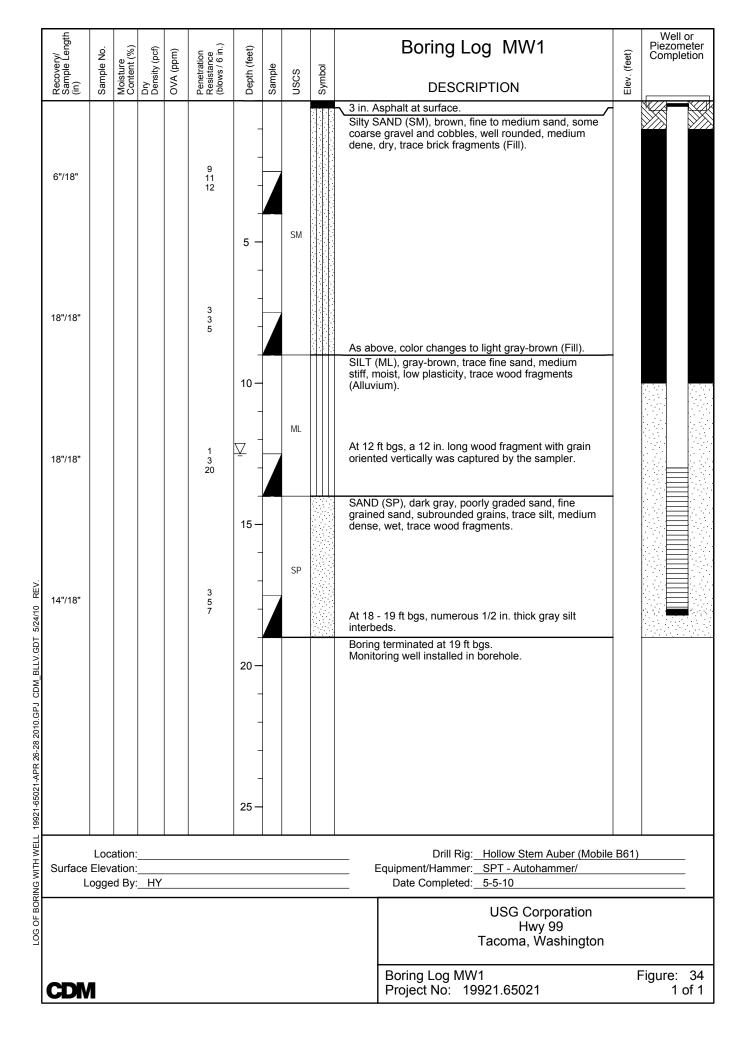
		-		-	_		-		-			
	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	le		ol	Boring Log C10	(feet)
	Recov Samp (in)	Samp	XRF Arsen	Dry Densit	OVA (Penetr Resist (blows	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)
	36/48	C10-2 C10-4					-	-	SM		Silty SAND (SM), brown, fine to coarse, some coarse gravel, well rounded, loose, dry, concrete debris.	
	48/48	C10-6	15				5 -		ОН		Organic SILT (OH), dark brown, soft, moist, abundant wood chips.	
		C10-8					-		ML		SILT (ML), gray-brown, trace sand, medium stiff, moist, low plasticity, abundant rootlets.	
	48/48	C10-10					- 10-	-	SM		Silty SAND (SM), gray-brown mottled with light gray, fine grained sand, subangular to subrounded, moist, minor interlayers of light gray silt up to 1/4 in. thick.	
		C10-12	<6				-				Boring terminated at 12 ft bgs. Borehole backfilled with medium bentonite chips.	
							- 15 - -	-				
3/21/10 REV.							-	-				
בס בטוט.טרט טטוא_מברע.טטו							20-					
PR 20-20 2010.9F							-	-				
4-17000-17661							- 25 -					
		Loca e Eleva Logge				 	· 	•		· 	Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-29-10</u>	
LUG UF BUF											USG Corporation Hwy 99 Tacoma, Washington	
	CD	Μ									Boring Log C10 Figure: Project No: 19921.65021 1 c	24 of 1

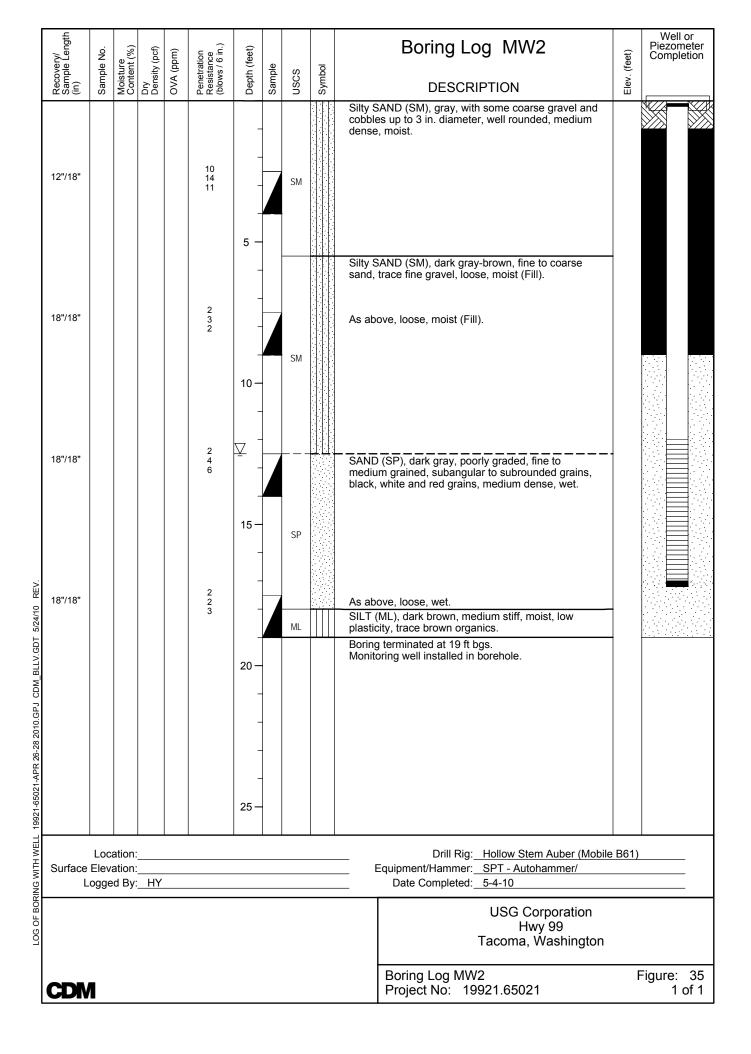
Recovery/ Sample Length (in)	e No.	XRF Arsenic (ppm)	(pcf)	(mdd	ation ance / foot)	(feet)	e		-	Boring Log D1	
Recov Sampli (in)	Sample No.	XRF Arseni	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	Sample	uscs	Symbol	DESCRIPTION	i
								GP		Asphalt over gravel base, asphalt is 2 in. thick. GRAVEL (GP), gray-brown, some sand, gravel is coarse, dry.	
						_		ML		SILT (ML), gray-brown, medium stiff, moist, low plasticity.	1
42/48	D1-2	12				_				Silty SAND (SM), gray-brown, some gravel, loose, moist.	
						_		SM			
	D1-4	<6				_				Sandy SILT (ML), some fine to coarse sand, some coarse gravel, medium stiff, moist, low plasticity, some asphalt and concrete	
						5 —				debris.	
24/48	D1-6	8				-		ML			
						_					
	D1-8	11				⊻ -				Silty SAND (SM), light gray, fine to coarse sand, some gravel, well	-
						-				rounded, coarse gravel, loose, wet.	
40/48	D1-10	<6				10 —		SM			
						-		5101			
	D1-12	9				_				Wood debris at 11.5 ft bgs.	
36/48						_				SILT (ML), dark brown, some sand, soft, moist, low plasticity, abundant organic material.	
00,10	D1-14	8				_		ML		1 in. layer of medium sand at 13 ft bgs. 1 in. long wood fragment at 13.5 ft bgs.	
		0				15 —					
						_				Boring terminated at 15 ft bgs. Groundwater encountered at 8 ft bgs. Borehole backfilled with bentonite chips.	
						_					
						_					
						20 —					
						20-					
						_					
						_					
						_					
						_					
						25 —					
	Loca	ation	<u> </u>					<u> </u>		Drill Rig: Direct Push Technology	
Surface		ation								Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-29-10</u>	_
		,. 								USG Corporation	_
										Hwy 99	
										Tacoma, Washington	
										Boring Log D1 Figure:	2

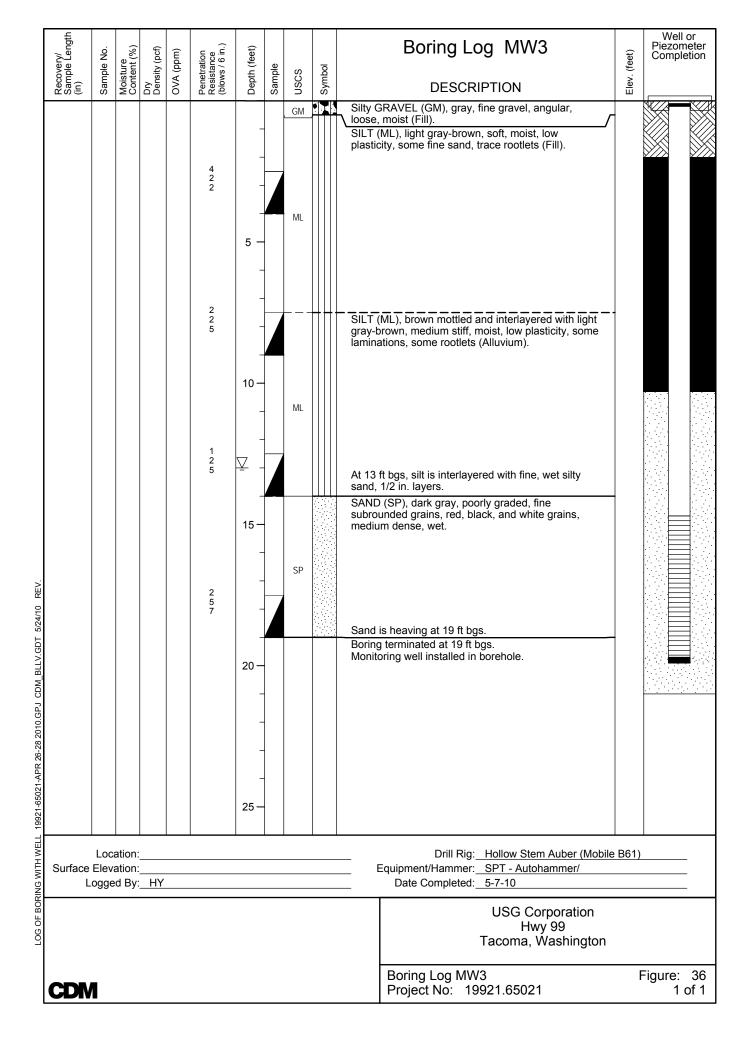
_		-	1		1	1	1	1	1		
ry/ Length	N	(mqq)	(pcf)	(mc	tion foot)	feet)				Boring Log D2	set)
Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)
						<u> </u>		_		Gravelly, Sandy SILT (ML), gray-brown, fine sand, very dense, moist.	_
						-					
36/48	D2-2	<6				_				Becomes brown at 2 ft bgs.	
	D2-4	20				_					
	02-4	20				5 -		ML			
30/48						-					
						-					
	D2-8	29				-				Becomes gray-brown, wet with increased fine to medium sand content at 8 ft bgs.	
						10-				Gravelly, Silty SAND (SM), gray, fine to coarse, loose, wet.	
33/48	D2-10	<6				- 10		SM			
	D2-12	<6				-				Sandy SILT (ML), dark brown, fine sand, with some organics, soft,	-
						<u>⊻</u> -		ML		Silty SAND (SM), dark gray to brown, fine, with trace silt bedding	•
48/48	D2-14	<6				-		SM		and organics, dense, wet, trace white lithics.	
						15 -					
	D2-16	7				-			<u>:::::</u>	Boring terminated at 16 ft bgs. Groundwater encountered at 12.5 ft bgs.	•
0 KEV.										Borehole backfilled with bentonite chips.	
1 9/24/						-	-				
BLLV.G						20-					
						-					
010.01						-					
2-02 21-1						-					
4-12069-1						25-					
1992											
Surfac	e Eleva										
	Logge	d By:		<u> </u>						Date Completed: <u>4-28-10</u>	
- 0 9 0 -										USG Corporation Hwy 99 Tacoma, Washington	
_											26
CD	Ν									Boring Log D2Figure:Project No:19921.650211	of 1

coverv/	Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	Sample	USCS	Symbol		Boring Log D3	Elev. (feet)
Re	Sa (in)	Sa	Ars	μΩ	0	bic Bree	De	Sa				DESCRIPTION	Ше
							_		SM		mediu	Ily, Silty SAND (SM), dark brown, fine to medium sand, m dense, moist.	
											Sandy	SILT (ML), brown, with some gravel, very stiff, moist.	
3	6/48	D3-2	7				-					nes gray from 2 to 2.5 ft bgs. nes brown and mottled from 2.5 to 3 ft bgs.	
		D3-4	20				- 5 -		ML				
3	6/48	D3-6	29				-					ayer of silty sand at 6 ft bgs. nes gray with silt bedding at 6.5 ft bgs.	
		D3-8	17				-					ever of silty sand at 8 ft bgs.	
4	8/48	D3-10	<6				- 10 -		ML		Sandy stiff, m	SILT (ML), dark gray, trace gravel, with organics, medium noist, silt bedding.	
							¥ -					AND (SM), dark brown, fine sand, dense, wet, with	
		D3-12	35				-				occasi	onal silt bedding features.	
3	6/48						- 15 -						
REV.		D3-16	24				-		SM				
5 4	8/48	D3-18	40				-						
LOG OF BORING WITH WELL 19921-55021-APR 26-28 2010.GPJ CDM_BLLV.GDT 5/24		D3-20	31				20 —				With w	/hite lithics at 19.5 ft bgs.	
28 2010.GF	8/48	D3-22	15				-					SILT (ML), gray-brown, very stiff, wet, with occasional ag and organics.	
PR 26-							_		ML				
19921-65021-4		D3-24	10				25 –				Groun	terminated at 24 ft bgs. dwater encountered at 11 ft bgs. ole backfilled with bentonite chips.	
NITH WELL		e Eleva									E	Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u>	
		Logge	d By:	AA								Date Completed: 4-26-10	
LOG OF BO												USG Corporation Hwy 99 Tacoma, Washington	
C	đ	Л										Boring Log D3Figure:Project No:19921.650211 o	27 f 1

-									-			
	Recovery/ Sample Length (in)	Sample No.	anic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	alqı	S	lodi	Boring Log D4	Elev. (feet)
	Reco Sam (in)	Sam	XRF Arse	Dry Dens	OVA	Pene Resi (blow	Dept	Sample	nscs	Symbol	DESCRIPTION	Elev
							-		SM		Gravelly, Silty SAND (SM), very dark brown, fine to medium sand, loose, moist. Becomes brown at 0.5 ft bgs.	
	6/48	D4-2	7				-		— — - ML		Sandy SILT (ML), gray-brown, medium stiff, moist. 2 in. layer of dark gray gravel at 2.5 ft bgs. Increased sand content from 3 to 3.5 ft bgs.	
	24/48	D4-4	<5				- 5 -		ML		Sandy SILT (ML), gray, fine sand, with trace gravel, stiff, moist.	
	10/10	D4-8					- 10 -		ML		Sandy SILT (ML), brown, stiff, moist. Trace organics, mottling and bedding features from 8 to 10.5 ft bgs.	
	42/48	D4-10	<4				∇					
		D4-12	14				-				Silty SAND (SM), dark brown, fine, with trace organics, dense, wet, occasional silt bedding features.	
	48/48	D4-14	15				- - 15		SM		4 in. wood fragment at 15.5 ft bgs.	
/24/10 REV.		D4-16	11				-				Borehole backfilled with bentonite chips.	
GPJ CDM_BLLV.GDT 5							20					
LOG OF BORING WITH WELL 19921-65021-APR 26-28 2010.GPJ CDM_BLLV.GDT 5/24/10 REV							- - 25 -					
SING WITH WELL	Surface										Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-26-10</u>	
LOG OF BOR											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Ν									Boring Log D4Figure:Project No:19921.650211 o	

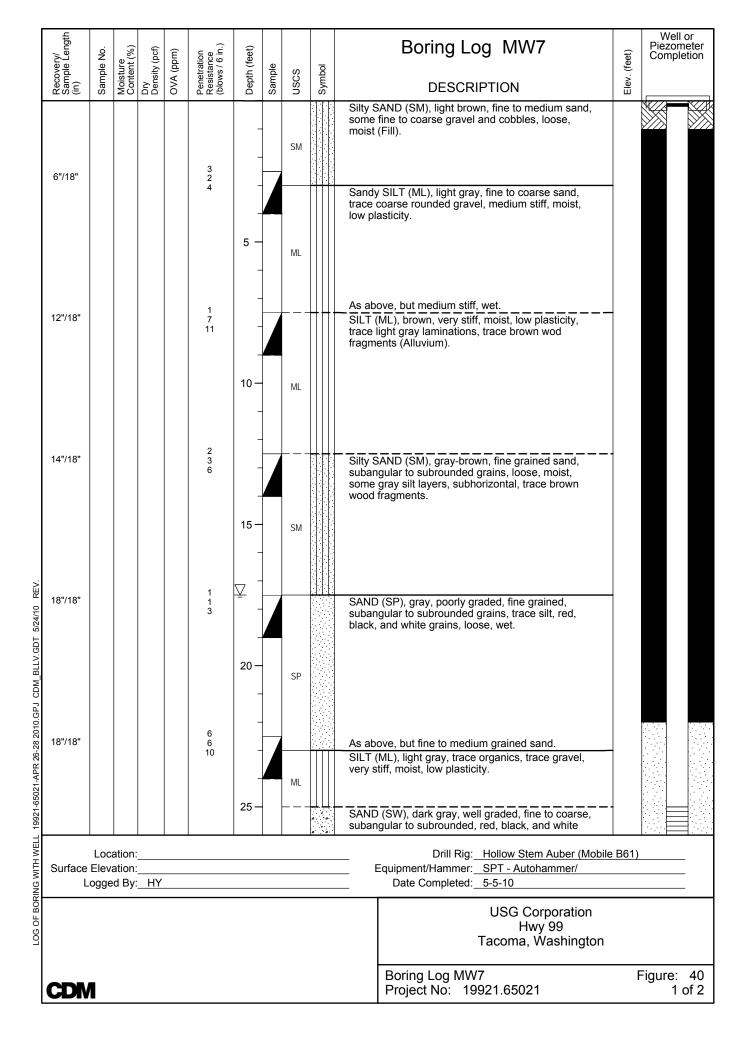

Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ple	ŵ	lod	ā	Boring Log D5	4
Recc Sam (in)	Sam	XRF Arse	Dry Dens	OVA	Pene Resis (blow	Dept	Sample	nscs	Svmbol	6	DESCRIPTION	Ī
								SM			Gravelly, Silty SAND (SM), very dark brown, fine to medium sand, medium dense, moist, with brick fragments.	
36/48	D5-2	9				-					Becomes gray-brown and moist at 2 ft bgs.	1
						_		SM			Silty SAND (SM), brown, fine, dense, moist. Becomes gray at 2.5 ft bgs.	
								ML			SILT (ML), gray, very stiff, moist.	
	D5-4	8				_		SM			Gravelly, Silty SAND (SM), brown, fine to coarse, medium dense, moist.	
36/48	D5-6	9				5		ML			Sandy SILT (ML), gray-brown, stiff, moist, with some iron mottling. Becomes dark brown at 5 ft bgs.	
30/40	D3-0	9				_					Sandy SILT (ML), very dark brown, with trace organics.	
	D5-8	7				-					Becomes mottled, with some bedding features at 8 ft bgs.	
42/48	D5-10	4				10 —		ML			Becomes brown at 10 ft bgs.	
	D5-12	7				⊻ _ -					Becomes wet, mottled with bedding features and trace organics at 12 ft bgs.	
48/48	D5-14	<6				-					SAND (SP), dark gray, fine, medium dense, wet, with bedding	+
						15 —		SP			features (mainly silt bedding), with white and red lithics. Silty SAND (SM), gray, fine, dense, wet, with bedding features.	-
	/ _					_		SM				
	D5-16	<0									Boring terminated at 16 ft bgs. Groundwater encountered at 12 ft bgs.	
						_					Borehole backfilled with bentonite chips.	
						-						
						-						
						20 —						
						20						
						-						
						-						
						_						
						_						
						25 —						
		ation:									Drill Rig: <u>Direct Push Technology</u>	_
Surface L	e Eleva Logge										_ Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-26-10</u>	-
	00,											-
											USG Corporation Hwy 99	
											Tacoma, Washington	
											Paring Log D5	_
) D	-										Boring Log D5Figure:Project No: 19921.650211	


Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	ole	(A)	ol	Boring Log D6
Reco Samp (in)	Samp	XRF Arser	Dry Densi	OVA	Penet Resis (blow:	Dept	Sample	nscs	Symbol	DESCRIPTION
36/48	D6-2	8						SM		Gravelly, Silty SAND (SM), dark brown, fine to medium sand, loose, moist. Cobble encountered at 0.5 ft bgs. Sandy SILT (ML), brown, fine sand, with trace organics, very stiff, moist.
00/40	D6-4	6				5 —		ML		3 in. silty sandy gravel layer at 4 ft bgs. Becomes gravelly, fine to coarse, wet at 4.5 ft bgs.
30/48	D6-6 D6-8	44 37				- ⊻ _	_			Gravelly, Silty SAND (SM), gray-brown, fine to coarse gravel, fine to coarse sand, loose, wet.
48/48	D6-10	<4				- 10 — -		N.AL		Sandy SILT (ML), dark brown, fine sand, with some organics, stiff, moist. Becomes light brown at 9.5 ft bgs. Becomes gray at 10 ft bgs. Becomes dark gray-brown at 10.5 ft bgs.
42/48	D6-12 D6-14					-		, ML		<1 in. layers of organics from 12.5 to 15 ft bgs. Becomes dark brown at 13 ft bgs.
-2/-10	D6-16					15 —		SM		Silty SAND (SM), dark gray-brown, fine to medium sand, dense, moist, with <1 in. organic layers. Becomes gray-brown, fine at 15 ft bgs. Boring terminated at 16 ft bgs.
						_				Groundwater encountered at 8 ft bgs. Borehole backfilled with bentonite chips.
						20 —				
						- - 25 —				
Surface I	Loca Eleva Logge	ation				·	·	· 		Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-27-10</u>
										USG Corporation Hwy 99 Tacoma, Washington
CDI	Л									Boring Log D6 Figure: 3 Project No: 19921.65021 1 of


	1	1		1		1	1	1	1		1
Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	Sample	S	Symbol	Boring Log D7	Elev. (feet)
Rec San (in)	San	Arse	Dry Den	0	Pen Res (blov	Dep	San	nscs	Syn	DESCRIPTION	Ele
12/48						-	-			Gravelly, Sandy SILT (ML), gray-brown, fine sand, medium stiff to stiff, moist.	
	D7-4	<6				-		ML		Becomes brown, no gravel at 4 ft bgs.	
30/48	D7-6	<6				5 -				Becomes gray, with trace organics at 5 ft bgs.	
						-				Sandy SILT (ML), gray-brown, fine sand, stiff, wet, with some mottling.	-
	D7-8	<6				- 7		ML		Silty SAND (SM), dark brown, fine sand, dense, wet.	
42/48	D7-10	<6				10 -	-				
	D7-12	<7				-	-	SM		Wood fragments encountered at 12.5 ft bgs.	
42/48	D7-14					15 –	-				
	D7-16	7				-	-			Boring terminated at 16 ft bgs. Groundwater encountered at 9 ft bgs. Borehole backfilled with bentonite chips.	
						20 -	-				
						-	-				
						- 25	-				
Surface						· 	·	· 		Drill Rig: Direct Push Technology Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-27-10</u>	- - -
										USG Corporation Hwy 99 Tacoma, Washington	
CDI	N									Boring Log D7Figure:Project No:19921.650211	31 of 1

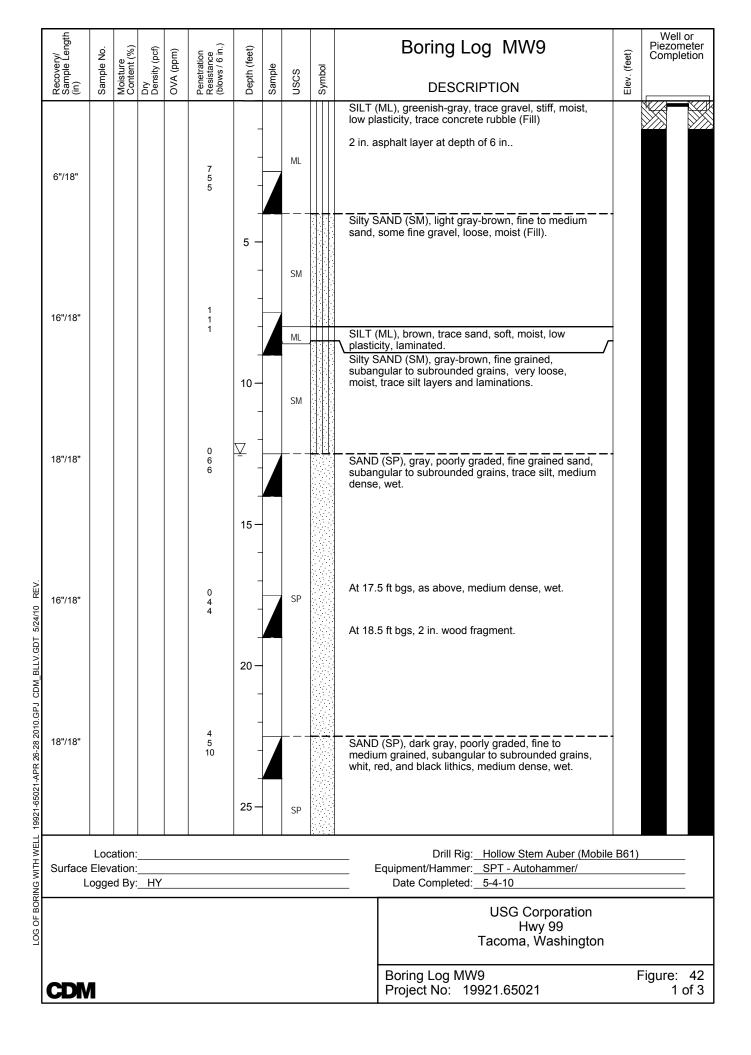
	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / foot)	Depth (feet)	e		0	Boring Log D8	Elev. (feet)
	Reco ^v Samp (in)	Samp	XRF Arsen	Dry Densit	OVA	Penet Resist (blows	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev.
	18/48	D8-1.5	5 24				-	-			Silty SAND (SM), medium brown, fine to coarse sand, some coarse gravel, subangular, medium dense, wet. Concrete debris from 2 to 5 ft bgs, trace wood fragments to 2 in.	
	18/48	D8-5	42				5	-	SM			
		D8-8	36				- 	-	ML		SILT (ML), gray-brown, medium stiff, moist, low plasticity, minor subhorizontal bedding laminations.	
	48/48	D8-10	34				- 0 -				Silty SAND (SM), gray, fine sand, subangular to subrounded, medium dense, wet, occasional silt layer up to 1/4 in. thick, bedding laminations.	
	36/48	D8-12 D8-14					-	-	SM			
		D8-16	10				15 -		SP SM		SAND (SP), dark gray, poorly graded, medium sand, subangular to subrounded, medium dense, wet.	
LL 19921-65021-APK 26-28 2010.GPJ CUM_BLLV.GDI 5/24/10 KEV.							- - 20 - - - - 25 -	-			Boring terminated at 16 ft bgs. Groundwater encountered at 10 ft bgs. Borehole backfilled with bentonite chips (Hydroplug 3/8 in.).	
וואפ עו וח עבו	Surface										Drill Rig: Direct Push Technology Equipment/Hammer: Acetate Liner/ Date Completed: 4-29-10	
LUG UF BUR											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Л									Boring Log D8Figure:Project No:19921.650211 o	

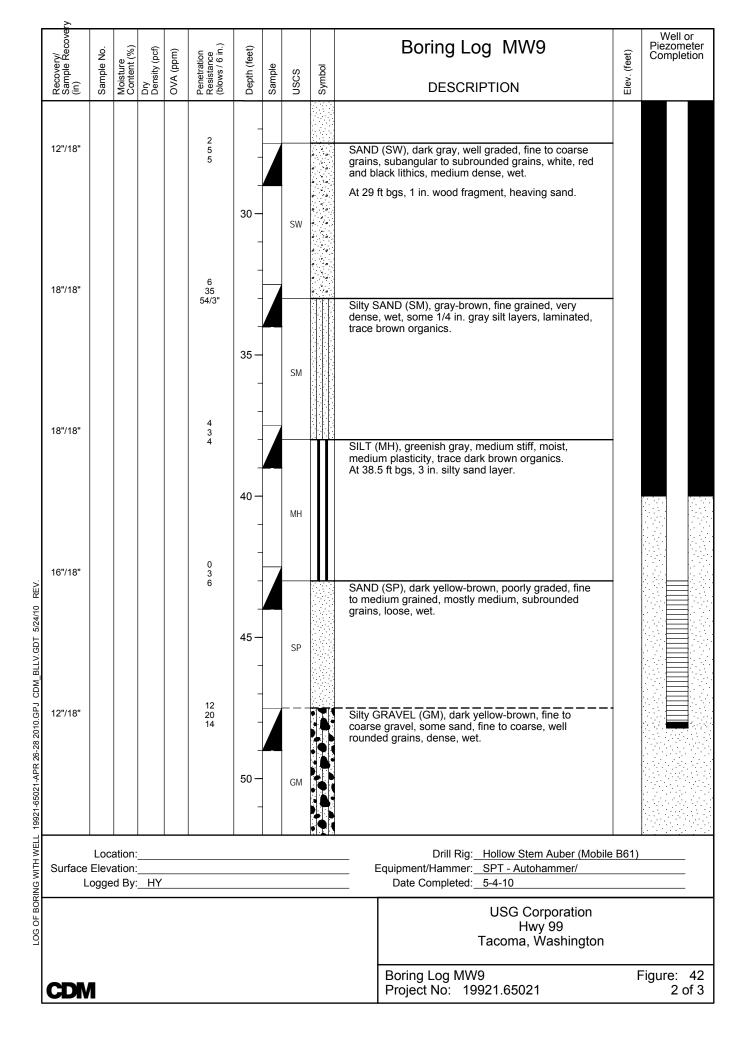
			_									
	Recovery/ Sample Length (in)	Sample No.	XRF Arsenic (ppm)	Dry Density (pcf)	(mdd	ation ance / foot)	Depth (feet)	e		0	Boring Log D9	(feet)
	Recov Sampl (in)	Sampl	XRF Arseni	Dry Densit	OVA (ppm)	Penetration Resistance (blows / foot)	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)
	13/48	D9-1					-	-	SM		Silty SAND (SM), medium brown, fine to coarse, subangular to subrounded, some well rounded gravel, loose, moist.	
		D9-4.5	5 11				5 —				Silt (ML), gray-brown, trace fine sand, medium stiff, moist, low plasticity, occasional silty sand interbed.	
	24/48	D9-6 D9-8					-	-	ML			
	48/48	D9-10	<6				<u>4</u> 0− -		SM		Silty SAND (SM), gray, fine sand, subangular to subrounded, medium dense, wet, minor interbeds of light gray silt 1/4 in. thick.	
ELL 19921-65021-APK 26-28 2010:GPJ CDM_BELEV:GDT 5/24/10 REV.		D9-12	<6				- - - - - - - - - - - - - - - - - - -				Boring terminated at 12 ft bgs. Groundwater encountered at 10 ft bgs. Borehole backfilled with bentonite chips.	
אווע אווע אוו	Surface I										Drill Rig: <u>Direct Push Technology</u> Equipment/Hammer: <u>Acetate Liner/</u> Date Completed: <u>4-29-10</u>	
LUG UF BUF											USG Corporation Hwy 99 Tacoma, Washington	
	CDI	Л									Boring Log D9Figure:Project No:19921.650211 o	33 f 1



Recovery/ Sample Length (in)	Sample No.	Moisture Content (%)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	SS	Symbol	Boring Log	MW4	Elev. (feet)	Well or Piezometer Completion
Rec Sar (in)	Sar	CMO	Der	Ň	Pen Res (blo	Dep	Sar	SOSU M	Syn	DESCRIPT Silty GRAVEL (GM), gray, ang		Ele	
12"/18"					1 2 3	- - - 5 -		MH		SILT (MH), light gray-brown, n medium plasticity, trace brown rootlets.	nedium stiff, moist,		
18"/18"					2 2 3	- - - 10				SILT (ML), brown mottled with moist, low plasticity, trace gray rootlets (Alluvium).	gray, medium stiff, y laminations, trace		
18"/18"					1 2 3	- - ⊻ - 15-		ML		At 13 ft bgs, trace SAND (SP) SAND (SP), dark gray, poorly sand, subrounded grains, very organics, red, whit, & black gra	graded, fine grained / loose, wet, trace		
18"/18"					0 0 1	-		SP		As above, very loose, wet.			
						20	-			Boring terminated at 20 ft bgs. Monitoring well installed in bor	ehole.		
						25 —	-						
Surface L	Elev									Drill Rig: <u>H</u> Equipment/Hammer: <u>Sl</u> Date Completed: <u>5-</u>		B61)	
											USG Corporation Hwy 99 Icoma, Washington		
CDN										Boring Log MW4 Project No: 1992	1.65021	F	Figure: 37 1 of 1

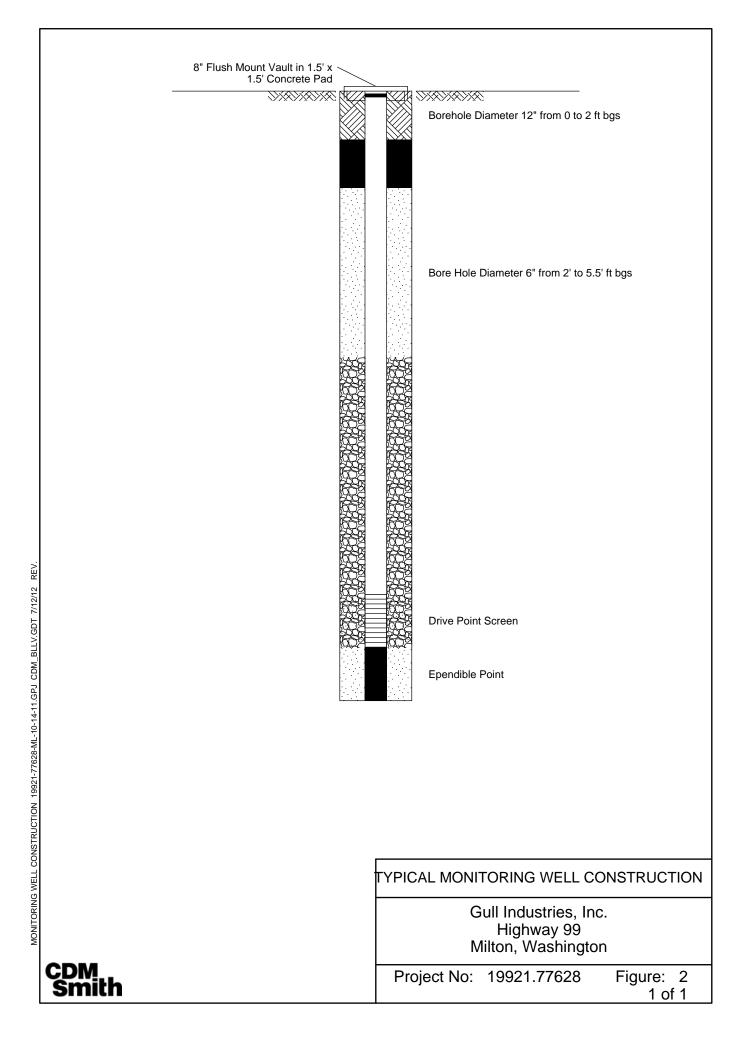
Recovery/ Sample Length (in)	Sample No.	Moisture Content (%)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / 6 in.)	Depth (feet)	ple	ŵ	pod	Boring Log MW5	Elev. (feet)	Piezo	II or meter pletion
Recc Sam (in)	Sam	Mois Cont		OVA	Pene Resis (blow	Dept	Sample	nscs	Symbol	DESCRIPTION	Elev		
						-		GP		GRAVEL (GP), light gray, coarse, angular, loose, dry (Fill).			
12"/18"					3 5 7	-		 SM		Silty SAND (SM), gray-brown, fine to medium sand, subangular, trace gravel, loose, wet (Fill).			
					7	-				SILT (ML), brown, firm, moist, low plasticity, some orange-brown oxidation, trace concrete fragments.			
						5 -	-	ML					
18"/18"					2 2 5	-				SILT (ML), gray-brown, trace sand, soft, moist, low plasticity, trace organics, some subhorizontal laminations (Alluvium).			
						10	-	ML				· - · - ·	r
14"/14"					1 1 2	-							
						⊻ _ 15−				SAND (SP), dark gray, poorly graded, fine to medium grained, mostly fine, subrounded grains, red, black and white colored grains, loose, wet, trace wood fragments.			
16"/18"					3 3 5	-		SP					
					5	- 20 -							
1						- 20	_			Boring terminated at 20 ft bgs. Monitoring well installed in borehole.			
						-	-						
						- 25 —							
	Elev									Drill Rig: <u>Hollow Stem Auber (Mobile</u> Equipment/Hammer: <u>SPT - Autohammer/</u> Date Completed: <u>5-6-10</u>	<u>B61)</u>	I	
										USG Corporation Hwy 99 Tacoma, Washington			
CDN	1									Boring Log MW5 Project No: 19921.65021	F	igure [:] 1	: 38 of 1


	Recovery/ Sample Length (in)	e No.	re it (%)	, (pcf)	(md	ation Ince / 6 in.)	(feet)	0		-	Boring Log MW6	ieet)	Well or Piezometer Completion
	Recove Sample (in)	Sample No.	Moisture Content (%)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)	
									GP		GRAVELLY (GP), light gray, coarse grained, angular, loose, dry (Fill).		
	12"/18"					4	-		ML		Sandy SILT (ML), dark brown, trace gravel, medium stiff, moist, low plasticity.		
	12 710					4 3 3	- - 5 —				SAND (SP), gray, poorly graded, medium grained sand, subangular to subrounded, trace fine gravel, loose, dry, trace wood debris (Fill).		
	2"/18"					8 12	-		SP		Sandy SILT (ML), dark brown, trace gravel, very		
						8	- - 10 –		ML		stiff, moist, low plasticity (Fill).		
	18"/18"					7 9 10	⊻ - - -		SM		Silty SAND (SM), gray-brown, fine grained sand, some gray silt interbeds, medium dense, wet (Alluvium).		
.GDT 5/24/10 REV.	0"/18"					7 10 12	- 15 - - -		SP		SAND (SP), dark gray, poorly graded, fine to medium subrounded grains, medium dense, wet, heaving at 20 ft bgs (description based on auger cuttings).		
LOG OF BORING WITH WELL 19921-65021-APR 26-28 2010.GPJ CDM_BLLV.GDT 5/24/10 REV							20 - - 25	-			Boring terminated at 20 ft bgs. Monitoring well installed in borehole.		
ING WITH WELL 199	Surface	Eleva									Drill Rig: <u>Hollow Stem Auber (Mobile</u> Equipment/Hammer: <u>SPT - Autohammer/</u> Date Completed: <u>5-6-10</u>	B61)	
LOG OF BOR											USG Corporation Hwy 99 Tacoma, Washington		
	CDIV										Boring Log MW6 Project No: 19921.65021	F	Figure: 39 1 of 1

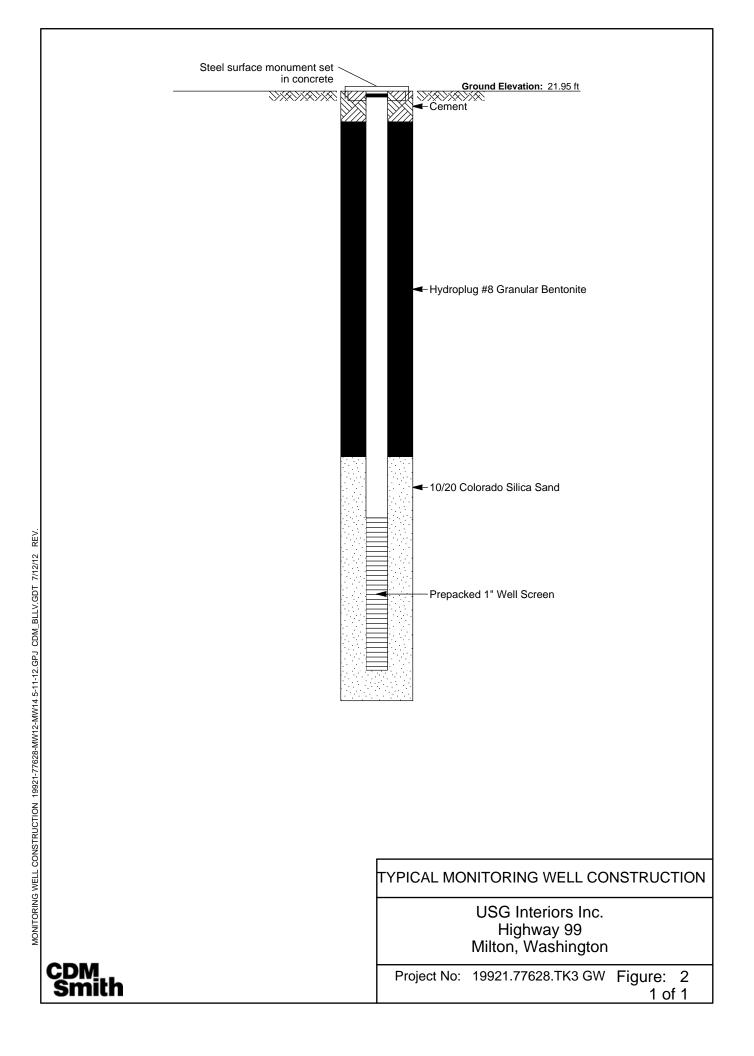


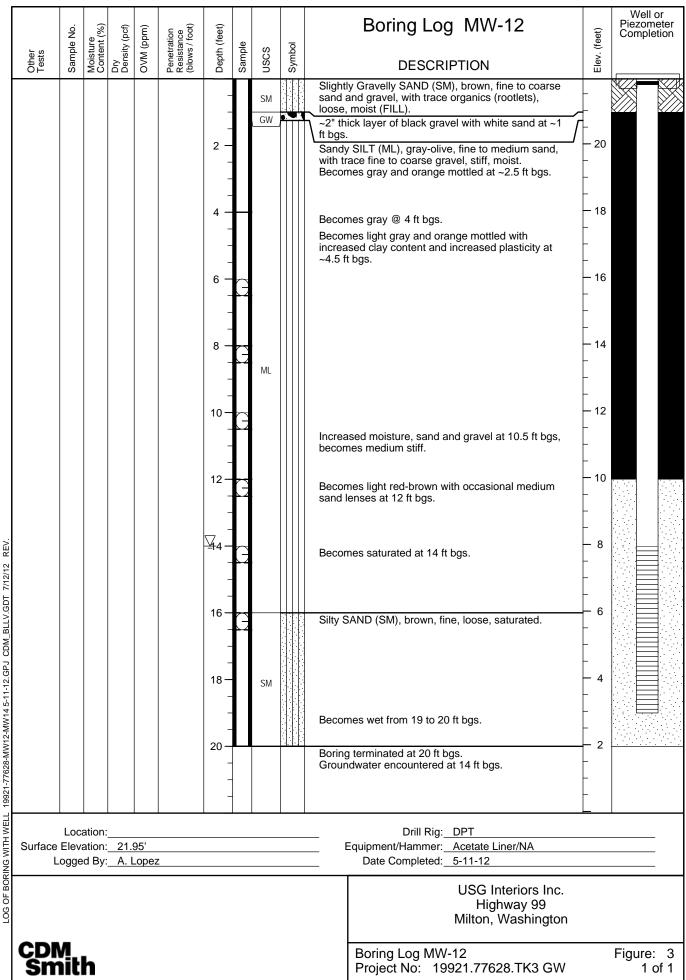
Recovery/ Sample Length (in)	e No.	re ìt (%)	/ (pcf)	(mdc	ation ance / 6 in.)	(feet)	Ð				Boring Log MW7	feet)	Well or Piezometer Completion
Recov Samplı (in)	Sample No.	Moisture Content (%)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	nscs	Symbol		DESCRIPTION	Elev. (feet)	
18"/18"					1	_		SW	a a a a	lithics	, medium dense, wet, heaving sand.	-	
10 / 10					1 2	-		SM	0.0	suban	SAND (SM), gray-brown, fine grained sand, gular to subrounded, very loose, wet, some horizontal silt layers.		
						30		SM		suban	SAND (SM), gray-brown, fine grained sand, gular to subrounded, medium dense, wet, 1/4" gray silt layers, subhorizontal.		
										mediu	(SP), dark gray, poorly graded, fine to m grained, subrounded grains, trace silt, m dense, wet.		
						-		SP ML		↑ moist,	ML), gray-brown, some fine sand, very stiff, low plasticity.		
						40				Boring Monite	g terminated at 39 ft bgs. bring well installed in borehole.		
						- 45							
						-							
						- 50 -							
						-							
Surface	Eleva					<u> </u>			· · · · · · · · · · · · · · · · · · ·	E	Drill Rig: <u>Hollow Stem Auber (Mobile B</u> Equipment/Hammer: <u>SPT - Autohammer/</u> Date Completed: <u>5-5-10</u>	861)	
											USG Corporation Hwy 99 Tacoma, Washington		
CDIV											Boring Log MW7 Project No: 19921.65021	F	igure: 40 2 of 2

