APPENDIX C

Laboratory Reports and Chains of Custody (on CD)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

February 26, 2013

Chip Goodhue, Project Manager Aspect Consulting, LLC 350 Madison Ave. N. Bainbridge Island, WA 98110-1810

Dear Mr. Goodhue:

Included are the results from the testing of material submitted on February 8, 2013 from the Ken's Texaco 120061, F&BI 302105 project. There are 36 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman, Bob Hanford ASP0226R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 8, 2013 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 302105 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
302105 -01	MW-10-20
302105 -02	MW-10-25
302105 -03	MW-11-15
302105 -04	MW-11-23
302105 -05	MW-12-17.5
302105 -06	MW-12-23
302105 -07	MW-9-16
302105 -08	MW-7-16.5
302105 -09	MW-8-23

The 8260C calibration standard failed the acceptance criteria for chloroethane in samples MW-11-15 and MW-12-17.5. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

Date Extracted: 02/11/13

Date Analyzed: 02/11/13 and 02/13/13

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
MW-10-20 302105-01	<2	100
MW-10-25 302105-02	<2	101
MW-11-15 302105-03 1/50	1,600	121
MW-11-23 302105-04	7.6	106
MW-12-17.5 302105-05	<2	102
MW-12-23 302105-06	<2	102
MW-9-16 302105-07	730	ip
MW-7-16.5 302105-08	<2	103
MW-8-23 302105-09	<2	102
Method Blank 03-0230 MB	<2	104

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

Date Extracted: 02/08/13 Date Analyzed: 02/08/13

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
MW-10-20 302105-01	< 50	<250	99
MW-10-25 302105-02	< 50	<250	96
MW-11-15 302105-03	< 50	<250	96
MW-11-23 302105-04	< 50	<250	95
MW-12-17.5 302105-05	< 50	<250	89
MW-12-23 302105-06	< 50	<250	91
MW-9-16 302105-07	< 50	<250	88
MW-7-16.5 302105-08	< 50	<250	92
MW-8-23 302105-09	<50	<250	91
Method Blank 03-244 MB	<50	<250	99

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-10-20 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

 Date Extracted:
 02/14/13
 Lab ID:
 302105-01

 Date Analyzed:
 02/15/13
 Data File:
 302105-01.022

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 88 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 3.88

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-10-25 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

 Date Extracted:
 02/14/13
 Lab ID:
 302105-02

 Date Analyzed:
 02/15/13
 Data File:
 302105-02.023

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

Holmium 88 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 2.27

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-11-15	Client:	Aspect Consulting, LLC
------------	----------	---------	------------------------

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 302105-03 02/19/13 Date Analyzed: 02/20/13 Data File: 302105-03.032 Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

		Lower	Upper	
Internal Standard:	% Recovery:	Limit:	Limit:	
Germanium	121	60	125	
Indium	93	60	125	
Holmium	91	60	125	

	Concentration
Analyte:	mg/kg (ppm)

Chromium	11.1
Nickel	12.9
Zinc	28.6
Cadmium	<1
Lead	3.31

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-12-17.5 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

 Date Extracted:
 02/19/13
 Lab ID:
 302105-05

 Date Analyzed:
 02/20/13
 Data File:
 302105-05.033

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	116	60	125
Indium	91	60	125
Holmium	91	60	125

Concentration
Analyte: mg/kg (ppm)

 Chromium
 8.49

 Nickel
 8.58

 Zinc
 27.9

 Cadmium
 <1</td>

 Lead
 2.77

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-9-16 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

 Date Extracted:
 02/14/13
 Lab ID:
 302105-07

 Date Analyzed:
 02/15/13
 Data File:
 302105-07.024

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

Holmium 88 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 9.13

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-7-16.5 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 302105-08 02/14/13 Date Analyzed: 02/15/13 Data File: 302105-08.019 Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: AP

Lower Upper **Internal Standard:** Limit: % Recovery: Limit:

Holmium 88 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 5.52

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-8-23 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

 Date Extracted:
 02/14/13
 Lab ID:
 302105-09

 Date Analyzed:
 02/15/13
 Data File:
 302105-09.025

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 89 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 1.61

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: I3-71 mb 02/19/13 Date Analyzed: 02/20/13 Data File: I3-71 mb.027 Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Lower Upper **Internal Standard:** Limit: % Recovery: Limit: Germanium 100 60 125 93 Indium 60 125 Holmium 86 60 125

Concentration
Analyte: mg/kg (ppm)

Chromium <1
Nickel <1
Zinc <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: I3-66 mb 02/14/13 Date Analyzed: 02/15/13 Data File: I3-66 mb.017 Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Lower Upper

Internal Standard: % Recovery: Limit: Limit: Holmium 88 60 125

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-20 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 02/11/13 302105-01 Data File: 021108.D Date Analyzed: 02/11/13 Matrix: Instrument: GCMS9 Soil Units: mg/kg (ppm) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Concentration mg/kg (ppm) Methyl t-butyl ether (MTBE) <0.05 1,2-Dichloroethane (EDC) <0.05 1,2-Dibromoethane (EDB) <0.05

 Benzene
 <0.03</td>

 Toluene
 <0.05</td>

 Ethylbenzene
 <0.05</td>

 m,p-Xylene
 <0.1</td>

 o-Xylene
 <0.05</td>

 Naphthalene
 <0.05</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-25 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: 302105-02 Date Extracted: 02/11/13 Date Analyzed: 02/11/13 Data File: 021109.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: VM

	0.4 70	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	mg/kg (ppm)
Methyl t-butyl ether (MTBE)	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,2-Dibromoethane (EDB)	< 0.05
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-15 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 02/18/13 302105-03 021834.D Data File: Date Analyzed: 02/18/13 Matrix: Instrument: Soil GCMS9 Units: mg/kg (ppm) Operator: VM

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 111 50 150 Toluene-d8 128 50 150 4-Bromofluorobenzene 107 50 150

Concentration mg/kg (ppm)

Vinyl chloride <0.05
Chloroethane <0.5 ca
1,1-Dichloroethene <0.05
Mathylono chloride <0.5

Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.03 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-15	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 302105-03 02/11/13 Date Analyzed: 02/13/13 Data File: 021307.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	95	50	150

0.33

Concentration mg/kg (ppm) Benzene 0.12 Toluene 0.11 Ethylbenzene 0.73 m,p-Xylene 1.3 o-Xylene 0.40

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-23 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 02/11/13 302105-04 Data File: 021110.D Date Analyzed: 02/11/13 Matrix: Instrument: GCMS9 Soil Units: mg/kg (ppm) Operator: VM

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 102 50 150 Toluene-d8 98 50 150 4-Bromofluorobenzene 101 50 150

Concentration

< 0.05

 Compounds:
 mg/kg (ppm)

 Benzene
 <0.03</td>

 Toluene
 <0.05</td>

 Ethylbenzene
 <0.05</td>

 m,p-Xylene
 <0.1</td>

 o-Xylene
 <0.05</td>

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-12-17.5 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 02/18/13 302105-05 021835.D Data File: Date Analyzed: 02/18/13 Matrix: Instrument: Soil GCMS9 Units: mg/kg (ppm) Operator: VM

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 106 50 150 Toluene-d8 101 50 150 4-Bromofluorobenzene 99 50 150

Concentration mg/kg (ppm)

Vinyl chloride <0.05
Chloroethane <0.5 ca
1,1-Dichloroethene <0.05
Methylene chloride <0.5
trans-1,2-Dichloroethene <0.05

