

Supplemental Phase II
Environmental Site Assessment
Brightwater Conveyance System
Ballinger Way Portal
20031 Ballinger Way NE
Shoreline, Washington

May 19, 2005

Prepared For:

King County Wastewater Treatment Division Brightwater Project 201 South Jackson Street, Suite 503 Seattle, Washington 98104-3855

RECEIVED

DEC 1 5 2005

DEPT OF ECOLOGY

Prepared By:

CDM

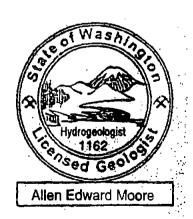
11811 NE 1st Street, Suite 201 Bellevue, Washington 98005

CDM Project No. 19897.43507

A Report Prepared For:

King County Wastewater Treatment Division Brightwater Project 201 South Jackson Street, Suite 503 Seattle, Washington 98104-3855

SUPPLEMENTAL PHASE II ENVIRONMENTAL SITE ASSESSMENT BRIGHTWATER CONVEYANCE SYSTEM 20031 BALLINGER WAY NE SHORELINE, WASHINGTON


May 19, 2005

Allen Moore, P.G. Senior Geologist

CDM

11811 N.E. 1st Street, Suite 201 Bellevue, Washington 98005 425/453-8383

CDM Project No. 19897.43507

Contents

Executiv	ve Sur	nmary		v
Section	1 Intr	oductio	n	
	1.1	Purpos	se and Scope	1-1
	1.2	_	us Investigations	
	1.3	Site De	escription	1-2
	1.4	Subsur	face Conditions	1-3
Section	2 Fiel	d Invest	tigation	
	2.1	Drillin	g and Installation of Monitoring Wells	2-1
	2.2	Groun	dwater Elevation Monitoring	2-1
	2.3	Groun	dwater Sampling	2-1
	2.4	Analyt	tical Schedule	2-2
	2.5	Analyt	tical Testing Results	2 - 2
		2.5.1	Soil Chemistry	2-2
		2.5.2	Groundwater Chemistry	2-2
Section	3 Disc	cussion		
	3.1	Groun	dwater Flow	3-1
	3.2	Soil an	d Groundwater Contamination	3-1
•		3.2.1	Soil	3-1
		3.2.2	Groundwater	3-1
	3.3	Potent	ial Sources	3-2
		3.3.1	Offsite Contamination	3-2
•		3.3.2	Onsite Contamination	3-2
Section	4 Con	clusion	s	4-1
Section	5 Ref	erences .		5-1
Distrib	ation			
Tables				
Figures				
Append	lices			
	Apper	ndix A I	Field Exploration and Sampling Procedures	
	Аррег	ndix B 🛚 I	Monitoring Well and Boring Logs	
	Annes	ndir C	Analytical Laboratory Reports	

Tables

Table 1 Groundwater Elevation Data
 Table 2 Summary of Soil Analytical Results
 Table 3 Summary of Groundwater Analytical Results

Figures

Figure 1 Vicinity Map & Site Plan
Figure 2 Groundwater Contour Map
Figure 3 TPH-G, BETX & VOC Concentrations - Groundwater
Figure B1 Soil Classification Legend
Figure B2 Typical Monitoring Well Construction
Figure B3 Boring / Monitoring Well Logs
through B11

Executive Summary

This report presents the results of a supplemental Phase II environmental site assessment (ESA) conducted by Camp Dresser & McKee Inc. (CDM) at the proposed Ballinger Way Portal location (the site) at 20031 Ballinger Way NE in Shoreline, Washington. The 0.94-acre, rectangular shaped site contains two one-story commercial buildings: one office/retail building and one warehouse.

A Phase I ESA identified the migration of petroleum hydrocarbon constituents and volatile organic compounds (VOCs) from off-site sources as potential contamination sources. No onsite sources were identified. CDM completed a Phase II ESA in September 2004 which confirmed groundwater contamination was present in two groundwater monitoring wells (HB-1 and HB-2) located in the northeast corner of the property. The Phase II ESA findings were indicative of an offsite source. This supplemental Phase II ESA further investigated subsurface conditions to evaluate the nature and extent of the petroleum hydrocarbon contamination, determine the local groundwater gradient, and evaluate possible sources of the contamination.

The supplemental investigation further explored subsurface conditions by drilling three soil borings to depths of between 28 and 34 feet below ground surface (bgs). Two soil borings were drilled offsite and upgradient of the adjacent Shurgard property and one was drilled on the site near the southeast corner and down gradient from HB-1 and HB-2. Subsurface soil conditions encountered included Recessional Outwash and Glacial Till. Perched groundwater was encountered in the wells constructed in each boring and varied in depth of between 22 and 28 feet bgs. The groundwater flow direction is to the south and southeast.

Soil samples collected from the borings were analyzed for petroleum hydrocarbon constituents and VOCs. Analytical test results were compared to Model Toxics Control Act (MTCA) Method A cleanup levels. Petroleum hydrocarbon constituents and VOCs detected were at concentrations below Method A cleanup levels.

Groundwater samples were collected from each of the monitoring wells and analyzed for petroleum hydrocarbon constituents and VOCs. Gasoline-range hydrocarbons and one or more of petroleum hydrocarbon constituents benzene, ethyl benzene, toluene, and xylene were detected at concentrations exceeding Method A cleanup in the onsite wells. Tetrachloroethene (PCE) was detected at concentrations exceeding Method A cleanup in the two offsite wells.

The hydrocarbons encountered in groundwater appear quite different between the property upgradient of the Shurgard property and the site itself. The source of the contamination in the offsite wells is most likely the former dry cleaning operation in the Ballinger Way Shopping Center and possibly older releases from USTs upgradient from the Shurgard property. The source of the hydrocarbon and VOC contamination onsite is most likely associated with existing or former leaking gasoline tanks or lines on the adjacent Shurgard property.

Section 1 - Introduction

1.1 Purpose and Scope

This report summarizes supplemental Phase II environmental site assessment (ESA) activities performed by Camp Dresser & McKee Inc. (CDM) on behalf of King County (the county) at the proposed Ballinger Way Portal (the site) at 20031 Ballinger Way NE in Shoreline, Washington (Figure 1). CDM's services were performed in accordance with our October 8, 2004 proposal, under Contract No. E23007E Task 622.

The purpose of the supplemental Phase II ESA was to perform investigation of subsurface conditions both onsite and offsite, determine the groundwater gradient along the southeast side of Ballinger Way NE, evaluate the nature and extent of the petroleum hydrocarbon contamination onsite and offsite, and determine which offsite sources may have affected soil and groundwater. CDM's scope of services included:

- Drilling three soil borings (two off-site and one onsite) and installing groundwater monitoring wells to evaluate soil and groundwater conditions.
- Obtaining and analyzing soil and groundwater samples.
- Evaluating chemical analysis results against applicable State of Washington Model Toxics Control Act (MTCA) cleanup criteria (Ecology, 2001).
- Preparing this report.

1.2 Previous Investigations

Gary Struthers Associates Inc. in association with HDR Engineering, Inc. conducted a Phase I ESA for the county and presented the results in a report dated April 2004. Potential soil and groundwater contamination sources from onsite chemical use and storage and five off-site sources were identified. Potential on-site sources of contamination identified during the Phase I ESA included heating oil and stored chemicals associated with the swimming pool/hot tub business. The five potential off-site sources for soil and groundwater contamination in close proximity to the site include three service stations and two properties not listed in the regulatory agency databases, Ballinger Cleaners and Washington Tree Service. Both Ballinger Cleaners and Washington Tree Service are located upgradient to the site. A Chevron service station (formerly Exxon) with an ongoing cleanup action is located across the street.

The initial Phase I ESA report was prepared before this site was selected for the Ballinger Way Portal and the center of the area searched for potential offsite sources was north of the site's actual location. The radius of concern was expanded to ensure all sites within the minimum distance (per ASTM guidance) would be included.

An additional property with historic operations that could affect the site was identified: Sound Oil (presently occupied by Shurgard). This property is located immediately adjacent to the site's northwest property boundary and was previously used by a paving company, Seattle Service, and a distribution facility for heating oil

(Seattle Service and Sound Oil Company). Sound Oil Company was the last major tenant. The environmental conditions recognized on the adjacent property include:

- Four 20,000-gallon bulk heating oil USTs.
- One 500-gallon heating oil supply UST.
- One former waste oil UST and one former gasoline UST (removed in 1989).
- Used oil drainage sink.
- Concrete-lined wash rack and sump.

The four 20,000-gallon heating oil USTs were located at the south side of the property. Only diesel and heating oil were known to have been stored in these four USTs. TPH releases were noted to be associated with the fill pipes. TPH-Diesel was detected in a soil sample at 15 feet bgs from a soil boring drilled west of the tank nest.

All identified USTs, the drainage sink, and concrete-lined wash rack and sump were removed in 2003 and an independent cleanup action undertaken including removal of contaminated soil and testing to confirm cleanup levels were obtained. TPH-Gas was not detected in soils associated with the former gasoline UST. Trace levels of dichlorobenzene were detected in a soil sample collected beneath the concrete-lined wash rack. Groundwater was not encountered and groundwater quality was not investigated either during the ESA investigations that identified the hydrocarbon contamination or during the independent cleanup action.

CDM conducted a Phase II ESA in August 2004. Six borings were drilled and completed as groundwater monitoring wells (HB-1 through HB-6). The only field evidence of petroleum hydrocarbons found during the subsurface investigation was in Borings HB-1, HB-2, and HB-3 and consisted of noticeable hydrocarbon-like odors in soils near the groundwater table and elevated organic vapor readings obtained using the OVM-PID. Analytical testing of groundwater identified petroleum hydrocarbon contamination in HB-1 and HB-2 at the northeast corner of the property. Volatile organic compounds (VOCs) 1,1,1-trichloroethane and trichloroethene were also detected in groundwater from HB-1 and HB-2.

1.3 Site Description

The site is rectangular shaped and covers an area of 0.94 acres, with the long axis trending northeast. The site contains two 1-story commercial buildings: one office/retail building, and one warehouse. Figure 1 shows a site plan and pertinent site features.

The office/retail building, built in 1951, is wood framed construction. The warehouse, built in 1978, is prefabricated steel construction. The majority of the property around the buildings is asphalt paved.

Washington Tree Service owns the site. The current tenant is Master Pools, a swimming pool and hot tub business. The surrounding area is a general mix of residential and commercial development (e.g., office buildings, Washington Tree Service, Shurgard Storage Center, service stations with convenience stores, and the Ballinger Village Shopping Center). Commercial development is primarily along Ballinger Way NE, which parallels the eastern perimeter of the site. Residential properties are located to the south and southwest of the site.

Overall, the site slopes gently downward from the southwest to the northeast toward Ballinger Way NE. Mc Aleer creek is located about 1,000 feet to the southwest. Land immediately east, west, and north of the site slopes downwards toward the subject property.

1.4 Subsurface Conditions

The site is located within the Central Puget Lowland, a north-south trending structural and topographic depression bordered on the west by the Olympic Mountains and on the east by the Cascade Mountains. Soils deposited during and between repeated glacial advances and retreats in the Pleistocene Epoch underlie the Central Puget Lowland.

Geologic information for the area was obtained from the Pacific Northwest Center for Geologic Mapping Studies database at the University of Washington's Department of Earth and Space Sciences. The local subsurface geology consists of Recessional Outwash. Underlying the Recessional Outwash is Glacial Till.

Recessional Outwash is described as reddish-brown or brown, loose to medium dense silty sand and sandy silt with gravel. The Glacial Till is a heterogeneous mixture of clay, silt, sand, and gravel that was deposited and compacted by glacial ice. Groundwater is commonly perched on the immediately underlying Glacial Till or older strata.

For this investigation, three additional soil borings were drilled along the southeast side of Ballinger Way NE to explore subsurface conditions. Two soil borings were drilled offsite and upgradient of both HB-1 and the Shurgard property. One soil boring was drilled down gradient near the site's southeast property corner. Soil conditions encountered include Recessional Outwash and Glacial Till. A loose to medium dense sand and silty sand with gravels was encountered at or near the surface and interpreted to be Recessional Outwash. Underlying the Recessional Outwash, we encountered Glacial Till. The Glacial Till contact was encountered approximately 27 feet below ground surface (bgs) in each boring.

Perched groundwater was encountered in each boring and varied in depth between 22 and 28 feet bgs. All three borings were completed as groundwater monitoring wells in the Recessional Outwash to monitor seasonal fluctuations in groundwater elevations and quality, as needed, throughout the hydrogeologic cycle. The amount of perched water can vary with location and seasonal precipitation.

Section 2 – Investigation

CDM's supplemental Phase II ESA investigation was conducted between January 11 and April 28, 2005. This section describes the field activities and laboratory results. Subsurface exploration and sampling procedures are summarized in **Appendix A**. Soil samples collected during the investigation were submitted for analytical testing to OnSite Environmental Inc. (OnSite) in Redmond, Washington.

2.1 Drilling and Installation of Monitoring Wells

A drill rig equipped with a 4-inch-inside-diameter hollow-stem auger was used to drill 3 borings on January 11 and 12, 2005. Holt Drilling, Inc. of Fife, Washington, was the drilling contractor. Boring depths ranged from 28 to 34 feet bgs. Soil samples were collected at 5-foot intervals during drilling beginning at 2.5 feet bgs. The hollow-stem auger soil samples were collected using a split-barrel sampler. Soil samples were classified according to the Unified Soil Classification System as shown on Figure B1 in Appendix B. Logs of all borings drilled in the Phase II ESA investigations and well construction details are presented in Appendix B as Figures B3 through B11.

Groundwater was encountered during drilling in each of the three borings. All soil borings were completed as 2-inch-diameter PVC groundwater monitoring wells (designated, HB-7, HB-8, and HB-9 on Figure 2), in accordance with Washington Administrative Code (WAC) 173-160. A typical monitoring well construction is shown on Figure B2 in Appendix B. Decontamination procedures for soil sampling and drilling equipment were conducted as described in Appendix A. Following installation, the wells were developed and surveyed. Jacobs Associates of Seattle, Washington surveyed reference elevations for each well.

The only field evidence of petroleum hydrocarbons found during the supplemental Phase II ESA investigation was in Boring HB-9 (similar to that observed previously in HB-1 and HB-2) and consisted of noticeable hydrocarbon-like odors in soils near the groundwater table and elevated organic vapor readings obtained using the OVM-PID.

2.3 Groundwater Elevation Monitoring

Using a Sinco (electronic water-level indicator), CDM measured groundwater levels to the nearest 0.01 foot in HB-1, HB-2, HB-3, HB-7, HB-8, and HB-9 on January 13 and April 28, 2005. Groundwater elevations (Table 1) were calculated relative to the previously established top-of-casing elevations.

2.3 Groundwater Quality Sampling

CDM conducted groundwater quality sampling on January 13, 2005. Groundwater monitoring wells HB-1, HB-2, HB-7, HB-8, and HB-9 were the only monitoring wells that were purged and sampled. Groundwater monitoring well purging and sampling was conducted as described in **Appendix A**.

2.4 Analytical Schedule

Soil samples were screened in the field for the presence of volatile organic compounds using an OVM-PID. In addition, odor indications or stained soils were noted. Selected soil samples from each boring performed in the supplemental Phase II ESA were submitted for the following analyses:

- Gasoline-range total petroleum hydrocarbons (TPH) and benzene, toluene, ethyl benzene, and xylenes (BTEX) by Northwest Method NWTPH-Gx/BTEX.
- Diesel- and oil-range TPH by Northwest Method NWTPH-Dx.
- Halogenated volatiles by EPA Method 8260B.

Groundwater samples were submitted for the following analyses:

- Gasoline-range TPH and BTEX by Northwest Method NWTPH-Gx/BTEX.
- Diesel- and oil-range TPH by Northwest Method NWTPH-Dx.
- Halogenated volatiles by EPA Method 8260B.

2.5 Analytical Testing Results

Laboratory results for soil and groundwater samples are presented in **Tables 2** and 3, respectively. The laboratory report is presented in **Appendix** C.

2.5.1 Soil Chemistry

BTEX and VOCs detected in soil samples are listed below.

- HB-7 Tetrachloroethene (PCE).
- HB-8 Chloroform.
- HB-9 Ethylbenzene , xylene, and 1,1,1-trichloroethane (1,1,1-TCA)

2.5.2 Groundwater Chemistry

Total petroleum hydrocarbons, BTEX, and VOC compounds detected in groundwater are listed below.

- HB-1 -TPH-gas, BTEX, and 1, 1, 1-TCA.
- HB-2 -TPH-gas, BETX, 1, 1, 1-TCA, trichloroethene (TCE), 1, 4-dichlorobenzene, and chloroform.
- HB-7 -TPH-gas, ethylbenzene, xylene, TCE, chloroform, and PCE.
- HB-8 –TPH-gas, xylene, TCE, chloroform, PCE, and bromodichloromethane.
- HB-9 –TPH-gas, benzene, ethylbenzene, xylene, 1, 1, 1-TCA, TCE, 1, 4-dichlorobenzene, chloroform, and chlorobenzene.

