

TECHNICAL MEMORANDUM

DATE: July 12, 2019

TO: Jim Cach – Coleman Oil – PLP Project Coordinator

FROM: Ken Nogeire - PBS: Consultant to Coleman Oil

Site Name:	Coleman Oil Yakima Bulk Fuel
Site Address:	1 East I Street, Yakima
Ecology Site Cleanup ID	: 13200
Facility/Site ID:	4233
Agreed Order:	DE 15639
PBS Project No:	41392

RE: Remedial Investigation Update

PBS has prepared this technical memorandum to summarize remedial investigation (RI) tasks performed for the Coleman Oil Bulk Fuel Site at 1 East I Street in Yakima, Washington (Site) for the period between February 2019 and June 2019. This memorandum also presents the analytical data for samples collected during field activities.

NAPL and Groundwater Sampling

PBS completed a non-aqueous phase liquid (NAPL or product) and groundwater sampling event on March 19, 2019. Prior to sample collection, depth to product (if present) and depth to water were measured in each well. Product samples were collected via disposable polyethylene bailer (bailer) from wells RW1, MW2, MW3, MW4, MW5, and MW8. Groundwater samples were collected via low-flow methodology using a peristaltic pump from wells MW9 and MW10.

The product and groundwater samples were submitted to Friedman & Bruya, Inc. of Seattle, Washington (F&B) and analyzed for select chemical and physical properties. Product sample chromatograms were reviewed by a F&B chemist to determine the approximate percentages of gasoline and diesel fuels present in the sample and describe the degree of weathering of each fuel type present in the sample.

The locations of the wells are shown on attached Figure 2, the groundwater elevation and product thickness measurements are presented in attached Table 2, and the groundwater and product analytical results are presented in attached Tables 3 and 4. Laboratory reports are attached.

Coleman Oil Yakima Bulk Fuel Remedial Investigation Update July 12, 2019

NAPL/product Transmissivity Testing

PBS conducted a product baildown test to estimate product transmissivity (T: ft²/day) on March 26, 2019. Prior to beginning the baildown test, the depth to water and depth to product were gauged in order to calculate the initial thickness of product (0.50 ft) in well RW-1. Following gauging, product was rapidly removed from the well with a bailer. Following removal of product (<0.01 ft of product in well), the well was gauged periodically for approximately 4 hours. During this period, the product thickness recovered to 0.03 ft (<1 minute after ceasing extraction). This recovered volume is likely from draining of product from the filter pack into the well. The total NAPL recovery was 0.04 ft over the monitored recovery period (3.8 hours). RW1 was gauged approximately 46 hours later and recovery was 0.14 feet. Based on slow recovery and site history of fluctuating product thickness, a accurate transmissivity value could not be calculated for product at RW-1.

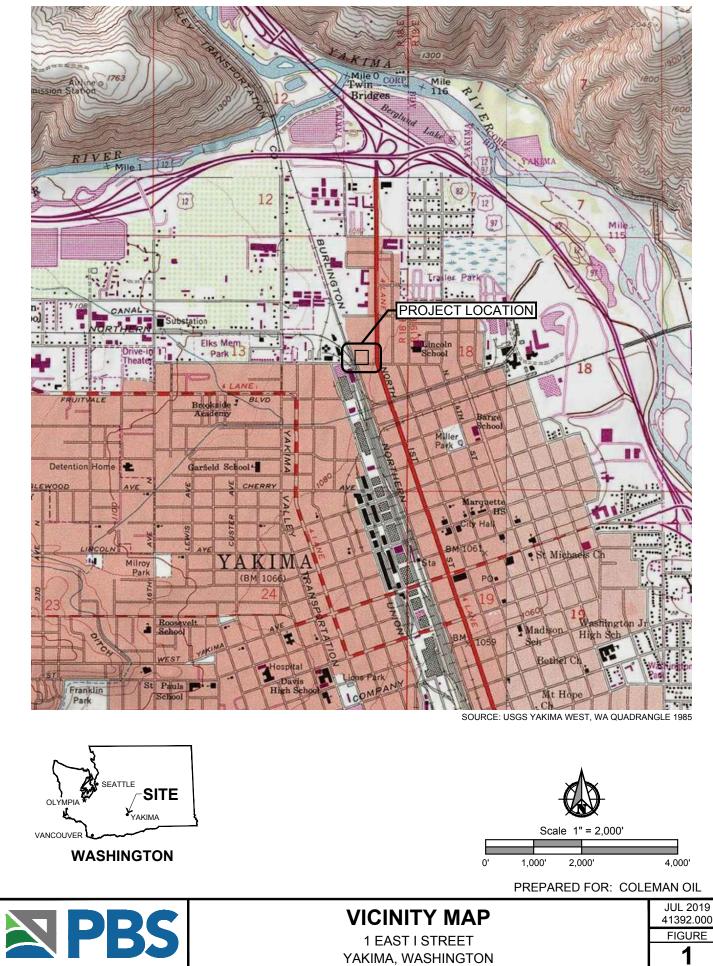
Based on the data from the baildown test, the transmissivity of the product at the site is low (less than the 0.1 to 0.8 ft²/day), which is considered by ITRC as the practical cutoff for active recoverability of product) and there is likely little risk of significant product migration at the Site. PBS and Coleman do not plan to implement a dual phase extraction system (separately pumping product and groundwater) at this time.

Soil Investigation

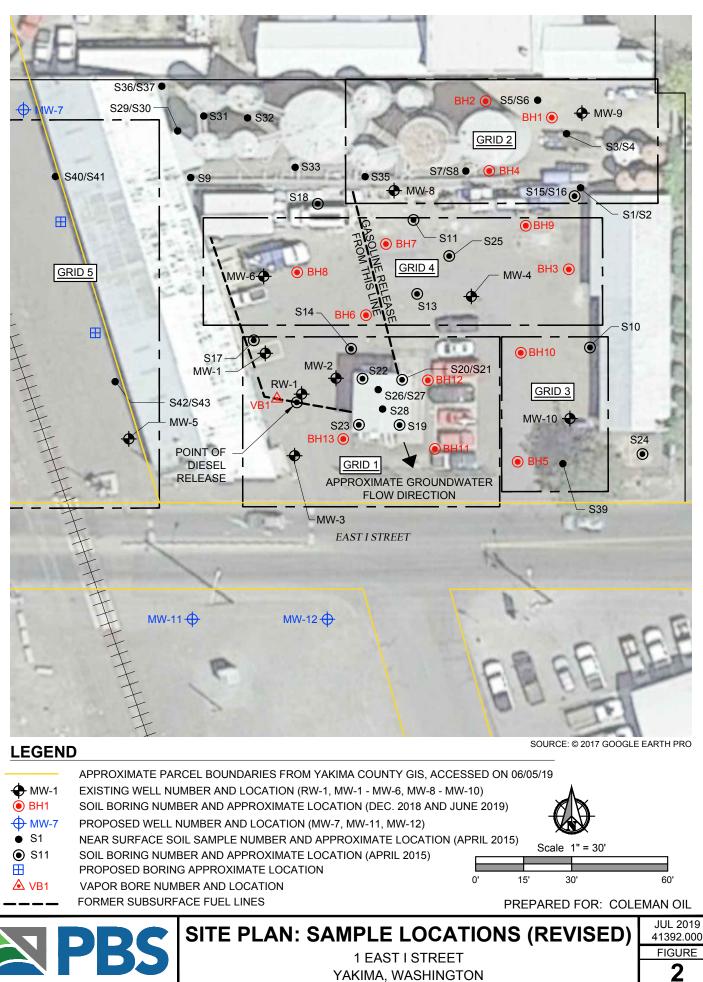
For the purpose of continued source investigation, five borings (designated BH8 through BH13) were completed by a direct push drilling rig operated by Holt Services, Inc. on June 4, 2019. PBS oversaw the advancement of the borings and collected soil samples for laboratory analysis from each boring. Refusal was generally encountered at approximately 10-feet below ground surface (bgs) across the site. The soil samples were submitted to F&B under chain-of-custody protocols for analysis of total petroleum hydrocarbons (TPH) as gasoline range (Gx), diesel range (Dx), and oil range (oil) and benzene, toluene, ethylbenzene, and total xylenes (BTEX). There were no detections of analyzed compounds at or above the laboratory reporting limits in any of the samples. The boring locations are shown on attached Figure 2 and the analytical results are presented in attached Table 1.

Soil Vapor Probe Installation

One soil vapor probe (designated VB1) was installed between the diesel point of release and the eastern extent of the Site office building. The boring was completed to a total depth of 8-feet bgs and the stainless-steel soil vapor probe is set from 6.0 to 6.5 ft bgs and the sand interval 5 to 8 ft bgs is considered to be the sample interval (see vapor probe construction log provided as an attachment). A soil vapor sample will be collected when the next round of remedial investigation work is completed at the site.


The remaining remedial investigation tasks (two soil borings and three well installations) will be completed following receipt of the fully executed access agreement between PBS, Coleman Oil, and BNSF.

Coleman Oil Yakima Bulk Fuel Remedial Investigation Update July 12, 2019


Thank you. PBS Engineering and Environmental

Attachments: Figures Tables Groundwater and Product Elevation Charts Vapor Probe Construction Log Soil Bore and Well Construction Logs Laboratory Reports

Cc: Frank Winslow – Ecology Project Coordinator John Shultz – Wondrack Lead Shane DeGross – BNSF Lead Erik Hetrick – Chevron Lead

FIGURE

2

TABLE 1REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS

Coleman Oil: 1 East I St., Yakima, WA

			TPHs			BT	'EX ^c	
Location - Depth	Sample Date	Gxª	Dx ^b	Oil ^b	Benzene	Toluene	Ethyl- benzene	Xylenes
BH1-2	12.19.18	27	630	<250	< 0.02	0.12	0.053	0.44
BH1-12	12.19.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH2-2	12.19.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH2-14	12.19.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH3-2	12.20.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH3-14	12.20.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH4-2	12.19.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH4-12	12.19.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH5-2	12.20.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH5-13	12.20.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH6-2	12.20.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	0.074
BH6-14	12.20.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH7-2	12.20.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH7-13	12.20.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
MW8-3	12.18.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
MW8-11	12.18.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
MW9-2.5	12.18.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
MW9-15	12.18.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
MW10-2	12.19.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
MW10-14	12.19.18	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH8-4	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH8-12	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH9-4	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH9-8	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH10-4	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH10-6	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH11-4	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH11-8	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH12-3	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH12-8	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH13-4	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
BH-13-9	6.6.19	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06
Screening Levels ^d	MTCA Method A Cleanup Levels For Soil	100 30	2,000	2,000	0.03	7	6	9

TABLE 1REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS

Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

Notes:

<## - not detected at or above the given laboratory reporting limit

Abbreviations & Acronyms: TPH - total petroleum hydrocarbons Gx - gasoline range hydrocarbons Dx - diesel range hydrocarbons mg/kg - miligrams per kilogram

Footnotes:

^a Analyzed by Northwest Total Petroleum Hydrocarbon Method - Volatile Petroleum Products (Extended) (NWTPH-Gx) with silica gel treatment

^b Analyzed by Northwest Total Petroleum Hydrocarbon Method - Semi-volatile Petroleum Products (Extended) (NWTPH-Dx) ^c Analyzed by Environmental Protection Agency Method 8021B

Analyzed by Environmental Protection Agency Method 8021B

^d From Model Toxics Control Act Table 740-1 Soil Cleanup Levels for Unrestricted Land Use

GROUNDWATER ELEVATION DATA

Coleman Oil: 1 East I St., Yakima, WA

	Well Screen		тос	Depth to	Depth to	NAPL	Potentiometrie
Well ID	Interval	Date	Elevation	Product	Water	Thickness	Groundwater
	(ft bgs)	Dutt	(ft)	(ft btoc)	(ft btoc)	(ft)	Elevation
							(ft amsl)
RW-1	15.05-30.05	5/10/2016	1089.54	19.38	23.64	4.26	1069.31
		10/5/2016	1089.54	17.48	23.69	6.21	1070.82
		10/20/2016	1089.54	17.83	20.99	3.16	1071.08
		11/2/2016	1089.54	18.06	20.86	2.80	1070.92
		12/13/2016	1089.54	19.58	19.83	0.25	1069.91
		1/20/2017	1089.54	20.75	23.83	3.08	1068.17
		2/2/2017	1089.54	21.26	23.75	2.49	1067.78
		3/21/2017	1089.54	20.09	23.90	3.81	1068.69
		4/4/2017	1089.54	20.16	22.78	2.62	1068.86
		4/20/2017	1089.54	19.82	21.09	1.27	1069.47
		5/8/2017	1089.54	19.10	20.55	1.45	1070.15
		5/25/2017	1089.54	18.70	19.41	0.71	1070.70
		6/9/2017	1089.54	18.55	20.03	1.48	1070.69
		4/12/2018		23.75	25.15	1.40	1065.51
		6/21/2018		23.75	22.96	1.40	1065.51
		7/26/2018		20.56	20.65	0.09	1068.96
		8/23/2018		18.92	18.98	0.06	1070.61
		9/25/2018		16.56	16.74	0.18	1072.94
		10/29/2018		17.62	18.09	0.47	1071.83
		11/30/2018		19.12	19.91	0.79	1070.26
		12/20/2018		19.72	20.33	0.61	1069.70
		1/30/2019	1089.54	21.01	23.04	2.03	1068.12
		2/28/2019	1089.54	21.80	23.94	2.14	1067.31
		3/19/2019	1089.54	22.18	24.30	2.12	1066.94
		4/25/2019	1089.54	22.38	23.32	0.94	1066.97
		5/29/2019	1089.54	21.10	22.09	0.99	1068.24
MW-1	9.9-25.9	5/10/2016	1089.54		19.13		1070.41
		10/5/2016	1089.54	16.75	22.02	5.27	1071.74
		10/20/2016	1089.54	17.15	19.94	2.79	1071.83
		11/2/2016	1089.54	17.56	18.75	1.19	1071.74
		12/13/2016		18.99	20.13	1.14	1070.32
		1/20/2017	1089.54	19.42	24.32	4.90	1069.14
		2/2/2017	1089.54	20.42	21.51	1.09	1068.90
		3/21/2017	1089.54	18.83	22.39	3.56	1070.00
		4/4/2017	1089.54	19.35	19.59	0.24	1070.14
		4/20/2017	1089.54	18.7	19.07	0.37	1070.77
		5/8/2017	1089.54	17.9	18.29	0.39	1071.56
		5/25/2017	1089.54	17.75	17.96	0.39	1071.50
		6/9/2017	1089.54	17.68	17.90	0.21	1071.73
		4/12/2018		22.6	23.20	0.60	1066.82
		6/21/2018		21.4	21.82	0.42	1068.06
		7/26/2018		19.88	20.28	0.40	1069.58
		8/23/2018			17.88		1071.66
		9/25/2018			15.50		1074.04
		10/29/2018			16.52		1073.02
		11/30/2018			17.73		1071.81
		12/20/2018	1089.54		18.22		1071.32
		1/30/2019	1089.54		19.89		1069.65
		2/28/2019	1089.54		20.97		1068.57
		3/19/2019		21.19	21.37	0.18	1068.31
		4/25/2019		21.39	21.54	0.15	1068.12
		5/29/2019		20.45	20.46	0.01	1069.09

