

Sampling and Analysis Plan and Quality Assurance Project Plan

Chevron Environmental Management Company

SAMPLING AND ANALYSIS PLAN AND QUALITY ASSURANCE PROJECT PLAN

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington FSID: 70996824 CSID: 6537

March 15, 2021

Sampling and Analysis Plan and Quality Assurance Project Plan

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington

SAMPLING AND ANALYSIS PLAN

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington FSID: 70996824 CSID: 6537

Prepared for:

Chevron Environmental Management Company

Prepared by:

Arcadis U.S., Inc. 1100 Olive Way Suite 800 Seattle Washington 98101 Tel 206 325 5254

Our Ref:

30064314

Date:

6/1/2021

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited

Julia Vidonish Aspinall Task Manager

Steve Mahony Project Task Manager

Ada Hamilton Project Manager

Sampling and Analysis Plan and Quality Assurance Project Plan Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street

Seattle, Washington

CONTENTS

1	Int	Introduction				
	1.1	Pu	rpose and Objectives1			
	1.2	Do	cument Organization1			
	1.3	Ro	les and Responsibilities1			
2	Fie	eld S	ampling Plan2			
	2.1	Sc	ope of Work2			
	2.2	Sa	mpling Objectives2			
	2.3	Sa	mpling Methodology2			
	2.3	3.1	Utility Locate			
	2	2.3.1	.1 Monitoring Well Installation and Development			
	2	2.3.1	.2 Subsurface Soil Sampling3			
	2	2.3.1	.3 Groundwater Sampling3			
	2.4	Qu	ality Assurance/Quality Control Samples			
	2.5	Sa	mple Nomenclature			
	2.6	Sa	mple Labeling, Handling, and Chain of Custody4			
	2.7	Eq	uipment Decontamination4			
	2.8	Re	siduals Management4			
3 Quality Assurance Project Plan						
	3.1	Ob	jective4			
	3.2	Qu	ality Assurance Indicators5			
	3.2	2.1	Completeness			
	3.2	2.2	Precision			
	3.2	2.3	Accuracy			
	3.2	2.4	Sensitivity			
	3.3	Lal	ooratory Quality Control			
	3.3	3.1	Method Blanks6			
	3.3	3.2	Laboratory Control Samples7			
	3.3	3.3	Surrogate Spikes7			

Sampling and Analysis Plan and Quality Assurance Project Plan

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington

3.3	.4	Laboratory Duplicates	7
3.3	.5	Calibration Standards	7
3.4	Fie	eld Instruments and Equipment	8
3.5	La	boratory Instruments and Equipment	8
3.6	As	sessment and Response Actions	8
3.7	Da	ata Management	9
3.7	.1	Field Data Management	9
3.7	.2	Analytical Data Management	9
3.8	Sa	mple Designation System	9
3.9	Сс	prrective Action1	0
3.10		Laboratory Reports1	0
3.11		Data Validation and Verification1	0

ATTACHMENT 1

TGI	1.	Monitoring	Well	Installation
101	۰.	monitoring	V V CII	installation

- TGI 2: Monitoring Well Development
- TGI 3: Soil Drilling and Sample Collection
- TGI 4: Low-Flow Groundwater Purging and Sampling Procedures for Monitoring Wells
- TGI 5: Groundwater and Soil Sampling Equipment Decontamination
- TGI 6: Investigation-Derived Waste Handling and Storage
- SOP 1: Sample Chain of Custody

1 INTRODUCTION

On behalf of Chevron Environmental Management Company (CEMC), Arcadis U.S., Inc. (Arcadis) has prepared this Sampling and Analysis Plan (SAP) for the Former Chevron Service Station No. 209335 located at 1201 – 1225 North 45th Street, Seattle, Washington (site). This SAP is an appendix to the Remedial Investigation Work Plan (workplan; Arcadis 2021) which is being prepared pursuant to the terms of Agreed Order No. DE 19432, which was entered into by CEMC and the Washington State Department of Ecology (Ecology) on February 2, 2021.

1.1 Purpose and Objectives

The purpose of this SAP is to outline the specific procedures for the sampling and monitoring activities described in the work plan and to identify the quality assurance requirements for the sampling and laboratory analysis in compliance with the Model Toxics Control Act (MTCA) regulations for sampling and analysis plans (WAC 173-340-820).

1.2 Document Organization

This SAP is organized into the following sections:

- Section 1 Introduction. Describes the scope and purpose of this SAP.
- Section 2 Field Sampling Plan (FSP). Describes the sampling methodology for the field sampling and monitoring activities.
- Section 3 Quality Assurance Project Plan (QAPP). Describes the quality assurance (QA) procedures for the field activities and laboratory analyses.

1.3 Roles and Responsibilities

Chevron Project Manager - James Kiernan: CEMC's representative for the site.

Arcadis Project Manager – Ada Hamilton: Responsible for providing technical oversight and reviewing all activities performed to verify that project objectives are met.

Health and Safety Officer – To be determined (TBD): Responsible for overseeing project health and safety issues and implementing corrective actions as needed.

Arcadis Field Lead – TBD: Responsible for overseeing sampling activities to verify that all field and analytical objectives are in compliance with this SAP.

Arcadis Field Personnel - TBD: Responsible for implementing the activities described in this SAP.

Ecology-Certified Laboratory – Pace Analytical Laboratories, Inc, Inc.: Responsible for providing the analytical testing specified in this SAP.

2 FIELD SAMPLING PLAN

2.1 Scope of Work

The proposed activities are described in the work plan and listed below. The remedial investigation activities are as follows:

1. Installation of groundwater monitoring wells to delineate soil and groundwater impacts to the north and to the east of the site.

2.2 Sampling Objectives

The objectives of the soil and groundwater activities are presented below:

• Characterize subsurface soil and groundwater to the north and to the east of the site.

2.3 Sampling Methodology

The sampling methodology was developed to collect data that are of sufficient quality to meet the objectives presented in Section 2.1. The sample collection techniques and specific sampling procedures will follow the methods presented in the Technical Guidance Instructions (TGIs) provided in Attachment 1.

2.3.1 Utility Locate

Prior to all intrusive subsurface activities, Arcadis will contact the Northwest Utility Location Center serving King County, Washington a minimum of 48 hours prior to initiating the field activities. A private utility locating company will be subcontracted by Arcadis to conduct a utility scan that will include the use of ground-penetrating radar to confirm that the proposed investigation locations are clear of underground utilities or other obstructions. A third-line of evidence to clear the location of utilities prior to drilling will include clearing the borehole a minimum of 110% of the diameter of the intrusive device (e.g., hollow-stem auger) or an additional 2-inches of overall diameter, whichever is greater, to a minimum depth of 5-feet below ground surface.

2.3.1.1 Monitoring Well Installation and Development

Arcadis will install monitoring wells as described in the workplan. Monitoring wells will be installed and developed according to the methodology presented in the TGI for Monitoring Well Installation (Attachment 1) and the TGI for Monitoring Well Development (Attachment 1).

2.3.1.2 Subsurface Soil Sampling

Arcadis will collect soil samples as described in the workplan. Soil samples will be collected according to the methodology presented in the TGI for Soil Drilling and Sample Collection (Attachment 1).

- Arcadis field staff will conduct field screening which will include visual observation and using a
 photoionization detector (PID) to measure VOCs according to the TGI for Soil Drilling and Sample
 Collection (Attachment 1). All sampling field activity and data will be recorded on field sampling
 logs. Samples will be labeled, handled and shipped using the procedures described in the Arcadis
 Standard Operating Procedure (SOP) for Sample Chain of Custody (Attachment 1).
- Samples will be submitted to Pace Analytical Laboratories, Inc for analyses as described in the RI WP.

2.3.1.3 Groundwater Sampling

Arcadis will collect groundwater samples as described in the workplan. Groundwater samples will be collected according to the methodology presented in the TGI for Low-Flow Groundwater Purging and Sampling Procedures for Monitoring Wells (Attachment 1).

 Samples will be submitted to Pace Analytical Laboratories, Inc for analyses as described in the RI WP.

2.4 Quality Assurance/Quality Control Samples

The following quality assurance samples will be collected during implementation of the sampling program.

- One field duplicate sample collected per medium (e.g., one duplicate collected for soil, one duplicate collected for groundwater). Field duplicate samples will be sequentially numbered and for the purposes of laboratory analysis and chain-of-custody there will be no identifying markers of duplicate samples.
- One trip blank per cooler containing samples that will be analyzed for volatile compounds.

2.5 Sample Nomenclature

Samples will be identified with a unique alpha-numeric code that will identify the type of sample and the location where the sample was collected.

The following sample codes will be used:

- Soil samples will be labeled with the prefix "MW-"and will include the boring identification number and depth. For example, a soil sample collected from monitoring well MW-1 at a depth of 5 ft would be labeled MW-1-5.
- Groundwater samples will be labeled with the monitoring well designation and the date of sample collection (MW-X-YYYYMMDD).
- Quality assurance samples will be given the following labels:

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington

- Field duplicate samples will be given the prefix "DUP-"followed by the matrix, and the date the sample was collected. For example, a field duplicate for a soil sample collected on March 15, 2021 would be labeled DUP-S-031521.
- Trip blank samples will be given the prefix "TB-" followed by the date the sample was collected. For example, a trip blank sample collected on March 15, 2021 would be labeled TB-031521.

2.6 Sample Labeling, Handling, and Chain of Custody

Sampling handling and packaging will be in accordance with the procedures outlined in the Arcadis SOP for Sample Chain of Custody (Attachment 1). All sample containers labels will be completed will the following information:

- Project name and project number
- Sample designation
- Name or initials of the sampler
- Date and time of sample collection

2.7 Equipment Decontamination

Equipment decontamination will be performed using the procedures outlined in the TGI for Groundwater and Soil Sampling Equipment Decontamination (Attachment 1). Site personnel will perform decontamination of all equipment prior to removal from the site and between sample locations.

2.8 Residuals Management

All soil, water, decontamination liquids, personal protective equipment (PPE), and other waste generated during the field sampling activities will be managed in accordance with applicable local, state, and federal requirements. Residuals will be managed in accordance with the procedures outlined in the TGI for Investigation-Derived Waste Handling and Storage (Attachment 1).

Waste profiles will be generated for each waste stream to be transported off site as required by the selected disposal facility. Disposal characterization samples will be collected as needed to meet facility requirements.

3 QUALITY ASSURANCE PROJECT PLAN

3.1 Objective

The objective of this SAP is to document the planning, implementation, and assessment procedures for the planned compliance monitoring and sampling activities described in the work plan. The SAP also documents the QA/QC activities that will be performed to confirm that the data collected are of known and

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington

acceptable quality. The analytical methods and procedures used to analyze samples will be summarized in laboratory reports.

3.2 Quality Assurance Indicators

QA indicators are generally defined in terms of six parameters, representativeness, comparability, sensitivity, completeness, precision, and accuracy. Representativeness is the degree to which the sampling data accurately and precisely represent the site conditions. Comparability is the degree of confidence with which one data set can be compared to another.

3.2.1 Completeness

Completeness is defined as a measure of the amount of valid data obtained from the sampling event compared to the total amount that was obtained. Completeness of a field or laboratory data set will be calculated by comparing the number of valid sample results generated to the total number of results generated.

 $Completeness = \frac{Number \ of \ Valid \ Results}{Total \ Number \ of \ Results \ Generated} x \ 100$

The assessment of completeness will require professional judgment to determine data usability for intended purposes.

3.2.2 Precision

Precision is a measure of the reproducibility of sample results. The goal is to maintain a level of precision consistent with the objectives of the action. To maximize precision, sampling and analytical procedures will be followed. Checks for precision will include the analysis of laboratory duplicates and field duplicates. Checks for field measurement precision will include duplicate field measurements. Field precision is difficult to measure because of temporal variations in field parameters. However, precision will be controlled through the use of experienced field personnel, properly calibrated meters, and duplicate field measurements. Field duplicates will be used to assess precision for the entire measurement system, including sampling, handling, shipping, storage, preparation, and analysis.

Laboratory data precision will be monitored through the use of laboratory duplicate sample analyses.

The precision of data will be measured by calculation of the relative percent difference (RPD) by the following equation:

$$RPD = \frac{|A - B| \times 100}{(A + B)/2}$$

Where:

A = Analytical result from one of two duplicate measurements

B = Analytical result from the second measurement

arcadis.com Chevron Service Station 9-6590 Sampling and Analysis Plan

Sampling and Analysis Plan and Quality Assurance Project Plan

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington

3.2.3 Accuracy

Accuracy is a measure of how close a measured result is to the true value. Both field and analytical accuracy will be monitored through initial and continuing calibration of instruments. In addition, reference standards, matrix spikes, blank spikes, and surrogate standards will be used to assess the accuracy of the analytical data.

The accuracy of field measurements will be controlled by experienced field personnel, properly calibrated field meters, and adherence to established protocols. The accuracy of field meters will be assessed by review of calibration and maintenance logs. Laboratory accuracy will be assessed through the use of MS, surrogate spikes and laboratory control samples. Where available and appropriate, QA performance standards will be analyzed periodically to assess laboratory accuracy. Accuracy will be calculated in terms of percent recovery as follows:

Percent Recovery =
$$\frac{(A - X) \times 100}{B}$$

Where:

A = Value measured in spiked sample or standard

X = Value measured in original sample

B = True value of amount added to sample or true value of standard

This formula is derived under the assumption of constant accuracy between the original and spiked measurements.

3.2.4 Sensitivity

Sensitivity is a quantitative measurement to determine if the analytical laboratory's procedures/methodologies and their associated method detection limits (MDLs) can satisfy the project requirements as they relate to the project action limits.

3.3 Laboratory Quality Control

Internal laboratory QC checks will be used to monitor data integrity. These checks will include method blanks, laboratory control samples, internal standards, surrogate samples and calibration standards. Laboratory control charts will be used to determine long-term instrument trends.

3.3.1 Method Blanks

Sources of contamination in the analytical process, whether specific analyses or interferences, must be identified, isolated, and corrected. The method blank is useful in identifying possible sources of

Sampling and Analysis Plan and Quality Assurance Project Plan

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington

contamination within the analytical process. For this reason, it is necessary that the method blank be initiated at the beginning of the analytical process and encompass all aspects of the analytical work. As such, the method blank would assist in accounting for any potential contamination attributable to glassware, reagents, instrumentation, or other sources that could affect sample analysis. One method blank will be analyzed with each analytical series associated with no more than 20 samples.

3.3.2 Laboratory Control Samples

Laboratory Control Samples (LCS) are standards of known concentration and are independent in origin from the calibration standards. The intent of LCS analysis is to provide insight into the analytical proficiency within an analytical series. This includes preparation of calibration standards, validity of calibration, sample preparation, instrument set-up, and the premises inherent in quantitation. Reference standards will be analyzed at the frequencies specified within the analytical methods.

3.3.3 Surrogate Spikes

Surrogates are compounds that are unlikely to occur under natural conditions but that have properties similar to the analytes of interest. This type of control is primarily used for organic samples analyzed by GC/MS and GC methods and is added to the samples prior to purging or extraction. The surrogate spike is utilized to provide broader insight into the proficiency and efficiency of an analytical method on a sample-specific basis. This control reflects analytical conditions that may not be attributable to sample matrix.

If surrogate spike recoveries exceed specified QC limits, the analytical results must be evaluated thoroughly in conjunction with other control measures. In the absence of other control measures, the integrity of the data may not be verifiable, and reanalysis of the samples with additional control may be necessary.

Surrogate spike compounds will be selected utilizing the guidance provided in the analytical methods.

3.3.4 Laboratory Duplicates

Laboratory duplicates will be analyzed to assess laboratory precision. Laboratory duplicates are defined as a separate aliquot of an individual sample that is analyzed as a separate sample.

3.3.5 Calibration Standards

Calibration check standards analyzed within a particular analytical series provide insight regarding instrument stability. A calibration check standard will be analyzed at the beginning and end of an analytical series, or periodically throughout a series containing a large number of samples.

In general, calibration check standards will be analyzed after every 12 hours or more frequently, as specified in the applicable analytical method. If results of the calibration check standard exceed specified tolerances, samples analyzed since the last acceptable calibration check standard will be reanalyzed.

3.4 Field Instruments and Equipment

Prior to field sampling, each piece of field equipment will be inspected to confirm that it is operational and calibrated in accordance with the manufacturer's instruction manual or the analytical method used. All meters that require charging or batteries will be fully charged or have fresh batteries. If instrument servicing is required, the maintenance arrangements will be made for timely service. Field instruments will be maintained according to the instructions provided by the manufacturer.

Logbooks will be kept for each field instrument. Logbooks will contain records of operation, maintenance, calibration, and any problems and repairs. Logbooks for each piece of equipment will be maintained in project records.

3.5 Laboratory Instruments and Equipment

Laboratory instrument and equipment documentation procedures include details of any observed problems, corrective measure(s), routine maintenance, and instrument repair (including information regarding the repair and the individual who performed the repair). Preventive maintenance of laboratory equipment generally will follow the guidelines recommended by the manufacturer. A malfunctioning instrument will be repaired immediately by in-house staff or through a service call from the manufacturer. Paperwork associated with service calls and preventative maintenance calls will be kept on file by the laboratory.

The laboratory manager will be responsible for the routine maintenance of instruments used in the particular laboratory. Any routine preventative maintenance carried out is logged into the appropriate logbooks. The frequency of routine maintenance is dictated by the nature of samples being analyzed, the requirements of the method used, and/or the judgment of the laboratory manager.

All major instruments are backed up by comparable (if not equivalent) instrument systems in the event of unscheduled downtime. An inventory of spare parts is also available to minimize equipment/instrument downtime.

3.6 Assessment and Response Actions

Performance and systems audits may be completed in the field and laboratory. Field performance audit summaries will contain an evaluation of field activities to verify that the activities are performed according to established protocols. The observations made during field performance audits and any recommended changes/deviations to the field procedures will be recorded and documented. In addition, systems audits comparing scheduled QA/QC activities with actual QA/QC activities completed will be performed. The audits will be performed periodically as required by the task needs and duration.

3.7 Data Management

The purpose of data management is to confirm that the necessary data are accurate and readily accessible to meet the analytical and reporting objectives of the project. The field activities will include a significant number of samples that require a structured, comprehensive, and efficient program for management of data.

Data management procedures will be employed to efficiently process the information collected, such that the data are readily accessible and accurate.

3.7.1 Field Data Management

Field activities require consistent documentation and accurate record keeping. Complete and accurate record keeping will be maintained, including field books, digital field forms and chain of custody forms. Field books or digital field forms will detail observations and measurements made during the site work. Data will be recorded directly into digital field forms.

Chain of custody forms will be used to document and track sample possession from time of collection to the time of disposal. A chain of custody form will accompany each field sample collected, and one copy of the form will be filed in the field office. Field personnel are trained on the proper use of the chain of custody procedure.

All field documentation will be scanned and saved to the Arcadis electronic project folder. Hard copies will be stored in the Arcadis Seattle, Washington office.

3.7.2 Analytical Data Management

Analytical data packages received from the laboratory will be reviewed and compared against the information on the chain of custody to confirm that the correct analyses were performed for each sample and that results for all samples submitted for analysis were received. Any discrepancies noted will be promptly corrected in coordination with the laboratory.

All data will be housed in a personal computer-based project database. The project database will include pertinent geographical, field, and analytical data. Information that will be used to populate the database will be derived from the surveying of sampling locations, field observations and analytical results. The project database will be backed up on a weekly basis at minimum or whenever major modifications are made. Access to the database will be limited to authorized project personnel.

3.8 Sample Designation System

A concise and easily understandable sample designation system will be used to facilitate sample tracking and sample management. The sample designation system to be employed during the sampling activities will be consistent, yet flexible enough to accommodate unforeseen sampling events or conditions. A

Former Chevron Service Station No. 209335 1201 – 1225 North 45th Street Seattle, Washington

combination of letters and numbers will be used to yield a unique sample number for each field sample collected, as outlined in Section 2.5.

3.9 Corrective Action

Corrective actions are required when field or analytical data are not within the objectives specified in this QAPP. Corrective actions include procedures to promptly investigate, document, evaluate, and correct data collection and/or analytical procedures. All corrective actions for situations including analytical or field equipment malfunctions, nonconformance or noncompliance with the QA requirements, or changes to the sampling procedures will be documented with the project records and maintained in the project file. All corrective action procedures must be initiated prior to continuing with the field or analytical procedure.

3.10 Laboratory Reports

The laboratory will maintain QA records related to analyses, QC, and corrective action. This information will be made available upon request. Routine reporting will include documenting all internal QC checks performed for the project.

3.11 Data Validation and Verification

Data validation entails a review of the QC data and the raw data to verify that the laboratory was operating within required limits; the analytical results were correctly transcribed from the instrument readouts; and which, if any, environmental samples were related to out-of-control QC samples. The objective of data validation is to identify any questionable or invalid laboratory measurements.

In accordance with the AO, data validation during this project will be performed consistent with USEPA Stage 2B criteria, which involves completeness and compliance checks of sample receipt conditions and sample-related and instrument-related quality control results. Data validation on this project will be completed by an independent third party.