Figure 3 shows the distribution of the TPH-G, BETX, and various VOC compounds in groundwater.

Section 3 - Discussion

3.1 Groundwater Flow

The groundwater flow direction near the site is generally to the south as shown on Figure 2, Groundwater Contour Map. Groundwater flow turns to the southeast where it occurs on the site since it is bounded to the southwest by the rising Glacial Till elevation about 70 to 100 feet from Ballinger Way N.E. This interpretation of groundwater flow is based on both groundwater elevation data from our Phase II ESA wells and well data obtained from Washington State Department of Ecology (Ecology) files for the Chevron service station across Ballinger Way N.E.

3.2 Soil and Groundwater Contamination 3.2.1 Soil

Gasoline constituents, ethylbenzene and xylene, were detected in a soil sample from HB-9 at 22.5 feet bgs. A VOC, 1,1,1-TCA, was also detected in this sample. VOCs detected in soil samples off site include; PCE in a sample collected from HB-7 at 27.5 feet bgs and chloroform in a sample from HB-8 at 17.5 feet bgs. All soil concentrations detected were below Method A cleanup levels.

Although chemical analyses results show the presence of gasoline constituents and VOCs in soil, all results indicate that these constituents are associated with the like constituents in groundwater and are limited to a few feet above the groundwater table. This soil contamination results from absorption of hydrocarbons and VOCs onto soil as the contaminated groundwater rises and falls with seasonal fluctuation. No soil contamination that could be the source of the groundwater contamination was encountered in our explorations (including the numerous geotechnical explorations on the site performed for the portal construction and shown on Figure 1).

3.2.2 Groundwater

The hydrocarbons encountered in groundwater appear quite different between the area upgradient of the Shurgard property (HB-7 and HB-8) and the area of the site itself (HB-1, HB-2, and HB-9).

Onsite Groundwater

Groundwater quality chemical analyses results indicate the presence of TPH-Gas and one or more of the gasoline constituents, benzene, ethylbenzene, toluene, and xylene in the onsite wells HB-1, HB-2, and HB-9. Petroleum hydrocarbon concentrations above Method A Cleanup Levels include BTEX and TPH-Gas in HB-1 and benzene and TPH-Gas in HB-2 and HB-9. Chromatographs for HB-1, HB-2, and HB-9 show TPH-Gas to be somewhat aged compared to fresh gasoline and much less weathered than the TPH-Gas chromatographs from HB-7 and HB-8.

VOCs detected in the onsite wells include 1,1,1-TCA, TCE, 1,4 -dichlorobenzene, chloroform, and chlorobenzene.

The groundwater chemistry results for HB-1 and HB-2 showed a slight increase in TPH-Gas concentrations (66,000 to 67,000 ppb and 2,200 to 4,100 ppb, respectively) from when they were sampled in August 2004. BETX constituents showed a greater increase in concentrations in HB-1 than in HB-2 over the same period. This could be the result of an ongoing upgradient source, lowered groundwater levels resulting in concentration, or normal variations between sampling events.

Offsite Groundwater

TPH-Gas concentrations were significantly lower in the offsite monitoring wells HB-7 and HB-8 than the onsite wells. Chromatograms and BETX data for HB-7 and HB-8 show very little of the lighter hydrocarbons indicating an older and more weathered gasoline product than the product seen in the onsite wells.

VOCs detected in the offsite wells include TCE, chloroform, PCE, and bromodichloromethane. PCE was the only VOC detected above Method A Cleanup Levels in the Phase II investigations and was only detected in the offsite wells HB-7 and HB-8.

3.3 Potential Sources

3.3.1 Offsite Contamination

The PCE found above Method A cleanup levels in HB-7 and HB-8 upgradient of the site and the adjacent Shurgard property are most likely associated with a release from a dry cleaner operation (Ballinger Cleaners formerly located in the Ballinger Village Shopping Center) across Ballinger Way N.E. PCE above Method A cleanup levels was detected in groundwater monitoring Wells MW-1a, MW-2a, MW-3a, and MW-11 installed as part of the Chevron site investigation. These wells are located across Ballinger Way N.E. to the north and northeast of the site (see Figure 3) and are down gradient of the former Ballinger Cleaners site.

The low levels of hydrocarbons found in the offsite wells are most likely associated with older releases on the property where they are located or older releases further upgradient.

3.3.2 Onsite Contamination

The hydrocarbons found in the onsite wells HB-1, HB-2, and HB-9 appear to result from a nearby release of gasoline. No gasoline tanks have ever been identified on the site and no soil contamination associated with a source has been found in numerous closely spaced borings in the front of the property. If the source were onsite, soil contamination above the seasonal fluctuation in groundwater levels would have been encountered in one of the borings. However, the nature of the contamination and the drop in hydrocarbon levels in groundwater across the site suggest the source is nearby. Therefore, the most likely source of the contamination is north, northwest of HB-1 and south, southeast of HB-8.

Section 4 - Conclusions

It is most likely that the source of the contamination north, northwest of the site is associated with existing or former leaking gasoline tanks or lines on the adjacent Shurgard property. A cleanup of contamination was performed on the Shurgard site and clean conditions were documented following cleanup; however, this activity took place in the southwestern ½ of the site away from Ballinger Way N.E. Impacts to soil and groundwater quality were not investigated in the front portion of the Shurgard property. Further, the TCE found in the onsite wells is often associated with vehicle maintenance operations such as took place on the Shurgard property.

It is unlikely that the contamination observed on the site could have originated at the Chevron station across Ballinger Way N.E. All the known gasoline contamination on the Chevron property is either cross gradient or down gradient of the site. If the service station release was crossing the street, hydrocarbon levels in HB-9 would be likely be similar to or higher than in HB-1, which is not the case. The only evidence contamination is crossing Ballinger Way N.E. is the PCE found in the wells HB-7 and HB-8. This is consistent with a source of the PCE upgradient from all wells installed in the Phase II ESA investigations and those installed across the street related to the Chevron site.

Section 5 - References

CDM, 2004. Phase II Environmental Site Assessment, Ballinger Way Portal Site, Shoreline, Washington. September 3, 2004.

Ecology. 2001. *Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC* Washington State Department of Ecology Toxics Cleanup Program. Publication No. 94-06, Amended February 12, 2001.

Gary Struthers Associates, Inc. 2004. Phase I Environmental Site Assessment, Brightwater Conveyance System, Ballinger Way Portal, 20031 Ballinger Way NE, Shoreline, Washington. Prepared for King County Department of Natural Resources and Parks, Wastewater Treatment Division. April 2004.

Pacific Northwest Center for Geologic Mapping Studies, Department of Earth and Space Sciences, University of Washington database. http://geomapnw.ess.washington.edu

Distribution

1 Сору

King County Wastewater Treatment Division

Brightwater Project

201 South Jackson Street, Suite 503 Seattle, Washington 98104-3855

Attention: Mr. Doug Williams and

Mr. Leon Maday

Quality Assurance / Technical Review by:

John Newby, P.E.

Senior Vice President

Tables

Table 1 Groundwater Elevation Data King County/Ballinger Way Portal Site Shoreline, Washington

Well 1.D	Surveyed Reference Elevation (feet)	Dage Measured	Depth to Groundwater (feet)	Elevation Water Elevation (feet)
HB-1	406.22	08/03/04	19.04	387.18
1 .		01/13/05	21.47	384.75
		04/28/05	21.75	384.47
HB-2	407.56	08/03/04	20.43	387.13
		01/13/05	22.46	385.10
		04/28/05	22.64	384.92
HB-3	409.53	04/28/05	20.59	388.94
HB-7	414.82	01/13/05	28.86	385.96
		04/28/05	28.61	386.21
HB-8	409.80	01/13/05	24.58	385.22
		04/28/05	24.43	385.37
HB-9	405.73	01/13/05	21.99	383.74
		04/28/05	22.15	383.58

Table 2 Summary of Soil Analytical ResultsKing County/Ballinger Way Portal Site
Shoreline, Washington

Sample Location:	HB 7		HB 8	**:HB.9	
Sample I.D.:	HB-7 27.5 ft	HB-8 17.5 ft	HB-8 27.5 ft	HB-9 22.5 ft	Method A
Depth (ft bgs)	27.5	17.5	27.5	22.5	Cleanup
Compound					Level ^a
NWTPH-Gx/BTEX (mg/kg)					
Benzene	<0.020	<0.020	<0.020	<0.020	0.03
Toluene	<0.052	<0.039	<0.054	<0.047	7
Ethylbenzene	<0.052	<0.039	<0.054	0.30	6
m,p-Xylene	<0.052	<0.039	<0.054	0.40	9
o-Xylene	<0.052	<0.039	<0.054	<0.047	9
TPH-Gas	<5.2	<3.9	<5.4	<4.7	30
NWTPH-Dx (mg/kg)					
Diesel	<30	<30	<29	<31	2,000
Lube Oil	<60	<60	<58	<62	2,000
Halogenated Volatiles (mg/l		Į.			
Tetrachloroethene	0.026	<0.0011	<0.0011	<0.0011	0.05
Chloroform	<0.0012	0.0017	<0.0011	<0.0011	N/A
1,1,1-Trichloroethane	<0.0011	<0.0011	<0.0011	0.0035	2

Notes:

a) Washington Administrative Code Chapter 173-340, Model Toxics Control Act Cleanup Regulation, Method A suggested soil cleanup level for unrestricted land uses; updated August 15, 2001.

ft bgs - feet below ground surface.

mg/kg - milligrams per kilogram.

N/A - not available.

< - analyte not detected at or greater than the listed concentration (practical quantitation limit [PQL]).

Table 3
Summary of Groundwater Analytical Results
King County/Ballinger Way Portal Site
Shoreline, Washington

Sample Location:	HB1		н	B 2	HB7	HB 8	HB 9	Method A
Sampling Date:	08/05/04	01/13/05	08/05/04	01/13/05	01/13/05	01/13/05	01/13/05	Cleanup Level ^a
Compound								
NWTPH-Gx/BTEX (μg/L)								11.00
MTBE	<5		<5					20
Benzene	40	130	8.8	30	ND	ND	19	5
Toluene	1,400	8,500	19	12	ND	ND	ND	1,000
Ethylbenzene	2,100	3,100	69	240	4.1	ND	550	700
m,p-Xylene	7,700	8,800	190	370	6.2	2.2	690	1,000
o-Xylene	3,600	4,500	130	ND	ND	ND	ND	1,000
TPH-Gas	66,000	67,000	2,200	4,100	270	240	8,200	800 b
NWTPH-Dx (mg/L)								
Diesel	< 0.27	< 0.26	<0.27	< 0.25	< 0.25	<0.26	<0.27	500
Lube Oil	< 0.43	<0.41	<0.43	<0.40	<0.40	<0.41	<0.42	500
Halogenated Volatiles (μg	/L) (Detected	1						
1,1,1-Trichloroethane	22	50	2.8	1.2	<0.40	<0.20	11	200
Trichloroethene	< 0.40	<10	1.1	1.4	0.60	1.0	2.2	5
1,3-Dichlorobenzene	< 0.40	<10	0.81	<1.0	<0.40	<0.20	<1.0	N/A
1,4-Dichlorobenzene	< 0.40	<10	0.81	2.0	< 0.40	<0.20	1.2	N/A
Chloroform	< 0.40	<10	< 0.40	1.7	5	9.6	1.4	N/A
Tetrachloroethene	< 0.40	<10	< 0.40	<1.0	77	40	<1.0	5
Chlorobenzene	< 0.40	<10	< 0.40	<1.0	< 0.40	<0.20	3.0	N/A
Bromodichloromethane	< 0.40	<10	<0.40	<1.0	< 0.40	0.66	<1.0	N/A

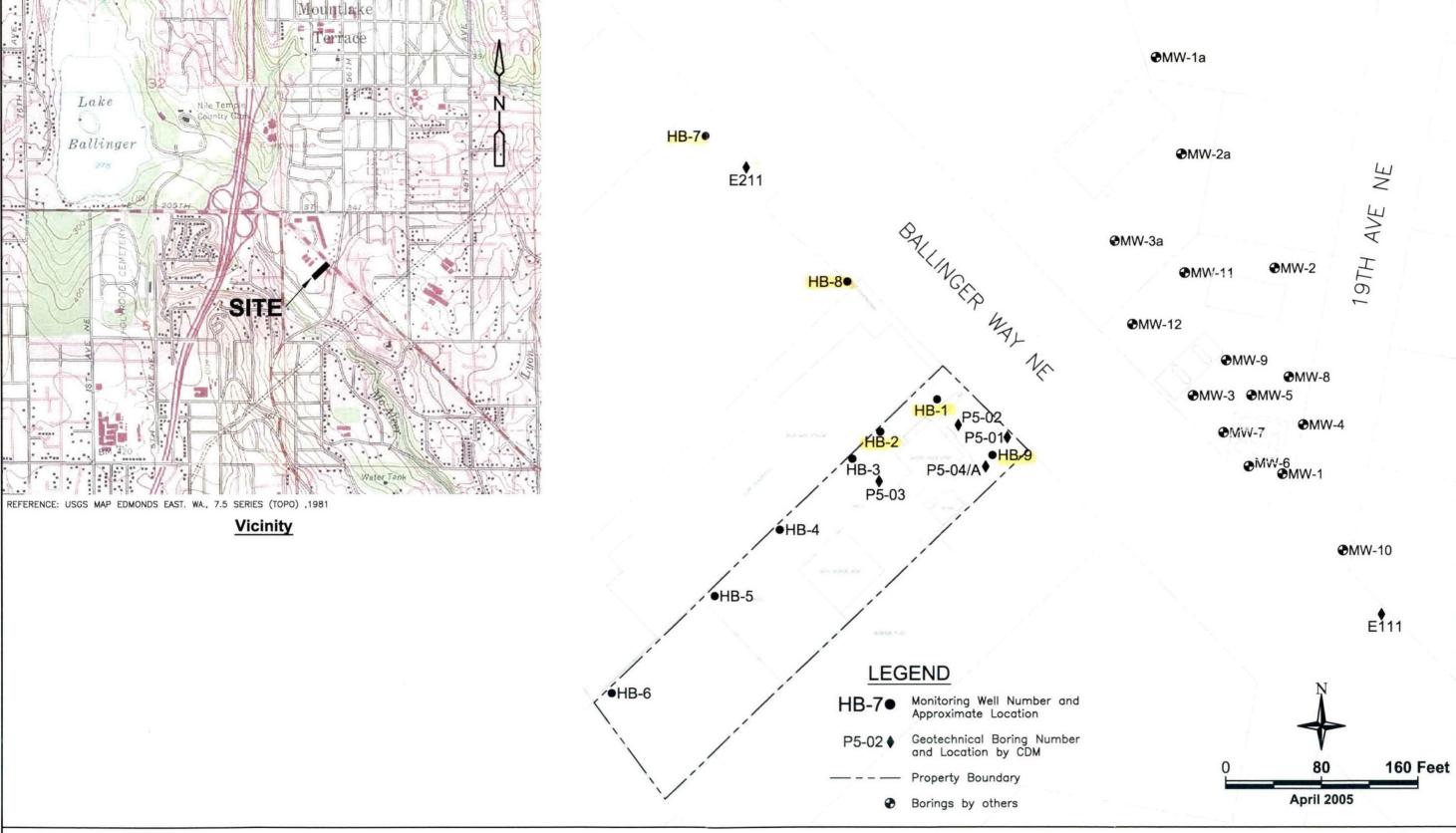
Notes:

N/A - not available.

a) Washington Administrative Code Chapter 173-340, Model Toxics Control Act Cleanup Regulation, Method A suggested groundwater cleanup level; updated August 15, 2001.

b) 800 µg/L if benzene is present in groundwater.