GROUNDWATER ELEVATION DATA

Coleman Oil: 1 East I St., Yakima, WA

	Well Screen		тос	Depth to	Depth to	NAPL	Potentiometric Groundwater
Well ID	Interval	Date	Elevation	Product	Water	Thickness	Elevation
	(ft bgs)		(ft)	(ft btoc)	(ft btoc)	(ft)	(ft amsl)
MW-2	10.3-25.3	5/10/2016	1089.44		19.82		1069.62
		10/5/2016	1089.44		16.54		1072.90
		10/20/2016	1089.44		16.51		1072.93
		11/2/2016	1089.44		16.54		1072.90
		12/13/2016	1089.44	17.11	25.50	8.39	1063.94
		1/20/2017	1089.44	21.05	21.21	0.16	1068.23
		2/2/2017	1089.44		21.50		1067.94
		4/4/2017	1089.44		20.24		1069.20
		4/20/2017	1089.44		19.26		1070.19
		3/21/2017	1089.44		20.50		1068.94
		5/8/2017	1089.44		18.90		1070.54
		5/25/2017	1089.44		18.00		1071.44
		6/9/2017	1089.44	17.85	17.87	0.02	1071.57
		4/12/2018	1089.44	23.48	23.71	0.23	1065.73
		6/21/2018	1089.44	21.83	22.09	0.26	1067.35
		7/26/2018	1089.44	20.11	20.24	0.13	1069.20
		8/23/2018	1089.44		17.25		1072.19
		9/25/2018	1089.44		15.15		1074.29
		10/29/2018	1089.44		16.15		1073.29
		11/30/2018	1089.44		16.64		1072.80
		1/30/2019	1089.44	20.56	20.71	0.15	1068.73
		2/28/2019	1089.44	21.57	21.73	0.16	1067.71
		3/19/2019	1089.44	21.98	22.22	0.24	1067.22
		4/25/2019	1089.44	22.08	22.23	0.15	1067.21
		5/29/2019	1089.44	20.84	20.86	0.02	1068.58
MW-3	14-24	5/10/2016	1089.15	18.80	23.50	4.70	1069.41
		10/5/2016	1089.15	17.15	22.74	5.59	1070.88
		10/20/2016	1089.15	17.11	22.46	5.35	1070.97
		11/2/2016	1089.15	18.06	20.86	2.80	1070.53
		12/13/2016	1089.15	18.82	23.73	4.91	1069.35
		1/20/2017	1089.15	20.41	24.12	3.71	1068.00
		2/2/2017	1089.15	20.90	24.01	3.11	1067.63
		3/21/2017	1089.15	19.70	23.74	4.04	1068.64
		4/4/2017	1089.15	19.68	23.18	3.50	1068.77
		4/20/2017	1089.15	19.05	22.93	3.88	1069.32
		5/8/2017	1089.15	18.32	22.60	4.28	1069.97
		5/25/2017	1089.15	17.89	22.25	4.36	1070.39
		6/9/2017	1089.15	17.94	20.81	2.87	1070.64
		4/12/2018		23.56	24.30	0.74	1065.44
		6/21/2018	1089.15	21.57	22.88	1.31	1067.32
		7/26/2018	1089.15	20.22	20.35	0.13	1068.90
		8/23/2018			18.63		1070.52
		9/25/2018		15.98	16.03	0.05	1073.16
		10/29/2018		17.05	17.30	0.25	1072.05
		11/30/2018		18.57	18.99	0.42	1070.50
		12/20/2018		19.18	20.03	0.85	1069.80
		1/30/2019	1089.15	20.73	22.02	1.29	1068.16
		2/28/2019		21.69	22.25	0.56	1067.35
		3/19/2019		22.14	22.53	0.39	1066.93
		4/25/2019		22.21	22.51	0.30	1066.88
		5/29/2019	1089.15	20.73	21.94	1.21	1068.18

GROUNDWATER ELEVATION DATA

Coleman Oil: 1 East I St., Yakima, WA

			тос	Dauth to	Dauth ta	NADI	Potentiometric
	Well Screen		тос	Depth to	Depth to		Groundwater
Well ID	Interval	Date	Elevation	Product	Water	Thickness	Elevation
	(ft bgs)		(ft)	(ft btoc)	(ft btoc)	(ft)	(ft amsl)
MW-4	15-25	12/13/2016	1088.85		18.09		1070.76
		2/2/2017	1088.85	20.00	20.31	0.31	1068.79
		3/21/2017	1088.85	19.28	19.31	0.03	1069.57
		4/4/2017	1088.85	19.14	19.20	0.06	1069.70
		4/20/2017	1088.85	18.55	18.62	0.07	1070.29
		5/8/2017	1088.85		17.62		1071.23
		5/25/2017	1088.85		17.22		1071.63
		6/9/2017	1088.85		17.19		1071.66
		4/12/2018	1088.85	22.43	22.73	0.30	1066.36
		6/21/2018	1088.85		21.27		1067.58
		7/26/2018	1088.85		19.68		1069.17
		8/23/2018	1088.85		18.23		1070.62
		9/25/2018	1088.85	14.54	14.56	0.02	1074.31
		10/29/2018	1088.85		16.15		1072.70
		11/30/2018	1088.85	17.18	17.23	0.05	1071.66
		1/30/2019	1088.85	19.71	19.90	0.19	1069.10
		2/28/2019	1088.85	20.63	20.87	0.24	1068.17
		3/19/2019	1088.85	21.03	21.28	0.25	1067.77
		4/25/2019	1088.85	21.22	21.34	0.12	1067.61
		5/29/2019	1088.85	20.18	20.20	0.02	1068.67
MW-5	15-25	12/13/2016	1090.01	19.73	20.30	0.57	1070.17
		3/21/2017		20.31	21.05	0.74	1069.56
		4/4/2017		20.36	21.22	0.86	1069.48
		4/20/2017	1090.01	20.02	20.20	0.18	1069.95
		5/8/2017	1090.01	19.33	19.80	0.47	1070.59
		5/25/2017	1090.01	18.85	19.60	0.75	1071.01
		6/9/2017	1090.01	18.88	19.54	0.66	1071.00
		4/12/2018		23.62	24.13	0.51	1066.29
		6/21/2018		22.86	23.38	0.52	1067.05
		7/26/2018			23.34		1066.67
		8/23/2018			18.94		1071.07
		9/25/2018		16.32	16.39	0.07	1073.68
		10/28/2018		17.34	17.59	0.25	1072.62
		11/30/2018		18.76	19.02	0.26	1071.20
		1/30/2019		20.96	21.30	0.34	1068.98
		2/28/2019				well due to dee	
		3/19/2019		22.09	22.36	0.27	1067.87
		4/25/2019		22.33	22.59	0.26	1067.628
		5/29/2019	1090.01		21.76		1068.25

GROUNDWATER ELEVATION DATA

Coleman Oil: 1 East I St., Yakima, WA

PBS Project No. 41392.000

Well ID	Well Screen Interval (ft bgs)	Date	TOC Elevation (ft)	Depth to Product (ft btoc)	Depth to Water (ft btoc)	NAPL Thickness (ft)	Potentiometric Groundwater Elevation (ft amsl)
MW-6	15-25	12/13/2016	1089.21		17.40		1071.81
		3/21/2017	1089.21		18.25		1070.97
		4/4/2017	1089.21		18.00		1071.21
		4/20/2017	1089.21		17.39		1071.82
		5/8/2017	1089.21		16.82		1072.39
		5/25/2017	1089.21		16.59		1072.62
		6/9/2017	1089.21		16.61		1072.60
		4/12/2018	NA*	21.50	21.55	0.05	NA*
		6/21/2018	NA*	20.27	20.39	0.12	NA*
		7/26/2018	NA*		18.98		NA*
		8/23/2018	NA*		16.86		NA*
		9/25/2018	NA*		14.81		NA*
		10/29/2018	NA*		15.73		NA*
		11/30/2019	NA*		16.74		NA*
		1/30/2019	NA*		18.77		NA*
		2/28/2019	NA*		19.69		NA*
		3/19/2019	NA*	19.97	20.00	0.03	NA*
		4/25/2019	NA*	20.20	20.25	0.05	NA*
		5/29/2019	NA*		19.39		NA*
MW-8	15-30	1/30/2019	NA*	20.25	20.86	0.61	NA*
		2/28/2019	NA*	21.06	21.89	0.83	NA*
		3/19/2019	NA*	21.39	22.44	1.05	NA*
		4/25/2019	NA*	21.50	22.25	0.75	NA*
		5/29/2019	NA*	20.33	21.19	0.86	NA*
MW-9	15-30	1/30/2019	NA*		21.08		NA*
		2/28/2019	NA*		22.03		NA*
		3/19/2019			22.45		NA*
		4/25/2019			22.44		NA*
		5/29/2019			20.85		NA*
MW-10	15-30	1/30/2019			19.21		NA*
		2/28/2019			20.07		NA*
		3/19/2019			20.45		NA*
		4/25/2019			20.48		NA*
		5/29/2019			19.20		NA*

Notes:

-- = no product measured in the well

NA* = TOC and/or groundwater elevation not known due to broken well casing or not surveyed

Abbreviations & Acronyms: ft = feet btoc = below top of casing amsl = above mean sea level

napl = non-aqueous phase liquid

^a POT_ELEV = TOC_ELEV - [DTW - (PTH * PD)] where: POT_ELEV = potentiometric surface elevation TOC_ELEV = top of casing elevation DTW = depth to water PTH = product thickness

PD = product density (0.8)

Results in ug/L TPHs Sample Date Location/ Depth Oil^b Ber Gx^a Dx^b May 9, 2016 December 13, 2016 RW1 June 9, 2017 03/19/19 4,300 12,000 1,100 May 9, 2016 December 13, 2016 MW1 June 9, 2017 03/19/19 420 **1,300** 250 May 9, 2016 December 13, 2016 MW2 June 9, 2017 83,000 - 2, -03/19/19 May 9, 2016 December 13, 2016 MW3 June 9, 2017 03/19/19 12,000 3,200 December 13, 2016 460 . . 7,600 4,300 870 MW4 June 9, 2017 03/19/19 December 13, 2016 MW5 June 9, 2017 03/19/19 13,000 3,100 December 13, 2016 <250 7,600 3,700 MW6 June 9, 2017 <400 03/19/19 MW8 03/19/19 MW9 03/19/19 <100 <50 <250 <100 <50 <250 MW10 03/19/19 "Grab" groundwater samples from temporary well screen in soil borings **7,300 87,000** <2,500 BH1-W 12.19.18 BH2-W 12.19.18 8,600 3,200 <400 BH3-W 12.20.18 8,900 100,000 2,800 BH4-W 12.19.18 3,900 3,700 <400 <320 **1**, BH5-W 12.20.18 27,000 4,200 BH6-W 12.20.18 5,100 19,000 390 4,300 34,000 1,400 BH7-W 12.20.18 MTCA Method A 800 Screening Levels⁹ **Cleanup Levels For** 500 500 1,000 Groundwater

