Port of Pasco Big Industrial Park Lagoons

SAMPLING AND ANALYSIS PLAN

A GUIDE FOR BIOSOLIDS SAMPLING

12/11/2020

Table of Contents

TABLE	OF CONTENTS	2
1.0	INTRODUCTION	3
2.0	SELECTING A LAB	3
3.0	BIOSOLIDS SAMPLING PROTOCOLS	4
3.1	Tools Required for Sample Collection	.4
3.2	SAMPLING FOR PERCENT SOLIDS, POLLUTANTS, VAR* & NUTRIENTS	.4
3.3	SAMPLING FOR FECAL COLIFORM - 7 SAMPLES METHOD - WAC 173-308-170	.4
4.0	BIOSOLIDS ANALYSIS	5
Та	able 4.1-Biosolids Analytical Methods, Preservation, & Holding Time	.5
5.0	SHIPPING SAMPLES	6
6.0	DATA ANALYSIS REVIEW	6

1.0 Introduction

An important part of the biosolids program is based upon valid analytical data derived from relatively small samples. The collection of a sample and its proper preservation during shipment is critical for obtaining reliable analytical results.

The concentration of nutrients, pathogens, and pollutants in biosolids are variable. In addition, pathogenic organisms are both time and temperature sensitive. Establishing a written protocol is important in order to collect samples that are both representative and consistent.

Analysis of priority pollutants (also referred to as 503 metals) and pathogens provide the basis for establishing Class B biosolids. Nutrient concentrations are used to determine agronomic rates when biosolids are land applied. The analysis of biosolids will follow the methods outlined in WAC 173-308-140. Samples shall be tested for the pollutants in section WAC 173-308-160.

This plan will describe what's involved in sampling biosolids in the lagoons. The intent is to be complete and concise so that sample collection, preservation, and shipment to a lab may be performed with little or no assistance outside this document.

2.0 Selecting a Lab

There are a variety of laboratories across the state of Washington you can choose to conduct analysis of biosolids. Analysis data for biosolids in the Washington program must meet some basic requirements:

 Labs conducting the analysis must be accredited by Ecology. This Ecology website provides accreditation details of labs and the methods for which they are accredited: <u>https://fortress.wa.gov/ecy/laboratorysearch/</u>.

The laboratories chosen for sample analysis are as follows:

Fecal coliform and Ammonia by SM 4500-NH3 B+C: Samples will be analyzed by the Benton-Franklin Health District Lab. This lab was chosen for its proximity to the site to satisfy the short hold time. The lab will be contacted prior to sampling to insure they have the proper testing supplies and media. Sludge samples will be transported by car directly to the lab after sampling.

Total Kjeldahl Nitrogen (TKN) by SM 4500 Norg B: Samples will be preserved in the field and stored in a cooler packed with ice. Sludge samples will be transported by car directly to Archer Analytical lab in Richland, Washington for analysis.

Organochlorine Pesticides, low-level Poly-Aromatic Hydrocarbons (PAHs), Target Analyte Metals (23 metals), Total Solids, Nitrates, and PCBs as Aroclors: Samples will be containerized and preserved as specified, packed in a cooler with ice, and shipped to OnSite Environmental, Inc., in Redmond, Washington for analysis.

Dioxins/Furans, PDBE: Samples will be containerized and preserved as specified, packed in a cooler with ice, and shipped to ALS Laboratories in Burlington, Ontario for analysis.

3.0 Biosolids Sampling Protocols

The following tools and methods will be utilized when collecting samples for laboratory analysis:

3.1 Tools Required for Sample Collection

- Nitrile gloves
- Hi-density polyethylene (HDPE) sample containers—contact your lab
- Ice chest
- Ice, "blue ice", or dry ice.
- Shipping containers (small ice chests often serve as the shipping container)
- Sharpie[®] pens, ink pens, labels for sample containers
- Chain-of-Custody forms
- Large spoon or other utensil for grab samples
- Stainless steel bowl or food-grade bucket
- "Mucksucker" sludge sampler

3.2 Sampling for Percent Solids, Pollutants, VAR* & Nutrients

- 1) Label and date the lab sample containers <u>before</u> you collect the samples;
- 2) Put on gloves;
- 3) Samples will be collected with a Mucksucker sampling device
- 4) Each lagoon to be divided into seven equal sections. A Mucksucker sludge judge device will be used to survey the quantity of biosolids material still in the lagoons and collect samples of the sludge blanket only. Seven samples will be collected for fecal testing. Large samples will be collected from each sampling location to use a portion from each of the seven samples to make the composite for testing the pollutants and the rest of the samples needed for testing. Samples will be placed on ice in the cooler after proper labeling, the chain of custody form completed immediately.

3.3 Sampling for Fecal Coliform - 7 Samples Method - WAC 173-308-170

- 1) This method requires the collection of 7 separate samples.
- 2) Samples will be analyzed by the Benton-Franklin Health District Lab. This lab was chosen for its proximity to the site to satisfy the short hold time. The lab will be contacted prior to sampling to insure they have the proper testing supplies and media. Sludge samples will be transported by car directly to the lab after sampling. Sample container will be labeled and dated prior to collecting the sample.
- 3) Put on gloves.
- 4) Each lagoon to be divided into seven equal sections. A Mucksucker sludge judge device will be used to survey the quantity of biosolids material still in the lagoons and collect samples of the

sludge blanket only. Seven samples will be collected for fecal testing. Collect a single sample and place it in the lab-supplied container.

- 5) Place the sample on ice in the cooler making sure it's properly labeled and immediately fill out the chain of custody form.
- 6) Deliver to the lab ASAP.

4.0 Biosolids Analysis

Table 4.1-Biosolids Analytical Methods, Preservation, & Holding Time

Constituent	Analysis Method	Temperatures	Hold-Time
Arsenic	SW-846 Method 6010, 6020, 7010, 7061	Cool to 39° F or 4° C	6 months
Cadmium	SW-846 Method 6010, 6020, 7000B, 7010	Cool to 39° F or 4° C	6 months
Copper	SW-846 Method 6010, 6020, 7000B, 7010	Cool to 39° F or 4° C	6 months
Lead	SW-846 Method 6010, 6020, 7000B, 7010	Cool to 39° F or 4° C	6 months
Molybdenum	SW-846 Method 6010, 6020, 7000B, 7010	Cool to 39° F or 4° C	6 months
Nickel	SW-846 Method 6010, 6020, 7000B, 7010	Cool to 39° F or 4° C	6 months
Selenium	SW-846 Method 6010, 6020, 7010, 7741	Cool to 39° F or 4° C	6 months
Zinc	SW-846 Method 6010, 6020, 7000B, 7010	Cool to 39° F or 4° C	6 months
Mercury	SW-846 Method 7470, 7471	Cool to 39° F or 4° C	6 months
Total Kjeldahl Nitrogen	SM 4500- N _{org} B or C	Cool to 39° F or 4° C	28 days
Nitrate – N	EPA 300.0 or 353.2	Cool to 39° F or 4° C	28 days
Ammonia – N	SM4500-NH $_3$ B+C, D,E, or G	Cool to 39° F or 4° C	28 days
Fecal Coliform	SM 9221 C or E	Cool to 39° F or 4° C	Analysis in 8 hours from time of collection.*
Fecal Coliform	EPA 1680 or 1681	Cool to 39° F or 4° C	Analysis within 24 hours.**
Salmonella	SM 9260 D	Cool to 39° F or 4° C	Analysis within 24 hours.
Total Solids	SM 2540 G	Cool to 39° F or 4° C	7 days

* Maximum of 6 hours for transport, 2 hours for lab processing.

** 24 hour hold times for Class A composted, Class B aerobically or anaerobically digested only. All others: Analysis within 8 hours. 6 hours maximum for transport, 2 hours for lab processing.

5.0 Shipping Samples

<u>Be sure</u> that the chain of custody form is accurate!</u> Place the completed Chain of custody form into a Ziploc[®] bag, seal, and place it into the shipping container. This keeps the paperwork legible when it arrives at the lab.

- 1) Ensure lids are sealed tightly and you have adequate ice. Hot and sunny afternoons can easily heat samples and damage them—samples must be kept cool at all times until reaching the lab.
- 2) Check necessary pickup and delivery times when shipping samples so as to minimize hold times.

6.0 Data Analysis Review

When biosolids lab analysis is returned it needs to be reviewed for accuracy and to confirm that biosolids are meeting standards. The following details should be checked:

- All priority pollutants are below WAC 173 308 160 table 3 threshold levels.
- Fecal coliform values are below required thresholds.
- Are there any error flags that indicate samples were analyzed outside of their hold times or other problems?
- Are any of the values outside their usual range indicating a possible laboratory error?

Any values outside of acceptable levels must be brought to the attention of your biosolids coordinator as soon as possible.

BIOSOLIDS SAMPLE ANALYSIS REPORT at Big Pasco Industrial Center Pasco, Washington

2/25/2021

Prepared for:

Port of Pasco 1110 Osprey Pointe Blvd, Suite 201 P.O. Box 769 Pasco, WA 99301

> Prepared by: Yancy Meyer Environmental Professional and Peter Trabusiner Environmental Engineer

Blue Mountain Environmental and Consulting Co., Inc. PO Box 545/125 Main St. Waitsburg, WA 99361 509-520-6519

PROJECT SUMMARY

Client:	Port of Pasco 1110 Osprey Pointe Blvd, Suite 201 P.O. Box 769 Pasco, WA 99301
Point of Contact:	Mr. Tracy Friesz
Property:	Big Pasco Industrial Center Pasco, Washington
Environmental Professional:	Yancy Meyer, E. P.
License Number/Expiration:	UST Decommissioning Supervisor #24070 Exp. 1/23/2022 WA Site Assessor #5226971
Project Number:	E2020/1204
Report Date:	February 25, 2021

Legal Description: Parcel 112420028, in the south half of Section 33, in Township 9 N., Range 30 E.W.M., and the northwest quarter of Section 3, in Township 8 N., and Range 30 E.W.M.

со	NT	ΕN	тs

PROJECT SUMMARY	.2
CONTENTS	.3
1.0 EXECUTIVE SUMMARY	.4
1.1 Action Summary:	.5
1.1 Action Summary: 1.2 Site Background: 1.3 Purpose: 1.4 Protocol:	.5
1.3 PURPOSE:	.5
2.0 GENERAL SITE OVERVIEW	.5
3.0 SAMPLING METHODOLOGY	.5
4.0 LABORATORY RESULTS	.6
5.0 CONCLUSIONS1	1
6.0 STATEMENT OF THE ENVIRONMENTAL PROFESSIONALS	12
7.0 REPORT LIMITATIONS1	13

APPENDIX:

Laboratory Reports

Site Location Map

Sample Location Map

Site Photographs

1.0 EXECUTIVE SUMMARY

On January 12, 2021, Blue Mountain Environmental and Consulting Co., Inc. (BMEC) conducted sampling of biosolids in the two lagoons (see Figure 2: Sample Location Map), in the Big Pasco Industrial Center in southeast Pasco, Washington (hereafter referred to as the "Site"). A Site Vicinity Map is included as Figure 1. Biosolids sampling and the site assessment were performed by Yancy Meyer, Environmental Professional and employee of BMEC, of Waitsburg, Washington.

7 Fecal Coliform samples were obtained from each lagoon (total of 14 samples), and one composite sample was taken from each lagoon (total of 2 composite samples). Fecal Coliform samples were submitted the same day to the Benton-Franklin Health District laboratory in Kennewick, Washington to be analyzed for fecal coliform by SM-9221-C, E1. Composite samples were sent to OnSite Environmental in Redmond, Washington, to be analyzed for Poly-Aromatic Hydrocarbons (PAHs) by Method 8270D/SIM, PCBs by Method 8082A, Organochlorine Pesticides by method 8081B, Target Analyte Metals by EPA Method 6061D/6020B/7471B, and nitrates by EPA Method 353.2. Composite samples were sent to Cascade Analytical Lab in Wenatchee, Washington to be analyzed for Total Kjeldahl Nitrogen (TKN) by SM 4500 NorgC and Ammonia by SM 4500-NH3G. Composite samples were sent to ALS Laboratory in Burlington Ontario, Canada to be analyzed for Dioxins/Furans by EPA 1613 and PDBE by EPA 1614. See Section 4.0 for sample analysis results.

Both lagoons were sampled at the site. The south lagoon had an average sludge depth of 2 feet, and an estimated sludge volume of 62,400 cubic feet. The north lagoon had an average sludge depth of one foot, and an estimated sludge volume of 32,130 cubic feet.

BMEC submitted the sample plan on 12/11/2020, which included the analyses contained in Table 4.1: Biosolids Analytical Methods (see Page 4 of the Sampling and Analysis Plan) and Fecal Coliform, 7 samples method, WAC 173-308-170.

Sample results from both lagoons for the analyses listed above indicate no contaminants above CLARC cleanup screening levels, as well as low fecal coliform and nitrogen results.

DOE requested the biosolids also be analyzed for Dioxins, Furans, and PBDE.

Sample analysis for these contaminants of concern (COCs) in the north lagoon indicate dioxins and furans are below Level A cleanup screening levels. PBDE levels in the north lagoon were either non-detect or extremely low (0.00000026 to 0.000152 mg/kg) It is the opinion of BMEC that the north lagoon biosolids do not contain any COCs above cleanup screening levels, and the plan to backfill this lagoon with clean backfill material does not pose a threat to human health or the environment.

Sample analysis of the of the south lagoon for dioxins and furans indicate these biosolids exceed CLARC cleanup screening levels for both dioxins and furans (PBDE cleanup screening levels were not readily available). Although these biosolid contaminants exceed cleanup screening levels, it is the opinion of BMEC that the proposed plan to backfill the lagoon with clean backfill material

will effectively create a cap over the biosolids and prevent exposure to the environment and allow for biological attenuation over time. The lagoon is isolated from the surrounding area and the Columbia River, so a release to navigable waters is very unlikely. The lagoon is in an industrial area and the planned use of the backfilled site is vehicle parking. No other development is planned for this site.

A site location map, sample location map, site pictures, and a copy of the laboratory reports and chain-of-custodies are included in the Appendix.

1.1 Action Summary:

BMEC supervised the biosolids sampling on January 12, 2021, as the Environmental Consultant for the client. Biosolid sampling was conducted at seven locations in each of the two lagoons at the site, designated SL for South Lagoon and NL for North Lagoon (see Sample Location Map).

1.2 Site Background:

The Port of Pasco contracted with BMEC to conduct an investigation of the biosolids at the site as part of the Biosolids Permit Application.

1.3 Purpose:

To evaluate biosolids at the site to determine best management practices.

1.4 Protocol:

The procedure for this site investigation was to perform in practical and reasonable steps, employing currently available technology, existing regulations, and generally acceptable engineering practices, an investigation to ascertain the possibility, presence, or absence of the chemicals of concern as it was required by the Scope of Work.

2.0 GENERAL SITE OVERVIEW

Blue Mountain Environmental Consulting, Inc. (BMEC), was retained by Port of Pasco to conduct an investigation of the lagoons including biosolids sampling at the site. The site investigation was conducted on January 12, 2021, and the weather was partly cloudy with temperatures in the 40s.

3.0 Sampling Methodology

Biosolids sampling was conducted by Mr. Meyer. Samples were collected using a muck-sucker sampling device. Samples were placed in the designated containers for that analysis, and stored in a cool environment (4 degrees C) until released, with a chain-of-custody, to the laboratory. The sampling tools were decontaminated between samples or disposed of.