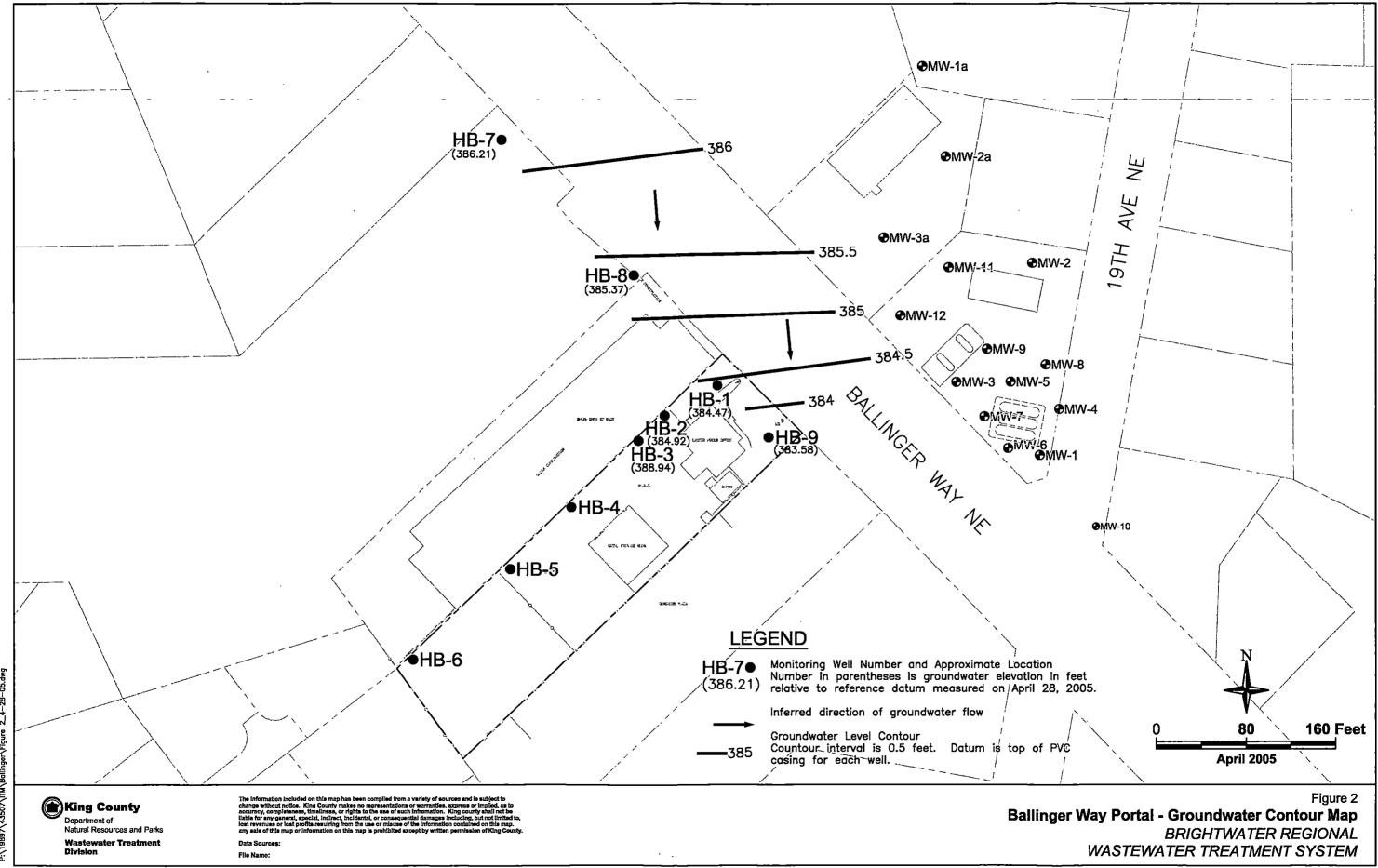
mg/L - milligrams per liter (parts per million).

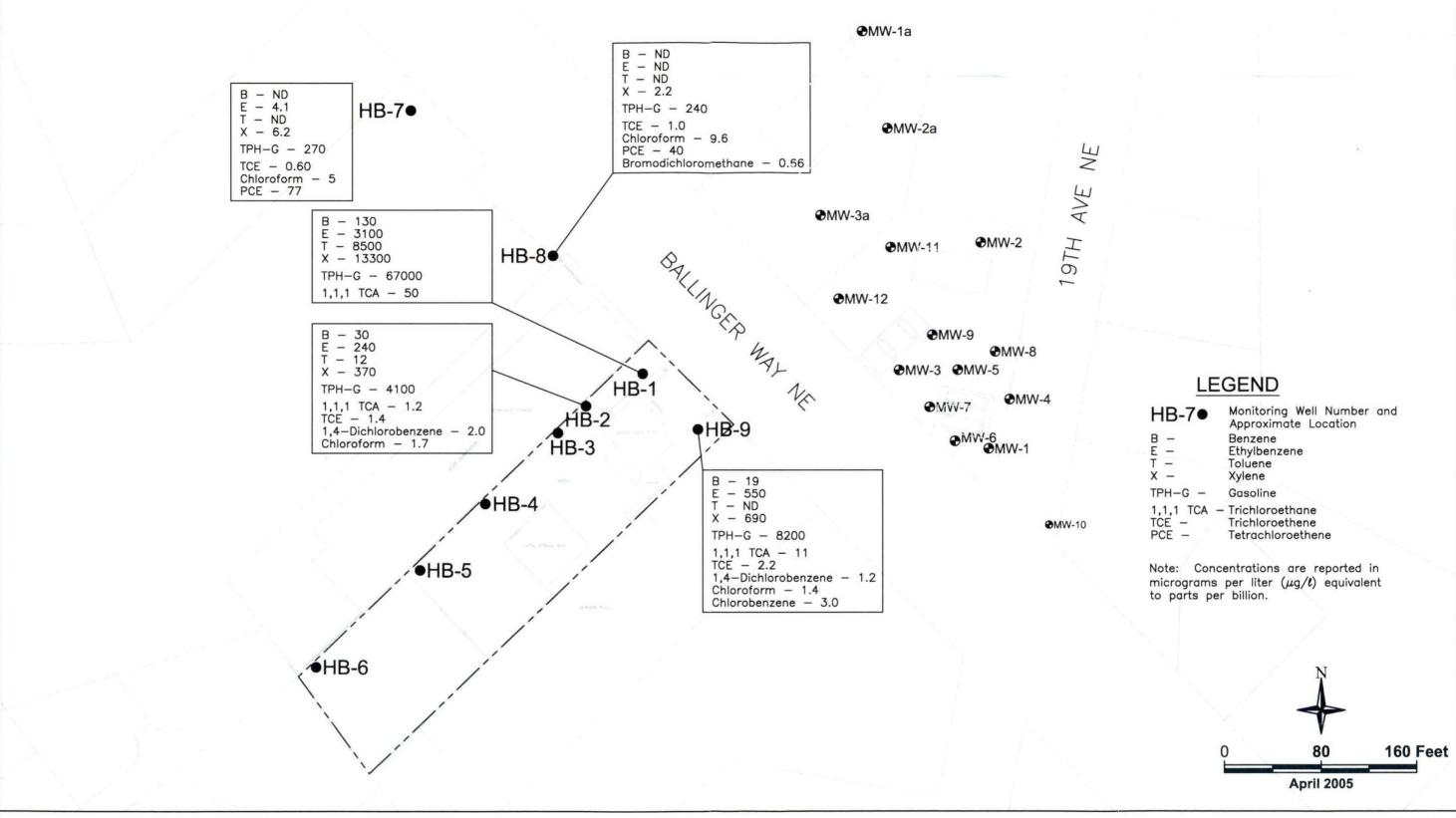

μg/L - micrograms per liter (parts per billion).

⁻⁻ not analyzed.

< - analyte not detected at or greater than the listed concentration (practical quantitation limit [PQL]).

Figures


King County Department of Natural Resources and Parks


Wastewater Treatment

Data Sources:

File Name:

Ballinger Way Portal Vicinity Map & Site Plan BRIGHTWATER REGIONAL WASTEWATER TREATMENT SYSTEM

King County Department of

Natural Resources and Parks Data Sources:

Wastewater Treatment

The information included on this map has been compiled from a variety of sources and is subject to change without notice. King County makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. King county shall not be liable for any general, special, indirect, incidental, or consequential damages including, but not limited to, lost revenues or lost profits resulting from the use or misuse of the information contained on this map.

File Name:

Ballinger Way Portal TPH-G, BETX & VOC Concentrations - Groundwater BRIGHTWATER REGIONAL WASTEWATER TREATMENT SYSTEM

Appendix A

Field Exploration and Sampling Procedures

Appendix A

Field Exploration and Sampling Procedures

Drilling

Holt Drilling, Inc. of Fife, Washington drilled 3 soil borings, completing each boring as a groundwater monitoring well at the proposed Ballinger Way Portal on January 11 and 1 2, 2005. A Camp Dresser &McKee (CDM) geologist observed the drilling/monitoring well installation. The borings were advanced from 28 to 34 feet below ground surface (bgs) using a drill rig equipped with 4-inch inside-diameter hollow-stem augers.

Organic vapors were monitored during drilling to aid in protecting on-site personnel from potential inhalation hazards and to make qualitative judgments about the degree of petroleum hydrocarbons in soil. Measurements were taken routinely around the workers' breathing space.

Soil Sampling

During drilling, soil was sampled at 5-foot intervals by driving a 2-inch-diameter split-barrel sampler 18-inches into undisturbed soil ahead of the borehole bottom. Driving was terminated when the full 18-inch drive was completed or when 50 blows over less than a 6-inch drive was obtained. Each sampled interval was logged according to the Unified Soil Classification System.

The following procedures were used to collect subsurface soil samples during drilling:

- 1. Driller retrieved split-barrel sampler from borehole.
- 2. The split-barrel sampler was opened and sample recovery was measured.
- 3. At sampled intervals subject to laboratory analysis, a soil sample was collected in accordance with EPA Method 5035A. Each soil sample was collected using a coring device (Easy draw syringe and Powerstop handle) and placing the core into a pre-weighted 40ml VOA vial with septum. Additional soil was transferred to a 4-ounce laboratory supplied glass jars using a stainless steel implement. The sample containers were labeled, secured with a chain-of-custody seal, placed in a cooler, and chilled with ice.
- A representative sample was placed in a resealable plastic bag to measure headspace using an organic vapor meter equipped with a photoionization detector (OVM-PID).
- 5. The contents of the sampler were described on the field log.
- 6. The split-barrel sampler was decontaminated by the procedures described later in this appendix.

Field Screening

An OVM-PID was used to screen samples from the soil borings as follows: soil samples were placed in a plastic resealable bag and disaggregated; after approximately 1 minute, the OVM-PID probe was inserted through the bag in the space (headspace) above the soil and the maximum reading on the instrument was recorded. This screening technique is not a compound-specific analysis and is affected by climate (e.g., temperature and humidity), soil type and condition, and instrument calibration and operation. The intent of this analysis is to qualitatively compare samples and assist in selecting samples for chemical analysis.

Monitoring Well Installation

Each groundwater monitoring well was installed in the soil boring as the augers were extracted. Each groundwater monitoring well was constructed in accordance with Chapter 173-160 Washington Administrative Code (WAC) *Standards for Resource Protection Wells* (March 13, 1990).

All monitoring wells were constructed of 2-inch-diameter Schedule 40, flush-threaded PVC screen and riser pipe. All screen, casing, and caps were precleaned by the manufacturer and shipped in plastic. The well was constructed with 10 feet of machine-slotted (No. 10 slot) screen with an end cap at the bottom. A blank riser pipe extended from the top of the screen to approximately 0.3 foot bgs. A PVC cap was placed at the top of the blank riser pipe.

The filter pack was installed in the borehole as the auger flights were withdrawn. Quantities of material used were recorded in the daily field investigation report. Depths to the well construction materials were measured frequently with a precleaned weighted measuring tape during installation to prevent overfilling and bridging in the augers. The 10-20 silica sand pack was then placed in the annular space from the bottom of the screen to approximately 2 feet above the top of the screen.

A seal of bentonite chips was placed on top of the sand pack to about 2 feet bgs. The well was completed with tamper-resistant, flush-mount, protective casings cemented into place.

Monitoring Well Elevation Survey

A representative from Jacobs Associates surveyed the ground and top of each PVC well casing to the nearest 0.01 foot using the reference datum as follows:

Horizontal Datum: Washington State Plane Coordinates, North Zone.

Vertical Datum: Metro Project Datum (Metro) = NAVD88 + 96.28 feet.

Monitoring Well Development and Sampling

Following monitoring well installation, each well was developed by a combination of surging with a surge block and steady pumping with a submersible pump. Physical parameters (conductivity, pH, and temperature) were measured during development. Once stabilized, the pump was moved to a different depth and the process repeated. Physical parameters, characteristics (odor and color), and pumping rate were recorded on a well development record. Well development water was contained in 55-gallon drums.

The groundwater monitoring wells were allowed to stabilize between 24 and 48 hours before sampling. Prior to collecting a representative groundwater sample, each monitoring well was purged using a bailer. Physical parameters listed above were measured frequently during purging. Measurements were taken until three well volumes had been removed or the variation of physical parameters was less than 10 percent for three successive measurements.

A bailer equipped with a Teflon check-valve and suspended on nylon chord was used to sample each monitoring well. The bailer was slowly emptied into the sample containers, two amber colored 500 milliliter (mL) glass and five 40 mL glass vials to avoid degassing.

Decontamination Procedures

Drilling Equipment

Drilling equipment, including the auger flights and sampling tools, were decontaminated with a high-pressure steam cleaner/pressure wash between each exploration location.

Sampling Equipment

The following decontamination procedures were used to decontaminate soil and groundwater sampling equipment:

- 1. Rinse and preclean in potable water.
- 2. Wash and scrub with nonphosphate-based detergent and potable water.
- 3. Rinse with potable tap water.
- Rinse with deionized water.
- 5. Store on clean plastic between sampling.

Sample Handling and Shipping

Soil and groundwater samples were kept out of direct sunlight and were checked for label completeness and cap tightness. Each sealed sample container was placed in packing material upright in a cooler and chilled with Blue Ice. Chain of custody seals were placed on the cooler prior to delivery to the analytical laboratory. The samples were stored and

transported under chain-of-custody procedures. Copies of the completed chain-of-custody forms are presented with the laboratory reports in **Appendix** C.

Materials Generated During Fieldwork

Materials generated during fieldwork were placed in 55-gallon drums, labeled to identify the contents, and temporarily stored onsite pending laboratory results. Materials included soil cuttings and decontamination, development, and purge water.

Documentation

Daily Field Report

The CDM representative reported daily activities on a Field Investigation Daily Report form. Personnel on site, visitors, weather, general activities planned and performed, and any problems were included on the Daily Report. Daily Field Reports and other documentation of field activities are contained in the project file.

Drilling and Well Construction

Drilling was conducted by Holt Drilling, Inc. and documented by a CDM geologist. Documentation of drilling, soil sampling, and well construction was made on a Field Log of Exploration. The CDM representative completed the log in the field.

Appendix B

Monitoring Well and Boring Logs

		•		SOI	L CLASS	FIC.	ATION	LEGEND				
	MAJOR	DIVISIONS			1		AL NA		SAME	PLE TYPE SYMBOLS		
s	GRAVELS	Clean gravels wi		GW	Well graded gravels, gravel-sand mixtures				Disturbed bag or jar sample			
1 1		l little or no	fines.	GP	Poorly graded gr	raded gravels, gravel-sand mixtures			Std. Penetration Test (2.0" OD)			
ED S large	is larger than	Gravel		GM	Silty gravels, gravel-sand-silt mixtures		Type U Ring Sampler (3.25" OD					
GRAINED Ian half is lar		over 12%	over 12% fines		Clayey gravels, gravel-sand-clay mixtures		California Sampler (3.0" OD)					
than S	SANDS	More than half coarse fraction is larger than No. 4 sieve size SANDS More than half coarse fraction is smaller than No. 4 sieve size Sands with		sw⋅⋅	Well graded san	Well graded sands, gravelly sands]	Undisturbed Tube Sample			
COARSE More th	More than ha			SP	Poorly graded sands, gravelly sands			<u> </u>	G Grab Sample			
05				SM	Silty sand, sand-	silt mixt	ures		I			
<u> </u>		over 12%	tines	sc ///	Clayey sands, sa				Core Run Non-standard Penetration Test			
LS ler	SILT	S AND CLAY	'S	ML				ock flour, silty or h slight plasticity		(with split spoon sampler)		
SOILS s smaller sieve	Liquid	limit less than 6		CL///	Inorganic clays of clays, sandy clay	of low to	medium pla clays, lean	asticity, gravelly clays	Bulk Sample			
				OL	Organic clays an				CONT	ACT BETWEEN UNITS		
IE GRAI	SILT	S AND CLAY	'S	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts				Change in geologic unit Soil type change within geologic unit			
FINE G More t	Liquid li	mit greater than	_	сн	Inorganic clays of high plasticity, fat clays							
ਛ≥				он //	Organic clays of medium to high plasticity, organic silts					Obscure or gradational change		
	HIGHLY OR	GANIC SOIL	s	PT ###	Peat and other h	ighly or	ganic soils		MOIS	STURE DESCRIPTION		
DE	SCRIPTO	RS FOR S	OIL S	TRATA	AND STRUC	CTUR	RE (ENC	SLISH/METRIC	1	. Stop of mainture, dusty		
cness	Parting: less than 1/16 in. (1/6 cm) Seam: 1/16 to 1/2 in. (1/6 to 1 1/4 cm)			Pocket:	Erratic, discontin deposit of limited extent	posit 병 High angle: 45 to	-	Wet - Visible free water, saturated				
al Thickn Spacing	Layer:	(1 1/4 to 30 1/2 cm) S		Lens:	Lenticular depos							
General Thickness or Spacing		12 in. (30 1/2 cm 1 per ft. (30 1/2	· ·	Varved: Laminated:	d: Alternating seams of silt and clay nated: Alternating seams			WELL COMPLETIONS				
> -		1 per ft. (30 1/2	1	Interbedde	dded: Alternating layers							
S SEV	<u> </u>						<u> </u>		Concrete Seal Well Casing Bentonite/Grout Seal			
ال <u>و</u> ر	RUCTURE Fractured	DESCRIPT Breaks easily			tured planes							
등 Slid	ckensided	Polished, glo	ssy, fra	ctured plan	es .				Groundwater Level 💆 🔆			
	ky, Diced Sheared	Breaks easily Disturbed te	kture, m	ix of streng	ths					Well Casing		
히	nogenous	Same color a	and app	earance thr	oughout					Sand Backfill		
[.GP.	RELA	TIVE DEN	SITY	OR CON	ISISTENCY	vs.	SPT N-	/ALUE		eable Backfill enite/Grouted		
ENTA		RSE GRAIN			FINE GRAINED				L	ICAL PROPERTY TEST		
ENVIRONMENTAL.GPJ	ensity	N (blows/ft)	Approx Den:	Relative sity (%)	Consistency	N (blows/ft)	Approx, Undrained Shear Str. (psf)	AL -	Atterberg Limits Fines Content		
Very	Loose	0 to 4		- 15	Very Soft		0 to 2	<250	GSD - MC -	Grain Size Distribution Moisture Content Moisture Content/Do Density		
Med Loos	ium Dense	4 to 10 10 to 30	1	- 35 - 65	Soft Medium Stiff		2 to 4 4 to 8	250 - 500 500 - 1000	MD - Comp - SG -	Moisture Content/Dry Density Compaction Test (Proctor) Specific Gravity		
Maria Nied		30 to 50	1	- 85	Stiff		3 to 15	1000 - 2000	CBR -	California Bearing Ratio Resilient Modulus		
[] Very	Dense	Over 50	1	- 100	Very Stiff	ł	5 to 30	2000 - 4000	Perm -	Permeability Triaxial Permeability		
	Hard over 30 >4000							Cons -	Consolidation Analytical Chemical Analysis			
₽ <u>Not</u>	Notes:								Corr - VS -	Corrosion Vane Shear		
inclu cons meth	Sample descriptions in this report are based on visual field and laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates, and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual classification methods in accordance with ASTM D 2488 were used as an identification guide. Where laboratory data are available, soil classifications are in general accordance with ASTM D 2487.								DS - UC - TX - UU - CD -	Direct Shear Unconfined Compression		

