Remedial Investigation and Interim Action Report Coleman Oil Yakima Bulk Fuel

Site Name: Site Address: Coleman Oil Yakima Bulk Fuel 1 East I Street, Yakima 98901

Agreed Order: ERTS ID Nos.: Ecology Site Cleanup ID: Facility/Site ID: DE 15639 663825, 670092 13200 4233

Prepared for: Mr. Jim Cach Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

PBS Project No. 41392

October 11, 2023

214 EAST GALER STREET SUITE 300 SEATTLE, WA 98102 206.233.9639 MAIN 866.727.0140 FAX PBSUSA.COM

Table of Contents

1	CO۱	/ER LETTER	1	
2	INTRODUCTION			
	2.1	Site Discovery and Release Reporting	2	
	2.2	Hazardous Substance Source Control	2	
	2.3	Agreed Order	2	
	2.4	General Site Information	3	
	2.5	Site History	4	
	2.6	Site Use	4	
	2.7	Regional Geology/Hydrogeology	4	
		2.7.1 Geology	4	
		2.7.2 Hydrogeology	5	
		2.7.3 Surface Water	5	
3	REG	GULATORY CRITERIA	5	
	3.1	Contaminated Site Cleanup	5	
	3.2	Vapor Intrusion	6	
4	REN	IEDIAL INVESTIGATIONS AND INTERIM ACTIONS	6	
	4.1	Sampling and Analysis Methodologies	6	
		4.1.1 Soil Sampling	6	
		4.1.2 Groundwater Sampling	6	
		4.1.3 Soil Vapor Sampling	7	
		4.1.4 Laboratory Methodologies	7	
	4.2	Previous Environmental Investigations	7	
		4.2.1 Site Characterization Report (June 2015)	7	
		4.2.2 Data Summary Report (July 2018)	8	
	4.3	Site Characterization Activities (July 2018 through July 2022)		
		4.3.1 Soil Boring and Monitoring Well Installation (December 2018)	8	
		4.3.2 Groundwater Monitoring Event (March 2019)	9	
		4.3.3 Non-Aqueous Phase Liquid (NAPL) Transmissivity Testing (March 2019)	9	
		4.3.4 Additional Soil Investigation and Soil Vapor Probe Installation (June 2019)	9	
		4.3.5 Additional Soil Boring and Monitoring Well Installations (December 2019 – February 2022)	9	
		4.3.6 Groundwater Sampling Events (February 2020 – July 2022)	10	
		4.3.7 Monitoring Well Survey		
		4.3.8 Multiphase Extraction Events (February 2020 through July 2022)	11	
5	REN	IEDIAL INVESTIGATION RESULTS	11	
	5.1	Soil	11	
		5.1.1 Legacy Soil Contamination		
		5.1.2 Contaminated Soil Remaining in Place West of Remedial Excavation		
		5.1.3 Subsurface Investigation Conducted from 2018 through 2022		
		5.1.4 Soil Summary		
	5.2	Groundwater	12	
		5.2.1 Elevation, Flow Direction and Gradient		
		5.2.2 Analytical	13	

	5.3	Non-Aqueous Phase Liquid (NAPL)	13
		5.3.1 Physical - Transmissivity	13
		5.3.2 Analytical	13
	5.4	Aquifer Testing	13
	5.5	Vapor Intrusion	14
		5.5.1 Soil Vapor	14
6	CON	ICEPTUAL SITE MODEL	14
	6.1	Contaminant Release	14
	6.2	Soil Fate and Transport	14
		6.2.1 Legacy Soil Contamination	14
		6.2.2 2016 Releases	15
		6.2.3 Contaminants of Concern	15
		6.2.4 Occurrence	15
		6.2.5 Removal	16
	6.3	NAPL Fate and Transport	16
		6.3.1 Composition	16
		6.3.2 NAPL Occurrence	16
	6.4	Groundwater Fate and Transport	
		6.4.1 COCs	
		6.4.2 Groundwater Occurrence	19
	6.5	Exposure Pathways	19
		6.5.1 Direct Contact	
		6.5.2 Air/ Soil Vapor	
		6.5.3 Surface Water	
		6.5.4 CSM Conclusion	20
7	PRO	POSED CLEANUP STANDARDS	20
	7.1	General	20
	7.2	Terrestrial Ecological Evaluation	21
8	SUN	IMARY AND CONCLUSIONS	21
9	LIM	ITATIONS AND CLOSURE	22
10	REF	ERENCES	23

Supporting Data

FIGURES

Figure 1. Vicinity Map
Figure 2. Site Plan – Sample Locations
Figure 3. Site Plan – Groundwater Elevation Contour
Figure 4. Extent of Diesel and Heavy Oil Contamination in Soil
Figure 5. Extent of NAPL and Diesel in Groundwater
Figure 6. Extent of Gasoline in Groundwater
Figure 7. Hydrographs
Figure 8. Conceptual Site Model – Sensitive Receptor Survey

Figure 9. Conceptual Site Model – Cross Section A-A' Figure 10. Conceptual Site Model – Cross Section B-B' Figure 11. Conceptual Site Model – Flow Chart

TABLES

- Table 1. Soil Analytical Results
- Table 2. Groundwater Analytical Results
- Table 3. NAPL Characteristics
- Table 4. Groundwater and NAPL Elevation Data
- Table 5.
 Sub-Slab Soil Gas Analytical Results
- Table 6. Multiphase Extraction Summary
- Table 7. Product Recovery from In-Well Sorbents

APPENDICES

Appendix A: Soil Boring and Well Construction Logs

Appendix B: Groundwater Sampling Datasheets

Appendix C: Survey Report

Appendix D: Terrestrial Ecological Evaluation Exclusion Form

Appendix E: Laboratory Reports and Chain of Custody Documentation

©2023 PBS Engineering and Environmental Inc.

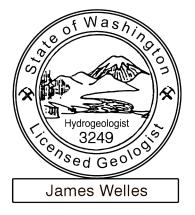
Acronyms and Abbreviations

ARAR Bgs BTEX COC CSID CSM CUL	Applicable or Relevant and Appropriate Requirements below ground surface Benzene, toluene, ethylbenzene, xylenes Contaminant/Chemical of Concern Cleanup Site Identification number Conceptual Site Model Clean-up Levels
Ecology	Washington State Department of Ecology
FOC	Fraction of Organic Carbon
FSID GME	Facility Site identification number
MTCA	Groundwater monitoring event Model Toxics Control Act
PAHs	Polycyclic Aromatic Hydrocarbons
pCOC	potential contaminants of concern
PID	Photoionization detector
PSD	particle size distribution
PTAP	Petroleum Technical Assistance Program
QAPP	Quality Assurance Project Plan
RI	Remedial Investigation
RCW	Revised Code of Washington
SAP	Sampling and Analysis Plan
TEE	Terrestrial Ecological Evaluation
TPH	total petroleum hydrocarbon
VCP	Voluntary Cleanup Program
VOCs	Volatile Organic Compounds
WAC	Washington State Administrative Code

1 COVER LETTER

October 11, 2023

John Mefford Toxics Cleanup Program Site Manager WA State Department of Ecology – Central Regional Office 1250 W Alder Street Union Gap, WA 98903


RE: Coleman Oil Yakima Bulk Fuel

Dear Mr. Mefford,

PBS has completed Remedial Investigation (RI) and Interim Actions (IA) activities, in general accordance with the Work Plans developed under the Agreed Order, at the property located at 1 East I Street in Yakima, Washington. The RI was conducted to characterize the magnitude and extent of releases of gasoline and diesel to the subsurface in the vicinity of underground fuel product piping. IA were conducted to reduce the contamination at the site that resulted from these releases.

Sincerely, PBS Engineering and Environmental Inc.

James Welles, LHG Senior Hydrogeologist

2 INTRODUCTION

PBS Engineering and Environmental (PBS) prepared this Remedial Investigation (RI) and Interim Action (IA) report, on behalf of the Coleman Oil Company (Coleman Oil), regarding the property located at 1 East I Street in Yakima, Washington. The investigation and report was prepared to meet the substantive requirements of the RI as outlined in the Washington State Model Toxics Control Act (MTCA) Chapter 173-340-350 under Washington Administrative Code (WAC).

2.1 Site Discovery and Release Reporting

On March 21, 2016, on site personnel noted what appeared to be a fuel product seeping to the surface through a crack in the asphalt (<1-gallon). This observation was made when diesel fuel was being pumped through a subsurface line beneath that location. The following actions were undertaken at that time by on site personnel:

- Ceased pumping fuel through the line.
- Mopped up fuel product on the surface using absorptive pads from the spill kit.
- Removed asphalt and overburden soil from on top of the line (pipe run is approximately 1-foot below grade).
- Observed and plugged the hole in the line.
- Excavated impacted soil laterally and approximately 2-3 feet below the breached fuel line.
- Stockpiled impacted soil (approximately 7 cubic yards) on plastic sheeting and covered with plastic sheeting.

Coleman Oil personnel reported the release (diesel release) to the Washington State Department of Ecology (Ecology) within 24 hours per Washington Administrative Code (WAC) 173-340-300. Ecology assigned Environmental Report Tracking System (ERTS) number 663825 to the release.

Additionally, a December 2016 release of gasoline product to the subsurface (gasoline release) from a shallow pipe was confirmed through pressure testing by Coleman Oil personnel, and by the presence of previously unobserved free product in the closest groundwater monitoring well (MW2). This release was reported to Ecology on December 14, 2016 and was assigned ERTS number 670092.

2.2 Hazardous Substance Source Control

The point sources of the 2016 releases have been identified and the piping removed. Bulk fuel is currently stored in new ASTs (2017) with above-grade transfer components. Underground storage and piping of fuel products are no longer utilized at the property.

2.3 Agreed Order

Coleman Oil entered an Agreed Order (No. DE 15639) with other potentially liable parties (PLPs) and Ecology. The effective date of the Agreed Order is March 29, 2018. The PLPs are currently:

- Coleman Oil Company, LLC (Coleman Oil)
- BNSF Railway Company (BNSF)
- Carol Jean Wondrack
- Wondrack Distributing, Inc.
- Chevron Environmental Management Company (Chevron)

This Order requires the PLPs to complete a Remedial Investigation (RI), Feasibility Study (FS), and to prepare Draft Cleanup Action Plan (DCAP) for the site.

PBS prepared a Remedial Investigation Work Plan (RIWP) and an Interim Action Work Plan (IAWP), both dated August 2018, collectively referred to as the work plans. The purpose of the work plans was to detail methods and locations of proposed work intended to meet the objectives of the Remedial Investigation.

This RI report includes a summary of previous investigations and presents the execution and findings of the activities described in the work plans (August 2018 to present). It is noted that work was conducted in phases as information was obtained sequentially. RI and IA work was guided by the results/observations made as work progressed. Status updates and proposed scopes were communicated to PLPs and Ecology.

2.4 General Site Information

The approximate 1.0-acre property comprises one parcel (181313-14070) in Yakima, Washington at the northeast corner of the intersection of East I Street and the BNSF Railroad. The site is currently developed as a bulk fuel storage and distribution facility.

Site Name:	Coleman Oil Yakima Bulk Fuel Plant	
Site Location:	1 East I Street	
	Yakima, Washington 98901	
	Northeast Quarter of Section 13, Township 13 North, Range	
	18 East of the Willamette Base and Meridian	
Ecology Site Cleanup ID:	13200	
Ecology Facility/Site ID:	4233	
Agreed Order Number:	DE15639	
Site Description:	The site is currently developed as a bulk fuel plant. The site is	
	generally flat.	
Current Operator:	Coleman Oil Company	
	335 Mill Road	
	Lewiston, Idaho 83501	
Current Owner:	Carol Jean Wondrack	
Previous Owners / Operators:	Chevron U.S.A. / Wondrack Distributing, Inc	
Project Consultant Contact Information:	PBS Engineering and Environmental	
	James Welles, LHG	
	214 East Galer Street, Suite 300	
	Seattle, WA 98102	
	Email – james.welles@pbsusa.com	
Ecology Site Manager:	John Mefford	
	Toxics Cleanup Program	
	Department of Ecology Central Regional Office	
	1250 W Alder Street	
	Union Gap, Washington	
	Email – john.mefford@ecy.wa.gov	

2.5 Site History

Tax parcel #18131314070 was acquired by Standard Oil Company in 1908. It was owned by the Standard Oil Company and thereafter its successor in interest, Chevron U.S.A., until 1986 when it was acquired by Joseph E. Wondrack and Carol J. Wondrack. It has been owned by Carol Jean Wondrack since February 2010. It is understood that Coleman Oil is in a purchase agreement for the parcel with Carol Jean Wondrack. The west adjacent parcel 181313-99997 is owned by BNSF Railroad as successor in interest to the Northern Pacific Railway Company, which acquired its interest in the parcel from the United States of America, pursuant to Section 2 of the Northern Pacific Land Grant Act of 1864.

It is noted that western portion of the facility was formerly mapped on the Yakima County Assessor's website as being part of west adjacent tax parcel 181313-99997. Previous PBS reports reference both parcels as comprising the site. It is understood that a transaction and re-parceling took place and the property is now a single parcel, owned by Carol Jean Wondrack on the County Assessors webpage on the date of this report. The entirety of the property is currently mapped as tax parcel 181313-14070.

Wondrack Distributing, Inc. operated the bulk fuel distributing facility located at the property from 1976 to August 1, 2015. Since August 1, 2015, the bulk fuel distributing facility has been operated by the Coleman Oil Company.

During late 2017 to early 2018, Coleman Oil made several modifications to the fuel transfer and storage infrastructure. Six aboveground storage tanks (ASTs) were removed from the north central and northeastern portions of the property, and a new secondary containment and fueling area was constructed in their place. Four active ASTs remain in the northwestern portion of the property.

Underground product piping is not utilized in the current system. Fuel in the ASTs is bottom loaded and unloaded at the south and eastern sides of the ASTs within the secondary containment system. The fueling canopy in the southcentral portion of the site is no longer in use. One heating oil underground storage tank (UST) was discovered and removed from the site during excavation of a subsurface diesel fuel line as described in July 2018 Data Summary Report (PBS-2018a).

2.6 Site Use

The property is currently developed as a petroleum storage, distribution and active fueling facility. Site features include four active ASTs, associated fuel transfer components, a secondary containment structure, an out-of-use fueling canopy and several structures used as office space and equipment storage. There are currently no proposed plans for change of land use or redevelopment for the site.

2.7 Regional Geology/Hydrogeology

2.7.1 Geology

The site is located in the Yakima Valley, which lies within the central portion of the Columbia River Plateau physiographic province. This province is comprised of a series of flood basalts covering much of central and eastern Washington. The basalt flows of the Columbia River Basalt Group (CRBG) are late Miocene Epoch and early Pliocene Epoch (between 17 and 6 million years ago) in age, forming an extensive volcanic plateau.

The Yakima Valley lies between anticlinal ridges that generally trend east-west as part of the Yakima Fold Belt; which consists of basaltic lava flows that have faulted and folded from the late Tertiary to the present. Glacial outwash and river-deposited silt, sand and gravel deposits overlie the Columbia River Basalt.

The property is located within the flood plain of the Yakima River and is underlain in most areas by Quaternary-age alluvium and unconsolidated terrace deposits. The alluvium is composed of unconsolidated silt, sand, gravel, and cobble. It ranges in thickness from 0 to 120 feet with an average thickness of 20 feet (USGS, 2009). The underlying terrace deposits consist of coarse-grained gravel with discontinuous layers of silt, clay, sand, or cemented gravel. The terrace gravel generally occurs at the surface away from the river, and beneath the alluvium adjacent to the river. The thickness of this unit ranges from 0 to 350 feet with an average thickness of 90 feet (USGS, 2009). These unconsolidated Quaternary deposits are overlain in some areas by artificial fill material up to 20 feet deep, and are underlain by consolidated, Tertiary-age, continental sediments, primarily of the Upper Ellensburg Formation. Source: https://fortress.wa.gov/ecy/publications/documents/1703008.pdf

2.7.2 Hydrogeology

The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet.

Lateral hydraulic conductivity (Kh) of the units vary widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole¹. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from $4 \times 10-7$ to 4 ft/d.

2.7.3 Surface Water

Surface water has not been identified on the site or in the vicinity. The closest identified surface water to the site is the Yakima River, located approximately two miles to the northeast. The calculated groundwater flow direction is to the south-southeast, which is the approximate direction the Yakima River flows through this area of the valley.

3 REGULATORY CRITERIA

3.1 Contaminated Site Cleanup

Contaminated site assessment and cleanup is conducted in accordance with the substantive requirements of the Model Toxics Control Act (MTCA), Chapter 70.105D of the Revised Code of Washington (RCW) and its implementation regulations, Chapter 173-340 of the Washington Administrative Code (WAC).

In accordance with MTCA, development of preliminary cleanup levels includes identifying potential exposure pathways for human and ecological impacts based on the planned land use. MTCA provides for three methods (Method A, B, or C) for establishing cleanup standards. Method A (unrestricted land use) is typically used as the default criterion. Methods B and C are used when developing site-specific cleanup levels.

¹ <u>https://wa.water.usgs.gov/projects/yakimagw/summary_of_results.htm</u>

MTCA Method A Cleanup Levels (CULs) for soil and groundwater are presented in the tables, along with detected contaminant concentrations.

3.2 Vapor Intrusion

The evaluation of vapor intrusion in Washington is conducted in general accordance with Ecology's *Guidance for Evaluating Vapor Intrusion in Washington State: Investigation and Remedial Action* (Publication No. 09-09-047: March 2022) and the screening and cleanup levels presented in the Cleanup Levels and Risk Calculations (CLARC) data tables (updated January 2023), collectively referred to as the VI Guidance.

4 REMEDIAL INVESTIGATIONS AND INTERIM ACTIONS

Remedial Investigations (RI) including sampling of soil, soil vapor, and groundwater have been conducted at the subject property. Interim Actions (IA) performed to reduce contamination, most specifically non-aqueous phase hydrocarbons (NAPL or fuel product), have been conducted. RI and IA actions are presented in this section.

4.1 Sampling and Analysis Methodologies

Site characterization activities were completed according to the methods described below.

4.1.1 Soil Sampling

Soil sampling methodologies included sampling directly from hand digging tools during surface sampling, acetate liners during direct push drilling, from polyethylene bags during sonic drilling, or from steel 18-inch split spoon samplers while drilling with hollow-stemmed auger methods. Hand digging tools and split spoon samplers were decontaminated with a non-phosphate detergent wash followed by a potable water rinse.

In the event drilling was used to collect soil samples, soil cores generated from the boring were logged continuously, noting grain size, density, color, odor, and moisture. Soils were also screened for volatile contaminants using a photoionization detector (PID) as cores were produced.

Samples were collected directly into laboratory-provided glassware and labeled with the sample name and date and time of collection. When applicable, field staff followed EPA's Method 5035A and Ecology's guidance, "*Collecting and Preparing Soil Samples for VOC Analysis*". Samples were kept on ice for transport to the project laboratory under chain-of-custody documentation. Field personnel donned new disposable nitrile gloves when collecting each sample.

4.1.2 Groundwater Sampling

Groundwater purging and sampling was conducted using a peristaltic pump, employing low flow sampling techniques. The sample intake was placed approximately 2-feet below the water table and within the screened interval. Groundwater chemistry parameters (conductivity, pH, temperature, dissolved oxygen and oxidation-reduction potential) were recorded during purging using a YSI Model 556MSP water-quality analyzer equipped with a flow-through cell. Groundwater samples were collected when those parameters were observed to have stabilized.

Groundwater samples were collected directly into laboratory-provided glassware and labeled with the sample name and collection date and time. Samples were kept on ice for transport to the project laboratory under chain-of-custody documentation. Field personnel wore new disposable nitrile gloves when collecting samples.

It is noted that in instances where measurable NAPL was present in a well at the time of the groundwater monitoring event, a groundwater sample was not collected from that well. During NAPL sampling events,

NAPL samples were collected using a disposable bailer. The bailer was lowered slowly into the well without penetrating the NAPL-groundwater interface to minimize mixing of groundwater and NAPL in the sample.

4.1.3 Soil Vapor Sampling

Soil vapor samples were collected from a soil probe, using Teflon tubing, into a one-liter Summa canister fitted with flow controllers set at a flow rate of approximately 160 milliliters mL/minute. The canisters were batch-certified for volatile organic compounds as well as helium, which was used as a tracer gas for leak detection. A shroud was placed over the sample point and helium was introduced into the shroud. The concentration of helium in the shroud was held constant throughout the sampling event and recorded prior to sampling, mid-sampling, and at the end of sampling. The sample collection method was employed to ensure that ambient air was not pulled through the sample train and/or seals.

4.1.4 Laboratory Methodologies

Soil and groundwater samples were analyzed for the following parameters by the methods indicated below:

- Diesel (TPH-D) and Heavy Oil (TPH-HO) range Total Petroleum Hydrocarbons by method NWTPH-Dx.
- Gasoline range Total Petroleum Hydrocarbons (TPH-G) by method NWTPH-Gx.
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by method EPA 8021.

Additionally, select soil samples were also analyzed for:

- Arsenic, cadmium, chromium, lead and mercury by method EPA 200.8.
- Polycyclic aromatic hydrocarbons (PAH) by EPA Method 8270D SIM.

Select groundwater samples were also analyzed for:

- Ethylene dibromide (EDB) and ethylene dichloride (EDC) by EPA 8260 SIM (water).
- PAHs by EPA Method 8270 SIM.
- Lead and mercury by method EPA 6020.
- Hexane and methyl tertiary butyl ether (MTBE) by method EPA 8260.

Soil vapor samples were analyzed for the following parameters by the methods indicated below:

- BTEX and naphthalene by method EPA TO-15.
- Aliphatic hydrocarbons by method Massachusetts APH, Revision 1, December 2009.
- Helium by method EPA 3C Modified.

Samples were analyzed within the applicable hold times and the laboratory reports did not note any issues with the analyses that would negatively impact data usability.

4.2 Previous Environmental Investigations

4.2.1 Site Characterization Report (June 2015)

PBS conducted site characterization activities in April 2015 for Wondrack Distributing, which included:

- Near surface soil sampling within three feet of ground surface using hand tools at locations across the property (S1-S9, S26-S37, Figure 2).
- Advancement of twelve direct push soil borings to depths between 5 and 10 feet below ground surface (bgs) (B1 – B11, B13, Figure 2).
- Advancement of one direct push soil boring to groundwater. The boring met drilling refusal at 19 feet bgs, and groundwater was not sufficient to be sampled (B12, Figure 2).

The results of the investigation are presented in PBS Site Characterization Report – Yakima Bulk Fuel Plant dated June 2015 (PBS-2015).

It is noted that property modifications, post 2017, included significant disturbance and grading to/of near surface soils in the northern portion of the property (approximately 1/3) and, therefore, results from near surface soil samples collected during the April 2015 investigation are not relied upon for site characterization. Samples not relied upon are presented in strikethrough text in Table 1 and include:

- S1_through S9.
- S29 through S33.
- S35 through S37.

4.2.2 Data Summary Report (July 2018)

Coleman Oil entered an Agreed Order (No. DE 15639) with other potentially liable parties (PLPs) and Ecology, effective March 29, 2018. The Order requires the PLPs to complete a Data Summary Report, RI, FS, and to prepare DCAP for the Site. PBS completed the Data Summary Report for Coleman Oil dated July 19, 2018. The Data Summary Report detailed site activities from the time of the 2016 diesel release until the generating of the RI and IA Work Plans (August 2018). The following site characterization and interim action activities are described in the Data Summary Report:

- Installation of monitoring wells (RW1 and MW1 through MW6).
- Three groundwater monitoring events including the gauging and sampling of onsite wells.
- Eight NAPL removal events resulted in the removal of four gallons of diesel NAPL from MW3 and 48.5 gallons of diesel NAPL from RW1.
- Eleven multiphase extraction (MPE) events utilizing a vacuum truck with a catchment vessel resulting in the removal of approximately 3,616 gallons of NAPL and contaminated groundwater for offsite disposal.
- Aquifer testing which included the performance of a rising head slug test in monitoring wells MW4 and MW6.
- Collection of NAPL samples from monitoring wells MW3 and MW5.

The results of the investigation and interim actions described above are presented in PBS Data Summary Report dated July 19, 2018 (PBS-2018a).

4.3 Site Characterization Activities (July 2018 through July 2022)

The following section describes site characterization activities conducted at the site since the issuance of the July 2018 Data Summary Report, which is the last formal document relating to environmental cleanup at the site. The activities described in this section were performed in general accordance with the work plans.

4.3.1 Soil Boring and Monitoring Well Installation (December 2018)

On December 19 and 20, 2018, seven soil borings (BH1 – BH7) were advanced at the Site using a sonic drilling rig for the collection of unsaturated soil samples and "grab" groundwater samples. The borings were advanced to a depth of 25 feet bgs. Three additional soil borings were advanced to a depth of 30 feet bgs and completed as groundwater monitoring wells (MW8 through MW10).

Two soil samples were retained from each boring for laboratory analysis. The monitoring wells were installed to a depth of 30-feet, with 2-inch PVC casing diameter and 15-foot PVC screen.

Boring and monitoring well locations are shown on Figure 2. Boring logs describing the subsurface lithology, sample depths, PID readings and well construction (if applicable) are presented in Appendix A – Soil Boring and Well Construction Logs.

4.3.2 Groundwater Monitoring Event (March 2019)

On March 19, 2019, a groundwater monitoring event (GME) was conducted and included sampling of groundwater or NAPL from onsite monitoring wells. Prior to sampling, the wells were gauged using an interface probe, and depth to groundwater and NAPL, if present, were recorded. NAPL samples were collected from wells RW1, MW2, MW3, MW4, MW5, and MW8. NAPL samples were not collected from wells MW1 and MW6 as the thickness of the NAPL in these wells at the time of the GME was insufficient for sample collection.

Groundwater sampling data sheets are presented in Appendix B – Sampling Datasheets.

4.3.3 Non-Aqueous Phase Liquid (NAPL) Transmissivity Testing (March 2019)

On March 26, 2019, PBS conducted a NAPL baildown test at well RW1, for the purpose of estimating NAPL transmissivity (T: feet²/day). Prior to beginning the baildown test, a NAPL thickness of 0.50-feet was measured within the four-inch diameter well using an interface probe. Following gauging, NAPL was rapidly removed from the well with a bailer. Following removal of NAPL (<0.01-feet of NAPL in well), the well was gauged periodically for approximately 4 hours. During this period, the NAPL thickness recovered to 0.03-feet (<1 minute after ceasing extraction). This recovered volume likely represented draining of NAPL from the filter pack into the well. The total NAPL recovery was 0.04-feet (8%) over the monitored recovery period (3.8-hours). RW1 was gauged approximately 46-hours later, and recovery was 0.14-feet (28%). Based on slow recovery and site history of fluctuating product thickness, an accurate transmissivity value could not be calculated for NAPL at RW-1.

4.3.4 Additional Soil Investigation and Soil Vapor Probe Installation (June 2019)

On June 4, 2019, for the purpose of continued source investigation, five soil borings (BH8 through BH13) were completed by a direct push drilling rig operated by Holt Services, Inc. PBS oversaw the advancement of the borings and collected soil samples for laboratory analysis from each boring. Refusal was generally encountered at approximately 10-feet below ground surface (bgs) across the site. Due to the relatively shallow depths of drilling refusal, groundwater was not encountered nor sampled in borings BH8 through BH13. Two soil samples from each boring were retained for laboratory analysis.

One soil vapor probe (designated VB1) was installed between the diesel point of release and the eastern extent of the Site office building. The boring was completed to a total depth of 8-feet bgs and the stainless-steel soil vapor probe is set from 6.0 to 6.5 ft bgs. The sand interval 5- to 8-feet bgs is considered to be the sample interval.

Boring locations are shown on Figure 2. Boring logs describing the subsurface lithology, sample depths, PID readings and vapor probe construction are presented in Appendix A.

4.3.5 Additional Soil Boring and Monitoring Well Installations (December 2019 – February 2022)

Based on data collected during investigations, additional locations were identified that were considered valuable to defining site contamination. Additional soil borings, monitoring wells and sampling were conducted to better define the extent of contamination.

On December 16-18, 2019, a total of five soil borings were advanced at the site, using a sonic drilling rig. Two (BH14-BH15) were advanced for the collection of soil samples and select "grab" groundwater samples. Three borings (MW7, MW11, MW12) were completed as groundwater monitoring wells. It is noted that MW8, MW9 and MW10 were installed (December 2018) prior to MW7 due to delays resulting from a pending access agreement with BNSF to facilitate installation of the well.

On September 3-4, 2020, monitoring wells MW13 and MW14 were installed in hydraulically down-gradient locations along North Front Street to the south of the property.

On April 8, 2021, monitoring well MW15 was installed to the southeast of the source area, on the south side of I street at the RS Mechanical property (4 East I Street).

On February 24, 2022, monitoring well MW16 was installed on the south side of the R S Mechanical building, to define the southeast extent of the site.

Two soil samples were sampled from each soil boring.

The monitoring wells were installed to a depth of 30 feet, with 2-inch PVC casing diameter and 15-foot screens.

Boring and monitoring well locations are shown on Figure 2. Boring logs are presented in Appendix A.

4.3.6 Groundwater Sampling Events (February 2020 – July 2022)

Between February 2020 and July 2022, four groundwater sampling events were conducted. Sampling events are summarized as follows:

- February 2020: Limited sampling of recently installed wells MW7, MW9 and MW10. NAPL sampled from wells MW11 and MW12.
- November 2020: Groundwater samples collected from wells MW2, MW7, MW8, MW9, MW10, MW13 and MW14. NAPL sampled from wells MW5 and MW12.
- July 2021: Groundwater samples collected from wells MW1, MW2, MW4, MW6, MW7, MW9, MW10, MW11, MW13, MW14, MW15 and MWBNSF1.
- March 2022: Limited sampling of recently installed well MW16 and nearby wells MW10, MW14 and MWBNSF1.
- July 2022: Groundwater samples collected from wells MW1, MW2, MW5, MW6, MW7, MW9, MW10, MW13, MW14, MW15, MW16 and MWBNSF1.

Note well MWBNSF1 is an Ecology and BNSF well located on BNSF property south of the property and is used to define the extent of the site to the southwest.

Copies of groundwater sampling data sheets are included in Appendix B Sampling Datasheets.

Groundwater elevation contours, flow direction and gradient from the July 2022 event along with a rose diagram depicting flow direction and gradient of past GMEs are presented in Figure 3.

4.3.7 *Monitoring Well Survey*

Accurately measuring the elevation of the top of casing (TOC) of monitoring wells allows for the determination of groundwater elevation, by measuring the depth to water from the TOC. On March 12, 2016, surveying of TOC, latitude, and longitude of monitoring wells MW1 through MW6 was completed by a licensed Registered Land Surveyor in the State of Washington.

Monitoring wells MW7 through MW14 were surveyed on November 24, 2020.

The survey reports are presented in Appendix C.

4.3.8 Multiphase Extraction Events (February 2020 through July 2022)

Multiphase extraction (MPE or vacuum extraction) is a process of rapidly removing NAPL, contaminated groundwater and vapor from the subsurface. PBS oversaw US Ecology, of Pasco, WA, who utilized a vacuum rig with downhole intake (stinger) and catchment vessel to remove contaminated media from the subsurface through select wells on-site. Contaminated media was removed from the wells using transparent, reinforced down-well tubing and vacuum.

Beginning in October 2016, PBS has overseen twenty-six (26) MPE events. A total of approximately 8,400 gallons of liquid has been removed from the site and disposed of off-site.

Based on visual observations made in vacuum truck, and conversations with NRC/US Ecology, PBS roughly estimates that 10% (or 800 gallons) of the removed liquid material was NAPL product.

It is unknown what volume of the contaminant load was removed as vapor.

A summary of MPEs is presented in Table 7.

5 REMEDIAL INVESTIGATION RESULTS

The results of site characterization activities described above are summarized below by media.

5.1 Soil

Field screening of the soil samples for petroleum volatile organics with the PID instrument during advancement of onsite borings indicated low to no detection in soil from surface to approximate depth of the seasonal high groundwater table.

5.1.1 Legacy Soil Contamination

Concentrations of TPH in the diesel and heavy oil range exceeded the of MTCA Method A Cleanup Levels (CULs) in near surface soil samples collected in 2015 within 3-feet of the ground surface in the northwest, northeast and southeast corners of the Site, and in the vicinity of the fueling canopy. Additionally, cadmium and lead were detected in one near surface soil sample in the northwest corner of the property. Contaminants have not been detected in exceedance of CULs at depths greater than 3-feet bgs at the Site, with the exception of contaminated soils encountered during remedial excavation as described below.

During the late 2017 to early 2018 time period, Coleman Oil has made several modifications to the fuel transfer and storage infrastructure. Six aboveground storage tanks (ASTs) were removed from the north central and northeastern portions of the property, and a new secondary containment and fueling area was constructed in their place. Four active ASTs remain in the northwestern portion of the property.

It is noted that property modifications included significant disturbance and grading to/of near surface soils in the northern portion of the property (approximately 1/3) and, therefore, results from near surface soil samples collected during the April 2015 investigation are not relied upon for site characterization. Though locational data are not relied upon, contaminants will be considered to exist in shallow soil in earthworks areas unless data shows otherwise. Legacy shallow soil contamination (upper 3-feet) is included in the conceptual site model (CSM).

Samples not relied upon are presented in strikethrough text in Table 1 and include:

- S1_through S9.
- S29 through S33.

• S35 through S37.

Although the above samples results are not relied upon, contaminants with concentrations exceeding the CUL are considered pCOCs. Borings BH1, BH2, BH4, MW-8 and MW-9 were installed in the northeastern portion of the property following soil disturbances in this area and are representative of current contaminant concentrations in soil. Detected concentrations of pCOCs in soil samples collected from these borings were below respective CULs.

Samples with contaminant concentrations exceeding CULs, which were not disturbed during property modifications, contained diesel and heavy oil range TPH in the vicinity of the fueling canopy (samples S26 and S28) and in the southeast corner of the property (S39).

5.1.2 Contaminated Soil Remaining in Place West of Remedial Excavation

As described in Section 3.2.2 and in the Data Summary Report (PBS-2018a), remedial excavation was conducted to the west of the fueling canopy following discovery of the diesel release. Confirmation soil sampling indicated that remedial excavation was effective at removing petroleum contaminated soil (PCS) to the north, east and south of the release. However, removal of contaminated soil to the west was not feasible due to structural impediments. Removal of contaminated soil at depths greater than 18 feet bgs was not feasible due to the presence of the groundwater table.

Confirmation soil sampling results indicate that PCS exceeding CULs remains in place between the remedial excavation and office.

Soil contamination in the vicinity of the remedial excavation is confirmed by TPH in exceedance of CULs encountered at depths of 19 and 16 feet in wells MW1 and MW3, respectively. These wells are located in the northwest and southwest corners, and immediately outside of the remedial excavation.

Contaminants were not detected in exceedance of CULs in soil samples collected from soil borings advanced and completed as wells MW2 and MW3.

5.1.3 Subsurface Investigation Conducted from 2018 through 2022

Petroleum contaminants of concern (COCs) were not detected above CULs in soil samples collected from soil borings BH1 through BH15 and MW7 through MW16 advanced at the Site from 2018 through 2022.

5.1.4 Soil Summary

Soil analytical results are presented in Table 1. Sample locations and extents of soil contamination (based on relied upon data) are presented in Figure 4 and Cross-section Figures 9 and 10.

Laboratory reports and chain of custody documentation are included in Appendix E.

5.2 Groundwater

5.2.1 Elevation, Flow Direction and Gradient

Groundwater flow direction and gradient estimates were determined graphically on a scaled site plan using groundwater elevation data. Groundwater flow direction is consistently to the southeast with an average gradient of approximately 0.015 ft/ft. Groundwater and NAPL elevation data are presented in Table 2.

Groundwater flow direction and gradient from July 2022, along with a rose diagram summarizing groundwater flow direction and gradient determined using previous data are presented in Figure 3. Hydrographs depicting groundwater and NAPL elevations and product thickness are presented in Figure 7.

5.2.2 Analytical

Concentrations of petroleum COCs exceed the CULs throughout most of the property. The extent of groundwater contamination has been defined in the upgradient, downgradient and lateral direction, with the exception of directly to the west, where impacted MW5 is the furthest explored before the site extends onto the BNSF property in that direction.

Select groundwater samples were also analyzed for EDB, EDC, hexane, MTBE, PAHs and lead. Naphthalene was detected above the CUL in well MW6 in samples collected in December of 2016 and June of 2017. EDB, EDC, hexane, MTBE, PAHs and lead were not detected in exceedance of CULs.

Groundwater sample locations are presented in Figure 2. Concentrations of TPHs are presented on Figures 5 and 6, along with identified NAPL.

Groundwater analytical results are presented in Table 2.

Laboratory reports and chain of custody documentation are presented in Appendix E.

5.3 Non-Aqueous Phase Liquid (NAPL)

5.3.1 Physical - Transmissivity

Based on the data from the baildown test, the transmissivity of the product at the site is less than the 0.1 to 0.8 ft²/day range considered as the practical cutoff for hydraulic recoverability of product.

5.3.2 Analytical

Analysis and visual assessment of NAPL samples by the laboratory indicates two distinguishable NAPL compositions are present on site as follows:

- NAPL samples collected in the vicinity of the gasoline and diesel releases, and down-gradient consist of a mixture of fresh and weathered gasoline and fresh and weathered diesel fuels (wells RW1, MW1 through MW3, MW5 and MW6, MW11 and MW12).
- NAPL samples collected to the northeast (upgradient) of the gasoline and diesel releases consist of only weathered diesel fuel (wells MW4 and MW8).

Analytical results of NAPL samples are presented in Table 3. Sample locations are presented on Figure 2.

Laboratory reports and chain of custody documentation are presented in Appendix E.

5.4 Aquifer Testing

The rising head test data collected on June 9, 2017 was processed using hydrogeological modeling software (AQTESOLV v4.5). The calculations were performed using the Bouwer-Rice solution. The Bouwer-Rice solution was developed for open boreholes or screened wells that partially or fully penetrate an unconfined aquifer and was therefore deemed the most appropriate solution to be used for the site.

The recovery was curved at the most valuable part of recovery, so the line matching was placed tangent to the curve at approximately 80% recovery.

The two calculated hydraulic conductivities (K values) were 1.79 feet per day (ft/day) at MW4 and 1.183 ft/day for MW6 (PBS, 2018a).

The calculated hydraulic conductivities are indicative of silty sands (Fetter, 1994), which is generally consistent with the subsurface lithology observed during well installations. The mean of the two K values is 1.487 feet/day and is the adopted K value for the site.

5.5 Vapor Intrusion

5.5.1 Soil Vapor

Concentrations of petroleum COCs were not detected above the adopted criteria in soil vapor sample (VB1), which was collected immediately outside of the onsite office between the office and remedial excavation.

Sub-slab soil gas results are presented in Table 5. The sample location is presented in Figure 2. The laboratory report and chain of custody documentation is presented in Appendix E.

6 CONCEPTUAL SITE MODEL

Assessing a site with known or suspected contamination requires a conceptual understanding of potential or suspected sources of hazardous substances, types and concentrations of hazardous substances, potentially contaminated media, and actual and potential exposure pathways and receptors. This is called a conceptual site model (CSM). This section provides a narrative CSM for this site. The CSM is comprised of this narrative and Figures 8 through 11.

6.1 Contaminant Release

Two discrete and apparent releases of diesel and gasoline fuels to the subsurface were identified in March and December of 2016, respectively. There is evidence of more weathered petroleum in both the gasoline and diesel range that indicated undefined prior release events at the Site. The point locations of both 2016 releases are well understood and are depicted on Figure 2. The exact volumes of the respective releases are currently unknown.

6.2 Soil Fate and Transport

The following sections discuss potential and confirmed (p or c) COCs and their occurrence within each media.

6.2.1 Legacy Soil Contamination

In an investigation that occurred in 2015, prior to the known fuel releases, TPH in the diesel and heavy oil range were detected in near surface soils at several locations across the property, at concentrations in exceedance of CULs. Additionally, cadmium and lead were detected in near surface soils, in exceedance of CULs, in the northwestern portion of the property near the ASTs. The source of these pCOCs is unknown.

It is noted that property modifications included significant disturbance and grading to/of near surface soils in the northern portion of the property (approximately northern 1/3 of property). pCOCs are therefore assumed to exist in near surface soil samples (upper 2-feet depth) beneath structures and in shallow earthworks areas unless data shows otherwise.

Contaminants have not been detected in exceedance of CULs at depths greater than 3-feet bgs at the Site, with the exception of contaminated soils encountered during remedial excavation as described below.

6.2.2 2016 Releases

Releases of gasoline, diesel, heavy oil and BTEX constituents from ASTs and associated subsurface piping, affecting soil, were discovered during fuel pumping and tightness testing in 2016. The sources of the releases are two separate subsurface fuel lines which conveyed fuel from the ASTs in the northwestern portion of the property to the fueling canopy in the southcentral portion of the property. Both subsurface fuel lines have since been abandoned and replaced by above-ground piping.

Following remedial excavation to the west of the fueling canopy, confirmation soil sampling indicated contaminant concentrations to the north, east and south of the excavation were below CULs. However, contaminated soil remained in place to the west of and beneath the excavation. Further excavation to the west and deeper was prohibited by the presence of the site structure and water table, respectively.

6.2.3 Contaminants of Concern

Based on the product reportedly stored at the Property, soil samples collected during the 2015 investigation were analyzed for TPHs as pCOCs. Select soil samples were also analyzed for BTEX and metals. Based on the products reportedly released at the property in 2016, soil samples collected from the site from 2016 through 2020 were analyzed for TPHs and BTEX. Select soil samples were also analyzed for lead and carcinogenic PAHs.

The following constituents have been detected in Site soils at concentrations exceeding CULs and are known to have been stored and/or released at the Site, and are therefore considered COCs in soil:

- TPH in the gasoline range
- TPH in the diesel range
- TPH in the heavy oil range
- Cadmium
- Lead
- Naphthalene

6.2.4 Occurrence

Legacy Soil Contamination

The extent of contamination in soil exceeding CULs is limited to the upper three feet of Site soils in the following areas:

- North 1/3 portion of the site beneath new structures and in the northeast where potentially accessible.
- In the vicinity of the fueling canopy.
- In the southeastern corner of the site near East I Street.

2016 Releases

Soil contamination remains beneath the remedial excavation and between the western boundary of the remedial excavation and the eastern edge of the adjacent building. Contaminated soil remaining in place in the vicinity of the remedial excavation extends from several feet below ground surface to the depth of the groundwater table, approximately 18 feet bgs. The Site boundary (i.e. extent of contamination) is defined by soil boring and monitoring well locations with contaminant concentrations in soil below their respective CULS as described below:

The point of compliance for soil is throughout the Site from the surface down to a depth of 15 feet bgs. The following sample locations with soil concentrations below CULs bound the extent of contaminated soil at the Site:

DIRECTION	Soil Boring / Monitoring Well	Associated Report	
NORTH	MW6, MW7, MW9	Remedial Investigation	
	MW11, MW12	Deve diel her estimation	
SOUTH	BH5	Remedial Investigation	
	B1, B12, BH3	Site Characterization Report (PBS,	
EAST		2015) and Remedial Investigation	
	MW9, MW10	Remedial Investigation	
	MW5, MW7	Data Summary Report (PBS, 2017) &	
WEST	101003, 101007	Remedial Investigation	
	BH14 & BH15	Remedial Investigation	
VERTICAL	Groundwater Table – approx. 18	Remedial Investigation	
VERTICAL	feet bgs	Remedial investigation	

The release is defined in lateral and vertical directions, except for to the north of the ASTs in the northwestern portion of the Site. Analytical results for soil samples collected from borings and monitoring wells listed in the table above are below CULs. The soil point of compliance is met with the exception of shallow soil (upper 3-feet) and the locations depicted on Figure 4. The vertical extent of soil contamination is presented in Figures 9 and 10.

6.2.5 Removal

Given the proximity of soil contamination to the west of the remedial excavation to the adjacent building, removal of this contaminated soil by excavation is not feasible due to structural impediments. These are the same structural impediments which prevented removal of the material during remedial excavation in 2016. Similarly, removal of contaminated soil beneath the ASTs in the northwestern portion of the site and beneath the fueling canopy is not feasible due to structural impediments. Contaminated soil in the northeastern and southeastern portions of the site may be accessible for removal by excavation.

6.3 NAPL Fate and Transport

Contaminants from the source areas migrated as NAPL vertically due to gravity through the vadose zone eventually reaching groundwater. Based on the understanding of the composition of NAPL at the Site through laboratory analysis and process knowledge, the NAPL is understood to have a density less than that of water and as such is expected to travel laterally upon reaching the water table, rather than penetrating vertically into the water table. While it is understood that Site NAPL will not significantly penetrate the groundwater table vertically due to its density and immiscibility, NAPL of sufficient thickness can depress the elevation of underlying water table.

6.3.1 Composition

NAPL samples were collected from select monitoring wells during four different GMEs as described in Sections 3.2.3, 3.3.2 and 3.3.8. Analysis and visual assessment of NAPL samples by the laboratory indicates that the NAPL plume contains three distinguishable compositions.

- A mixture of fresh and weathered gasoline and diesel fuels (FWGD NAPL)
- A mixture of fresh and weathered diesel fuel only (FWD NAPL)
- Weathered diesel fuel only (WD NAPL)

6.3.2 NAPL Occurrence

The vertical extent of NAPL in groundwater is predominantly located in the interval between the measured depth to NAPL and the measured depth to water. NAPL in the vicinity of the fueling canopy and diesel and

gasoline results was measured to be between 0.01 and 0.26 feet in thickness in the most recent groundwater monitoring event. NAPL thickness increased to the south and southeast, with the greatest measured NAPL thickness of 8.86 feet in MW12 located to the south of the property across East I Street.

DIRECTION	Soil Boring / Monitoring Well	REFERENCE/CONSULTANT
NORTH	MW7, MW8, MW9	Remedial Investigation
SOUTH	MWBNSF1, MW13, MW14, MW16	Remedial Investigation
EAST	MW9, MW10	Remedial Investigation
WEST	Undefined	
VERTICAL	20-feet bgs Site wide, 30 feet bgs at MW12	PBS – May 10, 2018

Extents of measurable NAPL:

The extent of NAPL is defined vertically and laterally in three out of four cardinal directions. The western extent of the NAPL plume remains undefined.

Typical concerns for this type of contamination by petroleum NAPL include lateral migration of NAPL to uncontaminated areas and mixing of NAPL with groundwater resulting in further contamination of groundwater.

6.4 Groundwater Fate and Transport

Concentrations of COCs were confirmed to be present in Site soils in 2015 prior to the 2016 diesel and gasoline releases (PBS, 2015). Groundwater samples were not collected in the 2015 Site investigation, and as such, it is unknown if contaminants confirmed to be present in soil in 2015 had reached the groundwater table prior to discovery of the 2016 diesel and gasoline releases.

The diesel release was discovered in March of 2016 as described in Section 2.1. Following initial response and remedial excavation, monitoring wells were installed to assess impacts to groundwater. Analysis of samples collected from the wells in May of 2016 confirmed the presence of TPHs and BTEX constituents in groundwater in exceedance of their respective CULs. Additionally, gauging of onsite wells confirmed the presence of NAPL approximately 4.5 feet thick in wells RW1 and MW3.

The gasoline release was discovered in December of 2016 as described in Section 2.1. Following discovery of the gasoline release, additional monitoring wells (MW4 through MW6) were installed to further assess and bound the extents of COCs in groundwater. Analysis of groundwater samples collected from MW1 through MW6 on December 13, 2016 confirmed the presence of TPHs and BTEX constituents already known to be present in groundwater at the Site. In addition to already known COCs at the Site, naphthalene was detected in exceedance of the CUL in well MW6.

Based on the timeline of events established above, confirmed sources of contamination to groundwater include:

- A March 2016 release of diesel to the subsurface from a subsurface fuel line
- A December 2016 release of gasoline to the subsurface from a subsurface fuel line.

It is suspected that a preexisting TPH-D plume in groundwater originating from near the northern property boundary and former ASTs was present at the Site prior to the discovery of the 2016 diesel and gasoline releases. This is evidenced by the following findings:

- TPH-D was confirmed in soil above CULs in the northern portions of the property in 2015, prior to the 2016 diesel release.
- NAPL has been observed in upgradient well MW8 since its installation.
- TPH-D has been detected in exceedance of CULs in upgradient wells MW8 and MW9.
- NAPL has not been observed nor contaminants detected in well MW10, which is cross-gradient and significantly closer to the known sources of contamination relative to MW8 and MW9.
- Upgradient well MW8 contained the second highest concentration of TPH-D detected at the Site. Second only to MW1 immediately following discovery of and adjacent to the diesel release.
- Based on groundwater flow direction, if groundwater impacts at MW8 were the result of the 2016 diesel release, concentrations at MW8 would be expected to be lower than those in wells downgradient from the release.
- Laboratory analysis of the NAPL samples collected on March 19, 2019 from wells MW4 and MW8 located upgradient from the 2016 diesel release indicated the NAPL composition to be entirely weathered diesel fuel.
- Analysis of NAPL samples collected on March 19, 2019 from wells in the vicinity of the diesel release (RW1, MW2, MW3) indicated the NAPL composition to be either fresh and mixed fresh and weathered diesel.
- Analysis of NAPL samples collected in 2020 from wells MW11 and MW12 located downgradient from the 2016 diesel release indicated NAPL composition to be either mixed or fresh diesel fuel.
- The presence of diesel NAPL categorized as weathered in the upgradient wells three years after the diesel release and the presence of diesel NAPL categorized as fresh in downgradient wells four years after the diesel release indicates that the diesel NAPL in the upgradient locations predates the 2016 diesel release and subsequent downgradient fresh diesel NAPL.

Contaminants from the above sources migrated as NAPL vertically due to gravity through the vadose zone eventually reaching groundwater. NAPL and Site COCs (with the exception of naphthalene) are known to have densities less than that of water and as such are expected to travel laterally upon reaching the water table, rather than penetrating vertically into the water table. While it is understood that Site NAPL will not significantly penetrate the groundwater table vertically due to its density and immiscibility, NAPL of sufficient thickness can depress the elevation of underlying water table.

6.4.1 COCs

The following constituents have been detected in Site groundwater at concentrations exceeding CULs and are known to have been stored and/or released at the Site, and are therefore considered primary COCs in soil:

- TPH as gasoline range organics
- TPH as diesel range organics
- BTEX

The following constituents have been detected in Site groundwater at concentrations exceeding CULs at the site, are associated with the primary COCs at the site, and are therefore considered secondary COCs at the Site:

Naphthalene

Select groundwater samples were also analyzed for EDB, EDC, hexane, MTBE, PAHs and lead. These contaminants have not been detected above CULs in groundwater and have therefore been ruled out as COCs in groundwater at the Site.

6.4.2 Groundwater Occurrence

The vertical extent of the groundwater exceeding CULs is limited to the top interval of the groundwater interface. Based on seasonal fluctuations in groundwater elevations, this corresponds to a depth on site of approximately 15 to 25 feet bgs across the majority of the Site. The vertical extents of groundwater contamination at MW12 extend as far as 35 feet bgs due to significant depression of the water table elevation by overlying NAPL. The lateral extent of groundwater contamination extends from the northeast corner of the property southwest towards the BNSF railroad and south across East I Street as depicted in Figures 5A through 5D.

The Site boundary (i.e. extent of contamination) is vertically defined based on the COCs (with the exception of naphthalene) having specific gravities lighter than water and residing in the top 1 to 2 feet of the water table surface. It is noted that in locations with measurable NAPL thickness, the water table surface refers to the interface between NAPL and groundwater. The vertical extent of the secondary COC naphthalene remains undefined. The Site boundary is laterally defined by soil boring and monitoring well locations with contaminant concentrations in groundwater below their respective CULS, as described below:

DIRECTION	Soil Boring / Monitoring Well	REFERENCE/CONSULTANT
NORTH	MW7, MW9	Remedial Investigation
SOUTH	MWBNSF1, MW14, MW16	Remedial Investigation
EAST	MW9, MW10, MW16	Remedial Investigation
WEST	MW7, Undefined, MWBNSF1	-
VERTICAL	25 feet bgs Site wide, 35 feet bgs at MW12	Remedial Investigation

The following locations represent the boundaries of groundwater contamination, as defined by locations where groundwater concentrations are in compliance with CULs:

The extent of groundwater contamination is defined vertically and laterally in three out of four cardinal directions. The western extent of groundwater contamination remains undefined.

Typical concerns for this type of petroleum contamination in groundwater include migration of contaminants to groundwater resources such as supply or irrigation wells, seeping of contamination into surface water bodies, and vapor intrusion into nearby occupied structures.

PBS performed a sensitive receptor search to identify groundwater uses and surface water within a half mile of the site. Nearby water wells are presented in Figure 8. One private water well was identified within the search radius to the southwest of the Site. However, the groundwater flow direction has been established as toward the southeast, and the southeast extent of groundwater contamination has been demonstrated to be between MW13 and MW14. Ongoing groundwater monitoring will be conducted to document groundwater quality and that COCs do not pose a threat to downgradient water resources.

6.5 Exposure Pathways

A potentially complete exposure pathway consists of: 1) an identified contaminant source; 2) a transport pathway to locations (exposure points) where potential receptors might come in contact with the contaminant

of interest (COI); and 3) an exposure route (e.g., soil ingestion, vapor inhalation, drinking water) through which potential receptors might be exposed to COI.

6.5.1 Direct Contact

The site is paved and otherwise covered by structures, and soil is not exposed at the surface. Direct exposure to contaminated soil and/or groundwater by the public or site occupants is considered unlikely.

Direct contact with contaminated soil and/or groundwater by site workers conducting excavation earthworks is possible and even likely, depending on the location and depth of excavation work.

6.5.2 Air/ Soil Vapor

PBS conducted a Vapor Intrusion (VI) Evaluation for the Site.

A vapor probe (VB1) was installed within the area of remaining soil contamination in the vicinity of the remedial excavation as shown on Figure 4, within approximately 10 lateral feet of the occupied on-property office. Contaminants of concern were not detected at concentrations above Sub-Slab Soil Gas Screening Levels, indicating the the VI exposure pathway to indoor air within the adjacent structure is incomplete.

6.5.3 Surface Water

The closest surface water bodies to the site are Rotary Lake approximately 0.9 miles north and the Yakima River approximately 2-miles to the east. The extent of contaminated media is well understood in these directions and impacts to these surface water bodies are not considered a complete pathway.

6.5.4 CSM Conclusion

Direct contact with contaminated soil and/or groundwater by site workers conducting excavation earthworks was identified as a complete exposure pathway. No other complete exposure pathways for human and/or ecological receptors were identified. Please refer to Conceptual Site Model, Figures 8 through 11, for visual depictions of contaminated media and exposure pathways.

7 PROPOSED CLEANUP STANDARDS

7.1 General

In accordance with MTCA, cleanup levels were developed to include identified potential exposure pathways for human and environmental receptors based on the current and future planned land use. The property is currently zoned for industrial use, and future zoning is not anticipated to change. The current and near-term use of the property is a commercial fueling station, although future uses are unknown and, as such, the adopted cleanup criteria are protective for unrestricted land use.

The adopted cleanup criteria for soil at the Site will be the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (MTCA Method A) as defined in WAC 173-340-720, 173-340-740, and 173-340-747.

The adopted cleanup criteria for groundwater at the Site will be the MTCA Method A Groundwater Cleanup Levels (MTCA Method A) as defined in WAC 173-340-720,173-340-740, and 173-340-747.

Vapor Intrusion Method B Sub-Slab Soil Gas Screening Levels were used as cleanup criteria for soil vapor, as defined in Ecology's Cleanup Levels and Risk Calculations (CLARC) Vapor Intrusion Method B Table updated January 2023.

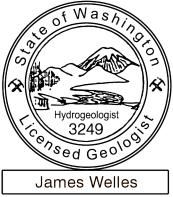
7.2 Terrestrial Ecological Evaluation

The site is excluded from TEE requirements per Barriers to Exposure and Undeveloped Land: WAC 173-340-7491. A Technical Memorandum documenting exclusion of the property from TEE requirements was prepared for the Site. Exclusion was based on contaminated soil being covered with physical barriers and the lack of contiguous undeveloped land greater than 1.5 acres in area within 500 feet of the Site.

A copy of the submitted Technical Memorandum is presented in Appendix D.

8 SUMMARY AND CONCLUSIONS

The following summary and conclusions are presented:


- The property is currently operating as the Coleman Oil Yakima fuel storage and distribution facility, which is comprised of an AST system, office and storage structures.
- A release of diesel fuel to the subsurface was identified in March of 2016. A release of gasoline fuel to the subsurface was identified in December of 2016. Evidence of prior petroleum release has been identified.
- Impacted soil in the vicinity of the diesel release was largely removed by excavation and off-site disposal. However, post excavation soil sampling results indicate that petroleum contamination remains in place between the remedial excavation and primary office building. Leaving soil contamination in place may require land use restriction (environmental convenant).
- From March 2016 through August 2022, PBS conducted site assessment activities to delineate the extent and magnitude of petroleum contamination in soil and groundwater, as it relates to contaminant releases at the property.
- Additional soil contamination has not been identified in the soil borings during monitoring well installations.
- Based on the findings of the subsurface investigations conducted onsite, the western, hydraulically lateral, extent of groundwater contamination toward the BNSF railroad is undefined at the Site. Groundwater contamination in this direction may also be influenced by a release at the Nakano Foods Site to the west, which is characterized by the presence of separate phase product. The northern, southern and eastern lateral extents of groundwater contamination have been defined. Groundwater compliance points have been established in these directions.
- Non-aqueous phase hydrocarbons (NAPL, or fuel product) is present on the site at the groundwater table. The NAPL plume contains two distinct compositions: weathered diesel fuel and mixed fresh and weathered diesel and gasoline fuels. The presence of weathered fuel indicates prior undefined releases have occurred at the property.
- Based on the vapor intrusion evaluation conducted at the site, vapor intrusion is not considered a complete exposure pathway.
- Based on the Conceptual Site Model developed for the site, one potentially complete exposure pathway was identified, which is dermal contact by excavation workers. No other complete exposure pathways for human and/or ecological receptors were identified.
- Site Characterization related to the 2016 fuel releases is considered complete to the extent that a Cleanup Action can be selected and implemented for the site.

9 LIMITATIONS AND CLOSURE

PBS has prepared this report for use by Coleman Oil. The site is managed under a State Agreed Order, and it is understood that this report may become available to the public.

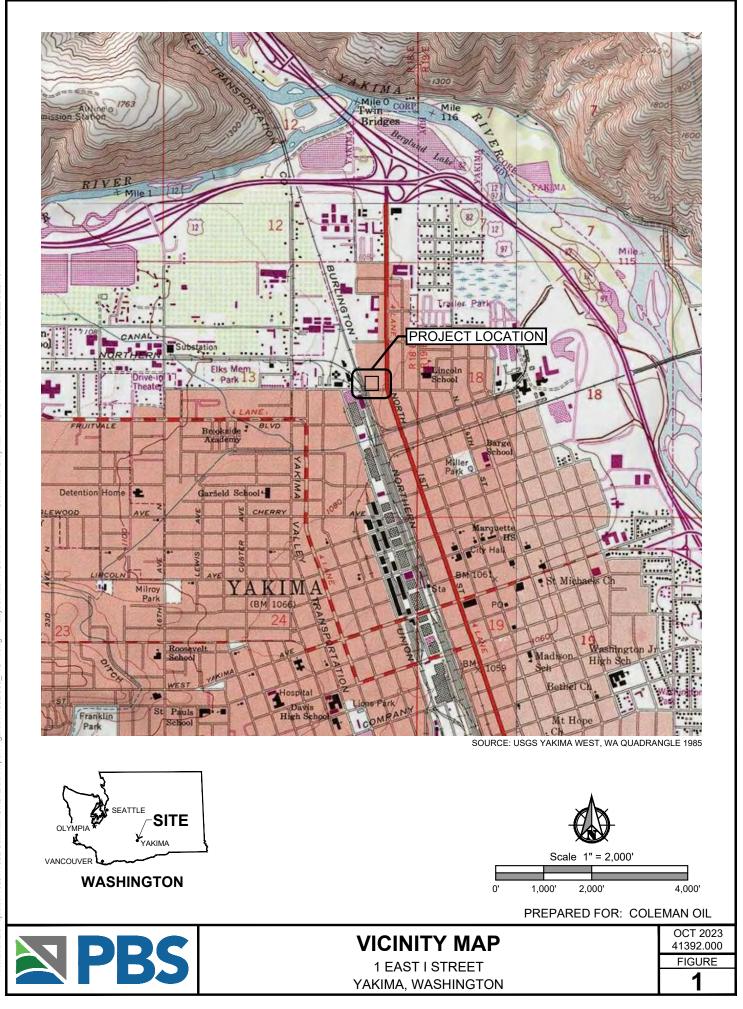
The findings and conclusions of this work are based on professional judgment concerning the significance of the data gathered during the course of this investigation.

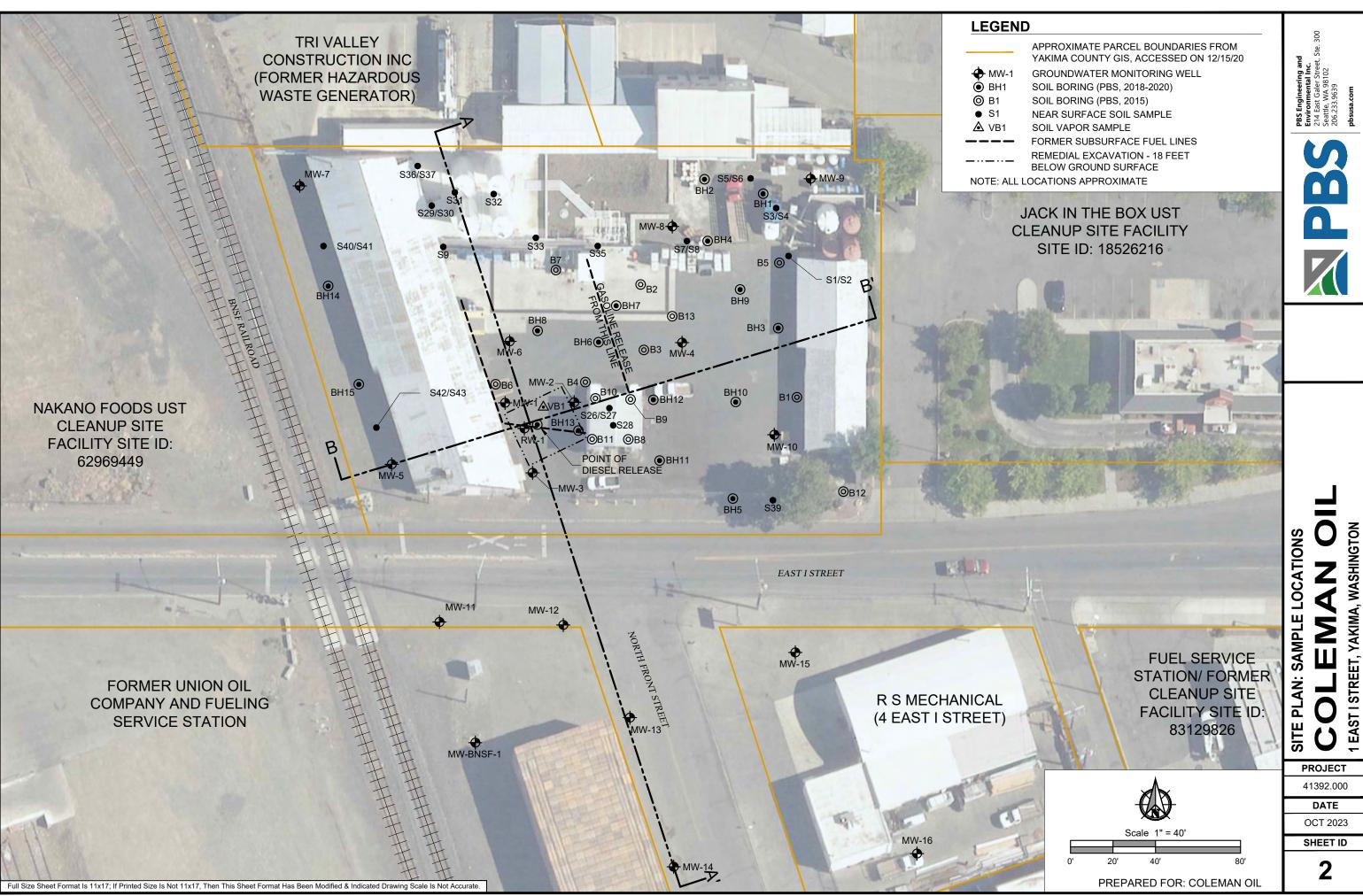
Sincerely, PBS Engineering and Environmental Inc.

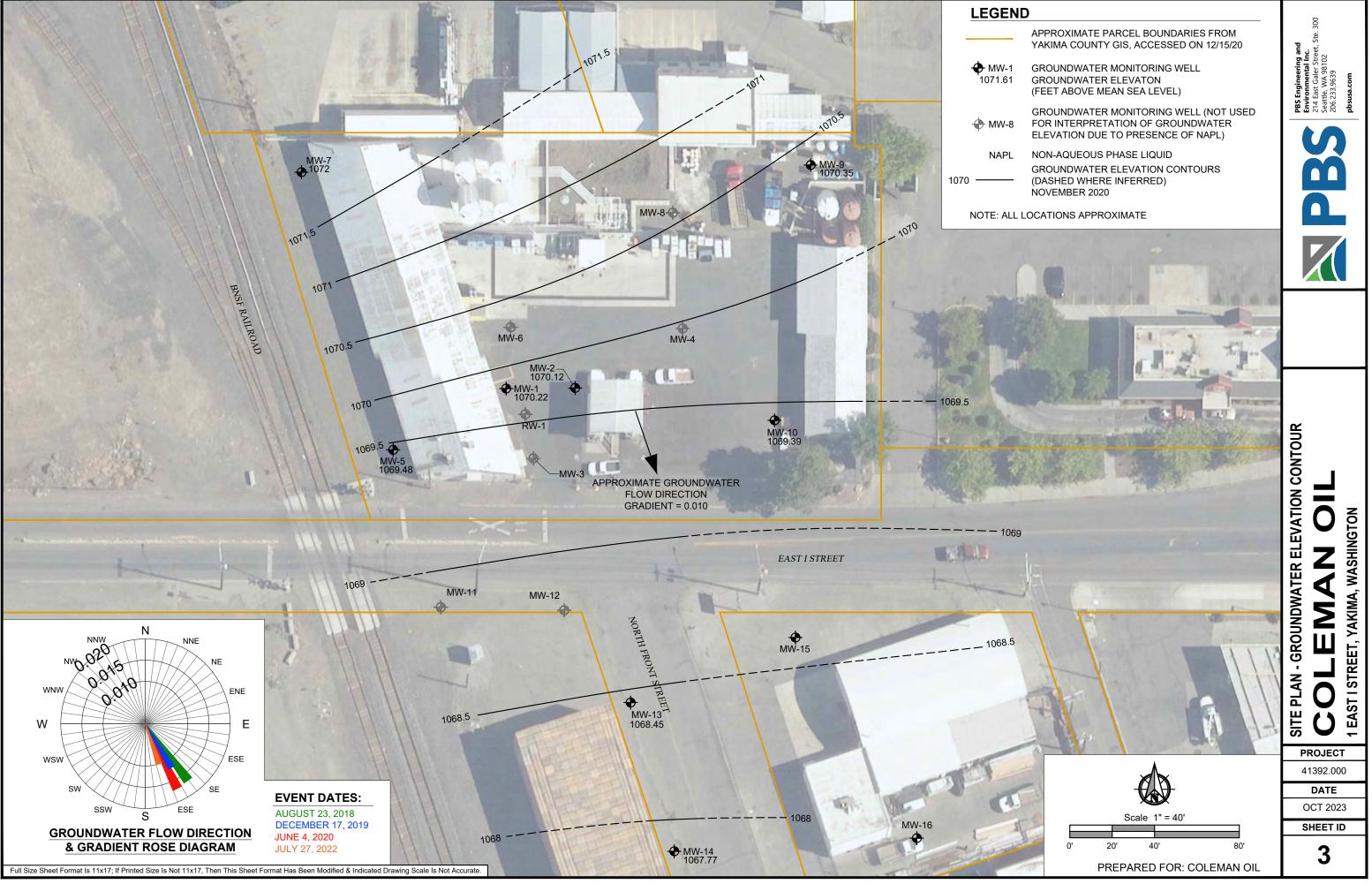
James Welles, LHG Senior Hydrogeologist Date

Reviewed by: Thomas Mergy Environmental Services Manager

10 REFERENCES

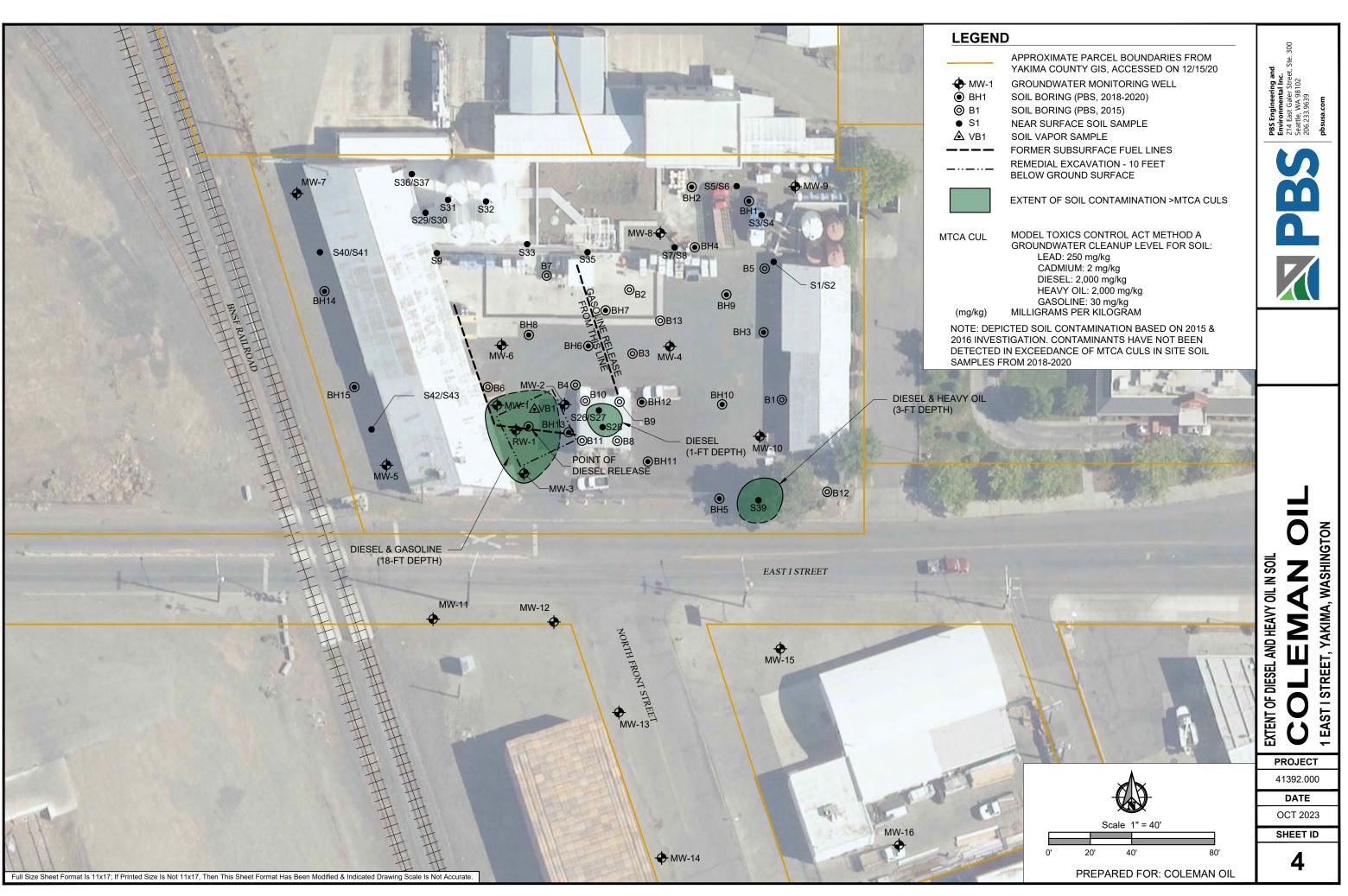

(PBS, 2015) Site Characterization Report – Yakima Bulk Plant, PBS Engineering and Environmental, June 2015.

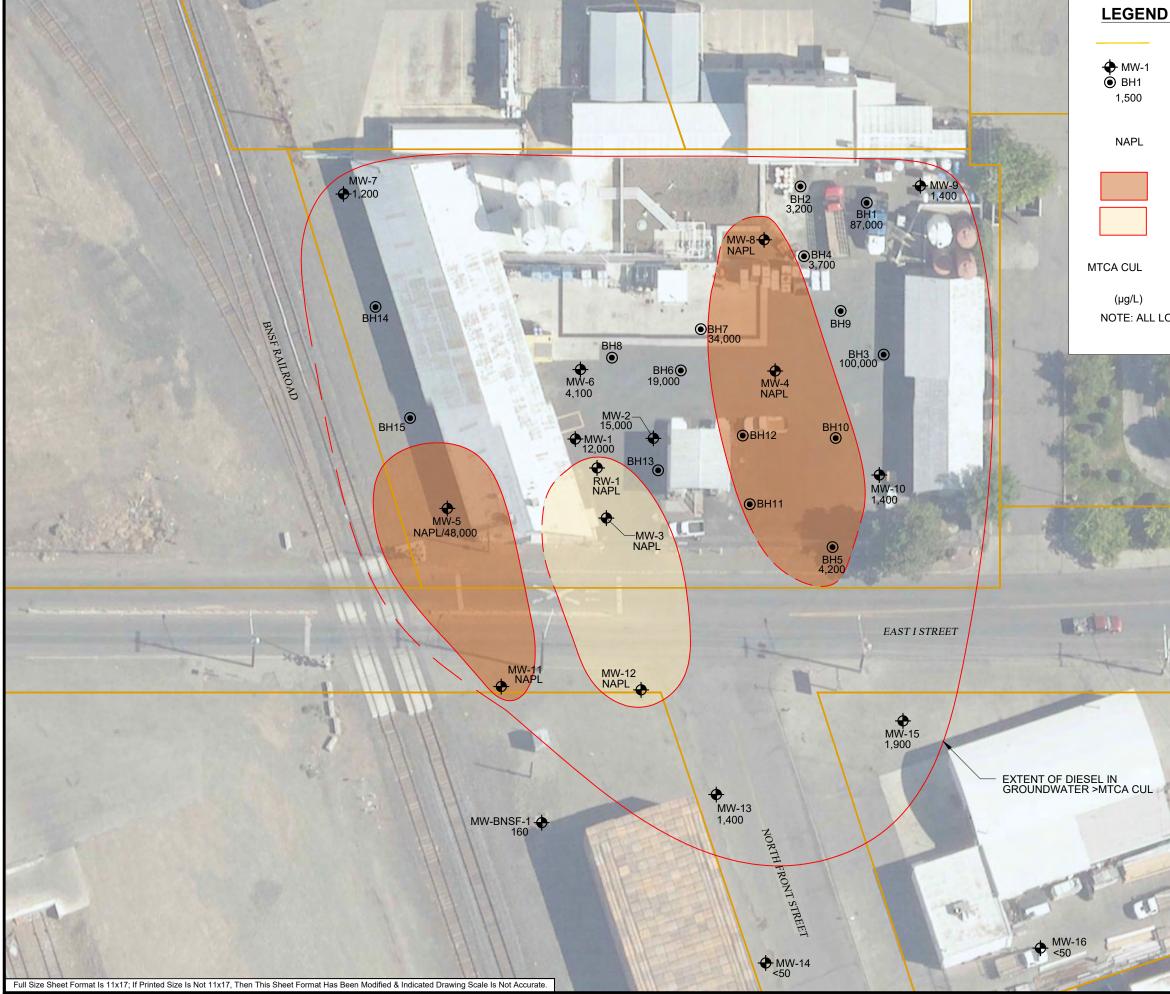

(PBS, 2018a) *Data Summary Report – Coleman Oil Yakima Bulk Plant,* PBS Engineering and Environmental, July 19, 2018.


(PBS, 2018b) *Remedial Investigation Work Plan – Coleman Oil Yakima Bulk Plant,* PBS Engineering and Environmental, August 16, 2018.

(PBS, 2018c) *Interim Action Work Plan – Coleman Oil Yakima Bulk Plant,* PBS Engineering and Environmental, August 16, 2018.

Figures





APPROXIMATE PARCEL BOUNDARIES FROM YAKIMA COUNTY GIS, ACCESSED ON 12/15/20 GROUNDWATER MONITORING WELL (JULY 2022)

SOIL BORING (DEC 2018) CONCENTRATION OF GASOLINE IN GROUNDWATER (µg/L) (JUL 2022)

WELL CONTAINS MEASURABLE NON-AQUEOUS PHASE LIQUIDS (NAPL). GROUNDWATER SAMPLE NOT COLLECTED.

AREAS CONTAINING NAPL IN THE FORM OF WEATHERED FUEL

AREA CONTAINING NAPL IN THE FORM OF MIXED FRESH & WEATHERED FUEL

MOTEL TOXICS CONTROL ACT METHOD A GROUNDWATER CLEANUP LEVEL FOR DIESEL (500 µg/L)

MICROGRAMS PER LITER

NOTE: ALL LOCATIONS APPROXIMATE

300

& DIESEL IN GROUNDWATER 0 YAKIMA, WASHINGTON 4 Σ NAPL EAST I STREET, Ь EXTENT () ~ PROJECT 41392.000 DATE OCT 2023 Scale SHEET ID 40' 0' 20' 80' 5

PREPARED FOR: COLEMAN OIL

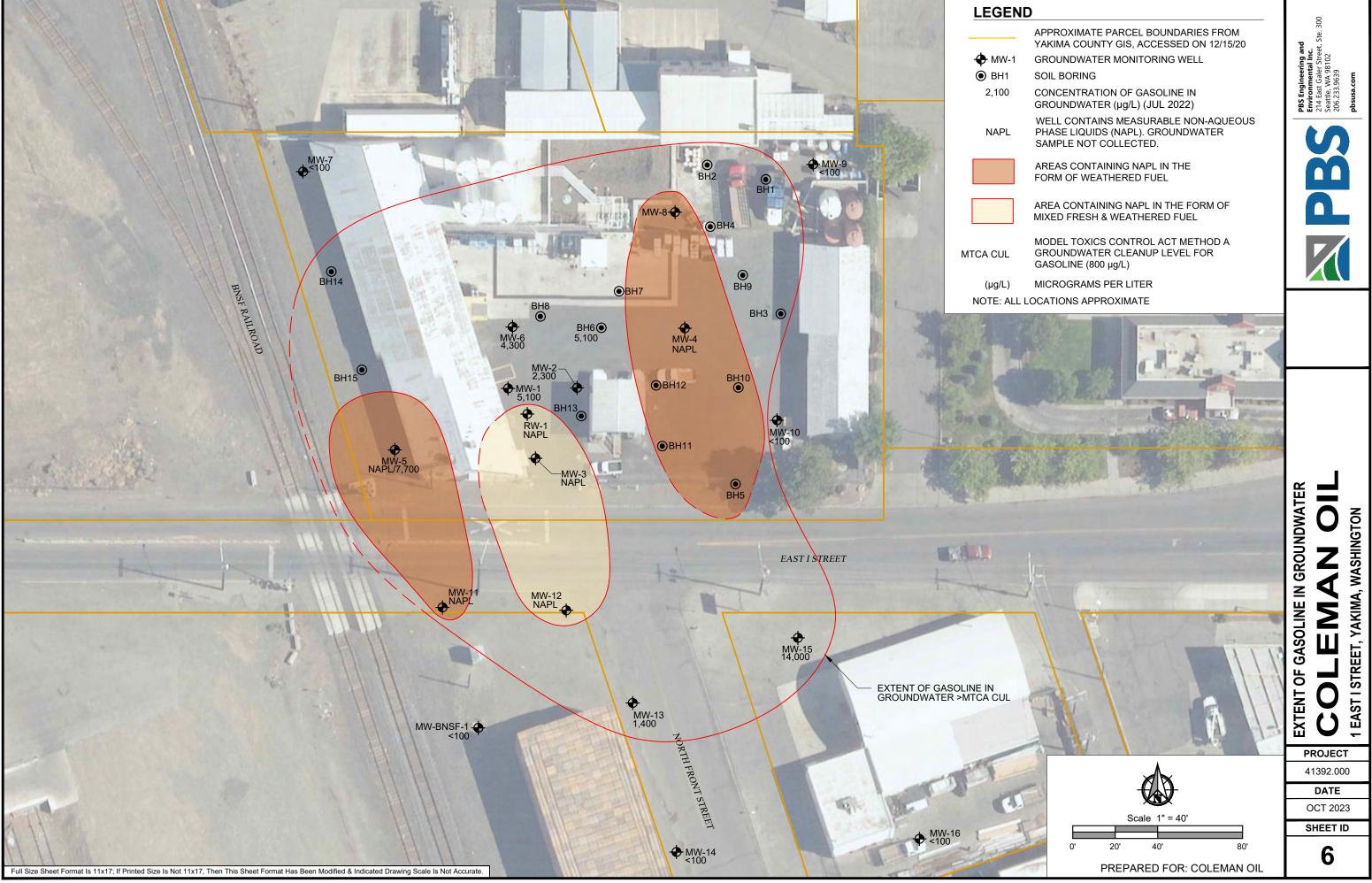


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

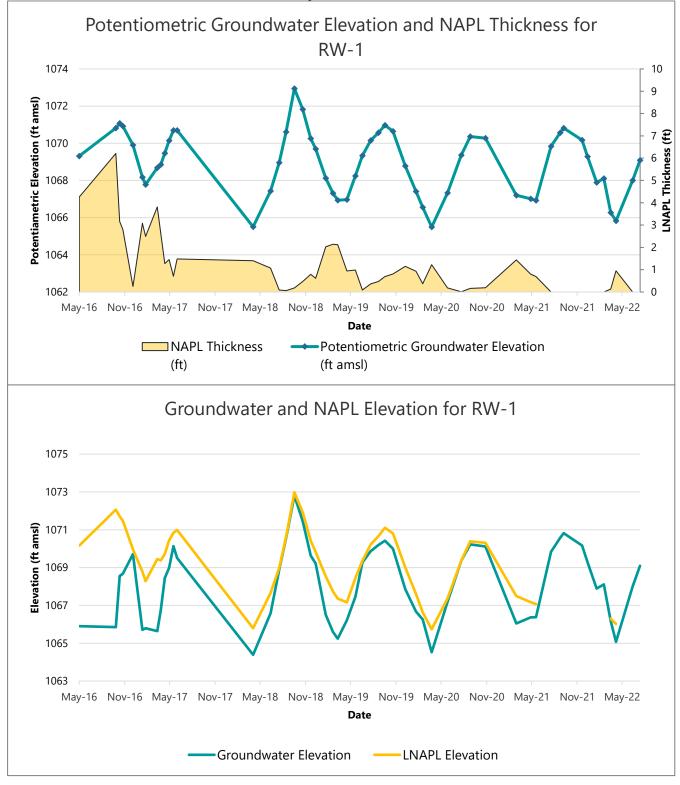


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

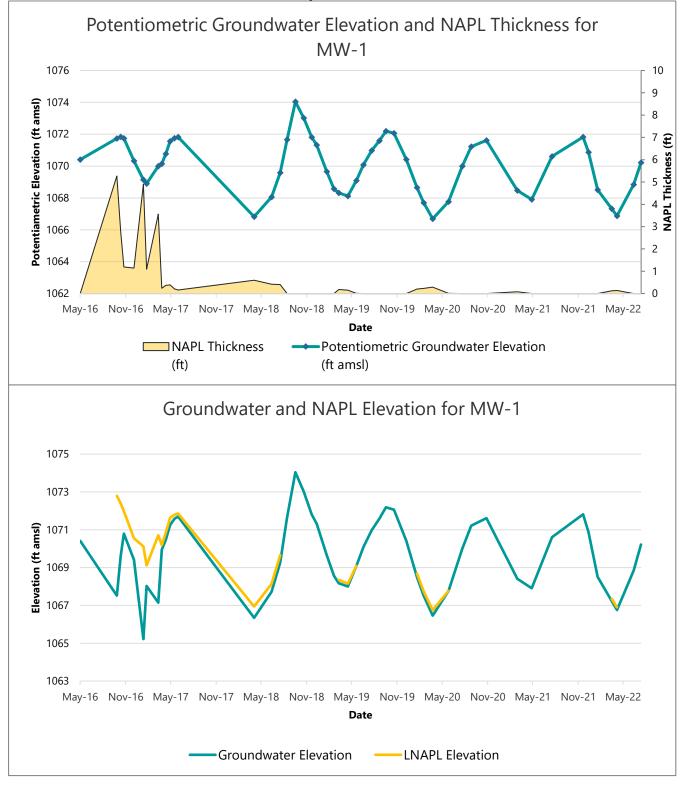


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

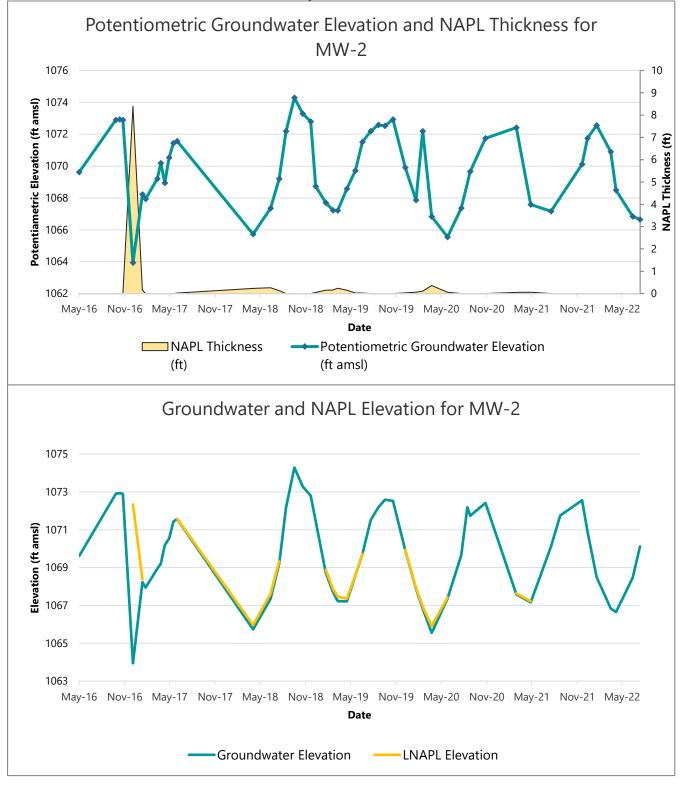


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

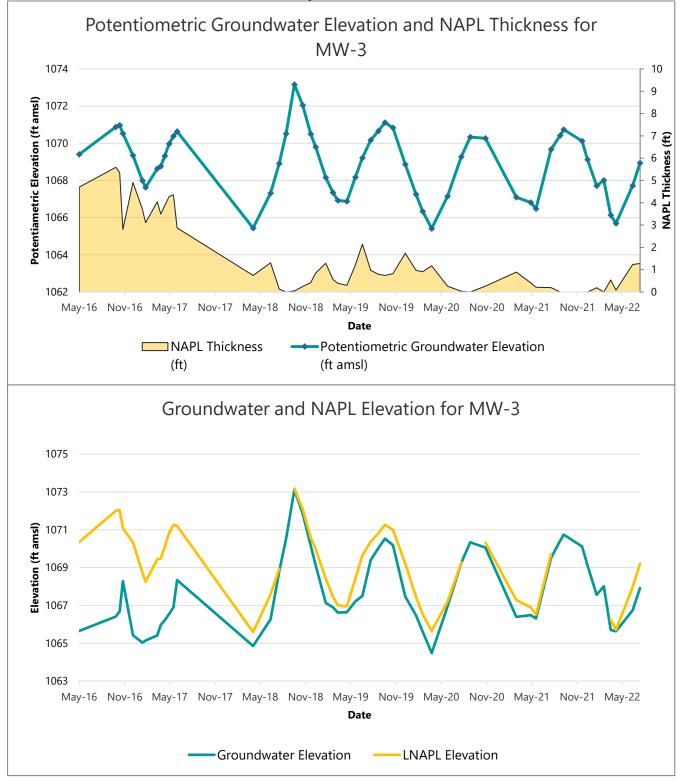


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

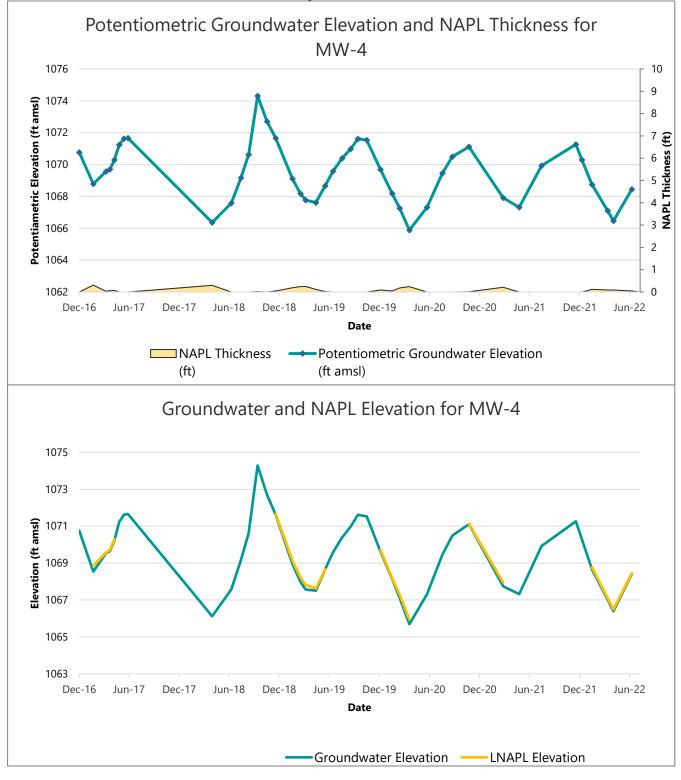


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

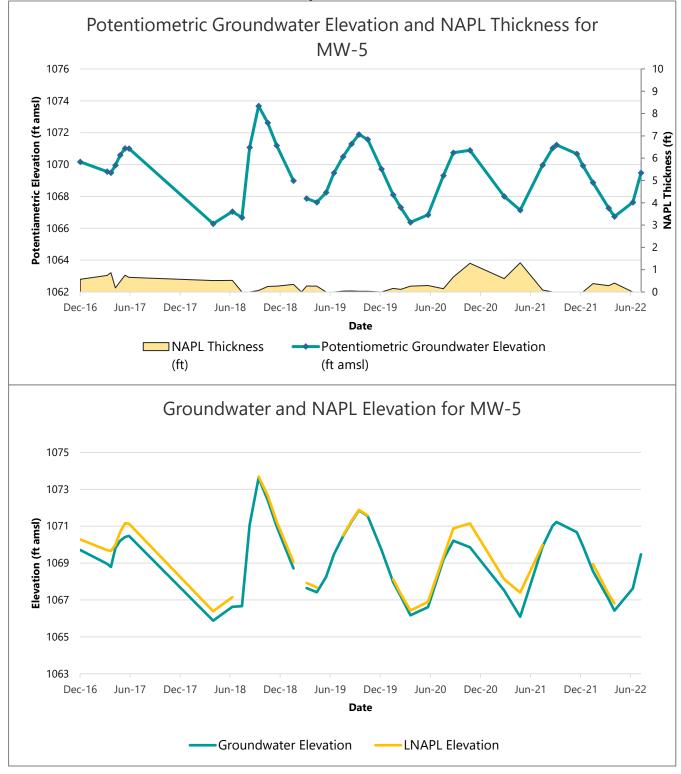


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

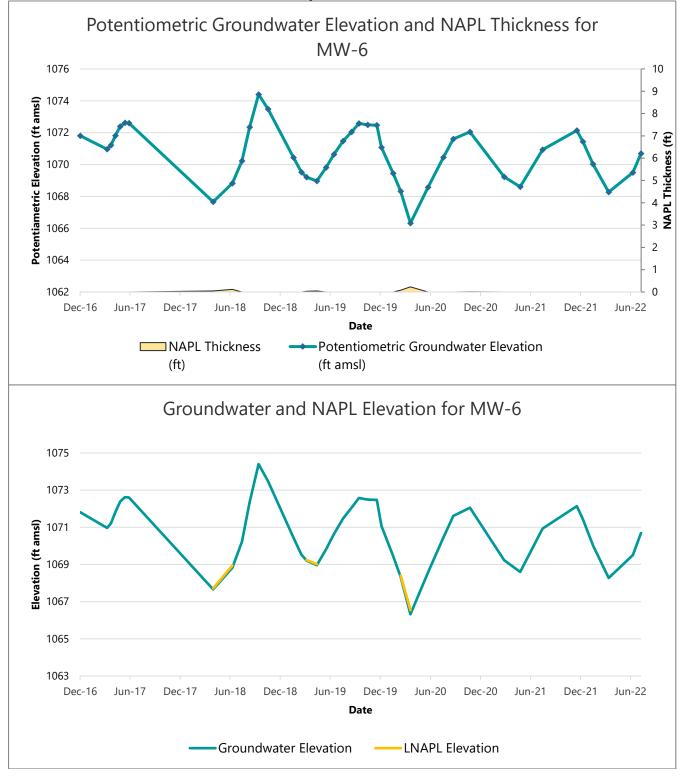


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

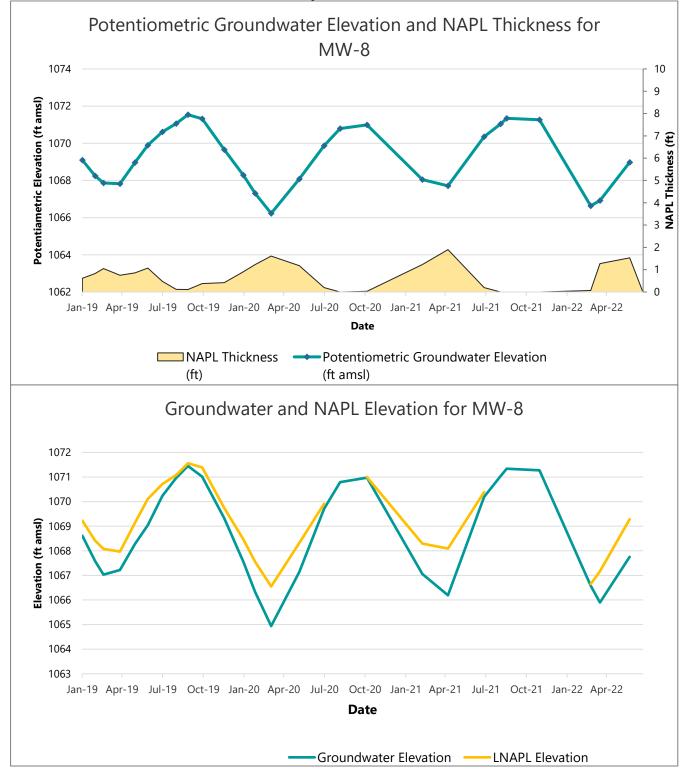


Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

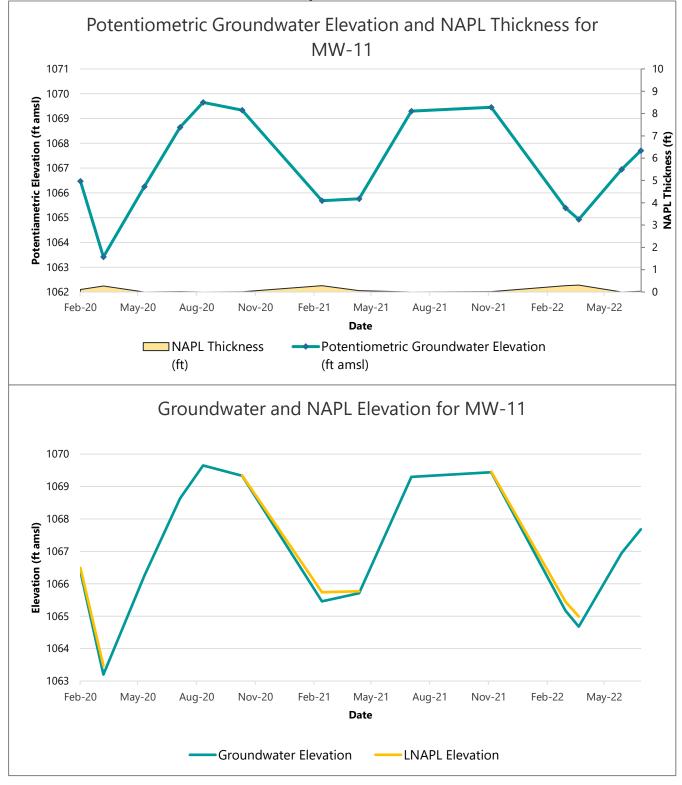
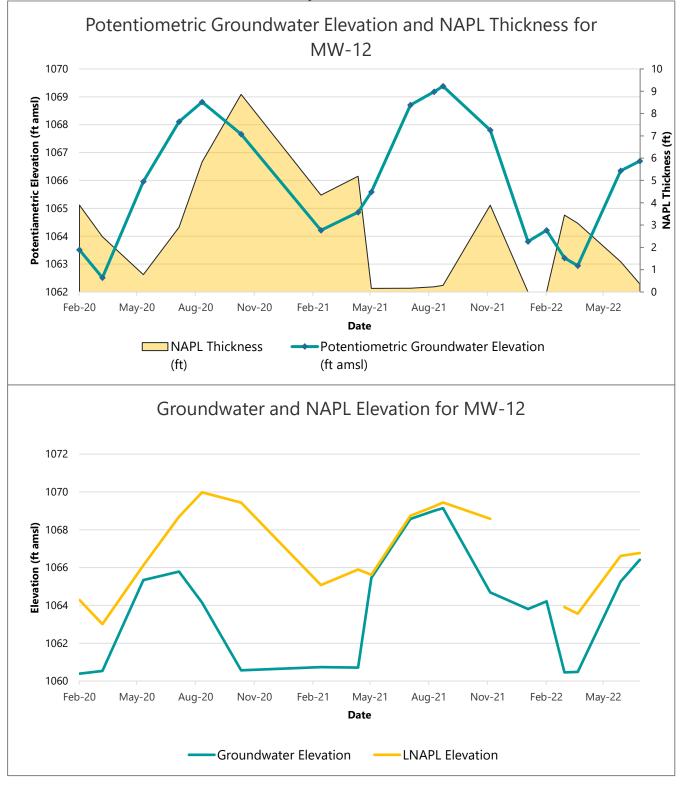
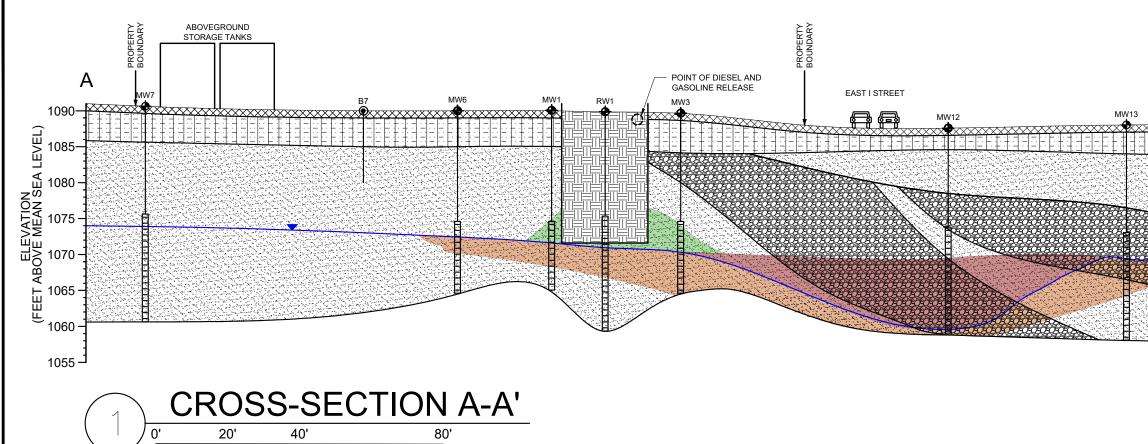
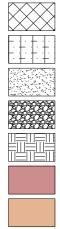