Data collected as part of these activities will be uploaded in Ecology's EIM database under EIM identification number PMART005 within 30 days of analytical data validation. Data will be presented in tables showing laboratory results compared to applicable MTCA CULs.

Arcadis Technical Guidance Instruction and Standard Operating Procedure

arcadis.com Chevron Service Station 9-6590 Sampling and Analysis Plan

TGI - MONITORING WELL INSTALLATION

Rev #: 0

Rev Date: April 24, 2017

VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
0	4/24/2017	All	Re-written as a TGI	Marc Killingstad
				Peter C. Frederick

APPROVAL SIGNATURES

Prepared by:

Jay w Jay Erickson

4/20/17 Date:

Technical Expert Reviewed by:

Marc Killingstad

4/24/17 Date:

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to any and all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, state-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

This Technical Guidance Instruction (TGI) describes methods used to install groundwater monitoring wells in granular aquifers. It is assumed that the monitoring well has been properly designed, including sizing of the filter pack and screen, the length of the screen, total depth of the well, material strength and compatibility and surface completion. Typical monitoring wells are constructed of manufactured screen and engineered filter pack and are generally suitable for formations with granular materials having a grain size distribution with up to 50% passing a #200 sieve and up to 20% clay-sized material. Monitoring wells installed in formations finer than this may not be able to produce turbidity free water.

The monitoring well installation procedures set forth herein are consistent with the approach and methods presented in the American Society of Testing and Materials (ASTM) D5092 – *Standard Practice for Design and Installation of Groundwater Monitoring Wells* (ASTM D5092). As such, following this TGI in combination with proper well design (see appropriate TGI), well development (see appropriate TGI), groundwater sampling procedures (see appropriate TGI), and well maintenance and rehabilitation (see appropriate TGI), will result in a monitoring well suitable for: (1) collection of groundwater samples

representative of the surrounding formation and free of artificial turbidity; (2) measurement of accurate groundwater levels; and (3) hydraulic conductivity testing of formation sediments immediately adjacent to the open interval of the well (e.g., slug testing).

Monitoring well boreholes in unconsolidated (overburden) materials are typically drilled using the hollowstem auger drilling method. Other drilling methods that are also suitable for installing overburden monitoring wells, and are sometimes necessary due to site-specific geologic conditions or project objectives, include: drive-and-wash, spun casing, Rotasonic, dual-rotary (Barber Rig), and fluid/mud rotary with core barrel or roller bit. Direct-push techniques (e.g., Geoprobe or cone penetrometer) and driven well points may also be used in some cases within the overburden. Monitoring wells to be installed within consolidated materials such as fractured bedrock are commonly drilled using water-rotary (coring or tri-cone roller bit), air rotary or Rotasonic methods. For guidance when installing monitoring wells in consolidated materials, please refer to the appropriate document. The drilling method to be used at a given site will be selected based on site-specific consideration of anticipated drilling/well depths, site or regional geologic knowledge, type of monitoring to be conducted using the installed well, project objectives, and cost.

No oils or grease will be used on equipment introduced into the boring (e.g., drill rod, casing, or sampling tools). No polyvinyl chloride (PVC) glue/cement will be used in constructing or retrofitting monitoring wells that will be used for water-quality monitoring. No coated bentonite pellets will be used in the well drilling or construction process. Specifications of materials to be installed in the borehole will be obtained prior to mobilizing onsite; these materials generally include:

- Well casing (length, material, and diameter);
- Well screen (length, material, diameter, and slot size);
- Bentonite (type, as applicable, chips, non-coated and granular bentonite are acceptable);
- Filter pack (filter pack type and fine sand seal type, as applicable); and
- Grout (type, as applicable).

Well materials will be inspected and, if needed, cleaned or replaced prior to installation.

3 PERSONNEL QUALIFICATIONS

Monitoring well installation activities will be performed by persons who have been trained in proper well installation procedures under the guidance of an experienced field geologist, engineer, or technician. Where field sampling is performed for soil or bedrock characterization, field personnel will have undergone in-field training in soil or bedrock description methods, as described in the appropriate Standard Operating Procedures (SOPs) and/or TGIs for those activities.

4 EQUIPMENT LIST

The following materials will be available during soil boring and monitoring well installation activities, as required:

• Site Plan with proposed soil boring/well locations;

- Work Plan (or equivalent), Field Sampling Plan (FSP), and site-specific Health and Safety Plan (HASP);
- Personal protective equipment (PPE), as required by the HASP;
- Traffic cones, delineators, caution tape, and/or fencing as appropriate for securing the work area, if such are not provided by drillers;
- Appropriate soil sampling equipment (e.g., stainless steel spatulas, knife);
- Soil and/or bedrock logging equipment as specified in the appropriate project documents;
- Appropriate sample containers and labels;
- Drum labels as required for investigation derived waste handling;
- Chain-of-custody forms;
- Insulated coolers with ice, when collecting samples requiring preservation by chilling;
- Photoionization detector (PID) or flame ionization detector (FID);
- Ziplock style bags;
- Water level or oil/water interface meter;
- Locks and keys for securing the well after installation;
- Decontamination equipment (bucket, distilled or deionized water, cleansers appropriate for removing expected chemicals of concern, paper towels);
- Engineer's tape/measuring wheel;
- Weighted tape;
- Disposable bailers;
- Digital camera (or phone with camera)
- Field notebook or Personal Digital Assistant (PDA); and
- Appropriate field forms, consider including a photo of the well head and a Google Earth map showing the well location.

Prior to mobilizing to the site, Arcadis personnel will contact the drilling subcontractor or in-house driller (as appropriate) to confirm that appropriate sampling and well installation equipment will be provided. Specifications of the sampling and well installation equipment are expected to vary by project, and so communication with the driller is necessary to ensure that the materials provided will meet the project objectives. Equipment/materials typically provided by the driller could include:

- Drilling equipment required by the ASTM standard guidance document D1586, when performing splitspoon sampling;
- Disposable plastic liners (when drilling with direct-push equipment);
- Drums for investigation derived waste;

- Drilling and sampling equipment decontamination materials;
- Decontamination pad materials, if required; and
- Well construction materials.

5 CAUTIONS

Prior to beginning field work, underground utilities in the vicinity of the drilling areas will be delineated by the drilling contractor or an independent underground utility locator service. See appropriate guidance for proper utility clearance protocol.

Prior to beginning field work, contact the project technical team to ensure that all field logistics (e.g., access issues, health and safety issues, communication network, schedules, etc.) and task objectives are clearly understood by all team members.

Some regulatory agencies require a minimum annular space between the well or permanent casing and the borehole wall. When specified, the minimum clearance is typically 2 inches on all sides (e.g., a 2-inch diameter well requires a 6-inch diameter borehole). In addition, some regulatory agencies have specific requirements regarding grout mixtures. Determine whether the oversight agency has any such requirements prior to finalizing the drilling and well installation plan.

If dense non-aqueous phase liquids (DNAPL) are known or expected to exist at the site, refer to the project specific documents for additional details regarding drilling and well installation to reduce the potential for inadvertent DNAPL remobilization.

Similarly, if light non-aqueous phase liquids (LNAPLs) are known or expected to be present as "perched" layers above the water table, refer to the DNAPL Contingency Plan. Follow the general provisions and concepts in the DNAPL contingency plan during drilling above the water table at known or expected LNAPL sites.

Avoid using drilling fluids or materials that could impact groundwater or soil quality, or could be incompatible with the subsurface conditions.

Similarly, consider the compatibility between the well materials and the surrounding environment. For example, PVC well materials are not preferred when DNAPL is present. In addition, some groundwater conditions leach metals from stainless steel or are corrosive to metal well materials. If questions arise, contact the CPM and/or project technical lead to discuss.

Water used for drilling and sampling of soil or bedrock, decontamination of drilling/sampling equipment, or grouting boreholes upon completion will be of a quality acceptable for project objectives. Testing of water supply should be considered.

Specifications of materials used for backfilling the borehole will be obtained, reviewed and approved to meet project quality objectives. Bentonite is not recommended where DNAPLs are likely to be present or in groundwater with high salinity. In these situations, neat cement grout is preferred.

As noted above, coated bentonite pellets will not be used in monitoring well construction, as the coating could impact the water quality in the completed well.

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

Heat of hydration during neat cement grout curing must be considered to avoid damage to PVC well materials. The annular space for a typical monitoring well is small enough that heat of hydration should not create excessive temperature increases which may damage PVC well material. However, washouts in the borehole can lead to thick accumulations of grout which can produce enough heat during curing to weaken and potentially damage PVC casing. If heat of hydration is a concern, contact the project technical lead to address the issue.

6 HEALTH AND SAFETY CONSIDERATIONS

Field activities associated with monitoring well installation will be performed in accordance with a sitespecific HASP, a copy of which will be present on site during such activities.

7 PROCEDURE

The procedures for installing groundwater monitoring wells are presented below:

Hollow-Stem Auger, Drive-and-Wash, Spun Casing, Fluid/Mud Rotary, Rotasonic, and Dual-Rotary Drilling Methods

- 1. Prior to monitoring well installation, determine the expected volumes of filter pack and seal materials including bentonite (if applicable) and grout (neat cement or cement-bentonite).
- 2. Locate boring/well location, establish work zone, and set up sampling equipment decontamination area.
- 3. Advance boring to desired depth. Collect soil and/or bedrock samples at appropriate interval as specified in the Work Plan (or equivalent) and/or FSP. Collect, document, and store samples for laboratory analysis as specified in the Work Plan and/or FSP. Decontaminate equipment between samples in accordance with the Work Plan (or equivalent) and/or FSP. A common sampling method that produces high-quality soil samples with relatively little soil disturbance is described in ASTM D1586 *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils* (ASTM D1586). Split-spoon samples are obtained during drilling using hollow-stem auger, drive-and-wash, spun casing, and fluid/mud rotary. Rotasonic drilling produces soil cores that, for the most part, are relatively undisturbed, but note that when drilling in consolidated or finer-grained sediment the vibratory action during core barrel advancement may create secondary fractures or breaks. Dualrotary removes cuttings by compressed air or water/mud and allow only a general assessment of geology.
- 4. Describe each soil sample as outlined in the appropriate project records. Record descriptions in the field notebook and/or personal digital assistant (PDA). It is also beneficial to photo document the samples. It should be noted that PDA logs must be electronically backed up and transferred to a location accessible to other project team members as soon as feasible to retain and protect the field data. During soil boring advancement, document all drilling events in field notebook, including blow counts (number of blows required to advance split-spoon sampler in 6-inch increments) and work stoppages. Blow counts will not be available if Rotasonic, dual-rotary, or direct-push methods are used.

- 5. If it is necessary to install a monitor well into a permeable zone below a confining layer, particularly if the deeper zone is believed to have water quality that differs significantly from the zone above the confining layer, then a telescopic well construction should be considered. In this case, the borehole is advanced approximately 3 to 5 feet into the top of the confining layer, and a permanent casing (typically PVC, black steel or stainless steel) is installed into the socket drilled into the top of the confining layer. The casing is then grouted in place. The preferred methods of grouting telescoping casings include: pressure-injection grouting using an inflatable packer installed temporarily into the base of the casing, such that grout is injected out the bottom of the casing until it is observed at ground surface outside the casing; displacement-method grouting (also known as the Halliburton method), which entails filling the casing with grout and displacing the grout out the bottom of the casing by pushing a drillable plug, typically made of wood to the bottom of the casing, following by tremie grouting the remainder of the annulus outside the casing; or tremie grouting the annulus surrounding the casing using a tremie pipe installed to the base of the borehole. In all three cases, the casing is grouted to the ground surface, and the grout is allowed to set prior to drilling deeper through the casing. Site-specific criteria and work plans should be created for the completion of nonstandard monitoring wells, including telescopic wells.
- 6. Before installing a screened, it is important to confirm that the borehole has been advanced into the targeted saturated zone. This is particularly important for wells installed to monitor the water table and/or the shallow saturated zone, as the capillary fringe may cause soils above the water table to appear saturated. If one or more previously installed monitoring wells exist nearby, use the depth to water at such well(s) to estimate the water-table depth at the new borehole location.

To verify that the borehole has been advanced into the saturated zone, it is necessary to measure the water level in the borehole. For boreholes drilled without using water (e.g., hollow-stem auger, cable-tool, air rotary, air hammer), verify the presence of groundwater (and /or LNAPL, if applicable) in the borehole using an electronic water level probe, oil-water interface probe, or a new or decontaminated bailer. For boreholes drilled using water (e.g., drive and wash, spun-casing with roller-bit wash, Rotasonic, or water rotary with core or roller bit), monitor the water level in the borehole as it re-equilibrates to the static level. In low-permeability units like clay, fine-grained glacial tills, shale and other bedrock formations, it may be necessary to wait overnight to allow the water level to equilibrate. Document depth to water in the borehole on the appropriate field forms and field notebook. If there are questions concerning the depth of the well/screen interval, consult with the project technical lead prior to finalizing well depth/screen interval. To the extent practicable, ensure that the depth of the well below the apparent water table is deep enough so that the installed well can monitor groundwater year-round, accounting for seasonal water-table fluctuations. When in doubt, err on the side of slightly deeper well installation.

7. Upon completing the borehole to the desired depth, if a screened well construction is desired, install the monitoring well by lowering the screen and casing assembly with sump through the augers or casing. Monitoring wells typically will be constructed of 2-inch-diameter (although sometimes 4-inch), flush-threaded PVC or stainless steel slotted or wire wrapped well screen and blank riser casing. Smaller diameters may be used if wells are installed using direct-push methodology or if multiple wells are to be installed in a single borehole. The screen length will be specified in the Work Plan (or equivalent) or FSP based on regulatory requirements and specific monitoring objectives. Monitoring well screens are usually 5 to 10 feet long, but may be up to 25 feet long in very low permeability, thick

geologic formations. The screen length will depend on the purpose for the well and the objectives of the groundwater investigation and will (in most cases) be determined prior to the field mobilization.

The slot size and filter pack gradation should be predetermined in the Work Plan (or equivalent) or FSP and based on site-specific grain-size analysis (sieve analysis) or other geologic considerations or monitoring objectives. Typically, slot sizes for monitoring wells will range from 0.010 inches to 0.020 inches while the filter pack will be 20-40, Morie No. 0, or equivalent. In very fine-grained formations where sample turbidity needs to be minimized, it may be preferred to use a 0.006-inch slot size and 30-65, Morie No. 00, or equivalent filter pack. Alternatively, where monitoring wells are installed in coarse-grained deposits and higher well yield is required, a 0.020-inch slot size and 10-20, Morie No. 1, or equivalent filter pack may be preferred. If the screen slot size and filter pack have not been based on site-specific grain-size analysis, consider collecting soil samples during well installation so future wells can be properly designed.

A blank sump may be attached below the well screen if the well is being installed for DNAPL recovery/monitoring purposes. If so, the annular space around the sump may be backfilled with neat cement grout using a tremie to the bottom of the well screen prior to placing the filter pack around the screen. A blank riser will extend from the top of the screen to approximately 2.5 feet above grade or, if necessary, just below grade where conditions warrant a flush-mounted monitoring well. For wells greater than 50 feet deep, centralizers may be desired to assist in centering the monitoring well in the borehole during construction.

- 8. When the monitoring well assembly has been set in place and the grout has been placed around the sump (if any), place a washed silica filter pack in the annular space from the bottom of the boring to a height of 1 to 2 feet above the top of the well screen (following specifications in the Work Plan) using a tremie. The filter pack is placed and drilling equipment extracted in increments until the top of the sand pack is at the appropriate depth. Verify that the expected volume of filter pack matches with the actual amount installed. There can be differences due to irregularities in the borehole. Washout of the borehole will result in the need for greater than calculated well materials. If a difference of more than 10% is noted, consult with the project technical team. The filter pack will be consistent with the screen slot size and the soil particle size in the screened interval, as specified in the Work Plan (or equivalent) or FSP. The well should be gently surged to prevent filter pack material bridging and to settled the filter pack prior to well seal installation.
- 9. A hydrated bentonite seal (a minimum of 2 feet thick) will then be placed in the annular space above the sand pack (alternatively, in some cases a fine sand seal may be installed instead of bentonite—follow the specifications in the Work Plan). If non-hydrated bentonite is used, the bentonite should be permitted to hydrate in place for a minimum of 30 minutes before proceeding. *No coated bentonite pellets will be used in monitoring well drilling or construction*. Potable water may be added to hydrate the bentonite if the seal is above the water table. Monitor the placement of the sand pack and bentonite with a weighted tape measure.
- 10. During the extraction of the augers or casing, a cement/bentonite or neat cement grout will be placed in the annular space from the bentonite seal to a depth approximately 2 ft. below groundwater surface (bgs) or as specified in the Work Plan (or equivalent). As with the filter pack, it is recommended that seal material be placed with a tremie pipe. Ensure that seal materials are mixed at the proper ratios with water following manufacturer's recommendations.

- 11. Install the monitoring well completion as specified Work Plan (or equivalent). Typical completions are a locking, steel protective casing (extended at least 1.5 feet below grade and 2 feet above grade) over the riser casing and secure with a neat cement seal. Alternatively, for flush-mount completions, place a steel curb box with a bolt-down lid over the riser casing and secure with a neat cement seal. In either case, the cement seal will extend approximately 1.5 to 2.0 feet below grade and laterally at least 1 foot in all directions from the protective casing, and should slope gently away to promote drainage away from the well.
- 12. Monitoring wells should be labeled using indelible ink or paint with the appropriate designation on both the inner and outer well casings or inside of the curb box lid.
- 13. When an above-grade completion is used, the riser will be sealed using an expandable locking plug and the top of the well will be vented by drilling a small-diameter (1/8 inch) hole near the top of the well casing or through the locking plug, or by cutting a vertical slot in the top of the well casing. When a flush-mount installation is used, the riser will be sealed using an unvented, expandable locking plug.
- 14. During well installation, record construction details and actual measurements relayed by the drilling contractor and tabulate materials used (e.g., screen and riser footages; bags of bentonite, cement, and sand) in the field notebook as well as appropriate field forms.
- 15. After completing the well installation, lock the well, clean the area, and dispose of materials in accordance with the procedures outlined in Section 7 below.

Direct-Push Method

The direct-push drilling method may also be used to complete soil borings and install monitoring wells. Examples of this technique include the Diedrich ESP vibratory probe system, GeoProbe®, or AMS Power Probe® dual-tube system. Environmental probe systems typically use a hydraulically operated percussion hammer. Depending on the equipment used, the hammer delivers 140- to 350-foot pounds of energy with each blow. The hammer provides the force needed to penetrate very stiff to medium dense soil formations. The hammer simultaneously advances an outer steel casing that contains a dual-tube liner for sampling soil. The outside diameter (OD) of the outer casing ranges from 1.75 to 2.4 inches and the OD of the inner sampling tube ranges from 1.1 to 1.8 inches. The outer casing isolates shallow layers and permits the unit to continue to probe at depth. The double-rod system provides a borehole that may be tremie-grouted from the bottom up. Alternatively, the inside diameter (ID) of the steel casing provides clearance for the installation of small-diameter (e.g., 0.75- to 1-inch ID) micro-wells. The procedures for installing monitoring wells in soil using the direct-push method are described below.

- 1. Locate boring/well location, establish work zone, and set up sample equipment decontamination area.
- 2. Advance soil boring to designated depth, collecting samples at intervals specified in the Work Plan (or equivalent). Samples will be collected using dedicated, disposable, plastic liners. Describe samples in accordance with the procedures outlined in Step 3 above. Collect samples for laboratory analysis as specified in the Work Plan (or equivalent) and/or FSP.
- 3. Upon advancing the borehole to the desired depth, install the micro-well through the inner drill casing. The micro-well will consist of approximately 1-inch ID PVC or stainless steel slotted screen and blank riser. The sand pack, bentonite seal, and cement/bentonite grout will be installed as described, where applicable, in Steps 9 through 11 above.

- 4. Install protective steel casing or flush-mount, as appropriate, as described in Step 12 above. During well installation, record construction details and tabulate materials used in field notebook as well as appropriate field forms.
- 5. After completing the well installation, lock the well, clean the area, and dispose of materials in accordance with the procedures outlined in Section 8 below.

Driven Well Point Installation

Well points will be installed by pushing or driving using a drilling rig or direct-push rig, or hand-driven where possible. The well point construction materials will consist of a 1- to 2-inch-diameter threaded steel casing with either 0.010- or 0.020-inch slotted stainless steel screen. The screen length will vary depending on the hydrogeologic conditions of the site. The casings will be joined together with threaded couplings and the terminal end will consist of a steel well point. Because they are driven or pushed to the desired depth, well points do not have annular backfill materials such as sand pack or grout.

8 WASTE MANAGEMENT

Investigation-derived wastes (IDW), including soil cuttings and excess drilling fluids (if used), decontamination liquids, and disposable materials (well material packages, PPE, etc.), will be placed in clearly labeled, appropriate containers, or managed as otherwise specified in the Work Plan (or equivalent), FSP, and/or IDW management guidance document.