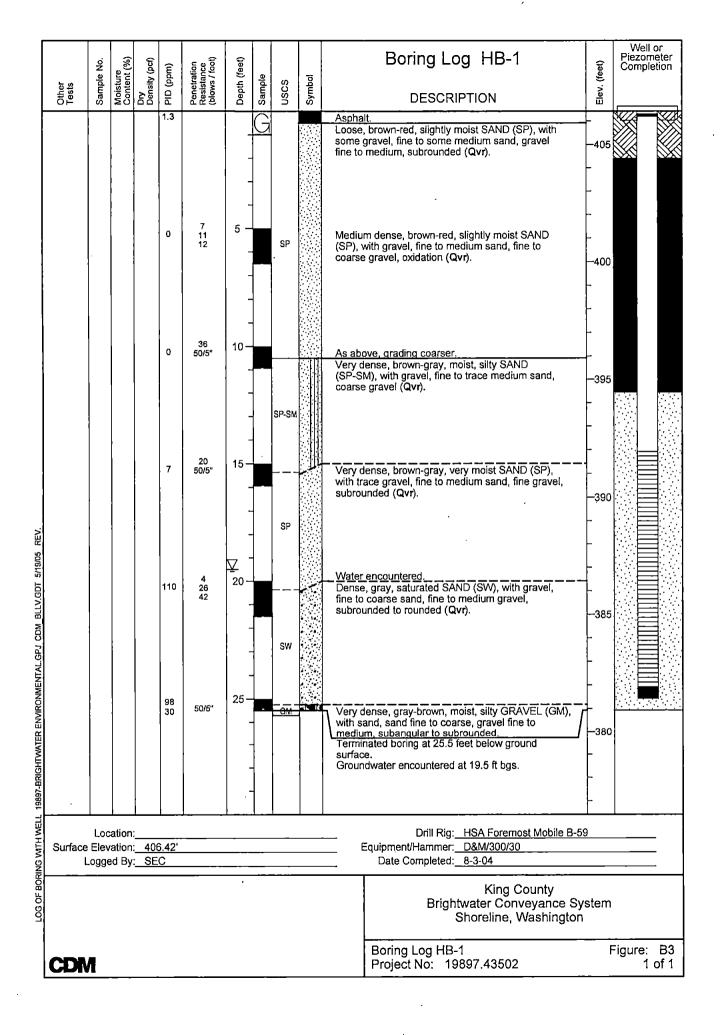
2. Dual symbols are used to indicate gravel and sand units with 5 to 12 $\,$ percent fines.

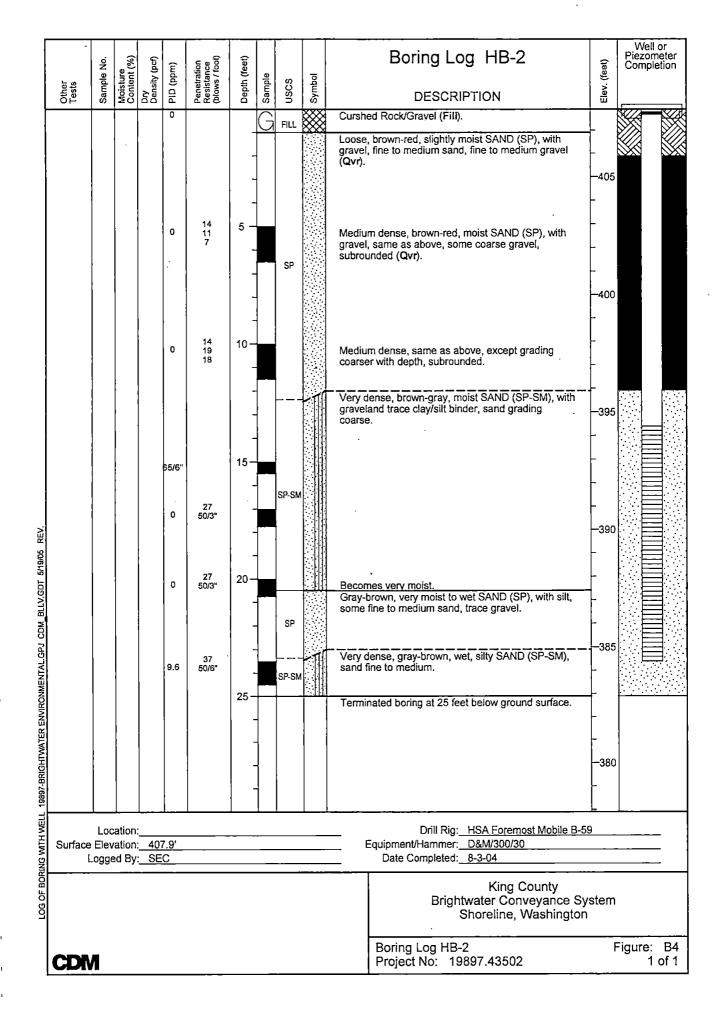
3. WOR = weight of rod.

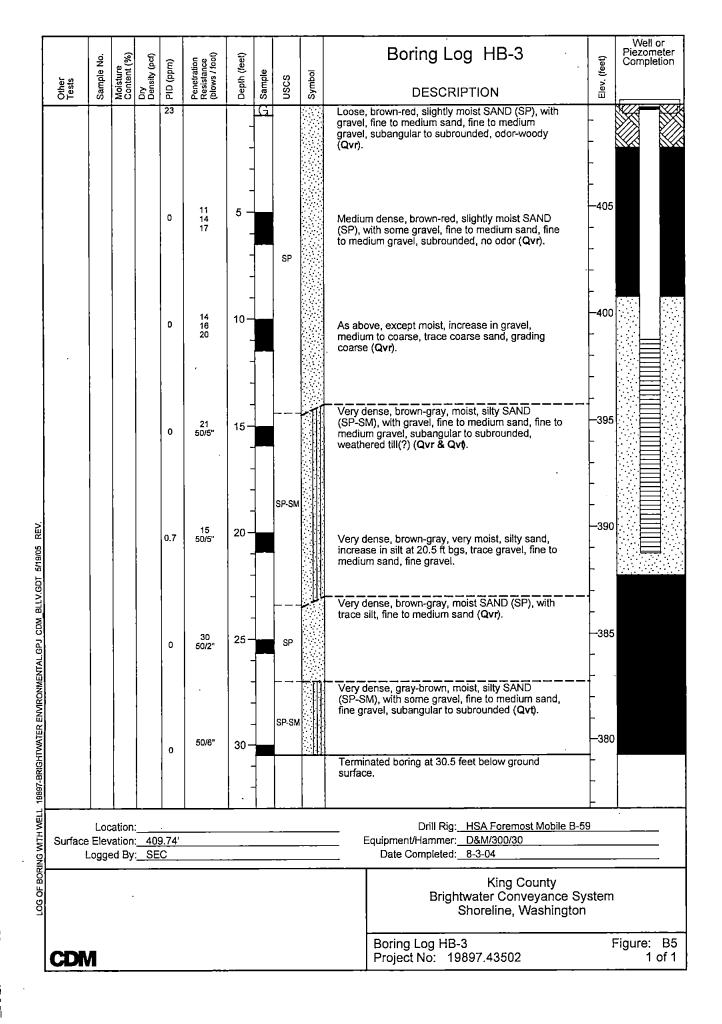
King County
Brightwater Conveyance System
Shoreline, Washington