Figure 7 Hydrographs Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000



≩


KIMATE LOCATION OF WATER WELLS ON A REVIEW OF AVAILABLE WELL LOGS KIMATE GROUNDWATER FLOW DIRECTION	PBS Engineering and Environmertal Inc. 214 East Galer Street, Ste. 300 Seatte, WA 98102 206.233.9639 pbsusa.com
	DBS
	NSITIVE RECEPTOR SURVEY OIL VGTON
	CONCEPTUAL SITE MODEL - SENSI COLEMAN 1 EAST I STREET, YAKIMA, WASHINGT
	B U ₩ PROJECT 41392.000 DATE OCT 2023
Scale 1" = 400' 0' 200' 400' 800' PREPARED FOR: COLEMAN OIL	SHEET ID

LEGEND

2X VERTICAL EXAGGERATION

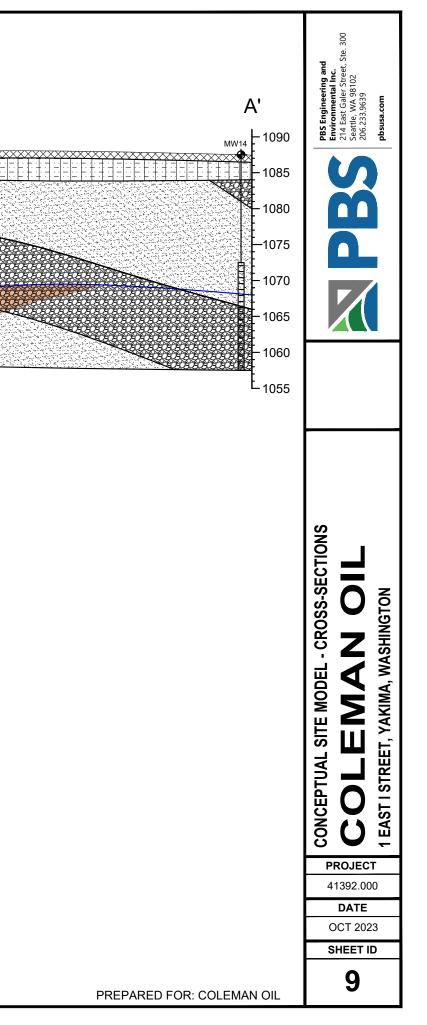
BH-1 DIRECT PUSH/SONIC SOIL BORING	
MW1/RW1 MONITORING WELL	
WELL SCREEN	
GROUNDWATER (NOV 2020)	
O FORMER SUBSURFACE FUEL LINE	
NAPL NON-AQUEOUS PHASE LIQUID	
MTCA CUL MODEL TOXINS CONTROL ACT METHOD A CLEANUP LEVEL	

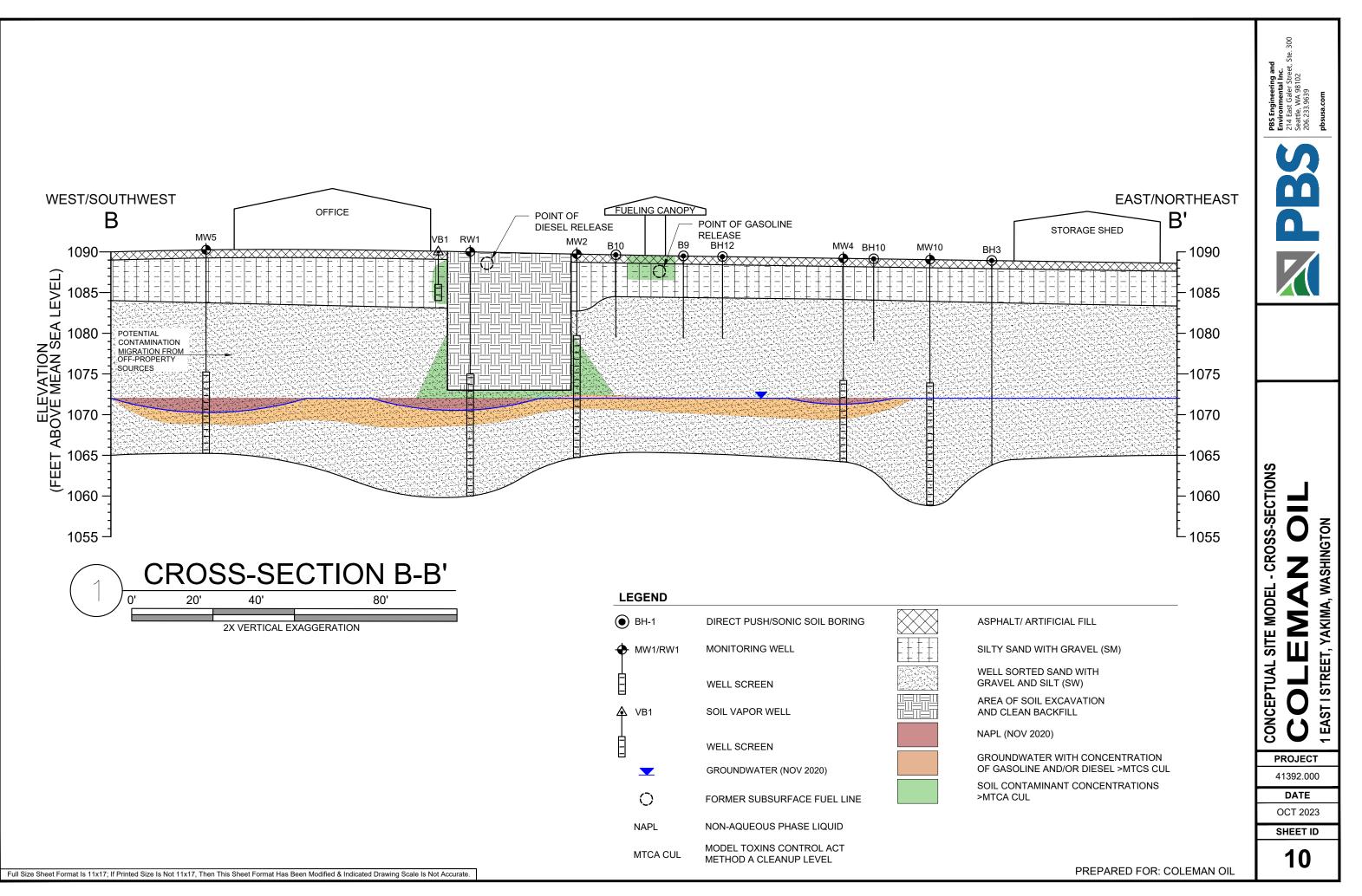
ASPHALT/ ARTIFICIAL FILL

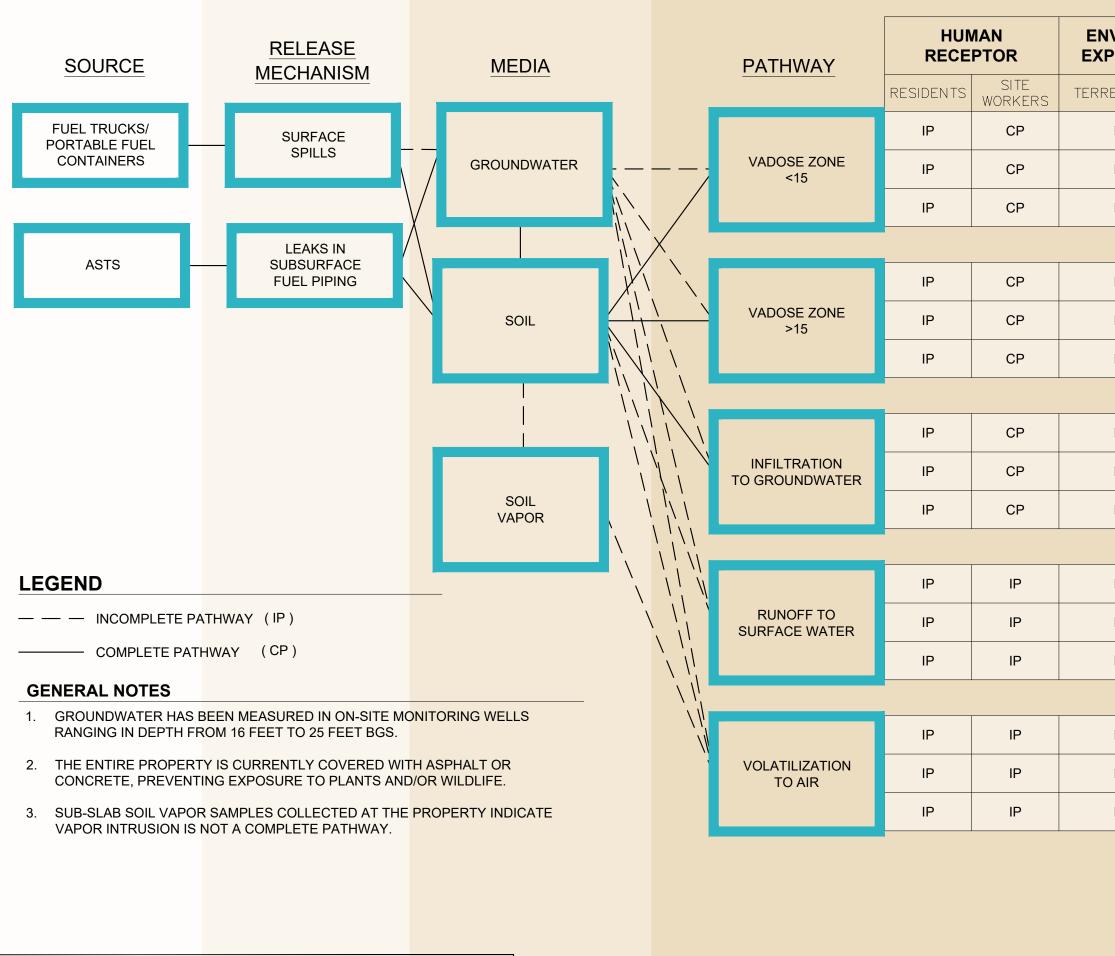
SILTY SAND WITH GRAVEL (SM)

WELL GRADED SAND WITH

GRAVEL AND SILT (SW) WELL GRADED GRAVEL


WITH SAND (GW)


AREA OF SOIL EXCAVATION AND CLEAN BACKFILL

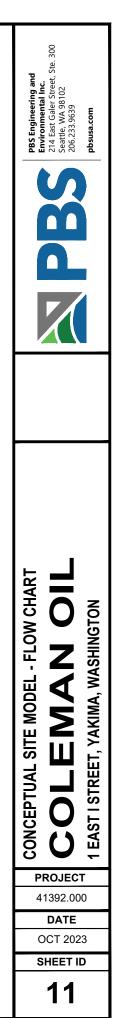

NAPL (NOV 2020)

GROUNDWATER WITH CONCENTRATION OF GASOLINE AND/OR DIESEL >MTCA CUL

SOIL CONTAMINANT CONCENTRATIONS >MTCA CUL

Full Size Sheet Format Is 11x17; If Printed Size Is Not 11x17, Then This Sheet Format Has Been Modified & Indicated Drawing Scale Is Not Accurate.

ENVIRONMENTAL EXPOSURE ROUTE


RESTRIAL	AQUATIC	
IP	IP	INGESTION
IP	IP	INHALATION
IP	IP	DERMAL CONTACT

IP	IP	INGESTION
IP	IP	INHALATION
IP	IP	DERMAL CONTACT

IP	IP	INGESTION
IP	IP	INHALATION
IP	IP	DERMAL CONTACT

IP	IP	INGESTION
IP	IP	INHALATION
IP	IP	DERMAL CONTACT

IP	IP	INGESTION
IP	IP	INHALATION
IP	IP	DERMAL CONTACT

PREPARED FOR: COLEMAN OIL

Tables

Coleman Oil: 1 East I St., Yakima, WA

			ТРН			BT	EX			ТРН - НСІІ	0			Metals		
Location - Depth	Sample Date	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethyl- benzene	Xylenes	Gasoline	Diesel	Heavy Oil	Arsenic	Cadmium	Chromium	Lead	Mercury
Comparison Criteria	MTCA Method A Cleanup Levels For Soil ^a	100 30	2,000	2,000	1500	7	6	9	100 30	2,000	2,000	20	2	III: 2,000 IV: 19	250	2
Soil Sampling:	Site characteriza	tion - Apri	il 2015	-					-	-	-					
\$1_0.5	4/3/2015	-	-	-	-	-	-	-	~20	<50	2,600 ^{est.}	-	-	-	-	-
<u>\$2_0.75</u>	4/3/2015	-	-	-	-	-	-	-	~20	<50	590 ^{est.}	-	-	-	-	-
\$3_0.4	4/3/2015	<20	2,100	11,000	-	-	-	-	~20	<50	>250	-	-	-	-	-
<u>\$4_0.8</u>	4/3/2015	~20	270 x	1,100	-	-	-	-	~20	<50	>250	-	-	-	-	-
\$5_0.5	4/3/2015	-	-	-	-	-	-	-	~20	<50	600 ^{est.}	-	-	-	-	-
S6_1	4/3/2015	-	-	-	-	-	-	-	~20	<50	<250	-	-	-	-	-
\$7_0.5	4/3/2015	-	-	-	-	-	-	-	~20	390 x ^{est.}	470 ^{est.}	-	-	-	-	-
\$8_0.25	4/3/2015	~20	550 x	1,100	-	-	-	-	~20	≻50 x	>250	-	-	-	-	-
\$9_0.25	4/8/2015	-	-	-	-	-	-	-	~20	<50	6,700 ^{est.}	-	-	-	-	-
B1_4.5	4/8/2015	-	-	-	-	-	-	-	<20	<50	<250	-	-	-	-	-
B3_2	4/8/2015	-	-	-	-	-	-	-	<20	<50	<250	-	-	-	-	-
B2_5	4/8/2015	-	-	-	-	-	-	-	<20	< 50	<250	-	-	-	-	-
B5_3.5	4/8/2015	-	-	-	-	-	-	-	<20	< 50	<250	-	-	-	-	-
B5_6.5	4/8/2015	-	-	-	-	-	-	-	<20	< 50	<250	-	-	-	-	-
B6_2.5	4/8/2015	-	-	-	-	-	-	-	<20	< 50	<250	4.56	-	-	2.62	-
B7_5 B8_1.5	4/8/2015 4/8/2015	-	-	-	-	-	-	-	<20 <20	<50 <50	<250 <250	-	-	-	-	-
B8_1.5 B9 4.5	4/8/2015	-	-	-	-	-	-	-	<20	< 50	<250	-	-	-	-	-
B9_4.5 B9_9.5	4/8/2015	-	-	-	-	-	-	-	<20	< 50	<250	-	-	-	-	-
B10_4.5	4/8/2015	_	_	-	_	-	_	_	<20	<50	<250	_	_	_	-	_
B10_4.5	4/8/2015	-	-	-	-	-	-	-	<20	<50	<250	_	-	-	-	-
B12_5.5	4/8/2015	-	_	-	-	_	-	-	<20	<50	<250	_	-	-	-	-
B13 10	4/8/2015	-	-	-	-	-	-	-	<20	<50	<250	-	-	-	-	-
 S26_1	4/14/2015	-	15,000	980	-	-	-	-	<20	>50	>250	-	-	-	-	-
S27_2	4/14/2015	-	-	-	-	-	-	-	<20	160 ^{est.}	<250	-	-	-	-	-
S28_0.6	4/14/2015	-	-	-	-	-	-	-	<20	10,000 ^{est.}	1,500 ^{est.}	-	-	-	-	-
<u></u>	4/14/2015	-	-	-	-	-	-	-	~20	7,300 ^{est.}	7,400 ^{est.}	8	2.35	5.91	332	~1
<u>\$30_2</u>	4/14/2015	-	3,200	5,000	-	-	-	-	~20	→ <u>50</u>	<u>→250</u>	- 1	~1	<1	4 1	-<1
\$31_1.5	4/14/2015	-	-	-	-	-	-	-	<20	3,300 ^{est.}	2,100 ^{est.}	-	-	-	-	-
<u>\$32_0.5</u>	4/14/2015	-	-	-	-	-	-	-	~20	2,400 ^{est.}	1,200 ^{est.}	-	-	-	-	-
<u>\$33_0.5</u>	4/14/2015	-	-	-	-	_	-	-	~20	2,100 ^{est.}	510 ^{est.}	_	-	-	-	-
S34_0.5	4/14/2015	-	-	-	-	_	-	-	<20	320 ^{est.}	<250	-	-	-	-	-
\$35_0.5	4/14/2015	-	_	-	-	-	-	-	<20	90 ^{est.}	<250	-	-	_	-	-
\$35_0.5	4/14/2015	-	52,000	5,300	-	-	-	-	<20 <20	→50	<250 →250	-	-	-	_	-
\$37_2.75	4/14/2015	-	530	< <u>250</u>	-	-	-	-	~20	→ 50	310 ^{est.}	-	-	_	_	-
S38_0.5	4/14/2015	-	-		-	-	-	-	>20	<50	<250	-	-	-	-	-
\$39_3	4/14/2015	-	15,000	31,000	-	-	-	-	-	-	-	-	-	-	-	-
S40_0.5 ^b	4/14/2015	<2	-	-	< 0.02	< 0.02	< 0.02	< 0.06	>20	<50	<250	-	-	-	-	-
S41_0.5	4/14/2015	-	-	-	-	-	-	-	>20	<50	<250	-	-	-	-	-
S42_0.5	4/14/2015	-	660	310	-	-	-	-	<20	290 ^{est.}	<250	-	-	-	-	-
	4/14/2015	-	-	_	-	-	-	-	<20	99 ^{est.}	<250	-	-	-	-	-
_	Excavation confi	rmation sa	amplina - I	March 23.	2016	1			-			1				
NSW1 - 4	Native	-	11,000	270x	-	-	-	-	_	_	_	-	-	_	-	-
WSW1 - 4	Native	-	26,000	570x	-	-	-	-	-	-	-	-	-	_	-	-
B1 - 5.5			-	770x								-				
	Native	5,100	34,000		0.79	1 4	20	110	-	-	-	-	-	-	-	-
	Heating oil tank		-		2016					1						
T1-WSW - 5	Native	-	9500	<250	-	-	-	-	-	-	-	-	-	-	-	-
T1-ESW - 5	Native	-	920	<250	-	-	-	-	-	-	-	-	-	-	-	-
T1-B - 7	Native	340	190	<250	<0.02	<0.063	0.18	2.3	-	-	-	-	-	-	-	-

Coleman Oil: 1 East I St., Yakima, WA

			ТРН			B1	EX			ТРН - НСІІ	D			Metals		
Location - Depth	Sample Date	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethyl- benzene	Xylenes	Gasoline	Diesel	Heavy Oil	Arsenic	Cadmium	Chromium	Lead	Mercury
Comparison Criteria	MTCA Method A Cleanup Levels For Soil ^a	100 30	2,000	2,000	1500	7	6	9	100 30	2,000	2,000	20	2	III: 2,000 IV: 19	250	2
Soil Sampling:	Excavation confi	rmation s	ampling - I	March 30,	2016											
NSW2 - 15	3/30/2016	<2	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
ESW1 - 15	3/30/2016	3	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
SSW1 - 15	3/30/2016	5.5	<50	<250	< 0.02	0.039	0.024	0.14	-	-	-	-	-	-	-	-
WSW2 - 11	3/30/2016	3,400	9,900***	330x	< 0.02	3.1	7.5	62	-	-	-	-	-	-	-	-
B2 - 18 ^c	3/30/2016	1,600	25,000***	570x	0.65	5.1	7.3	44				-	-	-	4.94	-
Soil Sampling:	Monitoring wells	s MW1 thr	ough MW	3 - April 2	7, 2016	5										
MW1-19	4/27/2016	-	5,800	<250	-	-	-	-	-	-	-	-	-	-	-	-
MW2-25	4/27/2016	-	<50	<250	-	-	-	-	-	-	-	-	-	-	-	-
MW3-16	4/27/2016	-	15,000	390x	-	-	-	-	-	-	-	-	-	-	-	-
Soil Sampling:	Monitoring wells	s MW4 thr	ough MW	6 - Noven	ber 8-	9, 2016										
MW4-6	11/8/2016	<2	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
MW5-10	11/8/2016	-	<50	<250	-	-	-	-	-	-	-	-	-	-	-	-
MW5-20	11/8/2016	140	1,100	<250	< 0.02	< 0.02	0.27	1.1	-	-	-	-	-	-	-	-
MW6-10	11/9/2016	<2	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
Soil Sampling:	Soil borings BH1	through	BH7 and m	onitoring			nrough		- Decemb	er 18-20, 2	2018					
BH1-2	12/19/2018	27	630	<250	< 0.02	0.12	0.053	0.44	-	-	-	-	-	-	-	-
BH1-12	12/19/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH2-2	12/19/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH2-14	12/19/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH3-2	12/20/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH3-14	12/20/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH4-2	12/19/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH4-12	12/19/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH5-2	12/20/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH5-13	12/20/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH6-2	12/20/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	0.074	-	-	-	-	-	-	-	-
BH6-14	12/20/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH7-2	12/20/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH7-13	12/20/2018	<5	<50	<250		< 0.02			-	-	-	-	-	-	-	-
MW8-3	12/18/2018	<5	< 50	<250	< 0.02		<0.02		-	-	-	-	-	-	-	-
MW8-11	12/18/2018	<5	< 50	<250	< 0.02		<0.02		-	-	-	-	-	-	-	-
MW9-2.5	12/18/2018	<5	< 50	<250	< 0.02	<0.02	<0.02		-	-	-	-	-	-	-	-
MW9-15	12/18/2018	<5	<50	<250	< 0.02		< 0.02		-	-	-	-	-	-	-	-
MW10-2	12/19/2018	<5	<50	<250	< 0.02	< 0.02	< 0.02		-	-	-	-	-	-	-	-
MW10-14	12/19/2018	<5	<50	<250	< 0.02	< 0.02	<0.02	< 0.06	-	-	-	-	-	-	-	-
Soil Sampling:	Soil borings BH8	through	BH13 - Jun	e 6, 2019		I	I			1	1			·		
BH8-4	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02		-	-	-	-	-	-	-	-
BH8-12	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH9-4	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02		-	-	-	-	-	-	-	-
BH9-8	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH10-4	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH10-6	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH11-4	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH11-8	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH12-3	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-

Coleman Oil: 1 East I St., Yakima, WA

PBS Project No. 41392.000

			TPH			BT	EX		1	ГРН - НСІІ)			Metals		
Location - Depth	Sample Date	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethyl- benzene	Xylenes	Gasoline	Diesel	Heavy Oil	Arsenic	Cadmium	Chromium	Lead	Mercury
Comparison Criteria	MTCA Method A Cleanup Levels For Soil ^a	100 30	2,000	2,000	1500	7	6	9	100 30	2,000	2,000	20	2	III: 2,000 IV: 19	250	2
BH12-8	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH13-4	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH-13-9	6/6/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
Soil Sampling:	Soil borings BH1	4 and BH1	5 and mo	nitoring w	ells M\	N7, MV	V11 and	d MW12	2 - Decem	ber 16, 20	19					
MW7-6.5	12/18/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
MW7-16	12/18/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
MW11-5.5	12/16/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
MW11-12	12/16/2019	<5	<50	<250	< 0.02	0.023	< 0.02	0.082	-	-	-	-	-	-	-	-
MW12-6	12/17/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
MW12-14	12/17/2019	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH14-6	12/18/2019	<5	110	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH14-16	12/18/2019	<5	59	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH15-6	12/18/2019	<5	< 50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
BH15-16	12/18/2019	16	< 50	<250	< 0.02	0.078	< 0.02	0.30	-	-	-	-	-	-	-	-
Soil Sampling:	Monitoring wells	s MW13 ar	nd MW14 ·	· Septemb	er 3-4,	2020										
MW13-5	9/3/2020	<5	< 50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
MW13-12	9/3/2020	<5	< 50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
MW14-5	9/4/2020	<5	< 50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
MW14-13.5	9/4/2020	<5	< 50	<250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
	Monitoring well	MW15 Ap	ril 8, 2021										•			
MW15-5	4/8/2021	<5	<50	<250	< 0.02	< 0.02	< 0.02		-	-	-	-	-	-	-	-
MW15-12	4/8/2021	<5	< 50	<250	<0.02	<0.02	<0.02	<0.06	-	-	-	-	-	-	-	-
MW16-5	Monitoring well	<pre>////////////////////////////////////</pre>	sruary 24, <50	2022 <250	<0.02	< 0.02	<0.02	<0.06	_				1			
MW16-12	2/24/2022 2/24/2022	<5 <5	<50 <50	<250 <250	< 0.02	< 0.02	< 0.02	< 0.06	-	-	-	-	-	-	-	-
1010010-12	2/24/2022	<0	< 30	<250	<0.02	<0.02	<0.02	<0.06	-	-	-	-	-	-	-	-

Notes:

Gasoline analyzed by Northwest Total Petroleum Hydrocarbon Method - Volatile Petroleum Products (Extended) (NWTPH-Gx)

Diesel and Heavy Oil analyzed by Northwest Total Petroleum Hydrocarbon Method - Semi-volatile Petroleum Products (Extended) (NWTPH-Dx)

BTEX constituents analyzed by Environmental Protection Agency Method 8021B

TPH-HCID columns present results of TPH-G, TPH-D and TPH-HO analyzed by Northwest Total Petroleum Hydrocarbon Identification Method (TPH-HCID)

Metals analyzed by EPA Methods 200.8 and/or 6020

BOLD indicates concentration exceeding MTCA Method A Cleanup Levels for Soil

Footnotes:

^a From Model Toxics Control Act Table 740-1 Soil Cleanup Levels for Unrestricted Land Use

^b Sample S40 was also analyzed for SVOCs by EPA Method 8270D SIM and PCBs by EPA Method 8082A; no analytes were detected above the respective cleanup level.

^c Sample B2-18C was also analyzed for carcinogenic polycyclic aromatic hydrocarbons by EPA Method 8270D SIM. Naphthalene was detected above the respective cleanup level at a concentration of 7.2 mg/kg.

est. The concentration reported is an estimate.

Abbreviations & Acronyms:

< Not detected at or above the given laboratory reporting limit.

strikethrough text represents soil sample location later removed or otherwise disturbed by

x The sample chromatographic pattern does not resemble the fuel standard used for quantitation

-- Not analyzed.

TPH - total petroleum hydrocarbons BTEX - Benzene, ethylbenzene, toluene and xylenes Gasoline - gasoline range TPHs Diesel - diesel range TPH Heavy Oil - Heavy oil range TPH mg/kg - miligrams per kilogram

Coleman Oil: 1 East I St., Yakima, WA

			BTEX					Metals								
Location - Depth	Sample Date	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethyl- benzene	Xylenes	Gasoline	Diesel	Heavy Oil	Arsenic	Cadmium	Chromium	Lead	Mercury
Comparison Criteria	MTCA Method A Cleanup Levels For Soil ^a	100 30	2,000	2,000	1500	7	6	9	100 30	2,000	2,000	20	2	III: 2,000 IV: 19	250	2

TABLE 2 GROUNDWATER ANALYTICAL RESULTS

Coleman Oil: 1 East I St., Yakima, WA

			TPHs		T			VC	Cs					SVOCs		Metal
Location/ Depth	Sample Date	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethyl	VC Xylenes	MTBE	EDC	EDB	Hexane	B(a)P	Naph	cPAHsª	Metal Lead
	MTCA Method A	Susonne		y On	-cnzelle	. ordefie	Benzene					. iexuite	Jujr	Tapi	ST ARS	Leau
omparison Criteria	Cleanup Levels For	800	500	500	1500	1,000	700	1,000	20	5	0.01	-	0.1	160	0.1	15
	Groundwater ^b 5/9/2016					Not sample	d due to the	presence	f LNADI · A	26 feet this	kness					
-	12/13/2016						d due to the									
RW1	6/9/2017						d due to the									
-	3/19/2019 2/25/2020						d due to the d due to the	•								
	11/4/2020						d due to the									
-	5/9/2016	4,300	12,000	1,100	49	78	89	440	-	-	-	-	<1.2*	56	<1.2*	<1.2*
-	12/13/2016 6/9/2017						d due to the d due to the									
MW1	3/19/2019					Not sample	d due to the	e presence o	f LNAPL: 0.	18 feet thic	kness :					
	2/25/2020 11/4/2020						d due to the d due to the	-								
	7/28/2021	7,000	14,000 / 4,400 ^c	<250	620	<40	130	480								
	7/22/2022	5,100	12,000	840	810	<40	60	<120								
-	5/9/2016 12/13/2016	420	1,300	250	<1	<1 Not sample	1.1 d due to the	<3 presence o	 f LNAPL - 8	 .39 feet thi	 ckness					
	6/9/2017	83,000	-	-	2,900	9,900	1,000	5,900	<1	<1	<1	140	-	-	-	-
MW2	3/19/2019						d due to the d due to the									
-	2/25/2020 11/5/2020	2,300	1,500	<250	59	6	94	310								
	7/28/2021	4,000	4,900 / 2000 ^c	<250	95	<20	28	<60								
	7/22/2022 5/9/2016	2,300	15,000	770	90	<5 Not sample	14 ed due to th	20 e presence d	of LNAPL: 4	 7 feet thic	 kness					
	12/13/2016						d due to the									
F	6/9/2017						d due to the									
MW3	3/19/2019 2/25/2020						d due to the d due to the									
l l l l l l l l l l l l l l l l l l l	11/4/2020						d due to the									
-	7/28/2021 7/22/2022					-	d due to the d due to the	-								
	12/13/2016	12,000	3,200	460	500	<100	130	<300			-	-	< 0.06	160	<0.06	< 0.06
F	6/9/2017	7,600	4,300	870	240	12	120	<30	<1	<1	<1	12	< 0.06	160	<0.06	<1
MW4	3/19/2019 2/25/2020						d due to the d due to the									
	11/4/2020					-	d due to the									
-	7/27/2021 7/22/2022	2,300	230	<250	37	<20	95 ot sampled	<60 due to the r								
	12/13/2016						d due to the	•			kness					
L L L L L L L L L L L L L L L L L L L	6/9/2017						d due to the									
MW5	3/19/2019 2/25/2020						d due to the d due to the									
	11/4/2020						d due to the	•								
-	7/28/2021 7/24/2022	7,700	48,000	2,100	83	Not sample 20	d due to the	e presence o 100	f LNAPL: 0.	09 feet thic	kness					
	12/13/2016	13,000	3,100	<250	110	<100	130	<300	-	-	-	-	< 0.06	310	<0.06	< 0.06
ļ.	6/9/2017	7,600	3,700	<400	140	100	110	69	<1	<1	<1*	49	< 0.06	250	<0.06	<1
MW6	3/19/2019 2/25/2020						d due to the d due to the	•								
	11/4/2020				1	-	d due to the	-		01 feet thic						1
-	7/27/2021 7/22/2022	4,200 4,300	3,900 / 960 ^c 4,100	370 / <250 530	37 28	<20 <20	51 38	74 <60								
	2/25/2020	<100	540	<250	<1	<1	<1	<3								
MW7	11/5/2020	<100	150	<250	<1	<1 <1	<1 <1	<3								
-	7/28/2021 7/22/2022	<100 <100	410 / <50 1,200	<250 350	<1 <1	<1	<1	<3 <3								
	3/19/2019						d due to the									
MW8	2/25/2020 11/5/2020	2,100	7,100	1,000	160	Not sample	d due to the	e presence o	f LNAPL: 1.	23 feet thic	kness					
	7/28/2021	2,100	7,100	1,000		, Not sample	d due to the	e presence o	f LNAPL: 0.	20 feet thic	kness					
	7/22/2022	100	50	250		1	ot sampled				1		1			1
-	3/19/2019 2/25/2020	<100 <100	<50 500	<250 <250	<1 <1	<1 <1	<1 <1	<3 <3								
MW9	11/5/2020	210	1,300	380	<1	<1.6		3.2								
L							<1									
-	7/27/2021	<100	1,200 / <50 ^c	350 / <250 ^c	<1	<1	<1	<3								
				350 / <250 ^c 590 <250												
	7/27/2021 7/22/2022 3/19/2019 2/25/2020	<100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160	590 <250 <250	<1 <1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<3 <3 <3 <3								
MW10 -	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020	<100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130	590 <250 <250 <250	<1 <1 <1	<1 <1 <1	<1 <1 <1	<3 <3 <3								
	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160	590 <250 <250 <250 260 / <250 ^c <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1	<3 <3 <3 <3 <3 <3 <3 <3 <3				 	 			
	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022	<100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c	590 <250 <250 <250 260 / <250 ^c	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3		 	 	 	 		 	
MW10	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c	590 <250 <250 <250 260 / <250 ^c <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Not sample	<1 <1 <1 <1 <1 <1 <1 <1 <1	<3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 epresence of	 f LNAPL: 0.	 11 feet thio	 kness	 	 		 	
	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c	590 <250 <250 <250 260 / <250 ^c <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 Not sample <10	<1 <1 <1 <1 <1 <1 <1 <1 d due to the d due to the 38	 <3 <3 <3 <3 <3 <3 <3 <3 e presence of presence of 100 	 f LNAPL: 0. 	 11 feet thic 01 feet thic	 	 	 		 	
MW10	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400	590 <250 <250 250/<250 ^c <250 <250 400	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <p><1</p> <1 <1 <1 <1 <1 <1 <1 Not sample <10 Not sample <10	<1 <1 <1 <1 <1 <1 <1 <1 d due to the d due to the 38 d due to the	 <3 <3 <3 <3 <3 <3 <3 <3 e presence of presence of 100 e presence of 100 	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 0.	 11 feet thic 01 feet thic 03 feet thic	 :kness :kness :kness		 		 	
MW10	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400	590 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <p><1</p> <1 <1 <1 <1 <1 <1 Not sample <10 Not sample	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <	 <3 <3 <3 <3 <3 <3 <3 <3 <3 e presence of presence of 	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 8.	 11 feet thic 01 feet thic 03 feet thic 90 feet thic 86 feet thic	 		 		 	
MW10	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 11/4/2020 7/28/2021	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400	590 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <p><1</p> <1 <1 <1 <1 <1 <1 Not sample <10 Not sample	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <	<3	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 8. f LNAPL: 8.	 11 feet thic 01 feet thic 03 feet thic 90 feet thic 86 feet thic	 		 		 	
MW10	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400	590 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <p><1</p> <1 <1 <1 <1 <1 <1 Not sample <10 Not sample	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <	<3	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 8. f LNAPL: 8.	 11 feet thic 01 feet thic 03 feet thic 90 feet thic 86 feet thic	 		 		 	
MW10	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 11/5/2020 7/28/2021	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400 3,100 / 860 ^c 520 550 / 150 ^c	590 <250 <250 260 / <250 ^c <250 400 300 / <250 ^c <250 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <p><1</p> <1 <1 <1 <1 <1 <1 <10 Not sample <10 Not sample Not sample <10 Not sample <10 Not sample <10 Not sample <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	 <3 <3 <3 <3 <3 <3 <3 <3 e presence of e presence of e presence of e	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 8. f LNAPL: 8. f LNAPL: 0. f LNAPL: 0.	 11 feet thic 01 feet thic 03 feet thic 90 feet thic 86 feet thic 17 feet thic 36 feet thic	 		 			
MW10 MW11 MW12	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 11/4/2020 7/28/2021 7/22/2022 11/5/2020 7/28/2021 7/28/2021 7/28/2021	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400 3,100 / 860 ^c 520 550 / 150 ^c 1,400	590 <250 <250 <250 <250 400 300 / <250 ^c 300 / <250 ^c <250 <250 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <p><1</p> <1 <1 <1 <1 <1 <1 <1 <1 <10 Not sample <10 Not sample <10 Not sample <10 Not sample <1 <10 <10 </td <td><1 <1 <1</td> <td> <3 <3 <3 <3 <3 <3 <3 <3 e presence of e presence of a presence of e presence of e presence of a presence of e presence of e presence of e presence of e presence of e presence of e presence of e</td> <td> f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 3. f LNAPL: 3. f LNAPL: 3. </td> <td> 11 feet thic 01 feet thic 03 feet thic 90 feet thic 86 feet thic 17 feet thic 36 feet thic </td> <td> -</td> <td></td> <td> </td> <td></td> <td></td> <td> </td>	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	 <3 <3 <3 <3 <3 <3 <3 <3 e presence of e presence of a presence of e presence of e presence of a presence of e presence of e presence of e presence of e presence of e presence of e presence of e	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 3. f LNAPL: 3. f LNAPL: 3. 	 11 feet thic 01 feet thic 03 feet thic 90 feet thic 86 feet thic 17 feet thic 36 feet thic 	 -		 			
MW10 MW11 MW12 MW13	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 11/5/2020 7/28/2021	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400 3,100 / 860 ^c 520 550 / 150 ^c	590 <250 <250 260 / <250 ^c <250 400 300 / <250 ^c <250 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <p><1</p> <1 <1 <1 <1 <1 <1 <10 Not sample <10 Not sample Not sample <10 Not sample <10 Not sample <10 Not sample <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	 <3 <3 <3 <3 <3 <3 <3 <3 e presence of e presence of e presence of e	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. 	 11 feet thic 01 feet thic 03 feet thic 86 feet thic 17 feet thic 36 feet thic 	 		 			
MW10 MW11 MW12	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 11/5/2020 7/28/2021 7/28/2021 7/28/2021 7/28/2021 3/25/2022	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400 3,100 / 860 ^c 550 / 150 ^c 1,400 53 <50 110x / <50 ^c	590 <250 <250 <250 <250 300 / <250 ^c 300 / <250 ^c <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <10 Not sample <10 Not sample <10 Not sample <10 Not sample <10	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<3	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. 	11 feet thic 03 feet thic 90 feet thic 86 feet thic 36 feet thic 36 feet thic						
MW10 MW11 MW12 MW13 MW14	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 11/5/2020 7/28/2021 7/28/2021 7/28/2021 7/28/2021 3/25/2022 7/28/2022	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 <50 160 130 930 / <50 ^c 240x / <50 ^c 1,400 3,100 / 860 ^c 550 / 150 ^c 1,400 53 <50 110x / <50 ^c <50	590 <250 <250 <250 <250 300 / <250 ^c 300 / <250 ^c <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <10 Not sample <10 Not sample <10 Not sample <10 Not sample <10 <10	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<3	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. 	11 feet thic 03 feet thic 90 feet thic 86 feet thic 17 feet thic 36 feet thic			 			
MW10 MW11 MW12 MW13	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 7/28/2021	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 < 50 160 130 930 / <50 ^c 240x / <50 ^c 1,400 3,100 / 860 ^c 550 / 150 ^c 1,400 53 < 50 110x / <50 ^c < 50 1,900 / 800 ^c	590 <250 <250 <250 <250 400 300 / <250 ^c 300 / <250 ^c <250 <250 <250 <250 <250 <250 <250 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <10 Not sample <10 Not sample <10 Not sample <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21	 <3 <1700 <a>770 	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 3. f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. 	11 feet thic 03 feet thic 03 feet thic 86 feet thic 36 feet thic						
MW10 MW11 MW12 MW13 MW14	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/24/2022 11/5/2020 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/28/2021 7/21/2022 7/21/2022 7/21/2022 7/21/2022 3/25/2022	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 < 50 160 130 930 / <50 ^c 240x / <50 ^c 1,400 3,100 / 860 ^c 3,100 / 860 ^c 550 / 150 ^c 1,400 53 < 50 110x / <50 ^c < 50 1,900 / 800 ^c 1,900 190x / <50 ^c	590 <250 <250 <250 <250 300 / <250 ^c 300 / <250 ^c <300 / <250 ^c <250 <250 <250 <250 <250 <250 <250 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <10 Not sample <10 Not sample <10 Not sample <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <10 <100 <100 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <21 <21 <21 <21 <21 <21 <21 <21 <21	 <3 <12 <3 <12 <13 <12 <13 <12 <12 <12 <li< td=""><td> f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. </td><td> 11 feet thic 03 feet thic 03 feet thic 86 feet thic 36 feet thic</td><td></td><td></td><td></td><td></td><td></td><td></td></li<>	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. 	11 feet thic 03 feet thic 03 feet thic 86 feet thic 36 feet thic						
MW10 MW11 MW12 MW13 MW14 MW15	7/27/2021 7/22/2022 3/19/2019 2/25/2020 11/5/2020 7/27/2021 3/25/2022 7/22/2022 2/25/2020 11/4/2020 7/28/2021 7/22/2022 2/25/2020 11/4/2020 7/28/2021	<100 <100 <100 <100 <100 <100 <100 <100	1,200 / <50 ^c 1,600 < 50 160 130 930 / <50 ^c 240x / <50 ^c 1,400 3,100 / 860 ^c 550 / 150 ^c 1,400 53 < 50 110x / <50 ^c < 50 1,900 / 800 ^c	590 <250 <250 <250 <250 400 300 / <250 ^c 300 / <250 ^c <250 <250 <250 <250 <250 <250 <250 <250	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <10 Not sample <10 Not sample <10 Not sample <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21	 <3 <1700 <a>770 	 f LNAPL: 0. f LNAPL: 0. f LNAPL: 3. f LNAPL: 3. f LNAPL: 3. f LNAPL: 0. f LNAPL: 0. f LNAPL: 0. 	11 feet thic 03 feet thic 03 feet thic 86 feet thic 36 feet thic						

TABLE 2 **GROUNDWATER ANALYTICAL RESULTS**

Coleman Oil: 1 East I St., Yakima, WA

PBS Project No. 41392.000

Results in ug/L																
			TPHs			VOCs							SVOCs			Metals
Location/ Depth	Sample Date	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethyl Benzene	Xylenes	МТВЕ	EDC	EDB	Hexane	B(a)P	Naph	cPAHs ^a	Lead
	MTCA Method A															
Comparison Criteria	Cleanup Levels For	800	500	500	1500	1,000	700	1,000	20	5	0.01	-	0.1	160	0.1	15
	Groundwater ^b															
"Grab" groundwater samples from temporary well screen in soil borings																
BH1-W	12/19/18	7,300	87,000	<2,500	18	18	54	97	<1	<1	<1*					
BH2-W	12/19/18	8,600	3,200	<400	240	<20	160	170	<1	<1	<1*					
BH3-W	12/20/18	8,900	100,000	2,800	89	47	180	130	<1	<1	<1*					
BH4-W	12/19/18	3,900	3,700	<400	200	<20	<20	<60	<1	<1	<1*					
BH5-W	12/20/18	27,000	4,200	<320	1,300	730	1,200	4,400	<1	<1	<1*					
BH6-W	12/20/18	5,100	19,000	390	<5	10	58	78	<1	<1	<1*					
BH7-W	12/20/18	4,300	34,000	1,400	38	17	95	81	<1	<1	<1*					
BH14W	12/18/19	35,000			<1	<1	250	290								

Notes:

Gasoline analyzed by Northwest Total Petroleum Hydrocarbon Method - Volatile Petroleum Products (Extended) (NWTPH-Gx) Diesel and heavy oil analyzed by Northwest Total Petroleum Hydrocarbon Method - Semi-volatile Petroleum Products (Extended)

(NWTPH-Dx)

VOCs analyzed by Environmental Protection Agency Method 8021B (BTEX only) and 8260C

SVOCs analyzed by Environmental Protection Agency Method 8270D SIM

Metals analyzed by Environmental Protection Agency Method 6020A

 $\ensuremath{\textbf{BOLD}}$ indicates concentration exceeding MTCA Method A Cleanup Levels for Groundwater

x indicates the sample chromatographic pattern does not resemble the fuel standard used for quantitation Footnotes:

^a Value for total cPAHs by toxicity equivalency methodology in WAC 173-340-708(8) and table 708.2 ^b From Model Toxics Control Act Table 720-1 Soil Cleanup Levels for Unrestricted Land Use

c NWTPH Value(pre-silica gel) / NWTPH value (post-silica gel)

Abbreviations & Acronyms:

 ${\scriptstyle <\#\#}$ - not detected at or above given laboratory reporting limit

 * - Detection limit exceeded the MTCA Method A value

TPH - total petroleum hydrocarbons

Gx - gasoline range hydrocarbons

Dx - diesel range hydrocarbons

VOCs - volatile organic compounds

MTBE - methyl tert-butyl ether

EDC - 1,2 dichloroethane

EDB - ethylene dibromide

SVOCs - semi-volatile organic compounds

B(a)P - benzo(a)pyrene

Naph - total naphthalenes (naphthalene+ 1-methyl naphthalene + 2-methyl naphthalene

cPAHs - carcinogenic polycyclic aromatic hydrocarbons

LNAPL - light, non-aqueous phase liquid

TABLE 3

NAPL CHARACTERISTICS

Coleman Oil: 1 East I St., Yakima, WA

PBS Project No. 41392.000

Sample	Location Description	Sample Color	Approximate % Gasoline	Approximate % Diesel	Gasoline Degree of Weathering	Diesel Degree of Weathering	Specific Gravity	Viscosity ^a (cSt)
Product Sampling: June 9,								
MW3 ^b	Approximately 15 feet				1800			
MW3-	downgradient of point of diesel release	Not Noted	Present	Present	1500	Weathered		
	West of the release							
MW5 ^b	between the office	Not Noted	Not present	Present	NA	Weathered		
	building and the railroad							
Product Sampling: March 1	9, 2019 °		-			•	•	•
RW1	Adjacent to point of diesel release	Amber	50	50	Weathered	Mixed	0.817	2.28
	Between point of diesel							
MW2	release and line of	Amber	20	80	Weathered	Fresh	0.786	
	gasoline release							
MW3	Approximately 15 feet		10	00	Weathered	Mixed	0.810	2.21
101.00.3	downgradient of point of	Amber	10	90	vveathered	Mixed	0.810	2.21
	diesel release							
MW4	Approximately 25 feet east	Black	<10	100	NA	Weathered	0.830	
	of line of gasoline release	Bidek		100			0.000	
	West of the release							
MW5	between the office	Black	50	50	Weathered	Weathered	0.828	
	building and the railroad							
	Approximately 15 feet east							
MW8	of northernmost extent of	Black	<10	100	NA	Weathered	0.841	3.82
	line of gasoline release							
Product Sampling: Februar	v 25. 2020 °		1		1	l	l	l
MW11	,	Black	10	90	Weathered	Mixed		
MW12		Black	10	90	Weathered	Mixed		
Product Sampling: Novem	ber 5, 2020 ^c				•	•	•	•
MW5		black	70	30	Weathered	Weathered		
MW12		Black	<10	100	NA	Fresh		

Abbreviations & Acronyms:

cSt - centistokes

Footnotes:

^a Analyzed by ASTM D-445 method by Spectra Laboratories

^b Analyzed for whole oil C3-C44N by Pace Analytical Energy Services. Only presence and nature of fuel type given, percentages of each consituent not provided.

^c Analyzed by Northwest Total Petroleum Hydrocarbon Method - Semi-volatile Petroleum Products (Extended) (NWTPH-Dx). Chromatograms interpreted by analytical laboratory (Friedman & Bruya, Inc.) for component percentages and weathering.

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometri Groundwater Elevation (ft amsl)
RW-1	15.05-30.05	5/10/2016	NA*	19.38	23.64	4.26	NA*
		10/5/2016	NA*	17.48	23.69	6.21	NA*
		10/20/2016	NA*	17.83	20.99	3.16	1500
		11/2/2016	NA*	18.06	20.86	2.80	NA*
		12/13/2016	NA*	19.58	19.83	0.25	NA*
		1/20/2017	NA*	20.75	23.83	3.08	NA*
		2/2/2017	NA*	21.26	23.75	2.49	NA*
		3/21/2017	NA*	20.09	23.90	3.81	NA*
		4/4/2017	NA*	20.16	22.78	2.62	NA*
		4/20/2017	NA*	19.82	21.09	1.27	NA*
		5/8/2017	NA*	19.10	20.55	1.45	NA*
		5/25/2017	NA*	18.70	19.41	0.71	NA*
		6/9/2017	NA*	18.55	20.03	1.48	NA*
		4/12/2018		23.75	25.15	1.40	NA*
		6/21/2018		21.89	22.96	1.07	NA*
		7/26/2018		20.56	20.65	0.09	NA*
		8/23/2018		18.92	18.98	0.06	NA*
		9/25/2018		16.56	16.74	0.18	NA*
		10/29/2018		17.62	18.09	0.47	NA*
		11/30/2018		19.12	19.91	0.79	NA*
		12/20/2018		19.72	20.33	0.61	NA*
		1/30/2019	NA*	21.01	23.04	2.03	NA*
		2/28/2019		21.80	23.94	2.14	NA*
		3/19/2019	NA*	22.18	24.30	2.12	NA*
		4/25/2019	NA*	22.38	23.32	0.94	NA*
		5/29/2019	NA*	21.10	22.09	0.99	NA*
		6/27/2019		20.18	20.27	0.09	NA*
		7/30/2019		19.31	19.67	0.36	NA*
		8/30/2019	NA*	18.88	19.35	0.47	NA*
		9/26/2019	NA*	18.43	19.12	0.69	NA*
		10/28/2019	NA*	18.73	19.54	0.81	NA*
		12/17/2019		20.53	21.68	1.15	NA*
		1/29/2020	NA*	21.94	22.87	0.93	NA*
		2/25/2020	NA*	22.91	23.28	0.37	NA*
		4/1/2020		23.80	25.02	1.22	NA*
		6/4/2020	NA*	22.17	22.35	0.18	NA*
		7/30/2020	NA*	20.17	20.18	0.01	NA*
		9/4/2020	NA*	19.15	19.31	0.16	NA*
		11/4/2020		19.23	19.42	0.19	NA*
		3/9/2021	NA*	22.05	23.49	1.44	NA*
		5/6/2021	NA*	22.37	23.17	0.80	NA*
		5/27/2021	NA*	22.47	23.16	0.69	NA*
		7/27/2021	NA*		19.70		NA*
		9/2/2021	NA*		18.97		NA*
		9/16/2021	NA*		18.72		NA*
		11/29/2021	NA*		19.37		NA*
		12/21/2021	NA*		20.25		NA*
		1/27/2022	NA*		21.65		NA*
		2/25/2022	NA*		21.43		NA*
		3/25/2022	NA*	23.24	23.37	0.13	NA*
		4/15/2022	NA*	23.52	24.47	0.95	NA*
		6/21/2022	NA*		21.54		NA*
		7/21/2022	NA*		20.45		NA*

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-1	9.9-25.9	5/10/2016	1089.54		19.13		1070.41
		10/5/2016	1089.54	16.75	22.02	5.27	1071.74
		10/20/2016	1089.54	17.15	19.94	2.79	1071.83
		11/2/2016	1089.54	17.56	18.75	1.19	1071.74
		12/13/2016	1089.54	18.99	20.13	1.14	1070.32
		1/20/2017	1089.54	19.42	24.32	4.90	1069.14
		2/2/2017	1089.54	20.42	21.51	1.09	1068.90
		3/21/2017	1089.54	18.83	22.39	3.56	1070.00
		4/4/2017	1089.54	19.35	19.59	0.24	1070.14
		4/20/2017	1089.54	18.7	19.07	0.37	1070.77
		5/8/2017	1089.54	17.9	18.29	0.39	1071.56
		5/25/2017	1089.54	17.75	17.96	0.21	1071.75
		6/9/2017	1089.54	17.68	17.84	0.16	1071.83
		4/12/2018	1089.54	22.6	23.20	0.60	1066.82
		6/21/2018		21.4	21.82	0.42	1068.06
		7/26/2018	1089.54	19.88	20.28	0.40	1069.58
		8/23/2018	1089.54		17.88		1071.66
		9/25/2018			15.50		1074.04
		10/29/2018	1089.54		16.52		1073.02
		11/30/2018	1089.54		17.73		1071.81
		12/20/2018			18.22		1071.32
		1/30/2019	1089.54		19.89		1069.65
		2/28/2019	1089.54		20.97		1068.57
		3/19/2019	1089.54	21.19	21.37	0.18	1068.31
		4/25/2019	1089.54	21.39	21.54	0.15	1068.12
		5/29/2019	1089.54	20.45	20.46	0.01	1069.09
		6/27/2019	1089.54		19.46		1070.08
		7/30/2019	1089.54		18.56		1070.98
		8/30/2019			17.95		1071.59
		9/26/2019	1089.54		17.35		1072.19
		10/28/2019	1089.54		17.48		1072.06
		12/17/2019	1089.54		19.12		1070.42
		1/29/2020	1089.54	20.85	21.05	0.20	1068.65
		2/25/2020	1089.54	21.8	22.03	0.23	1067.69
		4/1/2020	1089.54	22.79	23.08	0.29	1066.69
		6/4/2020	1089.54	21.77	21.78	0.01	1067.77
		7/30/2020	1089.54		19.54		1070.00
		9/4/2020	1089.54		18.32		1071.22
		11/4/2020			17.93		1071.61
		3/9/2021	1089.54	21.05	21.13	0.08	1068.47
		5/6/2021	1089.54		21.63		1067.91
		7/27/2021	1089.54		18.93		1070.61
		11/29/2021	1089.54		17.72		1071.82
		12/21/2021	1089.54		18.67		1070.87
		1/27/2022	1089.54		21.03		1068.51
		3/25/2022	1089.54	22.19	22.31	0.12	1067.33
		4/15/2022	1089.54	22.64	22.78	0.14	1066.87
		6/21/2022	1089.54		20.70		1068.84
		7/21/2022	1089.54		19.32		1070.22

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-2	10.3-25.3	5/10/2016	1089.44		19.82		1069.62
		10/5/2016			16.54		1072.90
		10/20/2016			16.51		1072.93
		11/2/2016			16.54		1072.90
		12/13/2016	1089.44	17.11	25.50	8.39	1063.94
		1/20/2017	1089.44	21.05	21.21	0.16	1068.23
		2/2/2017	1089.44		21.50		1067.94
		4/4/2017	1089.44		20.24		1069.20
		4/20/2017	1089.44		19.26		1070.19
		3/21/2017	1089.44		20.50		1068.94
		5/8/2017	1089.44		18.90		1070.54
		5/25/2017			18.00		1071.44
		6/9/2017	1089.44	17.85	17.87	0.02	1071.57
		4/12/2018		23.48	23.71	0.23	1065.73
		6/21/2018		21.83	22.09	0.26	1067.35
		7/26/2018		20.11	20.24	0.13	1069.20
		8/23/2018			17.25		1072.19
		9/25/2018			15.15		1074.29
		10/29/2018			16.15		1073.29
		11/30/2018			16.64		1072.80
		1/30/2019		20.56	20.71	0.15	1068.73
		2/28/2019		21.57	21.73	0.16	1067.71
		3/19/2019		21.98	22.22	0.24	1067.22
		4/25/2019		22.08	22.23	0.15	1067.21
		5/29/2019	1089.44 1089.44	20.84	20.86 19.73	0.02 0.02	1068.58
		6/27/2019 7/30/2019		19.71	17.93		1069.71 1071.51
		8/30/2019			17.95		1071.31
		9/26/2019			16.85		1072.19
		10/28/2019			16.91		1072.53
		10/20/2016			16.51		1072.93
		12/17/2019		19.50	19.53	0.03	1069.91
		1/29/2020		21.51	21.57	0.06	1067.87
		8/23/2020	1089.44		17.25		1072.19
		2/25/2020		22.5	22.61	0.11	1066.83
		4/1/2020		23.53	23.89	0.36	1065.55
		6/4/2020		22.02	22.08	0.06	1067.36
		7/30/2020	1089.44		19.78		1069.66
		9/4/2020	1089.44		17.70		1071.74
		11/4/2020	1089.44		17.02		1072.42
		3/9/2021	1089.44	21.80	21.85	0.05	1067.59
		5/6/2021	1089.44	22.22	22.28	0.06	1067.16
		7/27/2021	1089.44		19.32		1070.12
		9/2/2021	1089.44		17.69		1071.75
		11/29/2021	1089.44		16.88		1072.56
		12/21/2021	1089.44		18.54		1070.90
		1/27/2022	1089.44		20.95		1068.49
		3/25/2022	1089.44		22.60		1066.84
		4/15/2022	1089.44		22.79		1066.65
		6/21/2022	1089.44		20.98		1068.46
		7/21/2022	1089.44		19.32		1070.12

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-3	14-24	5/10/2016	1089.15	18.80	23.50	4.70	1069.41
-		10/5/2016	1089.15	17.15	22.74	5.59	1070.88
		10/20/2016	1089.15	17.11	22.46	5.35	1070.97
		11/2/2016	1089.15	18.06	20.86	2.80	1070.53
		12/13/2016	1089.15	18.82	23.73	4.91	1069.35
		1/20/2017	1089.15	20.41	24.12	3.71	1068.00
		2/2/2017	1089.15	20.90	24.01	3.11	1067.63
		3/21/2017	1089.15	19.70	23.74	4.04	1068.64
		4/4/2017	1089.15	19.68	23.18	3.50	1068.77
		4/20/2017	1089.15	19.05	22.93	3.88	1069.32
		5/8/2017	1089.15	18.32	22.60	4.28	1069.97
		5/25/2017	1089.15	17.89	22.25	4.36	1070.39
		6/9/2017	1089.15	17.94	20.81	2.87	1070.64
		4/12/2018	1089.15	23.56	24.30	0.74	1065.44
		6/21/2018		21.57	22.88	1.31	1067.32
		7/26/2018	1089.15	20.22	20.35	0.13	1068.90
		8/23/2018	1089.15		18.63		1070.52
		9/25/2018		15.98	16.03	0.05	1073.16
		10/29/2018	1089.15	17.05	17.30	0.25	1072.05
		11/30/2018	1089.15	18.57	18.99	0.42	1070.50
		12/20/2018	1089.15	19.18	20.03	0.85	1069.80
		1/30/2019	1089.15	20.73	22.02	1.29	1068.16 1067.35
		2/28/2019	1089.15	21.69	22.25	0.56	
		3/19/2019 4/25/2019	1089.15 1089.15	22.14 22.21	22.53 22.51	0.39 0.30	1066.93 1066.88
		5/29/2019	1089.15	20.73	22.51	1.21	1068.18
		6/27/2019	1089.15	19.50	21.65	2.15	1069.22
		7/30/2019	1089.15	18.78	19.75	0.97	1070.18
		8/30/2019	1089.15	18.33	19.12	0.79	1070.66
		9/26/2019	1089.15	17.88	18.62	0.74	1071.12
		10/28/2019	1089.15	18.15	18.97	0.82	1070.84
		12/17/2019	1089.15	19.94	21.68	1.74	1068.86
		1/29/2020	1089.15	21.70	22.67	0.97	1067.26
		2/25/2020	1089.15	22.63	23.54	0.91	1066.34
		4/1/2020	1089.15	23.50	24.67	1.17	1065.42
		6/4/2020	1089.15	21.95	22.21	0.26	1067.15
		7/30/2020	1089.15	19.87	19.90	0.03	1069.27
		9/4/2020	1089.15		18.81		1070.34
		11/4/2020	1089.15	18.83	19.09	0.26	1070.27
		3/9/2021	1089.15	21.87	22.76	0.89	1067.10
		5/6/2021	1089.15	22.25	22.66	0.41	1066.82
		5/27/2021	1089.15	22.63	22.84	0.21	1066.48
		7/27/2021	1089.15	19.44	19.64	0.20	1069.67
		9/2/2021	1089.15		18.73		1070.42
		9/16/2021	1089.15		18.41		1070.74
		11/29/2021	1089.15		19.03		1070.12
		12/21/2021	1089.15		20.03		1069.12
		1/27/2022	1089.15	21.40	21.59	0.19	1067.71
		2/25/2022	1089.15		21.14		1068.01
		3/25/2022	1089.15	22.91	23.45	0.54	1066.13
		4/15/2022	1089.15	23.44	23.52	0.08	1065.69
		6/21/2022	1089.15	21.18	22.41	1.23	1067.72
	1	7/21/2022	1089.15	19.95	21.23	1.28	1068.94

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-4	15-25	12/13/2016	1088.85		18.09		1070.76
		2/2/2017	1088.85	20.00	20.31	0.31	1068.79
		3/21/2017	1088.85	19.28	19.31	0.03	1069.57
		4/4/2017	1088.85	19.14	19.20	0.06	1069.70
		4/20/2017	1088.85	18.55	18.62	0.07	1070.29
		5/8/2017	1088.85		17.62		1071.23
		5/25/2017	1088.85		17.22		1071.63
		6/9/2017	1088.85		17.19		1071.66
		4/12/2018	1088.85	22.43	22.73	0.30	1066.36
		6/21/2018	1088.85		21.27		1067.58
		7/26/2018	1088.85		19.68		1069.17
		8/23/2018	1088.85		18.23		1070.62
		9/25/2018	1088.85	14.54	14.56	0.02	1074.31
		10/29/2018	1088.85		16.15		1072.70
		11/30/2018	1088.85	17.18	17.23	0.05	1071.66
		1/30/2019	1088.85	19.71	19.90	0.19	1069.10
		2/28/2019	1088.85	20.63	20.87	0.24	1068.17
		3/19/2019	1088.85	21.03	21.28	0.25	1067.77
		4/25/2019	1088.85	21.22	21.34	0.12	1067.61
		5/29/2019	1088.85	20.18	20.20	0.02	1068.67
		6/27/2019	1088.85		19.27		1069.58
		7/30/2019	1088.85		18.46		1070.39
		8/30/2019	1088.85		17.88		1070.97
		9/26/2019	1088.85		17.23		1071.62
		10/28/2019	1088.85		17.32		1071.53
		12/17/2019	1088.85	19.14	19.23	0.09	1069.69
		1/29/2020	1088.85	20.66	20.71	0.05	1068.18
		2/25/2020	1088.85	21.56	21.74	0.18	1067.25
		4/1/2020	1088.85	22.92	23.16	0.24	1065.88
		6/4/2020	1088.85		21.53		1067.32
		7/30/2020	1088.85		19.39		1069.46
		9/4/2020	1088.85		18.36		1070.49
		11/4/2020	1088.85	17.73	17.74	0.01	1071.12
		3/9/2021	1088.85	20.90	21.11	0.21	1067.91
		5/6/2021	1088.85		21.53		1067.32
		7/27/2021	1088.85		18.92		1069.93
		11/29/2021	1088.85		17.59		1071.26
		12/21/2021	1088.85		18.56		1070.29
		1/27/2022	1088.85	20.08	20.20	0.12	1068.75
		3/25/2022	1088.85	21.74	21.83	0.09	1067.09
		4/15/2022	1088.85	22.37	22.46	0.09	1066.46
		6/21/2022	1088.85	20.40	20.45	0.05	1068.44
		7/21/2022	1088.85		*		

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-5	15-25	12/13/2016	1090.01	19.73	20.30	0.57	1070.17
		3/21/2017	1090.01	20.31	21.05	0.74	1069.56
		4/4/2017	1090.01	20.36	21.22	0.86	1069.48
		4/20/2017	1090.01	20.02	20.20	0.18	1069.95
		5/8/2017	1090.01	19.33	19.80	0.47	1070.59
		5/25/2017	1090.01	18.85	19.60	0.75	1071.01
		6/9/2017	1090.01	18.88	19.54	0.66	1071.00
		4/12/2018	1090.01	23.62	24.13	0.51	1066.29
		6/21/2018	1090.01	22.86	23.38	0.52	1067.05
		7/26/2018	1090.01		23.34		1066.67
		8/23/2018	1090.01		18.94		1071.07
		9/25/2018	1090.01	16.32	16.39	0.07	1073.68
		10/28/2018	1090.01	17.34	17.59	0.25	1072.62
		11/30/2018	1090.01	18.76	19.02	0.26	1071.20
		1/30/2019	1090.01	20.96	21.30	0.34	1068.98
		2/28/2019	1090.01				
		3/19/2019	1090.01	22.09	22.36	0.27	1067.87
		4/25/2019	1090.01	22.33	22.59	0.26	1067.628
		5/29/2019	1090.01		21.76		1068.25
		6/27/2019	1090.01		20.53		1069.48
		7/30/2019	1090.01	19.51	19.55	0.04	1070.492
		8/30/2019	1090.01	18.71	18.76	0.05	1071.29
		9/26/2019	1090.01	18.12	18.15	0.03	1071.884
		10/28/2019	1090.01	18.43	18.46	0.03	1071.574
		12/17/2019	1090.01		20.29		1069.72
		1/29/2020	1090.01	21.88	22.04	0.16	1068.098
		2/25/2020	1090.01	22.68	22.8	0.12	1067.306
		4/1/2020	1090.01	23.58	23.84	0.26	1066.38
		6/4/2020	1090.01	23.11	23.40	0.29	1066.84
		7/30/2020	1090.01	20.67	20.82	0.15	1069.31
		9/4/2020	1090.01	19.13	19.80	0.67	1070.75
		11/4/2020	1090.01	18.86	20.15	1.29	1070.89
		3/9/2021	1090.01	21.89	22.49	0.60	1068.00
		5/6/2021	1090.01	22.61	23.92	1.31	1067.14
		7/27/2021	1090.01	20.02	20.11	0.09	1069.97
		9/2/2021	1090.01		18.98		1071.03
		9/16/2021	1090.01		18.78		1071.23
		11/29/2021	1090.01		19.34		1070.67
		12/21/2021	1090.01		20.08		1069.93
		1/27/2022	1090.01	21.07	21.45	0.38	1068.86
		3/25/2022	1090.01	22.69	22.97	0.28	1067.26
		4/15/2022	1090.01	23.19	23.59	0.40	1066.74
		6/21/2022	1090.01		22.38		1067.63
		7/21/2022	1090.01		20.53		1069.48

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-6	15-25	12/13/2016	1089.21		17.40		1071.81
		3/21/2017	1089.21		18.25		1070.97
		4/4/2017	1089.21		18.00		1071.21
		4/20/2017	1089.21		17.39		1071.82
		5/8/2017	1089.21		16.82		1072.39
		5/25/2017	1089.21 1089.21		16.59		1072.62 1072.60
		6/9/2017 4/12/2018	1089.21	21.50	16.61 21.55	0.05	1072.60
		6/21/2018	1089.21	20.27	20.39	0.03	1068.82
		7/26/2018	1089.21		18.98		1070.23
		8/23/2018	1089.21		16.86		1072.35
		9/25/2018			14.81		1074.40
		10/29/2018	1089.21		15.73		1073.48
		11/30/2019	1089.21		16.74		1072.47
		1/30/2019	1089.21		18.77		1070.44
		2/28/2019	1089.21		19.69		1069.52
		3/19/2019	1089.21	19.97	20.00	0.03	1069.21
		4/25/2019	1089.21	20.20	20.25	0.05	1068.96
		5/29/2019	1089.21		19.39		1069.82
		6/27/2019	1089.21		18.57		1070.64
		7/30/2019	1089.21		17.74		1071.47
		8/30/2019	1089.21		17.16		1072.05
		9/26/2019	1089.21 1089.21		16.63 16.72		1072.58 1072.49
		10/28/2019 12/17/2019	1089.21		18.14		1072.49
		1/29/2020	1089.21		18.14		1069.45
		2/25/2020	1089.21	20.81	20.89	0.08	1068.32
		4/1/2020	1089.21	22.66	22.89	0.23	1066.32
		6/4/2020	1089.21		20.64		1068.57
		7/30/2020	1089.21		18.76		1070.45
		9/4/2020	1089.21		17.60		1071.61
		11/4/2020	1089.21	17.15	17.16	0.01	1072.05
		3/9/2021	1089.21		19.98		1069.23
		5/6/2021	1089.21		20.61		1068.60
		7/27/2021	1089.21		18.28		1070.93
		11/29/2021	1089.21		17.07		1072.14
		12/21/2021	1089.21		17.78		1071.43
		1/27/2022 3/25/2022	1089.21		19.18		1070.03 1068.27
		6/21/2022	1089.21 1089.21		20.94 19.71		1069.50
		7/21/2022	1089.21		18.52		1070.69
MW-7	15-30	12/17/2019	1090.40		20.29		1070.11
		1/29/2020	1090.40		19.93		1070.47
		2/25/2020	1090.40		20.96		1069.44
		4/1/2020	1090.40		21.95		1068.45
		6/4/2020	1090.40		21.22		1069.18
		7/30/2020	1090.40		18.85		1071.55
		9/4/2020	1090.40		17.33		1073.07
		11/4/2020	1090.40		16.49		1073.91
		3/9/2021	1090.40		19.89		1070.51
		5/6/2021	1090.40		20.84		1069.56
		7/27/2021	1090.40		18.04		1072.36
		9/2/2021	1090.40 1090.40		16.73 16.4		1073.67 1074
		11/29/2021 12/21/2021	1090.40		16.4 17.17		1074
		1/27/2021	1090.40		17.17		1073.23
		3/25/2022	1090.40		20.94		1069.46
		6/21/2022	1090.40		20.12		1070.28
		7/21/2022	1090.40		18.40		1072

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-8	15-30	1/30/2019	1089.47	20.25	20.86	0.61	1069.10
		2/28/2019	1089.47	21.06	21.89	0.83	1068.24
		3/19/2019	1089.47	21.39	22.44	1.05	1067.87
		4/25/2019	1089.47	21.50	22.25	0.75	1067.82
		5/29/2019	1089.47	20.33	21.19	0.86	1068.97
		6/27/2019	1089.47	19.36	20.43	1.07	1069.90
		7/30/2019	1089.47	18.76	19.24	0.48	1070.61
		8/30/2019	1089.47	18.39	18.51	0.12	1071.06
		9/26/2019	1089.47	17.91	18.02	0.11	1071.54
		10/28/2019	1089.47	18.08	18.46	0.38	1071.31
		12/17/2019	1089.47	19.73	20.15	0.42	1069.66
		1/29/2020	1089.47	21.00	21.91	0.91	1068.29
		2/25/2020	1089.47	21.92	23.15	1.23	1067.30
		4/1/2020	1089.47	22.92	24.53	1.61	1066.23
		6/4/2020	1089.47	21.15	22.33	1.18	1068.08
		7/30/2020	1089.47	19.56	19.76	0.20	1069.87
		9/4/2020	1089.47		18.68		1070.79
		11/4/2020	1089.47	18.47	18.50	0.03	1070.99
		3/9/2021	1089.47	21.18	22.41	1.23	1068.04
		5/6/2021	1089.47	21.38	23.28	1.90	1067.71
		7/27/2021	1089.47	19.08	19.28	0.20	1070.35
		9/2/2021	1089.47		18.43		1071.04
		9/16/2021	1089.47		18.13		1071.34
		11/29/2021	1089.47		18.20		1071.27
		3/25/2022 4/15/2022	1089.47 1089.47	22.82 22.30	22.89 23.57	0.07 1.27	1066.64 1066.92
		6/21/2022	1089.47	22.30	23.57	1.27	1068.92
		7/21/2022	1089.47		*		1000.57
MW-9	15-30	1/30/2019	1089.07		21.08		1067.99
10100-5	15-50	2/28/2019	1089.07		22.03		1067.04
		3/19/2019	1089.07		22.45		1066.62
		4/25/2019	1089.07		22.44		1066.63
		5/29/2019	1089.07		20.85		1068.22
		6/27/2019	1089.07		18.90		1070.17
		7/30/2019	1089.07		18.20		1070.87
		8/30/2019	1089.07		17.86		1071.21
		9/26/2019	1089.07		17.55		1071.52
		10/28/2019	1089.07		17.74		1071.33
		12/17/2019	1089.07		19.15		1069.92
		1/29/2020	1089.07		21.27		1067.80
		2/25/2020	1089.07		22.48		1066.59
		4/1/2020	1089.07		23.54		1065.53
		6/4/2020	1089.07		21.65		1067.42
		7/30/2020	1089.07		19.32		1069.75
		9/4/2020	1089.07		18.27		1070.80
		11/4/2020	1089.07		18.20		1070.87
		3/9/2021	1089.07		22.13		1066.94
		5/6/2021	1089.07		21.97		1067.10
		7/27/2021	1089.07		18.70		1070.37
		9/2/2021	1089.07		18.16		1070.91
		11/29/2021	1089.07		18.17		1070.90
		3/25/2022	1089.07		23.09		1065.98
		6/21/2022	1089.07		20.64		1068.43
		7/21/2022	1089.07		18.72		1070.35

Coleman Oil: 1 East I St., Yakima, WA

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-10	15-30	1/30/2019	1087.75		19.21		1068.54
		2/28/2019	1087.75		20.07		1067.68
		3/19/2019	1087.75		20.45		1067.30
		4/25/2019	1087.75		20.48		1067.27
		5/29/2019	1087.75		19.20		1068.55
		6/27/2019	1087.75		18.28		1069.47
		7/30/2019 8/30/2019	1087.75 1087.75		17.54 17.05		1070.21 1070.70
		9/26/2019	1087.75		16.56		1070.70
		10/28/2019	1087.75		16.69		1071.06
		12/17/2019	1087.75		18.61		1069.14
		1/29/2020	1087.75		19.86		1067.89
		2/25/2020	1087.75		20.95		1066.80
		4/1/2020	1087.75		21.95		1065.80
		6/4/2020	1087.75		20.11		1067.64
		7/30/2020	1087.75		18.44		1069.31
		9/4/2020	1087.75		17.55		1070.20
		11/4/2020	1087.75		17.12		1070.63
		3/9/2021	1087.75		20.56		1067.19
		5/6/2021	1087.75		20.53		1067.22
		7/27/2021	1087.75		18.06		1069.69
		11/29/2021 1/27/2022	1087.75 1087.75		16.87 19.08		1070.88 1068.67
		3/25/2022	1087.75		21.44		1066.31
		6/21/2022	1087.75		19.48		1068.27
		7/21/2022	1087.75		18.36		1069.39
MW-11	15-29.5	2/25/2020	1088.99	22.50	22.61	0.11	1066.47
		4/1/2020	1088.99	25.52	25.79	0.27	1063.42
		6/4/2020	1088.99		22.74		1066.25
		7/30/2020	1088.99	20.34	20.36	0.02	1068.65
		9/4/2020	1088.99		19.34		1069.65
		11/4/2020	1088.99	19.65	19.66	0.01	1069.34
		3/9/2021	1088.99	23.25	23.53	0.28	1065.68
		5/6/2021	1088.99	23.22	23.28	0.06	1065.76
		7/27/2021	1088.99	10.52	19.69		1069.30
		11/29/2021 3/25/2022	1088.99 1088.99	19.53 23.54	19.55 23.82	0.02 0.28	1069.46 1065.39
		4/15/2022	1088.99	23.34	23.82	0.20	1064.93
		6/21/2022	1088.99		22.04		1066.95
		7/21/2022	1088.99	21.28	21.31	0.03	1067.70
MW-12	15-29.4	2/25/2020	1088.44	24.15	28.05	3.90	1063.51
		4/1/2020	1088.44	25.43	27.91	2.48	1062.51
		6/4/2020	1088.44	22.32	23.10	0.78	1065.96
		7/30/2020	1088.44	19.75	22.65	2.90	1068.11
		9/4/2020	1088.44	18.46	24.29	5.83	1068.81
		11/4/2020	1088.44	19.01	27.87	8.86	1067.66
		3/9/2021	1088.44	23.36	27.70	4.34	1064.21
		5/6/2021	1088.44	22.54	27.73	5.19	1064.86
		5/27/2021 7/27/2021	1088.44 1088.44	22.82 19.70	22.98 19.87	0.16 0.17	1065.59 1068.71
		9/2/2021	1088.44	19.70	19.87	0.17	1068.71
		9/16/2021	1088.44	19.21	19.44	0.25	1069.38
		11/29/2021	1088.44	19.86	23.75	3.89	1067.80
		1/27/2022	1088.44		24.63		1063.81
		2/25/2022	1088.44		24.23		1064.21
		3/25/2022	1088.44	24.53	27.98	3.45	1063.22
		4/15/2022	1088.44	24.88	27.96	3.08	1062.94
		6/21/2022	1088.44	21.82	23.18	1.36	1066.35
		7/21/2022	1088.44	21.67	22.03	0.36	1066.70

Coleman Oil: 1 East I St., Yakima, WA

PBS Project No. 41392.000

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to NAPL (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-13	15-26	11/4/2020	1087.42		18.36		1069.06
		3/9/2021			21.93		
		5/6/2021			21.78		
		7/27/2021	1087.42		18.30		1069.12
		11/29/2021	1087.42		18.42		1069.00
		3/25/2022	1087.42		23.88		1063.54
		6/21/2022	1087.42		20.68		1066.74
		7/21/2022	1087.42		18.97		1068.45
MW-14	15-30	11/4/2020	1086.98		19.29		1067.69
		3/9/2021			23.19		
		5/6/2021			22.01		
		7/27/2021	1086.98		18.34		1068.64
		11/29/2021	1086.98		19.75		1067.23
		3/25/2022	1086.98		23.99		1062.99
		6/21/2022	1086.98		20.63		1066.35
		7/21/2022	1086.98		19.21		1067.77
MW-15	15-30	5/6/2021			21.69		
		7/27/2021	NA*		18.05		NA*
		9/2/2021	NA*		17.25		NA*
		11/29/2021	NA*		17.70		NA*
		2/25/2022	NA*		23.98		NA*
		3/25/2022	NA*		22.93		NA*
		4/15/2022	NA*		23.30		NA*
		6/21/2022	NA*		20.26		NA*
		7/21/2022	NA*		18.93		NA*
MW-16	15-30	3/25/2022	NA*		25.00		NA*
		6/21/2022	NA*		20.66		NA*
		7/21/2022	NA*		19.32		NA*
MWBNSF1	unknonwn	3/9/2021			25.05		
		5/6/2021			24.68		
		7/27/2021	NA*		20.85		NA*
		9/2/2021	NA*		20.08		NA*
		11/29/2021	NA*		21.41		NA*
		3/25/2022	NA*		26.46		NA*
		7/21/2022	NA*		21.69		NA*

Notes:

-- = no product measured in the well

--* = measurement error

NA* = TOC and/or groundwater elevation not known due to broken well casing or not surveyed

Abbreviations & Acronyms:

ft = feet

btoc = below top of casing

amsl = above mean sea level

napl = non-aqueous phase liquid

^a POT_ELEV = TOC_ELEV - [DTW - (PTH * PD)] where:

POT_ELEV = potentiometric surface elevation

TOC_ELEV = top of casing elevation

DTW = depth to water

PTH = product thickness

PD = product density (0.8)

TABLE 5 SUB-SLAB SOIL GAS ANALYTICAL RESULTS

Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

				F	lesults (μg,	/m³)							
			ТРН				Volatile and Semi-Volatile Compounds						
Sample Location	Date	Helium ^a (%)	Aliphatic Hydrocarbons (EC5-8)	Aliphatic Hydrocarbons (EC9-12)	Aromatic Hydrocarbons (EC9-10)	TPH (aliphatic C5-C12)	Benzene	Toluene	Ethylbenzene	Xylene-o	Xylene-m,p	Naphthalene	
Adopted	Criteria ^b	NA	NE	NE	NE	1,500	11	76,000	15,000	1,500	1,500	2.45	
VB1	November 4, 2020	<0.6	<150	200	<92	350	<1.2	<70	<1.6	<1.6	5	<0.97	

µg/m³ - micrograms per cubic meter

TPH - Total Petroleum Hydrocarbons

APH - Air-phase Hydrocarbons (C5-C8 Aliphatics, C9-C12 Aliphatics, C9-C10 Aromatics)

NA - not applicable

NE - not established for this compound

<0.078 - not detected above laboratory method detection limit of 0.78 μ g/m³

Bold indicates exceedance of Screening Level

^aWashington State Department of Ecology's Guidance for Evaluating Soil Vapor Intrusion in Washington State refers users to the Revised California Active Soil Gas Sampling Advisory for developing site soil gas sampling plans. Per the California Guidance, an ambient air leak up to 5% is acceptable if quantitative tracer testing is performed by shrouding.

^bWashington State Department of Ecology Model Toxics Control Act (MTCA) Method B Clean Up for indoor air is used to develop this Screening Level for Sub-Slab Soil Gas using an attenuation factor of 0.03 per guidance in Memorandum 18 (Ecy doc. 17-09-043: May 2018).

TABLE 6 MULTIPHASE EXTRACTION SUMMARY

Coleman Oil: 1 East I St., Yakima, WA

PBS Project No. 41392.000

MPE	Product Inickness (feet)					Removal Volume ² (gallons)									
Event Date	RW1	MW3	MW12	MW15	MW1	MW2	RW1	MW3	MW12	MW15	MW1	MW2	Totals		
10.5.16	6.2	5.6	-	-	5.27	0	184	158	-	-	52	0	394		
10.20.16	3.16	5.36	-	-	2.79	0	1500	178	-	-	94	0	458		
11.2.16	2.8	5.17	-	-	1.19	0	280	266	-	-	154	0	700		
12.29.16	-	-	-	-	-	-	93	101	-	-	78	186	458		
1.20.17	3.08	4.9	-	-	3.71	0.16	15	15	-	-	15	15	60		
2.2.17	2.49	3.11	-	-	1.1	0	51	51	-	-	51	0	153		
3.21.17	3.81	4.04	-	-	3.56	0	64	60	-	-	60	0	184		
4.4.17*	2.62	3.5	-	-	0.24	0	20	30	-	-	30	0	140		
4.20.17**	1.27	3.88	-	-	0.37	0	64	105	-	-	63	0	274		
5.8.17	1.45	4.28	-	-	0.39	0	230	221	-	-	74	0	525		
5.25.17	0.71	4.36	-	-	0.21	0	224	74	-	-	224	0	522		
2.12.20	0.42	0.79	-	-	-	-	223	224	-	-	0	0	447		
9.11.20	0.25	0	-	-	-	-	248	247	-	-	0	0	495		
9.21.20	0.11	0	-	-	-	-	225	225	-	-	0	0	450		
3.9.21	1.44	0.89	4.34	-	0.08	0.05	118	58	58	-	0	0	235		
5.6.21	0.2	0.41	5.19	-	0	0.06	145	63	42	-	0	0	250		
5.27.21	0.31	0.21	0.16	-	-	-	163	72	90	-	0	0	325		
6.18.21	0	0		0	0	0	84	83	0	83	0	0	250		
12.21.21	0	0	_	-	0	0	67	77	67	38	0	0	250		
1.27.22	0	0.19	0	-	0	0	110	80	60	0	0	0	250		
2.25.22	0	0	0	0	-	-	125	28	28	69	0	0	250		
3.25.22	0.13	0.46	3.45	0	0.12	0	65	65	130	65	0	0	325		
4.15.22	0.95	0.08	3.08	0	0.14	0	87	87	87	0	0	0	260		
5.22.22			Unkr	nown			62	62	62	62	0	0	250		
6.21.22	0	1.23	1.36	0	-	-	83	83	83	0	0	0	250		
7.18.22	0	1.38	0.18	0	-	-	50	100	50	50	0	0	250		
						Totals:	4580	2813	757	367	895	201	8405		

1 - measured prior to vacuum extraction

2 - combination of LNAPL product and contaminated groundwater

* - also pumped 30 gallons of water and product from each MW4 and MW5

** - also pumped 42 gallons of water and product from MW4

TABLE 7 PRODUCT RECOVERY FROM IN-WELL SORBENTS

Coleman Oil: 1 East I St., Yakima, WA

Data		Prod	luct Thick	iness		Removal (gal)						
Date	RW1	MW3	MW5	MW8	MW12	RW1	MW3	MW5	MW8	MW12		
7.28.21	0.00	0.20	0.09	0.20	0.17	Initial Sorbent Deployment						
8.6.21	-	-	-	-	-	-	######	0.077	0.064	0.075		
8.19.21	-	-	-	-	-	-	0.086	0.077	-	0.082		
9.2.21	0.00	0.00	0.00	0.00	0.23	-	-	-	-	0.073		
9.16.21	0.00	0.00	0.00	0.00	0.30	0.042	0.075	0.069	0.018	0.076		
11.29.21	0.00	0.00	0.00	0.00	3.89	0.063	0.067	0.081	-	0.078		
12.21.21	0.00	0.00	0.00	-	-	0.013	0.043	0.065	0.053	0.057		
4.15.2022	0.95	0.08	0.40	0.27	3.08							
Total						0.117	1500.27	0.37	0.136	0.44		

Appendix A Soil Boring and Well Construction Logs

	DDC		_EMAN 1 EAST (IMA, V	' I STR	EET			BORING RW-1
-	PBS	PBS	S PROJ 413	ECT NU 92.000		:		BORING RW-1 LOCATION: (See Site Plan)
	MATERIAL DESCRIPTION		GROUND- WATER	(MPR) (MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
	ASPHALT Loose dark gray poorly graded G (GP) with sand; medium sand; fin subangular gravel; moist	RAVEL						- 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill - 4-inch PVC blank casing
5.0		· · · · · · · · · · · · · · · · · · ·	-				80	← Hydrated Bentonite Seal
	Well graded SAND (SW) with silt and cobbles; dark gray brown; loc coarse sand; coarse subrounded cobbles up to 4"; moist.	ose: fine to	-	0.0			_	Sand Filter Pack
15.0	- grades to dense - grades to wet		 - 4/27/2016 Y_ 	820			95	
20.0			-				_	4-inch 0.010-slotted PVC scree
25.0-			-	0.0			95	
30.0	Final depth 30.0 feet bgs; Grou encountered at approximately 1	ndwater 8 feet						

		DDC		OLEMAN 1 EAST ′AKIMA, V	' I STR	EET			BORING MW-1
		PBS	F	PBS PROJI 413	ECT NU 92.000		:		BORING MW-1 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) UIA	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 — - - 5.0 —		ASPHALT Silty SAND (SM) with sand and g brown; moderate plasticity; fine sa subrounded gravel; moist; [FILL].	ravel; and; fine,	 				90	S-inch x 12-inch flush-mount monument with 1 foot of concrete backfill S-inch PVC blank casing
- - - 10.0		Well graded SAND (SW) with silt and cobbles to 4"; fine to coarse coarse, subrounded gravel; moist	sand;	-	0.0			_	← Hydrated Bentonite Seal
- - 15.0 — -	• • • • • • • • • • • • • • • • • • •	- grades to wet		- - - - - 4/27/2016	1000			95	← Sand Filter Pack
- 20.0 — - -	• • • • • • • • • • • • • • • • • • •			- ¥ - - -				95	2-inch 0.010-slotted PVC screen
- 25.0 — -		Final depth 25.0 feet bgs; Grou encountered at approximately 1	ndwater 8 feet	-	25				
- 30.0 —	-			-					
DRILLED	BY: H	OD: Sonic Drilling olt Services AMETER: 8-inch		LOGG COMPL	ED BY: I .ETED: 4	V. Bagle 4/27/16	ey.		·

		DDC		LEMAN 1 EAST KIMA, V	' I STR	EET			BORING MW-2
		PBS	PB	S PROJ 413	ECT NU 92.000		:		BORING MW-2 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) UIA	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT Silty SAND (SM) with gravel; brow moderate plasticity; fine sand; fine subrounded gravel; moist; [FILL].	/ vn;) ,	-					 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank casing
- 5.0 — -				-				70	← Hydrated Bentonite Seal
- - 10.0 —		Well graded SAND (SW) with silt and cobbles to 4"; gray; medium plasticity; fine to coarse sand; coa subrounded gravel; moist.	, gravel, dense; low arse,	-	0.0			_	
- - 15.0 —				-				99	Sand Filter Pack
- - 20.0 —		- grades to wet		- 4/27/2016 - <u> </u>	0.0			_	2-inch 0.010-slotted PVC screen
-				-	76			95	
25.0 — _ _	<u>.</u>	Final depth 25.0 feet bgs; Grou encountered at approximately 1	indwater I8 feet	-					
 30.0				-					
DRILLED	BY: H	DD: Sonic Drilling olt Services AMETER: 8-inch		LOGG COMPL	ED BY: I ETED: 4	V. Bagle 4/27/16	ey .		