Recovery/ Sample Length (in)	No.	те t (%)	(bcf)	(md	ttion nce 6 in.)	feet)				Boring Log MW8	eet)	Well or Piezomete Completior
Recové Sample (in)	Sample No.	Moistur Conten	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)	
								GP		GRAVEL (GP), light gray, coarse, angular, loose, dry, some concrete debris.		
12"/18"					1 1 1	-		SM		Silty SAND (SM), fine to medium sand, some fine gravel, very loose, moist.		¥7773 ¥7
						5 -		ML		Sandy SILT (ML), brown, fine to medium sand, soft, moist, low plasticity (Fill).		
18"/18"					2 2 1					SILT (ML), light gray-brown, interlayered with gray, fine silty sand at 7.5 to 8.5 ft bgs, soft, moist, low plasticity, subhorizontal laminations.		
14"/18"					3 3 4	- - 				SAND (SP), dark gray, poorly graded, fine to		
18"/18"					2 10	15		SP		medium grained sand, subrounded grains, trace brown organics, red, black, and white grains, loose, wet.		
					12	- 20 — -		ML		SILT (ML), light gray-brown, very stiff, moist, low plasticity, subhorizontal laminations of gray fine sand.		
18"/18"					2 3 4	-		SP		SAND (SP), dark gray, poorly graded, fine to medium sand, subrounded grains, loose, wet, trace wood fragments.		
						25 —				SILT (ML), gray, medium stiff, moist, low plasticity, some subhorizontal laminations and interbeds of fine SAND (SP).		
Surface	Eleva									Equipment/Hammer: <u>SPT - Autohammer/</u>	B61)	
										USG Corporation Hwy 99 Tacoma, Washington		
CDIV										Boring Log MW8 Project No: 19921.65021	ł	igure: 4 [°] 1 of 2


Recovery/ Sample Length (in)	Sample No.	Moisture Content (%)	Dry Density (pcf)	OVA (ppm)	Penetration Resistance (blows / 6 in.)	Depth (feet)	ole	S	loc		Boring Log MW8	Elev. (feet)	Well or Piezometer Completion
Reco Samp (in)	Samp	Moist Conte	Dry Densi	OVA	Penet Resis (blow:	Dept	Sample	nscs	Symbol		DESCRIPTION	Elev.	
18"/18"					5 7 7	-		ML SP		subro	0 (SP), dark gray, poorly graded, fine grained, unded grains, red, black and white grains, im dense, wet, some silt.		
18"/18"					2 3 7	30		SP-SM		subro	9 with SILT (SP-SM), dark gray, fine grained, unded grains, black, white and red grains, silt, medium dense, wet.		
						- 35 — -				mediu	(SP), dark gray, poorly graded, fine to Im grained, subrounded grains, trace silt, red, and whit grains, medium dense, wet.	•	
12"/18"					2 9 11	- - 40 —		SP		grains At 40 Boring	ft bgs, the sand is heaving.		
										Wornt	oring well installed in borehole.		
						-							
						- 50 — -							
Surface L										E	Drill Rig: <u>Hollow Stem Auber (Mobile B</u> Equipment/Hammer: <u>SPT - Autohammer/</u> Date Completed: <u>5-6-10</u>	B61)	
											USG Corporation Hwy 99 Tacoma, Washington		
CDN	/										Boring Log MW8 Project No: 19921.65021	F	Figure: 41 2 of 2

Recovery/ Sample Length (in)	e No.	ire 1t (%)	/ (pcf)	(mqa	Penetration Resistance (blows / 6 in.)	(feet)	е		-	Boring Log MW9	feet)	Well or Piezometer Completion
Recov Sampl (in)	Sample No.	Moisture Content (%)	Dry Density (pcf)	OVA (ppm)	Penetr Resista (blows	Depth (feet)	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)	· · · · · · · · · · · · · · · · · · ·
12"/18"					24 49 50/3"	- - 55 —		 SM		Silty SAND with GRAVEL (SM), fine to coarse gravel, well rounded, very dense, wet, till-like.		
/16"					14 34 50/4"	-	7			Silty GRAVEL (GM), gray, fine gravel, subangular to subrounded, very dense, wet, till-like.		
						60 — - - - - - - - - - - - - - - - - - - -				Boring terminated at 59 ft bgs. Monitoring well installed in borehole.		
						75 — -						
Surface L	Elev									Drill Rig: <u>Hollow Stem Auber (Mobile E</u> Equipment/Hammer: <u>SPT - Autohammer/</u> Date Completed: <u>5-4-10</u>	361)	
										USG Corporation Hwy 99 Tacoma, Washington		
CDN										Boring Log MW9 Project No: 19921.65021	F	igure: 42 3 of 3

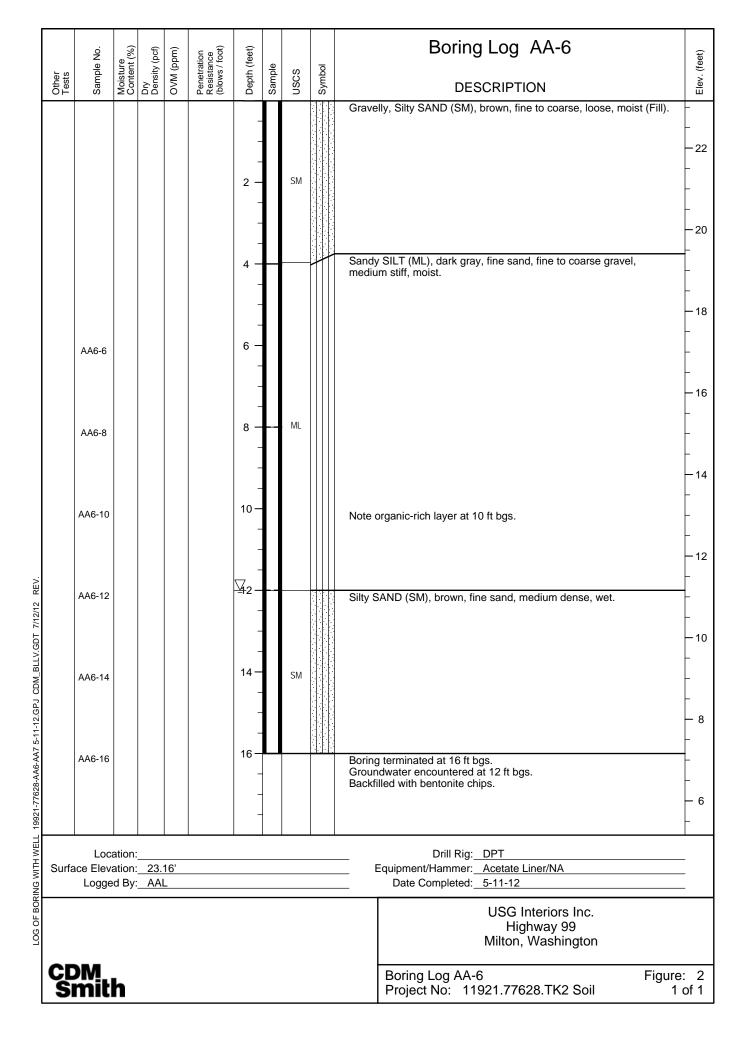

				ļ	SOI	L CLASSIF	FIC	ΑΤΙΟ	N	LEGEND						
	MAJOR D	VISIONS				ТҮ	AL N	AM	IES	SAMPLE TYPE SYMBOLS						
	GRAVELS	Clean grave	els with	GW	\mathbb{N}	Well graded grave	vel-sand	mixt	ures		Disturbed bag or jar sample					
COARSE GRAINED SOILS More than half is larger than No. 200 sieve	More than half	little or no		GP		Poorly graded grav	vels, g	els, gravel-sand mixtures				Std. Penetration Test (2.0" OD)				
ARSE GRAINED SO More than half is larger than No. 200 sieve	coarse fraction is larger than No. 4 sieve size	Gravel v		GM		Silty gravels, grave	el-sano	d-silt mixt	tures			Type U Ring Sampler (3.25" OD)				
AINI Palf is 200 s		over 12%	fines	GC	λ	Clayey gravels, gra	avel-s	and-clay	mixtu	ures	California Sampler (3.0" OD)					
Ron F	SANDS	Clean sand		SW	a. a	Well graded sands	, grav	elly sand	ls			Undisturbed Tube Sample				
ARSE More t thar	More than half coarse fraction	little or no	fines	SP		Poorly graded sands, gravelly sands						·				
	is smaller than No. 4 sieve size	Sands v		SM		Silty sand, sand-si	lt mixt	ures				Grab Sample				
		over 12%	fines	SC		Clayey sands, san	d-clay	mixtures	5			Core Run Non-standard Penetration Test				
er L	SII TS	AND CLAY	s	ML		Inorganic silts and clayey fine sands,	very f or cla	ine sands /ey silts \	s, roc with s	ck flour, silty or slight plasticity	Ŵ	(with split spoon sampler)				
FINE GRAINED SOILS More than half is smaller than No. 200 sieve	Liquid lin	mit less than 5		CL		Inorganic clays of l clays, sandy clays,	ow to silty o	medium clays, lea	plast an cla	ticity, gravelly lys	CON	NTACT BETWEEN UNITS				
NED alf is 200 s				OL		Organic clays and	0					 Change in geologic unit 				
han h No.	SILTS	AND CLAY	s	MH		Inorganic silts, mic silty soils, elastic s	aceou ilts	ceous or diatomaceous fine sandy or s				Soil type change within				
NE O fore t	Liquid lim	t greater than	-	СН		Inorganic clays of I	nigh p	h plasticity, fat clays				geologic unit				
⊑≥				ОН		Organic clays of m	edium	ium to high plasticity, organic silts				Obscure or gradational change				
	HIGHLY ORG	ANIC SOILS	6	PT	77 77 7 7 77 77 7 77 77	Peat and other hig	hly or	ganic soil	ls		мо	ISTURE DESCRIPTION				
DE	SCRIPTOR	S FOR S		STRA	TA /	AND STRUC	TUR	E (EN	IGL	ISH/METRIC	Dry - Free of moisture, dusty					
s	Parting: (1/6	s than 1/16 in. 5 cm)		Pock	et:	Erratic, discontinuc deposit of limited	ous	Near h	orizo	ontal: 0 to 10 deg.		ist - Damp but no visible				
ckne		6 to 1/2 in. 6 to 1 1/4 cm)	lie	Lens:		extent Lenticular deposit	Attitude	Low ar High a	•	-		free water				
al Thickn Spacing	(1 1	to 12 in. /4 to 30 1/2 cm	´ =	Varve					•	-	W	/et - Visible free water, saturated				
General Thickness or Spacing		2 in. (30 1/2 cm	,			Alternating seams of silt and clay Alternating seams	General					WELL COMPLETIONS				
	Scattered: < 1 per ft. (30 1/2 cm)															
			<i>`</i>									Concrete Seal Well Casing				
						• · · · · · · · · · · · · · · ·					Bentonite/Grout Seal —					
Slic	kensided	Breaks easily Polished, glo	ssy, fra	actured	plane	es .					Groundwater Level					
= Bloc		Breaks easily Disturbed tex			•	•					Slotted Well Casing					
2	ogeneous	Same color a	nd app	bearan	ce thro	oughout						Sand Backfill				
	RELAT		SITY	OR	CON		'S. S	S. SPT N-VALUE				meable Backfill				
	COAR	SE GRAIN	ED			I	FINE					SICAL PROPERTY TEST				
	ensity N	(blows/ft)		x. Rela nsity (%		Consistency	N (blows/ft)		pprox. Undrained Shear Str. (psf)	AL FC	Atterberg LimitsFines Content				
211	Loose	0 to 4		- 15		Very Soft		0 to 2		<250	GSD MC	 Grain Size Distribution Moisture Content 				
E Loose	-	4 to 10 10 to 30		- 35 - 65		Soft Medium Stiff		2 to 4 4 to 8		250 - 500 500 - 1000	MĎ Comp SG	 Compaction Test (Proctor) 				
Dens		30 to 50		- 85		Stiff		8 to 15 1000 - 20			CBR - California Bearing Ratio RM - Resilient Modulus					
Very	Dense	Over 50	85	- 100		Very Stiff		5 to 30		2000 - 4000	Perm TXP	 Permeability Triaxial Permeability 				
						Hard	0	ver 30		>4000	Cons Chem	 Analytical Chemical Analysis 				
Note		a in this report	are he		vieve	l field and laborator		oniotion		hich	Corr VS DS	 Vane Shear 				
includ	le density/consis	tency, moistur	e cond	ition, gr	ain siz	e, and plasticity es	timate	observations, which nates, and should not be				 Unconfined Compression Triaxial Compression 				
metho	ods in accordanc	e with ASTM	2488	were u	sed as	s an identification g	uide.	manual classification de. Where laboratory data				 Unconsolidated, Undrained Consolidated, Undrained 				
			0			ce with ASTM D 24	187. Г	7.				- Consolidated, Drained				
	ial symbols are ι int fines.	ised to indicate	e grave	and s	and ur	nits with 5 to 12					Interic ghway	ors Inc. ⁄ 99				
3. W	OR = weight of re	od.										hington				
СГ	M						┝									
S	mith							Project No: 19921.77628 Figure: 1								

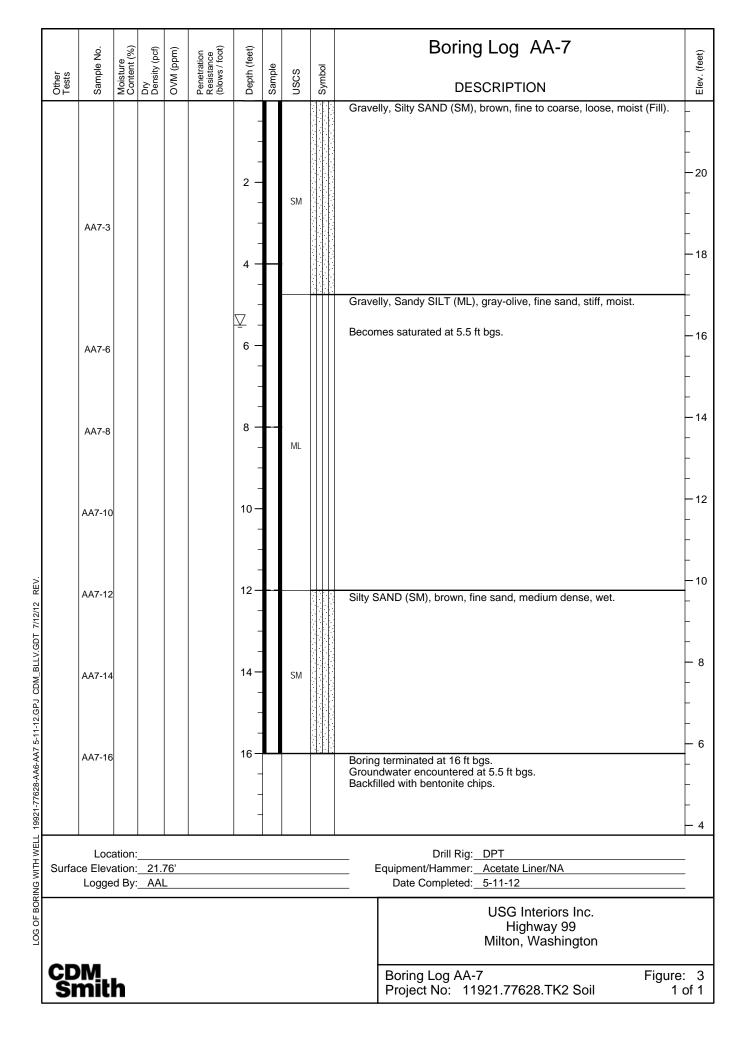


and BOD and BOD	SilT (ML), gray-brown, firm, moist, trace rootlets, by plasticity.		Sample No.	Moisture Content (%)	Dry Density (pcf)	(mqq) MVO	Penetration Resistance (blows / foot)	Depth (feet)	ole	(0	l lo		Boring Log MW10	Elev. (feet)	Wel Piezor Comp	l or neter letion
2 - ML 4 - ML 5oil not logged below 5.5 ft bgs. Soil not logged below 5.5 ft bgs. 8 - 10 - 10 - 10 - 10 - 10 - 8 - - - 10 - -	Location:	Other Tests	Samp	Moist Conte	Dry Densi	MVO	Penet Resis (blow:	Depth	Samp	USC:	Symb			Elev.		
At 10 ft bgs driller notes harder to drive the well 10	Location:							-		ML		low p	(ML), gray-brown, firm, moist, trace rootiets, lasticity.			
At 10 ft bgs driller notes harder to drive the well point.	Ar 10 tr bgs driller notes harder to drive the well point. 12 12 14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>Soil r</td><td>not logged below 5.5 ft bgs.</td><td></td><td></td><td></td></t<>							-				Soil r	not logged below 5.5 ft bgs.			
Boring terminated at 12.6 ft bgs. Groundwater first encountered at 6 ft bgs.	Location:							-				At 10 point	ft bgs driller notes harder to drive the well			
	Surface Elevation: Equipment/Hammer: Hand Auger & Drive/							-				Borin Grou	ng terminated at 12.6 ft bgs. ndwater first encountered at 6 ft bgs.			
USG Interiors Inc. Highway 99 Milton, Washington		CDN Sm	л hit	h									Boring Log MW10 Project No: 19921.77628		Figure 1	e: 3 of 1

Other Tests	Sample No.	Moisture Content (%)	Dry Density (pcf)	(mqq) MVO	Penetration Resistance (blows / foot)	Depth (feet)	Sample	USCS	Symbol	Boring Log MW11	Elev. (feet)	Well or Piezometer Completion
ŢĒ	s	ĕŏ		Ó	Pe B B B B B B B B B B B B B B B B B B B		Se	ML	δ Ι	DESCRIPTION SILT (ML).	ū	
						- 2 - - - - - - - - - - - - - - - - - -		SP		SAND with GRAVEL (SP), light yellowish-brown, poorly graded, fine to medium sand, 20% fine to coarse gravel, subrounded grains, well rounded, trace cobbles, medium dense, wet.		
						6	-	ML		SILT (ML), very dark brown, firm, moist, trace wood debris, trace rootlets, medium plasticity.		
						8 -	-	SM		Silty SAND (SM), gray, fine grained, subangular to subrounded, medium dense, wet.		
						10		SW	a a a	SAND (SW), gray, well graded, fine to coarse grained, subangular to subrounded, medium dense, wet, black, white, and red grains. Boring terminated at 10.5 ft bgs. Groundwater first encountered at 4.01 ft bgs.		
						- 12 - - -						
						14	-					
Surface L	Eleva	ation: ation: d By:								Drill Rig: Equipment/Hammer:_ <u>Hand Auger/</u> Date Completed:10-14-11		
										USG Interiors Inc. Highway 99 Milton, Washington		
CDI Sm	/ iit	h								Boring Log MW11 Project No: 19921.77628		Figure: 4 1 of 1

SOIL CLASSIFICATION LEGEND														
	MAJOR D	IVISIONS				TY	PIC	AL NA	MES	SAN	MPLE TYPE SYMBOLS			
6	GRAVELS	Clean grave	els with	GW		Well graded gravel	s, gra	vel-sand m	nixtures		Disturbed bag or jar sample			
COARSE GRAINED SOILS More than half is larger than No. 200 sieve	More than half	little or no	fines	GP		Poorly graded grav	els, g	ravel-sand	mixtures		Std. Penetration Test (2.0" OD)			
ED S large leve	coarse fraction is larger than No. 4 sieve size	Gravel	with	GM		Silty gravels, grave	l-sand	I-silt mixtu	res		Type U Ring Sampler (3.25" OD)			
ARSE GRAINED SO More than half is larger than No. 200 sieve	110. 4 SIEVE SIZE	over 12%	fines	GC	$\boldsymbol{\times}$	Clayey gravels, gra	vel-sa	and-clay m	ixtures		California Sampler (3.0" OD)			
Ro Lo R	SANDS	Clean sand	ls with	SW	a	Well graded sands,	grav	elly sands						
RSE ore the the theorem of theorem of the theorem of the theorem of the theorem of the theorem of theoremoon of theorem of theorem of theorem of theor	More than half	little or no		SP		Poorly graded sand	ls, gra	velly sand	ls	1 []	Undisturbed Tube Sample			
NoA	is smaller than	Sands v	with	SM	TT	Silty sand, sand-sil	mixt	ures		- G	Grab Sample			
Ŭ	No. 4 sieve size	over 12%		sc		Clayey sands, sand	I-clay	mixtures		1 U	Core Run			
ທຸ_				ML		Inorganic silts and clayey fine sands, d	/ery fi	ne sands, /ev silts wi	rock flour, silty or th slight plasticity		Non-standard Penetration Test (with split spoon sampler)			
FINE GRAINED SOILS More than half is smaller than No. 200 sieve	SILTS Liquid lir	AND CLAY mit less than 5	-	CL		Inorganic clays of lo clays, sandy clays,				CON	NTACT BETWEEN UNITS			
ED (If is si 00 sie				OL		Organic clays and								
KAIN No. 2(мн	ΤŤ	Inorganic silts, mica silty soils, elastic si	aceou	s or diaton	naceous fine sandy or		Change in geologic unit			
E GF e tha han N	SILTS	AND CLAY		СН	///	Inorganic clays of h	asticity, fa	t clays		Soil type change within geologic unit				
T Mor		il greater than	50	он	//		<u> </u>		asticity, organic silts	Obscure or gradational change				
			s	PT	* ~ ~ ~ ~ ~ ~ ~	Peat and other high		• •						
DE			-		<u></u> ΤΔ	, in the second s		·	GLISH/METRIC		DISTURE DESCRIPTION			
	less	s than 1/16 in.								. 1	Dry - Free of moisture, dusty			
ess		6 cm) 6 to 1/2 in. 6 to 1 1/4 cm)		Pocke	et:	Erratic, discontinuo deposit of limited extent	us Near horizontal: 0 to 10 deg. B Low angle: 10 to 45 deg. free water							
al Thickn Spacing		5 to 1 1/4 cm) to 12 in. /4 to 30 1/2 cm	Structure (Lens:		Lenticular deposit	Attitude	High ang		10	/et - Visible free water, saturated			
eral T or Spa	Seam: 1/16 to 1/2 in. (1/6 to 1 1/4 cm) Seam: 1/16 to 1/2 in. (1/6 to 1 1/4 cm) Dialogo Layer: 1/2 to 12 in. (1 1/4 to 30 1/2 cm) Stratum: > 12 in. (30 1/2 cm) O Scattered: < 1 per ft. (30 1/2 cm)				d:	Alternating seams of silt and clay	General	Near Ve	rtical: 80 to 90 deg.					
Gene	Scattered: < 1	per ft. (30 1/2 d	cm)	Lamir	nated:	Alternating seams	Ger							
Numerous: > 1 per ft. (30 1/2 cm) Interbedded: Alternating layers														
											Concrete Seal Well Casing			
	RUCTURE D Fractured	Breaks easily			e frac	tured planes				Bento	nite/Grout Seal ——			
Slic	kensided	Polished, glo	ssy, fr	, actured	plane	es					undwater Level 💆			
		Breaks easily Disturbed tex			•	•				Slott	ed Well Casing			
Homo	ogeneous	Same color a	ind ap	pearan	ce thro	oughout					Sand Backfill			
	RELAT		SITY	OR	CON	SISTENCY V	s. s	SPT N-	VALUE		meable Backfill htonite/Grouted			
L	COAR	SE GRAIN				F	INE	GRAIN		PHY	SICAL PROPERTY TEST			
	ensity N	(blows/ft)		ox. Relatinsity (%		Consistency	N (I	plows/ft)	Approx. Undrained Shear Str. (psf)	AL FC	 Fines Content 			
5 Í	Loose	0 to 4		- 15		Very Soft) to 2	<250	GSD MC	 Moisture Content 			
		4 to 10 10 to 30		5 - 35 5 - 65		Soft Medium Stiff		2 to 4	250 - 500 500 - 1000	MD Comp	 Compaction Test (Proctor) 			
Dens		30 to 50		5 - 65		Stiff		4 to 8 to 15	1000 - 2000	SG CBR	 California Bearing Ratio 			
0 N		Over 50		- 100		Very Stiff		5 to 30	2000 - 4000	RM Perm	 Permeability 			
1-1-12						Hard	0	ver 30	>4000	TXP Cons	- Consolidation			
<u>Note</u>	es:									Chem Corr VS	- Corrosion			
						I field and laborator				DS UC	 Direct Shear 			
⊋	•					e, and plasticity est ented herein. Visua				TX	 Triaxial Compression 			
4						s an identification gu ce with ASTM D 24		Where la	boratory data	ČŬ CD	 Consolidated, Undrained 			
2. Du	ual symbols are u	used to indicate	e grave	el and sa	and ur	nits with 5 to 12	Γ		USG	Interio	ors Inc.			
	ent fines.		0						Н	ighway	/ 99			
0 3. W	OR = weight of ro	od.							Miltor	n, Was	hington			
СГ							┢							
Smith								Project	No: 19921.7	7628.	TK3 GW Figure: 1			




19921-77628-MW12-MW14 5-11-12.GPJ CDM_BLLV.GDT 7/12/12 OG OF BORING WITH WELL

- <i>w</i>	Sample No.	Moisture Content (%)	Dry Density (pcf)	(mqq) MVO	Penetration Resistance (blows / foot)	Depth (feet)	ole	S		Boring Log MW-13	Elev. (feet)	Well or Piezomete Completio
Other Tests	Samp	Moist Cont∈	Dry Densi	NVO	Penet Resis (blow:	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev.	
						- - 2 —		SM		Gravelly, Silty SAND (SM), brown, fine to coarse sand and gravel, loose, moist (FILL). Becomes gray-green with deceased silt and gravel at ~6", moist to wet. Cobble encountered at 2 ft bgs.		
						- - 4 -				Sandy SILT (ML), dark brown, with trace gravel and trace organics (wood), stiff, moist. Cobble encountered at 3.5 ft bgs.		
						- - 6 -	-	ML		Becomes gray-olive at 5 ft bgs.		
						- - - 8 -				Increased plasticity and clay content from 6.5 to 7 ft bgs, underlain by a layer of organics (grass). Becomes brown with increased fine sand at 7 ft bgs.		
						 10−				Grades to Silty SAND (SM), dark brown, fine sand, medium dense, saturated (0, 70, 30).		
						- 12 - -	-	SM				
						14 — - -				Wood fragment encountered at 14 ft bgs.		
						16 — - -				Boring terminated at 16 ft bgs. Groundwater encountered at 9.5 ft bgs.		
						18 — - -	-					
						- 20 — -	-					
Surface	Eleva									Drill Rig: <u>DPT</u> Equipment/Hammer: <u>Acetate Liner/NA</u> Date Completed: <u>5-11-12</u>		
										USG Interiors Inc. Highway 99 Milton, Washington		
CDN Sm	/ 	h								Boring Log MW-13 Project No: 19921.77628.TK3 GW		Figure: 1 of

er ts	Sample No.	Moisture Content (%)	Dry Density (pcf)	(mqq) MVO	Penetration Resistance (blows / foot)	Depth (feet)	Sample	S	Symbol	Boring Log MW-14	Elev. (feet)	Well or Piezomete Completio
Other Tests	Sar	C A	Der	NO	Per Res (blo	Der	Sar	nscs	Syr	DESCRIPTION Gravelly, Silty SAND (SM), brown, fine to coarse	Шe	
						-		SM		sand and gravel, loose, moist (FILL).		
						2 —		ML		Grades to Sandy SILT (ML), red-brown, with gravel, medium stiff, moist.		
						-		ОН		SILT (OH), dark gray, with rootlets and wood, soft, moist.		
						4 —		ML		Sandy SILT (ML), gray, fine sand, stiff, moist. Grades to Gravelly, Silty SAND (SM), gray, fine to		
						4				coarse sand and gravel, dense, moist.		
						- - 8 - -		SM				
						- 10				Becomes brown at 10 ft bgs. As above, limited recovery from 8 to 12 ft bgs.		
						12 — - - 14 —		*		Layer of organics (marsh grass) encountered at 14.5 ft bgs.		
						⊻ 16− -				Clayey, Sandy SILT (ML), dark gray, fine sand, numerous organics, soft, moist, plastic. Thin sand (SP), lens (~1" thick) at 15 ft bgs, wet. Becomes gray with decreased organics and decreased plasticity at 15.5 ft bgs. Numerous sand lenses (saturated) from 16 to 16.5 ft bgs.		
						- 18 - -		ML		Decreased plasticity, becomes gray-brown mixed at 18 ft bgs.		
						20				Boring terminated at 20 ft bgs. Groundwater encountered at ~15 ft bgs.		
Surface	Eleva	ation: ation: d By:								Equipment/Hammer: Acetate Liner/NA		
										USG Interiors Inc. Highway 99 Milton, Washington		
CDI Sm	M Nif	h								Boring Log MW-14 Project No: 19921.77628.TK3 GW		Figure: 1

	SOIL CLASSIFICATION LEGEND														
		MAJOR	DI	/ISIONS			T	YPI	CA		MES	SAN	MPLE TYPE SYMBOLS		
6		GRAVEL	s	Clean gravel		GW	Well graded grave	els, gr	rave	el-sand mix	xtures		Disturbed bag or jar sample		
GRAINED SOILS	Ŀ	More than h		little or no f	ines	GP	Poorly graded gra	avels,	gra	ivel-sand n	nixtures		Std. Penetration Test (2.0" OD)		
D S	More than half is larger than No. 200 sieve	coarse fracti is larger tha No. 4 sieve s	an	Gravel w		GM	Silty gravels, grav	vel-sar	nd-	silt mixture	es		Type U Ring Sampler (3.25" OD)		
AINE	alt is 200 s	110. 4 51070 0	,,20	over 12% f	nes	GC	Clayey gravels, g	gravel-	sar	nd-clay mix	tures		California Sampler (3.0" OD)		
	Nan No.	SANDS		Clean sands	s with	SW	Well graded sand	ds, gra	vel	ly sands			Undisturbed Tube Sample		
COARSE	lore t than	More than h	alf	little or no f	ines	SP	Poorly graded sa	nds, g	Irav	elly sands			•		
COA	2	coarse fracti is smaller th No. 4 sieve s	an	Sands wi	th	SM	Silty sand, sand-	silt mix	ktur	es		G	Grab Sample		
Ĩ		110. 4 SIEVE S	5126	over 12% f		SC //	Clayey sands, sa	ind-cla	ay n	nixtures		ΙÜ	Core Run		
Ś	ř					ML	Inorganic silts and clayey fine sands	d very s, or cla	' fin aye	e sands, ro y silts with	ock flour, silty or slight plasticity	1	Non-standard Penetration Test (with split spoon sampler)		
FINE GRAINED SOILS	More than half is smaller than No. 200 sieve	-	-	ND CLAYS it less than 50		CL	Inorganic clays of clays, sandy clays	f low to	o m	edium pla	sticity, gravelly	CON	NTACT BETWEEN UNITS		
ED	IIT IS S 00 si					OL	Organic clays and	d orga	nic	silty clays	of low plasticity				
RAIN	an ha No.2					мн	Inorganic silts, mi silty soils, elastic	icaceo silts	ous	or diatoma	aceous fine sandy or	-	 Change in geologic unit Soil type change within 		
ЕG	than			ND CLAYS greater than 5		СН	Inorganic clays of					geologic unit			
FIN	M	1		5		OH	Organic clays of r	mediu	m t	o high plas	sticity, organic silts	Obscure or gradational change			
		HIGHLY O	RGA			PT ***	· 관 · Peat and other hi	ighly o	orga	inic soils					
	DE	SCRIPTO	DRS	FOR SO	IL S	TRATA		TUI	RE	E (ENG	LISH/METRIC		DISTURE DESCRIPTION		
		D. C.	less t	han 1/16 in.		Pocket:	Erratic, discontinu deposit of limited					1	Dry - Free of moisture, dusty		
ness	Seam: 1/16 to 1/2 in. extent							nucuus Near horizontal: 0 to 10 deg. 1 0 10 to 45 deg. 1 10 to 45 deg. 1 10 to 45 deg. 1 10 to 45 deg.				Mo	bist - Damp but no visible free water		
Thick	Seam: (1/6 to 1 1/4 cm) D So Image: Seam: (1/6 to 1 1/4 cm) D So Image: Seam: (1/2 to 12 in. Image: Seam: 1/2 to 12 in. Image: Seam: Image: Seam: (1/4 to 30 1/2 cm) Image: Seam: Image: Seam: > 12 in. (30 1/2 cm) Image: Seam:					Lens:	Lenticular deposi			High angle		N	Vet - Visible free water, saturated		
Jeral	ັສ ເວັ ອີຣັ່ວ Stratum: > 12 in. (30 1/2 cm)					Varved:	Alternating seams of silt and clay	s	General	Near Vert	ical: 80 to 90 deg.		WELL		
Ger	Scattered: < 1 per ft. (30 1/2 cm) Laminated: Alternating seam							COMPLETIONS					COMPLETIONS		
		Numerous:	> 1 p	er ft. (30 1/2 cr	n)	Interbedde	ed: Alternating layers	5					Concrete Seal		
	ST	RUCTURE	E DE	ESCRIPTIC)N (c	ont.)							Well Casing —		
REV.	F	ractured	В	reaks easily	along	definite fra	ctured planes						onite/Grout Seal		
-		kensided ‹y, Diced		olished, glos reaks easily		•							undwater Level ted Well Casing		
∑ L	omc	Sheared	~	isturbed text			, , , ,					0.00	Sand Backfill		
		geneeue										Imper	meable Backfill		
N R						OR CO						or Ber	ntonite/Grouted		
	D	ensity CO	-	blows/ft)		x. Relative	Consistency			GRAINE	ED Approx. Undrained		SICAL PROPERTY TEST - Atterberg Limits		
-12.GF					Den	isity (%)					Shear Str. (psf)	AL FC GSD	 Fines Content Grain Size Distribution 		
V 11-2	'ery oose	Loose		to 4 to 10		- 15 - 35	Very Soft Soft			to 2 to 4	<250 250 - 500	MC MD	 Moisture Content 		
N P		um Dense) to 30		- 65	Medium Stiff			to 8	500 - 1000	Comp SG	 Specific Gravity 		
28-AA	ens		30) to 50		- 85	Stiff		8 t	o 15	1000 - 2000	CBR	 Resilient Modulus 		
Very Dense Over 50 85 - 100 Very Stiff L Hard Hard Hard Hard								to 30 er 30	2000 - 4000 >4000	Perm TXP Cons	 Triaxial Permeability 				
1992												Chem	 Analytical Chemical Analysis 		
0 1	lote . Sa		tions	in this report	are ba	sed on visu	al field and laborate	orv ob	se	rvations. v	which	VS DS	Vane ShearDirect Shear		
in C							ize, and plasticity e sented herein. Visu					UC TX	 Triaxial Compression 		
m CATIO	etho	ods in accorda	ance	with ASTM D	2488	were used a	as an identification of nce with ASTM D 2	guide					 Consolidated, Undrained 		
SSIF					U		inits with 5 to 12	,				_	ors Inc.		
		nt fines.	10 05		yiave	i anu sanu l						ghway			
<u>о</u> З	. w	OR = weight o	of roc	1.									shington		
C)[M.						┝	_	• • •		7000			
	Smith								Project No: 11921.77628.TK2 Soil Figure: 1						

Appendix B Groundwater Purge and Sampling Logs

This page intentionally left blank to allow for double-sided printing.

CDM

WATER LEVEL MEASUREMENTS

Measureme	DSC Huy onditions <u>u</u> ions ent Device atum		lorydy, 50's			Project No <u>19921 - 65021</u> Date _ <u>5/25/2010</u> Measured By Calculations By
Well	Time	Depth to Water	Reference	Reference Elevation	Water Elevation	Comments
MW-1	0842	10.19	700	23.02	12.83	
MWZ	0846	8.42	706	21.37	12.95	
MW3	0854	7.22	TOC	20.22	13.00	
MWY	0851	7,41	TOC.	20.40	12.99	
mwg	0963	1.72	TOC	20.87	19.15	
99-1	0905	8.22	TOC	21.34	13.12	
MW7	0908	7.81	TOC	21.06	13.25	
MW5	0912	6.17	·70C	19.07	12.90	
mw8	0914	5.34	700	19.12	13.78	
mut	0917	7.08ml		•		
MULO	0917	7.08	TOC	19.89	12.81	
99-2	0923	9.62	700	22.64	13.02	
				· · · · ·		
AdditionalC	omments					

Version 10/2007

Sample ID MW2-65/10

10 Well No. MWZ

Proje	ct USG H	wy 99				Date 5/25/2010								
	ct No. 199						led By/	NLF & KI						
Weat	her <u>Scat</u>	tered sl	nowers a	-60° F			wed By			<u> </u>				
	Depth to \	Water (TOC	» 8.4Z		Time /3	350	Comme	ents		<u>·</u>				
	-	lume in Cas		1 (Depth (TO								
			re Sampling			Screened Interval (TOC) 12,5-17.5								
(F		-	istaltic Pu	mp			irement Meth		ng cup wi	th calc				
		mL/min	L		Specific									
PURGING	Time	Flow Rate	Cumulative Volume	Temp (¤C)	Conductance (microsiemens/cm)	рН	Turbidity	Dissolved Oxygen	ORP	DTW				
Å [1355	206	Initial	13.75	XX.369	7.23		8.32	24.3	9.12				
מ	1359	200	0.8	13.37	366	7.09	1.41	6.28	0.7	9.E				
	1403	200	1.2	13.30	360	6.93	1.40	4,58	-12,9	9.39				
	1407	.200	1.6	13.32	354	6.98	0.83	3.03	-20,7	9.44				
	<u>/411</u>			13.34	346	6.89	1.15	1.90	-24.1	9,47				
	1415	200	2.4	13.21	340	6.88	0.84	0.98	-27.4	9.48				
	1419 200 2.8 13.29 337 6.84 0.63 0.50 -27.5 9.48 Sampling Method Peristaltic Pump													
-	Analytical Matrix Yes No Attached Time Sampled 445													
0				<u> </u>	r									
Ž	Sample Co		Preserved By	At	What pH	Filter T	уре	Cooled By	<u>ice</u>					
SAMPLING	SISDING HOPE		INC 3/ Cop			÷.,		10.0						
SAL	500 ml pl2	slie (2)	Hor.				<u> </u>		120					
ے ۔ د	350ML A	nber x 124/2)	112504		-2		~	ĬĊ.	2					
	125111-12	2/2/2	EDTA	-			-	14	C					
	Appearanc	e/Odor 🗸	lerr, esta	1035,00	brless									
PLE	pH (last sta	abilized)	6.79	Т	emperature (o	C) 13.2	8							
SAMPLE DATA	Eh (millivol	ts)35,	4	s	Specific Conduc	ctance (mici	rosiemens/c	^{m)} 33/						
S	OVM-PID H	Headspace	(ppm)	С	comments									
	Chain-of-C	ustody 🛛 🛣	Yes 🗆 No		Chain of	f Custody II	C							
	Duplicate S	Sample ID			Replicat	e Sample N	los.							
NO	ANALYTIC	AL Lab N	ame ARI &	Applied	Speciation	Date S	Sent to Lab	5/25/1	Ð					
ITI(LAB	Shipm	nent Method	Hand-de	livered to Al	રા		3/0-0/0						
õd –		Name	(S)											
DISPOSITION	SPLIT WIT	Organization (s)												
	Other 1		take so	1 ×	5 loc									
-	<i>\`</i>	<u>- mil mi</u>	10/00-76	<i>*</i> 1										

Time	flow rate	Cum. 1061.	Temp	Spec. con.	PH	tuvbid.	D.G _	OFP	DTW
1423	200	3.2	13.28	335 333 @ 332 331	6.84	1.30	0.32	-30.5	9.50
1427	200	3.6	13.27	333	6.85	0,99	0.25	-32.Z	9:50
1431	200	4.0	13.29	JØY 332	6,81	0.70	0.23	-33.8	9.51
1435	.200		13.28	331	6.79	0.57	0.22	-35.4	9.51
		f.		I	I	0.57			
								ļ	1

:

J. (all

• :

PURGING

Project USG Hwy 99

Time

530

1534

1538

1542

1546

1550

1554

Project No. 19921-65021 Weather 1021-M, Christi

Depth to Water (TOC)

Water Volume in Casing

Volume Purged Before Sampling

melmin

Flow

Rate

190

190

300

300

400

400

Purging Method Peristaltic Pump

50

Cumulative

Volume

initial

760(mL)

1,76(L)

3.16

4.76

6.36

XX.7.56

Jubino intolio set at 17 bbc

Temp

(DC)

13.21

12.94

12.62

12.57

12.37

12.35

12.43

7,22

GROUNDWATER SAMPLING RECORD

Sample ID <u>MW 3</u>-Well No. MW - 3 Date 5/25 Sampled By MLF EILL Reviewed By Comments Time 1525 Total Well Depth (TOC) 9441 14.5-19.5' Screened Interval (TOC) Purge Volume Measurement Method measuring cup with calc Specific Conductance Dissolved DTW ORP (microsiemens/cm) pН Turbidity Oxygen 7.05 -79.1 446 8.04 8,50 7.27 6.94 7.17 5.50 -85.6 442 FSIF -81.7 4.00 442 6.83 8.52 7.29 2.81 -91.1 442 6.79 7.29 -97.7 444 14.2 1.83 7.32 6.75 446 -107.0 6.73 28.2 0.96 7.32

300 Sampling Method Peristaltic Pump

		-			
	Analytical Matrix 🛛 Yes 🗆 N	o 🛛 Attached	Time Sample	ed 1615	
9 N	Sample Container Preserved	By At What pl	H Filter Type	Cooled By	
PL	LET MORE UNP			jce.	_
SAMPLING	500 NL HOPE (2) HND3/02P 500 NL HOPE (2) HND3/02P 500 NL plaster, 2 UNP			ICC	
.0)	250ml AG (2) 4,504	-2		ice	
	125 x Lplinh EDTA	·		ILE	
	Appearance/Odor Yellow	tint, no odor :	Shept Inr bidity		
	✔ pH (last stabilized) 6,73	Tempera	ture (OC) 12,53		
SAMPLE	Eh (millivolts) - 108.D	Specific (Conductance (microsiem	ens/cm) 4449	
Ś	OVM-PID Headspace (ppm)	Commen	ts		

447

6.73

29.0

OVM-PID Headspace (ppm) Chain of Custody ID Chain-of-Custody XYes 🗆 No Duplicate Sample ID Replicate Sample Nos. Date Sent to Lab Lab Name ARI & Applied Speciation ANALYTICAL LAB Shipment Method Hand-delivered to ARI Name (s) SPLIT WITH Organization (s)

Version 10/2007

Other

DISPOSITION

Groundwater Sampling Record.pmd

-108.0

7.29

≫

0.55

	,					· :			
Time	mL/min Flourate	(L) Cem. Votume	Temp	Spec. Con	PH	tovbidity	DO	ORP	PTW
1558 1602 1606	300 300 300	8,76	12.53 12.59 12.56	447 448 449	6.73 6.73 6.73	1	0.36 0.25 0.21	-102.6 -94.0 -88.4	7.29 7.29 7.29
1610	300	12.36	12.53	449	6.73	16.4	0.20	- 82.8	7.29
			1	,	,		1		

· ·

Sample ID MW6-05/10 Well No. MW6

								/					
Proje	ect USG H	wy 99				Date	5/26/	0					
Proje	ect No. 199	21-65021				Samp	led ByM	LF & HL					
	ther					Reviev	wed By						
		. 0											
	Depth to \	Nater (TOC) 7.0	3	Time 08	43	Comme	nts					
	Water Vol	lume in Cas	sing		Total Well	Depth (TO	c) 18.8	71					
	Volume P	urged Befo	re Sampling		Screened	Interval (TC)C) 14-1	9'					
	Purging N		istaltic Pu	mp	Purge Volu	Purge Volume Measurement Method measuring cup with c							
PURGING	Time	мЦрыЛ Flow Rate	Lbr. Cumulative Volume	Temp (□C)	Specific Conductance (microsiemens/cm)	pН	Turbidity	Dissolved Oxygen	ORP	DTW			
UR	0846	200	Intis	12.89	722	4.73	15.4	7.20	130.2	7.13			
Δ.	0850	300	1.4	12.85	503	6.68	16.5	1.15	3.3	1.13			
	0854	300	2.	12.75	466	6.67	14:2	0.89	-21.7	-7,17			
	0858	300	4.5	12.69	458	10/010	13.0	0.72	-31.6				
	0902	300	5.1	12.67	457	6.66	10:36	0.56	-40.7	7.17			
	0406	<u>300</u> 30	69	12.67 12.66	456 456	6.68 6.68	9,83	0.39	49.2	~			
			ristaltic Pu		1 / 10	y	8.96	<u>Ids</u>		7/18			
	Analytical I	Matrix 😡	Yes □No	□ Atta	ached	Time S	Sampled	0915		_			
U V	Sample Co	ntainer	Preserved By	/ At	What pH	Filter Ty	/pe	Cooled By					
SAMPLING	LU HOPE	777-105						řce		_			
AMF	500ml H	state .	HNO3 2 UND	<i>anp</i> ~					ice				
S	/	at rate (2)			< 7			rce		_			
	125 ml pli	she star	EDTA		~			120					
	Appearanc		ezricante	ers vol	anters			<u>/-</u> 0					
A LE	pH (last sta	abilized)	.68		emperature (oC) 12.60	6						
SAMPLE DATA	Eh (millivol	ts) -54	ι <u>ζ</u>	S	pecific Conduc			n) 456					
S]	OVM-PID H	Headspace	(ppm)	C	omments	<u>`</u>							
	Chain-of-C	ustody 🛛	Yes 🗆 No		Chain of	Custody IE)			-			
	Duplicate S	Sample ID			Replicat	e Sample N	los. ,						
NO	ANALYTIC	AL Lab N	lame ARI &	Applied	Speciation	Date S	Sent to Lab	5/26/10	>	_			
Ĩ.	LAB	Shipn	nent Method	Hand-del	ivered to AR	RI		70011-					
DISPOSITION		. Name	e (s)										
DIS	SPLIT WIT		nization (s)										
	Other	white -	natie s	ett	-165 5	51-							
		<u> </u>	vier c	65.						\neg			