4.0 Laboratory Results

	CLARC (b)	CLARC (b)	CLARC (b)	SL-C	NL-C
	Method A Unrestricted Land Use	Method B Non- Cancer	Method B Cancer		
PAHs (EPA 8270E/SIM)					
Naphthalene	5.0	NL	NL	< 0.029	< 0.011
2-Methylnaphthalene	NL	320	34	< 0.029	< 0.011
1-Methylnaphthalene	NL	5600	NL	< 0.029	< 0.011
Acenaphthylene	NL	NL	NL	< 0.029	< 0.011
Acenaphthene	NL	4800	NL	< 0.029	< 0.011
Fluorene	NL	3200	NL	< 0.029	< 0.011
Phenanthrene	NL	NL	NL	< 0.029	< 0.011
Anthracene	NL	24000	NL	< 0.029	< 0.011
Fluoranthene	NL	3200	NL	< 0.029	< 0.011
Pyrene	NL	2400	NL	< 0.029	< 0.011
Benzo[a]anthracene	2.0 TEF	NL	NL	< 0.029	< 0.011
Chrysene	2.0 TEF	NL	NL	< 0.029	< 0.011
Benzo[b]fluoranthene	2.0 TEF	NL	NL	< 0.029	< 0.011
Benzo(j,k)fluoranthene	2.0 TEF	NL	NL	< 0.029	< 0.011
Benzo[a]pyrene	2.0 TEF	24.0	0.19	< 0.029	< 0.011
Indeno[1,2,3- cd]pyrene	2.0 TEF	NL	NL	< 0.029	< 0.011
Dibenz[a,h]anthracene	2.0 TEF	NL	NL	< 0.029	< 0.011
Benzo[g,h,i]perylene	2.0 TEF	NL	NL	< 0.029	< 0.011

SAMPLES SL-C AND NL-C WERE ANALYZED FOR PAHS BY EPA METHOD 8270E/SIM

For PCBs by EPA 8082A

	CLARC (b)	CLARC (b)	SL-C	NL-C
	Method B	Method B		
	Non-cancer	cancer		
PCBs (EPA 8082A)				
Aroclor 1016	5.6	14.0	< 0.22	< 0.081
Aroclor 1221	NL	NL	< 0.22	< 0.081
Aroclor 1232	NL	NL	< 0.22	< 0.081
Aroclor 1242	NL	NL	< 0.22	< 0.081
Aroclor 1248	NL	NL	< 0.22	< 0.081
Aroclor 1254	1.6	0.5	< 0.22	< 0.081
Aroclor 1260	NL	0.5	< 0.22	< 0.081

-	CLARC (B) SOIL	CLARC (B) SOIL	CLARC (B) SOIL	SL-C	NL-C
	METHOD A – STANDARD UNRESTRICTED LAND USE	METHOD B – Carcinogen	METHOD B – Non- Carcinogen		
ORGANOCHLORINE PESTICIDES (EPA 8081A)					
Alpha-BHC	ND	160	NB	<22	<8.1
Gамма-BHC	NS	NS	NS	<22	<8.1
Beta-BHC	ND	560	NR	<22	<8.1
Delta-BHC	ND	NR	NR	<22	<8.1
HEPTACHLOR	ND	220	40000	<22	<8.1
Aldrin	ND	59	2400	<22	<8.1
HEPTACHLOR EPOXIDE	ND	110	1000	<22	<8.1
GAMMA-CHLORDANE	ND	2900	40000	<43	<16
ALPHA-CHLORDANE	ND	2900	40000	<43	<16
4,4'-DDE	ND	2900	NR	77	<16
ENDOSULFAN I	ND	NR	480000	<22	<8.1
DIELDRIN	ND	63	4000	<43	<16
Endrin	ND	NR	24	<43	<16
4,4'-DDD	ND	4200	NR	<43	<16
ENDOSULFAN II	ND	NR	480000	<43	<16
4,4'-DDT	3000	2900	40000	<43	<16
ENDRIN ALDEHYDE	NS	NS	NS	<43	<16
METHOXYCHLOR	ND	NR	400000	<43	<16
ENDOSULFAN SULFATE	NS	NS	NS	<43	<16
ENDRIN KETONE	NS	NS	NS	<43	<16
Toxaphine	ND	910	NR	<220	<81

For Organochlorine Pesticides by EPA Method 8081B:

For Total Solids:

SL-C	NL-C
22.9%	49.5%

For Total Kjeldahl Nitrogen by SM 4500 NorgC, Nitrate by EPA 353.2, and Ammonia by SM 4500-NH3G:

Nitrogen	CLARC cleanup screening levels	SL-C	NL-C
Total Kjeldahl Nitrogen	NL	6200	836
Nitrate	130000	<2.2	<0.81
Ammonia	NL	43.2	8.69

Sample	Fecal
	Coliform
	gram dry
	weight
SL-1	1.17
SL-2	0.66
SL-3	1.52
SL-4	4.1
SL-5	19.9
SL-6	14.1
SL-7	2.78
NL-8	5.67
NL-9	2.76
NL-10	2.23
NL-11	0.33
NL-12	0.31
NL-13	1.29
NL-14	7.68

For Fecal Coliform by SM-9221-C,E1:

SL-C and NL-C were analyzed Dioxins/Furans by EPA 1613: TEF methodology must be applied when determining compliance with cleanup and remediation levels established for furans. Although there may be toxicity values available in IRIS for selected dioxins and furans, CLARC no longer con cleanup levels for these individual chemicals but requires the application of the TEF methodology. When using the minimum, the compounds listed below must be analyzed for and included in the calculations.

	Iviati 12	Contraction Contraction	· mg/ ng						
	Dioxins	2,3,7,8- Tetrachloro dibenzo-p- dioxin	1,2,3,7,8- Pentachloro dibenzo-p- dioxin	1,2,3,4,7,8- Hexaachloro dibenzo-p- dioxin	1,2,3,6,7,8- Hexaachloro dibenzo-p- dioxin	1,2,3,7,8,9- Hexaachloro dibenzo-p- dioxin	1,2,3,4,6,7,8- Hexaachloro dibenzo-p- dioxin	1,2,3,4,6,7,8, 9- Octaachloro dibenzo-p- dioxin	TOTAL TEF
SAMPLE	TEF	1	1	0.1	0.1	0.1	0.01	0.0003	
SL-C	Mg x TEF	0.0000087	0.0000426	0.0000144	0.0000331	0.0000425	0.000126	0.0000309	0.0011082
NL-C	Mg x TEF	0.0000001	0.000000126	0.00000025	0.00000083	0.00000089	0.00000342	0.00000081	0.00000846

Matrix: Soil Units: mo/Ko

	WAC-173-340-900	SAMPLE	SL-C	NL-C
	TABLE 749-2, INDUSTRIAL OR	MG/KG		
	COMMERCIAL SITE			
DIOXINS	0.000005 MG/KG	TEF	0.0011082	0.00000846

Matrix: Soil Units: mg/Kg

	Furans	2,3,7,8- Tetrachloro dibenzofuran	1,2,3,7,8- Pentachloro dibenzofuran	2,3,4,7,8- Pentachloro dibenzofuran	1,2,3,4,7,8- Hexaachloro dibenzofuran	1,2,3,6,7,8- Hexaachloro dibenzofuran	2,3,4,6,7,8- Hexaachloro dibenzofuran	1,2,3,7,8,9- Hexaachloro dibenzofuran	1,2,3,4,6,7,8- Heptachloro dibenzofuran	1,2,3,4,7,8,9- Heptachloro dibenzofuran	1,2,3,4,6,7,8,9- Octaachloro dibenzofuran	TOTAL TEF
SAMPLE	TEF	0.1	0.03	0.3	0.1	0.1	0.1	0.1	0.01	0.01	0.0003	
SL-C	Mg x TEF	0.00000056	0.00000384	0.00000396	0.0000064	0.0000064	0.000028	0.00000218	0.0000224	0.00000202	0.000001818	0.0011082
NL-C	Mg x TEF	0.0000000423	0.0000000003	0.000000048	0.00000016	0.00000028	0.00000004	0.000000016	0.000000587	0.000000032	0.0000000582	0.00000258

	WAC-173-340-900	SAMPLE	SL-C	NL-C
	TABLE 749-2, Industrial or Commercial Site	MG/KG		
FURANS	0.000003 MG/KG	TEF	0.000066778	0.00000258

and PDBE by EPA 1614. Please refer to the laboratory results in the Appendix for a complete listing of these results.

	WAC 173-308-160	CLARC (b)	SL-C	NL-C
	TABLE 3: POLLUTANT CONCENTRATION LIMITS	SOIL METHOD B NON-CANCER		
Aluminum	NL	80000	8900	9500
Antimony	NL	32	<22	<8.1
Arsenic	41	24	14	<4.1
Barium	NL	16000	180	81
Beryllium	NL	160	<2.2	< 0.81
Cadmium	39	80	4.4	< 0.81
Calcium	NL	NL	120000	9400
Chromium	NL	240	41	14
Cobalt	NL	24	7.1	5.1
Copper	1500	3200	99	12
Iron	NL	56000	20000	20000
Lead	300	250 (Method A)	53	<8.1
Magnesium	NL	NL	5700	5300
Manganese	NL	3700	210	190
Mercury	17	2.0 (Method A)	<1.1	<0.41
Nickel	420	NL	14	12
Potassium	NL	NL	1900	1900
Selenium	100	400	<11	<4.1
Silver	NL	400	130	<1.6
Sodium	NL	NL	640	310
Thallium	NL	NL	<4.3	<1.8
Vanadium	2800	400	81	49
Zinc	2800	24000	420	46

And Target Analyte Metals by EPA Method 6061D/6020B/7471B:

 $NL-Not\ Listed$

Notes:

(a) Samples taken on January 12, 2021

(b) CLARC is a compendium of technical information related to calculating cleanup levels under Washington's Cleanup Rule, the Model Toxics Control Act (MTCA) Regulation, Chapter 173-340 WAC.

A copy of the laboratory analytical report and accompanying chain-of-custody documentation is included in the Appendix.

5.0 Conclusions

Both lagoons were sampled at the site. The south lagoon had an average sludge depth of 2 feet, and an estimated sludge volume of 62,400 cubic feet. The north lagoon had an average sludge depth of one foot, and an estimated sludge volume of 32,130 cubic feet.

BMEC submitted the sample plan on 12/11/2020, which included the analyses contained in Table 4.1: Biosolids Analytical Methods (Page 4 of the Sampling and Analysis Plan) and Fecal Coliform, 7 samples method, WAC 173-308-170.

Sample results from both lagoons for the analyses listed above indicate no contaminants above CLARC cleanup screening levels, as well as low fecal coliform and nitrogen results.

DOE requested the biosolids also be analyzed for Dioxins, Furans, and PBDE.

Sample analysis for these contaminants of concern (COCs) in the north lagoon indicate dioxins and furans are below Level A cleanup screening levels. PBDE levels in the north lagoon were either non-detect or extremely low (0.00000026 to 0.000152 mg/kg) It is the opinion of BMEC that the north lagoon biosolids do not contain any COCs above cleanup screening levels, and the plan to backfill this lagoon with clean backfill material does not pose a threat to human health or the environment.

Sample analysis of the of the south lagoon for dioxins and furans indicate these biosolids exceed CLARC cleanup screening levels for both dioxins and furans (PBDE cleanup screening levels were not readily available). Although these levels exceed cleanup screening levels, it is the opinion of BMEC that the proposed plan to backfill the lagoon with clean backfill material will effectively create a cap over the biosolids and prevent exposure to the environment and allow for biological attenuation over time. The lagoon is in an industrial area and the planned use of the backfilled site is vehicle parking. No other development is planned for this site.

A site location map, sample location map, site pictures, and a copy of the laboratory reports and chain-of-custodies are included in the Appendix.

6.0 Statement of the Environmental Professionals

Statement of Quality Assurance

The objective of this Environmental Site Assessment was to ascertain the potential presence or absence of environmental problems that could impact the subject property, as delineated by the Scope of Work. The procedure was to perform reasonable steps in accordance with the existing regulations, currently available technology, and generally accepted engineering practices in order to accomplish the stated objective.

To the best of my knowledge, this site investigation has been performed in compliance with BMEC's Standard Operating Procedures protocol for Environmental Site Assessments.

Blue Mountain Environmental Consulting, Inc.

P Trabusiner

Peter Trabusiner, Engineer

Statement of Quality Control

I have performed this Assessment in accordance with generally accepted environmental practices and procedures, as of the date of this report. I have employed the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental professionals practicing in this area. The conclusions contained within this Assessment are based upon site conditions I readily observed or which were reasonably ascertainable and present at the time of the site inspection.

The conclusions and recommendations stated in this report are based upon personal observations made by employees of BMEC and upon information provided by others. I have no reason to suspect or believe that the information provided by others is inaccurate.

Blue Mountain Environmental Consulting, Inc.

Yancy Meyer, Environmental Professional

7.0 Report Limitations

The enclosed site assessment has been performed for the exclusive use by the Port of Pasco, or agents specified by him, for the transaction at issue concerning the subject property in Pasco, Washington.

The purpose of an environmental investigation is to evaluate potential or actual effects of past or current practices on a given site. In performing an environmental investigation, a balance must be struck between reasonable inquiry into environmental issues and an exhaustive analysis of every conceivable issue of possible concern. This environmental assessment contains BMEC opinion regarding environmental issues of concern and/or additional issues that may need to be addressed. In rendering our professional opinion, BMEC warrants that the services provided within the scope of this assessment were performed, within the limits described, in accordance with generally accepted environmental consulting principles and practices. No other warranty, expressed or implied, is made. The following paragraphs describe the assumptions and standard parameters under which such opinion is rendered.

Any opinions and/or recommendations presented in this report apply to site conditions existing at the time of performance of services. BMEC is unable to report on or accurately predict events that may affect the site after performance of services, whether occurring naturally or caused by human forces. BMEC assumes no responsibility for conditions BMEC did not investigate, or conditions not generally recognized as environmentally unacceptable at the time services were performed.

Where subsurface work was performed, BMEC professional opinions are based in part on the interpretation of data from discrete sample locations that may not represent actual conditions at the non-sampled locations.

Except where there is expressed concern of our client, or where specific environmental contaminants have previously been reported by others, naturally occurring toxic substances, or contaminant concentrations not of current environmental concern, may not be addressed in this document.

No assessment is thorough enough to exclude the presence of hazardous materials at a given site. Therefore, if specific hazardous materials have not been identified during this assessment, the lack of such identifications should not be construed as a guarantee of the absence of hazardous materials, but merely as the result of services performed within the scope, limitations, and cost of work done.

BMEC is not responsible for the effects of changes in applicable environmental standards, practices, or regulations after the performance of services.

Services provided for this assessment were performed in accordance with BMEC's agreement and understanding with our client, which may not be fully disclosed in this report. Opinions and/or recommendations are intended for the client, purpose, site, location, time frame, and project parameters indicated.

This report was prepared solely for the use of our client and should be reviewed in its entirety; BMEC is not responsible for subsequent separation, detachment, or partial use of this document. Any reliance on this report by a third party shall be at such party's sole risk.

© 2020 Google

4 mi Badgor Isla

SAMPLING SOUTH LAGOON

SAMPLING SOUTH LAGOON

SAMPLING NORTH LAGOON

SAMPLING NORTH LAGOON

January 23, 2021

BMEC P.O. Box 545 Waitsburg, WA 99361

To whom it may concern:

The following results are from samples submitted to our laboratory for analysis on January 12, 2021. All analyses were performed using methods outlined in Standard Methods for the Examination of Water and Wastewater, 22nd edition. If you need additional information regarding these methods or results, please contact Jillian Legard at (509) 460-4206.

SAMPLE	DATE	Lab #	% dry Wt. Solids	FECAL COLIFORM / ml	FECAL COLIFORM / gm dry wt.	METHOD
Biosolids SL-1 09:15	01-12-21	06200227	34.2	0.40	1.17	SM-9221-C,E1
Biosolids SL-2 09:28	01-12-21	06200228	30.1	0.20	0.66	SM-9221-C,E1
Biosolids SL-3 09:40	01-12-21	06200229	25.6	0.45	1.52	SM-9221-C,E1
Biosolids SL-4 09:51	01-12-21	06200230	31.5	1.3	4.1	SM-9221-C,E1
Biosolids SL-5 10:05	01-12-21	06200231	24.8	4.93	19.9	SM-9221-C,E1
Biosolids SL-6 10:10	01-12-21	06200232	23.3	3.29	14.1	SM-9221-C,E1
Biosolids SL-7 10:20	01-12-21	06200233	28.4	0.79	2.78	SM-9221-C,E1
Biosolids NL-8 09:20	01-12-21	06200234	58.0	3.28	5.67	SM-9221-C,E1
Biosolids NL-9 09:28	01-12-21	06200235	50.0	1.38	2.76	SM-9221-C,E1
Biosolids NL-10 09:35	01-12-21	06200236	58.2	1.30	2.23	SM-9221-C,E1
Biosolids NL-11 09:41	01-12-21	06200237	60.0	0.20	0.33	SM-9221-C,E1
Biosolids NL-12 09:53	01-12-21	06200238	65.0	0.20	0.31	SM-9221-C,E1
Biosolids NL-13 10:05	01-12-21	06200239	61.4	0.79	1.29	SM-9221-C,E1

ENVIRONMENTAL HEALTH & COMMUNITY HEALTH CENTERS

Biosolids NL-14 10:10	01-12-21	06200240	59.3	4.56	7.68	SM-9221-C,E1
-----------------------	----------	----------	------	------	------	--------------

Sincerely,

Allin Jegreed

Jillian Legard Laboratory Supervisor

CASCADE ANALYTICAL A EUROFINS COMPANY 1-800-545-4206	(509) 452-7707 Clie Fax: (509) 452-7773 Accou 1008 W. Ahtanum Rd. Accou Union Gap, WA 98903 Sampl PO Numb	er:
Anal	ytical Ser	rvices Report
Blue Mountain Enviro PO Box 545 Waitsburg, WA 99361		Report Date: 1/27/21
Laboratory Number: 2 Sample Identificatio		Date Received: 1/13/21 Date Sampled: 1/12/21
Test Requested Reg	sults Units RL	Method Date Analyzed Flags
Kjeldahl Nitrogen/Solid 620(Ammonia Solid 4:	0 mg/kg 3.2 mg/kg	SM 4500Norg C 1/26/21 SM 4500-NH3 G 1/14/21
makes no warranty of any kind. The client only to the items tested and the sample(s client as a result of use of the test res Eurofins-Cascade Analytical for analysis. MONTH WILL NOT BE OUR RESPONSIBILITY. THO OF AFTER SIX WEEKS.	es established by EPA, AOAC, APH assumes all risk and liability : as received by the laboratory. sults shall be limited to a sum ed PLEASE REVIEW YOUR DATA IN A TI	A, ASTM, and AWWA. Eurofins-Cascade Analytical from the use of these results. Results relate Eurofins-Cascade Analytical liability to the qual to the fees paid by the client to MELY MANNER. DATA GAPS OR ERRORS AFTER ONE FA FOR SEVERAL YEARS, SAMPLES ARE DISPOSED