Methylene chloride<0.5</th>trans-1,2-Dichloroethene<0.05</td>1,1-Dichloroethane<0.05</td>cis-1,2-Dichloroethene<0.05</td>1,2-Dichloroethane (EDC)<0.05</td>1,1,1-Trichloroethane<0.05</td>Trichloroethene<0.03</td>Tetrachloroethene<0.025</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-12-17.5 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 02/11/13 302105-05 02/11/13 Data File: 021111.D Date Analyzed: Matrix: Instrument: GCMS9 Soil Units: mg/kg (ppm) Operator: VM

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 100 50 150 Toluene-d8 98 50 150 4-Bromofluorobenzene 102 50 150

Concentration

Compounds: mg/kg (ppm)

Benzene <0.03

Toluene <0.05

Ethylbenzene <0.05 m,p-Xylene <0.1 o-Xylene <0.05 Naphthalene <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-12-23 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 302105-06 02/11/13 02/12/13 Data File: 021239.D Date Analyzed: Matrix: Instrument: GCMS9 Soil Units: mg/kg (ppm) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 100 50 150 Toluene-d8 101 50 150 4-Bromofluorobenzene 50 96 150

Concentration

Compounds: mg/kg (ppm)

Benzene <0.03

Toluene <0.05

Ethylbenzene <0.05

m,p-Xylene <0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-9-16 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Date Extracted: Lab ID: 02/11/13 302105-07 Data File: 021243.D Date Analyzed: 02/13/13 Matrix: Instrument: Soil GCMS9 Units: mg/kg (ppm) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 99 50 150 Toluene-d8 101 50 150 4-Bromofluorobenzene 50 97 150

Concentration
Compounds: mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.05
1 2-Dichloroethane (FDC) <0.05

1,2-Dichloroethane (EDC) < 0.05 1,2-Dibromoethane (EDB) < 0.05 Benzene 0.19 Toluene 0.098 Ethylbenzene 2.1 m,p-Xylene 3.3 o-Xylene 0.19 Naphthalene 0.99

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-7-16.5 Client: Aspect Consulting, LLC

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 302105-08 02/11/13 Date Analyzed: 02/12/13 Data File: 021240.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	97	50	150

Concentration mg/kg (ppm)

Mothyl t butyl other (MTPF)

Methyl t-butyl ether (MTBE)	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,2-Dibromoethane (EDB)	< 0.05
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-8-23	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Ken's Texaco 120061, F&BI 302105 Date Received: 02/08/13 Project:

Lab ID: Date Extracted: 302105-09 02/11/13 Date Analyzed: 02/12/13 Data File: 021241.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	93	50	150

Compounds:	Concentration mg/kg (ppm)	
Methyl t-butyl ether (MTBE)	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	
1,2-Dibromoethane (EDB)	< 0.05	
Benzene	< 0.03	
Toluene	< 0.05	
Ethylbenzene	< 0.05	
m,p-Xylene	< 0.1	
o-Xylene	< 0.05	
Naphthalene	< 0.05	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 302105

Date Extracted: Lab ID: 02/18/13 03-0285 MB Data File: Date Analyzed: 02/18/13 021833.D Matrix: Instrument: Soil GCMS9 Units: mg/kg (ppm) Operator: VM

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 103 50 150 Toluene-d8 100 50 150 4-Bromofluorobenzene 50 100 150

Concentration compounds: mg/kg (ppm)

Vinyl chloride < 0.05 Chloroethane <0.5 ca 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.03 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 302105
Date Extracted: 02/11/13 Lab ID: 03-0132 mb

 Date Extracted:
 02/11/13
 Lab ID:
 03-0132 mb

 Date Analyzed:
 02/11/13
 Data File:
 021107.D

 Matrix:
 Soil
 Instrument:
 GCMS9

 Units:
 mg/kg (ppm)
 Operator:
 VM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 50 150 Toluene-d8 99 50 150 4-Bromofluorobenzene 100 50 150

Concentration
Compounds: mg/kg (ppm)

Methyl t-butyl ether (MTBE) < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,2-Dibromoethane (EDB) < 0.05 Benzene < 0.03 Toluene < 0.05 Ethylbenzene < 0.05 m,p-Xylene < 0.1 o-Xylene < 0.05 Naphthalene < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-11-15	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 02/18/13 302105-03 1/5 Date Analyzed: 02/18/13 Data File: 021827.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Operator: VM

~		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	93	50	150
Benzo(a)anthracene-d12	119	35	159

< 0.01

Compounds:	Concentration mg/kg (ppm)
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-12-17.5	Client:	Aspect Consulting, LLC
-------------------	------------	---------	------------------------

Date Received: 02/08/13 Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 02/18/13 302105-05 1/5 Date Analyzed: 02/18/13 Data File: 021828.D Matrix: Instrument: GCMS6 Soil Units: mg/kg (ppm) Operator: VM

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 91 50 150 Benzo(a)anthracene-d12 119 35 159

Concentration
mg/kg (ppm)
< 0.01

Chrysene <0.01
Benzo(a)pyrene <0.01
Benzo(b)fluoranthene <0.01
Benzo(k)fluoranthene <0.01
Indeno(1,2,3-cd)pyrene <0.01
Dibenz(a,h)anthracene <0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 302105

Lab ID: Date Extracted: 02/18/13 03-0293 mb 1/5 Data File: 021822.D Date Analyzed: 02/18/13 Matrix: Instrument: GCMS6 Soil Units: mg/kg (ppm) Operator: VM

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 87 50 150 Benzo(a)anthracene-d12 97 35 159

Concentration
Compounds: mg/kg (ppm)

Benz(a)anthracene <0.01
Chrysene <0.01
Benzo(a)pyrene <0.01
Benzo(b)fluoranthene <0.01

Benzo(k)fluoranthene <0.01 Indeno(1,2,3-cd)pyrene <0.01 Dibenz(a,h)anthracene <0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 302105-01 (Duplicate)

v	•	(Wet Wt)	Relative Percent
	(Wet	Wt) Duplicate	Difference
Analyte	Reporting Units Sample	Result Result	(Limit 20)
Gasoline	mg/kg (ppm) <2	2 <2	nm

			Percent		
		Spike	Recovery	Acceptance	
Analyte	Reporting Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	100	61-153	_

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 302102-05 (Matrix Spike)

-		_	(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery MSD	Acceptance	RPD
Analyte	Units	Level	Result	MS		Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5.000	< 50	110	110	64-133	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	110	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 302157-02 (Matrix Spike)

				Percent	Percent		
	Reporting Units	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte		Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	6.35	103	103	63-120	0
Nickel	mg/kg (ppm)	25	11.3	96 b	96 b	54-125	0 b
Zinc	mg/kg (ppm)	50	17.4	107 b	108 b	49-129	1 b
Cadmium	mg/kg (ppm)	10	<1	103	104	85-117	1
Lead	mg/kg (ppm)	50	2.83	103	103	64-139	0

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	108	81-117
Nickel	mg/kg (ppm)	25	105	86-118
Zinc	mg/kg (ppm)	50	105	84-121
Cadmium	mg/kg (ppm)	10	103	88-114
Lead	mg/kg (ppm)	50	101	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 302105-08 (Matrix Spike)

				Percent	Percent			
	Reporting Units	Spike	Sample	Recovery	Recovery	Acceptance	RPD	
Analyte		Level	Result	MS	MSD	Criteria	(Limit 20)	
Lead	mg/kg (ppm)	50	5.52	97	96	64-139	1	

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	102	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 302105-08 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	69	17-134
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	72	22-124
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	71	32-126
Benzene	mg/kg (ppm)	2.5	< 0.03	69	26-114
Toluene	mg/kg (ppm)	2.5	< 0.05	73	34-112
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	75	38-111
m,p-Xylene	mg/kg (ppm)	5	< 0.1	75	38-112
o-Xylene	mg/kg (ppm)	2.5	< 0.05	75	38-113
Naphthalene	mg/kg (ppm)	2.5	< 0.05	73	39-120