TABLE 3 **GROUNDWATER ANALYTICAL RESULTS**

Coleman Oil: 1 East I St., Yakima, WA

			VO	Cs ^c					SVOCs ^d		Metals
enzene	Toluene	Ethyl Benzene	Xylenes	MTBE	EDC	EDB	Hexane	B(a)P	Naph	cPAHs ^f	Lead
		sampled d									
		sampled d	-								
		sampled d	•								
	Not	sampled d	ue to the pr	esence of L	NAPL: 2.12	feet thickn	ess				
49	78	89	440	-	-	-	-	<1.2*	56	<1.2*	<1.2*
		sampled d	•								
		sampled du									
		sampled d	-	esence of L	NAPL: 0.18	feet thickn	ess				
<1	<1	1.1	<3	-	-	-	-	-	-	-	-
I		sampled du									1
2,900	9,900	1,000	5,900	<1	<1	<1	140	-	-	-	-
		sampled du									
		t sampled d	•								
		sampled du	•								
		sampled du	•								
500		sampled du		esence of L	NAPL: 0.39	feet thickne		.0.00	100	.0.00	.0.00
500	<100	130	<300	-	- <1	-	-	< 0.06	160	< 0.06	< 0.06
240	12 Not	120	<30	<1	-	<1 foot thickne	12	<0.06	160	<0.06	<1
		sampled du sampled du	•								
		sampled di	•								
		sampled di	•								
110	<100	130	<300	esence of L	INAPL: 0.27	leet thickne	-	<0.06	310	< 0.06	< 0.06
140	100	110	69	<1	<1	<1*	49	< 0.06	250	< 0.06	<0.00
140		sampled d		_	_		_	<0.00	250	<0.00	~1
		sampled d									
<1	<1	<1	<3								
<1	<1	<1	<3								
	-	-									1
18	18	54	97	<1	<1	<1*					
240	<20	160	170	<1	<1	<1*					
89	47	180	130	<1	<1	<1*					
200	<20	<20	<60	<1	<1	<1*					
1,300	730	1,200	4,400	<1	<1	<1*					
<5	10	58	78	<1	<1	<1*					
38	17	95	81	<1	<1	<1*					
5	1,000	700	1,000	20	5	0.01	-	0.1	160	0.1	15

Notes:

BOLD indicates concentration exceeding MTCA Method A Cleanup Levels for Groundwater <## - not detected at or above given laboratory reporting limit

* - Detection limit exceeded the MTCA Method A value

Abbreviations & Acronyms:

TPH - total petroleum hydrocarbons Gx - gasoline range hydrocarbons

Dx - diesel range hydrocarbons

VOCs - volatile organic compounds

MTBE - methyl tert-butyl ether

EDC - 1,2 dichloroethane

EDB - ethylene dibromide

SVOCs - semi-volatile organic compounds

B(a)P - benzo(a)pyrene

Naph - total naphthalenes (naphthalene+ 1-methyl naphthalene + 2-methyl naphthalene)

cPAHs - carcinogenic polycyclic aromatic hydrocarbons

LNAPL - light, non-aqueous phase liquid

TABLE 3 **GROUNDWATER ANALYTICAL RESULTS**

Coleman Oil: 1 East I St., Yakima, WA

PBS Project No. 41392.000

Footnotes:

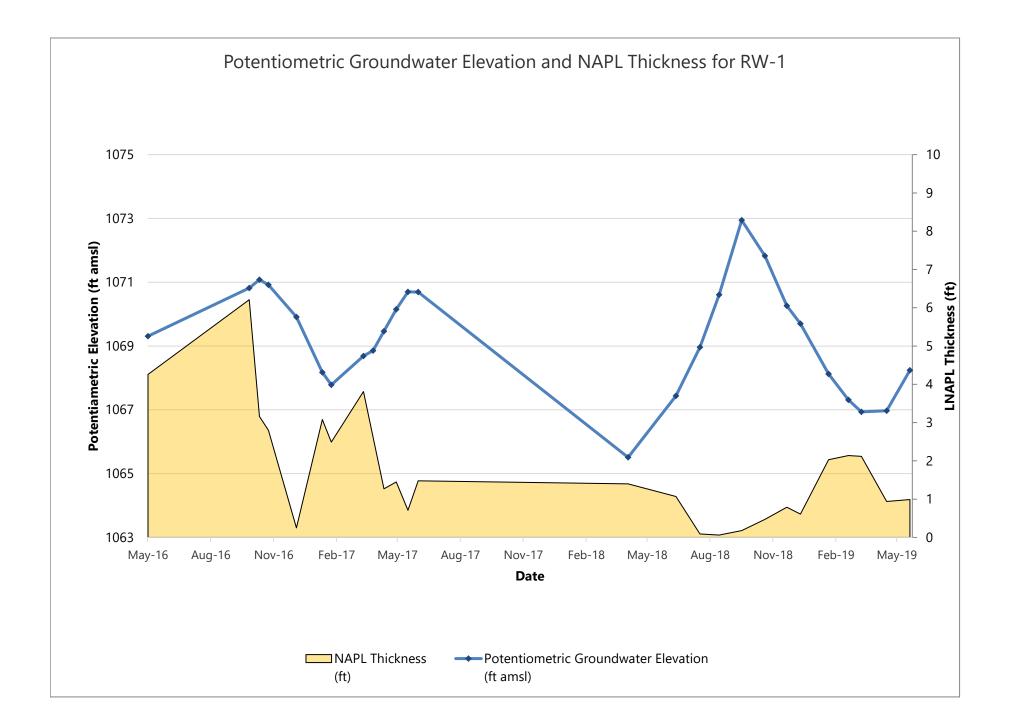
- ^a Analyzed by Northwest Total Petroleum Hydrocarbon Method Volatile Petroleum Products (Extended) (NWTPH-Gx)
- ^b Analyzed by Northwest Total Petroleum Hydrocarbon Method Semi-volatile Petroleum Products (Extended)
- (NWTPH-Dx) with silica gel treatment
- ^c Analyzed by Environmental Protection Agency Method 8021B (BTEX only) and 8260C
- ^d Analyzed by Environmental Protection Agency Method 8270D SIM
- ^e Analyized by Environmental Protection Agency Method 6020A
- ^f Value for total cPAHs by toxicity equivalency methodology in WAC 173-340-708(8) and table 708.2
- ⁹ From Model Toxics Control Act Table 720-1 Soil Cleanup Levels for Unrestricted Land Use