CASCADE ANALYTICAL A EUROFINS COMPANY 1-800-545-4206	Fax: (5 3019 G Wenato (509) 4 Fax: (5 1008 W Union (62-1888 09) 662-818 5. S. Center chee, WA 98 52-7707 09) 452-777 V. Ahtanum Gap, WA 98	Road 3801 Clie 73 Accou Rd. SampJ 903 SampJ PO NumB	nt: 21869 Ler: Yansy Der:		
Blue Mountain Env. PO Box 545 Waitsburg, WA 995	ironment		. Se	rvicee R	s Report	*f
Laboratory Number Sample Identifica					e Received: 1/13/21 te Sampled: 1/12/21	
Test Requested	Results	Units	RL	Method	Date Analyzed Flags	enconception of
Total Percent Solids Kjeldahl Nitrogen/Solid Ammonia Solid	49.5 836. 8.69			SM 4500Nor		
Approved By Name: Kistop Function: Business Unit Eurofins-Cascade Analytical uses prod makes no warranty of any kind. The ci only to the items tested and the sam client as a result of use of the test Eurofins-Cascade Analytical for analy MONTH WILL NOT BE OUR RESPONSIBILITY. OF AFTER SIX WEEKS.	edures establ lient assumes ble(s) as rece results sha) vsis. PLEASE F	lished by Ek all risk ar eived by the ll be limite REVIEW YOUR	PA, AOAC, APH ad liability = laboratory. ed to a sum e DATA IN A TI ANALYTICAL DA	from the use of th Eurofins-Cascade qual to the fees p MELY MANNER. DATA	Eurofins-Cascade Analytical ese results. Results relate Analytical liability to the aid by the client to GAPS OR ERRORS AFTER ONE	end and binds

Soling S.S. Centler Rd. Wenalchee, WA 98801 Soling Start Titles Soling If the soling Start Titles Soling CASCADE ANALYTICAL, INC. Soling Colspan="2">Soling Colspan="2"Soling Colspan="2">Soling Colspan="2"Soling Colspan="2"Soling Colspan="2"Soling Colspan="2">Soling Colspan="2"Soling Colspan="2"Soling Colspan="2"Soling Colspan="2">Soling Colspan="2"Soling Colspan="2"Soling Colspan="2"Soling Colspan="2">Soling Colspan="2"Soling Colspa	17		*							
Solid G.S. Center Rd. Wenatchee, WA 9801 International Solution Sol			13		SP	ECIAL	. SERVICE	ORDER	FOF	SW
Wanatchee, WA 98801 International State (State 1) CLEENT NAME/ADDRESS International State (State 1) International State (State 1) International State (State 1) International State (State 1) CLEENT NAME/ADDRESS International State (State 1) International State (State 1) International State (State 1) Balance State (State 1) International State (State 1) International State (State 1) International State (State 1) Balance State (State 1) International State (State 1) International State (State 1) International State (State 1) Balance State (State 1) International State (State 1) International State (State 1) International State (State 1) Balance State (State 1) International State (State 1) International State (State 1) International State (State 1) Balance State (State 1) International State (State 1) International State (State 1) International State (State 1) Balance State (State 1) International State (State 1) International State (State 1) International State (State 1) Balance State (State 1) International State (State 1) International State (State 1) International State (State 1) Balance III International State (State 1) Internatin State 1) I		Å		2010 C.S. Contor Rd	SEND RES			SAMPLE	# 1 :	2 3 4
Image: State of the state	Å				1)Client 2)	Billing 3)Both	·····			
CASEADE ANALYTICAL, INC. Fax: (609) 682-8183 1-800-545-4206 Inclusted Control Contextere Control Control Contexte					1)Food 2)	Water 3)Soil 4)Plant Tissue 5)Other			<u>></u>
LASLADE AWALYTSLAL, INC. 1-800-545-4206 MARCY MEYEL ICLIENT NAME/ADDRESS BILLING NAME/ADDRESS SAME BLUE MOUNTRIN ENVIROLATION AND SCIENTRIC AND BILLING NAME/ADDRESS SAME MARCY MEYEL HONE NO. SAME PO BOX 565/12.5 Main S. Consistering (MARCY MEYEL) HONE NO. MARCY MEYEL HONE NO. PHONE NO. 509-52.0 - 4416 EMAIL GONDELETED BEFORE ANALYSIS WILL BE PERFORMED. RELINQUISHED BY (Signature) Image Devidence of the second s			اللوثريرا الف	Eav: (500) 662-8183	1)Client 2)	Field Rep. 3)Q	3			
CLENT MALENDELOS SAMPLE I.D. SAMPLE I.D. SAMPLE I.D. SAMPLE I.D. SAMPLE I.D. Sample Date Sample Date Sample Date Sample Date	l.	-As	CADE ANALY I ILAL,				ANGY MEY	IEL		
BLUE MOUNTAIN ENVIRONMENTAL AND POBOX 55/125 MAIN 55 CONSULTING (ONE) HAITSBURG, WA 99361 PHONE NO. 509-520-4416 PHONE NO. EMAIL EMAIL EMAIL FORM MUST BE COMPLETED BEFORE ANALYSIS WILL BE PERFORMED. RELINQUISHED BY (Signature) DATE RECEIVED BY (Signature) DATE SAMPLE ID. Sample Date Sample Date	17				BILLING NAM	E/ADDRESS		2002/1011/2010/1011/1012/1012/1012/2010/2010/2010/2010/2010/2010/2010/2010/2010/2010/2010/2010/2010/2010/2010/		
Prove 545/125 Manu S. Consummer, Balled Marrs Buec, MA. 99361 PHONE NO. 509-520-4416 EMAIL EMAIL Grand Songer Construction EMAIL University of the Difference of the Second Solution Received Solution Phone NO. Solution EMAIL University of Solution Image: Solution of Solution Image: Solution of Solution Image: Solution of Solution of Solution Image: Solution of Solutio	~						SAME			
WARTS BUCG, WA 99361 PHONE NO. PHONE NO. 509-520-4416 EMAIL Umeuge C & bomec WW.Com EMAIL EMAIL PORM MUST BE COMPLETED BEFORE ANALYSIS WILL BE PERFORMED. RELINQUISHED BY: (Signature) 1 DATE RELINQUISHED BY: (Signature) 1 DATE RELINQUISHED BY: (Signature) 1 DATE RECEIVED BY: (Signature) 1 DATE Values MEXER Phone (Printed) TIME (Printed) TIME (Printed) RECEIVED BY: (Signature) DATE	-	<u>R</u> L	UE MOUNTAIN EN	VIRONIMENTAL AND				~~~~~~		
PHONE NO. 509-520-4416 PHONE NO. EMAIL Umerge C & Domec visul. Com EMAIL FORM MUST BE COMPLETED BEFORE ANALYSIS WILL BE PERFORMED. EMAIL RELINQUISHED BY: (Signature) [] DATE RELINQUISHED BY: (Signature) [] DATE RELINQUISHED BY: (Signature) [] DATE RELINQUISHED BY: (Signature) [] DATE RELINQUISHED BY: (Signature) [] DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE (Printed) TIME (Printed) T RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE (Printed) TIME (Printed) T RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D D RECEIVED BY: (Signature) IMALYSIS REQUESTED T MALYSIS REQUESTED Sample Date Sample Date Sample Date SAMPLE LD. Sample Date Sample Date Sample Date Sample Date Sample T SAMPLE LD. Sample Date <	ļ.									
Image: Advice the second se		V			PHONE NO					
FORM MUST BE COMPLETED BEFORE ANALYSIS WILL BE PERFORMED. RELINQUISHED BY: (Signature) 1 DATE RELINQUISHED BY: (Signature) 3 D Image: Relinquished BY: (Signature) 1 DATE RELINQUISHED BY: (Signature) 3 D Image: Relinquished BY: (Signature) 1 DATE RELINQUISHED BY: (Signature) 3 D Image: Relinquished BY: (Signature) 1 DATE RELINQUISHED BY: (Signature) 3 D Image: Relinquished BY: (Signature) 1 DATE RECEIVED BY: (Signature) 1 T Image: Relinquished BY: (Signature) 1 DATE RECEIVED BY: (Signature) 1 D RECEIVED BY: (Signature) 1 DATE RECEIVED BY: (Signature) 1 D Image: Relinquished BY: (Signature) 1 DATE RECEIVED BY: (Signature) 1 D Image: Relinquished BY: (Signature) 1 DATE RECEIVED BY: (Signature) 1 D Image: Relinquished BY: (Signature) 1 T T T D Image: Relinquished BY: (Signature) 1 T T T D Image: Relinquished BY: (Signature) 1 T T T T Image: Relinquished BY: (Signature) 1 T T T T T </td <td></td> <td></td> <td>509-520-4</td> <td>416</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Mandoon Laboration and American Social</td>			509-520-4	416						Mandoon Laboration and American Social
RELINQUISHED BY: (Signature) 1 DATE RELINQUISHED BY: (Signature) 3 D. (Printed) TIME (Printed) TIME (Printed) TIME (Printed) TIME (Printed) TIME (Printed) TIME RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) TIME (Printed) TIME (Printed) TIME (Printed) TIME Sample Date Sample Time COMMENT Sample Date Sample Date Sample Date Sample Time SAMPLE I.D. Sample Date Sample Date Sample Time ANALYSIS REQUESTED COMMENT Sample Date Sample Date <t< td=""><td>Г</td><td>EN</td><td>IAIL Ymeyer</td><td>@ bmec.ww.com</td><td>EMAIL</td><td></td><td></td><td></td><td></td><td></td></t<>	Г	EN	IAIL Ymeyer	@ bmec.ww.com	EMAIL					
RELINQUISHED BY: (Signature) 1 DATE RELINQUISHED BY: (Signature) 3 D. (Printed) TIME (Printed) TIME (Printed) TIME (Printed) TIME (Printed) TIME (Printed) TIME RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) D RECEIVED BY: (Signature) TIME (Printed) T T RECEIVED BY: (Signature) TIME (Printed) T T Q1 - C Sample Date Sample Date Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date Sample Date<	F	OR	M MUST BE COMPLETED E	JEFORE ANALYSIS WILL BE PI	ERFORMED	•		a ann an tha ann an tha ann ann ann ann ann ann ann ann ann a		
VANENT MENER Barbert (B302) RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE Performedy 13/21 Image: Standard Stand	Γ	RELI	NQUISHED BY: (Signature) 1	DATE RELINQUISHED BY: (Sign	nature) 2	DATE	RELINQUISHED B	Y: (Signature) 3		DATE
VANENT MENER Barbert (B302) RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE Performedy 13/21 Image: Standard Stand		1								
RECEIVED BY: (Signature) DATE RECEIVED BY: (Signature) DATE Provide 13/21 Image: Sample Date Image: Sample Date Image: Sample Date (Printed) TIME (Printed) TIME (Printed) Image: Sample Date 21 - SAMPLE I.D. SL - C Sample Date Sample Date 21 - SAMPLE I.D. SL - C Sample Date Sample Date 21 - SAMPLE I.D. SL - C Sample Date Sample Date 22 - SAMPLE I.D. N L - C Sample Date Sample Date 23 - COMMENT Sample Date Sample Date Sample Date 3 - ANALYSIS REQUESTED T/K M Aixi D Ami Mon I A COMMENT Sample Date Sample Date Sample Time 3 - ANALYSIS REQUESTED Sample Date Sample Time		(Print	ed)	TIME (Printed)		TIME	(Printed)			TIME
Non-Top Sample Date Sample Date Sample Date 21- SAMPLE I.D. SL - C 22- SAMPLE I.D. SL - C 23- SAMPLE I.D. Sample Date 24- SAMPLE I.D. Sample Date 25- SAMPLE I.D. Sample Date 26- SAMPLE I.D. Sample Date 27- SAMPLE I.D. Sample Date 28- SAMPLE I.D. Sample Date 3 Sample Date Sample Date			VANCY MEVER	Barton	118302					
(Printed) TIME (Printed) TIME (Printed) TIME (Printed) T R. Kennedy 12:32 I2:32 Image: Sample Date Sample Date Sample Date Sample Time 21- SAMPLE I.D. SL - C Image: Sample Date Sample Date Sample Date Sample Date 208000 1 ANALYSIS REQUESTED T K M A Maio A Minion (A COMMENT Sample Date T K M A Minion (A COMMENT Sample Date Sample Date Sample Date SAMPLE I.D. N L - C Vit Z - Z 1 Z 1 SAMPLE I.D. Sample Date Sample Date Sample Date 3 ANALYSIS REQUESTED T K M A Minion (A 3 ANALYSIS REQUESTED Sample Date Sample The 3 ANALYSIS REQUESTED Sample Date Sample The 4 ANALYSIS REQUESTED Sample Date Sample The	Ī	REC	EIVED BY: (Signature)	DATE RECEIVED BY: (Signature	e)	DATE	RECEIVED BY: (S	ignature)		DATE
(Printed) TIME (Printed) TIME (Printed) TIME (Printed) T R. Kennedy 12:32 I2:32 Image: Sample Date Sample Date Sample Date Sample Time 21- SAMPLE I.D. SL - C Image: Sample Date Sample Date Sample Date Sample Date 208000 1 ANALYSIS REQUESTED T K M A Maio A Minion (A COMMENT Sample Date T K M A Minion (A COMMENT Sample Date Sample Date Sample Date SAMPLE I.D. N L - C Vit Z - Z 1 Z 1 SAMPLE I.D. Sample Date Sample Date Sample Date 3 ANALYSIS REQUESTED T K M A Minion (A 3 ANALYSIS REQUESTED Sample Date Sample The 3 ANALYSIS REQUESTED Sample Date Sample The 4 ANALYSIS REQUESTED Sample Date Sample The	\leq	٢	Spredy	/13/21						
21- SAMPLE I.D. SL-C ANALYSIS REQUESTED TKN AND A MMONIA COMMENT SAMPLE I.D. NL-C ANALYSIS REQUESTED TKN AND A MMONIA COMMENT SAMPLE I.D. Sample Date Sample The SAMPLE I.D. Sample Date Sample The		(Prin	ied)			TIME	(Printed)	<u></u>		TIME
21- SAMPLE I.D. SL-C ANALYSIS REQUESTED TKN AND A MMONIA COMMENT SAMPLE I.D. NL-C ANALYSIS REQUESTED TKN AND A MMONIA COMMENT SAMPLE I.D. Sample Date Sample The SAMPLE I.D. Sample Date Sample The	¢	1	2. Kennedy	12:32						ĺ
D080(c 1 ANALYSIS REQUESTED TKN AND A MMIONIA COMMENT Sample 1.D. Sample Date Sample Date Sample Date COMMENT ANALYSIS REQUESTED TKN AND AMINONIA COMMENT SAMPLE 1.D. Sample Date Sample Date Sample Date SAMPLE 1.D. SAMPLE 1.D. Sample Date Sample Date Sample The 3 ANALYSIS REQUESTED COMMENT Sample Date Sample Date Sample The 3 ANALYSIS REQUESTED Sample Date Sample Date Sample The 3 ANALYSIS REQUESTED Sample Date Sample Date Sample The ANALYSIS REQUESTED Sample Date Sample Date Sample The	ן יר				******			Sample Date	Samol	le Time
Image: Comment Image: Comment Sample Date Sample Date Sample Date SAMPLE I.D. Image: Comment Image: Comment Image: Comment Sample Date Sample Date COMMENT Sample Date Image: Comment Image: Comment Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date Sample Date	x[-]		SAMPLE I.D. SL-C	4 4 Martin 1997				1-12-21	Ce	$\frac{1}{2}$
SAMPLE I.D. Sample Date Sample Date Sample Date ANALYSIS REQUESTED TKM AWA AMACNIA Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date ANALYSIS REQUESTED COMMENT Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date Sample Date	080(0	1	ANALYSIS REQUESTED	KN AND ANM	IONIA					
COBOT 2 ANALYSIS REQUESTED TKM AND AMMENTIA SAMPLE 1.D. Sample Date Sample Date Sample Tit 3 COMMENT Sample Date Sample Date SAMPLE 1.D. Sample Date Sample Date Sample Date ANALYSIS REQUESTED Sample Date Sample Date Sample Date			COMMENT						1	
SAMPLE I.D. Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date SAMPLE I.D. Sample Date Sample Date			SAMPLE I.D. NL-(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						e Time
COMMENT Sample Date Sample Date 3 ANALYSIS REQUESTED COMMENT Sample Date SAMPLE 1.D. Sample Date	20807	2	ANALYSIS REQUESTED	TVN AND AN	INFALL	4				
3 ANALYSIS REQUESTED COMMENT Sample Date SAMPLE I.D. Sample Date	•		COMMENT							
3			SAMPLE I.D.	<u> </u>				Sample Date	Samp	le Time
COMMENT Sample Date Sample Date SAMPLE I.D. Sample Date Sample Tri		2	ANALYSIS REQUESTED							
		ľ	COMMENT	an a						
ANALYSIS REQUESTED			SAMPLE I.D.					Sample Date	Samp	le Time
4 ANALISIS REQUESTED		4	ANALYSIS REQUESTED							
COMMENT			COMMENT							
► /		L		Mangani ay kata kata katang mang katang mang katang mang katang katang katang katang katang katang katang katan	8. 1		annan an tha Canadra ann an Sann an Sann an Sann Annan Canadh an tha Annan Annan Annan Annan Annan Annan Annan		******	
Sample container received by client was sealed Yes <u>Y</u> No Sample container received by laboratory was sealed Yes No		Sar	nple container received by					an dana da baran da jara na fa dina da		
Sample container received by laboratory was sealed YesNo		Sar	nple container received by	iabolatory was sealed it	59 <u> </u>					

Disclaimer: Cascade Analytical, Inc., makes no warranty of any kind, expressed or implied, and customer assumes all risk and liability from use of Cascade Analytical test results. Cascade neither assumes not authorizes any person to assume for Cascade any other liability in connection with the testing done by Cascade Analytical, Inc., and there are not other oral agreements or warranties collateral to or affecting this agreement. Cascade Analytical, Inc.'s liability to customer as a result of customers use of Cascade's tests results shall be limited to a sum equal to the fees paid by customer to Cascade Analytical, Inc. for the testing work.