		DDC		LEMAN 1 EAST KIMA, V	I STR	EET			BORING MW-3
		PBS	PB	S PROJ 413	ECT NL 392.000		:		BORING MW-3 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) UIA	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT Silty SAND (SM) with gravel; brow moderate plasticity; fine sand; fine subrounded gravel; moist; [FILL].	ć	-					 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank casing
 5.0 		Well graded GRAVEL (GW) with gray; fine to course sand; fine to course sand; fine to course subrounded gravel; damp.	sand; course	-				80	← Hydrated Bentonite Seal
- 10.0 — - -		Well graded SAND (SW) with silt and cobbles; gray; loose; fine to c sand; coarse, subrounded gravel	, gravel, xoarse ; moist.	-				95	
- - 15.0 — -	· · · · · · · · · · · · · · · · · · ·	- wet; color change to gray/blac up to 5"	k, cobbles	_ _ _ _ 4/27/2016	1200			_	← Sand Filter Pack
- 20.0 — -	· · · · · · · · · · · · · · · · · · ·			- Y - - -	464			95	2-inch 0.010-slotted PVC screer
- 25.0 — -		Final depth 25.0 feet bgs; Grou encountered at approximately 1	indwater 18 feet	-	418				
- 30.0 —	-			-					
RILLED	BY: H	OD: Sonic Drilling olt Services AMETER: 8-inch		LOGG COMPL	L ED BY: I LETED: 4	и. Bagle 4/27/16	ey		1

BORING LOG-ENV CORE 41392.000 MW1-12 RW1 - COPY.GPJ DATATMPL.GDT PRINT DATE: 1/11/21:JW

		DDC		DLEMAN 1 EAST AKIMA, V	' I STR	EET			BORING MW-4
		PBS	PE	BS PROJ 413	ECT NU 892.000		:		BORING MW-4 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) (MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Silty SAND (SM) with gravel, and brown; loose; fine sand; coarse, subrounded gravel; moist; [FILL].		-	0.0			90	- 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill - 2-inch PVC blank casing
5.0 — - -		Well graded SAND (SW) with gra cobbles; gray; medium dense; fin coarse sand; coarse, subrounded moist	avel and e to d gravel;	-	15	MW-4		-	+ Hydrated Bentonite Seal
- 10.0 — - -				-	0.0			90	
- - 15.0 — - -	· · · · · · · · · · · · · · · · · · ·			- - - - 11/8/2016	3.0			50	← Sand Filter Pack
- 20.0 — -	••••••••••••••••••••••••••••••••••••••	wet		- <u> </u>	220			100	2-inch 0.010-slotted PVC screen
- - 25.0 — - -		Final depth 25.0 feet bgs; Groundwater encountered at a 18 feet	pproximately	-	300+				
- 30.0 —	-			-					
DRILLED	BY: H	DD: Sonic Drilling olt Services AMETER: 8-inch		LOGG COMPI	ED BY: I _ETED:	VI. Bagle 11/08/17	ey 7		·

		DDC		OLEMAN 1 EAST AKIMA, V	' I STR	EET			BORING MW-5
		PBS	P	BS PROJ 413	ECT NU 92.000		:		BORING MW-5 LOCATION: (See Site Plan)
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) UIA	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Silty SAND (SM) with gravel and brown; moderate plasticity; fine sa coarse, subrounded gravel; moist	and;	-				70	 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank casing
-		Well graded SAND (SW) with gra cobbles; gray; medium dense; fin coarse sand; coarse, subrounded moist.	e to	-	0.0				·← Hydrated Bentonite Seal
10.0 — - - - 15.0 —				-				70	Sand Filter Pack
- - - 20.0	• • <td>wet</td> <td></td> <td>- 11/8/2016 -</td> <td>15</td> <td>MW-5a</td> <td></td> <td>_</td> <td>2-inch 0.010-slotted PVC screen</td>	wet		- 11/8/2016 -	15	MW-5a		_	2-inch 0.010-slotted PVC screen
- 25.0 — -		color change to gray/black Final depth 25.0 feet bgs; Grou encountered at approximately 1	indwater 18 feet	-	250+			90	
- - 30.0 —	-			-					
RILLED	BY: H	OD: Sonic Drilling olt Services AMETER: 8-inch			ED BY: I ETED:				

BORING LOG-ENV CORE 41392.000 MW1-12 RW1 - COPY.GPJ DATATMPL.GDT PRINT DATE: 1/11/21:JW

		DDC		LEMAN 1 EAST KIMA, V	' I STR	EET			BORING MW-6
		PBS	PB	S PROJ 413	ECT NU 892.000		:		BORING MW-6 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) (MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Silty SAND (SM) with gravel, and brown; loose; moderate plasticity; fine, subrounded gravel; moist; [F	fine sand;	-				100	 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank casing
- 5.0 —		Well graded SAND (SW) with gra cobbles; gray; medium dense; fin coarse, subrounded gravel; moist	e sand:	-	0.3			-	a Understad Partonite Seel
-				-	73	9-MM		100	← Hydrated Bentonite Seal
10.0 - - -				-	13	×		_	Aaa Aaa → Sand Filter Pack
	• • • • • • • • • • • • • • • • • • •	wet		- 11/8/2016 - <u>¥</u>	300+			90	
- 20.0 — -				-				90	2-inch 0.010-slotted PVC screen
- - 25.0 — -		Final depth 25.0 feet bgs; Groundwater encountered at a 17 ft	pproximately	-	300+				
- - 30.0 —	-			-					
DRILLED	BY: H	OD: Sonic Drilling olt Services AMETER: 8-inch		LOGG COMPL	 ED BY: I _ETED: '	I VI. Bagle 11/08/17	y ,	<u> </u>	I

		PBS	YA	LEMAN 1 EAST KIMA, V S PROJ	F I STR VASHI ECT NI	EET <u>NGTOI</u> JMBER	N		BORING MW-7 BORING MW-7 LOCATION: (See Site Plan)
-				413	392.000				
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTI	ON	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —	X	R- 75 L I	/						← 5-inch x 12-inch flush-mount
-		Silty SAND (SM) with gravel; tan b medium dense; fine sand; fine to o	coarse	-	0.0				monument with 1 foot of concrete backfill
-		subrounded gravel up to 1.5"; mo plasticity; [FILL].	ist; no	-	0.0			100	
-				-	0.0				
-				-	0.0				
5.0 —		Well graded SAND (SW) with gra	vel: tan	\vdash	0.0			-	
-		Well graded SAND (SW) with gra brown; fine to coarse sand; fine to subrounded to subangular gravel;	coarse	_	0.2	3.5			
-		subrounded to subangular gravel;	uamp.	-	0.0	MW-7-6.5			
-		aabblaa @ º'		_	0.0	Σ		100	 Hydrated Bentonite Seal 2-inch PVC blank casing
-		cobbles @ 8'		L	0.0				
10.0 —				L_	0.0			_	
_				_	0.6				
_					0.0				
					0.0			100	
	•••••				0.0				
-									
15.0 —		moist at 15'.			0.2	16		-	
-				-	0.0	MW-7-16			
-				-	0.0	2		100	
-				-	0.0				
-				_	0.0				
20.0 —		cobbles @ 20'; wet; color chang	ge to gray.	-	0.0			-	
-				-	0.0				Sand Filter Pack
-				_	0.0			100	2-inch 0.010-slotted PVC scre
-				-	0.0			100	
-				-	0.0				
25.0 —				<u> </u>	0.0			_	
-				-	0.0				
-				Ļ	0.1				
-				Ļ	0.1			100	
_					0.0				
30.0 —	•••••				-0.1-				
-		Final depth 30.0 feet bgs.		_					
RILLED	BY: H	OD: Sonic Drilling lolt Services IAMETER: 4-inch			ED BY: I LETED:)		

		DDC		LEMAN 1 EAST KIMA, V	I STR	EET			BORING MW-8
		PBS	PE	3S PROJ 413	ECT NU 392.000		:		BORING MW-8 LOCATION: (See Site Plan)
EPTH EET	GRAPHIC LOG	MATERIAL DESCRIPTI	ON	GROUND- WATER	(MPR) DIA	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Gray rock chips; FILL							- 5-inch x 12-inch flush-mount monument with 1 foot of
-	XXX	Silty SAND (SM); tan brown; med dense; non-plastic; fine sand; fine subrounded gravel; moist; [FILL].	ium ,	-	0.1				concrete backfill
-				-	0.1				
5.0 —					0.1				
_				-					Hydrated Bentonite Seal
-		Well graded SAND (SW) with gra large cobbles; brown; dense; fine sand; coarse, subangular gravel; I	to coarse		0.1				
10.0 —				-	0.1 0.4				
-						MW8-11			
-		increased percentage gravel fro	m 9 - 14'			2			
-				-	2.8				
15.0 —				-	2.2				
-				-					
-					478				
_				_	809				
20.0 —		Color change to brown; wet		-					very strong petroleum odor;
-		••••••••••••••••••••••••••••••••••••••		-	701				heavy sheen.
-				-					2-inch 0.010-slotted PVC scre
-					80				
25.0 —					1.7				
-		Increased percentage gravel or	obbles and	-					
-		Increased percentage gravel, co boulders from 23 - 30'		-	0.9				
-				-					
- 30.0					1.9				
		Final depth 30 feet bgs.		_					
	ИЕТН	OD: Sonic Drilling			ED BY: I	P Brice			

VAKIMA, WASHINGTON DORING MV-9 LOCATION: (See Site Play) PBS PROJECT MUMBER: STREAM BORING MV-9 LOCATION: (See Site Play) DEFT: FEET (See FEET) (SeE FEET) (SeE FEET)			DDC		1 EAST	I OIL - ` I I STR VASHI	EET			BORING MW-9
0.0 Sity SAND (SM); brown; medium dense; non-plastic, fine sand, fine gravel, dry -				PBS				:		BORING MW-9 LOCATION: (See Site Plan)
 Siny SAND (SM); brown; medium dense; (dr) (FIL). Solution (SM) with gravel and (cobies to 4'; gray brown; dense; non- plastic; fine to coarse sand; coarse, subrounded gravel; dry Out Out		GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
5.0 •<	0.0 —		non-plastic; fine sand; fine gravel;	dense; dry	-					monument with 1 foot of concrete backfill
10.0 - 0.0 - 0.0 10.0 - 0.1 1.6 15.0 Becomes very moist - 0.1 15.0 Grades to medium to coarse sand and becomes wet - 0.1 20.0 - 0.1 - 25.0 - 0.1 - 25.0 - 0.1 - 25.0 - 0.1 - 25.0 - 0.1 - 25.0 - 0.1 - 25.0 - 0.1 - 25.0 - 0.1 - 25.0 - 0.1 - 25.0 - 0.1 -	- 5.0 — -		cobbles to 4": grav brown: dense:	non-	-	0.0				
15.0 Becomes very moist 16.0 Grades to medium to coarse sand and 20.0 Grades to medium to coarse sand and	_		subrounded gravel; dry.	σ,	_	0.0				 Hydrated Bentonite Seal
Becomes very moist 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.1	10.0	•••••			 					
20.0 - Grades to medium to coarse sand and becomes wet 20.0 - Grades to medium to coarse sand and - 0.1 20.0 - Grades to medium to coarse sand and - 0.1 20.0 - Grades to medium to coarse sand and - 0.1 20.0 - Grades to medium to coarse sand and - 0.1 -	_				-					
20.0 becomes wet 20.0 becomes	15.0 — – –		Becomes very moist		-	0.1				slight petroleum odor
25.0 - Color change to light brown Color change to light b	- 20.0	•••••		and and	_	0.1				
25.0 0.0 0.1 - 0.1 - 0.1 - 0.1	-				_	0.2				
color change to light brown	- 25.0 — -				- 	0.0				slight petroleum odor
	_		color change to light brown		_					
	- 30.0 —	· · · · · · · · · · · · · · · · · · ·			-	0.1				

X		PBS		DLEMAN 1 EAST AKIMA, V	I STR	EET			BORING MW-10
1			Pl	BS PROJ 413	ECT NU 392.000		:		BORING MW-10 LOCATION: (See Site Plan)
EPTH -EET	GRAPHIC LOG	MATERIAL DESCRIPTI	ON	GROUND- WATER	DIA (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT; FILL							5-inch x 12-inch flush-mount
		Silty SAND (SM); dark red-brown; dense; non-plastic; fine sand; fine moist; [FILL].	medium gravel;	-	0.7 0.3	MW10-2			
- 5.0 —		Grades to dense with coarse, so gravel	ubrounded						
-		Well graded SAND (SW) with gra large cobbles; gray-brown mediun non-plastic; fine to coarse sand; c subangular gravel; dry	n dense;		0.2				+ Hydrated Bentonite Seal
_		- Becomes surounded gravel		-					
- 10.0 —				-	0.3				
-	••••• •••• ••••			-	0.6				slight petroleum odor
	•••••			-	0.5	4			
- 15.0 — -	•••••	color change to brown		-	0.5	MW10-14			
-				-	0.5				
20.0 —	· · · · · · · · · · · · · · · · · · ·	increased percentage coarse ve fining upwards sequence.	s fine sand;	-					
	· · · · · · · · · · · · · · · · · · ·			-	0.3				Sand Filter Pack
-				-	0.3				2-inch 0.010-slotted PVC scre
25.0 —				_	0.3				
-				-	0.3				slight petroleum odor
30.0 —	•••• •••• ••••	Final depth 30.0 feet bgs.		-	0.4				
		OD: Sonic Drilling olt Services			ED BY: I				

EEET 8 S Image: Solution of the second			DDC		LEMAN 1 EAST KIMA, V	I STR	EET			BORING MW-11
0.0 32 Well sorted GRAVEL (GW); tan: coarse sand; fine to coarse subrounded gravel; damp. (FLL) 5.0 5.0 5.0 5.0 5.0 Coarse subrounded gravel; damp. 0.0 0.0 0.0 0.0 5.0 Coarse subrounded gravel; damp. 0.0 0.0 0.0 10.0 Cobbes from 5 - 10' 0.0 0.0 0.0 10.0 Cobbes from 5 - 10' 0.0 0.0 0.0 10.0 Cobbes from 5 - 10' 0.0 0.0 10.0 Well graded GRAVEL (GW) with sand; gray from; fine to coarse sand; fine to gray from; fine to coarse sand; fine to most. 0.0 0.0 10.0 Well graded GRAVEL (GW) with sand; gray from; fine to coarse sand; fine to gray from; fine to coarse sand			FD3	PB				:		
Weil sorted GRAVEL (GW) tan; coarse gates subranded gravel; damp; [FLL]. 0.0 0.0 0.0 Store to back (B) with gravel; brown; medium dense; fine s and; coarse gates backdill 0.0 0.0 0.0 Store to back (B) with gravel; dark brown to black, fine to coarse sand; fine to coarse subangular to subrounded gravel; damp. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0		GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) (MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	
Simedium dernse; fine sand; coarse 0.0 0.0 Weil sorted SAND (SW) with gravel; dark brown to black; fine to coarse sand; fine to coarse subangular to subrounded gravel; damp. 0.0 0.0 0.0 5.0 cobbles from 5 - 10' 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 Weil graded GRAVEL (GW) with sand; gray brown; fine to course subangular to subrounded gravel; moist. 0.0 0.0 0.0 10.0 Weil graded GRAVEL (GW) with sand; gray brown; fine to course sand; fine to moist. 0.0 0.0 0.0 10.0 increased percentage gravel from 10 - 18' 0.0 0.0 0.0 0.0 15.0 boulder at 15'; cobbles from 15 - 18'. 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <	0.0		sand; fine to coarse subrounded (damp; [FILL].	gravel;	_					monument with 1 foot of
bown to black; fine to coarse subangular to subrounded gravel; cobbles from 5 - 10' cobbles from 5 - 10' Well graded GRAVEL (GW) with sand; gray brown; fine to course sand; fine to course subangular to subrounded gravel; molt. 10.0 Well graded GRAVEL (GW) with sand; gray brown; fine to course sand; fine to course subangular to subrounded gravel; molt. 10.0 Well graded SAND (SW) with gravel; tan boulder at 18'. 0.0 Well graded SAND (SW) with gravel; tan boulder at 18'. 0.0 10.0 0.0 1	-		medium dense; fine sand; coarse subrounded gravel; moist. Well sorted SAND (SW) with grav	/el; dark	-	0.0			100	
cobbles from 5 - 10' 0.0 - 0.0 - 0.0 -	5.0 —		brown to black; fine to coarse san coarse subangular to subrounded	id; fine to		0.0	-11-5.5		-	
10.0 Well graded GRAVEL (GW) with sand; gray brown; fine to course subtrounded gravel; moist. 0.0 0.0 - 0.0 15.0 - 0.0 - 0.0 - 0.0 15.0 - 0.0 - 0.0 - 15.0 - 0.0 - 0.0 - 15.0 - 0.0 - 0.0 15.0 - 0.0 - 0.0 15.0 - 0.0 - 0.0 15.0 - 0.0 - - 15.0 - 0.0 - - 15.0 - 0.0 - - 20.0 - 0.0 - 1.1 15.0 - 0.0 - 0.0 20.0 - 0.0 - 1.1 20.0 - 0.0 - 1.1 20.0 - 0.0 - 1.00 20.0 - 0.0 - 1.00 20.0 - 1.5 - 2.00 20.0 - 1.5 - 1.00 20.0 - 1.5 - 2.00 - 0.3 <td>-</td> <td></td> <td>cobbles from 5 - 10'</td> <td></td> <td>_</td> <td>0.0</td> <td>MW</td> <td></td> <td>100</td> <td>2-inch PVC blank casing</td>	-		cobbles from 5 - 10'		_	0.0	MW		100	2-inch PVC blank casing
and proving fine to course sand; fine to course subrounded gravel; most. 15.0 0.0	- 10.0 —				-	0.0			_	
15.0 increased percentage gravel from 10 - 18' 0.6 - - 15.0 boulder at 15'; cobbles from 15 - 18'. 0.6 - - 20.0 boulder at 18'. 0.0 100 100 20.0 Well graded SAND (SW) with gravel; tan brown; fine to course sand; course subangular gravel; wet. 0.3 - - 20.0 Well graded SAND (SW) with gravel; tan brown; fine to course sand; course subangular gravel; wet. 0.3 - - 20.0 boulder at 25' - 0.0 100 - - 25.0 boulder at 25' - 16.7 - - - 0.0 - 0.3 - - - - - 25.0 boulder at 25' - 0.3 -	-		gray brown; fine to course sand; f course subangular to subrounded	ine to	_		11-12			
15.0 boulder at 15'; cobbles from 15 - 18'. 0.6 - 0.0 0.0 100 boulder at 18'. 0.0 100 20.0 Well graded SAND (SW) with gravel; tan brown; fine to course sand; course subangular gravel; wet. 0.3 - 20.0 0.0 1.1 - - 20.0 Well graded SAND (SW) with gravel; tan brown; fine to course sand; course subangular gravel; wet. 0.3 - 20.0 0.0 1.1 - - 20.0 5 and Filter Pack - - 20.0 - 0.0 100 - 25.0 boulder at 25' - 23.9 - - 25.0 - 0.3 - 100 - 25.0 - 0.3 - - - 25.0 - 0.3 - - - 25.0 - 0.3 - - - 25.0 - 0.3 100 - - 25.0 - 0.3 - - - 25.0 <td>-</td> <td></td> <td>increased percentage gravel fro</td> <td>om 10 - 18'</td> <td>_</td> <td></td> <td>-WM</td> <td></td> <td>100</td> <td></td>	-		increased percentage gravel fro	om 10 - 18'	_		-WM		100	
boulder at 18'. Weil graded SAND (SW) with gravel; tan brown; fine to course sand; course subangular gravel; wet. 20.0 boulder at 25' increased percentage coarse vs fine sand 0.0 - 0.0 - 0.0	15.0 —								-	
20.0 Well graded SAND (SW) with gravel; tan brown; fine to course sand; course subangular gravel; wet. 1.1 0.3 - 8.3 - Sand Filter Pack 20.0 - 0.0 - 0.0 100 - Sand Filter Pack 25.0 boulder at 25' - 1.5 - - 100 -	-		boulder at 18'.		-				100	
25.0 boulder at 25' increased percentage coarse vs fine sand - 0.0 - 1.5 - 23.9 - 23.9 - 16.7 - 0.6 - 0.3 - 2.2 - 0.0 - 1.5 - 16.7 - 0.3 - 0.3 - 0.0 -	- 20.0		Well graded SAND (SW) with gra brown; fine to course sand; cours	vel; tan e	- -				_	
25.0 - boulder at 25' increased percentage coarse vs fine sand - 0.0 - 1.5 - 23.9 - 16.7 - 0.6 - 0.3 - 2.2	-				_				100	Sand Filter Pack
boulder at 25' increased percentage coarse vs fine sand - 0.6 - 0.3 - 2.2	-				_				100	
	25.0 —			s fine sand	-				-	
	-								100	
	- 30.0—		Final depth 30.0 feet bgs.		-				100	

		DDC		LEMAN 1 EAST KIMA, V	I STR	EET			BORING MW-12
		PBS	PB	S PROJ 413	ECT NU 392.000		:		BORING MW-12 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) (MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Poorly graded GRAVEL (GP); coa coarse subrounded gravel; damp; Silty SAND (SM) with gravel; tan b medium stiff; fine sand; fine to coa subrounded gravel; damp.	; [FILL]. prown;	-	0.0 0.0 0.0			100	 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill
- 5.0 - -		Well graded SAND (SW) with gra brown; fine to coarse sand; fine to subangular to subrounded gravel; damp.	o coarse	+ 	0.0 0.0 0.0 0.0 0.0	MW-12-6		100	← 2-inch PVC blank casing Hydrated Bentonite Seal
- 10.0 — -		Well graded GRAVEL (GW) with fine to course sand; fine to course subrounded gravel; cobbles; dam	;	-	0.0 0.0 0.0 0.0	MW-12-14			
- - 15.0 — -		Well graded SAND (SW) with gra brown; fine to coarse sand; fine to subangular to subrounded gravel; damp.	vel; tan o coarse ; cobbles;	-	0.1 0.6 0.3 0.1 0.1	M		_	
- - 20.0 — -		Well graded GRAVEL (GW) with gray; medium to coarse sand; coa subangular to subrounded gravel.	arse	-	0.3 0.1 71.1 44.7 63.9			100	Sand Filter Pack
- - 25.0 — -				-	562.3 676 869 1189			100	strong petroleum odor 23 to 30'
- - 30.0 —		Final depth 30.0 feet bgs.		-	1077 225 7.8 			100	
DRILLED	BY: H	OD: Sonic Drilling olt Services AMETER: 4-inch			ED BY: I				

BORING LOG-ENV CORE 41392.000 MW1-12 RW1 - COPY.GPJ DATATMPL.GDT PRINT DATE: 1/11/21:JW

		DDC		LEMAN 1 EAST KIMA, V	I STR	EET			BORING MW-13
		PBS	PB	S PROJ 413	ECT NU 392.000		:		BORING MW-13 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) (MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		2" ASPHALT; FILL. Poorly graded GRAVEL (GP); fin coarse sand; fine to coarse subar gravel; moist; road base [FILL]. Brown Silty SAND (SM) with grav coarse sand; fine to coarse subar gravel; moist. Gray to brown well graded SAND	ngular rel; fine to ngular	-	0.0			100	 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill
5.0	· · · · · · · · · · · · · · · · · · ·	with gravel; fine to coarse sand; fi coarse subangular gravel; dry.	ne to	-	0.0 0.0 0.0	MW-13-5		100	← 2-inch PVC blank casing ← Hydrated Bentonite Seal
10.0		Medium stiff brown Silty SAND (S gravel; fine to coarse sand; coars subrounded gravel; moist. Well graded GRAVEL (GW) with gray; fine to coarse sand; fine to coarse	e sand; coarse	-	0.0 0.1 0.0	MW-13-12		100	
15.0 — - - -		subangular gravel; occasional sul cobbles up to 5"; moist.	biounaea	-	0.0			100	PID Malfunction. 17' - 25' Fuel odor; strong at 17 decreasing to faint at 25'.
20.0		Well graded SAND (SW) with gra to brown; fine to course sand; fine course subangular gravel; wet.	avel; gray e to	- - - - ATD				100	Sand Filter Pack
25.0				⊻ - - -				100	
30.0 —		Final depth 30.0 feet bgs; Groundwater encountered at 2	5'.	-				-	
RILLED	BY: H	OD: Sonic Drilling olt Services AMETER: 4-inch			I ED BY: I LETED: 9		1		1

		DDC		DLEMAN 1 EAST AKIMA, V	I STR	EET			BORING MW-14
		PBS	PE	BS PROJ 413	ECT NU 392.000	JMBER	:		BORING MW-14 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) (MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		2" ASPHALT; FILL. Poorly graded GRAVEL (GP); no fine to coarse sand; fine to coarse subangular gravel; dry; road base Medium stiff brown Silty SAND (S occasional gravel; non-plastic; fin- coarse sand; coarse subangular (Boulder at 3.5' Well graded GRAVEL (GW) with sand; fine to coarse sand; fine to subangular gravel; dry.	e [FILL]. GM) with e to gravel; dry. silt and			MW-14-5		100	PID malfunction; no readings. ← 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill
- - - 10.0 —		Fist-sized cobble at 6' Well graded SAND (SW) with gra brown; fine to coarse sand; fine to subangular gravel; dry. 3" cobbles at 6.5' and 7'	avel; gray o coarse					100	← 2-inch PVC blank casing ← Hydrated Bentonite Seal
10.0 — - - 15.0 —	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 <td></td> <td></td> <td>-</td> <td></td> <td>MW-14-13.5</td> <td></td> <td>100</td> <td></td>			-		MW-14-13.5		100	
- - - 20.0 —	• • • • • • • • • • • • • • • • • • •			-				100	
- - -		Well graded GRAVEL (GW) with gray brown; fine to coarse sand; f coarse subangular gravel; occasio subrounded cobbles up to 5"; mo Becomes wet at 23'	onal	-				100	Slight weathered fuel odor.
25.0 — - - -		Fist-sized cobble at 27.5'		-				100	Slight fuel odor.
30.0—		Final depth 30.0 feet bgs; Groundwater encountered at 2	7.5'.	_					
RILLED	BY: H	OD: Sonic Drilling olt Services AMETER: 4-inch			 ED BY: I LETED: \$		<u> </u>		<u> </u>

BORING LOG-ENV CORE 41392.000_MW1-12_RW1 - COPY.GPJ_DATATMPL.GDT_PRINT DATE: 1/11/21:JW

		DDC	1 E.	EMAN (STREI	ET			BORING BH1
		PBS	AKIMA, V BS PRO	NASHI	NGTO JMBEF	N R:		BORING BH1 LOCATION: (See Figure 2)
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTION	GROUND- WATER	DID (MPP)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —	0.0	Coarse rock chips						
- 2.0 — -		Silty SAND (SM) with gravel; reddish brown; no plasticity; fine sand; fine gravel; damp; [FILL].		2.2 8.0	BH1-2			
4.0 —				1.7				
- 6.0 — -		Well graded SAND (SW) with gravel and trace cobbles; light gray; fine to coarse sand; fine to coarse subrounded gravel;		1.8			100	
 		damp.	-	0.5				
10.0 — - - 12.0 —		Silty SAND layer 10-13'; (SM) with gravel; tan brown; fine to coarse sand; fine to	 - -	0.6	12		-	
12.0 — - - 14.0 —		coarse subrounded gravel; damp; fining upwards sequence.	-	0.9	BH1-12			
14.0			-	0.9			100	
- - 18.0 —		color change to gray; transition from damp to moist	-	262				Petroleum odor
- - 20.0 —		increased percentage coarse vs fine sand from 18 - 25'		2.0			-	
- - 22.0 —		transition moist to wet	-	403			100	weathered petroleum odor
- 24.0 —			-	177			100	petroleum odor
- - 26.0 —				1.6			-	weatered petroleum odor; sheen observed on groundwater sample
- - 28.0 — -	-							
- - 30.0 — DRING I		DD: Sonic Drilling		ED BY: F	P. Brice			

		DDC			MAN C				BORING BH2
		PBS	YA PB	KIMA, V S PROJ 413	VASHII ECT NU 392.000	JMBEF	N R:		BORING BH2 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 — 2.0 — 4.0 —		SAND with gravel (SP); tan; coa fine subrounded gravel; moist; [F Silty SAND (SM) with gravel; red brown; no plasticity; fine sand; fin damp; [FILL].	FILL]. Idish		1.0 0.4	BH2-2			
6.0 — - - -		Well graded SAND (SW) with gr trace cobbles; light gray; fine to o sand; fine to coarse subrounded damp.	coarse		0.6			100	
8.0 — - - 10.0 —				- - - -	0.4			_	
- - 12.0 — - -	*** *********************************	Silty SAND layer 10-13'; (SM) tan gray; trace cobbles; fine to snd; coarse subrounded grave fining upwards sequence.	coarse	- - - -	0.7				
14.0 — - - 16.0 —		petroleum odor at 16 feet			758	BH2-14		100	Petroleum odor
- 18.0 		transition from moist to wet							Strong petroleum odor
20.0 — - - 22.0 —		increased percentage coarse v from 13 - 25'	vs fine sand		493 1.5			-	
- - 24.0 -					1.5 1.4			100	weathered petroleum odor 20 - 25 feet
26.0 — - - 28.0 —				- - - -					
- 30.0 BORING M DRILLED	BY: Ho	DD: Sonic Drilling olt Services AMETER: 4-inch			ED BY: F ETED: 1				

		DDC			EMAN (BORING BH3
-		PBS	YA PB	KIMA, V S PROJ	VASHI	NGTO JMBEF	N R:		BORING BH3 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Asphalt and road base		-					
2.0		Silty SAND (SM) with gravel; me reddish brown; no plasticity; fine fine subrounded gravel; moist.	edium stiff; sand;		0.5	-2			
4.0				-	0.0	BH3-2		100	
6.0 — -	••••• ••••• •••••	Well graded SAND with gravel (brown/tan; fine to coarse sand; o subangular gravel; moist.	SW); coarse	-	0.5			100	
- 8.0 — -		color change to reddish brown from subangular to subrounde	; transition d gravel.		0.3				
- - 10.0 — -		transition from moist to dry		- - -	0.3			_	
- - 12.0 — -		Silty SAND layer 10-13' (SM) and cobbles; light gray; mediu sand; coarse subrounded grav fining upwards sequence.	m to coarse	- - - -	0.6				
 14.0 	· · · · · · · · · · · · · · · · · · ·			- - -	0.3	BH3-14		100	
16.0 — - -		transition from moist to wet increased percentage coarse	vs fine sand		0.7				
18.0 — - -				- - -	236				petroleum odor
20.0				 - -	506			-	strong petroleum odor
22.0 — - -				 - -	1668 59			100	
24.0	•••••	increased percentage cobbles		 - -				_	sheen observed on groundwater sample
26.0 — _ _	-			-					
- 28.0 — - -	-			- -					
DRILLED	BY: Ho	DD: Sonic Drilling DI: Services AMETER: 4-inch			ED BY: F _ETED: 1				

		DDC		1 E. I	MAN C	ΞT			BORING BH4
		PBS	YA PB	KIMA, V S PROJ	VASHII	NGTOI JMBEF	N R:		BORING BH4 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —	00	Coarse rock chips. [Fill]		-					
- 2.0 — -		Silty SAND (SM) with gravel; red brown; no plasticity; medium stiff sand; fine subrounded gravel; da [FILL].	f; fine			BH4-2			
- 4.0 — -				-	0.1				
6.0 — -	· · · · · · · · · · · · · · · · · · ·	Well graded SAND with gravel a cobbles (SW); reddish brown; fir coarse sand; fine to coarse subrigravel; moist.	ie to		0.5			100	
8.0					0.2				
- 10.0 — -				-	0.1			-	
- - 12.0 — - -	· · · · · · · · · · · · · · · · · · ·	Silty SAND layer from 10-13'; gravel; tan gray; fine to coarse coarse subrounded gravel; tra damp; fining upwards sequenc increased percentage coarse	sand; ce cobbles; ce.	- - - -	1.6	BH4-12			
- 14.0 — -		from 13-25'		-	1.0			100	
 16.0				- - -	451				strong petroleum odor
- 18.0 — -				-	498				strong petroleum odor
20.0 —		strong petroleum odor 16 to 23	3 feet	-	520			-	
- 22.0 — -		transitions from moist to wet a	t 22 feet	- -	287			100	strong petroleum odor
- 24.0 — -					56 1.6			_	
- 26.0 — -				-					sheen observed on groundwater sample
- 28.0 —									
- - 30.0 —				-					
BORING I		DD: Sonic Drilling blt Services			ED BY: F ETED: 1				

		DDC		1 E. I	MAN C	ΞT			BORING BH5
		PBS	YA PB	KIMA, V SS PROJ	VASHI	NGTOI JMBEF	N R:		BORING BH5 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base							
- 2.0 — -		Silty SAND (SM) with gravel; me reddish brown; no plasticity; fine fine subrounded gravel; damp; [sand;		0.3	BH5-2			
4.0					0.2				
- 6.0 — -		Silty SAND with gravel and cobb brown/tan; fine to coarse sand; f coarse subrounded gravel; dam	ine to p.	-	0.4			100	
- 8.0 		Well graded SAND (SW) with gr gray tan; fine to coarse sand;fine coarse subrounded gravel; damp	avel; e to p.	- 	0.3 0.4				
				- - -				_	
 12.0 				- 	0.5	BH5-13			
- 				- - -	0.2	Ĥ		100	
				- - -	4.8				petroleum odor
- - -	•••••			-	148 36				
20.0 — 		,	04.6	- - -	88			-	petroleum odor
- 22.0 — - -		transition from moist to wet at	∠1 ieet	- 				100	slight petroleum odor
- 24.0 — -					3.1			_	sheen observed on groundwater sample
26.0 — 									Sincen observed on groundwater sample
- 28.0 — -				-					
DRILLED	BY: Ho	DD: Sonic Drilling DI: Services AMETER: 4-inch		LOGG	ED BY: P ETED: 1	P. Brice 2/20/18			

		DDC		1 E. I	MAN C	ΞT			BORING BH6
-		PBS	YA PE	KIMA, V SS PROJ	VASHII	NGTOI JMBEF	N 8:		BORING BH6 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base		_					
2.0		Silty SAND (SM) with gravel; stif brown; no plasticity; fine sand; fin coarse subrounded gravel; mois	ne to		0.2	BH6-2			
4.0								100	
6.0 — 	•••••	Well graded SAND with gravel a	ind	-	0.2				
8.0 — - - 10.0 —		cobbles (SW); gray brown; fine t sand; fine to coarse subrounded damp.	gravel;		0.8			_	
- - 12.0 —		Silty SAND layer from 10-13'; gravel and cobbles; brown; fin sand; coarse subrounded grav fining upwards sequence.	(SM) with e to coase vel; damp;		0.2				
- 14.0 — -					0.2	BH6-14		100	
16.0	· · · · · · · · · · · · · · · · · · ·			-	1.3				
18.0 — - - 20.0 —			00.6	-	0.6			-	
- - 22.0 —		transition from moist to wet at	∠∪ 186[- - -					strong petroleum odor
 24.0 —				- - -	122 1.4			100	petroleum odor
- 26.0 — -	•`.•`.•`.							-	
_ 28.0 — _				- - -					
DRILLED	BY: Ho	DD: Sonic Drilling olt Services AMETER: 4-inch		LOGG	ED BY: F ETED: 1	P. Brice 2/20/18			

		DDC		1 E. I	EMAN (ET			BORING BH7
-		PBS	YA PB	KIMA, V S PROJ	VASHI	NGTO JMBEF	N R:		BORING BH7 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Asphalt and road base		-					
 2.0 		Silty SAND (SM) with gravel; me reddish brown; no plasticity; fine fine subrounded gravel; moist; [f	sand;		0.4	BH7-2			
4.0				-	0.2				
- - 6.0		fine to coarse gravel from 3 to	8 feet	- - 	0.2			100	
- 8.0				-	0.4				
-		Well graded Sand with gravel (S brown gray; fine to coarse sand; coarse subrounded gravel; mois	fine to	-	0.2				
10.0 — 			(0) ()	-				-	
 12.0 		Silty SAND layer from 10-13'; gravel and cobbles; brown gra coarse sand; coarse subround moist; fining upwards sequenc cobbles from 10 to 15 feet	y; fine to led gravel;		0.4	BH7-13			
 14.0 	••••• ••••• •••••	color change to reddish brown percentage coarse vs fine san	; increased d		1.2	BH7		100	
 16.0 				-	2.3				
- 18.0 — -		transition from moist to wet at	18 feet	-	383				weathered petroleum odor strong petroleum odor
 20.0 —					927			_	
 22.0 —	· · · · · · · · · · · · · · · · · · ·			-	225			100	
 24.0 —				-	2.3				
- 26.0 — -								-	thick sheen and strong petroleum odor observed on groundwater sample
- - 28.0 —				- 					
- 				-					
DRILLED	BY: Ho	DD: Sonic Drilling olt Services AMETER: 4-inch			ED BY: F _ETED: 1				

-		PBS	YA PB:	<u>1 E. I</u> KIMA, V S PROJ	MAN C STREE VASHII ECT NU 92.000	<u>ET</u> NGTOI JMBEF	N 8:		BORING BH8 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Asphalt. Gravel fill.		+					
- 2.0 — -				- - 				60	
- 4.0 —		Silty SAND (SM) with gravel; bro sand; fine subangular gravel; mo	own; fine bist.	- - -	0.0	BH8-4			
- 6.0 — -		Well sorted SAND (SW) with gra brown gray; fine to coarse sand; subrounded gravel; damp.	avel; coarse	-	0.0			-	
- 8.0 				-	0.0			100	
- 10.0 —	· · · · · · · · · · · · · · · · · · ·			-				-	
- - 12.0 — - -		Silty SAND layer from 10-13'; gravel and cobbles; brown gra coarse sand; coarse subround damp; fining upwards sequend	y; fine to led gravel;	-	0.1	BH8-12		100	
- 14.0 — -		increased percentage coarse from 13-15'	vs fine sand					_	
- 16.0 — -				- 					
- 18.0 — -	-			- 					
RILLED	BY: Ho	DD: Direct Push olt Services AMETER: 2¼-inch OD			ED BY: F ETED: 6	P. Brice 5/04/19			

		PBS	YAI PB:	<u>1 E. I</u> KIMA, V S PROJ	MAN C STREI VASHII ECT NU 892.000	<u>ET</u> NGTOI JMBEF	N R:		BORING BH9 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base		_					
- 2.0 — -		Silty SAND with gravel (SM); de plasticity; fine sand; fine subrour gravel; moist.	nse; no nded	-	0.0			60	
4.0		Well graded SAND with gravel (brown; fine to coarse sand; fine subrounded gravel; damp.	SW); gray to coarse	-	0.0	BH9-4		_	
6.0 —		transition from fine to coarse s gravel to coarse subangular g	ubrounded ravel	-	0.0				
- 8.0 — -	 			-	0.0	BH9-8		100	
- 10.0 —				-	0.0			-	
10.0				-					
- 14.0 —	-			-					
BORING I DRILLED BORING	BY: Ho	DD: Direct Push olt Services AMETER: 2¼-inch OD		LOGG COMPL	ED BY: F .ETED: 6	P. Brice 6/04/19			

		PBS	COLEMAN OIL 1 E. I STREET YAKIMA, WASHINGTON PBS PROJECT NUMBER:						BORING BH10
-			PB:	S PROJ 413	ECT NU 892.000	JMBEF	*:		BORING BH10 LOCATION: (See Figure 2)
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base							
- - 1.0 -		Silty SAND (SM) with gravel; de plasticity; brown; fine sand; coar subrounded gravel; moist; [FILL]	se	-	0.0				
- 2.0 — -				- 				60	
				- -					
- 4.0		Well graded SAND with gravel (brown; fine to coarse sand; fine subangular to subrounded grave	SW); gray to coarse l; damp.	-	0.0	BH10-4			
5.0				-	0.0			-	
6.0				-		BH10-6		100	
7.0				- - -					
8.0 — - -				- - -				-	
9.0 — - -									
ORILLED	BY: Ho	DD: Direct Push It Services AMETER: 2¼-inch OD		LOGG COMPL	ED BY: F ETED: 6	P. Brice 6/04/19			

		PBS	YAI PB:	<u>1 E. I</u> KIMA, V S PROJ	MAN C STREI VASHII ECT NU	et Ngto Jmbef	N R:		BORING BH11 BORING BH11 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	092.000 (Wdd)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base		_					
- - 2.0		Silty SAND (SM) with gravel; stif plasticity; brown; fine sand; fine subangular gravel; moist; [FILL].	f; no	-	0.0			60	
- 4.0 — -				-	0.0	BH11-4			
- - 6.0 -		Well graded SAND with gravel (brown; fine to coarse sand; coar subangular to subrounded grave	se	-	0.0			-	
- 8.0 —				-	0.0	BH11-8		100	
- 				-	0.0			-	
- 12.0 — -	-			-					
- 14.0 —	-			-					
DRILLED	BY: Ho	DD: Direct Push olt Services AMETER: 2¼-inch OD		LOGG COMPL	ED BY: F ETED: 6	P. Brice 6/04/19			

		PBS	YAI PB:	<u>1 E. I</u> KIMA, V S PROJ	MAN C STREE VASHII ECT NU 892.000	<u>ET</u> NGTOI JMBEF	N R:		BORING BH12 BORING BH12 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Asphalt. Silty SAND (SM) with gravel; de plasticity; brown; fine sand; fine subrounded gravel; moist.	nse; no	-					
2.0				-		BH12-3		60	
4.0				-	0.0			_	
6.0 —		Well graded SAND with gravel (brown; fine to coarse sand; coar	se	-	0.0			100	
8.0 —		subangular to subrounded grave	⊧l; damp.	-	0.0	BH12-8		100	
				-				_	
	-			-				100	
14.0 —	-			-					
DRILLED	BY: Ho	DD: Direct Push olt Services AMETER: 2¼-inch OD		LOGG COMPL	L ED BY: F .ETED: 6	P. Brice 6/04/19	1		

BORING LOG-ENV CORE 41392.000 BH1-BH15.GPJ DATATMPL.GDT PRINT DATE: 1/20/20:

		PBS	Y/		EMAN (STREI VASHII	ΞT	N		BORING BH13 BORING BH13 LOCATION:
-			PE	BS PRÓJ 413	ECT NI 392.000	JMBEF	{ :		(See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Asphalt/road base							
- - 2.0		Silty SAND (SM) with gravel; bro sand; fine subangular gravel; mo [FILL].	own; fine bist;		0.0			60	
- 4.0 —				_	0.0	BH13-4			
- 6.0 — -		Well graded SAND with gravel (brown gray; fine to coarse sand; subangular to subrounded grave	SW); coarse bl; damp.	-	0.0			-	
- 8.0 —				-	0.0			100	
- 10.0 —				-	0.0	BH13-9		_	
- - 12.0 — -				-				100	
- - 14.0 —				-					
		DD: Direct Push It Services		LOGG	ED BY: F ETED: 6	P. Brice			

	PBS	YAł PBS	<u>1 E. I</u> (IMA, V S PROJI	MAN C STREE VASHII ECT NU 92.000	<u>et</u> Ngtoi Jmber	N R:		BORING BH14 BORING BH14 LOCATION: (See Figure 2)
DEPTH	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0	Poorly graded GRAVEL with sar coarse sand; coarse subangular	nd (GP); gravel;	-	0.0			-	
2.0	[FILL]. Silty SAND (SM) with gravel; bro medium dense; fine sand; fine		-	0.0			100	
4.0*	subrounded gravel; moist; [FILL] Well graded SAND with gravel (brown; fine to coarse sand; coar	SW); tan	-	0.0 0.0				
	subangular to subrounded grave	el; damp to	-	0.5			_	
6.0				0.1	BH14-6			
			- -	0.1 0.1			100	
			-	0.1				
10.0			-	0.1 0.3			-	
12.0	cobbles at 12'		_	0.5			100	
			_	0.1			100	
			-	0.1 0.1			_	
16.0 —			-	0.1	BH14-16			
* * 18.0*			-	0.1 0.1			100	
-*			_	18.9				
20.0 – 20.0 –			-	20.5			-	
			-	357 582				
PL.GDT P			- -	415			100	
			- -	820 234			_	Strong petroleum odor 23-25'
26.0 -			-	4.5				
392.000 BF			_	1.1			100	
CORE 413			-	0.8 0.0				
Z DRILLED B	ETHOD: Sonic Drilling Y: Holt Services T DIAMETER: 4-inch			0.0 ED BY: F ETED: 1			_	

		DDC		1 F. I	MAN C	-т			BORING BH15
		PBS	YA PB	KIMA, V S PROJ 413	VASHII ECT NU 92.000	NGTOI JMBEF	N 8:		BORING BH15 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Poorly graded GRAVEL with sar coarse sand; coarse subangular [FILL].	id (GP); gravel;		0.0			_	
2.0 — –		Silty SAND (SM) with gravel; bro sand; fine subrounded gravel; m	wn; fine oist.	- - -	- 0.0 - 0.3			100	
4.0	•••••	Well graded SAND with gravel (S brown; fine to coarse sand; coarse	se		0.0			_	
6.0		subangular to subrounded grave moist. cobbles at 6'	i, damp to		0.2	BH15-6			
- 8.0 — -				- 	0.0			100	
- - 10.0 — -				- - 	0.1 0.0			-	
- 12.0 —					0.0 0.2			100	
- - 14.0	•••••								
- - 16.0 —			-						
- - 18.0	· · · · · · · · · · · · · · · · · · ·				0.9			100	
				-	0.8				
20.0				 - -	1.0 1.1	BH15-22		100	Strong petroleum odor from 21 to 22'
22.0	•				409	BH1		-	
 24.0 — 									
 26.0 —				-					
 28.0 —									
		DD: Sonic Drilling olt Services		LOGG	ED BY: F ETED: 1	P. Brice 2/18/19			

		DDC	YAk	COLE 1 E. I (IMA, V	MAN (STREE VASHII	ΞT	N		BORING VB-1
		PBS	PBS	PROJI 413	ECT NU 92.000	JMBEF	8:		BORING VB-1 LOCATION: (See Figure 2)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DIA (MPA)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 - - 1.0 -		GRAVEL with sand (GP); dark g coarse sand; subangular fine gra moist; [Fill].	ray; fine to avel;	-					← 5 inch diameter flush mount well box
- 2.0 — - -								20	
3.0				- -					 hydrated bentonite seal 1/4 inch polyethylene tubing 1.5 6 feet
4.0 — - - 5.0 —				-	0.0			-	
- - 6.0 —				-					expendable vapor tip screened
- - 7.0 —				-	0.0			33	6 - 6.5 feet
- 8.0 				- - -	2.6 0.0			-	
- 9.0 — - -				- - -					
DRILLED	BY: H	OD: Direct Push olt Services AMETER: 2¼-inch			ED BY: I		3		

BORING LOG-ENV CORE 41392.000 VB-1.GPJ DATATMPL.GDT PRINT DATE: 6/14/19.JW

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Location: Date: 3/19/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-1
Initial DTW (feet bgs)		Sample ID (if not well ID)	
Screen Interval (feet bgs)	9.9-25.9	Sample Time	
Well depth (feet bgs)	25.9	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)		type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F

	WELL PURGING INFORMATION										
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm u/s/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal		
					1						
							Total V	olume Purged/			
FIELD OBSER	FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)										
Depth to p Depth to W	Well was not sampled due to presence of product. Depth to product: 21.19 feet bTOC Depth to Water: 21.37 feet bTOC Product thickness: 0.18 feet										

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: Project Name/ Colem Location:	41392.000 Coleman Oil Yakima Bulk Fuel Plant 3/19/19		
		Monitoring Well ID	MW-2		
Initial DTW (feet bgs)		Sample ID (if not well ID)			
Screen Interval (feet bgs)	10.3-25.3	Sample Time			
Well depth (feet bgs)	25.3	QC Sample	⊠ Not collected		
Depth of pump/tubing inlet (feet bgs)		type:	ID Time		
Sampling method (describe pump or sampler)	_	Field Personnel	P. Brice		
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F		

WELL PURGING INFORMATION										
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm uS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
					<u> </u>					
	_	<u> </u>			J			ļ!		
	ļ					<u> </u>	<u> </u>			
		_	 		ſ	_	<u> </u>			
	<u> </u>	 						ļ!		
	 	<u> </u>	<u> </u>			<u> </u>	+	 		
		 				<u> </u>		[!]		
	<u> </u>	<u> </u>	<u> </u>			<u> </u>	+	<u> </u> '		
	<u> </u>	 				+	+	<u> </u>		
	<u> </u>	+				+	+	P		
		+				<u> </u>		łł		
		1				+	1	++		
		1				1				
								[]		
							Total V	/olume Purged		
FIELD OBSER	VATIONS / N	IOTES (such a	as well head cor	ndition, groundwate	er color, sea	diment load,	recovery, sheer	n, odor, equipment)		
			esence of pro	oduct.						
Depth to product: 21.98 feet bTOC										
Depth to Water: 22.22 feet bTOC Product thickness: 0.24 feet										
Product thi	CKness: U.2	4 feet								
Product sar	mple collec	ted with b:	ailer							

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Location: Date: 3/19/1	man Oil Yakima Bulk Fuel Plant /19		
		Monitoring Well ID	MW-3		
Initial DTW (feet bgs)		Sample ID (if not well ID)			
Screen Interval (feet bgs)	14-24	Sample Time			
Well depth (feet bgs)	24	QC Sample	⊠ Not collected		
Depth of pump/tubing inlet (feet bgs)		type:	ID Time		
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice		
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F		

WELL PURGING INFORMATION										
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ☐ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
							T			
	ļ		ļ		ļ					
	ļ		ļ	ļ!	ļ			ļ'		
	 			ļ!	 			¹		
	 	_	 	!	 	_	<u> </u>	¹		
	 	<u> </u>		ļ!	 	<u> </u>	<u> </u>			
	 	<u> </u>	<u> </u>	ļ′	 	<u> </u>	+	'		
	ł	<u> </u>	 	ļ'	 	<u> </u>		⁻		
	 	<u> </u>	<u> </u>	ļ'	 	<u> </u>		⁻		
				<u> </u> /			+	⁻		
		<u> </u>	<u> </u>	<u> </u> /		<u> </u>		'		
		<u> </u>		<u> </u>		<u> </u>		'		
	<u>. </u>	<u> </u>	<u> </u>	<u> </u>	<u>. </u>	<u> </u>	Total V	/olume Purged		
		INTES (such :	es well head cor	dition aroundwat	er color se	diment load		n, odor, equipment)	<u> </u>	
			esence of pro	_			ecovery, sheer			
				Jauci.						
Depth to product: 22.14 feet bTOC Depth to Water: 22.53 feet bTOC										
Product thickness: 0.39 feet										
Product sample collected with bailer										

Signature of Field Personnel: PB

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392.000 Project Name/ Location: Coleman Oil Yakima Bulk Fuel Plant Date: 3/19/19			
		Monitoring Well ID	MW-4		
Initial DTW (feet bgs)		Sample ID (if not well ID)			
Screen Interval (feet bgs)	15-25	Sample Time			
Well depth (feet bgs)	25	QC Sample	⊠ Not collected		
Depth of pump/tubing inlet (feet bgs)		type:	ID Time		
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice		
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F		

WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm u/s/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
		<u> </u>			ļ		<u> </u>		
				ļ!	ا ا	 	_	ļ	
	 			ļ!	ا ا	 			
	<u> </u>	 	_	ļ′		 	_	ļ'	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		 	
		 	<u> </u>	<u> </u>		<u> </u>		<u> </u> /	
		+	<u> </u>	<u> </u>		<u> </u>	+	[!]	
		<u> </u>				<u> </u>	+	+	
								++	
		T				「	1		
		<u> </u>			ļ		<u> </u>	ļ!	
	 			ļ!	ا ا	 			
	<u> </u>	 		ļ′		 	_	ļ'	
	<u> </u>			<u> </u>		L	Total \		
Total Volume Purged FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)									
					er color, sed	liment load, i	recovery, sheer	1, odor, equipment)	
Well was not sampled due to presence of product. Depth to product: 21.03 feet bTOC									
Depth to Water: 21.28 feet bTOC									
Product thickness: 0.25 feet									
Product sample collected with bailer									

Signature of Field Personnel: PB

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392.000 Project Name/ Location: Date: 3/19/19			
		Monitoring Well ID	MW-5		
Initial DTW (feet bgs)		Sample ID (if not well ID)			
Screen Interval (feet bgs)	15-25	Sample Time			
Well depth (feet bgs)	25	QC Sample	⊠ Not collected		
Depth of pump/tubing inlet (feet bgs)		type:	ID Time		
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice		
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F		

WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ☐ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
		<u> </u>			ļ			'	
	 	_	_	ļ!	 	<u> </u>	-	¹	
	<u> </u>		<u> </u>	ļ′	 	<u> </u>		¹	
	<u> </u>	<u> </u>	<u> </u>	ļ'	 	<u> </u>	-	[!]	
	<u> </u>		+	<u> </u>		+	+	'	
		+	<u> </u>	<u> </u>		<u> </u>		¹	
		+				<u> </u>		<u> </u>	
				<u> </u>					
	<u> </u>	<u> </u>	<u> </u>		l	<u> </u>			
		<u> </u>		ļ!	ļ			'	
	 	_	+	ļ!	 	<u> </u>	-	 	
	 	_	<u> </u>	ļ′	 	<u> </u>	+	[']	
	 	───	<u> </u>	·'	 	 		⁻	
	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	Total \	Line Purged	
Total Volume Purged FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)							<u> </u>		
					er color, sec	liment ioau,	recovery, sneer	i, odor, equipment)	
	Well was not sampled due to presence of product. Depth to product: 22.09 feet bTOC								
Depth to Water: 22.36 feet bTOC									
Product thickness: 0.27 feet									
Dreduct comple collected with heiler									
Product sample collected with bailer									

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: Project Name/ Location: Date: 3/19/19				
		Monitoring Well ID	MW-6			
Initial DTW (feet bgs)		Sample ID (if not well ID)				
Screen Interval (feet bgs)	15-25	Sample Time				
Well depth (feet bgs)	25	QC Sample	⊠ Not collected			
Depth of pump/tubing inlet (feet bgs)		type:	ID Time			
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice			
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F			

	WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm \$\overline\$	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
		1								
		1								
								1		
								1		
								1		
		1	1				1	1		
		<u>I</u>	<u> </u>	<u> </u>		L	Total V	/olume Purged		
FIELD OBSER	VATIONS / N	JOTES (such a	as well head cor	ndition, groundwate	er color, sea	diment load,	recovery, sheer	n, odor, equipment)		
			esence of pro					<u> </u>		
Depth to p				,						
Depth to W										
Product thi										

Signature of Field Personnel: PB

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392.000 Project Name/ Coleman Oil Yakima Bulk Fuel Plant Location: Date: 3/19/19				
		Monitoring Well ID	MW-8			
Initial DTW (feet bgs)		Sample ID (if not well ID)				
Screen Interval (feet bgs)	14-29	Sample Time				
Well depth (feet bgs)	29	QC Sample	□ Not collected			
Depth of pump/tubing inlet (feet bgs)		type:	ID Time			
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice			
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F			

	WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm uS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
					L .					
				<u> </u>						
				<u> </u>						
				<u> </u>						
				<u> </u>						
				<u> </u>						
							Total V	/olume Purged		
FIELD OBSER	VATIONS / N	IOTES (such a	as well head cor	ndition, groundwate	er color, sec	diment load,	recovery, sheer	n, odor, equipment)		
			esence of pro	-						
Depth to p				,auct.						
Depth to W										
Product thi										
Product sar	nple collec	ted with b	ailer							

	PBS Engineering and Environmental Inc.	41392.000 Project No:				
	GROUNDWATER	Project Name/ Coleman Oil Yakima Bulk Fuel Plan Location:				
	SAMPLING FORM (YSI Pro)	Date: 3/19/19				
		Monitoring Well ID	MW-9			
Initial DTW (feet bgs)	22.45	Sample ID (if not well ID)				
Screen Interval (feet bgs)	16-31	Sample Time	1342			
Well depth (feet bgs)	31	QC Sample	□ Not collected			
Depth of pump/tubing inlet (feet bgs)	25	type: duplicate	IDDup1 Time_1200			
Sampling method (describe pump or sampler)	Peristaltic	Field Personnel	C. Grant			
Purge Rate (L/min)	0.1	Weather Conditions	Sunny, 50° F			

WELL PURGING INFORMATION										
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ⊠mS/cm □µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal	
1310								pump on		
1319		13.93	0.421	2.55	7.09	121.5	2.93	clear		
1325		13.96	0.420	2.20	7.10	110.7	0.82			
1328		13.97	0.419	2.02	7.11	98.1	0.50			
1331		13.99	0.419	1.90	7.12	91.2	0.80			
1334		13.99	0.418	1.89	7.12	75.5	1.17			
1337		13.95	0.417	1.79	7.12	64.2	1.04			
1340		13.98	0.417	1.74	7.12	62.4	0.78			
1400								Pump off		
							Total V	olume Purged		
FIELD OBSER	VATIONS / N	I OTES (such a	as well head cor	dition, groundwate	er color, sec	liment load, i		n, odor, equipment)		

Signature of Field Personnel: CG

	PBS Engineering and Environmental Inc.	Project No: 41392.	.000 an Oil Yakima Bulk Fuel Plant
	GROUNDWATER SAMPLING FORM (YSI Pro)	Location:	
		Date: 3/19/1	.9
		Monitoring Well ID	MW-10
Initial DTW (feet bgs)	20.45	Sample ID (if not well ID)	
Screen Interval (feet bgs)	15-30	Sample Time	1155
Well depth (feet bgs)	30	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	22.5	type:	ID Time
Sampling method (describe pump or sampler)	Peristaltic	Field Personnel	C. Grant
Purge Rate (L/min)	0.1	Weather Conditions	Sunny, 50° F

	WELL PURGING INFORMATION								
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ⊠mS/cm □µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □ gal
1123								Pump on	
1133		12.75	3.12	0.486	6.59	237.2	4.86	Floating particles	
1137		13.02	2.00	0.455	6.02	236.4	3.28	Clear	
11.42		13.16	2.54	0.453	6.61	236.4	1.64		
1147		13.24	3.0	0.451	6.60	237.4	1.09		
1151		13.28	2.43	0.449	6.61	238.8	1.21		
1154		13.31	2.30	0.448	6.61	239.4	1.67		
1205								Pump off	
							Total V	olume Purged	

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: Project Name/ Location: Date: 3/19/19 41392.000 Coleman Oil Yakima Bulk Fuel Plant Joate: 3/19/19				
		Monitoring Well ID	RW-1			
Initial DTW (feet bgs)		Sample ID (if not well ID)				
Screen Interval (feet bgs)	15-30	Sample Time				
Well depth (feet bgs)	30	QC Sample	□ Not collected			
Depth of pump/tubing inlet (feet bgs)		type:	ID Time			
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice			
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F			

	WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm u/µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ltr gal	
		<u> </u>		ļ!	ļ	<u> </u>				
	 	_	_	ļ!		<u> </u>				
	<u> </u>		<u> </u>	ļ!	· ا					
	<u> </u>	_	_	ļ/		<u> </u>		¹		
				<u> </u>			+	'		
		+	+	<u> </u>		<u> </u>		′		
		+		<u> </u>		<u> </u>				
		+		++		<u> </u>				
		1						1		
		<u> </u>								
	 	_		ļ!	ļ'		_			
	l	 		ļ!				[_]		
	<u> </u>	───	<u> </u>	·/		<u> </u>		⁻		
	<u> </u>	<u> </u>	<u> </u>	<u> </u> _	<u> </u>		Total V	/olume Purged		
				dition aroundwat	ar color, so	dimont load		n, odor, equipment)	J	
			esence of pro	_			Tecovery, sneer			
Depth to p				Jauci.						
Depth to W	/ater: 24.30	0 feet bTOC								
Product thi	ckness: 2.1	2 feet								
Product sar	Product sample collected with bailer									

Signature of Field Personnel: PB

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392.000 Project Name/ Coleman Oil Yakima Bulk Fuel Plant Location: 2/25/2020				
		Monitoring Well ID	MW-1			
Initial DTW (feet bgs)		Sample ID (if not well ID)				
Screen Interval (feet bgs)	9.9-25.9	Sample Time				
Well depth (feet bgs)	25.9	QC Sample	⊠ Not collected			
Depth of pump/tubing inlet (feet bgs)		type:	ID Time			
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice			
Purge Rate (L/min)		Weather Conditions	Sunny, 45° F			

	WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ☐ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
		Γ								
	ļ	<u> </u>			ļ					
		<u> </u>		ļ!	ļ	<u></u>				
		<u> </u>		ļļ	ļ					
		<u> </u>		ļļ	 					
	 	_		ļl	 	<u> </u>			ļ	
	 	<u> </u>	<u></u>	ļI	 	<u> </u>	<u> </u>			
	 		<u></u>	ļI	 	+		[_]		
	<u> </u>		<u> </u>	ļļ	 			⁻		
	<u> </u>	<u> </u>	<u> </u>	ļļ	 	<u> </u>		[!]		
	<u> </u>	<u> </u>	<u> </u>	ļļ	 	<u> </u>		[!]		
	<u> </u>	<u> </u>		J	<u> </u>				 	
								/olume Purged		
FIELD OBSER	VATIONS / N	IOTES (such a	as well head cor	idition, groundwat	er color, sec	diment load, i	recovery, sheer	ı, odor, equipment)		
Depth to p Depth to W	FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of product. Depth to product: 21.80 feet bTOC Depth to Water: 22.03 feet bTOC Product thickness: 0.23 feet									

Signature of Field Personnel: PB

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Colem Location: 2/25/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-2
Initial DTW (feet bgs)		Sample ID (if not well ID)	
Screen Interval (feet bgs)	10.3-25.3	Sample Time	
Well depth (feet bgs)	25.3	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)		type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice
Purge Rate (L/min)		Weather Conditions	Sunny, 45° F

	WELL PURGING INFORMATION										
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm u/s/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal		
				ļ				<u> </u>			
									ļļ		
			<u> </u>					<u></u>			
			<u> </u>								
				 			+				
				 			<u> </u>	+			
		[!]									
	<u> </u>	<u> </u>	<u> </u>				Total V	/olume Purged			
FIFI D OBSER	VATIONS / N	JOTES (such ;	as well head cor	dition groundwat	er color sec	diment load		n, odor, equipment)			
			esence of pro	_							
Depth to p				Juuct.							
Depth to W											
Product thi	ckness: 0.1	1 feet									

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Location: Date: 2/25/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-3
Initial DTW (feet bgs)		Sample ID (if not well ID)	
Screen Interval (feet bgs)	14-24	Sample Time	
Well depth (feet bgs)	24	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)		type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice
Purge Rate (L/min)		Weather Conditions	Sunny, 45° F

	WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm uS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
					Ļ					
	ļ				Ļ	<u> </u>				
					<u> </u>	<u> </u>				
		<u> </u>		ļ		<u> </u>		ļ		
	 	ļ			. <u> </u>	ļ		<u></u>		
		_				_	<u> </u>			
	 	_	<u> </u>		·	_			ļ	
	 	<u> </u>	<u></u>					<u> </u>		
	 	 				 	+		ļ	
	 	<u> </u>	<u> </u>	<u> </u>			+	_		
	 	 	<u> </u>	<u> </u>			+	_		
	<u> </u>	<u> </u>	<u> </u>			<u> </u>	+	<u> </u>		
	 	<u> </u>	<u> </u>			<u> </u>	+	<u></u>		
		<u> </u>				 	+		 	
	<u> </u>	<u> </u>	<u> </u>			<u> </u>		Lelumo Durgod	 	
			<u> </u>			<u> </u>		/olume Purged		
				-	er color, sec	Jiment load,	recovery, sheer	n, odor, equipment)		
			esence of pro	oduct.						
Depth to p Depth to W										
Product thi			-							

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Location: 2/25/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-4
Initial DTW (feet bgs)		Sample ID (if not well ID)	
Screen Interval (feet bgs)	15-25	Sample Time	
Well depth (feet bgs)	25	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)		type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice
Purge Rate (L/min)		Weather Conditions	Sunny, 45° F

	WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ☐ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
					<u> </u>					
					<u> </u>					
					ļ		<u> </u>			
							<u> </u>			
							<u> </u>			
	<u> </u>				ļ		<u> </u>			
	<u> </u>				ļ		<u> </u>		ļ	
				ļ!	 		<u> </u>	ļ		
				ļ!	 		<u> </u>	ļ		
			<u> </u>	ļ!	 		Ļ	_		
		I	<u> </u>	ļ!	 		Ļ	_		
			<u> </u>		ļ	ļ	ļ	_		
					L					
							Total V	/olume Purged		
FIELD OBSER	VATIONS / N	IOTES (such a	as well head cor	dition, groundwat	er color, sec	diment load, i	recovery, sheer	ı, odor, equipment)		
Depth to p Depth to W	FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of product. Depth to product: 21.56 feet bTOC Depth to Water: 21.74 feet bTOC Product thickness: 0.18 feet									

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Colem Location: 2/25/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-5
Initial DTW (feet bgs)		Sample ID (if not well ID)	
Screen Interval (feet bgs)	15-25	Sample Time	
Well depth (feet bgs)	25	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)		type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice
Purge Rate (L/min)		Weather Conditions	Sunny, 45° F

	WELL PURGING INFORMATION										
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm u/s/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal		
	ļ		ļ								
	<u> </u>			ļ!			<u> </u>	'			
	 	 		!			ļ				
	 		ļ			<u> </u>	_	¹			
	 	 		ļ!	 	<u> </u>			ļ		
	 	I	<u> </u>	ļ!	 			[']	ļļ		
	<u> </u>		<u></u>	ļ′	<u> </u>		_	·			
	 			ļ′	<u> </u>		_				
	<u> </u>		<u> </u>	·	<u> </u>		───	⁻			
	<u> </u>			<u> </u> /	<u> </u>	1		'			
	<u> </u>		<u> </u>	<u> </u> /		<u> </u>		'			
	<u> </u>			<u> </u>			<u> </u>	'			
		 		<u> </u>	<u> </u>	<u> </u>	+	[']	 		
	1	L		<u> </u>	<u>. </u>	<u> </u>	Total V	/olume Purged			
FIELD OBSER	VATIONS / N	IOTES (such a	as well head cor	ndition, groundwat	er color, sec	diment load,			<u> </u>		
Depth to p Depth to W	FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of product. Depth to product: 22.68 feet bTOC Depth to Water: 22.80 feet bTOC Product thickness: 0.12 feet										

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392.000 Project Name/ Coleman Oil Yakima Bulk Fuel Plant Location: 2/25/2020				
		Monitoring Well ID	MW-6			
Initial DTW (feet bgs)		Sample ID (if not well ID)				
Screen Interval (feet bgs)	15-25	Sample Time				
Well depth (feet bgs)	25	QC Sample	⊠ Not collected			
Depth of pump/tubing inlet (feet bgs)		type:	ID Time			
Sampling method (describe pump or sampler)	-	Field Personnel	P. Brice			
Purge Rate (L/min)		Weather Conditions	Sunny, 45° F			

Volume purged Itr gal
+
!
ļ
<u> </u> !
<u> </u>
<u> </u>
+
+
)
I

	PBS	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING			Project No: Project Name/ Location: Date: 2/25/2020					
		F	ORM (YSI I	Pro)			MW-7			
			20.00			ing Well ID	, 			
	DTW (feet bgs)	20.96			Sample ID (MW7-022520		
	erval (feet bgs)		15-29.4		Sa	mple Time		1307		
Depth of p	epth (feet bgs) ump/tubing nlet (feet bgs)		29.4 23			QC Sample				
Samp	ling method mp or sampler)		-		Field	l Personnel		P. Brice		
	e Rate (L/min)		0.1		Weather	Conditions		Sunny, 45° F		
			WE		IG INFORMA	TION				
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv □ mS/cn ⊠ µS/cm	n pH	ORP (mV)	Turbidity (NTU)	Observations	Volume purged □ ltr □ gal	
1255	20.96	14.10	1.40	458	6.79	9.0	-			
1258		14.13	1.00	456	6.80	4.9	-			
1301 1304		14.20 14.16	0.98 0.88	457 457	6.79 6.78	1.4 -1.3	-			
1307		14.22	0.70	457	6.78	-2.5	-			
								olume Purged		
	er not functio							n, odor, equipment)		

Initial DTW (feet bgs) Screen Interval (feet bgs) Well depth (feet bgs) Depth of pump/tubing inlet (feet bgs) Sampling method		E G F)))) 1	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro) 14-29 29			Monitori mple ID (i Sa :ype:	ne/ Colen	Aan Oil Yakima Bulk Fuel Plant 2020 MW-8		
(describe pump or sampler) Purge Rate (L/min)							Conditions		P. Brice Sunny, 45° F	
y	(-,		١٨/٢						<i>,</i>	
Time elapsed actual	DTW (feet)	Temp. (C)			: /ity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
					al		line out to the		olume Purged	
Well was no Depth to p Depth to W Product thi		due to pr 5 feet bT feet bTO	esence of pro OC				innent ioad, f	ecovery, sneer	n, odor, equipment)	

	PBS Engineering and Environmental Inc.	Project No:	
	GROUNDWATER	Project Name/ Colem Location:	an Oil Yakima Bulk Fuel Plant
	SAMPLING FORM (YSI Pro)	Date: 2/25/2	020
		Monitoring Well ID	MW-9
Initial DTW (feet bgs)	22.48	Sample ID (if not well ID)	
Screen Interval (feet bgs)	16-31	Sample Time	1211
Well depth (feet bgs)	31	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	24.5	type: duplicate	<u>ID_Dup1-022520_Time_1200_</u>
Sampling method (describe pump or sampler)	Peristaltic	Field Personnel	A. McGuire
Purge Rate (L/min)	0.1	Weather Conditions	Sunny, 45° F

			WE	LL PURGING I	VFORMA	ΓΙΟΝ			
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ⊠ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
1153	22.48	13.80	2.30	530	6.94	-9.0	-	Clear	
1156		13.73	1.75	531	6.94	-10.5	-		
1159		13.79	1.61	531	6.93	-14.1	-		
1202		13.86	1.44	531	6.94	-17.1	-		
1205		13.93	1.25	531	6.94	-19.1	-		
1208		13.96	1.19	530	6.93	-20.5	-		
1211		13.97	1.07	530	6.93	-21.8	-		
							Total V	olume Purged	
		INTES (cuch a	s well head con	dition groundwat	or color cod	liment load	acovan, choor	odor equipment)	

Turbidimeter not functioning. Water clear, no odor.

Signature of Field Personnel: AM

	PBS Engineering and Environmental Inc. PBS GROUNDWATER SAMPLING FORM (YSI Pro)		000 an Oil Yakima Bulk Fuel Plant 2020	
		Monitoring Well ID	MW-10	
Initial DTW (feet bgs)	20.95	Sample ID (if not well ID)		
Screen Interval (feet bgs)	15-30	Sample Time	1122	
Well depth (feet bgs)	30	QC Sample	⊠ Not collected	
Depth of pump/tubing inlet (feet bgs)	22.5	type:	ID Time	
Sampling method (describe pump or sampler)	Low Flow/Peristaltic Pump	Field Personnel	P. Brice / A. McGuire	
Purge Rate (L/min)	0.1	Weather Conditions	Sunny, 45° F	

			WE	LL PURGING I	NFORMA	ΓΙΟΝ			
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ⊠ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal
1100	20.95	13.41	2.44	1126	6.28	-12.3	-	clear	
1103		13.53	2.24	1123	6.28	-7.0	-	clear	
1106		13.87	2.01	1120	6.27	-3.1	-	clear	
1109		13.81	1.84	1123	6.30	-0.6	-	clear	
1112		13.89	1.65	1122	6.29	0.6	-	clear	
1116		14.03	1.44	1123	6.29	1.4	-	clear	
1119		14.11	1.33	1123	6.29	1.5	-	clear	
1122		14.13	1.24	1125	6.29	1.4	-	clear	
I		1					Total V	olume Purged	

Turbidimeter not functioning. Water clear, no odor

			PBS Engineering and Environmental Inc.			Project N	41392 lo:	2.000		
	PBS	G	ROUNDWA		Pr	oject Nam Locatio	ie/	nan Oil Yak	ima Bulk Fuel P	ant
				-		Da	te: 2/25/	2020		
		FORM (YSI Pro)			Monitori	ng Well ID	MW11			
Initial D	OTW (feet bgs)				Sample ID (if not well ID)					
Screen Inte	erval (feet bgs)		15-29.5			Sai	mple Time			
Well de	epth (feet bgs)		29.5			C	QC Sample	🗌 Not co	llected	
	oump/tubing inlet (feet bgs)				t	уре:		ID	Time	_
Samp	bling method		-			Field	Personnel	P.	Brice / A. McGu	lire
	e Rate (L/min)				,	Weather (Conditions		Sunny, 45° F	
	1		WE	LL PURGIN		NFORMAT	ΙΟΝ		Γ	
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ☐ mS/cr ☐ µS/cr	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
				dition and	du '	or ooler 1	imont la!		olume Purged	
	ot sampled d			-	dwat	er color, sed	iment ioad, n	ecovery, sneer	n, odor, equipment)	
Depth to p Depth to W	roduct: 24.15 Vater: 24.35 fe ickness: 0.2 fe	feet bT eet bTO	oc							
Product sa	mple collecte	d with b	ailer.							
Signature of	f Field Personi	nel: PB/A	G							

				PBS Engineering and Environmental Inc.		Project N	4139 lo:	2.000		
	PBS	G	ROUNDWA		Pr	oject Nam Locatio	ie/	nan Oil Yak	ima Bulk Fuel P	ant
				-		Da	te: 2/25,	2020		
			FORM (YSI Pro)			Monitori	ng Well ID	MW12		
Initial D	OTW (feet bgs)				Sample ID (if not well ID)					
Screen Inte	erval (feet bgs)		15-29.4			Sai	mple Time	•		
	epth (feet bgs)		29.4			C	QC Sample	□ Not co	ollected	
	oump/tubing inlet (feet bgs)				t	уре:	-	. ID	Time	_
Samp	bling method		-			Field	Personne	P.	Brice / A. McGu	ıire
	e Rate (L/min)				,	Weather (Conditions		Sunny, 45° F	
	1		WE	LL PURGIN		NFORMAT	ΓΙΟΝ		1	
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ☐ mS/cr ☐ µS/cr	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
	· · · · · ·		I					Total V	olume Purged	
FIELD OBSER	VATIONS / NO	FES (such a	as well head con	dition, groun	dwat	er color, sed	iment load, ı	ecovery, sheer	n, odor, equipment)	
Depth to p Depth to W Product thi	ot sampled d roduct: 24.15 Vater: 28.05 fe ickness: 3.9 fe mple collecte	feet bT(eet bTO(eet	oc C	oduct.						
Signature of	f Field Personi	nel: PB/A	G							

Initial [PBS DTW (feet bgs) erval (feet bgs)	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)			Project Lo Mon	Date Date toring ID (if n	/ Colem	an Oil Yaki	ma Bulk Fuel Pl	ant
	epth (feet bgs)		30					□ Not co	llected	
Depth of p	oump/tubing				type:		Sample	ID	Time	_
Samp	ling method		-		F	ield P	ersonnel		P. Brice	
	e Rate (L/min)				Weat	ner Co	onditions		Sunny, 45° F	
			W			MATIO	N			
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 U \$\u00e4 S/cm	n pł	1	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
FIELD OBSER	VATIONS / NO	TES (such a	as well head cor	dition, aroun	dwater colo	r. sedim	ent load, re		olume Purged	
Well was no Depth to p Depth to W Product thi		ue to pro feet bT eet bTO feet	esence of pro OC					,,		

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: Project Name/ Location: Date: 11/4/2020				
		Monitoring Well ID	MW-1			
Initial DTW (feet bgs)		Sample ID (if not well ID)				
Screen Interval (feet bgs)	9.9-25.9	Sample Time				
Well depth (feet bgs)	25.9	QC Sample	⊠ Not collected			
Depth of pump/tubing inlet (feet bgs)		type:	ID Time			
Sampling method (describe pump or sampler)	-	Field Personnel	J. Welles			
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F			

WELL PURGING INFORMATION									
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ☐ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
					l				
		<u> </u>							
		<u> </u>							
		<u> </u>		ļ!	ļ				
		<u> </u>		ļ!	ļ				
		<u> </u>		ļļ	 				
		<u> </u>		ļļ	 				
		<u> </u>		ļ!	ļ				
					L				
							Total V	/olume Purged	
FIELD OBSER	VATIONS / N	JOTES (such a	as well head cor	ndition, groundwat	er color, sec	diment load, r	recovery, sheer	n, odor, equipment)	
Well was no Depth to p Depth to W Product thi	roduct: 17.9 /ater: 17.93	92 feet bT0 3 feet bT00		oduct.					

Signature of Field Personnel: JW

	PBS Engineering and Environmental Inc. GROUNDWATER	Project No: Project Name/ Location:	000 an Oil Yakima Bulk Fuel Plant			
	SAMPLING FORM (YSI Pro)	Date: 11/5/2020				
		Monitoring Well ID	MW-2			
Initial DTW (feet bgs)	16.99	Sample ID (if not well ID)	MW2-110520			
Screen Interval (feet bgs)	10.3-25.3	Sample Time	1158			
Well depth (feet bgs)	25.3	QC Sample	⊠ Not collected			
Depth of pump/tubing inlet (feet bgs)	19	type:	ID Time			
Sampling method (describe pump or sampler)	Low Flow/Peristaltic Pump	Field Personnel	J. Welles			
Purge Rate (L/min)	0.22	Weather Conditions	Rain, 50° F			

	WELL PURGING INFORMATION									
Time ⊠ elapsed □ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ⊠ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □ gal	
3	17.41	17.5	3.3	334.5	6.45	-35.8	-		0.75	
6	17.46	17.6	2.5	336.0	6.49	-46.9	-		1.75	
9	17.49	17.7	2.2	343.5	6.49	-57.4	-		2	
12	17.61	17.9	2.0	355.3	6.36	-70.2	-		3	
15	17.64	17.9	1.7	359.8	6.41	-77.8	-		3.5	
18		17.4	1.5	359.1	6.43	-83.2	-		4	
							Total V	olume Purged	4	
FIELD OBSER	VATIONS / N	OTES (such a	as well head con	dition, groundwat	er color, sec	liment load, r	ecovery, sheer	n, odor, equipment)		

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: Project Name/ Location: Date: 11/5/2020				
		Monitoring Well ID	MW-3			
Initial DTW (feet bgs)		Sample ID (if not well ID)				
Screen Interval (feet bgs)	14-24	Sample Time				
Well depth (feet bgs)	24	QC Sample	⊠ Not collected			
Depth of pump/tubing inlet (feet bgs)		type:	ID Time			
Sampling method (describe pump or sampler)	-	Field Personnel	J. Welles			
Purge Rate (L/min)		Weather Conditions	Rain, 50° F			

			W	ELL PURGING I	NFORMA	TION			
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ☐ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
	l				l				
					l				
					l				
							Total V	/olume Purged	
FIELD OBSER	VATIONS / N	IOTES (such a	as well head cor	ndition, groundwat	er color, sec	diment load,	recovery, sheer	n, odor, equipment)	
Well was no	ot sampled	due to pr	esence of pro	oduct.					
Depth to p									
Depth to W	/ater: 18.83	3 feet bTOC							
Product thi	ckness: 0.2	6 feet							
Product sar	nple collec	ted with b	aller.						

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Location: Date: 11/4/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-4
Initial DTW (feet bgs)		Sample ID (if not well ID)	
Screen Interval (feet bgs)	15-25	Sample Time	
Well depth (feet bgs)	25	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)		type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	J. Welles
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F

			W	ELL PURGING IN	VFORMA	TION			
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm uS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
		Γ							
		\Box							
						<u> </u>			
		<u> </u>	<u> </u>			<u> </u>			ļ
						<u> </u>			
									ļ
							Total V	/olume Purged	
FIELD OBSER	VATIONS / N	IOTES (such a	as well head cor	ndition, groundwate	er color, sea	diment load,	recovery, sheer	n, odor, equipment)	
Well was no	ot sampled	l due to pr	esence of pro	oduct.					
Depth to p	roduct: 17.	.73 feet bT	oc						
Depth to W			C						
Product thi	ckness: 0.0	1 feet							

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Colem Location: Date: 11/5/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-5
Initial DTW (feet bgs)		Sample ID (if not well ID)	
Screen Interval (feet bgs)	15-25	Sample Time	
Well depth (feet bgs)	25	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)		type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	J. Welles
Purge Rate (L/min)		Weather Conditions	Rain, 50° F

			W	ELL PURGING II	NFORMA [.]	TION			
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ☐ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
	<u> </u>	<u> </u>	<u> </u>	ļ!					
	<u> </u>	_	<u> </u>	ļ!	 	_			
	<u> </u>	 		ļ!				[_]	
	<u> </u>		<u> </u>	ļ/		<u> </u>		!	
				<u> </u> !		<u> </u>		'	
	<u> </u>	+	+					⁻	
		+	<u> </u>						
		+		++					
		1		1					
		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	
	<u> </u>	<u> </u>		ļ!		<u></u>			
	<u> </u>	_	<u> </u>	ļ!		<u> </u>			
	 	_		ļ!		<u></u>	<u> </u>	I	
	<u> </u>			<u> </u>	<u> </u>				
								/olume Purged	
				-	er color, sec	liment load,	recovery, sheer	n, odor, equipment)	
Well was no Depth to p			esence of pro	oduct.					
Depth to W	/ater: 20.18	8 feet bTOC							
Product thi	ckness: 1.3	; feet							
Product sar	nple collec	:ted with b	ailer.						

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392 Project Name/ Location: Date: 11/4/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-6
Initial DTW (feet bgs)		Sample ID (if not well ID)	
Screen Interval (feet bgs)	15-25	Sample Time	
Well depth (feet bgs)	25	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)		type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	J. Welles
Purge Rate (L/min)		Weather Conditions	Sunny, 50° F

			W	ELL PURGING IN	VFORMA	TION			
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity mS/cm uS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
					<u>.</u>				
					<u> </u>				
		<u> </u>	ļ		ļ	<u> </u>			
				ļ	<u> </u>	<u> </u>			
	L			ļ	j	<u> </u>		<u> </u>	
		<u> </u>				_	<u> </u>		
	 	<u> </u>	_			_	<u> </u>		ļ
	<u> </u>		<u></u>					<u></u>	
						 	+		
	 		<u></u>			_	+	+	
	 		_			 	+	<u> </u>	<u> </u>
						 	+		
			<u> </u>			<u> </u>	+		
	<u> </u>		<u> </u>			<u> </u>	+	+	-
	<u> </u>	1	<u> </u>			 	+	<u> </u>	
		+	<u> </u>	++		<u> </u>	+	<u> </u>	++
		<u> </u>		I		<u> </u>	Total V	/olume Purged	
FIELD OBSER	VATIONS / N	JOTES (such a	as well head cor	ndition, groundwat [,]	er color, se	diment load,	recovery, sheer	n, odor, equipment)	, <u> </u>
			esence of pro	-					
Depth to p									
Depth to W	Vater: 17.16	6 feet bTOC							
Product thi	ickness: 0.0)1 feet							

Initial D Screen Inte Well de Depth of p i	DTW (feet bgs) erval (feet bgs) epth (feet bgs) pump/tubing inlet (feet bgs)	F	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI 1 16.48 15-29.4 29.4 18	TINC. ATER G	Sa	ample ID (ii Sai	ne/ Colen on: te: 11/5/ ng Well ID f not well ID) mple Time QC Sample	nan Oil Yaki 2020 MW-7	n Oil Yakima Bulk Fuel Plant 20 MW-7 MW7-001520 1057 Not collected ID Time J Welles			
Sampling method (describe pump or sampler)			low/Peristaltion	c Pump		Field	Personnel		J Welles			
Purge	e Rate (L/min)		0.22			Weather 0	Conditions		Cloudy, 50° F			
			WE			NFORMAT	ΓΙΟΝ					
Time ⊠ elapsed □ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ☐ mS/cr ⊠ µS/cm	rity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal		
3	16.63	16.8	14.5	309.8		6.49	187.1	-		0.75		
6	16.69	16.8	18.5	310.2		6.42	187.0	-		1.5		
9 12	16.68 16.71	16.8 16.8	17.5 14.7	309.9 309.0		6.38 6.35	187.3 188.2	-		2 2.75		
12	16.71	16.8	14.7	309.0		6.32	189.0	-		2.75		
	·			·		· · · · · · · · · · · · · · · · · · ·		Total V	olume Purged	3		
	f Field Person		as well head con	dition, groun	dwa	ter color, sed	iment load, r	ecovery, sheer	ı, odor, equipment)			

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Date: 11/5/2	an Oil Yakima Bulk Fuel Plant 2020
		Monitoring Well ID	MW-8
Initial DTW (feet bgs)	18.49	Sample ID (if not well ID)	MW8-110520
Screen Interval (feet bgs)	14-29	Sample Time	1249
Well depth (feet bgs)	29	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	20.5	type:	ID Time
Sampling method (describe pump or sampler)	Low Flow/Peristaltic Pump	Field Personnel	J Welles
Purge Rate (L/min)	0.22	Weather Conditions	Rain, 50° F

			WE	ELL PURGING II	NFORMA	TION			
Time ⊠ elapsed □ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ⊠ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal
3	18.55	15.5	4.5	536	6.33	-35.7	-		0.75
6	18.55	15.6	4.0	536	6.32	-44.4	-		1
9	18.56	15.6	3.0	539	6.30	-51.7	-		1.75
12	18.58	15.7	3.1	544	6.32	-55.9	-		2.5
15		15.7	1.9	540	6.35	-59.1	-		3.25
		1	1	1		1	Total V	olume Purged	3.25

Depth to product: 18.46 feet bTOC Depth to Water: 18.49 feet bTOC

Product thickness: 0.03 feet

Attempt to collect product sample with bailer, insufficient product thickness for sample collection.

Proceed to groundwater sampling. Sheen observed on purge water while sampling.