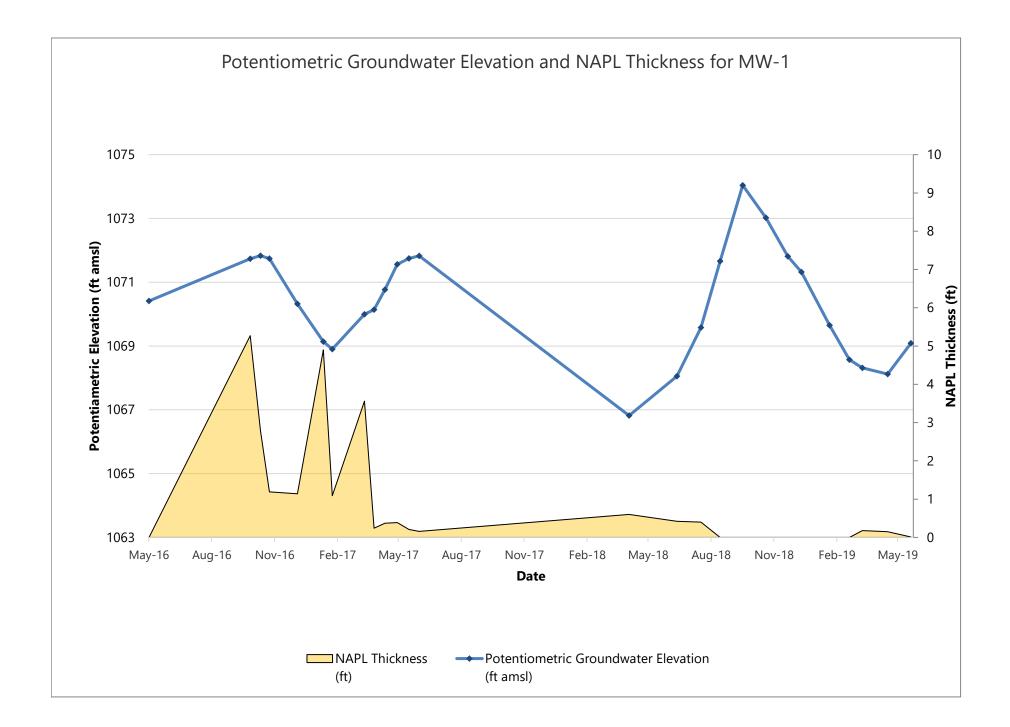
NAPL CHARACTERISTICS

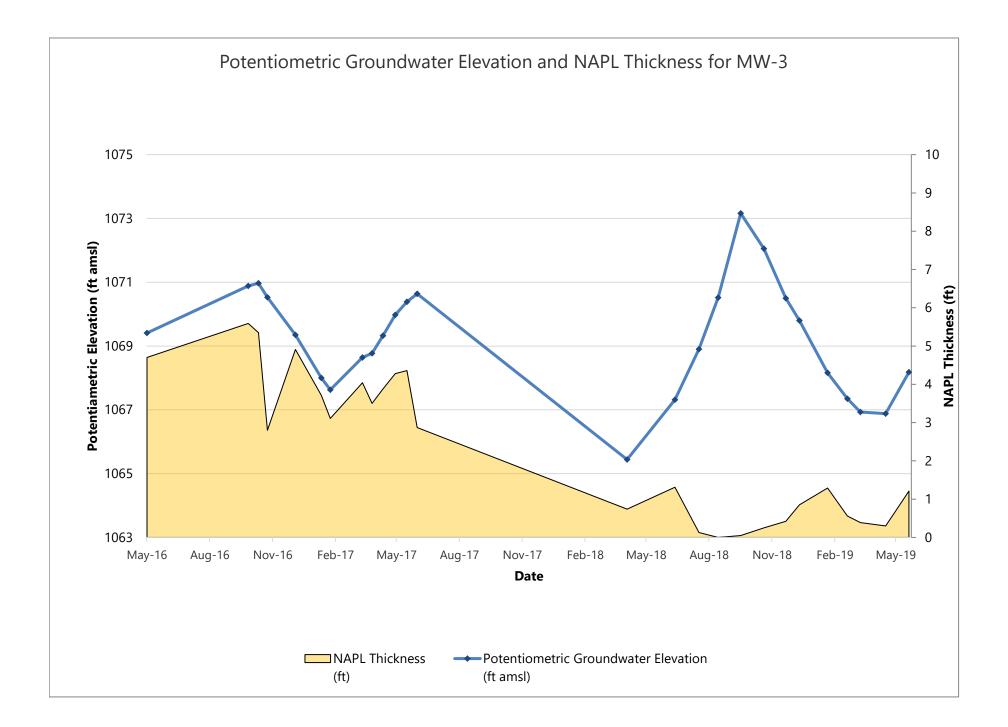
Coleman Oil: 1 East I St., Yakima, WA

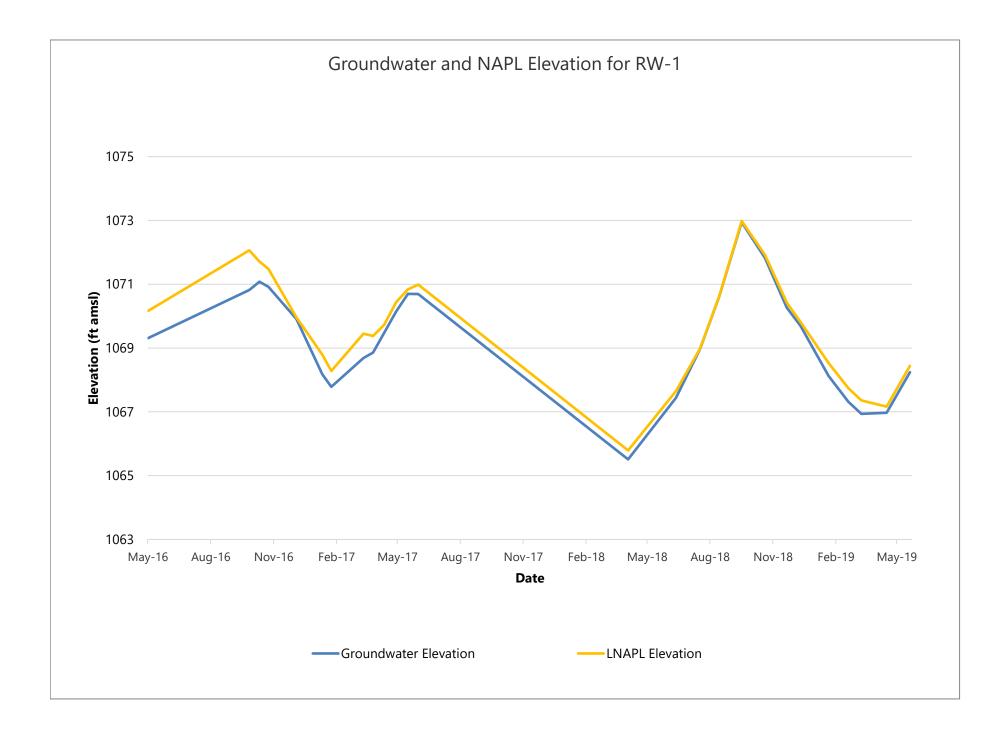
PBS Project No. 41392.000

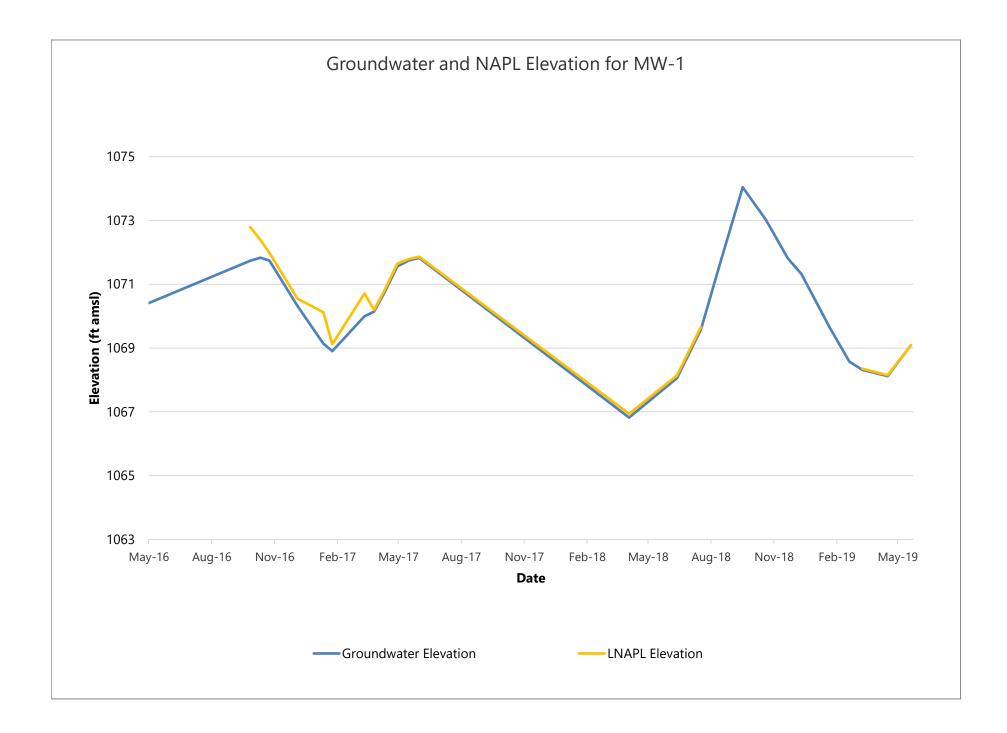
Sample	Location Description	Sample Color	Approximate % Gasoline	Approximate % Diesel	Gasoline Degree of Weathering	Diesel Degree of Weathering	Specific Gravity	Viscosity ^b (cSt)
Product Sampling: March 19,	2019 ^ª							
RW1	Adjacent to point of diesel release	Amber	50	50	Weathered	Mixed	0.817	2.28
MW2	Between point of diesel release and line of gasoline release	Amber	20	80	Weathered	Fresh	0.786	
MW3	Approximately 15 feet downgradient of point of diesel release	Amber	10	90	Weathered	Mixed	0.810	2.21
MW4	Approximately 25 feet east of line of gasoline release	Black	<10	100	NA	Weathered	0.830	
MW5	West of the release between the office building and the railroad	Black	50	50	Weathered	Weathered	0.828	
MW8	Approximately 15 feet east of northernmost extent of line of gasoline release	Black	<10	100	NA	Weathered	0.841	3.82

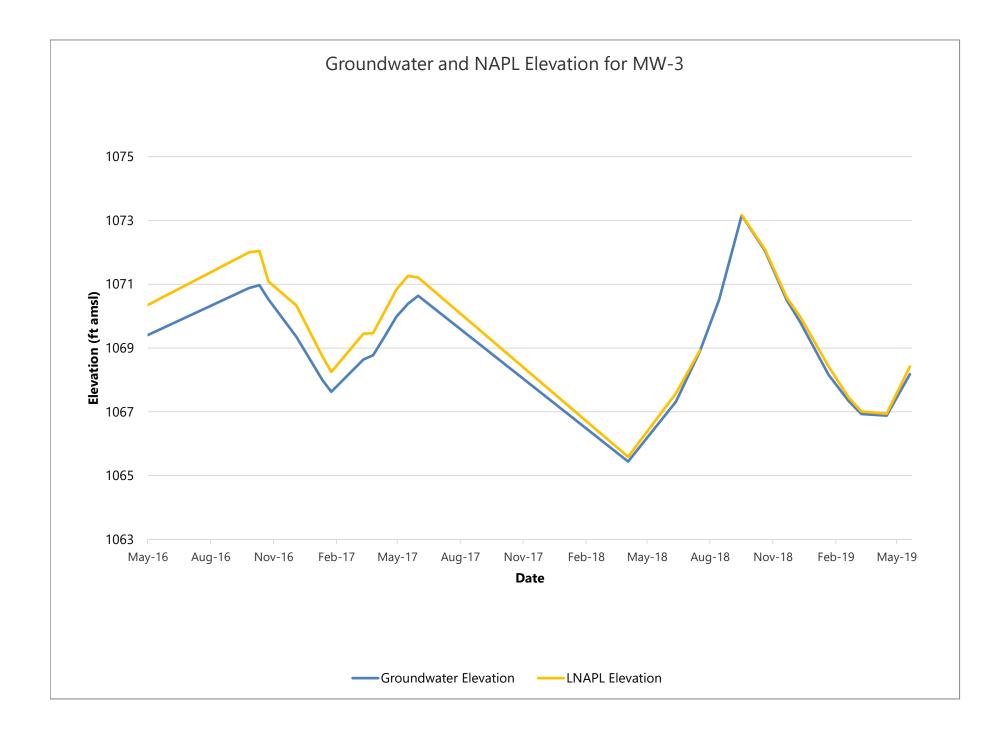

Abbreviations & Acronyms:


cSt - centistokes


Footnotes:


^a Analyzed by Northwest Total Petroleum Hydrocarbon Method - Semi-volatile Petroleum Products (Extended) (NWTPH-Dx). Chromatograms interpreted by analytical laboratory (Friedman & Bruya, Inc.) for component percentages and weathering.





		DDC	YAK	COLE 1 E. I KIMA, V	MAN (STREE VASHII	ΞT	N		BORING VB-1
		PBS	PBS	8 PROJI 413	ECT NU 92.000	JMBEF			BORING VB-1 LOCATION: (See Figure 2)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		GRAVEL with sand (GP); dark g coarse sand; subangular fine gra moist; [Fill].	ray; fine to avel;	-					← 5 inch diameter flush mount well box
- 2.0 — -				-				20	
3.0				- 					 hydrated bentonite seal 1/4 inch polyethylene tubing 1.5 6 feet
- 4.0 — -				- 	0.0				
- 5.0 — -				-				-	
- 6.0 — -				- 				33	expendable vapor tip screened 6 - 6.5 feet
7.0				-	0.0				← sand filter pack 5 - 8 feet
8.0				- -	0.0			-	
9.0	-			- -					
DRILLED	BY: H	OD: Direct Push olt Services AMETER: 2¼-inch			ED BY: I		3		

BORING LOG-ENV CORE 41392.000_VB-1.GPJ_DATATMPL.GDT_PRINT DATE: 6/14/19:JW

		DDC	YAK	1 E. I	MAN (STREE VASHII	ΞT	N		BORING BH01
		PBS –		PROJ	ECT NU 92.000	JMBEF			BORING BH01 LOCATION: (See Figure 2)
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTION		GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —	00	Coarse rock chips		_					
- 2.0 		Sandy SILT with gravel (ML); reddish brown; no plasticity; fine sand; fine gra damp.	ivel;		2.2 8.0	BH1-2			
4.0 —				- 	1.7				
- 6.0 — -		Well graded SAND with gravel and trac cobbles (SW); light gray; fine to coarse sand; fine to coarse subrounded grave	e	- - 	1.8			100	
 8.0 		damp.	.,	- 	0.5				
10.0 — - - 12.0 —		Silty SAND with gravel (SM); tan brown fine to coarse sand; fine to coarse subrounded gravel; damp; fining upwa sequence.			0.6	BH1-12		-	
- - 14.0 — -		Poorly graded SAND with gravel (SP); brown; coarse sand; coarse subrounde gravel; damp.	Red ed		0.9	Β		100	
- 16.0 — -				- 	0.4				
- - 18.0 —		color change to gray; transition from to moist	damp	- 	262				Petroleum odor
- - 20.0 —				_ _	2.0			-	
- - 22.0 —		transition moist to wet		- - -	403				weathered petroleum odor
		weathered fuel odor 21-25 feet		- - -	177			100	petroleum odor
- - 26.0 —				-	1.6			-	weatered petroleum odor; sheen observed on groundwater sample
- - 28.0 —				_ _ _					
20.0 — - -				-					
DRILLED) BY: H	OD: Sonic Drilling lolt Services IAMETER: 4-inch			ED BY: F		3		

		DDC	 YA		EMAN (STREE VASHII	ΞT	N		BORING BH02
		PBS		S PROJ		JMBEF			BORING BH02 LOCATION: (See Figure 2)
EPTH EET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		SAND with gravel (SP); tan; coa fine subrounded gravel; moist; [F Sandy SILT with gravel (ML); red brown; no plasticity; fine sand; fin damp.	-ill]. Idish	- - - - - - - -	1.0 0.4	BH2-2			
6.0 — 8.0 —		Well graded SAND with gravel a cobbles (SW); light gray; fine to sand; fine to coarse subrounded damp.	coarse		0.6			100	
		Silty SAND with gravel (SM); tan trace cobbles; fine to coarse san subrounded gravel; damp; fining sequence.	d; coarse		10.4 0.7			_	
		Poorly graded SAND with gravel gray; medium to coarse sand; co subrounded gravel, moist.	(SP); tan oarse	- - - - - -	758	BH2-14		100	Petroleum odor
- - - - - - - -		petroleum odor at 16 feet transition from moist to wet strong petroleum odor at 19 fe	et	- - - - -					Strong petroleum odor
20.0 — - - 22.0 — -				- - - -	493 1.5			100	weathered petroleum odor 20 - 25 feet
24.0 — - - 26.0 —		weathered petroleum odor 21-	25 teet		1.5 1.4			_	weathered perioteum odor 20 - 23 ieel
- - - 28.0 — - -				- - 					
RILLED) BY: H	OD: Sonic Drilling lolt Services AMETER: 4-inch			ED BY: F		3		

		DDC	YA		EMAN (STREI VASHII	ΞT	N		BORING BH03
		PBS		S PROJ		JMBEF			BORING BH03 LOCATION: (See Figure 2)
EPTH EET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base		-					
- 2.0 — -		Sandy SILT with gravel (ML); me reddish brown; no plasticity; fine subrounded gravel; moist.	edium stiff; sand; fine	+ - - -	0.5	BH3-2			
4.0	•			-		BH			
- 6.0 <i></i>		Well graded SAND with gravel (S brown/tan; fine to coarse sand; c subangular gravel; moist.	oarse		0.5			100	
- 8.0 —		color change to reddish brown from subangular to subrounde		-	0.3				
10.0		transition from moist to dry Silty SAND with gravel and cobb light gray; medium to coarse san	d; coarse		0.3			-	
- 12.0 — -		subrounded gravel; damp; fining sequence.) upwards	-	0.6				
- - 14.0		Poorly graded SAND with gravel cobbles (SP); gray; medium to co sand; coarse subrounded gravel	oarse	= - - - -	0.3	BH3-14		100	
- 16.0 — -		transition from moist to wet		-	0.7				
 18.0 -				-	236				petroleum odor
20.0 —				-	506			-	
22.0 —					1668 59			100	strong petroleum odor
24.0		increased percentage cobbles						_	sheen observed on groundwater sample
26.0									
 28.0 —				-					
30.0		OD: Sonic Drilling		LOGG					

		DDC	YAł		EMAN (STREI VASHII	ΞT	N		BORING BH04
		PBS	PBS	6 PROJ 413	ECT NU 392.000		R:		BORING BH04 LOCATION: (See Figure 2)
	GRAPHIC LOG	MATERIAL DESCRIPTIC	NC	GROUND- WATER	PID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0	00	Coarse rock chips. [Fill]		-					
2.0		Sandy SILT with gravel (ML); redd brown; no plasticity; medium stiff; f sand; fine subrounded gravel; dam	fine	- - - -		BH4-2			
4.0 — –	- -			-	0.1			400	
6.0 — –		Well graded SAND with gravel and cobbles (SW); reddish brown; fine coarse sand; fine to coarse subrou gravel; moist.	to	- - -	0.5			100	
- 8.0 — - -				- - -	0.2				
10.0 — - - 12.0 —		Silty SAND with gravel (SM); tan g to coarse sand; coarse subrounde trace cobbles; damp; fining upward sequence.	d gravel;	- - -	0.1	-12		-	
		Poorly graded SAND with gravel a cobbles (SP); reddish brown; fine t coarse sand; coarse subrounded g moist.	to	- - - -	1.0	BH4-12		100	
 16.0 				- 	451				strong petroleum odor
 18.0 				- - -	498				strong petroleum odor
20.0		strong petroleum odor 16 to 23 f	feet	- - -	520			-	
 22.0 — 		transitions from moist to wet at 2	22 feet	- 	287			100	strong petroleum odor
 24.0 					56 1.6			_	sheen observed on groundwater sample
 26.0 	+			- 					
 28.0 — 	+			- 					
- 30.0 BORING DRILLED	METH BY: H	OD: Sonic Drilling olt Services			ED BY: I		3		

	Asphalt and road base Sandy SILT with gravel (ML) reddish brown; no plasticity; subrounded gravel; damp.	RIPTION	S PROJI 413 WATER WATER	ECT NU 392.000 QIA				BORING BH05 LOCATION: (See Figure 2)
0.0	Asphalt and road base Sandy SILT with gravel (ML) reddish brown; no plasticity;		GROUND- WATER	DM)		≿		
2.0	Sandy SILT with gravel (ML) reddish brown; no plasticity;	· medium stiff:		<u>н</u> Е	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
-	reddish brown; no plasticity;	· modium stiff:	<u> </u>					
4.0		fine sand; fine	- - -	0.3	BH5-2			
	Well graded SAND with grav	nd;fine to	- -	0.2			100	
6.0	coarse subrounded gravel; d Silty SAND with gravel and c brown/tan; fine to coarse sar coarse subrounded gravel; d	obbles (SM); nd; fine to amp.	- -	0.4				
8.0	Well graded SAND with grav cobbles (SW); brown gray; fi sand; fine to coarse subroun dry.	ne to coarse	- - -	0.3 0.4				
- 10.0	Poorly graded SAND with grace cobbles (SP); gray tan; medi sand; coarse subangular gra	um to coase	- - -				-	
12.0			- - -	0.5	BH5-13			
14.0			- 	0.2	BH		100	
	petroleum odor		- - -	4.8				
18.0	1983) - 27 년 - 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1		-	148				
			-	36				
20.0	transition from moist to we	t at 21 fact	- - -	88			-	petroleum odor
22.0	u ansition from moist to we	ומו ∠ו וככו	- -				100	slight petroleum odor
24.0			- 	3.1			_	sheen observed on groundwater sample
26.0								shoen observed on groundwater sample
28.0 — _ _ _			- 					
30.0	IETHOD: Sonic Drilling		-					