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	105	96	75-115	9
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	100	80-109	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	103	103	83-116	0
Benzene	mg/kg (ppm)	2.5	95	98	75-107	3
Toluene	mg/kg (ppm)	2.5	97	98	79-112	1
Ethylbenzene	mg/kg (ppm)	2.5	97	99	81-114	2
m,p-Xylene	mg/kg (ppm)	5	98	99	82-115	1
o-Xylene	mg/kg (ppm)	2.5	98	100	81-116	2
Naphthalene	mg/kg (ppm)	2.5	102	105	84-120	3

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 302221-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	54	49	10-91	10
Chloroethane	mg/kg (ppm)	2.5	< 0.5	60	60	10-101	0
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	74	11-103	1
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	90	86	14-128	5
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	81	79	13-112	2
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	87	84	23-115	4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	88	85	25-120	3
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	91	89	22-124	2
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	85	83	27-112	2
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	85	83	30-112	2
Tetrachloroethene	mg/kg (ppm)		< 0.03	86	85	27-110	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	78	42-107
Chloroethane	mg/kg (ppm)	2.5	73	47-115
1,1-Dichloroethene	mg/kg (ppm)	2.5	92	65-110
Methylene chloride	mg/kg (ppm)	2.5	103	62-119
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	95	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	99	76-109
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	97	77-110
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	103	80-109
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	97	72-116
Trichloroethene	mg/kg (ppm)	2.5	95	72-107
Tetrachloroethene	mg/kg (ppm)	2.5	95	77-110

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/08/13

Project: Ken's Texaco 120061, F&BI 302105

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 302148-02 1/25 and 1/250 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benz(a)anthracene	mg/kg (ppm)	< 0.05	< 0.05	nm
Chrysene	mg/kg (ppm)	0.12	0.13	8
Benzo(b)fluoranthene	mg/kg (ppm)	< 0.05	< 0.05	nm
Benzo(k)fluoranthene	mg/kg (ppm)	< 0.05	< 0.05	nm
Benzo(a)pyrene	mg/kg (ppm)	< 0.05	< 0.05	nm
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	< 0.05	< 0.05	nm
Dibenz(a,h)anthracene	mg/kg (ppm)	< 0.05	< 0.05	nm

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	mg/kg (ppm)	0.17	82	85	51-115	4
Chrysene	mg/kg (ppm)	0.17	90	90	55-129	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	94	90	56-123	4
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	94	97	54-131	3
Benzo(a)pyrene	mg/kg (ppm)	0.17	81	85	51-118	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	81	89	49-148	9
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	84	87	50-141	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- \boldsymbol{a} The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

302/05 SA	MPLE CHAIN OF CUSTODY	4E 2/8	113 CT3/VSR
Send Report To Bob Hunford, Chip Goodhue Company Aspect Consulting Address	PROJECT NAME/NO. WAY S TEXALO	PO# 120Φel	TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
City, State, ZIP Buinbridge Sland, WA Phone # Fax #	REMARKS Call Bob Hanford for a		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions
	ANA	LYSES REQUESTE	D I

<u> </u>	<u> </u>					F				ANAL	YSES	REO	HEST	ED			<u> </u>	٦ .
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 80218	VOCs by8260	8270	HFS TO TO			TRE		P. C.C.V. Z.	Notes	
MW-10-20	or A=	2/4/13	1040	SOIL	5	Х	X	Х			*	×	У	*	 		X-anglyse as marked per Bit	
	62A (1	1105		S	X	X	Х			1	×	X	X		<u> </u>	2/8/13	
MW-11-15	0345		1350		9	X	X	X			 	1	X	 	×	*	Run Holles F. Thr	
MW-11-23	OH.	Ψ	1430		6	X	Χ	У		\top	1		X		×	A	Lead coults for hunces (d.C.	1.: 2 .
MW-12-17,5	05-	2/5/13	Obro		6	χ	У	Х			$\top x$		Х			*	l puntollest for	ا
MW-12-23	06		0900		6	Х	X	X			X	 	Ÿ			Z:	Pb, cpalls, PC-3	
MW-9-16	07	\downarrow	1440		6	X	$\overline{\chi}$	χ			K	X		X			1+vo(s, (d, (c, U), 1	
MW-7-16.5	08	2/0/13	1340		6	X	X	χI			X	X	Х	X	eivo	d at	3 °C 1076 30 EH 2/5//3	
MW-8-23	27 AR	2/7/13	1100	\downarrow	5	X	X	X		<u> </u>	Х	\ \ \ X	inple X	X	,0.			> ·
								\top			1			1		.	·	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Amy Tice	1Spect	2813	1/2/5
Received by: Relinquished by:	James Broxa	FEB	2/8/13	1125
Received by:		Ŷ		- 18. 7 (JL.
Acceived by				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

February 26, 2013

Chip Goodhue, Project Manager Aspect Consulting, LLC 350 Madison Ave. N. Bainbridge Island, WA 98110-1810

Dear Mr. Goodhue:

Included are the results from the testing of material submitted on February 14, 2013 from the Ken's Texaco 120061, F&BI 302182 project. There are 37 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman, Bob Hanford

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 14, 2013 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 302182 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
302182 -01	MW-1-021313
302182 -02	MW-7-021313
302182 -03	MW-10-021313
302182 -04	MW-8-021313
302182 -05	MW-11-021313
302182 -06	MW-12-021313

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/15/13 Date Analyzed: 02/15/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
MW-1-021313 302182-01	1,700	124
MW-7-021313 302182-02	990	102
MW-10-021313 302182-03 1/5	2,500	116
MW-8-021313 302182-04	510	114
MW-11-021313 302182-05 1/10	5,000	114
MW-12-021313 302182-06	<100	101
Method Blank 03-0266 MB	<100	98

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/20/13 Date Analyzed: 02/20/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-1-021313 302182-01	400 x	<250	91
MW-7-021313 302182-02	240 x	<250	87
MW-10-021313 302182-03	430 x	<250	99
MW-8-021313 302182-04	230 x	<250	95
MW-11-021313 302182-05	1,400 x	280 x	93
MW-12-021313 302182-06	150 x	<250	104
Method Blank 03-302 MB	<50	<250	94

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-1-021313 Client: Aspect Consulting, LLC

Date Received: Project: Ken's Texaco 120061, F&BI 302182 02/14/13

Lab ID: Date Extracted: 02/15/13 302182-01 Date Analyzed: 02/15/13 Data File: 302182-01.030 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Lower

Upper Internal Standard: Limit: % Recovery: Limit: Holmium 84 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-7-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/15/13
 Lab ID:
 302182-02

 Date Analyzed:
 02/15/13
 Data File:
 302182-02.031

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 81 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-10-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/15/13
 Lab ID:
 302182-03

 Date Analyzed:
 02/15/13
 Data File:
 302182-03.032

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 82 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-8-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: 302182-04 Date Extracted: 02/15/13 Date Analyzed: 02/15/13 Data File: 302182-04.033 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: Internal Standard: % Recovery: Limit: Germanium 80 60 125 81 60 Indium 125 Holmium 81 60 125

Concentration

Analyte: ug/L (ppb)

Chromium 1.28
Nickel 12.6
Zinc <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-11-021313	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 302182-05 02/15/13 Date Analyzed: 02/15/13 Data File: 302182-05.034 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	75	60	125
Indium	75	60	125
Holmium	79	60	125