Customer Signature

Date 1-12-21

Sample Receipt Form

Date Received:	1/13/21	Time Rece	eived:	11:51am	I	nitials:	7100	
Client Name: <u>B</u>	u <u>e Mfn. Engine</u> er upon receint:	ering 4 Con	sulting	Project Na	ame:	Special :	service	
Temperature of cool	er upon receipt:	6	°C	Thermo	meter ID:	#5		
Custody seals: (Int	act Broken	None	N/A					
Chain of Custody Cor Client name.	npleted: address, and pł	one numb	er:			Ves		No
	ne of sampling;		,			Yes		No
Test request	s clear;					Yes		No
Completed in						Yes		No
Signed by cli	ent;					(Yes)		No
All samples received	:					Yes		No
All samples intact:						Yes		No
Sample ID's match C	OC form:					Yes		No
Appropriate contain	ers used:					Yes		No
Sufficient amount of	sample for anal	ysis:				Yes		No
Correct preservative	verified:			\langle	JA	Yes		No
Air bubbles in VOC,	TTHM, or HAA5	samples:		\langle	J/A)	Yes		No
Sample(s) exceed ho	old time:					Yes	<	No
Type of coolant:	Ice Blue	lce Non	e Oth	ier Com	nment:			
Shipping Method:	FedEx UI	S USPS	Bret	t & Sons	Hand D	elivered	CAI Samı	oled
Shipping Container:	E-CA Cooler	E-CA Co	oler Box) Client'	s Cooler	None	Other	
Samples accepted for	or analysis:					Yes		No
Reason for f	Rejection:							
Name of Person Cor	ntacted:							
Comments:								

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

January 25, 2021

Yancy Meyer Blue Mountain Environmental, Inc. 90 Baldwin Road Walla Walla, WA 99362

Re: Analytical Data for Project E2020/1204; Port of Pasco Lagoons Laboratory Reference No. 2101-095

Dear Yancy:

Enclosed are the analytical results and associated quality control data for samples submitted on January 13, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 25, 2021 Samples Submitted: January 13, 2021 Laboratory Reference: 2101-095 Project: E2020/1204; Port of Pasco Lagoons

Case Narrative

Samples were collected on January 12, 2021 and received by the laboratory on January 13, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Organochlorine PesticidesTotal Metals EPA 8081 Analysis:

Negative effects of the matrix from the samples on the instrument caused values for 4,4'-DDT, Endrin Aldehyde, Methoxychlor, and Endrin Ketone in the continuing calibration verification standards (CCVs) to be low. Because of this, quantitation limits and sample concentrations can be higher than reported.

Total Metals EPA 6010D/6020B/7471B Analysis:

Due to the high concentration of Calcium in the QC sample, the amount spiked was insufficient for meaningful MS/MSD recovery data. The Spike Blank recovery was 89%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-C					
Laboratory ID:	01-095-01					
Naphthalene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
2-Methylnaphthalene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
1-Methylnaphthalene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Acenaphthylene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Acenaphthene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Fluorene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Phenanthrene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Anthracene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Fluoranthene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Pyrene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo[a]anthracene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Chrysene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo[b]fluoranthene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo(j,k)fluoranthene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo[a]pyrene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Indeno(1,2,3-c,d)pyrene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Dibenz[a,h]anthracene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo[g,h,i]perylene	ND	0.029	EPA 8270E/SIM	1-15-21	1-19-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	46 - 113				
Pyrene-d10	83	45 - 114				
Terphenyl-d14	85	49 - 121				

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

3.3				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-C					
Laboratory ID:	01-095-02					
Naphthalene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
2-Methylnaphthalene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
1-Methylnaphthalene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Acenaphthylene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Acenaphthene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Fluorene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Phenanthrene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Anthracene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Fluoranthene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Pyrene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo[a]anthracene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Chrysene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo[b]fluoranthene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo[a]pyrene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Benzo[g,h,i]perylene	ND	0.011	EPA 8270E/SIM	1-15-21	1-19-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	46 - 113				
Pyrene-d10	101	45 - 114				
Terphenyl-d14	107	49 - 121				
-						

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0115S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Fluorene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Anthracene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Pyrene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	1-15-21	1-18-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	93	46 - 113				
Pyrene-d10	108	45 - 114				
Terphenyl-d14	115	49 - 121				

5
PAHs EPA 8270E/SIM QUALITY CONTROL

_

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	01-10	08-01									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0718	0.0719	0.0833	0.0833	ND	86	86	51 - 115	0	26	
Acenaphthylene	0.0726	0.0780	0.0833	0.0833	ND	87	94	53 - 121	7	24	
Acenaphthene	0.0730	0.0752	0.0833	0.0833	ND	88	90	52 - 121	3	25	
Fluorene	0.0832	0.0851	0.0833	0.0833	ND	100	102	58 - 127	2	23	
Phenanthrene	0.0844	0.0829	0.0833	0.0833	ND	101	100	46 - 129	2	28	
Anthracene	0.0912	0.0908	0.0833	0.0833	ND	109	109	57 - 124	0	21	
Fluoranthene	0.0927	0.0988	0.0833	0.0833	ND	111	119	46 - 136	6	29	
Pyrene	0.0912	0.0951	0.0833	0.0833	ND	109	114	41 - 136	4	32	
Benzo[a]anthracene	0.0885	0.0877	0.0833	0.0833	ND	106	105	56 - 136	1	25	
Chrysene	0.0939	0.0927	0.0833	0.0833	ND	113	111	49 - 130	1	22	
Benzo[b]fluoranthene	0.101	0.0925	0.0833	0.0833	ND	121	111	51 - 135	9	26	
Benzo(j,k)fluoranthene	0.0909	0.0981	0.0833	0.0833	ND	109	118	56 - 124	8	23	
Benzo[a]pyrene	0.0982	0.0966	0.0833	0.0833	ND	118	116	54 - 133	2	26	
Indeno(1,2,3-c,d)pyrene	0.0954	0.0937	0.0833	0.0833	ND	115	112	52 - 134	2	20	
Dibenz[a,h]anthracene	0.0949	0.0926	0.0833	0.0833	ND	114	111	58 - 127	2	17	
Benzo[g,h,i]perylene	0.0948	0.0937	0.0833	0.0833	ND	114	112	54 - 129	1	21	
Surrogate:											
2-Fluorobiphenyl						73	82	46 - 113			
Pyrene-d10						101	93	45 - 114			
Terphenyl-d14						101	101	49 - 121			

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

An a hite	Desult	DOI		Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-C					
Laboratory ID:	01-095-01					
Aroclor 1016	ND	0.22	EPA 8082A	1-14-21	1-14-21	
Aroclor 1221	ND	0.22	EPA 8082A	1-14-21	1-14-21	
Aroclor 1232	ND	0.22	EPA 8082A	1-14-21	1-14-21	
Aroclor 1242	ND	0.22	EPA 8082A	1-14-21	1-14-21	
Aroclor 1248	ND	0.22	EPA 8082A	1-14-21	1-14-21	
Aroclor 1254	ND	0.22	EPA 8082A	1-14-21	1-14-21	
Aroclor 1260	ND	0.22	EPA 8082A	1-14-21	1-14-21	
Surrogate:	Percent Recovery	Control Limits				
DCB	85	46-125				
Client ID:	NL-C					
Laboratory ID:	01-095-02					
Aroclor 1016	ND	0.081	EPA 8082A	1-14-21	1-14-21	
Aroclor 1221	ND	0.081	EPA 8082A	1-14-21	1-14-21	
Aroclor 1232	ND	0.081	EPA 8082A	1-14-21	1-14-21	
Aroclor 1242	ND	0.081	EPA 8082A	1-14-21	1-14-21	
Aroclor 1248	ND	0.081	EPA 8082A	1-14-21	1-14-21	
Aroclor 1254	ND	0.081	EPA 8082A	1-14-21	1-14-21	
Aroclor 1260	ND	0.081	EPA 8082A	1-14-21	1-14-21	
Surrogate:	Percent Recovery	Control Limits				
DCB	96	46-125				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0114S1					
Aroclor 1016	ND	0.050	EPA 8082A	1-14-21	1-14-21	
Aroclor 1221	ND	0.050	EPA 8082A	1-14-21	1-14-21	
Aroclor 1232	ND	0.050	EPA 8082A	1-14-21	1-14-21	
Aroclor 1242	ND	0.050	EPA 8082A	1-14-21	1-14-21	
Aroclor 1248	ND	0.050	EPA 8082A	1-14-21	1-14-21	
Aroclor 1254	ND	0.050	EPA 8082A	1-14-21	1-14-21	
Aroclor 1260	ND	0.050	EPA 8082A	1-14-21	1-14-21	
Surrogate:	Percent Recovery	Control Limits				
DCB	106	46-125				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	01-0	95-01									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.401	0.444	0.500	0.500	ND	80	89	43-125	10	15	
Surrogate:											
DCB						94	98	46-125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

ORGANOCHLORINE PESTICIDES EPA 8081B

Matrix: Soil Units: ug/Kg (ppb)

onits. ug/kg (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-C					
Laboratory ID:	01-095-01					
alpha-BHC	ND	22	EPA 8081B	1-14-21	1-22-21	
gamma-BHC	ND	22	EPA 8081B	1-14-21	1-22-21	
beta-BHC	ND	22	EPA 8081B	1-14-21	1-22-21	
delta-BHC	ND	22	EPA 8081B	1-14-21	1-22-21	
Heptachlor	ND	22	EPA 8081B	1-14-21	1-22-21	
Aldrin	ND	22	EPA 8081B	1-14-21	1-22-21	
Heptachlor Epoxide	ND	22	EPA 8081B	1-14-21	1-22-21	
gamma-Chlordane	ND	43	EPA 8081B	1-14-21	1-22-21	
alpha-Chlordane	ND	43	EPA 8081B	1-14-21	1-22-21	
4,4'-DDE	77	43	EPA 8081B	1-14-21	1-22-21	
Endosulfan I	ND	22	EPA 8081B	1-14-21	1-22-21	
Dieldrin	ND	43	EPA 8081B	1-14-21	1-22-21	
Endrin	ND	43	EPA 8081B	1-14-21	1-22-21	
4,4'-DDD	ND	43	EPA 8081B	1-14-21	1-22-21	
Endosulfan II	ND	43	EPA 8081B	1-14-21	1-22-21	
4,4'-DDT	ND	43	EPA 8081B	1-14-21	1-22-21	
Endrin Aldehyde	ND	43	EPA 8081B	1-14-21	1-22-21	
Methoxychlor	ND	43	EPA 8081B	1-14-21	1-22-21	
Endosulfan Sulfate	ND	43	EPA 8081B	1-14-21	1-22-21	
Endrin Ketone	ND	43	EPA 8081B	1-14-21	1-22-21	
Toxaphene	ND	220	EPA 8081B	1-14-21	1-22-21	
Surrogate:	Percent Recovery	Control Limits				
TCMX	56	33-97				
DCB	67	36-115				

ORGANOCHLORINE PESTICIDES EPA 8081B

Matrix: Soil Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-C					
Laboratory ID:	01-095-02					
alpha-BHC	ND	8.1	EPA 8081B	1-14-21	1-19-21	
gamma-BHC	ND	8.1	EPA 8081B	1-14-21	1-19-21	
beta-BHC	ND	8.1	EPA 8081B	1-14-21	1-19-21	
delta-BHC	ND	8.1	EPA 8081B	1-14-21	1-19-21	
Heptachlor	ND	8.1	EPA 8081B	1-14-21	1-19-21	
Aldrin	ND	8.1	EPA 8081B	1-14-21	1-19-21	
Heptachlor Epoxide	ND	8.1	EPA 8081B	1-14-21	1-19-21	
gamma-Chlordane	ND	16	EPA 8081B	1-14-21	1-19-21	
alpha-Chlordane	ND	16	EPA 8081B	1-14-21	1-19-21	
4,4'-DDE	ND	16	EPA 8081B	1-14-21	1-19-21	
Endosulfan I	ND	8.1	EPA 8081B	1-14-21	1-19-21	
Dieldrin	ND	16	EPA 8081B	1-14-21	1-19-21	
Endrin	ND	16	EPA 8081B	1-14-21	1-19-21	
4,4'-DDD	ND	16	EPA 8081B	1-14-21	1-19-21	
Endosulfan II	ND	16	EPA 8081B	1-14-21	1-19-21	
4,4'-DDT	ND	16	EPA 8081B	1-14-21	1-19-21	
Endrin Aldehyde	ND	16	EPA 8081B	1-14-21	1-19-21	
Methoxychlor	ND	16	EPA 8081B	1-14-21	1-19-21	
Endosulfan Sulfate	ND	16	EPA 8081B	1-14-21	1-19-21	
Endrin Ketone	ND	16	EPA 8081B	1-14-21	1-19-21	
Toxaphene	ND	81	EPA 8081B	1-14-21	1-19-21	
Surrogate:	Percent Recovery	Control Limits				
TCMX	69	33-97				
DCB	79	36-115				

ORGANOCHLORINE PESTICIDES EPA 8081B QUALITY CONTROL

Matrix: Soil Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0114S1					
alpha-BHC	ND	5.0	EPA 8081B	1-14-21	1-21-21	
gamma-BHC	ND	5.0	EPA 8081B	1-14-21	1-21-21	
beta-BHC	ND	5.0	EPA 8081B	1-14-21	1-21-21	
delta-BHC	ND	5.0	EPA 8081B	1-14-21	1-21-21	
Heptachlor	ND	5.0	EPA 8081B	1-14-21	1-21-21	
Aldrin	ND	5.0	EPA 8081B	1-14-21	1-21-21	
Heptachlor Epoxide	ND	5.0	EPA 8081B	1-14-21	1-21-21	
gamma-Chlordane	ND	10	EPA 8081B	1-14-21	1-21-21	
alpha-Chlordane	ND	10	EPA 8081B	1-14-21	1-21-21	
4,4'-DDE	ND	10	EPA 8081B	1-14-21	1-21-21	
Endosulfan I	ND	5.0	EPA 8081B	1-14-21	1-21-21	
Dieldrin	ND	10	EPA 8081B	1-14-21	1-21-21	
Endrin	ND	10	EPA 8081B	1-14-21	1-21-21	
4,4'-DDD	ND	10	EPA 8081B	1-14-21	1-21-21	
Endosulfan II	ND	10	EPA 8081B	1-14-21	1-21-21	
4,4'-DDT	ND	10	EPA 8081B	1-14-21	1-21-21	
Endrin Aldehyde	ND	10	EPA 8081B	1-14-21	1-21-21	
Methoxychlor	ND	10	EPA 8081B	1-14-21	1-21-21	
Endosulfan Sulfate	ND	10	EPA 8081B	1-14-21	1-21-21	
Endrin Ketone	ND	10	EPA 8081B	1-14-21	1-21-21	
Toxaphene	ND	50	EPA 8081B	1-14-21	1-21-21	
Surrogate:	Percent Recovery	Control Limits				
TCMX	82	33-97				
DCB	99	36-115				

ORGANOCHLORINE PESTICIDES EPA 8081B QUALITY CONTROL

Matrix: Soil Units: ug/Kg (ppb)