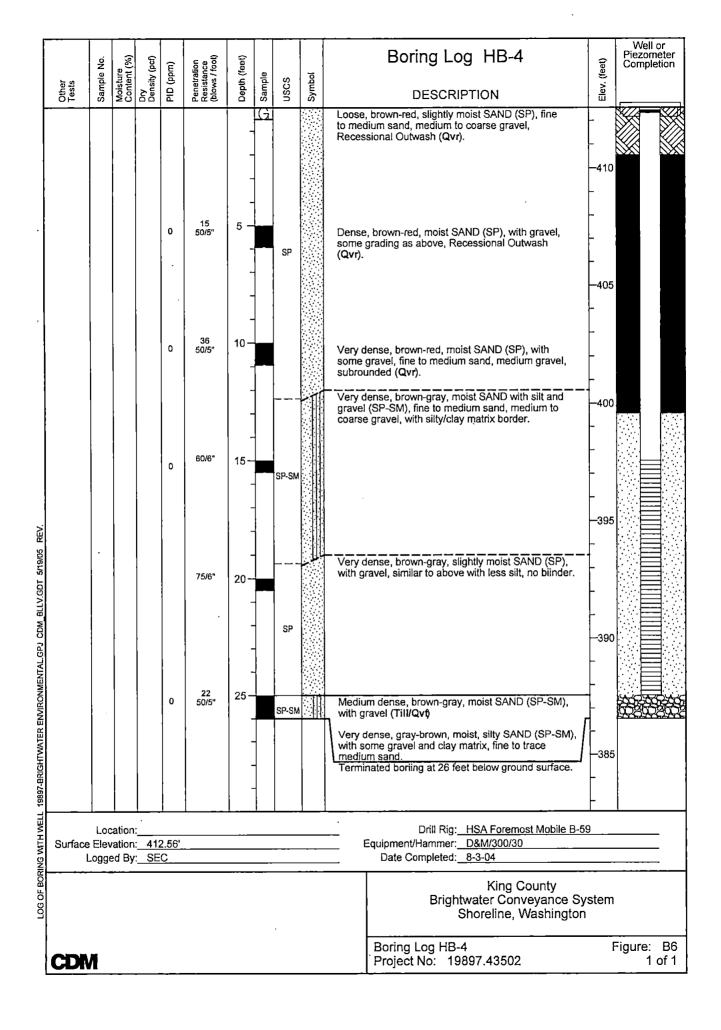
Project No: 19897.43502 Figure: B1

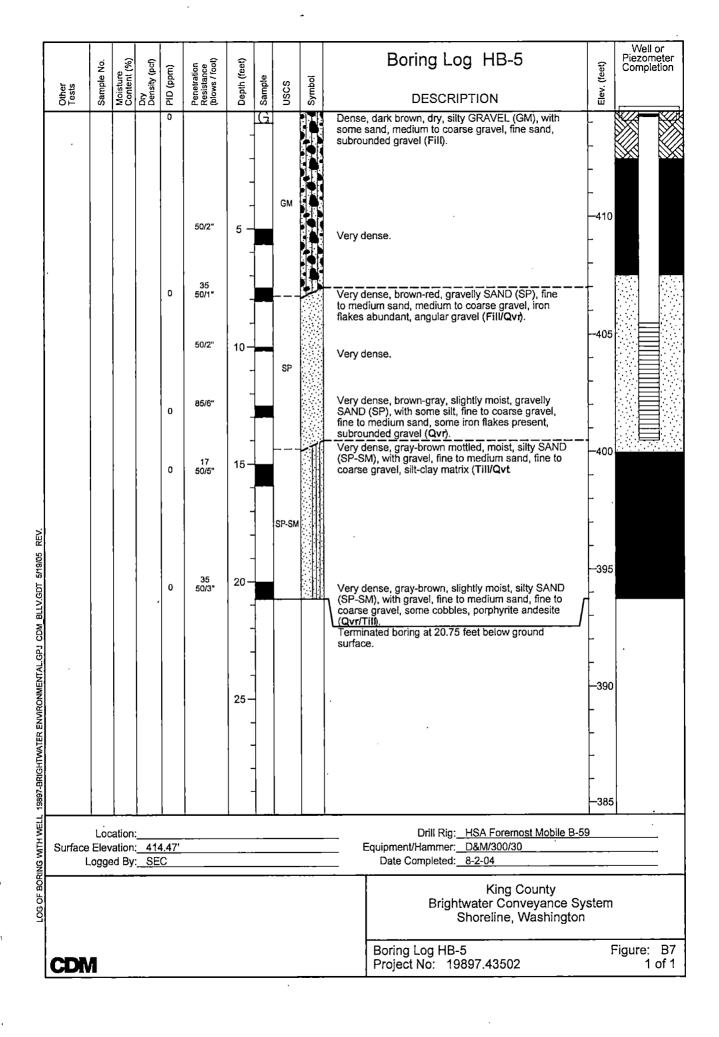
TYPICAL MONITORING WELL CONSTRUCTION

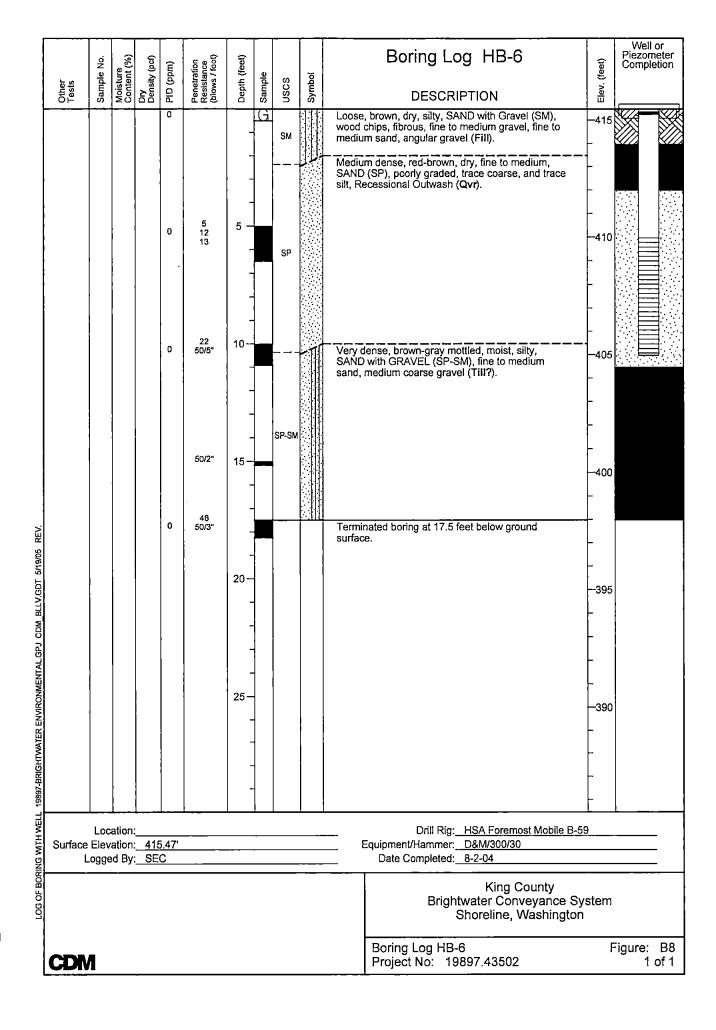

King County Brightwater Conveyance System Shoreline, Washington

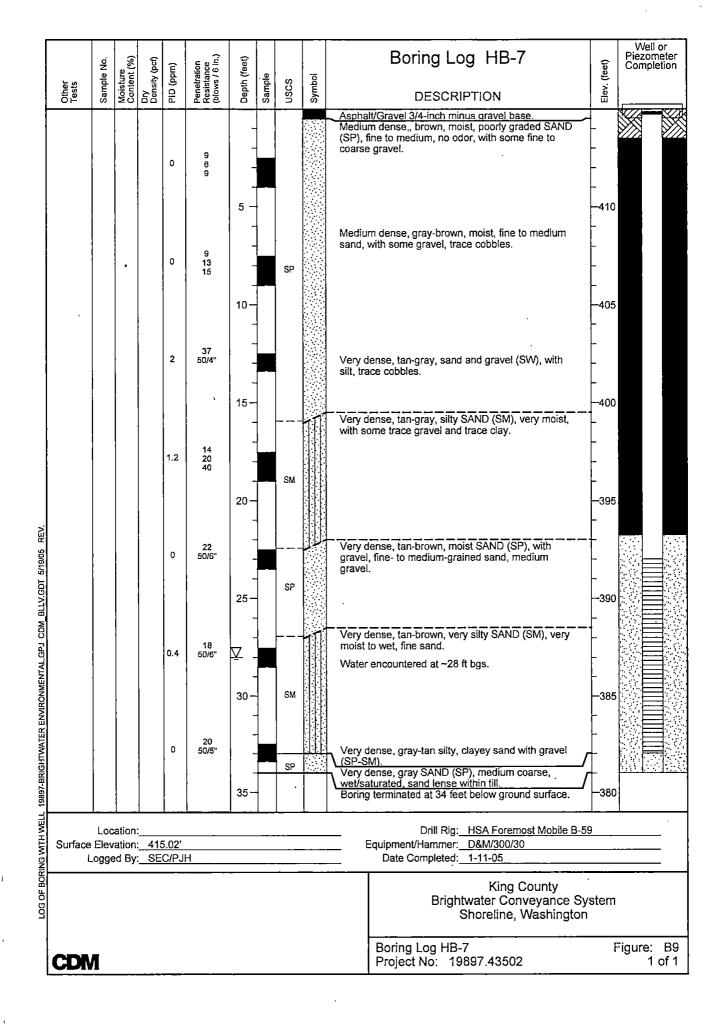

Project No: 19897.43502

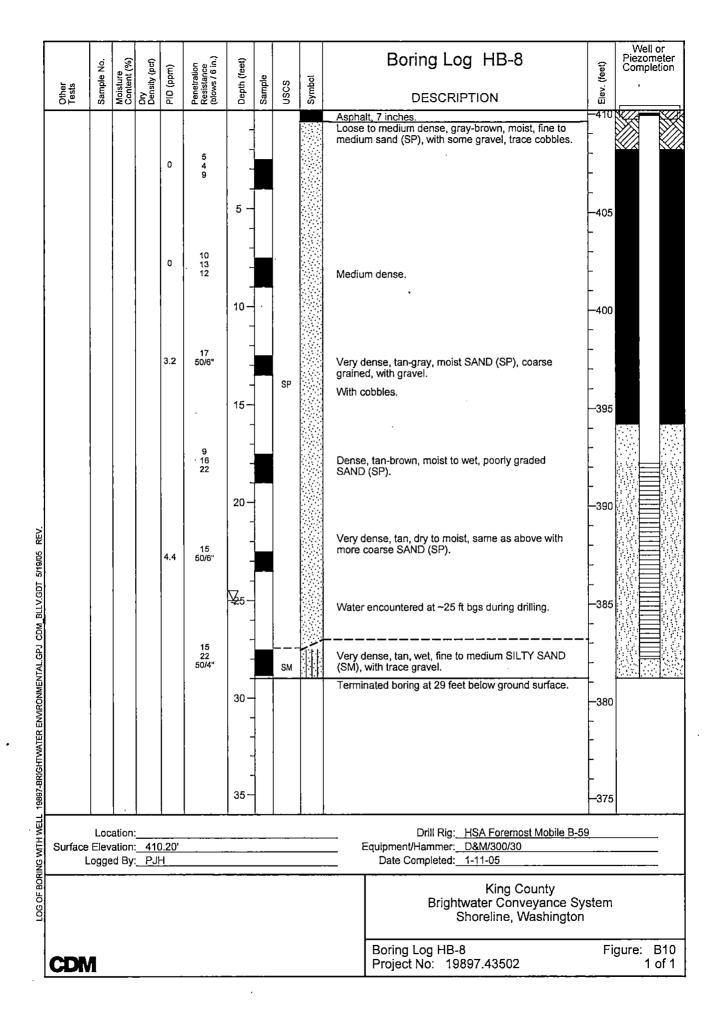

Figure: B2

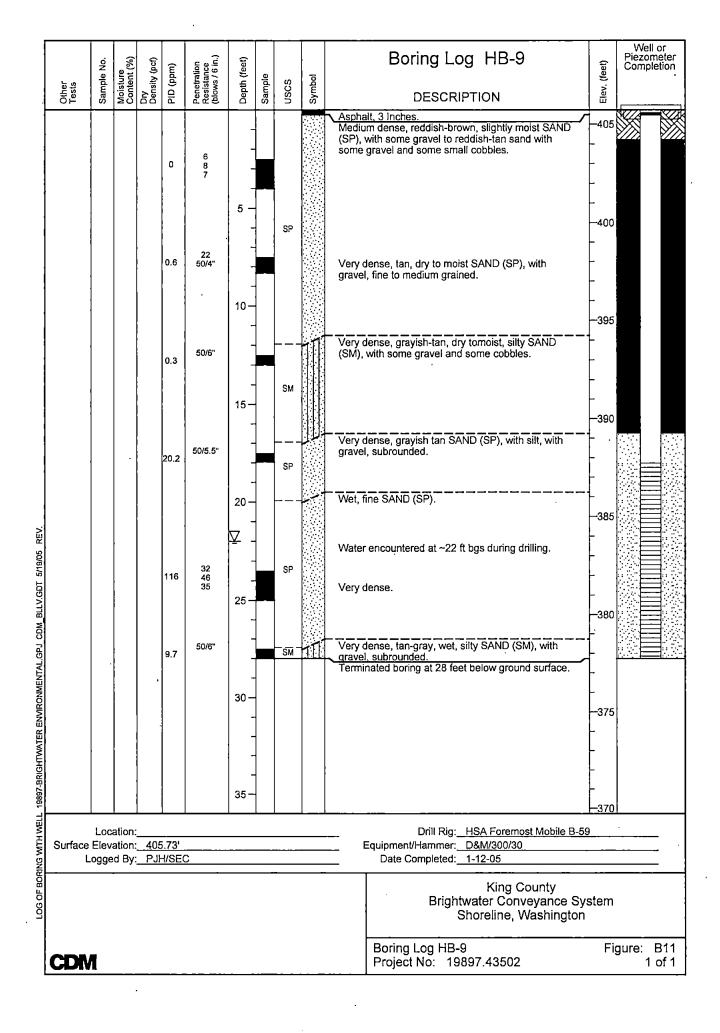

1 of 1


MONITORING WELL CONSTRUCTION, 19897-BRIGHTWATER ENVIRONMENTAL.GPJ, CDM_BLLV.GDT 5/6/05 REV.









Appendix C

Analytical Laboratory Reports

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name:

Brightwater - Ballinger Way Site

Project No.:

19897 43507 - Lab.Sub.Land

Lab Name:

OnSite Environmental Inc (Onsite) - Redmond, Wa

Lab Number:

OnSite 0501-078, 0501-094 and 0501-107

Sample No.:

Soil Samples: HB-7 17.5 (HOLD), HB-7 27.5, HB-8 17.5, HB-8 27.5; HB-9 22.5'

Water Samples: HB-1, HB-2, HB-7, HB-8, and HB-9

Matrix:

Soil and Water

REPORT ORGANIZATION

This report is a quality assurance (QA) review of the chemical data associated with samples listed above. Associated worksheets are stored with project files and can be provided upon request.

QUALITY ASSURANCE SUMMARY

Four soil samples and five water samples were collected by Camp Dresser & McKee Inc. (CDM) on January 11 and 15, 2005 and submitted to OnSite for analyses. Samples submitted to OnSite were analyzed for volatile organic compounds (VOCs); gasoline, benzene, ethylbenzene, toluene, and xylenes (BETX); and diesel extended range fuel hydrocarbons, and measured for moisture content. Data review was performed using OnSite control limit criteria and USEPA National Functional Guidelines for Organics (USEPA, 1999).

All data are of known quality and acceptable for use.

ANALYTICAL METHODS

<u>Parameter</u>	<u>Technique</u>	<u>Method</u>
VOCs	GC/MS	EPA 8260B
Gasoline/BETX	GC/PID	NWTPH-Gx
Diesel and Extended Range	GC/FID	NWTPH-Dx

TIMELINESS

All samples were extracted and analyzed within recommended holding times.

CHAIN OF CUSTODY

Samples were collected January 11 and 15, 2005 and hand delivered to OnSite in insulated shipping containers. Field chain-of-custody forms (COCs) were completed and accompanied each container. There were no problems with sample receipt conditions for samples received by OnSite. All COCs were signed and dated.

FIELD QUALITY CONTROL SAMPLES

No field quality control samples were collected.

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name:

Brightwater - Ballinger Way Site 19897 43507 - Lab.Sub.Land

Project No.: Lab Name:

OnSite Environmental Inc (Onsite) - Redmond, Wa

Lab Number:

OnSite 0501-078, 0501-094 and 0501-107

Sample No.:

Soil Samples: HB-7 17.5 (HOLD), HB-7 27.5, HB-8 17.5, HB-8 27.5; HB-9 22.5'

Water Samples: HB-1, HB-2, HB-7, HB-8, and HB-9

Matrix:

Soil and Water

LAB QUALITY CONTROL SAMPLES

Method Blank:

VOCs: No target compounds were detected in the blank at concentrations

greater than or equal to the reporting limits.

NWTPH-Gx/BTEX and NWTPH-Dx: No target compounds were detected in

the blanks at concentrations greater than or equal to the reporting limits.

Surrogates:

VOCs: The laboratory used three surrogate spiking compounds for VOC

analyses. All surrogate percent recoveries (%R) values were within the

laboratory control limits.

NWTPH-Gx/BTEX: The laboratory used one surrogate spiking compound for gasoline/BETX analysis. All surrogate %R values were within the laboratory

control limits.

NWTPH-Dx: The laboratory used one surrogate spiking compound for diesel

and extended range screening analyses. All surrogate %R values were within

the laboratory control limits.

Matrix/Blank Spike:

VOCs: Matrix spike/matrix spike duplicate (MS/MSD) and/or blank

spike/blanks spike duplicate (BS/BSD) analyses were performed and spike %R and relative percent difference (RPD) were acceptable and within OnSite's

control limit criteria.

NWTPH-Gx/BTEX: Matrix spike/matrix spike duplicate (MS/MSD) analyses

were performed and spike %R and RPD were acceptable and within OnSite's

control limit criteria.

NWTPH-Dx: MS/MSD analyses were not performed. Refer to laboratory

duplicate data for precision results.

Laboratory Duplicate:

VOCs: Laboratory duplicate analyses were not performed. Refer to MS/MSD

results for precision data.

NWTPH-Gx/BTEX: Laboratory duplicate RPD value was less than the

control limit of 20%.

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name:

Brightwater - Ballinger Way Site 19897 43507 - Lab.Sub.Land

Project No.:

OnSite Environmental Inc (Onsite) - Redmond, Wa

Lab Name: Lab Number:

OnSite 0501-078, 0501-094 and 0501-107

Sample No.:

Soil Samples: HB-7 17.5 (HOLD), HB-7 27.5, HB-8 17.5, HB-8 27.5; HB-9 22.5'

Water Samples: HB-1, HB-2, HB-7, HB-8, and HB-9

Matrix:

Soil and Water

NWTPH-Dx: Laboratory duplicate RPD value was less than the control limit

of 20%.

General Chemistry: Laboratory duplicate analyses were not performed with moisture measurements. No action is taken other than to note this in the

report.

Laboratory Control

Sample:

All parameters: Laboratory control and laboratory control sample duplicate

(LCS/LCSD) samples were not performed. For VOCs, gasoline, and diesel, refer to laboratory duplicate data, matrix spike, or blank spike data for

precision and accuracy.

Reporting Limits:

VOCs: The laboratory met the reporting limit levels for all analytes with a few

exceptions.

Laboratory Number 0501-107: OnSite notes that MTCA cleanup levels are not achievable for samples HB-1, HB-2, and HB-9 due to a high concentration of non-target analytes in the samples. Review of sample

HB-1, HB-2, and HB-9 results indicates that there are elevated

concentrations of gasoline in these three samples. No action is taken

other than to note this in the report.

NWTPH-Gx/BTEX: The laboratory met the reporting limit levels for all

analytes with a few exceptions:

Laboratory Number 0408-042: Reporting limits are elevated due to the high concentrations of target analytes in samples HB-1, HB-2, and HB-

OT 03 7	4 777	***
SIGN.	Δ TT	112144
DICIN.	α	ענוע

Jessie Compean

Informa, LLC_____ Date 05-23 Prepared by ___

Received
JAN 21 2005
CDM

January 19, 2005

Allen Moore CDM P.O. Box 3885 Bellevue, WA 98009

Re:

Analytical Data for Project 19897-43507-Lab.Sub.land

Laboratory Reference No. 0501-078

Dear Allen:

Enclosed are the analytical results and associated quality control data for samples submitted on January 12, 2005.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Wanager

Enclosures

Case Narrative

Samples were collected on January 11, 2005 and received by the laboratory on January 12, 2005. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-G/BTEX and Halogenated Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in preweighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix: Soil

Units: mg/kg (ppm)

Client ID: Lab ID: HB-7 27.5

01-078-02

HB-8 17.5

01-078-03

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.052	ND		0.039
Ethyl Benzene	ND		0.052	ND .		0.039
m,p-Xylene	ND		0.052	ND		0.039
o-Xylene	ND		0.052	ND		0.039
TPH-Gas	ND		5.2	ND		3.9
Surrogate Recovery: Fluorobenzene	86%			83%		

NWTPH-Gx/BTEX

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix: Soil

Units: mg/kg (ppm)

Client ID:

HB-8 27.5

Lab ID:

01-078-04

·	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.054
Ethyl Benzene	ND ·		0.054
m,p-Xylene	ND		0.054
o-Xylene	ND		0.054
TPH-Gas	ND		5.4
Surrogate Recovery: Fluorobenzene	89%		

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix: Soil

Units: mg/kg (ppm)

Lab ID:

MB0113S1

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
TPH-Gas	ND		5.0
Surrogate Recovery: Fluorobenzene	100%		

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix: Soil

Units: mg/kg (ppm)

Lab ID:	01-088-01 O riginal	01-088-01 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	91%	87%		

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix: Soil

Units: mg/kg (ppm)

Spike Level (ppm):

Fluorobenzene

2.50

90%

Lab ID:	01-088-01 MS	Percent Recovery	01-088-01 MSD	Percent Recovery	RPD	Flags
Benzene	2.62	105	2.65	106	1 .	
Toluene	2.74	110	2.77	111	1	
Ethyl Benzene	2,77	111	2.80	112	1	
m,p-Xylene	2.77	111	2.80	112	1	
o-Xylene	2.74	110	2.78	111	2	
Surrogate Recovery:						

89%

NWTPH-Dx

Date Extracted:

1-13-05

Date Analyzed:

1-14-05

Matrix:

Soil

Units:

mg/kg (ppm)

Client ID:	HB-7 27.5	HB-8 17.5	HB-8 27.5
Lab ID:	01-078-02	01-078-03	01-:776-04
Diesel Range:	ND	ND	ND
PQL:	30	30	29
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	60	. 60	<i>5</i> 8
Identification:			
Surrogate.Recovery	·		
o-Terphenyl:	98%	101%	97%
Flags:	Y	Υ	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:

1-13-05

Date Analyzed:

1-14-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

MB0113S1

Diesel Range:

ND

PQL:

25

Identification:

Lube Oil Range:

ND

PQL:

50

Identification:

Surrogate Recovery

o-Terphenyl:

97%

Flags:

Y

o-Terphenyl:

Flags:

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	1-13-05 1-14-05	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	01-078-04	01-078-04 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery		