Concentration

3.93

Analyte:	ug/L (ppb)
Chromium	1.67
Nickel	33.6
Zinc	3.50
Cadmium	<1

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-12-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: 302182-06 Date Extracted: 02/15/13 Date Analyzed: 02/15/13 Data File: 302182-06.035 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: Internal Standard: % Recovery: Limit: Germanium 79 60 125 80 60 Indium 125 Holmium 82 60 125

Concentration

Analyte: ug/L (ppb)

 Chromium
 1.54

 Nickel
 8.40

 Zinc
 38.2

 Cadmium
 <1</td>

 Lead
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: NA Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 02/14/13 I3-65 mb Date Analyzed: 02/15/13 Data File: I3-65 mb.008 Matrix: Instrument: ICPMS1 Water Units: ug/L (ppb) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	94	60	125
Indium	93	60	125
Holmium	92	60	125

Concentration

Analyte: ug/L (ppb)

Chromium <1
Nickel <1
Zinc <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-1-021313	Client:	Aspect Consulting, LLC
Date Received:	02/14/13	Project:	Ken's Texaco 120061, F&BI 302182
Date Extracted:	02/15/13	Lab ID:	302182-01
Date Analyzed:	02/15/13	Data File:	021507.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	104	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-7-021313	Client:	Aspect Consulting, LLC
Date Received:	02/14/13	Project:	Ken's Texaco 120061, F&BI 302182
Date Extracted:	02/14/13	Lab ID:	302182-02
Date Analyzed	02/14/13	Data File	021439 D

Date Extracted: 02/14/13 Lab ID: 302182-02
Date Analyzed: 02/14/13 Data File: 021439.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	100	60	133

Concentration ug/L (ppb) Methyl t-butyl ether (MTBE) <1

1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 Benzene < 0.35 Toluene <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-10-021313	Client:	Aspect Cor	nsulting, LLC
			—	

 Date Received:
 02/14/13
 Project:
 Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/14/13
 Lab ID:
 302182-03

 Date Analyzed:
 02/14/13
 Data File:
 021437.D

Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	1.4
1,2-Dibromoethane (EDB)	<1
D	T.C.

Benzene 56
Toluene 85
Ethylbenzene 100
m,p-Xylene 300
o-Xylene 110
Naphthalene 33

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-8-021313	Client:	Aspect Consulting, LLC
Date Received:	02/14/13	Project:	Ken's Texaco 120061, F&BI 302182
Date Extracted:	02/14/13	Lab ID:	302182-04
Date Analyzed:	02/14/13	Data File:	021435.D
Matrix:	Water	Instrument:	GCMS4

Matrix: Water Instrument: GCI Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Concentration ug/L (ppb) Methyl t-butyl ether (MTBE) 1,2-Dichloroethane (EDC) 1,2-Dibromoethane (EDB) 8enzene 20 Toluene 1.5

Ethylbenzene 3.4 m,p-Xylene 7.9 o-Xylene 3.8 Naphthalene 1.8 Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1.1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,1,1-Trichloroethane <1 Trichloroethene <1 Tetrachloroethene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-021313	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

 Date Received:
 02/14/13
 Project:
 Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/14/13
 Lab ID:
 302182-05

Date Analyzed: 02/14/13 Data File: 021440.D

Matrix: Water Instrument: GCMS4

Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

Concentration

56

	Concentration
Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	10
1,2-Dibromoethane (EDB)	<1
Benzene	410 ve
Toluene	71
Ethylbenzene	170 ve
m,p-Xylene	350 ve
o-Xylene	110
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-021313	Client:	Aspect Consulting, LLC

Date Received: Project: 02/14/13 Ken's Texaco 120061, F&BI 302182 Lab ID: Date Extracted: 02/15/13 302182-05 1/10 Date Analyzed: 02/15/13 Data File: 021529.D Matrix: Instrument: Water GCMS4

Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	99	60	133

Concentration

	Concentration
Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<10
1,2-Dichloroethane (EDC)	11
1,2-Dibromoethane (EDB)	<10
Benzene	430
Toluene	70
Ethylbenzene	160
m,p-Xylene	350
o-Xylene	110
Vinyl chloride	<2
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	<10
1,1,1-Trichloroethane	<10
Trichloroethene	<10
Tetrachloroethene	<10
Naphthalene	58

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-12-021313	Client:	Aspect Consulting, LLC
Date Received:	02/14/13	Project:	Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 02/14/13 302182-06 Date Analyzed: 02/14/13 Data File: 021436.D Instrument: Matrix: Water GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: NA Project: Ken's Texaco 120061, F&BI 302182 Lab ID: Date Extracted: 02/14/13 03-0137 MB Date Analyzed: 02/14/13 Data File: 021406.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Project: Ken's Texaco 120061, F&BI 302182 NA Lab ID: Date Extracted: 03-0139 MB 02/15/13 Date Analyzed: 02/15/13 Data File: 021506.D Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-8-021313	Client:	Aspect Consulting, LLC
-------------------	-------------	---------	------------------------

 Date Received:
 02/14/13
 Project:
 Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/19/13
 Lab ID:
 302182-04 1/2

Date Analyzed: 02/20/13 Data File: 022007A.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	103	50	150
Benzo(a)anthracene-d12	123	50	129

< 0.1

Concentration ug/L (ppb) Benz(a)anthracene <0.1 Chrysene <0.1 Benzo(a)pyrene <0.1 Benzo(b)fluoranthene <0.1 Benzo(k)fluoranthene <0.1 Indeno(1,2,3-cd)pyrene <0.1

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-11-021313	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 302182-05 1/2 02/19/13 Date Analyzed: 02/20/13 Data File: 022008.D Matrix: Instrument: Water GCMS6 ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	94	50	150
Benzo(a)anthracene-d12	116	50	129

< 0.1

< 0.1

Concentration Compounds: ug/L (ppb) Benz(a)anthracene <0.1 Chrysene <0.1 Benzo(a)pyrene <0.1 Benzo(b)fluoranthene <0.1 Benzo(k)fluoranthene <0.1

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-12-021313	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 302182-06 1/2 02/19/13 Date Analyzed: 02/21/13 Data File: 022106.D Matrix: Instrument: Water GCMS6 ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	94	50	150
Benzo(a)anthracene-d12	121	50	129

< 0.1

< 0.1

Concentration ug/L (ppb) Benz(a)anthracene <0.1 Chrysene <0.1 Benzo(a)pyrene <0.1 Benzo(b)fluoranthene <0.1 Benzo(k)fluoranthene <0.1

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank	Client:	Aspect Consulting, LLC
--------------------------------	---------	------------------------

Date Received: NA Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 03-0301 mb 02/19/13 Date Analyzed: 02/20/13 Data File: 022006.D Matrix: Instrument: Water GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 90 50 150 Benzo(a)anthracene-d12 98 50 129

Concentration

Compounds:	ug/L (ppb)
Benz(a)anthracene	< 0.1
Chrysene	< 0.1
Benzo(a)pyrene	< 0.1
Benzo(b)fluoranthene	< 0.1
Benzo(k)fluoranthene	< 0.1
Indeno(1,2,3-cd)pyrene	< 0.1
Dibenz(a,h)anthracene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: MW-8-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/18/13 Lab ID: 302182-04

Date Analyzed: 02/18/13 Data File: 021818.D\ECD1A.CH

 $\begin{array}{c} \text{Concentration} \\ \text{Compounds:} \\ \text{ug/L (ppb)} \end{array}$

 Aroclor 1221
 <0.1</td>

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: MW-11-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/18/13 Lab ID: 302182-05

Date Analyzed: 02/18/13 Data File: 021820.D\ECD1A.CH

Surrogates: % Recovery: Limit: Limit: TCMX 64 50 150

Concentration

Compounds: ug/L (ppb) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: MW-12-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/18/13 Lab ID: 302182-06