Signature of Field Personn	el: PB			
	PBS Engineering and Environmental Inc.	Project No: 41392	000	
	GROUNDWATER	Project Name/ Colem Location:	an Oil Yakima Bulk Fuel Plant	
	SAMPLING FORM (YSI Pro)	Date: 11/5/2	2020	
		Monitoring Well ID	MW-9	
Initial DTW (feet bgs)	18.20	Sample ID (if not well ID)	MW9-110520	
Screen Interval (feet bgs)	16-31	Sample Time	0912	
Well depth (feet bgs)	31	QC Sample	⊠ Not collected	
Depth of pump/tubing inlet (feet bgs)	20	type: duplicate	ID Time	
Sampling method (describe pump or sampler)	Low Flow/Peristaltic Pump	Field Personnel	J. Welles	
Purge Rate (L/min)	0.23	Weather Conditions	partly cloudy, 50° F	

			WE	ELL PURGING II	NFORMA	ΓΙΟΝ			
Time ⊠ elapsed □ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ⊠ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal
3	18.45	16.5	9.8	488.1	6.72	123.1	-		0.5
6	18.49	16.4	9.7	486.0	6.68	121.7	-		1.5
9	18.49	16.4	4.5	477.2	6.69	118.6	-		2
12	18.50	16.4	8.1	473.6	6.67	115.0	-		2.5
15	18.51	16.4	6.2	472.9	6.67	111.8	-		3.25
18	18.52	16.4	8.2	472.5	6.69	108.7	-		4
21	18.54	16.4	5.0	470.0	6.68	105.9	-		4.5
24	18.52	16.4	4.6	467.6	6.69	103.4	-		5.25
							Total V	olume Purged	5.25

	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)	Project No: 41392. Project Name/ Colem Location: 11/5/2	an Oil Yakima Bulk Fuel Plant
		Monitoring Well ID	MW-10
Initial DTW (feet bgs)	17.13	Sample ID (if not well ID)	MW10-110520
Screen Interval (feet bgs)	15-30	Sample Time	1011
Well depth (feet bgs)	30	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	19	type:	ID Time
Sampling method (describe pump or sampler)	Low Flow/Peristaltic Pump	Field Personnel	J Welles
Purge Rate (L/min)	0.25	Weather Conditions	Partly Cloudy, 50° F

	WELL PURGING INFORMATION													
Time ⊠ elapsed □ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductivity ☐ mS/cm ⊠ µS/cm	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □ gal					
0		17.6	25.0	588	6.79	146.7	-		0					
3	17.17	17.6	20.8	587	6.69	148.1	-		0.75					
6	17.15	17.6	22.8	584	6.54	150.3	-		1.5					
6	17.15	17.6	22.2	588	6.46	153.4	-		2.25					
12	17.16	17.6	18.8	591	6.43	156.3	-		3					
15	17.16	17.6	20.3	588	6.41	158.6	-		4					
18	17.16	17.5	19.7	590	6.40	160.8	-		4.5					
21	17.18	17.5	16.7	588	6.39	162.9	-		5.25					
24	17.18	17.4	19.8	589	6.38	165.1	-		6					
27	17.18	17.4	18.0	590	6.38	166.7	-		6.75					
30	17.19	17.4	16.4	590	6.37	168.9	-		7.75					
					<u> </u>									
							Total V	olume Purged	8					

			3S Engineerin nvironmenta	-		Project I	4 No: ⁴	1392	.000		
	PBS	G	ROUNDWA	ATER	Pr	oject Nan Locati	ne/	olem	an Oil Yaki	ima Bulk Fuel Pl	ant
			SAMPLIN	-		Da	ate: 1	1/4/2	2020		
			ORM (YSI I	Pro)	Monitoring Well ID			II ID	MW11		
Initial D	DTW (feet bg	;)			Sample ID (if not well ID)						
Screen Inte	erval (feet bg	5)	15-29.5			Sa	mple T	Time			
Well de	epth (feet bg	;)	29.5				QC San	nple	🗌 Not co	llected	
	oump/tubin inlet (feet bg	-			1	type:			ID	Time	
Samp	ling metho mp or sample	d	-			Field	Perso	nnel		J Welles	
Purg	e Rate (L/mir	ı)		Weather Conditions					Sunny, 50° F		
			WE	ELL PURGIN		NFORMA	TION				
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 \u00e5 \$\u0e5 \$\u0e5\$\$\u0e5 \$\u0e5\$\$\u0e	vity n	рН	ORI (mV		Turbidity (NTU)	Observations	Volume purged Itr gal
									Total V	olume Purged	
FIELD OBSER	VATIONS / N	DTES (such	as well head con	dition, groun	dwat	er color, sec	diment lo	oad, re		n, odor, equipment)	
Depth to p Depth to W	ot sampled roduct: 19.6 /ater: 19.66 ickness: 0.0	5 feet bT feet bTO		oduct.							
Signature of	f Field Perso	nnel: JW									

		PBS Engineering and Environmental Inc.			Project N	lo:	41392				
	PBS	G			Pr	oject Nam Locatio		Colen	nan Oil Yak	ima Bulk Fuel P	ant
		F	SAMPLIN ORM (YSI I	-		Da	te:	11/4/	2020		
		•		10)		Monitori	ng V	Vell ID	MW12		
Initial D	OTW (feet bgs)				Sample ID (if not well ID)						
Screen Inte	erval (feet bgs)		15-29.4		Sample Time						
Well de	epth (feet bgs)		29.4			Ċ	oc s	ample	🗌 Not co	llected	
	oump/tubing inlet (feet bgs)				t	ype:		-		Time	
	ling method		-			Field	Pers	sonnel		J Welles	
	e Rate (L/min)			,	Weather (Cond	ditions		Sunny, 50° F		
		•	WE		NG II	NFORMA	ΓΙΟΝ	1			
Time elapsed actual	DTW (feet)	Temp. (C)	p. Dissolved Specific conductivit		vity n	рН)RP nV)	Turbidity (NTU)	Observations	Volume purged Itr gal
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	dwat	er color, sed	iimen	t load, r		/olume Purged		
Well was no Depth to pu Depth to W Product thi Product sar		ue to pro feet bTO feet bTO feet d with b	esence of pro OC C								

Screen Interval (feet bgs) 15-30 Sample Time 15:4 Well depth (feet bgs) 30 QC Sample Image: Constraint of the second sec							MW13-110420 15:45 Illected				
	e Rate (L/min		0.21		Weather Conditions			Sunny, 50° F			
			W	ELL PURGIN	IG I	NFORMA	ΓΙΟΝ	5.			
Time ⊠ elapsed □ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv □mS/cr □µS/cr	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal	
3		18.0	1.5	542		6.83	-30.6	-		0.5	
6		17.8	1.2	541		6.86	-40.6	-		1.5	
9	10.11	17.8		500		6.06	50.4	-		2.5	
12 15	18.41 18.40	17.8	2.3 1.4	560		6.86	-50.1	-		2.5	
15	18.40	17.9 17.7	1.4	566 570		6.86 6.86	-51.6 -57.2	-		3 3.5	
21	18.41	17.7	0.8	570		6.86	-57.2	-		3.5 4	
24		17.8	0.9	571		6.86	-60.5	-		5	
									olume Purged	5	
YSI shutoff	9 minutes i	nto samp		ng paramet	ers	took seve	ral minutes		n, odor, equipment) e on the meter.	Sampling	

Signature of Field Personnel: JW

	PBS	Ei GI	S Engineerin wironmenta ROUNDWA SAMPLIN	TINC. ATER G	Project I Project Nan Locati	ne/ Colen	nan Oil Yak	an Oil Yakima Bulk Fuel Plant			
		F'	ORM (YSI I	Pro)	Monitori	ing Well ID	MW14				
Initial D	DTW (feet bgs)		19.28		Sample ID (i	if not well ID)	MW14-110420				
Screen Inte	erval (feet bgs)		15-30		Sa	mple Time					
Well de	epth (feet bgs)		30			QC Sample					
• •	ump/tubing inlet (feet bgs)	21				-		Time	_		
	ling method		-		Field	Personnel					
	e Rate (L/min)		0.23		Weather	Conditions	s Sunny, 50° F				
		•	WE	LL PURGIN	IG INFORMA	TION					
Time elapsed actual	DTW (feet)	Temp. (C)	(mg/L) → mS/cm ↓ μS/cm		n pH	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal		
1		16.4	5.1	398.1	7.45	181.6	-		0.25		
5		16.6	1.4	402.2	6.87	190.3	-		2		
8		16.6	1.4	399.3	6.78	190.7	-		3		
11 14	19.32	16.6 16.6	1.4 1.4	399.4 396.5	6.80 6.80	189.0 187.9	-		3.75 4.5		
								olume Purged	4.5		
Purge rate elapsed tim		23 L/mii al highe	n after 2 min					n, odor, equipment) ge exceeds flow	rate x		

Initial I Screen Inte	PBS DTW (feet bgs erval (feet bgs epth (feet bgs) 15-30) 30				Project N ject Nam Locatio Da Monitori nple ID (i Sa	ima Bulk Fuel Pl	ant			
i	oump/tubing inlet (feet bgs bling methoo	1			tyj	pe:	QC Sample	ID	Time J Welles		
	imp or sampler e Rate (L/min						Conditions		Sunny, 50° F		
			W	ELL PURGIN	NG IN	FORMA	ΓΙΟΝ	I			
Time elapsed actual	Time DTW Temp. Dissolved Specific conductiv				vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ltr gal	
Well was no Depth to p Depth to W Product thi		lue to pr 3 feet bT feet bTO feet	esence of pro OC	-	dwater	- color, sed	liment load, re		olume Purged		

Initial E Screen Inte Well de	PBS DTW (feet bgs) erval (feet bgs) epth (feet bgs)	F	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI I 18.93 9.9-25.9 25.9	TINC. ATER G	Monit Sample II	ame/ Ition: Date: oring V D (if not Sampl	7/28/ Well ID well ID; e Time Sample	aan Oil Yakima Bulk Fuel Plant 2021 MW-1 12:33			
i Samp	th of pump/tubing inlet (feet bgs) 22 type: Duplicate Sampling method cribe pump or sampler) Low Flow/Peristaltic Pump Field Personnel					. ID <u>M</u>	<u>W-Dup</u> Time P Brice/C. Gun	<u>12:00</u> dert			
	e Rate (L/min)		0.20		Weath	er Con	ditions	Pa	rtly cloudy, hot	, 87 °F	
		·	WE		IG INFORMA	TION					
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cn □µS/cm	n pH	OF (m		Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal	
12:11	18.93	17.07	2.50	1.200	6.31	-13	-	19.50			
12:15		16.64	1.290	1.177	6.08	-12		23.03			
12:18		16.52 16.62	1.01	1.158 1.136	6.06	-19		24.49 23.08			
12:21 12:24		16.64	0.91 0.89	1.136	6.11 6.23	-27		23.08			
12:27		16.58	0.59	1.082	6.23	-40		24.05			
12:30		16.46	0.85	1.049	6.24	-43		22.25			
12:33		16.57	0.78	1.021	6.25	-46	5.5	25.05			
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	dition, groun	dwater color, se	diment	load, rec		o lume Purged n, odor, equipment)		

Initial I Screen Inte Well de Depth of p	DTW (feet bgs) erval (feet bgs) epth (feet bgs) pump/tubing inlet (feet bgs) bling method imp or sampler)	10.3-25.3 25.3 21 Low Flow/Peristaltic Pump				Monitori ample ID (i Sa type:	ne/ Colem	MW-2 13:50 ⊠ Not collected ID Time			
	e Rate (L/min)		0.2 lowered to	0.1		Weather	Conditions		85 °F		
			WE	ELL PURGIN	IG I	NFORMA	ΓΙΟΝ				
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	rity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □ gal	
13:17	19.32	18.49	5.29	0.755		6.49	-7.5	14.28			
13:20		18.75	11.91	0.407		6.11	-17.7	11.57			
13:23		18.33	1.31	0.772		5.99	-19.4	8.74			
13:26 13:29		18.32 18.16	1.07 0.96	0.784 0.788		6.03 6.06	-30.7 -39.8	9.25 7.60			
13:32		18.21	1.3	0.784		6.11	-39.8	6.59			
13:35		18.24	1.04	0.770		6.19	-57.7	6.58			
13:38		18.39	0.95	0.757		6.26	-66.5	6.69			
13:41		18.25	0.95	0.732		6.32	-72.0	7.83			
13:44		19.21	0.77	0.748		6.43	-81.2	6.30			
13:47		19.08	0.74	0.756		6.44	-86.9	7.72			
13:50		19.02	0.67	0.758		6.44	-88.6	5.81			
								Total V	olume Purged		
	VATIONS / NO							ecovery, sheer	n, odor, equipment)		

		S Engineerin nvironmenta			Project N	4139 No:	92.	000				
	PBS		ROUNDWA		Pr	oject Nan Locati	ie/	ema	an Oil Yaki	ma Bulk Fuel Pl	ant	
	DJ		SAMPLIN	-			te: 7/28	3/2	021			
		F	ORM (YSI I	Pro)		Monitori		D	MW-3			
Initial [DTW (feet bgs)				Sa	mple ID (i	•	_				
Screen Inte	erval (feet bgs)		14-24		Sample Time							
Well de	epth (feet bgs)	24			QC Sample			е	🗌 Not co	llected		
	oump/tubing					type:	-		ID	Time		
Samp	inlet (feet bgs) bling method ump or sampler)		-			Field	Personne			Brice/C. Gunde		
	e Rate (L/min)				Weather Conditions				Sunny, 83 °F			
		•	WE	LL PURGIN	IG I	NFORMA	ΓΙΟΝ					
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 \u00e4	vity n	рН	ORP (mV)		Turbidity (NTU)	Observations	Volume purged ltr gal	
								-				
								_				
								_				
										olume Purged		
Well was no Depth to p Depth to W Product thi	ot sampled d roduct: 19.44 Vater: 19.64 f ickness: 0.20 ck deployed	ue to pro l feet bT eet bTO feet	esence of pro OC C	oduct.		ter color, sec	liment load,	rec	covery, sheen	, odor, equipment)		
Signatura	f Field Deres	nol. DMP										
Signature of	f Field Person	nei. PiviB										

			S Engineerin nvironmenta	-	_	Project N	Color		ima Bulk Fuel P	lant	
	PBS	GI	ROUNDWA SAMPLIN		Pro	oject Nan Locatio	on:				
		F.	ORM (YSI I	-		Da	te: 7/27/				
				,		Monitori	ng Well ID	MW-4			
Initial D	OTW (feet bgs)		18.92		Sar	mple ID (i	f not well ID)				
Screen Inte	erval (feet bgs)		15-25			Sa	mple Time		16:10		
Well de	e pth (feet bgs)		25				QC Sample	🛛 Not co	llected		
	oump/tubing inlet (feet bgs)		21		ty			ID	Time	_	
	ling method	Low F	-low/Peristalt	ic Pump	Field Personnel			Р	Brice/C. Gunde	ert	
	e Rate (L/min)		0.13		١	Weather	Conditions		87 °F		
		•	WE	LL PURGIN		NFORMA [®]	ΓΙΟΝ				
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal	
15:49	18.92	20.22	1.70	0.530		6.65	-19.7	4.29			
15:52		20.12	1.02	0.526		6.47	-19.2	3.83			
15:55		20.01	0.86	0.524		6.42	-25.4	26.01			
15:58		19.81	0.77	0.521		6.44	-32.6	27.80			
16:01		19.45	0.71	0.516		6.43	-38.7	31.09			
16:04		19.34	0.68	0.515		6.47	-45.2	33.67			
16:07 16:10		19.20 19.04	0.66 0.64	0.513 0.511		6.47 6.47	-48.9 -49.6	35.86 24.41			
									olume Purged		
FIELD OBSER	VATIONS / NOT	TES (such a	as well head con	dition, groun	dwate	er color, sec	liment load, re	ecovery, sheer	n, odor, equipment)		

			S Engineerin nvironmenta			Project N	41392 No:	2.000			
	PBS	G	ROUNDWA	ATER	Pr	oject Nan Locatio	ne/	nan Oil Yaki	ima Bulk Fuel P	ant	
		_	SAMPLIN	-		Da	te: 7/28/	2021			
			ORM (YSI I	Pro)		Monitori	ng Well ID	MW-5			
Initial D	DTW (feet bgs)				Sa	mple ID (i	f not well ID)				
Screen Inte	erval (feet bgs)		15-25			Sa	mple Time				
Well de	epth (feet bgs)		25				QC Sample	□ Not collected			
	ump/tubing				t			ID Time			
Samp	ling method		-			Field	Personnel	P Brice/C. Gundert			
	e Rate (L/min)					Weather	Conditions		83 °F		
			WE	LL PURGIN	IG I	NFORMA	ΓΙΟΝ				
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 Cr	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
									olume Purged		
			as well head con esence of pro		dwat	er color, sed	liment load, re	ecovery, sheer	n, odor, equipment)		
Depth to p	roduct: 20.02	2 feet bT	oc	bauct.							
	/ater: 20.11 ckness: 0.09		5								
Sorbent so	ck deployed	in the we	ell at ~14:45	on 7/28/20)21						
Signature of	f Field Person	nel: PMB									

Initial I Screen Inte Well de Depth of p	PBS DTW (feet bgs) erval (feet bgs) epth (feet bgs) pump/tubing inlet (feet bgs) bling method imp or sampler)	Er GI F(S Engineerin Nironmenta ROUNDWA SAMPLIN ORM (YSI 1 18.28 15-25 25 20.5 Flow/Peristalti	TINC. ATER G Pro)	Sa	Monitori mple ID (i Sa cype: Field	ne/ Colen on: te: 7/27/ ng Well ID f not well ID) mple Time QC Sample Personnel	nan Oil Yaki 2021 MW-6 MW-6 ID P			
Purg	e Rate (L/min)		0.13			Weather (Conditions				
			WE	LL PURGIN	IG I	NFORMA	ΓΙΟΝ				
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal	
14:45	18.28	16.94	1.20	1.026		6.26	-22.0	16.15			
14:48		16.78	1.13	1.016		6.23	-25.2	14.66			
14:51		16.78	0.97	1.007		6.25	-31.5	13.13			
14:54		16.67	0.88	0.971		6.30	-39.7	11.78			
14:57		16.80	0.77	0.947		6.37	-44.6	10.30			
15:00		16.72	0.76	0.906		6.42	-47.6	11.32			
15:03		16.55	0.72	0.883		6.44	-57.6	10.62			
15:06		16.49	0.71	0.854		6.44	-56.1	9.07			
15:09		16.44	0.68	0.821		6.45	-56.1	8.10			
15:12		16.68 16.60	0.64	0.808 0.782		6.49	-59.8 -62.5	7.05			
15:15		10.00	0.05	0.782		6.53	-02.5	1.05			
								Total V	olume Purged		
FIELD OBSER	VATIONS / NO	TES (such a	s well head con	dition, groun	dwat	er color, sed	liment load, r		n, odor, equipment)		

Signature of Field Personnel: PMB

Sampling m (describe pump or sa Purge Rate	feet bgs) feet bgs) /tubing feet bgs) nethod sampler)	18.04 15-29.4 29.4 20		•	(if not well ID)			
Well depth (fe Depth of pump/t inlet (fe Sampling m (describe pump or sa Purge Rate	feet bgs) /tubing feet bgs) nethod sampler)	29.4		-	ample Time		14:48	
Depth of pump/t inlet (fe Sampling m (describe pump or sa Purge Rate	/tubing feet bgs) nethod sampler)					M Not co		
(describe pump or sa Purge Rate Time DT\ elapsed (foo	sampler)			QC Sample			Time	_
Time DT\ elapsed (foo	e (L/min)	w Flow/Peristalti	c Pump	Fiel	d Personnel	Р	Brice/C. Gunde	rt
		0.18		Weather	Conditions		91 °F	
		W	1	NG INFORM				
⊠ actual (Tee	-		Specific conductiv ⊠mS/cn □µS/cm	^{rity} pH	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal
14:33 18.0			0.327	6.40	-29.2	21.87		
14:36	16.7		0.315	5.70	0.7	16.43		
14:39	16.6		0.311	5.63	1.5	15.69		
14:42 14:45	16.3		0.307	5.65	-2.0	13.00 11.11		
14:48	16.1		0.306	5.74	-11.9	9.86		
FIELD OBSERVATION	INS / NOTES (su	Ich as well head cor	idition, ground	dwater color, se	ediment load, r		Tolume Purged	

		PBS Engineering and Environmental Inc. GROUNDWATER				Project N	41392 No:	2.000			
	PBS	G	ROUNDWA	ATER	Pr	oject Nan Locatio	ne/	nan Oil Yaki	ima Bulk Fuel P	ant	
			SAMPLIN	-		Da	_{te:} 7/28/	2021			
		F	ORM (YSI I	Pro)		Monitori	ng Well ID	MW-8			
Initial D	DTW (feet bgs)				Sa	mple ID (i	f not well ID)				
Screen Inte	erval (feet bgs)		14-29			Sa	mple Time				
Well de	epth (feet bgs)		29				QC Sample	□ Not collected			
	ump/tubing				t			ID Time			
Samp	ling method		_			Field	Personnel	P Brice			
	e Rate (L/min)					Weather	Conditions		90 °F		
			WE	ELL PURGIN	IG I	NFORMA	ΓΙΟΝ				
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 \u00e5 \$\u0e5 \$\u0e5\$\$\u0e5 \$\u0e5 \$\u0e5\$\$\	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
									olume Purged		
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	dition, groun	dwat	er color, sed	liment load, re	ecovery, sheer	n, odor, equipment)		
Depth to p	roduct: 19.08	B feet bT		oduct.							
	/ater: 19.28 f ckness: 0.20		5								
Sorbent so	ck deployed	in the we	ell at ~13:10	on 7/28/20	021						
Signature of	f Field Person	nel: PMB									

Revised 2/23/2015

		_	nvironmenta	l Inc.		Project N	NO:				
	PBS	G	ROUNDWA	ATER	Pr	roject Nan Locatio	ie/	man Oil Yak	ima Bulk Fuel P	lant	
	IJJ		SAMPLIN	-				/2021			
		F	ORM (YSI I	Pro)			ng Well II	MW-9			
Initial D	TW (feet bgs)	18.70		Sa	ample ID (i	-				
Screen Inte	rval (feet bgs)	16-31			•	mple Tim		13:51		
Well de	epth (feet bgs)	31				QC Sampl	Not co	⊠ Not collected		
	ump/tubing		21		1	type:	-		Time	_	
Samp	nlet (feet bgs ling methoo		Flow/Peristalt	ic Pump		Field	Personne		P Brice/C. Gunde		
	mp or sampler e Rate (L/min)	0.13			Weather			° F		
		, I		LL PURGIN							
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal	
13:41	18.70	16.46	1.79	0.489		6.22	6.8	4.11			
13:45		16.52	1.32	0.493		6.14	7.6	2.20			
13:48 13:51		16.42 16.42	1.19 1.14	0.497 0.498		6.16 6.24	6.5 3.4	2.62 1.55			
15:51		10.42	1.14	0.496		0.24	5.4	1.55			
								Total \	/olume Purged		
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	dition, groun	dwat	ter color, sed	liment load,		n, odor, equipment)		
Signature of											

Initial D Screen Inte Well de Depth of p i	PBS DTW (feet bgs) erval (feet bgs) epth (feet bgs) pump/tubing inlet (feet bgs) ling method	Ei Gi	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI 1 18.06 15-30 30 20	TINC. ATER G Pro)	Sa	ample ID (i Sa (type:	ne/ Colem on: te: 7/27/ ng Well ID f not well ID) mple Time QC Sample	an Oil Yaki 2021 MW-10 ⊠ Not co ID	an Oil Yakima Bulk Fuel Plan 021		
	mp or sampler)		low/Peristalti	c Pump			Personnel	Р		ert	
Purge	e Rate (L/min)		0.15			Weather (Conditions		Sunny, 50° F		
						NFORMAT	ΓΙΟΝ			Male	
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr µS/cr	rity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal	
12:23	18.06	17.06	2.49	0.639		6.25	-22.4	2.55			
12:26		16.74	1.92	0.630		6.19	-17.0	3.89			
12:29		17.02	1.60	0.632		6.23	-16.0	2.78			
12:32 12:35		16.64 16.46	1.41 1.31	0.626		6.34 6.36	-20.7 -20.5	3.33 3.53			
	II		I	I		11	I	Total V	olume Purged		
	f Field Personi		as well head con	dition, groun	dwa	ter color, sed	iment load, re	ecovery, sheer	ı, odor, equipment)		

Initial D Screen Inte Well de Depth of p i Samp	PBS PTW (feet bgs) erval (feet bgs) epth (feet bgs) ump/tubing nlet (feet bgs) ling method mp or sampler)	Ei Gi	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI 1 19.69 15-29.5 29.5 29.5 22 ilow/Peristalti	TINC. ATER G Pro)	Sa	mple ID (i Sa (ype:	ne/ Colen on:	nan Oil Yak 2021 MW-11 ⊠ Not co ID	MW-11 10:44 Not collected D Time P Brice/C. Gundert			
Purge	e Rate (L/min)		0.2			Weather (Conditions		Sunny, 82 °F			
			W	ELL PURGIN	NG II	NFORMA	ΓΙΟΝ					
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal		
10:23	19.69	15.83	2.71	1.023		6.31	6.7	9.97				
10:26		15.36	1.34	1.008		6.18	5.3	11.59				
10:29		15.28	1.03	0.988		6.19	-2.4	10.56				
10:32		15.13	0.90	0.970		6.23	-9.6	10.42				
10:35		15.04	0.79	0.950		6.29	-17.8	10.34				
10:38		15.03	0.72	0.958		6.34	-23.0	11.05				
10:41 10:44		14.98 15.00	0.71 0.70	0.935		6.38 6.39	-19.7 -31.8	10.58				
									olume Purged			
	Field Person		as well head cor	idition, groun	dwat	er color, sed	iment load, r	ecovery, sheer	n, odor, equipment)			

			S Engineerin nvironmenta			Project N	413 No:	392	.000			
	PBS		ROUNDWA	TER	Pro	oject Nan Locatio	ne/	lem	an Oil Yaki	ima Bulk Fuel P	ant	
		-		-		Da	te: 7/2	28/2	2021			
			ORM (YSI I	10)		Monitori	ng Well	ID	MW-12			
Initial [OTW (feet bgs)				Sa	mple ID (i	f not well	ID)				
Screen Inte	erval (feet bgs)		15-29.4			Sa	mple Tir	ne				
Well de	epth (feet bgs)		29.4				QC Samp	ole	□ Not collected			
	oump/tubing				t	уре:	-		ID	Time		
Samp	inlet (feet bgs) bling method ımp or sampler)		-			Field	Person	nel		Brice/C. Gunde		
	e Rate (L/min)				,	Weather	Conditio	ns		80 °F		
			WE	LL PURGIN	NG II	NFORMA	ΓΙΟΝ			-		
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 Cr	vity n	рН	ORP (mV)		Turbidity (NTU)	Observations	Volume purged Itr gal	
								\neg				
								+				
	ı		l	<u> </u> _					Total V	olume Purged		
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	dition, groun	dwat	er color, sed	liment loa	d, re	covery, sheer	n, odor, equipment)		
Depth to p	roduct: 19.70) feet bT		oduct.								
-	/ater: 19.87 f ickness: 0.17		-									
Sorbent so	ck deployed	in the we	ell at ~10:04 (on 7/28/20	021							
Signature o	f Field Person	nel: PMB										

			S Engineerin nvironmenta	-	Projec	4139 t No:	2.000				
	PBS	G	ROUNDWA		Project Na Loca	ame/ Coler tion:	nan Oil Yak	ima Bulk Fuel P	lant		
				-	1	Date: 7/28,	/2021				
		F	ORM (YSI I	Pro)	Monito	oring Well ID	MW-13				
Initial D	DTW (feet bgs)		18.30		Sample ID	(if not well ID)	,				
Screen Inte	erval (feet bgs)		15-30			Sample Time	08:16				
Well de	epth (feet bgs)		30			QC Sample	Not co	⊠ Not collected			
	oump/tubing inlet (feet bgs)		20.5		type:			ID Time			
Samp	ling method	Low F	low/Peristalti	c Pump	Fie	ld Personne	P Brice/C. Gundert				
	e Rate (L/min)				Weathe	r Conditions	74 °F				
		1	WE	LL PURGIN	IG INFORM	ATION					
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cr	^{rity} pH	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal		
07:52	18.30	15.81	1.73	0.601	6.37	-53.8	7.09				
07:55		15.69	1.39	0.596	6.32	-48.3	7.34				
07:58		15.63	1.19	0.591	6.37	-45.7	7.00				
08:01		15.54	1.08	0.587	6.43	-38.3	7.14				
08:04		15.55	0.97	0.585	6.50	-47.2	7.04				
08:07 08:10		15.57 15.60	0.88 0.80	0.583 0.582	6.56 6.61	-43.8	5.49 4.89				
08:10		15.53	0.80	0.582	6.65	-50.8	6.01				
08:15		15.60	0.76	0.578	6.67	-54.2	6.85				
						·	Total V	olume Purged			
FIELD OBSER	VATIONS / NO	FES (such a	as well head con	dition, groun	dwater color, s	ediment load, ι	ecovery, sheer	n, odor, equipment)			

Signature of Field Personnel: PMB

Initial DTW (feet bgs) Screen Interval (feet bgs)		0RM (YSI I 18.34 15-30	Pro)		Monitorii mple ID (it	te: 7/28/2 ng Well ID f not well ID) mple Time	MW-14			
Well depth (feet bgs) Depth of pump/tubing inlet (feet bgs) Sampling method		30 21		ţ	уре:	QC Sample	ID	Time		
(describe pump or sampler) Purge Rate (L/min)	LOW F	low/Peristalti	c Pump			Personnel Conditions	P	Brice/C. Gunde	rt	
ge			LL PURGIN							
Time DTW □ elapsed (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cn □µS/cm	: rity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal	
08:43 18.34	15.20	3.45	0.334		7.03	-41.3	2.48			
08:46	14.97	1.10	0.324		6.44	-13.5	2.96			
08:49	14.76	0.88	0.324		6.30	-9.8	3.05		ļ	
08:52	14.78	0.79	0.324		6.35	-13.5	2.69			
08:55 08:58	14.77 14.85	0.71 0.64	0.323		6.41 6.44	-16.7 -22.7	3.96 2.47		 	
FIELD OBSERVATIONS / NO	TES (such a	as well head con	dition, groun	dwate	er color, sed	iment load, re		olume Purged , odor, equipment)		

Initial DTW (feet bg: Screen Interval (feet bg: Well depth (feet bg: Depth of pump/tubing	s) s) s) g	18.05 Sample 15-30 30		Monitori Imple ID (i Sa	te: 7/28/2 ng Well ID f not well ID) mple Time QC Sample	MW-15				
inlet (feet bg Sampling metho	4	-low/Peristalti	c Pump			Personnel		P Brice		
(describe pump or sample) Purge Rate (L/mir	r)	0.16	crump	,		Conditions		85 °F		
-			ELL PURGIN	IG II	NFORMA	ΓΙΟΝ				
Time DTW □ elapsed (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cn □µS/cm	: rity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal	
11:15 18.05	15.69	1.20	0.735		6.52	-14.1	3.90			
11:18	15.71	0.85	0.736		6.44	-15.2	4.00			
11:21	15.73	0.73	0.736		6.45	-21.7	3.20			
11:24	15.77	0.71	0.736		6.52	-31.9	3.53			
11:27 11:30	15.83 15.78	0.68 0.66	0.734		6.56 6.59	-37.9 -41.6	3.26 3.29			
FIELD OBSERVATIONS / NO	DTES (such a	as well head con	dition, groun	dwat	er color, sed	iment load, re		olume Purged		

			S Engineerin nvironmenta	-		Project N	lo:	2.000		
	PBS	G	ROUNDWA	ATER	Р	roject Nam Locatio	ie/	nan Oil Yak	ima Bulk Fuel P	lant
	DJ		SAMPLIN	-		Da	= /2.0	/2021		
		F	ORM (YSI	Pro)			ng Well ID	MWBNS	F1	
Initial D	DTW (feet bgs))	20.85		Sa	ample ID (i	f not well ID)		
Screen Inte	erval (feet bgs))				Sa	mple Time	5	09:41	
	epth (feet bgs)					(QC Sample	Not co	ollected	
	ump/tubing		23		1	type:		. ID	Time	_
Samp	ling method		-low/Peristalti	c Pump		Field	Personne	I P	Brice/C. Gunde	ert
	e Rate (L/min)		0.18			Weather	Condition	5	Sunny, 50° F	
			W	ELL PURGIN		INFORMA	ΓΙΟΝ	1	1	
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □ gal
09:31	20.84	16.31	5.27	0.569		6.38	-11.2	3.24		
09:35		15.84	5.21	0.569		6.43	-11.8	3.04		
09:38 09:41		15.77 15.74	5.05 4.98	0.569 0.569		6.43 6.42	-11.5 -10.8	2.35 2.67		
				0.000			10.0	,		
									olume Purged	
FIELD OBSER	VATIONS / NC	TES (such a	as well head cor	idition, groun	dwa	ter color, sed	iment load,	recovery, sheer	n, odor, equipment)	
Signature of	f Field Persor	nel: PMB								

Initial D Screen Inte Well de	Sampling method Low Flow/Peristaltic Pump Field Personnel describe pump or sampler)						15:05	lant		
i Samp	nlet (feet bgs) ling method	Low F	- Flow/Peristalti	c Pump	t				Time W Garcia	
	e Rate (L/min)		1			Weather (Condition	;	Sunny, 92 °F	
			WE	ELL PURGIN	IG I	NFORMA	ΓΙΟΝ			
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
14:50	19.47	31.23	0.38	0.801		6.92	-102	86.4		
14:53	19.58	30.45	0.12	0.799		6.86	-89	60.8		
14:56 14:59	19.62 19.65	29.29 29.23	0.06	0.792 0.787		6.50 6.50	-56 -24	55.6 41.3		
14.39	19.67	29.23	0.06	0.787		6.50	-24	39.7		
15:05	19.68	29.18	0.06	0.787		6.51	-24	36.0		
								Total V	/olume Purged	
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	idition, groun	dwat	er color, sed	iment load,		n, odor, equipment)	

	PBS DTW (feet bgs)	G	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI 1 19.35	TINC. ATER G		Project N oject Nan Locatio Da Monitori mple ID (i	No: ne/ on: nte: ng Wa	7/22/2 ell ID	an Oil Yaki	ima Bulk Fuel Pl	ant
Screen Inte	erval (feet bgs)		10.3-25.3			Sa	mple	Time		13:25	
Depth of p i	epth (feet bgs) pump/tubing inlet (feet bgs) pling method		25.3		t	уре:				Time	_
(describe pu	mp or sampler)	Low F	low/Peristalti	c Pump		Field Weather		onnel		W Garcia	
Purge	e Rate (L/min)		1	ELL PURGIN				tions		Sunny, 90 °F	
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	: vity n	рН	OF (m		Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
13:10	21.11	25.10	1.42	0.863		6.65	-8		88.1		
13:13	21.13	24.23	1.56	0.863		6.66	-8		56.3		
13:16 13:19	21.18 21.23	24.10 24.05	1.87 1.90	0.863		6.68 6.65	-9 -9	-	47.8 44.1		
13:22	21.25	24.00	1.93	0.863		6.64	-9		43.9		
13:25	21.30	23.99	1.99	0.863		6.64	-9	9	41.4		
FIELD OBSER	VATIONS / NOT	TES (such a	as well head cor	dition, groun	dwate	er color, sed	liment	load, re		olume Purged n, odor, equipment)	
	f Field Personi										

Initial [PBS DTW (feet bgs) erval (feet bgs)	G F	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI I 0RM (YSI I	TINC. ATER G		Monitori Imple ID (i	ne/ Colen	nan Oil Yak 2022 MW-3	ima Bulk Fuel P	ant
Depth of p	epth (feet bgs) pump/tubing inlet (feet bgs)		24		t		QC Sample	D Not co	llected Time	_
(describe pu	ling method		-				Personnel		W. Garcia	
Purg	e Rate (L/min)						Conditions		86 °F	
Time			Dissolved	Specific	C	NFORMA				Volume
elapsed	DTW (feet)	Temp. (C)	oxygen (mg/L)	conductiv ☐ mS/cr ☐ µS/cm	ກ໌	рН	ORP (mV)	Turbidity (NTU)	Observations	purged ltr gal
	1 1		1	<u> </u>		I		Total V	olume Purged	
Well was no Depth to p Depth to W		ue to pro feet bT eet bTO	esence of pro OC		idwat	ter color, sec	liment load, re	ecovery, sheer	n, odor, equipment)	

			S Engineerin nvironmenta			Project I					
	PBS	G	ROUNDWA	ATER	Pr	oject Nan Locati	ne/	ian Oil Yaki	ima Bulk Fuel P	lant	
		-		-		Da	ate: 7/21/	2022			
		'	ORM (YSI I	Pro)		Monitori	ing Well ID	MW-4			
Initial D	DTW (feet bgs)				Sa	mple ID (i	if not well ID)				
Screen Inte	erval (feet bgs)		15-25			Sa	mple Time				
	epth (feet bgs)		25				QC Sample	🗌 Not co	llected		
	oump/tubing inlet (feet bgs)				1	type:		ID	Time	_	
Samp	bling method		-			Field	Personnel		W Garcia		
	e Rate (L/min)					Weather	Conditions				
			WE	LL PURGIN		NFORMA	TION				
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 Cr	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal	
								Total V	olume Purged		
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	dition, groun	dwat	er color, sec	diment load, re		n, odor, equipment)		
Depth to p Depth to W Product thi	roduct: 19.23 Vater: - feet k ickness: 5.77	feet bT TOC feet		oduct.							
*Suspected	l malfunctior	i of inter	tace probe.								
Signature of	f Field Person	nel: WG									

Screen Interval (feet bgs) Well depth (feet bgs) Depth of pump/tubing inlet (feet bgs) Sampling method (describe pump or sampler) Purge Rate (L/min)	25		Sa	if not well ID) mple Time		16:13	
	Low Flow/Peristalti	c Pump	type:	QC Sample		llected Time W Garcia	
	1		Weather	Conditions		Sunny, 96°F	
	W		NG INFORMA	TION			
Lolansed	emp. (C) Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cn □µS/cm	n pH	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □ gal
15:55 21.40 2	25.57 1.36	1.32	6.80	-88	54.8		
	4.52 0.24	1.27	6.78	-98	55.3		
	4.68 0.40	1.24	6.76	-97	56.1		
	24.31 0.44 23.76 0.14	1.24 1.25	6.73 6.72	-98 -97	56.1 56.4		
	3.83 0.16	1.25	6.68	-97	58.2		
	0.19	1.27	6.71	-96	59.1		
FIELD OBSERVATIONS / NOTES	S (such as well head cor	ndition, groun	dwater color, sec	liment load, re		olume Purged	

Screen Interval (feet bgs)Well depth (feet bgs)Depth of pump/tubing inlet (feet bgs)Sampling method (describe pump or sampler)LowPurge Rate (L/min)Time elapsed actualDTW (feet)Temp. (C)13:5718.6825.6314:0018.8025.2614:0318.9124.9514:0918.9524.81	15-25 25 Flow/Peristaltio 1 Dissolved oxygen (mg/L) 0.56 0.38 0.24	ELL PURGIN Specific conductiv ⊠mS/cm □µS/cm 1.24 1.20	type: Fiel Weathe IG INFORM	ORP (mV)	. ID	14:15 Illected Time W Garcia Sunny, 91 °F Observations	Volume purged ⊠ ltr
Depth of pump/tubing inlet (feet bgs) Low Sampling method (describe pump or sampler) Low Purge Rate (L/min) Low Time elapsed actual DTW (feet) Temp. (C) 13:57 18.68 25.63 14:00 18.88 25.10 14:06 18.91 24.95	Flow/Peristaltic 1 Dissolved oxygen (mg/L) 0.56 0.38	ELL PURGIN Specific conductiv ⊠mS/cm □µS/cm 1.24 1.20	Fiel Weathe IG INFORMA ity pH 6.40	Id Personne r Conditions ATION ORP (mV)	ID	Time W Garcia Sunny, 91 °F	Volume purged ⊠ ltr
inlet (feet bgs) Image: Constraint of the sector of t	1 Dissolved oxygen (mg/L) 0.56 0.38	ELL PURGIN Specific conductiv ⊠mS/cm □µS/cm 1.24 1.20	Fiel Weathe IG INFORMA ity pH 6.40	Id Personne r Conditions ATION ORP (mV)	ID	W Garcia Sunny, 91 °F	Volume purged ⊠ ltr
Image: describe pump or sampler) LOW Purge Rate (L/min) Image: describe pump or sampler) LOW Purge Rate (L/min) DTW Temp. Comparison DTW Temp. elapsed actual DTW Temp. 13:57 18.68 25.63 14:00 18.80 25.26 14:03 18.88 25.10 14:06 18.91 24.95	1 Dissolved oxygen (mg/L) 0.56 0.38	ELL PURGIN Specific conductiv ⊠mS/cm □µS/cm 1.24 1.20	Weathe	r Conditions	Turbidity	Sunny, 91 °F	purged
Time elapsed actual DTW (feet) Temp. (C) 13:57 18.68 25.63 14:00 18.80 25.26 14:03 18.88 25.10 14:06 18.91 24.95	Dissolved oxygen (mg/L) 0.56 0.38	Specific conductiv ⊠mS/cm □µS/cm 1.24 1.20	ity pH 6.40	ATION ORP (mV)	Turbidity		purged
□ elapsed actual DTW (feet) Temp. (C) 13:57 18.68 25.63 14:00 18.80 25.26 14:03 18.88 25.10 14:06 18.91 24.95	Dissolved oxygen (mg/L) 0.56 0.38	Specific conductiv ⊠mS/cm □µS/cm 1.24 1.20	ity рН 6.40	ORP (mV)		Observations	purged
□ elapsed actual DTW (feet) Temp. (C) 13:57 18.68 25.63 14:00 18.80 25.26 14:03 18.88 25.10 14:06 18.91 24.95	oxygen (mg/L) 0.56 0.38	conductiv ⊠ mS/cm □ μS/cm 1.24 1.20	ity pH 6.40	(mV)		Observations	purged
14:0018.8025.2614:0318.8825.1014:0618.9124.95	0.38	1.20					🗌 gal
14:0318.8825.1014:0618.9124.95				-30	140.7		
14:06 18.91 24.95	0.24		6.43	-54	120.6		
	0.12	1.19	6.59	-55	95.5		
	0.13	1.18 1.17	6.65	-57	86.9 45.6		
14:09 18:95 24:81 14:12 18:96 24.70	0.03	1.17	6.73	-68	41.2		
14:15 18.98 24.60	0.01	1.15	6.75	-71	37.3		
FIELD OBSERVATIONS / NOTES (such	as well head cor	ndition, ground	dwater color. s	ediment load. I		olume Purged	

Screen Interval (feet bgs) Well depth (feet bgs) Depth of pump/tubing inlet (feet bgs)							
Well depth (feet bgs) Depth of pump/tubing inlet (feet bgs) Sampling method	15 25.4		-			16.08	
Depth of pump/tubing inlet (feet bgs) Sampling method	29.4			•			
				QC Sample		Time	_
	Low Flow/Peristaltic	Pump	Field	Personnel		W Garcia	
Purge Rate (L/min)	1		Weather	Conditions		Sunny, 93 °F	
	WE		NG INFORMA	ΓΙΟΝ			
L l alanced	C) Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cn □µS/cm	n pH	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal
	7.21 1.75	0.483	6.71	82	96.4		
	6.93 1.68	0.481	6.63	75	36.3		
	6.81 1.63 6.73 1.57	0.479	6.58 6.55	71 69	22.8 19.4		
	6.67 1.51	0.473	6.46	70	16.5		
16:05 18.52 26	6.63 1.87	0.474	6.43	70	15.2		
16:08 18.52 26	6.60 1.43	0.472	6.40	69	14.1		
FIELD OBSERVATIONS / NOTES	(such as well head con	dition aroun	dwater color, sec	liment load, re		olume Purged	

			S Engineerin nvironmenta	-		Project N	413 No:	92	.000		
					Pr	oject Nan	1e/	em	an Oil Yaki	ima Bulk Fuel P	ant
	PBS	G	ROUNDWA SAMPLIN			Locatio	= /0	• •			
		F	ORM (YSI I	-					2022		
						Monitori	-		MW-8		
	DTW (feet bgs)				Sa	imple ID (i					
	erval (feet bgs)		14-29			Sa	mple Tin	ne			
	epth (feet bgs)		29			(QC Samp	le	🗌 Not co	llected	
	oump/tubing inlet (feet bgs)				1	type:			ID	Time	_
	oling method		-			Field	Personr	el		W Garcia	
	e Rate (L/min)					Weather	Conditio	ns		Sunny, 81 °F	
			WE	LL PURGIN		NFORMA	ΓΙΟΝ			Ι	
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 Cr	rity n	рН	ORP (mV)		Turbidity (NTU)	Observations	Volume purged Itr gal
									Total V	olume Purged	
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	dition, aroun	dwat	ter color, sed	iment load	l. re		, odor, equipment)	
Well was no Depth to p Depth to W Product thi		ue to pro i feet bT oTOC * feet	esence of pro OC					,		, , 0 P	
Signature o	f Field Person	nel: WG									

	PBS Engineering and Environmental Inc. Project No: 41392.000 ROUNDWATER SAMPLING FORM (YSI Pro) Project Name/ Location: Coleman Oil Yakima Bulk Fuel II Date: 7/22/2022 Monitoring Well ID MW-9 itial DTW (feet bgs) 18.75					ima Bulk Fuel P	ant			
Initial D	DTW (feet bgs)		18.75		Sa		-			
	erval (feet bgs)		16-31			-	mple Time		12:10	
Well de	epth (feet bgs)		31			(QC Sample	🛛 Not co	llected	
	oump/tubing inlet (feet bgs)				t			ID	Time	
	ling method	Low Fl	ow/Peristaltic	Pump		Field	Personnel		W Garcia	
Purge	e Rate (L/min)		1			Weather (Conditions		Sunny, 88° F	
			WE	ELL PURGIN	-	NFORMA	ΓΙΟΝ			
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal
11:55	18.84	23.00	0.20	0.613		7.12	76	58.6		
11:58	18.88	23.06	0.14	0.622		7.02	79	48.4		
12:01 12:04	18.91 18.96	22.91 22.81	0.14 0.24	0.630 0.633		6.98 9.69	80 78	44.5 38.7		
12:04	18.97	22.82	0.24	0.632		6.95	76	34.3		
12:10	18.99	22.83	0.29	0.630		6.95	77	32.3		
FIELD OBSER	VATIONS / NOT	Γ ΕՏ (such a	as well head con	dition, groun	dwate	er color, sed	liment load, re		olume Purged	
	f Field Personr									

	PBS Engineering and Environmental Inc.				roject N	Color		ma Bulk Fuel P	lant		
	GI	ROUNDWA SAMPLIN		Proje	ct Nan Locatio	on:					
	E.		-		Da	te: 7/22/	2022				
	-			М	onitori	ng Well ID	MW-10				
Initial DTW (feet bgs)		18.34		Samp	ole ID (i	f not well ID)					
Screen Interval (feet bgs)		15-30			Sa	mple Time		10:31			
Well depth (feet bgs)		30		QC Sample			🛛 Not co	llected			
Depth of pump/tubing inlet (feet bgs)				typ			ID	Time	_		
Sampling method (describe pump or sampler)		- Low Flow/Peristaltic Pum			Field	Personnel		W Garcia			
Purge Rate (L/min)		1		We	eather	Conditions		Sunny, 84 °F			
		W	ELL PURGIN	IG INF	ORMA	ΓΙΟΝ					
Time DTW □ elapsed (feet) ⊠ actual	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	rity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal		
10:10 18.48	26.95	0.69	0.889		7.26	92	19.9				
10:13 18.56	24.38	0.77	0.902		7.16	94	16.7				
10:16 18.60	21.43	0.96	0.955		7.05	96	12.0				
10:19 18.65	21.24	0.81	0.952		7.01	96	12.6				
10:22 18.68	20.95	0.75	0.957		6.99	96	12.7				
10:25 18.70	20.84	0.68	0.958		6.98	97	12.6				
10:28 18.72 10:31 18.74	20.89 20.86	0.64	0.956 0.957		6.98 6.98	98 97	12.5 12.2				
							12,2				
								olume Purged			

	PBS	G	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI I	TINC. ATER G	Pr		ne/ Colen	nan Oil Yak	an Oil Yakima Bulk Fuel Plant 2022			
	DTW (feet bgs)				Sa	-	if not well ID)					
	erval (feet bgs)		15-29.5			Sa	mple Time					
Depth of p	epth (feet bgs) pump/tubing inlet (feet bgs)		29.5		t		QC Sample		Time			
Samp	bling method		-			Field	Personnel		W Garcia			
	e Rate (L/min)					Weather	Conditions		Sunny, 89 °F			
			WE	ELL PURGIN		NFORMA	TION					
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr	vity n	pН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ltr gal		
Well was n Depth to p Depth to W		lue to pro 8 feet bT0 feet bT0	esence of pro OC		dwat	er color, sec	liment load, r		'olume Purged n, odor, equipment)			

			S Engineerin nvironmenta			Project I	Calar		ima Bulk Fuel P	lant		
	PBS	G	ROUNDWA	UNDWATER		oject Nan Locati	ne/					
		_		_		Da	ate: 7/21/	2022				
		F	ORM (YSI I	10)	Monitoring Well ID			MW-12	MW-12			
Initial D	OTW (feet bgs)				Sa	mple ID (i	if not well ID)					
Screen Inte	erval (feet bgs)		15-29.4			Sa	mple Time					
	epth (feet bgs)		29.4			(QC Sample	🗌 Not co	llected			
	oump/tubing inlet (feet bgs)				t	уре:		ID	Time			
Samp	ling method		-			Field	Personnel		WG			
	e Rate (L/min)				,	Weather	Conditions		Sunny, 89 °F			
	1 1		WE	ELL PURGIN		NFORMA	TION		I			
Time elapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv mS/cr \$\u00e4 \u00e5 \$\u0e5 \$\u0e5\$\u0e5 \$\u0e5 \$\u0e5 \$\u0e5 \$\u0e5 \$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5 \$\u0e5\$\u0e5\$\u0e5 \$\u0e5	/ity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal		
									olume Purged			
Well was no Depth to p Depth to W	VATIONS / NO ot sampled d roduct: 21.67 /ater: 22.03 ickness: 0.36	ue to pro feet bT feet bTO	esence of pro OC		idwat	er color, sec	liment load, re	ecovery, sheer	n, odor, equipment)			
	<pre></pre>											

Initial I Screen Inte Well de Depth of p	PBS DTW (feet bgs) erval (feet bgs) epth (feet bgs) pump/tubing inlet (feet bgs)	Fi Gi	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI 1 19.01 15-30 30	TINC. ATER G	Project No: 41392.000 Project Name/ Location: Coleman Oil Yakima Bulk I Date: 7/24/22 Monitoring Well ID MW-13 Sample ID (if not well ID) 14:30 QC Sample ID_MW-collected type: Duplicate ID_MW-Dup_ Time		14:36 llected	lant			
Samp	ling method	Low F	low/Peristalti	c Pump		Field	Personr	nel		W Garcia	
	e Rate (L/min)		1		,	Weather (Conditio	ns		Sunny, 97 °F	
			WE	LL PURGIN	NG IN	NFORMAT	ΙΟΝ				
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity n	рН	ORP (mV)		Turbidity (NTU)	Observations	Volume purged ⊠ltr □ gal
14:15	19.03	23.89	3.34	0.850		7.07	-73		34.4		
14:18	19.03	22.58	6.58	0.848		7.08	-83		30.4		
14:21	19.03	21.72	6.14	0.847		7.07	-85		28.6		
14:24	19.03	21.80	5.89	0.848		7.06	-85	_	27.6		
14:27 14:30	19.03 19.03	21.53 21.22	5.94 6.33	0.847 0.842		7.04 7.00	-85 -87	_	27.2 22.8		
14:30	19.03	21.22	6.30	0.842		6.99	-87		22.8		
14:36	19.03	21.29	6.29	0.840		6.99	-88		21.9		
									Total V	olume Purged	
	VATIONS / NO f Field Person		is well head con	dition, groun	dwate	er color, sed	iment load	d, re	covery, sheen	n, odor, equipment)	

			S Engineerin nvironmenta		I	Project I						
	PBS	G	ROUNDWA		Proj	ject Nan Locati	ne/	ian Oil Yaki	an Oil Yakima Bulk Fuel Plant			
			SAMPLIN ORM (YSI	-		Da	nte: 7/21/	2022				
				PTO)	N	Monitori	ng Well ID	MW-14				
Initial D	OTW (feet bgs)		19.22		Sam	nple ID (i	if not well ID)					
Screen Inte	erval (feet bgs))	15-30			Sa	mple Time		14:09			
Well de	epth (feet bgs))	30				QC Sample	🛛 Not co	llected			
	ump/tubing				ty				Time			
	inlet (feet bgs) ling method	1	El (D	. Duran								
describe pu	mp or sampler)	LOW	Flow/Peristalt	ic Pump			Personnel		W Garcia			
Purge	e Rate (L/min)		1				Conditions		Sunny, 94 °F			
	[-	ELL PURGIN		FORMA	TION			Volume		
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	vity m	рН	ORP (mV)	Turbidity (NTU)	Observations	purged Itr gal		
13:50	19.23	23.99	0.47	0.458		7.19						
13:53	19.23	22.70	0.31	0.452		7.09						
13:56 13:59	19.23 19.23	22.52 22.47	0.28	0.449		7.05 7.00						
14:02	19.23	22.18	0.30	0.444		7.00						
14:03	19.23	22.11	0.29	0.446		7.00						
14:06	19.23	22.07	0.28	0.445		6.99						
14:09	19.23	22.03	0.28	0.444		6.98						
								Total V	olume Purged			
FIELD OBSER	VATIONS / NO	TES (such a	as well head cor	ndition, groun	ndwater	r color, sec	liment load, re	ecovery, sheer	n, odor, equipment)			

Initial DTW (feet bgs)	Ei Gi	S Engineerin nvironmenta ROUNDWA SAMPLIN ORM (YSI 1 18.74	I Inc. ATER G	Project No: Project Name/ Location: Date: 7/21/2022 Monitoring Well ID Sample ID (if not well ID) 41392.000 Coleman Oil Yakima Bulk Fuel F Oil Yakima Bulk Fuel F MW-15					ant
Screen Interval (feet bgs)		15-30			Sa	mple Time		13:18	
Well depth (feet bgs) Depth of pump/tubing inlet (feet bgs) Sampling method		30		ty	ype:	QC Sample	ID	Time	_
(describe pump or sampler)	Low F	low/Peristalti	c Pump			Personnel		W Garcia	
Purge Rate (L/min)		1				Conditions		Sunny, 94 °F	
Time DTW □ elapsed (feet)	Temp. (C)	Dissolved oxygen (mg/L)	ELL PURGIN Specific conductiv ⊠mS/cn □µS/cm	: vity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
13:00 18.73	21.58	0.66	1.05		6.95	-26			
13:03 18.74	21.06	0.98	1.06		6.92	-32			
13:06 18.75	20.66	1.19	1.06		6.87	-35			
13:09 18.75	20.62	0.98	1.06		6.86	-36			
	20.49	0.73	1.07		6.84	-38			
	20.27	0.71	1.06		6.82	-39			
13:18 18.75	20.25	0.72	1.07		6.82	-39			
FIELD OBSERVATIONS / NOT Turbidity not included d				dwate	er color, sed	iment load, r		Olume Purged	

Signature of Field Personnel: WG

	PBS	GI	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro)		Pro	Project N oject Nan Locatio Da	ne/ Colem	an Oil Yak	ima Bulk Fuel P	ant
				10)		Monitori	ng Well ID	MW-16		
Initial [OTW (feet bgs)		19.32		Sa	mple ID (i	f not well ID)			
Screen Inte	erval (feet bgs)		15-30			Sa	mple Time		12:37	
Well d	epth (feet bgs)		30				QC Sample	🛛 Not co	llected	
	oump/tubing				t			ID	Time	_
	oling method	Low F	low/Peristalti	c Pump		Field	Personnel		W Garcia	
	e Rate (L/min)				,	Weather	Conditions		Sunny, 93 °F	
			WE	LL PURGIN	IG II	NFORMA	ΓΙΟΝ		-	
Time lapsed actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	rity n	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ltr □gal
12:10	19.46	21.98	3.72	0.903		8.00	70	17.8		
12:13	19.52	21.09	3.08	0.912		7.68	89	9.1		
12:16	19.55	20.05	3.09	0.921		7.40	98	7.2		
12:19	19.55	20.03	4.51	0.943		7.23	103	6.5		
12:22	19.55	19.40	5.60	0.950		7.14	106	6.1		
12:25	19.56	19.84	6.16	0.934		7.04	108	5.4		
12:28	19.56	19.74	6.04	0.934		7.02	109	5.7		
12:31	19.56	19.78	5.98	0.930		7.00	110	5.5		
12:34	19.56	19.75	5.98	0.931		6.97	111	5.3		
12:37	19.56	19.77	5.99	0.938		6.95	111	4.8		
								Total V	olume Purged	
FIELD OBSER	VATIONS / NO	TES (such a	as well head con	dition, groun	dwat	er color, sed	liment load, re		olume Purged	

Initial C	PBS DTW (feet bgs) erval (feet bgs)	E G F	PBS Engineering and Environmental Inc. GROUNDWATER SAMPLING FORM (YSI Pro) 21.66			Monitori mple ID (i	ne/ Colem	nan Oil Yaki 2022 MWBNSF	ima Bulk Fuel Pl -1 15:35	ant
Depth of p i	epth (feet bgs) ump/tubing nlet (feet bgs) ling method				t	ype:	QC Sample	ID	Time	_
(describe pu	mp or sampler) e Rate (L/min)	LOW	low/Peristalti	c Pump	_ ,		Personnel Conditions		W Garcia Sunny, 97 °F	
Purge	e Kate (L/min)			ELL PURGIN					Sunny, 97 F	
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Dissolved oxygen (mg/L)	Specific conductiv ⊠mS/cr □µS/cm	ะ /ity ท	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
15:20	21.69	24.02	0.47	0.715		6.90	-20	27.0		
15:23 15:26	21.69 21.69	23.50 23.88	0.41 0.28	0.713		6.89 6.85	-14 -6	24.9 20.9		
15:20	21.70	23.68	0.32	0.701		6.84	-3	19.7		
15:32	21.70	23.43	0.31	0.705		6.83	-1	19.3		
15:35	21.70	23.40	0.30	0.708		6.82	-1	19.2		
FIELD OBSER	VATIONS / NO	TES (such a	as well head cor	ndition, groun	idwate	er color, sed	liment load, re		olume Purged	

Signature of Field Personnel: PMB

<u>Field Form – Summa Canister Sampling</u> Sub-Slab or Soil Vapor Sampling Remember to allow sample point to equilibrate 20-30 minutes before sampling

PBS Project No.: <u>41392.000</u>		Sample ID:VB1-2020-11-04
Site Name: Yakima Bulk Fuel Plant		Date: <u>11/4/20</u>
Canister ID: SN: 3344		Concrete Slab Thickness (in): <u>3</u>
Flow Controller ID: TS-08		Gauge ID: 241
Tracer Gas Used: <u>Helium</u>		Helium Meter Type: Dielectric MGD 2002
Sample Point Diameter (in): <u>1/4</u>		"Seat" Diameter (in): <u>5</u>
Tubing Length (ft): <u>8</u>		PRT or Vapor Pin Used (circle if applicable)
Canister Pressure	Sampling	Time Purge Volume
Initial: mm Hg	Begin:	<u>1256</u> 78mL
Final: <u>6.5</u> in Hg	End:	1301
Shut-in Test Performed 🛛 Yes	□ No	
Pressure Held: <u>15</u> mm Hg		How long (min): <u>3</u>
Helium Concentration in Shroud		
Prior to Sampling (%): <u>81</u>		Mid Sample (%): 80
After Sampling (%): <u>78</u>		_
Real-Time Leak Test – Not performed		
Helium at Sample Point (ppmv): (before sa	ampling)	(after sampling)
PID at Sample Point (ppm)(option	al)	
		ndicate depth at which sample was collected

Sample line checked with Helium detector immediately after sample collection (after Suma was closed), Oppm He measured in sample line.

YAKIMA PLANT FUEL RELEASE - WELL LOCATION SURVEY REPORT COLEMAN OIL COMPANY JOB #4365

POINT	NORTHING	EASTING	ELEVATION	DESCRIPTION
1	467104.96	1636980.19	1088.59	CONTROL POINT 1, SET REBAR & HDJ RED CAP
2	467054.80	1636869.03	1089.82	CONTROL POINT 2, SET REBAR & HDJ RED CAP
1000	467174.09	1636965.91	1089.65	MW3 NORTH EDGE OF EXTERNAL CASING
1001	467173.89	1636965.90	1089.15	MW3 NORTH EDGE OF 2IN PVC WELL PIPE
1002	467194.51	1636962.68	1090.05	MW1 NORTH EDGE OF EXTERNAL CASING
1003	467194.30	1636962.63	1089.54	MW1 NORTH EDGE OF 4IN PVC WELL PIPE
1004	467211.57	1636953.36	1090.21	MW1 NORTH EDGE OF EXTERNAL CASING
1005	467211.29	1636953.38	1089.54	MW1 NORTH EDGE OF 2IN PVC WELL PIPE
1006	467209.98	1636986.28	1089.73	MW2 NORTH EDGE OF EXTERNAL CASING
1007	467209.69	1636986.34	1089.44	MW2 NORTH EDGE OF 2IN PVC WELL PIPE
1009	467246.11	1636952.13	1089.50	MW6 NORTH EDGE OF EXTERNAL CASING
1010	467245.86	1636952.17	1089.21	MW6 NORTH EDGE OF 2IN PVC WELL PIPE
1011	467235.90	1637036.33	1089.20	MW4 NORTH EDGE OF EXTERNAL CASING
1012	467235.59	1637036.33	1088.85	MW4 NORTH EDGE OF 2IN PVC WELL PIPE
1013	467176.87	1636900.68	1090.25	MW5 NORTH EDGE OF EXTERNAL CASING
1014	467176.60	1636900.74	1090.01	MW5 NORTH EDGE OF 2IN PVC WELL PIPE

POINT	LATITUDE (NORTH)	LONGITUDE (WEST)	ELEVATION	DESCRIPTION
1	46°36'51.3018"	120°30'49.2301"	1088.59	CONTROL POINT 1, SET REBAR & HDJ RED CAP
2	46°36'50.8065"	120°30'50.8224"	1089.82	CONTROL POINT 2, SET REBAR & HDJ RED CAP
1001	46°36'51.9823"	120°30'49.4350"	1089.15	MW3 NORTH EDGE OF 2IN PVC WELL PIPE
1003	46°36'52.1837"	120°30'49.4819"	1089.54	MW1 NORTH EDGE OF 4IN PVC WELL PIPE
1005	46°36'52.3515"	120°30'49.6144"	1089.54	MW1 NORTH EDGE OF 2IN PVC WELL PIPE
1007	46°36'52.3357"	120°30'49.1423"	1089.44	MW2 NORTH EDGE OF 2IN PVC WELL PIPE
1010	46°36'52.6927"	120°30'49.6319"	1089.21	MW6 NORTH EDGE OF 2IN PVC WELL PIPE
1012	46°36'52.5915"	120°30'48.4261"	1088.85	MW4 NORTH EDGE OF 2IN PVC WELL PIPE
1014	46°36'52.0089"	120°30'50.3685"	1090.01	MW5 NORTH EDGE OF 2IN PVC WELL PIPE

DATUM NOTES:

HORIZONTAL DATUM IS NAD83-2011 (EPOCH 2010.00) PER THE WASHINGTON STATE REFERENCE NETWORK (WSRN)

VERTICAL DATUM IS NAVD88 PER THE WASHINGTON STATE REFERENCE NETWORK (WSRN).

COORDINATES LISTED ARE WASHINGTON STATE PLANE SOUTH ZONE GRID

YAKIMA PLANT FUEL RELEASE - WELL LOCATION SURVEY REPORT COLEMAN OIL COMPANY JOB #41392 (REPORT BY ROP) REFERENCE JOB #4365 11/24/2020

POINT	NORTHING	EASTING	ELEVATION	DESCRIPTION
1	467104.96	1636980.19	1088.59	CONTROL POINT 1, SET REBAR & HDJ RED CAP
2	467054.80	1636869.03	1089.82	CONTROL POINT 2, SET REBAR & HDJ RED CAP
2001	466986.98	1637036.18	1087.50	GROUND ELEVATION AT MONITORING WELL 14
2002	466986.59	1637036.35	1086.98	TOP OF NORTH EDGE OF PVC PIPE @ WELL 14
2003	467066.83	1637006.17	1087.42	TOP OF NORTH EDGE OF PVC PIPE @ WELL 13
2004	467067.14	1637006.18	1088.04	GROUND ELEVATION AT MONITORING WELL 13
2005	467097.30	1636988.57	1088.44	TOP OF NORTH EDGE OF PVC PIPE @ WELL 12
2006	467097.78	1636988.45	1088.58	GROUND ELEVATION AT MONITORING WELL 12
2007	467099.62	1636950.24	1088.99	TOP OF NORTH EDGE OF PVC PIPE @ WELL 11
2008	467100.08	1636950.12	1089.26	GROUND ELEVATION AT MONITORING WELL 11
2009	467191.49	1637079.16	1087.75	TOP OF NORTH EDGE OF PVC PIPE @ WELL 10
2010	467191.85	1637079.14	1088.28	GROUND ELEVATION AT MONITORING WELL 10
2011	467313.85	1637101.55	1089.07	TOP OF NORTH EDGE OF PVC PIPE @ WELL 9
2012	467314.19	1637101.48	1089.35	GROUND ELEVATION AT MONITORING WELL 9
2013	467289.03	1637032.28	1089.47	TOP OF NORTH EDGE OF PVC PIPE @ WELL 8
2014	467289.44	1637032.21	1089.77	GROUND ELEVATION AT MONITORING WELL 8
2015	467316.57	1636854.27	1090.40	TOP OF NORTH EDGE OF PVC PIPE @ WELL 7
2016	467317.03	1636854.24	1090.63	GROUND ELEVATION AT MONITORING WELL 7


POINT	LATITUDE (NORTH)	LONGITUDE (WEST)	ELEVATION	DESCRIPTION
1	46°36'51.3018"	120°30'49.2301"	1088.59	CONTROL POINT 1, SET REBAR & HDJ RED CAP
2	46°36'50.8065"	120°30'50.8224"	1089.82	CONTROL POINT 2, SET REBAR & HDJ RED CAP
22001	46°36'50.13723"	120°30'48.42767"	1087.50	GROUND ELEVATION AT MONITORING WELL 14
22002	46°36'50.13345"	120°30'48.42527"	1086.98	TOP OF NORTH EDGE OF PVC PIPE @ WELL 14
22003	46°36'50.92551"	120°30'48.85784"	1087.42	TOP OF NORTH EDGE OF PVC PIPE @ WELL 13
22004	46°36'50.92856"	120°30'48.85768"	1088.04	GROUND ELEVATION AT MONITORING WELL 13
22005	46°36'51.2262"	120°30'49.11006"	1088.44	TOP OF NORTH EDGE OF PVC PIPE @ WELL 12
22006	46°36'51.23097"	120°30'49.11178"	1088.58	GROUND ELEVATION AT MONITORING WELL 12
22007	46°36'51.24905"	120°30'49.65918"	1088.99	TOP OF NORTH EDGE OF PVC PIPE @ WELL 11
22008	46°36'51.25361"	120°30'49.66082"	1089.26	GROUND ELEVATION AT MONITORING WELL 11
22009	46°36'52.15618"	120°30'47.81245"	1087.75	TOP OF NORTH EDGE OF PVC PIPE @ WELL 10
22010	46°36'52.15980"	120°30'47.81278"	1088.28	GROUND ELEVATION AT MONITORING WELL 10
22011	46°36'53.36414"	120°30'47.49200"	1089.07	TOP OF NORTH EDGE OF PVC PIPE @ WELL 9
22012	46°36'53.36755"	120°30'47.49304"	1089.35	GROUND ELEVATION AT MONITORING WELL 9
22013	46°36'53.11901"	120°30'48.48427"	1089.47	TOP OF NORTH EDGE OF PVC PIPE @ WELL 8
22014	46°36'53.12308"	120°30'48.48539"	1089.77	GROUND ELEVATION AT MONITORING WELL 8
22015	46°36'53.39055"	120°30'51.03459"	1090.40	TOP OF NORTH EDGE OF PVC PIPE @ WELL 7
22016	46°36'53.39514"	120°30'51.03493"	1090.63	GROUND ELEVATION AT MONITORING WELL 7

DATUM NOTES:

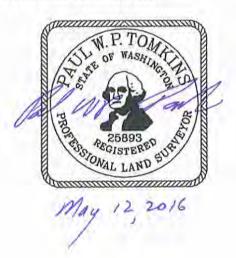
HORIZONTAL DATUM IS NAD83-2011 (EPOCH 2010.00) PER THE WASHINGTON STATE REFERENCE NETWORK (WSRN)

VERTICAL DATUM IS NAVD88 PER THE WASHINGTON STATE REFERENCE NETWORK (WSRN).

COORDINATES LISTED ARE WASHINGTON STATE PLANE SOUTH ZONE GRID

YAKIMA PLANT FUEL RELEASE - WELL LOCATION SURVEY REPORT COLEMAN OIL COMPANY JOB #4365 (REPORT BY ROP)

POINT	NORTHING	EASTING	ELEVATION	DESCRIPTION
1	467104.96	1636980.19	1088.59	CONTROL POINT 1, SET REBAR & HDJ RED CAP
2	467054.80	1636869.03	1089.82	CONTROL POINT 2, SET REBAR & HDJ RED CAP
1000	467174.09	1636965.91	1089.65	MW3 NORTH EDGE OF EXTERNAL CASING
1001	467173.89	1636965,90	1089.15	MW3 NORTH EDGE OF 2IN PVC WELL PIPE
1002	467194.51	1636962.68	1090.05	MW1 NORTH EDGE OF EXTERNAL CASING
1003	467194.30	1636962.63	1089.54	MW1 NORTH EDGE OF 4IN PVC WELL PIPE
1004	467211.57	1636953.36	1090.21	MW1 NORTH EDGE OF EXTERNAL CASING
1005	467211.29	1636953.38	1089.54	MW1 NORTH EDGE OF 2IN PVC WELL PIPE
1006	467209.98	1636986.28	1089.73	MW2 NORTH EDGE OF EXTERNAL CASING
1007	467209.69	1636986.34	1089.44	MW2 NORTH EDGE OF 2IN PVC WELL PIPE


POINT	LATITUDE (NORTH)	LONGITUDE (WEST)	ELEVATION	DESCRIPTION
1	46°36'51.3018"	120°30'49.2301"	1088.59	CONTROL POINT 1, SET REBAR & HDJ RED CAP
2	46"36'50.8065"	120°30'50.8224"	1089.82	CONTROL POINT 2, SET REBAR & HDJ RED CAP
1000	46°36'51.9842"	120°30'49.4348"	1089.65	MW3 NORTH EDGE OF EXTERNAL CASING
1001	46°36'51.9823"	120°30'49.4350"	1089.15	MW3 NORTH EDGE OF 2IN PVC WELL PIPE
1002	46°36'52.1858"	120°30'49.4811"	1090.05	MW1 NORTH EDGE OF EXTERNAL CASING
1003	46°36'52.1837"	120°30'49.4819"	1089.54	MW1 NORTH EDGE OF 4IN PVC WELL PIPE
1004	46"36'52.3543"	120°30'49.6147"	1090.21	MW1 NORTH EDGE OF EXTERNAL CASING
1005	46°36'52.3515"	120°30'49.6144"	1089.54	MW1 NORTH EDGE OF 2IN PVC WELL PIPE
1006	46°36'52.3386"	120°30'49.1432"	1089.73	MW2 NORTH EDGE OF EXTERNAL CASING
1007	46°36'52.3357"	120°30'49.1423"	1089.44	MW2 NORTH EDGE OF 2IN PVC WELL PIPE

DATUM NOTES:

HORIZONTAL DATUM IS NAD83-2011 (EPOCH 2010.00) PER THE WASHINGTON STATE REFERENCE NETWORK (WSRN)

VERTICAL DATUM IS NAVD88 PER THE WASHINGTON STATE REFERENCE NETWORK (WSRN).

COORDINATES LISTED ARE WASHINGTON STATE PLANE SOUTH ZONE GRID

Appendix D Terrestrial Ecological Evaluation Exclusion Form

TECHNICAL MEMORANDUM

DATE: January 5, 2021

TO: Washington State Department of Ecology

FROM: James Welles, LG

FACILITY NO: 4233 VCP Project NO: NA PBS PROJECT NO: 41392

RE: Terrestrial Ecological Evaluation – Exclusion Documentation

To Whom It May Concern:

This technical memorandum is intended to document an exclusion from further evaluation in relation to conducting a Terrestrial Ecological Evaluation (TEE) for the Coleman Oil Yakima Bulk Fuel Plant Site. The exclusion is based on Barriers to Exposure: WAC 173-340-7491(1)(b) and Undeveloped Land: WAC 173-340-7491(1)(c).

Background

PBS has conducted site characterization and remedial investigation work at the site since June 2015, in relation to releases of gasoline and diesel in the vicinity of the fueling canopy. Subsurface investigation work has included soil borings and the installation of fourteen groundwater monitoring wells. The site is considered to be mostly characterized at this time.

Basis for Exclusion

All contaminated soil is or will be covered by physical barriers (buildings and pavement) that prevent exposure to plants and wildlife. Additionally, there is less than 1.5 acres of contiguous undeveloped land on or within 500 feet of any area of the Site, and none of the following chemicals are present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlore, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol or phentachlorobenzene.

Please refer to the Data Summary Report dated July 2018 and the Remedial Investigation Report dated January 2020 for further details.

Please let me know if you need any additional information or clarification.

Thank you. PBS Engineering and Environmental

<u>Attachments</u> TEE Form Site Plans Analytical Results Tables

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to <u>https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation</u>.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Coleman Oil Yakima Bulk Fuel Plant

Facility/Site Address: 1 East I Street, Yakima, Washington 98901

Facility/Site No: 4233

VCP Project No.: N/A – Agreed Order: DE 15639

Title: Project Geologist

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name: James Welles, LG

Organization: PBS Engineering and Environmental

Mailing address: 214 E Galer Street suite 300

City: Seattle			te: WA	Zip code: 98102
Phone: 206.233.9639	Fax: 866.727.0140		E-mail: j <u>ames</u>	s.welles@pbsusa.com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS					
A. Exclusion	n from further evaluation.				
1. Does the	Site qualify for an exclusion from further evaluation?				
ע 🖂	(es If you answered "YES," then answer Question 2.				
	No or If you answered " NO" or "UNKNOWN," then skip to Step 3B of this form.				
2. What is th	e basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.				
Point of Co	ompliance: WAC 173-340-7491(1)(a)				
	All soil contamination is, or will be,* at least 15 feet below the surface.				
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.				
Barriers to	Exposure: WAC 173-340-7491(1)(b)				
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.				
Undevelop	ped Land: WAC 173-340-7491(1)(c)				
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.				
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site. <i>It is noted that while the property to the west of the railroad tracks is currently vacant, it was formerly developed as the Valley Evaporating Company plant and later by Nakano Foods, a former VCP Cleanup Site. As such, the property is not considered undeveloped.</i>				
Backgrour	Background Concentrations: WAC 173-340-7491(1)(d)				
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.				
acceptable to E [±] "Undeveloped prevent wildlife [#] "Contiguous"	based on future land use must have a completion date for future development that is cology. d land" is land that is not covered by building, roads, paved areas, or other barriers that would from feeding on plants, earthworms, insects, or other food in or on the soil. undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area				

B	. Simplified evaluation.					
1.	1. Does the Site qualify for a simplified evaluation?					
	□ Y	es If you answered "YES," then answer Question 2 below.				
	☐ N Unkn	o or or own If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form.				
2.	Did you co	enduct a simplified evaluation?				
	□ Y	es If you answered "YES," then answer Question 3 below.				
	□ N	o If you answered " NO, " then skip to Step 3C of this form.				
3.	Was furthe	er evaluation necessary?				
	□ Y	es If you answered "YES," then answer Question 4 below.				
	□ N	o If you answered " NO, " then answer Question 5 below.				
4.	lf further e	valuation was necessary, what did you do?				
		Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then</i> s <i>kip to</i> Step 4 of this form.				
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.				
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.				
	Exposure A	Analysis: WAC 173-340-7492(2)(a)				
		Area of soil contamination at the Site is not more than 350 square feet.				
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.				
	Pathway A	nalysis: WAC 173-340-7492(2)(b)				
	No potential exposure pathways from soil contamination to ecological receptors.					
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.				

C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c). 1. Was there a problem? See WAC 173-340-7493(2).	-							
Yes If you answered "YES," then answer Question 2 below. Ino If you answered "NO," then identify the reason here and then skip to Question 5 below: Intervention No While issues were identified during the problem formulation step. Intervention While issues were identified during the problem formulation step. Intervention While issues were identified during the problem formulation step. Intervention While issues were identified during the problem formulation step. Intervention While issues were identified during the problem formulation step. Intervention While issues were identified during the problem formulation step. Intervention While issues were identified during the problem formulation step. Intervention Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Intervention Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific avaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Intervent Literature surveys. Soil bioassays. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific	C.	the problem, and (2) selecting the methods for addressing the identified problem. Both steps						
No If you answered "NO," then identify the reason here and then skip to Question 5 below: No No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	1.	Was there	a problem? See WAC 173-340-7493(2).					
No below: No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?		□ Y	es If you answered "YES," then answer Question 2 below.					
While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:		□ N						
cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			No issues were identified during the problem formulation step.					
Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:								
Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i> 3. If you conducted further site-specific evaluations, what methods did you use? <i>Check all that apply. See</i> WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	2.	What did y	you do to resolve the problem? See WAC 173-340-7493(3).					
 address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			• • •					
Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:								
 Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	3.							
 Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Literature surveys.					
 Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:] Soil bioassays.					
 Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Wildlife exposure model.					
 Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Biomarkers.						
 Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Site-specific field studies.						
 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Weight of evidence.					
 Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Other methods approved by Ecology. If so, please specify:					
 Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	4.	What was	the result of those evaluations?					
 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Confirmed there was no problem.					
problem resolution steps?			Confirmed there was a problem and established site-specific cleanup levels.					
	5.							
□ No		□ Y	es If so, please identify the Ecology staff who approved those steps:					
		🗌 N	0					

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. People with hearing loss can call 711 for Washington Relay Service. People with a speech disability can call 877-833-6341.

Appendix E Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 22, 2015

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included is the amended report from the testing of material submitted on April 17, 2015 from the 64116 Yakima, F&BI 504328 project. Per your request, the methylnaphthalenes have been added to the report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cu

Michael Erdahl Project Manager

Enclosures PBR0507R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 7, 2015

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included are the results from the testing of material submitted on April 17, 2015 from the 64116 Yakima, F&BI 504328 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBR0507R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 17, 2015 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 64116 Yakima, F&BI 504328 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
504328 -01	S26
504328 -02	S27
504328 -03	S28
504328 -04	S29
504328 -05	S30
504328 -06	S31
504328 -07	S32
504328 -08	S33
504328 -09	S34
504328 -10	S35
504328 -11	S36
504328 -12	S37
504328 -13	S38
504328 -14	S39
504328 -15	S40
504328 -16	S41
504328 -17	S42
504328 -18	S43
504328 -19	S44

The 8082A aroclor 1016 matrix spike failed below the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results are likely due to matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328 Date Extracted: 04/20/15 Date Analyzed: 04/20/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	Diesel	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 53-144)
S26 504328-01	ND	D	D	ip
S27 504328-02	ND	160 e	ND	89
S28 504328-03	ND	10,000 e	1,500 e	ip
S29 504328-04	ND	7,300 e	7,400 e	78
S30 504328-05	ND	D	D	82
S31 504328-06	ND	3,300 e	2,100 e	87
S32 504328-07	ND	2,400 e	1,200 e	95
S33 504328-08	ND	2,100 e	510 e	87
S34 504328-09	ND	320 e	ND	99
S35 504328-10	ND	90 e	ND	88

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

e – The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328 Date Extracted: 04/20/15 Date Analyzed: 04/20/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	Diesel	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 53-144)
S36 504328-11	ND	D	D	ip
S37 504328-12	ND	D	ND	103
S38 504328-13	ND	ND	310 e	89
S40 504328-15	D	ND	ND	94
S41 504328-16	D	ND	ND	97
S42 504328-17	ND	290 e	ND	90
S43 504328-18	ND	99 e	ND	91
S44 504328-19	ND	1,300 e	330 e	91
Method Blank 05-808 MB	ND	ND	ND	89

05-808 MB

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

e – The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328 Date Extracted: 04/27/15 Date Analyzed: 04/27/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
S40 504328-15	<0.02	<0.02	<0.02	<0.06	<2	89
Method Blank 05-0821 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	79

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328 Date Extracted: 04/27/15 Date Analyzed: 04/27/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogato

			Surrogate
Sample ID	Diesel Range	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	(C ₂₅ -C ₃₆)	(Limit 56-165)
S26 504328-01	15,000	980	69
S30 504328-05 1/10	3,200	5,000	100
S36 504328-11 1/10	52,000	5,300	ір
S37 504328-12	530	<250	96
S39 504328-14 1/10	15,000	31,000	79
S42 504328-17	660	310	91
Method Blank ^{05-851 MB}	<50	<250	106

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	S29 04/17/15 04/27/15 04/27/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 504328-04 504328-04.065 ICPMS1 SP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	95	60	125
Indium	84	60	125
Holmium	96	60	125
	Concentration		
Analyte:	mg/kg (ppm)		
Arsenic	8.00		
Cadmium	2.35		
Chromium	5.91		
Lead	332		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/27/15 04/27/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 I5-252 mb I5-252 mb.045 ICPMS1 SP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	72	60	125
Indium	78	60	125
Holmium	92	60	125
	Concentration		
Analyte:	mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	S30 04/17/15 04/27/15 05/01/15 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 504328-05 1/50 050110.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 88 d 103 d	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene cene ie	$\begin{array}{c} 0.12 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.14 \\ 0.16 \\ 0.11 \\ 0.23 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.34 \end{array}$		
2-Methylnaphthale 1-Methylnaphthale		0.26 0.13		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 04/27/15 04/28/15 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 05-853 mb 1/5 042805.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 83 82	Lower Limit: 31 24	Upper Limit: 163 168
Commonweday		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ene	< 0.01		
Benzo(k)fluoranthe	ene	< 0.01		
Indeno(1,2,3-cd)pyr	rene	< 0.01		
Dibenz(a,h)anthrac	cene	< 0.01		
Benzo(g,h,i)perylen	ie	< 0.01		
2-Methylnaphthale	ene	< 0.01		
1-Methylnaphthale	ene	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	S30 04/17/15 05/04/15 05/04/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 504328-05 1/50 09.D\ECD1A.CH GC7 ya
Surrogates: TCMX	% Recovery: 40 d	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ 0.37 \\ < 0.2 $		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 05/04/15 05/04/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 05-895 mb 1/5 07.D\ECD1A.CH GC7 ya
Surrogates: TCMX	% Recovery: 80	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221	< 0.02		
Aroclor 1232	< 0.02		
Aroclor 1016	< 0.02		
Aroclor 1242	< 0.02		
Aroclor 1248	< 0.02		
Aroclor 1254	< 0.02		
Aroclor 1260	< 0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 504462-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	mg/kg (ppm)	0.5	81	69-120			
Toluene	mg/kg (ppm)	0.5	92	70-117			
Ethylbenzene	mg/kg (ppm)	0.5	92	65-123			
Xylenes	mg/kg (ppm)	1.5	91	66-120			
Gasoline	mg/kg (ppm)	20	100	71-131			

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	504328-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	14,000	123 b	138 b	63-146	11 b
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	110	79-1	44		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 504442-41 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	10.3	83 b	102 b	67-121	21 b
Cadmium	mg/kg (ppm)	10	<1	97	102	88-121	5
Chromium	mg/kg (ppm)	50	5.43	79	83	57-128	5
Lead	mg/kg (ppm)	50	68.8	114	122	59-148	7
Mercury	mg/kg (ppm	10	<1	88	95	50-150	8

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	84	83-113
Cadmium	mg/kg (ppm)	10	100	85-114
Chromium	mg/kg (ppm)	50	88	78-121
Lead	mg/kg (ppm)	50	105	80-120
Mercury	mg/kg (ppm)	10	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 504416-03 1/5 (Matrix Spike)

Laboratory Code. 504410-05 1/5 (Matrix Spike)								
			Sample	Percent				
	Reporting	Spike	Result	Recovery	Acceptance			
Analyte	Units	Level	(Wet wt)	MS	Criteria			
Naphthalene	mg/kg (ppm)	0.17	< 0.01	88	44-129			
2-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	89	45-135			
1-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	89	40-141			
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	86	52-121			
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	88	51-123			
Fluorene	mg/kg (ppm)	0.17	< 0.01	90	37-137			
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	84	34-141			
Anthracen e	mg/kg (ppm)	0.17	< 0.01	85	32-124			
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	86	16-160			
Pyrene	mg/kg (ppm)	0.17	< 0.01	79	10-180			
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	87	23-144			
Chrysene	mg/kg (ppm)	0.17	< 0.01	89	32-149			
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	94	23-176			
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	96	42-139			
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	89	21-163			
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	99	23-170			
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	100	31-146			
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	98	37-133			

Laboratory Code: Laboratory Control Sample 1/5

		-	Percent	Percent	A .	
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	89	90	58-121	1
2-Methylnaphthalene	mg/kg (ppm)	0.17	88	89	58-123	1
1-Methylnaphthalene	mg/kg (ppm)	0.17	89	89	60-124	0
Acenaphthylene	mg/kg (ppm)	0.17	85	86	54-121	1
Acenaphthene	mg/kg (ppm)	0.17	87	87	54-123	0
Fluorene	mg/kg (ppm)	0.17	91	91	56-127	0
Phenanthrene	mg/kg (ppm)	0.17	89	91	55-122	2
Anthracene	mg/kg (ppm)	0.17	83	85	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	87	88	54-129	1
Pyrene	mg/kg (ppm)	0.17	77	83	53-127	7
Benz(a)anthracene	mg/kg (ppm)	0.17	82	84	51-115	2
Chrysene	mg/kg (ppm)	0.17	88	92	55-129	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	97	98	56-123	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	101	105	54-131	4
Benzo(a)pyrene	mg/kg (ppm)	0.17	90	90	51-118	0
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	98	93	49-148	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	101	95	50-141	6
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	98	95	52-131	3

ENVIRONMENTAL CHEMISTS

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 504328-05 1/50 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Control
Analyte	Units	Level	(Wet Wt)	MS	Limits
Aroclor 1016	mg/kg (ppm)	0.8	< 0.2	29 vo	50-150
Aroclor 1260	mg/kg (ppm)	0.8	<0.2	74	50-150

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	82	81	55-130	1
Aroclor 1260	mg/kg (ppm)	0.8	99	89	58-133	11

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

												F						FORMS\COC\COC.DOC	77
6 0	moles received at	mhp														Received by:	Rece	Fax (206) 283-5044	~
141 21121															u by:	Kenniquished by:	NCII	2020-020/	
KIG/15 IVIE	a Y	TT B		_		hay	NG		5	han	2		ß	Parce	m/az		Deli	DP (2006) 2020 2020	-
distis		Pas						1.	12	Jana Cirel	1 de		a	Murall Lot		Received by:	Rece	Seattle, WA 98119-2029	20
DATE TIME	YNY	COMPANY					111	AMI	TN	PRINT NAME	> ₋₀	+	2	TURE	SIGNATURE	nquishe		Friedman & Bruya, Inc. 3012 16th Avenue West	
				*		 					\sim		K				-	× ×	. [
				— —	1	1			<u>†</u>	+	~						8	152 145	1
							 	<u> </u>	<u> </u>		2					P B	30	\$33	—
					<u>†</u>	<u> </u>	1	<u> </u>	+		w					\downarrow	0	285	
									<u> </u>		W		+			06 H.C	0	115	
	×	\times							<u> </u>	X	7					A-D	0	025	
		Ì	×								~		+			04	0	623	
											w					63	0	875	
-1/2 U.S											w	+-	<u> </u>			8	6	125	
n /he/is			\rightarrow	,					\times	$\mathbf{\times}$	~	2.5	5		ort culmins	A A		226	
Notes	PAH	PCBS	MTCA 5	HCID	HFS	VOCs by8260 SVOCs by 8270	BTEX by 8021B	TPH-Gasoline	TPH-Diesel		# of containers	Sample Type		Time Sampled	Date Sampled	Lab ID		Sample ID	
	TED	ANALYSES REQUESTED	RE	YSE	AA	≥		$\left \right $	$\left \right $	╄┥									
 Return samples Will call with instructions 															#	Fax	c873	Phone # (309) 727-0873 Fax #	
SAMPLE DISPOSAL											KS	REMARKS		2322	1A 993		ilan	City, State, ZIP 12 hland, WA	
Rush charges authorized by	Rush (:	. :			16	i vi	lak			300	e Smite	Blu	ral by	Address 400 Bradley Blud Swife Joe	
Standard (2 Weeks) RUSH	D Standa	ŧ	PO#						Ö	Ň	ST NAL	PROJECT NAME/NO.			menta	iron	にうい	Company PBS Environmental	
Page # 1 of			Ĩ	Å,	e St	-A	R	2	ture	igna	ERS (s	SAMPLERS (signature)			(*	Ert	Dan Ert	Send Report To	
ESA -	17/15	140	1	ME		YC	ſO	USJ	C	I OI	HAIN	SAMPLE CHAIN OF CUSTODY	SA					504328	

	. 6	vamples received at	van	-												FORMSICOCICOCIDOC
	•		,											Received by:		rax (200) 283-5044
				_											.T	
1418	4/12/15-	87	J-T		5	an	Ng	Ľ	3	Uhan	12	ylar	Iby:	Relinquished by:		Ph. (206) 285-8282
														Received by-		Seattle, WA 98119-2020
TIME	DATE	COMPANY	8	$\left - \right $			PRINT NAME	NA	Z	PR		URE	SIGNATURE Relinquished by:	inquished		3012 16th Avenue West
															- I	Friedman & Dans
			5								٤	-	•	13		. 44
			2		ļ								<			(F (
			2					Ť	>					1 +		CUA
									$< \top$					5		245
			4									<u> </u>		6		145
Tender .	- Link		2				X	$\overline{\times}$			Soil			6)		04 5
	- Brock Ar								N		Supplication			₽ 		
BE DE 1	Analyze						$ \uparrow$		て	c	· 6 /					539
	-		$\left\{ \right\}$								د			2		828
			2					\rightarrow	\times					8		531
			5					\sim	X	W	Sur		1) A Julie	DAJ		536
Notes			Heid	HFS	SVOCs by 8270	VOCs by8260	BTEX by 8021E	TPH-Diesel TPH-Gasoline		# of containers	Sample Type	Time Sampled	<u>A</u>	Lab ID		Sample ID
		ANALYSES REQUESTED	SES REC		PZ	4		-	+-							
ructions	P Will call with instructions				1											
lays	Dispose after 30 days Return camples												#	₩ F	127-6873	Phone # (99) 727-0873 Fax #
POSAL	SAMPLE DISPOSAL			┟						KS	REMARKS	52	vA 99352	mel L	fizila	City, State, ZIP Lichland, WA
rized by	Rush charges authorized by	Rush			•	ra.	í.	2	6	Grille Tallima		Jæ	d Smith	Blu	Brudley	Address 400 Bradley Blud Swife Joe
s)	Standard (2 Weeks)		PO#				-	<u>, õ</u>		TNAN	PROJECT NAME/NO		PBS Environmental	vire	35 En	Company PC
of 2	Page # 2							ture	gna	ERS (si	SAMPLERS (signature)		ei	ann Erti	H	Send Report To
8	ESN	511411	140	A G	Y	rody	rsn	F C	0	HAIN	SAMPLE CHAIN OF CUST				F	Soysas

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 31, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on March 23, 2016 from the Coleman Yakima, 64116 PO, F&BI 603413 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0331R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 23, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
603413 -01	NSW1-4
603413 -02	WSW1-4
603413 -03	B1-5.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413 Date Extracted: 03/24/16 Date Analyzed: 03/24/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B1-5.5 603413-03 1/10	0.79	14	20	110	5,100	ip
Method Blank 06-556 MB	<0.02	<0.02	< 0.02	<0.06	<2	89

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413 Date Extracted: 03/24/16 Date Analyzed: 03/24/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
NSW1-4 603413-01	11,000	270 x	91
WSW1-4 603413-02	26,000	570 x	72
B1-5.5 603413-03	34,000	770 x	103
Method Blank 06-567 MB	<50	<250	99

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

J		I J		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-5.5 03/23/16 03/24/16 03/24/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413 603413-03 1/250 032418.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 3 d 163 d	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		8.1		
Acenaphthylene		< 0.5		
Acenaphthene		1.4		
Fluorene		3.4		
Phenanthrene		5.0		
Anthracene		<0.5		
Fluoranthene		<0.5		
Pyrene		2.4		
Benz(a)anthracene		<0.5		
Chrysene		<0.5		
Benzo(a)pyrene		<0.5		
Benzo(b)fluoranthe		<0.5		
Benzo(k)fluoranthe		<0.5		
Indeno(1,2,3-cd)pyr		< 0.5		
Dibenz(a,h)anthrac		< 0.5		
Benzo(g,h,i)perylen	e	<0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 03/24/16 03/28/16 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413 06-569 mb 1/5 032803.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e- d12	% Recovery: 92 102	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		<0.01		
Benzo(a)pyrene		<0.01		
Benzo(b)fluoranthe		<0.01		
Benzo(k)fluoranthe		< 0.01		
Indeno(1,2,3-cd)pyr		< 0.01		
Dibenz(a,h)anthrac		< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	0.5	94	91	69-120	3
Toluene	mg/kg (ppm)	0.5	100	96	70-117	4
Ethylbenzene	mg/kg (ppm)	0.5	101	98	65-123	3
Xylenes	mg/kg (ppm)	1.5	99	99	66-120	0

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 6	603420-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	95	97	63-146	2
Laboratory Code: I	aboratory Contr.	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	104	79-1	44		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample 1/5

Laboratory couch Labora	y er	I .	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	93	91	58-121	2
Acenaphthylene	mg/kg (ppm)	0.17	96	93	54-121	3
Acenaphthene	mg/kg (ppm)	0.17	93	92	54-123	1
Fluorene	mg/kg (ppm)	0.17	94	91	56-127	3
Phenanthrene	mg/kg (ppm)	0.17	94	92	55-122	2
Anthracene	mg/kg (ppm)	0.17	90	86	50-120	5
Fluoranthene	mg/kg (ppm)	0.17	93	87	54-129	7
Pyrene	mg/kg (ppm)	0.17	92	97	53-127	5
Benz(a)anthracene	mg/kg (ppm)	0.17	95	94	51-115	1
Chrysene	mg/kg (ppm)	0.17	92	95	55-129	3
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	99	96	56-123	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	100	99	54-131	1
Benzo(a)pyrene	mg/kg (ppm)	0.17	93	89	51-118	4
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	91	87	49-148	4
Dibenz(a, h)anthracene	mg/kg (ppm)	0.17	86	83	50-141	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	86	84	52-131	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruva. Inc.						R1-S.S	H- ZMSM	NSW2 -4	Sample ID		Phone 509.512, 846 JEmail Kenney- Opbsinv. com	City, State, ZIP	Address Scn 44	Company P3S	Report To Fin Nonre	603413
	Received by:	Relinguished by:	Received hy	SIC Relinquished by: 1						03 A-F	20	0/	Lab ID		mail Kennegen		Scalle WA	Enjinerar	Johre	
			- Mar	SIGNATURE						3.23.16	3.23.16	3,233,16	Date Sampled		.Opbsinv.					
			ß.							1240	1200	1140	Time Sampled		No 2	REMARKS	Cokmon	PROJE	- SAMPL	SAMPL
		A Charles	Kin							1.1	51.1	51.1	Sample Type			KS		PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
		- La	5	PRINT NAME		 				5	-	-	# of Jars				Yukima		sture)	VOF
) sx. nc	TNA		 	 					~	TPH-HCID				7		K	CUS
			5	MB	┝─┤	 	 			XX	1	\times	TPH-Diesel	$\left \right $					K. Nojerz	TO
					╞──┼	 	 		<u> </u>	K			TPH-Gasoline BTEX by 8021B	$\left \right $					0	DY
										1			VOCs by 8260C	Z			6		2	F
		T	70			 	 						SVOCs by 8270D	ISAT		INVOICE TO	64116	P		ЭH
Sa		A	SB			 	 	.		\times			PAHs 8270D SIM	ES RI		ICE	0-	PO#		
mple		V^{a}		COMPANY		 	 							QUI		0				12/2
				ANY		 	 							ANALYSES REQUESTED			24			2
Samples received at						 	 								ArchivOther		ush 🗲	Stan		3/16
lat <u> </u>		alette	3, 23, 6	DATE						1 8h	27				Archive Samples Other	SAMPLE DISPOSAL	Rush charges authorized by:	Standard Turnaround	Page # of	۲.
ň			+	$\left - \right $							27		Notes			SPOS.	prized	ound		(4 57)
		640	640	TIME					PAHs	6x 877	dress		Ψ			F	by:			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 4, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on March 30, 2016 from the 41392, F&BI 603529 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0404R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 30, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 603529 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
603529 -01	T1-WSW
603529 -02	T1-ESW
603529 -03	T1-B

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/16 Date Received: 03/30/16 Project: 41392, F&BI 603529 Date Extracted: 03/30/16 Date Analyzed: 03/30/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
T1-B 603529-03	< 0.02	0.063	0.18	2.3	340	85
Method Blank 06-608 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	86

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/16 Date Received: 03/30/16 Project: 41392, F&BI 603529 Date Extracted: 03/30/16 Date Analyzed: 03/30/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
T1-WSW 603529-01	9,500	<250	79
T1-ESW 603529-02	920	<250	84
T1-B 603529-03	190	<250	83
Method Blank 06-604 MB2	<50	<250	83

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/16 Date Received: 03/30/16 Project: 41392, F&BI 603529

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 603520-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	95	70-117
Ethylbenzene	mg/kg (ppm)	0.5	96	65-123
Xylenes	mg/kg (ppm)	1.5	94	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/16 Date Received: 03/30/16 Project: 41392, F&BI 603529

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	603504-03 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	116	124	73-135	7
Laboratory Code:	Laboratory Contro	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptar	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	118	74-139)		

5

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (206) 283-5044 FORMS\COC\COC.DOC	Seattle, WA 98119-2029 Ph. (206) 285-8282		 T				T1 - B	FI-ESW	TI-WSW	Sample ID		Email Address Ken. Mogeire Opbenv.com	Phone # 507. 512. 8167 Fax #	City, State, ZIP	Sent	Company PBS Ew	Send Report To Kn	603529
Received by:	Relinquished by:	Relinquished by:					03 1-0 3.28.16	02	0/	Lab ID		Jeire Opbs	5_Fax #		k WA J	ainerny	Ken Nogerra	
Mayet &	Yunt	Ŋ	IGNATUR				3.28.16	3.28.4	3.24.4	Date		cnv. (•m						
Y	Ì	Ŋ	Œ				940	935	930	Time		_						SAM
Eliza	Jam lans	K 7					51-1	51.1	50.1	Sample Type			ELECTRONIC DATA REQUESTED	PROJECT ADDRESS	41392	PROJECT NAME/NO.	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
och R	(abs	K. Nogriz	PRINT NAME				ſ	-		# of containers			C DATA RE	VL VNA		ME/NO.	signature)	N OF CI
Elizabeth Radford			NAME	 	 		 XXX	*	$\mathbf{\lambda}$	TPH-Diesel TPH-Gasoline BTEX by 8021B			QUESTED				لاب	USTODY
										VOCs by 8260							Nozere	
7				 	 	 				SVOCs by 8270	NAL				41392		1	Ł
FAB	Hed Ex	785	0							HFS	NALYSES REQUESTED				رو	PO #		ЪС
	Er	V.	COMPANY	Sampl		 				<u>. </u>	REQ							e
	205		ANY	u seja	 					· · · · ·	UES		<u></u>		1	1		150
	r			ecei							ĒD		Will		Rush (RUSH		30,
G	- w			be/									call les Re	SAM	charg	ndard	Page #	311
3/30/16 11:45	31/16	7.2916	DATE	5						7			Will call with instructions Samples Received at	SAMPLE DISPOSAL	Rush charges authorized by:	Standard Turnaround	Page TURNAROUND TIME	
1): 45	<u> `/\$/3.m</u>	164S	TIME	_ °C						Notes			uctions °C	'OSAL Iys	Ized by:	Ind	O TIME	£,

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 22, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on April 1, 2016 from the 41392, F&BI 604013 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0422R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 1, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 604013 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
604013 -01	NSW2-17
604013 -02	ESW1-17
604013 -03	SSW1-17
604013 -04	WSW2-11
604013 -05	B2-18
604013 -06	Trip Blank

Samples WSW2-11 and B2-18 was sent to Fremont Analytical for EPH and VPH analyses. Review of the enclosed report indicates that all quality assurance were acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/01/16 Date Analyzed: 04/01/16 and 04/05/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
NSW2-17 604013-01	< 0.02	< 0.02	< 0.02	< 0.06	<2	81
ESW1-17 604013-02	< 0.02	< 0.02	< 0.02	< 0.06	3.1	84
SSW1-17 604013-03	< 0.02	0.039	0.024	0.14	5.5	76
WSW2-11 604013-04	< 0.02	3.1	7.5	62	3,400	ip
B2-18 604013-05	0.65	5.1	7.3	44	1,600	ip
Method Blank 06-612 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	86

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/01/16 Date Analyzed: 04/01/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Trip Blank 604013-06	<1	<1	<1	<3	84
Method Blank 06-613 MB	<1	<1	<1	<3	83

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/04/16 Date Analyzed: 04/04/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
NSW2-17 604013-01	<50	<250	93
ESW1-17 604013-02	<50	<250	105
SSW1-17 604013-03	<50	<250	91
WSW2-11 604013-04	9,900	330 x	93
B2-18 604013-05	25,000	570 x	73
Method Blank 06-660 MB	<50	<250	105

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B2-18	Client:	PBS Engineering and Environmental
Date Received:	04/01/16	Project:	41392, F&BI 604013
Date Extracted:	04/01/16	Lab ID:	604013-05
Date Analyzed:	04/01/16	Data File:	604013-05.065
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm) Dry Weight	Operator:	AP
Analyte:	Concentration mg/kg (ppm)		
Lead	4.94		

5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received:	Method Blank NA	Client: Project:	PBS Engineering and Environmental 41392, F&BI 604013
Date Extracted:	04/01/16	Lab ID:	I6-186 mb
Date Analyzed:	04/01/16	Data File:	I6-186 mb.019
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm) Dry Weight	Operator:	AP
Analyte:	Concentration mg/kg (ppm)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5		1	5	
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2-18 04/01/16 04/04/16 04/04/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 604013 604013-05 1/250 040415.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene		% Recovery: 45 160	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe		$7.2 < 0.5 \\ 0.86 \\ 2.1 \\ 2.5 < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\$		
Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ene ene	<0.5 <0.5 <0.5 <0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Ŭ				
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 04/04/16 04/04/16 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 604013 06-657 mb 1/5 040404.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 89 90	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ene	< 0.01		
Benzo(k)fluoranthe	ene	< 0.01		
Indeno(1,2,3-cd)pyr		< 0.01		
Dibenz(a,h)anthrac		< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 603575-02 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	81	69-120
Toluene	mg/kg (ppm)	0.5	91	70-117
Ethylbenzene	mg/kg (ppm)	0.5	93	65-123
Xylenes	mg/kg (ppm)	1.5	94	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Laboratory Code: 604014-01 (Duplicate) Reporting Sample Duplicate RPD Analyte Units Result Result (Limit 20) Benzene ug/L (ppb) <1 <1 nm ug/L (ppb) Toluene <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes ug/L (ppb) <3 <3 nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	100	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	89	74-118

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 6	304013-01 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	128	120	73-135	6
Laboratory Code: Laboratory Control Sample							
			Percent				
	Reporting	Spike	Recovery	Acceptan	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	122	74-139)		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code	e: 603575-01 (Ma	atrix Spik	e)				
-	Dementing	Ctl	Sample	Percent	Percent	A +	מתת
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	30.1	96	111	70-130	14

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	106	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 604023-02 1/5 (Matrix Spike)

J	02 1/0 (I/Iddi II 1	1 /	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	< 0.01	87	87	44-129	0
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	85	86	52-121	1
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	86	87	51-123	1
Fluorene	mg/kg (ppm)	0.17	< 0.01	82	83	37-137	1
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	87	87	34-141	0
Anthracene	mg/kg (ppm)	0.17	< 0.01	81	85	32-124	5
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	82	80	16-160	2
Pyrene	mg/kg (ppm)	0.17	< 0.01	90	91	10-180	1
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	87	87	23-144	0
Chrysene	mg/kg (ppm)	0.17	< 0.01	90	90	32-149	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	89	89	23-176	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	89	89	42-139	0
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	83	88	21-163	6
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	95	90	23-170	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	91	89	31-146	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	93	89	37-133	4

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Coue. Labora	lory control Sam	ipic 1/5		
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Naphthalene	mg/kg (ppm)	0.17	90	58-121
Acenaphthylene	mg/kg (ppm)	0.17	90	54-121
Acenaphthene	mg/kg (ppm)	0.17	89	54-123
Fluorene	mg/kg (ppm)	0.17	90	56-127
Phenanthrene	mg/kg (ppm)	0.17	91	55-122
Anthracene	mg/kg (ppm)	0.17	85	50-120
Fluoranthene	mg/kg (ppm)	0.17	91	54-129
Pyrene	mg/kg (ppm)	0.17	84	53-127
Benz(a)anthracene	mg/kg (ppm)	0.17	88	51-115
Chrysene	mg/kg (ppm)	0.17	91	55-129
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	96	56-123
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	91	54-131
Benzo(a)pyrene	mg/kg (ppm)	0.17	85	51-118
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	91	49-148
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	90	50-141
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	90	52-131

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 604013 Lab ID: 1604015

April 21, 2016

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 4/1/2016 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mulchdy ...