97%

Υ

106%

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID: Client ID: 01-078-02

HB-7 27.5

Compound	Results	s Flags	PQL
Dichlorodifluoromethane	ND		0.0012
Chloromethane	ND		0.0012
Vinyl Chloride	NĎ		0.0012
Bromomethane	ND		0.0012
Chloroethane	ND .		0.0012
Trichlorofluoromethane	ND		0.0012
1,1-Dichloroethene	ND		0.0012
Iodomethane	ND		0.0061
Methylene Chloride	ND		0.0061
(trans) 1,2-Dichloroethene	ND		0.0012
1,1-Dichloroethane	ND		0.0012
2,2-Dichloropropane	ND		0.0012
(cis) 1;2-Dichloroethene	ND		0.0012
Bromochloromethane	ND		0.0012
Chloroform .	· ND		0.0012
1,1,1-Trichloroethane	ND		0.0012
Carbon Tetrachloride	ND		0.0012
1,1-Dichloropropene	ND		0.0012
1,2-Dichloroethane	ND		0.0012
Trichloroethene	ND '		0.0012
1,2-Dichloropropane	ND		0.0012
Dibromomethane	ND		0.0012
Bromodichloromethane	ND		0.0012
2-Chloroethyl Vinyl Ether	ND		0.0061
(cis) 1,3-Dichloropropene	ND		0.0012
(trans) 1,3-Dichloropropene	ND		0.0012

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

Lab ID: 01-078-02 Client ID: HB-7 27.5

Compound 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	Results ND 0.026 ND	Flags	PQL 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012
· ·			0.0012 0.0061
1,2,3-Trichlorobenzene	ND .		0.0012

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	86	71-126
Toluene, d8	98	73-130
4-Bromofluorobenzene	96	70-130

HALOGENATED VOLATILES by EPA 8260B

page 1 of 2

Date Extracted:

1-12-05

Date Analyzed:

1-12-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID: Client ID:

(cis) 1,3-Dichloropropene (trans) 1,3-Dichloropropene

01-078-03 HB-8 17.5

PQL Results Flags Compound ND 0.0011 Dichlorodifluoromethane 0.0011 ND Chloromethane 0.0011 Vinyl Chloride ND ND 0.0011 Bromomethane 0.0011 ND Chloroethane Trichlorofluoromethane ND 0.0011 1,1-Dichloroethene ND 0.0011 lodomethane ND 0.0054 Methylene Chloride ND 0.0054 (trans) 1,2-Dichloroethene 0.0011 ND 1,1-Dichloroethane ND 0.0011 2,2-Dichloropropane ND 0.0011 0.0011 (cis) 1,2-Dichloroethene ND Bromochloromethane ND 0.0011 0.0017 0.0011 Chloroform ND 0.0011 1,1,1-Trichloroethane ND 0.0011 Carbon Tetrachloride ND 0.0011 1,1-Dichloropropene 0.0011 1,2-Dichloroethane ND Trichloroethene ND 0.0011 1.2-Dichloropropane ND 0.0011 0.0011 Dibromomethane ND 0.0011 Bromodichloromethane ND 0.0054 2-Chloroethyl Vinyl Ether ND

ND

ND

0.0011

0.0011

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: 01-078-03 Client ID: HB-8 17.5

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0011
Tetrachloroethene	ND		0.0011
1,3-Dichloropropane	ND		0.0011
Dibromochloromethane	ND		0.0011
1,2-Dibromoethane	ND		0.0011
Chlorobenzene	ND		0.0011
1,1,1,2-Tetrachloroethane	ND		0.0011
Bromoform	ND		0.0011
Bromobenzene	ND		0.0011
1,1,2,2-Tetrachloroethane	ND		0.0011
1,2,3-Trichloropropane	ND		0.0011
2-Chlorotoluene	ND		0.0011
4-Chlorotoluene	ND		0.0011
1,3-Dichlorobenzene	ND		0.0011
1,4-Dichlorobenzene	ND .		0.0011
1,2-Dichlorobenzene	ND		0.0011
1,2-Dibromo-3-chloropropane	ND		0.0054
1,2,4-Trichlorobenzene	ND	•	0.0011
Hexachlorobutadiene	ND	•	0.0054
1,2,3-Trichlorobenzene	ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	93	71-126
Toluene, d8	98	73-130
4-Bromofluorobenzene	96	70-130

HALOGENATED VOLATILES by EPA 8260B

page 1 of 2

Date Extracted: 1-12-05 Date Analyzed: 1-12-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID: 01-078-04 Client ID: HB-8 27.5

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	_	0.0011
Chloromethane	ND		0.0011
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0011
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
lodomethane	ND		0.0056
Methylene Chloride	ND		0.0056
(trans) 1,2-Dichloroethene	ND		0.0011
1,1-Dichloroethane	ND		0.0011
2,2-Dichloropropane	ND		0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
Bromochloromethane	ND		0.0011
Chloroform .	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0056
(cis) 1,3-Dichloropropene	ND		0.0011
(trans) 1,3-Dichloropropene	ND		0.0011

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: 01-078-04 Client ID: HB-8 27.5

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0011
Tetrachloroethene	0.036	•	0.0011
1,3-Dichloropropane	ND		0.0011
Dibromoch!oromethane	ND		0.0011
1,2-Dibromoethane	ND		0.0011
Chlorobenzene	ND		0.0011
1,1,1,2-Tetrachloroethane	ND		0.0011
Bromoform	ND		0.0011
Bromobenzene	ND		0.0011
1,1,2,2-Tetrachloroethane	. ND		0.0011
1,2,3-Trichloropropane	ND		0.0011
2-Chlorotoluene	ND		0.0011
4-Chlorotoluene	ND		0.0011
1,3-Dichlorobenzene	ND		0.0011
1,4-Dichlorobenzene	ND		0.0011
1,2-Dichlorobenzene	ND		0.0011
1,2-Dibromo-3-chloropropane	ND		0.0056
1,2,4-Trichlorobenzene	ND		0.0011
Hexachlorobutadiene	ND		0.0056
1,2,3-Trichlorobenzene	ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	96	71-126
Toluene, d8	91	73-130
4-Bromofluorobenzene	94	70-130

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Date Extracted:

1-12-05

Date Analyzed:

1-12-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

MB0112S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane `	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	.ND		0.0010
1,1-Dichloroethene	ND		0.0010
lodomethane	ND		0.0050
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichloroethane	ND	•	0.0010
2,2-Dichloropropane	ND	•	0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND	•	0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Lab ID:

MB0112S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	· ND		0.0010
1,3-Dichloropropane	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	NÖ		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Bromoform	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	, ND		0.0010
1,3-Dichlorobenzene	, ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
1,2,3-Trichlorobenzene	ND		0.0010

•	Percent	Control		
Surrogate	Recovery	Limits		
Dibromofluoromethane	93	71-126		
Toluene, d8	97	73-130		
4-Bromofluorobenzene	96	70-130		

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

MB0113S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	_	0 0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
lodomethane	, ND		0.0050
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichloroethane	ND		0.0010
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform .	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Lab ID:

MB0113S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	•	0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND .		0.0010
Chlorobenzene	ND	ê	0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Bromoform	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND 、		0.0010
Hexachlorobutadiene	ND		0.0050
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	71-126
Toluene, d8	95	73-130
4-Bromofluorobenzene	93	70-130

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:

1-12-05

Date Analyzed:

1-12-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

SB0112S2

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	0.0500	0.0614	123	0.0607	121	70-130	
Benzene	0.0500	0.0554	111	0.0546	109	70-130	
Trichloroethene	0.0500	0.0562	112	0.0564	113	70-130	
Toluene	0.0500	0.0541	108	0.0525	105	70-130	
Chlorobenzene	0.0500	0.0554	111	0.0571	114	70-130	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	1	11	
Benzene .	1	11	
Trichloroethene	0	13	
Toluene	3	11	
Chlorobenzene	3	12	

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

SB0113S1

Gompound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	0.0500	0.0441	88	0.0489	98	70-130	
Benzene	0.0500	0.0415	83	0.0462	92	70-130	
Trichloroethene	0.0500	0.0475	95	0.0521	104	70-130	
Toluene	0.0500	0.0440	88	0.0458	92 .	70-130	
Chlorobenzene	0.0500	0.0470	94	0.0524	105	70-130	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	10	11	
Benzene	11	11	
Trichloroethene	9	13	
Toluene	4	11	•
Chlorobenzene	11	12	

% MOISTURE

Date Analyzed:

1-12-05

Client ID	Lab ID	% Moisture
HB-7 27.5	01-078-02	17
HB-8 17.5	01-078-03	16
HB-8 27.5	01-078-04	14

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- G Insufficient sample quantity for duplicate analysis.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- O Hydrocarbons indicative of diesel fuel are present in the sample and are impacting the gasoline result
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a silica gel cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ż-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Ala OnSite	Chain of		Page of		
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	sammenomodateriest. Ancoraldingeres	Laboratory		Character and the second secon	-078
Phone: (425) 883-3881 • Fax: (425) 885-4603 ompany:	(Check One)			Trepresed Analysis	
oject Number: Lab. 5nb. Jan. 17897 - 43507 - 633-7	Same Day 🔲 1 Day	,	260B		
Scightwater Physe IL ESA Mallinger	☐ 2 Day ☐ 3 Day Standard (7 working days)		vatiles by 8 v 8270C	151A	
Mpled by: PTH/SEC	(other)	NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Dx Volatiles by 8260B	Halogenated Volatiles by 8260B Semivolatiles by 8270C PAHs by 8270C / SIM	PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664	EPH SPH
	Samplett Stopphole Whithe Origi	**** - - - -	1 - 1 - 1	PCBs Pestic	E H
HB-7 27.5	1 1036 1				
HB-8 17.5	1346				1 1
1 HB-8 275	V 1927 V V				人
					1.
Strang.	12-32-17 PORTIDENY				
Relinquished by	- 004		0945	Hold HB-3	7017.5 +
Received by	シークラルレゴ	- 1/12/05	945	Hold HB-3 HBE Will call	- (charles
Received by		<u>.</u>			And the Andrews
Relinquished by					Cold Control of the Control

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Reviewed by/Date

Chromatograms with final report

Relinquished by Received by Relinquished by Received by

Reviewed by/Date

Received

JAN 25 2005

CDM

January 21, 2005

Allen Moore CDM P.O. Box 3885 Bellevue, WA 98009

Re:

Analytical Data for Project 19897-43507-Lab.Sub.land

Laboratory Reference No. 0501-094

Dear Allen:

Enclosed are the analytical results and associated quality control data for samples submitted on January 13, 2005.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on January 11, 2005 and received by the laboratory on January 13, 2005. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX and Halogenated Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in preweighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Date Extracted:

1-13-05

Date Analyzed:

1-19-05

Matrix: Soil

Units: mg/kg (ppm)

Client ID: Lab ID: HB9 22.5'

01-094-01

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.047
Ethyl Benzene	0.30	,	0.047
m,p-Xylene	0.40		0.047
o-Xylene	ND		0.047
TPH-Gas	ND		4.7
Surrogate Recovery: Fluorobenzene	81%		

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:

1-13-05

Date Analyzed:

Fluorobenzene

1-13-05

Matrix: Soil

Units: mg/kg (ppm) -

Lab ID:

MB0113S2

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
TPH-Gas	ND		5.0
Surrogate Recovery:			

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix: Soil

Units: mg/kg (ppm)

Lab ID:	01-078-02 Or iginal	01-078-02 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	. ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA '	
Surrogate Recovery: Fluorobenzene	86%	85%	•	

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extracted:

1-13-05

Date Analyzed:

1-13-05

Matrix: Soil

Units: mg/kg (ppm)

Spike Level (ppm):

2.50

Lab ID:	01-088-01 MS	Percent Recovery	01-088-01 MSD	Percent Recovery	RPD	Flags
Benzene	2.62	105	2.65	106	1	•
Toluene	2.74	110	2.77	111	1	
Ethyl Benzene	2.77	111	2.80	112	1	
m,p-Xylene	2.77	111	2.80	112	1	
o-Xylene	2.74	110	2.78	111	2	
Cumanata Dagayona						

Surrogate Recovery:

Fiuorobenzene

90%

NWTPH-Dx

Date Extracted:

1-14-05

Date Analyzed:

1-14-05

Matrix:

Soil

Units:

mg/kg (ppm)

Client ID:

HB9 22.5'

Lab ID:

01-094-01

Diesel Range:

ND

PQL:

31

Identification:

Lube Oil Range:

ND

PQL:

62

Identification:

Surrogate Recovery

o-Terphenyl:

88%

Flags:

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:

1-14-05

Date Analyzed:

1-14-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

MB0114S1

Diesel Range:

ND

PQL:

25

Identification:

Lube Oil Range:

ND

PQL:

50

Identification:

Surrogate Recovery

o-Terphenyl:

104%

Flags:

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date	Extracted:
-	

1-14-05

Date Analyzed:

1-14-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

01-084-01

01-084-01 DUP

Diesel Range:

ND

ND

PQL:

25

25

RPD:

N/A

Surrogate Recovery

o-Terphenyl:

94%

91%

Flags:

Υ

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:

1-14-05

Date Analyzed:

1-14-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

01-094-01

Client ID: HB 9 22.5'

Compound	Results	Flags	PQL
Dichlorodifluoromethane	NĎ		0.0011
Chloromethane	ND		0.0011
Vinyl Chloride	ND		.0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0011
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
lodomethane	ND		0.0055
Methylene Chloride	ND		0.0055
(trans) 1,2-Dichloroethene	ND		0.0011
1,1-Dichloroethane	ND		0.0011
2,2-Dichloropropane	ND		0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	0.0035		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND [.]		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0055
(cis) 1,3-Dichloropropene	ND		0.0011
(trans) 1,3-Dichloropropene	ND		0.0011

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: 01-094-01
Client ID: HB 9 22.5'

Compound 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane	Results ND ND ND ND ND	Flags	PQL 0.0011 0.0011 0.0011 0.0011
1,2-Dibromoethane Chlorobenzene	ND ND		0.0011 0.0011
1,1,1,2-Tetrachloroethane	ND		0.0011
Bromoform Bromobenzene	ND ND		0.0011 0.0011
1,1,2,2-Tetrachloroethane	ND		0.0011
1,2,3-Trichloropropane 2-Chlorotoluene	ND ND		0.0011 0.0011
4-Chlorotoluene	ND		0.0011
1,3-Dichlorobenzene	ND ND		0.0011 0.0011
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND	•	0.0011
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene	ND ND ND ND		0.0055 0.0011 0.0055 0.0011
1,2,0-111011010061126116	ND .		\$.0017

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	83	71-126
Toluene, d8	92	73-130
4-Bromofluorobenzene	94	70-130

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Date Extracted:

1-14-05

Date Analyzed:

1-14-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

MB0114S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
lodomethane	ND		0.0050
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichloroethane	ND		0.0010
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	, ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Lab ID:

MB0114S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Bromoform	ND		0.0010
Bromobenzene	ND		0,0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	71-126
Toluene, d8	95	73-130
4-Bromofluorobenzene	91	70-130

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:

1-14-05

Date Analyzed:

1-14-05

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

SB0114S1

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	0.0500	0.0425	85	0.0437	87	70-130	
Benzene	0.0500	0.0453	91	0.0418	84	70-130	
Trichloroethene	0.0500	0.0515	103	0.0520	104	70-130	
Toluene	0.0500	0.0478	96	0.0469	94	70-130	
Chlorobenzene	0.0500	0.0518	104	0.0489	98	70-130	

•	RPD			
	RPD	Limit	Flags	
1,1-Dichloroethene	3	11		
Benzene	8	11		
Trichloroethene	1	13		
Toluene	2	11	•	
Chlorobenzene	6	12		

% MOISTURE

Date Analyzed:

1-13-05

Client ID

Lab ID

% Moisture

HB 9 22.5'

01-094-01

19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- G Insufficient sample quantity for duplicate analysis.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- O Hydrocarbons indicative of diesel fuel are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical . . .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a silica gel cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ.

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody Laboratory Number: Phone: (425) 883-3881 • Fax: (425) 885-4603 Company: (Check One) Project Number ☐ Same Day ☐ 1 Day Halogenated Volatiles by 8260B 2 Day Project Name: ☐ 3 Day Brinn-lun Lec Project Manager: Semivolatiles by 8270C otal RCRA Metals (8) Herbicides by 8151A Standard (7 working days) esticides by 8081A /olatiles by 8260B **NWTPH-GX/BTEX** CBs by 8082 HEM by 1664 TCLP Metals % Moisture (other) A DENTAL A TRANSPORTATION OF THE SECOND SECO VPH emperbandledin. 1119 0 oella de vijma de e Commenta Special Commenta de Comme CDM Relinquished by 1113/05 Received by

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Reviewed by/Date

Chromatograms with final report □

Received by
Received by
Relinquished by
Received by

Reviewed by/Date

January 26, 2005

Received

JAN 28 2005

CDM

Allen Moore CDM P.O. Box 3885 Bellevue, WA 98009

Re:

Analytical Data for Project 19897-43507-Lab.Sub.land

Laboratory Reference No. 0501-107

Dear Allen:

Enclosed are the analytical results and associated quality control data for samples submitted on January 14, 2005.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples ware collected on January 13, 2005 and received by the laboratory on January 14, 2005. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General Qr /QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Halogenated Volatiles EPA 8260B Analysis

Some MTCA cleanup levels are non-achievable for samples HB-1, HB-2, and HB-9 due to the high concentration of hydrocarbons in the samples.