9 DATA RECORDING AND MANAGEMENT

Drilling activities should be documented on appropriate field/log forms as well as in a proper field notebook and/or PDA. Additionally, all documents (and photographs) should be scanned and electronically filed in the appropriate project directory for easy access. Pertinent information will include personnel present on site, times of arrival and departure, significant weather conditions, timing of well installation activities, soil descriptions, well construction specifications (screen and riser material and diameter, sump length, screen length and slot size, riser length, sand pack type), and quantities of materials used. In addition, the locations of newly-installed wells will be documented photographically or in a site sketch. If appropriate, a measuring wheel or engineer's tape will be used to determine approximate distances between important site features.

The well location, ground surface elevation, and inner and outer casing elevations will be surveyed using the method specified in the site Work Plan (or equivalent). Generally, a local baseline control will be set up. This local baseline control can then be tied into the appropriate vertical and horizontal datum, such as the National Geodetic Vertical Datum of 1929 or 1988 and the State Plane Coordinate System. At a minimum, the elevation of the top of the inner casing used for water-level measurements should be measured to the nearest 0.01 foot. Elevations will be established in relation to the National Geodetic Vertical Datum of 1929. A permanent mark will be placed on top of the inner casing to mark the point for water-level measurements.

10 QUALITY ASSURANCE

All drilling equipment and associated tools (including augers, drill rods, sampling equipment, wrenches, and any other equipment or tools) that may have come in contact with soil will be cleaned in accordance with the procedures outlined in the appropriate SOP. Well materials will also be cleaned prior to well installation.

11 REFERENCES

- American Society for Testing Materials (ASTM) D5092 *Standard Practice for Design and Installation of Ground Water Monitoring Wells*. American Society for Testing Materials. West Conshohocken, Pennsylvania.
- American Society of Testing and Materials (ASTM) D1586 *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils*. American Society for Testing Materials. West Conshohocken, Pennsylvania.

TECHNICAL GUIDANCE INSTRUCTION - MONITORING WELL DEVELOPMENT

Rev: #0

Rev Date: April 24, 2017

VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
0	4/24/2017	All	Re-written as TGI	Marc Killingstad

APPROVAL SIGNATURES

Prepared by:

Jay W Jay Erickson

4/24/2017 Date:

Technical Expert Reviewed by:

Marc Killingstad

4/24/2017 Date:

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, regulation-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

This Technical Guidance Instruction (TGI) covers the development of screened wells used for obtaining representative groundwater information and samples from granular aquifers (i.e., monitoring wells). Note that this TGI only applies to monitoring well development and not remediation (injection/extraction) well development.

The purposes of Monitoring Well Development are:

- 1. Repair damage to the borehole wall from drilling that can include clogging, smearing or compaction of aquifer materials;
- 2. Remove fine grained sediment from the formation and filter pack that may result in high turbidity levels in groundwater samples;
- 3. To re-sort formation and filter pack material adjacent to the well screen;

- 4. To recover any drilling fluids (if used) that may affect the permeability of the formation and filter pack or alter the water quality around the well; and
- 5. To optimize the well efficiency and hydraulic communication between the well screen and the formation.

Successful monitoring well development is dependent on the following:

- 1. Hydrostratigraphy Permeable formations containing primarily sand and gravel are more easily developed due to lower percentages of silt and clay material. Water in permeable formations can be moved in and out of the screen and/or through the formation easier than in less permeable deposits
- 2. Well Diameter Development tooling including brushes, surge blocks, pumps and jetting tools are more readily available for wells 4 inches in diameter and greater.
- 3. Well Design Wells with filter packs and screens designed to match the formation through the analysis of formation sieve samples are easier to develop. An important aspect to well design is to minimize the size of the annular space between the formation and well screen. Adequate room must be allowed for the proper installation of well materials, but not too large as to prevent/reduce communication with the surrounding formation.
- 4. Drilling Methods Different drilling methods result in varying amount of borehole damage and, therefore, impact the degree to which development will be successful.

Well development methods for monitoring wells include the following:

- 1. Bailing use of a bailer to remove water and sediment from the well casing. This technique does little to remove fines from the filter pack and may lead to bridging of sediment since the flow in only in one direction, toward the well screen.
- 2. Pumping/overpumping use of a pump to remove water and sediment from the well casing, overpumping involves pumping the well at a rate that exceeds the design capacity of the well. Similar to bailing, this technique does little to remove fines from the filter pack and may lead to bridging of sediment since the flow in only in one direction, toward the well screen. Small diameter monitoring wells have the additional constraint on pump size and flow rates.
- 3. Backwashing (rawhiding) consists of starting and stopping a pump intermittently to produce rapid pressure changes in a well. This method can produce better results than pumping alone since the procedure involves movement of the water in and out of the screen and formation. However, in many cases the surging action is not rigorous enough to fully develop the well.
- 4. Surging/swabbing use of a mechanical surge block or swabbing tool to operate like a piston with an up and down motion. The downstroke causes a backwash action that breaks up bridged sediment and the upstroke pulls the dislodged sediment into the well. This method works well for small and large diameter wells. Care should be taken on the downstroke so as not to force fines back into the formation, frequent pumping/purging during surging help to keep fines out of the well. Double surge blocks are recommended.
- 5. Jetting use of a tool fitted with nozzles that direct streams of water horizontally into well screens at high velocity. Due to the size of the tooling, this method is better suited for wells 4 inch in diameter and larger. The method is also more effective with wire-wrapped/continuous slot screens due to the

increased open area. Jetting requires specialized equipment and concurrent pumping to prevent reintroducing fines into the filter pack. Additionally, jetting requires subsequent surging to remove fines dislodged in the filter pack and formation.

For most situations, gentle surging coupled with bailing or pumping to remove dislodged materials is recommended.

Well development for properly designed and constructed monitoring wells may begin after the annular seal materials have been installed and allowed to cure, since these wells are designed to retain 90-99% of the filter pack material. This cure time is typically at least 24 to 48 hours after the sealing materials have been installed.

This TGI is meant to provide a general guide for proper monitoring well development. A site-specific field implementation plan for well installation and development detailing the specific methods and tools should be developed to provide site-specific instruction and guidance.

3 PERSONNEL QUALIFICATIONS

Monitoring well development activities will be performed by persons who have been trained in proper well development procedures under the guidance of an experienced field geologist, engineer, or technician.

4 EQUIPMENT LIST

Required equipment depends on the selected method and should be detailed in the site-specific field implementation plan. However, the following are typically required.

- Health and safety equipment, as required by the site Health and Safety Plan (HASP):
- Cleaning equipment
- Field notebook and/or personal digital assistant (PDA)
- Monitoring well keys
- Water level indicator
- Field parameter meter (YSI)
- Well Development Logs
- Well construction logs/diagrams
- Weighted tape (measure depth)
- Turbidity meter
- Camera
- Watch/timing device.

5 CAUTIONS

Where surging is performed to assist in removing fine-grained material from the sand pack, surging must be performed in a gentle manner. Excessive suction could promote fine-grained sediment entry into the outside of the sand pack from the formation.

Avoid using development fluids or materials that could impact groundwater or soil quality, or could be incompatible with the subsurface conditions.

In some cases, it may be necessary to add potable water to a well to allow surging and development, especially for new monitoring wells installed in low permeability formations. Before adding potable water to a well, the Certified Project Manager (CPM) and/or Project Hydrogeologist must be notified and the CPM shall make the decision regarding the appropriateness and applicability of adding potable water to a well during well development procedures. If potable water is to be added to a well as part of development, the potable water source should be sampled and analyzed for constituents of concern, and the results evaluated by the CPM prior to adding the potable water to the well. If potable water is added to a well for development purposes, at the end of development the well will be purged dry to remove the potable water, or if the well no longer goes dry then the well will be purged to remove at least three times the volume of potable water that was added.

6 HEALTH AND SAFETY CONSIDERATIONS

Field activities associated with monitoring well development will be performed in accordance with a sitespecific HASP, a copy of which will be present on site during such activities.

7 PROCEDURE

As indicated above, for most monitoring wells, gentle surging coupled with bailing or pumping to remove dislodged sediment is recommended.

- 1 Ensure sufficient time has passed to allow for proper curing of the well seal.
- 2 Don appropriate PPE (as required by the site-specific HASP).
- 3 Place plastic sheeting around the well.
- 4 Clean all equipment entering each monitoring well, except for new, disposable materials that have not been previously used.
- 5 Open the well cover while standing upwind of the well, remove well cap. Insert PID probe approximately 4 to 6 inches into the casing or the well headspace and cover with gloved hand. Record the PID reading in the field notebook. If the well headspace reading is less than 5 PID units, proceed; if the headspace reading is greater than 5 PID units, screen the air within the breathing zone. If the PID reading in the breathing zone is below 5 PID units, proceed. If the PID reading is above 5 PID units, move upwind from well for 5 minutes to allow the volatiles to dissipate. Repeat the breathing zone test. If the reading is still above 5 PID units, don the appropriate respiratory protection in accordance with the requirements of the HASP. Record all PID readings.

- 6 Obtain an initial measurement of the depth to water and the total well depth from the reference point at the top of the well casing. Record these measurements in the field log book. It is recommended to use a weighted tape for the total well depth measurement.
- 7 The depth to the bottom of the well should be sounded and then compared to the completion form or construction diagram for the well. Any discrepancies should be reported immediately to the CPM and/or Project Hydrogeologist. If sand or sediment is present inside the well, it should first be removed by bailing. Do not insert bailers, pumps, or surge blocks into the well if obstructions, parting of the casing, or other damage to the well is suspected. Instead report the conditions to the CPM and/or Project Hydrogeologist and obtain approval to continue or cease well development activities.
- 8 Lower a double surge block into the screened portion of the well. Starting from the bottom of the screen using 2 foot throws, gently raise and lower the surge block to force water in and out of the screen slots and sand pack. Continue surging for 15 to 30 minutes.
- 9 Lower a bottom-loading bailer, submersible pump, or inertia pump tubing with check valve to the bottom of the well and gently bounce on the bottom of the well to collect/remove accumulated sediment, if any. Remove and empty the bailer, if used. Repeat until the bailed/pumped water is free of excessive sediment and contact at the bottom of the well feels solid. Alternatively, measurement of the well depth with a weighted tape can be used to verify that sediment and/or silt has been removed to the extent practicable, based on a comparison with the well installation log or previous measurement of total well depth.
- 10 After surging the well for a minimum of two cycles and removing excess accumulated sediment from the bottom of the well, re-measure the depth-to-water and the total well depth from the reference point at the top of the well casing. Record these measurements in the field log book.
- 11 Remove formation water by pumping/bailing. Where pumping is used, measure and record the prepumping water level. Operate the pump at a relatively constant rate. Measure the pumping rate using a calibrated container and stop watch, and record the pumping rate in the field log book. Measure and record the water level in the well at least once every 5 minutes during pumping. Note any relevant observations in terms of water color, visual level of turbidity, sheen, odors, etc. Pump or bail until termination criteria specified in the Site-Specific Field Implementation plan are reached. Note: the project-specific field implementation plan may also specify a maximum turbidity requirement for completion of development. Unless otherwise specified the maximum turbidity should be 50 NTUs or less. Record the total volume of water purged from the well.
- 12 While developing, take periodic water level measurements (at least one every five minutes) to determine if drawdown is occurring and record the measurements on the Well Development Log.
- 13 While developing, calculate the rate at which water is being removed from the well. Record the volume on the Well Development Log.
- 14 While developing, water is also periodically collected directly from the well or bailer discharge and readings taken of the indicator parameters: pH, specific conductance, and temperature. Development is considered complete when the indicator parameters have stabilized (i.e., three consecutive pH, specific conductance, and temperature readings are within tolerances specified in the project work plans or within 10% if not otherwise specified), the extracted water is clear and free

of fine sediment and most importantly, when acceptable volume of water has been removed and/or a sufficient amount of surging has been performed.

- 15 In certain instances, for slow recharging wells, the parameters may not stabilize. In this case, well development is considered complete when minimal amounts of fine-grained sediments are recovered and acceptable volume of water has been removed.
- 16 If the well goes dry, stop pumping or bailing. Note the time that the well went dry. After allowing the well to recover, note the time and depth to water. Resume pumping or bailing when sufficient water has recharged the well.
- 17 Contain all development water in appropriate containers.
- 18 When complete, secure the lid back on the well.
- 19 Place disposable materials in plastic bags for appropriate disposal and decontaminate reusable, downhole pump components and/or bailer

8 WASTE MANAGEMENT

Materials generated during monitoring well installation and development will be placed in appropriate labeled containers and disposed of as described in the Work Plan/Field Implementation Plan or Field Sampling Plan.

9 DATA RECORDING AND MANAGEMENT

All well development activities should be documented on appropriate log forms as well as in a proper field notebook and/or PDA. Additionally, all documents (and photographs) should be scanned and electronically filed in the appropriate project directory for easy access. Pertinent information will include personnel present on site; times of arrival and departure; significant weather conditions; timing of well development activities; development method(s); observations of purge water color, turbidity, odor, sheen, etc.; purge rate; and water levels before, during, and after pumping.

10 QUALITY ASSURANCE

All reused, non-disposable, downhole well development equipment should be cleaned in accordance with the procedures outlined in the project documents.

11 REFERENCES

American Society for Testing Materials (ASTM), Designation D5521-05. *Standard Guide for Development of Ground-Water Monitoring Wells in Granular Aquifers*. American Society for Testing Materials. West Conshohocken, Pennsylvania.

TGI – SOIL DRILLING AND SAMPLE COLLECTION

Rev #: 1

Rev Date: May 12, 2020

VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
0	October 11, 2018	All	Updated and re-written as a TGI	Marc Killingstad
1	May 12, 2020	None	Review – no changes necessary	Marc Killingstad

TGI – Soil Drilling and Sample Collection Rev #: 1 | Rev Date: May 12, 2020

APPROVAL SIGNATURES

Prepared by:

Christopher Keen

10/11/2018

Date:

Technical Expert Reviewed by:

Marc Killingstad (Technical Expert)

05/12/2020

Date:

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to any and all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, state-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

This Technical Guidance Instruction (TGI) describes general drilling procedures and the methods to be used to field screen and collect soil samples for laboratory analysis in unconsolidated sediments. For soil description procedures, please refer to the *TGI* - *Soil Description*. For monitoring well installation in granular aquifers, please refer to the *TGI* - *Monitoring Well Installation*.

Overburden (unconsolidated sediments) drilling is commonly performed using the hollow-stem auger drilling method. Other drilling methods suitable for overburden drilling, which are sometimes necessary due to site-specific geologic conditions, include: drive-and-wash, spun casing, rotasonic, dual-rotary (Barber Rig), and fluid/mud rotary with core barrel or roller bit. Direct-push techniques (e.g., Geoprobe or cone penetrometer) and hand tools may also be used. Drilling within consolidated materials such as fractured bedrock is commonly performed using water-rotary (coring or tri-cone roller bit), air rotary or rotasonic methods. For guidance when drilling in consolidated materials (i.e., bedrock), please refer to the *TGI – Bedrock Core Collection and Description*.

The drilling method to be used at a given site will be selected based on site-specific consideration of anticipated drilling depths, site or regional geologic knowledge, types of sampling to be conducted, required sample quality and volume, and cost.

Field screening of soil samples is commonly performed using a photoionization detector (PID) and/or a flame ionization detector (FID). These instruments are used to measure relative concentrations of volatile organic compounds (VOCs) for the selection of samples for further laboratory or field analysis. Field screening for dense non-aqueous phase liquids (DNAPL) may be performed using hydrophobic dye (Oil Red O or Sudan IV), which is pertinent at chlorinated solvent sites.

Collection of soil samples for laboratory analysis may be performed using a variety of techniques including grab samples and composite or homogenized samples. Samples may require homogenization across a given depth interval, or several discrete grabs (usually five) may be combined into a composite sample. Samples for VOC analysis will not be homogenized or composited and are collected as discrete grab samples.

No oils or grease will be used on equipment introduced into the boring (e.g., drill rod, casing, or sampling tools).

3 PERSONNEL QUALIFICATIONS

Arcadis field personnel will have completed or are in the process of completing site-specific training as well as having current health and safety training as required by Arcadis, client, or state/federal regulations, such as 40-hour HAZWOPER training and/or OSHA HAZWOPER site supervisor training. Arcadis personnel will also have current training as identified in the site-specific Health and Safety Plan (HASP) which may include first aid, cardiopulmonary resuscitation (CPR), Blood Borne Pathogens (BBP) as needed. The HASP will also identify any access control requirements.

Prior to mobilizing to the field, Arcadis field personnel will review and be thoroughly familiar with relevant site-specific documents including but not limited to the task-specific work plan or field implementation plan (FIP), Quality Assurance Project Plan (QAPP), HASP, historical information, and other relevant site documents.

Arcadis field personnel will be knowledgeable in the relevant processes, procedures, and TGIs and possess the demonstrated required skills and experience necessary to successfully complete the desired field work. Personnel responsible for overseeing drilling operations will have at least 16 hours of prior training overseeing drilling activities with an experienced geologist, environmental scientist, or engineer with at least 2 years of prior experience.

Arcadis personnel directing, supervising, or leading soil sampling activities will have a minimum of 1 year of previous environmental soil sampling experience. Field employees with less than 6 months of experience will be accompanied by a supervisor (as described above) to ensure that proper sample collection techniques are employed.

Additionally, the Arcadis field team will review and be thoroughly familiar with documentation provided by equipment manufacturers and become familiar with the operation of (i.e., hands-on experience) all equipment that will be used in the field prior to mobilization.

TGI – Soil Drilling and Sample Collection Rev #: 1 | Rev Date: May 12, 2020

4 EQUIPMENT LIST

The following materials will be available, as required, during soil boring drilling, field screening, and sampling activities:

- Site-specific HASP and health and safety documents identified in the HASP
- Field Implementation Plan (FIP)/work plan that includes site map with proposed boring locations, field sampling plan (with corresponding depths, sample analyses, sample volume required, and sample holding time), and previous boring logs (as available)
- Appropriate personal protective equipment (PPE), as specified in the HASP
- Traffic cones, delineators, and caution tape as appropriate for securing the work area as specified in the Traffic Safety Plan (TSP)
- Photoionization detector (PID), flame ionization detector (FID) or other air monitoring equipment, as needed, in accordance with the HASP
- Drilling equipment required by ASTM D1586, when performing split-spoon sampling
- Disposable plastic liners, when drilling with direct-push equipment
- Appropriate soil sampling equipment (e.g., stainless steel spatulas/spoons/bowls, knife)
- Stainless steel hand auger and stainless-steel spade if using manual methods
- Indelible ink pens
- Engineer's ruler or survey rod
- Sealable plastic bags (e.g., Ziploc®)
- Air-tight sample containers and 8-oz. glass Mason jars or driller's jars
- Aluminum foil
- Plastic sheeting (e.g., Weatherall Visqueen)
- Decontamination equipment (buckets, distilled or deionized water, cleansers appropriate for removing expected chemicals of concern, paper towels)
- Appropriate sample blanks (trip blank supplied by the laboratory), as specified in the FSP
- Soil sample containers and labels (supplied by the laboratory) appropriate for the analytical method(s) with preservative, as needed (parameter-specific)
- Appropriate transport containers (coolers) with ice and appropriate labeling, packing, and shipping materials;
- Appropriate soil boring log (Attachment 1)
- Chain-of-custody forms
- Field notebook.

- Digital camera (or smart phone with camera)
- Drums or other containers appropriate for soil and decontamination water, as specified by the site investigation-derived waste (IDW) management plan, and appropriate drum labels

5 CAUTIONS

Prior to beginning field work, underground utilities in the vicinity of the drilling areas will be delineated by the drilling contractor or an independent underground utility locator service. See appropriate guidance for proper utility clearance protocol. Work will be performed in accordance with the Arcadis *Utility Location and Clearance Health and Safety Standard* and the *Utilities and Structures Checklist* will be completed before beginning any intrusive work.

Prior to beginning field work, the project technical team will ensure that all field logistics (e.g., access issues, health and safety issues, communication network, schedules, etc.) and task objectives are clearly understood by all team members. An internal call with the project technical team to review the FIP/work plan scope and objectives is strongly recommended prior to mobilization to ensure that the field work will be effectively and efficiently executed.

Some regulatory agencies have specific requirements regarding borehole abandonment and grout mixtures. Determine whether the oversight agency has any such requirements prior to finalizing the drilling plan.

If DNAPL is known or expected to exist at the site, refer to the project specific documents (e.g., DNAPL Contingency Plan) for additional details regarding drilling to reduce the potential for inadvertent DNAPL remobilization.

Similarly, if light non-aqueous phase liquid (LNAPL) is known or expected to be present as "perched" layers above the water table, refer to the DNAPL Contingency Plan. Follow the general provisions and concepts in the DNAPL contingency plan during drilling above the water table at known or expected LNAPL sites.

Avoid using drilling fluids or materials that could impact groundwater or soil quality, or could be incompatible with the subsurface conditions.

Water used for drilling, decontamination of drilling/sampling equipment, or grouting boreholes upon completion will be of a quality acceptable for project objectives. Testing of water supply will be considered.