<u> </u>					Sample ID _	in 1.15 - 1	selo	Well No	mws		
							<u> </u>		71120	12	
Proje	ect USG H	wy 99				Date	5/26	10			
	ect No. 199					Samp	led By 14-L	4 MIS			
1	ther _ UUU	V					wed By				
	Depth to \	Nater (TOC) 6.17		Time O	952	Comme	nts Extra Diss A	volume	for	
	Water Vo	ume in Cas	sing		Total Well	Depth (TO	C) 19,17	Di45 A	5 matris	v GC	
	[°] Volume P	urged Befo	re Sampling		Screened	Interval (TC)C) 14-19		MELICO		
	Purging N	lethod Per	istaltic Pu	np	Purge Volu	ume Measu	rement Meth	nod measurir	ng cup wit	h calc	
PURGING	Time	<i>mUjuin</i> Flow Rate	Ltr. Cumulative Volume	Temp (¤C)	Specific Conductance		Turbidity	Dissolved	ORP	DTW	
RG				, ,	(microsiemens/cm)	pH		Oxygen		G.(
PU	0954	350	Intel	11.83 11.72	4/11	6.98	8.66	6.59	-2.7	6,0 6,1	
	0958 1002	360 r	2.1	11.68	408 401	6.83 675	8.53	1.05	-351/ -51.9		
	1006		4,9	11.67	398	6.74	9.12	0.52	-59.4		
	_1010		6.3	11.70	398	6.14	6.56	0.40	-65.4	6	
	1014	N	7.7	11.71	396	6.74	5.63	0.31	-65.9	e.	
	IDIS IIII Sampling Method Peristaltic Pump				394	6.74	5.05	0,30	-67.1	a	
	Sampling	Method Pe	ristaltic Pu	mp			4.58				
	Analytical I	Matrix 🖾	Yes 🗆 No	□ Att	ached	Time	Sampled	025			
NG N	Sample Co		Preserved By	/ At	What pH	nat pH Filter Type Co					
SAMPLING	LtiHOPE (2) GOUNL HO	PET2 U	IN E DAD HING		- 66 20		~	The.			
AM	Ltr. plastic 500 ml Rs	ester.	unp				. .	ice			
S	250m120		H-504		42	-		ice			
	125ml pl	40	EDTA					ice			
	Appearance	e/Odor ¿	lezr, islo.	1ech a	phone eu						
A LE	pH (last sta		6.74		Cemperature (oC	C) 11.79	1				
SAMPLE DATA	Eh (millivo		1.1	5	Specific Conduc	tance (micr	osiemens/ci	n) <u>394</u>			
S/	OVM-PID	Headspace	(ppm)	(Comments						
	Chain-of-C	ustody 🖸	Yes 🗆 No	L	Chain of	f Custody IE)	100 E.C.			
	Duplicate \$	Sample ID			Replicat	e Sample N	los.				
NO	ANALYTIC	AL Lab N	lame ARI &	Applied	Speciation	Date S	Sent to Lab	5/26/1	D		
IT(LAB	Shipn	nent Method	Hand-de	livered to AF	RI					
ANALYTICAL Lab Name ARI & Applied Speciation LAB Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s)											
ISF	SPLIT WI	SPLIT WITH Organization (s)									
	Other 1	-		Pat	11 E ht .						
		vune m	DHESE		165 bbc	1					

Groundwater Sampling Record.pmd

Sample ID _______

Well No. 99-/

Project USG Hwy 99

	10021 65021
Project No.	19921-65021

Date <u>5/26/10</u> Sampled By <u>muF-4/1</u>1

lv

Weather Cost and 50's weiczst

____Reviewed By _____

	Depth to W	/ater (TOC) 8.22	2	Time //	10	Comme	ents		
	Water Volu	ime in Cas				I Depth (TO	C)			
	Volume Pu	rged Befo	re Sampling		Screened	Interval (TC	DC)			
	Purging Me	ethod Per	istaltic Pu	np	Purge Vol	ume Measu	rement Met	nod measurir	ng cup wit	th calc
PURGING	Time	Flow Rate	Cumulative Volume	Temp (⊡C)	Specific Conductance (microsiemens/cm)		Turbidity	Dissolved Oxygen	ORP	отw
LR N	1112	:300	Trited	13.09	459	7.14	8:26	5.72	58.2	824
٦	1116	1	1.8	12.90	460	7.03	3.87	3.70	12.0	8.24
	1120		3	12.88	459	6.98	"B6.03	3.11 .	-15.1	8:25
	1124		4.2	12.84	453	6.89	3.63	2.55	-31.4	8,35
	1/28		5.4	12.83	443	6.97	4.20	2.00	42.6	8.24
	1132	V_	6.6	12.86	435	692	3.57	1.60	-47.8	\$,27
	11:36		<u>7.8</u>	12.88	422	6.94	4.53	1.10	51.7	8,25
	Sampling Method Peristaltic Pump Analytical Matrix									
10							/	200		
N.	Sample Con		Preserved By	At At	What pH	Filter Ty	ype	Cooled By		
	SODAL HDI		UND & MNOS		5'42			FCP.		
SAMPLING	Sound pla	indicita)	UNP.					icp		
0)	250ml ambe	erplas (2)	H2504		42		-			
	125 mL pl	Estre	EDTA	_						
	Appearance	/Odor 🖉	lezr, colo.	cless a	dorless					
A LE	pH (last stat	oilized)	6.94		emperature (o	C) 12.8	18			
SAMPLE DATA	Eh (millivolts	s) - d	51.7	5	Specific Conduc			m) 422	2_	
s,	OVM-PID H	eadspace	(ppm)	0	Comments	-				_
	Chain-of-Custody XYes INO Chain of Custody ID									
	Duplicate Sample ID Replicate Sample Nos.									
NO	ANALYTICA	6/26/								
Ĕ	LAB	Shipm	nent Method	Hand-de	livered to Al	RI		1/20/1	<u> </u>	
SO		Name								_
DISPOSITIO	SPLIT WITH	┥┝━━━	nization (s)							
	Other 1			At t	· Hilmer	_				_
		une "	Mare 3	<u>C/X</u>	Hobbe					
				_						

Time	Flow Pote	(Ltr) Cum. Volume	- Temp	Sp. Lond.	- pH	Tumb 1	Diss 02	ORP	DTW
1140	300	9	1288	423	1.94	4.36	0,58	-52.7 54,9	8,25
144 148		10.2 11.4	10 91	110	6.95	7.56	0.33	-51.5	8.25
/198 1152	V	12.6	12,90	415	6.92	7.21	0,32	-58.8	8.25
,.						5.62	,		

η,

Well No. m/1)-4-04

Sample ID <u>MW4-05</u>

505

wedy SUN

Project USG Hwy 99

Weather W2M

Project No. 19921-65021

Date <u>5/26//0</u> Sampled By <u>MLFE/LL</u> Reviewed By

Depth to Water (TOC) Time 1232 Comments 7.41 Justiate when Water Volume in Casing Total Well Depth (TOC) MWDQ '& 79 Volume Purged Before Sampling Screened Interval (TOC) 14-14 Purge Volume Measurement Method measuring cup with calc Purging Method Peristaltic Pump Specific PURGING Flow Cumulative Temp Conductance Dissolved DTW ORP Time Volume (DC) Turbidity Oxygen Rate pН (microsiemens/cm) 8 6.81 82.7 .17 234 695 695 400 400 12.48 44 5.08 24 3.81 47.4 S. 238 \checkmark 12.10 1,54 5 695 242 40D 4.8 12/2 648 381 32,5 691 942 2.81 21.6 5.6 12.20 1248 246 6.47 3 7.2 17.9 0,58 3. 19 68.3 1250 17 83 6744 8. X 12.2 10.18 38 1254 15 10.45 28 1258 2 19.37 10:4 660 532 17 Sampling Method Peristaltic Pump Time Sampled Analytical Matrix DXYes □ No □ Attached 310 SAMPLING Cooled By Sample Container Preserved By At What pH Filter Type LEC HORE 17 via KC. UND CHNO 3 647 SOUNL HOPE 1C.C 12/2/14 UND 67 . inher oling ice Sa Hn: ice 125mL DI Silvis EDTA Appearance/Odor Worles sdorless 25 SAMPLE DATA Temperature (DC) 12 22 pH (last stabilized) 4Ø Specific Conductance (microsiemens/cm) Eh (millivolts) 33 OVM-PID Headspace (ppm) Comments Chain-of-Custody **⊠**Yes 🖾 No Chain of Custody ID Replicate Sample Nos. **Duplicate Sample ID** MWD-BS **NOITISOASIC** Date Sent to Lab Lab Name ARI & Applied Speciation ANALYTICAL LAB Shipment Method Hand-delivered to ARI Name (s) SPLIT WITH Organization (s) When intrue get at 165' boo Other

Version 10/2007

Groundwater Sampling Record.pmd

Time FlowPote Cum. Vol. Temp Sp. Cond pl Turb. Diss 02 ORD DTW 1302 400 11.4 12.20 650 646 6.80 0.27 6.9 8.84 1306 4 13.6 12.22 633 6.48 5.19 0.26 -0.7 8.87 . .

5,68

.

Sample ID MWI- 05 Well No. MUI Project USG Hwy 99 Date Project No. 19921-65021 Sampled By 508 wa Weather __rzimp Reviewed By 10/19 Comments Depth to Water (TOC) Time 1401 Water Volume in Casing Total Well Depth (TOC) 17.94" Volume Purged Before Sampling Screened Interval (TOC) 14-18' Purging Method Peristaltic Pump Purge Volume Measurement Method measuring cup with calc mymin (151) Cumulative Specific PURGING Flow Temp Conductance Dissolved DTW ORP Rate Volume (0C) рΗ Turbidity Oxygen Time (microsiemens/cm) Intel 7.18 6.91 12.96 291 47.8 1405 200 456 16.1 292 1.93 n.95 12.82 1409 1.6 8,0 256 10.41 22 0,45 7,74 12.9 1413 12.18 296 6.84 10.51 3.4 6.80 6.38 0.32 12,76 301 1417 2.0 05 12.74 308 4 1...77 6.40 p.28 2.6 1421 10/62 1067 8 12.74 .15 n.24 313 5.07 lo la 1425 12.72 13 318 0:25 1429 5.6 4,80 0.1.8 Sampling Method Peristaltic Pump 5.79 1435 Attached Time Sampled Analytical Matrix □ Yes □ No SAMPLING Cooled By Sample Container Preserved By At What pH Filter Type LE HDPL UND IZP -2-2 SODAL ADRE E. HNO. 1/2/46 UND Sbal plasty/ ill 42 ize 250ml 2. b cr (2) H. 504 FNTA 125ml AS . Appearance/Odor odocless er colorless SAMPLE DATA pH (last stabilized) 73 Temperature (DC) 12.72 Specific Conductance (microsiemens/cm) 318 Eh (millivolts) OVM-PID Headspace (ppm) Comments Chain-of-Custody Chain of Custody ID 🗆 No Replicate Sample Nos. Duplicate Sample ID **SPOSITION** Lab Name ARI & Applied Speciation Date Sent to Lab ANALYTICAL 51 LAB Shipment Method Hand-delivered to ARI Name (s) SPLIT WITH Organization (s) ក ne novice set at 15,5 btc Other

Groundwater Sampling Record.pmd

Sample ID MW9-05/10 Well No. MW9

							<u>Ela</u>	to			
	ect USG Hy ect No. 1992					Date	 led By	110		—	
-		1	11 < 0.100					P OBL		—	
vvea	ther _ <i>[</i>		<u>y semn</u> u	1		Revie	wed By			—	
	Depth to V	Vater (TOC	1.60	F	Time /	175	Comme	nts			
		ume in Cas			Total Well	Depth (TO	^{C)} 48.2	5			
	Volume P	urged Befor	e Sampling			Interval (TC	10.0				
	Purging M	ethod Peri	staltic Pur	np	Purge Volu	ume Measu	10-	nod measurin	g cup witł	n cal	c
		mlfaiin	THON		Specific		_				
DNG		Flów	Cumulative	Temp	Conductance			Dissolved	0.00	DT	w
PURGING	Time	Rate	Volume	(□C)	(microsiemens/cm)	pH	Turbidity	Oxygen	ORP		
PU	1130	200	Intell	1448	270	7.77	119	4.91	82.4	_l.	70
	11:34	350	3.2	13.83	261	7.81	10,00	0.55	73.4		.70
	1138 1142	 	<u>4.5</u> 5.9	13.48 13.45	266 265	7.81 7.78	12.8 10.89	<u> </u>	72.1	-{	172
	1146		7.3	13.42	265	7.74	11.54	0.24	69.7	—	13 73
	1150	N	8.7	13.36	265	7.73	10.42	0.19	71.1		
	1154	-V	jb,	1335	265	7.12	957	0,19	68.2		13
	Sampling N	lethod Per	istaltic Pu	ḿр			9.86				
	Analytical M	Matrix 🕱 Y	′es □No	🗆 Atta	ached	Time S	Sampled	1200			
NG	Sample Co		Preserved By	/ At	What pH	Filter Ty	/pe	Cooled By			
SAMPLING	LETHOP	THOPPON	UAN CHNE	5	- 442	~	-	ice			
AM	Ltri	Izsta	UND								
S	500 ml	p/24/02) unn					<u>ire</u> 7.C			
	250mlz	mber chist	2) H-504	,	42		-	120			
	Appearanc			1	dorless						
SAMPLE DATA	pH (last sta	bilized)	1.12		emperature (o	^{C)} 13.3	5				
A A	Eh (millivol	ts)	3.2	S	pecific Conduc			m) 265			
<u>s</u> _	OVM-PID H	leadspace		С	omments						
	Chain-of-C	ustody 🛛 🛣	Yes 🗆 No		Chain of	f Custody IE)				
	Duplicate S	Sample ID			Replicat	e Sample N	los.	, ,			
NO	ANALYTIC	AL Lab N	ame ARI			Date S	Sent to Lab	5/21/10	>		
E S	LAB	Shipm	ent Method	Hand-del	ivered to AF	રા					
DISPOSITION		. Name	(S)							\neg	
ISIC	SPLIT WIT		ization (s)								
-	Other 1	ling ist	Heset	st 40	5.5 btc					\neg	
		S	7~ >0	<u> </u>						\neg	

Well No. MW8

Date 5/27//0 Project No. 19921-65021 Sampled By MILE & /4L Weather LO2/A, C2/A, C2						·	-					
Weather LO2TA, CAM, CAM, Low 50'S Reviewed By Depth to Water (TOC) 5.08 ' Time 0.903 Comments Water Volume in Casing Total Well Depth (TOC) .39, 81 Volume Purged Before Sampling Screened Interval (TOC) .39, 81 Purging Method Peristaltic Pump Purge Volume Measurement Method measuring cup with cate model model Dissolved ORP DTW 09000 Time Rate Volume Temp Specific Dissolved ORP DTW 09001 1.9 1/2,18 7/4 7.26 32.0 8.08 1/2.16 5/12 09102 1.9 1.9 1/2.01 1/2.5 7.09 1/6.1 1/9.23 5/12 0912 5.14 1/2.02 1/12 7.06 11.3 0.33 37.4 5/12 0912 5.14 1/2.02 4/19 7.02 10.16 0.26 30.7 7/3 0912 5.14 1/2.02 4/19 7.02 10.16 0.2	Proje	ect USG H	wy 99						10			
Open to Water (TOC) 5.08 ' Time Generation Volume Purged Before Sampling Screened Interval (TOC) 39,8 ' Volume Purged Before Sampling Screened Interval (TOC) 39,8 ' Volume Purged Before Sampling Degreened Interval (TOC) 39,8 ' Purge Water Volume Measurement Method measuring cup with cate Mater Volume Temp Durge Volume Measurement Method measuring cup with cate Open Computative Temp Specific Dissolved ONP Open Computative Temp Specific Dissolved ONP OP 105 300 Autrix 1/2,18 TH Trubidity Oxygen ORP TW OP 105 OD 105 OP 10,13 D.3 7.14 OP 12,05 TH Trubidity Oxygen ORP TW OP 10,13 D.3 7.12 OP 10,13 OP 10,13 OP 10,13	Proje	ect No. 199	21-65021				Samp	led By <u>Ma</u>	FEILL		_	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Wea	ther <i>Work</i>	<u>m, celm,</u>	cloudy le	n 503	>	Review	wed By			_	
Water Volume in Casing Total Well Depth (TOC) 39,81 Volume Purged Before Sampling Screened Interval (TOC) 35-461 Purging Method Peristaltic Pump Purge Volume Measurement Method measuring cup with cate Time Rate Volume (rcc) Specific 09000 Flow Conductance Dissolved ORP DTW 09011 1.8 12.01 4433 7.07 19.6 1.08 12.21 12.01 12.16 1.02 </td <th></th> <td></td> <td>/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			/									
Volume Purged Before SamplingScreened Interval (TOC) $35 - 46^{\circ}$ Purging MethodPeristaltic PumpPurge Volume Measurement Method measuring cup with calcTimeRateCumulativeTempRateVolumeTempConductance0907907300Truthal121812.187147.2632.08.0811.7.609091.812.141311-312.014121-3.12.014251312-312.014121-5.1412.021312-312.014121-5.1412.021312-312.014121-5.1412.024121-5.1412.024121-5.1412.024129-7.0611.30729-7.812.0341197.1210.490.3026.153-7.733337.454-7.875-7.676-7.677-7.678-7.0379-7.67014-7.72715-7.72716-7.73717-7.74718-7.72719-7.72719-7.72719-7.72710-7.73711-7.72712-7.74712-7.75713-7.75714-7.75715-7.75 <th></th> <td>Depth to \</td> <td>Nater (TOC</td> <td>»<u> </u></td> <td>×(</td> <td>Time</td> <td>5903</td> <td>Comm</td> <td>ents</td> <td></td> <td></td>		Depth to \	Nater (TOC	» <u> </u>	× (Time	5903	Comm	ents			
Purging Method Peristaltic PumpPurge Volume Measurement Method measuring cup with catePurging Method Peristaltic PumpPurge Volume Measurement Method measuring cup with cateTime Rate Volume (cc)ConductanceDissolved Oxygen ORP DTWORP 01/2Dissolved Volume (cc)ConductanceDissolved Oxygen ORP DTWORP 01/2ORP 01/2ORP 01/2Dissolved Oxygen ORP DTWORP 01/2Dissolved Oxygen ORP 01/2ORP 01/2Dissolved 0/2ORP 01/2Dissolved 0/2ORP 01/2Dissolved 0/2OPT 01/2Dissolved 0/2Sampling Method P		Water Vo	lume in Cas	sing		Total Well	Depth (TO	c) 39,	81			
OND Alphin Cumulative Flow Temp Volume Specific (mcovemens/cm) I Turbidity Dissolved Oxygen ORP DTW 0905 300 T/4tral 12.18 7/4 7.26 32.0 8.08 12.7.6 5/1 0905 300 T/4tral 12.18 7/4 7.26 32.0 8.08 12.7.6 5/1 0913 -30 7.201 4/25 7.09 1.6.7 0.74 9.4 5/2 5/	ĺ	Volume P	urged Befo	re Sampling		Screened	Interval (TC)C) 35	-40'			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Purging N	lethod Per	istaltic Pu	mp	Purge Vol	ume Measu	rement Met	hod measurin	g cup with	calc	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SING	Time	Flow			Conductance	1	Turbidity		ORP	σтω	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LR(0905	3150	Tritte	12.18	714	7.26	320	8.08	167.6	511	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ē		1			<u> </u>				132.3		
Op 17 4.2 12.06 4/19 7.00 13.4 0.55 54.9 5/2 0947 .5.4 12.02 420 7.06 11.3 0.33 37.4 5.12 0925 .6.6 12.03 419 7.12 10.49 0.30 26.1 5.73 0929 .7.8 12.03 419 7.12 10.10 0.26 30.7 513 0929 .7.8 12.03 419 7.12 10.10 0.26 30.7 513 Sampling Method Peristattic Pump		0913 3 12.01 425 7.09 16.7 0.74 9										
OP 25 C.L 12.03 419 7.12 10.49 0.30 26.1 5.13 OP 29 7.8 12.03 419 7.08 10.10 0.26 20.7 5.13 Sampling Method Peristaltic Pump Analytical Matrix Preserved By Attached Time Sampled 0940 Sample Container Preserved By At What pH Filter Type Cooled By Mail Vice 000 Attached Time Sampled 0940 Sample Container Preserved By At What pH Filter Type Cooled By Mail Vice 000 Attached Time Sampled 0940 Sample Container Preserved By At What pH Filter Type Cooled By Mail Vice 000 Attached Time Sampled 0940 Ice Sample Container Preserved By At What pH Filter Type Cooled By Mail Vice 000 Attached Time Ice Ice Specific Conductance 000 16.5 16.6		0917		· · · · · · · · · · · · · · · · · · ·	12.06	419		13.4		54.9		
OP29 7.8 12.03 4//9 7.68 10.10 0.26 20.7 5/3 Sampling Method Peristaltic Pump Analytical Matrix Yes No Attached Time Sampled 0940 0 5/3 Sample Container Preserved By At What pH Filter Type Cooled By 1/2.02 1/2		0921		5.4								
Sampling Method Peristaltic Pump Analytical Matrix Yes No Attached Time Sampled 0/940 Sample Container Preserved By At What pH Filter Type Cooled By Wr. 400% Table Ump/HM03 ICC Wr. 400% Table Ump/HM03 ICC South Matrix Wres Ump/HM03 ICC Wr. 400% Table Ump/HM03 ICC South Matrix Wres Ump/HM03 ICC Wr. 400% Table Ump/HM03 ICC South Matrix Wres Ump/HM03 ICC Wres Matrix Wres Inf ICC South Matrix Wres Ump/HM03 ICC ICC South Matrix Wres Wres Icc Icc Jond South South South Wres Icc Icc Split Matrix Wres No Chancot Color Icc OVM-PID Headspace (ppm) Comments Comments Icc Icc Chain-of-Custody Wres No Chain				×								
Analytical Matrix Area No Attached Time Sampled 0940 Sample Container Preserved By At What pH Filter Type Cooled By Ur, HOPE Ur, HOPE Ur, HOPE Ur, HOPE I/CE Soma Hole 001/14/3 - - I/CE Soma Hole 011/14/3 - - - Appearance/Odor Color/ess 02/17/16/3 - - PH (last stabilized) 7/08 7/00 Temperature (nC) / 2.05 - Eh (millivolts) //4/3 Specific Conductance (microsiemens/cm) ///9 OVM-PID Headspace (ppm) Comments - - - Chain-of-Custody		0707	Aathad Da		· · · · · · · · · · · · · · · · · · ·	419	7.08	10,10	0:20	20.1	_P13	
Sample Container Preserved By At What pH Filter Type Cooled By Ur, HOPE [1] Unp/HH03							Time		e0110			
250ml zmbr gh + 2) H 2 50 f - ice Appearance/Odor color/ess devir, color/ess devir, color/ess devir, color/ess devir, color/ess f - - pH (last stabilized) 7:08 7.00 Temperature (aC) /2.05 Eh (millivolts) 16.3 Specific Conductance (microsiemens/cm) 4/19 OVM-PID Headspace (ppm) Comments Chain-of-Custody X Yes No Chain-of-Custody X Yes No Chain of Custody X Yes No ANALYTICAL Lab Name ARI & Applied Speciation /*4/ ² Date Sent to Lab 5/27/10 Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s) Organization (s)	(7)		`									
250ml zmbr gh + 2) H 2 50 f - ice Appearance/Odor color/ess devir, color/ess devir, color/ess devir, color/ess devir, color/ess f - - pH (last stabilized) 7:08 7.00 Temperature (aC) /2.05 Eh (millivolts) 16.3 Specific Conductance (microsiemens/cm) 4/19 OVM-PID Headspace (ppm) Comments Chain-of-Custody X Yes No Chain-of-Custody X Yes No Chain of Custody X Yes No ANALYTICAL Lab Name ARI & Applied Speciation /*4/ ² Date Sent to Lab 5/27/10 Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s) Organization (s)	Ň		I				Filter Ty	/pe				
250ml zmbr gh + 2) H 2 50 f - ice Appearance/Odor color/ess devir, color/ess devir, color/ess devir, color/ess devir, color/ess f - - pH (last stabilized) 7:08 7.00 Temperature (aC) /2.05 Eh (millivolts) 16.3 Specific Conductance (microsiemens/cm) 4/19 OVM-PID Headspace (ppm) Comments Chain-of-Custody X Yes No Chain-of-Custody X Yes No Chain of Custody X Yes No ANALYTICAL Lab Name ARI & Applied Speciation /*4/ ² Date Sent to Lab 5/27/10 Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s) Organization (s)	MPL	50Digl HOP	E.	<u></u>			*	-				
250ml zmbr gh + 2) H 2 50 f - ice Appearance/Odor color/ess devir, color/ess devir, color/ess devir, color/ess devir, color/ess f - - pH (last stabilized) 7:08 7.00 Temperature (aC) /2.05 Eh (millivolts) 16.3 Specific Conductance (microsiemens/cm) 4/19 OVM-PID Headspace (ppm) Comments Chain-of-Custody X Yes No Chain-of-Custody X Yes No Chain of Custody X Yes No ANALYTICAL Lab Name ARI & Applied Speciation /*4/ ² Date Sent to Lab 5/27/10 Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s) Organization (s)	SAI	50UNI	plaster	LAP		-		-	ice			
PH (last stabilized) Trible T.00 Temperature (nC) 12.05 Eh (millivolts) 116.3 Specific Conductance (microsiemens/cm) 41/9 OVM-PID Headspace (ppm) Comments Chain-of-Custody XYes No Chain of Custody ID Duplicate Sample ID Replicate Sample Nos. ANALYTICAL Lab Name ARI & Applied Speciation /nuf* Date Sent to Lab 5/21/10 SPLIT WITH Name (s) Organization (s) Organization (s) Organization (s)		250m	zmberghy	(2) H2 504	/				ice			
PH (last stabilized) Trible T.00 Temperature (nC) 12.05 Eh (millivolts) 116.3 Specific Conductance (microsiemens/cm) 41/9 OVM-PID Headspace (ppm) Comments Chain-of-Custody XYes No Chain of Custody ID Duplicate Sample ID Replicate Sample Nos. ANALYTICAL Lab Name ARI & Applied Speciation /nuf* Date Sent to Lab 5/21/10 SPLIT WITH Name (s) Organization (s) Organization (s) Organization (s)			1									
Eh (millivolts) 14.3 Specific Conductance (microsiemens/cm) 419 OVM-PID Headspace (ppm) Comments Chain-of-Custody XYes No Chain of Custody ID Duplicate Sample ID Replicate Sample Nos. ANALYTICAL Lab Name ARI & Applied Speciation /nu ² Date Sent to Lab 5/27/10 ANALYTICAL Lab Name ARI & Applied Speciation /nu ² Date Sent to Lab 5/27/10 Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s) Organization (s)		Appearance	e/Odor Co	lorless o								
Eh (millivolts) 14.3 Specific Conductance (microsiemens/cm) 419 OVM-PID Headspace (ppm) Comments Chain-of-Custody XYes No Chain of Custody ID Duplicate Sample ID Replicate Sample Nos. ANALYTICAL Lab Name ARI & Applied Speciation /nu ² Date Sent to Lab 5/27/10 ANALYTICAL Lab Name ARI & Applied Speciation /nu ² Date Sent to Lab 5/27/10 Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s) Organization (s)	TA E	pH (last sta	abilized) "	7:08 7.0	ד_' ₪	emperature (p	C) 12.05	2				
Chain-of-Custody XYes No Chain of Custody ID Duplicate Sample ID Replicate Sample Nos. ANALYTICAL Lab Name ARI & Applied Speciation /*4/~ Date Sent to Lab 5/27/10 LAB Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s)	AM DA	Eh (millivo	lts)	14.3	S	Specific Conduc	ctance (micr	osiemens/o	cm) 419			
Duplicate Sample ID Replicate Sample Nos. ANALYTICAL Lab Name ARI & Applied Speciation / 44 ²⁷ Date Sent to Lab 5/27/10 LAB Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s)	Ś	OVM-PID	Headspace	(ppm)	C	comments						
ANALYTICAL Lab Name ARI & Applied Speciation / 14 ^F Date Sent to Lab 5/27/10 LAB Shipment Method Hand-delivered to ARI SPLIT WITH Name (s) Organization (s)		Chain-of-C	ustody 🖸	KYes □No		Chain o	f Custody IE)				
		Duplicate \$	Sample ID			Replicat	te Sample N	los.	1			
	NO	ANALYTIC	AL Lab N	lame ARI &	Applied	Speciation /	n4 ⁼ Date S	Sent to Lab	5/27/10			
	ILIS	LAB	Shipn	nent Method	Hand-de	livered to Al	RI		2/2//			
	ő		Name	e (s)							\neg	
	ISIC	SPLII WI		nization (s)				, ·			—	
Inthe march get of Still Dur		Other A			A-st-	37514						
		//	DANG M	Adres Ger		JUJ DL	L~ `					

Version 10/2007

<u>Time Flow Rote (un, Vol Temp Sp. lond pH Turb. Diss Dr. ORP DTW</u> 0933 300 9 12.05 419 200 8.32 0.27 16.3 5.13 9.46 8.62

. •

					Sample ID _	MW7-	05/10	Well No	mw7	7	
Proje	ect USG H ect No. 199: ther	21-65021	rst, sligh	tbreez	C., 5043		5/27// led By <u>///</u> wed By				
	·	Water (TOC ume in Cas	<u> </u>	41	Time 10	Depth (TO	Comme				
		urged Befor				Interval (TC		301			
			staltic Pur	np		-		IOd measurin	g cup witl	n calc	
PURGING	Time	mUmun Flow Rate	(Ltr) Cumulative Volume	Temp (⊡C)	Specific Conductance (microsiemens/cm)	pН	\ Turbidity	Dissolved Oxygen	ORP	оти	
N N	1014	300	Tritizi	13.15	419	7.21	10,57	6.04	961	8	
-	1018	250	1.5	13.05	419	7.05	9.15	0.88	48.3	_A.	
	10:22		2.5	13/24	4/8	6.98	4.12	0.46	16.2		
	1026		9.9 4.6	<u> 3.58</u>	419	6.15	10.52	0.34	0,2	4	
ł	1030		1.7		419	7.05	9.5(0 9.31	0,29 0.23	-9-1	-f	
ŀ	1028	-V	1.5	<u> 3.33</u> 3.71	421	7.04	- 101_	0.21	-7.6		
	Sampling N	lethod Per	ristaltic Pu		1 400			9.26-1		-9.	
ł	Analytical	Matrix 🕅 Y	∕es □ No	□ Att	ached	Time S	Sampled	1045			
S S	Sample Co	ntainer f	Preserved By	At	What pH	Filter Ty		Cooled By			
SAMPLING	It HOPE	HOPER	UNPEHNO		- 6 67	ice Ice					
MA	- Sport	tell				176					
ŝ	500mL	1. Ella	Junpa					rie		\neg	
ŀ		bei elval t			<2		-	jue_			
	Appearanc			lad al							
DATA	pH (last sta		<u>ezr, color</u> 6.99	<u>169</u> ,00	emperature (d	C) 13,2					
AAA	Eh (millivol		-8,3	s	Specific Conduc			n) 420			
<u>ה ק</u>	OVM-PID H	leadspace		C	Comments			/			
	Chain-of-C	ustody 🖾	Yes 🗆 No		Chain of	Custody IE)				
ſ	Duplicate S	Sample ID			Replicate Sample Nos.						
NO	ANALYTIC	AL Lab N	ame ARI		Date Sent to Lab						
Ë,	LAB	Shipm	ent Method	Hand-de	livered to AF	21		01-110		\neg	
õ	0011711	Name									
DISPOSITION	SPLIT WIT	н	ization (s)								
	Other 1			4 1-	9751						
ŀ		ng m	THLE SO	21	27.5 bt	×					

Version 10/2007

Groundwater Sampling Record.pmd

Time Pote Cuy Temp Cond pH Turb Disson ORP DTW 1042 250 7.5 13.28 420 6.99 10.15 0.21 -8,3 9.10

,

Sample ID 99-7 - 05/10

	Proie	ct USG Hv	vy 99			Sample ID_		5/10 5/27/1	Well No	. 99-2	,
	Proje	ect No. 1992	1-65021	n, dight j	breeze	505	Samp	led By	Féjele		
		Depth to W	 /ater (TOC) 9:34		Time J	234	Comme	nts		
		Water Volu	ime in Cas			Total Well	Depth (TO	C)			
		Volume Pu	rged Befor	re Sampling		Screened	Interval (TC)C)			
		Purging Me	ethod Per	istaltic Pur	np	Purge Volu	ime Measu	rement Meth	od measurin	ig cup wit	h calc
	PURGING	Time	m Flow Rate	(Lefr) Cumulative Volume	Temp (□C)	Specific Conductance (microsiemens/cm)	рН	Turbidity	Dissolved Oxygen	ORP	σтw
	U.R.	1237	200	Trited	14,00	1185	6.68	22.8	4.67	105.7	9.4
	٩.	1241	ĺ	1.4	13.40	1213	670	15.4	4.83	34.3	
		1245		2.2	13,45	1208	6.59	024.1	6.6D	11.8	93
		1249		3	13:31	1205	6.57	7.57	0.40	6.1	23
		1253		3,8	13:32	1203	6.54	14.3	0.32	30	9.4
	ł	1257		4.6	13.28	1201	6.54	23.9 27.9	0,29	-1,0 -31	94
ł			ethod Per	ristaltic Pu		1601	(U) Jan	17.6	0.66		9.4
		Analytical M		 ∕es □No	-	ached	Time S	<i>µ_r</i>	1310		
õ	<u>o</u>	Sample Cor		Preserved By		What pH	Filter Ty		Cooled By		_
COM MEZERO	SAMPLING	Lor HD	PE-	- Uno				~			
Ň	MF	- GODMLA	1 at 1	unperfords	3 -	4,6-2			jee.		
and	S	Lon	25ur					_			
2	ŀ	300mLp	2 sus	12504		142	- ite				
ŀ		250ml 2 Appearance			WHE		elist.	aller viele	100		
	╝ _┲ ┝	pH (last stat	U	lerr into		emperature (D		ellowist	lingo 1	broken	ros?
	SAMPLE	Eh (millivolts	,			pecific Conduc		osiemens/cr			
	S D	OVM-PID H	,	(nnm)		omments			,		
ł				Yes D No			Custody IE)			_
	ŀ	Duplicate Sa	,				e Sample N				
	z	ANALYTICA	· · · · · · · · · · · · · · · · · · ·	ame ARI &	Annlied	·		Sent to Lab			
		LAB				ivered to AR					
	DISPOSITION		Name								
	ISP	SPLIT WITH	1 	nization (s)		<u></u>					
		Other			20111						
	Ļ	Other 7	whipe <	et it	16 60	С,					

Version 10/2007

Groundwater Sampling Record.pmd

SURFACE WATER SAMPLING RECORDS

		1		Sheet	1_of_Z
		56 Hwy 99		Date: 5 25 10	
Pr	oject No.	: 19921-6502	1	Sampled by: 14 9 M	
Lo	cation: _	Mutter		_ Reviewed by:	
	0		SW6	5105	504
	Time c	ollected:	jiro.	1135	1205
	Locati	on:	5W6		
OCATION	Depth:	(feet)			
.AT	Ref. El	ev.: (feet)			
ŏ	Depth	to water: (feet)			
	Water	elevation: (feet)			
	Sampli	ng method:	swimp sempler -		\rightarrow
5 S	Contai	ner (s):	> '	9	q
SAMPLING	Compo	sited: (Yes / No)	No	HARD NO MEON	IND. NO, 450
AM	Acidifie	ed by? What pH?		100 models (22) 700 00	tota nelds (22) 10/1
S	ouoreu	-	ice	ice +2	ile 2
	Filter ty	vpe size			
		appearance:	3.22 NTV (1/10)	Clear	Clear
NO	Sample	odor:	No odse	Mrs. Carta or	No odor
DESCRIPTION	pH:		7.76	7.73	7,70
CRI	Eh: [0]	2P) 50 (0,01.	158.7	149.6	142.8
DES	Conduc	cuvity: (micromnos)	241	241	241
	Other $\hat{\mu}$	ature: (°C)		11.13	11.20
			9.18	9 24	9,56
[Split	Name:		·	
		Organization:			
	Duplicat	te No:		_	
DISPOSITION	Archive	: (Yes / No)	No	No	No
USC	CDM La	b: (Yes / No)	No	No	No
SPC	Other: (I	Describe)	, 		
	Name of	analytic lab:	ART	ARIEL polied Spor	ART & Applied, Spec.
· [Date ser		5/25/10	5/25/10	5/25/10
	•	method	Hend delivered		
		Custody No.:	·		
NOC:	MENTS: L	in bedity:	3,27	3.71	1.21
				. · · ·	

}

SURFACE WATER SAMPLING RECORDS

Pr Pr	oject: <u>(</u> oject No.	156 Hury 99 : 19921 - 650	2/	Date: <u>5/25//0</u> Sampled by: <u>MLF 6</u>	IL
Lo	cation:	Milten		Reviewed by:	· · · · · · · · · · · · · · · · · · ·
Q	Sampl	e No.:	563	SWZ	5WI
2	Time c	ollected:	5603 1230	1250	1310
	Locatio	on:	5W3	562	SWI
NC	Depth:	(feet)			
LOCATION	Ref. El	ev.: (feet)			
ŏ	Depth	to water: (feet)			
	Water e	elevation: (feet)			
	Sampli	ng method:	Sound Szinpler -		9
U Z	Contair	ner (s):) //	/_	9
SAMPLING	Compo	sited: (Yes / No)	No	No	No
AM	Acidifie	ed by? What pH?			toto netals / Toch
S	Otoleu	•	HEC	ike	jke '
	Filter ty	pe size			
	Sample	appearance:	clear colorless odorless	clear, no odor	Clear
Z	Sample	odor:	no odor	V	nodar
PŢ	pH:		7.58	7.66	7.79
CRI	Eh: OP	So Lond tivity: (micromhos)	/42.1	149.0	132.6
DESCRIPTION			242	242	240
	Other	ature: (°C)	/1.20	11.35	11.47
_		D155 02	9,36	10.00	10:23
	Split	Name:	5 mm - 1 mm - 1		
		Organization:			
	Duplicat	te No:			
<u>o</u>	Archive	: (Yes / No)	No	No	No
DISPOSITION	CDM La	b: (Yes / No)	No	No_	N 6.
SP P	Other: (I	Describe)			
ב	Name of	analytic lab:	ARI	ARI,	ART & Applied Spice
	Date ser		5/25/10	5/25/10	5/25/10
	Delivery		Hand delivered		
	Chain of	Custody No.:	, 		
	MENTS:		1.43	6.08	1.10

WATER LEVEL MEASUREMENTS

Project No. 19921-77628

Date 10/18/2011

Calculations By _

Measured By MLF

Project USG Hwy 99

Weather Conditions 10 c 2/2

Site Conditions

Measurement Device Sinco #3

Elevation Datum

Well	Time	Depth to Water	Reference	Reference Elevation	Water Elevation	Comments
MW1	0937	9.891	TOC			
MW2	6933	3.51	TOC			
MW3	0797	7.36	TOC			
MW4	0952	7.52	TOC		an a	
MW5	1907	6. 2.2."	TOC			
MW6	0400	1.101	TOC			
MW7	1004	8.05'	TOC			-
MW8	5-2010-0010-0020 5-	Nat	TOC	-		Will and mersured &
MW9	0941.	1.20	TOC			
MW10	1043	110'	TOC			
99-1	10946	8,441	TOC			
99-2	1012	4781	TOC			
				B^{-1} (
•						
				100. 1		-
						-
			х.			
						n na serie de la constante de la constant
	and the second					
			У			-

42

14

Additional Comments

11/

traller heit in mannat lot of E,

-Version 10/2007

Water Level Measurements.pmd

LOW FLOW GROUNDWATER SAMPLING RECORD

							Sample ID	mw	10	. 10/11	Well No	mas 10	
	Proje	ct: USG I	Hwy 99					Da	ate:	10/18/201	l		
	-	ct No.: 19		628						ed By: _ML			
	Weat	her: <u>Set</u>	hay 10	211	, 60	ζ		Re	eview	ved By:			
		1	Vater Le			10	Time 1057			Comments			
			/olume i				Total Well Depth			1.21	2		
					ore Sampl	ina	Screened Interva			0.2-11.	21		
					istaltic Pu		Stabilized Flow I						
	ŊĊ	Time	DTW	Cu	mulative olume	Temp (°C)	Specific Conductance (microsiemens/c	6	оH	Turbidity	mر Dissolved Oxygen	Oxidation- Reduction Potential	
	PURGING					12.81	416	7.	48		1.61	.84.8	
TOSVURZ	D	1102	989		21	12.54	368	7.	40	59.3	823	119.3	
monally	los		Well	124	mpcol	dig -	will return ble	7		51.5			
12:30		1392	1081			13.94	358	1.	96	5	1.39	-54.3	
Begin	1	1224	407	d.y	-O Prop	1	354		42	154	0.68	-972	
pris]			6:38	/		1344	349		\$.8		0.47	-174 1	
6 6		1.1.4.1	4.5.5	Per	istaltic Pu	1. Z. I	1	14	~1/	49.8	. [/	710	
		Analytica				P P	Attached		Tir	ne Sampled	13:35		
•	NG		0			erved By	At What	рΗ	T	Filter Type	3. St. 37	oled By	
	Ы		Sample ContainerPreserved By500 mL HDPEHNO3				<2			0.45 micro		Ice	
	SAMPLING	2				1					1		
										2 2			
	ш	Appeara	nce / Od	or 🧷	1375 1	16:1054	130:1045						
	DATA	pH (last s	stabilized	I)	6.88		Temperature	(°C)	13	461			
s	SAMPLE DATA	Eh (milliv	/olts)				Specific Con	ductanc	e (mi	icrosiemens/	cm) 349	/	
		OVM-PIE) Headsp	bace	(ppm)		0RP - 94	. Q					
		Chain-of-	-Custody	þ	Yes	🗆 No	Chain-of-Cust	tody ID					
		Duplicate	e Sample	ID			Replicate Sar				3		
	NO	Analytic	allah	Lab	Name An			ate Ser	nt to	Lab 10/18/2	2011		
	DISPOSITION	Analytic		Ship	ment Met	nod Hand	d-delivered					· · · ·	
	SPC	Split v	with	Nam	ne (s)								
	Ő				anization (4							
	-	Other	Tubinju	init	she so	st st ~	10.7 600	ю. 				-	
	12	Commen	ts 💚		2	101							

REV. 2007

forms\low flow groundwater sampling record.doc

LOW FLOW GROUNDWATER SAMPLING RECORD

					Sample ID	911 - ·	10/11	Well No.	MIJ //
Projec	t: USG	Hwy 99				Date:	10/18/2011		
0.00	ct No.: 19		528			_Sampl	ed By: _ML	F	
Weath	ner: <u>Suu</u>	and le	11m . 53"	5		_Reviev	ved By:		
	Static V	Vater Lev	/el (TOC)	a, and a first and a	Time 11.37		Comments		
		/olume i			Total Well Depth (TC)C)	10.51		
e s	Volume	Purged	Before Sampl	ing	Screened Interval (T	OC) 4	1.5-10.5	1	
	Purging	g Method	Peristaltic Pu	mp	Stabilized Flow Rate				
U U U	Time	DTW	Cumulative Volume	Temp (°C)	Specific Conductance (microsiemens/cm)	рН	Turbidity	Dissolved Oxygen	Oxidation- Reduction Potential
PURGING	11.39	epelling.	Truttel	13.88	727	7.23		4.49	-72.3
PUI	1/42			1360	702	1.68	270	× 0.25	-115.7
м	1145			13.65	681	6.56	667	0.22	-113.9
	11418			13.67	672	6.51	4/6	0.37	-114.3
	1151	``		13.74	671	6.40		0.42	-119.9
	116,4			13.67	lold 9	644	101.0	0.30	-117.5
	1157	2	9	13.66	670	6.49		0.26	-119.2
	Samplin	g Methoo	Peristaltic Pu						
U	Analytica	al Matrix	Yes	No	Attached	Tir	ne Sampled		5
SAMPLING				erved By	At What pH		Filter Type		oled By
ΜP	500 mL	HDPE	HN	03	<2		0.45 micro		Ice
SA					·····				
	Appeara	ince / Od	or day /	dades	5 000/035				
SAMPLE DATA	pH (last	stabilized	0 6.48	hijadi	Temperature (°C) 13	.90		
DATA	Eh (milli	volts)		1	Specific Conduct	7	icrosiemens/	(cm) 670	
S	OVM-PI	D Heads	pace (ppm)		ORP -/2	79		*	
2	Chain-of	-Custody	Yes	□ No	Chain-of-Custody	ID			
	Duplicate	e Sample	ID		Replicate Sample	Nos.			
NO			Lab Name An	alytical F	Resources Date	Sent to	Lab 10/18/	2011	
SITI	Analytic	al Lab	Shipment Met	hod Han	d-delivered				
DISPOSITION	0.11	141-	Name (s)		- - -				
DIS	Split	with	Organization (s)					
а 	Other	Interne.	intate set	- Anno Denn	4.75 becomte	10/15/	11		2
	Commer	nts 🔿	Jubno 15	perma.	iedly set in in	rell			

REV. 2007

forms\low flow groundwater sampling record.doc

TIME	PTW	Cum. Vol	Temp	Spee Cend	pH	Tubidity	D.C. CI	2P
1200	· · · · · · · · · · · · ·					47.3	0,37 -,	
1203	and the second	* * {	13.79				0.32 -	,
1207 1210 1213	•		13.81 13.78 13.8 2	668	6.48	21.2	0.25	-124.4 -125.8 -127.2
12/6 12/9			13.86		6.48		0.17	-1292
						12.8		

LOW FLOW GROUNDWATER SAMPLING RECORD

						Sample ID ////	NIZ	-05/12	Well No	MW12	
Proiec	ct: USG	Hwy 99		3	Date:5/22/2012						
Proied	t No.: 1	9921-7762	8		Sampled By:						
Weath	ter: <u>50</u>	hny, Lo	ol. 505	breezy	Reviewed By:						
<u> </u>	Static Water Level (TOC) 0855				Time 0853 Comments						
PURGING	Water Volume in Casing				Total Well Depth (TOC) 20'						
	Volume Purged Before Sampling				Screened Interval (TOC) 14' to 19'						
	Purging Method peristaltic pump				Stabilized Flow Rate ~ 200 m L/mn						
	Time	DTW	Cumulative Volume	Temp	Co	Specific onductance osiemens/cm)	рН	Turbidity	Dissolved Oxygen	Oxidation- Reduction Potential	
	0855	Z.27	Trited	12.51	8 0	203	8.16	83.2	0.82	-86.3	
	0859	5.26	1.2	12.29	÷.,	193	7.45	49.4	0.6	-85.2	
	0903	7.41	2	12.15		188	7.09	100.7	0.80	-82.5	
	0907	8.25	2.8	12.06		189	6.95	130	0.83	-8.4	
	0911	9.20	3.6	11.99		187	686	133	1.05	-83.4	
	0915	9.98		11.96		186	68	119	1.32	-841	
 	0919	10:33		11:95	las altra	185	6-18	89.4	1.45.	-80.1	
SAMPLING	Sampling Method period altro pimp										
	Analytic	Analytical Matrix Dyes DNo DAttached Time Sampled 0950									
	Sample Container 500 mL HDPE		ner Pres	Preserved By HNO3		At What pH		Filter Type 0.45 micron		Cooled By	
	JOU IIIL HDFE			IIIVO							
SA		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
										No. A.	
	1					u de los de alt la ditte te shidite shares v?					
SAMPLE	Appearance / Odor Clezr, Worless odor less shipht hurbidity shserver philip in bude										
DA.	Eh (millivolts)				Specific Conductance (microsiemens/cm) 188						
S	OVM-PID Headspace (ppm) ORP - 75.0										
	Chain-of-Custody Ves No Chain-of-Custody ID										
DISPOSITION	Duplicate Sample ID Replicate Sample Nos.										
	A		Labrianio		cal Resources Date Sent to Lab 5/22/2012						
	Analytical Lab		Shipment Method Hand-delivered								
	Split with Organization (s)										
	Other Typing set st~ 15.5'btc										
	Comme	nts	2 1	и 1				•			
									oundwater same	ling record dee	

REV. 2007

der.T.