Date Analyzed: 02/18/13 Data File: 021822.D\ECD1A.CH

Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: mwdl

 $\begin{array}{c} & & Concentration \\ Compounds: & ug/L \ (ppb) \\ \\ Aroclor \ 1221 & <0.1 \end{array}$

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/18/13 Lab ID: 03-297 mb

Date Analyzed: 02/18/13 Data File: 021816.D\ECD1A.CH

Surrogates: % Recovery: Limit: Limit: TCMX 64 50 150

Concentration Compounds: ug/L (ppb)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1
Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 302167-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Gasoline	ug/L (ppb)	1,000	96	69-134	_	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	89	96	61-133	8

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 302160-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	ug/L (ppb)	20	53.1	93 b	70 b	71-130	28 b
Nickel	ug/L (ppb)	20	25.8	86 b	86 b	71-120	0 b
Zinc	ug/L (ppb)	50	1,740	46 b	78 b	51-142	52 b
Cadmium	ug/L (ppb)	5	<1	102	106	86-115	4
Lead	ug/L (ppb)	10	2.21	95 b	97 b	85-115	2 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	ug/L (ppb)	20	103	80-119
Nickel	ug/L (ppb)	20	104	83-119
Zinc	ug/L (ppb)	50	103	82-120
Cadmium	ug/L (ppb)	5	103	86-118
Lead	ug/L (ppb)	10	105	84-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 302171-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	104	36-166
Chloroethane	ug/L (ppb)	50	<1	106	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	99	60-136
Methylene chloride	ug/L (ppb)	50	<5	93	67-132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	97	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	97	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	96	71-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	95	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	96	60-146
Trichloroethene	ug/L (ppb)	50	<1	94	66-135
Tetrachloroethene	ug/L (ppb)	50	<1	93	73-129
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	74-127
Benzene	ug/L (ppb)	50	< 0.35	94	76-125
Toluene	ug/L (ppb)	50	<1	94	76-122
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	96	69-134
Ethylbenzene	ug/L (ppb)	50	<1	94	69-135
m,p-Xylene	ug/L (ppb)	100	<2	94	69-135
o-Xylene	ug/L (ppb)	50	<1	94	68-137
Naphthalene	ug/L (ppb)	50	<1	102	44-164

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	110	106	50-154	4
Chloroethane	ug/L (ppb)	50	112	101	58-146	10
1,1-Dichloroethene	ug/L (ppb)	50	94	96	67-136	2
Methylene chloride	ug/L (ppb)	50	87	93	39-148	7
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	99	97	64-147	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	100	97	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	99	97	79-121	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	100	97	80-123	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	99	97	73-132	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	97	82-125	1
1,1,1-Trichloroethane	ug/L (ppb)	50	99	96	83-130	3
Benzene	ug/L (ppb)	50	98	95	69-134	3
Trichloroethene	ug/L (ppb)	50	98	95	80-120	3
Toluene	ug/L (ppb)	50	98	95	72-122	3
Tetrachloroethene	ug/L (ppb)	50	96	94	76-121	2
Ethylbenzene	ug/L (ppb)	50	98	96	77-124	2
m,p-Xylene	ug/L (ppb)	100	98	95	83-125	3
o-Xylene	ug/L (ppb)	50	97	96	86-121	1
Naphthalene	ug/L (ppb)	50	102	97	64-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 302212-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	113	36-166
Chloroethane	ug/L (ppb)	50	<1	112	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	97	60-136
Methylene chloride	ug/L (ppb)	50	<5	95	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	101	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	100	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	71-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	115	69-133
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	99	69-134
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	101	60-146
Benzene	ug/L (ppb)	50	< 0.35	98	76-125
Trichloroethene	ug/L (ppb)	50	<1	98	66-135
Toluene	ug/L (ppb)	50	<1	97	76-122
Tetrachloroethene	ug/L (ppb)	50	<1	96	73-129
Ethylbenzene	ug/L (ppb)	50	<1	97	69-135
m,p-Xylene	ug/L (ppb)	100	<2	97	69-135
o-Xylene	ug/L (ppb)	50	<1	98	68-137
Naphthalene	ug/L (ppb)	50	<1	96	44-164

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	110	106	50-154	4
Chloroethane	ug/L (ppb)	50	112	101	58-146	10
1,1-Dichloroethene	ug/L (ppb)	50	94	96	67-136	2
Methylene chloride	ug/L (ppb)	50	87	93	39-148	7
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	99	97	64-147	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	100	97	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	99	97	79-121	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	100	97	80-123	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	99	97	73-132	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	97	82-125	1
1,1,1-Trichloroethane	ug/L (ppb)	50	99	96	83-130	3
Benzene	ug/L (ppb)	50	98	95	69-134	3
Trichloroethene	ug/L (ppb)	50	98	95	80-120	3
Toluene	ug/L (ppb)	50	98	95	72-122	3
Tetrachloroethene	ug/L (ppb)	50	96	94	76-121	2
Ethylbenzene	ug/L (ppb)	50	98	96	77-124	2
m,p-Xylene	ug/L (ppb)	100	98	95	83-125	3
o-Xylene	ug/L (ppb)	50	97	96	86-121	1
Naphthalene	ug/L (ppb)	50	102	97	64-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	ug/L (ppb)	1	92	84	60-118	9
Chrysene	ug/L (ppb)	1	98	93	66-125	5
Benzo(b)fluoranthene	ug/L (ppb)	1	102	86	55-135	17
Benzo(k)fluoranthene	ug/L (ppb)	1	103	101	62-125	2
Benzo(a)pyrene	ug/L (ppb)	1	96	85	58-127	12
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	89	80	36-142	11
Dibenz(a,h)anthracene	ug/L (ppb)	1	92	84	37-133	9
Benzo(g,h,i)perylene	ug/L (ppb)	1	91	87	34-135	4

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	1.0	90	94	70-130	4
Aroclor 1260	ug/L (ppb)	1.0	105	96	70-130	9

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

Send Report To BUY	600d	hue a	and s		CHAIN (STODY	· 7	ME d	14 02 - 128	-B ALG	ads.
Send Report To 130V	Hav	ford		SAMP	LERS (sign	nature)		A		777	of_	===
Company ASpect Co	onsult	nng			CTNAME I'S TEX			120	PO#	☑ Stand	RNAROUND TIN ard (2 Weeks) I arges authorized	
 City, State, ZIP Bainbridge Island, WA Phone # Fax #				* 82-60	REMARKS * 8260 B ** hatogenated VOCS ** metals: cadmium, chromium, nickel, zinc						AMPLE DISPOSA se after 30 days n samples all with instruction	
		·						ANALYSES	REQUESTE	ED	<u> </u>	
	Lab	Date	Time		# of	iesel soline	8021B /8260	y 8270 PERE	e *	32 (32)	t t	

		т			· · · · · · · · · · · · · · · · · · ·	ANALYSES REQUESTED														
Sample ID	Lab ID	Date Samp	led Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	HVOCs by8280	SVOCs by 8270	PCBS W CMH	naphthalene	MTBE	Phylene *	ery Lerral	lead (bow)	Metals 本来		Notes	
MW-1-021313	A-E	2/13/	13 1010	water	5	X	X	X				×			×				· <u> </u>	<u> </u>
MW-7-021313	OZ A-E		1040		5	X	X	X				X	X	X	X	X				
MW-10-021313	03 A.E		1115		5	χ	X	χ				X	Х	Х	X	X	ļ			
MW-8-021313	04 A.K		1150			χ	Χ	Х	Χ		X	X	Х	X	Х	X	χ			
MW-11-021313	02 03 04 04 05 04 05 04 05 04 05 04		1250		()	χ	Χ	X	χ		X	Х	Χ	Х	X	X	<u> </u>			_
MW-12-021313	00 A.K	→	1345	4	11	X	<u> </u>	Х	Х		X	X	X				X			
					·											· ·			·	
-]	Ī														_
						\neg				_						\neg		 .	 	
						寸			\dashv		7	Sa	mp	es 1	cei	/ed	at	3 °C		