Specifications of materials used for backfilling the borehole will be obtained, reviewed and approved to meet project quality objectives. Bentonite is not recommended where DNAPL is likely to be present or in groundwater with high salinity. In these situations, neat cement grout is preferred.

Store and/or stage empty and full sample containers and coolers out of direct sunlight. Be careful not to over-tighten lids with Teflon® liners or septa. Over-tightening can impair the integrity of the seal and can cause the glass to shatter and create a risk for hand injuries.

NOTE: Field logs and some forms are considered to be legal documents. All field logs and forms will therefore be filled out in indelible ink. Do not use permanent marker or felt-tipped pens for labels on

sample container or sample coolers. Permanent markers could introduce volatile constituents into the samples.

NOTE: An Arcadis employee that is appropriately trained at the correct level of internal hazardous materials/DOT (Department of Transportation) shipping must complete an Arcadis shipping determination to address applicable DOT and IATA (International Air Transport Association) shipping requirements. Review the applicable Arcadis procedures and guidance instructions for sample packaging and labeling. Prior to using air transportation, confirm air shipment is acceptable under DOT and IATA regulations.

6 HEALTH AND SAFETY CONSIDERATIONS

The HASP will be followed, as appropriate, to ensure the safety of field personnel.

Appropriate personal protective equipment (PPE) will be worn at all times in line with the task and the site-specific HASP.

Review all site-specific and procedural hazards as they are provided in the HASP, and review Job Safety Analysis (JSA) documents in the field each day prior to beginning work.

Working outside at sites with suspected contamination may expose field personnel to hazardous materials such as contaminated groundwater or non-aqueous phase liquid (NAPL) (e.g., oil). Other potential hazards include biological hazards (e.g., stinging insects, ticks in long grass/weeds, etc.), and potentially the use of sharp cutting tools (scissors, knife). Only use non-toxic peppermint oil spray for stinging insect nests. Review client-specific health and safety requirements, which may preclude the use of fixed/folding-blade knives and use appropriate hand protection.

If thunder or lighting is present, discontinue drilling and sampling until 30 minutes have passed after the last occurrence of thunder or lighting.

7 PROCEDURE

The procedures for drilling and the methods to be used to field screen and collect soil samples for laboratory analysis are presented below:

DRILLING PROCEDURES

Hollow-Stem Auger, Drive-and-Wash, Spun Casing, Fluid/Mud Rotary, Rotasonic, and Dual-Rotary Drilling Methods

- 1. Find/identify boring location, establish work zone, and set up sampling equipment decontamination area.
- 2. Advance boring to designated depth:
 - a. Collect soil samples at appropriate interval as specified in the FIP/work plan (or equivalent)
 - b. Collect, document, and store samples for laboratory analysis as specified in the FIP/work plan (or equivalent)

- c. Decontaminate equipment between samples in accordance with the FIP/work plan (or equivalent)
- d. A common sampling method that produces high-quality soil samples with relatively little soil disturbance is described in *ASTM D1586 Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils* (ASTM D1586).
 - i. Split-spoon samples are obtained during drilling using hollow-stem auger, driveand-wash, spun casing, and fluid/mud rotary
- e. Rotasonic drilling produces soil cores that, for the most part, are relatively undisturbed, but note that when drilling in consolidated or finer-grained sediment the vibratory action during core barrel advancement may create secondary fractures or breaks
- f. Dual-rotary removes cuttings by compressed air or water/mud and allow only a general assessment of geology
- 3. Describe each soil sample as outlined in the appropriate project records (refer to the description procedures outlined in the *TGI Soil Description*)
 - a. Record descriptions on the soil boring log (Attachment 1) and/or field notebook.
 - b. When possible photo document the samples (e.g., soil cores, split-spoons)
 - c. During soil boring advancement, document all drilling events in field notebook, including blow counts (i.e., the number of blows from a soil sampling drive weight [140 pounds] required to drive the split-barrel sampler in 6-inch increments) and work stoppages
 - d. Blow counts will not be available if rotasonic, dual-rotary, or direct-push methods are used; however, if standard penetration testing is required during rotasonic drilling, an automatic drop hammer may be used in conjunction with the method to switch from core barrel advancement to standard penetration testing
- 4. The drilling contractor will be responsible for obtaining accurate and representative samples, informing the supervising Arcadis geologist of changes in drilling pressure, and keeping a separate general log of soils encountered, including blow counts
 - a. The term "samples" means soil materials from particular depth intervals, whether or not portions of these materials are submitted for laboratory analyses
 - b. Records will also be kept of occurrences of premature refusal due to boulders or construction materials that may have been used as fill
 - c. Where a boring cannot be advanced to the desired depth, the boring will be abandoned, and an additional boring will be advanced at an adjacent location to obtain the required sample
 - d. Where it is desirable to avoid leaving vertical connections between depth intervals (e.g., if DNAPL or perched LNAPL are known or expected to exist at the site), the borehole will be sealed using cement and/or bentonite (see **Section 5** above)

e. Multiple refusals may lead to a decision by the supervising geologist to abandon that sampling location

Direct-Push Method

The direct-push drilling method may also be used to complete soil borings. Examples of this technique include Geoprobe®, Diedrich Environmental Soil Probe (ESP) System, or AMS PowerProbe. Environmental probe systems typically use a hydraulically operated percussion hammer.

Depending on the equipment used, the hammer delivers 140- to 350-foot pounds of energy with each blow. The hammer provides the force needed to penetrate very stiff to medium dense soil formations. The hammer simultaneously advances an outer steel casing that contains a dual tube liner for sampling soil (dual tube sampling system).

The outside diameter (OD) of the outer casing ranges from 2.25 to 6 inches and the OD of the inner sampling tube diameter ranges from 1.4 to 4.5 inches. The outer casing isolates overlying soil and permits the unit to continue to probe at depth. The dual tube sampling system provides a borehole that may be tremie-grouted from the bottom up. Alternatively, a single rod system may be used that does not provide a cased boring and which does not allow for tremie-grouting from the bottom up.

The known or expected site conditions (e.g., presence of NAPL) will be evaluated when selecting the type of direct-push sampling system to be employed.

Direct-push drilling can generally achieve target depths 100 feet or less and the achievable depth is based on the site geology.

- 1. Find/identify boring location, establish work zone, and set up sampling equipment decontamination area
- 2. Advance soil boring to designated depth.
 - a. Collect soil samples at appropriate interval as specified in in the FIP/work plan (or equivalent)
 - b. Collect, document, and store samples for laboratory analysis as specified in in the FIP/work plan (or equivalent)
 - c. Decontaminate equipment between samples in accordance with in the FIP/work plan (or equivalent)
 - d. Samples will be collected using dedicated, disposable, plastic liners
- Describe samples in accordance with the procedures outlined in Step 3 under Hollow-Stem Auger, Drive-and-Wash, Spun Casing, Fluid/Mud Rotary, Rotasonic, and Dual-Rotary Drilling Methods above (refer to the description procedures outlined in the TGI - Soil Description)

Manual Methods

Manual methods may also be used to complete shallow soil borings. Examples of this technique include using a spade, spoon, scoop, hand auger, or slide hammer. Manual methods are typically used to collect surface soil samples (0 to 6 inches) or to complete soil borings/collect soil samples from a depth of 5 feet or less.

- 1. Find/identify boring location, establish work zone, and set up sampling equipment decontamination area
- 2. Clear the ground surface of brush, root mat, grass, leaves, or other debris
- 3. Use a spade, spoon, scoop, hand auger, or slide hammer to collect a sample of the required depth interval
- 4. Use an engineer's ruler or survey rod to verify that the sample is collected to the correct depth and record the top and bottom depths from the ground surface
- 5. To collect samples below the surface interval, remove the surface interval first; then collect the deeper interval
 - a. To prevent the hole from collapsing, it may be necessary to remove a wider section from the surface or use cut polyvinyl chloride (PVC) pipe to maintain the opening
 - b. Collect soil samples at appropriate interval as specified in the FIP/work plan (or equivalent)
 - c. Collect, document, and store samples for laboratory analysis as specified in the FIP/work plan (or equivalent)
 - d. Decontaminate equipment between samples in accordance with the FIP/work plan (or equivalent)
- Describe samples in accordance with the procedures outlined in Step 3 under Hollow-Stem Auger, Drive-and-Wash, Spun Casing, Fluid/Mud Rotary, Rotasonic, and Dual-Rotary Drilling Methods above (refer to the description procedures outlined in the TGI - Soil Description)

FIELD SCREENING PROCEDURES

PID and FID Screening

Soils are typically field screened with a PID or FID for a relative measure of the total VOCs at sites where VOCs are known or suspected to exist. The PID employs a UV lamp to measure VOCs and the ionization energy (IE) of the site constituents need to be considered when selecting the type of lamp (e.g., 10.6 eV, 11.7 eV) that will be used. In general, any compound with an IE lower than that of the lamp photons can be measured. The FID has a wide linear range and responds to almost all VOCs. Field screening is performed using one (or both) of the following two methods:

- 1. Upon opening the sampler, the soil is split open and the PID or FID probe is placed in the opening and covered with a gloved hand. Such readings will be obtained at several locations along the length of the sample.
- 2. A portion of the collected soil is placed in a jar, which is covered with aluminum foil, sealed, and allowed to warm to room temperature. After warming, the cover is removed, the foil is pierced with the PID or FID probe, and a reading is obtained.

Initial PID readings will be recorded on the soil boring log (**Attachment 1**) and/or in the field notebook. The soil sample will be separated from the slough material (if any) by using disposable gloves and a precleaned stainless-steel spoon. For the second method, a representative portion of the sample will be placed in a pre-cleaned air-tight 8ounce container (as quickly as possible to avoid loss of VOCs), filling the container half full to allow for the accumulation of vapors above the soil. An aluminum foil seal will be placed between the glass and metal cap and the cap will be screwed on tightly. Unless the screening will be performed immediately after the sample is placed in the container, the sample containers will be stored in a cooler chilled to approximately 4°C until screening can be performed.

The headspace of the 8-ounce container will be measured using a PID or FID as follows:

- 1. Samples will be taken to a warm work space and allowed to equilibrate to room temperature for at least one hour.
- 2. Prior to measuring the soil vapor headspace concentration, the 8-ounce container will be shaken.
- 3. The headspace of the sample will then be measured directly from the 8-ounce container by piercing the aluminum foil seal with the probe of the PID or FID and measuring the relative concentration of VOCs in the headspace of the soil sample. The initial (peak) reading must be recorded.

The PID or FID must be calibrated according to the manufacturer's specifications at a minimum frequency of once per day prior to collecting PID or FID readings. The PID will be calibrated to a benzene-related compound (isobutylene) while the FID will be calibrated to methane.

The time, date, and calibration procedure must be clearly documented in the field notebook and/or the calibration log book.

If at any time the PID or FID results appear erratic or inconsistent with field observations, then the instrument will be recalibrated.

If calibration is difficult to achieve, then the PID's lamp will be checked for dirt or moisture and cleaned, or technical assistance will be required. Maintenance and calibration records will be kept as part of the field quality assurance program.

NAPL Screening

To screen for the potential presence of non-aqueous phase liquid (NAPL) in soil, drilling procedures must allow for high-quality porous media samples to be taken. Split-spoon samplers or direct-push samplers will be collected continuously ahead of the auger, drill casing/rods, or probe rods.

Upon opening each split-spoon sampler or direct-push plastic liner sleeve, the soil will immediately be evaluated for the presence of visible NAPL. If NAPL is immediately visible in the sample, its depth will be noted.

Additionally, the soil will be screened for the presence of organic vapors using a PID or FID. During screening, the soil will be split open using a clean spatula or knife and the PID or FID probe will be placed in the opening and covered with a gloved hand (**Method 1** above). Such readings will be obtained along the entire length of the sample. Alternatively, **Method 2** for PID/FID screening (outlined above) may also be performed. If the PID or FID examination reveals the presence of organic vapors above 100 parts per million (ppm), the sample will undergo further detailed evaluation for visible NAPL.

The assessment for NAPL will include the following tests/observations:

- Evaluation for Visible NAPL Sheen or Free-Phase NAPL in Soil Sampler
 - NAPL sheen will be a colorful iridescent appearance on the soil sample
 - NAPL may also appear as droplets or continuous accumulations of liquid with a color typically ranging from yellow to brown to black, depending on the type of NAPL
 - Creosote DNAPL (associated with wood-treating sites) and coal tar DNAPL (associated with manufactured gas plant [MGP] sites) are typically black and have a characteristic, pungent odor
 - Pure chlorinated solvents may be colorless in the absence of hydrophobic dye. Solvents mixed with oils may appear brown
 - Particular care will be taken to fully describe any sheens observed, staining, discoloration, droplets (blebs), or NAPL saturation
- Soil-Water Pan Test
 - A portion of the selected soil interval with the highest PID or FID reading above 100 ppm will be placed in a disposable polyethylene dish along with a small volume of potable or distilled water
 - The dish will be gently tilted back and forth to mix the soil and water, and the surface of the water will be viewed in natural light to observe the development of a sheen, if any
 - A small quantity of Oil Red O or Sudan IV hydrophobic dye powder will be added, and the soil and dye will be manually mixed for approximately 30 to 60 seconds and smeared in the dish to create a paste-like consistency
 - A positive test result will be indicated by a sheen on the surface of the water and/or a bright red color imparted to the soil following mixing with dye
- Soil-Water Shake Test
 - A small quantity of soil (up to 15 cc) will be placed in a clear, colorless, jar containing an equal volume of potable or distilled water (40-mL vials are well suited to this purpose, but not required)
 - After the soil settles into the water, the surface of the water will be evaluated for a visible sheen under natural light
 - o The jar will be closed and gently shaken for approximately 10 to 20 seconds
 - Again, the surface of the water will be evaluated for a visible sheen or a temporary layer of foam
 - A small quantity (approximately 0.5 to 1 cc) of Oil Red O or Sudan IV powder will be placed in the jar
 - The sheen layer, if present, will be evaluated for a reaction to the dye (change to bright red color)
 - The jar will be closed and gently shaken for approximately 10 to 20 seconds
 - The contents in the closed jar will be examined under natural light for visible bright red dyed liquid inside the jar

 A positive test result will be indicated by the presence of a visible sheen or foam on the surface of water, a reaction between the dye and the sheen layer upon first addition of the dye powder, a bright red coating on the inside of the vial (particularly above the water line), or red-dyed droplets within the soil

NOTE: If NAPL is obviously present upon opening the soil sampler or evaluating the soil sample within the split-spoon sampler or direct-push liner sleeve, it is not necessary to perform a soil-water pan test or soil-water shake test. In addition, it is not necessary to perform both a soil-water pan test and a soil-water shake test; either test method is acceptable. The pan test may be preferred in some circumstances because the presence of a sheen may be easier to see on a wider surface.

NOTE: When using hydrophobic dye in the tests above, color will be assessed outdoors under natural light during the period between sunrise and sunset, regardless of the degree of cloud cover. The hydrophobic dye Safety Data Sheets (SDS) will be incorporated into the HASP and reviewed prior to use and the dyes will be carefully handled and disposed in accordance with regulations.

SOIL SAMPLE COLLECTION FOR LABORATORY PROCEDURES

If not specifically identified in the FIP, soil samples will be selected for laboratory analysis based on:

- 1. Their position in relation to identified source areas
- 2. The visual presence of source residues (e.g., NAPL)
- 3. The relative levels of total VOCs based on field screening measurements
- 4. The judgment of the field coordinator

Samples designated for laboratory analysis will be placed in the appropriate containers.

Sample containers for VOC analysis will be filled first immediately following soil core retrieval to reduce loss of VOCs.

If samples will be collected for other analytical parameters, a sufficient amount of the remaining soil will then be homogenized as described below and sample containers will be filled for other parameters.

VOC samples will be collected as discrete samples using a small diameter core sampler (e.g., En Core® Sampler, Terra Core™ Sampler).

The En Core® Sampler is a disposable volumetric sampling device that collects, stores and delivers soil samples without in-field chemical preservation. The En Core® Sampler requires the use of a reusable T-handle.

The Terra Core[™] Sampler is a one-time use transfer tool, designed to collect soil samples and transfer them to the appropriate containers for in-field chemical preservation (e.g., methanol).

The small diameter core sampler will be used according to the manufacturer's instructions (e.g., En Novative Technologies). Some regulatory agencies have specific requirements regarding VOC sample collection. Determine whether the oversight agency has specific requirements prior to commencing sampling and collect samples at appropriate interval as specified in the FIP/work plan (or equivalent). Samples may require homogenization across a given depth interval, or several discrete grabs (usually five) may be combined into a composite sample.

NOTE: Samples for VOC analysis will NOT be homogenized or composited and will be collected as discrete samples as described above.

The procedure for mixing samples is provided below.

- 1. Mix the materials in a stainless steel (or appropriate non-reactive material) bowl using a stainlesssteel spoon (or disposable equivalents)
 - a. When dealing with large sample quantities, use disposable plastic sheeting and a shovel or trowel
 - b. NOTE: When preparing samples for metals analyses, do not use disposable aluminum (or metal tools or trays other than stainless steel), as it may influence the analytical results
- 2. Flatten the pile by pressing the top without further mixing
- 3. Divide the circular pile by into equal quarters by dividing out two diameters at right angles
- 4. Mix each quarter individually using appropriate non-reactive bowls, spoons and/or sheeting
- 5. Mix two quarters (as described above) to form halves, then mix the two halves to form a composite or homogenized sample
- 6. Place composite or homogenized sample into specified containers
- 7. Remaining material will be disposed of in accordance with project requirements and applicable regulations
- 8. Sample containers will be labeled with sample identification number, date, and time of collection and placed on ice in a cooler (target 4° Celsius)
- 9. Samples selected for laboratory analysis will be documented (chain-of-custody forms), handled, packed, and shipped in accordance with the procedures outlined in the FIP/work plan (or equivalent).

8 WASTE MANAGEMENT

Investigative-Derived Waste (IDW) generated during drilling activities, including soil and excess drilling fluids (if used), decontamination liquids, and disposable materials (plastic sheeting, PPE, etc.) will be stored on site in appropriately labeled containers (disposable materials will be contained separately) and disposed of properly. Containers must be labeled at the time of collection and will include date, location(s), site name, city, state, and description of matrix contained (e.g., soil, PPE). Waste will be managed in accordance with the *TGI – Investigation-Derived Waste Handling and Storage*, the procedures identified in the FIP or QAPP as well as state-, federal- or client-specific requirements. Be certain that waste containers are properly labeled and documented in the field log book.

9 DATA RECORDING AND MANAGEMENT

Management of the original documents from the field will be completed in accordance with the sitespecific QAPP. In general, drilling activities will be documented on appropriate field/log forms as well as in a proper field notebook. All field data will be recorded in indelible ink. Field forms, logs/notes (including daily field and calibration logs), digital records, and chain-of-custody records will be maintained by the field team lead.

Initial field logs and chain-of-custody records will be transmitted to the Arcadis Certified Project Manager (CPM) and Technical Lead at the end of each day unless otherwise directed by the CPM. The field team leader retains copies of the field documentation.

Additionally, all documents (and photographs) will be scanned and electronically filed in the appropriate project directory for easy access. Pertinent information will include personnel present on site, times of arrival and departure, significant weather conditions, timing of drilling activities, soil descriptions, soil boring information, and quantities of materials used.

In addition, the locations of soil borings will be documented photographically and in a site sketch. If appropriate, a measuring wheel or engineer's tape will be used to determine approximate distances between important site features.

Records generated as a result of this TGI will be controlled and maintained in the project record files in accordance with project requirements.

10 QUALITY ASSURANCE

Quality assurance procedures shall be conducted in accordance with the Arcadis Quality Management System or the site-specific QAPP.

All drilling equipment and associated tools (including augers, drill rods, sampling equipment, wrenches, and any other equipment or tools) that may have come in contact with soil will be cleaned in accordance with the procedures outlined in the appropriate TGI.

Field-derived quality assurance blanks will be collected as specified in the FIP/work plan and/or sitespecific QAPP, depending on the project quality objectives. Typically, field rinse blanks (equipment blanks) will be collected when non-dedicated equipment (e.g., split-spoon sampler, stainless steel spoon) is used during soil sampling. Field rinse blanks will be used to confirm that decontamination procedures are sufficient and samples are representative of site conditions. Trip blanks for VOCs, which aid in the detection of contaminants from other media, sources, or the container itself, will be kept with the coolers and the sample containers throughout the sampling activities and during transport to the laboratory.

Operate all monitoring instrumentation in accordance with manufacturer's instructions and calibration procedures. Calibrate instruments at the beginning of each day and verify the calibration at the end of each day. Record all calibration activities in the field notebook.

11 REFERENCES

ASTM D1586 - Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. ASTM International. West Conshohocken, Pennsylvania.