		1	ų			
Time	NTW	Cum Temp	Spect 1) T	T.b 00	600	
1 <u>.174ke</u>		Val Temp	pri 1	VIS. VIC.	USP	
0923	10.62	11.95	187 6.72	75.5 1.64	-79.1	
0927	10.89	11.93	189 672	59:2 1.73	-77.5	
0931		11.92	187 670	47.1 1.87	-766	
0935	11.34			34.8 1.92		
6939	11.37			29.6 1.96		•
0943		11.91	188 6.67	26.9 2.0	0 75.0	
1				24.0		. 3

``

LOW FLOW GROUNDWATER SAMPLING RECORD

Drain	ct: USG	Hwy 99			Sample ID	121	<i>L</i> /00/0010		MW13
Projec	ct1	9921-7762	28		· · · · · · · · · · · · · · · · · · ·		ed By:ML	F	
	her:	oudy,		n, bree	234,505		ved By:		· · · · · · · · · · · · · · · · · · ·
	Static V	Water Lev	vel (TOC) 8	.27	Time //22		Comments		
	Water	Volume iı	n Casing		Total Well Depth (TC)C)	16'		•
	Volum	e Purged	Before Samp	oling	Screened Interval (T	OC)	10-15	7	
	Purgin	g Method	peristaltic pu	mp	Stabilized Flow Rate	~20	Dailpair	1	
Ŋ	Time	DTW	Cumulative Vojume		Specific Conductance (microsiemens/cm)	рН	Turbidity	Dissolved Oxygen	Oxidation Reductio Potentia
g	1125	9.41	Intil	13.49	1128	66	118	3.72	-862
PURGING	1129	10134		13.05	1034	6.48	643	1.26	-88,7
	1134	1167		13,06	1159	6.49	381	0.61	-1011
	1138			13,17	1081	6.52		099	-102.8
		Pump	diruwihp	zih bu	billes hower tim	erup t	aust als	sue botto.	notwo
	1145			13.24	1024	656	84	0,98	-102.1
	P	unp a	rzwiho zi	ir ve	ll is dry				
· · · · ·	Samplir	ng Methoo	neristz	the new	And States			in in F ilm	an a
				Val por	Vi				
4.5		al Matrix		Who provide	Attached	Tir	ne Sampled		and a second
UNG	Analytic Sampl	cal Matrix e Contaiı	/ □Yes ner Pre	eserved By		Tir	Filter Type	/220 c	and a second second second second
APLING	Analytic	cal Matrix e Contaiı	/ □Yes ner Pre	<u> </u>				/220 c	
SAMPLING	Analytic Sampl	cal Matrix e Contaiı	/ □Yes ner Pre	eserved By	At What pH		Filter Type	/220 c	ooled By
SAMPLING	Analytic Sampl	cal Matrix e Contaiı	/ □Yes ner Pre	eserved By	At What pH		Filter Type	/220 c	ooled By
SAMPLING	Analytic Sampl	cal Matrix e Contaiı	Z □Yes ner Pre H	eserved By NO3	At What pH <2		Filter Type 0.45 micror	/220 n co i	polęd By ce
	Analytic Sampl 500 mL	cal Matrix e Contaiı	Ior Colorle	eserved By NO3	At What pH <2	suirlea	Filter Type 0.45 micror	/220 n co i	ooled By
	Analytic Sampl 500 mL	al Matrix e Contaiı HDPE	Ior CSCOLC	eserved By NO3	At What pH <2	suirlea	Filter Type 0.45 micror	1220 ca i i	$\frac{\text{poled By}}{\text{ce}}$
	Analytic Sampl 500 mL	e Contain HDPE	Ior Colorle	eserved By NO3	At What pH <2 <i>Cless, Luttle bit</i> Temperature (°C Specific Conduct	<u>Surjr lea</u>	Filter Type 0.45 micron	1220 ca ca i i	$\frac{\text{poled By}}{\text{ce}}$
ш	Analytic Sampl 500 mL Appeara pH (last Eh (mill	al Matrix e Contaii HDPE ance / Od stabilized	Ior Colorle	eserved By NO3	At What pH <2 <i>Cless, Luttle bit</i> Temperature (°C Specific Conduct	surirlea	Filter Type 0.45 micron	1220 ca ca i i	ooled By ce le>r
	Analytic Sampl 500 mL Appeara pH (last Eh (mill OVM-P	al Matrix e Contaii HDPE ance / Od stabilized	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	eserved By NO3	At What pH <2 <i>Cless, Luttle bit</i> Temperature (°C Specific Conduct	<u>suri (en</u>)], tance (m	Filter Type 0.45 micron	1220 ca ca i i	ooled By ce / e>ſ /
SAMPLE DATA	Analytic Sampl 500 mL Appeara pH (last Eh (mill OVM-P Chain-o	al Matrix e Contain HDPE ance / Od stabilized ivolts)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NO3 NO3	At What pH <2 <i>Cless, Little bit</i> Temperature (°C Specific Conduct ORP	swjr/ea swjr/ea) /, tance (m /D 2, / ID	Filter Type 0.45 micron	/220 c c c c c c c c c c c c c	$\frac{1}{e > r}$
SAMPLE DATA	Analytic Sampl 500 mL Appeara pH (last Eh (mill OVM-Pl Chain-o Duplicat	al Matrix e Contain HDPE ance / Od stabilized ivolts) ID Headsp f-Custody te Sample	Pres ner Pre H hor Colorler d) 6,56 pace (ppm) / Yes e ID Lab Name	Analytical Re	At What pH	swjr/ea swjr/ea) /, tance (m /D 2, / ID	Filter Type 0.45 micror <i>Aeen pr</i> <i>3</i> , 24 icrosiemens	/220 c c c c c c c c c c c c c	$\frac{1}{e > r}$
SAMPLE DATA	Analytic Sampl 500 mL Appeara pH (last Eh (mill OVM-P Chain-o	al Matrix e Contain HDPE ance / Od stabilized ivolts) ID Headsp f-Custody te Sample	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analytical Re	At What pH	swir/lea swir/lea swir/lea (m /b 2 , /D 2 , /D 2 , /D 2 ,	Filter Type 0.45 micror <i>heen pr</i> 3, 2.4 icrosiemens	/220 c c c c c c c c c c c c c	$\frac{\text{poled By}}{\text{ce}}$
SAMPLE DATA	Analytic Sampl 500 mL Appeara pH (last Eh (mill OVM-P Chain-o Duplicat Analyti	al Matrix e Contain HDPE ance / Od stabilized ivolts) ID Heads f-Custody te Sample cal Lab	Pres ner Pre H hor Colorler d) 6,56 pace (ppm) / Yes e ID Lab Name	Analytical Re	At What pH	swir/lea swir/lea swir/lea (m /b 2 , /D 2 , /D 2 , /D 2 ,	Filter Type 0.45 micror <i>heen pr</i> 3, 2.4 icrosiemens	/220 c c c c c c c c c c c c c	$\frac{\text{poled By}}{\text{ce}}$
	Analytic Sampl 500 mL Appeara pH (last Eh (mill OVM-Pl Chain-o Duplicat	al Matrix e Contain HDPE ance / Od stabilized ivolts) ID Heads f-Custody te Sample cal Lab	ner Pre ner Pre H or Color(C) d) 6,54 pace (ppm) / Yes a ID Lab Name A Shipment Me Name (s) Organization	Analytical Reethod Hand	At What pH	Swjr/en Swjr/en Swjr/en Swjr/en J J J J J J J J J J J J J	Filter Type 0.45 micror <i>heen pr</i> 3, 2.4 icrosiemens	/220 c c c c c c c c c c c c c	ooled By ce le>r
SAMPLE DATA	Analytic Sampl 500 mL Appeara pH (last Eh (mill OVM-P Chain-o Duplicat Analyti	al Matrix e Contain HDPE ance / Od stabilized ivolts) ID Heads f-Custody te Sample cal Lab	ner Pre ner Pre H or Color(C) d) 6,54 pace (ppm) / Yes a ID Lab Name A Shipment Me Name (s) Organization	Analytical Reethod Hand	At What pH	Swjr/en Swjr/en Swjr/en Swjr/en J J J J J J J J J J J J J	Filter Type 0.45 micror <i>J. A. e.en. pr</i> <i>3,</i> 2.4 icrosiemens J Lab 5/22/20	/220 c c c c c c c c c c c c c	$\frac{\text{poled By}}{\text{ce}}$

REV. 2007

forms\low flow groundwater sampling record.doc

5

LOW FLOW GROUNDWATER SAMPLING RECORD

YearTimeDTWCumulative Volume, Volume,Temp (°C)Conductance (microsiemens/cm)pHTurbidityDissolved OxygenReduction Potential104213.25Tullid12.4312.836.4074.74.41-75.9104612.0714056.413031.20-403.9								Sample ID	w14 -	05/12	Well No.	mw14	
Sampled By: MLF Weather:	Proie	t: USG	Hwy 99					2 ° -	Date:	5/22/2012			
Weather: Cloudy Light For each Reviewed By: Static Water Level (TOC) 1/0 - 60 Time 1/0 - 3.5 Comments Water Volume in Casing Total Well Depth (TOC) 2/0 - 3/1 Static Water Level (TOC) 1/0 - 1/2 - 1/2 Purging Method peristatic pump Stabilized Flow Rate ~ 2/07 M1/JuMA Oxidation Time DTW Curuitative Temp Specific Onductance Purging Method Poxidation 1/4/L 1/3.25 Julitative Temp Conductance Purging Method Poxidation 1/4/L 1/3.25 Julitative Temp Conductance Purging Method Poxidation 1/4/L 1/3.25 Julitative Temp Conductance Purging Method Poxidation 1/4/L 1/2.47 1/2.49 6.49 8.6.3 1.5.7 -1/1/2.7 1/5.5 Role 1/3.24 1/3.24 9.649 8.6.3 1.5.7 -1/1/2.7 1/5.5 Role 1/3.24		1		28			•	-			F		
Vater Volume in Casing Total Well Depth (TOC) 2.0 ¹ Volume Purged Before Sampling Screened Interval (TOC) /3'-/8' Purging Method Peristaltic pump Stabilized Flow Rate ~240 m U/u/l/ Time DTW Cumulative Temp Conductance (microsiemens/cm) pH Turbidity Dissolved Oxidation- Reduction 1/42 /3.25 Zuli/i /2.43 /2.82 640 74.7 4.47 -75.9 1/64/a 1/2.01 1/405 6441 30.3 1/2.0 -0.33.9 1/050 1/5.62 1/1.48 1/2.19 6.48 8.6.3 1.57 -1/17.7 1/050 1/6.64 1/2.48 74.39 6.48 8.6.3 1.57 -1/17.7 1/050 1/6.64 1/2.48 74.39 6.48 8.6.3 1.57 -1/17.7 1/057 16.64 1/2.48 74.39 6.49 8.6.3 1.57 -1/17.7 1/057 16.64 partestred By At What pH Filter Type<	•	1	rudy,	light	-run	, breez	4						
Volume Purged Before Sampling Screened Interval (TOC) / 2 ¹ - / 8 ¹ Purging Method peristaltic pump Stabilized Flow Rate ~ 200 m///m// Oxidation Purging Method peristaltic pump Stabilized Flow Rate ~ 200 m///m// Oxidation Time DTW Cumulative Temp Specific Dissolved Oxidation 10472 13:25 Table 12473 1253 640 74.7 4.41 -15.9 10472 13:25 Table 12473 1253 640 74.7 4.41 -15.9 10474 13:25 Table 12473 1253 641 30:3 1.20 +03.9 1050 15.62 11.98 12.443 147.9 6.39 1.11 -172.2 1050 15.62 10.81 babring 15.94 6.478 8.63 1.57 -171.7 -761.1 1055 16.61 12.443 17.94 4.594 6.71 -761.1 -761.1 1057	÷	Static \	Nater Le	vel (TO	C) <i>10</i>	<i>.</i> 60	Tim	ne 1035		Comments			
OPEN Appearance / Odor (Color (Color (Color Color		Water V	Volume i	n Casir	ng		Tot	al Well Depth (TO	(O(20'			
Specific Cumulative (4) Specific Conductance (microsiemens/cm) Dissolved Dissolved (4) Oxidation- Reduction Potential 1042 13.25 Julial 12.43 12.92 640 74.7 4.47 -75.9 1042 13.25 Julial 12.43 12.92 640 74.7 4.47 -75.9 1042 13.05 15.162 11.98 14179 6.39 1.20 -40.3.9 1050 15.162 11.98 14179 6.39 1.21 -17.2.0 1055 16.62 12.48 19.39 6.48 8.6.3 1.5.7 -117.7 1055 16.64 12.48 13.2 0.71 -40.1 -40.1 2057 12.48 13.2 0.71 -40.1 -40.1 -40.1 2057 10.49 12.2.1 12.49 4.59 0.71 -40.1 300mL Hope		and the second se					Scr	eened Interval (T	OC)	13'-18	>/		
Specific Cumulative Volume, (°C) Specific Conductance (microsiemens/cm) Dissolved Dissolved Dissolved Oxygen Oxidation- Reduction Potential 1042 13.25 Julial 12.43 12.92 640 74.7 4.47 -75.9 1042 13.25 Julial 12.43 12.92 640 74.7 4.47 -75.9 1042 13.05 15.62 11.98 1419 6.33 1.20 -40.3.9 1050 15.62 11.98 1419 6.39 1.11 -132.5 1052 16.62 12.48 13.99 6.48 86.3 1.57 -119.2 1055 16.61 12.48 13.91 6.49 86.3 1.57 -119.2 1057 10.61 12.21 12.49 6.49 86.3 1.57 -119.2 1059 Sampling Method period period ball period ball 0.71 -boll -boll Sample Container Preserved By At What pH Filter Type Cooled By -boll -boll	·	Purgin	g Method	perista	altic pum	p	Sta		-20	50 ml/m	11		
OPTOWER ISOLOZ III PR Sampling Method policity pump Analytical Matrix Preserved By At What pH Filter Type Cooled By Sample Container Preserved By At What pH Filter Type Cooled By Sample Container Preserved By At What pH Filter Type Cooled By Sample Container Preserved By At What pH Filter Type Cooled By Sole Method Cooled By <td colspan<="" td=""><td>DNG</td><td></td><td>-</td><td>Cumi Vol</td><td>ulative ume,</td><td>Temp</td><td></td><td>Conductance</td><td>pH</td><td>Turbidity</td><td>Oxygen</td><td></td></td>	<td>DNG</td> <td></td> <td>-</td> <td>Cumi Vol</td> <td>ulative ume,</td> <td>Temp</td> <td></td> <td>Conductance</td> <td>pH</td> <td>Turbidity</td> <td>Oxygen</td> <td></td>	DNG		-	Cumi Vol	ulative ume,	Temp		Conductance	pH	Turbidity	Oxygen	
ISCO 15.62 1198 1479 6.39 1.11 -132.0 Arwing 201 bubbles Ioner Ioner<	RGI	1042	13.25	Th	itid	12.43		1280	6.40	74.7	4.47	-15.9	
Image: Second	PU	1046				12.07		1405	6.41	303	1.20	-103.9	
Arwing 2th hubbles Ioner		IUSD	15.62			11.98	2.4	1479	6.39		111	-132.0	
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>		drew			bles	loner	tub	ing to just	off	bottom a	stwell	-	
1059 12.21 12.49 6.54 6.71 -1011 Party aroung 201 -wcll 13 aroung 13 aroung 140 -wcll 13 aroung 13 aroung 140 -wcll 13 aroung 13 aroung 140 Sampling Method participation participation participation participation Sample Container Preserved By At What pH Filter Type Cooled By Soo mL HDPE HN03 -2 0.45 micron ice Appearance / Odor 10 aroung 165, 10 aroung 16, 10 aroung	•					12.48		1439	6.48	863	1.57	-117,2	
POTO Sampling Method period bate	· ·			. 12.43		12.21		1249	4.54		0.71	-601.1	
Sampling Method peniesbetter pump Analytical Matrix Yes No Attached Time Sampled 1440 Sample Container Preserved By At What pH Filter Type Cooled By 500 mL HDPE HN03 <2		· //	mdr	20,1	e 21)	-we	U	is dry					
Sample Container Preserved By At What pH Filter Type Cooled By 500 mL HDPE HNO3 <2			-1	- C	richt	ie pur	P	$\int J$	- Maria - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 1				
Sample Container Preserved By At What pH Filter Type Cooled By 500 mL HDPE HNO3 <2		Analytic	al Matrix		Yes [JN⊃		ttached	Tir	ne Sampled	1440		
Appearance / Odor Color (ess. júžer in bucket is 2 bit muddy od 0.~ [ess.]) pH (last stabilized) 6.54 pH (last stabilized) 6.54 Temperature (°C) 12.21 Eh (millivolts) Specific Conductance (microsiemens/cm) OVM-PID Headspace (ppm). ORP OVM-PID Headspace (ppm). ORP Chain-of-Custody Yes Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Split with Organization (s)	ONI	Sample	e Contai	ner	Pres	served By		At What pH		Filter Type	Co	oled By	
Appearance / Odor Color (ess. júžer in bucket is 2 bit muddy od 0.~ [ess.]) pH (last stabilized) 6.54 pH (last stabilized) 6.54 Temperature (°C) 12.21 Eh (millivolts) Specific Conductance (microsiemens/cm) OVM-PID Headspace (ppm). ORP OVM-PID Headspace (ppm). ORP Chain-of-Custody Yes Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Split with Organization (s)	APL	500 mL 1	HDPE		HN	03		<2		0.45 micror	n i	ce	
Appearance / Odor Color (ess. júžer in bucket is 2 bit muddy od 0.~ [ess.]) pH (last stabilized) 6.54 pH (last stabilized) 6.54 Temperature (°C) 12.21 Eh (millivolts) Specific Conductance (microsiemens/cm) OVM-PID Headspace (ppm). ORP OVM-PID Headspace (ppm). ORP Chain-of-Custody Yes Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Split with Organization (s)	SAN				ň.								
PH (last stabilized) 6.54 Temperature (°C) 12.21 Eh (millivolts) Specific Conductance (microsiemens/cm) 12.49 OVM-PID Headspace (ppm) ORP -46ff -/01.1 Chain-of-Custody Yes No Chain-of-Custody ID Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Date Sent to Lab 5/22/2012 Split with Name (s) Organization (s) Organization (s) Organization (s)	•	e *				÷						· .	
PH (last stabilized) 6.54 Temperature (°C) 12.21 Eh (millivolts) Specific Conductance (microsiemens/cm) 12.49 OVM-PID Headspace (ppm) ORP -46ff -/01.1 Chain-of-Custody Yes No Chain-of-Custody ID Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Date Sent to Lab 5/22/2012 Split with Name (s) Organization (s) Organization (s) Organization (s)							Ċ,						
OVM-PID Headspace (ppm) ORP -/bf+ Chain-of-Custody Yes No Chain-of-Custody ID Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Date Sent to Lab Split with Name (s) Organization (s)	ш	Appeara	ance / Od	or CO	lorles	is water	m	bucket 152	bet mu	dely od	0.~ 1 ess		
OVM-PID Headspace (ppm) ORP Image: Horizontal control of the system Chain-of-Custody Yes No Chain-of-Custody ID Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Date Sent to Lab Split with Name (s) Organization (s)	IPL VTA	pH (last	stabilize	d)	6.50	4		Temperature (°C) 12	21			
OVM-PID Headspace (ppm) ORP -/bf+ Chain-of-Custody Yes No Chain-of-Custody ID Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Date Sent to Lab Split with Name (s) Organization (s)	DAN	Eh (milli	volts)				e.,	Specific Conduct	ance (m	icrosiemens,	(cm) 124	9	
Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Date Sent to Lab 5/22/2012 Analytical Lab Shipment Method Hand-delivered Split with Name (s) Organization (s)		OVM-PI	D Heads	pace (p	pm)			ORP -10ft	-/1	51./		· •	
Duplicate Sample ID Replicate Sample Nos. Analytical Lab Lab Name Analytical Resources Date Sent to Lab 5/22/2012 Analytical Lab Shipment Method Hand-delivered Split with Name (s) Organization (s)		Chain-o	f-Custody		Yes	□ No		Chain-of-Custody	ID				
11 1 1 F IF FULL		Duplicat	e Sample	e ID				Replicate Sample	Nos.	a 1			
11 1 1 F IF FULL	NO			Lab N	ame Ar	alytical Re	sourc	^{es} Date	Sent to	Lab 5/22/20	12		
11 1 1 F IF FULL	IIIS	Analytic	cal Lab	Shipm	ent Met	hod Hand-	-deliv	ered				×	
	Ő	3											
11 1 1 F IF FULL	DIS	Split	with			s)						2.5	
		Other	Tubino		1	1 4	-18	5.5°6tc					
Comments			10-10	1101 0				Y					

REV. 2007

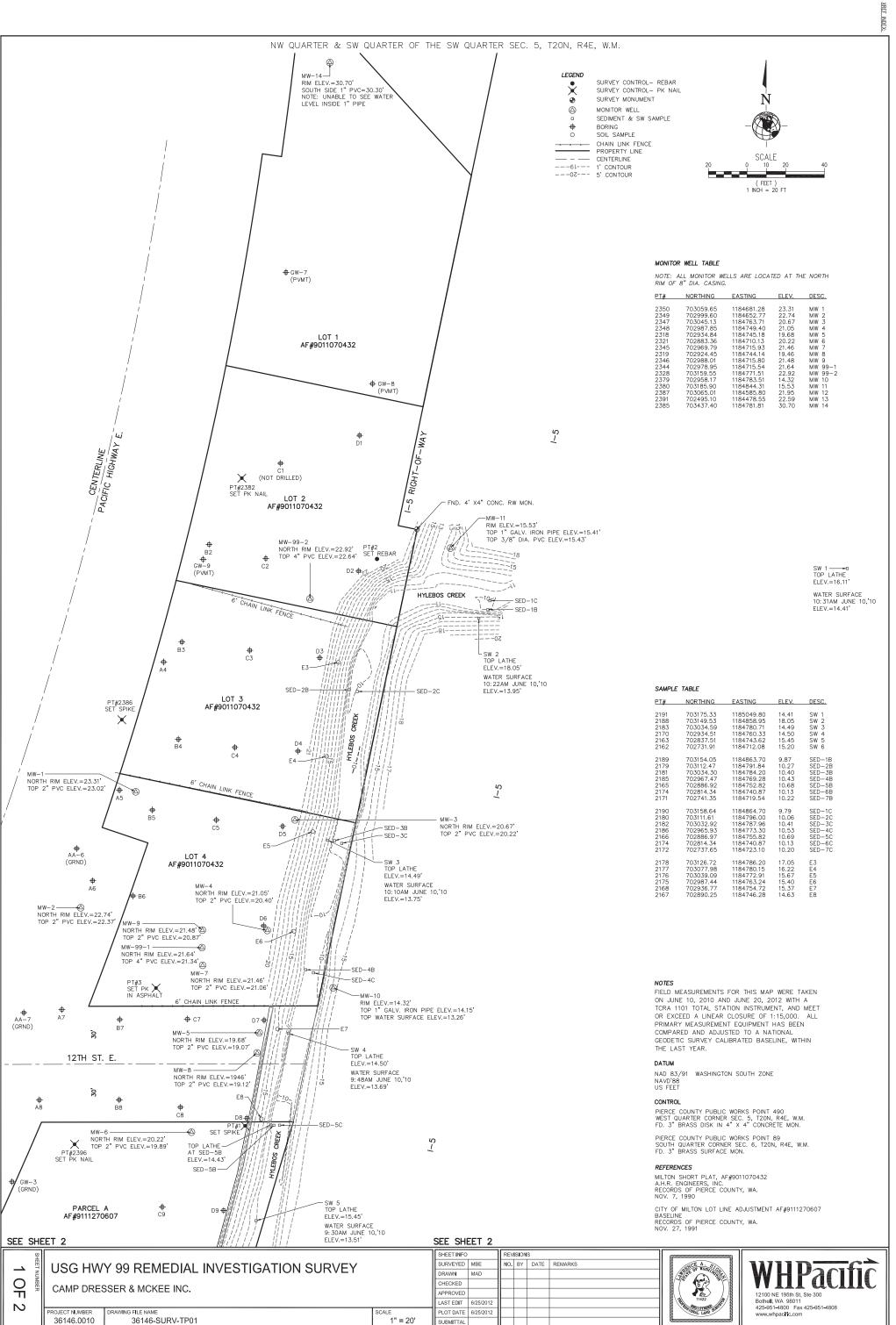
forms\low flow groundwater sampling record.doc

0

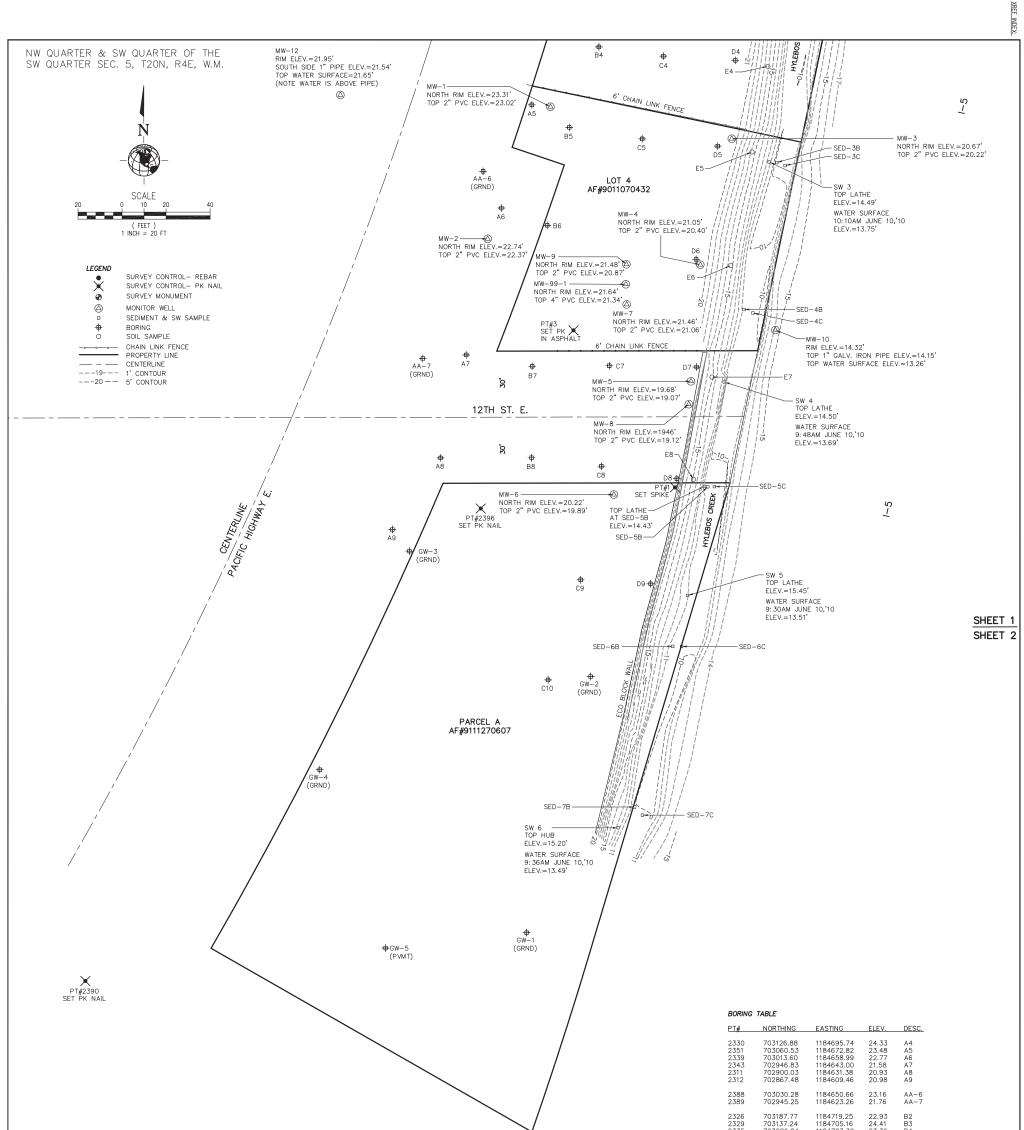
· :

WATER LEVEL MEASUREMENTS

	JSG Hwy 99	This hop	ezy, 50'	5		Project No. <u>19921-77628</u> Date <u>5/22/2012</u>
Site Condit			czy / OU -			Measured By
	ent Device Si		·····		· ·	Calculations By
Elevation D						
				<u>م</u>		
. ¢	· · ·	Depth to		Reference	Water	
Well	Time	Water (#)	Reference	Elevation	Elevation	Comments
MW1	1323	9.04	TOC			· · · · ·
MW2	1327	7.71	TOC			
MW3	1320	6.28	TOC			
MW4	1317	663	TOC			· 4
MW5	1253	532	TOC			
MW6	1247	619	TOC			
MW7	1337	8/5	∛ £ÓC			1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -
MW8	1249	4.59	TOC	 	4	
MW9	1336	0.625	TOÇ			
MW10	1350	0.79	TOÇ	· ·		
MW11	1425	6.90	TÒC 🔊			
99-1	1335	7.("D	``ТОС			
99-2	1417	8.89	TOC	S. 1. 5.	(X_{i})	
MW14	1440	10.60	TOC			
mw13	1122	8.27	TOC	ę., .		
MW12	6853	D'	Tor			
·		×.	N	1.5	5.	
		and the second			i ar	
						0
		10			Sec.	
		۹				
						1
•	ů.	× .	· · · · · · · · · · · · · · · · · · ·		•	
ł					1 13	
Additional Co	ommorto	ę .		wall a ser	So.	


Version 10/2007

Wate Level Measurements.pmd


This page intentionally left blank to allow for double-sided printing.

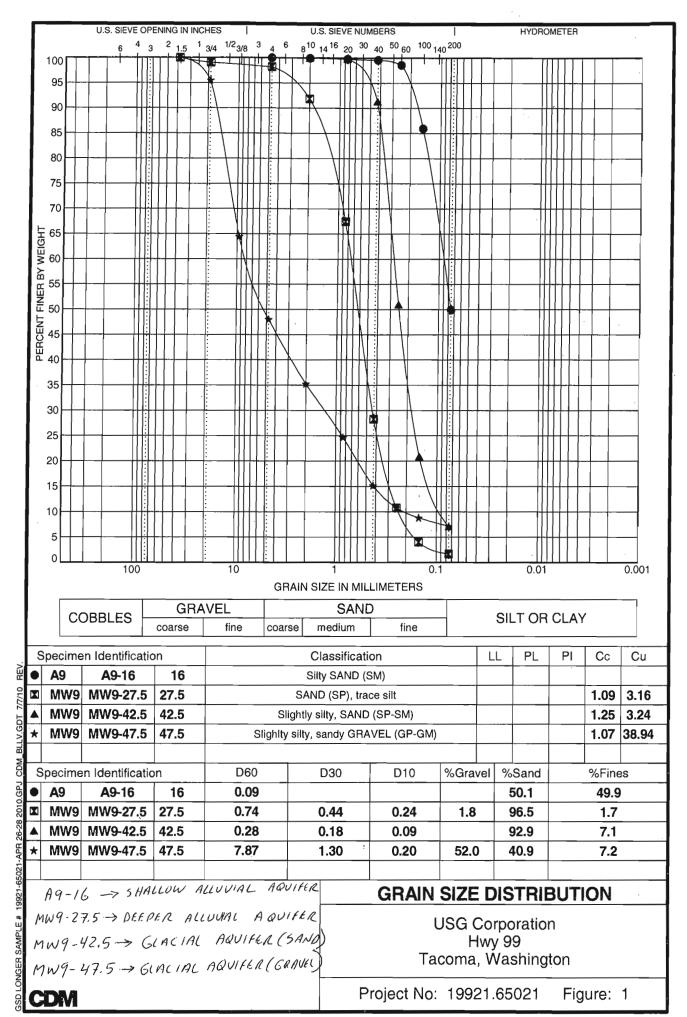
Appendix C Land Survey Report This page intentionally left blank to allow for double-sided printing.

			SHEET INFO		REVI	SIONS			Communication		
<u>ес н</u> ///	Y 99 REMEDIAL INVESTIGATION SURVEY		SURVEYED	MBE	NO.	BY	DATE	REMARKS	ENCE A. SI		
30 1100	1 39 NEWLEDIAL INVESTIGATION SORVET		DRAWN	MAD					ABUICE A. SICH	WHPacific	
	SER & MCKEE INC.		CHECKED								
AIVIP DRES	SER & MUREE INC.		APPROVED							12100 NE 195th St, Ste 300	
			LAST EDIT	6/25/2012					33 11422 C	Bothell, WA 98011 425-951-4800 Fax 425-951-4808	
	DRAWING FILE NAME		PLOT DATE	6/25/2012					Toronal Land Surfe	www.whpacific.com	
146.0010	36146-SURV-TP01	1" = 20'	SUBMITTAL						8		

2. 2. 2. 2.	335 338 340 310 366	703050.23	1184703.30 1184689.84 1184679.81 1184672.99 1184672.70	23.36 22.85 22.15 21.19 21.02	B4 B5 B6 B7 B8
2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	324 325 331 333 337 342 320 314 313	703045.05 702941.92 702896.26	1184756.28 1184748.65 1184740.34 1184732.62 1184723.00 1184708.04 1184704.45 1184695.02 1184680.24	25.73 24.38 23.19 22.19 21.75 20.49 20.12 20.28 20.28 20.48	C1 (NOT DRILLED) C2 C3 C4 C5 C7 C8 C9 C10
2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	323 327 332 334 336 341 317 316 315	703173.97 703129.03 703080.74 703041.74 702990.28 702941.34	1184797.23 1184796.74 1184776.54 1184765.32 1184747.49 1184747.49 1184747.73 1184747.73 1184726.78	24.59 22.54 21.85 21.08 20.74 21.00 19.28 19.24 19.37	D1 D2 D3 D4 D5 D6 D7 D8 D9
2: 2: 2: 2: 2: 2:	393 398 395 394 392 384 383 383	702684.25 702800.67 702857.66 702758.32 702677.25 70328.73 70328.73 703271.04 703180.06	1184670.44 1184699.54 1184617.19 1184576.44 1184606.35 1184759.11 1184759.11 1184803.88 1184716.17	20.64 20.26 20.90 21.56 21.12 28.02 24.69 25.53	GW-1 GW-2 GW-3 GW-4 GW-5 GW-7 GW-7 GW-8 GW-9

MW-13
RIM ELEV.=22.59'
SOUTH SIDE TOP 1" PVC=22.16'
(NOTE: UNABLE TO SEE WATER)

2	USG HWY 99 REMEDIAL INVESTIGATION SURVEY		SHEET INFO SURVEYED DRAWN		REVISIO NO. BY	-	REMARKS		WHDacific
	CAMP DRESSER & MCKEE INC.		CHECKED APPROVED LAST EDIT						12100 NE 195th St, Ste 300 Bothell, WA 98011
	PROJECT NUMBER DRAWING FILE NAME 36146.0010 36146-SURV-TP01	scale 1" = 20'	PLOT DATE SUBMITTAL	6/25/2012				A CISTERIO ANTE	425-951-4800 Fax 425-951-4808 www.whpacific.com


Appendix D Hydrogeologic Calculations

This page intentionally left blank to allow for double-sided printing.

CDN CLIENT 156 PROJECT 164 WAY 99 RI DATE CHECKED DETAIL HYDRAULIC CUNDUCTIVITY ESTIMATE OBJECTIVE: DETERMINE THE HYDRAULIC CON	DATE 7/14/20/0 PAGE NO. 104 L
OBJECTIVE: DETERMINE THE HYDRAULIC CON	
THE: D SHALLOW ALLUVIAL AQUI. ALLUVIAL AQUIFER AND 3 GLACI	FER D DEEPER
APPROACH : ESTIMATE THE HYDRAULIC CONDUCTIV	ITY OF SOIL
IN EACH ZONE USING THE HA METITOD AND GRAIN SIZE DIS DATA AQUIRED DURING REMED	ZEN (1911) TRIBUTION
HYDRAULIC CONDUCTIVITY = K = C(dio) WHERE:	
010 = EFFECTIVE GRAIN SIZE (10) T	HIS GRAIN SIZE)
C = HAZEN COEFFICIENT ->	IN DEGREE OF
SHALLOW ALLUVIAL AQUIFER 5	IZE (TABLE 3.7)
ASSUME SOIL SAMPLE A 9-16 IS REPRESENTATIVE BECAUSE THIS IS SILTX SAND (SM), WITH 49.9% THE HAZEN (1911) IS NOT APPLICABLE. IN: THE LITERATURE DERIVED & VALUES FOR FROM ANDERSON AND WOESSNER (1992) FIGURE KLOW = 0.3 FT/DAY KHIGH = 30 FT/DAY	SILT AND CLAY STEAD USE SILTX SAND
DEEPER ALLOVIAL AQUIFER ASSUME SOIL SAMPLE MW9-27.5 IS REPRESENTATIVE OF THE $d_{10} = 0.24 \text{ mm}$ HAZEN COEFFICIENT = C = 80 TO 120 cm-5 WNIFORMITY COEFFICIENT = C = 80 TO 120 cm-5 $WNIFORMITY COEFFICIENT = C_4 = \frac{d_{60}}{d_{10}} = \frac{0.74}{0.24} \cdot 3.1 \left(\begin{array}{c} WOICATES \\ WELL & SOATED \\ BECAUSE CU24 \end{array} \right) WELL WELL & SOATED \\ BECAUSE CU24 \end{array} WELL WELL & SOATED \\ WELL & SOATED \\ BECAUSE CU24 \end{array} WELL & SOATED \\ WELL & SOATED \\ BECAUSE CU24 \end{array} WELL & SOATED \\ WELL $	DASED ON
K= 130 TO 200 FT/DAX	ССРМ 8

CDM	CLIENT		``	юв no. <u>19921-7</u>	COMPUTED BY	
		SHWAY 99 DRAULICO, TIMATE				7/14/2010 2 of 4
GLACIAL						
			00000			
SOIL IN	THE	GLACIAL	GOUFER	CONSISIEL	O OF POORL,	C P-CA
SAND (SP)	AND	poorcy	GRADED	GRAVEL	WITH SILT	x G I - Gra
					9-47.5 A.	
					IAL AQUI	FER.
POORLY GRADE	00					
010-0.	09 mm		- dee		NDICATES WE BECAUSE CUL	U SURTED
UNIFORM	nity CO.	KFFICIENT =	$C_{4} = \frac{2}{d_{1D}}$	= 3.1 (13	ECAUSE CUL	4 /
4076.1	Carlow	- C -	80. 70	120 1	BASED	ON TARI
1719 21210	CUEFFICI	IENT = C =		ch ch	- BASED 5 3.7 "M	NUDERATEL
					· · · · · · · · · · · · · · · · · · ·	10 1 m m 1
K100 = (8	$0 \frac{1}{cm} x$	(0.009) = 0.0	2065 cm/3	EC = 20 FT	TOAY MEDIUM	SAND "
	- In hy	`				
K HIGH = (1	20 1)×(0.009)2=	0.0097 cm	SEC = 30 F	T/DAY	
				and the second s	- SAMPLE	
					OT APPLI	
TO GRAVE	: (5, 17	LITER ATO	RE DER	IVED	K VALUE	FUR
GRAVEL	WILL	BE SEC	ECTED	FROM	ANDERSON	AND
WUE SSNE	R (1192)	FIGURE 3	.0	T T T		
KLOW =	400 FT/	DAY				
K Hibt =						
1. 1+1617 -	10,000 F)					
CONCLUSIO						
HYDRAULIC	CUNDU				SHALLOW	ALLUVIA
	CUNDU					ALLUVIA
HYDRAULIC AQUIFER	CONDU RANGE	FROM C).3 TO	30 FT/	OAY.	
HYDRAULIC AQUIFER CLEANER	CUNDU RANGE SAND	FROM C LAXERS).3 TO IN TI	30 FT, HE DEE	OAY. PER AL	LUVIAL
HYDRAULIC AQUIFER CLEANER AQUIFER	CUNDU RANGE SAND HAVE	FROM C LAXERS HYDRAULI). 3 TO IN TI C CONDI	30 FT, HE DEE	OAY.	LUVIAL
HYDRAULIC AQUIFER CLEANER AQUIFER FROM I	CUNDU RANGE SAND HAVE 30 TO	FROM C LAXERS HYDRAULI 200 FT).3 TO IN TI C CONDO /DAY.	30 FT/ HE DEE UCTIVITIO	PER AL ES RANG	LUVIAL
HYDRAULIC AQUIFER CLEANER AQUIFER FROM I THE GLA	CONDU RANGE SAND HAVE 30 TO CIAL	FROM C LAXERS HYDRAULI 200 FT AQUIFER). 3 TO IN TH C CONDO /DAY. ITAS	30 FT/ HE DEE UCTIVITION	PER AL ES RANG	LUVIAL ING
HYDRAULIC AQUIFER CLEANER AQUIFER FROM I THE GLA CONDUCTIV	CONDU RANGE SAND HAVE 30 TO CIAL I TIES	FROM C LAXERS HYDRAULI 200 FT AQUIFER RANGIN). 3 TO IN TH C CONDU /DAY. ITAS IG FRO	30 FT HE DEE UCTIVITION HYDA 20	PER AL PER AL ES RANG RAULIC FT/DAY 1	LUVIAL ING
HYDRAULIC AQUIFER CLEANER AQUIFER FROM I THE GLA CONDUCTIV HIGH AS	CONDU RANGE SAND HAVE 30 TO CIAL I TIES 70,0	FROM C LAXERS HYDRAULI 200 FT AQUIFER RANGIN). 3 TO IN TH C CONOU /DAY. ITAS IG FRO AY IN	30 FT HE DEE UCTIVITIO HY DA M 20 GRAVEC	PER AL PER AL ES RANG RAULIC FT/DAY T . TYPICAL	LUVIAL ING
HYDRAULIC AQUIFER CLEANER AQUIFER FROM I THE GLA CONDUCTIV HIGH AS GLACIAL	CUNDU RANGE SAND HAVE 30 TO CIAL I TIES 70,0 AQUI	FROM C LAXERS HYDRAULI 200 FT 200 FT RANGIN 100 FT/DR FERS).3 TO IN TH C CONDO /DAY. ITAS IG FRO AY IN IN THI	30 FT HE DEE UCTIVITION HY DA M 20 GRAVEC	PER AL ES RANG RAULIC FT/DAY I TYPICAC REA ITA	LUVIAL ING TO AS
HYDRAULIC AQUIFER CLEANER AQUIFER FROM I THE GLA CONDUCTIV HIGH AS GLACIAL	CUNDU RANGE SAND HAVE 30 TO CIAL I TIES 70,0 AQUI	FROM C LAXERS HYDRAULI 200 FT 200 FT RANGIN 100 FT/DR FERS).3 TO IN TH C CONDO /DAY. ITAS IG FRO AY IN IN THI	30 FT HE DEE UCTIVITION HY DA M 20 GRAVEC	PER AL PER AL ES RANG RAULIC FT/DAY T . TYPICAL	LUVIAL ING TO AS
HYDRAULIC AQUIFER CLEANER AQUIFER FROM I THE GLA CONDUCTIV HIGH AS GLACIAL	CUNDU RANGE SAND HAVE 30 TO CIAL I TIES 70,0 AQUI	FROM C LAXERS HYDRAULI 200 FT 200 FT RANGIN 100 FT/DR FERS).3 TO IN TH C CONDO /DAY. ITAS IG FRO AY IN IN THI	30 FT HE DEE UCTIVITION HY DA M 20 GRAVEC	PER AL ES RANG RAULIC FT/DAY I TYPICAC REA ITA	LUVIAL ING TO AS
HYDRAULIC AQUIFER CLEANER AQUIFER FROM I THE GLA CONDUCTIV HIGH AS GLACIAL K VAL	CUNDU RANGE SAND HAVE 30 TO CIAL I TIES 70,0 AQUI	FROM C LAXERS HYDRAULI 200 FT 200 FT RANGIN 100 FT/DR FERS).3 TO IN TH C CONDO /DAY. ITAS IG FRO AY IN IN THI	30 FT HE DEE UCTIVITION HY DA M 20 GRAVEC	PER AL ES RANG RAULIC FT/DAY I TYPICAC REA ITA	LUVIAL ING TO AS

2 OF 4

Aquifer Properties 1

lia aquifers (n > 0.03). When evalulated storativities from a software ible in real life.

t about storativities between 0.001 nfined or semiconfined range. The semiconfining the aquifer is and isted to this, storativities nearer to ter 10).

ough Earth Materials

y of earth materials to store water, lity of fluids to move through them. **ulic conductivity**. It encompasses ds under a *unit* hydraulic gradient nits of length over time (L/t) (Fetter cates the resistence of fluid to flow. ters squared (N-sec/m²). Thick fluiscosity, where alcohol is an examis another term commonly used to ough earth materials and oft times ability are used interchangeably in i not be done. This needs an expla-

are related to the **specific weight** e fluid. The specific weight repree fluid. The ability of fluids to move stence of fluids to shearing (Fetter 3.