Units. ug/Kg (ppb)					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB01	14S2									
	SB	SBD	SB	SBD		SB	SBD				
alpha-BHC	94.2	106	100	100	N/A	94	106	48-117	12	15	
gamma-BHC	95.1	107	100	100	N/A	95	107	48-118	12	15	
beta-BHC	89.4	99.8	100	100	N/A	89	100	48-116	11	15	
delta-BHC	90.8	101	100	100	N/A	91	101	40-118	11	15	
Heptachlor	98.6	109	100	100	N/A	99	109	40-114	10	15	
Aldrin	96.0	105	100	100	N/A	96	105	55-110	9	15	
Heptachlor Epoxide	95.3	99.8	100	100	N/A	95	100	49-110	5	15	
gamma-Chlordane	94.1	106	100	100	N/A	94	106	54-110	12	15	
alpha-Chlordane	93.7	106	100	100	N/A	94	106	53-110	12	15	
4,4'-DDE	83.6	89.3	100	100	N/A	84	89	57-119	7	15	
Endosulfan I	74.6	82.8	100	100	N/A	75	83	49-114	10	15	
Dieldrin	88.8	98.7	100	100	N/A	89	99	53-110	11	15	
Endrin	84.9	94.3	100	100	N/A	85	94	51-114	10	15	
4,4'-DDD	83.9	94.6	100	100	N/A	84	95	50-120	12	15	
Endosulfan II	81.8	93.2	100	100	N/A	82	93	50-110	13	15	
4,4'-DDT	84.8	94.5	100	100	N/A	85	94	47-128	11	15	
Endrin Aldehyde	72.5	80.0	100	100	N/A	72	80	42-110	10	15	
Methoxychlor	65.3	69.0	100	100	N/A	65	69	46-126	6	15	
Endosulfan Sulfate	77.0	87.2	100	100	N/A	77	87	50-110	12	15	
Endrin Ketone	75.0	84.6	100	100	N/A	75	85	47-114	12	15	
Surrogate:											
TCMX						77	87	33-97			
DCB						97	102	36-115			

12

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-C					
Laboratory ID:	01-095-01					
Aluminum	8900	2200	EPA 6010D	1-15-21	1-15-21	
Antimony	ND	22	EPA 6010D	1-15-21	1-15-21	
Arsenic	14	11	EPA 6010D	1-15-21	1-15-21	
Barium	180	11	EPA 6010D	1-15-21	1-15-21	
Beryllium	ND	2.2	EPA 6010D	1-15-21	1-15-21	
Cadmium	4.4	2.2	EPA 6010D	1-15-21	1-15-21	
Calcium	120000	11000	EPA 6010D	1-15-21	1-15-21	
Chromium	41	2.2	EPA 6010D	1-15-21	1-15-21	
Cobalt	7.1	2.2	EPA 6010D	1-15-21	1-15-21	
Copper	99	4.3	EPA 6010D	1-15-21	1-15-21	
Iron	20000	2200	EPA 6010D	1-15-21	1-15-21	
Lead	53	22	EPA 6010D	1-15-21	1-15-21	
Magnesium	5700	220	EPA 6010D	1-15-21	1-15-21	
Manganese	210	2.2	EPA 6010D	1-15-21	1-15-21	
Mercury	ND	1.1	EPA 7471B	1-18-21	1-18-21	
Nickel	14	11	EPA 6010D	1-15-21	1-15-21	
Potassium	1900	320	EPA 6010D	1-15-21	1-15-21	
Selenium	ND	11	EPA 6010D	1-15-21	1-15-21	
Silver	130	4.3	EPA 6010D	1-15-21	1-15-21	
Sodium	640	320	EPA 6010D	1-15-21	1-15-21	
Thallium	ND	4.3	EPA 6020B	1-21-21	1-21-21	
Vanadium	81	2.2	EPA 6010D	1-15-21	1-15-21	
Zinc	420	11	EPA 6010D	1-15-21	1-15-21	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-C					
Laboratory ID:	01-095-02					
Aluminum	9500	810	EPA 6010D	1-15-21	1-15-21	
Antimony	ND	8.1	EPA 6010D	1-15-21	1-15-21	
Arsenic	ND	4.1	EPA 6010D	1-15-21	1-15-21	
Barium	81	4.1	EPA 6010D	1-15-21	1-15-21	
Beryllium	ND	0.81	EPA 6010D	1-15-21	1-15-21	
Cadmium	ND	0.81	EPA 6010D	1-15-21	1-15-21	
Calcium	9400	810	EPA 6010D	1-15-21	1-15-21	
Chromium	14	0.81	EPA 6010D	1-15-21	1-15-21	
Cobalt	5.1	0.81	EPA 6010D	1-15-21	1-15-21	
Copper	12	1.6	EPA 6010D	1-15-21	1-15-21	
Iron	20000	810	EPA 6010D	1-15-21	1-15-21	
Lead	ND	8.1	EPA 6010D	1-15-21	1-15-21	
Magnesium	5300	810	EPA 6010D	1-15-21	1-15-21	
Manganese	190	0.81	EPA 6010D	1-15-21	1-15-21	
Mercury	ND	0.41	EPA 7471B	1-18-21	1-18-21	
Nickel	12	4.1	EPA 6010D	1-15-21	1-15-21	
Potassium	1900	120	EPA 6010D	1-15-21	1-15-21	
Selenium	ND	4.1	EPA 6010D	1-15-21	1-15-21	
Silver	ND	1.6	EPA 6010D	1-15-21	1-15-21	
Sodium	310	120	EPA 6010D	1-15-21	1-15-21	
Thallium	ND	1.6	EPA 6020B	1-21-21	1-21-21	
Vanadium	49	0.81	EPA 6010D	1-15-21	1-15-21	
Zinc	46	4.1	EPA 6010D	1-15-21	1-15-21	

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0115SH1					
Aluminum	ND	50	EPA 6010D	1-15-21	1-15-21	
Arsenic	ND	2.5	EPA 6010D	1-15-21	1-15-21	
Barium	ND	2.5	EPA 6010D	1-15-21	1-15-21	
Beryllium	ND	0.50	EPA 6010D	1-15-21	1-15-21	
Cadmium	ND	0.50	EPA 6010D	1-15-21	1-15-21	
Calcium	ND	50	EPA 6010D	1-15-21	1-15-21	
Chromium	ND	0.50	EPA 6010D	1-15-21	1-15-21	
Cobalt	ND	0.50	EPA 6010D	1-15-21	1-15-21	
Copper	ND	1.0	EPA 6010D	1-15-21	1-15-21	
Iron	ND	50	EPA 6010D	1-15-21	1-15-21	
_ead	ND	5.0	EPA 6010D	1-15-21	1-15-21	
Vagnesium	ND	50	EPA 6010D	1-15-21	1-15-21	
Vanganese	ND	0.50	EPA 6010D	1-15-21	1-15-21	
Nickel	ND	2.5	EPA 6010D	1-15-21	1-15-21	
Potassium	ND	75	EPA 6010D	1-15-21	1-15-21	
Selenium	ND	2.5	EPA 6010D	1-15-21	1-15-21	
Silver	ND	1.0	EPA 6010D	1-15-21	1-15-21	
Sodium	ND	75	EPA 6010D	1-15-21	1-15-21	
/anadium	ND	0.50	EPA 6010D	1-15-21	1-15-21	
Zinc	ND	2.5	EPA 6010D	1-15-21	1-15-21	
Laboratory ID:	MB0121SM1					
Laboratory 12.	ND	1.0	EPA 6020B	1-21-21	1-21-21	
Laboratory ID:	MB0118S1					
Mercury	ND	0.25	EPA 7471B	1-15-21	1-15-21	
Laboratory ID:	MB0115SH2					
Antimony	ND	5.0	EPA 6010D	1-15-21	1-15-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	01-09	95-01								
	ORIG	DUP								
Aluminum	2060	2000	NA	NA		NA	NA	3	20	
Arsenic	3.29	3.08	NA	NA		NA	NA	7	20	
Barium	42.9	41.1	NA	NA		NA	NA	4	20	
Beryllium	ND	ND	NA	NA		NA	NA	NA	20	
Cadmium	1.02	0.915	NA	NA		NA	NA	11	20	
Calcium	26700	25800	NA	NA		NA	NA	4	20	
Chromium	9.50	9.00	NA	NA		NA	NA	5	20	
Cobalt	1.64	1.60	NA	NA		NA	NA	2	20	
Copper	23.1	21.6	NA	NA		NA	NA	6	20	
Iron	4630	4460	NA	NA		NA	NA	4	20	
_ead	12.3	11.7	NA	NA		NA	NA	5	20	
Vagnesium	1330	1270	NA	NA		NA	NA	5	20	
Vanganese	47.6	45.4	NA	NA		NA	NA	5	20	
Nickel	3.20	3.19	NA	NA		NA	NA	0	20	
Potassium	448	427	NA	NA		NA	NA	5	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	29.5	27.6	NA	NA		NA	NA	7	20	
Sodium	148	158	NA	NA		NA	NA	6	20	
Vanadium	18.8	17.8	NA	NA		NA	NA	5	20	
Zinc	97.1	91.5	NA	NA		NA	NA	6	20	
Laboratory ID:	01-09	95-01								
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	01-00	93-04								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	
morodry				1 1/ 1		1 1/ 1	1.47.1	1 1/ 1	20	
Laboratory ID:	01-09									
	ORIG	DUP								
Antimony	ND	ND	NA	NA		NA	NA	NA	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

16

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery		Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	01-09	95-01									
	MS	MSD	MS	MSD		MS	MSD				
Aluminum	3280	3160	1000	1000	2060	123	111	75-125	4	20	
Arsenic	91.6	91.7	100	100	3.29	88	88	75-125	0	20	
Barium	131	131	100	100	42.9	88	89	75-125	0	20	
Beryllium	46.8	46.7	50.0	50.0	ND	94	93	75-125	0	20	
Cadmium	47.3	47.6	50.0	50.0	1.02	93	93	75-125	1	20	
Calcium	24600	24700	1000	1000	26700	-217	-204	75-125	1	20	Α
Chromium	96.3	95.3	100	100	9.50	87	86	75-125	1	20	
Cobalt	46.8	46.7	50.0	50.0	1.64	90	90	75-125	0	20	
Copper	66.5	66.7	50.0	50.0	23.1	87	87	75-125	0	20	
Iron	5450	5380	1000	1000	4630	82	75	75-125	1	20	
Lead	236	233	250	250	12.3	90	88	75-125	1	20	
Magnesium	2160	2160	1000	1000	1330	83	83	75-125	0	20	
Manganese	67.8	67.7	25.0	25.0	47.6	81	80	75-125	0	20	
Nickel	88.9	89.2	100	100	3.20	86	86	75-125	0	20	
Potassium	1420	1420	1000	1000	448	97	98	75-125	1	20	
Selenium	90.1	91.0	100	100	ND	90	91	75-125	1	20	
Silver	50.2	50.0	25.0	25.0	29.5	83	82	75-125	0	20	
Sodium	1050	1060	1000	1000	148	90	91	75-125	0	20	
Vanadium	63.1	63.0	50.0	50.0	18.8	89	88	75-125	0	20	
Zinc	179	177	100	100	97.1	82	80	75-125	1	20	
Laboratory ID:	01-09	95-01									
Thallium	42.3	43.0	50.0	50.0	ND	85	86	75-125	2	20	
Laboratory ID:	01.01	93-04									
	01-0		0.500	0 500	0.0260	92	95	80.400	3	20	
Mercury	0.494	0.509	0.500	0.500	0.0366	92	90	80-120	3	20	
Laboratory ID:	01-09	95-01									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	82.8	85.1	100	100	ND	83	85	75-125	3	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: January 25, 2021 Samples Submitted: January 13, 2021 Laboratory Reference: 2101-095 Project: E2020/1204; Port of Pasco Lagoons

NITRATE (as Nitrogen) EPA 353.2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-C					
Laboratory ID:	01-095-01					
Nitrate	ND	2.2	EPA 353.2	1-15-21	1-15-21	
Client ID:	NL-C					
Laboratory ID:	01-095-02					
Nitrate	ND	0.81	EPA 353.2	1-15-21	1-15-21	

NITRATE (as Nitrogen) EPÀ 353.2 QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0115S1					
Nitrate	ND	5.0	EPA 353.2	1-15-21	1-15-21	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	01-09	95-01							
	ORIG	DUP							
Nitrate	ND	ND	NA	NA	NA	NA	NA	20	
MATRIX SPIKE Laboratory ID:	01-09	05 01							
Laboratory ID.		IS	MS		MS				
Nitrate	17	.4	20.0	ND	87	75-125	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB01	15S1							
	S	В	SB		SB				
Nitrate	15	5.5	20.0	NA	78	75-125	NA	NA	

19

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
SL-C	01-095-01	77	1-13-21
NL-C	01-095-02	38	1-13-21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Received Relinquished Received Reviewed/Date	Signatury Relinquished Received Relinquished	Image: Image: Project Number: Yes Project Number: Yes Sampled by: Yes Angle Identification 1 SL-C 1 SL-C 1 SL-C 1 SL-C 1 NL-C
Reviewed/Date	Company BMEC	Chain of Invariant Request (in working days) (Check One) Greek One) (Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) 3 Days I - 1221 Cother)
	Date Time	Accord Accord Chain of Construction of Containers Image: Secord Construction Image: Secord Containers Image: Secord Containers Image: Secord Containers Number of Containers Laboratory Number: Secord Containers Image: Secord Containers NWTPH-HCID Laboratory Number: Secord Containers Image: Secord Containers NWTPH-Gx/BTEX NWTPH-Gx Image: Secord Containers NWTPH-Gx NWTPH-Gx Image: Secord Containers NWTPH-Gx NWTPH-Gx Image: Secord Containers NWTPH-Gx Secord Containers Image: Secord Containers NWTPH-Dx (I Acid / SG Clean-up) Secord Containers Image: Secord Containers Image: Secord Containers Secord Containers Image: Secord Conta
Data Package: Standard Level III Level IV Chromatograms with final report Electronic Data Deliverables (EDDs)	Comments/Special Instructions	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082A Organochlorine Pesticides 8081B Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Chlorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA Metals TCLP Metals HEM (oil and grease) 1664A X X N ITDATICS 853.72

Cash Clients (USD) - Burlington ATTN: Yancy Meyer PO Box 545/125 Main Street Blue Mountain Environmental & Consulting Waltsburg WA 99361 Date Received:13-JAN-21Report Date:12-FEB-21 12:07 (MT)Version:FINAL

Client Phone: --

Certificate of Analysis

Lab Work Order #: L2547886 Project P.O. #: NOT SUBMITTED Job Reference: E2020/1204 PORT OF PASCO LAGOONS C of C Numbers: Legal Site Desc:

meanne Susweault

Breanne Dusureault Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1435 Norjohn Court, Unit 1, Burlington, ON, L7L 0E6 Canada | Phone: +1 905 331 3111 | Fax: +1 905 331 4567 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details	Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2547886-1	SL-C							
Sampled By:	Y. Meyer on 12-JAN-21 @ 09:00							
Matrix:	Solid							
	ous Parameters							
% Moisture		78.6		0.10	%	01-FEB-21	02-FEB-21	R5361180
PBDEs by E	BA 1614	78.0		0.10	70	01-1 20-21	02-1 20-21	100
BDE 10	FA 1014	13.7	[J]	0.10	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 7		743	[0]	0.097	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 8/11		249		0.069	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 12/13		110	м	0.059	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 12/10 BDE 15		49.9		0.055	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 30		<6.4	[U]	6.4	pg/g	01-FEB-21	09-FEB-21	R5371220
BDE 30 BDE 32		70.4	[0]	0.35	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 32 BDE 17/25		954		0.35	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 17/23 BDE 28/33		196		0.44		01-FEB-21	08-FEB-21	R5371220
BDE 26/33 BDE 35		44.0	R	0.43	pg/g	01-FEB-21 01-FEB-21	08-FEB-21	R5371220
BDE 35 BDE 37		7.80	[J]	0.29	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220 R5371220
BDE 37 BDE 75			[J] [U]		pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	
BDE 75 BDE 51		<0.69	M	0.69	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220
BDE 51 BDE 49		311 1860	M	0.59 0.89	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220 R5371220
BDE 49 BDE 71			[U]		pg/g	01-FEB-21 01-FEB-21	08-FEB-21	
BDE 71 BDE 47		< 0.92	M	0.92	pg/g			R5371220
BDE 47 BDE 79		2210		0.57	pg/g	01-FEB-21	08-FEB-21 08-FEB-21	R5371220
		2.80	M,J,R	0.58	pg/g	01-FEB-21		R5371220
BDE 83		<2.6	[U]	2.6	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 66		79.8		0.99	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 77 BDE 100		2.30	J,R	0.69	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 100 BDE 119/120	0	604	r n	0.94	pg/g	01-FEB-21	08-FEB-21	R5371220
	0	14.8	[J]	2.0	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 99		502	M	1.5	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 116		<3.3	[U]	3.3	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 118		8.5	M,J,R	2.3	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 85		23.6	[J]	2.0	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 126		2.9	J,R	1.3	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 105		<2.4	[U]	2.4	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 155		91.3		0.30	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 154		264	M	0.36	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 153		145	M	3.8	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 140	2	12.4	[J]	3.0	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 138/16	0	57.0	M,J,R	5.5	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 156		<7.1	[U]	7.1	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 128		12.0	J,R	6.2	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 184		102		1.1	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 183		1080		1.7	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 191		85.2		2.6	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 181		38.0	J,R	2.6	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 190		66.0	M,R	3.7	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 197		988		9.2	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 203		854		12	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 196		640		11	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 208		6340		38	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 207		5770		37	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 206		10100		45	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 209		405000		280	pg/g	01-FEB-21	09-FEB-21	R5371220
PBEB		<0.23	[U]	0.23	pg/g	01-FEB-21	08-FEB-21	R5371220
HBB		38.2		0.36	pg/g	01-FEB-21	08-FEB-21	R5371220