TGI – Soil Drilling and Sample Collection Rev #: 1 | Rev Date: May 12, 2020

12 ATTACHMENTS

Attachment 1. Soil Boring Log Form

TGI – Soil Drilling and Sample Collection Rev #: 1 | Rev Date: May 12, 2020

ATTACHMENT 1

Soil Boring Log Form

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

arcadis.com

Boring/We	ell				-	F	Proj	ect								Paç	geof
Site Location															Drilling	Started	
Total Dep	oth Drilled		Fe	et					Н	ole	Dia	me	ter	inches	Drilling Co	npleted	
	Sample or ng Device		-			Le					meter Device		Sampling Interval	feet			
Drillin	g Method							Di	rillir	ıg F	luid	Us	ed				
Drilling						-				J							
Contractor Prepared													Driller				
Ву															Helper		
Core	PID	Sample	М				AN	D	se	Ģ	GRA	VE		Udden-Wentworth Description: princ			
Recovery (feet)	Reading (ppm)	Depth (ft bgs)	clay	silt	very fine	fine	medium	coarse	very coar	granular	pebble	cobble		components, (angularity, plasticity, dila additional comments	atency); sorting,	moisture content, consistency/densit	y, color,
			-														
			-														
			†			<u>+</u>											
			╞╌╴														
																	
			╞														
			┢														
		18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				••••											
			_														
			╞														
						 											
			╞	-													
				t													
			 														
			╞	\vdash	$\left \right $	-											
			╞	\vdash		\vdash											

SOIL BORING LOG (CONT'D)

Boring/We	oring/Well Prep									-		Pre	epai	ared By Page of					
Core Recovery (feet)	PID Reading (ppm)	Sample		UD		fine S	SAN ^{dium}		very coarse		GRA	٨VE	EL						
			clar	silt	ver	<u>liñ</u>	<u><u></u></u>	<u> ö</u>	Ver	gra	ğ	ğ	pg						
			_		_	<u> </u>	<u> </u>	╞											
			_	<u> </u>	_	<u> </u>	<u> </u>	┝	<u> </u>	_									
				\vdash	<u> </u>	<u> </u>	<u> </u>	┢	<u> </u>										
			┢╍			+	<u> </u>			┢			+						
				\vdash	-	\vdash	├	\vdash	<u> </u>	<u> </u>									
					<u> </u>		-	-											
				-	-			\vdash	\square										
			╂			+	<u> </u>		╎╴╴┙	┢		<u> </u>	+						
						-		-											
								-											
			†			<u>+</u>	†	1	{	 		<u> </u>	†						
			Γ	[]									†						
			<u> </u>			ļ!	<u> </u>			<u> </u>			<u> </u>						
								L											
							<u> </u>	\vdash											
			┣	!		!	<u> </u>						<u> </u>						
						<u> </u>	<u> </u>	┢											
						<u> </u>	<u> </u>	┢											
			-	\vdash	<u> </u>	<u> </u>	<u> </u>	\vdash	<u> </u>	-									
			╞╌╴	┝		<u> </u>	<u> </u>			┢			+·						
			-			-		-											
					-			-											
						-		-											
			†		 	<u>+</u>	<u>+</u>	+		┝		┝╼╼	+						
			\vdash	\vdash	\vdash	\square		\square		\vdash									
							<u> </u>	\vdash											
			†			<u>+</u>	†	1	{			<u> </u>	†						
								T											
			 																
			<u> </u>			ļ]	ļ		[]]	Ļ		<u> </u>	ļ						
					\vdash	$\left \right $	\vdash	+		╞									
			t					\square											
			L					\vdash											

TGI - LOW-FLOW GROUNDWATER PURGING AND SAMPLING PROCEDURES FOR MONITORING WELLS

Rev: #1

Rev Date: May 8, 2020

VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
0	October 12, 2018	All	Updated and re-written as TGI with new branding and content	Marc Killingstad
1	May 8, 2020	Pages 5, 10-11	Added clarification/details for equipment requirements and procedure steps based on USEPA guidance	Marc Killingstad

APPROVAL SIGNATURES

Prepared by:

Ryan McKinney

10/12/2018

Date:

Technical Expert Reviewed by:

Marc Killingstad (Technical Expert)

May 8, 2020

Date:

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, regulation-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

Groundwater samples are collected from monitoring wells to evaluate groundwater quality. The protocol presented in this Technical Guidance Instruction (TGI) describes the procedures to purge monitoring wells and collect groundwater samples using the low flow purging/sampling methodology. This protocol has been developed in accordance with the United States Environmental Protection Agency (USEPA) Region I *Low Stress (Low Flow) Purging and Sampling Procedures for the Collection of Groundwater Samples from Monitoring Wells* (EQASOP-GW4; September 19, 2017).

Both filtered and unfiltered groundwater samples may be collected using this low-flow sampling method. Filtered samples will be obtained using a 0.45-micron disposable filter. Project teams will evaluate the last time the monitoring wells were developed and determine if additional development might be necessary. Water samples will not be taken immediately following well development. Sufficient time will be allowed for the groundwater flow regime in the vicinity of the monitoring well to stabilize and to approach chemical equilibrium with the well construction materials. This lag time will depend on site conditions and methods of installation but often exceeds one week.

3 PERSONNEL QUALIFICATIONS

Arcadis field sampling personnel will have completed or are in the process of completing site-specific training as well as having current health and safety training as required by Arcadis, client, or regulations, such as 40-hour HAZWOPER training and/or OSHA HAZWOPER site supervisor training. Arcadis personnel will also have current training as identified in the site-specific Health and Safety Plan (HASP) which may include first aid, cardiopulmonary resuscitation (CPR), Blood Borne Pathogens (BBP) as needed. The HASP will also identify any access control requirements.

Prior to mobilizing to the field, the groundwater sampling team will review and be thoroughly familiar with relevant site-specific documents including but not limited to the task-specific work plan or field implementation plan (FIP)/field sampling plan, Quality Assurance Project Plan (QAPP), HASP, historical information, and other relevant site documents.

Arcadis field sampling personnel will be knowledgeable in the relevant processes, procedures, and TGIs and possess the demonstrated required skills and experience necessary to successfully complete the desired field work. Additionally, the groundwater sampling team will review and be thoroughly familiar with documentation provided by equipment manufacturers and become familiar with the operation of (i.e., hands-on experience) all equipment that will be used in the field prior to mobilization.

4 EQUIPMENT LIST

Specific to this activity, the following materials (or equivalent) will be used:

- Site-specific HASP and health and safety documents identified in the HASP
- Field Implementation Plan (FIP) that includes site map, well construction records, sampling plan (sample analyses, sample volume required, and sample holding time), and prior groundwater sampling records (if available)
- Field notebook and/or smart device (phone or tablet)
- Low-flow sampling field forms (Attachment A)
- Appropriate personal protective equipment (PPE) (e.g., latex or nitrile gloves, safety glasses, etc.) as specified in the HASP
- Well keys and other tools to remove manhole covers (manual torque wrench with 9/16" socket and flat head screwdriver typical)
- Photoionization detector (PID) or Flame ionization detector (FID) (as appropriate, depending on site-specific constituents of concern)
- Electronic water-level indicator (e.g., Solinist Model 101) or oil/water interface probe with 0.01foot accuracy (oil/water as appropriate, note that sampling will not be performed when sheen or light non-aqueous phase liquid [LNAPL] is present)
- Down-hole multi-parameter water-quality sonde (temperature/pH/specific conductivity/oxidation reduction [ORP]/turbidity/dissolved oxygen) meter coupled with flow-through-cell for measurements, for example:

- YSI 6-Series Multi-Parameter Instrument
- Horiba U-22 Multi-Parameter Instrument.
- Hydrolab Series 3 or Series 4a Multiprobe and Display.

NOTE: Transparent, small volume flow-through-cells (e.g., 250 milliliters or less) are preferred as they allow for easy detection of air bubbles and sediment buildup in the cell, which can interfere with the monitoring instrument probes. A small volume cell also allows for quick turnover of water in the cell between measurements of the indicator field parameters. It is recommended to use a flow-through-cell and monitoring probes from the same manufacturer and model to avoid incompatibility between the probes and flow-through-cell.

- Plastic sheeting (e.g., Weatherall Visqueen) to protect all down-hole sampling equipment from contact with potential sources of contamination.
- Decontamination equipment
 - Non-phosphate laboratory soap (Alconox or equivalent), brushes, clean buckets or clean wash tubs—new buckets or tubs will be purchased if it cannot be determined if the present items are clean
 - o Distilled or de-ionized water for equipment decontamination
- Indelible ink pen
- 150-foot measuring tape (or sufficient length for the maximum site depth requirement)
- Sampling pump, which may consist of one or more of the following:
 - Submersible pump (e.g., Grundfos Redi-Flo 2)
 - Peristaltic pump (e.g., ISCO Model 150)
 - o Bladder pump (e.g., Marschalk System 1, QED Micropurge, Geotech)
- Appropriate controller and power source for pump:
 - Submersible and peristaltic pumps require electric power from either a generator or a deep cell battery
 - o Submersible pumps such as Grundfos require a pump controller to run the pump
 - Bladder pumps require a pump controller and a gas source (e.g., air compressor or compressed N2 or CO2 gas cylinders)
- Teflon® tubing or Teflon®-lined polyethylene tubing of an appropriate size for the pump being used
 - For peristaltic pumps, dedicated Tygon® tubing (or other type as specified by the manufacturer) will be used through the pump apparatus
 - o Teflon® will not be used when sampling for per- and polyfluoroalkyl substances (PFAS)
- Graduated cylinder and stop watch or other device to measure time to determine pumping rate

- Appropriate water sample containers (supplied by the laboratory)
- Appropriate blanks (trip blank supplied by the laboratory)
- Sample labels and Chain-of-Custody forms (COC)
- 0.45-micron disposable filters (if field filtering is required)
- A supplemental turbidity meter (e.g., Horiba U-10, Hach 2100P, LaMotte 2020) may be required for specific projects and will be specified in the project FIP/ work plan and the kick-off notes.
 - If used, in-line 'T' and valve allows for collection of water for turbidity measurements before the pump discharge enters the flow-through cell

NOTE: The maintenance requirements for the above equipment generally involve decontamination or periodic cleaning, battery charging, and proper storage, as specified by the manufacturer. For operational difficulties, the equipment will be serviced by a qualified technician.

5 CAUTIONS

Different USEPA regions and/or state regulatory agencies may stipulate deviations from this document. It is the responsibility of the Project Team (Project Manager and Technical Lead) to be fully aware of the requirements from the applicable regulatory framework.

Weather

- If heavy precipitation occurs, and no cover over the sampling area and monitoring well can be erected, sampling may be discontinued until adequate cover is provided. Rain water could compromise groundwater samples.
- Avoid extreme weather situations. Be aware that thermal currents and vertical mixing of cold and warm water inside the well casing could create a convection cell within the well and compromise data collection (e.g., biological mechanisms).
 - Direct sunlight and hot ambient temperatures may cause the groundwater in the tubing or flow-through-cell to heat up and de-gas. This may result in the loss of volatile organic compounds (VOCs) and dissolved gases. Shade the equipment from direct sunlight, keep the tubing as short as possible, and avoid the hottest times of the day.
 - Sampling during freezing conditions may adversely impact the data quality objectives.
 USEPA recommends low-flow sampling be conducted at air temperatures above 32°F
 (0°C) or taking special precautions to prevent groundwater from freezing in the equipment.

Cross-Contamination

• To mitigate potential cross-contamination, groundwater samples are to be collected in a predetermined order from least impacted to impacted based on previous analytical data. If no analytical data are available, collect samples in order of up-gradient, then furthest down-gradient to source area locations.

- Note that permanent markers could introduce volatile constituents into the samples; *therefore, indelible ink is recommended* to be used for labels on sample containers or sample coolers.
- When using a gasoline generator, this power source will be set-up at least 30 feet downwind from the well to avoid exhaust fumes to contaminate samples.

<u>Pumps</u>

- Preferred methods of extracting groundwater are adjustable rate, submersible pumps such as centrifugal pumps or bladder pumps constructed of stainless steel or polytetrafluoroethylene (PTFE, i.e. Teflon®). However, *PTFE will not be used when sampling for per- and polyfluoroalkyl substances (PFAS). PTFE could contain PFAS.*
- When using a bladder pump for collecting VOCs and dissolved gases, "best practice" is to set-up the pump to deliver sufficient water to fill a 40 mL VOC vial.
- The use of peristaltic pumps will be based on the type of data to be collected. Because the use a peristaltic pump can result in de-gassing of VOC and / or dissolved gases from groundwater, a different type of pump will be considered if these compounds are of concern.
- Manual or motor driven inertial pumping devices are not recommended because they cause greater disturbance during purging and pumping than regular pumps and are less easily controlled. This could cause a higher degree of data variability.

<u>Tubing</u>

- When sampling for VOCs, SVOCs, pesticides, PCBs and inorganics, use of PTFE (Teflon®) or PTFE-lined tubing is preferred. However, PTFE tubing will not be used when sampling for PFAS.
- PVC, polypropylene or polyethelene tubing may be used when sampling for metals or other inorganics.
- Tubing with inside diameters of 1/4 or 3/8 inch is recommended because this will help ensure tubing remains water filled when operating at very low pumping rates.

General Precautions

- Store and/or stage empty and full sample containers and coolers out of direct sunlight.
- It may be necessary to field filter the groundwater for some parameters (e.g., metals) during collection, depending on preservation, analytical method, and project quality objectives. The task-kick-off notes and the FIP/work plan will list the samples that require field filtering.
- Be careful not to overtighten lids with Teflon® liners or septa (e.g., 40 mL vials). Over-tightening can cause the glass to shatter or impair the integrity of the Teflon® seal.

6 HEALTH AND SAFETY CONSIDERATIONS

The HASP will be followed, as appropriate, to ensure the safety of field personnel.

Appropriate personal protective equipment (PPE) will be worn at all times in line with the task and the site-specific HASP.

Review all site-specific and procedural hazards as they are provided in the HASP, and review Job Safety Analysis (JSA) documents in the field each day prior to beginning work.

Access to wells may expose field personnel to hazardous materials such as contaminated groundwater or non-aqueous phase liquid (NAPL) (e.g., oil). Other potential hazards include pressurized wells, stinging insects that may inhabit well heads, other biologic hazards (e.g. ticks in long grass/weeds around well head), and potentially the use of sharp cutting tools (scissors, knife)—open well caps slowly and keep face and body away to allow to vent any built-up pressure; only use non-toxic peppermint oil spray for stinging insect nests; review client-specific health and safety requirements, which may preclude the use of fixed/folding-blade knives, and use appropriate hand protection.

Generators and cord and plug equipment will employ an overcurrent protection device such as an integrated ground fault circuit interrupter (GFCI) cord. Grundfos pump controllers will not run properly with a GFCI, so the power source will be equipped with other overcurrent protection means.

Overtightening of lids with Teflon® liners can cause the glass to shatter and create a risk for hand injuries.

7 PROCEDURE

Field personnel will set up and perform low-flow sampling in accordance with the following procedures.

- 1. Review FIP and groundwater sampling records from previous sampling events (if available) prior to mobilization to estimate the optimum pumping rate and anticipated drawdown for each well to perform sampling as efficiently as possible (i.e., reach a stabilized pumping condition).
- 2. Calibrate field instruments according to manufacturer procedures for calibration and record calibration procedure and results in field log.
- 3. All equipment will either be new or decontaminated in accordance with appropriate guidance document (*TGI Groundwater and Soil Sampling Equipment Decontamination*) prior to use.
- 4. Visually inspect the well to ensure that it is undamaged, properly labeled and secured
 - a) Damage or other conditions that may affect the integrity of the well will be recorded in the Field Activity Daily Log and brought to the attention of the designated Field Manager and/or Project Manager
 - b) Record well construction and conditions on the Low-Flow Sampling Field Form (Attachment A)
- 5. Place clean plastic sheeting on the ground near the well to keep monitoring and sampling equipment off the surface unless the equipment is elevated above the ground (e.g. on a table).
- 6. Open the well cover while standing upwind of the well. Remove the well cap and place it on the plastic sheeting. If appropriate or required for site-specific conditions, insert the photoionization detector (PID) probe approximately 4 to 6 inches into the casing or the well headspace and cover it with a gloved hand. Record the PID reading in the field log. Perform air monitoring in the breathing zone according to the HASP and/or JSA.
- 7. Measure and record the initial depth to groundwater prior to placing the pumps.

8. Prepare and install the pump in the well.

NOTE: Groundwater will be purged from the wells using an appropriate pump. If the depth to water is below the sampling range of a peristaltic pump (approximately 25 feet below ground surface), a submersible or bladder pump will be used, provided that the well is constructed with a casing diameter of at least two (2) inches (the minimum well diameter capable of accommodating such pumps). For smaller diameter wells, where the depth to water is below the sampling range of a peristaltic pump, alternative sampling methods (i.e., bailing or small diameter bladder pumps) will be used to purge and sample the groundwater. Bladder pumps are preferred over peristaltic and submersible pumps to prevent volatilization if sampling of VOCs and/or dissolved gasses is required. Purge water will be collected and containerized according to the direction of the project team.

- a) For submersible and non-dedicated bladder pumps, decontaminate the pump according to site decontamination procedures. Non-dedicated bladder pumps will require a new bladder and attachment of an air-line, sample discharge line, and safety cable prior to placement in the well. Attach the air-line tubing to the air-port on the top of the bladder pump. Attach the sample discharge tubing to the water port on the top of the bladder pump. Take care not to reverse the air and discharge tubing lines during bladder pump setup, as this could result in bladder failure or rupture. Attach and secure a safety cable to the eyebolt on the top of pump (if present, depending on pump model used). Slowly lower the pump, safety cable, tubing, and electrical lines into the well to a depth corresponding to the approximate center of the saturated screen section of the well. Avoid twisting and tangling of safety cable, tubing, and electrical lines while lowering the pump into the well; twisted and tangled lines could result in the pump becoming stuck in the well casing. Also, make sure to keep tubing and lines from touching the ground or other surfaces while introducing them into the well, as this could lead to unintended contamination.
- b) If using a bladder pump, connect the air-line to the pump controller output port. The pump controller will be connected to a supply line from an air compressor or compressed gas cylinder using an appropriate regulator and air hose. Tighten the regulator connector onto the gas cylinder (if used) to prevent leaks. Teflon® tape may be used on the threads of the cylinder to provide a tighter seal. Once the air compressor or gas cylinder is connected to the pump controller, turn on the compressor or open the valve on the cylinder to begin the gas flow. Turn on the pump controller power (if an on/off switch is present) and verify that all batteries are charged and fully functioning before starting the pump.
- c) If a peristaltic pump is being used, slowly lower the sampling tubing into the well to a depth corresponding to the approximate center of the saturated screen section of the well. The pump intake or sampling tube must be kept at least two (2) feet above the bottom of the well to prevent mobilization of any sediment present in the bottom of the well.
- d) If using an in-line 'T' and valve, install between pump discharge water line and the bottom inlet port of the flow-through cell. Attach a short piece of tubing to the outlet. This set-up will be used to collect samples for turbidity readings.

- 9. Connect the pump discharge water line to the bottom inlet port on the flow-through cell connected to the multi-parameter water-quality sonde and make sure to record equipment/instrument identification (manufacturer and model number).
- 10. Before starting the pump, ensure that the water level inside the well has stabilized (i.e., measure the water level multiple times after deploying the pump in the well).
- 11. Start pumping the well at 200 to 500 milliliters (mL) per minute (or at lower site-specific rate if specified) and adjust the pumping rate to cause little or no water level drawdown in the well (less than 0.3 feet below the initial static depth to water measurement): the water level should stabilize, however, this is not always possible.
- 12. If the well diameter is of sufficient size, measure the water level every 3 to 5 minutes (or as appropriate, lower flow rates may require longer time between readings) during pumping.
- 13. Maintain a steady flow rate to the extent practicable and do not break pump suction or cause entrainment of air in the sample.
- 14. Record pumping rate adjustments and depths to water.

If necessary, reduce pumping rates to the minimum capabilities of the pump to avoid pumping the well dry and/or to stabilize indicator parameters; if the recharge rate of the well is very low, use alternative purging techniques, which will vary based on the well construction and screen position.

For wells screened across the water table, the well may be pumped dry and sampling can commence as soon as the volume in the well has recovered sufficiently to permit collection of samples.

For wells screened entirely below the water table, the well can be pumped until a stabilized level (which may be greater than the maximum displacement goal of 0.3 feet) is maintained and monitoring for stabilization of field indicator parameters can commence; if a lower stabilization level cannot be maintained, the well may be pumped until the drawdown is at a level slightly higher than top of the well screen.

15. After water levels have stabilized and a sufficient volume has been purged (*see note below*), continue pumping and begin monitoring field indicator parameters using a multi-parameter waterquality sonde coupled with a flow-through-cell.

NOTE: The final purge volume must be greater than the stabilized drawdown volume plus the pump's tubing volume. If the drawdown has exceeded 0.3 feet and stabilizes, calculate the volume of water between the initial water level and the stabilized water level. Add the volume of the water which occupies the pump's tubing to this calculation. This combined volume of water needs to be purged from the well after the water level has stabilized before samples are collected.

- 16. Use the flow to measure all indicator field parameters, except for turbidity, every 3 to 5 minutes (or after each volume of the flow-through cell has been purged or other appropriate interval); turbidity samples will be collected before the flow-through-cell using the T-valve and a clean container such as a glass beaker.
- 17. Record field indicator parameters on the groundwater sampling log.