 $=k_{\rm f}\frac{\rho g}{\mu}$

[3.8]

urcy (9.87 × 10⁻⁹ cm²) × gravity

esents the physical flow properties y a function of the pore size openarger the pore opening, the larger the intrinsic permeability. This relationship can be in Tables 3.4a and 3.4b. The specific weight (γ) indicates how a fluid of a given density will move from gravity. The dynamic viscosity (μ) indicates that the less resistive the fluid, the more conductive the earth material is. Those that equate hydraulic conductivity to intrinsic permeability consider most fresh groundwater to have insignificant changes in specific weight and dynamic viscosity; therefore, the ability of groundwater to move is mainly proportional to the intrinsic permeability alone. This should not be done because the hydraulic conductivity will change by a factor of 3 just by changing the water temperature between 2°C and 30°C. This is also not true when contaminants interact with groundwater with different fluid properties, such as nonaqueous phase liquids (NAPLs) or with saline waters.

Hydraulic conductivity values for earth materials range over 12 orders of magnitude (Figure 3.8). The distribution of hydraulic conductivity is log-normally distributed, so averaged values should be geometric means or some other transformation. Obtaining precise or accurate values for hydraulic conductivity is unlikely, so when they are reported as such they should be viewed with a jaundiced eye. This leads to caution for those who

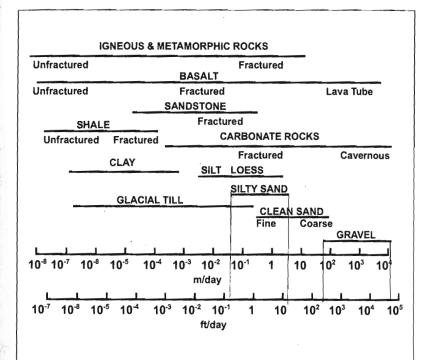


Figure 3.8 Ranges of hydraulic conductivity values for earth materials. [Adapted from Anderson and Woessner (1992).]

ogy

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CLIENT USG		JOB NO. 199	21-77628 con	MPUTED BY H. YOUN
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CDM	PROJECT <u>HIGH</u>	ALL ILLICIT	DATE CHECKED		DATE 9/7/10
USG HIGHWAY 44 SITE AND VELOCITY CALCULATA DEJECTIVE: DETERMINE THE SEEPAGE VELOCITY (S (AUGRA LINGAR VELOCITY) IN THE ALLUVIAL ADVITER. CALCULATION APPROACH: ESTIMATE THE SEEPAGE VELOC USING HYDRANULC CONDUCTIVITY VALUES CALCULATED A TITE ALLUVIAL ADVITER AND HURIZUNTAL ITERALU GRADUENT ESTIMATED FROM JULY 2010 GROUNDUAT ELEVATION CONTURS AND TEXTBOOK POROSITY VALUES. CALCOLATION APPROACH: E ''S' HYDRANULC CUNDUCTIVITY- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FOR CUARSE SAND LAYERS IN THE ALLUVIAL ADVITER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (MNDERSON AND WOESSNER 1992) NE = 0.33 SEEPAGE VELOCITY - VS KI THE SITE. THE GRADUENT KNEES FROM 0.003 FT/FT AT THE WEST BANK OF HYLEBOS CREEK SEFPAGE VELOCITY - VS KI THE SITE. THE GRADUENT KNEES FROM 0.003 FT/FT AT THE WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY - VS KI SEEPAGE VELOCITY - VS KI THE SITE. THE GRADUENT KNEES FROM 0.003 FT/FT AT THE WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY - VS KI SEEPAGE VELOCITY - VS KI SEEPAGE VELOCITY - VS KI THE O.33 CONCLUSION AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY - VS KI DO 33 CONCLUSION CONCLUSION		DETAIL SEEP	MATE	CHECKED BY		PAGE NO. <u>7</u> 07-
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$		E7/1	00 017	GROUNDUM	ATER	
LINGAR VELOCITY) IN THE ALLUVIAL ADVIPER. CALCULATION APPROVACIT: ESTIMATE THE SEEPAGE VELOC. THE ALLUVIAL ADVIPTINITY VALUES CALCULATED F TITE ALLUVIAL ADVIPTINITY VALUES CALCULATED F TITE ALLUVIAL ADVIPTINITY VALUES CALCULATED F THE ALLUVIAL ADVIPTINITY VALUES CALCULATED F THE ALLUVIAL ADVIPTINITY FAIL INTRACULA GRADIENT ESTIMATED FROM JULY ZOID GROUNDUAL ELEVATION CUNTURS AND TEXTBOOK PUROSITY VALUES. CALCULATION CUNTURS AND TEXTBOOK PUROSITY HYDRAULIC. CUNDUCTIVITY- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FOR CUARSE SAND LAYERS IN THE ALLUVIAL AQUIFER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0-33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY STAL HYDRAULL (RADIENT VARIES ACA THE SITE. THE GRADIENT RUNGES FAUM 0.003 FT/FT IN THE GENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE GENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE GENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR ANSX CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY STE KI = (200 FT/DAY)(0.03 FT/FT) = 2 FT/DAY AT WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY STE KI = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DAY NOTE THAT THE HULEBOS CREEK SEEPAGE VELOCITY STE KI = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DAY ME	056	HIGHWAY	99 317.		<i>x n y</i>	CALCULAT
LINGAR VELOCITY) IN THE ALLUVIAL ADVIPER. CALCULATION APPROVACIT: ESTIMATE THE SEEPAGE VELOC. THE ALLUVIAL ADVIPTINITY VALUES CALCULATED F TITE ALLUVIAL ADVIPTINITY VALUES CALCULATED F TITE ALLUVIAL ADVIPTINITY VALUES CALCULATED F THE ALLUVIAL ADVIPTINITY VALUES CALCULATED F THE ALLUVIAL ADVIPTINITY FAIL INTRACULA GRADIENT ESTIMATED FROM JULY ZOID GROUNDUAL ELEVATION CUNTURS AND TEXTBOOK PUROSITY VALUES. CALCULATION CUNTURS AND TEXTBOOK PUROSITY HYDRAULIC. CUNDUCTIVITY- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FOR CUARSE SAND LAYERS IN THE ALLUVIAL AQUIFER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0-33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY STAL HYDRAULL (RADIENT VARIES ACA THE SITE. THE GRADIENT RUNGES FAUM 0.003 FT/FT IN THE GENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE GENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE GENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR ANSX CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY STE KI = (200 FT/DAY)(0.03 FT/FT) = 2 FT/DAY AT WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY STE KI = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DAY NOTE THAT THE HULEBOS CREEK SEEPAGE VELOCITY STE KI = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DAY ME	OBJECTIVE	DETERMIN	E THE S	EEPAGE V	ELOCITY	Har CAVERO
USING HYDRAULIC CUADULTIVITY VALUES CALCULATED A TITE ALLIVIAL HOUTER AND HURIZONTAL ITYDRAUM GRAPIENT ESTIMATED FROM JULY 2010 GROUNAUA ELEVATION CUNTURS AND TEXTBOOK POROSITY VALUES. CALCOLATION APPRUACH: E 15× HYDRAULIC CUNDUCTIVITY- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FUR CUARSE SAND LAYERS IN THE ALLUVIAL HQUIFER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATIUN SEEPAGE VELOCITY STE MAD OOS FT/FT IN THE CANTRAL ARSA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY STE (200 FT/DAY)(0.003 FT/FT) THE WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI CENTRAL AREA OF THE SITE SEEPAGE VELOCITY SE KI CENTRAL AREA OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI CENTRAL AREA OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI THE CONTRAL AREA OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI CENTRAL AREA OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI CONCLUSION CONCLUSION	LINEAR	VELOCITY) IN TH	E ALLUVI	AL A	QUIFER.
USING HYDRAULIC CUADULTIVITY VALUES CALCULATED A TITE ALLIVIAL HOUTER AND HURIZONTAL ITYDRAUM GRAPIENT ESTIMATED FROM JULY 2010 GROUNAUA ELEVATION CUNTURS AND TEXTBOOK POROSITY VALUES. CALCOLATION APPRUACH: E 15× HYDRAULIC CUNDUCTIVITY- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FUR CUARSE SAND LAYERS IN THE ALLUVIAL HQUIFER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATIUN SEEPAGE VELOCITY STE MAD OOS FT/FT IN THE CANTRAL ARSA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY STE (200 FT/DAY)(0.003 FT/FT) THE WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI CENTRAL AREA OF THE SITE SEEPAGE VELOCITY SE KI CENTRAL AREA OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI CENTRAL AREA OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI THE CONTRAL AREA OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI CENTRAL AREA OF HYLEBOS CREEK SEEPAGE VELOCITY SE KI CONCLUSION CONCLUSION	CALCULAT	ON APPRO	ACIT: ESTI	MATE THE	SEEF	AGE VELOC
THE ALLUVIAL HOWIFER AND HURIEVATE ITABLE ITABLE AND HURIEVATE ITABLE ITABLE GROWING AND TEXT BOOK POROSITS AND TEXT BOOK POROSITS VALUES. CALCULATION CONTOURS AND TEXT BOOK POROSITS VALUES. CALCULATION APPRIVACE IN THE ISS HYDRAULIC CONDUCTIVITY = K = 200 FT/DAY BASED ON MAXIMUM K DETERMINED FUR COARSE SAND LAYERS IN THE ALLUVIAL AQUIFER. EFFECTIVE POROSITS ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATIVN SEEPAGE VELOCITY SANCES FROM 0:003 FT/FT IN THE SAND CARDENT RANGES FROM 0:003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY VS = KI THE SITE AREA OF THE SITE SCREEK. SEEPAGE VELOCITY VS = KI THE SITE BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY VS = KI AT WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY SE KI AT WEST BANK OF HYLEBO	USING HYE	RAULIC CO	NOUCTULIT	Y VALUES	CALC	ULATED F
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TITE AL	IVVIAL A	QUIFER A	ND HURIZ	UNTAL	ITXPRAUM
ELEVATION CONTOURS AND TEXTBOOK PUROSITY VALUES. CALCUCATION APPRUACH: E 15× HYDRAULIC CONDUCTIVITY- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FOR COARSE SAND LAYERS IN THE ALLOVIAC HQUIFFE. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCUMPTION SEEPAGE VELOCITY SUS KI THE CONTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR AMS CENTRAL AREA OF THE SITE SEEPAGE VELOCITY SUS KI THE WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY SUS KI THE WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY SUS KI CONCLUSION CONCLUSION	GRAPIENT	ESTIMA	TED FRO	M JULY	2010	GROUNDWA
VALUES. CALCUCATION APPRILACIT: E 11/5× HYDRAULIC CUNDUCTIVITX ASSUME HYDRAULIC CUNDUCTIVITX- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FOR CUARSES SAND LAYERS IN THE ALLOVIAC HAUIFER. EFFECTIVE POROSITX ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) NE = 0.33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY SUS KI THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY SUS KI CONCLUSION CONCLUSION CONCLUSION	ELEVATI	UN CUNTO	URS AI	10 TEXT	BOOK	PURUSITY
HYDRAULIC CUNDUCTIVITY ASSUME HYDRAULIC CUNDUCTIVITY- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FOR CUARSE SAND LAYERS IN THE ALLUVIAC AQUIFER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY - V5 = KI He = NOTE THAT THE HORIZONTAL HYDRAULIC CRADIENT VARIES ACA THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR AMSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY - V5 = KI NOTE THAT THE HORIZONTAL HYDRAULIC COMMIENT VARIES ACA THE WEST BANK OF HYLEBOS CREEK. FOR AMSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY - V5 = KI NE (200 FT/DAX)(0.003 FT/FT) = 2. FT/DAX AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY - V5 = KI NE = (200 FT/DAX)(0.03 HT/HT) = 20 FT/DAX CONCLUSION CONCLUSION						
HYDRAULIC CUNDUCTIVITY ASSUME HYDRAULIC CUNDUCTIVITY- K = 200 FT/DAX BASED ON MAXIMUM K DETERMINED FOR CUARSE SAND LAYERS IN THE ALLUVIAC AQUIFER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY - V5 = KI He = NOTE THAT THE HORIZONTAL HYDRAULIC CRADIENT VARIES ACA THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR AMSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY - V5 = KI NOTE THAT THE HORIZONTAL HYDRAULIC COMMIENT VARIES ACA THE WEST BANK OF HYLEBOS CREEK. FOR AMSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY - V5 = KI NE (200 FT/DAX)(0.003 FT/FT) = 2. FT/DAX AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY - V5 = KI NE = (200 FT/DAX)(0.03 HT/HT) = 20 FT/DAX CONCLUSION CONCLUSION						
ASSUME HYDRAULIC CONDUCTIVITY- $K = 200 \text{ FT/DAX}$ BASED ON MAXIMUM K DETERMINED FOR COARSE SAND LAYERS IN THE ALLUVIAC AQUIRER. <u>EFFECTIVE POROSITX</u> ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 <u>SEEPAGE VELOCITX CALCULATIVN</u> <u>SEEPAGE VELOCITY CALCULATIVN</u> <u>SEEPAGE VELOCITY CALCULATIVN</u> <u>SEEPAGE VELOCITY ACCOUNTION</u> <u>SEEPAGE VELOCITY FOR KI THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. <u>SEEPAGE VELOCITY SE KI</u> <u>SEEPAGE VELOCITY SE KI</u> <u>SEEPAGE VELOCITY SE KI</u> <u>CENTRAL AREA OF THE SITE</u> <u>SEEPAGE VELOCITY SE KI</u> <u>SEEPAGE VELOCITY SE KI</u> <u>SEEPAGE VELOCITY SE KI</u> <u>CONTACL AREA OF THE SITE</u> <u>SEEPAGE VELOCITY SE KI</u> <u>SEEPAGE VELOCITY SE KI</u> <u>SEEPAGE VELOCITY SE KI</u> <u>CONCLOSION</u> <u>CONCLOSION</u></u>				- ^{//5 ×}		
BASED ON MAXIMUM K DETERMINED FOR COARSE SAND LAYERS IN THE ALLOVIAC AQUIPER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY = VS = KI THE SITE. THE HORIZONTAL HYDRAVUL GRADIENT VARIES ACA THE SITE. THE GRADIENT RANGES FROM 0.003 FILET IN THE CENTRAL AREA OF THE SITE TO 0.03 FILET AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSS SEEPAGE VELOCITY = VS = KI NOTE THAT AREA OF THE SITE SEEPAGE VELOCITY = VS = KI THE WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY = VS = KI NE = (200 FT/DAY)(0.003 FT/AT) = (20 FT/DAY) CONCLUSION CONCLUSION	HYDRAULI	C CUNDUC	STIVITY			
BASED ON MAXIMUM K DETERMINED FOR COARSE SAND LAYERS IN THE ALLOVIAC AQUIPER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY = VS = KI THE SITE. THE HORIZONTAL HYDRAVUL GRADIENT VARIES ACA THE SITE. THE GRADIENT RANGES FROM 0.003 FILET IN THE CENTRAL AREA OF THE SITE TO 0.03 FILET AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSS SEEPAGE VELOCITY = VS = KI NOTE THAT AREA OF THE SITE SEEPAGE VELOCITY = VS = KI THE WEST BANK OF HYLEBOS CREEK. SEEPAGE VELOCITY = VS = KI NE = (200 FT/DAY)(0.003 FT/AT) = (20 FT/DAY) CONCLUSION CONCLUSION	ASSUME	440000		Ir - 11. The La	200	
SAND LAYERS IN THE ALLOVIAL AQUIFER. EFFECTIVE POROSITY ASSUME LITERATURE DERIVED VALUE FOR FINE SAND (HNDERSON AND WOESSNER 1992) NE = 0.33 SEEPACE VELOCITY CALCULATION SEEPACE VELOCITY CALCULATION SEEPACE VELOCITY = VS = $\frac{KI}{he}$ NOTE THAT THE HORIZONTAL HYDRAULIC GRADIENT VARIES ACR THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT AT THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A.ASY CENTRAL AREA OF THE SITE SEEPACE VELOCITY = VS = $\frac{KI}{he}$ $\frac{(200 FT/DAY)(0.003 FT/FT)}{Ne} = 2. FT/DAY$ AT WEST BANK OF HYLEBOS CREEK SEEPACE VELOCITY = VS = $\frac{KI}{he}$ $\frac{(200 FT/DAY)(0.03 FT/FT)}{Ne} = 20 FT/DAY}$		ITY DICHOL	IC CONDI	CTIVITY=K	= 200 F	TOAX
$\frac{EFFECTIVE POROSITY}{Assume Literature DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) \frac{he}{0.33} \frac{SEEPAGE VELOCITY CALCULATIUN}{SEEPAGE VELOCITY - VS = KI} \frac{he}{he} = 0.003 FT/FT IN THE HORIZONTAL INDRAULIC GRADIENT VARIES ACR THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSS \frac{CENTRAL AREA OF THE SITE}{he} = \frac{(200 FT/DAY)(0.003 FT/FT)}{0.33} = 2.FT/DAY \frac{CONCLUSION}{D} = \frac{CONCLUSION}{D}$		Can the set of the set		the second se		
Assume LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY = Vs = $\frac{KL}{he}$ NOTE THAT THE HORIZONTAL HYDRAULIC GRADIENT VARIES ACR THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = Vs = $\frac{KL}{he} = \frac{(200 FT/DAy)(0.003 FT/FT)}{0.33} = \frac{20 FT/DA}{he} = \frac{20 FT/DA}{he}$	SAND	LAXERS	IN THE	ALLUVI	AC A	QUIFFR.
Assume LITERATURE DERIVED VALUE FOR FINE SAND (ANDERSON AND WOESSNER 1992) Ne = 0.33 SEEPAGE VELOCITY CALCULATION SEEPAGE VELOCITY = Vs = $\frac{KL}{he}$ NOTE THAT THE HORIZONTAL HYDRAULIC GRADIENT VARIES ACR THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = Vs = $\frac{KL}{he} = \frac{(200 FT/DAy)(0.003 FT/FT)}{0.33} = \frac{20 FT/DA}{he} = \frac{20 FT/DA}{he}$	6.666.5		DOC. TH			
SEEPAGE VELOCITY = $V_5 = \frac{KL}{h_e}$ NOTE THAT THE HORIZONTAL HYDRAULIC GRADIENT VARIES ACA THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A.HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = $V_5 = \frac{KL}{h_e} = \frac{(200 FT/DAY)(0.003 FT/FT)}{0.33} = 2. FT/DAY$ AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = $V_5 = \frac{KL}{h_e} = \frac{(200 FT/DAY)(0.03 FT/FT)}{0.33} = 20 FT/DA$	ne=	0.33				
NOTE THAT THE HORIZONTAL HYDRAULIC GRADIENT VARIES ACA THE SITE. THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = VS = $\frac{KI}{Ne} = \frac{(200 FT/DAY)(0.003 FT/FT)}{0.33} = 2. FT/DAY$ AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = $\frac{KI}{Ne} = \frac{(200 FT/DAY)(0.03 FT/FT)}{0.33} = 20 FT/DA$	SEEPHLE	VELOCITY	CALCU	LIFT TUN		
NOTE THAT THE HORIZONTAL HYDRAULIC GRADIENT VARIES ACA THE SITE, THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = VS = KI = $(200 FT/DAY)(0.003 FT/FT)$ = $7. FT/DAY$ AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = $(200 FT/DAY)(0.03 FT/FT)$ = $20 FT/DAY$ AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = $(200 FT/DAY)(0.03 FT/FT)$ = $20 FT/DA$ D_{33}	SEEPHOR	VELOCITY =	V5= 11=	.= 🕊		
THE SITE, THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = VS = KI = $(200 FT/DAY)(0.003 FT/FT) = 2. FT/DAY AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DAY NE = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DASEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DACONCLUSION$			ne			
THE SITE, THE GRADIENT RANGES FROM 0.003 FT/FT IN THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = VS = KI = $(200 FT/DAY)(0.003 FT/FT) = 2. FT/DAY AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DAY NE = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DASEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DACONCLUSION$	NOTE THA-	T THE HORI	2011TAL IL	INRAULIC GR	ADIENT	VARIES AC
THE CENTRAL AREA OF THE SITE TO 0.03 FT/FT AT THE WEST BANK OF HYLEBOS CREEK. FOR A HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = VS = $KI = (200 \text{ FT/DAY})(0.003 \text{ FT/FT}) = 2. \text{ FT/DAY}$ AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = $KI = (200 \text{ FT/DAY})(0.03 \text{ FT/FT}) = 20 \text{ FT/DA}$ NE 0.33 CONCLUSION CONCLUSION	THE SITE,	THE GRAN	NENT RANK	ES FROM	01003 4	FILT IN
THE WEST BANK OF HYLEBOS CREEK. FOR A HSY CENTRAL AREA OF THE SITE SEEPAGE VELOCITY = $V_S = \frac{KI}{he} = \frac{(200 \text{FT/OAY})(0.003 \text{FT/FT})}{0.33} = 2. \text{FT/OAY}$ AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = $V_S = \frac{KI}{he} = \frac{(200 \text{FT/OAY})(0.03 \text{FT/FT})}{0.33} = 20 \text{FT/OA}$ CONCLUSION THE GROWNOW BEER SEEPAGE VELOCITY RANKES FROM 2 FT/OAY IN	THE CENTRI	AL AREA	OF THE	SITE TO	0.03 4	TIFT AT
$\frac{CENTRAL}{SKEPAGE} AREA OF THE SITE SKEPAGE VELOCITY = V_S = KI Ne = (200 FT/DAY)(0.003 FT/FT) = 2. FT/DAY O.33 AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = V_S = KI NE = (200 FT/DAY)(0.03 FT/FT) = 20 FT/DA O.33 CONCLUSION$	THE WES	T BANK O.	E HYLEBO	S CREEK.	FOR	A-HSY
AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = [20 FT/DA Ne 0.33 = [20 FT/DA CONCLUSION						
AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = [20 FT/DA Ne 0.33 = [20 FT/DA CONCLUSION	CENTRAL M	AREA OF THE	SITE		>	
AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = [20 FT/DA Ne 0.33 = [20 FT/DA CONCLUSION	SEEPAGE VE	LOCITY = Vg =	$\underline{KI} = (2$	200 FT/0134) (0.C	103 FT/FT)	9
AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = [20 FT/DA Ne 0.33 = [20 FT/DA CONCLUSION			ne —	1).33		FTOA)
AT WEST BANK OF HYLEBOS CREEK SEEPAGE VELOCITY = VS = KI = (200 FT/DAY)(0.03 FT/FT) = [20 FT/DA Ne 0.33 = [20 FT/DA CONCLUSION				0,11		
SEEPAGE VELOCITY = $V_s = \frac{KI}{ne} = \frac{(200FT/0AY)(0.03FT/FT)}{0.33} = \frac{20FT/DA}{20FT/DA}$						
CONCLUSION THE CONVENTER SECRET VELOCITY RANGES FROM 201/04× 101	III WEY A	DANK OF 112	LEDUS CR			
CONCLUSION THE CONVENTER SECRET VELOCITY RANGES FROM 201/04× 101	SEEPAGE VI	$violity = V_S$	= <u>KL</u> =	(200++/DAY)(0	.03 HT/4T)	20 4-10
CONCLUSION			ne -			= 20 FI/DA
THE CONMUNICATED SECONDE VELOCITY RANGES FROM 2 TT/DAY IN				0,33		
THE CONMUNICATED SECONDE VELOCITY RANGES FROM 2 TT/DAY IN	CONCLUSIO	V				
THE CENTRAL AREA OF THE SITE TO 20 FT/DAX AT THE WEST BANK OF HXLEBUS CREEK.	THE COUL	TALATER CEL	PAGE VELOC	ITY RANGES	FROM 7	ET/DAY IN
THE WEST BANK OF HXLEBUS CREEK.	THE CENTR	AL AREA D	4 THE SIT	E TO 20	FT/nAX	AT
	TITE WE	ST BANK	OF HXLE	BUS CREEK.	- WIIF	
CI						

= 1.85 g/cm³

/cm³, the porosity can be estimated using

$$\frac{1}{1} \frac{\text{cm}^3}{\text{cm}^3} = 302\%$$

s by evaluating the volume occupied by the y weight.

72 g – 148 g = 24 g

9 g/cm³) = 24.02 cm³

 $\frac{02 \, \text{cm}^3}{0 \, \text{cm}^3} = 30.0\%$

be attributed to an assumed particle of volume errors. The above example the concept of porosity. In reality, the r in the laboratory. During the tapping ults in field conditions being lost. It is into a container of equal volume.

3. Geological Survey laboratory reporter ffering earth materials were tested an hydrologic properties. Anderson an results of their findings for specific yier the means of unconsolidated material ure 3.6. When the reported arithmet e midpoint of the range values, this in wed. Notice also that the differences intary materials, such as fine and medium d counterparts, fine and medium san he volume occupied by cementing age d is always less than the total porosity

om Morris and Johnson (1967) illustrativater-laid sandy materials and their ph

cal and hydrologic properties are shown in Tables 3.4a and 3.4b. It is interesting to note the similarities of specific gravity regardless of the grain-size distribution and the range of grain-size distributions, dry bulk densities, and hydraulic conductivities. It is apparent from the grain-size distributions that there is a correlation between grain-size and hydraulic conductivity.

Table 3.3 Ranges of Values of Specific Yield [Adapted from Anderson and Woessner (1992)]

Material Class	Material	No. of Analysis	Range	Arithmetic Mean
Sedimentary	Clay	27	0.01-0.18	0.06
	Silt	299	0.01-0.39	0.20
	Sand (fine)	287	0.01-0.46	0.33
Carlos and	Sand (Med)	297	0.16-0.46	0.32
	Sand (Coarse)	143	0.18-0.43	0.30
	Gravel (fine)	33	0.130.40	0.28
	Gravel (med)	13	0.17-0.44	0.24
	Gravel (coarse)	9	0.13-0.25	0.21
	Siltstone	13	0.010.33	0.12
	Sandstone (fine)	47	0.02-0.40	0.21
	Sandstone (med)	10	0.12-0.41	0.27
	Limestone	32	0-0.36	0.14
Wind Deposits	Loess	5	0.14-0.22	0.18
	Eolian Sand	14	0.32-0.47	0.38
Metamorphic	Schist	11	0.022-0.033	0.026
Igneous	Tuff	90	0.02-0.47	0.21

Appendix E Analytical Laboratory Reports

Please see attached CD

This page intentionally left blank to allow for double-sided printing.

Analytical Resources, Incorporated

Analytical Chemists and Consultants

July 23, 2010

Alan Carey CDM 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007

RE: Project: USG Hwy 99, 19921-77628 ARI Job No: RE46

Dear Mr. Carey:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the final results for samples from the project referenced above. Analytical Resources Inc. (ARI) accepted four water samples on July 15, 2010. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Dissolved Iron and Arsenic, as requested.

There were no anomalies associated with the analysis of these samples.

An electronic copy of this report as well as all supporting raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely, ANALYTICAL RESOURCES, INC.

WM

Cheronne Oreiro Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> www.arilabs.com

Enclosures

cc: eFile: RE46

Page 1 of ____

Chain of Custody Record & Laboratory Analysis Req	d & Labo	ratory An	ıalysis R	equest						
ARI Assigned Number: RE46	Turn-around Requested:	Requested:	/week	7	Page:	ot			Analytical Resources, Incorporated	ed
ARI Client Company: \mathcal{CDM}	-	Phone: 425-519-83,	-516-8	300	Date: ///	15/2010 Present?	ent? Y		4611 South 134th Place, Suite 100 Tukwila, WA 98168	
Client Contact: Han Carew					No. of Coolers:	Cooler Temps:	ar 18. 9.8		206-695-6200 206-695-6201 (fax)	x
Client Project Name:	., 99				ŧ.		Analysis Requested		Notes/Comments	r
Client Project #:	Samplers:	mur			הא בין-נ חבסן					
Sample ID	Date	Time	Matrix	No. Containers	9 5 H 125510					
mw3-07/10	7/15/10	1430	Water	}]
mw 4 - 67/10	7/15/10	1305	_			*				
99-1-07/10	-115/10	121D		-	, 					
MWD-07/10	7/15/10	1502	الا							
	· · ·								-	
					(
Comments/Special Instructions	Relinquished by: (Signature)	Part Lou	Lon Jux	Received by: (Signature)			Relinquished by: (Signature)		Received by: (Signature)	
DISCINCTINGS SU		By Lo	ou Fax	Printed Name:	(chon vo)	19CM	Printed Name:		Printed Name:	T
	Company:	COM		Company:	6		Company:		Company:	Τ
	Date & Time:	5/10 1	540	Date & Time:/ T/K	5/10 1	SUD	Date & Time:		Date & Time:	
Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program	ll requested se	rvices in accol	rdance with a	ppropriate me	thodology follo	wing ARI Stand	ard Operating Proce	lures and the ARI Qua	lity Assurance Program. This program	1

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants

Cooler Receipt Form

COC No(s): NA Delivered by: Fed-Ex UPS Courier In and Delivered Other:	
Assigned ARI Job No: <u>RE46</u> Tracking No:	A
Preliminary Examination Phase:	
Were intact, properly signed and dated custody seals attached to the outside of to cooler? YES	<u>o</u>
Were custody papers included with the cooler? N	О
Were custody papers properly filled out (ink, signed, etc.) N	0
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry) 9.8	
If cooler temperature is out of compliance fill out form 00070F Temp Gun ID#: <u>9087799</u>	50
Cooler Accepted by:	
Complete custody forms and attach all shipping documents	

Log-In Phase:

Was a temperature blank included in the cooler?		YES	NO
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Block	Paper Ot	her:	
Was sufficient ice used (if appropriate)?	NA	YES	NO
Were all bottles sealed in individual plastic bags?		YES	(NO)
Did all bottles arrive in good condition (unbroken)?		(ES)	NO
Were all bottle labels complete and legible?		(YES)	NO
Did the number of containers listed on COC match with the number of containers received?		(YES)	NO
Did all bottle labels and tags agree with custody papers?		TES	NO
Were all bottles used correct for the requested analyses?		(YES)	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)	NA	(TES)	NO
Were all VOC vials free of air bubbles?	NA	YES	NO
Was sufficient amount of sample sent in each bottle?		YES	NO
Date VOC Trip Blank was made at ARI	(NA)		
Was Sample Split by ARI : (NA) YES Date/Time: Equipment:		Split by:	
Samples Logged by: Date: Time:	555	o ^{136.7}	

Samples Logged by:

** Notify Project Manager of discrepancies or concerns **

Sample ID on I	Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
				<u></u>
Additional Notes, L	biscrepancies, & R	esolutions:		
By:	Date:			·
Small Air Bubbles	Peabubbles	LARGE Air Bubbles	Small → "sm"	
2mm	2-4 mm	> 4 mm	Peabubbles → "pb"	· · · · · · · · · · · · · · · · · · ·
	•		Large → "lg"	
			Headspace → "hs"	

Revision 014

PRESERV Dage	PRESERVATION VERIFICATION 07/15/10	ATION	07/1	5/10					ANA			_			AF	I Jok	: No:	ARI Job No: RE46				
ה מיכ ח	Eage I Of I								Ň	INCORPORATED					РC	PC: Cheronne	ronr	le				
Inquir	Inquiry Number: NONE Dualusis Remiested: 07/16/10	17/16/	01,												ΓV	VTSR: 07/15/10	17/15	5/10				
Contact	Contact: Carev, Alan) 1																			
Client: CDM	: CDM														Ъr	oject	#	Project #: 19921-77628	7628			
Logged	Loqqed by: JM														ΡĽ	oject	:: US	Project: USG Hwy 99	6			
Sample	Sample Set Used: Yes-498	-498													Sa	Sample Site:	Site					
Validat	Validatable Package: No	No													SD	SDG No:	-					
Delive	Deliverables:														An	alyti	cal	Analytical Protocol: In-house	l: In-l	ouse		
		CN 71	WAD	NH3 COD I	ζΩ COD	FOG	MET /		PHEN PHOS		TKN NO23	TOC	s2 Vo	AK102	2 Fe2+	AK102 Fe2+ DMET DOC	DOC FT T	arta na ka	ADJUSTED LOT	ID LOT	AMOUNT	TNU
TT TUN		77/	11	"	7/	7	*	>	"	77	2	2		_	7					VIIIIIN		
10-16705 RE46A	5 MW3-07/10						No.	~								Х			<u>.</u>			
10-16706 RE46B	5 MW4-07/10	 					DIS									л						
10-16707	2000						DIS									А						

DATE/BY

Х

DIS

99-1-07/10

10-16707 **RE46C**

MW0-07/10

10-16708 **RE46D**

RENE: BOBBH

Checked By Date 7/15/10

Subject: RE: USG Hwy 99 Samples Received 7/15/10 From: "Carey, Alan" <CareyAD@cdm.com> Date: Fri, 16 Jul 2010 13:22:24 -0400 To: "Cheronne Oreiro" <cheronneo@arilabs.com>

Yes, analyze samples for dissolved iron by ICP also. Thanks Alan Carey

-----Original Message-----From: Cheronne Oreiro [<u>mailto:cheronneo@arilabs.com</u>] Sent: Friday, July 16, 2010 9:45 AM To: Carey, Alan Subject: USG Hwy 99 Samples Received 7/15/10

Hello Alan,

Mary Lou left me a message last night regarding the USG Hwy 99 samples she dropped off yesterday. Currently the samples are only logged for Dissolved Arsenic by GFA. Mary Lou said that you may also need Dissolved

Iron by ICP but she would confirm that with you. Please let me know if you would like to make this change. Thanks! -Cheronne

Cheronne Oreiro Project Manager Analytical Resources, Inc. 4611 S. 134th Place, Suite 100 Tukwila, WA 98168-3240 cheronneo@arilabs.com (206)-695-6214

This correspondence contains confidential information from Analytical Resources, Inc. (ARI) The information contained herein is intended solely for the use of the individual(s) named above. If you are not the intended recipient, any copying, distribution, disclosure, or use of the text and/or attached document(s) is strictly prohibited.

If you have received this correspondence in error, please notify sender immediately. Thank you.

Page 1 of 1

Sample ID: MW3-07/10 SAMPLE

Lab Sample ID: RE46A LIMS ID: 10-16705 Matrix: Water Data Release Authorized: Reported: 07/23/10 QC Report No: RE46-CDM Project: USG Hwy 99 19921-77628 Date Sampled: 07/15/10 Date Received: 07/15/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	07/20/10	7060A	07/22/10	7440-38-2	Arsenic	100	780	
6010B	07/20/10	6010B	07/20/10	7439-89-6	Iron	50	29,900	

Page 1 of 1

Sample ID: MW4-07/10 SAMPLE

Lab Sample ID: RE46B LIMS ID: 10-16706 Matrix: Water Data Release Authorized Reported: 07/23/10 QC Report No: RE46-CDM Project: USG Hwy 99 19921-77628 Date Sampled: 07/15/10 Date Received: 07/15/10

Prep Meth	Prep Date	Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	07/20/10	7060A	07/22/10	7440-38-2	Arsenic	100	1,030	
6010B	07/20/10	6010B	07/20/10	7439-89-6	Iron	50	31,500	

Page 1 of 1

Sample ID: 99-1-07/10 SAMPLE

Lab Sample ID: RE46C LIMS ID: 10-16707 Matrix: Water Data Release Authorized Reported: 07/23/10 QC Report No: RE46-CDM Project: USG Hwy 99 19921-77628 Date Sampled: 07/15/10 Date Received: 07/15/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	07/20/10	7060A	07/22/10	7440-38-2	Arsenic	200	2,490	
6010B	07/20/10	6010B	07/20/10	7439-89-6	Iron	50	6,340	

Page 1 of 1

Sample ID: MW0-07/10 SAMPLE

Lab Sample ID: RE46D LIMS ID: 10-16708 Matrix: Water Data Release Authorized Reported: 07/23/10 QC Report No: RE46-CDM Project: USG Hwy 99 19921-77628 Date Sampled: 07/15/10 Date Received: 07/15/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A 6010B	07/20/10	7060A 6010B	07/22/10 07/20/10	7440-38-2 7439-89-6	Arsenic Iron	100 50	1,060 32,000	

Page 1 of 1

Lab Sample ID: RE46LCS LIMS ID: 10-16705 Matrix: Water Data Release Authorized: Reported: 07/23/10 QC Report No: RE46-CDM Project: USG Hwy 99 19921-77628 Date Sampled: NA Date Received: NA

Sample ID: LAB CONTROL

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	7060A	21	20	105%	
Iron	6010B	2240	2000	112%	

Reported in $\mu g/L$

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: RE46MB LIMS ID: 10-16705 Matrix: Water Data Release Authorized: Reported: 07/23/10 QC Report No: RE46-CDM Project: USG Hwy 99 19921-77628 Date Sampled: NA Date Received: NA

Sample ID: METHOD BLANK

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	07/20/10	7060A	- , ,	7440-38-2	Arsenic	1	1	U
6010B	07/20/10	6010B		7439-89-6	Iron	50	50	U

Analytical Resources, Incorporated

Analytical Chemists and Consultants

June 14, 2010

Alan Carey CDM 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007

RE: Project ID: USG-Hwy-99, 19921-65021 ARI Job No: QY33

Dear Mr. Carey:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the final results for samples from the project referenced above. Analytical Resources Inc. (ARI) accepted four water samples on May 27, 2010. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for various conventional parameters and total/dissolved metals, as requested on the COC. Note all samples requesting Arsenic were analyzed by both ICP-MS and Graphite Furnace. The Arsenic Speciation analyses were subcontracted to Applied Speciation in Bothell, WA. All data have been included.

There were no anomalies associated with the analyses of these samples.

An electronic copy of this report as well as all supporting raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely, ANALYTICAL-RESOURCES, INC.

Cheronne Oreiro Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> <u>www.arilabs.com</u>

Enclosures

cc: eFile: QY33

Page 1 of 45

(D1X)		915			0		5					Analytical	Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company:		Phone: 425	Phone: 25-519-830	8300	5/27	01/1	Preser	Present?				4611 Sou Tukwila, V	4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact:					fla. of Caolers:	۴,	Cooler Temps	Cooler Temps: し. イ, し. 3	o.S			206-695-(206-695-6200 206-695-6201 (fax)
Client Project Name: 99							tet.	Analysis Requested	tequested				Notes/Comments
Client Project # 5021	Samplers:	muf th	771		209/2 1-27/2 54/42	5,5V 3 4070	0107 2-1-5 2-15	010 2-1+ 5	019) 	THEN S	EOT.	53	
Sample ID	Date	Time	Matrix	No. Containers	15500 541-075 105550	\$+ ⁵ ₽ \$ 5₽	refel	vn men	100	ravip.	I/EDD -	1	
USCHWY 99 - MUR-05/10	0/4/2	ahba	Water	8						٧,	/	1, 1	
01/59-Lan -99-May -05/10	<u> </u>	Shal		8	ζ.		N.	/	</td <td></td> <td>`</td> <td></td> <td></td>		`		
026 May 99 - MW9-05/12	ĺ	1200	0	8	`				$\mathbf{>}$	<u>`</u>	^	//	
056 Huy 99-49-2-05/	5	1310	F	9	\mathbf{r}			$\sum_{i=1}^{n}$			\mathbf{r}		
\sim													
										i			
		đ											
						Ś							
	Relinquished by	The Part Price	ZX	Received by:	10000			Relinquished by: (Signature)	by:	1		Received by: (Signaturo)	
Dissolved motils not	Ne St		Fax 1	Printed Name:	AMAMA CD			Printed Name:	8			Printed Name:	
mail mil	Company:	we		Company: ACT	ł			Company:				Company:	
	Date & Tinje:	10/1	1450	$\frac{\text{Date } \$ \text{Time:}}{5/37/l}$	10 1450	0	Ŀ	Date & Time:				Date & Time:	

🕅 said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants

Cooler Receipt Form

ARI Client: CDM	Project Name: USG HWY 99	
COC No(s):(NA)	Delivered by: Fed-Ex UPS Courier Hand Delivered Other:	$\overline{\ }$
Assigned ARI Job No: <u>QU33</u>	Tracking No: NA)
Preliminary Examination Phase:		
Were intact, properly signed and dated custody seals attached to the	outside of to cooler? YES)
Were custody papers included with the cooler?	YES NO	
Were custody papers properly filled out (ink, signed, etc.)	YES NO	
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry	N	_
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#: <u>908779 95</u>	2
Cooler Accepted by:Da	ate: <u>52710</u> Time: <u>1450</u>	
Complete custody forms and a		

Log-In Phase:

Was a temperature blank included in the cooler?	YES	
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Block Pap	er Other:	
Was sufficient ice used (if appropriate)? NA	A YES	(NO)
Were all bottles sealed in individual plastic bags?	YES	NO
Did all bottles arrive in good condition (unbroken)?	YES	NO
Were all bottle labels complete and legible?	YES	NO
Did the number of containers listed on COC match with the number of containers received?	(ES)	NO
Did all bottle labels and tags agree with custody papers?	(YES)	NO
Were all bottles used correct for the requested analyses?	(ES)	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) N/	a (es)	NO
Were all VOC vials free of air bubbles?	YES	NO
Was sufficient amount of sample sent in each bottle?	YES	NO
Date VOC Trip Blank was made at ARI		
Was Sample Split by ARI : (NA) YES Date/Time: Equipment:	Split by:	
$\Delta \chi = 5/210$	Vo	

Samples Logged by: ______ Date: ______Date: ______Time: _______ ** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
<u> </u>			. <u></u>
Additional Notes, Discrepanci	es, & Resolutions:		
V ALL LADELLING			
* HII IWC #03	MISSING USGHU	uy99-before ID.	
		uy99-betore ID	
By: AV Da Small Air Bubbles Peabub		UY99-befove ID Small→"sm"	
ву: ДУ	ate: 5/27/10 bles' LARGE Air Bubbles		
By: AV Di Small Air Bubbles Peabub		Small → "sm"	

Revision 014

Cooler Temperature Compliance Form

3/3/09

GX33:00001

Cooler#: + - Tem		4,6,3	·			
Sample ID	Bottle Count	Bottle Ty				
USGHW499-MW8-05/10	8	2250m1		J. 11903.	2 ILHDE	E: 1500M
(15G+111199-MW7-05/10	8	il	<u> </u>	h		lj
USGHW499-MW9-05/10	8	4	- It	u	11	11
US(atturing9-99-2-05/10	9		"			11
		1 "			····	
		-				
			<u> </u>			
Cooler#: Temp	perature(°C):				· ···	
Sample ID	Bottle Count	Bottle Ty	De		· <u> </u>	
			F*			· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	1			··· ··· ····	
					<u> </u>	
•						
					·····	
	· · ·					
Cooler#: Temp	erature(°C):		· ·· ·· ·			
Sample ID	Bottle Count	Bottle Ty	pe		···-	
	*				·	
·····		ļ				
		ļ			· · · · · · · · · · · · · · · · · · ·	
	6					
Cooler#: Temp	erature(°C):	I	· · · · ·		<u>_</u>	
Sample ID	Bottle Count	Bottle Ty	oe 🛛			
· · · · · · · · · · · · · · · · · · ·					<u> </u>	
= = = = = =						
			·····		· .	
		<u> </u>				
		<u> </u>		·		
		, ,				
Completed by:						

ARI Job No: QY33	PC: Cheronne VTSR: 05/27/10	Project #: 19921-65021 Project: USG Hwy 99 Sample Site: SDG No: Analvtical Protocol: In-house	1	AK102Fe2+ DMET DOC ADJUSTED LOT AMOUNT <2 <2 FLT FLT PARAMETER TO NUMBER ADDED DATE/BY						2	N	2	2	2	2	2	2	
	INCORPORATED			T PHEN PHOS TKN NO23 TOC S2 <2	OUES TIET NO ROES	TOT	(164) TOT NO (145)	TOT		DIS	Dits	S [0	SID	S I I	S	D S	D S	
PRESERVATION VERIFICATION 05/27/10		Contact: Carey, Alan Client: CDM Logged by: AV Sample Set Used: Yes-481 Validatable Package: YES Deliverables:		LOGNUM CLIENT ID CN WAD NH3 C ARI ID CLIENT ID >12 >12 <2 <	10-12701 Охззл USGHwy99-ММ8-05/10	10-12702 QY33B USGHwy99-MW8-05/10	10-12703 Q хззс USGHwy99-МW7-05/10	10-12704 QY33D USGHwy99-MW9-05/10	10-12705 QY33E USGHwy99-99-2-05/10	10-12706 QY33F USGHwy99-MW8-05/10	10-12707 QX33G USGHwy99-MW8-05/10	10-12708 QY33H USGHwy99-MW7-05/10	10-12709 QY33I USGHwy99-MW7-05/10	10-12710 ST33J USGHwy99-MW9-05/10	10-12711 USGHwy99-MW9-05/10	10-12712 OSGHwy99-99-2-05/10	010-12713 0510-12713 USGHwy99-99-2-05/10	MD= NOt preserved

Checked By M Date 527/10

Nos metals = unfiltencel

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: QY33A LIMS ID: 10-12701 Matrix: Water Data Release Authorized: Reported: 06/07/10 SAMPLE QC Report No: QY33-CDM

Sample ID: USGHwy99-MW8-05/10

Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	0.2	14.0	
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	21,400	
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	4,870	
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	12,900	
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	7,640	
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	35,300	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Sample ID: USGHwy99-MW8-05/10 SAMPLE

Lab Sample ID: QY33B LIMS ID: 10-12702 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
7060A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	1	15	

Page 1 of 1

Sample ID: USGHwy99-MW7-05/10 SAMPLE

Lab Sample ID: QY33C LIMS ID: 10-12703 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/04/10	7440-70-2	Calcium	50	17,600	
3010A	05/28/10	6010B	06/04/10	7439-89-6	Iron	50	7,400	
3010A	05/28/10	6010B	06/04/10	7439-95-4	Magnesium	50	14,400	
3010A	05/28/10	6010B	06/04/10	7440-09-7	Potassium	500	6,000	
3010A	05/28/10	6010B	06/04/10	7440-23-5	Sodium	500	36,400	

Page 1 of 1

Sample ID: USGHwy99-MW9-05/10 SAMPLE

Lab Sample ID: QY33D LIMS ID: 10-12704 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/04/10	7440-70-2	Calcium	50	11,000	
3010A	05/28/10	6010B	06/04/10	7439-89-6	Iron	50	290	
3010A	05/28/10	6010B	06/04/10	7439-95-4	Magnesium	50	8,230	
3010A	05/28/10	6010B	06/04/10	7440-09-7	Potassium	500	6,590	
3010A	05/28/10	6010B	06/04/10	7440-23-5	Sodium	500	28,500	