		DDC	 Y.		MAN (STREI VASHII	ΞT	N		BORING BH06
		PBS		BS PROJ		JMBEF			BORING BH06 LOCATION: (See Figure 2)
EPTH EET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base							
- - 2.0 — -		Sandy SILT with gravel (ML); sti brown; no plasticity; fine sand; fin coarse subrounded gravel; mois	ne to		0.2	BH6-2			
4.0 —				-					
6.0 —					0.2			100	
8.0-		Well graded SAND with gravel a cobbles (SW); gray; fine to coars fine to coarse subrounded grave	nd se sand; l; damp.		0.8				
- 10.0 — -		Silty SAND with gravel and cobb brown; fine to coase sand; coars subrounded gravel; damp; fining	e		0.2			-	
12.0 —		Poorly graded SAND with gravel	and			-			
14.0 — - -		cobbles (SP); gray brown; mediu coarse sand; coarse subrounded moist.	i gravel;	-	0.2	BH6-14		100	
16.0				-	1.3				
18.0 — - -				-	0.6				
20.0 —		transition from moist to wet at	20 feet	-	2.2			-	strong petroleum odor
- 22.0 — -					122			100	
24.0 —		petroleum odor			1.4			_	petroleum odor
26.0 —	-								
28.0 —	-								
30.0 — 30RING	METH	OD: Sonic Drilling			ED BY: I	P. Brice			

		DDC	YAł		EMAN (STREI VASHII	ET	N		BORING BH07
		PBS	PBS	6 PROJ 413	ECT NI 392.000		R:		BORING BH07 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTIO	NC	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base							
- 2.0 — -		Sandy SILT with gravel (ML); med reddish brown; no plasticity; fine s subrounded gravel; moist.	lium stiff; and; fine	- - -	0.4	BH7-2			
4.0	•				0.2				
- 6.0 — -		fine to coarse gravel from 3 to 8	feet	- - 	0.2			100	
8.0 —		Well graded Sand with gravel (SW	/); brown	-	0.4				
- - 10.0		gray; fine to coarse sand; fine to c subrounded gravel; moist.	oarse	-	0.2				
10.0		Silty SAND with gravel and cobble brown gray; fine to coarse sand; c subrounded gravel; moist; fining u sequence.	oarse	- - -	0.4				
- - 14.0		cobbles from 10 to 15 feet Poorly graded SAND with gravel a cobbles (SP); reddish brown; med coarse sand; coarse subrounded o moist.	lium to	- - - -	1.2	BH7-13		100	
 16.0 				- - -	2.3				weathered petroleum odor
18.0		transition from moist to wet at 18	8 feet	-	383				strong petroleum odor
20.0				- - -	927			-	
 22.0 —				-	225			100	
 24.0 —				-	2.3				
_ 26.0 —				+ - 				-	thick sheen and strong petroleum odor observed on groundwater sample
_ 28.0 —				- - 					
30 0				_					
DRILLED	BY: H	OD: Sonic Drilling olt Services AMETER: 4-inch			ED BY: I LETED:		3		

		DDC	YAK		MAN (STREE VASHII	ΞT	N		BORING BH08
		PBS	PBS	S PROJ 413	ECT NU 92.000		₹ :		BORING BH08 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTIC	DN	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt.							
- - 2.0 —		Gravel fill.		-				60	
- 4.0		Sandy SILT with gravel (ML); brow sand; fine subangular gravel; mois	n; fine t.	-	0.0	BH8-4			
- - 6.0 —		Well sorted SAND with gravel (SW gray; fine to coarse sand; coarse subrounded gravel; damp.	'); brown	- - -	0.0			-	
- 8.0				- - -	0.0			100	
- 10.0 — -		Silty SAND with gravel and cobbles brown gray; fine to coarse sand; co subrounded gravel; damp; fining up sequence.	barse	-				-	
- 12.0 — -		Poorly sorted SAND with gravel (S	 P);	- 	0.1	BH8-12		100	
- 14.0 — -		brown gray; coarse sand; coarse subrounded gravel; damp.		- 				_	
- 16.0 — -				- -					
- -				- - -					
DRILLED	BY: H	OD: Direct Push olt Services AMETER: 2¼-inch OD		LOGG COMPI	ED BY: F	P. Brice 5/04/19			

	DDC	YA		MAN (STREI VASHII	ET	N		BORING BH09
	PBS		S PROJ		JMBEF			BORING BH09 LOCATION: (See Figure 2)
ET US	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0	Asphalt and road base							
2.0	Sandy SILT with gravel (ML); sti plasticity; fine sand; fine subrour gravel; moist.	ff; no nded	-	0.0			60	
4.0	Well graded SAND with gravel (brown; fine to coarse sand; fine subrounded gravel; damp.	SW); gray to coarse	-	0.0	BH9-4			
6.0	transition from fine to coarse s gravel to coarse subangular g		-	0.0			-	
8.0 —			-	0.0	BH9-8		100	
	8 9 9 8 8 9 9		-	0.0			_	
_ _ 12.0 — _			-					
- - 14.0 -			-					
	HOD: Direct Push Holt Services			ED BY: I				

		PBS	YA		EMAN (STREI VASHII	ΞT	N		BORING BH10	
			PB	S PROJ 413	ECT NU 392.000	JMBEF	₹ :		BORING BH10 LOCATION: (See Figure 2)	
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	TION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION	
0.0 —		Asphalt and road base								
 1.0 2.0		Sandy SILT with gravel (ML); sti plasticity; brown; fine sand; coar subrounded gravel; moist.	ff; no se	-	0.0					
3.0	-			-				60		
 4.0 5.0		Well graded SAND with gravel (brown; fine to coarse sand; fine subangular to subrounded grave	SW); gray to coarse sl; damp.	-	0.0	BH10-4		_		
- - 6.0 — -				-		BH10-6		100		
- 7.0 — - -				-						
8.0 — - -				- - -				-		
9.0				- - -						
DRILLED	BY: H	OD: Direct Push olt Services AMETER: 2¼-inch OD			ED BY: I LETED: (. I		

		PBS	YAI	COLE 1 E. I KIMA, V	MAN (STREI VASHII	ΞT	N		BORING BH11 BORING BH11 LOCATION:
			PBS	S PROJ 413	ECT NI 892.000	JMBEF	R:		(See Figure 2)
DEPTH FEET		MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt and road base							
2.0		Sandy SILT with gravel (ML); stif plasticity; brown; fine sand; fine subangular gravel; moist.	f; no	-	0.0			60	
4.0 —	-			-	0.0	BH11-4			
- - 6.0 — -	• • <td>Well graded SAND with gravel (S brown; fine to coarse sand; coars subangular to subrounded grave</td> <td>se</td> <td>-</td> <td>0.0</td> <td></td> <td></td> <td>-</td> <td></td>	Well graded SAND with gravel (S brown; fine to coarse sand; coars subangular to subrounded grave	se	-	0.0			-	
- 8.0 — -				-	0.0	BH11-8		100	
- 10.0 — -				-	0.0			_	
- 12.0 — -	-			-					
- 14.0 —	-								
RILLED) BY: H	OD: Direct Push olt Services AMETER: 2¼-inch OD			ED BY: I LETED: (I		

PBS MATERIAL DESCRIPT Asphalt. Sandy SILT with gravel (ML); stif plasticity; brown; fine sand; fine subrounded gravel; moist.	ion	S PROJ 413 CKONND- CKO	014 014	BH12-3 SAMPLE SAMPLE JA	■■ SAMPLE/ TEMPORARY WELL(S)	9 RECOVERY (%)	BORING BH12 LOCATION: (See Figure 2) COMMENTS/ WELL INSTALLATION
Asphalt.		GROUND-			SAMPLE/ TEMPORARY WELL(S)		COMMENTS/ WELL INSTALLATION
Asphalt.	ff; no			BH12-3			
Sandy SILT with gravel (ML); stif plasticity; brown; fine sand; fine subrounded gravel; moist.	ff; no			BH12-3		60	
		-		BH1			
			0.0			_	
		-					
Well graded SAND with gravel (S brown; fine to coarse sand; coars subangular to subrounded grave	se	-	0.0	BH12-8		100	
		-	0.0			-	
		-				100	
		-					
	10D: Direct Push tolt Services	tOD: Direct Push tolt Services IAMETER: 21/4-inch OD			- 0.0 - - <td< td=""><td>OD: Direct Push</td><td>- 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 100 - - - - - - - - - -</td></td<>	OD: Direct Push	- 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 100 - - - - - - - - - -

		DDC	YA	COLE 1 E. I KIMA, V	EMAN (STREI VASHII	ΞT	N		BORING BH13
		PBS	PE	S PROJ 413	ECT NU 392.000	JMBEF	₹:		BORING BH13 LOCATION: (See Figure 2)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ΓΙΟΝ	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Asphalt/road base		-					
- 2.0 — -		Sandy SILT with gravel (ML); bro sand; fine subangular gravel; mo	own; fine bist.	-	0.0			60	
- 4.0 —	-			-	0.0	BH13-4			
- - 6.0 — -		Well graded SAND with gravel (brown gray; fine to coarse sand; subangular to subrounded grave	SW); coarse sl; damp.	-	0.0			-	
- 8.0 —				-	0.0			100	
- - 10.0 - -				-	0.0	BH13-9		-	
- 12.0	-			-				100	
	-			-					
RILLED) BY: H	OD: Direct Push olt Services AMETER: 2¼-inch OD			 ED BY: I LETED: (