Any other (A/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Date Extra: ted:

1-17&20-05

Date Analyzed:

1-17&20-05

Matrix: Water Units: ug/L /ppb)

Client ID:

HB-1

HB-2

Lab ID:

01-107-01

01-107-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	130		50	30		5.0
:Foluene	8500		.100	12		5.0
Ethyl Benz⊷ne	3100		50	240		5.0
m,p-Xylene	8800		100	370		,5.0
o-Xylene	4500		50	ND		5.0
TPH-Gas	67000		5000	4100		500
Surrogate F ecovery: Fluorobenz⊋ne	118%			121%		

NWTPH-Gx/BTEX

Date Extracted:

1-17-05

Date Analyzed:

1-17-05

Matrix: Waler Units: ug/L /ppb)

Client ID:

HB-7

01-107-03

HB-8

01-107-04

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
∵Ethyl Benz⊱ne	4.1		1.0	ND		1.0
m,p-Xylene	6.2		1.0	2.2		1.0
o-Xylene	ND		1.0	ND		1.0
™PH-Gas	270		100	240		100
Surrogate F-ecovery: Fluorobenz :ne	116%			115%		

NWTPH-Gx/BTEX

Date Extracted:

1-17-05

Date Analyzed:

1-17-05

Matrix: Water Units: ug/L (ppb)

Client ID:

HB-9

Lab ID:

01-107-05

	Result .	Flags	PQL
Benzene	19		10
Toluene	ND		10
Ethyl Benzene	550		10
m,p-Xylene	690		10
ე-Xylene	ND		10
TPH-Gas	8200		1000
Surrogate Recovery	120%		

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extra-ted.

1-17-05

Date Analyzed:

1-17-05

Matrix: Water Units: ug/L ppb)

Lab ID: .

MB0117W2

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND.		1.0
Ethyl Benz-ne	ND		1.0
m,p-X√len∈	ND .		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100
Surrogate Fecovery: Fluorobenzine	95%		

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:

1-20-05

Date Analyzed:

1-20-05

Matrix: Warer Units: ug/L 'ppb)

Fluorobenz-ne

Lab ID:

MB0120W1

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzr ne	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100
Surrogate r ecovery:			

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted:

1-17-05

Date Analyzed:

1-17-05

Matrix. Water Units; ug/L (ppb)

Surrogate Recovery:

Fluorobenzone

Lab ID:	01-061-09 Original '	01-061-09 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
. Toluene	ND	ND	NA	
Ethyl Benzene	ND	NĐ	NA	
m,p-Xvlene	ND	ND	NA	
. o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	

116%

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extracted:

1-17-05

Date Analyzed:

1-17-05

Matrix: Warer Units: ug/L (ppb)

Spike Leve¹ 50.0 ppb

Lab ID:	01-111-01 MS	Percent Recovery	01-111-01 MS D	Percent Recovery	RPD	Flags
Benzene	53.5	107	53.5	107	0.	
Toluene	55.6	111	55.0	110	1	
Ethyl Benzane	55.1	110	55.0	110	0	•
m,p-Xylene	54.9	110	54.5	109	1	
o-Xylene	54.2	108	53.9	108	1	·

Surrogate F ecovery:

Fluorobenzane

107%

NWTPH-Dx

Date Extra ted:

1-24-05

Date Analy.zed:

1-24-05

Matrix:

Water

Units:

mg/L (ppm)

Client ID:	HB-1	HB-2	HB-7
Lab ID:	01-107-01	01-107-02	01-107-03
 Diesel Ran, e:	ND	ND	ND
PQL:	0.26	0.25	0.25
Identification:			
- Lube Oil R∷nge;	ND	ND	ND
PQL:	0.41	0.40	0.40
: Identificatic ؛			 ·
Surrogate - ecovery			
o-Terpheny:	93%	104%	111%
Flags:	Υ	Υ	Y

NWTPH-Dx

Date Extracted:

1-24-05

Date Analyzed:

1-24-05

Matrix:

Water

Units:

mg/L (ppm)

Client ID:

HB-8

HB-9

Lab ID:

01-107-04

01-107-05

Diesel Ran, e:

ND

ND

PQL:

0.26

0.27

Identification:

Lube Oil Range:

ND

ND

· PQL:

0.41

0.43

Identification:

- . . .

Surrogate Fecovery

o-Terpheny.

111%

114%

Flags:

Υ

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:

1-24-05

Date Analy, ed:

1-24-05

Matrix.

Water

Units:

mg/L (ppm)

Lab ID:

MB0124W1

Diesel Ranae:

ND

PQL:

0.25

Identificatio 1.

Lube Oii Rringe:

ND

PQL:

0.40

Identificatio 1:

Surrogate Fecovery

o-Terphenyl:

103%

Flags:

Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extra: ted:

1-24-05

Date Analyzed:

1-24-05

Matrix:

Water

Units:

mg/L (ppm)

Lab ID:

01-107-01

01-107-01 DUP

Diesel Ran je:

ND

ND

PQL.

0.26

0.25

RPD:

N/A

Surrogate Fecovery

o-Terphen:

93%

95%

Flags:

Υ

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted:

1-18-05

Date Analyzed:

1-19-05

Matrix:

Water

Units:

ug/L (ppb)

Lab ID:

01-107-01

Client ID:

HB-1

Compound	Results	Flags	PQL
Dichlorodifloromethane	ND		10
Chloromethane	ND		10
Vinyl Chlor 1e	ND		10
Bromometr ane	· ND		· 10
Chloroethane	ND		10
Trichloroflu romethane	ND		10
1,1-Dichlor/ ethene	ND		10
Iodomethar e	ND		50
Methylene ₊hloride	ND		50
(trans) 1,2- ichloroethene	ND		. 10
1,1-Dichlore ethane	ND		10
2,2-Dichlor propane	ND		10
(cis) 1,2-Dichloroethene	ND		10
Bromochloromethane	ND		10
Chloroform	ND		10
1,1,1-Tricht roethane	50		· 10
Carbon Tet achloride	ND		10
1,1-Dichlorepropene	ND		10
1,2-Dichlorcethane	ND		10
Trichloroett ene	ND		10
1,2-Dichlorepropane	ND		10
Dibromome:hane	· ND		10
Bromodichl romethane	ND		10
2-Chloroetr yl Vinyl Ether	ND		50
(cis) 1,3-Dichloropropene	ND		10
(trans) 1.3-Dichloropropene	ND		10

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: 01-107-01 Client ID: HB-1

Compouna -	Results	Flags	PQL
1,1,2-Trichioroethane	ND		10
Tetrachlorc athene	ND .	•	10
1,3-Dichlor-propane	ND		10
Dibromoch property	ND		10
1,2-Dibrom.ethane	ND		10
Chloroben ₂ ene	ND		10
1,1,1,2-Tet achloroethane	ND		10
Bromoform	ND		50
Bromobenzene	ND		10
1,1,2,2-Tet achloroethane	ND		10
1,2,3-Trichi ropropane	ND		10
2-Chlorotol iene	ND		10
4-Chlorotol iene	ND		10
1,3-Dichlor benzene	ND		10
1,4-Dichlor benzene	ND .	·	10
1.2-Dichlorobenzene	ND		10
1,2-Dibrom >-3-chloroprepane	· ND		50
1,2,4-Trichlurobeazene	ND		10
Hexachloroputadiene	ND		10
41,2,3-Trichloroberizene	ND		10
•			

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	108	70-123
Toluene, d&	113	70-119
4-Bromoflu robenzene	106	70-119

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: 1-18-05
Date Analyzed: 1-19-05

Matrix: Water Units: ug/L (ppb)

Lab ID: 01-107-02 Client ID: HB-2

Compound :	Results	Flags	PQL
Dichlorodifuoromethane	ND		1.0
Chloromethane	ND		1.0
Vinyl Chlor de	ND		1.0
Bromomett ane	ND		1.0
Chloroetha ie	ND		1.0
Trichloroflu romethane	ND		1.0
1,1-Dichlor. ethene	ND		1.0
lodomethai e	ND		5.0
Methylene Chloride	ND		5.0
(trans) 1,2- lichloroethene	· .ND		1.0
1,1-Dichlor ethane	ND		1.0
2,2-Dichlor propane	ND		1:0
(cis) 1,2-Di hloroethene	ND		1.0
Bromochlorumethane	ND		. 1.0
Chloroform	1.7		1.0
1,1,1-Trichl proethane	1.2		1.0
Carbon Terrachloride	ND		1.0
1,1-Dichlorepropene	. "ND		1.0
1.2-Dichlor ethane	ND		1.0
Trichloroett ene	. 1.4		1.0
1,2-Dichlor propane	ND		1.0
Dibromome thane	ND		1.0
Bromcdichluromethane .	ND		1.0
2-Chloroeth J Vinyl Ether	ND		50
(cis) 1,3-D: hloropropene	ND		1.0
(trans) 1.3- lichloropropene	ND		1.0

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID: 01-107-02 Client ID: HB-2

	5 14	- 1	DO!
Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		1.0
Tetrachloroethene	ND		1.0
1,3-Dichlor propane	. ND		1.0
Dibromochloromethane	ND		1.0
1,2-Dibromoethane	ND		1.0
Chlorobenzane	4.1		1.0
1,1,1,2-Tetrachloroethane	ND		1.0
Bromoform	ND ·		5.0
Bromobenzene	ND		1.0
1,1,2,2-Tet achloroethane	ND		1.0
1,2,3-Trich! propropane	ND		1.0
2-Chlorotoluene	ND		1.0
4-Chlorotoluene	ND		1.0
1,3-Dichlor benzene	ND		1.0
1,4-Dichlor benzene	2.0		1.0
1,2-Dichlorobenzene	ND		1.0
1,2-Dibrom >-3-chloropropane	ND		5.0
1,2,4-Trichl probenzene	ND		1.0
Hexachloroputadiene	ND		1.0
1,2,3 Trichlorobenzene	ND		1.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromoflucromethane	111	70-123
Toluene, d&	113	70-119
4-Bromoflu-robenzene	114	70-119

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extra, ted:

1-18-05

Date Analy..ed:

1-19-05

Matrix: Units: Water

ug/L (ppb)

Lab ID:

01-107-03 **HB-7**

Client ID:

Compoun@	Results	Flags	PQL
Dichlorodiff loromethane	ND		0.40
Chloromethane	ND		0.40
Vinyl Chlor: le	ND		0.40
Bromometr ane	ND		0.40
Chloroetha e	ND		0.40
Trichloroflu romethane	, ND		0.40
1,1-Dichlor ethene	ND		0.40
lodomethai e	ND		2.0
Methylene Chloride	ND		2.0
(trans) 1,2-Dichloroethene	ND		0.40
1,1-Dichlor ethane	ND		0.40
2,2-Dichlor propane	ND		0.40
(cis) 1,2-Dichloroethene	ND		0.40
Bromochloi methane	ND		0.40
Chloroform	5.0		0.40
1,1,1-Trichl roethane	ND		0.40
Carbon Tet-achloride	ND		0.40
1,1-Dichlorc propene	ND		0.40
1,2-Dichlor≕ethane	ND		0.40
Trichloroet: ene	0.60	•	0.40
1,2-Dichlor propane	ND		0.40
Dibromome hane	ND		0.40
Bromodichl romethane	. ND		0.40
2-Chloroett √l Vinyl Ether	ND		2.0
(cis) 1,3-Dichloropropene	ND		9.40
(trans) 1,3-ມichloropropene	ND		0.40

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID: 01-107-03
Client ID: HB-7

Compounc	Results	Flags	PQL
1,1,2-Trichl proethane	ND		0.40
Tetrachlorc ethene	77		0.40
1,3-Dichlor: propane	ND		0.40
Dibromoch oromethane	ND		0.40
1,2-Dibrompethane	ND		0.40
Chlorobent ene	ND		0.40
1,1,1,2-Tetrachloroethane	ND		0.40
Bromoform	ND		2.0
Bromobenz ane	ND ,		0.40
1,1,2,2-Tet achloroethane	ND		0.40
1,2,3-Trichloropropane	ND		0.40
2-Chlorotol iene	ND		0.40
4-Chlorotol iene	ND		0.40
1,3-Dichlor benzene	ND		0.40
1,4-Dichlorobenzene	ND		0.40
1,2-Dichlor benzene	ND		0.40
1,2-Dibrom >-3-chloropropane	ND		2.0
1,2,4-Trich! probenzene	ND		0.40
Hexachlorcoutadiene	ND		0.40
1,2,3-Trichiorobenzene	ND		0.40

Percent		Control
Recovery		Limits
118		70-123
109		70-119
112		70-119
	Recovery 118 109	Recovery 118 109

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

Date Extrauted:

1-18-05

Date Analy ed:

1-18-05

Matrix:

Water

Units:

ug/L (ppb)

Lab ID: Client ID: 01-107-04

HB-8

Compount	Results	Flags	PQL
Dichlorodifl ioromethane	ND	-	0.20
Chlorometr ane	ND		0.20
Vinyl Chlor de	ND		0.20
Bromometh ane	ND		0.20
Chloroetha ie	ND		0.20
Trichlorofluoromethane	ND		0.20
⊶1,1-Dichlor⊃ethene	ND		0.20
lodomethar e	ND		1.0
Methylene hloride	ND		1.0
(trans) 1,2- ichloroethene	ND		0 20
`ı,1-Dichlor ethane	ЙĎ		0.20
2,2-Dichlorupropane	ND		0.20
(cis) 1,2-Di hloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	9.6		0.20
1,1,1-Trichloroethane	ND		. 0.20
Carbon Tel achloride	ND		0.20
1,1-Dichlor propene	ND		0.20
1,2-Dichlor ethane	ND		0.20
Trichloroethene	1.0		0.20
1,2-Dichlor propane	ND		0.20
Dibromome thane	ND		0.20
Bromodich ¹ oromethane	0.66		0.20
2-Chloroetl yl Vinyl Ether	ND		1.0
(cis) 1,3-Di hloropropene	ND		0.20
(trans) 1,3— lichloropropene	ND		0.20

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: 01-107-04
Client ID: HB-8

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachlorcathene	40		0.20
1,3-Dichloropropane	ND		0.20
Dibromoch oromethane	ND		0.20
1,2-Dibrom ethane	ND		0.20
Chlorobenz ene	.ND		0,20
a 1,1,2-Tet achloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenz∷∍ne	ND		0.20
1,1,2,2-Teti achloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotol: ene	ND		0.20
1,3-Dichlor benzene	. ND		0.20
1,4-Dichlor benzene	ND		0.20
1,2-Dichlor benzene	ND		0.20
1,2-Dibromu-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1.2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluc romethane	· 117	70-123
Toluene, d{	112	70-119
4-Bromoflucrobenzene	114	70-119

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 1-18-05
Date Analy.ed: 1-19-05

Matrix: Water ug/L (ppb)

Lab ID: 01-107-05
Client ID: HB-9

Gompounc:	Results	Flags	PQL
Dichlorodifl.ioromethane	ND		1.0
Chloromethane	ND		1,0
Vinyl Chlorde	. ND		1.0
Bromomet. ane	- ND		1.0
Chloroetha ie	ND		1.0
Trichlorofluoromethane	ND		1.0
1,1-Dichlornethene	ND		1.0
lodomethai e	ND		5.0
Methylene Chloride	ND		5.0
(trans) 1,2-Dichloroethene	ND		1.0
1,1-Dichlor, ethane	ND		1.0
2.2-Dichlor propane	ND		1.0
(cis) 1,2-Dichloroethene	ND		1.0
Bromochlor methane	ND		1.0
Chloroform	1.4		1.0
1,1,1-Trichl roethane	11		1.0
Carbon Tetrachloride	ND	•	1.0
1,1-Dichloropropene	ND		1.0
1.2-Dichlorcethane	ND		1.0
Trichloroetr ene	2.2		1.0
1,2-Dichlor propane	ND		1.0
Dibromome hane	ND		1.0
Bromodichloromethane	ND		1.0
2-Chloroethyl Vinyl Ether	ND		5.0
(cis) 1,3-Dichloropropene	ND		1.0
(trans) 1,3-Dichloropropene	ND		1.0