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2547886-1 SL-C							
Sampled By: Y. Meyer on 12-JAN-21 @ 09:00							
Matrix: Solid							
PBDEs by EPA 1614 Surrogate: 13C12 BDE 15	36.0		20-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 28	31.0		25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 47	26.0		25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 77	26.0		25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 100	28.0		25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 99	26.0		25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 126	27.0		25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 154	23.0	G	25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 153	22.0	G	25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 183	21.0	G	25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 197	18.0	G	25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 207	20.0		20-200	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 209	33.0		20-200	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C6 HBB	23.0	G	25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 138 Cleanup	47.0		30-135	%	01-FEB-21	08-FEB-21	R5371220
Note: L2547886-1 has some surrogate recoveries slightly below method criteria. Data is calculated by isotope dilution. No impact to data quality.	-						
Dioxins and Furans HR 1613B							
2,3,7,8-TCDD	8.7		1.2	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,7,8-PeCDD	42.6	М	0.80	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,4,7,8-HxCDD	144		1.5	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,6,7,8-HxCDD	331		1.3	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,7,8,9-HxCDD	425		1.5	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,4,6,7,8-HpCDD	12600		99	pg/g	01-FEB-21	11-FEB-21	R5371220
OCDD	103000		140	pg/g	01-FEB-21	11-FEB-21	R5371220
2,3,7,8-TCDF	5.6		1.3	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,7,8-PeCDF	12.8		1.9	pg/g	01-FEB-21	09-FEB-21	R5371220
2,3,4,7,8-PeCDF	13.2		1.5	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,4,7,8-HxCDF	64.0		2.1	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,6,7,8-HxCDF	64.0	FNDO	2.0	pg/g	01-FEB-21	09-FEB-21	R5371220
2,3,4,6,7,8-HxCDF	280	EMPC	2.1	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,7,8,9-HxCDF	21.8		3.4	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,4,6,7,8-HpCDF	2240		3.3	pg/g	01-FEB-21	09-FEB-21	R5371220
1,2,3,4,7,8,9-HpCDF OCDF	202		4.9	pg/g	01-FEB-21	09-FEB-21	R5371220
	6060		4.8	pg/g	01-FEB-21	09-FEB-21	R5371220
Total-TCDD	44.7		1.2	pg/g	01-FEB-21	09-FEB-21	R5371220
Total TCDD # Homologues Total-PeCDD	4		0.00	nala	01-FEB-21 01-FEB-21	09-FEB-21	R5371220
Total PeCDD # Homologues	380 6		0.80	pg/g	-	09-FEB-21	R5371220
Total PeCDD # Homologues Total-HxCDD			1 5	nc/c	01-FEB-21	09-FEB-21 09-FEB-21	R5371220
	3440		1.5	pg/g	01-FEB-21		R5371220
Total HxCDD # Homologues Total-HpCDD	6		00	na/a	01-FEB-21 01-FEB-21	09-FEB-21 11-FEB-21	R5371220
Total HpCDD # Homologues	22400 2		99	pg/g	01-FEB-21 01-FEB-21		R5371220
Total TCDF	2 260		1.3	nala	01-FEB-21 01-FEB-21	11-FEB-21 09-FEB-21	R5371220
Total TCDF # Homologues	260 10		1.5	pg/g	01-FEB-21 01-FEB-21	09-FEB-21 09-FEB-21	R5371220 R5371220
Total-PeCDF	885		1.9	na/a	01-FEB-21 01-FEB-21	09-FEB-21 09-FEB-21	R5371220 R5371220
Total PeCDF # Homologues	9		1.5	pg/g	01-FEB-21	09-FEB-21	R5371220 R5371220
Total-HxCDF	2280		3.4	pg/g	01-FEB-21	09-FEB-21	R5371220
Total HxCDF # Homologues	7		5.4	P9'9	01-FEB-21	09-FEB-21	R5371220 R5371220
Total-HpCDF	, 6170		4.9	pg/g	01-FEB-21	09-FEB-21	R5371220
· · · · · · · · · · · · · · · · · · ·	0170		т.5	r9'9			

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2547886-1 SL-C							
Sampled By: Y. Meyer on 12-JAN-21 @ 09:00							
Matrix: Solid							
Dioxins and Furans HR 1613B							
Total HpCDF # Homologues	3				01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C12-2,3,7,8-TCDD	45.0		25-164	%	01-FEB-21	09-FEB-21	R5371220 R5371220
Surrogate: 13C12-1,2,3,7,8-PeCDD	40.0		25-184	%	01-FEB-21	09-FEB-21	R5371220 R5371220
Surrogate: 13C12-1,2,3,4,7,8-HxCDD	40.0		32-141	%	01-FEB-21	09-FEB-21	R5371220 R5371220
Surrogate: 13C12-1,2,3,6,7,8-HxCDD	40.0		28-130	%	01-FEB-21	09-FEB-21	R5371220 R5371220
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDD	62.0	R	23-130	%	01-FEB-21	11-FEB-21	R5371220 R5371220
Surrogate: 13C12-OCDD	97.0		17-157	%	01-FEB-21	11-FEB-21	R5371220
Surrogate: 13C12-2,3,7,8-TCDF	47.0		24-169	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C12-1,2,3,7,8-PeCDF	42.0		24-185	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C12-2,3,4,7,8-PeCDF	43.0		24-103	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C12-1,2,3,4,7,8-HxCDF	40.0		26-152	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C12-1,2,3,6,7,8-HxCDF	58.0		26-123	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C12-2,3,4,6,7,8-HxCDF	52.0		29-147	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C12-1,2,3,7,8,9-HxCDF	34.0		29-147	%	01-FEB-21	09-FEB-21	R5371220 R5371220
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDF	47.0		28-143	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 13C12-1,2,3,4,7,8,9-HpCDF	45.0		26-138	%	01-FEB-21	09-FEB-21	R5371220
Surrogate: 37Cl4-2,3,7,8-TCDD (Cleanup)	70.0		31-197	%	01-FEB-21	09-FEB-21	R5371220
Lower Bound PCDD/F TEQ (WHO 2005)	344		01-107	pg/g	01-FEB-21	09-FEB-21	R5371220
Mid Point PCDD/F TEQ (WHO 2005)	372			pg/g	01-FEB-21	09-FEB-21	R5371220
Upper Bound PCDD/F TEQ (WHO 2005)	372			pg/g	01-FEB-21	09-FEB-21	R5371220
	0.2			P9'9	0		
Sampled By: Y. Meyer on 12-JAN-21 @ 09:50							
Matrix: Solid							
Miscellaneous Parameters							
% Moisture	35.5		0.10	%	01-FEB-21	02-FEB-21	R5361180
PBDEs by EPA 1614	0.004		0.004			00 555 04	D.5074000
BDE 10	< 0.031	[U]	0.031	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 7	1.70	[J]	0.029	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 8/11	0.370	J,R	0.021	pg/g	01-FEB-21 01-FEB-21	08-FEB-21	R5371220
BDE 12/13	0.130	M,J,R M,J,R	0.018	pg/g	-	08-FEB-21 08-FEB-21	R5371220
BDE 15	0.140		0.015	pg/g	01-FEB-21		R5371220
BDE 30 BDE 32	<0.13	[U] [U]	0.13	pg/g	01-FEB-21 01-FEB-21	10-FEB-21 10-FEB-21	R5371220
BDE 32 BDE 17/25	<0.093	M,J	0.093	pg/g			R5371220
BDE 28/33	2.00		0.030	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 28/33 BDE 35	0.858	[J] J,R	0.030	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220
BDE 35 BDE 37	0.510		0.020	pg/g	01-FEB-21 01-FEB-21		R5371220
BDE 37 BDE 75	<0.021 <0.039	[U] [U]	0.021	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220 R5371220
BDE 75 BDE 51		[U] M,J	0.039	pg/g	01-FEB-21 01-FEB-21		
BDE 51 BDE 49	0.534	M,J	0.034	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220
BDE 49 BDE 71	4.48		0.050	pg/g	01-FEB-21 01-FEB-21		R5371220
BDE 47	<0.052 13.2	[U] M	0.052	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220
BDE 79	<0.033	[U]	0.033	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220 R5371220
BDE 83		[U]	0.033	pg/g	01-FEB-21 01-FEB-21	08-FEB-21	
BDE 66	<0.096 0.577	[J]	0.096	pg/g	01-FEB-21 01-FEB-21	08-FEB-21 08-FEB-21	R5371220 R5371220
BDE 77			0.056	pg/g	01-FEB-21 01-FEB-21	08-FEB-21	
BDE 100	<0.038	[U] J,R	0.038	pg/g			R5371220
BDE 100 BDE 119/120	3.00	[U]	0.039	pg/g	01-FEB-21 01-FEB-21	08-FEB-21	R5371220
	< 7.074		0.074	pg/g		08-FEB-21	R5371220
BDE 99	6.78	[J]	0.052	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 116 BDE 118	<0.12	[U]	0.12	pg/g	01-FEB-21	08-FEB-21	R5371220
	<0.083	[U]	0.083	pg/g	01-FEB-21	08-FEB-21	R5371220

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2547886-2 NL-C							
Sampled By: Y. Meyer on 12-JAN-21 @ 09:50							
PBDEs by EPA 1614 BDE 85	0.322	M,J	0.072	nala	01-FEB-21	08-FEB-21	P5271020
BDE 00 BDE 126	<0.043	[U]	0.072	pg/g	01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 120 BDE 105	<0.043	[U]	0.043	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 103	0.260	M,J,R	0.082	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 155	1.40	M,J	0.082		01-FEB-21	08-FEB-21	R5371220
BDE 153	1.30	[J]	0.32	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 140	<0.26	[U]	0.26	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 138/166	<0.20	[U]	0.20	pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 156	<0.48	[U]	0.48	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 138	<0.55	[U]	0.55	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 123	<0.35	[U]	0.35	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 183	1.20	M,J,R	0.15	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 103 BDE 191	<0.36	[U]	0.23	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 181	<0.35	[U]	0.35		01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 190	<0.35	[U]	0.35	pg/g	01-FEB-21 01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 190	0.91	M,J,R	0.51	pg/g	01-FEB-21 01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 203	<0.58	[U]	0.44 0.58	pg/g pg/g	01-FEB-21 01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 196	0.81	M,J,R	0.58	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 208	<3.3	[U]	3.3	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 200 BDE 207	9.4	M,J,R	3.3 3.3	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
BDE 200 BDE 206	11.0	M,J,R	3.3 4.0		01-FEB-21	08-FEB-21	R5371220 R5371220
BDE 200 BDE 209	152	M	4.0 53	pg/g pg/g	01-FEB-21	08-FEB-21	R5371220
PBEB	<0.068	[U]	0.068		01-FEB-21	08-FEB-21	R5371220 R5371220
HBB	<0.008	[U]	0.008	pg/g	01-FEB-21	08-FEB-21	R5371220 R5371220
Surrogate: 13C12 BDE 15	31.0	[0]	0.40 20-150	pg/g %	01-FEB-21	08-FEB-21	
Surrogate: 13C12 BDE 28	55.0		20-150 25-150	%	01-FEB-21	08-FEB-21	R5371220 R5371220
Surrogate: 13C12 BDE 23	53.0		25-150 25-150	%	01-FEB-21	08-FEB-21	R5371220 R5371220
Surrogate: 13C12 BDE 77	57.0		25-150 25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 100	65.0		25-150 25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 99	66.0		25-150 25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 126	71.0		25-150 25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 154	55.0		25-150 25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 153	53.0		25-150 25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 183	63.0		25-150 25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 183	35.0		25-150 25-150	%	01-FEB-21 01-FEB-21	08-FEB-21	R5371220 R5371220
Surrogate: 13C12 BDE 137 Surrogate: 13C12 BDE 207	44.0		20-200	%	01-FEB-21	08-FEB-21	R5371220 R5371220
Surrogate: 13C12 BDE 207	44.0	M,R	20-200	%	01-FEB-21	08-FEB-21	R5371220 R5371220
Surrogate: 13C6 HBB	36.0	R	20-200 25-150	%	01-FEB-21	08-FEB-21	R5371220
Surrogate: 13C12 BDE 138 Cleanup	43.0		20-130 30-135	%	01-FEB-21	08-FEB-21	R5371220
Dioxins and Furans HR 1613B	+0.0		00-100	70			10071220
2,3,7,8-TCDD	<0.10	[U]	0.10	pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,7,8-PeCDD	0.126	[J]	0.092	pg/g pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,4,7,8-HxCDD	0.120	M,J,R	0.092	pg/g pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,6,7,8-HxCDD	0.83	M,J	0.16	pg/g pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,7,8,9-HxCDD	0.89	M,J	0.10	pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,4,6,7,8-HpCDD	34.2	.,-	0.47	pg/g pg/g	01-FEB-21	10-FEB-21	R5371220
OCDD	270		1.6	pg/g pg/g	01-FEB-21	10-FEB-21	R5371220
2,3,7,8-TCDF	0.423	[J]	0.073	pg/g pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,7,8-PeCDF	<0.10	M,U	0.10	pg/g pg/g	01-FEB-21	10-FEB-21	R5371220
2,3,4,7,8-PeCDF	0.106	[J]	0.085	pg/g pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,4,7,8-HxCDF	0.16	J,R	0.065		01-FEB-21	10-FEB-21	R5371220 R5371220
	0.10	0,1	0.11	pg/g		10-160-21	1220

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2547886-2 NL-C							
Sampled By: Y. Meyer on 12-JAN-21 @ 09:50							
Matrix: Solid							
Dioxins and Furans HR 1613B							
1,2,3,6,7,8-HxCDF	0.28	[J]	0.10	pg/g	01-FEB-21	10-FEB-21	R5371220
2,3,4,6,7,8-HxCDF	0.40	EMPC	0.11	pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,7,8,9-HxCDF	<0.16	[U]	0.16	pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,4,6,7,8-HpCDF	5.87		0.20	pg/g	01-FEB-21	10-FEB-21	R5371220
1,2,3,4,7,8,9-HpCDF	< 0.32	[U]	0.32	pg/g	01-FEB-21	10-FEB-21	R5371220
OCDF	19.4		0.30	pg/g	01-FEB-21	10-FEB-21	R5371220
Total-TCDD	<0.10	[U]	0.10	pg/g	01-FEB-21	10-FEB-21	R5371220
Total TCDD # Homologues	0				01-FEB-21	10-FEB-21	R5371220
Total-PeCDD	0.458		0.092	pg/g	01-FEB-21	10-FEB-21	R5371220
Total PeCDD # Homologues	3				01-FEB-21	10-FEB-21	R5371220
Total-HxCDD	11.3		0.18	pg/g	01-FEB-21	10-FEB-21	R5371220
Total HxCDD # Homologues	4				01-FEB-21	10-FEB-21	R5371220
Total-HpCDD	72.3		0.47	pg/g	01-FEB-21	10-FEB-21	R5371220
Total HpCDD # Homologues	2				01-FEB-21	10-FEB-21	R5371220
Total-TCDF	1.19		0.073	pg/g	01-FEB-21	10-FEB-21	R5371220
Total TCDF # Homologues	4				01-FEB-21	10-FEB-21	R5371220
Total-PeCDF	2.28		0.10	pg/g	01-FEB-21	10-FEB-21	R5371220
Total PeCDF # Homologues	4				01-FEB-21	10-FEB-21	R5371220
Total-HxCDF	5.10		0.16	pg/g	01-FEB-21	10-FEB-21	R5371220
Total HxCDF # Homologues	6				01-FEB-21	10-FEB-21	R5371220
Total-HpCDF	5.87		0.32	pg/g	01-FEB-21	10-FEB-21	R5371220
Total HpCDF # Homologues	1				01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-2,3,7,8-TCDD	82.0		25-164	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,7,8-PeCDD	72.0		25-181	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,4,7,8-HxCDD	64.0		32-141	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,6,7,8-HxCDD	81.0		28-130	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDD	69.0		23-140	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-OCDD	73.0		17-157	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-2,3,7,8-TCDF	82.0		24-169	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,7,8-PeCDF	77.0		24-185	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-2,3,4,7,8-PeCDF	76.0		21-178	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,4,7,8-HxCDF	65.0		26-152	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,6,7,8-HxCDF	93.0		26-123	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-2,3,4,6,7,8-HxCDF	87.0		29-147	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,7,8,9-HxCDF	74.0		28-136	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDF	74.0		28-143	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 13C12-1,2,3,4,7,8,9-HpCDF	66.0		26-138	%	01-FEB-21	10-FEB-21	R5371220
Surrogate: 37Cl4-2,3,7,8-TCDD (Cleanup)	71.0		31-197	%	01-FEB-21	10-FEB-21	R5371220
Lower Bound PCDD/F TEQ (WHO 2005)	0.888			pg/g	01-FEB-21	10-FEB-21	R5371220
Mid Point PCDD/F TEQ (WHO 2005)	1.03			pg/g	01-FEB-21	10-FEB-21	R5371220
Upper Bound PCDD/F TEQ (WHO 2005)	1.09			pg/g	01-FEB-21	10-FEB-21	R5371220