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044 PORMS\COC\COC\DOC

SIGNATURE	PRINT NAME	COMPANY	DATEV	TIME
Relinquished by:	Amy Till	Aspect	2/14/13	
ma land Cams	Whan Phan	FIBE	2/14/13	1210
Réfinquished My:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

February 26, 2013

Chip Goodhue, Project Manager Aspect Consulting, LLC 350 Madison Ave. N. Bainbridge Island, WA 98110-1810

Dear Mr. Goodhue:

Included are the results from the testing of material submitted on February 14, 2013 from the Ken's Texaco 120061, F&BI 302182 project. There are 37 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman, Bob Hanford

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 14, 2013 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 302182 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
302182 -01	MW-1-021313
302182 -02	MW-7-021313
302182 -03	MW-10-021313
302182 -04	MW-8-021313
302182 -05	MW-11-021313
302182 -06	MW-12-021313

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/15/13 Date Analyzed: 02/15/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
MW-1-021313 302182-01	1,700	124
MW-7-021313 302182-02	990	102
MW-10-021313 302182-03 1/5	2,500	116
MW-8-021313 302182-04	510	114
MW-11-021313 302182-05 1/10	5,000	114
MW-12-021313 302182-06	<100	101
Method Blank 03-0266 MB	<100	98

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/20/13 Date Analyzed: 02/20/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-1-021313 302182-01	400 x	<250	91
MW-7-021313 302182-02	240 x	<250	87
MW-10-021313 302182-03	430 x	<250	99
MW-8-021313 302182-04	230 x	<250	95
MW-11-021313 302182-05	1,400 x	280 x	93
MW-12-021313 302182-06	150 x	<250	104
Method Blank 03-302 MB	<50	<250	94

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-1-021313 Client: Aspect Consulting, LLC

Date Received: Project: Ken's Texaco 120061, F&BI 302182 02/14/13

Lab ID: Date Extracted: 02/15/13 302182-01 Date Analyzed: 02/15/13 Data File: 302182-01.030 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Lower

Upper Internal Standard: Limit: % Recovery: Limit: Holmium 84 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-7-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/15/13
 Lab ID:
 302182-02

 Date Analyzed:
 02/15/13
 Data File:
 302182-02.031

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 81 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-10-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/15/13
 Lab ID:
 302182-03

 Date Analyzed:
 02/15/13
 Data File:
 302182-03.032

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 82 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-8-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: 302182-04 Date Extracted: 02/15/13 Date Analyzed: 02/15/13 Data File: 302182-04.033 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: Internal Standard: % Recovery: Limit: Germanium 80 60 125 81 60 Indium 125 Holmium 81 60 125

Concentration

Analyte: ug/L (ppb)

Chromium 1.28
Nickel 12.6
Zinc <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-11-021313	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 302182-05 02/15/13 Date Analyzed: 02/15/13 Data File: 302182-05.034 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	75	60	125
Indium	75	60	125
Holmium	79	60	125

Concentration

3.93

Analyte:	ug/L (ppb)
Chromium	1.67
Nickel	33.6
Zinc	3.50
Cadmium	<1

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-12-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: 302182-06 Date Extracted: 02/15/13 Date Analyzed: 02/15/13 Data File: 302182-06.035 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: Internal Standard: % Recovery: Limit: Germanium 79 60 125 80 60 Indium 125 Holmium 82 60 125

Concentration

Analyte: ug/L (ppb)

 Chromium
 1.54

 Nickel
 8.40

 Zinc
 38.2

 Cadmium
 <1</td>

 Lead
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: NA Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 02/14/13 I3-65 mb Date Analyzed: 02/15/13 Data File: I3-65 mb.008 Matrix: Instrument: ICPMS1 Water Units: ug/L (ppb) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	94	60	125
Indium	93	60	125
Holmium	92	60	125

Concentration

Analyte: ug/L (ppb)

Chromium <1
Nickel <1
Zinc <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-1-021313	Client:	Aspect Consulting, LLC
Date Received:	02/14/13	Project:	Ken's Texaco 120061, F&BI 302182
Date Extracted:	02/15/13	Lab ID:	302182-01
Date Analyzed:	02/15/13	Data File:	021507.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	104	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-7-021313	Client:	Aspect Consulting, LLC
Date Received:	02/14/13	Project:	Ken's Texaco 120061, F&BI 302182
Date Extracted:	02/14/13	Lab ID:	302182-02
Date Analyzed	02/14/13	Data File	021439 D

Date Extracted: 02/14/13 Lab ID: 302182-02
Date Analyzed: 02/14/13 Data File: 021439.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	100	60	133

Concentration ug/L (ppb) Methyl t-butyl ether (MTBE) <1

1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 Benzene < 0.35 Toluene <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-10-021313	Client:	Aspect Cor	nsulting, LLC
			—	

 Date Received:
 02/14/13
 Project:
 Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/14/13
 Lab ID:
 302182-03

 Date Analyzed:
 02/14/13
 Data File:
 021437.D

Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	1.4
1,2-Dibromoethane (EDB)	<1
D	T.C.

Benzene 56
Toluene 85
Ethylbenzene 100
m,p-Xylene 300
o-Xylene 110
Naphthalene 33

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-8-021313	Client:	Aspect Consulting, LLC
Date Received:	02/14/13	Project:	Ken's Texaco 120061, F&BI 302182
Date Extracted:	02/14/13	Lab ID:	302182-04
Date Analyzed:	02/14/13	Data File:	021435.D
Matrix:	Water	Instrument:	GCMS4

Matrix: Water Instrument: GCI Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Concentration ug/L (ppb) Methyl t-butyl ether (MTBE) 1,2-Dichloroethane (EDC) 1,2-Dibromoethane (EDB) 8enzene 20 Toluene 1.5

Ethylbenzene 3.4 m,p-Xylene 7.9 o-Xylene 3.8 Naphthalene 1.8 Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1.1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,1,1-Trichloroethane <1 Trichloroethene <1 Tetrachloroethene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-021313	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

 Date Received:
 02/14/13
 Project:
 Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/14/13
 Lab ID:
 302182-05

Date Analyzed: 02/14/13 Data File: 021440.D

Matrix: Water Instrument: GCMS4

Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

Concentration

56

	Concentration
Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	10
1,2-Dibromoethane (EDB)	<1
Benzene	410 ve
Toluene	71
Ethylbenzene	170 ve
m,p-Xylene	350 ve
o-Xylene	110
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-021313	Client:	Aspect Consulting, LLC

Date Received: Project: 02/14/13 Ken's Texaco 120061, F&BI 302182 Lab ID: Date Extracted: 02/15/13 302182-05 1/10 Date Analyzed: 02/15/13 Data File: 021529.D Matrix: Instrument: Water GCMS4

Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	99	60	133

Concentration

	Concentration
Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<10
1,2-Dichloroethane (EDC)	11
1,2-Dibromoethane (EDB)	<10
Benzene	430
Toluene	70
Ethylbenzene	160
m,p-Xylene	350
o-Xylene	110
Vinyl chloride	<2
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	<10
1,1,1-Trichloroethane	<10
Trichloroethene	<10
Tetrachloroethene	<10
Naphthalene	58