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: 01-107-05
Client ID: HB-9

Compound	Results	Flags	PQL
Compount 1,1,2-Trichiproethane	ND	riaya	1.0
· · ·	•		1.0
Tetrachlorc ethene	ND		
1,3-Dichlor propane	.ND		1.0
Dibromoch oromethane	ND		1.0
1,2-Dibrom ethane	ND		1.0
Chlorobenz ene	3.0		1.0
1,1,1,2-Tetrachloroethane	ND		1.0
Bromoform	ND		5.0
. Bromobenz.ene	· ND		1.0
1,1,2,2 Tet achloroethane	ND		1.0
1,2,3-Trichluropropane	ND		1.0
2-Chlorotol iene	ND		1.0
4-Chlorotoluene	ND		1.0
1,3-Dichlor benzene	ND		1.0
1,4-Dichlorobenzene	1.2		. 1.0
1,2-Dichlorobenzene	.ND		1.0
1,2-Dibrom :-3-chloropropane	ND		5.0
1,2,4-Trichl robenzene	ND		· 1.0
Hexachloroputadiene	ND		1.0
1,2,3-Trichl probenzene	ND		1.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluc romethane	112	70-123
Toluene, df	112	70-119
4-Bromoflucrobenzene	110	70-119

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Date Extra, ted:

1-18-05

Date Analy ed:

1-18-05

Matrix:

Water

Units:

ug/L (ppb)

Lab ID:

MB0118W1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	-	0.20
Chlorometl ane	ND		0.20
Vinyl Chlor de	ND		0.20
Bromometl rane	, ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichlorcethene	ND		0.20
lodometha e	ND		1.0
Methylene hloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1.1-Dichlorgethane	ND		0.20
2,2-Dichlor propane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trich roethane	ND		0.20
Carbon Tet achloride	ND		0.20
1,1-Dichlor@propene	ND		0.20
1,2-Dichloruethane	ND		0.20
Trichloroeth-ene	ND		0.20
1.2-Dichlorc propane	ND	-	0.20
Dibromomethane	ND		0.20
Bromodichl romethane	ND		0.20
2-Chloroetl /l Vinyl Ether	ND		1:0-
(cis) 1,3-Dicaloropropene	ND		0.20
(trans) 1,3- ichloropropene	ND		0.20

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

Lab ID:

MB0118W1

1,3-Dichlor propane ND Dibromoch promethane ND 1,2-Dibrom bethane ND Chlorobent ane ND 1,1,1,2-Tet achloroethane ND Bromoform ND Bromobent ene ND 1,1,2,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND 1,2,3-Trich propropane ND 2-Chloroto ene ND 4-Chlorotol lene ND 1 3-Dichlor benzene ND	0.20 0.20 1.0 0.20 0.20 0.20 0.20 0.20 0
1,2-Dichlor benzene ND	0.20 1.0 0.20 0.20 0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	113	70-123
Toluene, d&	111	70-119
4-Bromoflu robenzene	106	70-119

HALOGENATED VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extra/ ted:

1-18-05

Date Analyzed:

1-18-05

Matrix:

Water

Units:

ug/L (ppb)

Lab ID:

01-102-08

Compount	Sample Amount	Spike Amount	Percent MS Recovery		MSD	Percent Recovery	Recovery Limits	Flags
1 1-Dichlor ethene	ND	10.0	12.2	122	12.3	123	70-130	
Benzene	ND	10.0	10.5	105	10.8	108	71-128	
Trichloroetl ene	ND	10.0	8.50	85	8.85	89	76-124	
Toluene	ND	10.0	10.7	107	11.2	112	74-124	
Chloroben: ene	ND	10.0	10.3	103	10.5	105	72-118	

		RPD	
	RPD	Limit	Flags
1,1-Dichlor ·ethene	1	17	
Benzene	. 3	13	
Trichloroethene	4	12	
Toluene	4	14	
Chlorobenz ene `	3	9	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analite indicated was also found in the blank sample.
- C The dupricate RPD is outside control limits due to high result variability when analyte concentrations are within five till les the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogat recovery data is not available due to the high concentration of coeluting target compounds.
- G Insufficient sample quantity for duplicate analysis.
- H · The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I -- Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample 1 uplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydroca bons in the gasoline range (toluene-napthalene) are present in the sample.
- O Hydroca cons indicative of diesel ruel are present in the sample and are impacting the gasoline result.
- P The RPF of the detected concentrations between the two columns is greater than 40.
- Q Surrogat : recovery is outside of the control limits.
- S Surrogat recovery data is not available due to the necessary dilution of the sample.
- The same le chromatogram is not similar to a typical ______.
- U The anal te was analyzed for, but was not detected above the reported sample quantitation limit.
- V Matrix St. ke/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix S ike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a silica gel cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z

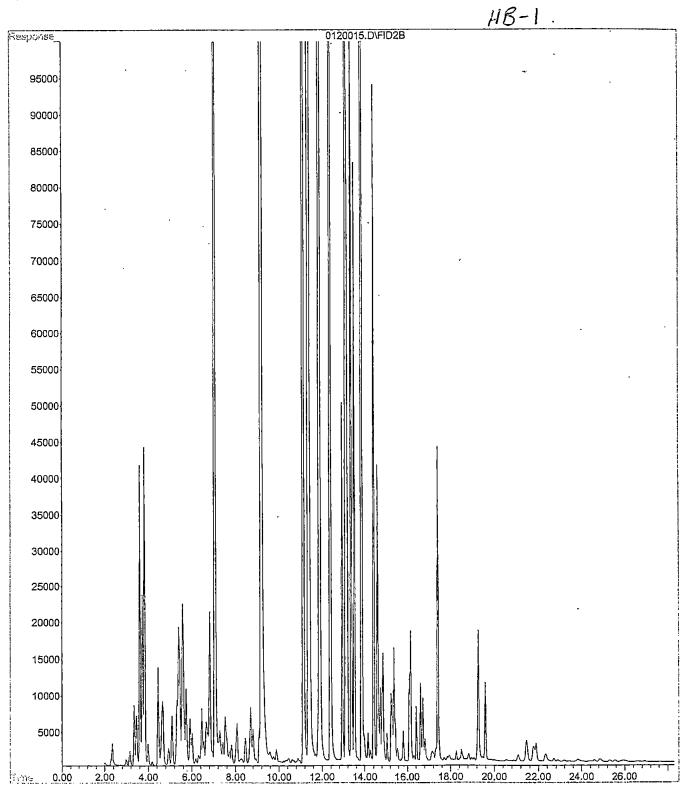
ND Not De ected at PQL

PQL - Practical Quantitation Limit

RPD - Relati re Percent Difference

File : X:\BTEX\DARYL\DATA\D050120\0120015.D

Operator

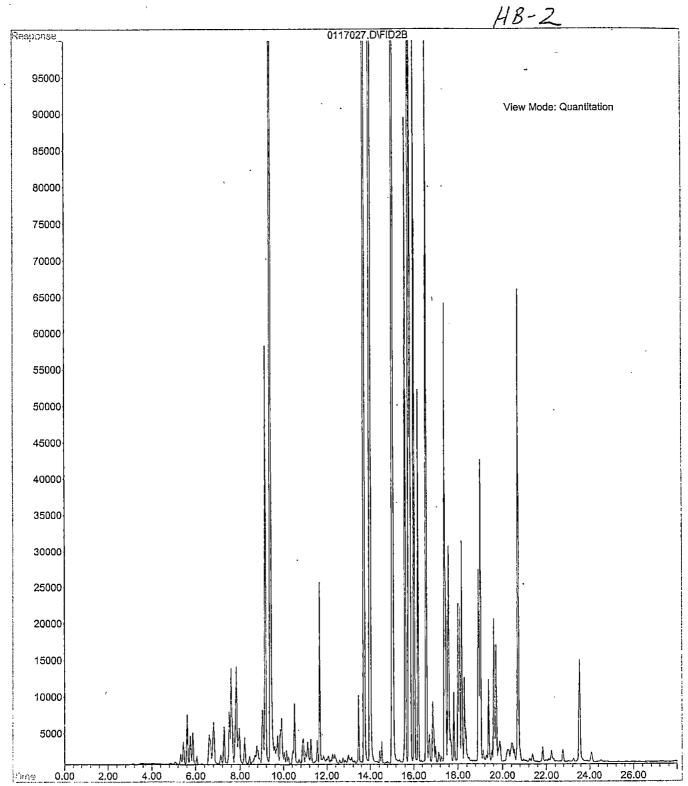

Acquired : 20 Jan 2005 19:07 using AcqMethod 1116BTEX.M

Instrument : BTEX

Sample Name: 01-107-01e 1:50

Misc Info :

Vial Number: 15


: X:\BTEX\HOPE\DATA\H050117\0117027.D File

Operator

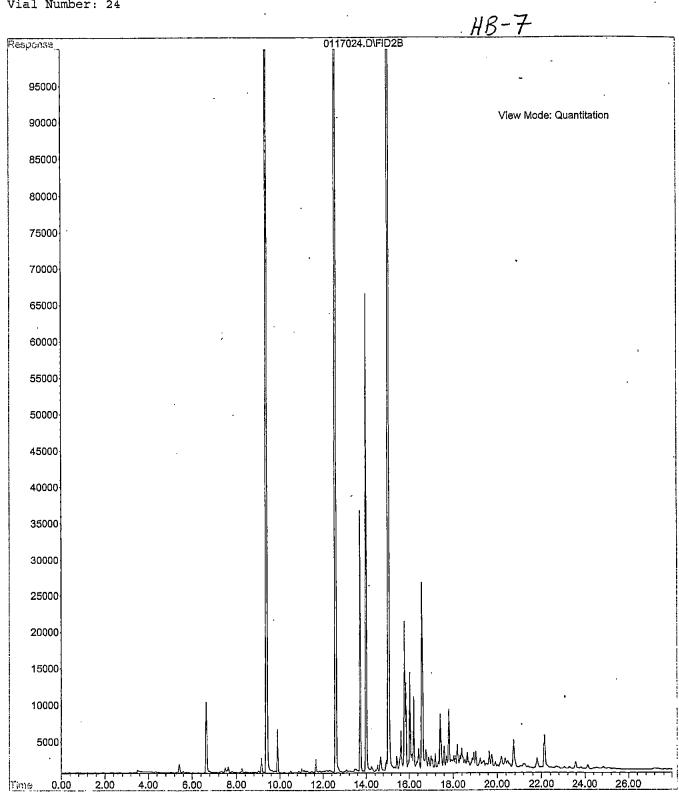
Acquired : 18 Jan 2005 Instrument : Archon 2:11 using AcqMethod 050107HB.M

Sample Name: 01-107-02b 1:5

Misc Info : Vial Number: 27

File

: X:\BTEX\HOPE\DATA\H050117\0117024.D

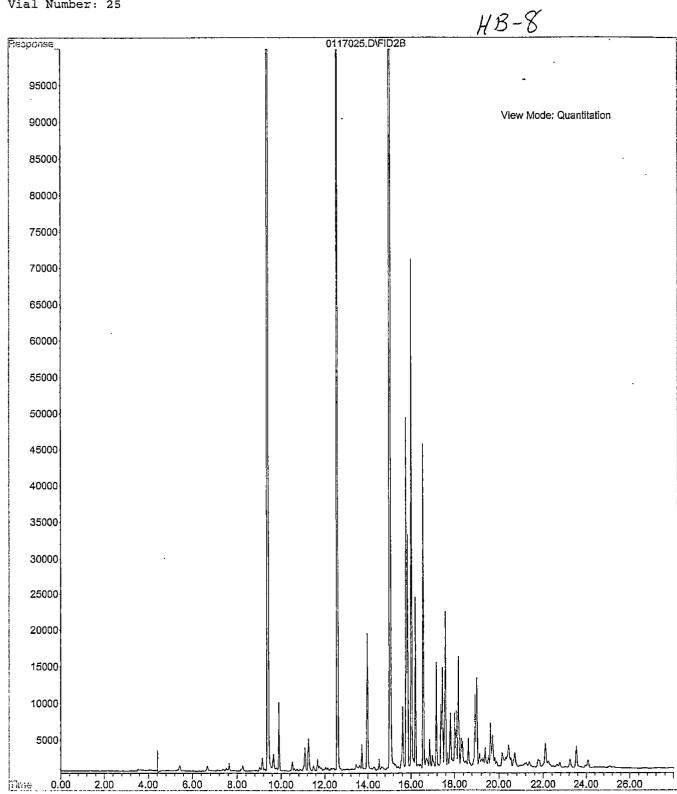

Operator

Acquired : 18 Jan 2005 00:18

using AcqMethod 050107HB.M

Instrument : Archon Sample Name: 01-107-03b

Misc Info : Vial Number: 24


: X:\BTEX\HOPE\DATA\H050117\0117025.D

Operator :

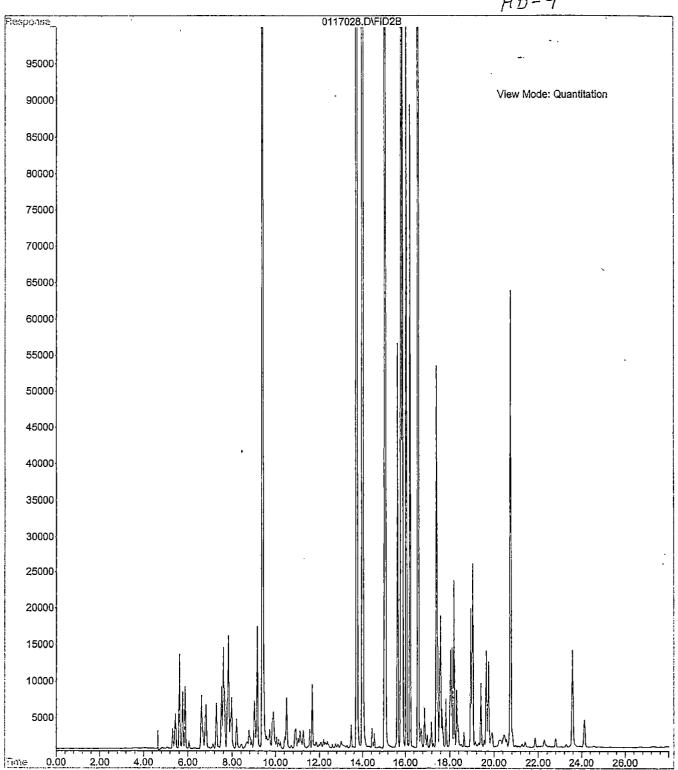
Acquired : 18 Jan 2005 00:55 using AcqMethod 050107HB.M

Instrument : Archon Sample Name: 01-107-04b

Misc Info : Vial Number: 25

File : X:\BTEX\HOPE\DATA\H050117\0117028.D

Operator


using AcqMethod 050107HB.M Acquired : 18 Jan 2005 2:48

Instrument : Archon

Sample Name: 01-107-05b 1:10

Misc Info : Vial Number: 28

HB-9

AVA OnSite Environmental Inc

Chain of Custody

16	i		j	
⊃age _	- {	_ of _		

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	e indirection general Constraint	rd Ferriesir Ingrahysir	La	bora	tory	Nu	mbe	er:								10	7			
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	. (Che	ck One)		C						glaje.	gies	I (Vi	elk	je.						
CDYY Project Number]	_				_														
Project Number: 19897-43507-Lih. Sab. Land Project Name: Brightwater Phase II ESA Project Manager: Allen Moore Sampled by:	Same Day	☐ 1 Day				3260				Ì										
Project Name:	2 Day	☐ 3 Day				by 8	ပ္ပ	V				e e								
Project Manager:	Standard (7 v			×	88	latile	827	/ SIM		81A	151A	tals (4		·						
Sampled by:	lo	·	용	MBT X	/ 826	oy be	es by	270C	082	by 80	by 8	A Me	얆	364						0
Sampled by: SEC/PTH	(0	ther)	캺	NWTPH-GX	Volatiles by 8260B	enate	Semivolatiles by 8270C	PAHs by 8270C /	CBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	4EM by 1664		,				% Moisture
Sampled by: SEC / PTH Sample Sample Area (Control of the Control	opper vince copper seconded	wante 10m.	E MN	NWTPH-Gx/BTEX	Volati	Halogenated Volatiles by 8260B	Semi	PAHS	PCBs	Pestic	Herbi	Total	17CLF	HEM	VPH	ЕРН		 		₩ %
• 1	1358			$X \lambda$		X														
Z HB-Z	1321			$\langle \chi \rangle$		X														
3 HB-7	1212			X x		X									_					
4 113-8	1245		'	$\times 1$	$\langle \ \ $	χ														
5 HR-9	1443	1		\mathbb{X}_{λ}		X														
				7	`															
					1-															
											•									
																			-	
Station of the Station of the State of the S	Complex								Çon	lidiji	(S) is	pin	is indi	NOTE		*		36		
Relinquished by All Carly	CD	如何		1-14	05	10	000	•									i	•		
Received by	e Ou	いて	- 	t [(4	105	- /	11	15												
Relinquished by		·				╽.														ļ
Received by						\downarrow	ζ.													
Relinquished by		•				_	-													
Received by								-												
Reviewed by/Date	Reviewed by/Date Chromatograms with final report □																			