Page 1 of 1

Lab Sample ID: QY33E LIMS ID: 10-12705 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Sample ID: USGHwy99-99-2-05/10

SAMPLE

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	86,900	
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	57,200	
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	53,900	
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	7,510	
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	31,700	

Page 1 of 1

Sample ID: USGHwy99-MW8-05/10 SAMPLE

Lab Sample ID: QY33F QC Report LIMS ID: 10-12706 Pro-Matrix: Water Data Release Authorized Date Reported: 06/07/10 Date F

QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L Q
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	0.2	12.9
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	980

Page 1 of 1

Sample ID: USGHwy99-MW8-05/10 SAMPLE

Lab Sample ID: QY33G LIMS ID: 10-12707 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	1	13	

Page 1 of 1

Sample ID: USGHwy99-MW7-05/10 SAMPLE

Lab Sample ID: QY33H LIMS ID: 10-12708 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L Ç	2
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	0.2	9.2	
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	1,800	

Page 1 of 1

Sample ID: USGHwy99-MW7-05/10 SAMPLE

Lab Sample ID: QY33I LIMS ID: 10-12709 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	1	10	

Page 1 of 1

Sample ID: USGHwy99-MW9-05/10 SAMPLE

Lab Sample ID: QY33J LIMS ID: 10-12710 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	0.2	39.4	
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	50	U

Page 1 of 1

Sample ID: USGHwy99-MW9-05/10 SAMPLE

Lab Sample ID: QY33K LIMS ID: 10-12711 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	5	44	

Page 1 of 1

Sample ID: USGHwy99-99-2-05/10 SAMPLE

Lab Sample ID: QY33L LIMS ID: 10-12712 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/04/10	7440-38-2	Arsenic	1	352	
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	45,700	

Page 1 of 1

Sample ID: USGHwy99-99-2-05/10 SAMPLE

Lab Sample ID: QY33M LIMS ID: 10-12713 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	20	410	

Sample ID: LAB CONTROL

Page 1 of 1

Lab Sample ID: QY33LCS LIMS ID: 10-12701 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	۶ Recovery	Q
Arsenic	200.8	25.1	25.0	100%	
Calcium	6010B	9870	10000	98.7%	
Iron	6010B	2110	2000	106%	
Magnesium	6010B	10100	10000	101%	
Potassium	6010B	10200	10000	1028	
Sodium	6010B	9720	10000	97.2%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: QY33MB LIMS ID: 10-12701 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: METHOD BLANK

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	0.2	0.2	U
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	50	U
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	50	U
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	50	U
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	500	U
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	500	U

Page 1 of 1

Lab Sample ID: QY33LCS LIMS ID: 10-12702 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: LAB CONTROL

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	7060A	105	100	105%	
Reported in μ g/L					

N-Control limit not met Control Limits: 80-120%

Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: QY33MB LIMS ID: 10-12702 Matrix: Water Data Release Authorized Reported: 06/07/10

QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
7060A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	1	1	U

Page 1 of 1

Lab Sample ID: QY33LCS LIMS ID: 10-12706 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: LAB CONTROL

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	* Recovery	Q
Arsenic	200.8	24.7	25.0	98.8%	
Iron	6010B	2030	2000	102%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

FORM-VII

Page 1 of 1

Lab Sample ID: QY33MB LIMS ID: 10-12706 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: METHOD BLANK

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8 6010B	06/01/10 05/28/10	200.8 6010B		7440-38-2 7439-89-6	Arsenic Iron	0.2	0.2 50	U U

Page 1 of 1

Lab Sample ID: QY33LCS LIMS ID: 10-12707 Matrix: Water Data Release Authorized: Reported: 06/07/10 Sample ID: LAB CONTROL

QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	7060A	21	20	105%	
Reported in µg/L					

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Sample ID: METHOD BLANK

Lab Sample ID: QY33MB LIMS ID: 10-12707 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QY33-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	1	1	U

Project: USG Hwy 99 Event: 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Client ID: USGHwy99-MW8-05/10 ARI ID: 10-12701 QY33A

Analyte	Date Batch	Method	Units	RL	Sample	
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	205	
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U	
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	205	
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U	
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	1.0	18.1	
Chloride	05/28/10 052810#1	EPA 300.0	mg/L	0.5	6.3	
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U	
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U	
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	0.2	
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	7.75	
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	3.83	

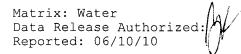
RL Analytical reporting limit

Project: USG Hwy 99 Event: 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Client ID: USGHwy99-MW7-05/10 ARI ID: 10-12703 QY33C

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	196
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	196
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	1.6	22.2
Chloride	05/28/10 052810#1	EPA 300.0	mg/L	0.5	5.6
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	< 0.1 U
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	10.9
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	4.17

RL Analytical reporting limit



Project: USG Hwy 99 Event: 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Client ID: USGHwy99-MW9-05/10 ARI ID: 10-12704 QY33D

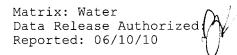
Analyte	Date Batch Meth		Units	RL	Sample
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	118
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	118
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	1.0	4.3
Chloride	05/28/10 052810#1	EPA 300.0	mg/L	0.5	5.4
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/28/10 052810#1	EPA 300.0	mg/L	0.5	7.5
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	6.48
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	< 1.50 U

RL Analytical reporting limit

Project: USG Hwy 99 Event: 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Client ID: USGHwy99-99-2-05/10 ARI ID: 10-12705 QY33E

Analyte Date Batch		Method	Units	RL	Sample
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	561
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	561
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	2.9	50.0
Chloride	06/01/10 060110#1	EPA 300.0	mg/L	1.0	9.6
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/28/10 052810#1	EPA 300.0	mg-N/L	0.5	< 0.5 U
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	< 0.1 U
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	62.7
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	25.3


RL Analytical reporting limit

Project: USG Hwy 99 Event: 19921-65021 Date Sampled: 05/27/10 Date Received: 05/27/10

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery		
ARI ID: QY33A Client ID: USGHwy99-MW8-05/10									
Chloride	EPA 300.0	05/28/10	mg/L	6.3	15.5	10.0	92.0%		
N-Nitrate	EPA 300.0	05/27/10	mg-N/L	< 0.1	2.0	2.0	100.0%		
N-Nitrite	EPA 300.0	05/27/10	mg-N/L	< 0.1	1.9	2.0	95.0%		
Sulfate	EPA 300.0	05/27/10	mg/L	0.2	2.3	2.0	105.0%		
Total Organic Carbon	EPA 415.1	05/27/10	mg/L	3.83	21.2	20.0	86.8%		

Project:	USG Hwy 99
Event:	19921-65021
Date Sampled:	05/27/10
Date Received:	05/27/10

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: QY33A Client	ID: USGHwy9	9-MW8-05/10				
Chloride	EPA 300.0	05/28/10	mg/L	6.3	6.2	1.6%
N-Nitrate	EPA 300.0	05/27/10	mg-N/L	< 0.1	< 0.1	NA
N-Nitrite	EPA 300.0	05/27/10	mg-N/L	< 0.1	< 0.1	NA
Sulfate	EPA 300.0	05/27/10	mg/L	0.2	0.2	0.0%
Total Organic Carbon	EPA 415.1	05/27/10	mg/L	3.83	3.56	7.3%
ARI ID: QY33E Client	ID: USGHwy99	9-99-2-05/10				
Total Suspended Solids	EPA 160.2	05/27/10	mg/L	50.0	50.3	0.6%

Project:	USG Hwy 99
Event:	19921-65021
Date Sampled:	NA
Date Received:	NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Total Suspended Solids EPA 160.2	ICVL	05/27/10	mg/L	49.4	50.0	98.8%

Project: USG Hwy 99 Event: 19921-65021 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank	ID
Total Suspended Solids	EPA 160.2	05/27/10	mg/L	< 1.0 U	
Chloride	EPA 300.0	05/28/10 06/01/10	mg/L	< 0.1 U < 0.1 U	
N-Nitrate	EPA 300.0	05/27/10	mg-N/L	< 0.1 U	
N-Nitrite	EPA 300.0	05/27/10 05/28/10	mg-N/L	< 0.1 U < 0.1 U	
Sulfate	EPA 300.0	05/27/10 05/28/10	mg/L	< 0.1 U < 0.1 U	
Chemical Oxygen Demand	EPA 410.4	06/03/10	mg/L	< 5.00 U	
Total Organic Carbon	EPA 415.1	05/27/10	mg/L	< 1.50 U	

Project: USG Hwy 99 Event: 19921-65021 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Alkalinity ERA #P114506	SM 2320	06/08/10	mg/L CaCO3	50.3	50.4	99.8%
Chloride ERA #230109	EPA 300.0	05/28/10 06/01/10	mg/L	2.8 2.8	3.0 3.0	93.3% 93.3%
N-Nitrate ERA #09127	EPA 300.0	05/27/10	mg-N/L	2.8	3.0	93.3%
N-Nitrite ERA #030309	EPA 300.0	05/27/10 05/28/10	mg-N/L	2.9 2.9	3.0 3.0	96.7% 96.7%
Sulfate ERA #220109	EPA 300.0	05/27/10 05/28/10	mg/L	2.9 2.9	3.0 3.0	96.7% 96.7%
Chemical Oxygen Demand Thermo Orion #I01	EPA 410.4	06/03/10	mg/L	85.0	90.0	94.4%
Total Organic Carbon ERA 0506-09-01	EPA 415.1	05/27/10	mg/L	22.0	20.0	110.0%

18804 Northcreek Parkway Bothell, WA, 98011 Tel: (425) 483-3300 Fax: (425) 483-9818 www.appliedspeciation.com

June 4, 2010

Cheronne Oreiro Analytical Resources Inc. 4611 S. 134th Place Suite 100 Tukwila, WA 98168 (206) 695-6200

;

Re: USG Hwy 99

Ms. Oreiro,

Attached is the report associated with twelve (12) aqueous samples submitted for arsenite and arsenate quantitation on May 26, 27, and 28, 2010. Each set of samples was received the same day as the submittal date in sealed coolers at 0.1°C, -0.7°C, and 5.6°C, respectively. Arsenite and arsenate speciation analysis was performed via ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry (IC-ICP-DRC-MS). Any issues associated with the analyses are addressed in the following report.

If you have any questions, please feel free to contact me at your convenience.

Sincerely,

Ben Woqmik

Ben Wozniak Project Manager Applied Speciation and Consulting, LLC

Applied Speciation and Consulting, LLC

Report Prepared for:

Cheronne Oreiro Analytical Resources Inc. 4611 S. 134th Place Suite 100 Tukwila, WA 98168

Project ID: USG Hwy 99

June 4, 2010

1. Sample Reception

Twelve (12) aqueous samples were submitted for arsenite and arsenate quantitation on May 26, 27, and 28, 2010. Each set of samples was received the same day as the submittal date, as indicated on the attached chain of custody (COC) forms, in sealed coolers at 0.1° C, -0.7° C, and 5.6° C, respectively.

The samples were received in a laminar flow clean hood, void of trace metals contamination and ultra-violet radiation, and assigned discrete sample identifiers. Immediately upon reception an aliquot of each sample was filtered $(0.45\mu m)$ into a polypropylene centrifuge tube, and all filtrates and original sample bottles were then stored in a secure, monitored refrigerator (maintained at a temperature of 4°C) until the analyses could occur.

2. Sample Preparation

All sample preparation is performed in laminar flow clean hoods known to be free from trace metals contamination. All applied water for dilutions and sample preservatives are also monitored for contamination to account for any biases associated with the sample results.

<u>Arsenic Speciation Analysis by IC-ICP-DRC-MS</u> Immediately upon sample reception, an aliquot of each sample was filtered with a syringe filter $(0.45\mu m)$ and injected directly into a sealed autosampler vial. No further sample preparation was performed as a buffered EDTA solution was provided by Applied Speciation and Consulting for field-preservation of the submitted samples.

3. Sample Analysis

All sample analysis is preceded by a minimum of a five-point calibration curve spanning the entire concentration range of interest. Calibration curves are performed at the beginning of each analytical day. All calibration curves, associated with each species of interest, are standardized by linear regression resulting in a response factor. All sample results are **instrument blank corrected** to account for any operational biases.

Prior to sample analysis, all calibration curves are verified using second source standards which are identified as initial calibration verification standards (ICV).

Ongoing instrument performance is identified by the analysis of continuing calibration verification standards (CCV) and continuing calibration blanks (CCB) at a minimal interval of every ten analytical runs.

<u>Arsenic Speciation Analysis by IC-ICP-DRC-MS</u> All samples for arsenite and arsenate quantitation were analyzed by ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry (IC-ICP-DRC-MS) either on June 1, 2010 (designated as Batch 1) or June 2, 2010 (designated as Batch 2). Aliquots of each sample are injected onto an anion exchange column and are mobilized by an alkaline (pH > 7) gradient. The eluting arsenic species are then introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (DRC) containing a specific reactive gas which preferentially reacts with arsenic, producing an entirely different mass to charge ratio (m/z) which can then be differentiated from the initial isobaric interferences. A solid-state detector detects ions transmitted through the mass analyzer on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

Retention times for each eluting species are compared to known standards for species identification.

4. Analytical Issues

The overall analyses went well and no significant analytical issues were encountered. All quality control parameters associated with these samples were within acceptance limits.

It should be noted that an additional arsenic species was detected in most of the submitted samples during the speciation analyses. While the identity of this species cannot be determined with certainty at this time, the concentration of arsenic associated it is estimated to be $0.88\mu g/L$ for 10-12491-QX92E, $1.07\mu g/L$ for 10-12630-QY17A, $5.99\mu g/L$ for 10-12633-QY17D, $25.2\mu g/L$ for 10-12636-QY17G, $3.80\mu g/L$ for 10-12640-QY17K, $0.72\mu g/L$ for 10-12643-QY17N, $3.36\mu g/L$ for 10-12646-QY17Q, and $1.03\mu g/L$ for 10-12705-QY33E. Traces of two additional species were also detected in the samples identified as 10-12487-QX92A, 10-12488-QX92B, and 10-12489-QX92C; the concentration of the sum of these additional species is estimated to be $0.079\mu g/L$, $0.072\mu g/L$, and $0.074\mu g/L$, respectively, for these three samples. Applied Speciation and Consulting can pursue additional research to identify these species upon client request.

The estimated method detection limit (eMDL) for arsenite is generated from replicate analyses of the lowest standard in the calibration curve. Not all arsenic species are present in preparation blanks; therefore, eMDL calculations based on preparation blanks may be artificially biased low for this species. Due to traces of arsenate in the reagents used for the speciation analysis, the eMDL for arsenate has been calculated using the standard deviation of the associated preparation blanks.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Ben Wozniek

Ben Wozniak Project Manager Applied Speciation and Consulting, LLC

Arsenic Speciation Results for ARI Project Name: USG Hwy 99 Contact: Cheronne Oreiro Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

Sample Results

			ucitIIC	Ac(III)	As(V)	
Sample ID	Date Sampled	Batch		()))ev	1-1-1-1	
10 12487-OX92A	5/25/10	7	5	0.539	2.36	
	5/25/10	2	S	0.444	2.22	
10-12488-27920		ı c	Ľ	0.403	2.12	
10-12489-QX92C	5/25/10	N	ס			
10-12490-OX92D	5/25/10	↽	50	45.9	17.7	
	5/25/10	~	50	267	19.2	
	CI 20110	~	50	351	16.5	
10-12630-QY1/A	01 /07/C	_		0444	36.6	
10-12633-0Y17D	5/26/10	~	1000	1410	0.00	
10 12636 OV17G	5/26/10	-	1000	1780	132	
D 1 1 D-0007 1-01			1000	1350	29.8	
10-12640-QY17K	5/26/10	-	0001	2001		
10-12643-0Y17N	5/26/10	-	50	455	33.5	
011 X 0107 01	5/26/10		1000	1260	24.9	
10-170407L-0L		• •	EO.	310	37.7	
10-12705-QY33E	5/27/10		0C	2	5	
All results reflect the applied dilution and are reported in µg/L	e applied dilution an	nd are repo	rted in µg/L		ļ	
in complete concentration is less than the estimated Method Detection Limit (eMDL)	tration is less than	the estimat	ted Method Det	tection Limit (el	MDL)	
O = Oalliple connect		Ċ	1 Head Description Limit (DL)	c limit (DI)		

J = Sample concentration is between the eMDL and the Reporting Limit (RL)

_

Arsenic Speciation Results for ARI Project Name: USG Hwy 99 Contact: Cheronne Oreiro Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

лаг
Ĕ
Ē
2
4
S
Blan
C
atio
ē
g
2
1
<u>ary -</u>
mary -
- Viewary -
Summary -
ol Summary -
ntrol Summary -
ontrol Summary -
Control Summary -
ity Control Summary -
ality Control Summary -
Quality Control Summary -

								eMDL [*] at	
Analvte (µg/L)	Batch	PBW1	PBW2	PBW3	PBW4	Mean	StdDev	1x	RL at 1x
As(III)	 -	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.020
As(V)	-	-0.014	-0.017	-0.017	-0.017	-0.016	0.002	0.006	0.020
As(III)	2	0.004	0.002	0.003	0.000	0.002	0.002	0.004	0.020
As(V)		0.019	0.012	0.009	0.012	0.013	0.005	0.014	0.020
eMDL = Estimated N	Aethod	Detection Limit; RL	= Reporting Limit						

*Please see narrative regarding eMDL calculations

<u>Reference Materials</u>
- Certified
I Summary
uality Contro

Analyte (µg/L)	Batch	CRM	True Value	Result	Recovery
As(III)	-	ICV	10.00	10.10	101.0
As(V)	~	СV	10.00	9.51	95.1
As(III)	2	ICV	10.00	9.53	95.3
As(V)	0	ICV	10.00	9.16	91.6

Arsenic Speciation Results for ARI Project Name: USG Hwy 99 Contact: Cheronne Oreiro Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

Amel-4- / / Mail	Batch	Sample ID	Rep 1	Rep 2	Mean	ערט
Analyte (µy/L)	מאלו				- 20.0	1 7 A
 (11) 	Ţ	Ratch OC	0.40 J	0.34 J	0.37 J	t.
AS(III)	-			- 100		16.6
	Ŧ	Batch OC	1.07	0.91 J	0.33 J	0.0
As(V)	-					30
	c	10-12489-OX92C	0.403	0.418	0.4.0	0.0
As(III)	V				007 0	·
	ç	10-12489-OX92C	2.122	2.144	2.100	2.
As(V)	V	10-12-00-21-01				
	not calcida	And a violution was not calculated due to one or more concentrations below the eMUL	re concentrati	ons below the	eMUL	

<u> Quality Control Summary - Matrix Duplicates</u>

NC = Value was not

<u>Quality Control Summary - Matrix Spike/ Matrix Spike Duplicate</u>

	•	Samula ID	Snike Conc	MS Result	Recovery	Spike Conc	MSD Result Recovery	Recovery	RPD
Analyte (uq/L)	Batch	odilible in							
			100 0	R5 47	85.1	100.0	82.28	04.V	0.k
As(III)	, -	Balch CC	2000		I İ	0.001	30.00	101	04
	•		100.0	80.65	79.7	100.0	8U.JO	1.0.	ŀ.
As(V)	-	Daloi	2000				0 738	88.3	0.0
	c	10 12/RO-OX92C	10.00	9.236	88.3	10.00	0.64.0		
As(III)	V	π		00 7 7	0 00	10.00	11.09	89.6	0.5
	~	10-12489-QX92C	10.00	c0.11	03.0	0.00			
HS(V)	4								

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/26/10

Laboratory: Applied Speciation & Consulting Lab Contact: Russell Gerads Lab Address: 18804 Northcreek Parkway Bothell, WA 98011 Phone: 425-483-3300 Fax: 425-483-9818 ARI Client: CDM Project ID: USG Hwy 99 ARI PM: Cheronne Oreiro Phone: 206-695-6214 Fax: 425-483-9818

Analytical Protocol: In-house Special Instructions: Requested Turn Around: 06/09/10 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
10-12487-QX92A	USGHwy99-SW5-05/10	05/25/10 11:35	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			
10-12488-QX92B	USGHwy99-SW4-05/10	05/25/10 12:05	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			
10-12489-QX92C	USGHwy99-SW1-05/10	05/25/10 13:10	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			
10-12490-QX92D	USGHwy99-MW2-05/10	05/25/10 14:45	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			
10-12491-QX92E	USGHwy99-MW3-05/10	05/25/10 16:15	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			

Carrier	Airbill		Date
Relinguished by	Company AR	Date 5/26/10	Time IOUO Time
Received by	Company ASC	5/26/10	104U np= 0.11C
	Subcontractor Custody Fo Page 1 of 1	zia Zusz	14-3 3 (

QY33:00043

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/27/10

Laboratory: Applied Speciation & Consulting ARI Cli Lab Contact: Russell Gerads Project Lab Address: 18804 Northcreek Parkway ARI Bothell, WA 98011 Ph Phone: 425-483-3300 Fax: 425-483-9818

Analytical Protocol: In-house Special Instructions: ARI Client: CDM Project ID: USG Highway 99 ARI PM: Cheronne Oreiro Phone: 206-695-6214 Fax: 206-695-6201

> Requested Turn Around: 06/11/10 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
10-12630-QY17A	USGHWY99-MW6-05/10	05/26/10 09:15	Water	1	Metals (Sub)
Special Instru	ctions: As+3 & As+5				
10-12633-QY17D	USGHWY99-MW5-05/10	05/26/10 10:25	Water	1	Metals (Sub)
Special Instruc	ctions: As+3 & As+5				
10-12636-Q¥17G	USGHWY99-99-1-05/10	05/26/10 12:00	Water	1	Metals (Sub)
Special Instruc	ctions: As+3 & As+5				
10-12640-QY17K	USGHWY99-MW4-05/10	05/26/10 13:10	Water	1	Metals (Sub)
Special Instruc	ctions: As+3 & As+5				
10-12643-QY17N	USGHWY99-MW1-05/10	05/26/10 14:35	Water	1	Metals (Sub)
Special Instruc	ctions: As+3 & As+5				
10-12646-QY17Q	USGHWY99-MW0-05/10	05/26/10 15:45	Water	1	Metals (Sub)
Special Instru	ctions: As+3 & As+5				

Carrier	Airbill		Date
Relinquished by	Company ARI	Date 5/27/10	Time 1050
Received by	Company	Date 5/27/10	Time 105 D
	Subcontractor Custody		-10700

Page 1 of 1

-0.7°C

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/28/10

Laboratory: Applied Speciation & Consulting Lab Contact: Russell Gerads Lab Address: 18804 Northcreek Parkway Bothell, WA 98011 Phone: 425-483-3300 Fax: 425-483-9818 ARI Client: CDM Project ID: USG Hwy 99 ARI PM: Cheronne Oreirc Phone: 206-695-6201 Fax: 425-483-9818

Analytical Protocol: In-house Special Instructions:

Requested Turn Around: 05/30/08 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles Analyses	
10-12705-QY33E	USGHwy99-99-2-05/10	05/27/10	Water	1 Metals (Sub)	
Special Instruc	tions: Speciated As (A				

Carrier	Airbill		Date
Relinguished by	Company ARI	Date 5/28/10	Time //20
Received by	Company PS	Date 5/28/10	Time (120
	Subcontractor Custody Page 1 o		, le °C
	Page 1 o		33:00045

Analytical Resources, Incorporated

Analytical Chemists and Consultants

June 14, 2010

Alan Carey CDM 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007

RE: Project ID: USG-Hwy-99, 19921-65021 ARI Job No: QY17

Dear Mr. Carey:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the final results for samples from the project referenced above. Analytical Resources Inc. (ARI) accepted six water samples on May 26, 2010. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for various conventional parameters and total/dissolved metals, as requested on the COC. Note all samples requesting Arsenic were analyzed by both ICP-MS and Graphite Furnace. The Arsenic Speciation analyses were subcontracted to Applied Speciation in Bothell, WA. All data have been included.

Total arsenic was present in the ICP-MS method blank at a level that was greater than the reporting limit. The associated sample contained a concentration of arsenic greater than ten times the level found in the method blank. No corrective action was required.

The dissolved matrix spike percent recovery of arsenic fell outside the control limits low for sample **USGHWY99-MW-05/10**. The sample concentration exceeded the spike concentration by a factor of four or more. No corrective action was required.

The matrix spike percent recovery of TOC fell outside the control limits low for sample **USGHWY99-MW6-05/10**. The matrix spike was re-analyzed with comparable results. All other quality control parameters were within limits. No corrective action was required.

An electronic copy of this report as well as all supporting raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely, ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> <u>www.arilabs.com</u>

Enclosures

cc: eFile: QY17

Page 1 of 59

AHI Assigned Number:	Iurn-around Hequested:	60		rage.	/	5	_			Analyti Analyti	Analytical Resources, Incorporated
ARI Client Company:	Phone:			Date:	(1)	Ice Present?	X			4611 S Tukwilâ	4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact:				Klo. of / Coolers:	m	Cooler 5, 3, 5, Temps: 5, 5, 5	6 0 0		I	206-69	206-695-6200 206-695-6201 (fax)
ame:						Ana	Analysis Requested	sted			Notes/Comments
L priming J	andare' (100 100 100 100	51		-		
Uneniford - 65021 adm	Le MU	(,		<u> </u>	1) '3 à 10 m	火田み 7254 からま	<u>رم ج</u> ۱	5	hyp	£07	
Sample ID	Date Time	Matrix	No. Containers	172. 3213 5W021 5W021		13 5H 1011/54 1.1 5mpd	202 3 E+54	wony	MARTH	55L H[8]	
1564WY 49-MW10-05/10 5/	20/10 0915	Water	6	/							
5	27/10/1025		0/	/	/	>		/ /			
01/20-1-02/10	`		6	\ \				>		>	
allsa-hum-pakuhasu	13/D		ģ	/			~			\wedge	
126 Hwy 99- MW1- 05/10	1436		6	/	\checkmark	د	~ /	∧	/ /	/	
01/50-0mm- 66 MM 950	L 1545	K	9	<	\checkmark	\ \	 			$ \land \ \land$	
					- <u></u>					-	
Comments/Special Instructions	1 by:	0 1 J	Received by:			Relin	Relinquished by:			Received by:	
	(Signature) // / / / / / / / / / / /	n Jer	(Signature) Printed Name			(Sign Print	(Signature) Printed Name			(Signature)	į
2	1 Ku	Fax	A	Volaa	volaanden						<u>p</u>
	pany: COM		Company:	kei J			Company:			Company:	
MW5 for Maris QC Date 874	5/7//10	16.28	Date & Time:	10 11	95%	Date	Date & Time:			Date & Time:	

N meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt Form	
ARI Client:	Project Name: US7 HUU 99	
COC No(s):	Delivered by: Fed-Ex UPS Courier And Delivered Other	·
Assigned ARI Job No:QTT	Tracking No:	NA`)
Preliminary Examination Phase:		and the second s
Were intact, properly signed and dated custody seals attached to	the outside of to cooler? YES	
Were custody papers included with the cooler?		NO
Were custody papers properly filled out (ink, signed, etc.)		NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chem	nistry)	
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#:	41619
Cooler Accepted by:	_Date: <u>5/21/10</u> Time: <u>1428</u>	-
	nd attach all shipping documents	
Log-In Phase:		_
Was a temperature blank included in the cooler?	YES	NO
What kind of packing material was used? Bubble Wrap	Wet lee Gel Packs Baggies Foam Block Paper Other:	
Was sufficient ice used (if appropriate)?	NA (YES	NO
Were all bottles sealed in individual plastic bags?		NO
Did all bottles arrive in good condition (unbroken)?		NO
Were all bottle labels complete and legible?	É	NO
Did the number of containers listed on COC match with the number	er of containers received?	NO
Did all bottle labels and tags agree with custody papers?	······	NO
Were all bottles used correct for the requested analyses?		NO
Do any of the analyses (bottles) require preservation? (attach pres	servation sheet, excluding VOCs) NA	NO
Were all VOC vials free of air bubbles?		NO
Was sufficient amount of sample sent in each bottle?	·····	NO
Date VOC Trip Blank was made at ARI	•	
Was Sample Split by ARI : No. YES Date/Time: Samples Logged by:	$s / 2 \pi / 10 $ $(n ? r)$	

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Additional Notes, Discrepance	ies, & Resolutions:		
_			
	ate:		
Small Air Bubbles Peabut 2mm 2-4 n		Small → "sm"	
		Peabubbles → "pb"	
		Large → "lg"	
		Headspace → "hs"	

PRESERVATION VERIFICATION 05/27/10 1 of 2 Page

Analysis Requested: 05/27/10 Contact: Carey, Alan Client: CDM Logged by: MM Sample Set Used: Yes-481 Validatable Package: No Deliverables: Inquiry Number: NONE

ARI Job No: QY17

VTSR: 05/26/10 PC: Cheronne

Project #: 19921-65021
Project: USG Highway 99
Sample Site:
SDG No:
Analytical Protocol: In-house

LOGNUM ARI ID	CLIENT ID	CN V >12	WAD >12 .	NH3 <2	COD +	FOG MET <2 <2	ET PHE	PHEN PHOS <2 <2	S TKN <2	I NO23 <2	70C < 2	52 28	AK102 Fe2+ <2 <2	re2+ E <2 F	DMET DOC FLT FLT	PARAMETER	ADJUSTED I TO NU	LOT AN NUMBER P	AMOUNT ADDED	DATE/BY
10-12630 QY17A	USGHWY99-MW6-05/10			\sim	SS	NOSC	۲ ک				SUS									
10-12631 QY17B	USGHWY99-MW6-05/10					DIS 10	s				-				N					
10-12632 QY17C	USGHWY99-MW6-05/10						C S								N					
10-12633 QY17D	USGHWY99-MW5-05/10			Ø	53						SUS		<u> </u>							
10-12634 QY17E	USGHWY99-MW5-05/10					DFS FUL					,				N					
10-12635 QY17F	USGHWY99-MW5-05/10						PIS LIN						<u> </u>		N					
10-12636 QY17G	USGHWY99-99-1-05/10			<u>~</u>	SUN	NUS SUD	E.S.				(ii)									
10-12637 QY17н	USGHWY99-99-1-05/10					NUS RUS	т Х													
10-12638 QY171	USGHWY99-99-1-05/10														N					
10-12639	USGHWY99-99-1-05/10						CS /								N					
10-12640 0117K	USGHWY99-MW4-05/10			~	3						SUS									
, 10-12641 О 0У17 L	USGHWY99-MW4-05/10						Link Link								N					
С 10-12642 Сотти	USGHWY99-MW4-05/10					SID	5						Ĺ		N					
10-12643	USGHWY99-MW1-05/10	·			Si	No.	E S				S)									
						L														

WV Date 5/27 [10 Checked By /

PRESERVATION VERIFICATION 05/27/10
Page 2 of 2

Client: CDM

ARI Job No: QY17

Project #: 19921-65021 Project: USG Highway 99

LOGNUM		CN	WAD	CHN3	COD	FOG		HEN E	T SOH	TKN N	4023 I	о N	S2 A	K102 Fe2	+ DMET		ī	ADJUSTED	LOT	AMOUNT	
ARI ID	CLIENT ID	>12	>12	<2	>12 >12 <2 <2 <2 <2	<2		<2	<2	<2	~~ ~	~2 ~	6<	<2 <2 <2 <2 <2 >2 <2 >9 <2 <2 FLT FLT	FLT		PARAMETER TO NUMBER ADDED	ΤO	NUMBER	ADDED	DATE/BY
10-12644 QY170	USGHWY99-MW1-05/10					_	E li l								N						
10-12645 QY17P	USGHWY99-MW1-05/10					<u>·</u>	Ful								N						
10-12646 21172	USGHWY99-MW0-05/10				SUUS	-	Yor SUX				æ	(LV)									
10-12647 QY17R	USGHWY99-MW0-05/10				•		SIG						·		N						
10-12648 QY17S	USGHWY99-MW0-05/10		- - -				SID T								N						
]										-	-		-					

V Date 527110 Checked By 1

Page 1 of 1

Sample ID: USGHWY99-MW6-05/10 SAMPLE

Lab Sample ID: QY17A LIMS ID: 10-12630 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	35,300	
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	14,400	
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	20,200	
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	3,490	
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	14,300	

Page 1 of 1

Sample ID: USGHWY99-MW6-05/10 SAMPLE

Lab Sample ID: QY17B LIMS ID: 10-12631 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L Q
200.8	06/01/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	279
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	6,200

Page 1 of 1

Sample ID: USGHWY99-MW6-05/10 SAMPLE

Lab Sample ID: QY17C LIMS ID: 10-12632 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	10	310	

Page 1 of 1

Sample ID: USGHWY99-MW5-05/10 SAMPLE

Lab Sample ID: QY17D LIMS ID: 10-12633 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	26,900	
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	11,800	
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	17,300	
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	3,860	
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	15,500	

Page 1 of 1

Sample ID: USGHWY99-MW5-05/10 SAMPLE

Lab Sample ID: QY17E LIMS ID: 10-12634 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	5	1,280	
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	5,070	

Page 1 of 1

Sample ID: USGHWY99-MW5-05/10 SAMPLE

Lab Sample ID: QY17F LIMS ID: 10-12635 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	100	1,090	

Page 1 of 1

Sample ID: USGHWY99-99-1-05/10 SAMPLE

Lab Sample ID: QY17G LIMS ID: 10-12636 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	2	2,220	
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	35,600	
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	4,840	
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	16,900	
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	4,290	
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	17,900	

Page 1 of 1

Sample ID: USGHWY99-99-1-05/10 SAMPLE

Lab Sample ID: QY17H LIMS ID: 10-12637 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7060A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	100	2,430	

Page 1 of 1

Sample ID: USGHWY99-99-1-05/10 SAMPLE

Lab Sample ID: QY17I LIMS ID: 10-12638 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	2	1,080	
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	50	Ŭ

Page 1 of 1

Sample ID: USGHWY99-99-1-05/10 SAMPLE

Lab Sample ID: QY17J LIMS ID: 10-12639 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	100	1,020	

Page 1 of 1

Sample ID: USGHWY99-MW4-05/10 SAMPLE

Lab Sample ID: QY17K LIMS ID: 10-12640 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	45,300	
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	9,980	
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	25,300	
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	6,240	
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	21,700	

Page 1 of 1

Sample ID: USGHWY99-MW4-05/10 SAMPLE

Lab Sample ID: QY17L LIMS ID: 10-12641 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	42.7	
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	3,710	

Page 1 of 1

Sample ID: USGHWY99-MW4-05/10 SAMPLE

Lab Sample ID: QY17M LIMS ID: 10-12642 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/07/10	7440-38-2	Arsenic	20	530	

Page 1 of 1

Sample ID: USGHWY99-MW1-05/10 SAMPLE

Lab Sample ID: QY17N LIMS ID: 10-12643 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	27,100	
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	6,660	
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	14,600	
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	2,830	
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	10,500	

Page 1 of 1

Sample ID: USGHWY99-MW1-05/10 SAMPLE

Lab Sample ID: QY170 LIMS ID: 10-12644 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/03/10	7440-38-2	Arsenic	1	506	
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	4,290	

Page 1 of 1

Sample ID: USGHWY99-MW1-05/10 SAMPLE

Lab Sample ID: QY17P LIMS ID: 10-12645 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	100	630	

Page 1 of 1

Sample ID: USGHWY99-MW0-05/10 SAMPLE

Lab Sample ID: QY17Q LIMS ID: 10-12646 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	43,500	
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	9,670	
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	24,000	
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	5,840	
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	20,500	

Page 1 of 1

Lab Sample ID: QY17R LIMS ID: 10-12647 Matrix: Water Data Release Authorized: Reported: 06/08/10

Sample ID: USGHWY99-MW0-05/10 SAMPLE

QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	06/01/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	70.0	
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	3,620	

Page 1 of 1

Sample ID: USGHWY99-MW0-05/10 SAMPLE

Lab Sample ID: QY17S LIMS ID: 10-12648 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/07/10	7440-38-2	Arsenic	20	370	

Page 1 of 1

Sample ID: USGHWY99-MW5-05/10 MATRIX SPIKE

Lab Sample ID: QY17E LIMS ID: 10-12634 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	200.8	1,280	1,280	25.0	0.0%	Н
Iron	6010B	5,070	7,160	2,000	104%	

Reported in $\mu g/L$

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: QY17E LIMS ID: 10-12634 Matrix: Water Data Release Authorized: Reported: 06/08/10

Sample ID: USGHWY99-MW5-05/10 DUPLICATE

QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Arsenic	200.8	1,280	1,140	11.6%	+/- 20%		
Iron	6010B	5 , 070	5,200	2.5%	+/- 20%		

Reported in $\mu g/L$

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Sample ID: USGHWY99-MW5-05/10 MATRIX SPIKE

Lab Sample ID: QY17F LIMS ID: 10-12635 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Arsenic	7060A	1,090	3,110	2,000	101%	

Reported in $\mu g/L$

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: QY17F LIMS ID: 10-12635 Matrix: Water Data Release Authorized: Reported: 06/08/10

Sample ID: USGHWY99-MW5-05/10 DUPLICATE

QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
<u>.</u>							
Arsenic	7060A	1,090	1,090	0.0%	+/- 20%		

Reported in $\mu g/L$

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Sample ID: LAB CONTROL

Lab Sample ID: QY17LCS LIMS ID: 10-12630 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Calcium	6010B	9730	10000	97.3%	
Iron	6010B	2070	2000	104%	
Magnesium	6010B	10000	10000	100%	
Potassium	6010B	10100	10000	101%	
Sodium	6010B	9680	10000	96.8%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: QY17MB LIMS ID: 10-12630 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/28/10	6010B	06/03/10	7440-70-2	Calcium	50	50	U
3010A	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	50	U
3010A	05/28/10	6010B	06/03/10	7439-95-4	Magnesium	50	50	U
3010A	05/28/10	6010B	06/03/10	7440-09-7	Potassium	500	500	U
3010A	05/28/10	6010B	06/03/10	7440-23-5	Sodium	500	500	U

Page 1 of 1

Lab Sample ID: QY17LCS LIMS ID: 10-12636 Matrix: Water Data Release Authorized: Reported: 06/08/10 Sample ID: LAB CONTROL

QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	27.3	25.0	109%	
Reported in µg/L					

N-Control limit not met Control Limits: 80-120%

Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: QY17MB LIMS ID: 10-12636 Matrix: Water Data Release Authorized: Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L Q
200.8	06/01/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	1.0

Page 1 of 1

Lab Sample ID: QY17LCS LIMS ID: 10-12637 Matrix: Water Data Release Authorized: Reported: 06/08/10 Sample ID: LAB CONTROL

QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	7060A	108	100	108%	
Reported in μ g/L					

N-Control limit not met Control Limits: 80-120%

Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: QY17MB LIMS ID: 10-12637 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
7060A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	1	1	U

Page 1 of 1

Lab Sample ID: QY17LCS LIMS ID: 10-12631 Matrix: Water Data Release Authorized: Reported: 06/08/10 Sample ID: LAB CONTROL

QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	۶ Recovery	Q
Arsenic	200.8	25.8	25.0	103%	
Iron	6010B	2070	2000	104%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: QY17MB LIMS ID: 10-12631 Matrix: Water Data Release Authorized Reported: 06/08/10 Sample ID: METHOD BLANK

QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
200.8	06/01/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	0.2	U
6010B	05/28/10	6010B	06/03/10	7439-89-6	Iron	50	50	U

Page 1 of 1

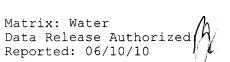
Lab Sample ID: QY17LCS LIMS ID: 10-12632 Matrix: Water Data Release Authorized Reported: 06/08/10 Sample ID: LAB CONTROL

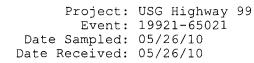
QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Found	Added	Recovery	Q
21	20	105%	

N-Control limit not met Control Limits: 80-120%




Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: QY17MB LIMS ID: 10-12632 Matrix: Water Data Release Authorized Reported: 06/08/10 QC Report No: QY17-CDM Project: USG Highway 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/28/10	7060A	06/04/10	7440-38-2	Arsenic	1	1	U

ANALYTICAL

RESOURCES

Client ID: USGHWY99-MW6-05/10 ARI ID: 10-12630 QY17A

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	207
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	207
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	2.1	41.5
Chloride	05/27/10 052710#1	EPA 300.0	mg/L	0.5	7.3
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	< 0.1 U
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	20.5
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	9.27

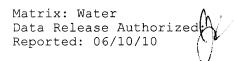
RL Analytical reporting limit

Project: USG Highway 99 Event: 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Client ID: USGHWY99-MW5-05/10 ARI ID: 10-12633 QY17D

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	178
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	178
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	1.5	28.5
Chloride	05/27/10 052710#1	EPA 300.0	mg/L	0.5	7.6
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	< 0.1 U
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	11.2
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	5.05

RL Analytical reporting limit


Project: USG Highway 99 Event: 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Client ID: USGHWY99-99-1-05/10 ARI ID: 10-12636 QY17G

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/08/10 060810 #1	SM 2320	mg/L CaCO3	1.0	193
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	193
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	1.0	9.9
Chloride	05/27/10 052710#1	EPA 300.0	mg/L	0.5	7.4
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	1.6
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	7.43
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	4.83

RL Analytical reporting limit

Project: USG Highway 99 Event: 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Client ID: USGHWY99-MW4-05/10 ARI ID: 10-12640 QY17K

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	264
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	264
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	1.0	11.6
Chloride	05/27/10 052710#1	EPA 300.0	mg/L	0.5	9.6
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	2.5
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	30.3
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	11.1

RL Analytical reporting limit

Project: USG Highway 99 Event: 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Client ID: USGHWY99-MW1-05/10 ARI ID: 10-12643 QY17N

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	152
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	152
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	1.1	2.7
Chloride	05/27/10 052710#1	EPA 300.0	mg/L	0.5	4.4
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	2.8
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	28.7
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	12.4

RL Analytical reporting limit

Project: USG Highway 99 Event: 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Client ID: USGHWY99-MW0-05/10 ARI ID: 10-12646 QY17Q

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/08/10 060810#1	SM 2320	mg/L CaCO3	1.0	269
Carbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/08/10	SM 2320	mg/L CaCO3	1.0	269
Hydroxide	06/08/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/27/10 052710#1	EPA 160.2	mg/L	1.0	10.3
Chloride	05/27/10 052710#1	EPA 300.0	mg/L	0.5	10.0
N-Nitrate	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/27/10 052710#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/27/10 052710#1	EPA 300.0	mg/L	0.1	2.6
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	29.4
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	11.2

RL Analytical reporting limit

Matrix: Water	An 1
Matrix: Water Data Release Authorized: Reported: 06/10/10	MN1
Reporteda. 00/10/10	V

Project:	USG Highway 99
Event:	19921-65021
Date Sampled:	05/26/10
Date Received:	05/26/10

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: QY17A Client	ID: USGHWY9	9-MW6-05/1	.0				
Chloride	EPA 300.0	05/27/10	mg/L	7.3	16.6	10.0	93.0%
N-Nitrate	EPA 300.0	05/27/10	mg-N/L	< 0.1	1.9	2.0	95.0%
N-Nitrite	EPA 300.0	05/27/10	mg-N/L	< 0.1	1.9	2.0	95.0%
Sulfate	EPA 300.0	05/27/10	mg/L	< 0.1	2.2	2.0	110.0%
Total Organic Carbon	EPA 415.1	05/27/10	mg/L	9.27	22.7	20.0	67.2%
Total Organic Carbon	EPA 415.1	05/27/10	mg/L	9.27	23.3	20.0	70.2%

Project: USG Highway 99 Event: 19921-65021 Date Sampled: 05/26/10 Date Received: 05/26/10

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: QY17A Client	ID: USGHWY99	9-MW6-05/10				
Alkalinity	SM 2320	06/08/10	mg/L CaCO3	207	207	0.0%
Carbonate	SM 2320	06/08/10	mg/L CaCO3	< 1.0	< 1.0	NA
Bicarbonate	SM 2320	06/08/10	mg/L CaCO3	207	207	0.0%
Hydroxide	SM 2320	06/08/10	mg/L CaCO3	< 1.0	< 1.0	NA
Total Suspended Solids	EPA 160.2	05/27/10	mg/L	41.5	41.7	0.5%
Chloride	EPA 300.0	05/27/10	mg/L	7.3	7.3	0.0%
N-Nitrate	EPA 300.0	05/27/10	mg-N/L	< 0.1	< 0.1	NA
N-Nitrite	EPA 300.0	05/27/10	mg-N/L	< 0.1	< 0.1	NA
Sulfate	EPA 300.0	05/27/10	mg/L	< 0.1	< 0.1	NA
Total Organic Carbon	EPA 415.1	05/27/10	mg/L	9.27	9.17	1.1%

Project: USG Highway 99 Event: 19921-65021 Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Total Suspended Solids EPA 160.2	ICVL	05/27/10	mg/L	49.4	50.0	98.8%

Project: USG Highway 99 Event: 19921-65021 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank ID
Total Suspended Solids	EPA 160.2	05/27/10	mg/L	< 1.0 U
Chloride	EPA 300.0	05/27/10	mg/L	< 0.1 U
N-Nitrate	EPA 300.0	05/27/10	mg-N/L	< 0.1 U
N-Nitrite	EPA 300.0	05/27/10	mg-N/L	< 0.1 U
Sulfate	EPA 300.0	05/27/10	mg/L	< 0.1 U
Chemical Oxygen Demand	EPA 410.4	06/03/10	mg/L	< 5.00 U
Total Organic Carbon	EPA 415.1	05/27/10	mg/L	< 1.50 U

Project: USG Highway 99 Event: 19921-65021 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Alkalinity ERA #P114506	SM 2320	06/08/10	mg/L CaCO3	50.3	50.4	99.8%
Chloride ERA #230109	EPA 300.0	05/27/10	mg/L	2.8	3.0	93.3%
N-Nitrate ERA #09127	EPA 300.0	05/27/10	mg-N/L	2.8	3.0	93.3%
N-Nitrite ERA #030309	EPA 300.0	05/27/10	mg-N/L	2.9	3.0	96.7%
Sulfate ERA #220109	EPA 300.0	05/27/10	mg/L	2.9	3.0	96.7%
Chemical Oxygen Demand Thermo Orion #I01	EPA 410.4	06/03/10	mg/L	85.0	90.0	94.4%
Total Organic Carbon ERA 0506-09-01	EPA 415.1	05/27/10	mg/L	22.0	20.0	110.0%

APPLIED SPECIATION AND CONSULTING, LLC

June 4, 2010

Cheronne Oreiro Analytical Resources Inc. 4611 S. 134th Place Suite 100 Tukwila, WA 98168 (206) 695-6200

Re: USG Hwy 99

Ms. Oreiro,

ie:

; (

ЭС

tr

fi 1

> er C

n p

7**i**1

ip ar ir r r

br oi ch Attached is the report associated with twelve (12) aqueous samples submitted for arsenite and arsenate quantitation on May 26, 27, and 28, 2010. Each set of samples was received the same day as the submittal date in sealed coolers at 0.1°C, -0.7°C, and 5.6°C, respectively. Arsenite and arsenate speciation analysis was performed via ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry (IC-ICP-DRC-MS). Any issues associated with the analyses are addressed in the following report.