Mike Ridgeway President

CLIENT: Project: Lab Order:	Friedman & Bruya 604013 1604015	Work Order Sample Summa							
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received						
1604015-001	WSW2-11	03/30/2016 12:00 AM	04/01/2016 3:54 PM						
1604015-002	B1-18	03/30/2016 12:00 AM	04/01/2016 3:54 PM						

WO#: 1604015

Date: 4/21/2016

CLIENT:Friedman & BruyaProject:604013

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1604015** Date Reported: **4/21/2016**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV - Initial Calibration Verification** LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Batch ID: 13409

WO#: **1604015** Date Reported: **4/21/2016**

Analyst: BC

Client: Friedman & Bruya	Collection Date: 3/30/2016						
Project: 604013 _ab ID: 1604015-001 Client Sample ID: WSW2-11				Matrix: So	bil		
analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Extractable Petroleum Hydrocar	bons by NWEP	<u>'H</u>		Batch	n ID: 13	403 Analyst: CM	
Aliphatic Hydrocarbon (C8-C10)	52.4	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM	
Aliphatic Hydrocarbon (C10-C12)	271	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM	
Aliphatic Hydrocarbon (C12-C16)	715	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM	
Aliphatic Hydrocarbon (C16-C21)	711	4.86	Q	mg/Kg-dry	1	4/20/2016 12:26:00 AM	
Aliphatic Hydrocarbon (C21-C34)	176	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM	
Aromatic Hydrocarbon (C8-C10)	31.2	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM	
Aromatic Hydrocarbon (C10-C12)	160	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM	
Aromatic Hydrocarbon (C12-C16)	531	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM	
Aromatic Hydrocarbon (C16-C21)	820	4.86		mg/Kg-dry	1	4/20/2016 9:30:00 AM	
Aromatic Hydrocarbon (C21-C34)	659	4.86		mg/Kg-dry	1	4/20/2016 9:30:00 AM	
Surr: 1-Chlorooctadecane	64.3	60-140		%Rec	1	4/20/2016 12:26:00 AM	
Surr: o-Terphenyl	104	60-140		%Rec	1	4/20/2016 9:30:00 AM	
NOTES:							

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD,

<20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Volatile Petroleum Hydrocarbons by NWVPH

Aliphatic Hydrocarbon (C5-C6)	ND	2.23		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Aliphatic Hydrocarbon (C6-C8)	16.6	2.23		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Aliphatic Hydrocarbon (C8-C10)	122	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aliphatic Hydrocarbon (C10-C12)	509	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C8-C10)	173	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C10-C12)	2,960	44.7	DE	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C12-C13)	4,630	44.7	DE	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Benzene	ND	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Toluene	1.82	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Ethylbenzene	4.23	0.558	Q	mg/Kg-dry	1	4/7/2016 12:32:08 PM
m,p-Xylene	18.1	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
o-Xylene	11.1	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Naphthalene	274	11.2	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Methyl tert-butyl ether (MTBE)	ND	0.558	*	mg/Kg-dry	1	4/7/2016 12:32:08 PM
Surr: 1,4-Difluorobenzene	113	65-140		%Rec	1	4/7/2016 12:32:08 PM
Surr: Bromofluorobenzene	71.7	65-140	D	%Rec	20	4/7/2016 4:13:09 AM

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD,

<20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

WO#: **1604015** Date Reported: **4/21/2016**

Client: Friedman & Bruya		Collection Date: 3/30/2016							
Project:604013Lab ID:1604015-001	Matrix: Soil								
Client Sample ID: WSW2-11									
Analyses	Result	RL	Qual	Units	DF	Date Analyzed			
Sample Moisture (Percent Mois	sture)			Batc	h ID: R2	28628 Analyst: CG			

Batch ID: 13409

WO#: **1604015** Date Reported: **4/21/2016**

Analyst: BC

Client: Friedman & Bruya				Collection	Date:	3/30/2016
_ab ID: 1604015-002	-					
Client Sample ID: B1-18						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocar	bons by NWEF	<u>י</u>		Batch	n ID: 13	403 Analyst: CM
Aliphatic Hydrocarbon (C8-C10)	196	5.30	*	mg/Kg-dry	1	4/20/2016 2:58:00 AM
Aliphatic Hydrocarbon (C10-C12)	761	5.30	*	mg/Kg-dry	1	4/20/2016 2:58:00 AM
Aliphatic Hydrocarbon (C12-C16)	1,870	53.0	D	mg/Kg-dry	10	4/20/2016 6:35:00 PM
Aliphatic Hydrocarbon (C16-C21)	630	53.0	DQ	mg/Kg-dry	10	4/20/2016 6:35:00 PM
Aliphatic Hydrocarbon (C21-C34)	338	5.30	*	mg/Kg-dry	1	4/20/2016 2:58:00 AM
Aromatic Hydrocarbon (C8-C10)	100	5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
Aromatic Hydrocarbon (C10-C12)	323	5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
Aromatic Hydrocarbon (C12-C16)	989	5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
Aromatic Hydrocarbon (C16-C21)	830	53.0	D	mg/Kg-dry	10	4/20/2016 7:29:00 PM
Aromatic Hydrocarbon (C21-C34)	1,100	53.0	D	mg/Kg-dry	10	4/20/2016 7:29:00 PM
Surr: 1-Chlorooctadecane	110	60-140		%Rec	1	4/20/2016 2:58:00 AM
Surr: o-Terphenyl	130	60-140		%Rec	1	4/20/2016 11:56:00 AM
NOTES:						

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD,

<20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Volatile Petroleum Hydrocarbons by NWVPH

Aliphatic Hydrocarbon (C5-C6)	ND	1.86		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Aliphatic Hydrocarbon (C6-C8)	27.5	1.86		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Aliphatic Hydrocarbon (C8-C10)	ND	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aliphatic Hydrocarbon (C10-C12)	389	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C8-C10)	159	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C10-C12)	4,170	93.0	DE	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C12-C13)	6,850	93.0	DE	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Benzene	0.519	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Toluene	7.80	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Ethylbenzene	9.59	0.465	Q	mg/Kg-dry	1	4/7/2016 1:43:06 PM
m,p-Xylene	28.7	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
o-Xylene	14.7	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Naphthalene	364	23.2	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Methyl tert-butyl ether (MTBE)	ND	0.465	*	mg/Kg-dry	1	4/7/2016 1:43:06 PM
Surr: 1,4-Difluorobenzene	113	65-140		%Rec	1	4/7/2016 1:43:06 PM
Surr: Bromofluorobenzene	73.8	65-140	D	%Rec	50	4/7/2016 4:48:40 AM

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD,

<20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

WO#: **1604015** Date Reported: **4/21/2016**

Client: Friedman & Bruya	ruya Collection Date: 3/30/2016 Matrix: Soil								
Project:604013Lab ID:1604015-002									
Client Sample ID: B1-18									
Analyses	Result	RL	Qual	Units	DF	Date Analyzed			
Sample Moisture (Percent Mois	ture)			Batc	h ID: R2	8628 Analyst: CG			

Surr: o-Terphenyl

Aromatic Hydrocarbon (C8-C10)

Aromatic Hydrocarbon (C10-C12)

Aromatic Hydrocarbon (C12-C16)

Aromatic Hydrocarbon (C16-C21)

Aromatic Hydrocarbon (C21-C34)

ND

ND

ND

ND

ND

21.5

5.00

5.00

5.00

5.00

5.00

20.00

108

60

140

CLIENT: Friedman &	Bruya					Extra	otoblo D		5UIVIIVIAI		• • •
Project: 604013									Hydrocarb		
Sample ID: MB-13403	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 4/6/2016	i	RunNo: 288	374	
Client ID: MBLKS	Batch ID: 13403					Analysis Dat	te: 4/19/201	6	SeqNo: 542	2942	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	5.00									
Aliphatic Hydrocarbon (C10-C12)	ND	5.00									
Aliphatic Hydrocarbon (C12-C16)	ND	5.00									
Aliphatic Hydrocarbon (C16-C21)	ND	5.00									
Aliphatic Hydrocarbon (C21-C34)	ND	5.00									
Surr: 1-Chlorooctadecane	13.4		20.00		66.8	60	140				
Sample ID: LCS-13403	SampType: LCS			Units: mg/Kg		Prep Dat	te: 4/6/2016	;	RunNo: 288	374	
Client ID: LCSS	Batch ID: 13403					Analysis Dat	te: 4/19/201	6	SeqNo: 542	2941	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	155	5.00	100.0	0	155	70	130				S
Aliphatic Hydrocarbon (C10-C12)	123	5.00	50.00	0	245	70	130				S
Aliphatic Hydrocarbon (C12-C16)	136	5.00	50.00	0	272	70	130				S
Aliphatic Hydrocarbon (C16-C21)	41.7	5.00	50.00	0	83.3	70	130				Q
Aliphatic Hydrocarbon (C21-C34)	121	5.00	50.00	0	241	70	130				S
Surr: 1-Chlorooctadecane	12.4		20.00		62.1	60	140				
NOTES:											
S - Outlying spike recovery obser											
Q - Indicates an analyte with an ir	nitial or continuing calibrati	on that doe	es not meet es	tablished acceptance	e criteria ((<20%RSD, <	20% Drift or I	minimum RRF); high bias.		
Sample ID: MB-13403	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 4/6/2016	i	RunNo: 288	374	
Client ID: MBLKS	Batch ID: 13403					Analysis Dat	te: 4/19/201	6	SeqNo: 542	2976	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual

1604015

Work Order:

QC SUMMARY REPORT

	04015 iedman & Bruya								•	SUMMAR		-
Project: 60	4013						Extra	actable I	Petroleum H	Hydrocarb	ons by N	WEPH
Sample ID: MB-13403	Samp	Гуре: MBLK			Units: mg/Kg		Prep Da	te: 4/6/201	16	RunNo: 288	374	
Client ID: MBLKS	Batch	ID: 13403					Analysis Da	te: 4/19/20	016	SeqNo: 542	976	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID: LCS-13403	s Samp	Гуре: LCS			Units: mg/Kg		Prep Da	te: 4/6/20 1	16	RunNo: 288	374	
Client ID: LCSS	Batch	ID: 13403					Analysis Da	te: 4/19/20	016	SeqNo: 542	975	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon	(C8-C10)	143	5.00	50.00	0	285	70	130				S
Aromatic Hydrocarbon		166	5.00	50.00	0	332	70	130				S
Aromatic Hydrocarbon	(C12-C16)	173	5.00	50.00	0	347	70	130				S
Aromatic Hydrocarbon	(C16-C21)	62.6	5.00	50.00	0	125	70	130				
Aromatic Hydrocarbon	(C21-C34)	48.8	5.00	50.00	0	97.7	70	130				
Surr: o-Terphenyl		19.3		20.00		96.3	60	140				
NOTES:												
S - Outlying spike red	covery observed (high	bias). Detection	ns will be qu	alified with a *								
Sample ID: 1604015-00	01AMS Samp	Гуре: МЅ			Units: mg/Kg-	dry	Prep Da	te: 4/6/201	16	RunNo: 288	374	
Client ID: WSW2-11	Batch	ID: 13403					Analysis Da	te: 4/20/20)16	SeqNo: 543	8026	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon ((C8-C10)	192	5.33	106.5	52.43	131	70	130				S
Aliphatic Hydrocarbon (C10-C12)	378	5.33	106.5	270.9	100	70	130				
Aliphatic Hydrocarbon (C12-C16)	821	5.33	106.5	714.7	99.3	70	130				
Aliphatic Hydrocarbon (C16-C21)	664	5.33	106.5	711.0	-43.9	70	130				SQ
Aliphatic Hydrocarbon ((C21-C34)	288	5.33	106.5	176.4	105	70	130				
Surr: 1-Chlorooctade	cane	12.9		21.31		60.6	60	140				

NOTES:

S - Outlying spike recoveries were associated with this sample.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Work Order: 1604015

CLIENT: Friedman & Bruya

604013

QC SUMMARY REPORT

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: 1604015-001AMSD	SampType: MSD			Units: mg/Kg-dry Prep Date: 4/6/2016					RunNo: 28874			
Client ID: WSW2-11	Batch ID: 13403					Analysis Da	te: 4/20/20	16	SeqNo: 543	3027		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Aliphatic Hydrocarbon (C8-C10)	212	4.74	94.80	52.43	168	70	130	191.5	10.2	30	S	
Aliphatic Hydrocarbon (C10-C12)	427	4.74	94.80	270.9	164	70	130	377.7	12.2	30	S	
Aliphatic Hydrocarbon (C12-C16)	756	4.74	94.80	714.7	43.6	70	130	820.5	8.18	30	S	
Aliphatic Hydrocarbon (C16-C21)	731	4.74	94.80	711.0	21.4	70	130	664.2	9.62	30	SQ	
Aliphatic Hydrocarbon (C21-C34)	326	4.74	94.80	176.4	158	70	130	287.9	12.4	30	S	
Surr: 1-Chlorooctadecane	13.5		18.96		71.3	60	140		0			

NOTES:

Project:

S - Outlying spike recoveries were associated with this sample.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Sample ID: 1604015-002ADUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Dat	ie: 4/6/201	6	RunNo: 288	374	
Client ID: B1-18	Batch ID: 13403					Analysis Dat	te: 4/20/20	16	SeqNo: 543	3023	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	404	5.23						196.4	69.2	30	R*
Aliphatic Hydrocarbon (C10-C12)	693	5.23						760.7	9.32	30	*
Aliphatic Hydrocarbon (C12-C16)	1,630	5.23						1,506	7.85	30	E*
Aliphatic Hydrocarbon (C16-C21)	1,500	5.23						1,211	21.1	30	EQ
Aliphatic Hydrocarbon (C21-C34)	334	5.23						338.4	1.31	30	*
Surr: 1-Chlorooctadecane NOTES:	19.3		4.184		460	60	140		0		S

R - High RPD observed.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Sample ID: 1604015-001AMS	SampType: MS			Units: mg/K	g-dry	Prep Dat	te: 4/6/201	6	RunNo: 288	374	
Client ID: WSW2-11	Batch ID: 13403					Analysis Dat	te: 4/20/20	16	SeqNo: 543	038	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	188	5.33	106.5	0	177	70	130				S
Aromatic Hydrocarbon (C10-C12)	342	5.33	106.5	0	321	70	130				S
Aromatic Hydrocarbon (C12-C16)	679	5.33	106.5	0	637	70	130				S

0

	1604015									QCS	SUMMAR	RY REF	' OR
CLIENT: F	-riedman & I	Bruya						Evtro	otoblo F	•			_
Project: 6	604013							Extra		Petroleum H	Tyurocarb		WEP
Sample ID: 1604015-	-001AMS	SampType	e: MS			Units: mg/	′Kg-dry	Prep Date	e: 4/6/201	6	RunNo: 288	374	
Client ID: WSW2-1	1	Batch ID:	13403					Analysis Date	e: 4/20/20	16	SeqNo: 543	3038	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbo	n (C16-C21)		986	5.33	106.5	0	925	70	130				S
Aromatic Hydrocarbo	n (C21-C34)		416	5.33	106.5	0	390	70	130				S
Surr: o-Terphenyl			23.6		21.31		111	60	140				
NOTES:													
S - Outlying spike	recoveries were	e associated	with this sam	nple.									
Sample ID: 1604015-	-001AMSD	SampType	e: MSD			Units: mg/	′Kg-dry	Prep Date	e: 4/6/201	6	RunNo: 288	374	
Client ID: WSW2-1	1	Batch ID:	13403					Analysis Date	e: 4/20/20	16	SeqNo: 543	3034	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aromatic Hydrocarbo	n (C8-C10)		217	4.74	94.80	0	229	70	130	0	200	30	S
Aromatic Hydrocarbo	n (C10-C12)		413	4.74	94.80	0	435	70	130	0	200	30	S
Aromatic Hydrocarbo	n (C12-C16)		815	4.74	94.80	0	860	70	130	0	200	30	s
Aromatic Hydrocarbo	n (C16-C21)		1,420	4.74	94.80	0	1,490	70	130	0	200	30	s
Aromatic Hydrocarbo	n (C21-C34)		831	4.74	94.80	0	877	70	130	0	200	30	s
Surr: o-Terphenyl			26.1		18.96		138	60	140		0		
NOTES:													
S - Outlying spike I	recoveries were	e associated	with this sam	nple.									
Sample ID: 1604015-	-002ADUP	SampType	DUP			Units: mg/	Kg-dry	Prep Date	e: 4/6/201	6	RunNo: 288	374	
Client ID: B1-18		Batch ID:	13403					Analysis Date	e: 4/20/20	16	SeqNo: 543	3031	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aromatic Hydrocarbo	n (C8-C10)		84.1	5.23						0	200	30	*
Aromatic Hydrocarbo	· ·		278	5.23						0	200	30	*
Aromatic Hydrocarbo	,		853	5.23						0	200	30	*
Aromatic Hydrocarbo			1,730	5.23						0	200	30	Е
Aromatic Hydrocarbo	, ,		1,120	5.23						0	200	30	Е
-													

131

60

140

20.92

NOTES:

Surr: o-Terphenyl

* - Flagged value is not within established control limits.

27.3

Work Order: 1604015

CLIENT: Friedman & Bruya Project:

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Project: 604013						V	olatile P	Petroleum H	iyurocarb		VVVP
Sample ID: LCS-13409	SampType: LCS			Units: mg/Kg		Prep Dat	e: 4/6/201	6	RunNo: 286	573	
Client ID: LCSS	Batch ID: 13409					Analysis Dat	e: 4/7/201	6	SeqNo: 539	441	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C5-C6)	21.2	2.00	30.00	0	70.7	70	130				
Aliphatic Hydrocarbon (C6-C8)	8.35	2.00	10.00	0	83.5	70	130				
Aliphatic Hydrocarbon (C8-C10)	9.26	2.00	10.00	0	92.6	70	130				
Aliphatic Hydrocarbon (C10-C12)	8.58	2.00	10.00	0	85.8	70	130				
Aromatic Hydrocarbon (C8-C10)	37.2	2.00	40.00	0	93.0	70	130				
Aromatic Hydrocarbon (C10-C12)	9.07	2.00	10.00	0	90.7	70	130				
Aromatic Hydrocarbon (C12-C13)	7.36	2.00	10.00	0	73.6	70	130				
Benzene	8.17	0.500	10.00	0	81.7	70	130				
Toluene	8.13	0.500	10.00	0	81.3	70	130				
Ethylbenzene	8.51	0.500	10.00	0	85.1	70	130				
m,p-Xylene	17.4	0.500	20.00	0	86.8	70	130				
o-Xylene	8.84	0.500	10.00	0	88.4	70	130				
Naphthalene	7.43	0.500	10.00	0	74.3	70	130				
Methyl tert-butyl ether (MTBE)	ND	0.500	10.00	0	0	70	130				SQ
Surr: 1,4-Difluorobenzene	2.57		2.500		103	65	140				
Surr: Bromofluorobenzene	2.57		2.500		103	65	140				

NOTES:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Sample ID: MB-13409	SampType: MBLK			Units: mg/Kg	/Kg Prep Date: 4/6/2016 Analysis Date: 4/7/2016				RunNo: 286	573	
Client ID: MBLKS	Batch ID: 13409					Analysis Da	te: 4/7/201	6	SeqNo: 539	9319	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C6-C8)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aromatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C12-C13)	ND	2.00		0	0						

Work Order:	1604015
CLIENT:	Friedman & Bruya
Project:	604013

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: MB-13409	SampType: MBLK			Units: mg/Kg		Prep Da	te: 4/6/20 2	16	RunNo: 28673		
Client ID: MBLKS	Batch ID: 13409					Analysis Da	te: 4/7/201	16	SeqNo: 539	9319	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.500		0	0						
Toluene	ND	0.500		0	0						
Ethylbenzene	ND	0.500		0	0						
m,p-Xylene	ND	0.500		0	0						
o-Xylene	ND	0.500		0	0						
Naphthalene	ND	0.500		0	0						
Methyl tert-butyl ether (MTBE)	ND	0.500		0	0						*
Surr: 1,4-Difluorobenzene	2.55		2.500		102	65	140				
Surr: Bromofluorobenzene NOTES:	1.91		2.500		76.4	65	140				

* - Flagged value is not within established control limits.

Sample ID: 1604014-001BDUP	SampType	: DUP			Units: mg/l	Kg-dry	Prep Dat	e: 4/6/20 1	6	RunNo: 286	673	
Client ID: BATCH	Batch ID:	13409					Analysis Dat	e: 4/7/20 1	6	SeqNo: 539	305	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		ND	1.65		0	0			0		25	
Aliphatic Hydrocarbon (C6-C8)		6.01	1.65		0	0			4.209	35.2	25	R
Aliphatic Hydrocarbon (C8-C10)		7.10	1.65		0	0			3.721	62.4	25	R
Aliphatic Hydrocarbon (C10-C12)		20.6	1.65		0	0			19.61	5.04	25	
Aromatic Hydrocarbon (C8-C10)		11.8	1.65		0	0			8.624	30.8	25	R
Aromatic Hydrocarbon (C10-C12)		89.9	1.65		0	0			80.54	11.0	25	Е
Aromatic Hydrocarbon (C12-C13)		64.5	1.65		0	0			62.40	3.25	25	
Benzene		ND	0.413		0	0			0		25	
Toluene		ND	0.413		0	0			0		25	
Ethylbenzene		ND	0.413		0	0			0		25	
m,p-Xylene		ND	0.413		0	0			0		25	
o-Xylene		ND	0.413		0	0			0		25	
Naphthalene		6.81	0.413		0	0			6.449	5.40	25	
Methyl tert-butyl ether (MTBE)		ND	0.413		0	0			0		25	*
Surr: 1,4-Difluorobenzene		2.10		2.064		102	65	140		0		

OC SUMMADY DEDODT

Work Order: 1604015

CLIENT: Friedman & Project: 604013	Bruya					V	olatile Petroleum	SUMMAR		
Sample ID: 1604014-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Date	e: 4/6/2016	RunNo: 286	73	
Client ID: BATCH	Batch ID: 13409					Analysis Date	e: 4/7/2016	SeqNo: 539	305	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	l %RPD	RPDLimit	Qual
Surr: Bromofluorobenzene NOTES:	2.06		2.064		99.7	65	140	0	0	
R - High RPD observed. The me * - Flagged value is not within es		ted by the L	aboratory Con	trol Sample (LCS	6).					
Sample ID: 1604015-002BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Date	e: 4/6/2016	RunNo: 286	73	
Client ID: B1-18	Batch ID: 13409					Analysis Date	e: 4/7/2016	SeqNo: 539	310	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	l %RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	22.2	1.86	27.90	1.398	74.7	70	130			
Aliphatic Hydrocarbon (C6-C8)	41.4	1.86	9.299	27.47	149	70	130			S
Aliphatic Hydrocarbon (C8-C10)	81.4	1.86	9.299	66.78	157	70	130			SE
Aliphatic Hydrocarbon (C10-C12)	414	1.86	9.299	329.4	913	70	130			SE
Aromatic Hydrocarbon (C8-C10)	313	1.86	37.20	245.5	180	70	130			SE
Aromatic Hydrocarbon (C10-C12)	613	1.86	9.299	589.6	253	70	130			SQE
Aromatic Hydrocarbon (C12-C13)	554	1.86	9.299	813.4	-2,790	70	130			SQE
Benzene	12.8	0.465	9.299	0.5190	132	70	130			S
Toluene	17.9	0.465	9.299	7.797	108	70	130			
Ethylbenzene	17.9	0.465	9.299	9.588	89.3	70	130			Q
n,p-Xylene	44.2	0.465	18.60	28.70	83.6	70	130			
o-Xylene	22.8	0.465	9.299	14.67	87.5	70	130			
Naphthalene	152	0.465	9.299	100.5	551	70	130			S
Methyl tert-butyl ether (MTBE)	ND	0.465	9.299	0	0	70	130			S*
Surr: 1,4-Difluorobenzene	3.10		2.325		133	65	140			

192

65

140

NOTES:

Surr: Bromofluorobenzene

S - Outlying surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

2.325

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

4.47

S

Work Order: 1604015

CLIENT: Friedman & Bruya

Project: 604013

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1604015-002BMSD	SampType:	MSD			Units: mg	/Kg-dry	Prep Da	te: 4/6/201	6	RunNo: 286	673	
Client ID: B1-18	Batch ID:	13409					Analysis Da	te: 4/7/201	6	SeqNo: 539	9311	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		23.5	1.86	27.90	1.398	79.4	70	130	22.24	5.70	30	
Aliphatic Hydrocarbon (C6-C8)		41.6	1.86	9.299	27.47	152	70	130	41.37	0.498	30	S
Aliphatic Hydrocarbon (C8-C10)		79.6	1.86	9.299	66.78	138	70	130	81.39	2.27	30	SE
Aliphatic Hydrocarbon (C10-C12)		458	1.86	9.299	329.4	1,390	70	130	414.3	10.1	30	SE
Aromatic Hydrocarbon (C8-C10)		330	1.86	37.20	245.5	227	70	130	312.6	5.44	30	SE
Aromatic Hydrocarbon (C10-C12)		593	1.86	9.299	589.6	40.2	70	130	613.1	3.29	30	SQE
Aromatic Hydrocarbon (C12-C13)		688	1.86	9.299	813.4	-1,350	70	130	554.2	21.5	30	SQE
Benzene		13.1	0.465	9.299	0.5190	135	70	130	12.80	2.14	30	S
Toluene		19.1	0.465	9.299	7.797	122	70	130	17.85	6.73	30	
Ethylbenzene		20.2	0.465	9.299	9.588	114	70	130	17.89	12.1	30	Q
m,p-Xylene		49.2	0.465	18.60	28.70	110	70	130	44.24	10.7	30	
o-Xylene		25.2	0.465	9.299	14.67	113	70	130	22.80	9.90	30	
Naphthalene		167	0.465	9.299	100.5	720	70	130	151.7	9.85	30	SE
Methyl tert-butyl ether (MTBE)		ND	0.465	9.299	0	0	70	130	0		30	S*
Surr: 1,4-Difluorobenzene		3.52		2.325		151	65	140		0		S
Surr: Bromofluorobenzene		4.89		2.325		210	65	140		0	0	S

NOTES:

S - Outlying surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Work Order:	1604015									00.5	SUMMAF		ORT
CLIENT:	Friedman &	Bruya								•			_
Project:	604013									Sample Mo	isture (Pei	rcent Mo	isture)
Sample ID: 16040	02-001ADUP	SampType:	DUP			Units: wt%		Prep Dat	e: 4/6/20	16	RunNo: 286	28	
Client ID: BATCI	н	Batch ID:	R28628					Analysis Dat	e: 4/6/20 2	16	SeqNo: 538	346	
Analyte		Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture			19.5	0.500						16.74	15.4	20	

Sample Log-In Check List

Client Name:	FB	Work Order Numb	per: 1604015		
Logged by:	Erica Silva	Date Received:	4/1/2016	3:54:00 PM	
Chain of Cus	stody				
1. Is Chain of	Custody complete?	Yes 🔽	No 🗌	Not Present	
2. How was th	e sample delivered?	<u>FedEx</u>			
Log In					
3. Coolers are	present?	Yes	No 🔽		
0.		No cooler prese			
4. Shipping co	ontainer/cooler in good condition?	Yes 🔽	No 🗌		
	eals present on shipping container/cooler? omments for Custody Seals not intact)	Yes 🗌	No 🗹	Not Required	
6. Was an atte	empt made to cool the samples?	Yes 🗹	No 🗌		
7. Were all ite	ems received at a temperature of >0°C to 10.0°C*	Yes	No 🔽		
	Pleas	se refer to Item Info			
8. Sample(s) i	in proper container(s)?	Yes 🗹	No		
9. Sufficient s	ample volume for indicated test(s)?	Yes 🗹	No		
10. Are sample	es properly preserved?	Yes 🗹	No		
11. Was preser	rvative added to bottles?	Yes	No 🗹	NA 🗌	
12. Is there hea	adspace in the VOA vials?	Yes	No 🗌	NA 🗹	
13. Did all sam	ples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌		
14. Does paper	rwork match bottle labels?	Yes 🗹	No 🗌		
15. Are matrice	es correctly identified on Chain of Custody?	Yes 🗹	No 🗌		
16. Is it clear w	hat analyses were requested?	Yes 🗹	No 🗌		
17. Were all ho	Iding times able to be met?	Yes 🗹	No 🗌		
Special Hand	llin <u>g (if applicable)</u>				
	notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽	
Perso	n Notified: Date:				
By Wr	nom: Via:	eMail Ph	one 🗌 Fax	In Person	
Regar	ding:				
Client	Instructions:				
19. Additional r	emarks:				

Item Information

Item #	Temp ⁰C
Cooler	10.1
Sample	10.3

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Seattle, WA 98119-2029 R Ph. (206) 285-8282 R	-	1								B 1-18	WSW2-11	Sample ID I		Phone #(206) 285-8282	City, State, ZIP Seattle, WA 98119	Address 3012 16th Ave W	Company Friedman and Bruya, Inc	Send Report To Michael Erdahl	
Received by: Relinquished by:	Topped by											Lab ID		Fax #	/A 981.	Ave W	and Br	Erdahl	
ed by:	Pristan C	SIGNATURE								4	3/30/16	Date Sampled		Fax # (206) 283-5044	19		uya, Inc.		2
R	t	FURE										Time Sampled		5044			ł.		Sepectation of the chain of
6	Mi	0	C C							*	567	Matrix			REMARKS	6	PROJECT NAME/NO.	SUBCONTRACTER	MACT OF
Epice	Michael Erdahl									+	2	# of jars		Please Email Results	KS	610400	TNA	NTRAC	TATE T
	Erdahl	PRIN										Dioxins/Furans		Emai		1	ME/NC	OTER	
Silva		PRINT NAME								×	×	EPH		Resu				T	
		ME								×	*	VPH		lta				renon	
												Nitrate	ANALYSES REQUESTED			0	,	+	000
-	H	H				-						Sulfate	YSES			0-406	P0#		TOPIOPI
44	riedm			-	Ц	-				1		Alkalinity	REQ			0	#		
E	Friedman and Bruya	COMPANY				-		Щ	\square			TOC-9060M	UEST	_	-				
	d Bru	ANY	_	1	\square	-	-				_		ED		Di Di	Kust	Stands	•	
	ya		_	-	\square	-	-			_		2		ll call	SAN spose a	charg	JSH	Page #	
21/1/10	4/11/4	DATE			$\left \right $		+			_				 Return samples Will call with instructions 	SAMPLE DISPOSAL Dispose after 30 days	Kush charges authorized by:	Standard (2 Weeks) RUSH	TURNAROUND TIME	-
15.54	TH:05-	TIME										Notes		ctions	OSAL 8	red by:		TIME	

Fax (206) 283-5044 FORMS\COC\COC.DOC	· · · · · · · · · · · · · · · · · · ·		3012 16th America Wast					Trip Blank	152 - 18	WSW 2 11	LI-TMSS	ESW1-17	NSW2-17	Sample ID		con nogene entrance	Email Address V.A.	Phone # 509.573.8163 Fax #	City, State, ZIP	7156	Company PBS E	Send Report To Ken	604013
Received by:	Relinquished by:	Received hy:	Relimmeter but					96	1 50	oq	03	2	O/ A-D	Lab ID		Jeric Certos		3 Fax #	Santhe, MA	Enst	Levosur 1	Ken Noneire	
	alled 10	13	ICINALUKE						F			-	3.30.16	Date		env.com							
	and	i bettel												Time		、 、		 					SAN
			 						4				50:1	Sample Type			ELECTRONIC DATA REQUESTED	·	PROJECT ADDRESS	41392	PROJECT NAME/NO.	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
	han	m B.EIKI	PRINT NAME							"	H	"	4	# of containers			IC DATA RE		DDRESS	لو	AME/NO.	(signature)	IN OF C
			AM				-		X	Ķ	X	X	X	TPH-Diesel	Π		Q				k	\leq	US
	2		Ш	\vdash					メ	1	X	4 ×	×	TPH-Gasoline			BLLS				ß		ĨŌ
	R			┝╌┤				X	×		×		\mathbf{x}	BTEX by 8021B			9					5	Y
	3			┝╌┥		-+								VOCs by 8260								\sim	
					-+									SVOCs by 8270	ž					ء	F	E'	3
	4								X	X				HFS	YSE					41392	P0 #		ריי
	TZ A	3	COMPANY	┝──┧	-+		·		\bigcirc					VPH / EPH	NALYSES REQUESTED					نو	*		WE 04-01-16
	Y	רי	PAN		-+	+			XX					lend		L					_		0
			ĸ	┝──╂		-+			Δ					PAHS	SIB	Γ	ş	• • •	5	R	<	7	5
									_						Þ		nple	Retu		ush cha			0.
	1/1	3/24	P					\square					_				Re		Å	and a second	dand		
,	9/16	y zwie	DATE											Z			Samples Received at	Will call with instr	SAMPLE DISPOSAL	Rush charges authorized by:	Standard Turnaround	Page 4 of	10
	10:00		TIME											Notes			0	ays ays	YOSAL	ized by:	und		CT.
tl		1		I		I	<u>i</u> .	I								L			<u>_</u>			ן קר	2 / 2

Samples received at ____°C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 5, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on April 29, 2016 from the 41392, F&BI 604521 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0505R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 29, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 604521 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
604521 -01	MW1
604521 -02	MW2
604521 -03	MW3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/05/16 Date Received: 04/29/16 Project: 41392, F&BI 604521 Date Extracted: 04/29/16 Date Analyzed: 04/29/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW1 604521-01	5,800	<250	113
MW2 604521-02	<50	<250	103
MW3 604521-03	15,000	390 x	147
Method Blank 06-856 MB	<50	<250	118

ENVIRONMENTAL CHEMISTS

Date of Report: 05/05/16 Date Received: 04/29/16 Project: 41392, F&BI 604521

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 6	304510-04 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	110	112	63-146	2
Laboratory Code: 1	Laboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	111	79-1	44		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029		• •	1							MM3	えずい	121	Sample ID		Email Address Kn.n	Phone # 501.572.8163 Fax #	City, State, ZIP	Address Sen Hic	\mathbf{b}	Send Report To Ker	604521
	Received by:	Reltnquished by	Received by	Relinquished by:									03	02	01	Lab ID		kn. nyerep pbxnz. com	<u>3</u> Fax #			a	Noria	
		(-n	SIGNATUR								9 BY	31 2 C	Y DE IN	Date		25 m - (12						
				Ņ	H								0011	4000-	50,00	Time		s 						SAM
			1-2,	۲ ۰۷									Ę	-	51.1	Sample Type		- ELEC IRUNIC DATA REQUESTED		PROJECT ADDRESS	41392	PROJECT NAME/NO	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
				Loves	PRINT NAME								-	/	1	# of containers				DRESS	تو	ME/NO.	'signature)	IN OF C
		Ĩ			NAM						_		\times	<u>×</u>	×	TPH-Diesel								ISU
					E		-	. <u> </u>		_	╉╍	-				TPH-Gasoline	$\left \right $	SIE						Ő
										┢	-	+		<u> </u>		BTEX by 8021B	┨┃		"					¥
											+	-	╉──			VOCs by 8260	≥				C			
				_			-+				┨		+			SVOCs by 8270 HFS	AL		ļ		4,392			3
		1		PR	0		-+		-	<u> </u>	1		1			111.5	SES				G G	PO #		117
		+	54		OMI			• ••		╞		+	<u>+</u>				RE				/-			4
Sam		ſ			COMPANY		-			┼──	 	+	+				Ĕ	L	I					N
ples					ĸ	-+	-+		_		┢						NALYSES REQUESTED	San	₹ R		Rus	20]	ME04-29-16
R							-+			-	┼—	+					Ĭ	ples	eturr 111 ca	Shore SA	h cha	tanda USH	Page #	1.2
Samples received at			寺	4	P	+	-	_		┣—	<u> </u>	-	-					Rece	Return samples Will call with in	MPL	Irges	urd T		
dat		the second se		1/21/12	DATE													Samples Received at	Return samples Will call with instructions	SAMPLE DISPOSAL	Rush charges authorized by	Standard Turnaround	Page # of	
2			-t	-												Notes		at	struct	SPO	ortze	round		
 °°				200	TIME											es		 	1¥	SAL	d by:	Ц		ß
			$\left \right $		Έ																			801

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on May 11, 2016 from the 41392, F&BI 605193 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Megan Nogeire PBS0519R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 11, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 605193 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
605193 -01	MW1
605193 -02	MW2
605193 -03	Trip blank

The 8270D laboratory control sample and laboratory control sample duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16 Date Analyzed: 05/12/16 and 05/13/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW1 605193-01	49	78	89	440	4,300	118
MW2 605193-02	<1	<1	1.1	<3	420	101
Method Blank 06-943 MB	<1	<1	<1	<3	<100	96

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16 Date Analyzed: 05/12/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Trip blank 605193-03	<1	<1	<1	<3	98
Method Blank ^{06-943 MB}	<1	<1	<1	<3	96

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16 Date Analyzed: 05/12/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW1 605193-01	12,000	1,100 x	72
MW2 605193-02	1,300	250 x	112
Method Blank ^{06-959 MB}	<50	<250	97

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW1 05/11/16 05/12/16 05/12/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 605193-01 1/2 051222.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 87 67	Lower Limit: 31 25	Upper Limit: 160 165
		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		38 ve		
Acenaphthylene		< 0.06		
Acenaphthene		0.16		
Fluorene		0.19		
Phenanthrene		0.18		
Anthracene		< 0.06		
Fluoranthene		< 0.06		
Pyrene		< 0.06		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe	ene	< 0.06		
Benzo(k)fluoranthe	ene	< 0.06		
Indeno(1,2,3-cd)pyr	rene	< 0.06		
Dibenz(a,h)anthrac	cene	< 0.06		
Benzo(g,h,i)perylen	ie	< 0.06		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW1 05/11/16 05/12/16 05/13/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 605193-01 1/40 051304.D GCMS6 VM
Surrogates: Anthracene d10 Benzo(a)anthracen	e-d12	% Recovery: 111 d 76 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		56		
Acenaphthylene		<1.2		
Acenaphthene		<1.2		
Fluorene		<1.2		
Phenanthrene		<1.2		
Anthracene		<1.2		
Fluoranthene		<1.2		
Pyrene		<1.2		
Benz(a)anthracene	;	<1.2		
Chrysene		<1.2		
Benzo(a)pyrene		<1.2		
Benzo(b)fluoranthe	ene	<1.2		
Benzo(k)fluoranthe		<1.2		
Indeno(1,2,3-cd)py		<1.2		
Dibenz(a,h)anthra		<1.2		
Benzo(g,h,i)peryler	ne	<1.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW2 05/11/16 05/12/16 05/12/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 605193-02 1/2 051223.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 105 94	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		3.9		
Acenaphthylene		< 0.06		
Acenaphthene		0.23		
Fluorene		0.25		
Phenanthrene		0.42		
Anthracene		< 0.06		
Fluoranthene		< 0.06		
Pyrene		0.11		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe	ene	< 0.06		
Benzo(k)fluoranthe	ene	< 0.06		
Indeno(1,2,3-cd)pyr		< 0.06		
Dibenz(a,h)anthrac	cene	< 0.06		
Benzo(g,h,i)perylen	e	< 0.06		

ENVIRONMENTAL CHEMISTS

v		- •		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 05/12/16 05/12/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 06-934 mb 051217.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 90 92	Lower Limit: 31 25	Upper Limit: 160 165
		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.03		
Acenaphthylene		< 0.03		
Acenaphthene		< 0.03		
Fluorene		< 0.03		
Phenanthrene		< 0.03		
Anthracene		< 0.03		
Fluoranthene		< 0.03		
Pyrene		< 0.03		
Benz(a)anthracene		< 0.03		
Chrysene		< 0.03		
Benzo(a)pyrene		< 0.03		
Benzo(b)fluoranthe	ene	< 0.03		
Benzo(k)fluoranthe	ene	< 0.03		
Indeno(1,2,3-cd)pyr	rene	< 0.03		
Dibenz(a,h)anthrac	cene	< 0.03		
Benzo(g,h,i)perylen	e	< 0.03		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 605188-05 (Duplicate) Reporting Sample Duplicate RPD Analyte Units Result Result (Limit 20) Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes ug/L (ppb) <3 <3 nm Gasoline <100 ug/L (ppb) <100 nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	95	65-118
Toluene	ug/L (ppb)	50	97	72-122
Ethylbenzene	ug/L (ppb)	50	97	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	93	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recov ery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	97	96	63-142	1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

	5	Γ	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	98	89	67-116	10
Acenaphthylene	ug/L (ppb)	1	98	89	65-119	10
Acenaphthene	ug/L (ppb)	1	100	91	66-118	9
Fluorene	ug/L (ppb)	1	96	88	64-125	9
Phenanthrene	ug/L (ppb)	1	101	93	67-120	8
Anthracene	ug/L (ppb)	1	98	90	65-122	9
Fluoranthene	ug/L (ppb)	1	89	83	65-127	7
Pyrene	ug/L (ppb)	1	109	95	62-130	14
Benz(a)anthracene	ug/L (ppb)	1	112	98	60-118	13
Chrysene	ug/L (ppb)	1	109	96	66-125	13
Benzo(b)fluoranthene	ug/L (ppb)	1	107	91	55-135	16
Benzo(k)fluoranthene	ug/L (ppb)	1	100	93	62-125	7
Benzo(a)pyrene	ug/L (ppb)	1	102	89	58-127	14
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	102	77	36-142	28 vo
Dibenz(a,h)anthracene	ug/L (ppb)	1	94	69	37-133	31 vo
Benzo(g,h,i)perylene	ug/L (ppb)	1	96	74	34-135	26 vo

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. SIGNATURE 3012 16th Avenue West Relinquished by: SIGNATURE Seattle, WA 98119. Received by: Noppor Ph. (206) 285-8282 Relinquished by: Noppor Fax (206) 283-5044 Received by: Noppor FORMS\COC\SESGEMSR1.DOC (Revision 1) Noppor			Sample ID Sample Sample Lab Date Location Depth ID Sampled MW1 011-F 1044		Phone # 509.572.816 Fax #	Company PBS Address 2517 Englinke Ave 5	605193 Send Report To K-NUGLICE
PRINT NAME Kon Neg - D Sams Clizetter Rodford		┥╾┥╾┥	Time Sampled Matrix # of Sampled		REMARKS	NAME/NO. Megan 41392	SAMPLERS (signature)
Samples received at 5 °C COMPANY DATE TIME PXS SDC S/11 Z'34 F\$13 S/11 S'00			BTEX by 8021B VOC's by 8260 SVOC's by 8270 RCRA-8 Metals PAHS	ANALYSES REQUESTED	l	Mogeure PO * TURNAROUND TIME PO * D'Standard (2 Weeks) C RUSH Rush charges authorized by	ME 05-11-16 DOW/V

Samples received at 5 °C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 21, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on November 9, 2016 from the Coleman Oil PO 41392.000, F&BI 611160 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Mike Bagley PBS1121R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 9, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 611160 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
611160 -01	MW-5
611160 -02	MW-5a
611160 -03	MW-4
611160 -04	MW-6

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/21/16 Date Received: 11/09/16 Project: Coleman Oil PO 41392.000, F&BI 611160 Date Extracted: 11/15/16 Date Analyzed: 11/15/16 and 11/16/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-5a 611160-02	< 0.02	< 0.02	0.27	1.1	140	92
MW-4 611160-03	< 0.02	< 0.02	<0.02	< 0.06	<2	80
MW-6 611160-04	<0.02	<0.02	<0.02	<0.06	<2	79
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<2	82

ENVIRONMENTAL CHEMISTS

Date of Report: 11/21/16 Date Received: 11/09/16 Project: Coleman Oil PO 41392.000, F&BI 611160 Date Extracted: 11/09/16 Date Analyzed: 11/10/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW-5 611160-01	<50	<250	115
MW-5a 611160-02	1,100	<250	103
MW-4 611160-03	<50	<250	99
MW-6 611160-04	<50	<250	100
Method Blank 06-2339 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

Date of Report: 11/21/16 Date Received: 11/09/16 Project: Coleman Oil PO 41392.000, F&BI 611160

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 611184-06 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

		Percent		
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	91	69-120
Toluene	mg/kg (ppm)	0.5	90	70-117
Ethylbenzene	mg/kg (ppm)	0.5	89	65-123
Xylenes	mg/kg (ppm)	1.5	88	66-120
Gasoline	mg/kg (ppm)	20	80	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/21/16 Date Received: 11/09/16 Project: Coleman Oil PO 41392.000, F&BI 611160

-

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 6	311159-01 (Matri	x Spike)									
			Sample	Percent	Percent						
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD				
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)				
Diesel Extended	mg/kg (ppm)	5,000	<50	92	94	64-133	2				
Laboratory Code: I	Laboratory Code: Laboratory Control Sample										
			Percent	-							
	Reporting	Spike	Recover	y Accep	tance						
Analyte	Units	Level	LCS	Crite	eria						
Diesel Extended	mg/kg (ppm)	5,000	92	58-1	47						

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029	<u>ن</u> ن	T 1					MW-6	Mw-4	MW-Sa	Mw-S	Sample ID		Phone 360 830 8384 Email	City, State, ZIP Serthy		Company PBS	Report To K. NogE. Ce	611160
Received by:	Relinquished by:	Relinquistordoy	fs / ·					04	03	02 A-C	01	Lab ID			, WA 48102	ANC. E.		2 M, Bagter	
	flue		SIGNATURE					11/9	11/B			Date Sampled			8102	Suithor	<	iates	
								9:30	2:00	12:00	11:45	Time Sampled			REMARKS		PROJEC	SAMPLE	SAMPLE CHAIN OF CUSTODY
	Nhan	Mike K						\sim	8	5	5	Sample Type			KS	Lo) eman Di	PROJECT NAME	SAMPLERS (signature)	CHAIN
		Bayley	PRINT NAME					5	5	4		# of Jars						ure)	OF (
	Phan	12	IT N/			 	 					TPH-HCID						5	
	2		AME			 		X X	×	× ×	\times	TPH-Diesel						\int	TOI
						 	 	X	××	\mathbf{x}		TPH-Gasoline						r.	YC
						 	 					BTEX by 8021B VOCs by 8260C	AN			Ч			
			+				 			<u> </u>		SVOCs by 8270D	ANALYSES		INVOICE TO	41392.000	Ŧ		ME
	さ	-							<u> </u>			PAHs 8270D SIM	SES I		DICE	2.0.	PO #		IN
	C B		G		S					\mathbf{t}			EQ		TO	õ			\geq
		' V	COMPANY		ldult	 			<u> </u>				REQUESTED		- <u>.</u>	l	<u>.</u>		Q
			YY		Samples receive		 		<u> </u>				Ð	□ Other	Dis E	Rush	□ Sta □ RU	1	09-
					ceiv	 	 							her	SAI pose	char	ndar SH_	Page #	5
	1	=			e at				+					Other	SAMPLE DISPO Dispose after 30 days	ges ai	Standard Turnaround RUSH	#	± ● 0 \.
	9/1	<u>a</u>	DA'IE											, ice	DISI 30 da	uthor	narou	INDC	
	16	+	+		 ဂိ							Notes			SAMPLE DISPOSAL oose after 30 days	Rush charges authorized by	Ind	TURNAROUND TIME	° ∩ì
	05.1	1.5011	TIME												L	y.		Έ	- fy Do
			E	L										Ľ					(*

Sec.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 20, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on December 14, 2016 from the Coleman Oil PO 41392.000, F&BI 612215 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS1220R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 14, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
612215 -01	VS-1
612215 -02	VS-2
612215 -03	VS-3

The MA-APH concentration in sample VS-2 exceeded the calibration range of the instrument. The data were flagged accordingly.

Naphthalene was reported below the standard reporting limit. The data were flagged accordingly.

Naphthalene was detected in the TO-15 method blank. Samples with naphthalene below ten times that of the method blank were flagged.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-1 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data Fil Instrum Operato	ent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-01 1/1.5 121522.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	zene	% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concentratio ug/m3	n		
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics	170 160 <75			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-2 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data File: Instrument: Operator:		PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-02 1/1.5 121523.D GCMS7 MP
Surrogates: 4-Bromofluor obenz	zene	% Recovery: 97	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concentratio ug/m3	on		
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics	340 7,700 ve <75			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-3 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data File: Instrument: Operator:		PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-03 1/1.5 121524.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	zene	% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concentratio ug/m3	n		
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics	130 <110 <75			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:		2/15/16 .ir		e: ent: r:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 06-2582 mb/20550 121509.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	zene	% Recovery: 99	Lower Limit: 70	Upper Limit: 130	
Compounds:	,	Concentratio ug/m3	n		
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics	<46 <70 <50			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-1 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data Fi Instrum Operato	le: nent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-01 1/1.5 121522.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
		Concen	tration		
Compounds:		ug/m3	ppbv		
Benzene		1.7	0.52		
Toluene		7.7	2.1		
Ethylbenzene		2.1	0.49		
m,p-Xylene		8.6	2.0		
o-Xylene		3.4	0.79		
1,2,4-Trimethylber	izene	6.9	1.4		
Naphthalene		0.91	0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-2 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data Fil Instrum Operato	ent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-02 1/1.5 121523.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 97	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concen ug/m3	itration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene 1,2,4-Trimethylber Naphthalene	nzene	2.2 19 11 38 11 <3.7 0.28 j fb (0.70 5.0 2.4 8.7 2.5 <0.75 0.054 j fb		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-3 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data Fil Instrum Operato	ent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-03 1/1.5 121524.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
- ·		Concen			
Compounds:		ug/m3	ppbv		
Benzene		1.6	0.49		
Toluene		9.1	2.4		
Ethylbenzene		2.6	0.60		
m,p-Xylene		11	2.6		
o-Xylene		4.1	0.95		
1,2,4-Trimethylber	izene	4.0	0.82		
Naphthalene		0.31 j fb ().060 j fb		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Bla Not Applica 12/15/16 12/15/16 Air ug/m3		Client: Project: Lab ID: Data Fi Instrun Operato	le: nent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 06-2582 mb/20550 121509.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 99	Lower Limit: 70	Upper Limit: 130	
		Concen	tration		
Compounds:		ug/m3	ppbv		
Benzene		<0.29	< 0.1		
Toluene		<2.9	<1		
Ethylbenzene		< 0.77	< 0.1		
m,p-Xylene		< 0.36	< 0.1		
o-Xylene		<7	<2		
1,2,4-Trimethylber	nzene	< 0.49	<0.1		
Naphthalene		0.089 j	0.017 j		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392.000, F&BI 612215

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD APH

Laboratory code. Laboratory con	F		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	230	105	70-130
APH EC9-12 aliphatics	ug/m3	350	109	70-130
APH EC9-10 aromatics	ug/m3	251	118	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392.000, F&BI 612215

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code. Laboratory Con	ler or Bampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ppbv	10	111	70-130
Toluene	ppbv	10	108	70-130
Ethylbenzene	ppbv	10	108	70-130
m,p-Xylene	ppbv	20	105	70-130
o-Xylene	ppbv	10	104	70-130
1,2,4-Trimethylbenzene	ppbv	10	100	70-130
Naphthalene	ppbv	10	80	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS/COC/COCTO-15.DOC	Far (906) 982 5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Brive Inc				VS-3	<u>NS-2</u>	VS-1	Sample Name		City, State, ZIP Southe Phone Ob. 233, 163 femail	7577	Sgd		516619
AND ALL AND AL	Renaized hv:		Received by:/	Relinquiged by		 			Shelo Shearns ED	12810 CREAT-ING 20	01 St Sai MS 12 02810	Flow Lab Canister Contr. ID ID ID		City, State, ZIP Southe, WA Sto 3 Phone Ob. 732, Northermail	Eastrate RueEttio		Nearices	
		Nhan Man	Ŭ						141-329 925 -14	1241 E1- 876 67-1-11/22	N13/10 -30 919 -14 1419	FieldFieldInitialFieldPress.InitialPress.Initial(Hg)Time(Hg)Time		REMARKS	Coleman Uil	PROJECT NAME	SAMPLERS (standard)	SAMPLE CHAIN OF CUSTODY
		+25	707	COMPANY			Samples received at		X	X	×	TO-15 Full Scan TO-15 BTEXN TO-15 CVOCs APHs and scleet VOCs per 12.8.16 erral	ANALYSIS REQUESTED	INVOICE TO	413A2.000 Rush ch	PO # Standard	7	HILLI BM
		<1/1 9/1/ Per	07 5/ 12 H/21	DATE TIME	+		at 18 °C					BTEXN - Not 1,2.4 TNB		SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other	Rush charges authorized by:	TUKNAROUND TIME ndard		16

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 22, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on December 14, 2016 from the Coleman Oil PO 41392, F&BI 612214 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS1222R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 14, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
612214 -01	MW3
612214 -02	MW2
612214 -03	MW5
612214 -04	MW4
612214 -05	MW6
612214 -06	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214 Date Extracted: 12/15/16 Date Analyzed: 12/15/16

RESULTS FROM THE ANALYSIS OF SOIL/PRODUCT SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID

Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW3 612214-01 1/1000	D	D	ND	156
MW2 612214-02 1/1000	D	D	ND	116
MW5 612214-03 1/1000	ND	D	ND	ip
Method Blank 06-2575 MB2	ND	ND	ND	103

ND - Material not detected at or above 20,000 mg/kg gas, 50,000 mg/kg diesel and 250,000 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214 Date Extracted: 12/15/16 Date Analyzed: 12/15/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW4 612214-04 1/100	500	<100	130	<300	12,000	87
MW6 612214-05 1/100	110	<100	130	<300	13,000	88
Method Blank 06-2560 MB	<1	<1	<1	<3	<100	90

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214 Date Extracted: 12/15/16 Date Analyzed: 12/15/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW4 612214-04	3,200 x	460 x	108
MW6 612214-05	3,100 x	<250	99
Method Blank 06-2576 MB2	<50	<250	96

ENVIRONMENTAL CHEMISTS

Client Sample ID:MW4Date Received:12/14/16Date Extracted:12/19/16Date Analyzed:12/19/16Matrix:WaterUnits:ug/L (ppb)))	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 612214-04 1/2 121911.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene-d12	% Recovery: 86 91	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:	Concentration ug/L (ppb)		
Naphthalene	150 ve		
Acenaphthylene	< 0.06		
Acenaphthene	1.1		
Fluorene	3.4		
Phenanthrene	2.2		
Anthracene	0.086		
Fluoranthene	< 0.06		
Pyrene	< 0.06		
Benz(a)anthracene	< 0.06		
Chrysene	< 0.06		
Benzo(a)pyrene	< 0.06		
Benzo(b)fluoranthene	< 0.06		
Benzo(k)fluoranthene	< 0.06		
Indeno(1,2,3-cd)pyrene	< 0.06		
Dibenz(a,h)anthracene	< 0.06		
Benzo(g,h,i)perylene	< 0.06		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 12/14/16 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 612214-04 1/200 121925.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 268 d 125 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		160		
Acenaphthylene		<6		
Acenaphthene		<6		
Fluorene		<6		
Phenanthrene		<6		
Anthracene		<6		
Fluoranthene		<6		
Pyrene		<6		
Benz(a)anthracene		<6		
Chrysene		<6		
Benzo(a)pyrene		<6		
Benzo(b)fluoranthe		<6		
Benzo(k)fluoranthe		<6		
Indeno(1,2,3-cd)pyr		<6		
Dibenz(a,h)anthrac		<6		
Benzo(g,h,i)perylen	e	<6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 12/14/16 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 612214-05 1/2 121912.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 95 90	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		310 ve		
Acenaphthylene		< 0.06		
Acenaphthene		0.24		
Fluorene		0.25		
Phenanthrene		< 0.06		
Anthracene		< 0.06		
Fluoranthene		< 0.06		
Pyrene		< 0.06		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe	ene	< 0.06		
Benzo(k)fluoranthe	ene	< 0.06		
Indeno(1,2,3-cd)pyr		< 0.06		
Dibenz(a,h)anthrac		< 0.06		
Benzo(g,h,i)perylen	ie	< 0.06		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 12/14/16 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 612214-05 1/200 121926.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 295 d 124 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		310		
Acenaphthylene		<6		
Acenaphthene		<6		
Fluorene		<6		
Phenanthrene		<6		
Anthracene		<6		
Fluoranthene		<6		
Pyrene		<6		
Benz(a)anthracene		<6		
Chrysene		<6		
Benzo(a)pyrene		<6		
Benzo(b)fluoranthe	ene	<6		
Benzo(k)fluoranthe		<6		
Indeno(1,2,3-cd)pyr		<6		
Dibenz(a,h)anthrac		<6		
Benzo(g,h,i)perylen	e	<6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 06-2598 mb 121905.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 95 97	Lower Limit: 31 25	Upper Limit: 160 165
		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.03		
Acenaphthylene		< 0.03		
Acenaphthene		< 0.03		
Fluorene		< 0.03		
Phenanthrene		< 0.03		
Anthracene		< 0.03		
Fluoranthene		< 0.03		
Pyrene		< 0.03		
Benz(a)anthracene		< 0.03		
Chrysene		< 0.03		
Benzo(a)pyrene		< 0.03		
Benzo(b)fluoranthe	ene	< 0.03		
Benzo(k)fluoranthe	ene	< 0.03		
Indeno(1,2,3-cd)pyr		< 0.03		
Dibenz(a,h)anthrac		< 0.03		
Benzo(g,h,i)perylen	e	< 0.03		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 612173-03 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	104	65-118			
Toluene	ug/L (ppb)	50	105	72-122			
Ethylbenzene	ug/L (ppb)	50	108	73-126			
Xylenes	ug/L (ppb)	150	104	74-118			
Gasoline	ug/L (ppb)	1,000	108	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	93	103	63-142	10

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

	J	Γ	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	91	85	67-116	7
Acenaphthylene	ug/L (ppb)	1	91	86	65-119	6
Acenaphthene	ug/L (ppb)	1	89	85	66-118	5
Fluorene	ug/L (ppb)	1	92	88	64-125	4
Phenanthrene	ug/L (ppb)	1	90	88	67-120	2
Anthracene	ug/L (ppb)	1	93	89	65-122	4
Fluoranthene	ug/L (ppb)	1	92	88	65-127	4
Pyrene	ug/L (ppb)	1	84	83	62-130	1
Benz(a)anthracene	ug/L (ppb)	1	95	91	60-118	4
Chrysene	ug/L (ppb)	1	94	89	66-125	5
Benzo(b)fluoranthene	ug/L (ppb)	1	84	81	55-135	4
Benzo(k)fluoranthene	ug/L (ppb)	1	90	88	62-125	2
Benzo(a)pyren e	ug/L (ppb)	1	86	82	58-127	5
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	89	83	36-142	7
Dibenz(a,h)anthracene	ug/L (ppb)	1	81	78	37-133	4
Benzo(g,h,i)perylene	ug/L (ppb)	1	87	78	34-135	11

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

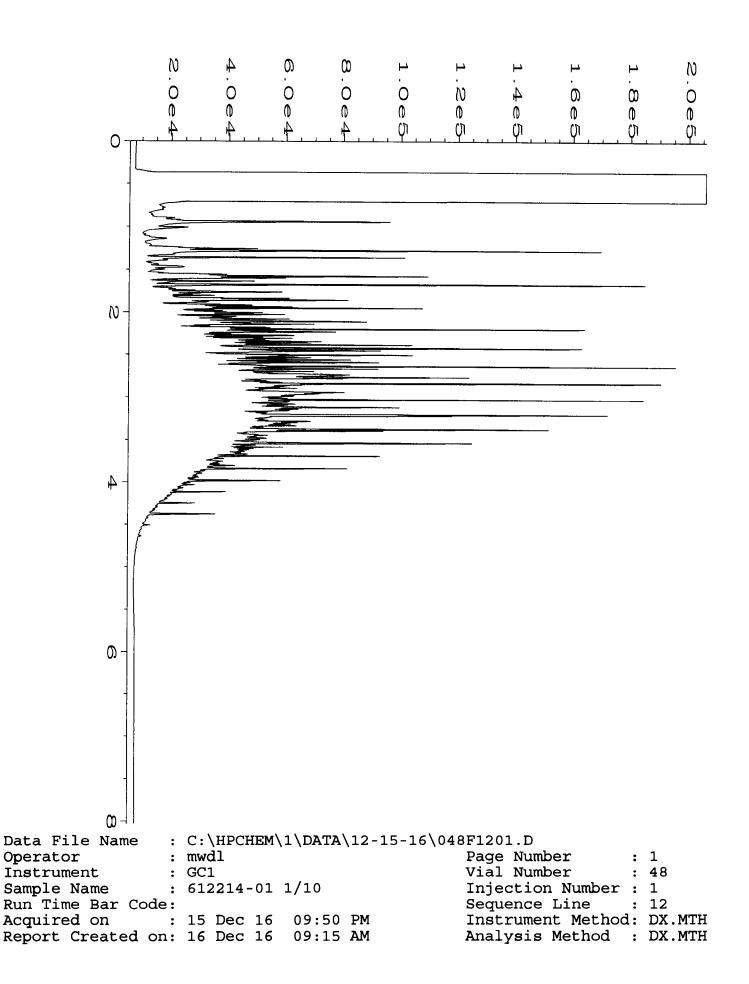
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

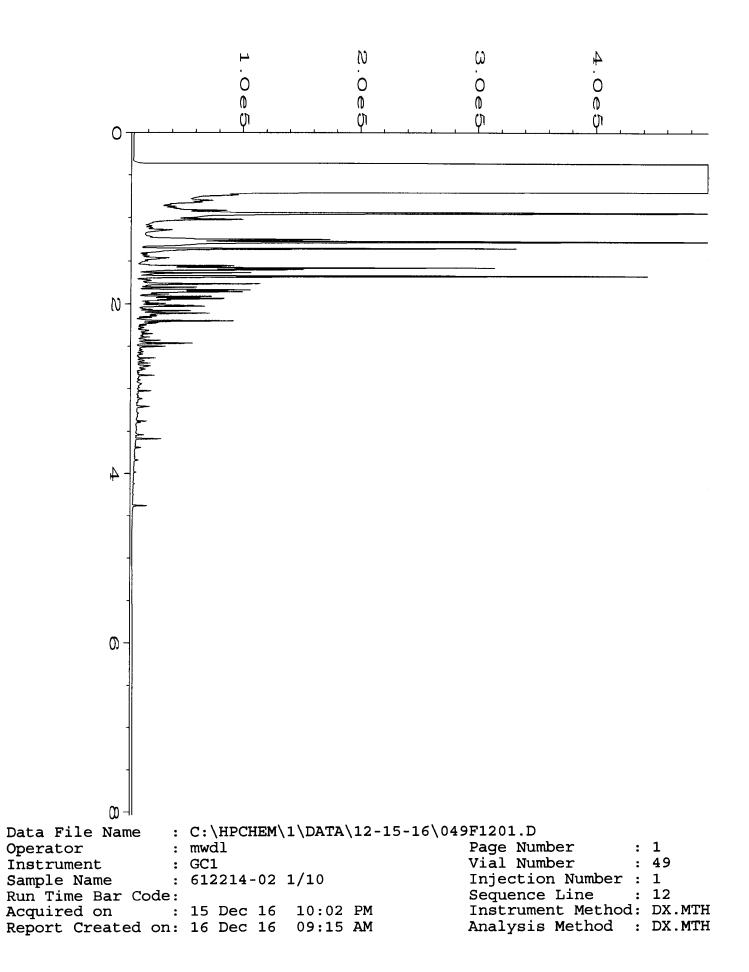
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

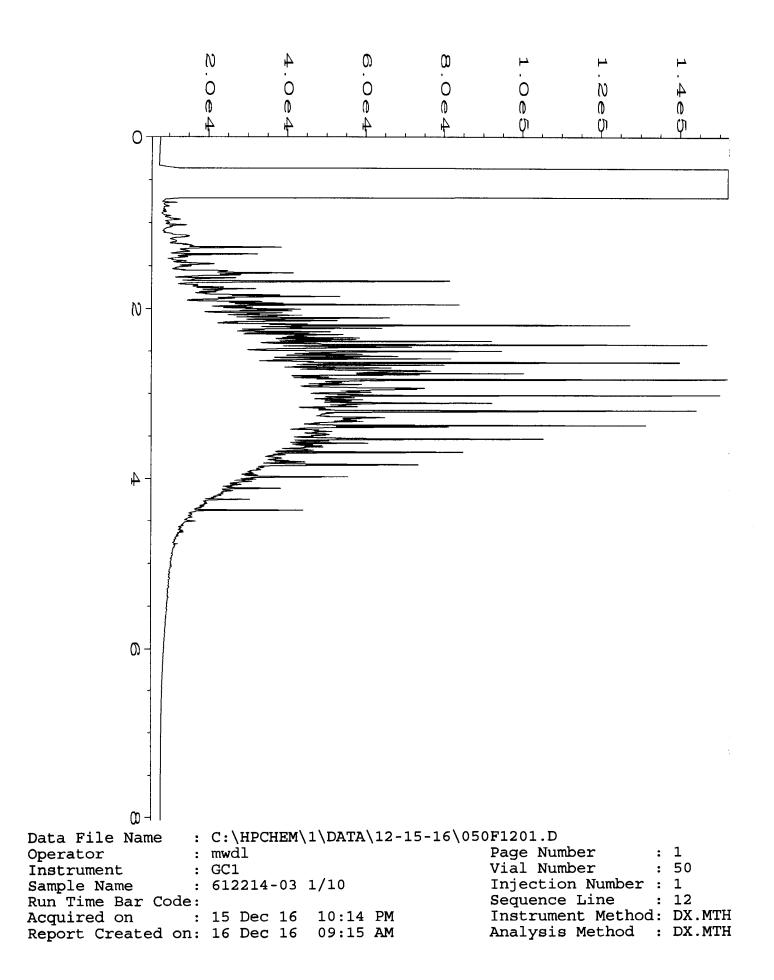
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

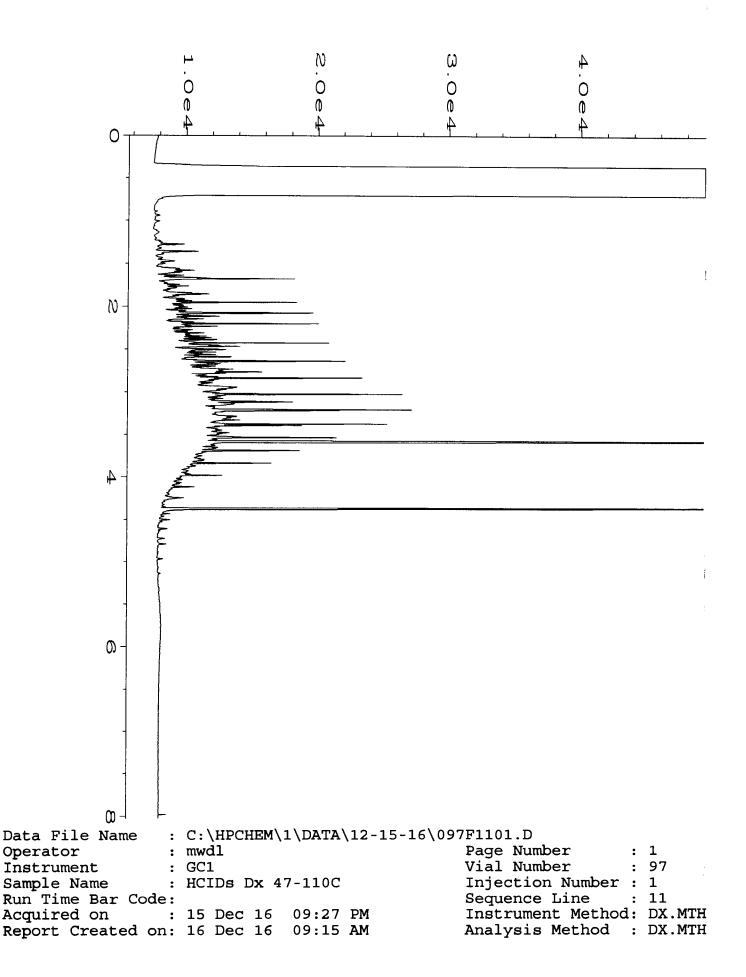
lc - The presence of the analyte is likely due to laboratory contamination.

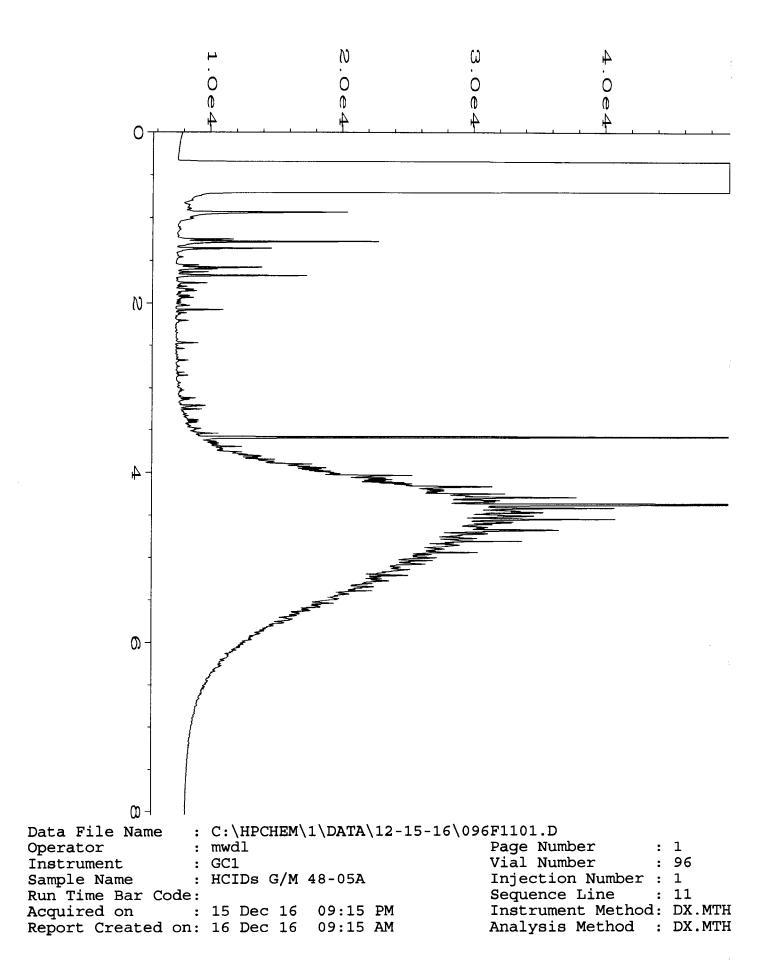
L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

														Received by:	Ph. (206) 285-8282
R		1	60	H.		ŀ	5	Nan	ħ	5	Nhan	•	- Mu	Kelinquished by	<u>ت</u>
12			S9	12	m	9	COA	1×		A	MEGAN		eire		2019 16th Avenue Wast Re
DATE	ANY	COMPANY						AME	TN	PRINT NAME			SIGNATURE	SIC	
								 							
is received at	Sample	. 													
					_			ļ							
(ing							 								
* Ad			¥K.	-		X	W.	245		مح	water	1	1	Ch AB	rips Blank
			X			×	X	X		5	6W	1103	*	05 V	mwb
			\times			\times	×	×		2	66	1240		oy A-E	mw4
		\succeq				<u> </u>				-	Raduct	1315		:03	NWS
		\times	 			<u> </u>		 		-	Raduct	1212		02	mwa
 -		\times	1.					. 			Product	042	12/13/16	01.	MW3
		Product 1D	PAHs 8270D SIM	SVOCs by 8270D	VOCs by 8260C	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	TPH-HCID	' # of Jars	Sample Type	Time Sampled	Date Sampled	Lap D	Sample ID
	ANALYSES REQUESTED	QUE	RE	TSES	NAL	Ð									
 D Dispose after 30 days Archive Samples Other 	□ Juspo □ Archi □ Other		, ,												Phone 206. 233.963 Email
SAMPLE DISPOSAL			ETC	INVOICE TO	VNI						S	REMARKS		OISA ACIO	City State ZIP Sonthe WA aSIDD
Astandard Turnaround RUSH Rush charges authorized by:	I RUS Rush c		と #	PO#	C 6511	5	,			ĥQ	coleman	ਾਰ	Ve Ettor	lake A	Company PBS V Address 2577 Eastlake AVE Et100
Page #			£.,	/)				$\left \right\rangle$	are)	SAMPLERS (stinduare)	SAMPLE		sile	Report To K. Noquile
• Nwi	14/16		12	ME	X	1	Į DY	TODY	SUC	OF (CHAIN (SAMPLE CHAIN OF CUS	70		612214
															•

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 21, 2017

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on June 13, 2017 from the Coleman Yakima PO 41392, F&BI 706207 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0621R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 13, 2017 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima PO 41392, F&BI 706207 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
706207 -01	MW2
706207 -02	MW4
706207 -03	MW6
706207 -04	DUP_6.9.17

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207 Date Extracted: 06/16/17 Date Analyzed: 06/16/17 and 06/19/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW2 706207-01 1/100	2,900	9,900	1,000	5,900	83,000	84
MW4 706207-02 1/10	240	12	120	<30	3,300	87
MW6 706207-03 1/10	140	100	110	69	7,600	92
Method Blank 07-1259 MB	<1	<1	<1	<3	<100	83

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207 Date Extracted: 06/16/17 Date Analyzed: 06/19/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
DUP_6.9.17 706207-04 1/10	240	12	120	<30	86
Method Blank 07-1259 MB	<1	<1	<1	<3	83

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207 Date Extracted: 06/13/17 Date Analyzed: 06/13/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW4 706207-02	4,300 x	870 x	97
MW6 706207-03 1/1.6	3,700 x	<400	97
Method Blank 07-1250 MB	<50	<250	88

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW4 06/13/17 06/14/17 06/14/17 Water	Client: Project: Lab ID: Data File: Instrument:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-02 706207-02.030 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	MW6	Client:	PBS Engineering and Environmental
Date Received:	06/13/17	Project:	Coleman Yakima PO 41392
Date Extracted:	06/14/17	Lab ID:	706207-03
Date Analyzed:	06/14/17	Data File:	706207-03.031
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Lead	Concentration ug/L (ppb) <1	Operator.	51

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 06/14/17 06/14/17 Water ug(L (nnb)	Client: Project: Lab ID: Data File: Instrument:	PBS Engineering and Environmental Coleman Yakima PO 41392 I7-324 mb2 I7-324 mb2.029 ICPMS2
Units: Analyte: Lead	ug/L (ppb) Concentration ug/L (ppb) <1	Operator:	SP

7

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 06/13/17 06/13/17 06/14/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-02 1/2 061412.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 83 86	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		160 ve		
Acenaphthylene		< 0.06		
Acenaphthene		1.5		
Fluorene		4.3		
Phenanthrene		2.2		
Anthracene		0.095		
Fluoranthene		< 0.06		
Pyrene		< 0.06		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe		< 0.06		
Benzo(k)fluoranthe		< 0.06		
Indeno(1,2,3-cd)pyr		< 0.06		
Dibenz(a,h)anthrac		< 0.06		
Benzo(g,h,i)perylen	e	< 0.06		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 06/13/17 06/13/17 06/15/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-02 1/200 061521.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 146 d 94 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		150		
Acenaphthylene		<6		
Acenaphthene		<6		
Fluorene		<6		
Phenanthrene		<6		
Anthracene		<6		
Fluoranthene		<6		
Pyrene		<6		
Benz(a)anthracene		<6		
Chrysene		<6		
Benzo(a)pyrene		<6		
Benzo(b)fluoranthe		<6		
Benzo(k)fluoranthe		<6		
Indeno(1,2,3-cd)pyr		<6		
Dibenz(a,h)anthrac		<6		
Benzo(g,h,i)perylen	e	<6		

ENVIRONMENTAL CHEMISTS

0		1 0		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 06/13/17 06/13/17 06/14/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-03 1/2 061413.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 91 98	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		250 ve		
Acenaphthylene		<0.06		
Acenaphthene		0.30		
Fluorene		0.29		
Phenanthrene		< 0.06		
Anthracene		<0.06		
Fluoranthene		<0.06		
Pyrene		<0.06		
Benz(a)anthracene		<0.06		
Chrysene		<0.06		
Benzo(a)pyrene		<0.06		
Benzo(b)fluoranthe	ne	<0.06		
Benzo(k)fluoranthe		<0.06		
Indeno(1,2,3-cd)pyr		<0.06		
Dibenz(a,h)anthrac		<0.06		
Benzo(g,h,i)perylen		<0.06		
201120(G,11,1)peryrei		~0.00		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 06/13/17 06/13/17 06/15/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-03 1/200 061522.D GCMS6 ya
Surrogates: Anthracene d10 Benzo(a)anthracene	e-d12	% Recovery: 157 d 83 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		340		
Acenaphthylene		<6		
Acenaphthene		<6		
Fluorene		<6		
Phenanthrene		<6		
Anthracene		<6		
Fluoranthene		<6		
Pyrene		<6		
Benz(a)anthracene		<6		
Chrysene		<6		
Benzo(a)pyrene		<6		
Benzo(b)fluoranthe		<6		
Benzo(k)fluoranthe		<6		
Indeno(1,2,3-cd)pyr		<6		
Dibenz(a,h)anthrac		<6		
Benzo(g,h,i)perylen	ie	<6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 06/13/17 06/14/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 07-1249 mb2 061406.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 93 99	Lower Limit: 31 25	Upper Limit: 160 165
		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.03		
Acenaphthylene		< 0.03		
Acenaphthene		< 0.03		
Fluorene		< 0.03		
Phenanthrene		< 0.03		
Anthracene		< 0.03		
Fluoranthene		< 0.03		
Pyrene		< 0.03		
Benz(a)anthracene		< 0.03		
Chrysene		< 0.03		
Benzo(a)pyrene		< 0.03		
Benzo(b)fluoranthe	ene	< 0.03		
Benzo(k)fluoranthe	ene	< 0.03		
Indeno(1,2,3-cd)pyr	rene	< 0.03		
Dibenz(a,h)anthrac		< 0.03		
Benzo(g,h,i)perylen	e	< 0.03		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW2 06/13/17 06/13/17 06/13/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-01 061309.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	105	57	121
Toluene-d8		106	63	127
4-Bromofluorobenz	ene	94	60	133
Compounds:		Concentration ug/L (ppb)		
Hexane		140		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 06/13/17 06/13/17 06/13/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-02 061314A.D GCMS4 JS
a		04 D	Lower	Upper
Surrogates:	_	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		103	63	127
4-Bromofluorobenz	zene	99	60	133
Compounds:		Concentration ug/L (ppb)		
Hexane		12		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 06/13/17 06/13/17 06/13/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-03 061312.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	57	121
Toluene-d8		104	63	127
4-Bromofluorobenz	zene	94	60	133
Compounds:		Concentration ug/L (ppb)		
Hexane		49		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 06/13/17 06/13/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 07-1227 mb 061307.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		106	63	127
4-Bromofluorobenz	ene	98	60	133
Compounds:		Concentration ug/L (ppb)		
Hexane		<1		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 706226-01 (Duplicate)									
	Reporting	Sample	Duplicate	RPD					
Analyte	Units	Result	Result	(Limit 20)					
Benzene	ug/L (ppb)	<1	<1	nm					
Toluene	ug/L (ppb)	<1	<1	nm					
Ethylbenzene	ug/L (ppb)	<1	<1	nm					
Xylenes	ug/L (ppb)	<3	<3	nm					
Gasoline	ug/L (ppb)	<100	<100	nm					

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	105	65-118		
Toluene	ug/L (ppb)	50	103	72-122		
Ethylbenzene	ug/L (ppb)	50	106	73-126		
Xylenes	ug/L (ppb)	150	103	74-118		
Gasoline	ug/L (ppb)	1,000	96	69-134		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	111	103	63-142	7

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Cod	le: 706161-01 x	5 (Matrix	Spike)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<5	98	96	75-125	2
Laboratory Code: Laboratory Control Sample							

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	98	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample 1/0.25

Laboratory Code. Laborato	ory Control Sal		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.25	89	90	67-116	1
Acenaphthylene	ug/L (ppb)	0.25	92	95	65-119	3
Acenaphthene	ug/L (ppb)	0.25	92	94	66-118	2
Fluorene	ug/L (ppb)	0.25	92	96	64-125	4
Phenanthrene	ug/L (ppb)	0.25	91	98	67-120	7
Anthracene	ug/L (ppb)	0.25	94	96	65-122	2
Fluoranthene	ug/L (ppb)	0.25	94	100	65-127	6
Pyrene	ug/L (ppb)	0.25	92	101	62-130	9
Benz(a)anthracene	ug/L (ppb)	0.25	97	109	60-118	12
Chrysene	ug/L (ppb)	0.25	94	105	66-125	11
Benzo(b)fluoranthene	ug/L (ppb)	0.25	96	107	55-135	11
Benzo(k)fluoranthene	ug/L (ppb)	0.25	94	112	62-125	17
Benzo(a)pyrene	ug/L (ppb)	0.25	93	107	58-127	14
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.25	101	117	36-142	15
Dibenz(a,h)anthracene	ug/L (ppb)	0.25	97	106	37-133	9
Benzo(g,h,i)perylene	ug/L (ppb)	0.25	101	115	34-135	13

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory C	one of Sumpre	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	ug/L (ppb)	50	105	103	57-137	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	107	100	64-147	7
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	111	107	73-132	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	106	102	82-125	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ive	Samples received				Received by:	Ph. (206) 285-8282 Recei
	FLBT	n phan	Nhan	a para ana ana ana ana ana ana ana ana ana	Received by: AN (by James Relinguished by:	3012 16" Avenue West Recei
	PBS	Kin Negire	Kin M	N	Kelinquished by:	ن ح
	COMPANY	PRINT NAME			SIGNATURE	
-						
				1	CHAB 69.17	DNP_6.9.17
	XXX	JXXX		1135	03 A G 6, 9, 17	MNG
<u></u>	XXX	XXX C	ļ	1230	02 A-6 6.9.17	MMY
		X X I Z X	1194-01	5181	01 A-C 6.9.17	MWZ
	VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM lead Eclandid: MTBE EDB EDC Hurna	TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B	d Samplc	Time Sampled	Lab ID Date Sampled	Sample ID
	ANALYSES REQUESTED	versen en e			e name a substantia de la companya d La companya de la comp	
Archive Samples Other	Kin D Archiv			<u>(</u> 0w)	(n.nozer 10 posusa.	Phone Sog. S 72. 316 3 Email Kn. Nozei rapposes con
SAMPLE DISPOSAL	INVOICE TO		REMARKS	REM		City, State, ZIP
Rush charges authorized by:	Higdl Rus	K-*** r	Colemon Yukim			Address Scatte
Wstandard Turnaround 🛛 RUSH		ME	PROJECT NAME	PRO		PBS
Page # of	n n n n n n n n n n n n n n n n n n n	ignature)	SAMPLERS (signature)	SAM	C	Report To Ken Nanire
	NE 06/1	SAMPLE CHAIN OF CUSTODY	LE CHA	SAMP		+06904
~ _				2		, i j

June 26, 2017

Ken Nogeire PBS Engineering 2517 Eastlake Ave Suite 100 Seattle, WA 88102

RE: Coleman Kakima Project Number: 41392

Pace Analytical received 4 samples on June 13, 2017 for analysis labeled MW3, and MW5. Per client request, the following analyses were performed:

1. C8-C40 Qualitative Molecular Characterization by GC/MS – full scan mode

The samples labeled as MW1 and MW2 have been placed on hold.

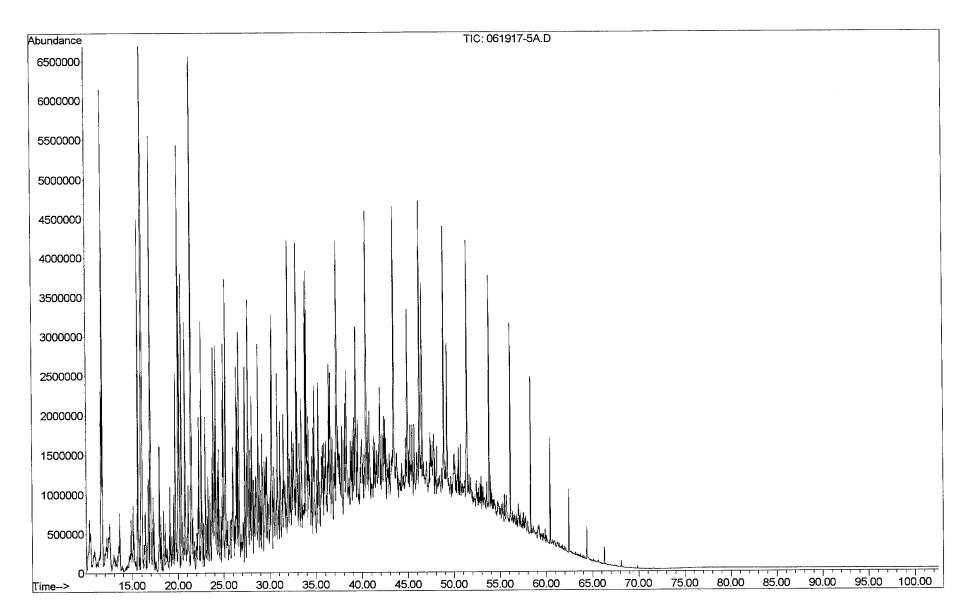
The sample was performed in house under laboratory number **22995**.

Please call the lab at 412-826-5245, or you may email any questions or concerns to <u>ruth.welsh@pacelabs.com</u> regarding any analytical data reports.

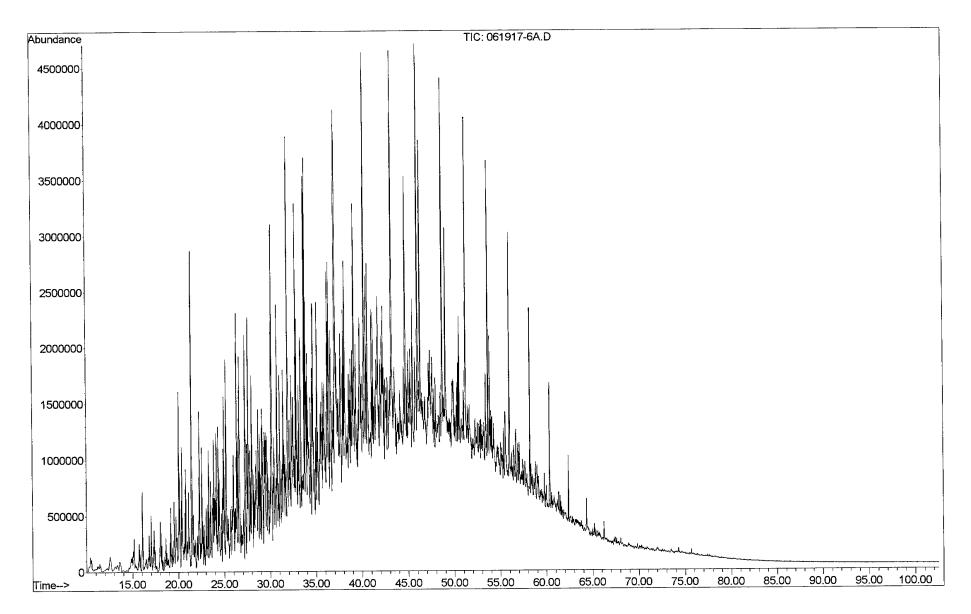
Respectfully submitted,

Ruth Welsh

Ruth Welsh Project Manager



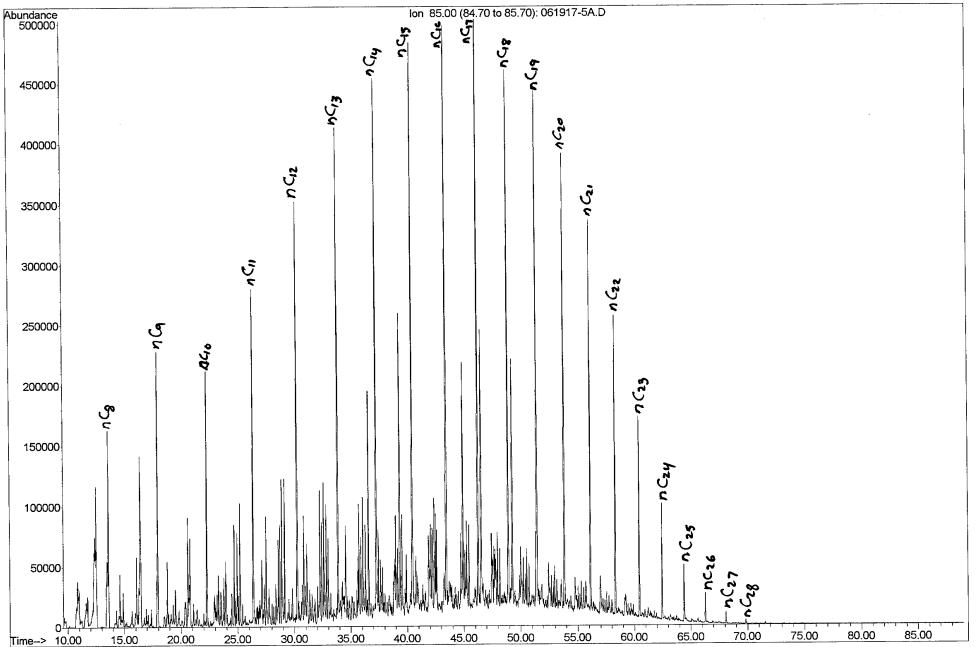
C8-C40 - Qualitative Hydrocarbons Characterization by GC/MS - full scan mode

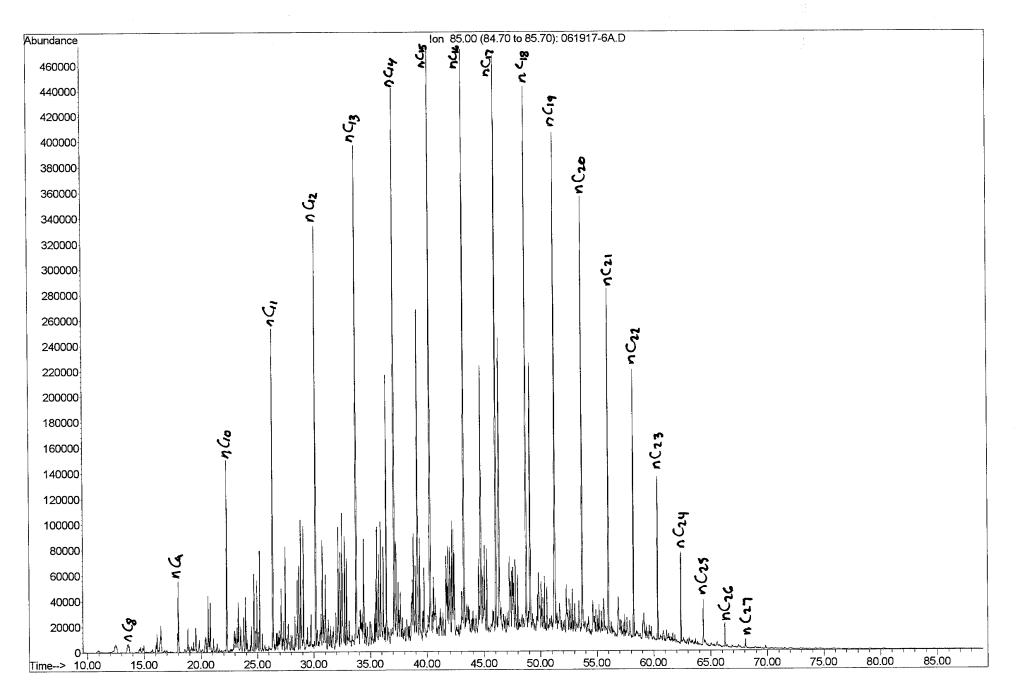

ION (m/z)	Mass Chromatograms	COMPOUND CLASS
TIC		All Compounds
85		n-Alkanes (Paraffins)
113		Iso-Alkanes (Isoparaffins) & Isoprenoids
83		Alkylcyclohexanes
134		C₄-benzenes (monoaromatics)
123		Bicyclanes
191		Terpanes
217		Steranes
Bar Diagram		Monoaromatic and Polyaromatic Hydrocarbon Distribution

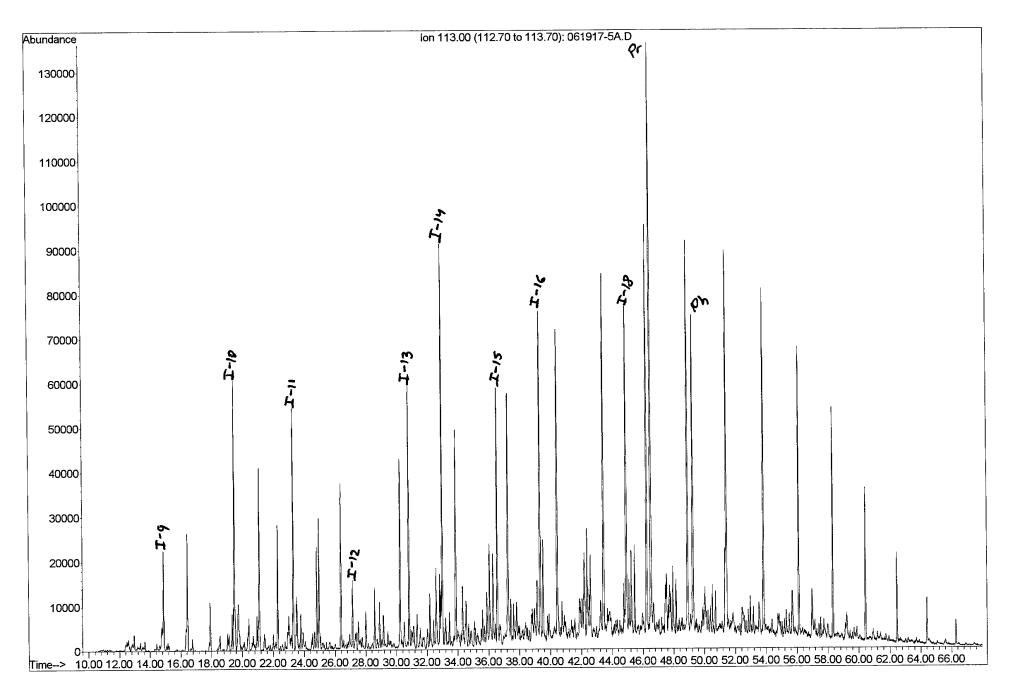
note: Chromatograms and data follow this cover page.