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-12-021313	Client:	Aspect Consulting, LLC
Date Received:	02/14/13	Project:	Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 02/14/13 302182-06 Date Analyzed: 02/14/13 Data File: 021436.D Instrument: Matrix: Water GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: NA Project: Ken's Texaco 120061, F&BI 302182 Lab ID: Date Extracted: 02/14/13 03-0137 MB Date Analyzed: 02/14/13 Data File: 021406.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Project: Ken's Texaco 120061, F&BI 302182 NA Lab ID: Date Extracted: 03-0139 MB 02/15/13 Date Analyzed: 02/15/13 Data File: 021506.D Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-8-021313	Client:	Aspect Consulting, LLC
-------------------	-------------	---------	------------------------

 Date Received:
 02/14/13
 Project:
 Ken's Texaco 120061, F&BI 302182

 Date Extracted:
 02/19/13
 Lab ID:
 302182-04 1/2

Date Analyzed: 02/20/13 Data File: 022007A.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	103	50	150
Benzo(a)anthracene-d12	123	50	129

< 0.1

Concentration ug/L (ppb) Benz(a)anthracene <0.1 Chrysene <0.1 Benzo(a)pyrene <0.1 Benzo(b)fluoranthene <0.1 Benzo(k)fluoranthene <0.1 Indeno(1,2,3-cd)pyrene <0.1

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-11-021313	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 302182-05 1/2 02/19/13 Date Analyzed: 02/20/13 Data File: 022008.D Matrix: Instrument: Water GCMS6 ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	94	50	150
Benzo(a)anthracene-d12	116	50	129

< 0.1

< 0.1

Concentration Compounds: ug/L (ppb) Benz(a)anthracene <0.1 Chrysene <0.1 Benzo(a)pyrene <0.1 Benzo(b)fluoranthene <0.1 Benzo(k)fluoranthene <0.1

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-12-021313	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 302182-06 1/2 02/19/13 Date Analyzed: 02/21/13 Data File: 022106.D Matrix: Instrument: Water GCMS6 ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	94	50	150
Benzo(a)anthracene-d12	121	50	129

< 0.1

< 0.1

Concentration ug/L (ppb) Benz(a)anthracene <0.1 Chrysene <0.1 Benzo(a)pyrene <0.1 Benzo(b)fluoranthene <0.1 Benzo(k)fluoranthene <0.1

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank	Client:	Aspect Consulting, LLC
--------------------------------	---------	------------------------

Date Received: NA Project: Ken's Texaco 120061, F&BI 302182

Lab ID: Date Extracted: 03-0301 mb 02/19/13 Date Analyzed: 02/20/13 Data File: 022006.D Matrix: Instrument: Water GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 90 50 150 Benzo(a)anthracene-d12 98 50 129

Concentration

Compounds:	ug/L (ppb)
Benz(a)anthracene	< 0.1
Chrysene	< 0.1
Benzo(a)pyrene	< 0.1
Benzo(b)fluoranthene	< 0.1
Benzo(k)fluoranthene	< 0.1
Indeno(1,2,3-cd)pyrene	< 0.1
Dibenz(a,h)anthracene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: MW-8-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/18/13 Lab ID: 302182-04

Date Analyzed: 02/18/13 Data File: 021818.D\ECD1A.CH

 $\begin{array}{c} \text{Concentration} \\ \text{Compounds:} \\ \text{ug/L (ppb)} \end{array}$

 Aroclor 1221
 <0.1</td>

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: MW-11-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/18/13 Lab ID: 302182-05

Date Analyzed: 02/18/13 Data File: 021820.D\ECD1A.CH

Surrogates: % Recovery: Limit: Limit: TCMX 64 50 150

Concentration

Compounds: ug/L (ppb) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: MW-12-021313 Client: Aspect Consulting, LLC

Date Received: 02/14/13 Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/18/13 Lab ID: 302182-06

Date Analyzed: 02/18/13 Data File: 021822.D\ECD1A.CH

Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: mwdl

 $\begin{array}{c} & & Concentration \\ Compounds: & ug/L \ (ppb) \\ \\ Aroclor \ 1221 & <0.1 \end{array}$

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 302182

Date Extracted: 02/18/13 Lab ID: 03-297 mb

Date Analyzed: 02/18/13 Data File: 021816.D\ECD1A.CH

Surrogates: % Recovery: Limit: Limit: TCMX 64 50 150

Concentration Compounds: ug/L (ppb)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1
Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 302167-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Gasoline	ug/L (ppb)	1,000	96	69-134	_	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	89	96	61-133	8

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 302160-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	ug/L (ppb)	20	53.1	93 b	70 b	71-130	28 b
Nickel	ug/L (ppb)	20	25.8	86 b	86 b	71-120	0 b
Zinc	ug/L (ppb)	50	1,740	46 b	78 b	51-142	52 b
Cadmium	ug/L (ppb)	5	<1	102	106	86-115	4
Lead	ug/L (ppb)	10	2.21	95 b	97 b	85-115	2 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	ug/L (ppb)	20	103	80-119
Nickel	ug/L (ppb)	20	104	83-119
Zinc	ug/L (ppb)	50	103	82-120
Cadmium	ug/L (ppb)	5	103	86-118
Lead	ug/L (ppb)	10	105	84-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 302171-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	104	36-166
Chloroethane	ug/L (ppb)	50	<1	106	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	99	60-136
Methylene chloride	ug/L (ppb)	50	<5	93	67-132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	97	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	97	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	96	71-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	95	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	96	60-146
Trichloroethene	ug/L (ppb)	50	<1	94	66-135
Tetrachloroethene	ug/L (ppb)	50	<1	93	73-129
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	74-127
Benzene	ug/L (ppb)	50	< 0.35	94	76-125
Toluene	ug/L (ppb)	50	<1	94	76-122
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	96	69-134
Ethylbenzene	ug/L (ppb)	50	<1	94	69-135
m,p-Xylene	ug/L (ppb)	100	<2	94	69-135
o-Xylene	ug/L (ppb)	50	<1	94	68-137
Naphthalene	ug/L (ppb)	50	<1	102	44-164

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	110	106	50-154	4
Chloroethane	ug/L (ppb)	50	112	101	58-146	10
1,1-Dichloroethene	ug/L (ppb)	50	94	96	67-136	2
Methylene chloride	ug/L (ppb)	50	87	93	39-148	7
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	99	97	64-147	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	100	97	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	99	97	79-121	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	100	97	80-123	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	99	97	73-132	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	97	82-125	1
1,1,1-Trichloroethane	ug/L (ppb)	50	99	96	83-130	3
Benzene	ug/L (ppb)	50	98	95	69-134	3
Trichloroethene	ug/L (ppb)	50	98	95	80-120	3
Toluene	ug/L (ppb)	50	98	95	72-122	3
Tetrachloroethene	ug/L (ppb)	50	96	94	76-121	2
Ethylbenzene	ug/L (ppb)	50	98	96	77-124	2
m,p-Xylene	ug/L (ppb)	100	98	95	83-125	3
o-Xylene	ug/L (ppb)	50	97	96	86-121	1
Naphthalene	ug/L (ppb)	50	102	97	64-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 302212-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	113	36-166
Chloroethane	ug/L (ppb)	50	<1	112	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	97	60-136
Methylene chloride	ug/L (ppb)	50	<5	95	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	101	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	100	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	71-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	115	69-133
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	99	69-134
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	101	60-146
Benzene	ug/L (ppb)	50	< 0.35	98	76-125
Trichloroethene	ug/L (ppb)	50	<1	98	66-135
Toluene	ug/L (ppb)	50	<1	97	76-122
Tetrachloroethene	ug/L (ppb)	50	<1	96	73-129
Ethylbenzene	ug/L (ppb)	50	<1	97	69-135
m,p-Xylene	ug/L (ppb)	100	<2	97	69-135
o-Xylene	ug/L (ppb)	50	<1	98	68-137
Naphthalene	ug/L (ppb)	50	<1	96	44-164