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
EMPC	Estimated Maximum Possible Concentration. Parameter detected but didn't meet all criteria for positive identification.
G	QC result did not meet ALS DQO. Refer to narrative comments for further information.
J,G	QC result did not meet ALS DQO. Refer to narrative comments for further information. Duplicate expressed in terms of absolute difference.
J,R	The analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
Μ	A peak has been manually integrated.
M,J	A peak has been manually integrated, and the analyte was detected below the calibrated range but above the EDL.
M,J,R	A peak has been manually integrated, the analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
M,R	A peak has been manually integrated, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
M,U	A peak has been manually integrated, and the analyte was not detected above the EDL.
R	The ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
[J]	The analyte was detected below the calibrated range but above the EDL.
[U]	The analyte was not detected above the EDL.
נטן	The analyte was not detected above the EDL.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
DX-1613B-HRMS-BU	Solid	Dioxins and Furans HR 1613B	USEPA 1613B
Samples are extracted by GC/HRMS.	Soxhlet. The	e extracts are prepared using column chro	pmatography, reduced in volume and analyzed by isotope-dilution
MOISTURE-BU	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)
mass is achieved. The re	sidues are m	easured gravimetrically and the difference	re homogenized, moisture is removed by heating at 105°C until constant is in weight between the wet sample and the dried sample is used to ion with analytical results, to report data on a dry weight basis.
PBDE-1614-HRMS-BU	Solid	PBDEs by EPA 1614	USEPA 1614
Samples are Dean-Stark dilution GC/HRMS	Soxhlet extra	acted with toluene. Extracts are prepared b	by column chromatography, reduced in volume and analyzed by isotope

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
BU	ALS ENVIRONMENTAL - BURLINGTON, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L254788	6	Report Date:	12-FEB-21	Pa	ige 1 of 9
Client:	PO Box Waltsbur	g WA 99361	urlington Street Blue Mountai	n Environme	ental & Consulti	ng			
Contact:	Yancy M	-	D _(Desult	0	11-11-		1.1	A
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-BU		Soil							
Batch WG3473416- % Moisture	R5361180 3 DUP		L2547886-1 78.6	78.6		%	0.1	20	02-FEB-21
WG3473416- % Moisture	2 LCS			99.4		%		90-110	02-FEB-21
WG3473416- % Moisture	1 MB			<0.10		%		0.3	02-FEB-21
DX-1613B-HRM	S-BU	Solid							
	R5371220								
WG3473412-			L2547886-1						
1,2,3,4,6,7,8	-HpCDD		12600	19800		pg/g	44	50	11-FEB-21
OCDD			103000	193000	G	pg/g	61	50	11-FEB-21
Total-HpCDI			22400	35400		pg/g	45	50	11-FEB-21
COMMEI WG3473412-		le and Duplica	te do not match for L2547886-1	OCDD. San	nple consists of	wet sediment with	n long plant fibers	s with some da	irker particles.
2,3,7,8-TCDI	-		8.7	8.75		pg/g	0.7	50	09-FEB-21
1,2,3,7,8-Pe	CDD		42.6	45.2		pg/g	5.9	50	09-FEB-21
1,2,3,4,7,8-H	IxCDD		144	161		pg/g	11	50	09-FEB-21
1,2,3,6,7,8-H	IxCDD		331	368		pg/g	11	50	09-FEB-21
1,2,3,7,8,9-H	IxCDD		425	436		pg/g	2.6	50	09-FEB-21
2,3,7,8-TCD	F		5.6	7.16		pg/g	25	50	09-FEB-21
1,2,3,7,8-Pe	CDF		12.8	13.6		pg/g	6.1	50	09-FEB-21
2,3,4,7,8-Pe	CDF		13.2	14.9		pg/g	12	50	09-FEB-21
1,2,3,4,7,8-H	IxCDF		64.0	56.3		pg/g	13	50	09-FEB-21
1,2,3,6,7,8-H	IxCDF		64.0	70.3		pg/g	9.4	50	09-FEB-21
2,3,4,6,7,8-H	IxCDF		280	460		pg/g	49	50	09-FEB-21
1,2,3,7,8,9-H	IxCDF		21.8	25.1		pg/g	14	50	09-FEB-21
1,2,3,4,6,7,8	-HpCDF		2240	2690		pg/g	18	50	09-FEB-21
1,2,3,4,7,8,9	-HpCDF		202	217		pg/g	7.2	50	09-FEB-21
OCDF			6060	6930		pg/g	13	50	09-FEB-21
Total-TCDD			44.7	71.3		pg/g	46	50	09-FEB-21
Total-PeCDI)		380	421		pg/g	10	50	09-FEB-21
Total-HxCDI	0		3440	3650		pg/g	5.9	50	09-FEB-21
Total-TCDF			260	294		pg/g	12	50	09-FEB-21
Total-PeCDF	=		885	872		pg/g	1.5	50	09-FEB-21
Total-HxCDF	=		2280	2500		pg/g	9.2	50	09-FEB-21
Total-HpCDF	=		6170	6890		pg/g	11	50	09-FEB-21

		Workorder:			Report Date: 1			age 2 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
DX-1613B-HRMS-BU	Solid							
Batch R5371220								
WG3473412-2 LCS					0/			
2,3,7,8-TCDD			80.0		%		67-158	08-FEB-2 ²
1,2,3,7,8-PeCDD			97.0		%		70-142	08-FEB-2 ²
1,2,3,4,7,8-HxCDD			96.0		%		70-164	08-FEB-2 ²
1,2,3,6,7,8-HxCDD			86.0		%		76-134	08-FEB-2'
1,2,3,7,8,9-HxCDD			102.0		%		64-162	08-FEB-2
1,2,3,4,6,7,8-HpCDD			89.0		%		70-140	08-FEB-2
OCDD			90.0		%		78-144	08-FEB-2
2,3,7,8-TCDF			84.0		%		75-158	08-FEB-2 ²
1,2,3,7,8-PeCDF			82.0		%		80-134	08-FEB-2
2,3,4,7,8-PeCDF			77.0		%		68-160	08-FEB-2
1,2,3,4,7,8-HxCDF			84.0		%		72-134	08-FEB-2
1,2,3,6,7,8-HxCDF			90.0		%		84-130	08-FEB-2
2,3,4,6,7,8-HxCDF			86.0		%		70-156	08-FEB-2
1,2,3,7,8,9-HxCDF			89.0		%		78-130	08-FEB-2
1,2,3,4,6,7,8-HpCDF			86.0		%		82-122	08-FEB-2
1,2,3,4,7,8,9-HpCDF			89.0		%		78-138	08-FEB-2
OCDF			70.0		%		63-170	08-FEB-2
WG3473412-1 MB 2,3,7,8-TCDD			N/A	[U]	pg/g			08-FEB-2 ²
1,2,3,7,8-PeCDD			N/A	[U]	pg/g			08-FEB-2
1,2,3,4,7,8-HxCDD			N/A	[U]	pg/g			08-FEB-2 ⁻
1,2,3,6,7,8-HxCDD			N/A	[U]	pg/g			08-FEB-2
1,2,3,7,8,9-HxCDD			N/A	[U]	pg/g			08-FEB-2 ⁻
1,2,3,4,6,7,8-HpCDD			N/A	J,R	pg/g			08-FEB-2 ²
OCDD			N/A	J,R	pg/g			08-FEB-2
2,3,7,8-TCDF			N/A	[U]	pg/g			08-FEB-2
1,2,3,7,8-PeCDF			N/A	[U]	pg/g			08-FEB-2
2,3,4,7,8-PeCDF			N/A	[U]	pg/g			08-FEB-2
1,2,3,4,7,8-HxCDF			N/A	[U]	pg/g			08-FEB-2
1,2,3,6,7,8-HxCDF			N/A	[U]	pg/g			08-FEB-2
2,3,4,6,7,8-HxCDF			N/A	[U]	pg/g			
1,2,3,7,8,9-HxCDF			N/A					08-FEB-2
1,2,3,4,6,7,8-HpCDF				[U]	pg/g			08-FEB-2
1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HpCDF			N/A N/A	[U]	pg/g			08-FEB-2

		Workorder	: L254788	6	Report Date: 1	2-FEB-21	Pa	age 3 of 9
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
DX-1613B-HRMS-BU	Solid							
Batch R5371220								
WG3473412-1 MB			N1/A					
OCDF			N/A	J,R	pg/g			08-FEB-21
Total-TCDD			N/A	[U]	pg/g			08-FEB-21
Total-PeCDD			N/A	[U]	pg/g			08-FEB-21
Total-HxCDD			N/A	[U]	pg/g			08-FEB-21
Total-HpCDD			N/A	[U]	pg/g			08-FEB-21
Total-TCDF			N/A	[U]	pg/g			08-FEB-21
Total-PeCDF			N/A	[U]	pg/g			08-FEB-21
Total-HxCDF			N/A	[U]	pg/g			08-FEB-21
Total-HpCDF			N/A	[U]	pg/g			08-FEB-21
Surrogate: 13C12-2,3,7	,8-TCDD		73.0		%		25-164	08-FEB-21
Surrogate: 13C12-1,2,3	,7,8-PeCDD		65.0		%		25-181	08-FEB-21
Surrogate: 13C12-1,2,3	,4,7,8-HxCDD		63.0		%		32-141	08-FEB-21
Surrogate: 13C12-1,2,3	,6,7,8-HxCDD		75.0		%		28-130	08-FEB-21
Surrogate: 13C12-1,2,3	,4,6,7,8-HpCDD)	70.0		%		23-140	08-FEB-21
Surrogate: 13C12-OCD	D		81.0		%		17-157	08-FEB-21
Surrogate: 13C12-2,3,7	,8-TCDF		63.0		%		24-169	08-FEB-21
Surrogate: 13C12-1,2,3	,7,8-PeCDF		60.0		%		24-185	08-FEB-21
Surrogate: 13C12-2,3,4	,7,8-PeCDF		59.0		%		21-178	08-FEB-21
Surrogate: 13C12-1,2,3	,4,7,8-HxCDF		54.0		%		26-152	08-FEB-21
Surrogate: 13C12-1,2,3	,6,7,8-HxCDF		65.0		%		26-123	08-FEB-21
Surrogate: 13C12-2,3,4	,6,7,8-HxCDF		61.0		%		29-147	08-FEB-21
Surrogate: 13C12-1,2,3	,7,8,9-HxCDF		54.0		%		28-136	08-FEB-21
Surrogate: 13C12-1,2,3	,4,6,7,8-HpCDF		59.0		%		28-143	08-FEB-21
Surrogate: 13C12-1,2,3	,4,7,8,9-HpCDF		56.0		%		26-138	08-FEB-21
Surrogate: 37Cl4-2,3,7,	8-TCDD (Clean	up)	64.0		%		31-197	08-FEB-21
PBDE-1614-HRMS-BU	Solid							
Batch R5371220								
WG3473412-4 DUP		L2547886-1						
BDE 10		13.7	15.2		pg/g	10	50	08-FEB-21
BDE 7		743	916		pg/g	21	50	08-FEB-21
BDE 8/11		249	315		pg/g	23	50	08-FEB-21
BDE 12/13		110	140		pg/g	24	50	08-FEB-21
BDE 15		49.9	59.5		pg/g	18	50	08-FEB-21
BDE 32		70.4	77.2		pg/g	9.2	50	08-FEB-21

		Workorder:	L254788	6 Re	port Date: 1	2-FEB-21	Р	age 4 of
est M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PBDE-1614-HRMS-BU S	Solid							
Batch R5371220								
WG3473412-4 DUP		L2547886-1						
BDE 17/25		954	1070		pg/g	11	50	08-FEB-21
BDE 28/33		196	243		pg/g	21	50	08-FEB-21
BDE 35		44.0	54.0		pg/g	20	50	08-FEB-21
BDE 37		7.80	9.72		pg/g	22	50	08-FEB-21
BDE 75		<0.69	<0.79	RPD-NA	pg/g	N/A	50	08-FEB-21
BDE 51		311	359		pg/g	14	50	08-FEB-21
BDE 49		1860	2230		pg/g	18	50	08-FEB-21
BDE 71		<0.92	<1.1	RPD-NA	pg/g	N/A	50	08-FEB-21
BDE 47		2210	3130		pg/g	34	50	08-FEB-21
BDE 79		2.80	5.60	G	pg/g	67	50	08-FEB-21
BDE 83		<2.6	5.94	G	pg/g	N/A	50	08-FEB-21
BDE 66		79.8	107		pg/g	29	50	08-FEB-21
BDE 77		2.30	4.00	J	pg/g	1.70	1.8	08-FEB-21
BDE 100		604	923		pg/g	42	50	08-FEB-21
BDE 119/120		14.8	14.0		pg/g	5.6	50	08-FEB-21
BDE 99		502	1750	G	pg/g	111	50	08-FEB-21
BDE 116		<3.3	<0.90	RPD-NA	pg/g	N/A	50	08-FEB-21
BDE 118		8.5	12.8		pg/g	40	50	08-FEB-21
BDE 85		23.6	87.5	G	pg/g	115	50	08-FEB-21
BDE 126		2.9	3.26		pg/g	12	50	08-FEB-21
BDE 105		<2.4	<0.65	RPD-NA	pg/g	N/A	50	08-FEB-21
BDE 155		91.3	123		pg/g	30	50	08-FEB-21
BDE 154		264	442	G	pg/g	50	50	08-FEB-21
BDE 153		145	385	G	pg/g	91	50	08-FEB-21
BDE 140		12.4	20.9	G	pg/g	51	50	08-FEB-21
BDE 138/166		57.0	131	G	pg/g	79	50	08-FEB-21
BDE 156		<7.1	<2.7	RPD-NA	pg/g	N/A	50	08-FEB-21
BDE 128		12.0	30.0	J,G	pg/g	18.0	12.4	08-FEB-21
BDE 184		102	122	-,-	pg/g	18	50	08-FEB-21
BDE 183		1080	1190		pg/g	9.7	50	08-FEB-21
BDE 191		85.2	96.9		pg/g	13	50	08-FEB-21
BDE 181		38.0	45.5		pg/g	18	50	08-FEB-21
BDE 190		66.0	59.0		pg/g	11	50 50	08-FEB-21
BDE 197		988	1130		pg/g		50	00-FLD-21

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BDE-1614-HRMS-B	SU Solid							
Batch R537	71220							
WG3473412-4 BDE 203	DUP	L2547886-1 854	1010		pg/g	17	50	08-FEB-21
BDE 196		640	777		pg/g	19	50	08-FEB-21
BDE 208		6340	6880		pg/g	8.2	50	08-FEB-21
BDE 207		5770	5870		pg/g	1.7	50	08-FEB-21
BDE 206		10100	11600		pg/g	14	50	08-FEB-21
PBEB		<0.23	<0.14	RPD-NA	pg/g	N/A	50	08-FEB-21
НВВ		38.2	48.2		pg/g	23	50	08-FEB-21
	Duplicate does not	pass criteria for son		ample consists of v				
	DUP	L2547886-1						
		<6.4	<3.5	RPD-NA	pg/g	N/A	50	09-FEB-21
BDE 209		405000	499000	G	pg/g	21	50	09-FEB-21
WG3473412-2 BDE 10	LCS		64.0		%		5-130	08-FEB-21
BDE 7			75.0		%		5-130	08-FEB-21
BDE 8/11			88.0		%		20-150	08-FEB-21
BDE 12/13			88.0		%		5-130	08-FEB-21
BDE 15			95.0		%		50-150	08-FEB-21
BDE 30			82.0		%		5-130	08-FEB-21
BDE 32			90.0		%		50-150	08-FEB-21
BDE 17/25			93.0		%		50-150	08-FEB-21
BDE 28/33			101.0		%		50-150	08-FEB-21
BDE 35			108.0		%		50-150	08-FEB-21
BDE 37			116.0		%		50-150	08-FEB-21
BDE 75			97.0		%		50-150	08-FEB-21
BDE 51			93.0		%		50-150	08-FEB-21
BDE 49			97.0		%		50-150	08-FEB-21
BDE 71			97.0		%		50-150	08-FEB-21
BDE 47			110.0		%		50-150	08-FEB-21
BDE 79			107.0		%		50-150	08-FEB-21
BDE 83			78.0		%		60-140	08-FEB-21
BDE 66			114.0		%		50-150	08-FEB-21
BDE 77			106.0		%		50-150	08-FEB-21
BDE 100			90.0		%		50-150	08-FEB-21
BDE 119/120			91.0		%		50-150	08-FEB-21
BDE 99			93.0		%		50-150	08-FEB-21