Submitted by, Pace Analytical Energy Services Sample Name: 22995-1 [MW-3] 1/5DILUTION Misc Info :

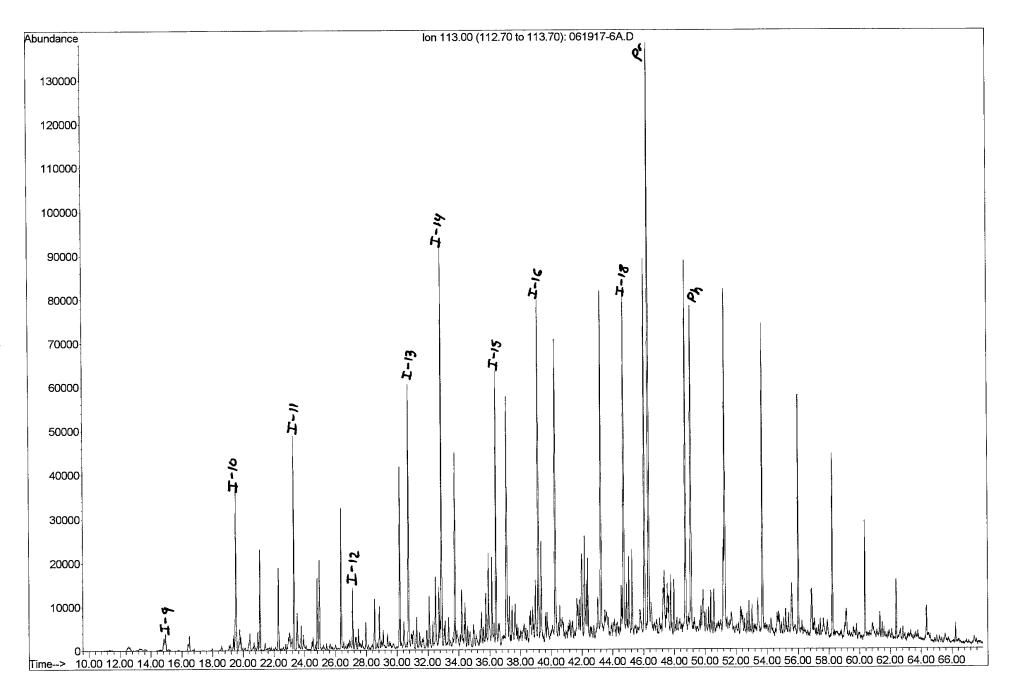
Sample Name: 22995-2 [MW-5] 1/5 DILUTION Misc Info :




Key to Chromatogram Symbol Identification


For m/z 85 and m/z 113 Paraffins and Isoparaffins

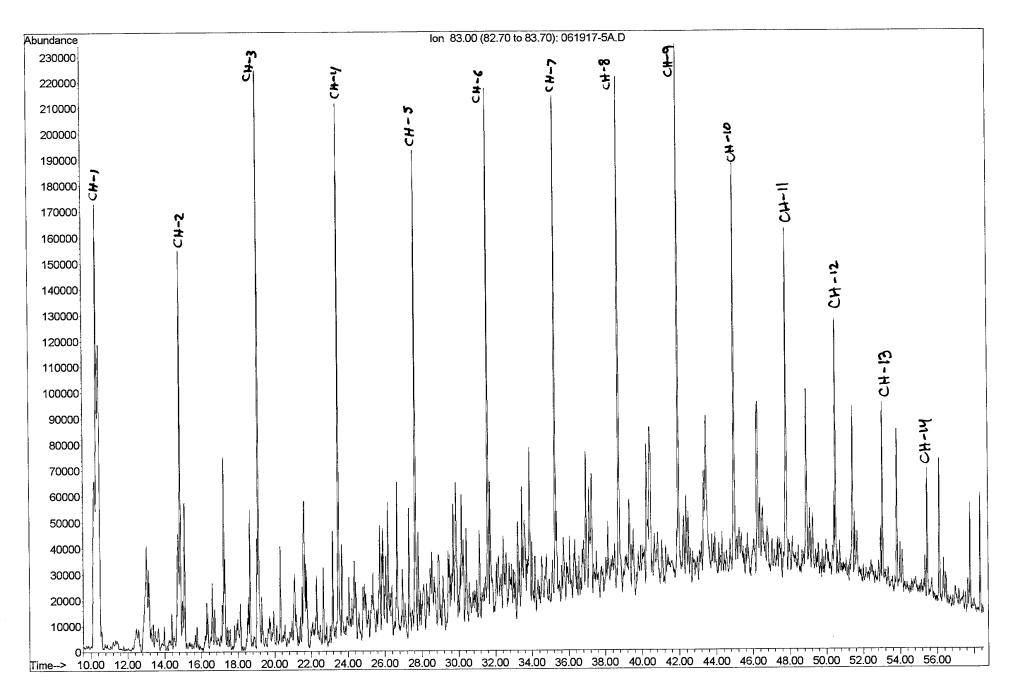
Symbo		Detail	
i-10	I	so-alkane with 10 carbon atoms	
i-15	I	Farnesane (isoprenoid with 15 carbon atoms)	
i-16	I	soprenoid with 16 carbon atoms	
Pr	I	Pristane (isoprenoid with 19 carbon atoms)	
Ph	Ĩ	Phytane (isoprenoid with 20 carbon atoms)	
nC ₈	1	n-C ₈ normal Alkane	
nC ₁₅	r	₁-c15 normal Alkane	
i-8	2	2,5-(2,4)-Dimethylhexane	
i-8 [′]		2,3,4-Trimethylpentane	
i-8 ⁿ		2-3-Dimethylhexane	
CH-n	/	Alkylcyclohexane (where n indicates the number of carbon atoms in the	
	side chain)		

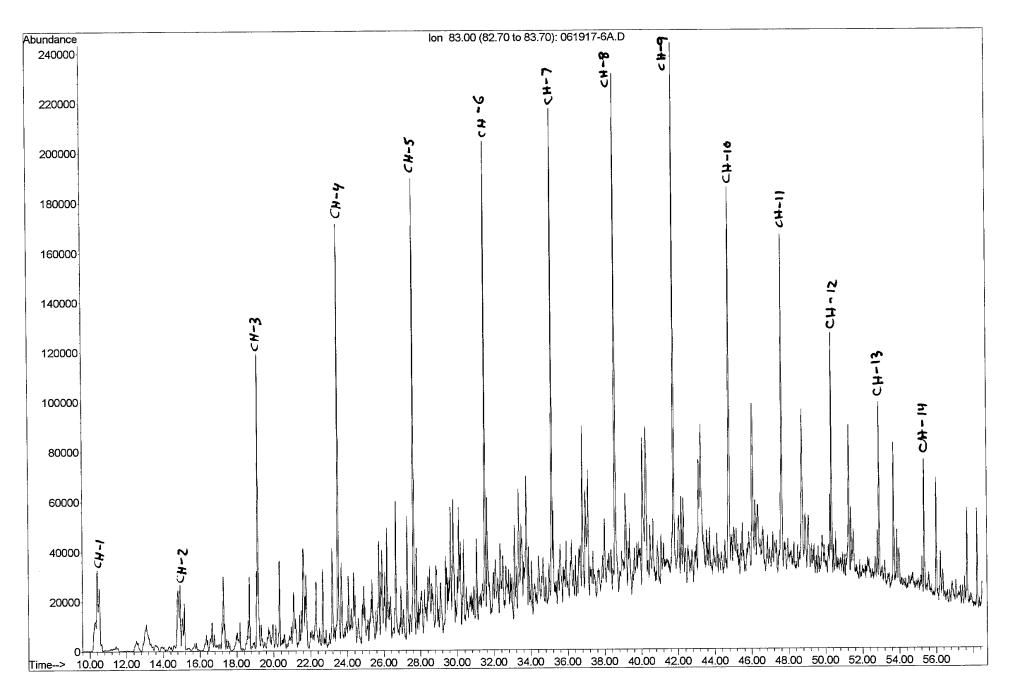


22995-2 [MW-5] 1/5 DILUTION

22995-2 [MW-5] 1/5 DILUTION

.

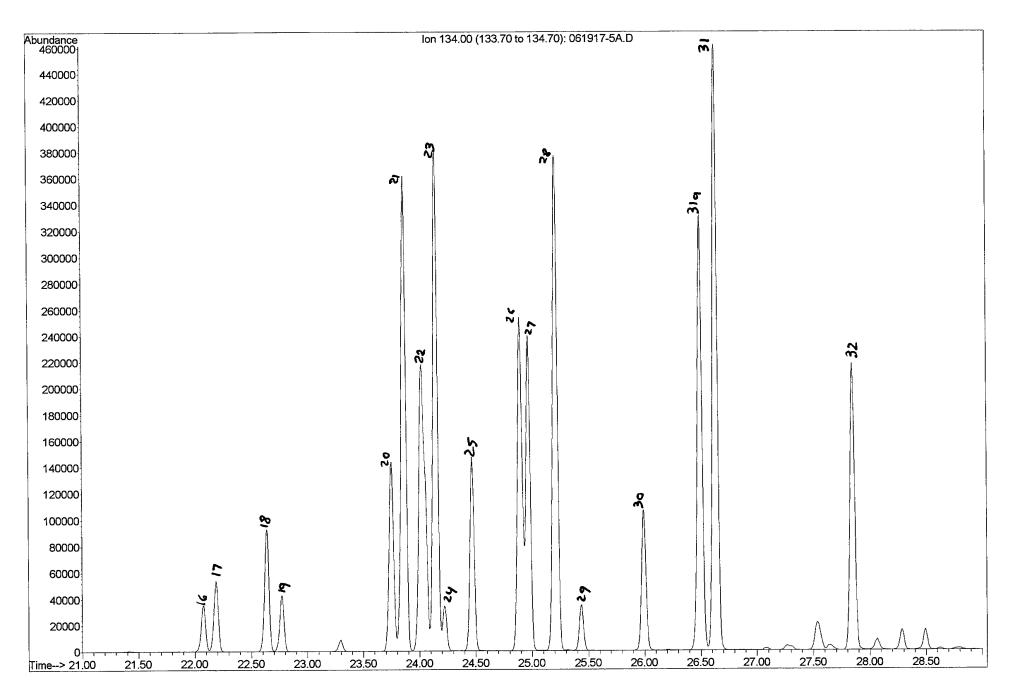

.

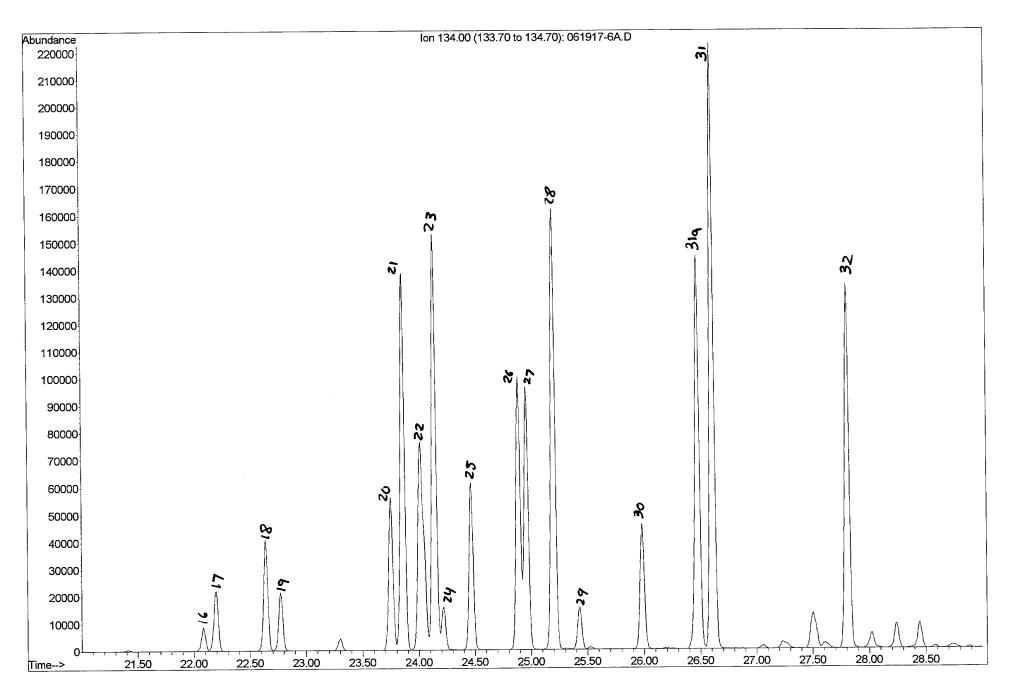


Key for Alkylcyclohexanes at m/z 83

Symbol	Detail	
· · ·		
CH-1	Methylcyclohexane	
CH-2	Ethylcyclohexane	
CH-3	Propylcyclohexane	
CH-4	Butylcyclohexane	
CH-5	Pentylcyclohexane	
CH-6	Hexylcyclohexane	
CH-7	Heptylcyclohexane	
CH-8	Octylcyclohexane	
CH-9	Nonylcyclohexane	
CH-10	Decylcyclohexane	
CH-11	Undecylcyclohexane	
CH-12	Dodecylcyclohexane	
CH-13	Tridecylcyclohexane	
CH-14	Tetradecylcyclohexane	

22995-1 [MW-3] 1/5DILUTION

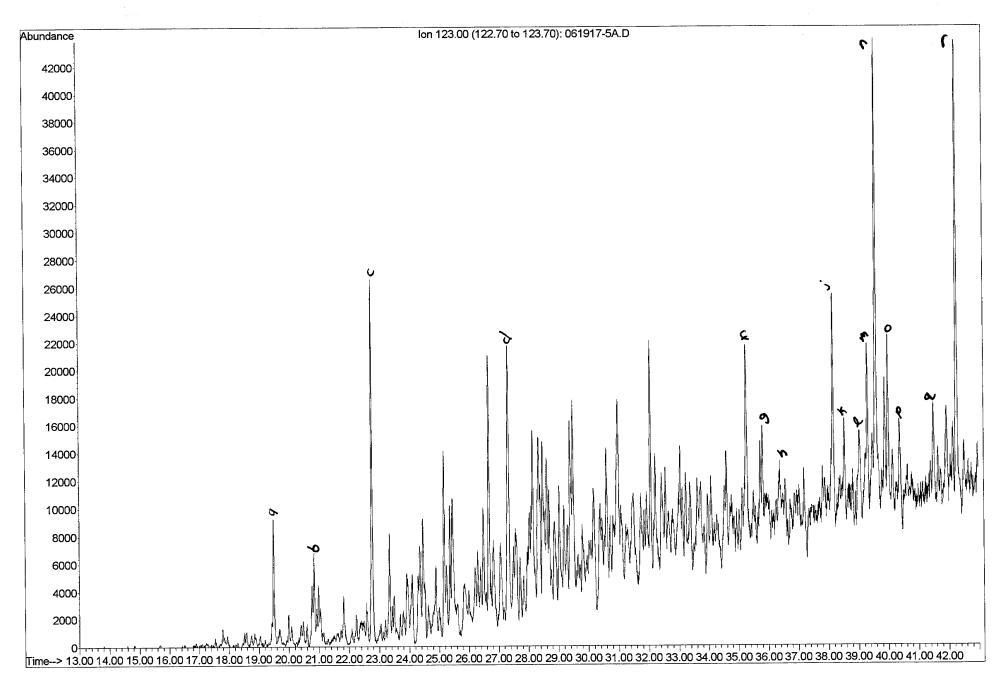


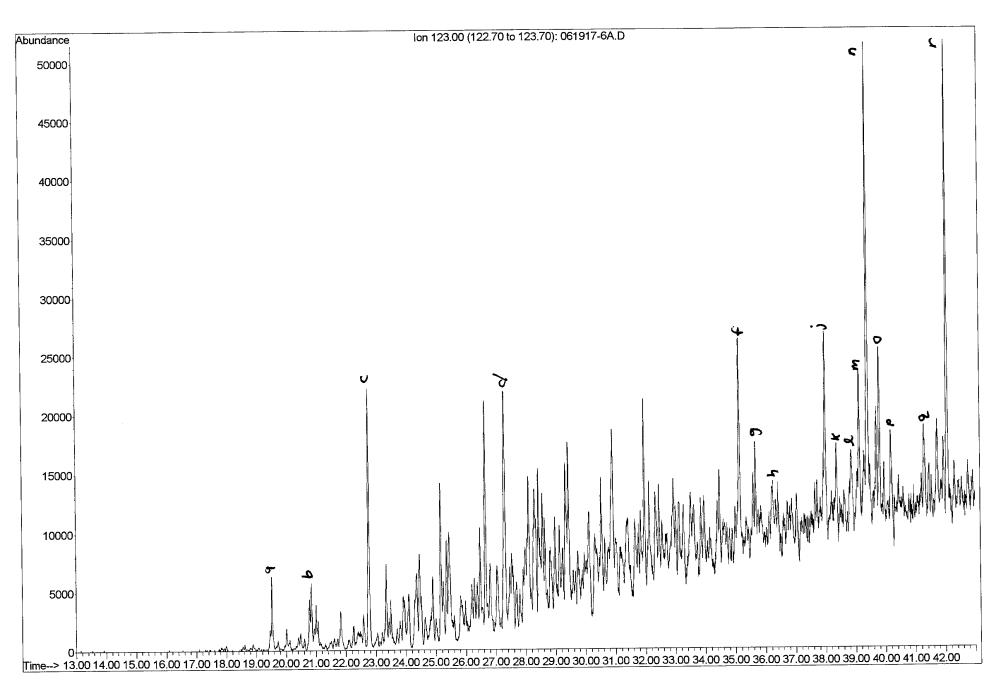


Key for C₄-Alkylbenzenes (m/z 134)

 Symbol	Detail
 16	Sec-Butylbenzene
17	1-Methyl-3-Isopropylbenzene
18	1-Methyl-4-Isopropylbenzene
19	1-Methyl-2-Isopropylbenzene
20	1,3-Diethylbenzene
21	1-Methyl-3-Propylbenzene
22	Butylbenzene
23	1,3-Diethyl-5-Ethylbenzene
24	1,2-Diethylbenzene
25	1-Methyl-2-Propylbenzene
26	1,4-Dimethyl-2-Ethylbenzene
27	1,3-Dimethyl-4-Ethylbenzene
28	1,2-Dimethyl-4-Ethylbenzene
29	1,3-Dimethyl-2-Ethylbenzene
30	1,2-Dimethyl-3-Ethylbenzene
31a	1,2,4,5-Tetramethylbenzene
31	1,2,3,5-Tetramethylbenzene
32	1,2,3,4-Tetramethylbenzene

22995-2 [MW-5] 1/5 DILUTION



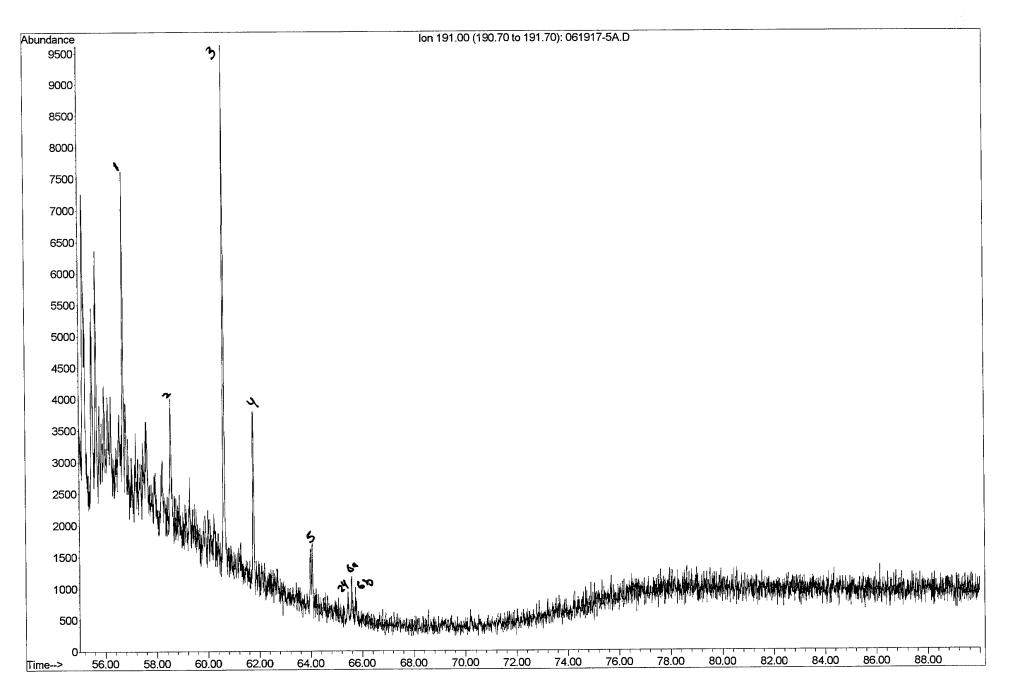

Peak No.	Identity	Formula	M.W.
a	2,2,3-Trimethylbicycloheptane	C ₁₀ H ₁₈	138
b	C10 bicycloalkane	C ₁₀ H ₁₈	138
С	3,3,7-Trimethylbicycloheptane	C ₁₀ H ₁₈	138
d	C ₁₁ Decalin	$C_{11}H_{20}$	152
f	Nordrimane	C ₁₄ H ₂₆	194
g	Nordrimane	$C_{14}H_{26}$	194
h	Rearranged drimane	C ₁₅ H ₂₈	208
j	Rearranged drimane	C ₁₅ H ₂₈	208
k	Isomer of Eudesmane	C ₁₅ H ₂₈	208
1	4β (H) Eudesmane	C ₁₅ H ₂₈	208
m	C ₁₅ Bicyclic Sesquiterpane	C ₁₅ H ₂₈	208
n	8β (H) Drimane	C ₁₅ H ₂₈	208
0	C ₁₅ Bicyclic Sesquiterpane	C ₁₅ H ₂₈	208
р	C ₁₆ Bicyclic Sesquiterpane	$C_{16}H_{30}$	222
q	C ₁₆ Bicyclic Sesquiterpane	$C_{16}H_{30}$	222
r	8β (H) Homodrimane	$C_{16}H_{30}$	222

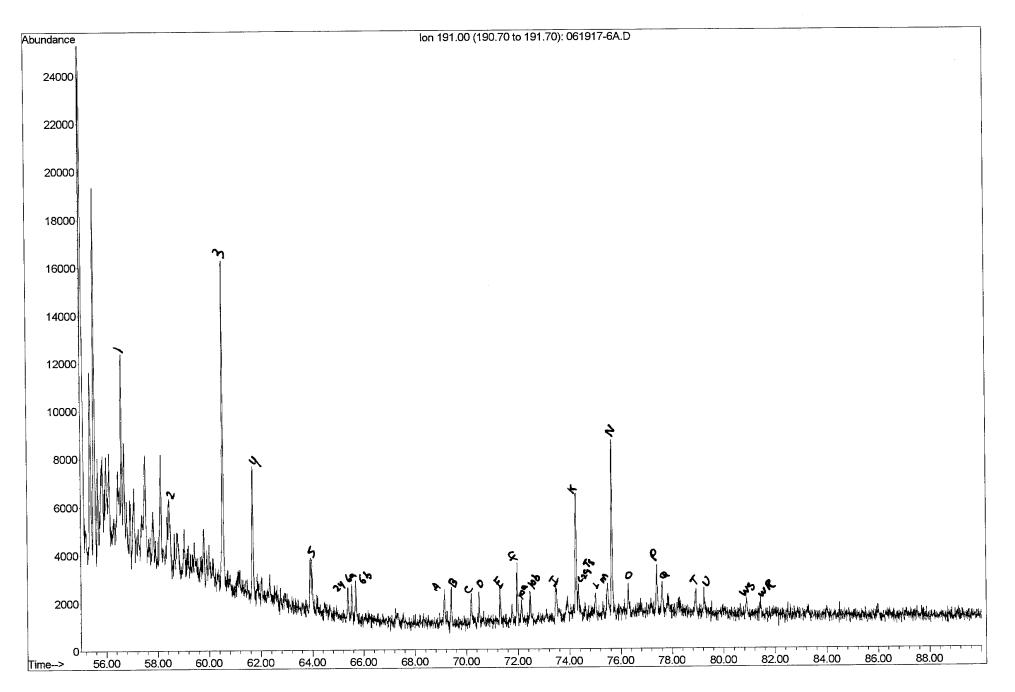
Key for Identification of the Bicyclanes (m/z 123)

22995-1 [MW-3] 1/5DILUTION

22995-2 [MW-5] 1/5 DILUTION

Key for Tricyclic, Tetracyclic, and Pentacyclic Terpanes Identification (m/z 191 Mass chromatograms)

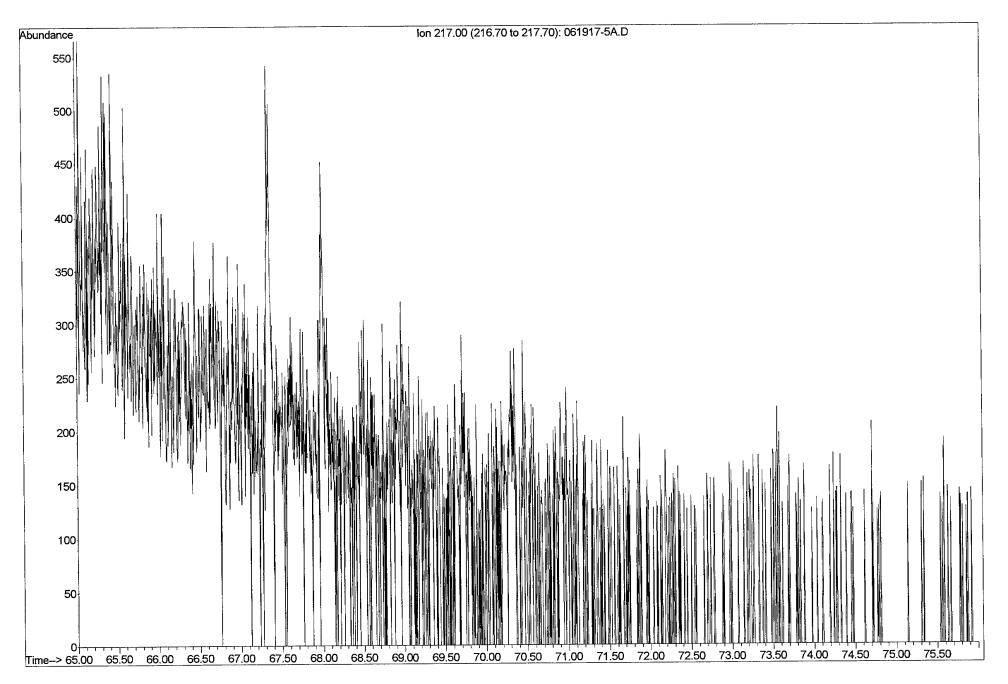

Code	Identity	Carbon #
0	C ₂₀ -Tricyclic Terpane	20
1	C ₂₁ -Tricyclic Terpane	21
2	C ₂₂ -Tricyclic Terpane	22
3	C ₂₃ -Tricyclic Terpane	23
4	C ₂₄ -Tricyclic Terpane	24
5	C ₂₅ -Tricyclic Terpane	25
Z4	C ₂₄ -Tetracyclic Terpane	24
6a	C ₂₆ -Tricyclic Terpane	26
6b	C ₂₆ -Tricyclic Terpane	26
7	C ₂₇ -Tricyclic Terpane	27
А	C ₂₈ -Tricyclic Terpane #1	28
В	C ₂₈ -Tricyclic Terpane #2	28
С	C ₂₉ -Tricyclic Terpane #1	29
D	C ₂₉ -Tricyclic Terpane #2	29
E	18 α-22,29,30-Trisnorneohopane (Ts)	27
F	17 α-22,29,30-Trisnorhopane (Tm)	27
G	17 β-22,29,30-Trisnorhopane	27
Н	17 α-23,28-Bisnorlupane	28
10a	C ₃₀ -Tricyclic Terpane #1	30
10b	C ₃₀ -Tricyclic Terpane #2	30
1	17 α-28,30 Bisnorhopane	28
11a	C ₃₁ -Tricyclic Terpane #1	31
J	17α-25-Norhopane	29
11b	C ₃₁ -Tricyclic Terpane #2	31
К	17 α,21β-30-Norhopane	29
C ₂₉ Ts	18α-30-Norneohopane	29
C ₃₀ *	17α-Diahopane	30
L	17β-21α-30-Normoretane	29
Ma	18α-Oleanane	30
Mb	18β-Oleanane	30
N	17α-21β-Hopane	30
0	17β-21α-Moretane	30
13a	C ₃₃ -Tricyclic Terpane #1	33
13b	C ₃₃ -Tricyclic Terpane #2	33

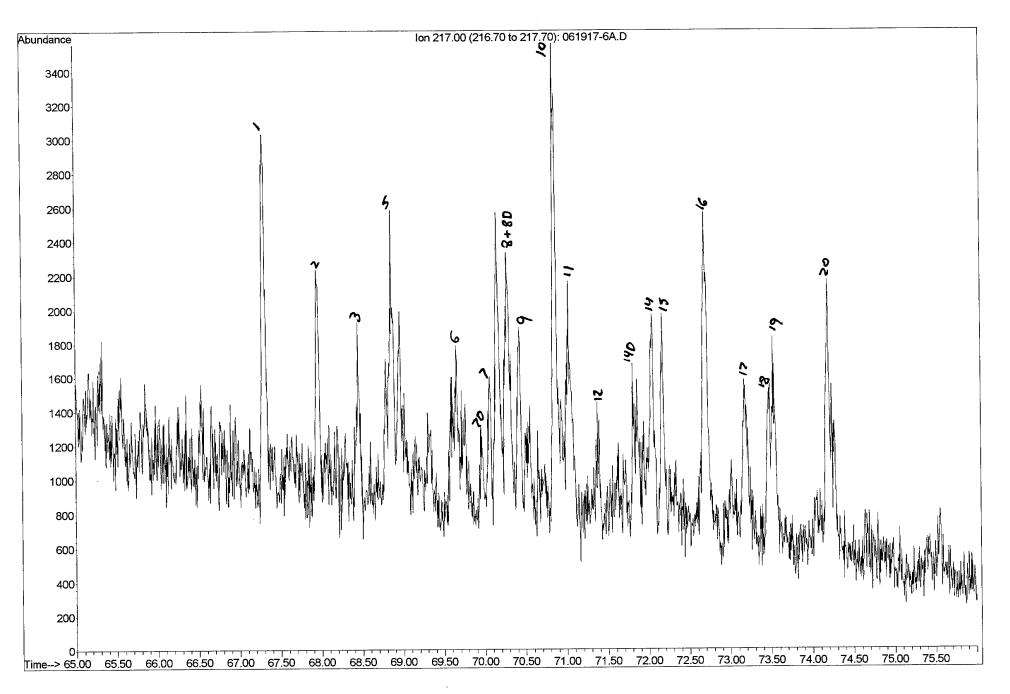

Key for Tricyclic, Tetracyclic, and Pentacyclic Terpanes Identification (m/z 191 Mass chromatograms) – Cont.

 Code	Identity	Carbon #
 P	22S-17α,21β-30-Homohopane	31
Q	22R-17α,21β-30-Homohopane	31
R	Gammacerane	30
14a	C ₃₄ -Tricyclic Terpane #1	34
S	17β,21α-Homomoretane	31
14b	C ₃₄ -Tricyclic Terpane #2	34
Т	22S-17α,21β-30-Bishomohopane	32
U	22R-17α,21β-30-Bishomohopane	32
15a	C ₃₅ -Tricyclic Terpane #1	35
15b	C ₃₄ -Tricyclic Terpane #2	35
V	17β , 21α -C ₃₂ -Bishomomoretane	32
WS	22S-17 α ,21 β -30-Bishomohopane	33
WR	22R-17α,21β-30,31,32-Trishomohopane	33
16a	C ₃₆ -Tricyclic Terpane #1	36
16b	C ₃₆ -Tricyclic Terpane #2	36
XS	22S-17α,21β-30,31,32,33-Tetrahomohopane	34
XR	22R-17α,21β-30,31,32,33-Tetrahomohopane	34
YS	22S-17α,21β-30,31,32,33,34-Pentahomohopane	35
YR	22R-17α,21β-30,31,32,33,34-Pentahomohopane	35

22995-1 [MW-3] 1/5DILUTION

22995-2 [MW-5] 1/5 DILUTION

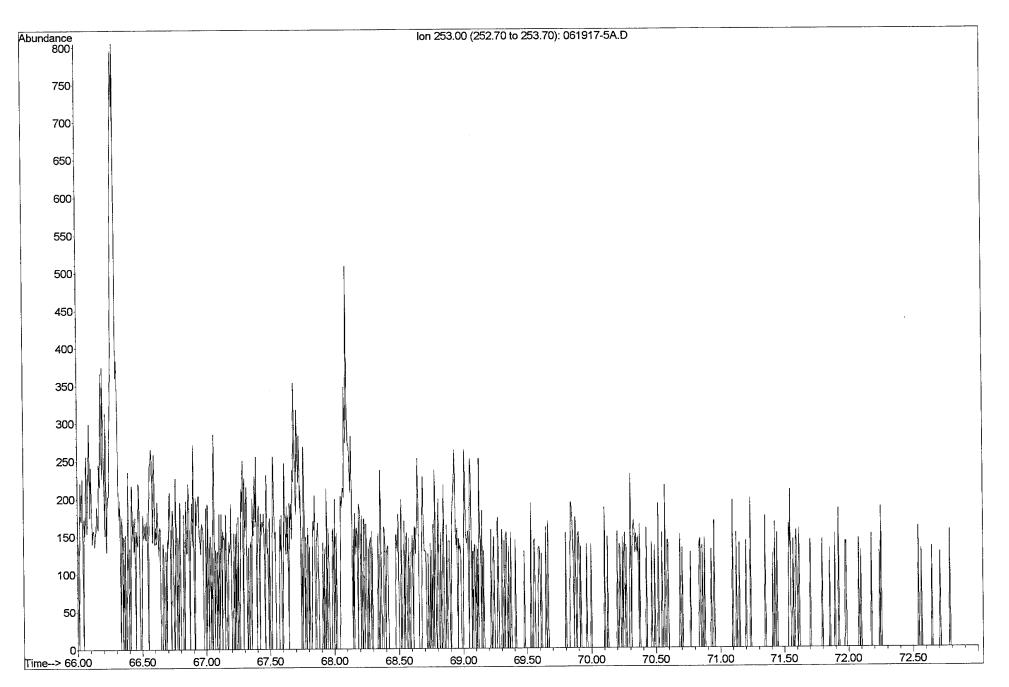


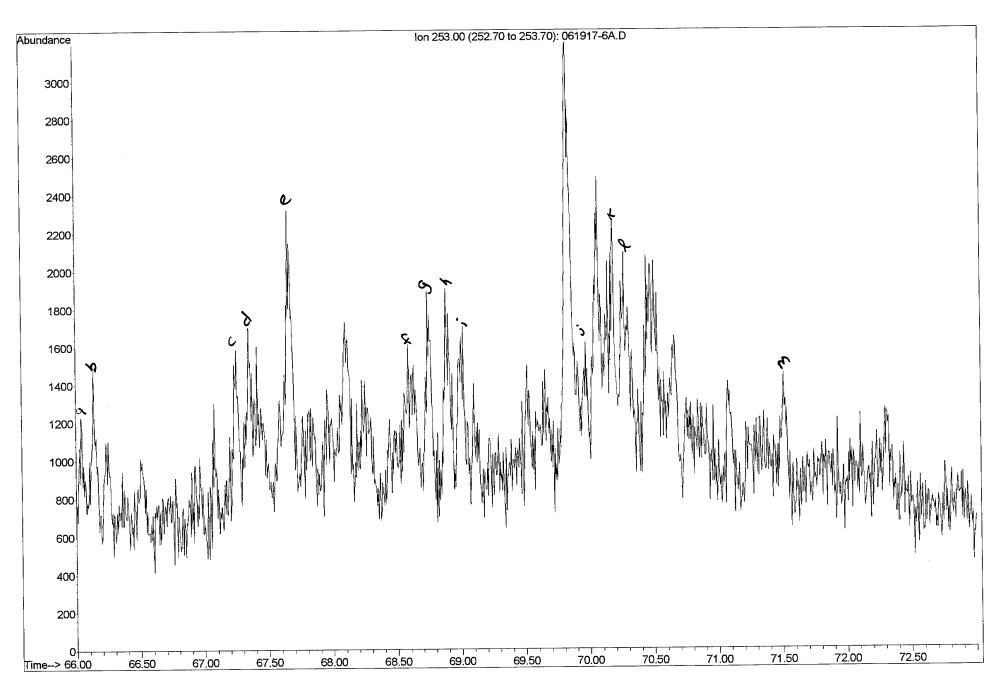

Key for Steranes Identification (m/z 217 Mass Chromatogram)

Code	Identity	Carbon #
1	13β, 17α-Diacholestane (20S)	27
2	13β, 17α-Diacholestane (20R)	27
3	13α, 17β-Diacholestane (20S)	27
4	13α, 17β-Diacholestane (20R)	27
5	24-methyl-13β,17α-Diacholestane (20S)	28
6	24-methyl-13β,17α-Diacholestane (20S)	28
7D	24-methyl-13α,17β-Diacholestane (20S)	28
7	14α,17α-Cholestane (20S)	27
8D	24-ethyl-13β, 17α-Diacholestane (20S)	29
8	14β,17β-Cholestane (20R)	27
9	14β,17β-Cholestane (20S)	27
9D	24-methyl-13α,17β-Diacholestane (20R)	28
10	14α,17α-Cholestane (20R)	27
11	24-ethyl-13β, 17α-Diacholestane (20R)	29
12	24-ethyl-13α, 17β-Diacholestane (20S)	29
13	24-ethyl-13α, 17α-Diacholestane (20S)	28
14D	24-ethyl-13 α , 17 β -Diacholestane (20R)	29
14	24-methyl-14β, 17β-Cholestane (20R)	28
15	24-methyl-14β, 17β-Cholestane (20S)	28
16	24-methyl-14α, 17α-Cholestane (20R)	28
17	24-ethyl-14α-Cholestane (20S)	29
18	24-ethyl-14β, 17β-Cholestane (20R)	29
19	24-ethyl-14β, 17β-Cholestane (20S)	29
20	24-ethyl-14α, 17α-Cholestane (20R)	29
21A	24-n-Propylcholestane (20S)	30
21B	4-methyl-24-ethylcholestane (20S)	30
22A	4α -methyl-24-ethyl-14 β ,17 β -cholestane (20S)	30
22B	24-n-Propyl-14β,17β-cholestane (20S)	30
23A	4α -methyl-24-ethyl-14 β ,17 β -cholestane (20R)	30
23B	24-n-propyl-14β,17β-cholestane (20R)	30
24A	4α -methyl-24-ethylcholestane (20R)	30
24B	24-n-propylcholestane (20R)	30

22995-1 [MW-3] 1/5DILUTION

22995-2 [MW-5] 1/5 DILUTION

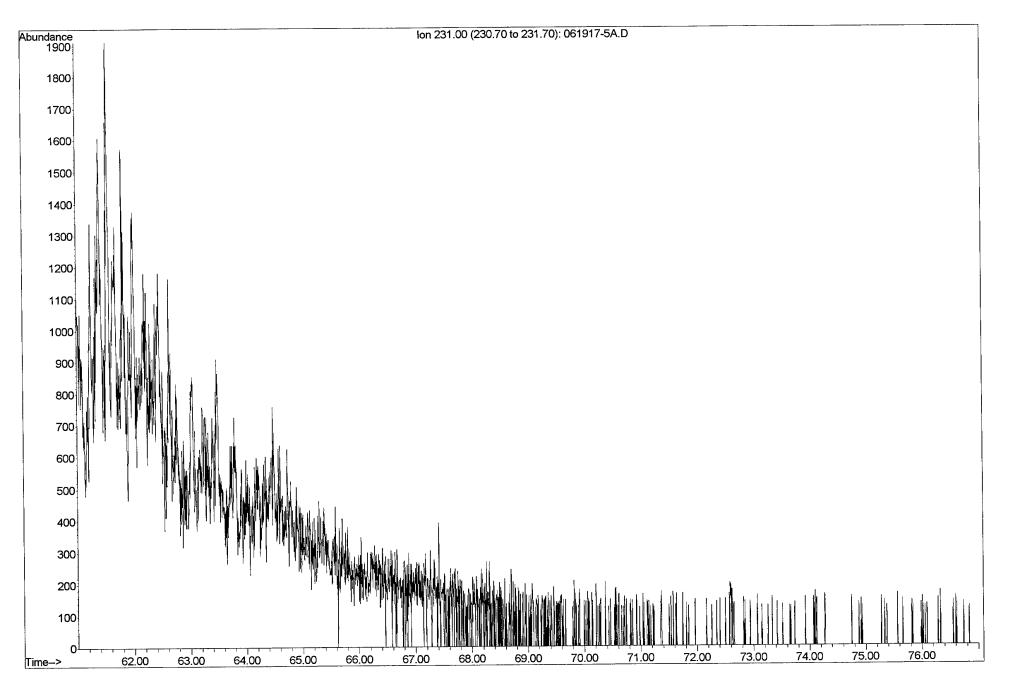


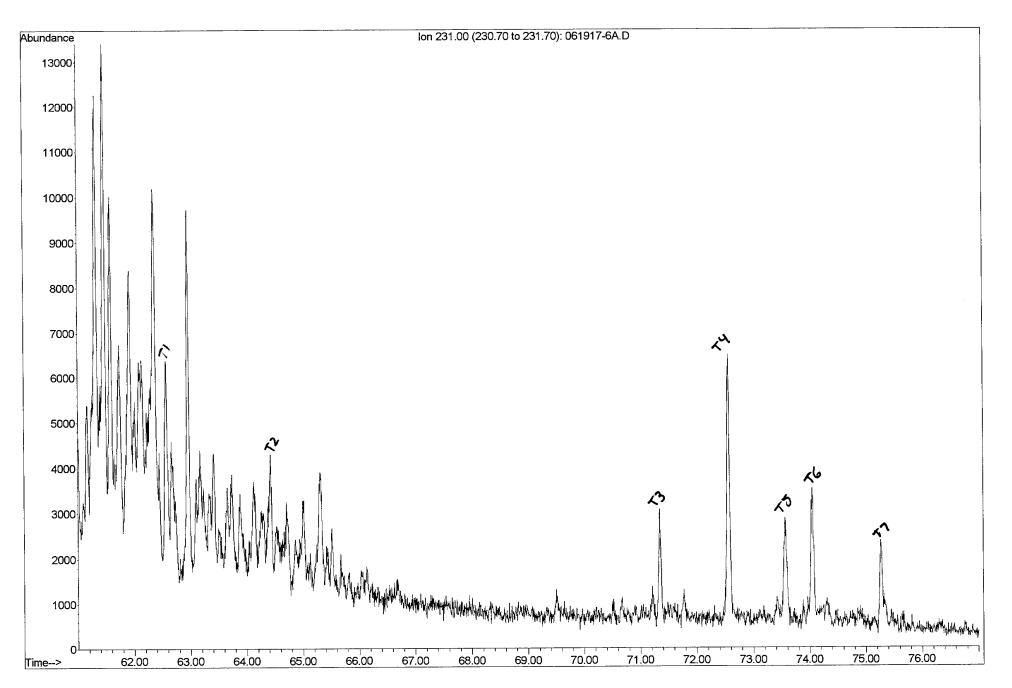

Key for Monoaromatic Steranes Identification (m/z 253 Mass Chromatogram)

Code	Identity	Elemental Composition
a	20S, 5β C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
b	20S, dia C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
С	20R, 5β C ₂₇ -Monoaromatic Sterane + 20R C ₂₇ dia MAS	C ₂₇ H ₄₂
d	20S, 5 α C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
е	20R, 5 β C ₂₈ -Monoaromatic Sterane + 20S C ₂₈ dia MAS	C ₂₈ H ₄₄
f	20R, 5 α C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
g	20S, 5 α C ₂₈ -Monoaromatic Sterane	C ₂₈ H ₄₄
h	20R, 5 β C ₂₈ -Monoaromatic Sterane + 20R C ₂₈ dia MAS	C ₂₈ H ₄₄
i	20S, 5β C ₂₉ -Monoaromatic Sterane + 20S C ₂₉ dia MAS	$C_{29}H_{46}$
j	20S, 5 α C ₂₉ -Monoaromatic Sterane	$C_{29}H_{46}$
k	20R, 5 α C ₂₈ -Monoaromatic Sterane	$C_{28}H_{44}$
l	20R, 5β C ₂₉ -Monoaromatic Sterane + 20R C ₂₉ dia MAS	$C_{29}H_{46}$
m	20R, 5 α C ₂₉ -Monoaromatic Sterane	$C_{29}H_{46}$

22995-1 [MW-3] 1/5DILUTION

22995-2 [MW-5] 1/5 DILUTION

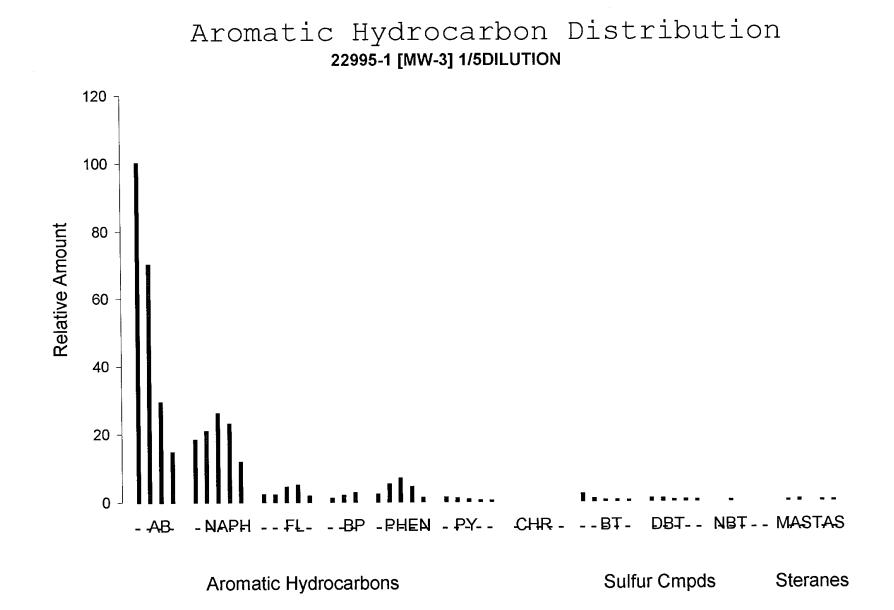



Key for Triaromatic Steranes Identification (m/z 231 Mass Chromatogram)

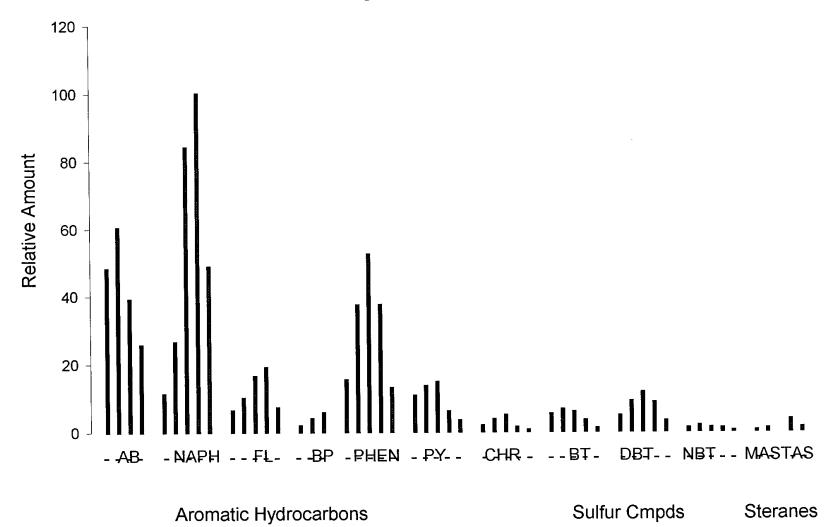
Code	Identity	Elemental Composition
 T1	C ₂₀ Triaromatic Sterane	C ₂₀ H ₂₀
T2	C ₂₁ Triaromatic Sterane	C ₂₁ H ₂₂
Т3	20S C ₂₆ Triaromatic Sterane	$C_{26}H_{32}$
T4	20R C ₂₆ + 20S C ₂₇ Triaromatic Steranes	$C_{26}H_{32} + C_{27}H_{34}$
T5	20S C ₂₈ Triaromatic Sterane	C ₂₈ H ₃₆
Т6	20R C ₂₇ Triaromatic Sterane	C ₂₇ H ₃₄
Τ7	20R C ₂₈ Triaromatic Sterane	C ₂₈ H ₃₆

22995-1 [MW-3] 1/5DILUTION

22995-2 [MW-5] 1/5 DILUTION


Key for Identifying Aromatic Hydrocarbons

1 120 AB C ₃ -slkylbenzenes 2 134 C ₄ -alkylbenzenes 3 148 C ₄ -alkylbenzenes 4 162 C ₆ -alkylbenzenes 5 128 NAPH C ₉ -naphthalene 6 142 C ₄ -naphthalenes C ₇ -naphthalenes 7 156 C ₂ -naphthalenes C ₇ -naphthalenes 8 170 C ₄ -naphthalenes C ₇ -naphthalenes 9 184 C ₄ -naphthalenes C ₇ -fluorene 10 166 FL C ₇ -fluorene C ₁₁ 11 180 C ₇ -fluorenes C ₇ -fluorenes C ₇ -fluorenes 13 208 C ₇ -fluorenes C ₇ -fluorenes C ₇ -fluorenes 14 222 C ₄ -fluorenes C ₇ -fluorenes C ₇ -fluorenes 15 154 BP C ₇ -biphenyl + dibenzofuran C ₇ -biphenyl + CJ Dibenzofuran 17 182 C ₇ -phenanthrenes C ₇ -phenanthrenes C ₇ -phenanthrenes 20 206 C ₇ -pyre	No	m/z	Abbreviation	Compound
3148Cg-alkylbenzenes4162Cg-alkylbenzenes5128NAPHCg-alkylbenzenes6142Cg-naphthalene7156Cg-naphthalenes8170Cg-naphthalenes9184Cg-naphthalenes10166FLCg-fluorene11180Cg-fluorenes12194Cg-fluorenes13208Cg-fluorenes14222Cg-fluorenes15154BPCg-biphenyl16168Cg-biphenyl17182Cg-biphenyls + dibezofuran17182Cg-phenathrene19192Cg-phenathrene20206Cg-phenathrenes21220PYCg-phenathrenes22234Cg-phenathrenes23202PYCg-phenathrenes24216Cg-pyrenes/fluoranthene25230Cg-pyrenes/fluoranthenes26244Cg-pyrenes/fluoranthenes27258CHRCg-pyrenes/fluoranthenes28284CHRCg-chrysenes31270Cg-chrysenes33148BTCg-benzothiophenes34162Cg-benzothiophenes35176Cg-benzothiophenes36190Cg-benzothiophenes	1	120	AB	C ₃ -alkylbenzenes
4162Caralkylbenzenes5128NAPHCaraphthalene6142Caraphthalenes7156Caraphthalenes8170Caraphthalenes9184Caraphthalenes9184Caraphthalenes10166FLCarfluorene11180Carfluorenes12194Carfluorenes13208Carfluorenes14222Carfluorenes15154BPCarbiphenyls + dibenzofuran16168Carbiphenyls + dibenzofuran17182Carbiphenyls + dibenzofuran18178PHENCarbiphenyls + dibenzofuran19192Carbiphenyls + dibenzofuran20206Carbiphenyls + Carbiphenes21220PYCarbiphenyls + Carbiphens2234Carphenanthrenes23202PYCarbiphenyl + diburanthene24216Carpyrenes/fluoranthenes25230Carpyrenes/fluoranthenes26244Carpyrenes/fluoranthenes27258CHRCarbiyrenes28228CHRCarbiyrenes31270Carchrysenes32284CHRCarbiyrenes33148BTCarbiphenes34162Carbiryenes35176Carbiryenes36190Carbiryenes	2	134		C ₄ -alkylbenzenes
5128NAPHConapthalene6142Canapthalenes7156Canapthalenes8170Canapthalenes9184Canapthalenes10166FLCaflurenes11180Caflurenes12194Caflurenes13208Caflurenes14222Caflurenes15154BPCablenyls + dibenzofuran16168Cablenyls + dibenzofuran17182Cablenyls + Cl Dibenzofuran18178PHENCarbiphenyls + Cl Dibenzofuran19192Carbiphenyls + Cl Dibenzofuran20206Carbiphenyls + Cl Dibenzofuran21220Carphenanthrenes23202PYCarphenanthrenes24216Carphenanthrenes25230Carpyrenes/fluoranthenes26244Carpyrenes/fluoranthenes27258Carpyrenes/fluoranthenes28228CHRCarbiysenes30256Carchysenes31270Carchysenes32284Carchysenes33148BTCarbinysenes34162Carbonysenes35176Carbenzothiophenes36190Carbinzentiophenes	3	148		C ₅ -alkylbenzenes
6 142 C_1 -naphthalenes 7 156 C_2 -naphthalenes 8 170 C_3 -naphthalenes 9 184 C_2 -naphthalenes 10 166 FL C_3 -fluorenes 11 180 C_3 -fluorenes 12 194 C_3 -fluorenes 13 208 C_3 -fluorenes 14 222 C_3 -fluorenes 15 154 BP C_2 -biphenyl 16 168 C_2 -biphenyls + dibenzofuran 17 182 C_2 -biphenyls + C1 Dibenzofuran 18 178 PHEN C_2 -phenanthrene 20 206 C_2 -phenanthrenes 21 220 C_3 -phenanthrenes 22 234 C_3 -phenanthrenes 23 202 PY C_3 -pyrenes/fluoranthenes 24 216 C_3 -pyrenes/fluoranthenes 25 230 C_2 -pyrenes/fluoranthenes 26 244 C_3 -pyrenes/fluoranthenes 27 258 C_4 -phyrsenes/fluoranthenes	4	162		C ₆ -alkylbenzenes
7156C ₂ -naphthalenes8170C ₃ -naphthalenes9184C ₄ -naphthalenes10166FLC ₄ -fluorene11180C ₂ -fluorenes12194C ₂ -fluorenes13208C ₄ -fluorenes14222C ₄ -fluorenes15154BPC ₇ -biphenyl16168C ₇ -biphenyls + dibenzofuran17182C ₇ -biphenyls + C1 Dibenzofuran18178PHENC ₇ -phenanthrenes19192C ₇ -phenanthrenes21220C ₇ -phenanthrenes23202PYC ₇ -phenanthrenes24216C ₇ -pyrenes/fluoranthene25230C ₇ -pyrenes/fluoranthenes26244C ₈ -pyrenes/fluoranthenes27258CHRC ₇ -phrens28228CHRC ₇ -chrysenes30256C ₇ -chrysenes31270C ₇ -chrysenes31148BTC ₁ -benzothiophenes32284CHRC ₁ -benzothiophenes33148BTC ₁ -benzothiophenes34162C ₁ -benzothiophenes35176C ₂ -benzothiophenes36190C ₁ -benzothiophenes	5	128	NAPH	C ₀ -naphthalene
8170C3-naphthalenes9184C4-naphthalenes10166FLCa-fluorene11180C3-fluorenes12194C3-fluorenes13208C3-fluorenes14222C3-fluorenes15154BPC4-fluorenes16168C3-biphenyl17182C3-biphenyls + dibenzofuran18178PHENC3-phenanthrene19192C3-phenanthrenes20206C3-phenanthrenes21220C3-phenanthrenes22234C3-phenanthrenes23202PYC3-phenanthrenes24216C3-pyrenes/fluoranthenes25230C3-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258C4-pyrenes/fluoranthenes28228CHRC3-chrysene30256C3-chrysenes31270C3-chrysenes32284CHRC3-chrysenes33148BTC4-chrysenes34162C4-chrysenes35176C3-benzothiophenes36190Ca-benzothiophenes	6	142		C ₁ -naphthalenes
9184Cq-naphthalenes10166FLCq-fluorene11180Cq-fluorenes12194Cq-fluorenes13208Cq-fluorenes14222Cq-fluorenes15154BPCg-biphenyls + dibenzofuran16168Cg-biphenyls + dibenzofuran17182Cq-phenanthrene18178PHENCg-phenanthrenes20206Cg-phenanthrenes21220Cg-phenanthrenes2234Cg-phenanthrenes23202PYCg-phenathrenes24216Cg-pyrenes/fluoranthenes25230Cg-pyrenes/fluoranthenes26244Cg-pyrenes/fluoranthenes27258Cq-chrysenes28228CHRCg-chrysenes30256Cg-chrysenes31270Cg-chrysenes32284BTCg-chrysenes33148BTCg-chrysenes34162Cg-benzothiophenes35176Cg-benzothiophenes36190Cg-benzothiophenes	7	156		C_2 -naphthalenes
10166FL C_{a} -fluorene11180C_1fluorenes12194C_2fluorenes13208C_3-fluorenes14222C_4-fluorenes15154BPC_0-biphenyl16168C_2-biphenyls + dibenzofuran17182C_2-biphenyls + C1 Dibenzofuran18178PHENC_0-phenanthrene19192C_1-phenanthrenes20206C_2-phenanthrenes21220C_3-phenanthrenes22234C_1-phenanthrenes23202PYC_1-phens/fluoranthene24216C_1-pyrenes/fluoranthenes25230C_1-pyrenes/fluoranthenes26244C_3-pyrenes/fluoranthenes27258CHRC_1-chrysene28228CHRC_1-chrysenes30256C_2-chrysenes31270C_2-chrysenes32284BTC_1-benzothiophenes33148BTC_2-benzothiophenes34162C_2-benzothiophenes35176C_2-benzothiophenes36190C_4-benzothiophenes	8	170		C_3 -naphthalenes
11180 C_1 -fluorenes12194 C_2 -fluorenes13208 C_3 -fluorenes14222 C_3 -fluorenes15154BP C_0 -biphenyl16168 C_1 -biphenyls + dibenzofuran17182 C_2 -biphenyls + C1 Dibenzofuran18178PHEN C_0 -phenanthrene19192 C_1 -phenanthrenes20206 C_2 -phenanthrenes21220 C_3 -phenanthrenes22234 C_3 -phenanthrenes23202PY C_0 -pres/fluoranthenes24216 C_3 -pyrenes/fluoranthenes25230 C_3 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_3 -chrysenes31270 C_3 -chrysenes32284BT C_1 -benzothiophenes33148BT C_2 -benzothiophenes34162 C_3 -benzothiophenes35176 C_3 -benzothiophenes	9	184		C₄-naphthalenes
12 194 C ₂ -fluorenes 13 208 C ₃ -fluorenes 14 222 C ₄ -fluorenes 15 154 BP C ₇ -biphenyl 16 168 C ₂ -biphenyls + dibenzofuran 17 182 C ₂ -biphenyls + C1 Dibenzofuran 18 178 PHEN C ₀ -phenanthrene 19 192 C ₂ -phenanthrenes 20 206 C ₂ -phenanthrenes 21 220 C ₃ -phenanthrenes 22 234 C ₄ -phenanthrenes 23 202 PY C ₇ -pyrenes/fluoranthene 24 216 C ₁ -pyrenes/fluoranthenes 25 230 C ₂ -pyrenes/fluoranthenes 26 244 C ₃ -pyrenes/fluoranthenes 27 258 CHR C ₁ -chrysenes 30 256 C ₁ -chrysenes 31 270 C ₃ -chrysenes 32 284 CHR C ₁ -chrysenes 33 148 BT C ₁ -benzothiophenes 34 162 C ₂ -benzothiophenes <t< td=""><td>10</td><td>166</td><td>FL</td><td>C₀-fluorene</td></t<>	10	166	FL	C ₀ -fluorene
13208Ca-fluorenes14222Ca-fluorenes15154BPCa-biphenyl16168Ca-biphenyls + dibenzofuran17182Ca-biphenyls + C1 Dibenzofuran18178PHENCa-phenanthrene19192Ca-phenanthrenes20206Ca-phenanthrenes21220Ca-phenanthrenes22234Ca-phenanthrenes23202PYCa-phenanthrenes24216Ca-pyrene/fluoranthenes25230Ca-pyrenes/fluoranthenes26244Ca-pyrenes/fluoranthenes27258CHRCa-pyrenes/fluoranthenes28228CHRCa-chrysenes30256Ca-chrysenes31270Ca-chrysenes33148BTCa-chrysenes34162Ca-chrysenes35176Ca-benzothiophenes36190Ca-benzothiophenes	11	180		C ₁ -fluorenes
14222 C_a -fluorenes15154BP C_a -biphenyl16168 C_a -biphenyls + dibenzofuran17182 C_a -biphenyls + C1 Dibenzofuran18178PHEN C_a -phenanthrene19192 C_a -phenanthrenes20206 C_a -phenanthrenes21220 C_a -phenanthrenes22234 C_a -phenanthrenes23202PY C_a -phenanthrenes24216 C_a -pyrene/fluoranthenes25230 C_a -pyrenes/fluoranthenes26244 C_a -pyrenes/fluoranthenes27258 C_a -pyrenes/fluoranthenes28228CHR C_a -chrysenes30256 C_a -chrysenes31270 C_a -chrysenes32284BT C_a -chrysenes33148BT C_a -benzothiophenes34162 C_a -benzothiophenes35176 C_a -benzothiophenes	12	194		C ₂ -fluorenes
15154BP C_{0} -biphenyl16168 C_{1} -biphenyls + dibenzofuran17182 C_{2} -biphenyls + C1 Dibenzofuran18178PHEN C_{0} -phenanthrene19192 C_{1} -phenanthrenes20206 C_{2} -phenanthrenes21220 C_{3} -phenanthrenes22234 C_{0} -pyrene/fluoranthene23202PY C_{0} -pyrene/fluoranthenes24216 C_{1} -pyrenes/fluoranthenes25230 C_{1} -pyrenes/fluoranthenes26244 C_{0} -pyrenes/fluoranthenes27258 C_{1} -pyrenes/fluoranthenes28228CHR C_{0} -chrysene30256 C_{1} -chrysenes31270 C_{3} -chrysenes32284BT C_{1} -benzothiophenes33148BT C_{1} -benzothiophenes34162 C_{2} -benzothiophenes35176 C_{3} -benzothiophenes	13	208		C ₃ -fluorenes
16168 C_1 -biphenyls + dibenzofuran17182 C_2 -biphenyls + C1 Dibenzofuran18178PHEN C_0 -phenanthrene19192 C_1 -phenanthrenes20206 C_2 -phenanthrenes21220 C_3 -phenanthrenes22234 C_3 -phenanthrenes23202PY C_0 -pyrene/fluoranthene24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_3 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	14	222		C ₄ -fluorenes
17182 C_2 -biphenyls + C1 Dibenzofuran18178PHEN C_0 -phenanthrene19192 C_1 -phenanthrenes20206 C_2 -phenanthrenes21220 C_3 -phenanthrenes22234 C_4 -phenanthrenes23202PY C_0 -pyrene/fluoranthene24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_1 -chrysene30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_3 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	15	154	BP	C ₀ -biphenyl
18 178 PHEN C_0 -phenanthrene 19 192 C_1 -phenanthrenes 20 206 C_2 -phenanthrenes 21 220 C_3 -phenanthrenes 22 234 C_3 -phenanthrenes 23 202 PY C_0 -pyrene/fluoranthene 24 216 C_1 -pyrenes/fluoranthenes 25 230 C_2 -pyrenes/fluoranthenes 26 244 C_3 -pyrenes/fluoranthenes 27 258 C_4 -pyrenes/fluoranthenes 28 228 CHR C_0 -chrysene 29 242 C_1 -chrysenes 30 256 C_2 -chrysenes 31 270 C_3 -chrysenes 32 284 C_4 -chrysenes 33 148 BT C_1 -benzothiophenes 33 148 BT C_2 -benzothiophenes 34 162 C_3 -benzothiophenes 35 176 C_3 -benzothiophenes 36 190 C_4 -benzothiophenes	16	168		C ₁ -biphenyls + dibenzofuran
19192 C_1 -phenanthrenes20206 C_2 -phenanthrenes21220 C_3 -phenanthrenes22234 C_4 -phenanthrenes23202PY C_0 -pyrene/fluoranthene24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284BT C_1 -benzothiophenes33148BT C_1 -benzothiophenes34162 C_3 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	17	182		C ₂ -biphenyls + C1 Dibenzofuran
19192C ₁ -phenanthrenes20206C ₂ -phenanthrenes21220C ₃ -phenanthrenes22234C ₄ -phenanthrenes23202PYC ₀ -pyrene/fluoranthene24216C ₁ -pyrenes/fluoranthenes25230C ₂ -pyrenes/fluoranthenes26244C ₃ -pyrenes/fluoranthenes27258C ₄ -pyrenes/fluoranthenes28228CHRC ₀ -chrysene29242C ₁ -chrysenes30256C ₂ -chrysenes31270C ₃ -chrysenes32284BTC ₁ -benzothiophenes33148BTC ₁ -benzothiophenes34162C ₃ -benzothiophenes35176C ₃ -benzothiophenes36190C ₄ -benzothiophenes	18	178	PHEN	C ₀ -phenanthrene
20206C2-phenanthrenes21220C3-phenanthrenes22234C4-phenanthrenes23202PYC0-pyrene/fluoranthene24216C1-pyrenes/fluoranthenes25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258CHRC0-chrysene28228CHRC1-chrysenes30256C1-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-chrysenes34162C2-benzothiophenes35176C3-chenzothiophenes36190C4-benzothiophenes	19	192		C ₁ -phenanthrenes
21220C3-phenanthrenes22234C4-phenanthrenes23202PYCo-pyrene/fluoranthene24216C1-pyrenes/fluoranthenes25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258CHRC4-pyrenes/fluoranthenes28228CHRCo-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	20	206		
23202PY C_0 -pyrene/fluoranthene24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_2 -benzothiophenes35176 C_4 -benzothiophenes	21	220		
24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_2 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	22	234		C ₄ -phenanthrenes
25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258C4-pyrenes/fluoranthenes28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	23	202	РҮ	C ₀ -pyrene/fluoranthene
26244C3-pyrenes/fluoranthenes27258C4-pyrenes/fluoranthenes28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	24	216		C1-pyrenes/fluoranthenes
27258C4-pyrenes/fluoranthenes28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	25	230		C ₂ -pyrenes/fluoranthenes
28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	26	244		C ₃ -pyrenes/fluoranthenes
29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_2 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	27	258		C ₄ -pyrenes/fluoranthenes
30 256 C_2 -chrysenes 31 270 C_3 -chrysenes 32 284 C_4 -chrysenes 33 148 BT C_1 -benzothiophenes 34 162 C_2 -benzothiophenes 35 176 C_3 -benzothiophenes 36 190 C_4 -benzothiophenes	28	228	CHR	C ₀ -chrysene
31 270 C_3 -chrysenes 32 284 C_4 -chrysenes 33 148 BT C_1 -benzothiophenes 34 162 C_2 -benzothiophenes 35 176 C_3 -benzothiophenes 36 190 C_4 -benzothiophenes	29	242		C ₁ -chrysenes
32 284 C_4 -chrysenes 33 148 BT C_1 -benzothiophenes 34 162 C_2 -benzothiophenes 35 176 C_3 -benzothiophenes 36 190 C_4 -benzothiophenes	30	256		C ₂ -chrysenes
33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	31	270		C ₃ -chrysenes
34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	32	284		C₄-chrysenes
35176C3-benzothiophenes36190C4-benzothiophenes	33	148	ВТ	C1-benzothiophenes
35176C3-benzothiophenes36190C4-benzothiophenes	34	162		C ₂ -benzothiophenes
36 190 C ₄ -benzothiophenes	35	176		
	36	190		C ₄ -benzothiophenes
	37	204		



No	m/z	Abbreviation	Compound
	184	DBT	C ₀ -dibenzothiophene
39	198		C ₁ -dibenzothiophenes
40	212		C ₂ -dibenzothiophenes
41	226		C ₃ -dibenzothiophenes
42	240		C ₄ -dibenzothiophenes
43	234	NBT	C ₀ -naphthobenzthiophene
44	248		C_1 -naphthobenzthiophenes
45	262		C ₂ -naphthobenzthiophenes
46	276		C ₃ -naphthobenzthiophenes
47	290		C_4 -naphthobenzthiophenes
48	253	MAS	Monoaromatic steranes
49	267		Monoaromatic steranes
50	239		Monoaromatic steranes
51	231	TAS	Triaromatic steranes
52	245		Triaromatic steranes

Key for Identifying Aromatic Hydrocarbons - Cont.

Aromatic Hydrocarbon Distribution 22995-2 [MW-5] 1/5 DILUTION

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

;

ent. tely.	Page: of			REGULATORY AGENCY		UST RCRA OTHER CONST	Site Location	STATE: VIT	sis Filtered (N/N)		(VYY) ə	Sesidual Chlorin									DATE TIME SAMPLE CONDITIONS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Intact (N) (N) (N)	in qrms ceived Custor Custor Custor (γ/Ν (γ/Ν	Red J Sea
CHAIN-OF-CUSIOUY / Analytical Request Poculiterity The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.		Section C Invoice Information:	Attention: Key Nosesire		rene tre @pbsusa, rom	_	anna Mc Grath		Requested Analysis Filtered (X/N)	Preservatives	HOE	I AMPLE TEMP AT C OF CONTAINER NO ₃ CCI CI CI CI SP AK AK AK AK AK AK AK AK CI SP AC A A A A A A A A A A A A A A A A A A	1 D Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			× × × × ×					DATE TIME ACCEPTED BY / AFFILIATION	2.17 1430 XCC P223 X		SNATURE	Ken Negeric	DATE Signed
		Section B Required Project Information:	Report To: Ven MARISE Robe was Com	-1		Purchase Order No.: 413 a 2	Project Name: Cale was Value	6		(fieit)	W WT COMPOSITE WW WT COMPOSITE COMPO	임정정 20 전 2 전 2 전 2 전 2 전 2 전 2 전 2 전 2 전 2		2	6 6917	C1.9 6.9.17				ş	RELINQUISHED BY / AFFILIATION DA	Zm Zazni PBS Engrand 6.12.1		ORIGINAL SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER:	
Pace Analytical Pittsburgh, PA 15238		S Section A Required Client Information:		E. L. L. A. T & 100	agina h				1 10 200 2001	Section D Matrix Codes	23348	SAMPLE ID OI (A-Z, 0-9 / ,-) Air Sample IDS MUST BE UNIQUE Tissue Other	E Mult		NW 3		6	8	, v 10	11	12 ADDITIONAL COMMENTS	Held MWZ			i	

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

i 1

........

Cooler Receipt Form

Client Name: PRESERVATION Project: (20000000)	Lab Work Order: _	SX193
A. Shipping/Container Information (circle appropriate response)	and the second	
Courier: FedEx UPS USPS Client Other Air	bill Presentie Ves No	
Tracking Number: 12589 6576767676885555		
Custody Seal on Cooler/Box Present: Yes (No Seals Intec:	Yes No	
Cooler/Box Packing Material: Bubble Wrap Absorbent Foam C	отал	_
Type of Ice: (Wet (Blue) None Ice Intact: Yes Melied		
Cooler Temperature: 40 Radiation Screened: Ves (11)	Chain of Custody Prese	nt: Kes Dec
Comments:		"AL."

B. Laboratory Assignment/Log-in (check-appropriate response)

	YE5	NO.	N/A	Comment
		1	<u> </u>	Paferance non-Conformance
Chain of Custody properly filled out	l der	1		
Chain of Custody relinquished	Q., 4-			
Sampler Name & Signature on COC				
Containers intect	k North			
Were semples in separate bags	1.00			
Sample container labels match COC Sample name/date and time collected		1.		
Sufficient volume provided	\			
PAES containers used			l North	
Are containers properly preserved for the requested testing? (as labeled)			1 	
If an unknown preservation state, were containers checked? Exception: VOA's colliform				איז אינג, אינג אין איז
Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?			6p	
Lommentu:				

Copler contents examined/raceived by : / <->

Date: <u>6.737</u> Date: <u>Co/15/17</u>

An

Project Managar Raview :____

F-PAE-Q-009-560.00, 20 0692014

NON-CONFORMANCE FORM
Date: <u>6.737</u> Time of Receipt: <u>7.8660</u> Receiver: <u>7.97</u>
Client: <u>(223 Annowne</u>)
REASON FOR NON-CONFORMANCE.
Mart & Alder 2. Watter
- MUBB & Mile - B. Archelett
A. Trene by collection and conferred &
Those takes from cal
ACTION TAKEN: Client name: PBS Engineering Date. 6/15/17 Time: 14:00
Client decided to analyze MW3+MWs for full scan.
Customer Service Initials PM Date: (0/15/17

F-PAE-Q-014-rev.00, 20 Nov2014

Lauren McGrath - RE: Coleman Petroleum Project

From:	Ken Nogeire <ken.nogeire@pbsusa.com></ken.nogeire@pbsusa.com>	
To:	Lauren McGrath <lauren.mcgrath@pacelabs.com></lauren.mcgrath@pacelabs.com>	
Date:	6/15/2017 1:30 PM	
Subject:	RE: Coleman Petroleum Project	

Hi Lauren. Please proceed with the C8-C40 Full Scan on samples MW3 and MW5. Thank you,

Ken Nogeire, LHG | Senior Hydrogeologist | PBS Seattle | 509.572.8163 (cell)

From: Lauren McGrath [Lauren.McGrath@pacelabs.com]
Sent: Thursday, June 15, 2017 6:28 AM
To: Ken Nogeire
Subject: RE: Coleman Petroleum Project

Good morning Ken,

Since you are not concerned about MW2, we can do a Whole Oil analyses on MW1, MW3, and MW5 to verify that they are the same. The only reason Full Scan was chosen was due to the MW2 being a water. Would that be sufficient for you and your client?

Lauren McGrath

Project Coordinator

Pace Analytical Energy Services, LLC

220 William Pitt Way

Pittsburgh, PA 15238

412-826-5245

Lauren.McGrath@pacelabs.com

www.pacelabs.com

>>> Ken Nogeire <<u>Ken.Nogeire@pbsusa.com</u>> 6/14/2017 5:22 PM >>>

Hi Lauren. The analysis your chemist recommended would be almost \$4000, which is too much for my client. I'm not worried about gasoline and MW1 and MW3 products should be the same. So I'm leaning toward doing the C8-C40 full scan on MW3 and MW5. What do you think? We can discuss on the phone if you're around. Thank you for your patience.

Ken Nogeire, LHG

Senior Hydrogeologist

PBS

2517 Eastlake Ave. East, Suite 100, Seattle, WA 98102 office: 206.233.9639 | cell: 509.572.8163 ken.nogeire@pbsusa.com pbsusa.com

PBS is the assumed business name of PBS Engineering and Environmental Inc., an Oregon Domestic Corporation. This electronic communication and its attachments are intended only for the person(s) to whom it is addressed and may contain confidential information. If you are not the intended recipient of this message, you are hereby notified that any use, retransmission, distribution, reproduction or any action relying upon this message is prohibited. If you have received this information in error, please notify the sender.

From: Lauren McGrath [mailto:Lauren.McGrath@pacelabs.com]
Sent: Tuesday, June 13, 2017 11:03 AM
To: Ken Nogeire
Subject: Coleman Petroleum Project

Dear Ken,

We received your samples for the Coleman project. Unfortunately, there is not enough product in MW2 to run a whole oil analyses. I spoke with our petroleum expert and he advised to run a PIANO and Full Scan on all four samples in order to compare all of them accurately. Please let me know if you approve to proceed. Thank you.

Lauren McGrath Project Coordinator Pace Analytical Energy Services, LLC 220 William Pitt Way Pittsburgh, PA 15238 <u>412-826-5245</u> Lauren.McGrath@pacelabs.com www.pacelabs.com

122995

The email and documents accompanying this transmission contain confidential and legally privileged information that belongs to the sender. The information is intended only for the use of the individual(s) or entity(ies) named herein. If you are not the intended recipient, you are hereby notified that any disclosure, copying distribution or the taking of any action in reliance on the contents of this information is strictly prohibited. If you have received this in error, please immediately notify us by telephone (1.888.990.PACE) to arrange for return of the original documents.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 27, 2018

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on December 20, 2018 from the Coleman Yakima 41392, F&BI 812291 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS1227R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 20, 2018 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812291 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
812291 -01	MW9-1.5
812291 -02	MW9-2.2
812291 -03	MW9-2.5
812291 -04	MW8-3
812291 -05	MW8-11
812291 -06	MW10-2
812291 -07	MW10-14
812291 -08	BH4-2
812291 -09	BH4-12
812291 -10	BH4-W

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/20/18 Project: Coleman Yakima 41392, F&BI 812291 Date Extracted: 12/26/18 Date Analyzed: 12/26/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
BH4-W 812291-10 1/20	200	<20	<20	<60	3,900	98
Method Blank 08-2903 MB	<1	<1	<1	<3	<100	91

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/20/18 Project: Coleman Yakima 41392, F&BI 812291 Date Extracted: 12/20/18 Date Analyzed: 12/21/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW9-1.5 812291-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	82
MW9-2.5 812291-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
MW8-3 812291-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	80
MW8-11 812291-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
MW10-2 812291-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	80
MW10-14 812291-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
BH4-2 812291-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
BH4-12 812291-09	<0.02	< 0.02	< 0.02	<0.06	<5	84
Method Blank 08-2827 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	83

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/20/18 Project: Coleman Yakima 41392, F&BI 812291 Date Extracted: 12/26/18 Date Analyzed: 12/26/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
BH4-W 812291-10 1/60	97,000	<15,000	ip
Method Blank 08-2915 MB	<50	<250	100

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/20/18 Project: Coleman Yakima 41392, F&BI 812291 Date Extracted: 12/21/18 Date Analyzed: 12/21/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW9-1.5 812291-01	<50	<250	85
MW9-2.5 812291-03	<50	<250	86
MW8-3 812291-04	<50	<250	83
MW8-11 812291-05	<50	<250	85
MW10-2 812291-06	<50	<250	88
MW10-14 812291-07	<50	<250	91
BH4-2 812291-08	<50	<250	90
BH4-12 812291-09	<50	<250	90
Method Blank ^{08-2892 MB}	<50	<250	84

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/20/18 Project: Coleman Yakima 41392, F&BI 812291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 812308-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	113	65-118			
Toluene	ug/L (ppb)	50	110	72-122			
Ethylbenzene	ug/L (ppb)	50	106	73-126			
Xylenes	ug/L (ppb)	150	106	74-118			
Gasoline	ug/L (ppb)	1,000	88	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/20/18 Project: Coleman Yakima 41392, F&BI 812291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 812291-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	97	69-120
Toluene	mg/kg (ppm)	0.5	96	70-117
Ethylbenzene	mg/kg (ppm)	0.5	97	65-123
Xylenes	mg/kg (ppm)	1.5	96	66-120
Gasoline	mg/kg (ppm)	20	85	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/20/18 Project: Coleman Yakima 41392, F&BI 812291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	76	80	61-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/20/18 Project: Coleman Yakima 41392, F&BI 812291

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 812291-01 (Matrix Spike)									
			Sample	Percent	Percent				
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)		
Diesel Extended	mg/kg (ppm)	5,000	<50	84	84	73-135	0		
Laboratory Code: 1	Laboratory Contr	ol Sampl	le						
			Percent						
	Reporting	Spike	Recovery	Acceptar	nce				
Analyte	Units	Level	LCS	Criteria	a				
Diesel Extended	mg/kg (ppm)	5,000	80	74-139)				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16 th Avenue West	 بز	 3	DH4-N	BH4-10	6-440	MWIO-14	Mwlo-9	MW8-11	MW8-3	MW9- 2.5	ee-bMW	MW9-15	Sample ID		Phone SO9.5723163mail	City, State, ZIP WA,	J HIG	Commany PBS E	Report To Kn. Nogerice	162018
Received by:	Relinquished by	Received by:	Relingentshed by:	SIC	10 V		30	 	06	05	04	03	8	0/ A-E	Lab ID		nail absor	1 98102	balar St. 7		In nogeire @ plususa. com	
the		2	P	SIGNATURE	12/19/18	silbilei	\$1/19/161	silviller	8114161	81/81/ev	S1/81/61	81/81/61	81/81/61	su/sile1	Date Sampled		and a second		South		COM	
	4				1312	1230	1150	0110	0835	1450	000	1055	1930	1300	Time Sampled		0111 1127	REMARKS	Cole	PROJECT NAME	SAMPLE	SAMPLE CHAIN OF CUSTO
VINH	Kan	Con 1	Patrick		water	5=11	Soil	11.05	Soil	<u> </u>	1:5	55,1	5021	5-1	Sample Type			5	Coleman Yakima	T NAME	SAMPLERS (signature)	CHAIN
H1	20	haciro	Brice	FRA	ala -	\sim	5	ຫ	S	ש ש	Ś	5	G	(J	# of Jars			7	Kin		ture)	OF
	Josen re	5	S.	PRINT NAME		[1.9		TPH-HCID			Secondary	ā		ľ	SUC
ł				ME	X X	X X	X	X	$\frac{\times}{\sim}$	X	\sum	X	MAR		TPH-Diesel							
					$\left \underbrace{\langle} \right\rangle$		x	X	X	7 7	ス	X		XX	TPH-Gasoline			2			,	DY
						/	<u> </u>	<u> ^``</u>				ř		<u> </u>	BTEX by 8021B VOCs by 8260C	AN	7	ر ۲	<u>ع</u>	1		
	<u> </u>						1	1	+		<u> </u>			<u> </u>	SVOCs by 8270D	ANALYS	5	INVOICE TO	41392	гd		AF
JT 02	S 2A	DD L	P85												PAHs 8270D SIM	図		ICE	رتو	PO #		
	S	\sim	V.	COM			2		1			1		·		EQU		TO				d
				COMPANY		F	¥.				1					REQUESTED	L		L			20,
				Y			Å *	1								B	[] Archiv	Dis	Rush	TStanda		
							Samples received at		1			1		1			<pre>□ Archive Samples</pre>	SAN Society	char	ndarc SH	Fage #	ب ا
12	12	16	()a	p			6.				ŀ			F			Samp	IPLE after å	res au	l Turi	NARC	- 21
100/18/11/20	va/20/18	81/2/18	silvia Blaus	DATE	à			-			 	╄	<u> </u>	F	z		es	Dispose after 30 days	Rush charges authorized by:	Standard Turnaround RUSH	TURNAROUND TIME	1/h
11					75		4								Notes		na an a	OSAI s	sed by	ЪС	TIM	LS2
12	1120	9561	1350	TIME	1. Lay high Connert		å										****				U	Val
L	1		.I	لـــــل	1	ļ		1	.ł	L	.1	1	<u> </u>		1	1]	L		<u> </u>			-

1

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 2, 2019

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on December 27, 2018 from the Coleman Yakima 41392, F&BI 812355 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0102R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 27, 2018 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812355 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
812355 -01	BH1-2
812355 -02	BH1-12
812355 -03	BH1
812355 -04	BH2-2
812355 -05	BH2-14
812355 -06	BH2
812355 -07	BH5-2
812355 -08	BH5-13
812355 -09	BH5
812355 -10	Trip Blank 1

The NWTPH-Dx waters BH1 and BH2 were received outside of the holding time. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355 Date Extracted: 12/27/18 Date Analyzed: 12/27/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Trip Blank 1 812355-10	<1	<1	<1	<3	89
Method Blank 08-2904 MB	<1	<1	<1	<3	91

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355 Date Extracted: 12/27/18 Date Analyzed: 12/27/18 and 12/28/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
BH1 812355-03	18	18	54	97	7,300	ip
BH2 812355-06 1/20	240	<20	160	170	8,600	107
BH5 812355-09 1/40	1,300	730	1,200	4,400	27,000	107
Method Blank 08-2904 MB	<1	<1	<1	<3	<100	91

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355 Date Extracted: 12/27/18 Date Analyzed: 12/27/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
BH1-2 812355-01	< 0.02	0.12	0.053	0.44	27	81
BH1-12 812355-02	< 0.02	< 0.02	<0.02	<0.06	<5	82
BH2-2 812355-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
BH2-14 812355-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	80
BH5-2 812355-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	82
BH5-13 812355-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
Method Blank 08-2891 MB2	<0.02	< 0.02	< 0.02	< 0.06	<5	83

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355 Date Extracted: 12/27/18 Date Analyzed: 12/27/18 and 12/28/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
BH1 ht 812355-03 1/10	87,000	<2,500	80
BH2 ht 812355-06 1/1.6	3,200 x	<400	73
BH5 812355-09 1/1.3	4,200 x	<320	95
Method Blank 08-2915 MB2	<50	<250	86

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355 Date Extracted: 12/27/18 Date Analyzed: 12/27/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
BH1-2 812355-01	630	<250	76
BH1-12 812355-02	<50	<250	77
BH2-2 812355-04	<50	<250	78
BH2-14 812355-05	<50	<250	90
BH5-2 812355-07	<50	<250	79
BH5-13 812355-08	<50	<250	77
Method Blank 08-2919 MB	<50	<250	78

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 812347-01 (Duplicate)										
-	Reporting	Sample	Duplicate	RPD						
Analyte	Units	Result	Result	(Limit 20)						
Benzene	ug/L (ppb)	<1	<1	nm						
Toluene	ug/L (ppb)	<1	<1	nm						
Ethylbenzene	ug/L (ppb)	<1	<1	nm						
Xylenes	ug/L (ppb)	<3	<3	nm						
Gasoline	ug/L (ppb)	<100	<100	nm						

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	116	65-118
Toluene	ug/L (ppb)	50	114	72-122
Ethylbenzene	ug/L (ppb)	50	110	73-126
Xylenes	ug/L (ppb)	150	110	74-118
Gasoline	ug/L (ppb)	1,000	91	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 811494-08 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	0.071	0.062	13
Xylenes	mg/kg (ppm)	0.34	0.32	7
Gasoline	mg/kg (ppm)	110	110	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	99	69-120
Toluene	mg/kg (ppm)	0.5	98	70-117
Ethylbenzene	mg/kg (ppm)	0.5	99	65-123
Xylenes	mg/kg (ppm)	1.5	100	66-120
Gasoline	mg/kg (ppm)	20	90	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	76	80	61-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 8	312303-09 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	760	91	85	63-146	7
Laboratory Code: I	Laboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accept	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	90	79-1	44		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	3012 16" Avenue West Seattle, WA 98119-2029	Friedman & Bruya, Inc.	1 - - -	Trip Blank 1	645	845-13	BH2-0	CHO	PH-6H9	649-9	BH1	SH1-12	641-3	Sample ID		Phone 509-577-8403 Email Ken. Nozeire @PBSUSA.cw	City, State, ZIP Seattle, WA	Address 214 E. Caler St.	Company PBS Engineering	Report To Ken Nas	812355
Received by:	Relinquished by:	Kelmounshed by	IS	10	09 V	30	\$	06	50	oy AE	03 A-D	02	OIAE	Lab ID		mailken.Nozei	e, WA 98107	1	ering? Environmentel	Nozeire	
why have	406310		SIGNATURE		81/06/61	B1/06/61	12/24/12	81/18/18	81/61/61	81/5//61	81/19/18	81/181/18	81/19/18	Date Sampled		re-@PBSUSA	60	300	mmentel		·
	8012				8590	000	0250	1630	1623	1600	1500	SSHI	IHIS S	Time Sampled		-Con-	- REMARKS	- Colem	PROJE	- SAMPL	SAMPLI
Whan	*** ****	Patride	. juoning ay		water	50:1	5.1	Water	Seil 1	Soil	nosfer	50.1	1:3	Sample Type			KS	Colemn Yakima	PROJECT NAME	SAMPLERS (signature	E CHAIN
		Brich	PRIN		5	S	S	Γ	G	ب کا	5	v	σı	# of Jars				م ر		all we	OF (
phan		٤	PRINT NAME		XXX	XXX	XXX	XXXX	XXX	XXX	XXX	XXXX	XXX	TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B						Ma	SAMPLE CHAIN OF CUSTODY
														VOCs by 8260C	ANAL		N	41392		1	ЧГ
I-68.7	το	PBS		. <u>.</u>										SVOCs by 8270D	LYSES		NOIC	5	PO #	11	à
27	amples	PBS Engineering	COMPANY											PAHs 8270D SIM	S REQUESTED		INVOICE TO		#		81/48/
	Samples received at	(int	YN												STED	□ Archive □ Other	SA Dispose	Rush cha	D RUSH	Page # TURN	Cm1
12/22/18 0830	at 13.	12/26/18	DATE										- -	Notes		 Archive Samples Other 	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	Standard Turnaround	Page # of TURNAROUND TIME	1 A&/ FO4
0630		୦୦୬	TIME											tes			SAL)d by:	<u>p</u>	rime	4

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 2, 2019

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on December 27, 2018 from the Coleman Yakima 41392, F&BI 812356 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0102R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 27, 2018 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812356 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
812356 -01	BH6-2
812356 -02	BH6-14
812356 -03	BH6
812356 -04	BH7-2
812356 -05	BH7-13
812356 -06	BH7
812356 -07	BH3-2
812356 -08	BH3-14
812356 -09	BH3
812356 -10	Trip Blank 2

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356 Date Extracted: 12/27/18 Date Analyzed: 12/27/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Trip Blank 2 812356-10	<1	<1	<1	<3	88
Method Blank 08-2904 MB	<1	<1	<1	<3	91

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356 Date Extracted: 12/27/18 Date Analyzed: 12/27/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
BH6 812356-03 1/5	<5	10	58	78	5,100	116
BH7 812356-06 1/5	38	17	95	81	4,300	110
BH3 812356-09 1/5	89	47	180	130	8,900	119
Method Blank 08-2904 MB	<1	<1	<1	<3	<100	91

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356 Date Extracted: 12/27/18 Date Analyzed: 12/27/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
BH6-2 812356-01	< 0.02	< 0.02	< 0.02	0.074	<5	81
BH6-14 812356-02	< 0.02	< 0.02	<0.02	< 0.06	<5	82
BH7-2 812356-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
BH7-13 812356-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
BH3-2 812356-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
BH3-14 812356-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
Method Blank 08-2891 MB2	<0.02	< 0.02	< 0.02	< 0.06	<5	83

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356 Date Extracted: 12/27/18 Date Analyzed: 12/27/18 and 12/28/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
BH6 812356-03	19,000	390 x	ip
BH7 812356-06	34,000	1,400 x	96
BH3 812356-09 1/10	100,000	2,800 x	57
Method Blank 08-2915 MB2	<50	<250	86

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356 Date Extracted: 12/27/18 Date Analyzed: 12/27/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
BH6-2 812356-01	<50	<250	87
BH6-14 812356-02	<50	<250	89
BH7-2 812356-04	<50	<250	89
BH7-13 812356-05	<50	<250	99
BH3-2 812356-07	<50	<250	94
BH3-14 812356-08	<50	<250	99
Method Blank ^{08-2917 MB}	<50	<250	86

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, **XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx**

Laboratory Code: 812347-01 (Duplicate) Reporting Sample

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	116	65-118			
Toluene	ug/L (ppb)	50	114	72-122			
Ethylbenzene	ug/L (ppb)	50	110	73-126			
Xylenes	ug/L (ppb)	150	110	74-118			
Gasoline	ug/L (ppb)	1,000	91	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 811494-08 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	0.071	0.062	13
Xylenes	mg/kg (ppm)	0.34	0.32	7
Gasoline	mg/kg (ppm)	110	110	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	99	69-120
Toluene	mg/kg (ppm)	0.5	98	70-117
Ethylbenzene	mg/kg (ppm)	0.5	99	65-123
Xylenes	mg/kg (ppm)	1.5	100	66-120
Gasoline	mg/kg (ppm)	20	90	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	76	80	61-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	812356-02 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	84	86	73-135	2
Laboratory Code:	Laboratory Contro	ol Sampl	le				
			Percent				
	Reporting	Spike	Recovery	Acceptar	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	94	74-139)		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Seattle, WA 98119-2029 Reinquished by:	3012 16th Avenue West Received by: Fed Ex: 7740	Friedman & Bruya, Inc. Rejinguishedby:	SIGNATURE	Trip Blank a 10	BH3 09 10/20/18	BH3-14 08 12/2	8H3-9 07 19/2018		BH7-13 05 12/20/18	81/20161 40 C-CH3		81/ce/cr 24 14 -048	81/06/01 J-4 10 6-943	Sample ID Lab ID Sampled		Phone 501-572-8163 Email Ken Nozeire @PBSUSA.	\square	Company PBS Engineering & Environmenter Address 214 E. Galer St. Suite 300
	6309 7607		URE		0491 81/9	12/20/8 1625	0/18/1603	12126/18 1505	0/18 1450	0641 810	2/18 1145		0011/8/0	pled Sampled		SSUSA-COM	REMARKS	
ingenies internetieter		Ratick	a statencij či	1. Chiwasan (1)	water	1:05	50:1	water	Sail	Sail	Water	1:05	50)1	Sample Type			KS	Coleman Ya
A	-	Bria	PRINT		V	J	VI	<u>σ</u>	Γ		տ	ທຸ	رت ا	Jars				ya kima
		E	TNA				L					Ļ		TPH-HCID				
2			NAME			÷	Ð		÷	B	R	Ð	즛	TPH-Diesel				
				X		اک	$\overline{\mathbf{x}}$		云		X		X	TPH-Gasoline BTEX by 8021B				
														VOCs by 8260C	ANA		Ξ	41393
-1		10	+				1	1		1				SVOCs by 8270D	NTXS.		OAN	
6		PBS I				<u> </u>		1						PAHs 8270D SIM	ES R		INVOICE TO	
~			COM												EQU		ГО	
		Ensineering	COMPANY	Sam						:				·	ANALYSES REQUESTED			र प स् ।
		1		ples			_	<u> </u>		<u> </u>		<u> </u>				□ Other	S Dispo	RUSH Ish ch
		0		rece			-			<u> </u>	<u> </u>						'AMPi se aft	larges
12hr hu		8100/90/9	DATE	Samples received at										Notes		mhaca	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:
ne2D		llood	TIME	₩°C	-									ß			ΥAL	l by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 14, 2019

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the additional results from the testing of material submitted on December 27, 2018 from the Coleman Yakima 41392, F&BI 812355 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

le

Michael Erdahl Project Manager

Enclosures PBS0114R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 27, 2018 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812355 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
812355 -01	BH1-2
812355 -02	BH1-12
812355 -03	BH1
812355 -04	BH2-2
812355 -05	BH2-14
812355 -06	BH2
812355 -07	BH5-2
812355 -08	BH5-13
812355 -09	BH5
812355 -10	Trip Blank 1

The MTBE, EDC, and EDB concentrations for sample BH5 were reported below the lowest calibration standard. The data were flagged accordingly.