- 18. The well is considered stabilized and ready for sample collection when three consecutive readings are within the following limits:
 - **Turbidity** within ± 10% for values greater than 5 nephelometric turbidity units [NTUs] or if three turbidity values are less than 5 NTUs, consider the values stabilized
 - **Dissolved Oxygen (DO)** within ± 10% for values greater than 0.5 mg/L or if three DO values are less than 0.5 mg/L, consider the values stabilized
 - Specific Conductance within ± 3%
 - **Temperature** within ± 3%
 - **pH** within ± 0.1 unit
 - Oxidation/Reduction Potential (ORP) within ±10 millivolts (mV)

NOTE: Alternate stabilization goals may exist in different geographic regions, consult the sitespecific FIP/work plan for stabilization criteria).

NOTE: While achieving turbidity levels less than 5 NTU and a stable drawdown of less than 0.3 feet is desirable, sample collection may still take place provided the indicator field parameter criteria in this procedure are met.

- 19. If the parameters have stabilized but turbidity remains relatively high (e.g., greater than 50 NTUs), the pump flow rate may be decreased to a minimum rate of 100 mL/min to reduce turbidity levels as low as possible. If groundwater turbidity has been minimized (i.e., consecutive readings within ± 10%) and the values for all other parameters have stabilized, the well may be sampled; however, consult specifications in the FIP/work plan and/or the project technical lead prior to sampling.
- 20. If after one (1) hour of purging indicator field parameters have not stabilized, consult specifications in the FIP/work plan and/or the project technical lead prior to sampling.

In general, three potential options are available if stabilization criteria are not met:

- a) Continue purging until stabilization is achieved.
- b) Discontinue purging, do not collect any samples, and record in field logbook/on the sampling form that stabilization could not be achieved (documentation must describe attempts to achieve stabilization).
- c) Discontinue purging, collect samples and provide full explanation of attempts to achieve stabilization. There is a risk that the analytical data obtained under these conditions, particularly metals and hydrophobic organic analytes, may reflect a sampling bias and, as a result, the data may not meet the data quality objectives of the sampling event.

NOTE: DO is extremely susceptible to various external influences (including temperature or the presence of bubbles on the DO meter); therefore, great care will be taken to minimize the agitation or other disturbance of water within the flow-through cell while collecting these measurements. If air bubbles are present on the DO probe or in the discharge tubing, remove them before taking a measurement. If DO values are not within acceptable range for the temperature of groundwater, again check for and remove air bubbles on the probe before re-measuring. The table below may be

used as a general guide for DO values under various temperatures; however, understand that the table corresponds to freshwater solubility and groundwater contaminants may affect oxygen solubility. If DO value is 0.00 or less, then the meter will be serviced and re-calibrated. If DO values are above possible results, then the meter will be serviced and re-calibrated.

NOTE: During extreme weather conditions, stabilization of field indicator parameters may be difficult to attain. Modifications to the sampling procedures to alleviate these conditions (e.g., measuring the water temperature in the well adjacent to the pump intake) will be documented in the field logbook/on the sampling form.

NOTE: If other field conditions are suspected of preventing stabilization of certain parameters, detailed observations will be documented in the field logbook/on the sampling form.

Temperature	Dissolved Oxygen
(degrees C)	(mg/L)
0	14.6
1	14.19
2	13.81
3	13.44
4	13.09
5	12.75
6	12.43
7	12.12
8	11.83
9	11.55
10	11.27
11	11.01
12	10.76
13	10.52
14	10.29
15	10.07
16	9.85
17	9.65
18	9.45
19	9.26
20	9.07
21	8.9
22	8.72
23	8.56
24	8.4
25	8.24
26	8.09
27	7.95
28	7.81
29	7.67
30	7.54
31	7.41
32	7.28
33	7.16
34	7.05
35	6.93

Oxygen Solubility in Fresh Water

Reference: Vesilind, P.A., Introduction to Environmental Engineering, PWS Publishing Company, Boston, 468 pages (1996).

- 21. Complete the sample label(s) and cover the label(s) with clear packing tape to secure the label onto the container.
- 22. After the indicator parameters have stabilized, collect groundwater samples by diverting flow out of the unfiltered discharge tubing into the appropriate labeled sample container.
 - a) If a flow-through analytical cell is being used to measure field parameters, the flow-through cell will be disconnected after stabilization of the field indicator parameters and prior to groundwater sample collection.
 - b) Under no circumstances will analytical samples be collected from the discharge of the flowthrough cell.
 - c) If an in-line 'T' and valve are used, the valve needs to be removed as well.
 - d) Samples will be collected in the following order: VOCs, total organic carbon (TOC), semivolatile organic compounds (SVOCs), metals and cyanide, and others (or other order as defined in the site-specific FIP/work plan).
 - e) When the container is full, tightly screw on the cap.
- 23. If sampling for total and filtered metals and/or polychlorinated biphenyls (PCBs), a filtered and unfiltered sample will be collected.
 - a) Install an in-line, disposable 0.45-micron particle filter on the discharge tubing after the appropriate unfiltered groundwater sample has been collected.
 - b) Continue to run the pump until an initial volume of "flush" water has been run through the filter in accordance with the manufacturer's directions (generally 100 to 300 mL).
 - c) Collect the filtered groundwater sample by diverting flow out of the filter into the appropriately labeled sample container.
 - d) When the container is full, tightly screw on the cap.
- 24. Secure with packing material and store the samples on ice in an insulated transport container provided by the laboratory and include a temperature blank in each container to be shipped.
- 25. Record on the Low-Flow Sampling Field Form (and bound field logbook) the time at which sampling procedures were completed, any pertinent observations of the sample (e.g., physical appearance and the presence or lack of odors or sheens), and the values of the stabilized field indicator parameters as measured during the final reading during purging (see **Attachment A**).
- 26. Turn off the pump and air compressor or close the gas cylinder valve if using a bladder pump setup.
- 27. Slowly remove the pump, tubing, lines, and safety cable from the well.
 - a) If using dedicated tubing, do not allow the tubing or lines to touch the ground or any other surfaces which could contaminate them.
 - b) If using dedicated tubing, it will be folded without pinching it to a length that will allow the well to be capped and also facilitate retrieval of the tubing during later sampling events.
 - c) Use a length of rope or string to tie the tubing to the well cap.

- d) Alternatively, if tubing and safety line are to be saved and reused for sampling the well at a later date, coil the tubing neatly and placed in a clean plastic bag that is clearly labeled with the well ID ensuring the bag is tightly sealed before placing it in storage.
- 28. Secure the well and properly dispose of personal protective equipment (PPE) and disposable equipment.
- 29. Complete the procedures for packaging, shipping, and handling with the associated Chain-of-Custody.
- 30. Complete decontamination for flow-through analytical cell and submersible or bladder pump, as appropriate (*TGI Groundwater and Soil Sampling Equipment Decontamination*).
- 31. At the end of each day of the sampling event, perform calibration check of field instruments and record procedure and results in field log.

8 WASTE MANAGEMENT

Materials generated during groundwater sampling activities, including disposable equipment and excess purge water, will be stored on site in appropriately labeled containers and disposed of properly. Waste will be managed in accordance with the *TGI – Investigation-Derived Waste Handling and Storage*, the procedures identified in the FIP or QAPP as well as state-, federal- or client-specific requirements. Be certain that waste containers are properly labeled and documented in the field logbook.

9 DATA RECORDING AND MANAGEMENT

Management of the original documents from the field will be completed in accordance with the sitespecific QAPP.

In general, forms (e.g., Low-Flow Sampling Field Forms), logs/notes (including daily field and calibration logs), digital records, and Chain-of-Custody records will be maintained by the field team lead.

Field logs and Chain-of-Custody records will be transmitted to the Arcadis Project Manager and/or Task Manager, as appropriate, at the end of each day unless otherwise directed. Electronic data files will be sent to the project team and uploaded to the electronic project folder daily.

Records generated as a result of this TGI will be controlled and maintained in the project record files in accordance with project requirements.

10 QUALITY ASSURANCE

Quality assurance procedures shall be conducted in accordance with the Arcadis Quality Management System or the site-specific QAPP.

Unless described otherwise in the project-specific FIP/work plan, QAPP, or Sampling and Analysis Plan, quality assurance/quality control samples will be collected as follows:

• One duplicate for every 10 samples

• One laboratory matrix/matrix spike sample for every 20 samples

In addition to the quality control samples to be collected in accordance with this TGI, the following quality control procedures will be observed in the field:

- Collect samples from monitoring wells, in order of increasing concentration, to the extent known based on review of historical site information if available
- Equipment blanks will include the pump and tubing (if using disposable tubing) or the pump only (if using tubing dedicated to each well)
- Collect equipment blanks after wells with higher concentrations (if known) have been sampled
- Operate all monitoring instrumentation in accordance with manufacturer's instructions and calibration procedures—calibrate instruments at the beginning of each day, verify the calibration at the end of each day, and record all calibration activities in the field notebook
- Clean all groundwater sampling equipment prior to use in the first well and after each subsequent well following the procedure for equipment decontamination

11 REFERENCES

- USEPA. 1986. RCRA Groundwater Monitoring Technical Enforcement Guidance Document (September 1986).
- USEPA. 1991. *Handbook Groundwater, Volume II Methodology*, Office of Research and Development, Washington, DC. USEPN62S, /6-90/016b (July 1991).
- USEPA Region I. 2017. Low Stress (Low Flow) Purging and Sampling Procedures for the Collection of Groundwater Samples from Monitoring Wells (EQASOP-GW4; September 19, 2017).
- U.S. Geological Survey (USGS). 1977. National Handbook of Recommended Methods for Water-Data Acquisition: USGS Office of Water Data Coordination. Reston, Virginia.

12 ATTACHMENTS

A. Low-Flow Sampling Field Form

GROUNDWATER SAMPLING FORM

Project No.					Well ID					Date	Page	of
-												
Project Name/ Measuring Pt	-		Screen			Casing				Weather Well Mate	rial	PVC
Description			Setting (ft-bmp)			Diameter (in.)				VV EII IVIALE		SS
Static Water		_										
			Total Depth (ft-bmp)					Gall	ons in Well			
MP Elevation		Pi	ump Intake (ft-bmp)			Purge Method:	Centrifuga	I		Sample Method		
Pump On/Of	i						Submersib Other	ole				
Sam	ple Time:		Volumes Purged									
			Gallons Purged			Replicate	Sample ID e/Code No.		-	Sampled b	у	
Time		Rate	Depth to Water	Callana				DO	-	Dedex		
Time	Minutes Elapsed	(gpm)/(mL/min)	Depth to Water (ft)	Gallons Purged	рН	Cond. (µMhos)/(mS/cm)	Turbidity (NTU)	(mg/L)	Temp. (°C)/(°F)	Redox (mV)		arance
	┼──┤	200mL/min +	-0.3		± 0.1	± 3%	± 10%	± 10%	± 3%	± 10mV	Color	Odor
	+											-
												<u> </u>
					l							1
	\downarrow											
	\vdash											_
	+-+											
	+-+											
	+											
		Stat	bilization Calculat	tions (±)								-
												+
												1
	S	tabilization Crit	eria		± 0.1 s.u.	±3%	± 10% or within 1	± 10%	±3%	±10 mV		1
(1) Turbidity < 50			of a previous reading w	vhen <10 N			NTU ⁽¹⁾					
Constituents			or a provided reading in		Container				Number		Preserva	tive
										-		
				•								
										•		
				•				i				
										-		
										•		
Comments												
Well Casing \	Volumes											
Gallons/Foot	1" = 0.04 1.25" = 0.0			2.5" = 0.20 3" = 0.37		5" = 0.50 ' = 0.65	6" = 1.47					
Well Inform												
Well Loca							Well	Locked a	t Arrival:	Yes	/	No
Condition of	-						Well Loci			Yes	/	No
Well Comp	letion:	Flush N	Mount / St	tick Up			-	Number [·]				GW Samp Form

TGI – GROUNDWATER AND SOIL SAMPLING EQUIPMENT DECONTAMINATION

Rev: 1

Rev Date: May 8, 2020

VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
0	February 23, 2017	ALL	Conversion from SOP to TGI	Cassandra McCloud / Pete Frederick
1	May 8, 2020	4-5	Added note regarding use of Liquinox and 1,4-Dioxane	Marc Killingstad

APPROVAL SIGNATURES

Technical Expert Reviewed by:

Prepared by:

2 Mainer

Date: 02/23/2017

Derrick Maurer

Date: May 8, 2020

Marc Killingstad (Technical Expert)

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

arcadis.com

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to any and all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, state-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

Decontamination is performed on sampling equipment prior to sample collection to ensure that the sampling equipment that contacts a sample, or monitoring equipment that is brought into contact with environmental media to be sampled, is free from analytes of interest and/or constituents that could interfere with laboratory analysis for analytes of interest. Sampling equipment must be appropriately cleaned prior to use for sampling or coming into contact with environmental media to be sampled, and following completion of the sampling event prior to shipment or storage. The effectiveness of the decontamination procedure should be verified by collecting and analyzing equipment blank samples.

The sampling equipment cleaning procedures described herein includes pre-field, in the field, and postfield cleaning of sampling equipment which may be conducted at an established equipment decontamination area (EDA) on site, as appropriate and necessary. Sampling equipment that may require decontamination at a given site includes: soil sampling tools; groundwater, sediment, and surface-water sampling devices; water testing instruments; down-hole instruments; and other activity-specific sampling equipment. Non-disposable equipment will be cleaned before collecting each sample, between each sample collected, and prior to placing sampling equipment in protective cases, or containers for transport. Cleaning procedures for sampling equipment should be monitored by collecting equipment blank samples as required in project work plans, field sampling plans, quality assurance project plans (QAPP), or other pertinent project documents. Dedicated and/or single-use (i.e., not to be re-used) sampling equipment will not require decontamination.

3 PERSONNEL QUALIFICATIONS

Arcadis field sampling personnel will have completed or are in the process of completing site-specific training as well as having current health and safety training as required by Arcadis, client, or regulations, such as 40-hour HAZWOPER training and/or OSHA HAZWOPER site supervisor training. Arcadis personnel will also have current training as specified in the Health and Safety Plan (HASP) which may include first aid, cardiopulmonary resuscitation (CPR), Blood Borne Pathogens (BBP) as needed. In addition, Arcadis field sampling personnel will be knowledgeable in the relevant processes, procedures, and Technical Guidance Instructions (TGIs) and possess the demonstrated required skills and experience necessary to successfully complete the desired field work. The project health and safety plan (HASP) and other documents will identify other training requirements or access control requirements.

4 EQUIPMENT LIST

The equipment required for equipment decontamination is presented below:

- Health and safety equipment, including appropriate PPE, as required in the site Health and Safety Plan (HASP)
- Deionized water that meets that analytical criteria for deionized water with no detectable constituents above the reporting limits for the methods to be used and analytes being analyzed for. Deionized water is used for inorganics, and organic-free water for VOCs, SVOCs, pesticides, etc.
- Non-phosphate detergent such as Alconox or, if sampling for phosphorus or phosphoruscontaining compounds, Liquinox (or equivalent). NOTE: *Liquinox has shown to provide false positives for 1,4-Dioxane and should not be used at sites where that may be a constituent of concern (COC).*
- Tap water
- Rinsate collection plastic containers
- DOT-approved waste shipping container(s), as specified in the work plan, field sampling plan, or regulatory requirements if decontamination waste is to be shipped for disposal
- Brushes
- Large heavy-duty garbage bags
- Spray bottles

- (Optional) Isopropyl alcohol (free of ketones) or methanol. These can be wipes or diluted with water (usually 1part isopropyl/methanol to 10 parts water) if a spray is needed.
- Airtight, sealable plastic baggies, such as Ziploc-type
- Plastic sheeting

5 CAUTIONS

Rinse equipment thoroughly and allow the equipment to dry before re-use or storage to prevent introducing solvent into sample medium. If manual drying of equipment is required, use clean lint-free material to wipe the equipment dry. Ensure all rinsate materials do not adversely affect sample collection efficiency or analytical results.

Store decontaminated equipment in a clean, dry environment. Do not store near combustion engine exhausts. Properly containerize equipment to ensure cross-contamination doesn't happen from other uncontaminated surfaces or equipment.

If equipment is damaged to the extent that decontamination is uncertain due to cracks, gouges, crevices, or dents, the equipment should not be used and should be discarded or submitted for repair prior to use for sample collection.

A proper shipping determination regarding hazardous materials will be performed by a DOT-trained individual for cleaning materials shipped by Arcadis.

Caution should be exercised to avoid contact with the pump casing and water in the container while the pump is running (do not use metal drums or garbage cans) to avoid electric shock.

6 HEALTH AND SAFETY CONSIDERATIONS

Review the safety data sheets (SDS) for the cleaning agents and materials used in decontamination. If solvent is used during decontamination, use appropriate PPE and work in a well-ventilated area and stand upwind while applying solvent to equipment. Apply solvent in a manner that minimizes potential for exposure to workers and bystanders. Follow health and safety procedures outlined in the HASP.

7 PROCEDURE

A designated area will be established to clean sampling equipment in the field prior to and following sample collection. Equipment cleaning areas will be set up within or adjacent to the specific work area, but not at a location that expose equipment to contamination (i.e. exposed to combustion engine exhaust). Detergent solutions will be prepared in clean containers for use in equipment decontamination. Decontaminated equipment should be handled by workers wearing clean gloves, properly changed to prevent cross-contamination.

Cleaning Sampling Equipment

1. Wash the equipment/pump with potable water.

- 2. Wash with detergent solution (Alconox, Liquinox or equivalent) to remove all visible particulate matter and any residual oils or grease. NOTE: Liquinox has shown to provide false positives for 1,4-Dioxane and should not be used at sites where that may be a constituent of concern (COC).
- 3. If equipment is very dirty, precleaning gross debris with a brush and tap water may be necessary.
- 4. If non-aqueous phase liquids are present, the use of isopropyl alcohol (free of ketones) or methanol is recommended. Cloth wipes or diluted solution can be used to remove the non-aqueous phase liquids that are hard to remove with detergent solution in step 2. Consult with project manager if non-aqueous phase liquids are present onsite and design an appropriate decontamination procedure that includes step 4.
- 5. Rinse with deionized water.

Decontaminating Submersible Pumps

Submersible pumps may be used during well development, groundwater sampling, or other investigative activities. The pumps must be cleaned and flushed before and between uses. This cleaning process will consist of an external detergent solution wash and tap water rinse, a flush of detergent solution through the pump, followed by a flush of potable water through the pump. Flushing will be accomplished by using an appropriate container filled with detergent solution and another container filled with potable water. The pump should be flushed with deionized water as the last step prior to use. The pump will run long enough to effectively flush the pump housing and hose (unless new, disposable hose is used). Disconnect the pump from the power source before handling. The pump and hose should be placed on or in clean polyethylene sheeting to avoid contact with the ground surface.

8 WASTE MANAGEMENT

Equipment decontamination rinsate will be managed in conjunction with all other waste produced during the field sampling effort. Waste management procedures are outlined in the work plan or Waste Management Plan (WMP).

9 DATA RECORDING AND MANAGEMENT

Equipment cleaning and decontamination will be noted in the field notebook for project documentation. Information will include the type of equipment cleaned, the decontamination location, specific procedures utilized, solvents and/or cleaning agents used, source of water, and deviations or omissions from this TGI.

Unusual field conditions should be noted if there is potential to impact the efficacy of the decontamination or subsequent sample collection.

An inventory of the solvents brought on site and used and removed from the site will be maintained in the project documentation. Records will be maintained for solvents used in decontamination, including lot number and expiration date.

Containers with decontamination fluids will be labeled.

10 QUALITY ASSURANCE

Equipment blanks should be collected to verify that the decontamination procedures are effective in minimizing potential for cross contamination. The equipment blank is prepared by pouring deionized water (or organic-free water, for organic analyses) over the clean and dry tools and collecting the water into appropriate sample containers. Equipment blanks should be analyzed for the same set of parameters that are performed on the field samples collected with the equipment that was cleaned as specified in the sampling and analysis plan. Equipment blanks are collected per equipment set, which represents all of the tools needed to collect a specific sample.

11 REFERENCES

USEPA Region 9 - Field Sampling Guidance #1230, Sampling Equipment Decontamination.

USEPA Region 1 - Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.