EET Image: Section of the section o			DDC		LEMAN 1 EAST KIMA, V	' I STR	EET			BORING MW8
0.0 Gray rock chips; FILL Medium dense, brown silty SAND (SM); non-plastic, fine sand; fine, subrounded wedium dense, tan/red-brown sandy SILT Medium and; coarse, subrounded gravel; dy 0.1 0.1 5.0 Tan-brown SIND (SM) with gravel and; coarse, subrounded gravel; dy 0.1 0.1 10.0 Dense, tan-brown SAND (SW) with gravel and; coarse, subrounded gravel; dy 0.1 0.1 10.0 Dense, tan-brown sandy GRAVEL (GW) with large cobbles; non-plastic; medium sand; coarse, subrounded gravel; dy 0.1 0.1 10.0 Dense, tan-brown sandy GRAVEL (GW) with large cobbles; non-plastic; strong petroleum odor; very most dimines autor coarse sand dy 2.2 2.2 20.0 - Grades to medium to coarse sand dy 500 500 20.0 - Grades to very dense cobbles and boulders 0.0 0.0 20.0 - Grades to very dense cobbles and boulders 0.0 0.0			FD3	PB				₹ :		
Cray fock chips; FILL Gety fock chips; FILL Medium dense, travm stilly SAND (SM); moist Tan-brown silly SAND (SM) with gravel moist Tan-brown silly SAND (SM) with gravel and large cobble; non-plastic; fine sand; fine gravel; moist Dense, tan/ford-brown gravely SAND (SM); fine sand; fine gravel; moist Dense, tan/ford-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely SAND (SW); fine sand; coarse, subrounded gravel; moist Dense, gray-brown gravely song petroleum odor; vey moist Dense, gray sondy GRAVEL (GW) with Gravel and Coarse, subrounded gravel; strong Dense, gray sondy GRAVEL (GW) with farge cobbles; non-plastic; fine to coarse sand - Becomes brown, oily liquid; very strong petroleum odor; vey moist Dense, gray sondy GRAVEL (GW) with farge cobbles; non-plastic; fine to coarse sand - Becomes brown, oily liquid; very strong petroleum odor; vey moist Dense, gray sondy GRAVEL (GW) with farge cobbles; non-plastic; fine to coarse sand - Becomes brown, oily liquid; very strong petroleum odor; vey moist - Grades to very dense cobbles and - Gr	EPTH EET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	
Medium dense, prown sinty SAND (SM); moist 0.1 5.0 0.1 1 0.1 2.0 0.1 2.0 0.1 10.0 Dense, tan/forewing ravel; moist 0.1 10.0 Dense, tan/forewing ravel; moist 0.1 10.0 Dense, tan/forewing ravel; moist 0.1 11 Dense, tan/forewing ravel; moist 0.1 12.0 Dense, tan/forewing ravel; moist 0.1 13.0 Dense, tan/forewing ravel; moist 0.1 14.0 Dense, tan/forewing ravel; moist 0.1 15.0 Dense, tan/forewing ravel; moist 0.1 15.0 Dense, tan/forewing ravel; moist 0.1 15.0 Dense, tan/forewing ravel; SAND (SW); mon-plastic; medium sand; coarse, subrounded gravel; dry 2.8 15.0 Dense, gray-brown gravely SAND (SW); mon-plastic; medium sand; coarse, subrounded gravel; rowist 2.4 15.0 Tan-brown sandy GRAVEL (GW) with gravel; moist 478 20.0 Face so medium to coarse sand 2.4 15.0 Becomes brown, oily liquid; very strong petroleum odor; very moist 478 20.0 Dense, gray sandy GR	0.0		Gray rock chips; FILL		_					5-inch x 12-inch flush-mount monument with 1 foot of concrete
5.0 (ML): non-plastic; fine sand; fine gravel; moist 0.1 7 Tan-brown silty SAND (SM) with gravel moist 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 10.0 Dense, tan/brown-gravel, moist 2.8 11 1.1 0.1 12.0 Dense, tan/brown gravelly SAND (SW); 0.1 12.1 Dense, tan/brown gravelly S	-		non-plastic; fine sand; fine, subro gravel; moist; FILL	ounded		0.1				
and one large cobble; non-plastic; fine sand; 0.1 Dense, tan-brown SAND (SW) with gravel - and large cobbles; non-plastic; fine sand; 0.1 10.0 Dense, tan-brown SAND (SRAVEL - (GW) with arge cobbles; non-plastic; medium sand; coarse, subrounded gravel; dry 0.1 11.0 Dense, gray-brown gravely SAND (SW); non-plastic; medium sand; coarse, subrounded gravel; dry 0.1 15.0 Dense, gray-brown gravely SAND (SW); non-plastic; medium sand; coarse, subrounded gravel; dry 2.8 15.0 Dense, gray-brown gravely SAND (SW); non-plastic; medium sand; coarse, subrounded gravel; wery moist 2.8 15.0 Coarse, subrounded gravel; wery moist 478 drage cobbles; non-plastic; medium sand; coarse, subrounded gravel; strong petroleum dor; reavy moist 478 20.0 Grave subrounded gravel; wet 701 Dense, gray SAND (SP) with gravel and coarse, subrounded gravel; strong petroleum dor; reavy sheen; wet 701 25.0 Oraces, subrounded gravel; strong fet coarse, subrounded gravel; strong sand; coarse, subrounded gravel; strong sand; coarse, subrounded gravel; strong fet coarse; non-plastic; fine to coarse sand; coarse, subrounded gravel; strong sand; coarse, subrounded gravel; strong sand; coarse, subrounded gravel; strong fet coarse; non-plastic; fine to coarse sand; coarse, subrounded gravel; strong sand; coarse, su	- 5.0 —		(ML); non-plastic; fine sand; fine moist	gravel;	-	-				
Dense, tan-brown SAND (SW) with gravel coarse, subangular gravel; moist 0.1 10.0 Dense, tan/brown-gray sandy GRAVEL (GW) with large cobbles; non-plastic; medium sand; coarse, subrounded gravel; dry 0.1 15.0 Dense, gray-brown gravelly SAND (SW); non-plastic; medium sand; coarse, subangular gravel; moist 2.8 15.0 Tan-brown sandy GRAVEL (GW) with large cobbles; non-plastic; medium sand; coarse, subrounded gravel; very moist 2.2 16.0 Gray gravelly SAND (SP) moist 478 0.1 - Grades to medium to coarse sand 809 20.0 - Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 701 0 Dense, gray SAND (SP) with gravel and cobbles; non-plastic; fine to coarse sand; - Grades to medium to coarse sand; - Bacomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 800 25.0 Oarse, subrounded gravel; wet 800 25.0 - Grades to very dense cobbles and boulders 0.9 0.9 - Grades to very dense cobbles and boulders 0.9	-		and one large cobble; non-plasti sand; coarse, subrounded grave	c; fine I; moist	-					- Bentonite
10.0 Dense, tan/brown-gray sandy GRAVEL (GW) with large cobbles; non-plastic; medium sand; coarse, subrounded gravel; dry 0.4 15.0 15.0 Dense, gray-brown gravelly SAND (SW); non-plastic; medium sand; coarse, subangular gravel; moist Tan-brown sandy GRAVEL (GW) with large cobbles; non-plastic; medium sand; tocarse, subrounded gravel; very moist - Grades to medium to coarse sand - Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 478 20.0 - Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 701 20.0 - Becomes brown, oily liquid; very strong petroleum odor; theavy sheen; wet 809 20.0 - Grades to medium to coarse sand - Grades to medium to coarse sand; coarse, subrounded gravel; strong fuel odor; wet 80 20.0 - Grades to very dense cobbles and boulders 0.9	-		and large cobbles; non-plastic; fi coarse, subangular gravel; mois	ne sand;	- -					
Dense, gray-brown gravely SAND (SW); non-plastic; medium sand; coarse, subangular gravel; moist 2.2 Tan-brown sandy GRAVEL (GW) with large cobbles; non-plastic; medium sand; coarse, subrounded gravel; very moist 2.2 Gray graveliy SAND (SP); non-plastic; Gray graveliy SAND (SP); non-plastic; 478 medium sand; coarse, subrounded gravel; strong petroleum odor; very moist 671 - Grades to medium to coarse sand 809 - Grades to medium to coarse sand 701 - Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 701 - Dense, gray SAND (SP) with gravel and cobbles; non-plastic; fine to coarse sand; 80 - Dense, gray sandy GRAVEL (GW) with large cobbles; non-plastic; fine to coarse sand; coarse, subrounded gravel; strong fuel odor; wet 80 - Grades to very dense cobbles and boulders 0.9 9 - Grades to very dense cobbles and boulders 1.9	10.0		(GW) with large cobbles; non-pla medium sand; coarse, subround	astic;	-	0.4	MW8-11			
15.0 non-plastic; medium sand; coarse, subangular gravel; moist 2.2 Tan-brown sandy GRAVEL (GW) with large cobbles; non-plastic; medium sand; toarse, subrounded gravel; very moist 478 10.0 Gray gravelly SAND (SP); non-plastic; strong petroleum odor; very moist 609 20.0 - Grades to medium to coarse sand 809 20.0 - Grades to medium to coarse sand 701 20.0 - Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 701 20.0 - Grades to medium to coarse sand 701 20.0 - Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 701 20.0 - Grades to medium to coarse sand; coarse, subrounded gravel; met 701 20.0 - Grades to medium to coarse sand; coarse, subrounded gravel; wet 701 25.0 - Grades to very dense cobbles and boulders 80 25.0 - Grades to very dense cobbles and boulders 0.9 25.0 - Grades to very dense cobbles and boulders 1.9	-				-	2.8				
20.0 Coarse, subrounded gravel; very moist Gray gravelly SAND (SP); non-plastic; medium sand; coarse, subrounded gravel; strong petroleum odor; very moist - Grades to medium to coarse sand 478 20.0 Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 809 20.0 Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet 701 Dense, gray SAND (SP) with gravel and cobbles; non-plastic; fine to coarse sand; bense, gray sandy GRAVEL (GW) with large cobbles; non-plastic; fine to coarse sand; coarse, subrounded gravel; strong fuel odor; wet 80 25.0 Grades to very dense cobbles and boulders 0.9 1.9 1.9	15.0		non-plastic; medium sand; coars subangular gravel; moist Tan-brown sandy GRAVEL (GW	e, 		2.2				
 strong petroleum odor; very moist Grades to medium to coarse sand Becomes brown, oily liquid; very strong petroleum odor; heavy sheen; wet Dense, gray SAND (SP) with gravel and cobbles; non-plastic; fine to coarse sand; Coarse, subrounded gravel; wet Dense, gray sandy GRAVEL (GW) with large cobbles; non-plastic; fine to coarse sand; coarse, subrounded gravel; strong fuel odor; wet Grades to very dense cobbles and boulders Ing 	-		coarse, subrounded gravel; very Gray gravelly SAND (SP); non-p	moist	,+ -					
25.0 Petroleum odor; heavy sheen; wet 701 Sand 25.0 • Grades to very dense cobbles and boulders • Grades to very dense cobbles and boulders • O <td>- 20.0 —</td> <td></td> <td>strong petroleum odor; very mois - Grades to medium to coarse</td> <td>st sand</td> <td>-</td> <td>809</td> <td></td> <td></td> <td></td> <td></td>	- 20.0 —		strong petroleum odor; very mois - Grades to medium to coarse	st sand	-	809				
25.0 Cobbles; non-plastic; fine to coarse sand; coarse, subrounded gravel; wet	-		petroleum odor; heavy sheen;	wet	-	701				
25.0 sand; coarse, subrounded gravel; strong fuel odor; wet - Grades to very dense cobbles and boulders - 1.7 - 0.9 - 1.9	-	[0]	cobbles, non-plastic; fine to coar coarse, subrounded gravel; wet Dense, gray sandy GRAVEL (GN	se sand; W) with	/ -	80				
- Grades to very dense cobbles and boulders - 1.9	25.0 —		sand; coarse, subrounded grave		-	1.7				
20 0 - E O d	-			es and	-	0.9				
	- 30.0 —		Final depth: 30 ft bgs			1.9				

		DDC		LEMAN 1 EAST KIMA, V	' I STR	EET			BORING MW9
		PBS	PBS	S PROJI 413	ECT NU 92.000		₹ :		BORING MW9 LOCATION: (See Site Plan)
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTIO	ON	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		Medium dense, brown sandy SILT non-plastic; fine sand; fine gravel;	Г (ML); ; dry	_					5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill
-				-	0.0				-2-inch PVC blank
5.0				-					
-		Dense, gray-brown gravelly SAND with cobbles to 4"; non-plastic; fin	D (SP) e sand;		0.0				- Bentonite
10.0 —		coarse, subrounded gravel; dry		_	0.1				
-				-					
- 15.0		- Becomes very moist; slight pe odor	etroleum	- -	0.1				
- 20.0 —		- Grades to medium to coarse s becomes wet	sand and	-	0.1				
-				_	0.2				Sand
- - 25.0 —		Dense, gray sandy GRAVEL (GP)) with	- - -					2-inch 0.010-slot screen
-		cobbles to 2"; non-plastic; mediun coarse, subrounded gravel; slight odor; wet	fuel	_	0.0				
-		- Becomes light-brown and mo	ist	_	0.1 0.1				
30.0 —	_	Final depth: 30 ft bgs		_					
RILLED	BY: H	L OD: Sonic Drilling olt Services AMETER: 8-inch			L ED BY: F .ETED: 1		1	I	

		DDC		EMAN 1 EAST (IMA, V	I STR	EET			BORING MW10
		PBS	PBS PROJECT NUMBER: 41392.000					BORING MW10 LOCATION: (See Site Plan)	
EPTH EET	GRAPHIC LOG	MATERIAL DESCRIPTI	ON	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		ASPHALT; FILL							5-inch x 12-inch flush-mount
-		Medium dense, dark red-brown s SILT (ML); non-plastic; fine sand gravel; moist	andy ; fine	-	0.7 0.3	MW10-2			monument with 1 foot of concret backfill 2-inch PVC blank
5.0		- Grades to dense with coarse subrounded gravel Gray-brown gravelly SAND (SP)	with large	_ 	0.2				
-		cobbles; non-plastic; fine to coars coarse, subangular gravel; dry	se sand;	_	0.2				- Bentonite
-		- Becomes surounded gravel		_	0.3				
10.0 — - -		- Encountered light fuel odor		 _ _	0.6				
-				_	0.5	MW10-14			
		- Grades to brown Dark brown gravelly SAND (SP)		-	0.5	M			
-		cobbles; medium plasticity; fine t sand; fine to coarse, subangular moist	o coarse	_	0.5				
- 20.0 —		Brown-gray gravelly SAND (SP); plastic; coarse sand; coarse, sub gravel; slight fuel odor; very mois Dense, red/gray-brown SAND (S	rounded t^ P-SM)	-					
-		with silt, gravel, and cobbles; nor coarse sand; coarse, subrounded wet	n-plastic; d gravel;	_	0.3				Sand
-				_	0.3				
25.0 —					0.3				
-		- Encountered light fuel odor		_	0.3				
- 0.0 —				_	0.4				
-				-					
- RING I		L DD: Sonic Drilling olt Services			L ED BY: P .ETED: 1		1	L	I

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 26, 2019

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the additional results from the testing of material submitted on March 21, 2019 from the Coleman Oil Yakima 41392.000.12.2, F&BI 903392 project. There are 14 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures PBS0426R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 21, 2019 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima 41392.000.12.2, F&BI 903392 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS
903392 -01	MW-10
903392 -02	MW-9
903392 -03	Dup 1
903392 -04	RW-1P
903392 -05	MW-8P
903392 -06	MW-4P
903392 -07	MW-2P
903392 -08	MW-3P
903392 -09	MW-5P
903392 -10	Trip Blank

All quality control requirements were acceptable.

The NWTPH-Dx chromatograms from samples MW-8P, MW-4P, MW-2P, MW-3P and MW-5P were reviewed to determine the approximate ratio of products present, as well the approximate degree of weathering. The findings are provided in Table 1.