The 8260C samples were requested to be analyzed outside of the holding time. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	BH5 12/27/18 01/09/19 01/09/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812355 812355-09 1/5 010909.D GCMS9 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	50	150
Toluene-d8		100	50	150
4-Bromofluorobenz	ene	99	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1 j		
1,2-Dichloroethane	(EDC)	<1 j		
1,2-Dibromoethane	(EDB)	<1 j		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 01/09/19 01/09/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812355 09-0017 mb 010907.D GCMS4 MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 98 98	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe 1,2-Dichloroethane 1,2-Dibromoethane	(EDC)	<1 <1 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/14/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812355

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 901080-03 (Matrix Spike)

3	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	98	69-133
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	98	69-134

Laboratory Code: Laboratory Control Sample

	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	97	99	64-147	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	99	101	73-132	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	100	82-125	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Trip Blank 1 Phone 521-572-943 Email Ken Moyerre BSUSh cor City, State, ZIP Seattle, WA 98107 Address 214 E. Galer St., Suit 300 Company PBS Engineering & Environmentel Report To Ken Noyeire સાઉ CHB PH-649 C-CHO 1113 <u>C1-149</u> 611-0 845-13 645-Q 812355 Sample ID Received by: Relinquished by: Relinquiched by: Levied by: 7740 (63107)38 80 \$ 06 50 62 R 0 P P 03 A-12 01AG Lab ID 4 MA Carl ⇐ SIGNATURE BUPOLEI 81/61/61 81/5//61 81/61 81/19/18 8 260 8/106/61 2001 8/00/61 81/181/CI suburch 1 Date Sampled Gara 0320 5001 15000 1600 S3h 089 NH S SAMPLE CHAIN OF CUSTODY ME 12/27/18 Sampled Time SAMPLERS (signationel REMARKS Coleman Vaking PROJECT NAME Ratrick water Salac S. 5.1 Water Seil 50.) ŝ Soi Nhan Sample Type Brice PRINT NAME # of Jars Ś (77 \mathcal{T} СЛ Сл 5 G n で Phan TPH-HCID TPH-Diesel TPH-Gasoline × > × BTEX by 8021B 41392 ANALYSES REQUESTED VOCs by 8260C INVOICE TO PBS Engineering TOBT SVOCs by 8270D PO# Samples received at PAHs 8270D SIM COMPANY ¢ EDBEDC, MIBE [] Other_ D Dispose after 30 days D Archive Samples **D RUSH** X Standard Turnaround Rush charges authorized by: VWA GALEDY Page #_____Of______ TURNAROUND TIME SAMPLE DISPOSAL 81128/18 0590 18120190 DATE λN ſ -Der LN Notes 8/19 х С, 600 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 14, 2019

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the additional results from the testing of material submitted on December 27, 2018 from the Coleman Yakima 41392, F&BI 812356 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cu

Michael Erdahl Project Manager

Enclosures PBS0114R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 27, 2018 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima 41392 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
812356 -01	BH6-2
812356 -02	BH6-14
812356 -03	BH6
812356 -04	BH7-2
812356 -05	BH7-13
812356 -06	BH7
812356 -07	BH3-2
812356 -08	BH3-14
812356 -09	BH3
812356 -10	Trip Blank 2

The 8260C samples were requested to be analyzed outside of the holding time. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	BH7 ht 12/27/18 01/09/19 01/09/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812356 812356-06 010907.D GCMS9 JS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 100 109	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds: Methyl t-butyl ethe		Concentration ug/L (ppb) <1	50	130
1,2-Dichloroethane 1,2-Dibromoethane	(EDC)	<1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	BH3 ht 12/27/18 01/09/19 01/09/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812356 812356-09 010908.D GCMS9 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	50	150
Toluene-d8		104	50	150
4-Bromofluorobenz	ene	113	50	150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	. ,	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 01/09/19 01/09/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima 41392, F&BI 812356 09-0017 mb 010907.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	57	121
Toluene-d8		98	63	127
4-Bromofluorobenz	ene	98	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/14/19 Date Received: 12/27/18 Project: Coleman Yakima 41392, F&BI 812356

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 901080-03 (Matrix Spike)

3	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	98	69-133
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	98	69-134

Laboratory Code: Laboratory Control Sample

	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	97	99	64-147	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	99	101	73-132	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	100	82-125	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 812356 Seattle, WA 98119-2029 Friedman & Bruya, Inc. 9HG 3012 16th Avenue West BH3 BH3-14 BHT C-LH3 BH3-2 BH7-13 Company PBS Engineering & Environments Address 214 E. Galer St. Suite 3007 The Blank O City, State, ZIP Seattle, WA 98103 Phone 501-572-8163 Email Ken Nyeire @PBSUSA-ch BH6-14 6-9HG Report To Ken Nogeire Sample ID Received by: 1/ Com Relinquished by: Received by: Fed Ex: 7740 6309 7607 Relinquished by: 01 A-E 200 000 3 \mathcal{B} *4*0 904 3 004 0 Lab ID SIGNATURE Bilecici 0421181106/0 Ecoll species 12/2018 11505 05h11 81/06/61 0011/81/00/el 12/20/18/1625 06H1 81/06161 BIJOCKI Sampled Date SAMPLE CHAIN OF CUSTODY 1130 ll F F Sampled Time SAMPLERS Signature REMARKS PROJECT NAMI Coleman Yakima いよう Ratrick 501 Š Water Ser 5 Š) 8 Water Туре Sample NOMAN Jars # of (J) n υ. ຫ Ś PRINT NAME: VI. Ś (n (n Rie TPH-HCID Phan TPH-Diesel **TPH-Gasoline** 2 X × \succ >BTEX by 8021B 41392 NALYSES ME VOCs by 8260C INVOICE TO PBS Ensineering dirt. SVOCs by 8270D PO # 81/20/21 PAHs 8270D SIM REQUESTED COMPANY Ö EDB. EPC,MTRE Samples received at D Other Dispose after 30 days
 Archive Samples Standard Turnaround Rush charges authorized by: Page # / of TURNAROUND TIME SAMPLE DISPOSAL Was Edy teller! 8196/96/0 DATE 6/16 8 ã, 0830 84 Notes Z 00011 CF2 TIME പ്പ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 3, 2019

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on March 21, 2019 from the Coleman Oil Yakima 41392.000.12.2, F&BI 903392 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0403R.doc

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 21, 2019 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima 41392.000.12.2, F&BI 903392 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
903392 -01	MW-10
903392 -02	MW-9
903392 -03	Dup 1
903392 -04	RW-1P
903392 -05	MW-8P
903392 -06	MW-4P
903392 -07	MW-2P
903392 -08	MW-3P
903392 -09	MW-5P
903392 -10	Trip Blank

The samples RW-1P, MW-8P, and MW-3P were sent to Spectra Analytical for viscosity analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392 Date Extracted: 03/22/19 Date Analyzed: 03/22/19

RESULTS FROM THE ANALYSIS OF SOIL/PRODUCT SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID

Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 56-165)
RW-1P 903392-04 1/1,000	D	D	ND	68
MW-8P 903392-05 1/1,000	ND	D	ND	136
MW-4P 903392-06 1/1,000	ND	D	ND	120
MW-2P 903392-07 1/1,000	D	D	ND	75
MW-3P 903392-08 1/1,000	D	D	ND	64
MW-5P 903392-09 1/1,000	D	D	ND	108
Method Blank 09-648 MB	ND	ND	ND	108

ND - Material not detected at or above 20,000 mg/kg gas, 50,000 mg/kg diesel and 250,000 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392 Date Extracted: 03/21/19 Date Analyzed: 03/21/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Dup 1 903392-03	<1	<1	<1	<3	84
Trip Blank 903392-10	<1	<1	<1	<3	84
Method Blank 09-496 MB	<1	<1	<1	<3	85

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392 Date Extracted: 03/21/19 Date Analyzed: 03/21/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-10 903392-01	<1	<1	<1	<3	<100	84
MW-9 903392-02	<1	<1	<1	<3	<100	85
Method Blank 09-496 MB	<1	<1	<1	<3	<100	85

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392 Date Extracted: 03/22/19 Date Analyzed: 03/22/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-10 903392-01	180 x	<250	105
MW-9 903392-02	440 x	<250	87
Method Blank ^{09-645 MB}	<50	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392 Date Extracted: NA Date Analyzed: 03/22/19

RESULTS FROM THE ANALYSIS OF PRODUCT SAMPLES FOR SPECIFIC GRAVITY @ 15.56 °C

Sample ID Laboratory ID	<u>Specific Gravity</u>
RW-1P 903392-04	0.817
MW-8P 903392-05	0.841
MW-4P 903392-06	0.830
MW-2P 903392-07	0.786
MW-3P 903392-08	0.810
MW-5P 903392-09	0.828

Note: The third significant digit is an estimate

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, **XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx**

Laboratory Code:	903377-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	98	65-118			
Toluene	ug/L (ppb)	50	101	72-122			
Ethylbenzene	ug/L (ppb)	50	97	73-126			
Xylenes	ug/L (ppb)	150	101	74-118			
Gasoline	ug/L (ppb)	1,000	100	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	108	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF PRODUCT SAMPLES FOR SPECIFIC GRAVITY @ 15.56 °C

Laboratory Code: 903392-04 (Duplicate)									
	Sample	Duplicate	Relative Percent	Acceptance					
Analyte	Result	Result	Difference	Criteria					
Specific Gravity	0.817	0.815	0	0-2					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SPECTRA Laboratories

....Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/29/2019

03/29/2019	P.O.#:	B-189
	Project:	903392
Friedman & Bruya, Inc	Sample Matrix:	Product
3012 16th Ave West	Date Sampled:	03/19/2019
Seattle, WA 98119-2029	Date Received:	03/22/2019
Attn: Michael Erdahl	Spectra Project:	2019030635

Client ID	Spectra #	Analyte	Result	Units	Method
RW-1P	1 1	Viscosity, Kin, @15 °C	2.28	cSt	ASTM D-445
MW-8P	2 1	Viscosity, Kin, @15 °C	3.82	cSt	ASTM D-445
MW-3P	3 X	Viscosity, Kin, @ 15 °C	2.21	cSt	ASTM D-445

SPECTRA LABORATORIES

firey Cooper, Laboratory Manager a7/klh

.

#

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16 th Avenue West	Friedman & Bruya, Inc.		Trip Blank	MW=5P	MW-3P	MM-9P	MW-4P	MW-8P	AWAP	Dw-1	Mw-9	MW-10	Sample ID		Phone 509-572-3163 Email ken. Nozence OP85USA.com	City, State, ZIP Seattle 14			ant do
	Received by: 776	Relinquished by:	Received by:	Relingatished by:	SIC	0	09 A-B	08 A-C	0 - 4	J d D	05 T		03 A-D	02 T	OIA-E	Lab ID		mail <u>ken.N</u> ger	e 1 MA 98100	5	Nogere	L66
J.	8/10	0	Frederick #	N.	SIGNATURE	3/19/19/	3/19/19	3/19/19	3/19/19	3/19/19	3/19/19	3/19/19	3/19/19	3/19/19	3/19/19	Date Sampled		eorbsust.	60	Environmental te 300		
			7747			0800	6801	1545	1540	1	500		1900	1340	1155	Time Sampled		icon 1	REMARKS	PRÓJECT Colemin	SAMPLI	SAMPLE
	200H		5273 1	Patrick	q	1		Product ?	Produt :	Padrut 1	Product 3	Preshed 3	لمريد ال	54	Weter !	Sample # Type J		s Vice (* - Vicennyn	S	PRÓJECT NAME Coleman Oil Yalaina	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
	NZun		1705	Brice	PRINT NAME	4	Xe	3 X		1 X	×	X		5 X	2 X	TPH-HCID				aking	<u>/ē</u>	OF CUST
	NEN				Ē	X							X	XX	XX	TPH-Gasoline BTEX by 8021B VOCs by 8260C	AN/		Ц	Чŀ		DDY ME
	the t		11 1	PBS En	COM		0							X	X	SVOCs by 8270D PAHs 8270D SIM P.L	ANALYSES REQU		INVOICE TO	PO# 41399,000.19,7		E 03-21
			Ċ	Ensineering	COMPANY)	Samples received at	XX	X I	X	X X	XX			· · · · · · · · · · · · · · · · · · ·	Density. Viscosity	REQUESTED	□ Other	Dispose		Page #	- 19
	Blailia	, , 1	3/20/19	3/20/19	DATE		e ved at						0	penlint	HOU PL	Notes		Archive Samples Other	SAMPLE DISPOSAL Dispose after 30 days	♥ Standard Turnaround □ RUSH Rush charges authorized by:	Page # of TURNAROUND TIME	A02/
	01.01		6.2	0001	TIME		/ °C								5 simples	දි 			SAL	d by	NME	FIS /MAS

÷,

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 12, 2019

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on June 6, 2019 from the Coleman Oil Yakima 41392, F&BI 906083 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0612R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 6, 2019 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima 41392, F&BI 906083 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
906083 -01	BH8-4
906083 -02	BH8-12
906083 -03	BH9-4
906083 -04	BH9-8
906083 -05	BH10-4
906083 -06	BH10-6
906083 -07	BH11-4
906083 -08	BH11-8
906083 -09	BH12-3
906083 -10	BH12-8
906083 -11	BH13-4
906083 -12	BH13-9

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083 Date Extracted: 06/06/19 Date Analyzed: 06/06/19 and 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
BH8-4 906083-01	< 0.02	< 0.02	< 0.02	<0.06	<5	89
BH8-12 906083-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	90
BH9-4 906083-03	< 0.02	< 0.02	< 0.02	<0.06	<5	89
BH9-8 906083-04	< 0.02	< 0.02	< 0.02	<0.06	<5	88
BH10-4 906083-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH10-6 906083-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
BH11-4 906083-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH11-8 906083-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH12-3 906083-09	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH12-8 906083-10	< 0.02	< 0.02	< 0.02	<0.06	<5	88

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083 Date Extracted: 06/06/19 Date Analyzed: 06/06/19 and 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
BH13-4 906083-11	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH13-9 906083-12	< 0.02	< 0.02	< 0.02	<0.06	<5	89
Method Blank ^{09-1283 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<5	90

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083 Date Extracted: 06/07/19 Date Analyzed: 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
BH8-4 906083-01	<50	<250	93
BH8-12 906083-02	<50	<250	107
BH9-4 906083-03	<50	<250	93
BH9-8 906083-04	<50	<250	92
BH10-4 906083-05	<50	<250	94
BH10-6 906083-06	<50	<250	94
BH11-4 906083-07	<50	<250	92
BH11-8 906083-08	<50	<250	92
BH12-3 906083-09	<50	<250	92
BH12-8 906083-10	<50	<250	92

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083 Date Extracted: 06/07/19 Date Analyzed: 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
BH13-4 906083-11	<50	<250	94
BH13-9 906083-12	<50	<250	106
Method Blank ^{09-1351 MB}	<50	<250	94

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906083-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Analyte				(LIIIIII 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	95	66-121
Toluene	mg/kg (ppm)	0.5	107	72 - 128
Ethylbenzene	mg/kg (ppm)	0.5	105	69 - 132
Xylenes	mg/kg (ppm)	1.5	105	69-131
Gasoline	mg/kg (ppm)	20	100	61 - 153

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 906083-01 (Matrix Spike)

		Percent								
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD			
Analyte	Units	Level	(Wet Wt)	${ m MS}$	MSD	Criteria	(Limit 20)			
Diesel Extended	mg/kg (ppm)	5,000	<50	91	93	73-135	2			
Laboratory Code: L	aboratory Contr	ol Sampl	e							
			Percent							
	Reporting	ng Spike Recovery Acceptance								
Analyte	Units	Level	LCS	Criteria	a					
Diesel Extended	mg/kg (ppm)	5,000	92	74-139)					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at 3	Samples r	14.			$ \forall$					Ŷ	× . (# -	Received by:	Ph. (206) 285-8282	Ph.
6/67/9		FZ				20	10	Keyter -	112 Mehler- 80	ruking #:	X Tru	Feed E	ö T	Sea
6/s/19		PBSEND & Env.	PR			ſ	Brick		Patrick		nd o Be	Reneived by:	2019 16 th Avenue West Ref	201
DATE	INY	COMPANY			E	[AM]	VTN	PRINT NAME			SIGNATURE	SI	11	i
				\times	\times	$\left \times \right $		4	4	1350	4	0	8-CIH	PS H
				\times	\times	\times				1340		09	5-6143	J
			 	\times	\times	×				1395		30	BH11-8	3
				\times	\succ	Х				e1212		to	BH11-4	P
				\geq	\succ	X				Shel		06	BH10-6	5
				\ge	\times	\times				1935		20	BH10-4	B)
				\times	\ltimes	\times				oeel		oy	BA9-8	R
				\ge	\times	\times				alel		63	BH9-4	v
				K.	\times	\times				1150		J2	BH8-19	Β
				\ltimes	\times	\times		Ч	501	1138	6/4/19	0) AE	BHS-4	D
Notes		PAHs 8270D SIM	VOCs by 8260C SVOCs by 8270D	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	TPH-HCID	# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	
	TED	ANALYSES REQUESTED	NALYS	A										
utter 30 day 3amples	X Dispose after 30 days Archive Samples Other	Ken Nogerre	ien	T							epsusa.	en dezerce	Phone <u>509-572-3163</u> EmailKen. Neyerice @PBSUSA.com	Pho
SAMPLE DISPOSAL	SAM	INVOICE TO	INAO						SY	REMARKS	ר כ	LIA Adina		2
es authoriz	Standard Turnaround RUSH Rush charges authorized by:	% 09	е 55 1 Н РС			^	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	X	PROJECT NAME	PROJECT N	Environment	E, w	Company PBS Engineering Address 214 E. Galer St.,	Con Add
Page # 1 of C					A	$ \langle $	C &	ure)	SAMPLERS (signature)	SAMPLE		R	Report To Ken Nogeire	Rep
- 0	119	ME 06/06/19	ME		DY	STO	SUC	OF (CHAIN	SAMPLE CHAIN OF CUSTOD			906083	

Seattle, WA 98119-2029 Ph. (206) 285-8282		<u>ن</u>	T1					BH13-9	BH 13-4	Sample ID		Phonesof-572-3163 Email Ken. Nogere @ PBSUS Aug	City, State, ZIP Seattle, WA 98103	Company PBS Engineering Address 214 E. Galar St.	Report To Ken Nogere	906083
Received by:	Received by: Fellowinhod by	Relinquished by	IS					12 /	11 A.E	Lab ID		uil <u>Ken. Nogel</u> i	her wA 9	st. suil	eire	
D. U. h	EX Truck	E B	SIGNATURE					6/4/19	6/4/19	Date Sampled		re PBSUS	CC18	¿Environmunkt		
4	Tricking #:	ľ						Cehl	1405	Time Sampled		5	REMARKS	Coleman O	SAMPLE	SAMPLE CHAIN OF CUSTOD
Liz	8015 6344 013	Patrick Brice						Soil	Soil	Sample Type			S	Column Oil Yikimi	SAMPLERS (signature)	CHAIN
Webber -	1460	c Bri	PRINT		 			ν	Л	Jars HIGD				1 Xic	und -	OF CU
-Bin	510	Ę	PRINT NAME	 	 			X	X	TPH-HCID TPH-Diesel				I'M	ay .	JSTOI
S.	78				 			$\times \times$	Xх	TPH-Gasoline BTEX by 8021B	Α					YC
		99		 	 	 	 			VOCs by 8260C SVOCs by 8270D	NALYS		INVO	e 6511 #04		X
F:61		PBS Eng. ?	CC	 	 	· <u>····</u> ····				PAHs 8270D SIM	ANALYSES REQUESTED		INVOICE TO	# 04 B		4E 06/06/19
81		· Env	COMPANY	 	 						UESTE				, , ,	6/06
		R	Y	 							D	□ Archive □ Other_	SA Dispose	C RUSH_ Rush chai	TURN/	q
616719		6/5/19	DATE							No		□ Archive Samples □ Other	SAMPLE DISPOSAL M Dispose after 30 days	Rush charges authorized by:	TURNAROUND TIME	J
820		1600	TIME							Notes			SAL	d d by:	TIME	CI2/AC3

DRAFT

Date of Report: 12/30/19 Date Received: 12/20/19 Project: Coleman Oil Yakima 41392, F&BI 912385 Date Extracted: 12/27/19 Date Analyzed: 12/27/19 and 12/30/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
BH14-water 912385-09	<1	<1	250	290	35,000	ip
Method Blank 09-3115 MB	<1	<1	<1	<3	<100	76

Date of Report: 12/30/19 Date Received: 12/20/19 Project: Coleman Oil Yakima 41392, F&BI 912385 Date Extracted: 12/26/19 Date Analyzed: 12/26/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
MW-11-5.5 soil 912385-01	<0.02	< 0.02	< 0.02	<0.06	<5	79
MW-11-12 soil 912385-02	< 0.02	0.023	<0.02	0.082	<5	78
MW-12-6 soil 912385-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	78
MW-12-14 soil 912385-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	78
MW-7-6.5 soil 912385-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	78
MW-7-16 soil 912385-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	79
BH14-6 912385-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	77
BH14-16 912385-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	77
BH15-6 912385-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	79
BH15-16 912385-11	< 0.02	0.078	< 0.02	0.30	16	76
Method Blank ^{09-3114 MB}	<0.02	< 0.02	< 0.02	<0.06	<5	78

Date of Report: 12/30/19 Date Received: 12/20/19 Project: Coleman Oil Yakima 41392, F&BI 912385 Date Extracted: 12/23/19 Date Analyzed: 12/23/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
MW-11-5.5 soil 912385-01	<50	<250	84
MW-11-12 soil 912385-02	<50	<250	74
MW-12-6 soil 912385-03	<50	<250	73
MW-12-14 soil 912385-04	<50	<250	84
MW-7-6.5 soil 912385-05	<50	<250	75
MW-7-16 soil 912385-06	<50	<250	77
BH14-6 912385-07	110	<250	84
BH14-16 912385-08	59	<250	73
BH15-6 912385-10	<50	<250	74
BH15-16 912385-11	<50	<250	75
Method Blank ^{09-3106 MB}	<50	<250	75

$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \end{tabular} \hline \end{tabular} ta$	5 4/1 4	11/26/61	LBI	H T		Ś	1 phda	Nhan	WT I	Man Imm	Received by:	Fax (206) 283-5044
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											Relinquished by	Ph. (206) 285-8282
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										e) Ex	Received by: F	Seattle, WA 98119-2029
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1/61/61	BS					Patric	K	Red R	Relinquished by	3012 16th Avenue West
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			COMPA		-	IAME			RE	SIGNATU	(Friedman & Bruya, Inc.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						$\frac{X}{X}$	ۍ ۲	Soil	(HSD	12/18/19	10	3HIS-6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 °C	at	Sat		X			Cit	1925	5/18/16		3H14-water
art To Ken Voget res SAMPLERS (supported) PROJECT NAME/NO. Property and the property a					4	<u> </u>		5011	looel	19/18/19	80	3414-16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					X			Soil	1192	19/18/19	07	3414-6
MogeireSAMPLERS (Right/Fig)TURNAROUND TANJineering : Environmental ler St. Suite 300PROJECT NAMENO. Coleman 011 YakimaP0 # Coleman 011 YakimaP0 # H13 9 0Je, WA 9810 0PROJECT ADDRESS PROJECT ADDRESS 163 Fax #PROJECT ADDRESS 					X			Soil	0933	61/81/61	30	1W-7-16 Soil
Vogeire Samplers (superive) jimeering : Environmended PROJECT NAMENO. ler St. Suite 300 PROJECT NAMENO. ler St. Suite 300 PROJECT NAMENO. ler St. Suite 300 PROJECT ADDRESS ler St. Suite 300 PROJECT RONIC DATA REQUESTED Mogeire PBSUSA.com ELECTRONIC DATA REQUESTED Lab ID Date Lab ID Date Lab ID Date Time Sample Type sample Standard Turnaround Samples Received at OI A-E 19/16/19 19/16/19 1309 Soil Soil				ļ	×	<u> </u>		<u> </u>	0850	13/18/19	Si Si	1W-7-6.5 soil
V_{OBC} is implementedSAMPLERS singulateTURNAROUND TIMe V_{OBC} is impletedPROJECT NAMENO.POJECT NAMENO.POJECT NAMENO. V_{AC} St.Suite 300PROJECT NAMENO.POJECT NAMENO. V_{AC} St.Suite 300PROJECT ADDRESS V_{AC} ima V_{AC} Fax #PROJECT ADDRESSPROJECT ADDRESS V_{AC} ima V_{OBC} Fax #PROJECT ADDRESS V_{AC} ima V_{IJ3} 9.01 V_{OBC} Fax #PROJECT ADDRESSPROJECT ADDRESSSamples Received at V_{OBC} images authorizedPROJECT NONIC DATA REQUESTEDRecurs samples V_{OBC} Lab IDDateTimeSample Typeand instruction O_{2} 19/16/191309SoilSoilSoilSoil O_{2} 19/16/191309SoilSoilSoilNotes O_{3} 19/17/190915SoilSoilSoilNotes					\propto	+	- •	Soil	ofsl		04	14-12-14 Soil
Nogeire SAMPLERS (stignture) Inversing i: Environmental bler St. Swith 300 PROJECT NAMENIO. Coleman Cil Yakima PO # HI3 9 P Standard Turnaround Nogeire Electronic DATA REQUESTED Ib3 Fax # HI3 9 P Electronic DATA REQUESTED Notes Ib3 Fax # Aler St. Swith 300 Sample Type # of sontainers Electronic DATA REQUESTED Analysis Notes Ib3 Date Time Sample Type # of sontainers Electronic DATA REQUESTED Analysis Notes Ib1D Date Time Sample Type # of sontainers Electronic DATA REQUESTED Notes Ib3 Date Time Sample Type # of sontainers Electronic DATA REQUESTED Notes Ib1D Date Time Sample Type # of sontainers Sont Sont Sont Sont Sont Sont Sont Sont					X	$\frac{\alpha}{\lambda}$		Soil	0915	n/u/e	03	1v-12-6 soil
Nogeire SAMPLERS (Signifie) Jac St. Suite 300 Ale Suite 300 Ale Suite 300 Ale WA 98109 Ale WA 98109 PROJECT NAME/NO. PROJECT ADDRESS Ale WA 98109 PROJECT ADDRESS H1399 SAMPLE DISPOSA PROJECT ADDRESS Ale Wake charges authorized by Rush charges authorized by PROJECT ADDRESS Ale Wake charges authorized by PROJECT ADDRESS Ale Wake charges authorized by Project ADDRESS Ale Project ADDRESS Samples Project ADDRESS Samples Received at Notes Will call with instruction Sample Type Mode Project So by 8260 Sample Store So by 8260 Project So by 8260 HFS Notes HI						Ŕ		50:1	1309	19/16/19	02 (1w-11-12 soil
Nogeire SAMPLERS (signifie) Simeering ! Environmental ler St. Suite 300 PROJECT NAME/NO. Coleman 011 Yakima PO # Coleman 011 Yakima PO # 113 9 0 Sample Type PROJECT ADDRESS 1 E T St. Yakima 413 9 0 Sample Type Nogeire PBSWSA.com • ELECTRONIC DATA REQUESTED • Samples Received at Will call with instructio Sample Type • ONALYSES REQUESTED Lab ID Date Time Sample Type • MALYSES REQUESTED • Notes					X	$\widehat{\boldsymbol{\lambda}}$	<u>s</u>	50:1	1935	19/16/19	OLA-E	4h/-11 - 5.550il
Vogeire SAMPLERS (suppring) Sincering ! Environmental ler St. Suite 300 PROJECT NAMENO. Coleman 011 Yakima PO # HI399 TURNAROUND TIM PO # Coleman 011 Yakima 4le, WA 98109 PROJECT ADDRESS LET St. Yakim, WA 9801 PROJECT ADDRESS LET St. Yakim, WA 9801 PROJECT ADDRESS SAMPLE DISPOSA 163 Fax # ELECTRONIC DATA REQUESTED • ELECTRONIC DATA REQUESTED • Samples Received at Samples Received at	Notes		HFS		BTEX by 8021B			1	Time	Date	Lab ID	Sample ID
NogeireSAMPLERS (signiture)POSimering ! EnvironmentelPROJECT NAME/NO.PO #Iler St. Suite 300PROJECT NAME/NO.PO #Iler St. Suite 300PROJECT ADDRESS41390Iler St. Saite 300PROJECT ADDRESS41390Iler St. Fax #ELECTRONIC DATA REQUESTEDSamples Received at		ESTED		ANA	4							
NogeireSAMPLERS (signature)Project Name/NO.Project NAME/NO.Project NAME/NO.Project NAME/NO.Jer St. Suite 300PROJECT NAME/NO.Project ADDRESS41399Sample Standard TurnaroundJer St. Suite 300PROJECT ADDRESSPROJECT ADDRESS4139901Sample Dispose after 30 daysJer St. #WA 98109T. E. T. St. Yakima, WA 98901Sample Dispose after 30 daysSamplesJer St. #Will call with instructionWill call with instructionSamples		Samples Received			ED	UEST	C DATA REQ		100 M	rsusa?	geirea	mail Address Ken. No
NogeireSAMPLERS (signature)POTURNAROUND TIMSimeering ! EnvironmentelPROJECT NAME/NO.PO #Standard TurnaroundJer St. Suite 300Coleman Oil Yakima41399Je, WA 98109PROJECT ADDRESSPROJECT ADDRESSJe, WA 98109I E I St. Yakima, WA 98901Je, WA 98109Je, WA 98109 </td <td>uctio</td> <td>• Will call with in</td> <td>l de ser e ser</td> <td></td> <td></td> <td></td> <td></td> <td>Shows a set of the A. A. And A. A. A. And A. A. A.</td> <td></td> <td></td> <td>Fax #</td> <td>hone # 509-572-8163</td>	uctio	• Will call with in	l de ser e ser					Shows a set of the A. A. And A. A. A. And A. A. A.			Fax #	hone # 509-572-8163
Nogeire SAMPLERS (Stepature) PROJECT NAME/NO. Simeering ! Environmental Coleman O'll Yakima 41392 Rush charges authorized b	ISPOSAL) days	SAMPLE D • Dispose after 3(• Return samples		106	A 48		DRESS Yakin	PROJECT ADI		60186		ity, State, ZIP Sealthe
Nogeire Javis Javi	norized by:	• RUSH Rush charges auth	PO #	41,		na	MENNO.	Coleman O		in mone	ering ? Er St. Su	ompany PBS Engine adress 214 E. Galer
	′ Z II	TURNAROU				Υ ^ν	Manuel C	SAMITLERS (3			oseire	

Fax (206) 283-5044 Forms\coc\coc.doc	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.						₫	BH15-20	BH15-16	Sample ID		Email Address	Phone #	City, State, ZIP	Company PBS	Sent Report To	912385
Received by m/ by hrx	Relinquished by	Received by: FedEx	Relinquished by								12 T	<u>۲</u> ۰۲ ۱۱	Lab ID			Fax #				
/m/hnx		edex	MAL R	SIGNATURE	·						61/81/61	19/18/19	Date			n n n n n n n n n n n n n n n n n n n				
			K	СE							1203	1510	Time		- - -					SAM
N/M			Ð								Soil	Soll	Sample Type		• ELECTRO		PROJECT ADDRESS	FROJECI NAME/NO.	SAMPLEKS	PLE CH/
Whan Phan			Patrick Brie	PRINT							2	ς	e containers		ELECTRONIC DATA REQUESTED		DDRESS	(Alvie/INO.	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
· · ·			5	PRINT NAME	 						XXX	XXX	TPH-Diesel TPH-Gasoline BTEX by 8021B		EQUESTED					USTODY
					 			 1					VOCs by 8260	-						
													SVOCs by 8270	ANA						HE 12
124			583		 			<u> </u>					HFS	NALYSES		-		۲O #	3	
19				COMPANY				 								-		بر		-20-19
				PAN	 ŝ				<u> </u>					REQUESTED]		╧╼┩	
				Y	 Samples re									TED	Samples Received at	• Keturr • Will ca	• Dispos	RUSH Rush charges authorized by:	2	
12/2			1)/ell	DATE	 received at \leq						Hold				Receive	Keturn samples Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	Standard Lutitationing RUSH ush charges authorized	TURNAROUND TIME	لي الم درار
1/0			(9/14	H	at∠						K.		z		:d at	es instru	DISPO 30 day	thoriz	UND	1
12/20/14/453			1500	TII	0 0 0	1							Notes		°C	ctions	DSAL 'S	red by:	TIME	, N N
W				TIME	 <u> </u>															E.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 6, 2020

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on February 27, 2020 from the Coleman Oil 41392, F&BI 002413 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0306R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2020 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil 41392, F&BI 002413 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
002413 -01	MW10-022520
002413 -02	MW9-022520
002413 -03	DUP1-022520
002413 -04	MW7-022520
002413 -05	MW12P-022520
002413 -06	MW11P-022520
002413 -07	Trip Blank

All quality control requirements were acceptable.

The NWTPH-Dx chromatograms from samples MW-8P, MW-4P, MW-2P, MW-3P and MW-5P were reviewed to determine the approximate ratio of products present, as well the approximate degree of weathering. The findings are provided in Table 1.

Table 1

Sample ID	Approximate % Gas	Approximate % Diesel	Sample Color	Gas Degree of Weathering	Diesel Degree of Weathering
MW12P	10	90	Black	Weathered	Mixed
MW11P	10	90	Black	Weathered	Mixed

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/20 Date Received: 02/27/20 Project: Coleman Oil 41392, F&BI 002413 Date Extracted: 02/27/20 Date Analyzed: 02/27/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID

Results Reported on a Dry Weight Basis Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 53-144)
MW12P-022520 002413-05 1/10	D	D	ND	121
MW11P-022520 002413-06 1/10	D	D	ND	127
Method Blank ^{00-504 MB}	ND	ND	ND	82

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/20 Date Received: 02/27/20 Project: Coleman Oil 41392, F&BI 002413 Date Extracted: 03/05/20 Date Analyzed: 03/05/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW10-022520 002413-01	<1	<1	<1	<3	<100	85
MW9-022520 002413-02	<1	<1	<1	<3	<100	84
$\underset{002413\cdot03}{\text{DUP1-}022520}$	<1	<1	<1	<3	<100	85
MW7-022520 002413-04	<1	<1	<1	<3	<100	83
Method Blank ^{00-394 MB}	<1	<1	<1	<3	<100	86

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/20 Date Received: 02/27/20 Project: Coleman Oil 41392, F&BI 002413 Date Extracted: 03/05/20 Date Analyzed: 03/05/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Trip Blank 002413-07	<1	<1	<1	<3	85
Method Blank 00-394 MB	<1	<1	<1	<3	86

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/20 Date Received: 02/27/20 Project: Coleman Oil 41392, F&BI 002413 Date Extracted: 02/27/20 Date Analyzed: 02/27/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW10-022520 002413-01	160 x	<250	90
MW9-022520 002413-02	500 x	<250	94
DUP1-022520 002413-03	480 x	<250	97
$\underset{002413\cdot04}{\text{MW7-022520}}$	540 x	<250	92
Method Blank 00-476 MB2	<50	<250	91

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/20 Date Received: 02/27/20 Project: Coleman Oil 41392, F&BI 002413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 002413-01 (Duplicate)

·	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	97	65-118
Toluene	ug/L (ppb)	50	97	72 - 122
Ethylbenzene	ug/L (ppb)	50	98	73-126
Xylenes	ug/L (ppb)	150	98	74-118
Gasoline	ug/L (ppb)	1,000	108	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/20 Date Received: 02/27/20 Project: Coleman Oil 41392, F&BI 002413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	108	63-142	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

BT	PBS CC	hr	Ph		PRINT De B	Petrille	4 1694	SIGNATURE 6750- 1778 6719 1694	SIGNATURE Relinquishedby: Received by: Feed by: Relinquished by: Received by: mlay CMAN	Friedman & Bruya, Inc. Reli 3012 16 th Avenue West Rea Seattle, WA 98119-2029 Reli Ph. (206) 285-8282 Reo
			ME	<u>r na</u>	PRINT NAME			SIGNATURE		
ן ען	Samples received		-							
		< -			- 0	1 round	0%00)		en tu	Mar Black
1				$\rightarrow \times$		Praduct	1440		05AB	MW19P-090522
		X	Ŕ		2		1307		ay r	MW7-09230
		$\frac{x}{x}$	N V		-		1200		03	Dup1-022520
		XX	~		7		1211		02	MW9-022520
		K X	X		7	water	112	2/25/20	OIAD	MINIO-022520
	VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM	TPH-Gasoline BTEX by 8021B	TPH-Diesel	TPH-HCID	# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
띧	ANALYSES REQUESTED				Ц					
							o l	2 @PBSuske	<u>Ken Nozei</u>	Phone 509-572-863 Email Ken, Nozelre @Posuskio
i di	INVOICE TO					KS	- REMARKS	ఫ	14 98107	City, State, ZIP Seattle, WA
	41398 #09					PROJECT NAME	· · · · · · · · · · · · · · · · · · ·	Environment	C	CompanyPBS Engineering: Address DIY E Grater St., Suit
N	•1	l		P	N	SAMPLERS (signature)	SAMPL		erre	Report To Ken Nogeire
20	ME	DY	IOI	SD	OF C	SAMPLE CHAIN OF CUSTO	SAMPLE			614600

Ł

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 14, 2020

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on September 9, 2020 from the Coleman Oil Yakima PO 41392, F&BI 009142 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0914R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 9, 2020 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima PO 41392 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
009142 -01	MW13-5
009142 -02	MW13-12
009142 -03	MW14-5
009142 -04	MW14-13.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/20 Date Received: 09/09/20 Project: Coleman Oil Yakima PO 41392, F&BI 009142 Date Extracted: 09/10/20 Date Analyzed: 09/10/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW13-5 009142-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
MW13-12 009142-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
MW14-5 009142-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
MW14-13.5 009142-04	< 0.02	< 0.02	< 0.02	<0.06	<5	90
Method Blank 00-1995 MB2	< 0.02	< 0.02	< 0.02	< 0.06	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/20 Date Received: 09/09/20 Project: Coleman Oil Yakima PO 41392, F&BI 009142 Date Extracted: 09/09/20 Date Analyzed: 09/09/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW13-5 009142-01	<50	<250	86
MW13-12 009142-02	<50	<250	87
MW14-5 009142-03	<50	<250	88
MW14-13.5 009142-04	<50	<250	87
Method Blank 00-2049 MB	<50	<250	90

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/20 Date Received: 09/09/20 Project: Coleman Oil Yakima PO 41392, F&BI 009142

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 009123-03 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	0.063	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	90	70-117
Ethylbenzene	mg/kg (ppm)	0.5	88	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	90	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/20 Date Received: 09/09/20 Project: Coleman Oil Yakima PO 41392, F&BI 009142

Diesel Extended

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

74-139

RPD

(Limit 20)

0

Laboratory Code: 009136-01 (Matrix Spike) Sample Percent Percent Reporting Spike Result Recovery Recovery Acceptance Analyte Units Level (Wet Wt) MSMSD Criteria **Diesel Extended** mg/kg (ppm) 5,000 <50 98 98 73-135 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Analyte Level LCS Criteria

98

5,000

mg/kg (ppm)

 $\mathbf{5}$

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

9/9/20			FLBT	I				3	Phan		Nhhi			m/hr/lhru	malle	Received by:		Ph. (206) 285-8282	Ph.
2 10 10 C							Ķ	6		5 46			· the way	× 1 rudeing	s G	Relinquished by:		Seattle, WA 98119-2029	Sent
18/2020				~]	2		3		1		.	ا د ۱	aived by:	Reco	3012 16th Avenue West	3013
accel 6 13 4	1	Enviorment	Eugineering &	የፄን ፪.	P				(Brice		Rhide			1 	Relipsatished by:		Friedman & Bruya, Inc.	Frie
DATE		YNY	COMPANY					ME	PNA	PRINT NAME				SIGNATURE	SIG				50
	1			<u> </u>															
ed at 22 °C	2	receive	Samples received	S		 		ļ.,		· ·	in series								
					 	۰.			-										
					<u> </u>			 		 	1		- 						
	1						<u> </u>							· ·					
A .						-													
							\vdash	K	K	5		É.	1995	9/4/2020		ОЧ		13.5	M
Sampe Mw_19	· X						\vdash	\mathbb{R}^{+}	K	Γ.			1136	0000/h/b		<u>13</u>	No.	7	Ŵ
							<u>-</u>	B	K				1430	9/3/2020		60		MW13-12	Mu
						<u> </u>		K	\times	S	· · · ·	Soil	35	A-E9/3/2020	1À	01 A		MW13 - 5	M
Notes			5	PCBs EPA 8082	PAHs EPA 8270	VOCs EPA 8260	BTEX EPA 8021	NWTPH-Gx	NWTPH-Dx	# of Jars		- Sample Type	Time Sampled	Date Sampled	Ð	Lab ID	· · · · · · · · · · · · · · · · · · ·	Sample II)	
-		TED	ANALYSES REQUESTED	'SES	IALY	A	+	$\left \right $		$\left \right $									
*	11	Other						Ĭ	/ No	Yes	: RLs -	Specific	Project	-earks with	Seir	Ken. N	Email	Phone 509-572- 243 Email Ken. Negeire OPKS WA Project Specific RLs -	Pho
SAMPLE DISPOSAL Construction Construction C		S! CDispos Archiv	e TO	INVOICE TO Ken Nozire	S INV	7						tKS	REMARKS		CO(8	4.9	Le v	City, State, ZIP Seafthe, WA 98102	Çity
0	1 ÷ Š													0	302	Ste	5	ress Oly E. C.L.	Add
XStandard Turnaround RUSH	5.145	KStand RUSI	1**	P0#	- ус. 113 год	<u>ــــــــــــــــــــــــــــــــــــ</u>				*	CNAME ひり Yucamu		PROJECT NAME	Environnut	Fr	di la constante da la constante	Since	Company PBS Engineering & Envir	Con
TURNAROUND TIME		TU				_			۱	re)	gnatu	ERS (si	SAMPLERS (signature)			(o	oneir	Report To Ken Nogeire	Rep
5	- A -	, ,	09/20	0910		ME		IOI	['SD)FC	N O	3 CHA	SAMPLE CHAIN OF CUSTODY	70				009142	
			*	-							•								

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 14, 2020

James Welles, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Welles:

Included is the amended report from the testing of material submitted on November 6, 2020 from the Coleman Oil Yakima PO 41392.000, F&BI 011134 project. The NWTPH-Dx chromatograms from samples MW-5P and MW-12P were reviewed to determine the approximate ratio of products present, as well the approximate degree of weathering. The information is included in the case narrative.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Ken Nogeire PBS1116R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 16, 2020

James Welles, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Welles:

Included are the results from the testing of material submitted on November 6, 2020 from the Coleman Oil Yakima PO 41392.000, F&BI 011134 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Ken Nogeire PBS1116R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 6, 2020 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima PO 41392.000, F&BI 011134 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
011134 -01	MW2-110520
011134 -02	MW3-P
011134 -03	MW5-P
011134 -04	MW7-110520
011134 -05	MW8-110520
011134 -06	MW9-110520
011134 -07	MW10-110520
011134 -08	MW12-P
011134 -09	MW13-110420
011134 -10	MW14-110420
011134 -11	TRIP BLANK
011134 -12	Temp Blank

All quality control requirements were acceptable.

The NWTPH-Dx chromatograms from samples MW-5P and MW-12P were reviewed to determine the approximate ratio of products present, as well the approximate degree of weathering. The findings are provided in Table 1.

Table 1					
Sample ID	Approximate % Gas	Approximate % Diesel	Sample Color	Gas Degree of Weathering	Diesel Degree of Weathering
MW-5P	70	30	Black	Weathered	Weathered
MW-12P	NA	100	Black	NA	Not Weathered

Table 1

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011134 Date Extracted: 11/10/20 Date Analyzed: 11/10/20

RESULTS FROM THE ANALYSIS OF SOIL/PRODUCT SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 53-144)
MW5-P 011134-03 1/1,000	D	D	ND	91
MW12-P 011134-08 1/1,000	D	D	ND	95
Method Blank 00-2497 MB	ND	ND	ND	82

ND - Material not detected at or above 20,000 mg/kg gas, 50,000 mg/kg diesel and 250,000 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011134 Date Extracted: 11/10/20 Date Analyzed: 11/10/20 and 11/12/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW2-110520 011134-01	59	5.9	94	310	2,300	99
MW7-110520 011134-04	<1	<1	<1	<3	<100	79
$\underset{\scriptstyle{011134\text{-}05}}{\text{MW8-}110520}$	160	6.9	3.5	7.8	2,100	91
MW9-110520 011134-06	<1	1.6	<1	3.2	210	82
MW10-110520 011134-07	<1	<1	<1	<3	<100	79
MW13-110420 011134-09	<1	<1	<1	<3	<100	78
MW14-110420 011134-10	4.4	<1	4.8	12	270	81
Method Blank 00-2410 MB	<1	<1	<1	<3	<100	81

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011134 Date Extracted: 11/10/20 Date Analyzed: 11/10/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
TRIP BLANK 011134-11	<1	<1	<1	<3	78
Method Blank 00-2410 MB	<1	<1	<1	<3	81

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011134 Date Extracted: 11/09/20 Date Analyzed: 11/09/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW2-110520 011134-01	1,500 x	<250	104
MW7-110520 011134-04	150 x	<250	100
$\underset{\scriptstyle{011134\text{-}05}}{\text{MW8-110520}}$	7,100 x	1,000 x	121
MW9-110520 011134-06	1,300 x	380 x	99
MW10-110520 011134-07	130 x	<250	105
MW13-110420 011134-09	520 x	<250	98
MW14-110420 011134-10	53 x	<250	108
Method Blank 00-2489 MB	<50	<250	97

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 011149-01 (Duplicate)					
	Reporting	Sample	Duplicate	RPD	
Analyte	Units	Result	Result	(Limit 20)	
Benzene	ug/L (ppb)	<1	<1	nm	
Toluene	ug/L (ppb)	<1	<1	nm	
Ethylbenzene	ug/L (ppb)	<1	<1	nm	
Xylenes	ug/L (ppb)	<3	<3	nm	
Gasoline	ug/L (ppb)	<100	<100	nm	

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	103	65-118
Toluene	ug/L (ppb)	50	98	72 - 122
Ethylbenzene	ug/L (ppb)	50	97	73-126
Xylenes	ug/L (ppb)	150	95	74-118
Gasoline	ug/L (ppb)	1,000	91	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	116	63-142	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

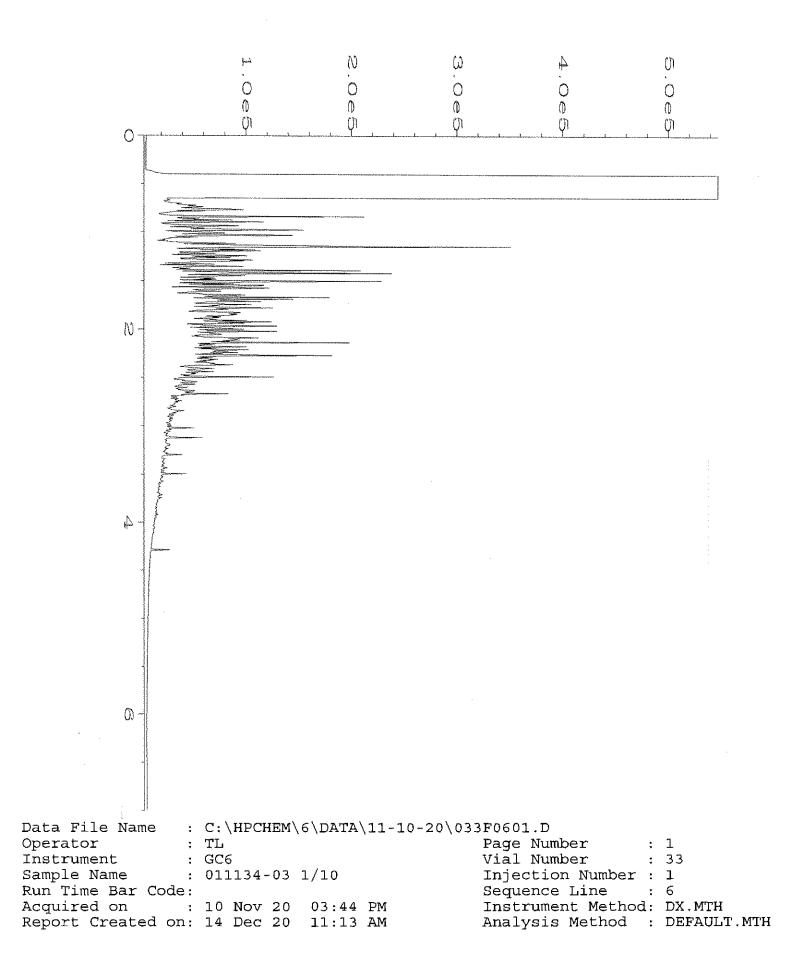
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 18, 2020

James Welles, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Welles:

Included are the results from the testing of material submitted on November 6, 2020 from the Coleman Oil Yakima PO 41392.000, F&BI 011133 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Ken Nogeire PBS1118R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 6, 2020 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima PO 41392.000, F&BI 011133 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
011133 -01	VB1-2020-11-04

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

ZZZAnalysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VB1-2020-11-04 11/06/20 11/04/20 11/12/20 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	PBS Engineering and Environmental Coleman Oil Yakima PO 41392.000 011133-01 1/3.7 111132.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 89	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 200			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 11/11/20 Air ug/m3	Client Projec Lab II Data J Instru Opera	et: D: File: iment:	PBS Engineering and Environmental Coleman Oil Yakima PO 41392.000 00-2678 MB 111111.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 95	Lower Limit: 70	Upper Limit: 130	
Compounds: APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <50			

ENVIRONMENTAL CHEMISTS

ZZZAnalysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VB1-2020-11-04 11/06/20 11/04/20 11/12/20 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	PBS Engineering and Environmental Coleman Oil Yakima PO 41392.000 011133-01 1/3.7 111132.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 91	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	cration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<1.2 <70 <1.6 4.9 <1.6 <0.97	<0.37 <18 <0.37 1.1 <0.37 <0.18		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 11/11/20 Air ug/m3	Client Projec Lab II Data Instru Opera	et: D: File: 1ment:	PBS Engineering and Environmental Coleman Oil Yakima PO 41392.000 00-2678 MB 111111.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		Lower Limit: 70	Upper Limit: 130	
0 1	Concent			
Compounds:	ug/m3	ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<0.32 <19 <0.43 <0.87 <0.43 <0.26	<0.1 <5 <0.1 <0.2 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011133 Date Extracted: 11/16/20 Date Analyzed: 11/16/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
ZZZVB1-2020-11-04 011133-01	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011133

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 011177-03 1/4.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	390	400	3
APH EC9-12 aliphatics	ug/m3	<240	<240	nm
APH EC9-10 aromatics	ug/m3	<120	<120	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	cioi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	78	70-130
APH EC9-12 aliphatics	ug/m3	67	82	70-130
APH EC9-10 aromatics	ug/m3	67	97	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011133

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 011177-03 1/4.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	2.1	2.2	5
Toluene	ug/m3	<90	<90	nm
Ethylbenzene	ug/m3	6.3	6.6	5
m,p-Xylene	ug/m3	6.6	6.8	3
o-Xylene	ug/m3	2.5	2.6	4
Naphthalene	ug/m3	<1.3	<1.3	nm

Laboratory Code: Laboratory Control Sample

Laboratory coue. Laboratory con	or or 2 ampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	89	70-130
Toluene	ug/m3	51	101	70-130
Ethylbenzene	ug/m3	59	102	70-130
m,p-Xylene	ug/m3	120	100	70-130
o-Xylene	ug/m3	59	100	70-130
Naphthalene	ug/m3	71	82	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 11/06/20 Project: Coleman Oil Yakima PO 41392.000, F&BI 011133

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: ()11232-03 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	<0.6	< 0.6	nm	0-20
Laboratory Code: ()11136-07 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	<0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

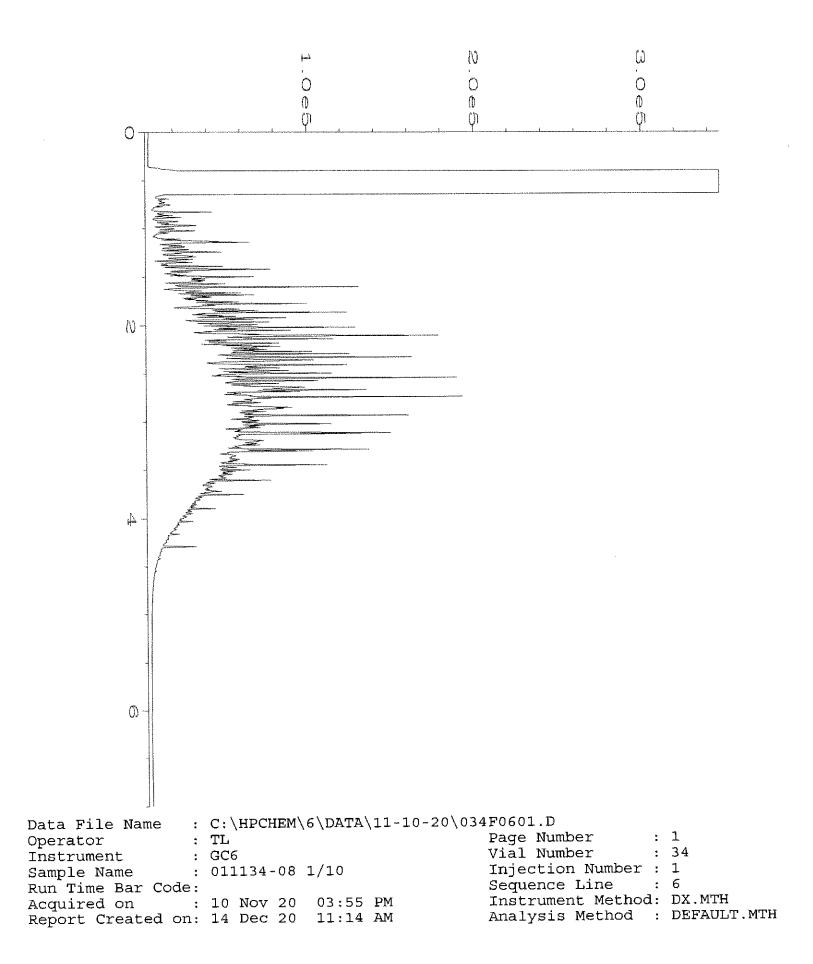
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

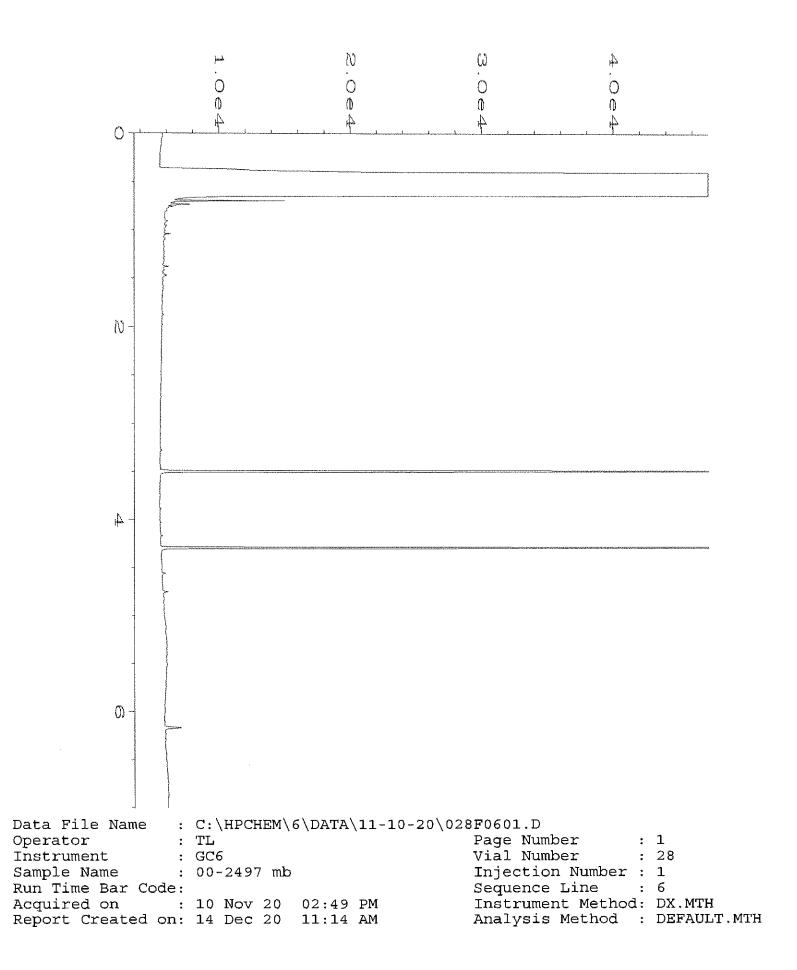
lc - The presence of the analyte is likely due to laboratory contamination.

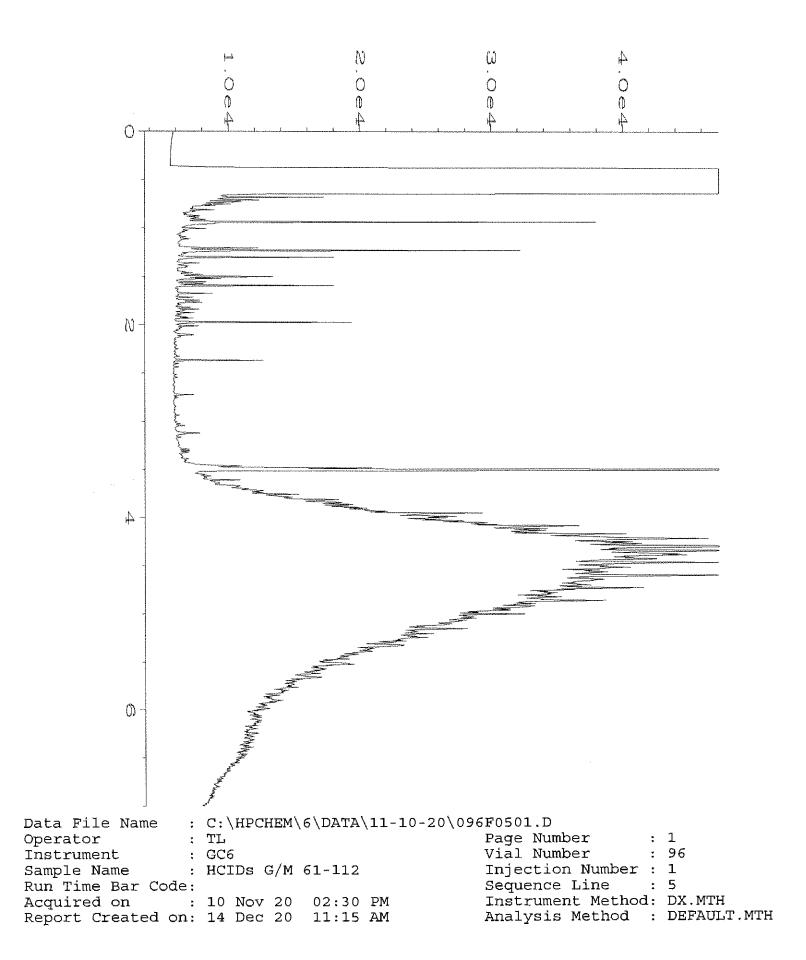
L - The reported concentration was generated from a library search.

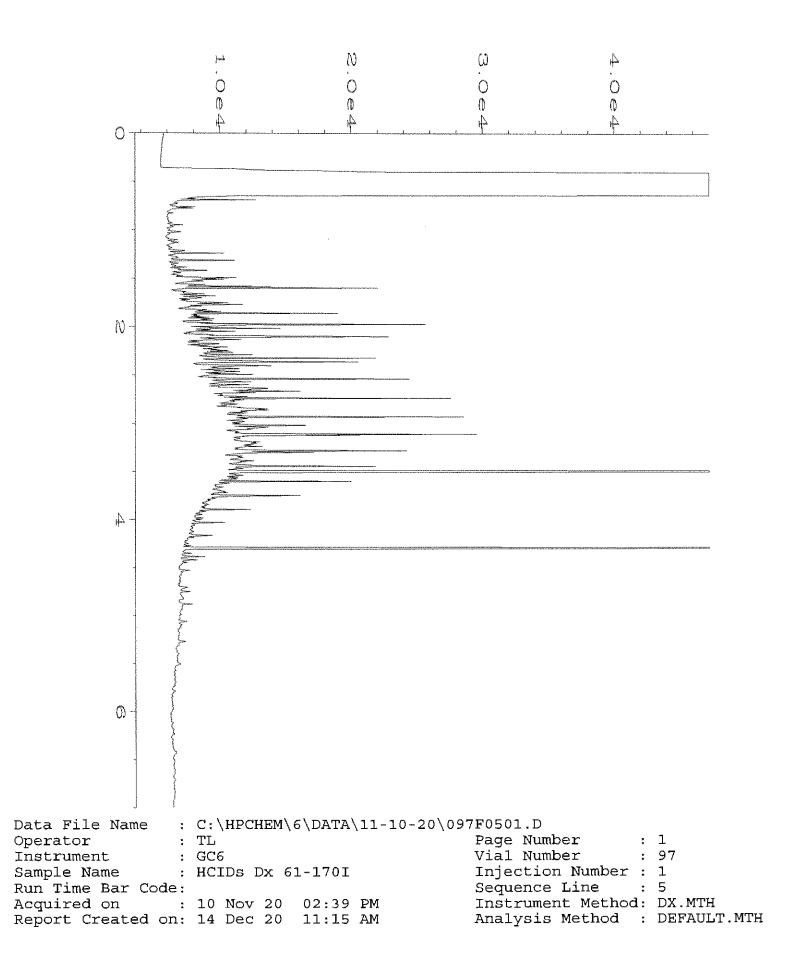
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


011133 Report To J. Welles + K. Nogerre Company PBS Address Address City, State, ZIP Seattle Sames.welks optsvs.com	+ K. Nogerve	SAMPLE CI SAMPLERS PROJECT N PROJECT N PROJECT N NOTES:	SAMPLE CHAIN OF CUSIO SAMPLERS (signature) PROJECT NAME & ADDRESS NOTES:	RESS	ME 11-06 PO# 41392.000 INVOICE TO		Page # <u>1</u> of <u>1</u> TURNAROUND TIME Standard RUSH Rush charges authorized by: Rush charges authorized by: Default: Clean after 3 days Archive (Fee may apply)
SAMPLE INFORMATION	Lab Canister Cont.	Reporting Level: Mr LA=Indoor Air nt. SG=Soil Gas	Date Vac. Sampled ("Hg)	Field Final I Initial Vac. I Time ("Hg)	TO15 Full Scan TO15 BTEXN TO15 cVOCs APH Helium	APH Helium	Notes
VB1 -2020-11-04	3344 1		-29	-6.5	13:01		
		IA / SG IA / SG					
		IA / SG IA / SG					
		IA / SG IA / SG				Sample	Samples received at
Friedman & Bruya, Inc.	SIGNATURE Relinquished by:	URE	PRIN	PRINT NAME	COMPANY		
3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282	Relinquished by: <u>Beeerved</u> by: M/M	man	Nhan P	phon	PBS FC BJ		11/6/20 1445
Fax (206) 283-5044 Forms/coc/coc/to-15.00c	Received by:						

Ő

$ \begin{array}{c} \mbox{Report Tr} T_{\rm o} Luchlar, + L. Magrave PFS \\ \mbox{Campouv PS } \mbox{PS } \mbox{Campouv PS } \mbox{Report Tr} Markes \\ \mbox{Campouv PS } \mbov{Cam} \mbox{Campouv PS } \mbov{Campouv PS }$	ved at 2, oc	Samples received at	Sam						Received by:	Ph. (206) 285-8282
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									Relinquished by:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6		Teb	A A		5	ľ	Mmw-	Received by:	r
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11/6/20		284	2.9	we	4			Relinquished by:	<u>ن</u> ن
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		PANY	COM	NAME	PRINT			JNATURE	SIC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					2	WATER		11/4/20	0	W14 -110420
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					F	WATER	1545	11/4/20	09 A-D	W 13-110420
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						PROPULT	1543	11/4/20	8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-=	WAER	1011	11/5/20	1 + 10	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					F	WATER	0912	11/5/20	8	1W9-110520
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						WATER		11/5/20	05	WS - 110520
+ K. Mogeare PROJECT NAME PO # End Sea HL Sample Caleman O.I. Kakum 41372.000 Introduction James welkes processes REMARKS REMARKS INVOICE TO Invoice To James welkes processes Date Time Sample and Invoice To James welkes processes Date Time Sample and Invoice To Invoice To O1 H-D III5/20 IISS WATER ANALYSES REQUESTED ANALYSES REQUESTED O2 III5/20 IISS WATER H TPH-Diesel VOCs by 8260C SVOCs by 8270D SVOCs by 8270D SVOCs by 8270D PAHs 8270D SIM PAHs 8270D SVOCs by 8270D Invoice SVOCs by 8270D				XXX	4	WATER	1057	11/5/20	CH HO	W7-110520
+ L. Nogene PROJECT NAME PO # Sea HL James: welksep is used on the second					- X	PRODUCT	1340	W 5/20	63	W5-P
+ L. Mogene PROJECT NAME PO# G Sta Sea HL James welles option provided in the second provided in	Hero					PRODUCT	1330	11/5/20	02	1W3-P
+ L. Nogewe PROJECT NAME PROJECT NAME Yea HL James welles aptroprove Calence Oil, Value James welles aptroprove REMARKS Hyg2.000 Remailkennagewe Qels vs.con REMARKS INVOICE TO Date Time Sample Lab ID Date Time Sample Sampled Sample #of INVOICE TO Syvocs by 8260C Svocs by 8270D Invoice Strep VOCs by 8270D Svocs by 8270D Invoice Strep PAHs 8270D SIM PAHs Strep				XXX		WATER		11/5/20	01 A-D	NW2 - 110520
+ K. Nogene PROJECT NAME PO # GSta Got RUSA OIL KINN 41392.000 RUSA REMARKS Sea HL GAL RUMARKS REQUESTED	Notes		SVOCs by 8270D	TPH-Diesel TPH-Gasoline		L	Time Sampled	Date Sampled	Lab ID	Sample ID
+ K. Nogene PROJECT NAME PO # Gran Gran Brown of the Sta PO # Gran Coleman Oil, Valim 41392.000 Rush Coleman Oil, Valim 41392.000 Rush Coleman Oil, Valim Gran Unvoice TO Rush Invoice TO Rush		3STED	NALYSES REQUE							
+ K. Nogene PROJECT NAME PO # ESta Sea HL Coleman O.I. Vakima 41392.000 REMARKS REMARKS INVOICE TO PO BO		U Other					<u>}</u>	phy use .co.	uilken-noge.re-6	hone (206)54676214 Ema
+ K. Nogene PO# PROJECT NAME PO# Coleman Oil, Valima 41392.000 REMARKS NUTURE TO	after 30 days Samples	Dispose	(1) A state of the state of	ten so tensor and	and the state of the second		<u>Q</u>	er c b p sase	James well	ity, State, ZIP <u>Sec</u> H
+ K. Noseve PROJECT NAME PO # 2Sta PROJECT NAME PO # 2Sta Rush	MPT.F. DISPOSAL	SAN	11392.000		Lakim	+	Colema			
+ K. Noserve	d Turnaround	G Standard D RUSH	PO#			T NAME	FROJEC			ompany PBS
	NAROUND TIM	TUR						NAME AND A DESCRIPTION OF	Noserve	÷

~ 1 al "								Kelinquished by:	Seattle, WA 98119-2029
	Fist	ne t	Ph	Nham	 	• •	Mann	Received by:	
W/6/20	PBS	4	Welles	J.W.				Relinquished by:	<u>9</u>
DATE	COMPANY		PRINT NAME	PRIN			SIGNATURE	IS	
			¢ ,						
			-						
							*		
10 240411					·				
added								12	Temp Blaulu
			X	7 1	WATER	00:00	11/4/20	11 A-R	TRIP BLANK
Notes		NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	NWTPH-Dx NWTPH-Gx BTEX EPA 8021	3 # of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
va	EQUESTED	LYSES						-	
Default: Dispose after 30 days	Default	a series and a series of the series of th	s / No	Ls? - Ye	Project specific RLs? - Yes		さんしい シー・ション シー・ 美学 長い線 文字論 住在		Phone 200 348630 Email Contraction
SAMPLE DISPOSAL	D Arc	INVOICE TO			UKS	- REMARKS		na e a sensor in a construction de la construction de la construction de la construction de la construction de	City, State, ZIP Sea H
Kush charges authorized by:		41392.000				1		annon ann ann ann ann ann ann ann ann an	Address
Standard turnaround RUSH	🖞 Stands	PO#	uussaagees m/1-97	ر بس	PROJECT NAME	PROJE			Company PBS
TURNAROUND TIME	TURN			(a mm	(aumučns) curari mero		3	K. Nonci	Report To J. Welks & K. Nogene

•

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 20, 2021

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on April 9, 2021 from the Coleman Oil Yakima 41392, F&BI 104165 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0420R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 9, 2021 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima 41392, F&BI 104165 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
104165 -01	MW15-5
104165 -02	MW15-12

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/21 Date Received: 04/09/21 Project: Coleman Oil Yakima 41392, F&BI 104165 Date Extracted: 04/16/21 Date Analyzed: 04/16/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
MW15-5 104165-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	78
MW15-12 104165-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	79
Method Blank 01-900 MB2	< 0.02	< 0.02	< 0.02	< 0.06	<5	78

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/21 Date Received: 04/09/21 Project: Coleman Oil Yakima 41392, F&BI 104165 Date Extracted: 04/09/21 Date Analyzed: 04/09/21 and 04/12/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW15-5 104165-01	<50	<250	80
MW15-12 104165-02	<50	<250	80
Method Blank 01-883 MB	<50	<250	76

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/21 Date Received: 04/09/21 Project: Coleman Oil Yakima 41392, F&BI 104165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 104076-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	<0.02	$\begin{array}{c} 0.025 \\ 0.056 \\ < 0.02 \\ < 0.06 \\ 43 \end{array}$	nm
Toluene	mg/kg (ppm)	0.029		64 hr
Ethylbenzene	mg/kg (ppm)	<0.02		nm
Xylenes	mg/kg (ppm)	<0.06		nm
Gasoline	mg/kg (ppm)	22		65 hr

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	100	69-120
Toluene	mg/kg (ppm)	0.5	104	70-117
Ethylbenzene	mg/kg (ppm)	0.5	102	65 - 123
Xylenes	mg/kg (ppm)	1.5	107	66 - 120
Gasoline	mg/kg (ppm)	20	110	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/21 Date Received: 04/09/21 Project: Coleman Oil Yakima 41392, F&BI 104165

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 1	04164-01 (Matri	x Spike)							
			Sample	Percent	Percent				
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)		
Diesel Extended	mg/kg (ppm)	5,000	6,500	97	103	73-135	6		
Laboratory Code: Laboratory Control Sample									
			Percent						
	Reporting	Spike	Recovery	Acceptar	nce				
Analyte	Units	Level	LCS	Criteria	a				
Diesel Extended	mg/kg (ppm)	5,000	80	74-139)				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (906) 285-8989	3012 16 th Avenue West Seattle, WA 98119-2029	3									el-SIMW	MW15-5	Sample ID		Phone S09-572-8113Email Ken. Noverce Possush on Project Specific RLs.	City, State, ZIP Seattle, WA 98100	Address DIY E Galer St. Suite 300	Company PBS Ensineering : Environmentil	Report To Ken Noscire
Received by? , // ,	Received by Fey Ex Relinquished by:	Relinquished by:	SIC								02	O A.E	Lab ID		nail <u>Ken. Naze</u> i	le, WA gi	r St. Suide	A Environ	ere
			SIGNATURE								16/8/h	1c/8/h	Date Sampled		re@98545A	6018	500	14-2-1	
											10 05	06100	Time Sampled		Project S	- REMARKS	Coles	PROJE	SAMPLERS (signature)
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Patrick	uiej ji	Mart I and	Loss prostinged o	140 C	a start a d	A the state		-	<u>1</u>	\$ <u>0</u> .[Sample Type		Specific RL	IKS	Columen Oil	CTNAME	SAMPLERS (signature)
2		1	PRINT N/								SX	5	Jars		s · Yes / No		Yakim		dure)
2		Bria	NAME								x X X	$\frac{\times}{\times}$	NWTPH-Dx NWTPH-Gx BTEX EPA 8021	-	/ No		3		
													VOCs EPA 8260 PAHs EPA 8270	- AN		· · · ·	4		I
		PBS Engi											PCBs EPA 8082	ANALYSES REQUESTED		INVOICE TO	41312	PO#	Me
		Engineering	COMPANY											QUESTI		0			
			Y		Samples									- CD	Archive samples	Dispose a	Rush charg	RUSH	-09-24 Page # TURN
11/2/2		1e/8/h	DATE		received at								No		Sampies	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	Standard Turnaround RUSH	AROUND
		1430	TIME		t <u>3</u> oc								Notes			SAL.	ed by:	U	TIME 0.2

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 5, 2021

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on July 30, 2021 from the Coleman Oil Yakima 41392, F&BI 107508 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0805R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 30, 2021 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima 41392, F&BI 107508 project. Samples were logged in under the laboratory ID's listed below.

107508 -01 MW-1 107508 -02 MW-2 107508 -03 MW-4 107508 -04 MW-6	<u>Laboratory ID</u>	PBS Engineering and Environmental
107508 -03 MW-4	107508 -01	MW-1
	107508 -02	MW-2
$107508 0.4 \qquad MW c$	107508 -03	MW-4
101000-04 10100-0	107508 - 04	MW-6
107508 -05 MW-7	107508 - 05	MW-7
107508 -06 MW-9	107508 -06	MW-9
107508 -07 MW-10	107508 -07	MW-10
107508 -08 MW-11	107508 -08	MW-11
107508 -09 MW-13	107508 -09	MW-13
107508 -10 MW-14	107508 -10	MW-14
107508 -11 MW-15	107508 -11	MW-15
107508 -12 MWBNSF1	107508 - 12	MWBNSF1
107508 -13 MW-Dup	107508 -13	MW-Dup

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/21 Date Received: 07/30/21 Project: Coleman Oil Yakima 41392, F&BI 107508 Date Extracted: 08/02/21 Date Analyzed: 08/03/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-1 107508-01 1/40	620	<40	130	480	7,700	80
MW-2 107508-02 1/20	95	<20	28	<60	4,000	78
MW-4 107508-03 1/20	37	<20	95	<60	2,300	83
MW-6 107508-04 1/20	37	<20	51	74	4,200	87
MW-7 107508-05	<1	<1	<1	<3	<100	84
MW-9 107508-06	<1	<1	<1	<3	<100	87
MW-10 107508-07	<1	<1	<1	<3	<100	86
MW-11 107508-08 1/10	45	<10	38	100	2,200	81
MW-13 107508-09	3.5	<1	<1	<3	300	75
MW-14 107508-10	<1	<1	<1	<3	<100	85
MW-15 107508-11 1/20	1,200	300	830	1,700	14,000	89

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/21 Date Received: 07/30/21 Project: Coleman Oil Yakima 41392, F&BI 107508 Date Extracted: 08/02/21 Date Analyzed: 08/03/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MWBNSF1 107508-12	<1	<1	<1	<3	<100	82
MW-Dup 107508-13 1/40	620	<40	130	500	8,200	82
Method Blank 01-1667 MB	<1	<1	<1	<3	<100	80

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/21 Date Received: 07/30/21 Project: Coleman Oil Yakima 41392, F&BI 107508 Date Extracted: 07/30/21 Date Analyzed: 07/30/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx**

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1 107508-01	14,000 x	590 x	107
MW-2 107508-02	4,900 x	<250	99
MW-4 107508-03	1,700 x	280 x	99
MW-6 107508-04	3,900 x	370 x	102
MW-7 107508-05	410 x	<250	118
MW-9 107508-06	1,200 x	350 x	93
MW-10 107508-07	930 x	260 x	96
MW-11 107508-08	3,100 x	300 x	104
MW-13 107508-09	550 x	<250	107
MW-14 107508-10	<50	<250	101
MW-15 107508-11	1,900 x	<250	98
MWBNSF1 107508-12	<50	<250	90

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/21 Date Received: 07/30/21 Project: Coleman Oil Yakima 41392, F&BI 107508 Date Extracted: 07/30/21 Date Analyzed: 07/30/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-Dup 107508-13	11,000 x	530 x	92
Method Blank 01-1759 MB	<50	<250	96

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/21 Date Received: 07/30/21 Project: Coleman Oil Yakima 41392, F&BI 107508

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	107535-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	93	65-118
Toluene	ug/L (ppb)	50	97	72 - 122
Ethylbenzene	ug/L (ppb)	50	101	73-126
Xylenes	ug/L (ppb)	150	94	74-118
Gasoline	ug/L (ppb)	1,000	89	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/21 Date Received: 07/30/21 Project: Coleman Oil Yakima 41392, F&BI 107508

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	80	80	63-142	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

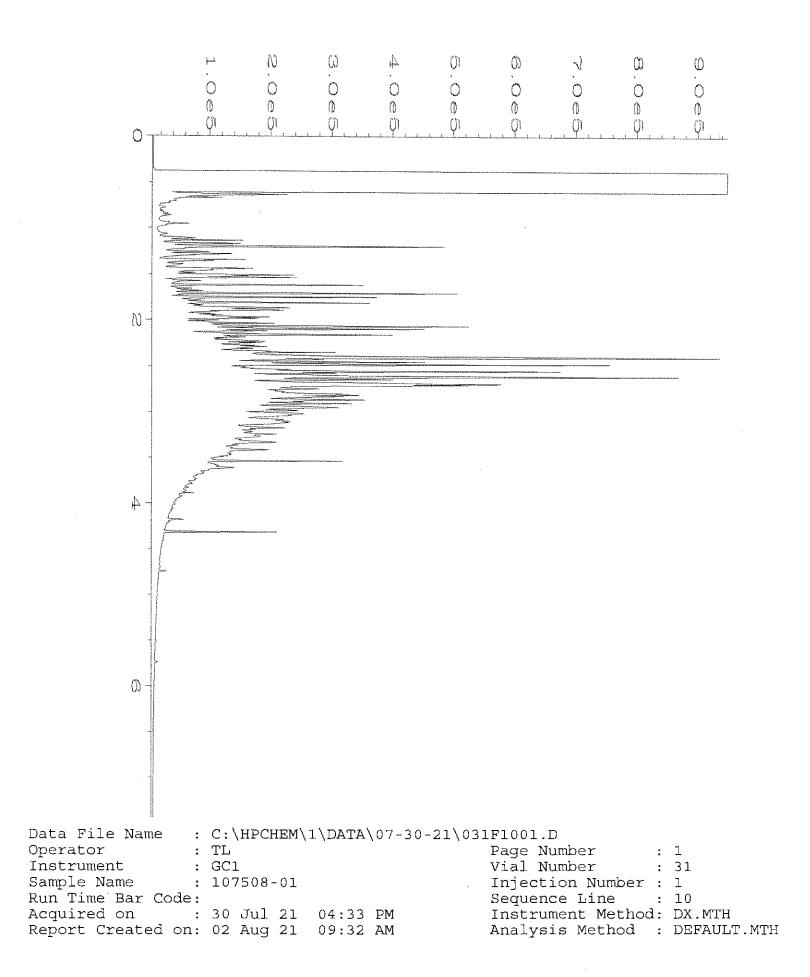
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

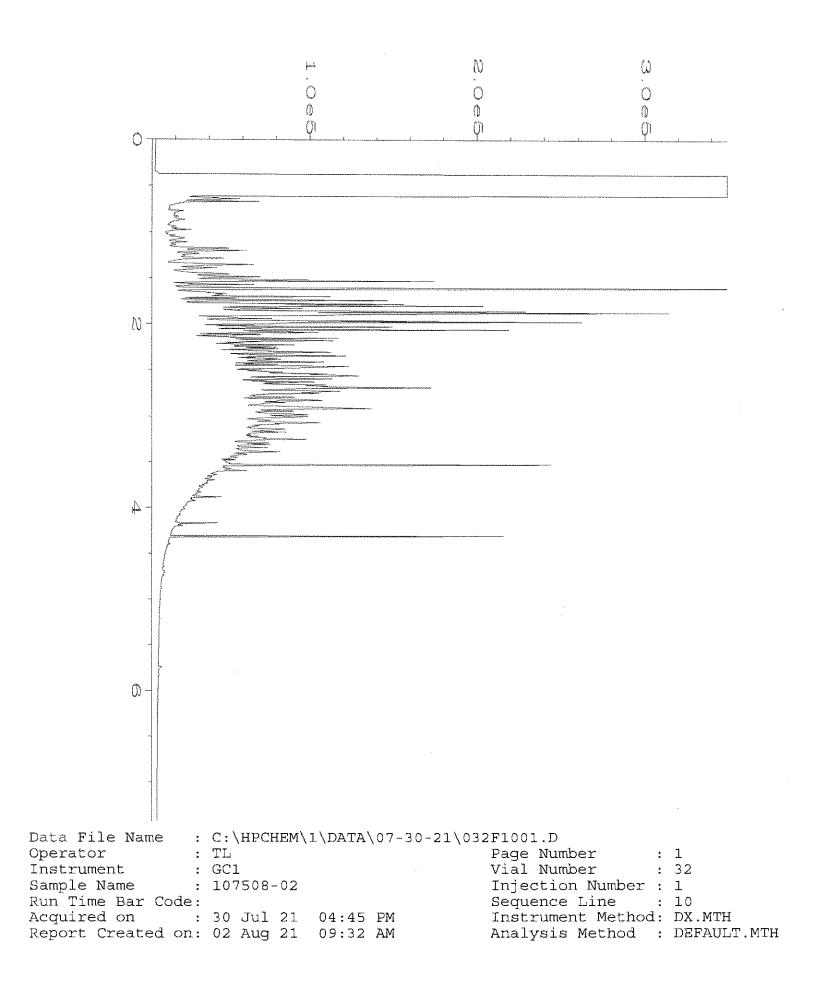
lc - The presence of the analyte is likely due to laboratory contamination.

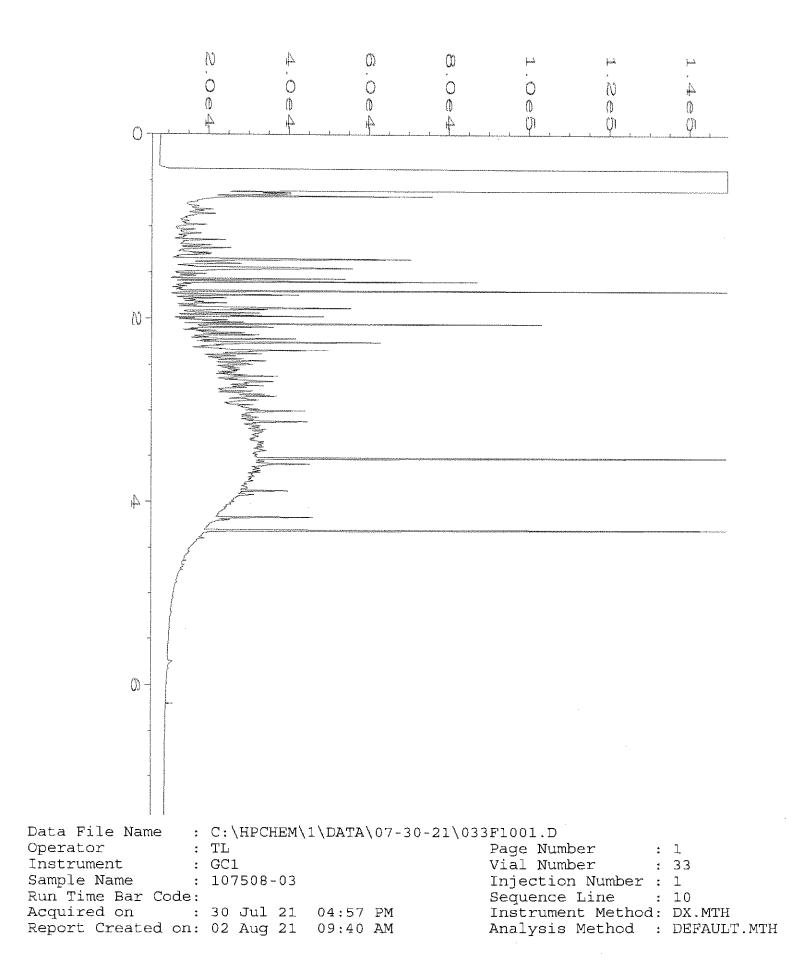
L - The reported concentration was generated from a library search.

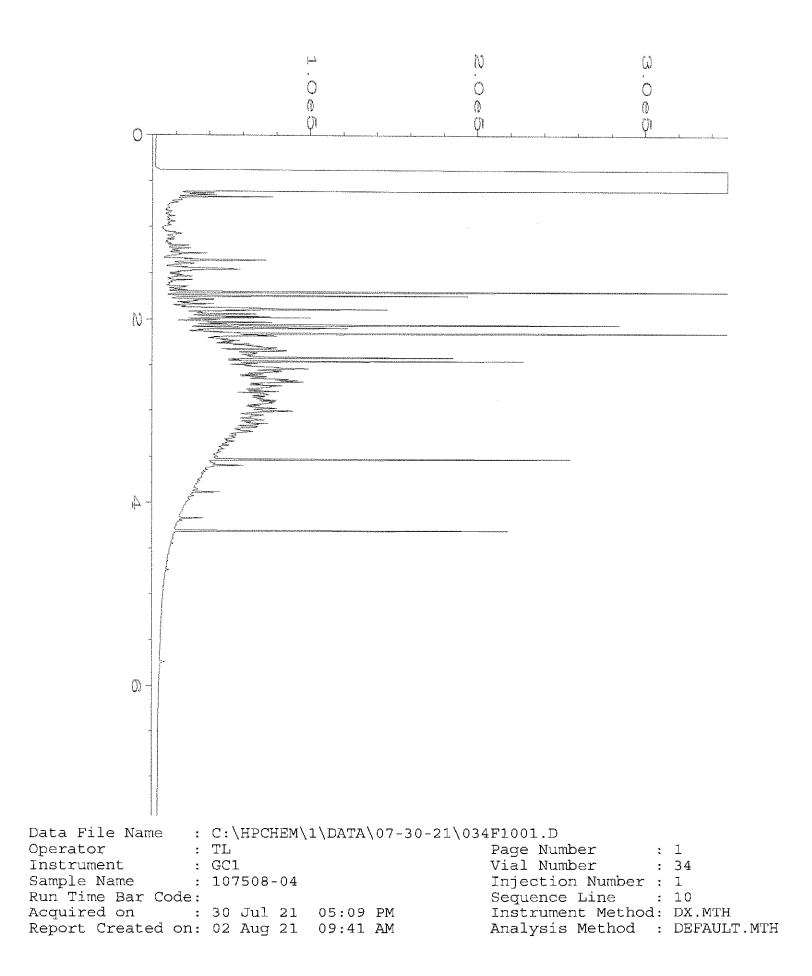
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

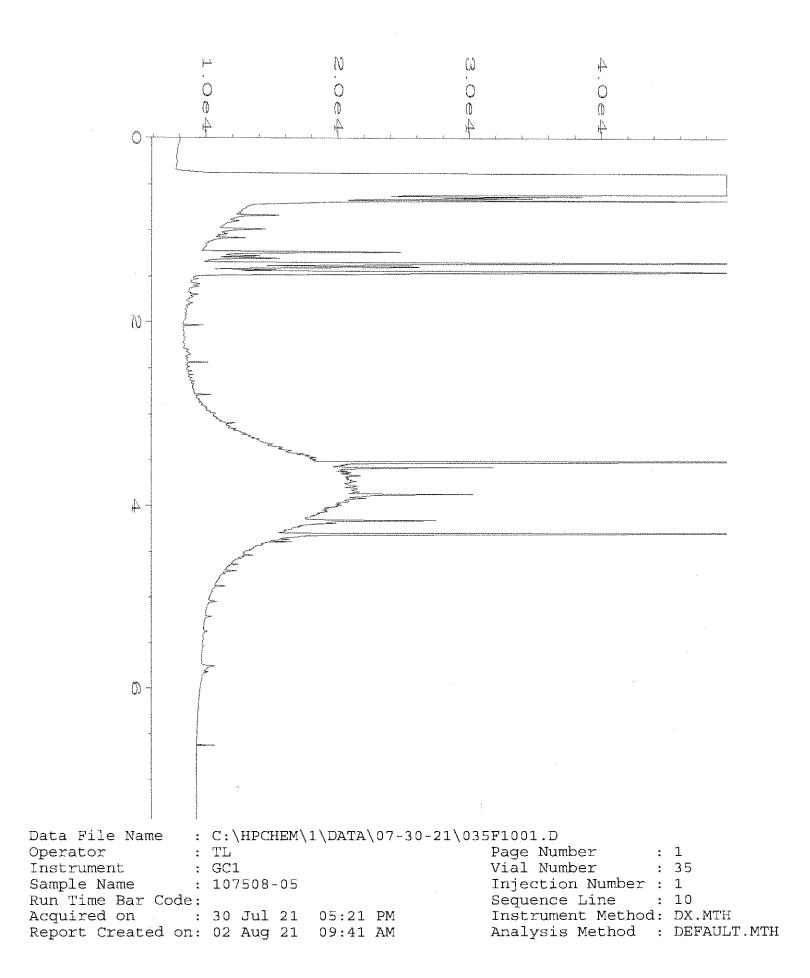
pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

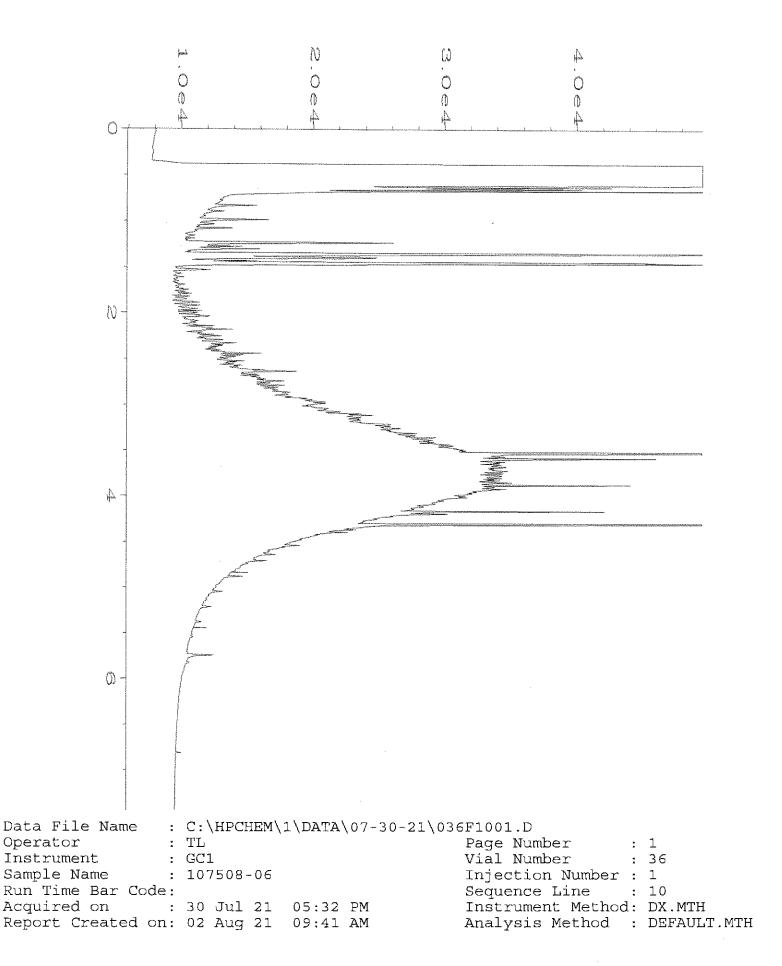

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

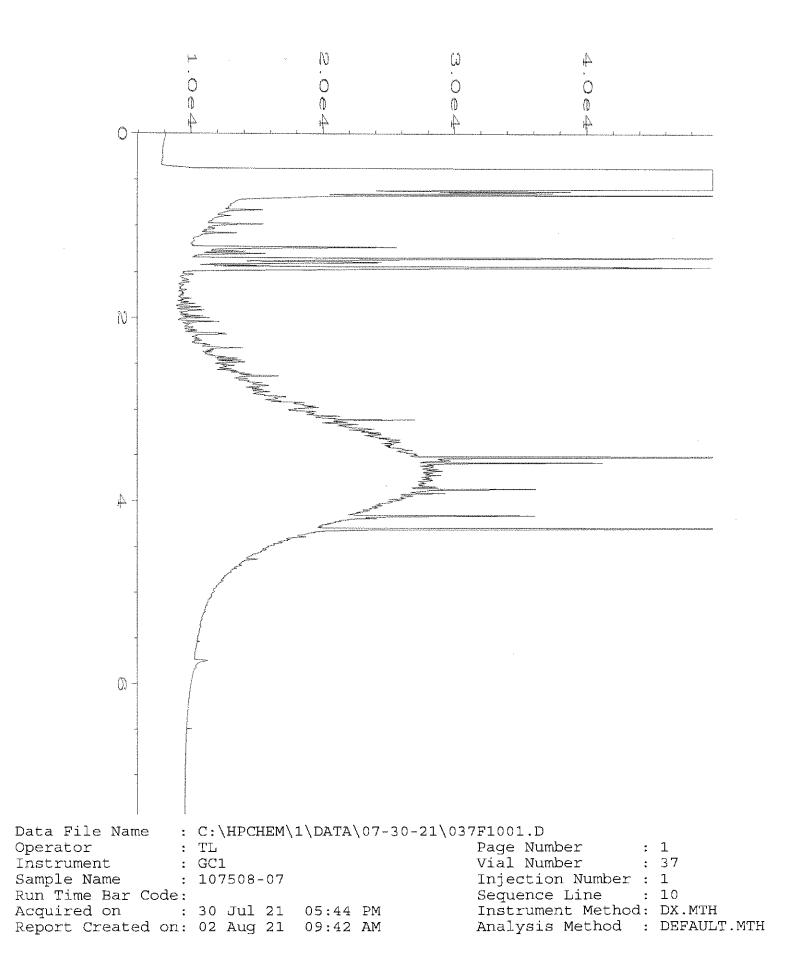

vo - The value reported fell outside the control limits established for this analyte.