If you have any questions, please feel free to contact me at your convenience.

Sincerely,

Bu Wynih

Ben Wozniak Project Manager Applied Speciation and Consulting, LLC

QY17:00050

Applied Speciation and Consulting, LLC

Report Prepared for:

Cheronne Oreiro Analytical Resources Inc. 4611 S. 134th Place Suite 100 Tukwila, WA 98168

Project ID: USG Hwy 99

June 4, 2010

1. Sample Reception

Twelve (12) aqueous samples were submitted for arsenite and arsenate quantitation on May 26, 27, and 28, 2010. Each set of samples was received the same day as the submittal date, as indicated on the attached chain of custody (COC) forms, in sealed coolers at 0.1° C, -0.7° C, and 5.6° C, respectively.

The samples were received in a laminar flow clean hood, void of trace metals contamination and ultra-violet radiation, and assigned discrete sample identifiers. Immediately upon reception an aliquot of each sample was filtered ($0.45\mu m$) into a polypropylene centrifuge tube, and all filtrates and original sample bottles were then stored in a secure, monitored refrigerator (maintained at a temperature of $4^{\circ}C$) until the analyses could occur.

2. Sample Preparation

All sample preparation is performed in laminar flow clean hoods known to be free from trace metals contamination. All applied water for dilutions and sample preservatives are also monitored for contamination to account for any biases associated with the sample results.

<u>Arsenic Speciation Analysis by IC-ICP-DRC-MS</u> Immediately upon sample reception, an aliquot of each sample was filtered with a syringe filter $(0.45\mu m)$ and injected directly into a sealed autosampler vial. No further sample preparation was performed as a buffered EDTA solution was provided by Applied Speciation and Consulting for field-preservation of the submitted samples.

3. Sample Analysis

All sample analysis is preceded by a minimum of a five-point calibration curve spanning the entire concentration range of interest. Calibration curves are performed at the beginning of each analytical day. All calibration curves, associated with each species of interest, are standardized by linear regression resulting in a response factor. All sample results are **instrument blank corrected** to account for any operational biases.

Prior to sample analysis, all calibration curves are verified using second source standards which are identified as initial calibration verification standards (ICV).

Ongoing instrument performance is identified by the analysis of continuing calibration verification standards (CCV) and continuing calibration blanks (CCB) at a minimal interval of every ten analytical runs.

<u>Arsenic Speciation Analysis by IC-ICP-DRC-MS</u> All samples for arsenite and arsenate quantitation were analyzed by ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry (IC-ICP-DRC-MS) either on June 1, 2010 (designated as Batch 1) or June 2, 2010 (designated as Batch 2). Aliquots of each sample are injected onto an anion exchange column and are mobilized by an alkaline (pH > 7) gradient. The eluting arsenic species are then introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (DRC) containing a specific reactive gas which preferentially reacts with arsenic, producing an entirely different mass to charge ratio (m/z) which can then be differentiated from the initial isobaric interferences. A solid-state detector detects ions transmitted through the mass analyzer on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

Retention times for each eluting species are compared to known standards for species identification.

4. Analytical Issues

The overall analyses went well and no significant analytical issues were encountered. All quality control parameters associated with these samples were within acceptance limits.

It should be noted that an additional arsenic species was detected in most of the submitted samples during the speciation analyses. While the identity of this species cannot be determined with certainty at this time, the concentration of arsenic associated it is estimated to be $0.88\mu g/L$ for 10-12491-QX92E, $1.07\mu g/L$ for 10-12630-QY17A, $5.99\mu g/L$ for 10-12633-QY17D, $25.2\mu g/L$ for 10-12636-QY17G, $3.80\mu g/L$ for 10-12640-QY17K, $0.72\mu g/L$ for 10-12643-QY17N, $3.36\mu g/L$ for 10-12646-QY17Q, and $1.03\mu g/L$ for 10-12705-QY33E. Traces of two additional species were also detected in the samples identified as 10-12487-QX92A, 10-12488-QX92B, and 10-12489-QX92C; the concentration of the sum of these additional species is estimated to be $0.079\mu g/L$, $0.072\mu g/L$, and $0.074\mu g/L$, respectively, for these three samples. Applied Speciation and Consulting can pursue additional research to identify these species upon client request.

The estimated method detection limit (eMDL) for arsenite is generated from replicate analyses of the lowest standard in the calibration curve. Not all arsenic species are present in preparation blanks; therefore, eMDL calculations based on preparation blanks may be artificially biased low for this species. Due to traces of arsenate in the reagents used for the speciation analysis, the eMDL for arsenate has been calculated using the standard deviation of the associated preparation blanks.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Byn Warnish

Ben Wozniak Project Manager Applied Speciation and Consulting, LLC

Arsenic Speciation Results for ARI Project Name: USG Hwy 99 Contact: Cheronne Oreiro

Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

Sample Results

Sample ID	Date Sampled	Batch	Dilution	As(III)	As(V)
10-12487-QX92A	5/25/10	2	5	0.539	2.36
10-12488-QX92B	5/25/10	2	Сī	0.444	2.22
10-12489-QX92C	5/25/10	2	Сл	0.403	2.12
10-12490-QX92D	5/25/10	-	50	45.9	2.27
10-12491-QX92E	5/25/10	-	50	267	19.2
10-12630-QY17A	5/26/10	<u>د</u>	50	351	16.5
10-12633-QY17D	5/26/10	<u>د</u>	1000	1410	36.6
10-12636-QY17G	5/26/10	_	1000	1780	132
10-12640-QY17K	5/26/10	<u> </u>	1000	1350	29.8
10-12643-QY17N	5/26/10		50	455	33.5
10-12646-QY17Q	5/26/10	<u>د</u>	1000	1260	24.9
10-12705-QY33E	5/27/10	-	50	310	37.7
All results reflect the applied dilution and are reported in µg/L	applied dilution and	d are report	ted in µg/L		-
U = Sample concentration is less than the estimated Method Detection Limit (eMDL)	ation is less than th	he estimate	ed Method Dete	ection Limit (eN	וסר)

J = Sample concentration is between the eMDL and the Reporting Limit (RL)

Arsenic Speciation Results for ARI Project Name: USG Hwy 99 Contact: Cheronne Oreiro

Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

Quality Control Summary - Preparation Blank Summary

								eMDL* at	
Analyte (µg/L)	Batch	PBW1	PBW2	PBW3	PBW4	Mean	StdDev	1x	RL at 1x
As(III)		0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.020
As(V)	_	-0.014	-0.017	-0.017	-0.017	-0.016	0.002	0.006	0.020
As(III)	2	0.004	0.002	0.003	0.000	0.002	0.002	0.004	0.020
As(V)	2	0.019	0.012	0.009	0.012	0.013	0.005	0.014	0.020
eMDL = Estimated Method Detection Limit; RL = Reporting Limit	d Method De	stection Limit; RL	= Reporting Lim	it					

*Please see narrative regarding eMDL calculations

Quality Control Summary - Certified Reference Materials

Analyte (µg/L)	Batch	CRM	True Value	Result	Recovery
As(III)	-	ICV	10.00	10.10	101.0
As(V)	-	ICV	10.00	9.51	95.1
As(III)	N	ICV	10.00	9.53	95.3
As(V)	2	ICV	10.00	9.16	91.6

Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

Quality	
Control S	
ummary -	
Matrix D	
uplicates	

Analyte (µg/L)	Batch	Sample ID	Rep 1	Rep 2	Mean	RPD
As(III)	_	Batch QC	0.40 J	0.34 J	0.37 J	17.4
As(V)	ب	Batch QC	1.07	0.91 J	0.99 J	16.6
As(III)	2	10-12489-QX92C	0.403	0.418	0.410	3.6
As(V)	2	10-12489-QX92C	2.122	2.144	2.133	1.0

NC = Value was not calculated due to one or more concentrations below the eMDL

Quality Control Summary - Matrix Spike/ Matrix Spike Duplicate

Analyte (µg/L)	Batch	Sample ID	Spike Conc	MS Result	Recovery	Spike Conc	MSD Result	Recovery	RPD
As(III)	-	Batch QC	100.0	85.47	85.1	100.0	85.29	84.9	0.2
As(V)	-	Batch QC	100.0	80.65	79.7	100.0	80.36	79.4	0.4
As(III)	2	10-12489-QX92C	10.00	9.236	88.3	10.00	9.238	88.3	0.0
As(V)	2	10-12489-QX92C	10.00	11.03	89.0	10.00	11.09	89.6	0.5

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/26/10

Analytical Protocol: In-house

Special Instructions:

Laboratory: Applied Speciation & Consulting Lab Contact: Russell Gerads Lab Address: 18804 Northcreek Parkway Bothell, WA 98011 Phone: 425-483-3300 Fax: 425-483-9818

ARI Client: CDM Project ID: USG Hwy 99 ARI PM: Cheronne Oreiro Phone: 206-695-6214 Fax: 206-695-6201

> Requested Turn Around: 06/09/10 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
10-12487-QX92A	USGHwy99-SW5-05/10	05/25/10 11:35	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			
10-12488-QX92B	USGHwy99-SW4-05/10	05/25/10 12:05	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			
10-12489-QX92C	USGHwy99-SW1-05/10	05/25/10 13:10	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			
10-12490 - QX92D	USGHwy99-MW2-05/10	05/25/10 14:45	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			
10-12491-QX92E	USGHwy99-MW3-05/10	05/25/10 16:15	Water	1	Metals (Sub)
Special Instruc	tions: AS speciation	(As+3& As+5)			

Carrier	Airbi	11		Date	
Relinquished by	Company ARI	Date	5/26/10	Time 10	40
Received by	Company ASC	Date	5/26/10	Time (O	40
S	Subcontractor (Page	Custody Form - QX9 e 1 of 1	2 Ten	1p= 0.1.C	

QY17:00057

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/27/10

Laboratory: Applied Speciation & Consulting ARI Client: CDM Lab Contact: Russell Gerads Project ID: USG Highway 99 Lab Address: 18804 Northcreek Parkway ARI PM: Cheronne Oreiro Phone: 206-695-6214 Bothell, WA 98011 Phone: 425-483-3300 Fax: 206-695-6201 Fax: 425-483-9818

Analytical Protocol: In-house Special Instructions:

Requested Turn Around: 06/11/10 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
10-12630-QY17A	USGHWY99-MW6-05/10	05/26/10 09:15	Water	1	Metals (Sub)
Special Instruc	tions: As+3 & As+5				
10-12633-QY17D	USGHWY99-MW5-05/10	05/26/10 10:25	Water	1	Metals (Sub)
Special Instruc	tions: As+3 & As+5				
10-12636-QY17G	USGHWY99-99-1-05/10	05/26/10 12:00	Water	1	Metals (Sub)
Special Instruc	tions: As+3 & As+5				
10-12640-QY17K	USGHWY99-MW4-05/10	05/26/10 13:10	Water	1	Metals (Sub)
Special Instruc	tions: As+3 & As+5				
10-12643-QY17N	USGHWY99-MW1-05/10	05/26/10 14:35	Water	1	Metals (Sub)
Special Instruc	tions: As+3 & As+5				
10-12646-QY17Q	USGHWY99-MW0-05/10	05/26/10 15:45	Water	1	Metals (Sub)
Special Instruc	tions: As+3 & As+5				

Carrier	Airbill		Date
Relinquished by	Company ARI	Date 5/27/10	Time 1050
Received by	Company	Date 5/27/10	Time 1050
	Subcontractor Custody Page 1 c		-0.7°C

GY17:00058

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/28/10

Analytical Protocol: In-house

Special Instructions:

Laboratory: Applied Speciation & Consulting Lab Contact: Russell Gerads Lab Address: 18804 Northcreek Parkway Bothell, WA 98011 Phone: 425-483-3300 Fax: 425-483-9818 ARI Client: CDM Project ID: USG Hwy 99 ARI PM: Cheronne Oreiro Phone: 206-695-6214 Fax: 206-695-6201

> Requested Turn Around: 05/30/08 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
10-12705-QY33E	USGHwy99-99-2-05/10	05/27/10 13:10	Water	1	Metals (Sub)
Special Instruc	tions: Speciated As (A	As+3 & As+5)			

Carrier	Airbill		Date
Relinquished by	Company ARI	Date 5/28/10	Time 1120
Received by	Company AS	Date 5/28/10	Time (170
	Subcontractor Custody Page 1 c	•	, 6°C

QY17:00059

Analytical Resources, Incorporated Analytical Chemists and Consultants

June 8, 2010

Alan Carey CDM 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007

RE: Project ID: USG-Hwy-99, 19921-65021 ARI Job No: QX91 & QX92

Dear Mr. Carey:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the final results for samples from the project referenced above. Analytical Resources Inc. (ARI) accepted eight water samples on May 25, 2010. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for various conventional parameters and total/dissolved metals, as requested on the COC. Note all samples requesting Arsenic were analyzed by both ICP-MS and Graphite Furnace. The Arsenic Speciation analyses were subcontracted to Applied Speciation in Bothell, WA. All data have been included.

Sample **USGHwy99-SW5-05-10** was analyzed outside the method recommended holding time for Nitrate and Nitrite due to instrument failure. The sample was re-analyzed for Nitrate and Nitrite on May 28, 2010, one day outside the method recommended holding time.

There were no other anomalies associated with the analyses of these samples.

An electronic copy of this report as well as all supporting raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely, ANALYTICAL RESOURCES, INC.

Cheronne Oreiro

Cheronne Oreiro Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> www.arilabs.com

Enclosures

cc: eFile: QX91/QX92

Page 1 of 69

(DXC)		~~~ -	t		•	_		_				Analytic	Analytical Resources, Incorporated Analytical Chemists and Consultants	ists and	Corpora
ARI Client Company: C_{nm}		Phone:	425-519-8300	0	Date:	125/10	> Ice					4611 So Tukwila	4611 South 134th Place, Suite 100 Tukwila, WA 98168	h Place 168	Suite 10
Client Contact: Alan Cartu					No. of Coolers:	-m	Cooler Temps	Cooler Temps: 3, 2, 7.3, 5, 6	3,5,6			206-695	206-695-6200 206-695-6201 (fax)	:06-695	-6201 (fa
Client Project Name: 1 01				:				Analysis Requested	lequested			t d	Ž	Notes/Comments	ments
Client Project #:	Samplers:	NIG + VI	17			1710 124	2J Smo	দিল্ড'ে	E J		-	5,\$¥ ⊈ <i>102</i> 7	2] I 5:97	********	
14421 - 65021			<u>،</u>			2) 74 54		,		Ĺ	5	Ĭ.	, - 12,		
Sample ID	Date	Time	Matrix	No. Containers	5510 5510	* 172 1 (BIP) 541-025 1 5520 541 DT	500y27 ¥ 1945L	רן אירי איזריי	47 4.7? 1/ 51/14/	FS1	<u>C1</u>	.4¥ .5∀	1 1.47	197) 197	1
ENC AWARD	6/25/10	<u>a</u> 111	Water	-						1.					
1540 Hay 99 - 5W5 -05/10		1135		6		>	>	>	$\overline{\ }$	<u>,</u> ^	~	$^{\prime}$		$\left \right $	/
USCALLIN 99 - SWH-DSALD		1205		9		>		>	>	>	>	>		~ ~	
1156 Her 99 - 523-05/10		1230		-	>.		nt A								
1156-1101 99-5W 2-05/1	-	1250		_											
USC Hay 49 - 501 - 05/10	-	2181		9		>		>	ر ا	>	>	>		<u>`````````````````````````````````````</u>	>
1120-2 WM-PPLAN 2-05/1		iyyé		ģ		<u>`</u>	>	>	~	\nearrow		ر م		\sim	
	3)	1619	31	6		~		>	>				>	>	
>															
Comments/Special Instructions	Relinquished by: (Signature)	1		Received by: (Signature)	K		V	Relinquished by: (Signature)	by:			Received by: (Signature)			
Diss match and tick	Në V	levin L	200	lë 'A	ther	Mr.Her	6	Printed Name:				Printed Name:	ë		
1-112: 60	Company:	CDM		Company:	H			Company:				Company:			
	Date & Time: 5/2	25/2016/	05t1	Date & Time: S/2.S	1,0	1730		Date & Time:				Date & Time:			

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt F	orm	
ARI Client: CDM	Project Name: USG Hwy 99		
COC No(s):NA	Delivered by: Fed-Ex UPS Courier Hand Deliv	ered Other:	
Assigned ARI Job No:	Tracking No:		NA
Preliminary Examination Phase:			
Were intact, properly signed and dated custody seals attached to the	ne outside of to cooler?	YES	NO
Were custody papers included with the cooler?		YES	NO
Were custody papers properly filled out (ink, signed, etc.)		YES	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemic	-		
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID	#: 909	41619
	Date: 5/25/10Time:		
	d attach all shipping documents		
Log-In Phase:			
		VEO	
Was a temperature blank included in the cooler?	Wet Ice Gel Packs Baggies) Foam Block Paper (YES	(NO)
	State and State	\sim	(NO)
Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags?		(ES)	NO
Did all bottles arrive in good condition (unbroken)?		ES	NO
Were all bottle labels complete and legible?		(TES)	NO
Did the number of containers listed on COC match with the number		TES	NO
Did all bottle labels and tags agree with custody papers?		YES	(NO)
Were all bottles used correct for the requested analyses?		VES	NO
Do any of the analyses (bottles) require preservation? (attach preservation?		(YES,	NO
Were all VOC vials free of air bubbles?	\sim	YES	NO
Was sufficient amount of sample sent in each bottle?	· · · · · · · · · · · · · · · · · · ·	(YES)	NO
Date VOC Trip Blank was made at ARI			
Was Sample Split by ARI : (NA) YES Date/Time:	Equipment:	Split by:	
	$\frac{5/26/10}{10}$ Time: 955		