TGI - INVESTIGATION-DERIVED WASTE HANDLING AND STORAGE

Rev #: 1

Rev Date: May 15, 2020

VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
0	February 23, 2017	ALL	Conversion from SOP to TGI	Ryan Mattson /
				Peter Frederick
1	May 15, 2020	ALL	Updated to reflect regulatory changes	

TGI – Investigation-Derived Waste Handling and Storage Rev #: 1 | Rev Date: May 15, 2020

APPROVAL SIGNATURES

Prepared by:

orne

02/23/2017

Derrick Maurer

Date:

Technical Expert Reviewed by:

Ryan Mattson (Technical Expert)

05/15/2020

Date:

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

arcadis.com

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to any and all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, state-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

The objective of this Technical Guidance Instruction (TGI) is to describe the procedures to manage investigation-derived wastes (IDW), both hazardous and nonhazardous, generated during site activities, which may include, but are not limited to: drilling, trenching/excavation, construction, demolition, monitoring well sampling, soil sampling, decontamination and remediation. For the purposes of this TGI, IDW is considered to be discarded materials which are defined as solid waste by United States Environmental Protection Agency (EPA) standard 40 CFR § 261.2 (which may include liquids, solids, or sludges). IDW may include soil, groundwater, drilling fluids, decontamination liquids, as well as contaminated personal protective equipment (PPE), sorbent materials, construction and demolition debris, and disposable sampling materials. Hazardous or uncharacterized IDW will be collected and staged at the point of generation. Quantities small enough to be containerized in 55-gallon drums will be taken to a designated temporary onsite storage area (discussed in further detail under Drum Storage) pending characterization and disposal. IDW materials will be characterized using process knowledge and appropriate laboratory analyses to determine the waste classification and evaluate proper safe handling and disposal methods.

This TGI describes the necessary equipment, field procedures, materials, regulatory references, and documentation procedures necessary for proper handling and storage of IDW up to the time it is properly transported from the project site and disposed. The procedures included in this TGI for handling and temporary storage of IDW are based on the EPA's guidance document <u>Guide to Management of Investigation Derived Wastes</u> (USEPA, 1992). IDW is assumed to be contaminated with the site constituents of concern (COCs) until analytical evidence indicates otherwise. IDW will be managed to ensure the protection of human health and the environment and will comply with all applicable or relevant and appropriate requirements (ARAR). Although not comprehensive, the following laws and regulations on Hazardous Waste Management should be considered as potential ARAR. It is the Arcadis Certified Project Manager (CPM) and/or designated Technical Expert to determine which laws and regulations, at all levels of government, are applicable to each project site and activity falling under this TGI.

Federal Laws and Regulations

- Resource Conservation and Recovery Act (RCRA) 42 USC § 6901-6987.
- Federal Hazardous Waste Regulations 40 CFR § 260-265

Department of Transportation (DOT) Hazardous Materials Transportation 49 CFR

Occupational Safety and Health Administration (OSHA) Regulations 29 CFR

State Laws and Regulations

• To be determined based on location of site and location of treatment, storage, and/or disposal facility (TSDF) to be utilized.

Regional, County, Municipal, and Local Regulations

• To be determined based on location of site and location of treatment, storage, and/or disposal facility (TSDF) to be utilized.

Initial Storage

Pending characterization, IDW will be temporarily stored appropriately within each area of contamination (AOC). Under RCRA, "storage" is defined as the "holding of hazardous waste for a temporary period, at the end of which the hazardous waste is treated, disposed of, or stored elsewhere" (40 CFR § 260.10). The onsite waste staging area will be in a secure and controlled area. Uncharacterized wastes are considered potentially hazardous wastes and must be stored in DOT approved packaging. Liquid wastes must be stored in DOT approved closed head drums or other approved containers (e.g., portable tank containers) that are compatible with the type of material stored therein. Solid materials must be stored in DOT approved open head drums where practicable. Larger quantities of solid IDW can be containerized in bulk containers (such as in a roll-off box). Soil from large excavation projects may be managed in stockpiles with within the AOC and does not need to be containerized until exiting the AOC.

Characterization

Waste characterization can either be based on generator knowledge, such as using historical process knowledge and safety data sheets (SDS), or can be based upon characterization sampling analytical results. IDW typically is not characterized using SDS as it is a mixture of aged chemicals and environmental media. Historical process knowledge should be used to determine if the IDW is a listed hazardous waste (40 CFR § 261.31-33). If the IDW is not a listed hazardous waste, waste

TGI – Investigation-Derived Waste Handling and Storage Rev #: 1 | Rev Date: May 15, 2020

characterization can be completed by laboratory analysis of representative samples of the IDW. The laboratory used for waste characterization analysis must have the appropriate state and federal accreditations and may be required to be pre-approved by the Client. IDW will be classified as RCRA hazardous or non-regulated under RCRA based on the waste characterization determination.

If IDW is characterized as RCRA hazardous waste, RCRA and DOT requirements must be followed for packaging, labeling, transporting, storing, and record keeping as described in 40 CFR § 262 and 49 CFR § 171-178. Waste material classified as RCRA nonhazardous may be handled and disposed of as nonhazardous waste in accordance with applicable federal, state, and local regulations.

Storage Time Limitations

Containerized hazardous wastes can be temporarily stored for a maximum of 90 calendar days from the accumulation start date for a large quantity generator or a maximum of 180 calendar days from the accumulation start date for a small quantity generator. Wastes classified as nonhazardous may be handled and disposed of as nonhazardous waste and are not subject to storage time limitations.

This is TGI may be modified by the CPM and/or Technical Expert for a specific project or client program, as required, dependent upon client requirements, site conditions, equipment limitations, or limitations imposed by the procedure. The resulting procedure employed to execute the work will be documented in the project work plans or reports. If changes to the sampling procedures are required due to unanticipated field conditions, the changes will be discussed with the CPM and/or Technical Expert as soon as practicable, and if approved to be performed, be documented.

3 PERSONNEL QUALIFICATIONS

Arcadis field sampling personnel will have current regulatory- and Arcadis-required health and safety training including 40-hour HAZWOPER training, site supervisor training, site-specific training, first aid, and cardiopulmonary resuscitation (CPR), as needed. Personnel handling and packaging hazardous waste and performing hazardous waste characterizations must have RCRA hazardous waste management training per 40 CFR § 264.16. Additional state-specific hazardous waste management training is required in certain states (i.e., California).

Although not common practice, in certain situations Arcadis personnel may sign waste profiles and/or waste manifests on a case by case basis for clients, provided the appropriate agreement is in place between Arcadis and the client documenting that Arcadis is not the generator, but is acting as an <u>authorized representative of the generator</u>. Arcadis personnel who sign waste profiles and/or waste manifests will have both current RCRA hazardous waste management training per 40 CFR § 264.16 and current DOT hazardous materials transportation training per 49 CFR § 172.704. Arcadis field personnel will also comply with client-specific training. In addition, Arcadis field sampling personnel will be knowledgeable in the relevant processes, procedures, and Technical Guidance Instructions (TGIs) and possess the demonstrated required skills and experience necessary to successfully complete the desired field work. The project health and safety plan (HASP) and other documents will identify other training requirements or access control requirements.

4 EQUIPMENT LIST

The Following Materials, as required, will be available for IDW handling and Storage:

- Appropriate personal protective equipment as specified in the Site Health and Safety Plan (HASP)
- DOT approved containers
- Hammer
- Leather gloves
- Drum dolly
- Appropriate drum labels (outdoor waterproof self-adhesive)
- Portable tank container
- Appropriate labeling, packing, chain-of-custody forms, and shipping materials as determined by the CPM and/or Technical Expert.
- Indelible ink and/or permanent marking pens
- Plastic sheeting
- Appropriate sample containers, labels, and forms
- Stainless-steel bucket auger
- Stainless steel spatula or knife
- Stainless steel hand spade
- Stainless steel scoop
- Digital camera
- Field logbook

5 CAUTIONS

Filled drums can be very heavy, become unbalanced, or spill its contents. Therefore, use appropriate moving techniques and equipment for safe handling. Similar media (e.g. soils with other soils; or liquids with other liquids) will be stored in the same drums to aid in sample analysis and disposal. Drum lids must be secured to prevent rainwater from entering the drums and leakage during movement. Drums containing solid material may not contain any free liquids. Waste containers stored for extended periods of time may be subject to deterioration. Drum Over Packs may be used as secondary containment. All drums must be visually inspected for condition to ensure that they are in good condition without visible evidence of rusting, holes, breakage, etc., to prevent potential leakage and facilitate subsequent disposal. All drum lids must be verified as having a properly functioning secured lid prior to use.

6 HEALTH AND SAFETY CONSIDERATIONS

As determined by the site's known and suspected hazards, appropriate PPE must be worn by all field personnel within the designated work area. Exposure air monitoring may be required during certain field activities as required in the Site Health and Safety Plan. If soil excavation in areas with potentially hazardous contaminants is possible, contingency plans will be developed to address the potential for encountering gross contamination or non-aqueous phase liquids. All excavation activities shall be in compliance with OSHA standard 29 CFR 1926.651 Excavations, and any other applicable regulations.

Arcadis field personnel and subcontractors will be trained in and perform their work in compliance with all applicable federal, state, and local health and safety regulations as well as Arcadis' HASP and applicable Client health and safety requirements.

7 PROCEDURE

Specific waste temporary storage and handling procedures to be used are dependent upon the type of generated waste, including type of media (e.g. soils or free liquids) and constituents of concern. For this reason, IDW can be stored in a secure location onsite in separate 55-gallon storage drums, where solids can be stockpiled onsite (if nonhazardous) and purge water may be stored in portable tank containers. Waste materials such as broken sample bottles or equipment containers and wrappings will be stored in 55-gallon drums unless they were not in contact with sample media.

Management of IDW

Minimization of IDW should be considered by the project team during all phases of the project. Site managers may want to consider techniques such as replacing solvent based cleaners with aqueousbased cleaners for decontamination of equipment, reuse of equipment (where it can be properly decontaminated), limitation of traffic between exclusion and support zones, and drilling methods and sampling techniques that minimize the generation of waste. Alternative drilling and subsurface sampling methods may include the use of small diameter boreholes, as well as borehole testing methods such as a core penetrometer or direct push technique instead of coring.

Drum Storage

Drums containing hazardous waste will be stored in accordance with the requirements of 40 CFR 265 Subpart I (for containers) and 265 Subpart DD (for containment buildings). All 55-gallon drums will be stored at a secure, centralized onsite location that is readily accessible for vehicular pick-up. Drums confirmed as, or assumed to contain hazardous waste will be stored over an impervious surface provided with secondary spill containment. The storage location will, for drums containing liquid, have a containment system that can contain at least the larger of 10% of the aggregate volume of staged materials or 100% of the volume of the largest container. Drums will be closed during storage and be in good condition in accordance with the Guide to Management of Investigation-Derived Wastes (USEPA, 1992).

Hazardous Waste Determination

Waste material must be characterized to determine if it meets any of the federal definitions of hazardous waste as required by 40 CFR § 262.11. If the waste does not meet any of the federal definitions, it must then be established if any state-specific or local-specific hazardous waste criteria exist/apply.

Generator Status

Once hazardous waste determination has been made, the generator status will be determined. Large quantity generators (LQG) are generators who generate more than 1,000 kilograms of hazardous waste in a calendar month. Small quantity generators (SQG) of hazardous waste are generators who generate greater than 100 kilograms but less than 1,000 kilograms of hazardous waste in a calendar month. Very small quantity generators (VSQG) are generators who generate less than 100 kilograms of hazardous

waste per month. Please note that a generator status may change from month to month and that a notice of this change is usually required by the generator's state agency.

Accumulation Time for Hazardous Waste

A LQG may accumulate hazardous waste on site for 90 calendar days or less without a permit and without having interim status, provided that such accumulation is in compliance with requirements in 40 CFR § 262.17. A SQG may accumulate hazardous waste on site for 180 calendar days or less without a permit or without having interim status, subject to the requirements of 40 CFR § 262.16. VSQG requirements are found in 40 CFR § 262.14. NOTE: The federal VSQG and SQG provisions may not be recognized by some states (e.g., California and Rhode Island). State-specific and local-specific regulations must be reviewed and understood prior to the generation of hazardous waste.

Satellite Accumulation of Hazardous Waste Satellite accumulation (SAA) will mean the accumulation of as much as fifty-five (55) gallons of hazardous waste, or the accumulation of as much as one quart of acutely hazardous waste, in containers at or near any point of generation where the waste initially accumulates, which is under the control of the operator of the process generating the waste, without a permit or interim status and without complying with the requirements of 40 CFR § 262.15 and without any storage time limit, provided that the generator complies with 40 CFR § 262.15.

Once more than 55 gallons of hazardous waste accumulates in SAA, the generator has three days to move this waste into storage.

Storage recommendations for hazardous waste include:

- Ignitable or reactive hazardous wastes must be >50 feet from the property line per 40 CFR § 265.176 (LQG generators only).
- Hazardous waste should be stored on a concrete slab (asphalt is acceptable if there are no free liquids in the waste).
- Drainage must be directed away from the accumulation area.
- Area must be properly vented.
- Area must be secure.

Drum/Container Labeling

Drums will be labeled on both the side and lid of the drum using a permanent marking pen. Old drum labels must be removed to the extent possible, descriptions crossed out should any information remain, and new labels affixed on top of the old labels. Other containers used to store various types of waste (e.g., polyethylene tanks, roll-off boxes, end-dump trailers, etc.) will be labeled with an appropriate "Waste Container" or "Testing in Progress" label pending characterization. Drums and containers will be labeled as follows:

- Appropriate waste characterization label (Pending Analysis, Hazardous, or Nonhazardous)
- Waste generator's name (e.g., client name)
- Project Name
- Name and telephone number of Arcadis project manager
- Composition of contents (e.g., used oil, acetone 40%, toluene 60%)
- Media (e.g., solid, liquid)
- Accumulation start date

• Drum number of total drums as reconciled with the Drum Inventory maintained in the field log book.

IDW containers will remain closed except when adding or removing waste. Immediately upon beginning to place waste into the drum/container, a "Waste Container" or "Pending Analysis" label will be filled out to include the information specified above, and affixed to the container. Once the contents of the container are identified as either non-hazardous or hazardous, the following additional labels will be applied.

- Containers with waste determined to be non-hazardous will be labeled with a green and white "Nonhazardous Waste" label over the "Waste Container" label.
- Containers with waste determined to be hazardous will be stored in an onsite storage area and will be labeled with the "Hazardous Waste" label and affixed over the "Waste Container" label.

The ACCUMULATION DATE for the hazardous waste is the date the waste is first placed in the container and is the same date as the date on the "Waste Container" label. DOT hazardous class labels must be applied to all hazardous waste containers for shipment offsite to an approved disposal or recycling facility. In addition, a DOT proper shipping name will be included on the hazardous waste label. The transporter should be equipped with the appropriate DOT placards. However, placarding or offering placards to the initial transporter is the responsibility of the generator per 40 CFR § 262.33.

Inspections and Documentation

All IDW will be documented as generated on a Drum Inventory Log maintained in the field log book. The Drum Inventory will record the generation date, type, quantity, matrix and origin (e.g., Boring-1, Test Pit 3, etc.) of materials in every drum, as well as a unique identification number for each drum. The drum inventory will be used during drum pickup to assist with labeling of drums. The drum storage area and any other areas of temporarily staged waste, such as soil/debris piles, will be inspected weekly. The weekly inspections will be recorded in the field notebook or on a Weekly Inspection Log. Digital photographs will be taken upon the initial generation and drumming/staging of waste, and final labeling after characterization to document compliance with labeling and storage protocols, and condition of the container. Evidence of damage, tampering or other discrepancy should be documented photographically.

Emergency Response and Notifications

Specific procedures for responding to site emergencies will be detailed in the HASP. If the generator is designated as a LQG, a Contingency Plan will need to be prepared to include emergency response and notification procedures per 40 CFR § 265 Subpart D. In the event of a fire, explosion, or other release which could threaten human health outside of the site or when Client or Arcadis has knowledge of a spill that has reached surface water, Client or Arcadis must immediately notify the National Response Center (800-424-8802) in accordance with 40 CFR § 262.265. Other notifications to state and/or other local regulatory agencies may also be necessary.

Drilling Soil Cuttings and Muds

Soil cuttings are solid to semi-solid soils generated during trenching activities, subsurface soil sampling, or installation of monitoring wells. Depending on the drilling method, drilling fluids known as "muds" may be used to remove soil cuttings. Drilling fluids flushed from the borehole must be directed into a settling section of a mud pit. This allows reuse of the decanted fluids after removal of the settled sediments. Soil cuttings will be labeled and stored in 55-gallon drums with bolt-sealed lids.

Excavated Solids

Excavated solids may include, but are not limited to: soil, fill, and construction and demolition debris. Prior to permitted treatment or offsite disposal, potentially hazardous excavated solids may be temporarily stockpiled onsite as long as the stockpile remains in the same AOC from where it was excavated. Potentially hazardous excavated solids removed from the AOC must be immediately containerized in labeled drums or closable top roll-offs lined with 9-mil polyvinyl chloride (PVC) sheeting and are subject to LQG storage time limits. Nonhazardous excavated solids can be stockpiled either inside or outside of the AOC, do not have to be containerized and are not subject to hazardous waste regulations. Potentially hazardous excavated solids must not be mixed with nonhazardous excavated solids. All classes of excavated solid stockpiles should be maintained in a secure area onsite. At a minimum, the floor of the stockpile area will be covered with a 20-mil high density polyethylene liner that is supported by a foundation or at least a 60-mil high density polyethylene liner that is not supported by a foundation. The excavated material will not contain free liquids. The owner/operator will provide controls for windblown dispersion, run-on control, and precipitation runoff. The run-on control system will prevent flow onto the active portion of the pile during peak discharge from at least a 25-year storm and the run-off management system will collect and control at least the water volume resulting from a 24-hour, 25-year storm (USEPA, 1992). Additionally, the stockpile area will be inspected on a weekly basis and after storm events. Individual states may require that the stockpile be inspected/certified by a licensed professional engineer. Stockpiled material will be covered with a 6-mil polyvinyl chloride (PVC) liner or sprayed dust control product. The stockpile cover will be secured in place with appropriate material (concrete blocks, weights, etc.) to prevent the movement of the cover.

Decontamination Solutions

Decontamination solutions are generated during the decontamination of personal protective equipment and sampling equipment. Decontamination solutions may range from detergents, organic solvents and acids used to decontaminate small field sampling equipment to steam cleaning rinsate used to wash heavy field equipment. These solutions are to be labeled and stored in closed head drums compatible with the decontamination solution. Decontamination procedures, including personnel and field sampling equipment, must comply with applicable Arcadis procedural documents.

Disposable Equipment

Disposable equipment includes personal protective equipment (e.g., tyvek coveralls, gloves, booties and APR cartridges) and disposable sampling equipment such as trowels or disposable bailers. If the media sampled exhibits hazardous characteristics per results of waste characterization sampling, contaminated disposable equipment will also be disposed of as a hazardous waste. If compatible with the original IDW waste stream (i.e., the IDW is a solid and the disposal equipment is a solid), the disposable equipment can be combined with the IDW. If these materials are not compatible (i.e., the IDW is a liquid and the disposal equipment will be stored onsite in separate labeled 55-gallon drums. Uncontaminated or decontaminated disposable equipment can be considered nonhazardous waste.

Purge Water

Purge water includes groundwater generated during well development, groundwater sampling, or aquifer testing. The volume of groundwater generated will dictate the appropriate storage procedure. Monitoring

well development and groundwater sampling may generate three well volumes of groundwater or more. This volume will be stored in labeled 55-gallon drums. Aquifer tests may generate significantly greater volumes of groundwater depending on the well yield and the duration of the test. Therefore, large-volume portable polyethylene tanks will be considered for temporary storage pending groundwater-waste characterization.

Purged Water Storage Tank Decontamination and Removal

The following procedures will be used for inspection, cleaning, and offsite removal of storage tanks used for temporary storage of purge water. These procedures are intended to be used for rented portable tanks such as Baker Tanks or Rain for Rent containers. Storage tanks will be made of inert plastic materials. The major steps for preparing a rented tank for return to a vendor include characterizing the purge water, disposing of the purge water, decontaminating the tank, final tank inspection, and mobilization. Decontamination and inspection procedures are described in further detail below.

- <u>Tank Cleaning</u>: Most vendors require that tanks be free of any visible sediment and water before returning, a professional cleaning service may be required. Each specific vendor should be consulted concerning specific requirements for returning tanks.
- <u>Tank Inspection</u>: After emptying the tank, purged water storage tanks should be inspected for debris, chemical staining, and physical damage. The vendors require that tanks be returned in the original condition (i.e., free of sediment, staining and no physical damage).

8 WASTE MANAGEMENT

Soil/Solids Characterization

Waste characterization will be conducted in accordance with waste hauler, waste handling facility, and local/state/federal requirements. In general, RCRA hazardous wastes are those solid wastes determined by a Toxicity Characteristic Leaching Procedure (TCLP) test or to contain levels of certain toxic metals, pesticides, or other organic chemicals above specific applicable regulatory agency thresholds. If the one or more of 40 toxic compounds listed in Table I of 40 CFR § 261.24 are detected in the sample at levels above the maximum unregulated concentrations, the waste must be characterized as a toxic hazardous waste. Wastes can also be considered "listed" hazardous waste depending on site-specific processes.

Composite soil samples will be collected at a frequency of one sample per 250 cubic yard basis for stockpiled soil or one per 55-gallon drum per different waste stream for containerized. A four-point composite sample will be collected per 250 cubic yards of stockpiled material and for each drum waste stream. Sample and composite frequencies may be adjusted in accordance with the waste handling facility's requirements and may be reduced for large volumes of waste with consistent properties. Waste characterization samples will be considered valid for consistent waste streams for a period of 1 year. Waste characterization samples may be analyzed for the TCLP volatile organic compounds (VOCs), TCLP semi-volatile organic compounds (SVOCs), TCLP RCRA metals, and polychlorinated biphenyls (PCBs), as well as reactivity and flammability (flashpoint). Additional samples may be collected and analyzed by the laboratory on a contingency basis. Site-specific constituents of concern including pesticides may require additional sampling. Please note that state- or local-specific regulations may require a different or additional sampling approaches.