Table 1					
Sample ID	Approximate % Gas	Approximate % Diesel	Sample Color	Gas Degree of Weathering	Diesel Degree of Weathering
RW-1P	50	50	Amber	Weathered	Mixed
MW-8P	<10	100	Black	NA	Weathered
MW-4P	<10	100	Black	NA	Weathered
MW-2P	20	80	Amber	Weathered	Fresh
MW-3P	10	90	Amber	Weathered	Mixed
MW-5P	50	50	Black	Weathered	Weathered

Table 1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392 Date Extracted: 03/22/19 Date Analyzed: 04/08/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
MW-10 903392-01	<50	<250	89
MW-9 903392-02	<50	<250	93
Method Blank ^{09-645 MB}	<50	<250	126

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	RW-1P	Client:	PBS Engineering and Environmental
Date Received:	03/21/19	Project:	Coleman Oil Yakima 41392.000.12.2
Date Extracted:	04/08/19	Lab ID:	903392-04
Date Analyzed:	04/08/19	Data File:	903392-04.136
Matrix:	Soil/Product	Instrument:	ICPMS2
Units:	mg/kg (ppm)	Operator:	SP
Analyte:	Concentration mg/kg (ppm)	• F	

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2P 03/21/19 04/08/19 04/08/19 Soil/Product mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil Yakima 41392.000.12.2 903392-07 903392-07.137 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)	operator.	51

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-5P	Client:	PBS Engineering and Environmental
Date Received:	03/21/19	Project:	Coleman Oil Yakima 41392.000.12.2
Date Extracted:	04/08/19	Lab ID:	903392-09
Date Analyzed:	04/08/19	Data File:	903392-09.138
Matrix:	Soil/Product	Instrument:	ICPMS2
Units:	mg/kg (ppm)	Operator:	SP
Analyte:	Concentration mg/kg (ppm)	oporatori	

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	PBS Engineering and Environmental
Date Received:	NA	Project:	Coleman Oil Yakima 41392.000.12.2
Date Extracted:	04/08/19	Lab ID:	I9-234 mb
Date Analyzed:	04/08/19	Data File:	I9-234 mb.109
Matrix:	Soil/Product	Instrument:	ICPMS2
Units:	mg/kg (ppm)	Operator:	SP
Analyte:	Concentration mg/kg (ppm)	-	

Lead

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	RW-1P 03/21/19 04/08/19 04/09/19 Soil/Product mg/kg (ppm	-	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil Yakima 41392.000.12.2 903392-04 1/2000 040849.D GCMS9 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	50	150
Toluene-d8		102	50	150
4-Bromofluorobenz	ene	104	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	· /	<100		
1,2-Dibromoethane	(EDB)	<100		
Benzene		<60		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2P 03/21/19 04/08/19 04/09/19 Soil/Product mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil Yakima 41392.000.12.2 903392-07 1/2000 040850.D GCMS9 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	ene	104	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	. ,	<100		
1,2-Dibromoethane	(EDB)	<100		
Benzene		460		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5P 03/21/19 04/08/19 04/09/19 Soil/Product mg/kg (ppm	-	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil Yakima 41392.000.12.2 903392-09 1/2000 040851.D GCMS9 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	50	150
Toluene-d8		103	50	150
4-Bromofluorobenz	ene	109	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	(EDC)	<100		
1,2-Dibromoethane	(EDB)	<100		
Benzene		<60		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 04/08/19 04/08/19 Soil/Product mg/kg (ppm)	ble	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil Yakima 41392.000.12.2 09-734 mb 040824.D GCMS9 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	50	150
Toluene-d8		102	50	150
4-Bromofluorobenz	ene	101	50	150
Compounds:		Concentration mg/kg (ppm)		
Methyl t-butyl ethe	er (MTBE)	< 0.05		
1,2-Dichloroethane (EDC) <0.05				
1,2-Dibromoethane	(EDB)	< 0.05		
Benzene		< 0.03		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel							
			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Diesel Extended	ug/L (ppb)	2,500	96	113	63-142	16	

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/PRODUCT SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 904104-20 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	27.5	102	100	75 - 125	2

Laboratory Code: Laboratory Control Sample

Laboratory Co	Jue. Laboratory Com	and Sample	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	102	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/19 Date Received: 03/21/19 Project: Coleman Oil Yakima 41392.000.12.2, F&BI 903392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/PRODUCT SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 904047-08 (Matrix Spike)

)		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	82	90	17 - 134	9
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	86	90	22 - 124	5
Benzene	mg/kg (ppm)	2.5	< 0.03	80	84	26 - 114	5
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	89	91	32 - 126	2

Laboratory Code: Laboratory Control Sample

	I I I I I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	96	72-122
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	103	73-111
Benzene	mg/kg (ppm)	2.5	97	72-106
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	103	77-117

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

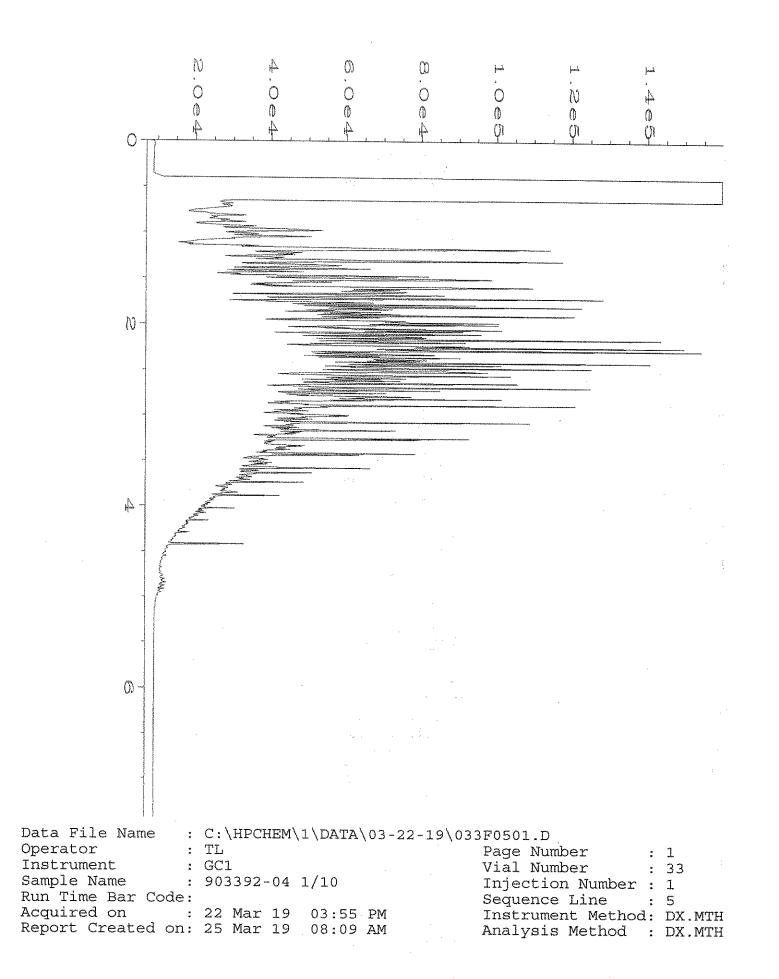
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

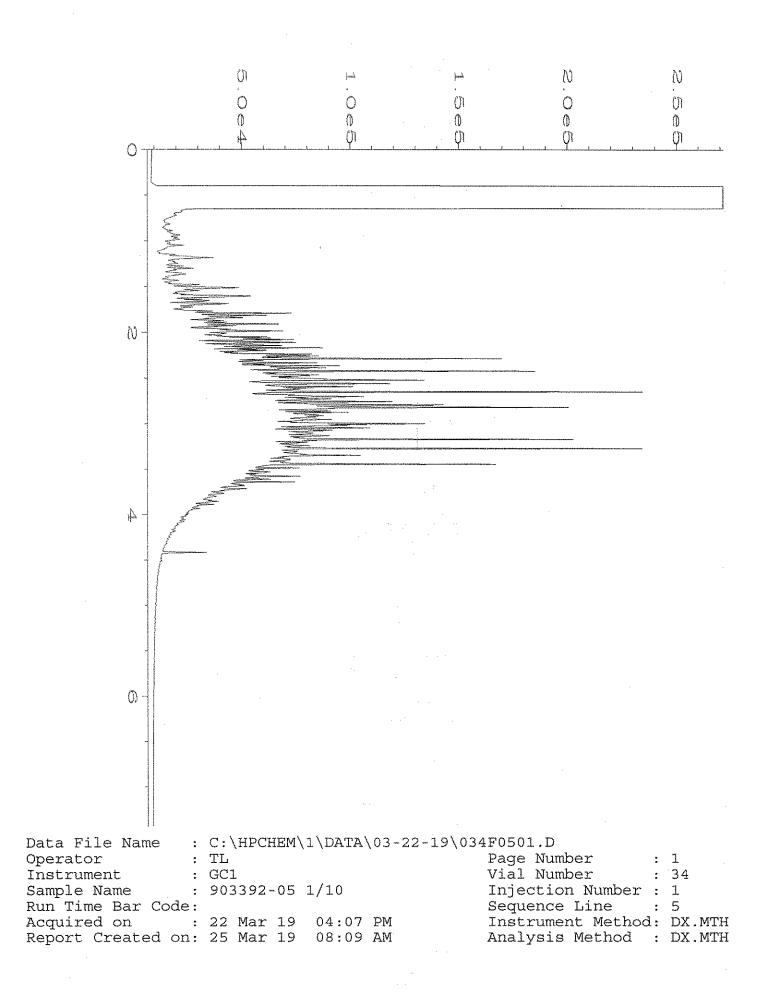
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

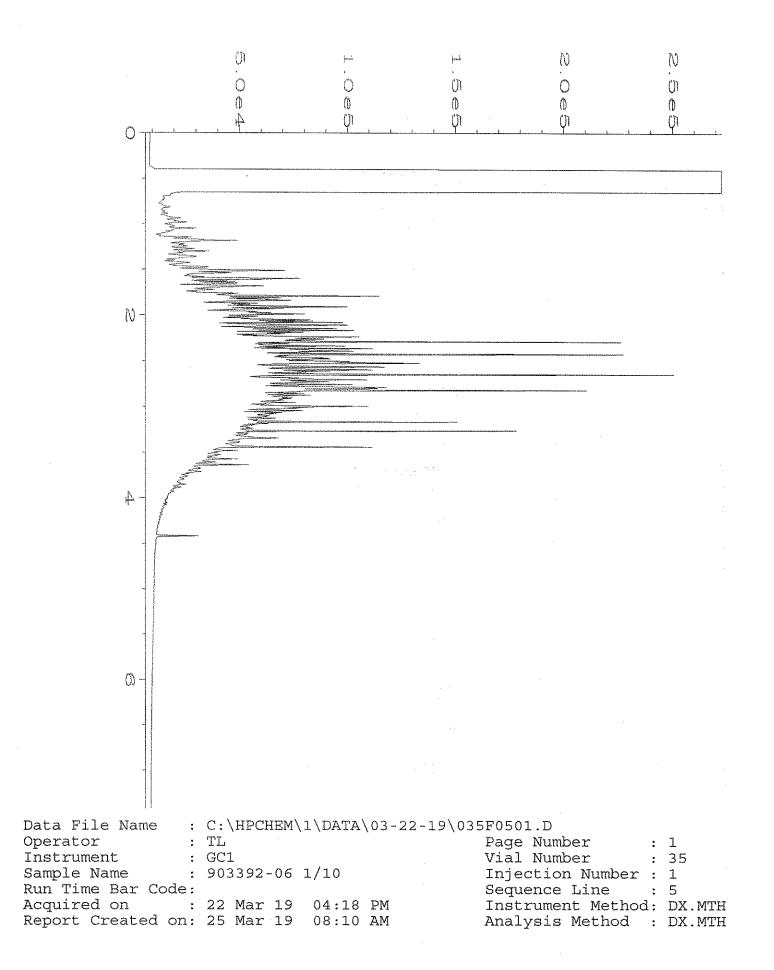
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

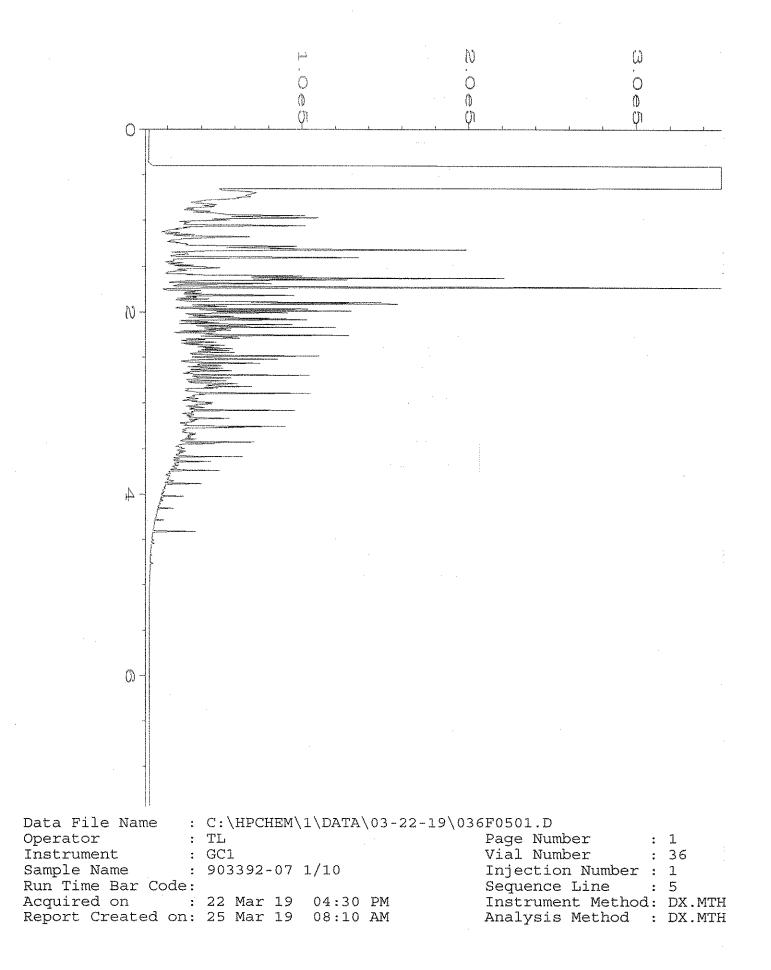
lc - The presence of the analyte is likely due to laboratory contamination.