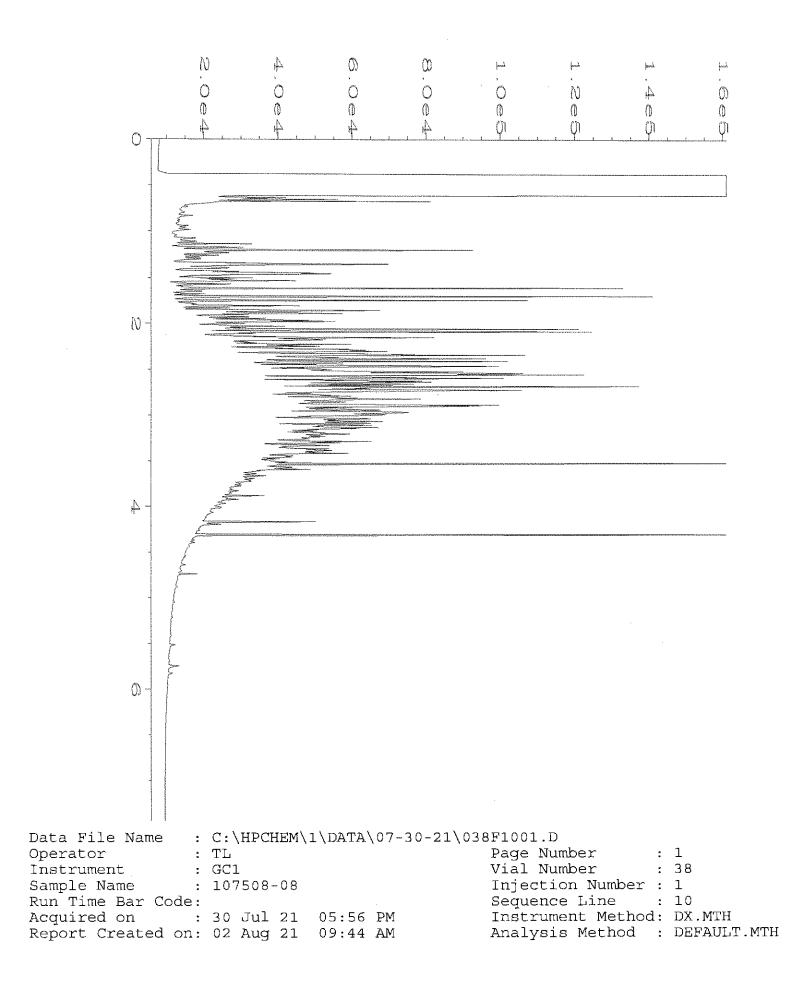

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

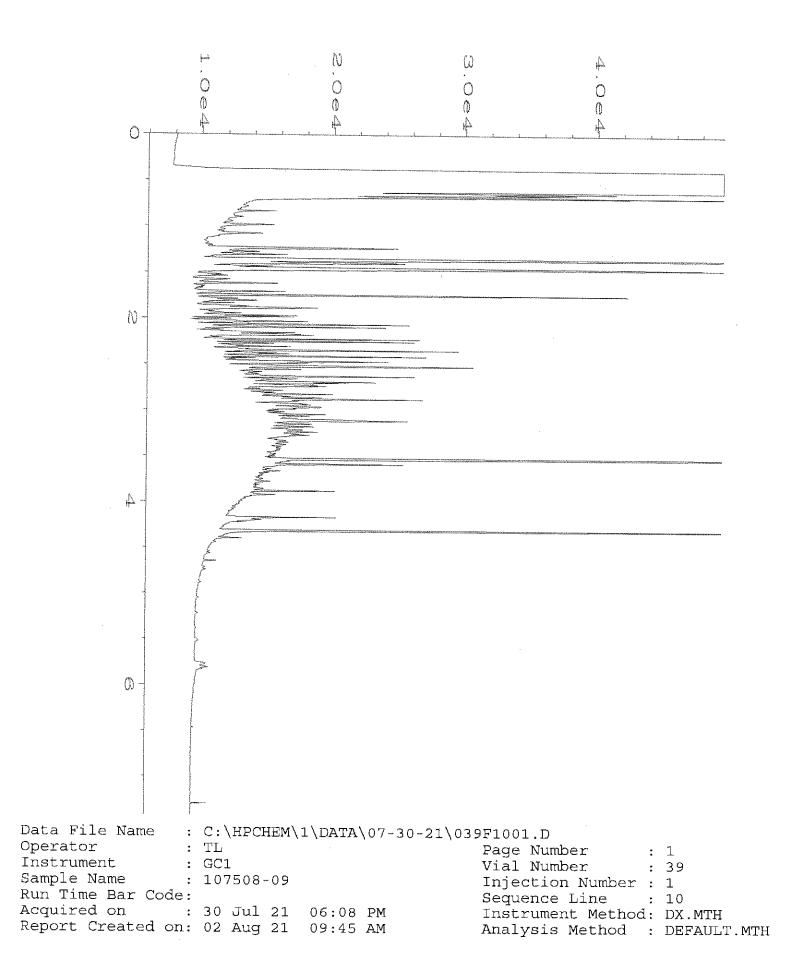

	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.		MW-14	MW-13	MW-11	MW-10	MW-9	NW-7	MW-6	MW-4	e-MW	MW-1	Sample ID	4	Phone 509-572-8/63 Email Ken. Noger re @Poswa Project specific RLs? .	City, State, ZIP <u>Seattle, WA</u>	PBS E	EN I	805491
	Received by: UNIN	Relinquished by:	Received by: Feed Ex: 7		SIC	10	09	80	40	06	205	04	03	02	01 A=D	Lab ID		3mail <u>Ken. Nog</u>	-1WA	St.	Nogeire	
20 m al 6.8 ~			745 97		SIGNATURE	1/38/31	16/86/2	16/86/1	1/07/01	1/27/21	1/98/91	1/07/01	1/07/01	1018e/L	1/28/21	Date Sampled		eire orbsw	60186	Environment		
			50 T 08			8580	0816	1044	1935	1351	8 H.H.I	1515	1610	1350	1933	Time Sampled		A Project s	REMARKS	PROJECT NAME	SAMPLE	SAMPLE CHAIN OF CUSTODY
		n. · · · · · · · · · · · · · · · · · · ·		Patrick											Water	Sample Type		pecific RLs	S	T NAME	SAMPLERS (signature)	CHAIN
	ລ			Brice	PRINT	2	C			노			_	느	느	# of Jars		? - Yes		ME Oil Yahima	ure)	OF (
	2			F	JT N	\mathbf{X}	X	\times	X	\times	X	×	X	×	X	NWTPH-Dx		-		inio	Υ. Έ	SUC
(- -	AP1				NAME	X	$ \times$	X	X	X	$ \times $	\times	X	X	X	NWTPH-Gx		No			3. No.	TOI
	ا مناد					\mathbb{X}	Ъ	\mathbb{N}	\bowtie	\ltimes	X	\times	K	\times	\mathbf{X}	BTEX EPA 8021				41393		DY
	1					-					<u> .</u>	<u> </u>	<u> </u>			NWTPH-HCID	A		Ŋ	5	1	~
-				10					<u> </u>	<u> </u>	1					VOCs EPA 8260	IAL Y		INVOICE TO	P0 #		ME
	דד ייי			PBS												PAHs EPA 8270	SES		E T	# #		7/30/
7	ק	San			2		<u> </u>									PCBs EPA 8082	REC		0			0
	/	ples			COMPANY						<u> </u>						UES					
		Samples received at			ANY		-	-	-		-		ļ				ANALYSES REQUESTED					
		ived					ļ		<u> </u>		<u> </u>	ļ			ļ			Default	Archi	Stand RUSI sh ch	Pa	Eoul
		at		ļ.,														Di	AMP ve sa	Hard Harge	Page #_ TURN/	
	0E/H	₫,	22	1/29/12	D/	*:												soqs	SAMPLE DI Archive samples	turna s aut	AROT	15483577W
1.1	10/0	C	12	0	DATE											z		e aftu	SAMPLE DISPOSAL hive samples	¥Standard turnaround □ RUSH Rush charges authorized by:	Page # of TURNAROUND TIME	νш
				E												Notes		er 30	JSAI	ed by	ZII	~
	55:10		600	009	TIME	2 2		×				~						Default: Dispose after 30 days	Ľ	7.		
Ļ	01			<u> </u>	<u> </u>		<u> </u>	`					i nav	<u> </u>		<u> </u>		Ľ <u>~</u>		<u> </u>		
			ŗ		• ;			ss (=		14. X	- ',											

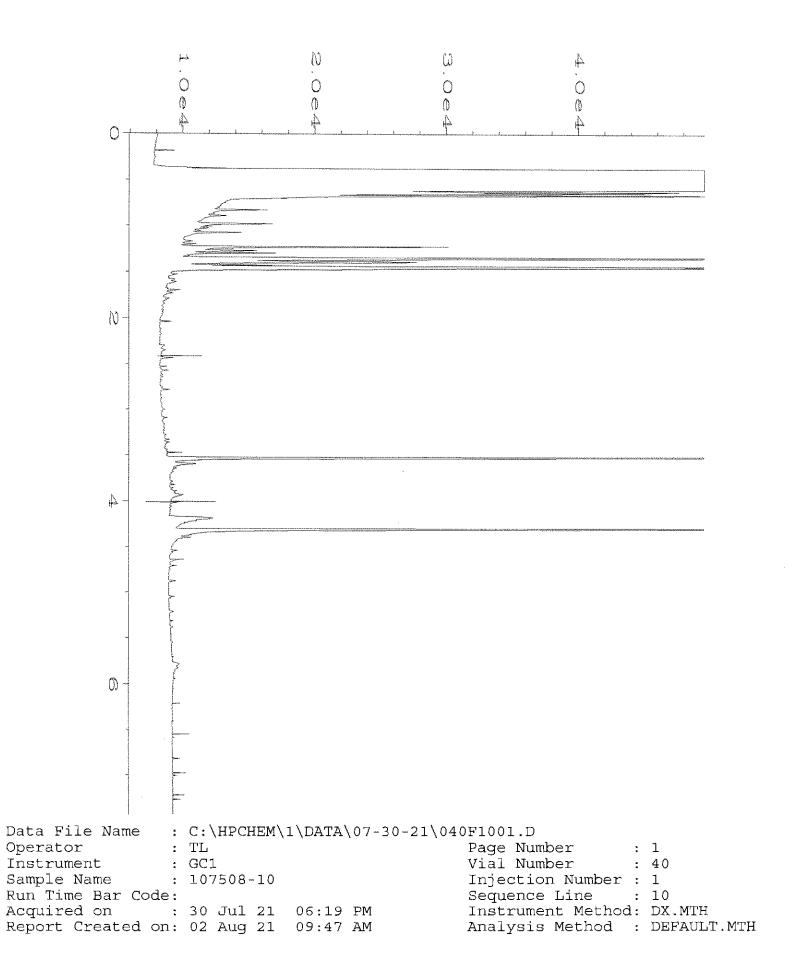

Bager To. Ken Moget re- SAMPLE RESIdentity Frank J. Company Frank J. Company Graphersy PES_E Engineering, i. Environmentation Point Point Point Point Point Graphersy PES_E Engineering, i. Environmentation Point Point Point Point Point Graphersy PES_E Engineering, i. Environmentation Point Point Point Point Point Graphersy PES_E Engineering, i. Environmentation Point Point Point Point Point Graphersy PES_E Engineering, i. Environmentation Point Point Point Point Point Graphersy PES_E Engineering, i. Environmentation Point Point Point Point Point Point Samplei Base Point Point Samplei # of HH-D, go and H-D, go a		Samples reco					-		170 11	Renaived hv L r . M	Dh (906) 985-8989 Rece	Ph. (1
SAMPLEPS.(signature) Power Power Power 2 Envirtementality Poleman Oil Manual Power								•		quished by:		Seatt
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1.0	1				ived by: EX		3012
SAMPLEBES (signature) Page 4 Surf-2.300 PROJECT NAME A 95102 REMARKS Magaine 262bilise.com Project specific RLs? - Yes / No Date Time Samplet Samplet T/28/91 Project specific RLs? - Yes / No J 7/38/91 J 7/38/91 J 7/38/91 J 13.00 J 7/38/91 J 9.00 J 13.00 J 13.00 J 13.00 J 13.00 J J J 13.00 J J J	<u></u>	2g					Patric			iquished by:	<i>i</i>	Fried
SAMPLERS/signature SAMPLERS/signature Environmental PROJECT NAME Suit 300 REMARKS A 98102 REMARKS Mageire Gebruss.com Project specific RLs? · Yes / No Date Time Sampled Sample J 7/38/91 IISO V 9 IISO V 14 X V 15 IISO V 14 V V 15 IISO IISO IISO IISO IISO IISO II		COMPANY		AME	NT N.	PRI			JNATURE	SIC		
SAMPLERS/signature/ PROJECT NAME PROJECT NAME \mathcal{L} $\mathcal{Q}g_{1,CO}$ \mathcal{P} \mathcal{L} $\mathcal{Q}g_{1,CO}$ \mathcal{R} \mathcal{M} $\mathcal{Q}g_{1,CO}$ \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M}												
SAMPLERS/signature/ PROJECT NAME $:$ Environmental PROJECT NAME $:$ Surf-3000 Project NAME $:$ Lawrental Coleman O'il Valuine $:$ QS100 REMARKS $:$ Lawrental Coleman O'il Valuine $:$ QS100 REMARKS $:$ Date Project specific RLs? Ves / No $:$ Date Time Sampled Sample $:$ Type Jars $:$ NWTPH-Gx $:$ NWTPH-HCID $:$ Vocs EPA 82021 $:$ NWTPH-HCID $:$ Vocs EPA 82082 $:$ NWTPH-HCID $:$ Vocs EPA 82082 $:$ PCBs EPA 8021												
SAMPLERS (signature) PROJECT NAME $:$ Environment PROJECT NAME $:$ Suit 300 REMARKS A $Q_{S}(0)$ Project specific RLs? A $Q_{S}(0)$ Project specific RLs? A $Project specific RLs? Ves / No A Project specific RLs? No $									v	-		
SAMPLERS (signature) PROJECT NAME \checkmark Environmental PROJECT NAME \searrow QSLO2 PROJECT NAME \land QSLO2 REMARKS \land Date Time Sampled Sample \uparrow Type Jars Type Jars \land NWTPH-Dx NWTPH-Gx \land NWTPH-HCID NWTPH-HCID \lor Vocs EPA 8082 PCBs EPA 8082 \land Vocs PA 8270 PAHs EPA 8270 \land NWTPH-HCID Vocs EPA 8082												
SAMPLERS/signature Environment/ QROJECT NAME PROJECT NAME Suck 300 A 98100 REMARKS Project specific RLs? Vest / No Date Sampled Sampled Time Sampled Time Sampled Time Sampled Type Jars NWTPH-Gx NWTPH-Gx Vocs EPA 8220 PCBs EPA 8082 PCBs EPA 8082												
SAMPLERS (signature) PROJECT NAME Environmental PROJECT NAME PROJECT NAME Suit 300 REMARKS Project specific RLs? Yes / No A 98100 Date Time Sampled Sampled INVOICE TO A γD Date Time Sampled Sampled Sampled Sampled J 7/38/91 IISO Water H ISQ Analysis Analysis Analysis A γD 7/38/91 IISO Water H ISQ Analysis Analysis Analysis A γD 7/38/91 IISO Water H ISQ Analysis Poest A γD 7/38/91 O941 H X X X Yes NWTPH-Gx A γD 7/38/91 O941 H X X X Yes NWTPH-GX A γD 7/98/91 O941 H X X Yes NWTPH-GX A γD 900 Yes NWTPH-GX NWTPH-GX NWTPH-GX NU A γX Yes N Yes Yes Yes												
SAMPLERS/signature PROJECT NAME Project specific RLs? Value Notes A+D Date Sampled Time Sampled Type Jars INVOICE TO A+D NWTPH-Gx Sampled Type Jars NWTPH-Gx VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082												
SAMPLERS/signature Suite Suite Suite Suite Suite Suite Suite Suite Suite Sampled Sampled Time Sampled Type Jars NWTPH-Base Project specific RLs? Yes NWTPH-Gax NWTPH-Gax NWTPH-HCID Vocs EPA 8082 PCBs EPA 8082 PCBs EPA 8082				XX	\geq	LC		1200	1c/se/L	13	1- DUP	Mu
A Q8102 PROJECT NAME PROJECT NAME Suit 300 PROJECT NAME Coleman () Yalaina, H 3 q) A Q8102 REMARKS Project specific RLs? - Yes / No H 3 q) A Q8102 Project specific RLs? - Yes / No INVOICE TO A Project specific RLs? - Yes / No ANALYSES REQUEST A project Sampled Sampled Type Jars NWTPH-Gx ANALYSES REQUEST A voc sepa 8260 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082				X	X			1460	16/8C/L	5	1BNSF1	MM
ab ID Date SAMPLERS (signature) A 98100 PROJECT NAME PROJECT NAME A 98100 REMARKS Coleman O'il Yalaima Date Time Sample Sampled Sample # of NWTPH-Gx BTEX EPA 8021 NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID VOCs EPA 82600 PAHs EPA 8022 NWTPH-HCID				X	K		water	1130	7/28/21	dey 11	<u>v-</u> 15	X
SAMPLERS (signature) Environmental Suite 300 A 98100 REMARKS Nogeire Repsus. Content of the specific RLs? - Yes / No ANALYSES REQUEST	Notes		VOCs EPA 8260	······································		# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	
SAMPLERS (signature) Servirenmental Suite 300 A 98100 REMARKS Nogeire Report Logic RLs? - Yes / No		'SES REQUESTED	ANALY									
A 98102 A 98102 SAMPLERS (signature) SAMPLERS (signature) PROJECT NAME Coleman () Yalaina REMARKS REMARKS INVOICE TO	fault: Dispose after 30 da			<u>v</u>	es /]	<u>A - ¿s</u>	specific RI		صعمدمهم	en Nogeire	2509-572-8163 Email	Phon
SAMPLERS (signature) Servironmental PROJECT NAME Suite 300 Suite 300 Suite 300 Suite 300	SAMPLE DISPOSAL Archive samples		INVOI				.KS	- REMAR	601	WA 98	State, ZIP Scattle,	City,
Nogerre SAMPLERS (signature) PROJECT NAME PO #	sh charges authorized by:	 	1392		kim	1 /21			6300		any Of E. Galer	Addre
Ken Nogelre SAMPLERS (signature)	standard turnaround RUSH		Dd				CT NAME		ir on the man		PRS Environ	, .
	Page # d of d TURNAROUND TIME		, ,			ature	ERS-(signa	SAMPL		Tre	ж S	Repoi

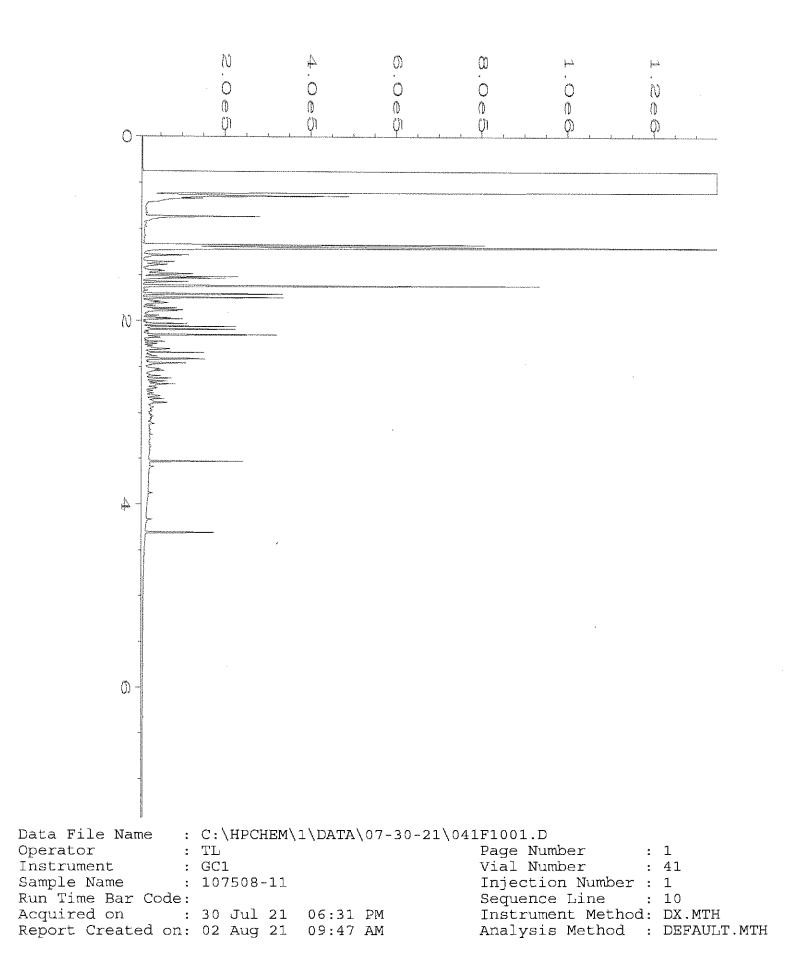


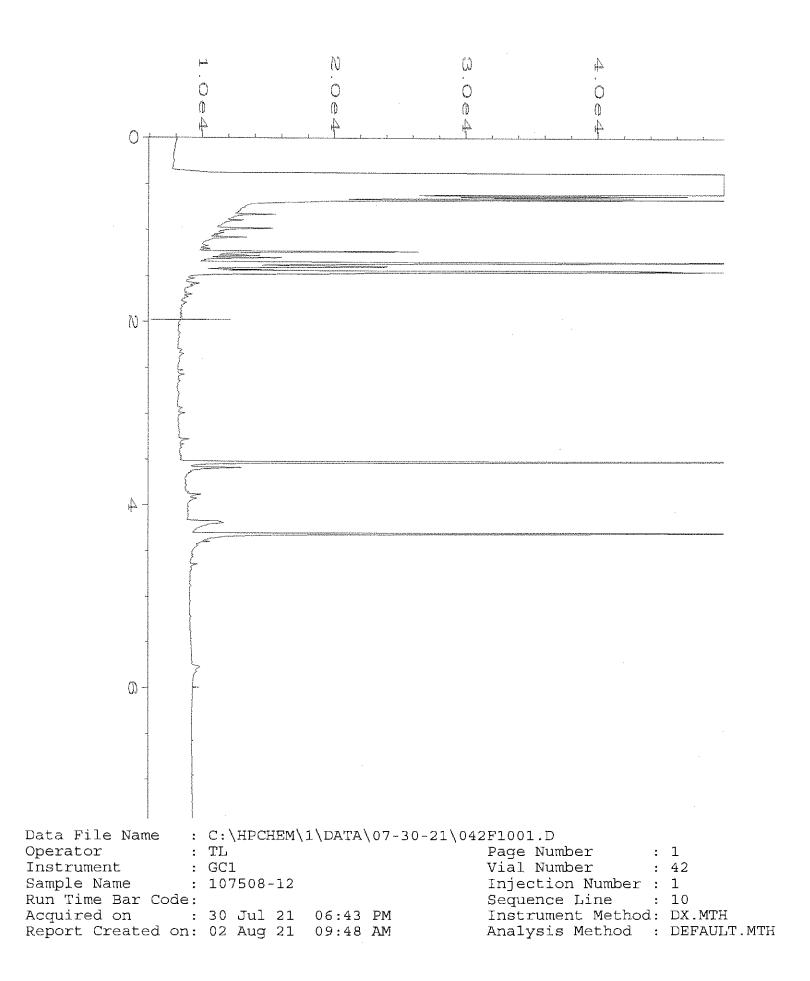


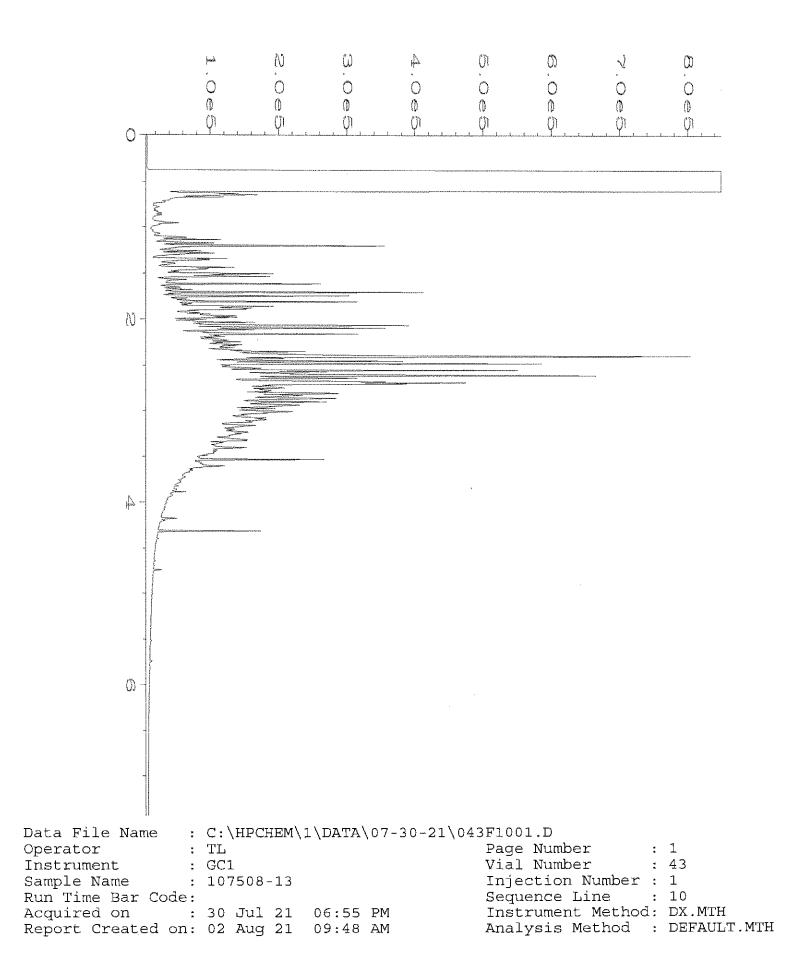


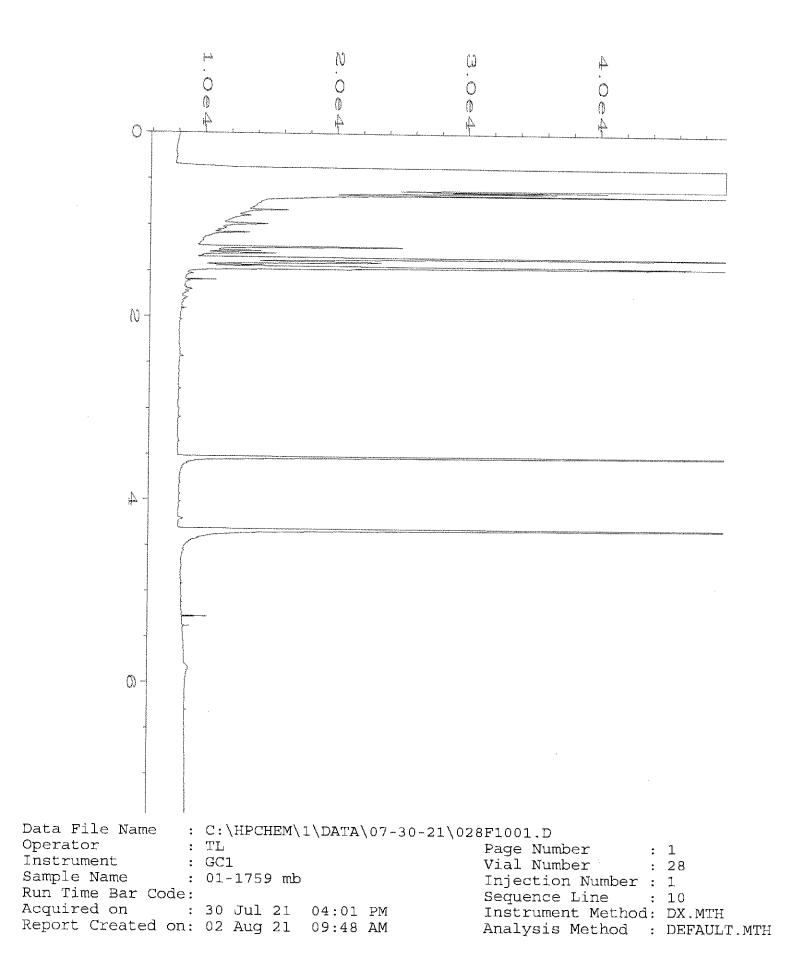


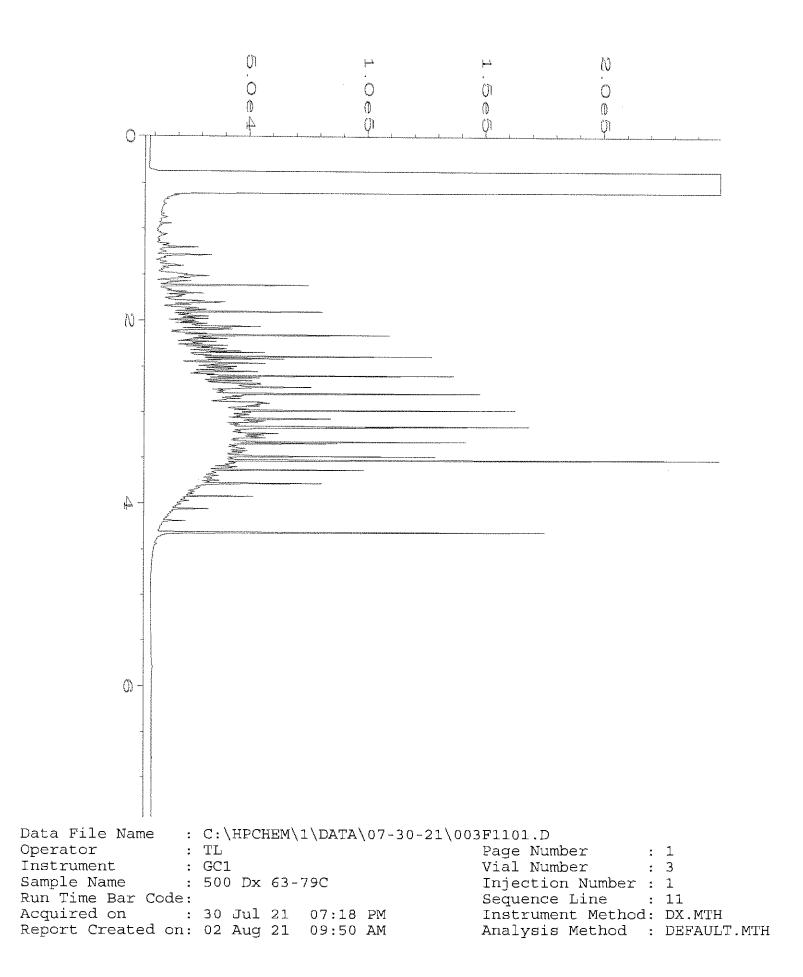



Ъ.,









ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 9, 2021

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the additional results from the testing of material submitted on July 30, 2021 from the Coleman Oil Yakima 41392, F&BI 107508 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures PBS0809R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 30, 2021 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima 41392, F&BI 107508 project. Samples were logged in under the laboratory ID's listed below.

107508 -01MW-1107508 -02MW-2107508 -03MW-4107508 -04MW-6107508 -05MW-7107508 -06MW-9107508 -07MW-10107508 -08MW-11107508 -09MW-13107508 -10MW-14107508 -11MW-15
107508 -03MW-4107508 -04MW-6107508 -05MW-7107508 -06MW-9107508 -07MW-10107508 -08MW-11107508 -09MW-13107508 -10MW-14
107508 -04 MW-6 107508 -05 MW-7 107508 -06 MW-9 107508 -07 MW-10 107508 -08 MW-11 107508 -09 MW-13 107508 -10 MW-14
107508-05MW-7107508-06MW-9107508-07MW-10107508-08MW-11107508-09MW-13107508-10MW-14
107508 -06 MW-9 107508 -07 MW-10 107508 -08 MW-11 107508 -09 MW-13 107508 -10 MW-14
107508 -07 MW-10 107508 -08 MW-11 107508 -09 MW-13 107508 -10 MW-14
107508 -08MW-11107508 -09MW-13107508 -10MW-14
107508 -09MW-13107508 -10MW-14
107508 -10 MW-14
107508 -11 MW-15
101000-11 10100-10
107508 -12 MWBNSF1
107508 -13 MW-Dup

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/21 Date Received: 07/30/21 Project: Coleman Oil Yakima 41392, F&BI 107508 Date Extracted: 07/30/21 Date Analyzed: 08/05/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

Surrogate

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 41-152)
MW-1 107508-01	4,400	<250	100
MW-2 107508-02	2,000	<250	103
MW-4 107508-03	230	<250	68
MW-6 107508-04	960 x	<250	102
MW-7 107508-05	<50	<250	118
MW-9 107508-06	<50	<250	97
MW-10 107508-07	<50	<250	97
MW-11 107508-08	860	<250	102
MW-13 107508-09	150	<250	101
MW-15 107508-11	800 x	<250	95
Method Blank 01-1759 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/21 Date Received: 07/30/21 Project: Coleman Oil Yakima 41392, F&BI 107508

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 1	Laboratory Contr	ol Sample	e Silica Gel			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	79	84	63-142	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

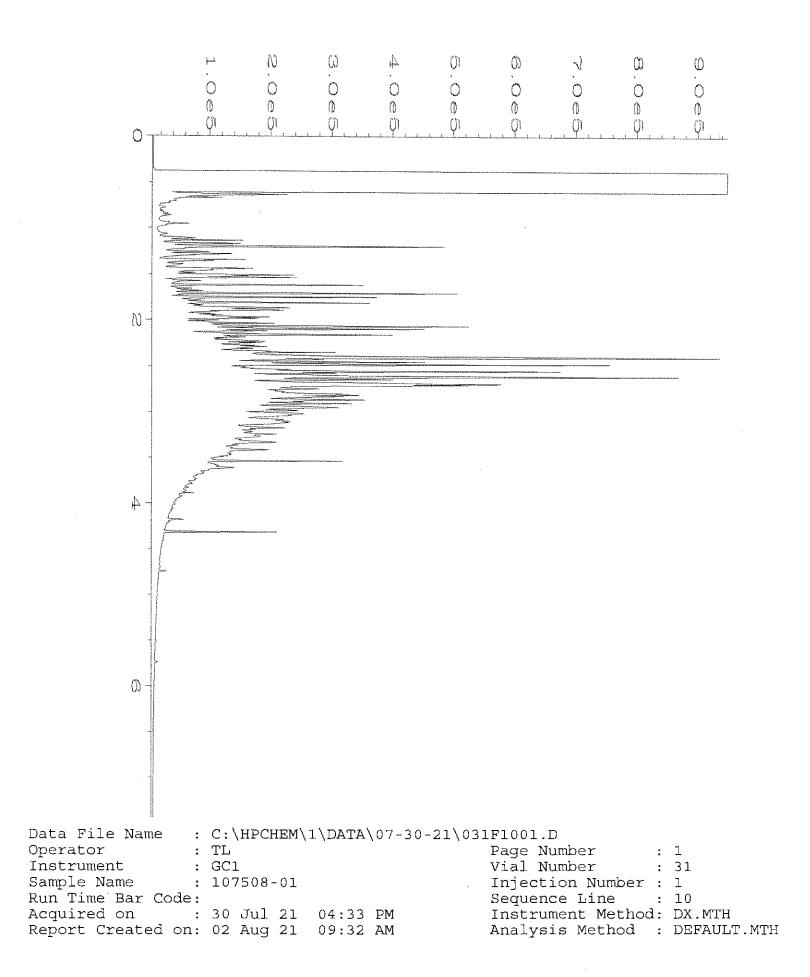
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

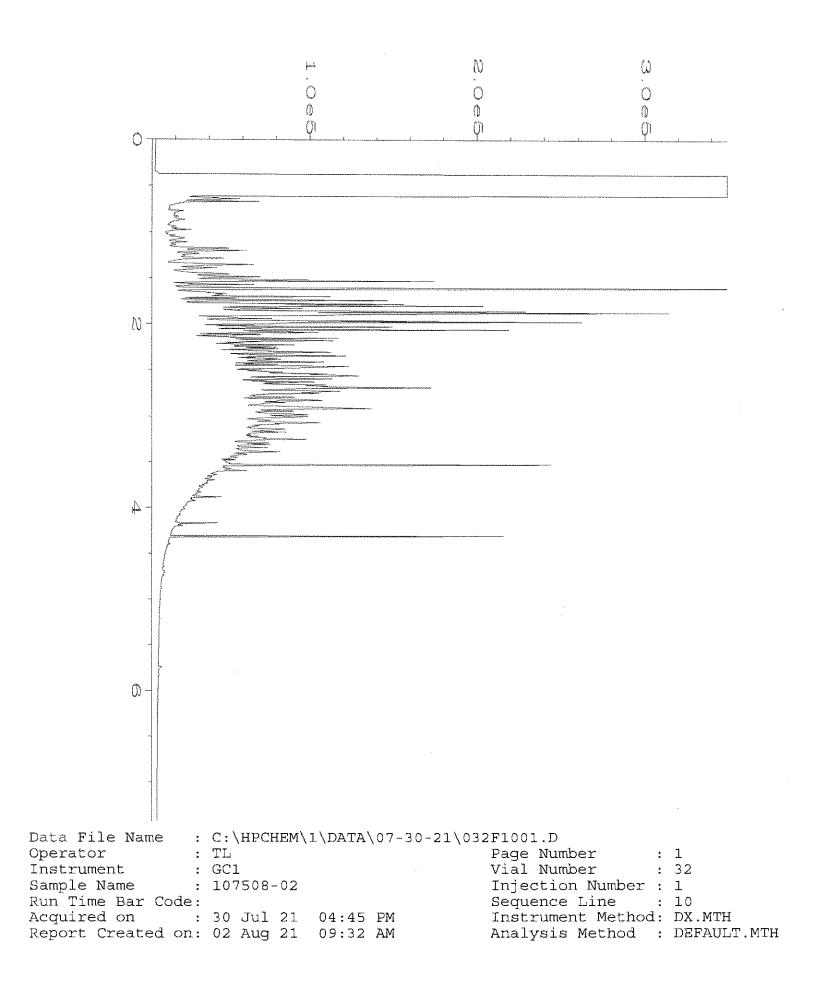
lc - The presence of the analyte is likely due to laboratory contamination.

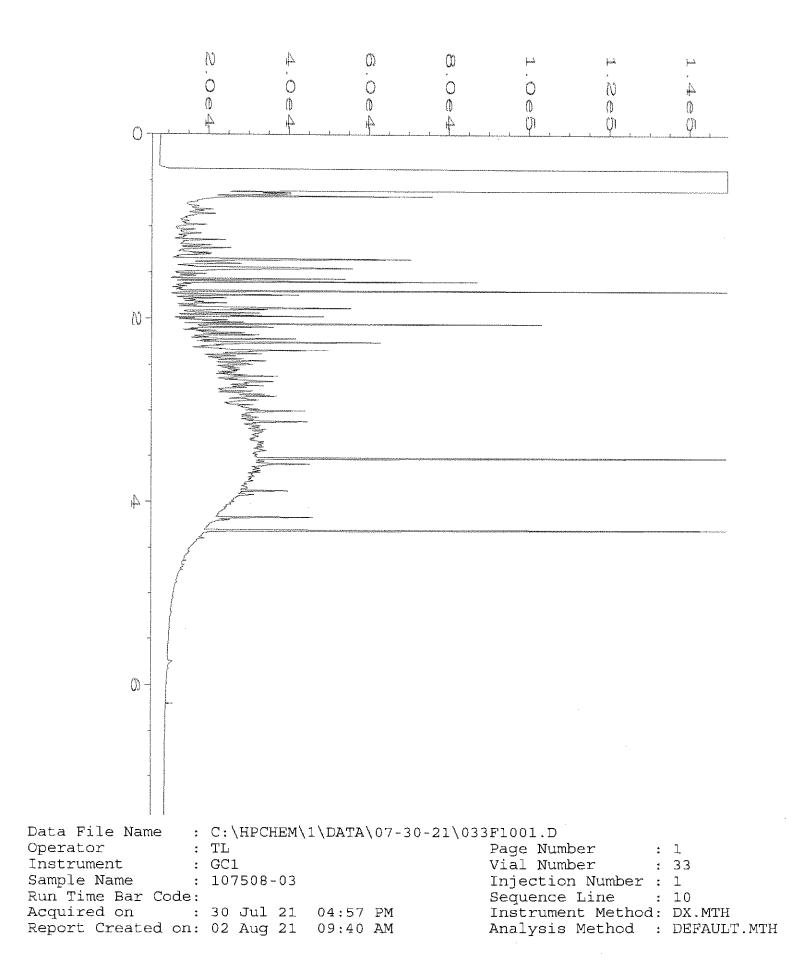
L - The reported concentration was generated from a library search.

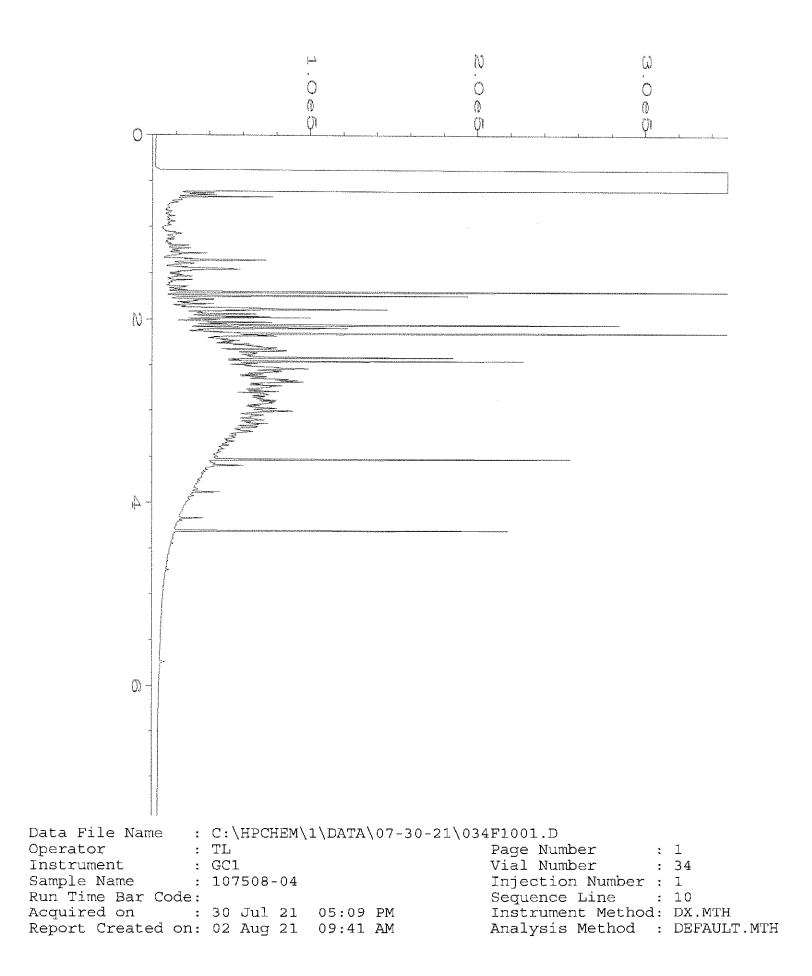
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

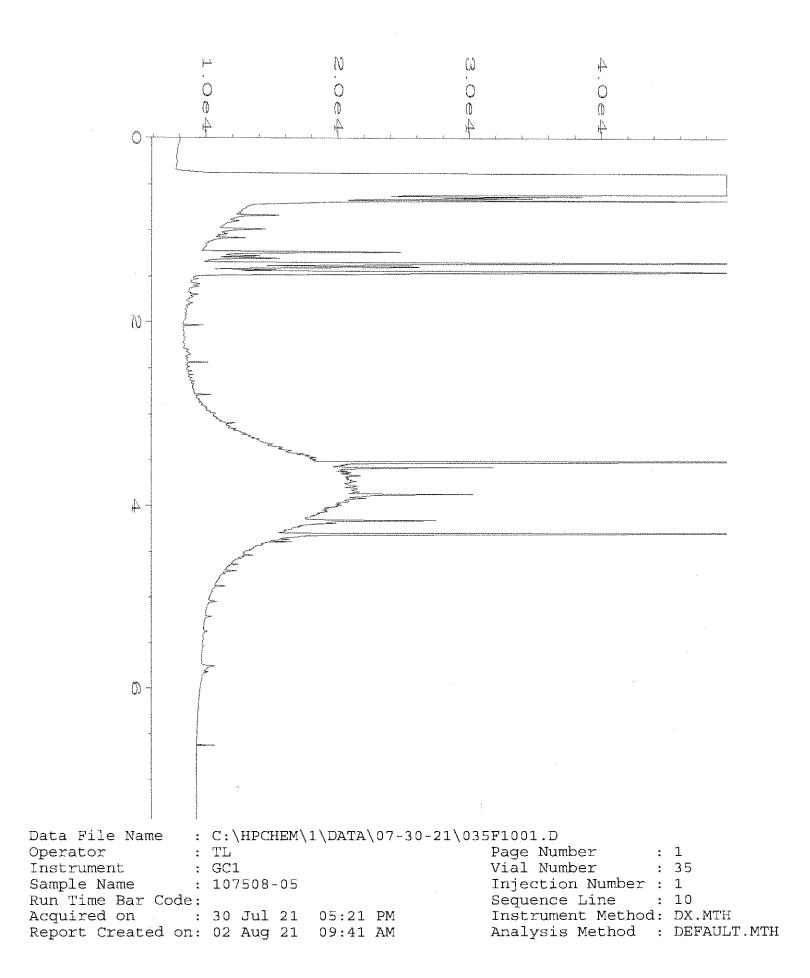
pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

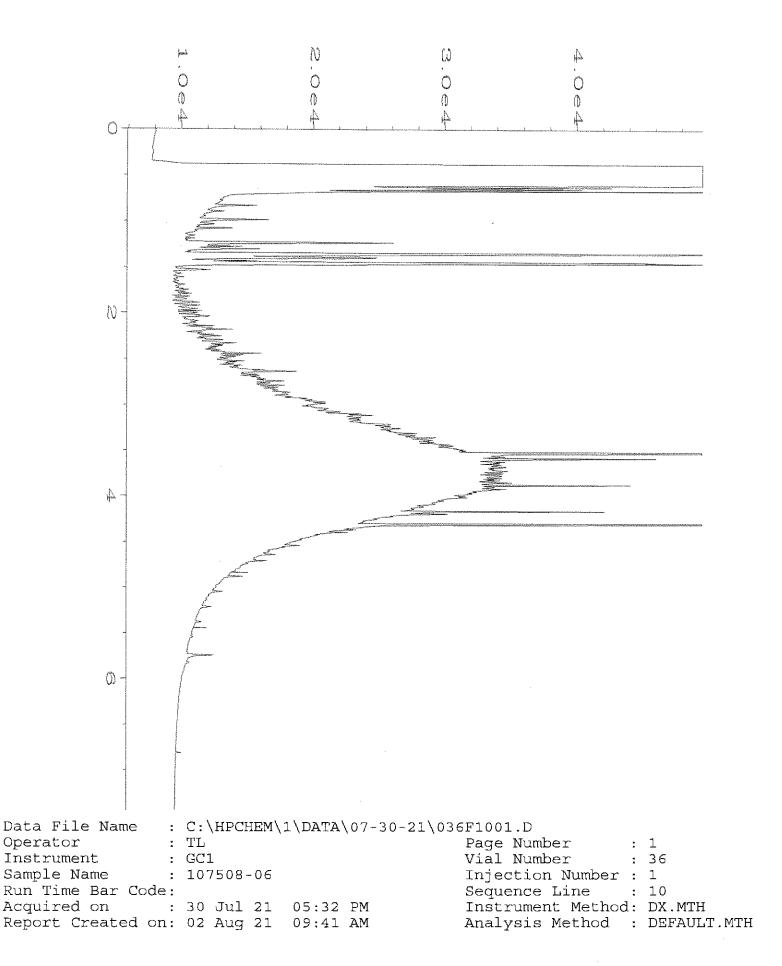

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

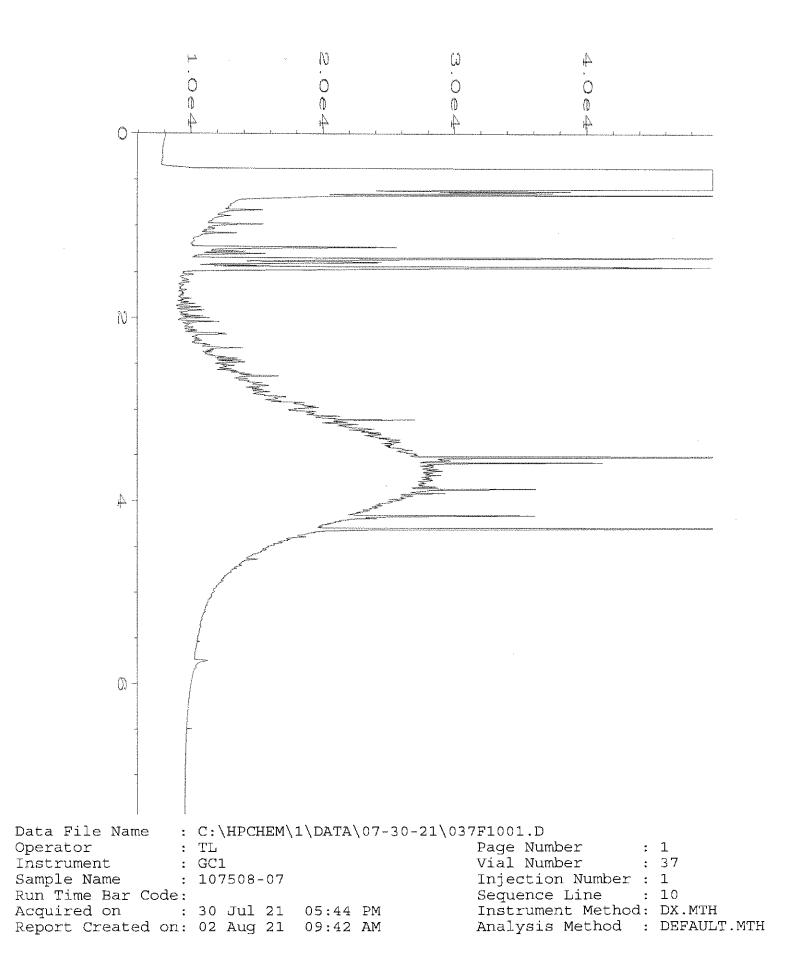

vo - The value reported fell outside the control limits established for this analyte.

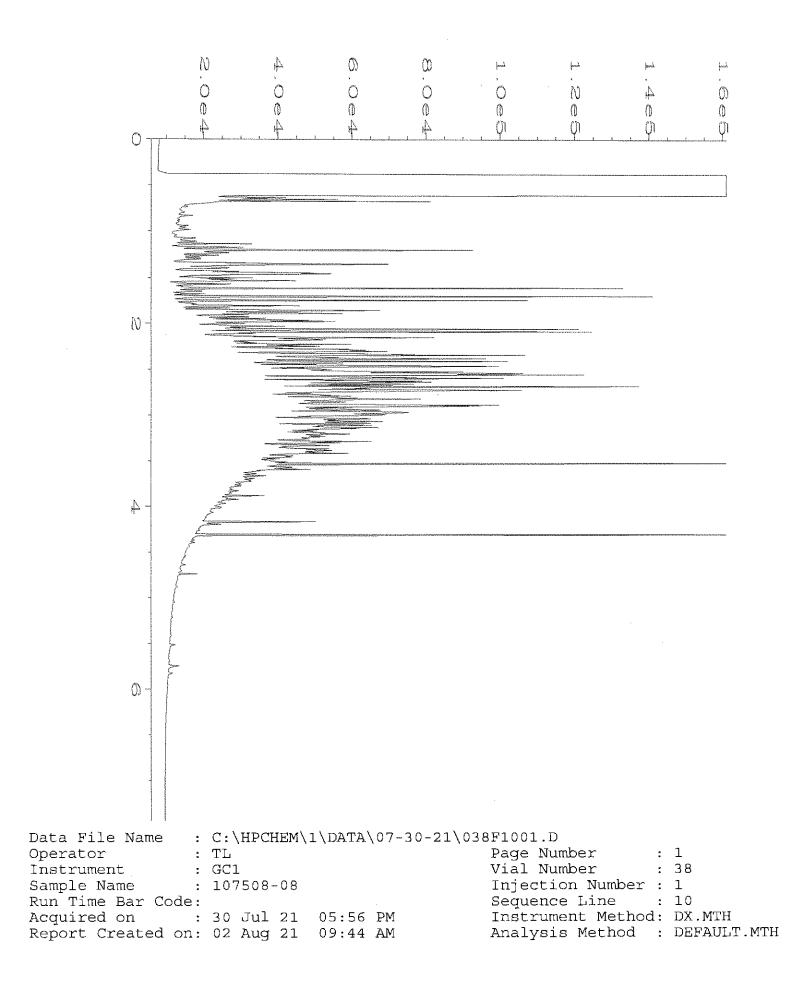

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

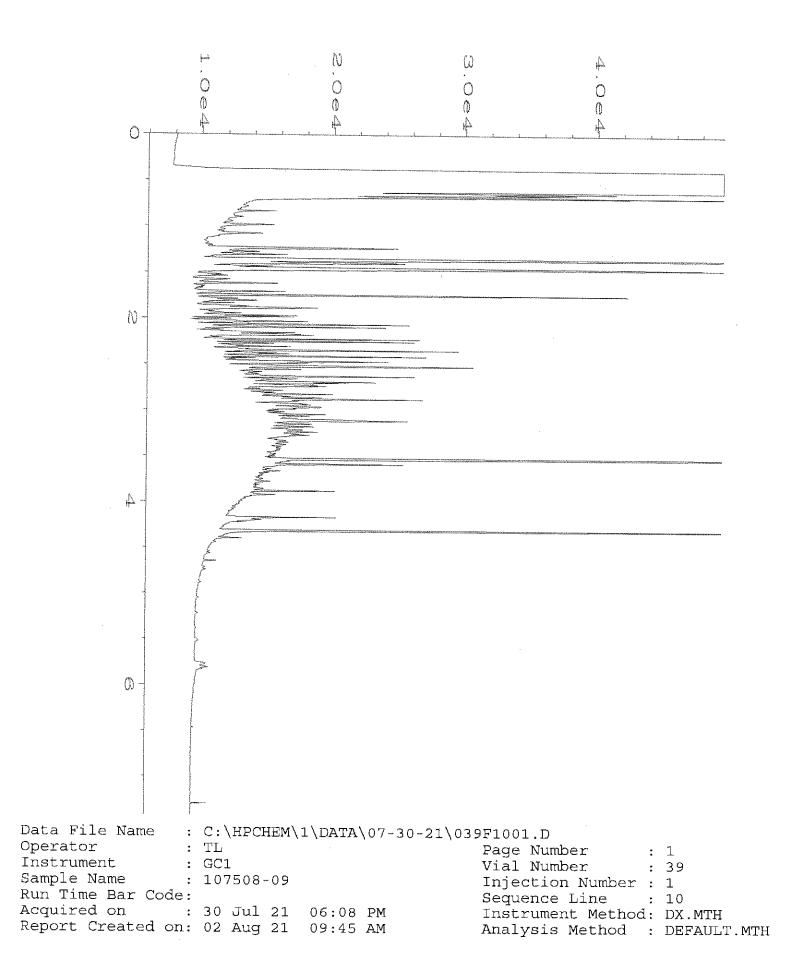

2/20/11/12/2				Received by: UNIAN Child	Received by	Ph. (206) 285-8282
ſ	Samples received at	an **		d by:	Relinquishe	Seattle, WA 98119-2029
7/29/21 1600			0 7053	x: 77 43 9790	Received by: Feed Ex :	3012 16th Avenue West
7/29/21 1600	PBs	Patrick Brice	Sol Sol	Les 1	-	Friedman & Bruya, Inc.
DATE TIME	COMPANY	PRINT NAME		SIGNATURE		í
		TXXX HIT	0858	16/86/2 1	10	MW-14
	•	XXX H	9180	1e/8e/L	00	MW-13
	•	XXX H	loyy	16/86/1	30	MW-11
	•	XXX h	1335	10/Te/T	40	MW-10
	•	XXX HII	1351	1/0/1/9/	60	MW-9
	•		8 h.h.l	16/86/1	50	MW-7
		XXX	1515	107/07/01	04	MW-6
	•	XX H XX	1610	1/07/01	03	MW-4
34 15/3/8		XXX H	1350	1018e/1	S	e-mW
• per KN	•	W X X H XXX	1933 W	10/8c/1 04	0)	MW-1
Notes	VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID	Time S Sampled	Lab ID Sampled	5	Sample ID
	ANALYSES REQUESTED	AN				
Default: Dispose after 30 days	Default	cific RLs? - Yes / No	Project spe	Nogeire@Posu	Bmail Ker	Phone 509-572-8163 Email Ken. Noger re or Swal Project specific RLs? -
SAMPLE DISPOSAL C Archive samples	INVOICE TO		REMARKS	CO186 V/	<u>HIe, W</u>	City, State, ZIP Segthle, WA
WStandard turnaround □ RUSH Rush charges authorized by:	PO # 28 Stan 1 RUS Rush cl	n Oil Yahima 41399	Coleman Oi	& Environment		Company PBS Engineer Address 214 E. Galer
D		SAMPLERS (signature)	SAME	n de marchen de la companya de la co	Noseire	Report To Ken 1
WW	ME 7/30/21 EO-	CUSTODY	SAMPLE C			805491

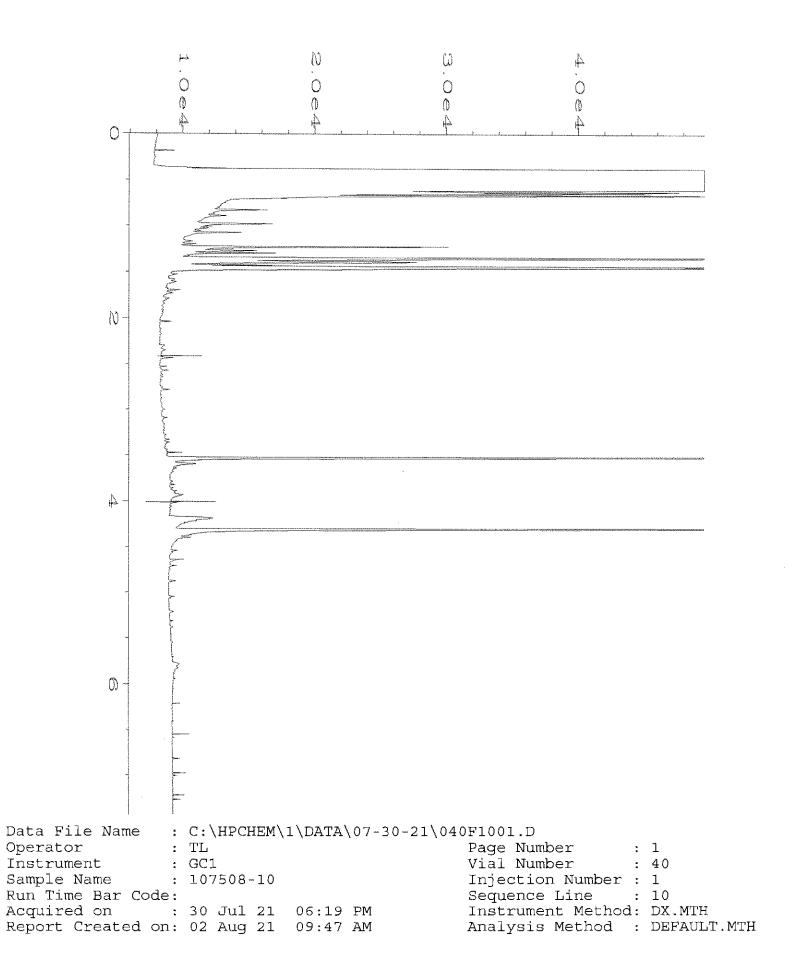

Mogelree SANUTLINGSSTRUTTING Binearrive 3: Environmental PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME Date Project specific PLST Yes / No Emailkean Afgeire actions in the structure sampled Time Sampled Lab ID Date Sampled Time Sampled J1/3 J1/38/a1 J2 J1/38/a1 J3 J1/38/a1 J4 J2 J4 J2 J5 J1/38/a1 J4 J2 J5 J2 J4 J2 J5 J2 J5 J2 J4 J2 J4 J2 J5 J2 J4 J2 J5 J2 J5 J2 J4 J2 J4 J2 <t< th=""><th>09:55</th><th>Samples received at $\frac{4 \text{ oc}}{7/30/21}$</th><th>Samples BT</th><th>~57</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Will Radford</th><th></th><th><i>·</i></th><th>Porthold</th><th>Received by: WUL Control</th><th>·····</th><th>Seattle, WA 98119-2029 Ph. (206) 285-8282</th></t<>	09:55	Samples received at $\frac{4 \text{ oc}}{7/30/21}$	Samples BT	~57							Will Radford		<i>·</i>	Porthold	Received by: WUL Control	·····	Seattle, WA 98119-2029 Ph. (206) 285-8282
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1600	17/99/91				ł					n - 14				EX		12 Ion Avenue West
Moge/reg SAMUE/JECT NAME aller St. Lawissemented PROJECT NAME aller St. Lawissemented Colorian O / Yaluina, He, WA 951 CO REMARKS Emailken Algeirs Gebaussien Project specific Rt s? - Yes / No Involue To Date Lab ID Sampled Sampled Sample 13 7/98/91 14 X 15 7 16 7 17 7 19 7 19 7 19 19 19 19 19 19 19 <td>1600</td> <td>161/201</td> <td></td> <td>Ň</td> <td>B</td> <td></td> <td></td> <td></td> <td>6</td> <td>Bris</td> <td></td> <td>Petri</td> <td></td> <td></td> <td>nquished by:</td> <td>ů.</td> <td>iedman & Bruya, In</td>	1600	161/201		Ň	B				6	Bris		Petri			nquished by:	ů.	iedman & Bruya, In
PROJECT NAME Project specific Rie? - Yes / No Project specific Rie? - Yes / No Project specific Rie? - Yes / No Project specific Rie? - Yes / No Project specific Rie? - Yes / No Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / No Jars INVOICE TO Project specific Rie? - Yes / Sc Jars INVOICE TO Project specific Rie? - Yes / Sc Jars INVOICE TO <th>MIL</th> <th></th> <th>COMPA</th> <th></th> <th></th> <th></th> <th></th> <th>ME</th> <th>NAI</th> <th>RIN</th> <th>P</th> <th></th> <th></th> <th>VATURE</th> <th>(DIS</th> <th></th> <th></th>	MIL		COMPA					ME	NAI	RIN	P			VATURE	(DIS		
PROJECT NAME PROJECT NAME Project specific RLs? VOCs VOCs VOCs V V VOCs <						├───├ ──	 	<u> </u>	├ ── ├ ──	 							
PROJECT NAME PROJECT NAME Project specific RLs? Yes Nme Sampled Type Jars NWTPH-Dx NWTPH-Gx X X You						-		-			*****						
PROJECT NAME PROJECT NAME PROJECT NAME Project specific RLs? Valance Sample Time Sample Type Jars NWTPH-Dx NWTPH-Gx VOCs EPA 8021 VOCs EPA 8260 PAHs EPA 8082 PCBs EPA 8082 PCBs EPA 8082						1	+		<u> </u>								
SAMELE project name PROJECT NAME Coleman Coleman Coleman Project specific RLs? Yppe Jars NWTPH-Gx X YOCs PAHs PCBs											ļ						
SampledTimeSampleHolertan						<u> </u>		<u> </u>									n na mana mana mana mana mana mana mana
PROJECT NAMEPROJECT NAMEPROJECT NAMEPROJECT NAMEColertan <td></td> <td></td> <td></td> <td></td> <td> </td> <td>*</td> <td><u> </u></td> <td> </td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					 	*	<u> </u>			 							
PROJECT NAMEPROJECT NAMEPROJECT NAMEPROJECT NAMEColertan <td></td> <td></td> <td></td> <td></td> <td>1</td> <td><u> ``*</u></td> <td></td> <td>Ê</td> <td>Ê</td> <td></td> <td></td> <td>k</td> <td>00 6</td> <td></td> <td>¢</td> <td></td> <td>MW-DUP</td>					1	<u> ``*</u>		Ê	Ê			k	00 6		¢		MW-DUP
Image: Sampled Time Sampled Type Jars Type Jars NWTPH-Dx NWTPH-HCID ANALYSES VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 D. */SG					t			Ŕ	Ŗ		L.C.		1460	·			MWBNSF1
Sampled Time Sampled Project specific RLs? - Yes / No Project specific RLs? - Yes / No Type Jars Yalking NWTPH-Gx Jars H (3 9 7) NWTPH-Gx INVOICE TO INVOICE TO PCBs EPA 8082 PCBs EPA 8082 D. */SG Jars INVOICE TO			•				*		Ř			when			A=A		MW-15
PROJECT NAME PROJECT NAME Coleman ON Yalama 41390 REMARKS Project specific RLs? - Yes / No ANALYSES REQUEST	l fes	No.	······································							[Sampl Type	Time Sampled	Date Sampled	Lab ID		Sample ID
PROJECT NAME PROJECT NAME Coleman Oil Yalaina 41397 REMARKS Project specific RLs? - Yes / No		TED	EQUES	ES E	SATA	AN				Ļ	ir.				1		
2 Environmental 2 Environmental Suite 300 A 98102 REMARKS REM	r 30 da	Default: Dispose after						o` 	/ N		RLs? .	pecific]		مهاري معادمه	Ken Nogered	<u>•</u> S Email	hone <u>509-572-816</u>
 SAMPLESSIGNATURE Environmental Suite 300 <l< td=""><td>SAL</td><td>SAMPLE DISPO</td><td></td><td>E TO</td><td>OICI</td><td>INV</td><td></td><td></td><td></td><td></td><td>ugh i</td><td>KS</td><td>REMAR</td><td>601</td><td>-WA 98</td><td>attle</td><td>)ity, State, ZIP</td></l<>	SAL	SAMPLE DISPO		E TO	OICI	INV					ugh i	KS	REMAR	601	-WA 98	attle)ity, State, ZIP
The second secon	d by:	D RUSH Rush charges authorize				4	175		ima	Yale) - E	2) VIE		Jon 200	ring ? Env St. Suite	Galer	Jompany <u>PBSE</u> Iddress <u> </u>
	IME	TURNAROUND 1							١Ļ	B		No.			eire	Nog	Report To Ken

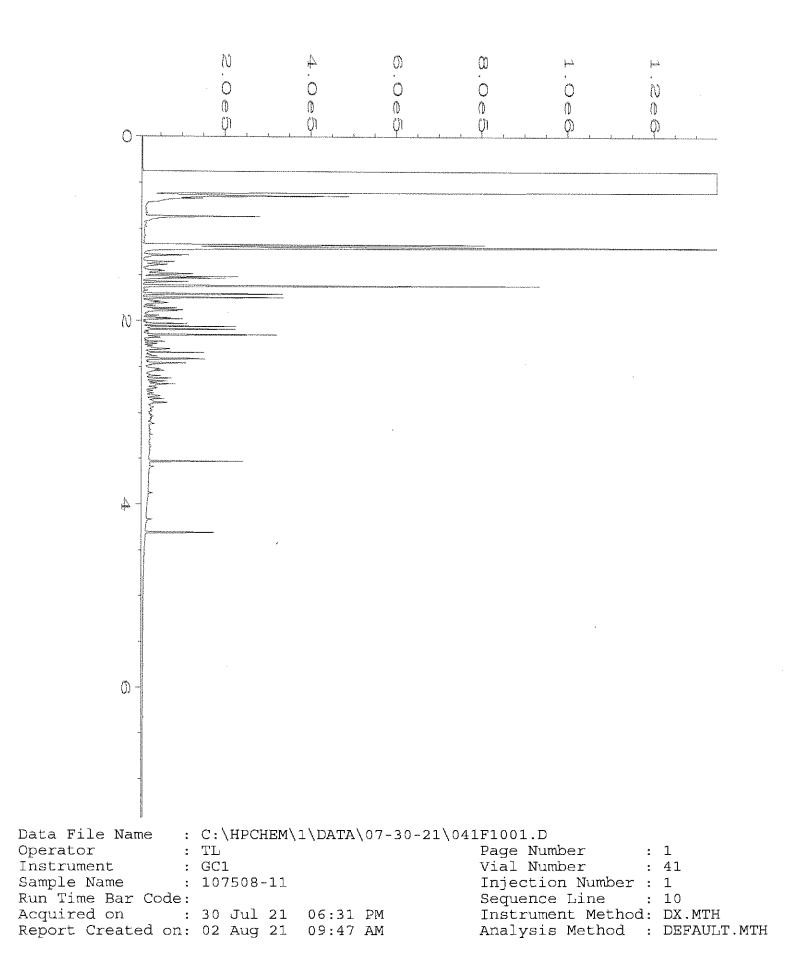


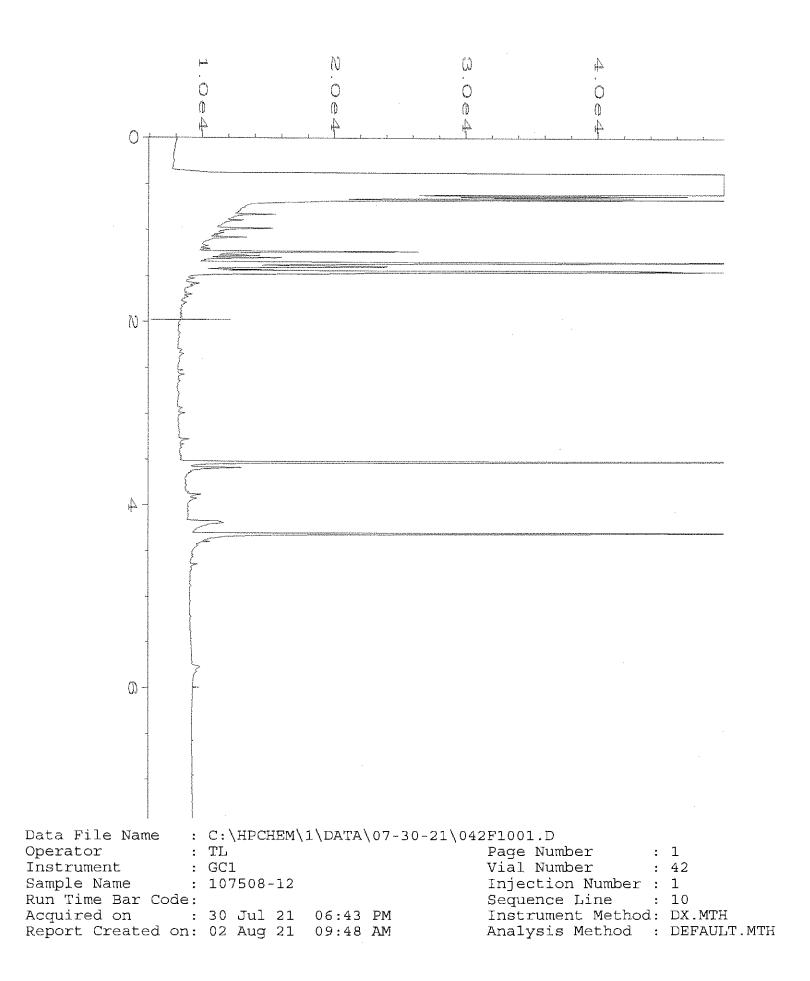


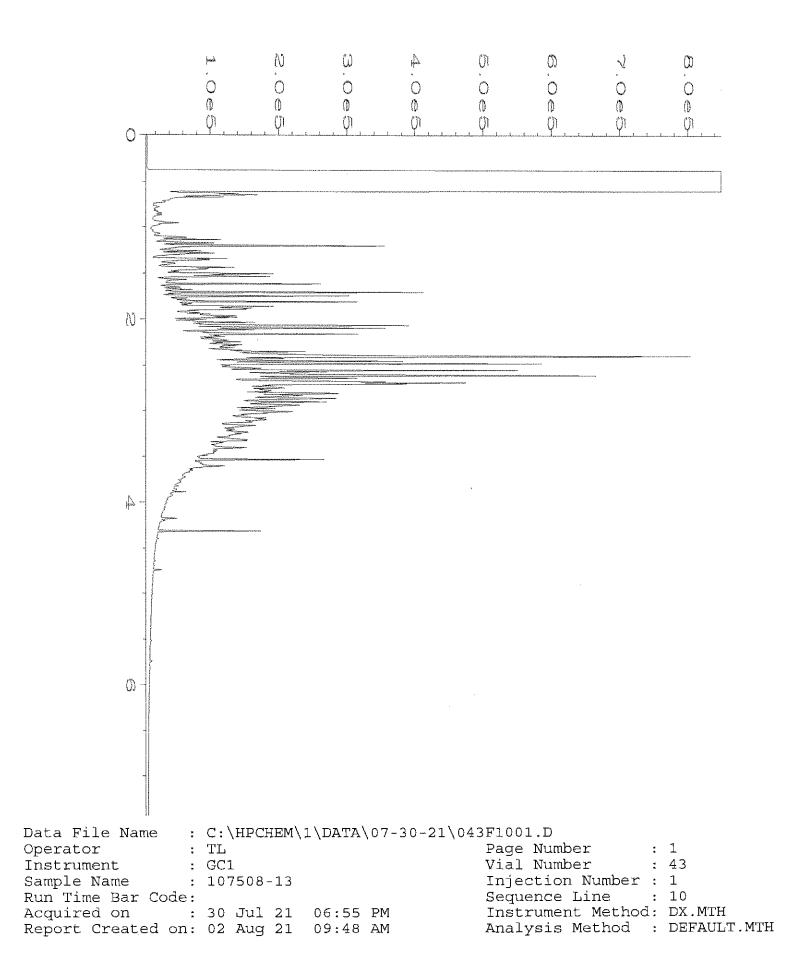


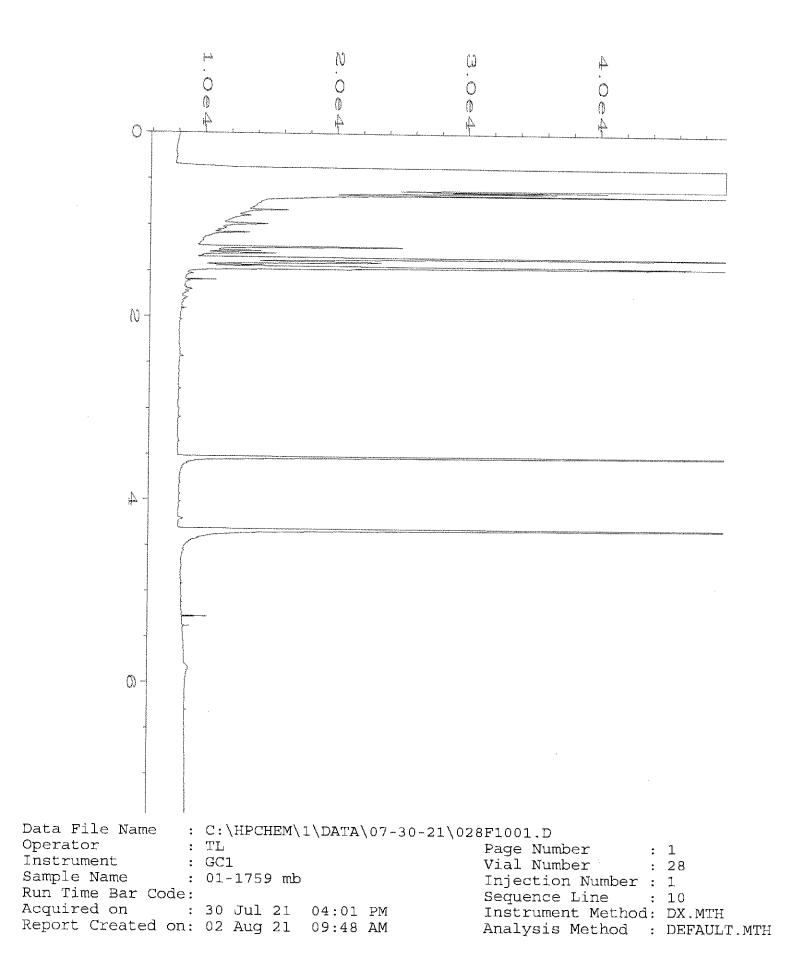


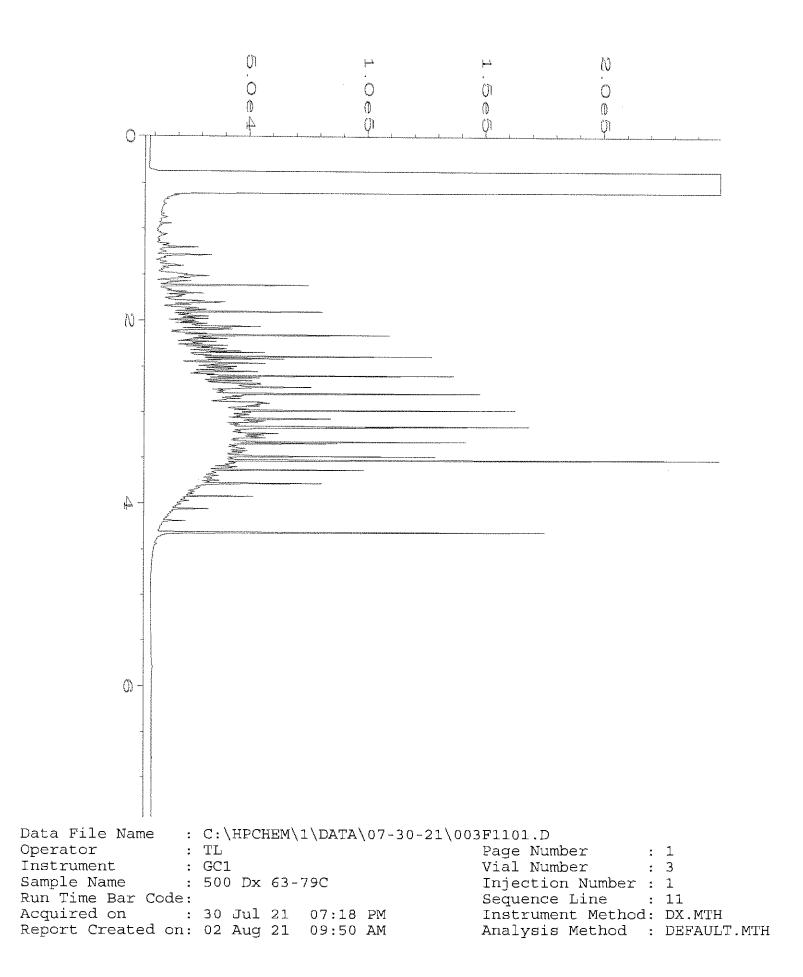



Ъ.,









ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 3, 2022

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on February 25, 2022 from the Coleman Oil Yakima 41392, F&BI 202470 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0303R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 25, 2022 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima 41392, F&BI 202470 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
202470 -01	MW16-5
202470 -02	MW16-12

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/25/22 Project: Coleman Oil Yakima 41392, F&BI 202470 Date Extracted: 02/28/22 Date Analyzed: 03/01/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW16-5 202470-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
MW16-12 202470-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	79
Method Blank 02-345 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	97

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/25/22 Project: Coleman Oil Yakima 41392, F&BI 202470 Date Extracted: 02/25/22 Date Analyzed: 02/25/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW16-5 202470-01	<50	<250	94
MW16-12 202470-02	<50	<250	95
Method Blank 02-528 MB	<50	<250	94

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/25/22 Project: Coleman Oil Yakima 41392, F&BI 202470

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 202438-01 (Duplicate)

	Reporting	Sample Result	Duplicate Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	75	69-120
Toluene	mg/kg (ppm)	0.5	75	70-117
Ethylbenzene	mg/kg (ppm)	0.5	80	65 - 123
Xylenes	mg/kg (ppm)	1.5	79	66-120
Gasoline	mg/kg (ppm)	20	80	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/25/22 Project: Coleman Oil Yakima 41392, F&BI 202470

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 202460-01 (Matrix Spike) Sample Percent Percent Reporting Spike Result RPD Recovery Recovery Acceptance Analyte Units Level (Wet Wt) MSMSD Criteria (Limit 20) **Diesel Extended** mg/kg (ppm) 5,000 <50 86 88 73-135 $\mathbf{2}$ Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Analyte Level LCS Criteria Diesel Extended 5,000 86 74-139 mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Image: A state of the state	Seattle, WA 98119-2029 Relinquished by: N Ph. (206) 285-8282 Received by: N N	230213	Friedman & Bruya, Inc. Relingeright by:	SIGNATURE PRINT NA									P 20 21 -9.	MU16-5 01 A-0 2/24/2 908 521 X	Sample ID Lab ID Date Time Sample # of # of MWT Sampled Sampled Sampled Type Jars Type		Phone SON 5 728 Email Kn. nay crices Abs to project Specific RLs - Yes / No	•	s Oil Yal
---	---	--------	---	--------------------	--	--	--	--	--	--	--	--	-------------	--------------------------------	--	--	---	---	-----------

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 4, 2022

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on March 29, 2022 from the Coleman Oil-Yakima 41392, F&BI 203501 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0404R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 29, 2022 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil-Yakima 41392, F&BI 203501 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
203501 -01	MW-10
203501 -02	MW-14
203501 -03	MW-16
203501 -04	MWBNSF-1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/22 Date Received: 03/29/22 Project: Coleman Oil-Yakima 41392, F&BI 203501 Date Extracted: 03/30/22 Date Analyzed: 03/31/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW-10 203501-01	<1	<1	<1	<3	<100	104
MW-14 203501-02	<1	<1	<1	<3	<100	103
MW-16 203501-03	<1	<1	<1	<3	<100	88
MWBNSF-1 203501-04	<1	<1	<1	<3	<100	102
Method Blank 02-625 MB	<1	<1	<1	<3	<100	85

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/22 Date Received: 03/29/22 Project: Coleman Oil-Yakima 41392, F&BI 203501 Date Extracted: 03/30/22 Date Analyzed: 03/30/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx**

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-10 203501-01	240 x	<250	134
MW-14 203501-02	110 x	<250	148
MW-16 203501-03	190 x	<250	144
$\begin{array}{c} \textbf{MWBNSF-1} \\ \scriptstyle 203501\text{-}04 \end{array}$	<50	<250	134
Method Blank 02-761 MB2	<50	<250	148

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/22 Date Received: 03/29/22 Project: Coleman Oil-Yakima 41392, F&BI 203501

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 203466-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	95	65-118
Toluene	ug/L (ppb)	50	95	72 - 122
Ethylbenzene	ug/L (ppb)	50	104	73-126
Xylenes	ug/L (ppb)	150	102	74-118
Gasoline	ug/L (ppb)	1,000	92	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/22 Date Received: 03/29/22 Project: Coleman Oil-Yakima 41392, F&BI 203501

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	104	63-142	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	3012 16 th Avenue West Seattle, WA 98119-2029	Friedman & Bruya, Inc.	}					MWBNSF-1	MW-16	MW-14	MW-10	Sample ID		Phone 206-766-7614 F	City, State, ZIP Seattle, Washington 98102	Address 214 E Galer St, Unit 300	Company, PBS Engineering and Environmental	2035 Repart To Ken Nageire
Received by: 1	Received by:	Relinquisted by:		- - -			_	64 1	50	02	01 1-0	Lab ID		Bmail ken.nogeire@pbsusa.com	hington 98102	300	Environmental	
dral.	Kilmix	B	SIGNATURE								3/25/22	Date Sampled		susa, com				
								1545	14115	IUSO	02()	Time Sampled		- Project S	- REMARKS	Colema	- PROJE	
Toris		Wes									Ulater	Sample Type		Project Specific RLs -	KS	Coleman Oil - Yakima	PROJECT NAME	SAMPLE CHAIN OF CUSTO
		Wesley Garcia	PRINT NAME			-	250				2	# of Jars		3 - Yes		ima		OF
		arcia	TNA	 				\times	\times	×	×	NWTPH-Dx		s / No			~	CUS
			ME		 		1	XX	× ×	\times	\times	NWTPH-Gx						
-								<u> </u>				BTEX EPA 8021 VOCs EPA 8260						
										- ,		PAHs EPA 8270	ANA		II	41392		20
				 							s	PCBs EPA 8082	LYSI		INVO	92	P	
ח		PB	Q	 	 								ANALYSES REQUESTED		INVOICE TO		PO #	22
ח - 0	50	0	COMPANY	 									QUE		Ő			Ń
	1ms		ANY	 									STED			l R	1	······································
) les				 									Archiv Other_	Dispo	lsh ch	Stand	P
$\frac{1}{\alpha}$		3/									1			ve Sa	AMP] se aft	arges	lard J	Page # TURNA
122	Samples received at	3/28/22	DATE						Voa brol The	14:58	1 voa bronen Twe 3/29	X per KN 3/22/22 ME Notes		Archive Samples Other	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	Standard Turnaround RUSH	Page # (of)
3/20/22 9:32	14	1500	TIME					ч. -	broken Tuc 3122	7wc 3129	а Қ. Ş	いいの		water and a start water and a	SAL	id by:		VW3

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 6, 2022

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the additional results from the testing of material submitted on March 29, 2022 from the Coleman Oil-Yakima 41392, F&BI 203501 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures PBS0406R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 29, 2022 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil-Yakima 41392, F&BI 203501 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
203501 -01	MW-10
203501 -02	MW-14
203501 -03	MW-16
203501 -04	MWBNSF-1

The NWTPH-Dx surrogate in the method blank exceeded the acceptance criteria. Nothing was detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/06/22 Date Received: 03/29/22 Project: Coleman Oil-Yakima 41392, F&BI 203501 Date Extracted: 03/30/22 Date Analyzed: 04/04/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-10 203501-01	<50	<250	121
MW-14 203501-02	<50	<250	130
MW-16 203501-03	<50	<250	129
Method Blank 02-761 MB2	<50	<250	141 vo

ENVIRONMENTAL CHEMISTS

Date of Report: 04/06/22 Date Received: 03/29/22 Project: Coleman Oil-Yakima 41392, F&BI 203501

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel										
			Percent	Percent						
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD				
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)				
Diesel Extended	ug/L (ppb)	2,500	116	116	61-133	0				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16 th Avenue West	Friedman & Bruva. Inc.					×			MWBNSF-1	MW-16	MW-14	MW-10	Sample ID		Phone 206-765-7614	City, State, ZIP Seatte, Washington \$6102	Address 214 E Galer St, Unit 300	Company PBS Engineering and Environmental	Report To Ken Nogeire	2035E	a
Received by:	Relinquished by:	Received by:	Relinquished by:	277							loy 1	\$0	02	01 1-0	Lab ID		Bmail ken.nogeire@pbsusa.com	hington 98102	300	l Environmental		Ž	ŧ
Malac	Mart		MULTINITO	TNIATTING										3/25/22	Date Sampled		usa,com		a manana waxaa				
*										1.	1545	911/2	450	02()	Time Sampled		- Project	- REMARKS	Colema	- PROJE	SAMPL	SAMPLE CHAIN OF CUSTODY	*
Tokala			We											Water	Sample Type		Project Specific RIs -	lKS	Coleman Oll - Yakima	PROJECT NAME	SAMPLIERS (synature	CHAIN	
â			Weslev Garcia						-	255				1	# of Jars				lima		(auna	OF	*
h			ev Garcia								×	\mathbf{x}	×	\times	NWTPH-Dx		Yes / No					CU	
historia			TANE.	A 7 4 10							×	×	\times	×	NWTPH-Gx		No				4	OTS	
5						••••••••		 		<u> </u>	~	×	\times	×	BTEX EPA 8021						/	DY	
5									· ·					ļ	VOCs EPA 8260 PAHs EPA 8270	AN			41			0	
		-		┥┣				<u> </u>		<u> </u>				 	PCBs EPA 8082	ALY		INV	41392		1	\mathbb{W}	
Ţ	a da se de la composition de la composi		PBS									0	ତ	ତ	D×.₩/SG	ANALYSES REQUESTED		INVOICE TO		PO #		3.29.22	
F+B	ŝ		MILA			*****										San						2	
	dar		TAT				-		<u> </u>							TED	0.2	• ۲	Rus	মজ			
	हिङ्ग					-											Other	AS Sodsi	;b cha	Standa RUSH	TU	j	
3/2	Samples received at	3/28/22					- - -		,	6		l z	11	17	×		Other	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	Standard Turnaround RUSH	TURNAROUND TIME	:	3
9/22	ed a	122	UALE				-	-	11/1	4		24	14:58	230	X per KN 3/126/121. Notes		100	DISPO 30 day	thoriz	narour	UND.		
3/29/22 9:32		1500	TIMT T	Imman			×		4/4/22 ME	っててい	The second se	1 you broken	3120	Ivoabrouch tue3/29	PerKN 3/2A/DL NE Notes		NA AN THE REPORT OF A CONTRACT OF	S. TVSC	ed by:	1d		-	
L <u></u>	Q	<u></u>	<u> </u>	_] L	- -		E		£		.	1		L		┵┈╌┙	L				, ,	EO2	1/112

0202

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 4, 2022

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on July 26, 2022 from the Coleman Oil-Yakima 41392, F&BI 207430 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0804R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 26, 2022 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil-Yakima 41392, F&BI 207430 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
207430 -01	MW-16
207430 -02	MW-15
207430 -03	MW-14
207430 -04	MW-10
207430 -05	MW-9
207430 -06	MW-2
207430 -07	MW-6
207430 -08	MW-1
207430 -09	MW-7
207430 -10	MW-13
207430 -11	BNSF-1
207430 -12	MW-5
207430 -13	MW-DUP

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/22 Date Received: 07/26/22 Project: Coleman Oil-Yakima 41392, F&BI 207430 Date Extracted: 08/01/22 Date Analyzed: 08/02/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-16 207430-01	<1	<1	<1	<3	<100	104
MW-15 207430-02 1/100	960	<100	580	770	14,000	100
MW-14 207430-03	<1	<1	<1	<3	<100	103
MW-10 207430-04	<1	<1	<1	<3	<100	107
MW-9 207430-05	<1	<1	<1	<3	<100	106
MW-2 207430-06 1/5	90	<5	14	20	2,300	101
MW-6 207430-07 1/20	28	<20	38	<60	4,300	103
MW-1 207430-08 1/40	810	<40	60	<120	5,100	101
MW-7 207430-09	<1	<1	<1	<3	<100	103
MW-13 207430-10	<1	<1	18	35	1,400	117
BNSF-1 207430-11	<1	<1	<1	<3	<100	104

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/22 Date Received: 07/26/22 Project: Coleman Oil-Yakima 41392, F&BI 207430 Date Extracted: 08/01/22 Date Analyzed: 08/02/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-5 207430-12 1/10	83	20	32	100	7,700	106
MW-DUP 207430-13	<1	<1	18	36	1,500	115
Method Blank 02-1716 MB	<1	<1	<1	<3	<100	101

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/22 Date Received: 07/26/22 Project: Coleman Oil-Yakima 41392, F&BI 207430 Date Extracted: 07/28/22 Date Analyzed: 07/28/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx**

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-16 207430-01	110 x	<250	123
MW-15 207430-02	1,900 x	<250	121
MW-14 207430-03	<50	<250	131
MW-10 207430-04	1,400 x	400 x	125
MW-9 207430-05	1,600 x	590 x	125
MW-2 207430-06	15,000 x	770 x	150
MW-6 207430-07	4,100 x	530 x	132
MW-1 207430-08	12,000 x	840 x	ip
MW-7 207430-09	1,200 x	350 x	ip
MW-13 207430-10	1,400 x	<250	146
BNSF-1 207430-11	160 x	<250	ip
MW-5 207430-12	48,000 x	2,100 x	146

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/22 Date Received: 07/26/22 Project: Coleman Oil-Yakima 41392, F&BI 207430 Date Extracted: 07/28/22 Date Analyzed: 07/28/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-DUP 207430-13	1,600 x	270 x	147
Method Blank 02-1851 MB	<50	<250	146

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/22 Date Received: 07/26/22 Project: Coleman Oil-Yakima 41392, F&BI 207430

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 207471-01 (Duplicate)									
	Reporting	Sample	Duplicate	RPD					
Analyte	Units	Result	Result	(Limit 20)					
Benzene	ug/L (ppb)	<1	<1	nm					
Toluene	ug/L (ppb)	<1	<1	nm					
Ethylbenzene	ug/L (ppb)	<1	<1	nm					
Xylenes	ug/L (ppb)	<3	<3	nm					
Gasoline	ug/L (ppb)	<100	<100	nm					

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	96	65-118
Toluene	ug/L (ppb)	50	97	72 - 122
Ethylbenzene	ug/L (ppb)	50	99	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	105	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/22 Date Received: 07/26/22 Project: Coleman Oil-Yakima 41392, F&BI 207430

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	111	63-142	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	·	Friedman & Bruya, Inc. Ph. (206) 285-8282		MW-13	MU-+	MV-1	MW-6	MW-2	MU-9	MW-10	MW-14	MW-15	MW-16	Sample ID		Phone 206-766-7614	City, State, ZIP Sec Hie	Address 214 EGales 54	Company MBS	a I	
Received by:	Relinquished by:	Relinquished by	SIGNATURE	17 01 71	09	08	67	06	20	12 1-19	63	02	F 0-10	Lab ID Sa		1	ACH	mit		ha cive)
X	- Ching	h La	TURE/	7/24/24 1436	1609	1202	1415	1325	1210	1201 12/21/L	1407	1218	4521 22/12/	Date Time Sampled Sampled		11- here poss Project specific RLs? -	TGIOZ REMARKS	200 WW	PROJEC	201450 SAMPLERS	SAMPLE
Hnungun		Verly (PRINT NAME	W M Kk	X Y X	C L K	K F	N K	x L	N N N	XHZ	E L X	K L X	Sample # of Type Jars NWTPH-Dx		ecific RLs? - Yes /	S	Column O. 1 - Yakac		RS (signature)	SAMPLE CHAIN OF CUSTODY
9		Jan (cn	AME	XX	XX	XK	XX	* *	XX	5	K X	хХ	XX	NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	ANALY	No	INVOICE TO	124 1134 L	<u> </u>		STODY OT
FAB Samples		P135	COMPANY											PAHs EPA 8270 PCBs EPA 8082	NALYSES REQUESTED						1-26-22-
Samples received at 5 °Cost		7/25/12 1570	DATE TIME											Notes		□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	□ Standard turnaround □ RIISH		+ HMIN HIS

																			3/1	د ز
Innovation		Preaman & Praya, Inc. Ph. (206) 285-8282	The Jacob P Davis Tag							MN-DUP	MW -5	1-4SNG	Sample ID		Phone 206-766-744 Email Kennog circo	ıte, Z	Address ZIMEBalw St. unt300	Company PBS	Wildso Hen A	1127
Received by:	Relinqu	Received by:	Palina			 									nail K	He	ter !	ζ	105-	
d by:	Relinquished by:	d by:	¥							B	4	IL A-D	Lab ID		en nog	WAG	of we		os eira	
Un M	farry	+ / A	SIGNATURE		Ŀ					:		2/hi/t	Date Sampled			Senttle, WAGB 102	1300			
	N/X	A N								0021	1613	23121	Time Sampled		My Project specific RLs? - Yes	REMARKS	LOLEN	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
Annynme			•							N	8	W	Sample Type		pecific RL	ŝ	[Olenan or parts in	TNAME	RS (signa	CHAIN
M		5	PRI							2	2	L	# of Jars		<u>.s? - Υ</u>				uture)	OF
m		- Co	PRINT NA	:						X	~	X	NWTPH-Dx		es / No		2		h	TSO(
2		2	NEI					-	<u> </u>	$\frac{\times}{\times}$	X	1×	NWTPH-Gx BTEX EPA 8021		[0 		<u>ئے ا</u>	. 1	X	↓Û U
) CN C in				 	<u> </u>	-					NWTPH-HCID			П	2	2		
		2			1	-							VOCs EPA 8260	ANALYSES REQUESTED		INVOICE TO	רו די כ	J P		Ę
TAB												_	PAHs EPA 8270	YSE		(CE]		ト0 H		K
B		X	2								_		PCBs EPA 8082	SRE		N				5
ູ		2	<u> Xox</u>											QUE						ή
d un			COMPANY											STEI	<u>ل</u> م ا	3 0	Ka Ka		\Box	\mathcal{O}
es r			Y												fault	SP Archiv Other	sh ch	RUSE	TU	<u>7</u> 1
ecei.															t: Dis	AMP ve sa	arges	ard t	TURNA	IVW4
Samples received at	Ň	1	یا لح	,											esoda	SAMPLE DISTOSAE Archive samples Other	Rush charges authorized by	Standard turnaround RUSH	TURNAROUND TIME	4
at	1	4	7/7/17										Z		afte	or of				,
5	<u></u>	T 1	5	-									Notes		Default: Dispose after 30 days				IME	イ
å	121		122V												days					