Notify Project Manager of discrepancies or concerns

Sample ID on Bo	ottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Additional Notes, Di ¥ SPECIA-FEC - AII ID'S CM By: AV		esolutions: n diff. Job. MISSING US	sGHWY99- before	individual Id's
Small Air Bubbles	Peabubbles'	LARGE Air Bubbles	Small → "sm"	
2mm	2-4 mm	>4 mm	Peabubbles → "pb"	
	~~~ ~		Large → "lg"	
	an a	H [Headspace → "hs"	

Revision 014

Cooler Temperature Compliance Form

Cooler#: Tem	perature(°C):]	.3
Sample ID	Bottle Count	Bottle Type
USG HWY99-502-05/10	1	I IL HOPE
USGHWY99-502-05/10 USGHWY99-MW3-05/10	9	1 IL HDPE 2250m/Ag, Imisc, 25ma), / Ingo), 2500m, 12 HDPZ, 12 H
Cooler#: Tem	perature(°C):	
Sample ID	Bottle Count	Bottle Type
Cooler#:Temj	perature(°C):	
Sample ID	Bottle Count	Bottle Type
Cooler#: Temp	perature(°C):	
Sample ID	Bottle Count	Bottle Type
Completed by:		e: <u>636/10</u> Time: <u>635</u>

Cooler Temperature Compliance Form

PRESER	PRESERVATION VERIFICATION	LION	05/26/10	6/10										ł	ARI J	ob Nc	Job No: QX91					
Inquir	umber: NONE	1901:	C F						INCOL	RPORAT)₽				PC: C /TSR:	PC: Cheronne VTSR: 05/25/10	ine 5/10					
Analysis Contact: Client: C	equested: arey, Alar 1	10/10/20	0 T											щ	Project	ct #	#: 19921-65021	.65021				
Logged by: Sample Set Validatable Deliverable	Logged by: AV Sample Set Used: Yes-481 Validatable Package: No Deliverables:	481 No												VI VI N	Project Sample SDG No: Analyti	• 01 0	Project: USG Hwy 99 Sample Site: SDG No: Analytical Protocol:		In-house			
					Ą		Ą					à			1							
LOGNUM ARI ID	CLIENT ID	CN >12	WAD >12	NH3 <2	COD <2	FOG <2	F .	PHEN <2	PHOS <2	TKN NC <2	N023 7	TOC \$2 <2 >9		AK102 Fe2+ <2 <2	+ DME FLT	DMET DOC FLT FLT	PARAMETER	ADJUSTED ER TO	'ED LOT NUMBER	AMOUNT IR ADDED		DATE/BY
10-12492 QX91A	2 USGHwy99-SW6-05/10						No		1						z							
10-12493 QX91B	3 USGHwy99-SW6-05/10						S T							· -	z							
10-12494 QX91C	4 USGHwy99-SW5-05/10				0155		ES Sugar Su				<u> </u>	ζsνά									-	
10-12495 QX91D	5 USGHwy99-SW5-05/10				-		LOF				-											
10-12496 QX91E	6 USGHwy99-SW4-05/10				ý C		TOT					2007										
10-12497 QX91F	7 USGHwy99-SW4-05/10				_		н)				-									-		
10-12498 QX91G	8 USGHwy99-SW3-05/10						NP								z							
10-12499 QX91H	9 USGHwy99-SW3-05/10						SIQ		<u>_</u>						z							
10-12500 QX911	0 USGHwy99-SW2-05/10						DIS								z						-	
10-12501	1 USGHwy99-SW2-05/10						SII >								z							
10-12502	2 USGHwy99-SW1-05/10				çsvç V		TOT VES				Ø	(500)										
10-12503	3 USGHwy99-SW1-05/10				-		тот				<u>+</u>											
10-12504	4 USGHwy99-MW2-05/10				S		TOT				Ξ	534										
С 10-12505 Д ох91и	5 USGHwy99-MW2-05/10				Y		TOT >				<u>}</u>											
N SSIQ	DISS MITALIC and Massan ION DIFTI HERO	NVC1	ر مربع	20	<u>, </u>	+ 4	- JYL	-0					-					-	-	-	-	
	4 10(1= (1))		2	Ş)	Ch	Checked By	і Ву	\rightarrow	\geq	Date 5/30/10	5/3	ve hu	0								

id by A V Date - Jan IIV

PRESERV Page	PRESERVATION VERIFICATION 05/26/10 Page 2 of 2	ION 05	5/26	/10					ANALY RESOL INCOR	ANALYTICAL RESOURCES INCORPORATED				¢,	RI J	oN do	ARI Job No: QX91					
Client: CDM	CDM			v	${\star}$						~			щщ	roje roje	ct #: ct: U	Project #: 19921-65021 Project: USG Hwy 99	65021 99				
LOGNUM ARI ID	CLIENT ID	CN WAD >12 >12		NH3 <2	COD F	FOG ME <2	MET PI	PHEN PHOS <2 <2		TKN NO2 <2 <3	NO23 TÓC <2 <2	\$2 >9		AK102 Fe2+ <2 <2		DMET DOC FLT FLT	PARAMETER	ADJUSTED R TO	TED LOT NUMBER	AMOUNT	DATE/BY	
10-12506 0X910	USGHwy99-MW3-05/10				QCS	8	TOT				SQ.	5										1
10-12507 QX91P	USGHwy99-SW5-05/10					<u>- </u>	sid V								n							
10-12508 0x910	USGHwy99-SW5-05/10			<u> </u>			DIS								z							;
10-12509 0x91R	USGHwy99-SW4-05/10						DIS							-	N							
10-12510 QX91S	USGHwy99-SW4-05/10						DIS				1				z				ļ			
10-12511 ох91т	USGHwy99-SW1-05/10						DES								z							
10-12512 QX91U	USGHwy99-MW2-05/10						DIS								z							
10-12513 QX91V	USGHwy99-MW2-05/10			·			DIS								z						2	
10-12514 QX91W	USGHwy99-MW3-05/10						DIS								z							
10-12515 QX91X	USGHwy99-MW3-05/10						DIS								N		-					
10-12534 QX91Y	USGHwy99-SW1-05/10					ц 	STO 7								z							

checked By M Date S/M/D

axol gooos

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receip	ot Fo	rm	
ARI Client: <u>CDM</u> Pr	oject Name: USG Hwy	99		
COC No(s): De	elivered by: Fed-Ex UPS Courier	and Delivere	Other:	
Assigned ARI Job No: <u>QXQƏ</u> Tr	acking No:			NA
Preliminary Examination Phase:				
Were intact, properly signed and dated custody seals attached to the outs	ide of to cooler?	YE	S	NO
Were custody papers included with the cooler?		(VE	3	NO
Were custody papers properly filled out (ink, signed, etc.)		YE	\$	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry)	3.2 7.3 5.6	-		
If cooler temperature is out of compliance fill out form 00070F	Tem	 p Gun ID#:_	9094	11619
Cooler Accepted by: Date:Date:	5/25/10 Time: (730		
Complete custody forms and atta		<u> </u>		
Log-in Phase:				
Was a temperature blank included in the cooler?			YES	NO
	Gel Packs (Baggies)Foam Block	Paner Oth		
Was sufficient ice used (if appropriate)?	·		(YES)	(NO)
Were all bottles sealed in individual plastic bags?			TES	NO
Did all bottles arrive in good condition (unbroken)?			YES	NO
Were all bottle labels complete and legible?			YES	NO
Did the number of containers listed on COC match with the number of cor	tainers received?		YES	NO
Did all bottle labels and tags agree with custody papers?		1	VESAV	(NO)
Were all bottles used correct for the requested analyses?		~	YES	NO
Do any of the analyses (bottles) require preservation? (attach preservation	n sheet, excluding VOCs)	(NA)	YES	NO
Were all VOC vials free of air bubbles?		(NA)	YES	NO
Was sufficient amount of sample sent in each bottle?		\cap	(TES)	NO
Date VOC Trip Blank was made at ARI		(NA)		·
Was Sample Split by ARI : (NA) YES Date/Time:	Equipment:	S	split by:	
Samples Logged by: Date: Date: Date:		<u> 25</u>		

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
· · · · · · · · · · · · · · · · · · ·			
Additional Notes, Discrepanci	es. & Resolutions:		
All Idhols and	MISSING DEC 11	00 100000 110	
ATT TOURS CUE I	missing Usattu	xy99 before the	$2 \perp V$
	v		
- 1/ /	datatio		
	ate: 5/2/0/10	1	
Small Air Bubbles Peabubl 2mm 2-4 m	1 CALIFORD 1.36 SAMARAM	Small → "sm"	
	m >4 mm	Peabubbles → "pb"	
	• • • •	Large → "lg"	
		Headspace → "hs"	
L		(······································

Cooler Receipt Form

Revision 014

Cooler Temperature Compliance Form

Cooler#: / Tem		3
Sample ID	Bottle Count	Bottle Type
USG HWY99-502-05/16	1	I IL HOPE
USGHWY99-502-05/10 USGHWY99-MW3-05/10	9	1 IL HDPE 2250m/Ag, Imisc, 25ma), 1 10go), 2500m, 12 44
Cooler#: Tem	perature(°C):	
Sample ID	Bottle Count	Bottle Type
·		
Cooler#: Tem	perature(°C):	
Sample ID	Bottle Count	Bottle Type
<u>.</u>		
<u></u>	(90)	
Cooler#: Tem Sample ID	perature(°C): Bottle Count	Bottle Type
		Borne Libe
		· · · · · · · · · · · · · · · · · · ·
·		
Completed by:	- J Dat	e: <u>5/36/10</u> Time: <u>835</u>

Cooler Temperature Compliance Form

Page 1 of 1

Sample ID: USGHwy99-SW6-05/10 SAMPLE

Lab Sample ID: QX91A LIMS ID: 10-12492 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	3.0	

Page 1 of 1

Sample ID: USGHwy99-SW6-05/10 SAMPLE

Lab Sample ID: QX91B LIMS ID: 10-12493 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	4	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: USGHwy99-SW5-05/10 SAMPLE

Lab Sample ID: QX91C LIMS ID: 10-12494 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	3.5
3010A	05/27/10	6010B	06/01/10	7440-70-2	Calcium	50	18,100
3010A	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	420
3010A	05/27/10	6010B	06/01/10	7439-95-4	Magnesium	50	12,400
3010A	05/27/10	6010B	06/01/10	7440-09-7	Potassium	500	1,710
3010A	05/27/10	6010B	06/01/10	7440-23-5	Sodium	500	7,120

Page 1 of 1

Sample ID: USGHwy99-SW5-05/10 SAMPLE

Lab Sample ID: QX91D LIMS ID: 10-12495 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7060A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	4	

Page 1 of 1

Sample ID: USGHwy99-SW4-05/10 SAMPLE

Lab Sample ID: QX91E LIMS ID: 10-12496 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	3.4
3010A	05/27/10	6010B	06/01/10	7440-70-2	Calcium	50	17,900
3010A	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	390
3010A	05/27/10	6010B	06/01/10	7439-95-4	Magnesium	50	12,200
3010A	05/27/10	6010B	06/01/10	7440-09-7	Potassium	500	1,650
3010A	05/27/10	6010B	06/01/10	7440-23-5	Sodium	500	7,040

Page 1 of 1

Sample ID: USGHwy99-SW4-05/10 SAMPLE

Lab Sample ID: QX91F LIMS ID: 10-12497 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7060A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	4	

Page 1 of 1

Sample ID: USGHwy99-SW3-05/10 SAMPLE

Lab Sample ID: QX91G LIMS ID: 10-12498 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	3.0	

Page 1 of 1

Sample ID: USGHwy99-SW3-05/10 SAMPLE

Lab Sample ID: QX91H LIMS ID: 10-12499 Matrix: Water Data Release Authorized: MA Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	4	

Page 1 of 1

Sample ID: USGHwy99-SW2-05/10 SAMPLE

Lab Sample ID: QX91I LIMS ID: 10-12500 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	2.9	

Page 1 of 1

Sample ID: USGHwy99-SW2-05/10 SAMPLE

Lab Sample ID: QX91J LIMS ID: 10-12501 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	4	

Page 1 of 1

Sample ID: USGHwy99-SW1-05/10 SAMPLE

Lab Sample ID: QX91K LIMS ID: 10-12502 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	3.4	
3010A	05/27/10	6010B	06/01/10	7440-70-2	Calcium	50	19,000	
3010A	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	410	
3010A	05/27/10	6010B	06/01/10	7439-95-4	Magnesium	50	13,100	
3010A	05/27/10	6010B	06/01/10	7440-09-7	Potassium	500	1,760	
3010A	05/27/10	6010B	06/01/10	7440-23-5	Sodium	500	7,500	

Page 1 of 1

Sample ID: USGHwy99-SW1-05/10 SAMPLE

Lab Sample ID: QX91L LIMS ID: 10-12503 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7060A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	3	

Page 1 of 1

Sample ID: USGHwy99-MW2-05/10 SAMPLE

Lab Sample ID: QX91M LIMS ID: 10-12504 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	64.2
3010A	05/27/10	6010B	06/01/10	7440-70-2	Calcium	50	21,200
3010A	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	2,970
3010A	05/27/10	6010B	06/01/10	7439-95-4	Magnesium	50	13,700
3010A	05/27/10	6010B	06/01/10	7440-09-7	Potassium	500	3,120
3010A	05/27/10	6010B	06/01/10	7440-23-5	Sodium	500	11,800

Page 1 of 1

Sample ID: USGHwy99-MW2-05/10 SAMPLE

Lab Sample ID: QX91N LIMS ID: 10-12505 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7060A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	5	79	

Page 1 of 1

Sample ID: USGHwy99-MW3-05/10 SAMPLE

Lab Sample ID: QX910 LIMS ID: 10-12506 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
3010A	05/27/10	6010B	06/01/10	7440-70-2	Calcium	50	30,200	
3010A	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	22,100	
3010A	05/27/10	6010B	06/01/10	7439-95-4	Magnesium	50	16,300	
3010A	05/27/10	6010B	06/01/10	7440-09-7	Potassium	500	4,910	
3010A	05/27/10	6010B	06/01/10	7440-23-5	Sodium	500	15,700	

Page 1 of 1

Sample ID: USGHwy99-SW5-05/10 SAMPLE

Lab Sample ID: QX91PQC Report No: QX91-CDMLIMS ID: 10-12507Project: USG Hwy 99Matrix: Water19921-65021Data Release AuthorizedDate Sampled: 05/25/10Reported: 06/07/10Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	3.0
6010B	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	280

Page 1 of 1

Sample ID: USGHwy99-SW5-05/10 SAMPLE

Lab Sample ID: QX91Q LIMS ID: 10-12508 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	4	

Page 1 of 1

Sample ID: USGHwy99-SW4-05/10 SAMPLE

Lab Sample ID: QX91R LIMS ID: 10-12509 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	3.1	
6010B	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	270	

Page 1 of 1

Sample ID: USGHwy99-SW4-05/10 SAMPLE

Lab Sample ID: QX91S LIMS ID: 10-12510 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	3	

Page 1 of 1

Sample ID: USGHwy99-SW1-05/10 SAMPLE

Lab Sample ID: QX91T LIMS ID: 10-12511 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	hā\r ð
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	3.0
6010B	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	280

Page 1 of 1

Sample ID: USGHwy99-MW2-05/10 SAMPLE

Lab Sample ID: QX91U LIMS ID: 10-12512 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	35.4	
6010B	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	1,560	

Page 1 of 1

Sample ID: USGHwy99-MW2-05/10 SAMPLE

Lab Sample ID: QX91V LIMS ID: 10-12513 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	2	34	

Page 1 of 1

Sample ID: USGHwy99-MW3-05/10 SAMPLE

Lab Sample ID: QX91W LIMS ID: 10-12514 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	135
6010B	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	7,470

Page 1 of 1

Sample ID: USGHwy99-MW3-05/10 SAMPLE

Lab Sample ID: QX91X LIMS ID: 10-12515 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	10	150	

Page 1 of 1

Sample ID: USGHwy99-SW1-05/10 SAMPLE

Lab Sample ID: QX91Y LIMS ID: 10-12534 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	4	

Page 1 of 1

Sample ID: USGHwy99-SW6-05/10 MATRIX SPIKE

Lab Sample ID: QX91B LIMS ID: 10-12493 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	۶ Recovery	Q
Arsenic	7060A	4.09	26.0	20.0	110%	

Reported in µg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Sample ID: USGHwy99-SW6-05/10 DUPLICATE

Lab Sample ID: QX91B LIMS ID: 10-12493 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q	
Arsenic	7060A	4	4	0.0%	+/- 1	L	

Reported in $\mu g/L$

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

QX91:00035

Lab Sample ID: QX91C LIMS ID: 10-12494 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Sample ID: USGHwy99-SW5-05/10

MATRIX SPIKE

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	웅	_	
Analyte	Method	Sample	Spike	Added	Recovery	Q	
Arsenic	200.8	3.50	31.2	25.0	111%		
Calcium	6010B	18,100	26,200	10,000	81.0%		
Iron	6010B	417	2,250	2,000	91.6%		
Magnesium	6010B	12,400	21,000	10,000	86.0%		
Potassium	6010B	1,710	11,200	10,000	94.9%		
Sodium	6010B	7,120	15,900	10,000	87.8%		

Reported in $\mu g/L$

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked NR-Not Recovered

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: QX91C LIMS ID: 10-12494 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99

Sample ID: USGHwy99-SW5-05/10

DUPLICATE

Date Sampled: 05/25/10 Date Received: 05/25/10

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	200.8	3.5	3.5	0.0%	+/- 20%	
Calcium	6010B	18,100	16,600	8.6%	+/- 20%	
Iron	6010B	420	390	7.4%	+/- 20%	
Magnesium	6010B	12,400	11,400	8.4%	+/- 20%	
Potassium	6010B	1,710	1,560	9.28	+/- 500	L
Sodium	6010B	7,120	6,570	8.0%	+/- 20%	

Reported in µg/L

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: QX91D LIMS ID: 10-12495 Matrix: Water Data Release Authorized Reported: 06/07/10 Sample ID: USGHwy99-SW5-05/10 MATRIX SPIKE

QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	۶ Recovery	Q
Arsenic	7060A	3.88	115	100	111%	

Reported in $\mu g/L$

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked NR-Not Recovered

Percent Recovery Limits: 75-125%

Page 1 of 1

Sample ID: USGHwy99-SW5-05/10 DUPLICATE

Lab Sample ID: QX91D LIMS ID: 10-12495 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
						_
Arsenic	7060A	4	4	0.0%	+/- 1	L

Reported in $\mu g/L$

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

FORM-VI

Page 1 of 1

Sample ID: USGHwy99-SW5-05/10 MATRIX SPIKE

Lab Sample ID: QX91P LIMS ID: 10-12507 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	200.8	3.00	30.5	25.0	110%	
Iron	6010B	279	2,330	2,000	103%	

Reported in µg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Sample ID: USGHwy99-SW5-05/10 DUPLICATE

Lab Sample ID: QX91P LIMS ID: 10-12507 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analysis						
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	200.8	3.0	3.0	0.0%	+/- 20%	
Iron	6010B	280	280	0.0%	+/- 20%	

Reported in µg/L

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: QX91LCS LIMS ID: 10-12496 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: LAB CONTROL

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	27.3	25.0	109%	
Calcium	6010B	8880	10000	88.88	
Iron	6010B	1880	2000	94.0%	
Magnesium	6010B	9120	10000	91.2%	
Potassium	6010B	9420	10000	94.28	
Sodium	6010B	8920	10000	89.2%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: QX91MB LIMS ID: 10-12496 Matrix: Water Data Release Authorized: Reported: 06/07/10

Sample ID: METHOD BLANK

QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	05/28/10	200.8	06/02/10	7440-38-2	Arsenic	0.2	0.2	U
3010A	05/27/10	6010B	06/01/10	7440-70-2	Calcium	50	50	U
3010A	05/27/10	6010B	06/01/10	7439-89-6	Iron	50	50	U
3010A	05/27/10	6010B	06/01/10	7439-95-4	Magnesium	50	50	U
3010A	05/27/10	6010B	06/01/10	7440-09-7	Potassium	500	500	U
3010A	05/27/10	6010B	06/01/10	7440-23-5	Sodium	500	500	U

Sample ID: LAB CONTROL

Page 1 of 1

Lab Sample ID: QX91LCS LIMS ID: 10-12497 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	7060A	115	100	115%	
Reported in μ g/L					

N-Control limit not met Control Limits: 80-120%

FORM-VII

Page 1 of 1

Sample ID: METHOD BLANK

Lab Sample ID: QX91MB LIMS ID: 10-12497 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7060A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	1	U

Page 1 of 1

Lab Sample ID: QX91LCS LIMS ID: 10-12499 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: LAB CONTROL

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	7060A	21	20	105%	
Reported in µg/L					

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: QX91MB LIMS ID: 10-12499 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7000A	05/27/10	7060A	06/04/10	7440-38-2	Arsenic	1	1	U

U-Analyte undetected at given RL RL-Reporting Limit

Sample ID: METHOD BLANK

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QX91LCS LIMS ID: 10-12509 Matrix: Water Data Release Authorized: Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

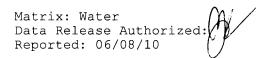
Sample ID: LAB CONTROL

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	25.6	25.0	102%	
Iron	6010B	2060	2000	103%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

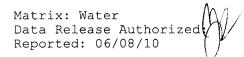

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QX91MB LIMS ID: 10-12509 Matrix: Water Data Release Authorized Reported: 06/07/10 QC Report No: QX91-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: METHOD BLANK

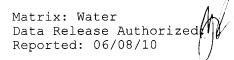
Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	05/28/10	200.8		7440-38-2	Arsenic	0.2	0.2	U
6010B	05/27/10	6010B		7439-89-6	Iron	50	50	U



Client ID: USGHwy99-SW5-05/10 ARI ID: 10-12494 QX91C

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/01/10 060110#1	SM 2320	mg/L CaCO3	1.0	97.1
Carbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	97.1
Hydroxide	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Dissolved Solids	05/26/10 052610#1	EPA 160.1	mg/L	5.0	164
Total Suspended Solids	05/26/10 052610#1	EPA 160.2	mg/L	1.1	10.5
Chloride	05/28/10 052810#1	EPA 300.0	mg/L	0.5	7.8
N-Nitrate	05/28/10 052810#1	EPA 300.0	mg-N/L	0.1	0.7
N-Nitrite	05/28/10 052810#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/28/10 052810#1	EPA 300.0	mg/L	0.5	8.2
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	11.9
Total Organic Carbon	05/26/10 052610#1	EPA 415.1	mg/L	1.50	7.38

RL Analytical reporting limit
U Undetected at reported detection limit



Client ID: USGHwy99-SW4-05/10 ARI ID: 10-12496 QX91E

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/01/10 060110#1	SM 2320	mg/L CaCO3	1.0	98.9
Carbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	98.9
Hydroxide	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Dissolved Solids	05/26/10 052610#1	EPA 160.1	mg/L	5.0	164
Total Suspended Solids	05/26/10 052610#1	EPA 160.2	mg/L	1.0	1.9
Chloride	05/28/10 052810#1	EPA 300.0	mg/L	0.5	8.0
N-Nitrate	05/26/10 052610#1	EPA 300.0	mg-N/L	0.1	0.7
N-Nitrite	05/26/10 052610#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/28/10 052810#1	EPA 300.0	mg/L	0.5	8.4
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	16.0
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	5.19

RL Analytical reporting limit
U Undetected at reported detection limit

Client ID: USGHwy99-SW1-05/10 ARI ID: 10-12502 QX91K

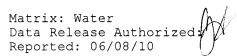
Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/01/10 060110#1	SM 2320	mg/L CaCO3	1.0	99.6
Carbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	99.6
Hydroxide	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Dissolved Solids	05/26/10 052610#1	EPA 160.1	mg/L	5.0	170
Total Suspended Solids	05/26/10 052610#1	EPA 160.2	mg/L	1.1	1.6
Chloride	05/28/10 052810#1	EPA 300.0	mg/L	0.5	8.0
N-Nitrate	05/26/10 052610#1	EPA 300.0	mg-N/L	0.1	0.7
N-Nitrite	05/26/10 052610#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/28/10 052810#1	EPA 300.0	mg/L	0.5	8.4
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	14.7
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	5.22

RL Analytical reporting limit
U Undetected at reported detection limit

Water Sample Report-QX91

QX01:00052

Matrix: Water Data Release Authorized: Reported: 06/08/10

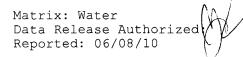

Project: USG Hwy 99 Event: 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Client ID: USGHwy99-MW2-05/10 ARI ID: 10-12504 QX91M

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/01/10 060110#1	SM 2320	mg/L CaCO3	1.0	142
Carbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	142
Hydroxide	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/26/10 052610#1	EPA 160.2	mg/L	1.0	5.7
Chloride	05/28/10 052810#1	EPA 300.0	mg/L	0.5	6.7
N-Nitrate	05/26/10 052610#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/26/10 052610#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/28/10 052810#1	EPA 300.0	mg/L	0.5	6.5
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	9.34
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	2.71

RL Analytical reporting limit

U Undetected at reported detection limit


Client ID: USGHwy99-MW3-05/10 ARI ID: 10-12506 QX910

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	06/01/10 060110#1	SM 2320	mg/L CaCO3	1.0	175
Carbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Bicarbonate	06/01/10	SM 2320	mg/L CaCO3	1.0	175
Hydroxide	06/01/10	SM 2320	mg/L CaCO3	1.0	< 1.0 U
Total Suspended Solids	05/26/10 052610#1	EPA 160.2	mg/L	2.1	24.4
Chloride	05/28/10 052810#1	EPA 300.0	mg/L	0.5	5.2
N-Nitrate	05/26/10 052610#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
N-Nitrite	05/26/10 052610#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	05/28/10 052810#1	EPA 300.0	mg/L	0.5	14.7
Chemical Oxygen Demand	06/03/10 060310#1	EPA 410.4	mg/L	5.00	55.4
Total Organic Carbon	05/27/10 052710#1	EPA 415.1	mg/L	1.50	19.9

RL Analytical reporting limit

U Undetected at reported detection limit

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: QX91C Client	ID: USGHwy9	9- sw5- 05/1	.0				
Chloride	EPA 300.0	05/28/10	mg/L	7.8	17.4	10.0	96.0%
N-Nitrate	EPA 300.0	05/28/10	mg-N/L	0.7	2.8	2.0	105.0%
N-Nitrite	EPA 300.0	05/28/10	mg-N/L	< 0.1	1.8	2.0	90.0%
Sulfate	EPA 300.0	05/28/10	mg/L	8.2	17.9	10.0	97.0%
Chemical Oxygen Demand	EPA 410.4	06/03/10	mg/L	11.9	77.3	65.0	100.6%
Total Organic Carbon	EPA 415.1	05/26/10	mg/L	7.38	25.1	20.0	88.6%

Matrix: Water Data Release Authorized: Reported: 06/08/10

Project: USG Hwy 99 Event: 19921-65021 Date Sampled: 05/25/10 Date Received: 05/25/10

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: QX91C Client	ID: USGHwy9	9-SW5-05/10)			
Alkalinity	SM 2320	06/01/10	mg/L CaCO3	97.1	97.5	0.4%
Carbonate	SM 2320	06/01/10	mg/L CaCO3	< 1.0	< 1.0	NA
Bicarbonate	SM 2320	06/01/10	mg/L CaCO3	97.1	97.5	0.4%
Hydroxide	SM 2320	06/01/10	mg/L CaCO3	< 1.0	< 1.0	NA
Total Dissolved Solids	EPA 160.1	05/26/10	mg/L	164	162	1.2%
Chloride	EPA 300.0	05/28/10	mg/L	7.8	7.8	0.0%
N-Nitrate	EPA 300.0	05/28/10	mg-N/L	0.7	0.7	0.0%
N-Nitrite	EPA 300.0	05/28/10	mg-N/L	< 0.1	< 0.1	NA
Sulfate	EPA 300.0	05/28/10	mg/L	8.2	7.8	5.0%
Chemical Oxygen Demand	EPA 410.4	06/03/10	mg/L	11.9	11.6	2.6%
Total Organic Carbon	EPA 415.1	05/26/10	mg/L	7.38	6.05	19.8%
ARI ID: QX910 Client	ID: USGHwy99	9-MW3-05/10				
Total Suspended Solids	EPA 160.2	05/26/10	mg/L	24.4	24.6	0.8%

Matrix: Water Data Release Authorized Reported: 06/08/10

Project:	USG Hwy 99
Event:	19921-65021
Date Sampled:	NA
Date Received:	NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Total Dissolved Solids EPA 160.1	ICVL	05/26/10	mg/L	475	500	95.0%
Total Suspended Solids EPA 160.2	ICVL	05/26/10	mg/L	49.7	50.0	99.4%

Matrix: Water Data Release Authorized Reported: 06/08/10 Project: USG Hwy 99 Event: 19921-65021 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank	ID
Total Dissolved Solids	EPA 160.1	05/26/10	mg/L	< 5.0 U	
Total Suspended Solids	EPA 160.2	05/26/10	mg/L	< 1.0 U	
Chloride	EPA 300.0	05/28/10	mg/L	< 0.1 U	
N-Nitrate	EPA 300.0	05/26/10 05/28/10	mg-N/L	< 0.1 U < 0.1 U	
N-Nitrite	EPA 300.0	05/26/10 05/28/10	mg-N/L	< 0.1 U < 0.1 U	
Sulfate	EPA 300.0	05/28/10	mg/L	< 0.1 U	
Chemical Oxygen Demand	EPA 410.4	06/03/10	mg/L	< 5.00 U	
Total Organic Carbon	EPA 415.1	05/26/10 05/27/10	mg/L	< 1.50 U < 1.50 U	

Matrix: Water Data Release Authorized: Reported: 06/08/10 Project: USG Hwy 99 Event: 19921-65021 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Alkalinity ERA #P114506	SM 2320	06/01/10	mg/L CaCO3	33.7	35.0	96.3%
Chloride ERA #230109	EPA 300.0	05/28/10	mg/L	2.8	3.0	93.3%
N-Nitrate ERA #09127	EPA 300.0	05/26/10 05/28/10	mg-N/L	2.8 2.8	3.0 3.0	93.3% 93.3%
N-Nitrite ERA #030309	EPA 300.0	05/26/10 05/28/10	mg-N/L	2.9 2.9	3.0 3.0	96.7% 96.7%
Sulfate ERA #220109	EPA 300.0	05/28/10	mg/L	2.9	3.0	96.7%
Chemical Oxygen Demand Thermo Orion #I01	EPA 410.4	06/03/10	mg/L	85.0	90.0	94.4%
Total Organic Carbon ERA 0506-09-01	EPA 415.1	05/26/10 05/27/10	mg/L	20.6 22.0	20.0 20.0	103.0% 110.0%

18804 Northcreek Parkway Bothell, WA, 98011 Tel: (425) 483-3300 Fax: (425) 483-9818 www.appliedspeciation.com

June 4, 2010

Cheronne Oreiro Analytical Resources Inc. 4611 S. 134th Place Suite 100 Tukwila, WA 98168 (206) 695-6200

Re: USG Hwy 99

Ms. Oreiro,

Attached is the report associated with twelve (12) aqueous samples submitted for arsenite and arsenate quantitation on May 26, 27, and 28, 2010. Each set of samples was received the same day as the submittal date in sealed coolers at 0.1°C, -0.7°C, and 5.6°C, respectively. Arsenite and arsenate speciation analysis was performed via ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry (IC-ICP-DRC-MS). Any issues associated with the analyses are addressed in the following report.

If you have any questions, please feel free to contact me at your convenience.

Sincerely,

Ben Wozniek

Ben Wozniak Project Manager Applied Speciation and Consulting, LLC

Applied Speciation and Consulting, LLC

Report Prepared for:

Cheronne Oreiro Analytical Resources Inc. 4611 S. 134th Place Suite 100 Tukwila, WA 98168

Project ID: USG Hwy 99

June 4, 2010

1. Sample Reception

Twelve (12) aqueous samples were submitted for arsenite and arsenate quantitation on May 26, 27, and 28, 2010. Each set of samples was received the same day as the submittal date, as indicated on the attached chain of custody (COC) forms, in sealed coolers at 0.1° C, -0.7° C, and 5.6° C, respectively.

The samples were received in a laminar flow clean hood, void of trace metals contamination and ultra-violet radiation, and assigned discrete sample identifiers. Immediately upon reception an aliquot of each sample was filtered $(0.45\mu m)$ into a polypropylene centrifuge tube, and all filtrates and original sample bottles were then stored in a secure, monitored refrigerator (maintained at a temperature of 4°C) until the analyses could occur.

2. Sample Preparation

All sample preparation is performed in laminar flow clean hoods known to be free from trace metals contamination. All applied water for dilutions and sample preservatives are also monitored for contamination to account for any biases associated with the sample results.

<u>Arsenic Speciation Analysis by IC-ICP-DRC-MS</u> Immediately upon sample reception, an aliquot of each sample was filtered with a syringe filter (0.45µm) and injected directly into a sealed autosampler vial. No further sample preparation was performed as a buffered EDTA solution was provided by Applied Speciation and Consulting for field-preservation of the submitted samples.

3. Sample Analysis

All sample analysis is preceded by a minimum of a five-point calibration curve spanning the entire concentration range of interest. Calibration curves are performed at the beginning of each analytical day. All calibration curves, associated with each species of interest, are standardized by linear regression resulting in a response factor. All sample results are **instrument blank corrected** to account for any operational biases.

Prior to sample analysis, all calibration curves are verified using second source standards which are identified as initial calibration verification standards (ICV).

Ongoing instrument performance is identified by the analysis of continuing calibration verification standards (CCV) and continuing calibration blanks (CCB) at a minimal interval of every ten analytical runs.

<u>Arsenic Speciation Analysis by IC-ICP-DRC-MS</u> All samples for arsenite and arsenate quantitation were analyzed by ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry (IC-ICP-DRC-MS) either on June 1, 2010 (designated as Batch 1) or June 2, 2010 (designated as Batch 2). Aliquots of each sample are injected onto an anion exchange column and are mobilized by an alkaline (pH > 7) gradient. The eluting arsenic species are then introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (DRC) containing a specific reactive gas which preferentially reacts with arsenic, producing an entirely different mass to charge ratio (m/z) which can then be differentiated from the initial isobaric interferences. A solid-state detector detects ions transmitted through the mass analyzer on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

Retention times for each eluting species are compared to known standards for species identification.

4. Analytical Issues

The overall analyses went well and no significant analytical issues were encountered. All quality control parameters associated with these samples were within acceptance limits.

It should be noted that an additional arsenic species was detected in most of the submitted samples during the speciation analyses. While the identity of this species cannot be determined with certainty at this time, the concentration of arsenic associated it is estimated to be $0.88\mu g/L$ for 10-12491-QX92E, $1.07\mu g/L$ for 10-12630-QY17A, $5.99\mu g/L$ for 10-12633-QY17D, $25.2\mu g/L$ for 10-12636-QY17G, $3.80\mu g/L$ for 10-12640-QY17K, $0.72\mu g/L$ for 10-12643-QY17N, $3.36\mu g/L$ for 10-12646-QY17Q, and $1.03\mu g/L$ for 10-12705-QY33E. Traces of two additional species were also detected in the samples identified as 10-12487-QX92A, 10-12488-QX92B, and 10-12489-QX92C; the concentration of the sum of these additional species is estimated to be $0.079\mu g/L$, $0.072\mu g/L$, and $0.074\mu g/L$, respectively, for these three samples. Applied Speciation and Consulting can pursue additional research to identify these species upon client request.

The estimated method detection limit (eMDL) for arsenite is generated from replicate analyses of the lowest standard in the calibration curve. Not all arsenic species are present in preparation blanks; therefore, eMDL calculations based on preparation blanks may be artificially biased low for this species. Due to traces of arsenate in the reagents used for the speciation analysis, the eMDL for arsenate has been calculated using the standard deviation of the associated preparation blanks.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Ben Woznick

Ben Wozniak Project Manager Applied Speciation and Consulting, LLC

Arsenic Speciation Results for ARI Project Name: USG Hwy 99 Contact: Cheronne Oreiro Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

Sample Results

Sample ID	Date Sampled	Batch	Dilution	As(III)	As(V)
10-12487-QX92A	5/25/10	2	£	0.539	2.36
10-12488-QX92B	5/25/10	2	5	0.444	2.22
10-12489-QX92C	5/25/10	2	5	0.403	2.12
10-12490-QX92D	5/25/10	~	50	45.9	2.27
10-12491-QX92E	5/25/10	~	50	267	19.2
10-12630-QY17A	5/26/10	~	50	351	16.5
10-12633-QY17D	5/26/10	~	1000	1410	36.6
10-12636-QY17G	5/26/10	~	1000	1780	132
10-12640-QY17K	5/26/10	~	1000	1350	29.8
10-12643-QY17N	5/26/10	~	50	455	33.5
10-12646-QY17Q	5/26/10	~	1000	1260	24.9
10-12705-QY33E	5/27/10	1	50	310	37.7
All results reflect the applied dilution and are reported in µg/L U = Sample concentration is less than the estimated Method Detection Limit (eMDL) J = Sample concentration is between the eMDL and the Reporting Limit (RL)	applied dilution and ration is less than th ation is between the	l are report ne estimate e eMDL an	ted in µg/L ed Method Dete d the Reporting	ection Limit (eM g Limit (RL)	IDL)
J = Sample concentr	ation is between the	e eMDL an	d the Reportin	g Limit (RL)	

Arsenic Speciation Results for ARI Project Name: USG Hwy 99 Contact: Cheronne Oreiro

Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

<u> Blank Summary</u>
<u> - Preparation I</u>
r Control Summary
Quality

								eMDL* at	
Analyte (µg/L)	Batch	PBW1	PBW2	PBW3	PBW4	Mean	StdDev	1x	RL at 1x
As(III)	٢	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.020
As(V)	-	-0.014	-0.017	-0.017	-0.017	-0.016	0.002	0.006	0.020
As(III)	2	0.004	0.002	0.003	0.000	0.002	0.002	0.004	0.020
As(V)	2	0.019	0.012	0.009	0.012	0.013	0.005	0.014	0.020
eMDL = Estimate	= Estimated Method Detection	tection Limit; RL	= Reporting Lim	it					

*Please see narrative regarding eMDL calculations

୍କ	
12	
ā	
ateri	
2	
-	
- ÿ	
2	
- 5	
2	
eren	
-	
<u> </u>	
C C	
-	
2	
Ξ.	
÷	
ā	
Certified	
-	
ĭ	
~ ~	
2	
) - Ve	
marv - (
nmarv - (
immary - (
ummarv - (
Summary - (
I Summary - (
ol Summary - (
trol Summary - (
ntrol Summary - (
ontrol Summary - (
Control Summary - (
Control Summary - (
v Cont	
Quality Control Summary - (

Quality control Summary - Certified Reference Materials					ĺ
Analyte (µg/L)	Batch	CRM	True Value	Result	Recovery
As(III)	-	ICV	10.00	10.10	101.0
As(V)	-	īcv	10.00	9.51	95.1
As(III)	2	IC V	10.00	9.53	95.3
As(V)	2	ICV	10.00	9.16	91.6

Arsenic Speciation Results for ARI Project Name: USG Hwy 99 Contact: Cheronne Oreiro

Report Date: June 4, 2010 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

Analyte (µg/L)	Batch	Sample ID	Rep 1	Rep 2	Mean	RPD
As(III)	-	Batch QC	0.40 J	0.34 J	0.37 J	17.4
As(V)	~	Batch QC	1.07	0.91 J	0.99 J	16.6
As(III)	2	10-12489-QX92C	0.403	0.418	0.410	3.6
As(V)	2	10-12489-QX92C	2.122	2.144	2.133	1.0
NC = Value was	not calcula	VC = Value was not calculated due to one or more concentrations below the eMDL	e concentrati	ons below the	eMDL	

Quality Control Summary - Matrix Duplicates

Quality Control Summary - Matrix Spike/ Matrix Spike Duplicate

Analyte (µg/L)	Batch	Sample ID	Spike Conc	MS Result	Recovery	Spike Conc	MSD Result	Recoverv	RPD
As(III)		Batch QC	100.0	85.47	85.1	100.0	85.29	84.9	0.2
As(V)	~	Batch QC	100.0	80.65	79.7	100.0	80.36	79.4	0.4
As(III)	2	10-12489-QX92C	10.00	9.236	88.3	10.00	9.238	88.3	0.0
As(V)	2	10-12489-QX92C	10.00	11.03	89.0	10.00	11.09	89.6	0.5

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 05/26/10

Laboratory: Applied Speciation & Consulting ARI Client: CDM Lab Contact: Russell Gerads Lab Address: 18804 Northcreek Parkway Bothell, WA 98011 Phone: 425-483-3300 Fax: 425-483-9818

Analytical Protocol: In-house Special Instructions:

Project ID: USG Hwy 99 ARI PM: Cheronne Oreiro Phone: 206-695-6214 Fax: 206-695-6201

> Requested Turn Around: 06/09/10 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
10-12487-QX92A	USGHwy99-SW5-05/10	05/25/10	Water	1	Metals (Sub)
Special Instruct	tions: AS speciation	(As+3& As+5)			
10-12488-QX92B	USGHwy99-SW4-05/10	05/25/10	Water	1	Metals (Sub)
Special Instruct	tions: AS speciation	12:05 (As+3& As+5)			
10-12489- <u>0</u> X92C	USGHwy99-SW1-05/10	05/25/10	Water	1	Metals (Sub)
Special Instruct	ions: AS speciation	13:10 (As+3& As+5)			
10-12490-QX92D	USGHwy99-MW2-05/10	05/25/10	Water	1	Metals (Sub)
Special Instruct	tions: AS speciation	14:45 (As+3& As+5)			
10-12491-QX92E	USGHwy99-MW3-05/10	05/25/10	Water	1	Metals (Sub)
Special Instruct	ions: AS speciation	16:15 (As+3& As+5)			

Carrier	Airbill	De	ate
Relinguished by	Company AR	Date 5/26/10	Time 1040
Received by	Company ASC	Date 5/26 (()	Time toyU
	Subcontractor Custody Page 1 o	-	>= 0.1.(

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/27/10

Laboratory: Applied Speciation & Consulting ARI Client: CDM Lab Contact: Russell Gerads Lab Address: 18804 Northcreek Parkway Bothell, WA 98011 Phone: 425-483-3300 Fax: 425-483-9818

Project ID: USG Highway 99 ARI PM: Cheronne Oreiro Phone: 206-695-6214 Fax: 206-695-6201

Analytical Protocol: In-house Special Instructions:

Requested Turn Around: 06/11/10 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analy	ses
10-12630-QY17A	USGHWY99-MW6-05/10	05/26/10 09:15	Water	1	Metals	(Sub)
Special Instru	ctions: As+3 & As+5	02120				
10-12633-QY17D	USGHWY99-MW5-05/10	05/26/10	Water		Metals	(Sub)
Special Instru	ctions: As+3 & As+5	10:25				
10-12636-QY17G	USGHWY99-99-1-05/10	05/26/10	Water	1	Metals	(Sub)
Special Instru	ctions: As+3 & As+5	12:00				
10-12640-QY17K	USGHWY99-MW4-05/10	05/26/10	Water	1	Metals	(Sub)
Special Instru	ctions: As+3 & As+5	13:10				
10-12643-QY17N	USGHWY99-MW1-05/10	05/26/10	Water		Metals	(Sub)
Special Instru	ctions: As+3 & As+5	14:35				
10-12646-QY17Q	USGHWY99-MW0-05/10	05/26/10	Water	1	Metals	(Sub)
Special Instru	ctions: As+3 & As+5	15:45				

Carrier	Airbil1		Date
Relinquished by	Company ARI	Date 5/27/10	Time 1050
Received by	Company ASC	Date 5/29/10	Time 1050
0	Subcontractor Custody Page 1 o		-0.7°C

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/28/10

Laboratory: Applied Speciation & Consulting ARI Client: CDM Lab Contact: Russell Gerads Lab Address: 18804 Northcreek Parkway Bothell, WA 98011 Phone: 425-483-3300 Fax: 425-483-9818

Project ID: USG Hwy 99 ARI PM: Cheronne Oreiro Phone: 206-695-6214 Fax: 206-695-6201

Analytical Protocol: In-house Special Instructions:

Requested Turn Around: 05/30/08 Email Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

_	ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
٠	10-12705-QY33E	USGHwy99-99-2-05/10	05/27/10	Water	1	Metals (Sub)
	Special Instruc	tions: Speciated As (A	13:10 s+3 & As+5}			

Carrier	Airbill	HC	Date
Relinquished by	Company ARI	Date 5/28/10	Time //20
Received by	Company PS	Date 5/78/10	Time (120
	Subcontractor Custody Page 1 of		; le ^o C

Analytical Resources, Incorporated

Analytical Chemists and Consultants

May 11, 2010

Alan Carey CDM 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007

RE: Project ID: USG Hwy 99 – 19921-65021 ARI Job No: QV18

Dear Mr. Carey:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the final results for the samples from the project referenced above. Analytical Resources Inc. (ARI) accepted twenty soil samples on May 4, 2010. For details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Total Arsenic, as requested on the COC.

The matrix spike percent recovery of Arsenic fell outside the control limits low for sample **C4-10**. The matrix spike result was flagged with an "N" qualifier on the Form V. No further corrective action was required.

The duplicate RPD of Arsenic was outside the control limits high for sample **C4-10**. The duplicate results was flagged with an "*" qualifier on the Form VI. No further corrective action was required.

There were no other anomalies associated with the analysis of these samples.

An electronic copy of this report as well as all supporting raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely, ANALYTICAL RESOURCES, INC.

Cheronne Oreiro

Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> www.arilabs.com

Enclosures

cc: eFile: QV18

Page 1 of 28

Analysis Request
Laboratory
Record &
Custody
Chain of

	Turn-around Requested: Std	lequested:			Date:		5/4/10	10	Analytical Resot Analytical Chemi	Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company: CDM		Phone: 425-519-8300	519-8300		Page:	of T			4611 South 13	4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: Alan Carey				-	No. of Coolers:	Cooler Temps:			206-695-620(206-695-6200 206-695-6201 (fax)
Client Project Name: USG Hwy 99							Analysis Requested	sted	Not	Notes/Comments
Client Project #: 19921-65021	Samplers: AAL, KL, MLF	T, KL, MLF								
Sample ID	Date	Time	Matrix	No. Containers	As by EPA 6010B					
C4-10	4/26/2010	1320 Soil	Soil	2						
B7-10	4/27/2010	1117 Soil	Soil	5	×				-	
B6-14	4/27/2010	959	Soil	2	×					
A8-6	4/28/2010	1147 Soil	Soil	2	×					-
B7-14	4/27/2010	1130 Soil	Soil	2	×					
C9-2	4/29/2010	922	922 Soil	2	×					
B5-14	4/26/2010	1016 Soil	Soil	2	×					
C5-16	4/26/2010	1124 Soil	Soil	5	×					
B5-2	4/26/2010	955	955 Soil	2	×					
B6-2	4/27/2010		930 Soil	2	×					
	Relinqushed by:// (Signature)	Contron For	N.	Received by: (Signature)	M-		Relinquished by: (Signature)		Received by: (Signature)	
Please run analysis on soil	Printed Name Mizza E			Printed Name:	Rich Hulber	Lorp	Printed Name:		Printed Name:	
in small XRF cups.	Company	•		Company:	1RI		Company:		Company:	
	Date & Time:	12010/08	/082.0	Date & Time:	/10	01PI	Date & Time:		Date & Time:	

SLimits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program The ets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client. Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Request
rsis
Analysis Re
atory
Labor
ళ
ody Record
of Custo
ž
Chain of

AHI Assigned Number:	Turn-around Requested: Std	equested:			Date:			5/4/10	Analytical Resources, Incorporated Analytical Chemists and Consultants	ncorporatul I Consultar
ARI Client Company: CDM		Phone: 425-519-8300	19-8300		Page:	o ot			4611 South 134th Place, Suite 100 Tukwila, WA 98168	4th Place, Suite 100 Tukwila, WA 98168
Client Contact: Alan Carey	- - - -				No. of Coolers:	Cooler Temps:	S		206-695-6200 206-695-6201 (fax)	95-6201 (f
Client Project Name: USG Hwy 99							Analysis Requested	uested	Notes/Comments	ments
Client Project #: 19921-65021	Samplers: AAL, KL, MLF	, KL, MLF								
Sample ID	Date	Time	Matrix	No. Containers EPA 6010	As by EPA 6010B					
B4-16	4/26/2010	1416 Soil	Soil	2	×					
B4-14	4/26/2010	1421 Soil	Soil	2	×					
D3-8	4/26/2010	1523 Soil	Soil	2	×					
B4-10	4/26/2010	1410 Soil	Soil	N	×					
D4-4	4/26/2010	1225 Soil	Soil	N	×					
B6-16	4/27/2010	949 Soil	Soil	2	×					
A7-4	4/27/2010	1204 Soil	Soil	5	×					
C3-18	4/27/2010	1523 Soil	Soil	N	×					
A7-12	4/27/2010	1228 Soil	Soil	5	×					
C7-8	4/27/2010	1417 Soil	Soil	5	×					
	Relinqushed by://	an for t	×2	Received by: (Signature)			Relinquíshed by: (Signature)		Received by: (Signature)	
Please run analysis on soil	Printed Name:/	▶ ¬		Printed Name:	c h	LIL AL	Printed Name:		Printed Name:	
in small XRF cups.	Company:			Company:	ARI		Company:		Company	
	Date & Minel Doll		02.80	Date & Time:	14	[ק(יי)	Date & Time:		Date & Time:	

SLimits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for co-signed agreement between ARI and the Client. said services.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Analytical Resources, Incorporated
Analytical Chemists and Consultants

Cooler Receipt Form

ARI Client:	Project Name: USC		
COC No(s):(NA)	Delivered by: Fed-Ex UP	Courier Hand Delivered Other:	
Assigned ARI Job No: $QVIS$	Tracking No:		NA
Preliminary Examination Phase:			
Were intact, properly signed and dated custody seals attached	to the outside of to cooler?	YES	NO
Were custody papers included with the cooler?		YES	NO
Were custody papers properly filled out (ink, signed, etc.)		CLES	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for c	hemistry)	· ·	<u>4.6</u>
If cooler temperature is out of compliance fill out form 00070F	-1.1	Temp Gun ID#: 909	41619
Cooler Accepted by:	Date: <u>5/4/10</u>	Time: 1410	

Complete custody forms and attach all shipping documents

Log-In Phase:

Was a temperature blank included in the cooler?			_		YES	NÒ
What kind of packing material was used?	Bubble Wrap Wet	ce' Gel Packs Baggi	es Foam Block	(Paper)	Other:	
Was sufficient ice used (if appropriate)?				NA	YES	NO
Were all bottles sealed in individual plastic bags?					YES	NO
Did all bottles arrive in good condition (unbroken)	?				YES	NO
Were all bottle labels complete and legible?					(YES)	NO
Did the number of containers listed on COC matc	h with the number of c	ontainers received? .			YES	NO
Did all bottle labels and tags agree with custody p	apers?				TES	NO
Were all bottles used correct for the requested an	alyses?				FES	NO
Do any of the analyses (bottles) require preservat	ion? (attach preservat	ion sheet, excluding \	VOCs)	NA	YES	NO
Were all VOC vials free of air bubbles?		· · · · · · · · · · · · · · · · · · ·		NA	YES	NO
Was sufficient amount of sample sent in each bot	tle?				YES	NO
Date VOC Trip Blank was made at ARI				NA		
Was Sample Split by ARI : NA YES I	Date/Time:	Equipment			Split by:_	
Samples Logged by:	Date:	5/4/10	Time:	151	5	

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
·			
_			
Additional Notes, Discrepand	ies, & Resolutions:		
Some of the	- plastic wrap	on the tiny soil co	intainers tore.
I put the sam	ples inf torn play	on the tiny soil co the into individual z 620 tom t put in new	sip lock baceps.
By: J?	Date: <u>5/4//D</u> 90	blu torn & put in new	Darejo.
Small Air Bubbles Peabu	bbles' LARGE Air Bubbles	Small → "sm"	
	mm >4 mm	Peabubbles → "pb"	
	'• ` ���	Large → "lg"	
		Headspace → "hs"	

Sample ID: C4-10 SAMPLE

Lab Sample ID: QV18A LIMS ID: 10-10909 Matrix: Soil Data Release Authorized: Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 76.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	228	

Page 1 of 1

Sample ID: B7-10 SAMPLE

Lab Sample ID: QV18B LIMS ID: 10-10910 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 54.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	9	493	

Page 1 of 1

Sample ID: B6-14 SAMPLE

Lab Sample ID: QV18C LIMS ID: 10-10911 Matrix: Soil Data Release Authorized: Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 46.9%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	10	1,920	

Page 1 of 1

Sample ID: A8-6 SAMPLE

Lab Sample ID: QV18D LIMS ID: 10-10912 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/28/10 Date Received: 05/04/10

Percent Total Solids: 90.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	30	160	

Page 1 of 1

Sample ID: B7-14 SAMPLE

Lab Sample ID: QV18E LIMS ID: 10-10913 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 76.98

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	20	

Page 1 of 1

Sample ID: C9-2 SAMPLE

Lab Sample ID: QV18F LIMS ID: 10-10914 Matrix: Soil Data Release Authorized: Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/29/10 Date Received: 05/04/10

Percent Total Solids: 85.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	57	

U-Analyte undetected at given RL RL-Reporting Limit

FORM-I

Page 1 of 1

Sample ID: B5-14 SAMPLE

Lab Sample ID: QV18G LIMS ID: 10-10915 Matrix: Soil Data Release Authorized: Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 69.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	20	7,430	

Page 1 of 1

Sample ID: C5-16 SAMPLE

Lab Sample ID: QV18H LIMS ID: 10-10916 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 75.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	49	

Page 1 of 1

Sample ID: B5-2 SAMPLE

Lab Sample ID: QV18I LIMS ID: 10-10917 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 90.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	5	43	

Page 1 of 1

Sample ID: B6-2 SAMPLE

Lab Sample ID: QV18J LIMS ID: 10-10918 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 90.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	5	20	

Page 1 of 1

Sample ID: B4-16 SAMPLE

Lab Sample ID: QV18K LIMS ID: 10-10919 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 79.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	80	

Page 1 of 1

Sample ID: B4-14 SAMPLE

Lab Sample ID: QV18L LIMS ID: 10-10920 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 60.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	8	1,680	

Page 1 of 1

Sample ID: D3-8 SAMPLE

Lab Sample ID: QV18M LIMS ID: 10-10921 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 84.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	5	21	

Page 1 of 1

Sample ID: B4-10 SAMPLE

Lab Sample ID: QV18N LIMS ID: 10-10922 Matrix: Soil Data Release Authorized: Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 90.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	5	12	

Page 1 of 1

Sample ID: D4-4 SAMPLE

Lab Sample ID: QV180 LIMS ID: 10-10923 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

Percent Total Solids: 68.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	7	7	

Page 1 of 1

Sample ID: B6-16 SAMPLE

Lab Sample ID: QV18P LIMS ID: 10-10924 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 81.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	73	

Page 1 of 1

Sample ID: A7-4 SAMPLE

Lab Sample ID: QV18Q LIMS ID: 10-10925 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 90.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	5	5	U

Page 1 of 1

Sample ID: C3-18 SAMPLE

Lab Sample ID: QV18R LIMS ID: 10-10926 Matrix: Soil Data Release Authorized: Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 74.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	7	45	

Page 1 of 1

Sample ID: A7-12 SAMPLE

Lab Sample ID: QV18S LIMS ID: 10-10927 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 80.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	257	

Page 1 of 1

Sample ID: C7-8 SAMPLE

Lab Sample ID: QV18T LIMS ID: 10-10928 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/27/10 Date Received: 05/04/10

Percent Total Solids: 83.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	30	170	

Page 1 of 1

Sample ID: C4-10 MATRIX SPIKE

Lab Sample ID: QV18A LIMS ID: 10-10909 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	6010B	228	409	247	73.3%	N

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: QV18A LIMS ID: 10-10909 Matrix: Soil Data Release Authorized Reported: 05/11/10 Sample ID: C4-10 DUPLICATE

QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/26/10 Date Received: 05/04/10

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
	C010D		170	24 68	+/- 20%	*	
Arsenic	6010B	228	178	24.6%	+/- 20%	^	

Reported in mg/kg-dry

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: QV18LCS LIMS ID: 10-10910 Matrix: Soil Data Release Authorize Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: LAB CONTROL

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	6010B	196	200	98.0%	

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120%

Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: QV18MB LIMS ID: 10-10910 Matrix: Soil Data Release Authorized Reported: 05/11/10 QC Report No: QV18-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	5	5	U

Analytical Resources, Incorporated Analytical Chemists and Consultants

May 11, 2010

Alan Carey CDM 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007

RE: Project ID: USG Hwy 99 – 19921-65021 ARI Job No: QV17

Dear Mr. Carey:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the final results for the samples from the project referenced above. Analytical Resources Inc. (ARI) accepted five sediment samples on May 4, 2010. For details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Total Arsenic, as requested on the COC.

There were no anomalies associated with the analysis of these samples.

An electronic copy of this report as well as all supporting raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro

Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> www.arilabs.com

Enclosures

cc: eFile: QV17

Page 1 of 10

Analysis Request
& Laboratory
Custody Record
Chain of

ainte motionale fallourine ADI Chandred American Decention of the second s						tion is not	"	S
Date & Time:	Date & Time:	14(0	14/10	Date & Time:	0820	\sim	Date & Time: 5/4/2010	
Company:	Company:		ARI	Company:		COM	$\mathcal{C}\mathcal{D}$	in small XRF cups.
Printed Name:	Printed Name:	rolly Huller	Rich	Printed Name:		Lee	Printed Name: KEVIN LEE	soil
(Signature)	(Signature)	j	7	(Signature)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(Signature)	
Received by:	Relinquished by:			Received by:			Relinqushed by:	
			2 X		1440 Sediment	1440	4/29/2010	SED6 Center
			2 X		1450 Sediment	1450	4/29/2010	SED6 West Bank
			2 X		1545 Sediment	1545	4/29/2010	SED4 West Bank
			2 X		1610 Sediment	1610	4/29/2010	SED3 West Bank
			2 X		925 Sediment	925	4/30/2010	SED1 Center
			TAs by EPA 6010B	No. Containers	Matrix	Time	Date	Sample ID
						, MLF	Samplers: KL, MLF	Client Project #: 19921-65021
Notes/Comments	Analysis Requested							Client Project Name: USG Hwy 99
206-695-6200 206-695-6201 (fax)		Cooler Temps:	Na. of Coolers:					Client Contact: Alan Carey
4611 South 134th Place, Suite 100 Tukwila, WA 98168		-1 of	Page:		519-8300	Phone: 425-519-8300		ARI Client Company: CDM
Analytical Resources, Incorporated Analytical Chemists and Consultants	5/4/10		Date:			Requested:	Turn-around Requested: Std	H

Regime or consigned for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced for anount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, burchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt For	m
ARI Client:	Project Name: USG H WY 99 Delivered by: Fed-Ex UP Courier Hand Delivered Tracking No:	
Preliminary Examination Phase:		
Were intact, properly signed and dated custody seals attached to th	e outside of to cooler? (YES	D NO
Were custody papers included with the cooler?	YES	D NO
Were custody papers properly filled out (ink, signed, etc.)		NO NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemis		4.6
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#:	90941619
Cooler Accepted by:	Date: <u>5/4/10</u> Time: 1410	
	d attach all shipping documents	
Log-In Phase:		
Was a temperature blank included in the cooler?		YES NO
What kind of packing material was used? Bubble Wrap V		\sim
Was sufficient ice used (if appropriate)?	¥	NO NO
Were all bottles sealed in individual plastic bags?	<i>r</i>	YES NO
Did all bottles arrive in good condition (unbroken)?		NO NO
Were all bottle labels complete and legible?	Y	
Did the number of containers listed on COC match with the number	· · · · · · · · · · · · · · · · · · ·	
Did all bottle labels and tags agree with custody papers?		NO NO
Were all bottles used correct for the requested analyses?		NO NO
Do any of the analyses (bottles) require preservation? (attach prese		YES NO
Were all VOC vials free of air bubbles?		YES NO
Was sufficient amount of sample sent in each bottle?		YES NO
Date VOC Trip Blank was made at ARI	•	
Was Sample Split by ARI : //NA YES Date/Time:	Equipment:Sr	olit by: ס
Samples Logged by:Date:	<u> </u>	<u>5</u>
** Notify Project Manager	of discrepancies or concerns **	

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
	<u></u>		
Additional Notes, Discrepancies	s, & Resolutions:		
-			
Den Den	to ·		
By: Date Small Air Bubbles Peabubble		Small → "sm"	
-2mm 2-4 mm			
		Peabubbles → "pb"	
		Large → "lg"	
		Headspace → "hs"	

Page 1 of 1

Sample ID: SED1 Center SAMPLE

Lab Sample ID: QV17A LIMS ID: 10-10904 Matrix: Sediment Data Release Authorized: Reported: 05/11/10 QC Report No: QV17-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/30/10 Date Received: 05/04/10

Percent Total Solids: 79.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	7	

Page 1 of 1

Sample ID: SED3 West Bank SAMPLE

Lab Sample ID: QV17B LIMS ID: 10-10905 Matrix: Sediment Data Release Authorized Reported: 05/11/10 QC Report No: QV17-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/29/10 Date Received: 05/04/10

Percent Total Solids: 57.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	8	205	

Page 1 of 1

Sample ID: SED4 West Bank SAMPLE

Lab Sample ID: QV17C LIMS ID: 10-10906 Matrix: Sediment Data Release Authorized: Reported: 05/11/10 QC Report No: QV17-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/29/10 Date Received: 05/04/10

Percent Total Solids: 40.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	10	90	

Page 1 of 1

Sample ID: SED6 West Bank SAMPLE

Lab Sample ID: QV17D LIMS ID: 10-10907 Matrix: Sediment Data Release Authorized: Reported: 05/11/10 QC Report No: QV17-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/29/10 Date Received: 05/04/10

Percent Total Solids: 36.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	10	30	

Page 1 of 1

Sample ID: SED6 Center SAMPLE

Lab Sample ID: QV17E LIMS ID: 10-10908 Matrix: Sediment Data Release Authorized Reported: 05/11/10 QC Report No: QV17-CDM Project: USG Hwy 99 19921-65021 Date Sampled: 04/29/10 Date Received: 05/04/10

Percent Total Solids: 78.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	6	17	

Page 1 of 1

Lab Sample ID: QV17LCS LIMS ID: 10-10904 Matrix: Sediment Data Release Authorized: Reported: 05/11/10 QC Report No: QV17-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: LAB CONTROL

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	۶ Recovery	Q
Arsenic	6010B	197	200	98.5%	

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120%

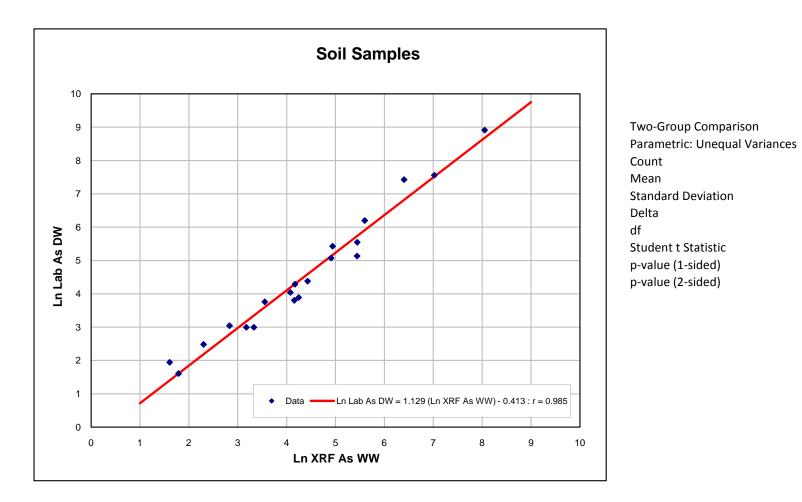
Page 1 of 1

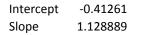
Lab Sample ID: QV17MB LIMS ID: 10-10904 Matrix: Sediment Data Release Authorized: Reported: 05/11/10 QC Report No: QV17-CDM Project: USG Hwy 99 19921-65021 Date Sampled: NA Date Received: NA

Sample ID: METHOD BLANK

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	05/05/10	6010B	05/10/10	7440-38-2	Arsenic	5	5	U


Appendix F XRF Data Confirmation


Comparison of XRF Field and Laboratory Results for Total Arsenic in Soil USG HWY 99 Site April 2010

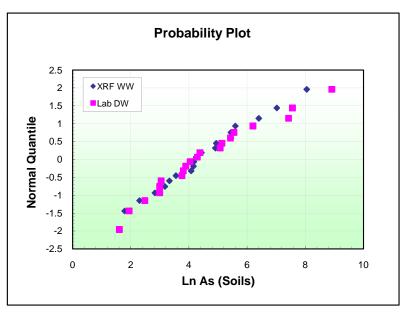
USG HWY 99 Site April 2010								
					Soil Samples			
			Relative					
	XRF As	Lab As Result	Percent					
	Result	6010B	Difference	Percent				
Sample ID	(mg/kg)	(mg/kg)	(RPD)	Moisture	XRF As WW	Lab As DW	Ln XRF As WW	Ln Lab As DW
USG Hwy 99-B5-2-04/10	35	43	21	9.9	35	43	3.555348061	3.761200116
USG HWY99-B5-14-04/10	3140	7,430	81	30.2	3140	7430	8.051978079	8.913281138
USG HWY 99-C5-16-04/10	70*	49	35	24.5	70	49	4.248495242	3.891820298
USG HWY 99-D4-4-04/10	<5	7	NA	31.5	5	7	1.609437912	1.945910149
USG HWY 99-C4-10-04/10	140	228	48	23.7	140	228	4.941642423	5.429345629
USG HWY 99-B4-10-04/10	10	12	18	10.0	10	12	2.302585093	2.48490665
USG HWY 99-B4-16-04/10	84	80	4.9	20.8	84	80	4.430816799	4.382026635
USG HWY 99-B4-14-04/10	604	1,680	94	39.2	604	1680	6.403574198	7.426549072
USG HWY 99-D3-8-04/10	17	21	21	15.3	17	21	2.833213344	3.044522438
USG HWY 99-B6-2-04/10	24	20	18	9.8	24	20	3.17805383	2.995732274
USG HWY 99-B6-16-04/10	65	73	12	18.8	65	73	4.17438727	4.290459441
USG HWY 99-B6-14-04/10	1123	1,920	52	53.1	1123	1920	7.023758955	7.560080465
USG HWY 99-B7-10-04/10	270	493	58	46.0	270	493	5.598421959	6.200509174
USG HWY 99-B7-14-04/10	28	20	33	23.1	28	20	3.33220451	2.995732274
USG HWY 99-A7-4-04/10	<6	<5	NA	9.8	6	5	1.791759469	1.609437912
USG HWY 99-A7-12-04/10	232	257	10	19.6	232	257	5.446737372	5.549076085
USG HWY 99-C7-8-04/10	231	170	30	16.8	231	170	5.442417711	5.135798437
USG HWY 99-C3-18-04/10	64	45	35	25.5	64	45	4.158883083	3.80666249
USG HWY 99-A8-6-04/10	136	160	16	9.8	136	160	4.912654886	5.075173815
USG HWY 99-C9-2-04/10	59	57	3.4	14.4	59	57	4.077537444	4.043051268

* Value is average of eight replicates.

Ln Lab As DW = 1.129 (Ln XRF As WW) - 0.413 : r = 0.985

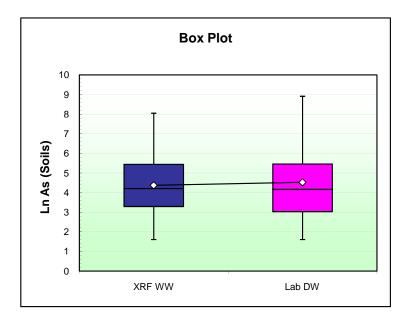
Line x Line y

1 0.716277


9 9.747392

Ln XRF As WW	Ln Lab As DW
--------------	--------------

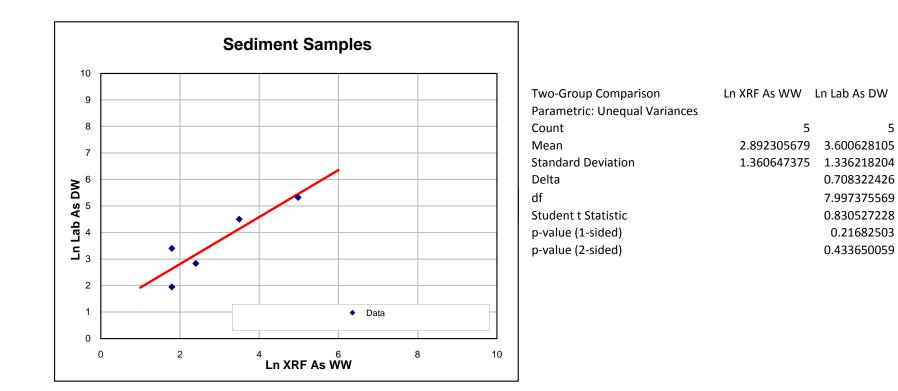
20	20
4.375695382	4.527063788
1.676871718	1.922562137
	0.151368406
	37.31108068
	0.26535157
	0.396105756
	0.792211512



Probability Plot	Normal a = 0.5						
Ln As (Soils)	None						
Normal Quantile	XRF WW		Lab DW				
1	1.609437912	-1.959963985	1.609437912	-1.959963985			
2	1.791759469	-1.439531471	1.945910149	-1.439531471			
3	2.302585093	-1.15034938	2.48490665	-1.15034938			
4	2.833213344	-0.934589291	2.995732274	-0.934589291			
5	3.17805383	-0.755415026	2.995732274	-0.755415026			
6	3.33220451	-0.597760126	3.044522438	-0.597760126			
7	3.555348061	-0.45376219	3.761200116	-0.45376219			
8	4.077537444	-0.318639364	3.80666249	-0.318639364			
9	4.158883083	-0.189118426	3.891820298	-0.189118426			
10	4.17438727	-0.062706778	4.043051268	-0.062706778			
11	4.248495242	0.062706778	4.290459441	0.062706778			
12	4.430816799	0.189118426	4.382026635	0.189118426			
13	4.912654886	0.318639364	5.075173815	0.318639364			
14	4.941642423	0.45376219	5.135798437	0.45376219			
15	5.442417711	0.597760126	5.429345629	0.597760126			
16	5.446737372	0.755415026	5.549076085	0.755415026			
17	5.598421959	0.934589291	6.200509174	0.934589291			
18	6.403574198	1.15034938	7.426549072	1.15034938			
19	7.023758955	1.439531471	7.560080465	1.439531471			
20	8.051978079	1.959963985	8.913281138	1.959963985			

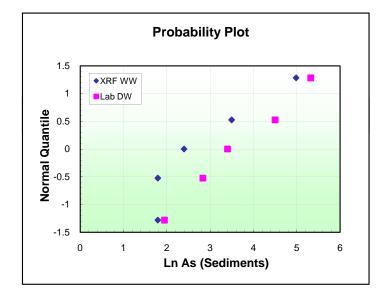
Box Plot	Inner Fences			
Ln As (Soils)	None	None		
Group Axis Title	XRF WW	Lab DW		
Mean	4.375695382	4.527063788		
Q1 = 1st Quartile	3.29366684	3.032324897		
Q2 = 2nd Quartile	4.211441256	4.166755354		
Q3 = 3rd Quartile	5.443497626	5.459278243		
Min (Inner Fences)	1.609437912	1.609437912		
Max (Inner Fences)	8.051978079	8.913281138		
Q2 - Q1	0.917774416	1.134430458		
Q3 - Q2	1.23205637	1.292522888		
Q1 - Min	1.684228928	1.422886984		
Max - Q3	2.608480453	3.454002895		

Comparison of XRF Field and Laboratory Results for Total Arsenic in Sediment USG HWY 99 Site April 2010


					Sediment San	nples				
		Lab As	Relative							
	XRF As	Result	Percent							
	Result	6010B	Difference	Percent						
Sample ID	(mg/kg)	(mg/kg)	(RPD)	Moisture	XRF As WW	Lab As DW	Ln XRF As WW	Ln Lab As DW		
USG HWY 99-SED6 CENTER-04/10	11	17	43	21.4	11	17	2.39789527	3 2.833213344	Intercept	1.036453
USG HWY 99-SED6 WEST BANK-04/10	6	30	133	63.7	6	30	1.79175946	9 3.401197382	Slope	0.88655
USG HWY 99-SED4 WEST BANK-04/10	33	90	93	59.9	33	90	3.49650756	1 4.49980967		
USG HWY 99-SED3 WEST BANK-04/10	146	205	34	43.0	146	205	4.98360662	2 5.323009979	Ln Lab As D	W = 0.887 (Ln XRF As WW) + 1.0
USG HWY 99-SED1-CENTER-04/10	<6	7	NA	20.2	6	7	1.79175946	9 1.945910149		
									Line x	Line y

1 1.923004

6 6.355756


1.036 : r = 0.903



Probability Plot	N	ormal a = 0.5			
Ln As (Sediments)	N	one			
Normal Quantile	XF	RF WW	I	_ab DW	
:	1	1.791759469	-1.281551566	1.945910149	-1.281551566
:	2	1.791759469	-0.524400513	2.833213344	-0.524400513
3	3	2.397895273	-1.39214E-16	3.401197382	-1.39214E-16
	4	3.496507561	0.524400513	4.49980967	0.524400513
!	5	4.983606622	1.281551566	5.323009979	1.281551566

Box Plot	Inner Fences			
Ln As (Sediments)	None	None		
Group Axis Title	XRF WW	Lab DW		
Mean	2.892305679	3.600628105		
Q1 = 1st Quartile	1.791759469	2.833213344		
Q2 = 2nd Quartile	2.397895273	3.401197382		
Q3 = 3rd Quartile	3.496507561	4.49980967		
Min (Inner Fences)	1.791759469	1.945910149		
Max (Inner Fences)	4.983606622	5.323009979		
Q2 - Q1	0.606135804	0.567984038		
Q3 - Q2	1.098612289	1.098612289		
Q1 - Min	0	0.887303195		
Max - Q3	1.48709906	0.823200309		