Wastewater Characterization

Waste characterization will be conducted in accordance with the requirements of the waste hauler, waste handling facility, and local/state/federal governments. In general, purge water should be analyzed by methods appropriate for the known contaminants, if any, that have been historically detected in the monitoring wells. Samples will be collected and analyzed in accordance with the requirements of the waste disposal facility. Wastewater characterization samples may be analyzed for TCLP volatile organic compounds (VOCs), TCLP semi-volatile organic compounds (SVOCs), TCLP RCRA metals, and polychlorinated biphenyls, as well as corrosivity (pH), reactivity and flammability (flashpoint). Additional samples may be collected and analyzed by the laboratory on a contingency basis. Site-specific constituents of concern including pesticides may require additional sampling. Please note that state-and/or local-specific regulations may require different or additional sampling approaches.

Sample Handling and Shipping

All samples will be appropriately labeled, packed, and shipped, and the chain-of-custody will be filled out in accordance with current Arcadis sample chain of custody, handling, packing, and shipping procedures and guidance instructions.

It should be noted that additional training is required for packaging and shipping of hazardous and/or dangerous materials. Please refer to the current Arcadis training requirements related to handling and shipping of samples, shipping determinations, and hazardous materials.

Preparing Waste Shipment Documentation (Hazardous and Nonhazardous)

Waste profiles will be prepared by the Arcadis CPM and forwarded, along with laboratory analytical data to the Client for approval/signature. The Client will then return the profile to Arcadis who will then forward to the waste removal contractor for preparation of a manifest. The manifest will be reviewed by Arcadis prior to forwarding to the Client for approval. Upon approval of the manifest, the Client will return the original signed manifest directly to the waste contractor or to the Arcadis CPM for forwarding to the waste contractor. Arcadis personnel may sign waste profiles and/or waste manifests on a case by case basis for clients, provided the appropriate agreement is in place between Arcadis and the client documenting that Arcadis is not the generator, but is acting as an <u>authorized representative of the generator</u>.

Final drum labeling and pickup will be supervised by an Arcadis representative who is trained and experienced with applicable waste labeling procedures. The Arcadis representative will have a copy of the drum inventory maintained in the field book and will reconcile the drum inventory with the profile numbers on the labels and on the manifest. Different profile numbers will be generated for different matrices or materials in the drums. For example, the profile number for drill cuttings will be different than the profile number for purge water. When there are multiple profiles it is critical that the proper label, with the profile number appropriate to a specific material be affixed to the proper drums. A copy of the Arcadis drum inventory will be provided to the waste transporter during drum pickup and to the facility receiving the waste.

9 DATA RECORDING AND MANAGEMENT

Waste characterization sample handling, packing, and shipping procedures will be documented in accordance with relevant Arcadis procedures and guidance instructions as well as applicable client and/or project requirements, such as a Quality Assurance Project Plan or Sampling and Analysis Plan. Copies of the chain-of-custody forms will be maintained in the project file. Arcadis should photograph or maintain a copy of any hazardous waste manifest signed on behalf of Client in the corresponding office DOT record file.

10 QUALITY ASSURANCE

The CPM or APM will review all field documentation once per week for errors or omissions as compared to applicable project requirements including but not limited to: the proposal/scope of work, QAPP, SAP, HASP, etc. Deficiencies will be noted, tracked, and resolved. Upon correction, they will be noted for project documentation.

11 REFERENCES

United States Environmental Protection Agency (USEPA). 1992. Guide to Management of Investigation-Derived Wastes. Office of Remedial and Emergency Response. Hazardous Site Control Division. January 1992.

SOP - SAMPLE CHAIN OF CUSTODY

Rev: #2

Rev Date: April 29, 2020

VERSION CONTROL

Revision No	Revision Date Page No(s)		Description	Reviewed by		
0	April 19, 2017	All	Re-write to COC only	Richard Murphy		
1	May 23, 2017	4	Add: Guidance on use of previous version of SOP.	Peter Frederick		
		9	Add: Info on COCs for multiple shipping containers			
	7		Modify: Move letter i. to letter m. and change to "when appropriate"			
2	April 29, 2020	4	Remove obsolete link	Lyndi Mott		
		11	Remove obsolete link			

APPROVAL SIGNATURES

Prepared by:

05/23/2017

Peter C. Frederick

Date:

Technical Expert Reviewed by:

Lyndi Mott (Technical Expert)

05/29/2020

Date:

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

arcadis.com

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, regulation-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the general Chain of Custody (COC) procedures and guidance instructions for samples collected from project sites that are relinquished from Arcadis' possession.

COC is defined as the maintenance of an unbroken record of possession of an item from the time of its collection through some analytical or testing procedure. COC is typically documented by a written record of the collection, possession, and handling of samples collected from a project location. Each sample will be tracked by a documented record that efficiently documents the individuals who were responsible for the sample during each successive transfer of that sample to various recipients beyond Arcadis' possession. This information can be used to legally establish the integrity of the samples and therefore the analytical results derived from the samples. This information can be used in addition to other records and documentation regarding the samples, such as field forms, field logs, and photographs.

A sample is considered under custody if:

- It is in your possession; or
- It is in your view, after being in your possession; or
- It was in your possession and then you then locked it up to prevent tampering; or
- It is in a designated secure area.

Continued use of previous version of SOP:

Although not recommended, Arcadis program-, project-, and client-teams may be able to use the previous version of this SOP provided that it meets all of the quality expectations of Arcadis and client, and meets applicable regulatory requirements. It is up to the program, project, and/or client-team leader to determine whether it is appropriate to adopt the current SOP or to continue using the previous version.

However, all new work not associated with the previous version of this SOP must be performed with the current version of the SOP.

When adopting this new SOP, users of the previous versions must be aware that specific handling, packing, and shipping procedures and guidance has been removed and that those should be addressed within program or project plans (e.g. QAPPs, Work Plans, SAPs, etc.) or in a more detailed SOP or TGI specific to that sampling activity, whether related to media, constituent/analyte, client, state, etc.

In addition, adopting this new SOP will require users to refer to the Arcadis DOT Safety Program for procedures and guidance on the determination and handling, packing, and shipping of samples that are or may be considered hazardous materials.

3 PERSONNEL QUALIFICATIONS

Arcadis personnel performing work under the purview of this SOP will have received appropriate training and have field experience regarding the collection of samples from project locations. Arcadis personnel will have all other applicable and appropriate training relevant to the sampling work and project site.

4 EQUIPMENT LIST

The following list provides materials that may be required for each COC. Project reporting and documentation requirements must be reviewed with the CPM prior to execution of work. Additional materials, tools, equipment, etc. may be required, and project staff are required to verify with the CPM and/or Technical Expert what specific equipment is required to complete the COC.

- Indelible ink pen (preferably either black or blue ink);
- COC form (**Appendix A**) from either Arcadis, laboratory receiving and analyzing the samples, or other applicable and appropriate entity for the work performed;
- When appropriate, such as for litigation or expert testimony work, custody seals or tape.

5 CAUTIONS

One way in which the law tries to ensure the integrity of evidence is by requiring proof of the chain of custody by the party who is seeking to introduce a particular piece of evidence.

A proper chain of custody requires three types of affirmations: (1) affirmation that a sample is what it purports to be (for example, soil collected from a specified location and depth); (2) affirmation of continuous possession by each individual who has had possession of the sample from the time it is collected until the time it is analyzed or held by a laboratory; and (3) affirmation by each person who has had possession that sample remained in substantially the same condition and not contaminated or affected by outside influences from the moment one person took possession until the moment that person released the evidence into the custody of another (for example, affirmation that the sample was stored in a secure location where no one but the person in custody had access to it).

Proving chain of custody is necessary to "lay a foundation" for the samples in question, by showing the absence of alteration, substitution, or change of condition.

Ensure that appropriate sample containers with applicable preservatives, coolers, and packing material are planned for and provided at the site at the time of sample collection.

Understand the offsite transfer requirements of the samples for the facility at which samples are collected.

If overnight courier service is required schedule pick-up or know where the drop-off service center is located and the hours of operation.

An Arcadis employee appropriately trained at the correct level of internal hazardous materials/DOT (Department of Transportation) shipping must complete an Arcadis shipping determination to address applicable DOT and IATA (International Air Transport Association) shipping requirements. Review the applicable Arcadis procedures and guidance instructions for sample packaging, and labeling. Prior to using air transportation, confirm air shipment is acceptable under DOT and IATA regulations.

The person relinquishing possession of the samples or other member of the project team should contact the final recipient of the samples to confirm receipt and review any special provisions on the COC or questions that they may have.

6 HEALTH AND SAFETY CONSIDERATIONS

Follow the health and safety procedures outlined in the project/site Health and Safety Plan (HASP) as well as other applicable H&S requirements, such as:

- Arcadis Hazardous Material/DOT handling, packaging, and shipping training
- Project site-specific H&S training
- Client-specific H&S training
- Constituent-specific H&S training
- Media-specific H&S training

7 PROCEDURE

Collected samples must be uniquely identified, and properly documented, containerized, labeled with unique identifier, possessed in a secure manner during remainder of sampling event, packaged, and shipped to recipient laboratory.

Sample Identification

The method of sample identification depends on the type of measurement or analyses performed. In some cases, in-situ measurements of existing conditions and/or sample location must be made during sample collection. These data will be recorded directly on field forms, logbooks, or other project record data sheets used to permanently retain this information for the project file. Examples of location identification information includes: latitude/longitudinal measurements, compass directions, well number, building number, floor number, room name, or proximity to a site feature unique to the site. Examples of in-situ measurements are pH, temperature, conductivity, flow measurement, or physical condition of the media being sampled. Physical samples collected are identified by a unique identifying number or code on a sample tag or label. These physical samples are removed from the sample location and transported to a laboratory for analyses.

In some cases, before samples are placed into individual containers and labeled as individual samples, samples may be separated into portions depending upon the analytical methods and required duplicate or triplicate analyses to be performed.

When completing a COC for samples, personnel must complete the following:

- 1. Written COCs must be completed with indelible ink (preferably either black or blue colored ink).
- 2. Written COCs must be completed using legible printed writing, and not cursive writing.
- 3. All entry fields on the COC form must be completed. If information is not applicable for a specific entry field, personnel will either put "N/A" or use a strike-out line or dash like "-------" to indicate no applicable information is needed for that field.
- 4. Use of quotation marks or lines/down arrows to represent repetitive/duplicative text in similar fields.
- 5. Regardless of the type or specific COC form, the following pertinent information must be provided on the COC form:
 - a. Arcadis project number
 - b. Arcadis project name
 - c. Project location, including street address, city, state, building number, providing as much detail as appropriate
 - d. Recipient laboratory contact and sample receiving shipping location information
 - e. Entities'/persons' contact information for who will be receiving analytical results
 - f. Name of sampler, i.e. person collecting sample and relinquishing possession of samples to the next entity in the chain of custody
 - g. Date of sample collection

- h. If appropriate for the sample media, contaminant/constituent of concern, or analytical method, document time of sample collection using standard military time
- i. Sample analytical method(s)
- j. Turnaround time required for analyses and/or reporting
- k. Instructions to laboratory regarding handling, timing, analyses, etc. as applicable and appropriate
- I. Printed name and signature of the individual person who collected the samples and relinquishing possession of the samples
- m. If appropriate or when documentation of the specific sample collection method will influence how the laboratory handles, prepares, or analyzes the samples, document the sample collection methodology used for collecting the samples (e.g. ASTM D5755)
- 6. The following additional specific information will be entered on the COC form, regardless of what type of COC is being used:
 - a. <u>Unique Sample Identifier</u> The sample identifier (ID) must be unique to the individual sample it is applied to. The information in which the sample ID conveys is determined by the CPM, Technical Expert, and/or other project team members in advance of sample collection so that sample identification is consistently applied for the project. The sample nomenclature may be dictated by a specific client, program, or project database and require unique identification for each sample collected for the project. Consult with the CPM and/or Technical Expert for additional information regarding sample identification.

The sample ID could convey specific information regarding the sample to aid personnel in recognizing what the sample represents, or they may be arbitrary so as to facilitate the anonymity of the sample location, media, constituent of concern, project site, etc.

Examples of unique identifiers include:

- Well locations, grid points, or soil boring identification numbers (e.g., MW-3, X-20, SB-30). When the depth interval is included, the complete sample ID would be "SB-30 (0.5-1.0) where the depth interval is in feet. Please note it is very important that the use of hyphens in sample names and depth units (i.e., feet or inches) remain consistent for all samples entered on the chain of custody form. DO NOT use the apostrophe or quotes in the sample ID.
- 2. Sample names may also use the abbreviations "FB," "TB," and "DUP" as prefixes or suffixes to indicate that the sample is a field blank, trip blank, or field duplicate, respectively.
- List the date of sample collection. All indicated dates must be formatted using either mm/dd/yy (e.g., 03/07/09) or mm/dd/yyyy (e.g. 03/07/2009).
- c. When appropriate for the analytical procedure used, list the local time that the sample was collected. The time value should be presented using military format. For example, 3:15 P.M. should be entered as 15:15.

- d. Samples should be indicated to be either "Grab" or "Composite". Grab samples are collected from only one unique location at one specific point in time.
- e. Composite samples are a group of individual samples that are combined for analysis in their totality. Composite samples need to be documented if they are either collected from a number of different locations over a broader area to be representative of the entire area being sampled, or if they are representative of a single location over an extended period of time.
- f. If used, preservatives for the individual sample will be noted.
- g. The requested analytical method(s) that the samples are being analyzed for must be indicated. As much detail, as necessary, should be presented to allow the analytical laboratory to properly analyze the samples. For example, polychlorinated biphenyl (PCB) analyses may be represented by entering "EPA Method 8082 – PCBs" or "EPA PLM 600-R93-116." In cases where multiple analytical methods and/or analytical parameters are required for an individual sample, each method should be indicated for the sample (e.g., EPA 8082/8260/8270 or EPA PLM/400-point count).
- h. If there are project-specific sample analytes to be reported, they should be specifically listed for each individual sample (e.g., 40 CFR 264 Appendix IX).
- i. The total number of containers for each analytical method requested should be documented. This information may be included under the parameter or as a total for the sample.
- j. When necessary, note which samples should be used for site specific matrix spikes.
- k. Indicate special project-specific requirements pertinent to the handling, shipping, or analyses. These requirements may be on a per sample basis such as "extract and hold sample until notified," or may be used to inform the laboratory of special reporting requirements for the entire sample delivery group (SDG).
- I. Indicate turnaround time (TAT) required for samples on COC. If individual samples have differing TATs, the different TATs for each sample or groups of samples must be clearly indicated.
- m. Provide contact name and phone number in the event that problems are encountered when samples are received at the laboratory. The person relinquishing possession of the samples or other member of the project team should contact the final recipient of the samples to confirm receipt and review any special provisions on the COC or questions that they may have.
- n. If available, attach the Laboratory Task Order or Work Authorization forms.
- o. The "Relinquished By" field must contain the signature of the Arcadis person who relinquished custody of the samples to the next entity in the chain of custody, which may be another person, the shipping courier, or the analytical laboratory.
- p. Dates and times must be indicated using the following format:
 - 1) Date: either mm/dd/yy e.g., 01/01/17 OR mm/dd/yyyy e.g., 01/01/2017
 - 2) Time: use military format, e.g. 9:30 a.m. is 0930 and 9:30 p.m. is 2130

- q. The "Received By" section is signed by sample courier or laboratory representative who received the samples from the sampler or it is signed upon laboratory receipt from the overnight courier service.
- 4. When more than one page of the COC form is required to complete the total number of samples, use as many sheets as necessary to accurately and clearly document the samples and information. Some COCs may have a standard first page/cover page, and subsequent pages may not contain all the detailed fields as the first page/cover page. Ensure that any subsequent pages convey all of the necessary and pertinent information for each individual sample as required in this procedure document.
- 5. Pages of the COC must retain a page count of the total number of pages; e.g., Page <u>1</u> of <u>3</u>, Page <u>2</u> of <u>3</u>, Page <u>3</u> of <u>3</u>.
- 6. Upon completing the COC forms, forward the original signed COC with the sample package. Ensure that the original COC form is secured with the sample package so that it remains with the physical samples for the duration of transport and handling to its final destination and ensure that the COC form will not be become damaged or rendered unreadable due to sample breakage/leakage if stored inside the sample shipping container or outside influences if COC is stored in an outside plastic pouch to the container.
- 7. If you've collected enough samples that would require more than one container to ship them all to the same laboratory or location, then each separate/individual container that contains any number of samples must have a separate COC representing only those samples contained within that specific container. For example, if you have 3 total shipping containers for all of your samples, you must have a total of 3 separate, individual COCs for each of the 3 containers representing only those samples in their representative container. Thus, every container holding samples must have its own, individual COC.
- 8. If electronic chain of custody (eCOC) forms are utilized, ensure that the requirements of this procedure and guidance instructions are followed to the extent possible. Verify that proper signature and COC procedures are maintained with the CPM and/or Technical Expert when using eCOC.

8 WASTE MANAGEMENT

Not Applicable.

9 DATA RECORDING AND MANAGEMENT

The original signed COC shall be submitted with the samples. Copies of COC records will be transmitted to the CPM or designee at the end of each day unless otherwise directed by the CPM. The sampling team leader retains copies of the chain of custody forms for filing in the project file. Record retention shall be in accordance with client- and project-specific requirements and Arcadis policies, the most stringent will apply.

10 QUALITY ASSURANCE

COC forms will be legibly completed in accordance with this procedure and guidance instruction document, as well as other applicable and appropriate project documents such as Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), Work Plan, or other project guidance documents.

COC records will be reviewed by the CPM or their appropriate designee for completeness and accuracy to the applicable requirements. Non-conformances will be noted and corrected in a timely manner on the copies retained by Arcadis as well as contacting the ultimate receiving entity for correction to the originally signed COC in their possession.

11 REFERENCES

Arcadis Client Document Retention Guide

Arcadis Transportation Safety Program requirements, procedures, and guidance instructions

- <u>EPA Samplers' Guide Contract Laboratory Program Guidance for Field Samplers</u>, EPA document EPA-540-R014-013 October 2014
- EPA Region III <u>Sample Submission Procedures for the Office of Analytical Services and Quality</u> <u>Assurance (OASQA) Laboratory Branch</u> revision 13.0 January 29, 2014
- EPA Region I Office Environmental Measurement and Evaluation <u>Standard Operating Procedures for</u> <u>Chain of Custody of Samples</u> revision 1 March 25, 2002
- EPA Region IV Science and Ecosystem Support Division <u>Operating Procedure for Sample and Evidence</u> <u>Management</u> January 29, 2013

APPENDIX A

Chain of Custody Form

	~	ID#] (CHAIN	OF CL	JSTO	DY & L	ABOR	ATOF	RY			Lab Work Order #	
ARCADIS	2					Α	NALY	SIS RE		ST FOF	RM		Page	of		
Contact & Company Name:	Telephone	9:				Preservative									A. H ₂ SO ₄	Keys Containment Information Key 1. 40 ml Vial
City State Zip	Fax					Filtered (✓)									B. HCL C. HNO₃ D. NaOH E. None	2. 1 L Amber 3. 250 ml Plastic 4. 500 ml Plastic 5. Encore
City State Zip	E-mail Ad	dress:				# of Containers									F. Other: G. Other: H. Other:	6. 2 oz. Glass 7. 4 oz. Glass 8. 8 oz. Glass 9. Other: 10. Other:
Project Name/Location (City, State):	Project#:					Container Information									Matrix Key: SO - Soil W - Water T - Tissue	A - Air NL - NAPL/Oil SW - Sample Wipe
Sampler's Printed Name:	Sampler's	Signature					1	PA	RAMETER	ANALYSIS	S & METH	DD	1	T	SE - Sediment Other: SL - Sludge	
	Colle	ection	Тур	oe (√)												
SAMPLE ID	Date	Time	Comp	Grab	Matrix										REMARKS	
										L						
Special Instructions/Comments										Special	QA/QC Instr	.,				
Laboratory Info Last Name:	ormation a			tody Seal ($\sqrt{)}$	Re Printed Name	elinquished I	Ву	Printed Nam	Received By e:	1	R Printed Nam	elinquished	Ву	Labor Printed Name	atory Received By
			Jobier Gus	nouy oedi (. ,											
\Box Cooler packed with ice (\checkmark)			Intact	Not Inta	ict	Signature:			Signature:			Signature:			Signature:	
Specify Tumaround Requirements:		Sample F	Receipt			Firm:			Firm:			Firm:			Firm:	
Shipping Tracking #:		Condition	/Cooler Te	emp:		Date/Time:			Date/Time:			Date/Time:			Date/Time:	

SOP - Sample Chain of Custody Rev1_May 23, 2017