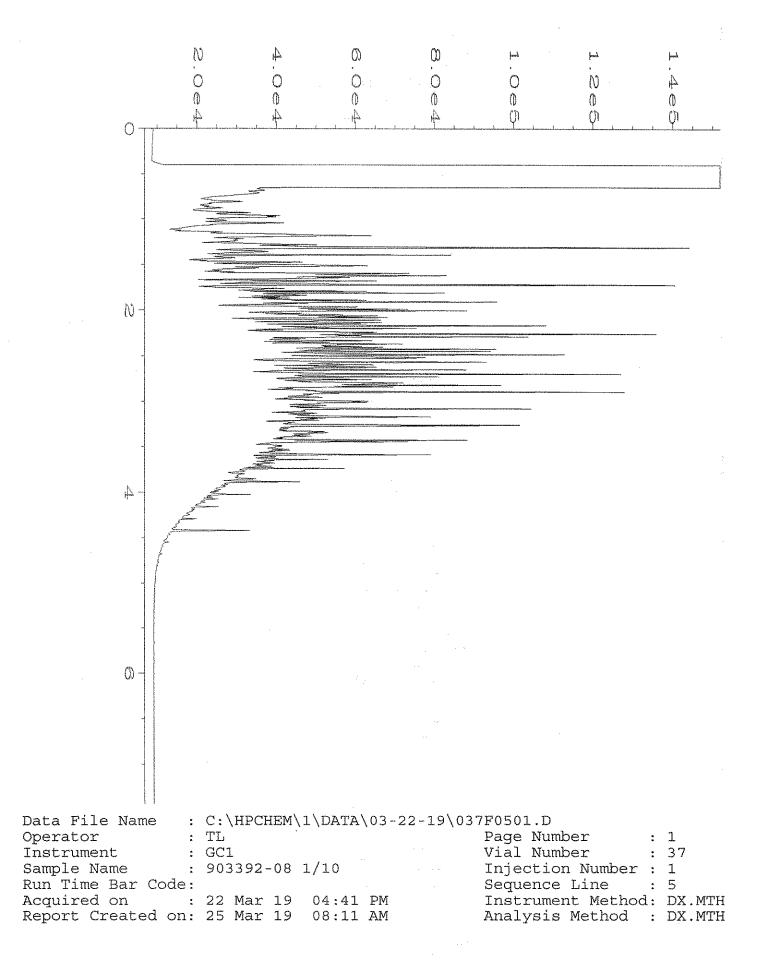
L - The reported concentration was generated from a library search.

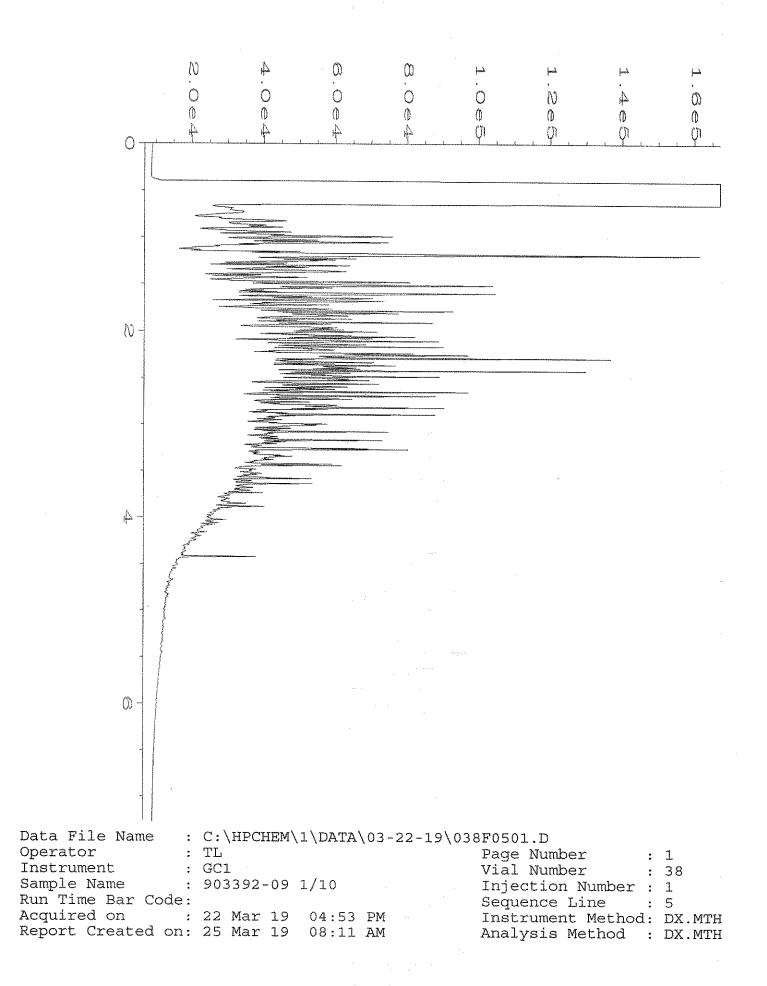

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.



.

. .

MW-9P Ph. (206) 285-8282 Seattle, WA 98119-2029 MW-4P 3012 16th Avenue West Friedman & Bruya, Inc. RW4P MW-3P MW=5P MW-8P Dwo 1 Mw-9 Phone 509-572-8/63 Email Ken Nogence OPBSUSA.con City, State, ZIP Seattle 14 48100 Company PBS Engineering : Environmental Address 214 E. Galer St. Ste 300 Report To Kan rip Blank MW-10 9033 903397 troken Nogerre Sample ID Relinquished by: Received by Trucking # : Received by: Relingentatives by: 09. A-B DIA E OH AC 02 05 T 6 08 A-C 034.) <u>G</u>b 40 Lab ID 4 SIGNATURE 13/19/19 3/19/19 3/19/19/0800 3/19/19 3/19/19 3/19/19 61/161/2 9/19/19 3/19/19 2/19/19 Sampled Date 1900 8 11245 1540 1515 Soo 1735 1349 ノフロフ SAMPLE CHAIN OF CUSTODY Sampled Il SS Time SAMPLERS (signature) REMARKS PROJECT NAME Colemin Oil Yaking · which Product Product Produt Padul Ratrick 5273 Sefe Rodelt A'S PNOH Est. Preskert Sample Type 5 ŝ ____ 2011 0 ŝ СЛ #of Jars PRINT NAME 5 3 \mathcal{O} Brice UGunet \prec TPH-HCID TPH-Diesel TPH-Gasoline \prec BTEX by 8021B ANALYSES REQUESTED 41392,000.12.2 ME 03-21-19 VOCs by 8260C INVOICE TO the l $\mathbf{\hat{s}}$ ନ୍ତ PBS Ensineering Fe FX PO # ঙি \bigotimes Lead \bigotimes COMPANY **P**.} Satiples Dispose after 30 daysArchive Samples [] Other RUSH $\overline{\times}$ Rush charges authorized by: s lece ved at X Page # ______ of _____ TURNAROUND TIME \odot SAMPLE DISPOSAL MILGEDSEPC Bailig W/De/K 3/00/19 Pending analysi DATE 91 (1911) 4/5/19 () - 30- EN A02/ 2 (7) Notes AT3 01.01 600 000 TIME Sandhes å China .

÷

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 12, 2019

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on June 6, 2019 from the Coleman Oil Yakima 41392, F&BI 906083 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0612R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 6, 2019 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil Yakima 41392, F&BI 906083 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
906083 -01	BH8-4
906083 -02	BH8-12
906083 -03	BH9-4
906083 -04	BH9-8
906083 -05	BH10-4
906083 -06	BH10-6
906083 -07	BH11-4
906083 -08	BH11-8
906083 -09	BH12-3
906083 -10	BH12-8
906083 -11	BH13-4
906083 -12	BH13-9

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083 Date Extracted: 06/06/19 Date Analyzed: 06/06/19 and 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
BH8-4 906083-01	< 0.02	< 0.02	< 0.02	<0.06	<5	89
BH8-12 906083-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	90
BH9-4 906083-03	< 0.02	< 0.02	< 0.02	<0.06	<5	89
BH9-8 906083-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH10-4 906083-05	< 0.02	< 0.02	< 0.02	<0.06	<5	88
BH10-6 906083-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
BH11-4 906083-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH11-8 906083-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH12-3 906083-09	< 0.02	< 0.02	< 0.02	<0.06	<5	88
BH12-8 906083-10	< 0.02	< 0.02	< 0.02	<0.06	<5	88

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083 Date Extracted: 06/06/19 Date Analyzed: 06/06/19 and 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
BH13-4 906083-11	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
BH13-9 906083-12	< 0.02	< 0.02	< 0.02	<0.06	<5	89
Method Blank ^{09-1283 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<5	90

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083 Date Extracted: 06/07/19 Date Analyzed: 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
BH8-4 906083-01	<50	<250	93
BH8-12 906083-02	<50	<250	107
BH9-4 906083-03	<50	<250	93
BH9-8 906083-04	<50	<250	92
BH10-4 906083-05	<50	<250	94
BH10-6 906083-06	<50	<250	94
BH11-4 906083-07	<50	<250	92
BH11-8 906083-08	<50	<250	92
BH12-3 906083-09	<50	<250	92
BH12-8 906083-10	<50	<250	92

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083 Date Extracted: 06/07/19 Date Analyzed: 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
BH13-4 906083-11	<50	<250	94
BH13-9 906083-12	<50	<250	106
Method Blank ^{09-1351 MB}	<50	<250	94

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906083-01 (Duplicate)

	Reporting	Sample Result	Duplicate Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	95	66-121
Toluene	mg/kg (ppm)	0.5	107	72 - 128
Ethylbenzene	mg/kg (ppm)	0.5	105	69 - 132
Xylenes	mg/kg (ppm)	1.5	105	69-131
Gasoline	mg/kg (ppm)	20	100	61 - 153

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/19 Date Received: 06/06/19 Project: Coleman Oil Yakima 41392, F&BI 906083

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 906083-01 (Matrix Spike) Sample Percent Percent Reporting Spike Result Acceptance RPD Recovery Recovery Analyte Units Level (Wet Wt) MSMSD Criteria (Limit 20) Diesel Extended mg/kg (ppm) 91 93 73-135 2 5,000 <50 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Analyte Level LCS Criteria Diesel Extended 5,000 92 74-139 mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at 3	Samples r	19/					K			2		Y. W	reday:	Received	Ph. (206) 285-8282	
		E72	יי			N°	23	when o			king #:	X Truck	Received by: Fed Fed F.	Received by: Fe	3012 16" Avenue West Seattle, WA 98119-2029	
6/5/19		PBSEND- & Env.	P85				Ĩ	Brick	Patrick	-		to Be	Kelinquished by:	Relino	Friedman & Bruya, Inc.	
DATE	INY	COMPANY				ME	[NA	PRINT NAME				SIGNATURE	SIO	1	1	
					$\overline{\mathbf{X}}$			4			1350	4	0		SH12-8	
					$\widehat{}$	\times					1340		09		BH12-3	
				- \	$\overline{\mathbf{x}}$	\sim					13 25		30		BH11-8	
		-			$\overline{\mathbf{X}}$	\sim					1312		to		BH11-4	
					$\overline{\mathbf{X}}$	\sim					8461		06		BH 10-6	
				\sim	$\overline{\times}$						1935		5		BH10-4	
					X	X X					oeel		oy		BH9-8	
				\sim	$\widehat{\mathbf{X}}$	\mathbf{x}					alel		03		1- 1HS	
					È	X					1150		02		BH8-13	
						$\overline{\mathbf{X}}$		5	F	501	1138	6/4/19	0) AE		BHS-4	
		PAHs 8270D SIM	SVOCs by 8270D	VOCs by 8260C	TPH-Gasoline BTEX by 8021B	TPH-Diesel	TPH-HCID	# of Jars	Sample # Type J	Sar Ty	Time Sampled	Date Sampled	Lab ID		Sample ID	
	TED	ANALYSES REQUESTED	LYSE	ANA												
ufter 30 d Samples	X Dispose after 30 days Archive Samples	Ken Nogerre	ج	Ke							·	epsusa.	1/4 78107	imail Kenu	City, State, ZIP <u>>esttle, W/t 78107</u> Phone <u>504-572-9163</u> Email Ken. Jeyeire @P8545A. w	
SAMPLE DISPOSAL	SAM	JE TO	INVOICE TO					114-1		RKS	REMARKS	>	>	-	4	
es autho	Standard Turnaround RUSH Rush charges authorized by:	#	41399 #04	٩NЭ			Ś		AME	roject N/	PROJECT NAME	Environmental	I. n	Engineering Galer St.,	Company PBS Engineration	
Page # of TURNAROUND TIME					N		2)	e.	SAMPLERS (signature)	LERS (SAMP		¢	Nogeire	Report To Ken No	
-	119	ME 06/06/19		2	Y	IOI	[S]	F CI	IAIN O	E CH	SAMPLE CHAIN OF CUSTOD				906083	

12 Weber-Bruge	Patrick Brice PBS Eng. ? Env. 6/5/19 1600	PRINT NAME COMPANY DATE TIME					$S s_{11} s X X $	$ S_{0} \leq X \times X $	Image: Constraint of the second state of the second sta	ANALYSES REQUESTED	Archive Samples Other	REMARKS INVOICE TO SAMPLE DISPOSAL	PROJECT NAME PO # Standard Turnaround Column Oil Kuimi 4139 8 Rush charges authorized by:	number Costopi MC Up Up
Received by: Received by: Re	ished by the the	SIGNATURE				-	1 6/4/19	A-E 6/4/19 1405	Lab ID Date Time Sampled Sampled		n. Nogere @ PBSUSA.un	VA 98100	Environmentel PE	
3012 16" Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Receive	ـــــــــــــــــــــــــــــــــــــ	T1					BH13-9 12	BH 13-4 //	Sample ID		Phone 509-577-8163 Email Ken. Negere @ PBSUSA.	City, State, ZIP_Seattle, WA 98103	Company PBS Engineering Address 214 E. Galer St.	Report To Ken Nogerre