		Workorder	L254788	6	Report Date: 1	2-FEB-21	Pa	age 6 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PBDE-1614-HRMS-BU	Solid							
Batch R5371220								
WG3473412-2 LCS BDE 116			74.0		%		40-140	08-FEB-21
BDE 118			102.0		%		50-150	08-FEB-21
BDE 85			96.0		%		50-150	08-FEB-21
BDE 126			99.0		%		50-150	08-FEB-21
BDE 105			95.0		%		50-150	08-FEB-21
BDE 155			93.0		%		50-150	08-FEB-21
BDE 154			99.0		%		50-150	08-FEB-21
BDE 153			91.0		%		50-150	08-FEB-21
BDE 140			97.0		%		50-150	08-FEB-21
BDE 138/166			82.0		%		50-150	08-FEB-21
BDE 156			80.0		%		50-150	08-FEB-21
BDE 128			75.0		%		50-150	08-FEB-21
BDE 184			98.0		%		50-150	08-FEB-21
BDE 183			99.0		%		50-150	08-FEB-21
BDE 191			86.0		%		50-150	08-FEB-21
BDE 181			74.0		%		50-150	08-FEB-21
BDE 190			68.0		%		50-150	08-FEB-21
BDE 197			97.0		%		50-150	08-FEB-21
BDE 203			96.0		%		50-150	08-FEB-21
BDE 196			93.0		%		50-150	08-FEB-21
BDE 208			109.0		%		50-200	08-FEB-21
BDE 207			92.0		%		50-200	08-FEB-21
BDE 206			88.0		%		50-200	08-FEB-21
BDE 209			103.0		%		50-200	08-FEB-21
PBEB			124.0		%		50-150	08-FEB-21
HBB			97.0		%		50-150	08-FEB-21
WG3473412-1 MB BDE 10			<0.023	[U]	pg/g		9	08-FEB-21
BDE 7			<0.021	[U]	pg/g		9	08-FEB-21
BDE 8/11			<0.015	[U]	pg/g		18	08-FEB-21
BDE 12/13			<0.013	[U]	pg/g		18	08-FEB-21
BDE 15			<0.011	[U]	pg/g		9	08-FEB-21
BDE 30			<0.055	[U]	pg/g		9	08-FEB-21
BDE 32			<0.039	[U]	pg/g		9	08-FEB-21

		Workorder:	L2547886	5	Report Date: 1	2-FEB-21	P	age 7 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PBDE-1614-HRMS-BU	Solid							
Batch R5371220								
WG3473412-1 MB					,			
BDE 17/25			<0.050	[U]	pg/g		18	08-FEB-21
BDE 28/33			<0.048	[U]	pg/g		18	08-FEB-21
BDE 35			<0.033	[U]	pg/g		9	08-FEB-21
BDE 37			<0.034	[U]	pg/g		9	08-FEB-21
BDE 75			<0.035	[U]	pg/g		9	08-FEB-21
BDE 51			<0.031	[U]	pg/g		9	08-FEB-21
BDE 49			<0.046	[U]	pg/g		9	08-FEB-21
BDE 71			<0.047	[U]	pg/g		9	08-FEB-21
BDE 47			2.10	J,R	pg/g		9	08-FEB-21
BDE 79			<0.030	[U]	pg/g		9	08-FEB-21
BDE 83			<0.10	[U]	pg/g		28	08-FEB-21
BDE 66			<0.051	[U]	pg/g		9	08-FEB-21
BDE 77			<0.032	[U]	pg/g		9	08-FEB-21
BDE 100			0.190	M,J,R	pg/g		14	08-FEB-21
BDE 119/120			<0.080	[U]	pg/g		14	08-FEB-21
BDE 99			1.00	M,J,R	pg/g		14	08-FEB-21
BDE 116			<0.13	[U]	pg/g		14	08-FEB-21
BDE 118			<0.090	[U]	pg/g		14	08-FEB-21
BDE 85			<0.078	[U]	pg/g		14	08-FEB-21
BDE 126			<0.056	[U]	pg/g		14	08-FEB-21
BDE 105			<0.096	[U]	pg/g		14	08-FEB-21
BDE 155			<0.065	[U]	pg/g		18	08-FEB-21
BDE 154			<0.081	[U]	pg/g		18	08-FEB-21
BDE 153			<0.17	[U]	pg/g		18	08-FEB-21
BDE 140			<0.15	[U]	pg/g		18	08-FEB-21
BDE 138/166			<0.27	[U]	pg/g		36	08-FEB-21
BDE 156			<0.35	[U]	pg/g		18	08-FEB-21
BDE 128			<0.31	[U]	pg/g		18	08-FEB-21
BDE 184			<0.11	[U]	pg/g		23	08-FEB-21
BDE 183			<0.17	[U]	pg/g		23	08-FEB-21
BDE 191			<0.27	[U]	pg/g		23	08-FEB-21
BDE 181			<0.26	[U]	pg/g pg/g		23	08-FEB-21
BDE 190			<0.20	[U]	pg/g pg/g		23 23	00-FED-21

	Workord	ler: L254788	6	Report Date: 1	2-FEB-21	Pa	ige 8 of 9
Test Matr	ix Reference	e Result	Qualifier	Units	RPD	Limit	Analyzed
PBDE-1614-HRMS-BU Soli	d						
Batch R5371220 WG3473412-1 MB							
BDE 197		<0.21	[U]	pg/g		23	08-FEB-21
BDE 203		<0.27	[U]	pg/g		23	08-FEB-21
BDE 196		<0.25	[U]	pg/g		23	08-FEB-21
BDE 208		<0.18	[U]	pg/g		45	08-FEB-21
BDE 207		<0.17	[U]	pg/g		45	08-FEB-21
BDE 206		<0.21	[U]	pg/g		45	08-FEB-21
BDE 209		<2.0	[U]	pg/g		45	08-FEB-21
PBEB		<0.030	[U]	pg/g		9	08-FEB-21
HBB		0.527	M,J	pg/g		9	08-FEB-21
Surrogate: 13C12 BDE 15		58.0		%		20-150	08-FEB-21
Surrogate: 13C12 BDE 28		60.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 47		62.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 77		61.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 100		68.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 99		67.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 126		60.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 154		60.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 153		64.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 183		65.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 197		56.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 207		72.0		%		20-200	08-FEB-21
Surrogate: 13C12 BDE 209		25.0		%		20-200	08-FEB-21
Surrogate: 13C6 HBB		45.0		%		25-150	08-FEB-21
Surrogate: 13C12 BDE 138 CI	eanup	50.0		%		30-135	08-FEB-21

Workorder: L2547886

Report Date: 12-FEB-21

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
G	QC result did not meet ALS DQO. Refer to narrative comments for further information.
J	Duplicate results and limits are expressed in terms of absolute difference.
J,G	QC result did not meet ALS DQO. Refer to narrative comments for further information. Duplicate expressed in terms of absolute difference.
J,R	The analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
M,J	A peak has been manually integrated, and the analyte was detected below the calibrated range but above the EDL.
M,J,R	A peak has been manually integrated, the analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
[U]	The analyte was not detected above the EDL.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody / Analytical Request Form 1435 Norjohn Court Unit 1, Burlington Ontario, Canada L7L 0E6

Tel +1-905-331-3111 Fax +1-905-331-4567 www.alsglobal.com burlington@alsenviro.com

2547886 Page <u>1 of 1</u>

1	of

Report To	1- 1	1 S. 1. 3 M.		Report F	ormat / Distribu	tion		Serv	/ice R	equest	ed	10.94		Russ?		150	
Company:	Blue Mountain E	nvironmental and Cor	nsulting Co. Inc.	(BMEC)	d 🗌 Other:			V	Regula	ar Service							
Contact:	Yancy Meyer			PDF	🗹 PDF 🔄 Excel 🗌 Digital 🔤 Fax				Rush Service (3 days with prior consultation) - surcharge applies								
Address:	PO Box 545/125	Main St., Waitsburg,	WA 99361	Email 1:	ymeyer@bmec	ww.com			Other	- Please c	ontact ALS						
Phone:	509-520-4416	Fax:		Email 2:	8			0	-		Ana	lysis R	eques	1.72			
and the second se	Same as Report	? 🗹 Yes	No No		Project Informat	ion		1613							ŝ		
Company	0			Job #:	E2020/1204			Ā							Deta		
Contact:				Location:	Port of Pasco I	agoons			4						de [ted	ners
Address:				PO:	N/ Marine			SUS	161						rovi	lina	ntai
Phone:		Fax:			y: Y. Meyer			Ľ.	EPA 1614						CS P	ntan	S
Lab Work O	order #			ALS Co	ntact:	Alastair Blyt	he	ls/							nop	Ŝ	er o
Sample #		Sample ider (This description will a			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Dioxins/Furans EPA	PDBE						Hazardous? Provide Details	Highly Contaminated?	Number of Containers
1	SL-C				12-Jan-21	9:00	soil	x	x								4
2	NL-C				12-Jan-21	9:50	soil	x	x					_			4
ALC: NO																	
5																	
							-	1								-	<u> </u>
1000								1-				_	+			_	
					_			-	-			_	+	-			
								-	-		-					_	
13-9-1	ĥ											_	\vdash	_		_	
														_			
Bre F	2					İ											
																	\mathbf{I}_{g}
	12																
	-						_	-			+						
								-	-		+						-
1.0								-	-				+	_			-
									-								-
No.																	
				Special Inst	ructions / Regula	ations / Hazar	dous Details										
		By the u	se of this form	the user acknow	ledges and agre	es with the To	erms and Conditie	ons a	в рто	vicled b	y ALS						
Released	by: A	Date (dd-mmm-yy)		Received by:	Date:	Time:	Temperature:	Ve	rified		Date:		Time:			rvation	
AA	11/2	1-12-21	1400	AURTON	13 JAN- 2021	13:22	.6.2 °C		25	AN		0X			N N	No ? add 8	

1. Facility Informati	on
Name of Facility	Port of Pasco Big Industrial Park
Owner	Port of Pasco
Ownership Status	Federal State X Local Private Other:
Physical Address	1110 Osprey Pointe Ave., Pasco, WA 99301
Mailing Address	PO Box 769, Pasco, WA 99301
Permit Number	

2. Facility Contacts						
	Primary Contact	Responsible Official				
Name	Yancy Meyer	Tracy Friesz				
Title	Enviromental Professional	Facility Engineer				
Phone	509-520-4416	509-547-3378				
Email	ymeyer@bmecww.com	tfriesz@portofpasco.org				

3.	Facility type (check all that apply)
	Major sewage treatment facility (design flow of $\geq 1 \text{ mgd } \underline{or}$ serving a population of $\geq 10,000$)
	Minor sewage treatment facility (design <i>flow of <1 mgd <u>and</u> serving a population of <10,000</i>)
	Class I sewage treatment facility (have a pretreatment program or designated as Class I)
	Composting facility (receive biosolids or sewage sludge for composting)
	Septage management facility (land apply or prepare septage for land application)
	Beneficial use facility (receive biosolids from others for direct land application)
X	Lagoon facility (all solids are stored in lagoons)
	Out-of-State (importing material to a facility within Washington State)
	Other—describe:

4. Other Permits (check all that apply)				
National Pollutant Discharge Elimination System (NPDES) – Permit Number:				
🗌 State Waste Discharge – Permit Nu	umber:			
National Emission Standards for Hazardous Pollutants Preconstruction				
Prevention of Significant Deterioration Program				
Ocean Dumping	Nonattainment Program			
Stormwater Discharge Underground Injection Control Program				
Dredge or Fill Hazardous Waste Management Program				
Other – Describe:	Other – Describe:			

5. Pathogen Reduction (check all that apply; see <u>WAC 173-308-170</u> or <u>WAC 173-308-270[3]</u>)					
Class A	Class B				
Alternative 1 (<i>time/temperature</i>)	X Alternative 1 (7 <i>samples</i>)				
 Alternative 2 (<i>pH/time/temperature/% solids</i>) Alternative 3 (process to further reduce pathogens [PFRP]) Composting Heat drying Heat treatment Pasteurization Beta ray irradiation Gamma ray irradiation 	Alternative 2 (process to significantly reduce pathogens [PSRP]) Aerobic digestion Air drying Anaerobic digestion Composting Liming (septage, see below)				
Thermophilic aerobic digestion Alternative 4 (<i>PFRP equivalent</i>)	Alternative 3 (<i>PSRP equivalent</i>)				
Septage	Sent for Further Treatment				
Injection					
Incorporation	Did not meet requirements (explain):				
pH stabilization					

6. Vector Attraction Reduction (see <u>WAC 173-308-180</u> or <u>WAC 173-308-270[3]</u>)					
Alternative 1 (38% volatile solids reduction)	Alternative 4 (<i>pH stabilization</i>)				
Alternative 1a (<i>bench test-anaerobic</i>)	☐ Alternative 5 (≥75% solids)				
Alternative 1b (bench test-aerobic)	Alternative 6 (290% solids)				
Alternative 2 (<i>SOUR</i>)	Alternative 7 (<i>injection</i>)				
Alternative 3 (<i>aerobic process</i>)	Alternative 8 (<i>incorporation</i>)				
Sent for Further Treatment	Did not meet requirements (explain):				

7. Pollutants (not applicable to septage unless required by permit; see <u>WAC 173-308-160</u>)					
Number of pollutant monitoring events in the past year:	0				
Pollutants Exceeding Table 1 or 3 Values:	0				

8. Process, Production & Storage				
How are your biosolids produced and managed?	NA			
Planned Changes?	NA			
Average Production (+/- 10 dry tons)	NA			
How often and what time of year testing conducted?	NA			
Who hauls your biosolids?	NA			
Where do your biosolids go? How much?	NA			
If you are not a Lagoon Facility p following)	proceed to Section 9 (all lagoon facilities must answer the			
Date of last measured depth. How much has accumulated?	Unknown			

When was the last dredging event?	Unknown
Do you plan to dredge during this permit cycle?	Unknown
9. Attachments (Check off each	requirement for your facility type)
Wastewater Treatment Plants th	at DO NOT Land Apply Biosolids
	extend at least 1 mile around the perimeter of the facility and torage facilities. The map must also show the location and
Facility Schematic. The Facility biosolids.	ty Schematic must show how you process and/or manage
	PA). The act of applying for coverage under this permit triggers a s does not necessarily mean that a new SEPA threshold determination will
	our plans for handling biosolids in the event that your eir usual end use location or fail to meet quality goals. tment (lagoons).
is required when you sample	nalysis Plan (SAP). A Biosolids/Soil Sampling and Analysis Plan your biosolids and land application site(s). tment or send for further treatment.
soil, and/or land application s	
	tment or send for further treatment and have no data. Required if you or your agent transport your biosolids.
Wastewater Treatment Plants th	at Land Apply Biosolids
	extend at least 1 mile around the perimeter of the facility and torage facilities. The map must also show the location and
Facility Schematic. The Facilities biosolids.	ty Schematic must show how you process and/or manage
	our plans for handling biosolids in the event that your eir usual end use location or fail to meet quality goals. tment (lagoons).

ECY 070-124 (12/2017) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Waste 2 Resources Program

360-407-6900. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

Analytical Data. The past two years of data related to your biosolids, land application site soil, and/or land application site waters.
Spill Prevention & Response Plan. Required if you or your agent transport your biosolids.
Biosolids/Soil Sampling & Analysis Plan (SAP). A Biosolids/Soil Sampling and Analysis Plan is required when you sample your biosolids and land application site(s).
Site Specific Land Application Plan (SSLAP). Required for every site where non-exceptional quality biosolids are applied.
General Land Application Plan (GLAP). To maintain the option of proposing new sites for applying non-exceptional quality biosolids during the term of this permit.
State Environmental Policy Act (SEPA). The act of applying for coverage under this permit triggers a requirement for review under SEPA. This does not necessarily mean that a new SEPA threshold determination will be required.
Public Notice. Depending on your operation you may be required to conduct Public Notice as part of submitting this application.
Beneficial Use Facilities
Vicinity Map. The map must extend at least 1 mile around the perimeter of the facility and any associated treatment or storage facilities. The map must also show the location and means of access.
Spill Prevention & Response Plan. Required if you or your agent transport your biosolids.
Analytical Data. The past two years of data related to your biosolids, land application site soil, and/or land application site waters.
Biosolids/Soil Sampling & Analysis Plan (SAP). A Biosolids/Soil Sampling and Analysis Plan is required when you sample your biosolids and land application site(s).
Site Specific Land Application Plan (SSLAP). Required for every site where non-exceptional quality biosolids are applied.
General Land Application Plan (GLAP). To maintain the option of proposing new sites for applying non-exceptional quality biosolids during the term of this permit.

State Environmental Policy Act (SEPA). The act of applying for coverage under this permit triggers a requirement for review under SEPA. This does not necessarily mean that a new SEPA threshold determination will be required, but any decisions regarding what is needed in order to comply with SEPA must be made by the SEPA Lead Official.

Public Notice. Depending on your operation you may be required to conduct Public Notice as part of submitting this application.

Other

Temporary Disposal Plan. Required if you dispose sewage sludge in a landfill on a temporary basis (see <u>WAC 173-308-300(8)</u>).

X N/A. We do not send (or plan to send) any sewage sludge to a landfill.

10. Certification Statement (*must be signed by the* **Responsible Official listed above**) (see WAC 173-308-310)

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Responsible Official Signature ______ Date 12/11/2020

Responsible Official Name and Title <u>Tracy, Friesz</u>, Facilities Engineer

ECY 070-124 (12/2017) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Waste 2 Resources Program

360-407-6900. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.