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	110	106	50-154	4
Chloroethane	ug/L (ppb)	50	112	101	58-146	10
1,1-Dichloroethene	ug/L (ppb)	50	94	96	67-136	2
Methylene chloride	ug/L (ppb)	50	87	93	39-148	7
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	99	97	64-147	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	100	97	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	99	97	79-121	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	100	97	80-123	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	99	97	73-132	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	97	82-125	1
1,1,1-Trichloroethane	ug/L (ppb)	50	99	96	83-130	3
Benzene	ug/L (ppb)	50	98	95	69-134	3
Trichloroethene	ug/L (ppb)	50	98	95	80-120	3
Toluene	ug/L (ppb)	50	98	95	72-122	3
Tetrachloroethene	ug/L (ppb)	50	96	94	76-121	2
Ethylbenzene	ug/L (ppb)	50	98	96	77-124	2
m,p-Xylene	ug/L (ppb)	100	98	95	83-125	3
o-Xylene	ug/L (ppb)	50	97	96	86-121	1
Naphthalene	ug/L (ppb)	50	102	97	64-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	ug/L (ppb)	1	92	84	60-118	9
Chrysene	ug/L (ppb)	1	98	93	66-125	5
Benzo(b)fluoranthene	ug/L (ppb)	1	102	86	55-135	17
Benzo(k)fluoranthene	ug/L (ppb)	1	103	101	62-125	2
Benzo(a)pyrene	ug/L (ppb)	1	96	85	58-127	12
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	89	80	36-142	11
Dibenz(a,h)anthracene	ug/L (ppb)	1	92	84	37-133	9
Benzo(g,h,i)perylene	ug/L (ppb)	1	91	87	34-135	4

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/13 Date Received: 02/14/13

Project: Ken's Texaco 120061, F&BI 302182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	1.0	90	94	70-130	4
Aroclor 1260	ug/L (ppb)	1.0	105	96	70-130	9

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

Send Report To BUY	600d	hue a	and s		CHAIN (STODY	· .	ME d	14 02 - 128	-B ALG	ads.
Send Report To 130V	Hav	ford		SAMP	LERS (sign	nature)		A		777	of_	===
Company ASpect Co	onsult	nng			CTNAME I'S TEX			120	PO#	☑ Stand	RNAROUND TIMe and (2 Weeks) I arges authorized	
 City, State, ZIP Bail	bride Fa	•	and,WA	** hert	0B oaenated	vo _{Cs} cadmi	um,chu	omivry ₍ v	uckel, zin	☐ Dispo	AMPLE DISPOSA se after 30 days n samples all with instruction	
		·						ANALYSES	REQUESTE	ED	<u> </u>	
	Lab	Date	Time		# of	iesel soline	8021B /8260	y 8270 PERE	e *	32 (32)	t t	

		т			· · · · · · · · · · · · · · · · · · ·	ANALYSES REQUESTED														
Sample ID	Lab ID	Date Samp	led Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	HVOCs by8280	SVOCs by 8270	PCBS W CMH	naphthalene	MTBE	Phylene *	ery Lerral	lead (bow)	Metals 本来		Notes	
MW-1-021313	A-E	2/13/	13 1010	water	5	X	X	X				×			×				· <u> </u>	<u> </u>
MW-7-021313	OZ A-E		1040		5	X	X	X				X	X	X	X	X				
MW-10-021313	03 A.E		1115		5	χ	X	χ				X	Х	Х	X	X	ļ			
MW-8-021313	04 A.K		1150			χ	Χ	Х	Χ		X	X	Х	X	Х	X	χ			
MW-11-021313	02 03 04 04 05 04 05 04 05 04 05 04		1250		()	χ	Χ	X	χ		X	Х	Χ	Х	X	X	<u> </u>			_
MW-12-021313	00 A.K	→	1345	4	11	X	<u> </u>	Х	Х		X	X	X				X			
					·											· ·			·	
-]]														_
						\neg				_						\neg		 .	 	
						┪			\dashv		7	Sa	mp	es 1	cei	/ed	at	3 °C		

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044 PORMS\COC\COC\DOC

SIGNATURE	PRINT NAME	COMPANY	DATEV	TIME
Relinquished by:	Amy Till	Aspect	2/14/13	
ma land Cams	Whan Phan	FIBE	2/14/13	1210
Réfinquished My:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 30, 2013

Chip Goodhue, Project Manager Aspect Consulting, LLC 350 Madison Ave. N. Bainbridge Island, WA 98110-1810

Dear Mr. Goodhue:

Included are the results from the testing of material submitted on May 15, 2013 from the Ken's Texaco, PO 120061, F&BI 305286 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman, Bob Hanford ASP0523R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 15, 2013 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061, F&BI 305286 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
305286-01	MW-1-051413
305286-02	MW-7-051413
305286-03	MW-10-051413
305286-04	MW-8-051413
305286-05	MW-11-051413
305286-06	MW-12-051413

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/30/13 Date Received: 05/15/13

Project: Ken's Texaco, PO 120061, F&BI 305286

Date Extracted: 05/15/13 Date Analyzed: 05/15/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-1-051413 305286-01	2,400	100
MW-7-051413 305286-02	2,300	96
MW-10-051413 305286-03	1,300	98
MW-8-051413 305286-04	310	91
MW-11-051413 305286-05	1,900	87
MW-12-051413 305286-06	<100	84
Method Blank 03-0879 MB	<100	83

ENVIRONMENTAL CHEMISTS

Date of Report: 05/30/13 Date Received: 05/15/13

Project: Ken's Texaco, PO 120061, F&BI 305286

Date Extracted: 05/20/13

Date Analyzed: 05/20/13 and 05/21/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-1-051413 305286-01	480 x	<250	86
MW-7-051413 305286-02	450 x	<250	89
MW-10-051413 305286-03	320 x	<250	85
MW-8-051413 305286-04	100 x	<250	82
MW-11-051413 305286-05	420 x	<250	85
MW-12-051413 305286-06	< 50	<250	88
Method Blank 03-940 MB	< 50	<250	85

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-1-051413 Client: Aspect Consulting, LLC
Date Received: 05/15/13 Project: Ken's Texaco, PO 120061, F&BI 305286

Date Extracted: Lab ID: 305286-01 05/16/13 Date Analyzed: 05/16/13 Data File: 051614.D Matrix: Instrument: Water GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	97	50	150

Concentration Compounds: ug/L (ppb) Hexane 5.5 Methyl t-butyl ether (MTBE) <1 1,2-Dibromoethane (EDB) <1 1,2-Dichloroethane (EDC) <1 Benzene < 0.35 Toluene <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-7-051413	Client:	Aspect Consulting, LLC
Date Received:	05/15/13	Project:	Ken's Texaco, PO 120061, F&BI 305286

Lab ID: Date Extracted: 05/16/13 305286-02 Date Analyzed: 05/16/13 Data File: 051615.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	97	50	150

Concentration ug/L (ppb)

•	0 11
Hexane	<1
Methyl t-butyl ether (MTBE)	<1
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

Compounds:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-10-051413	Client:	Aspect	Consulting, LLC	\mathcal{I}
		_			-

 Date Received:
 05/15/13
 Project:
 Ken's Texaco, PO 120061, F&BI 305286

 Date Extracted:
 05/16/13
 Lab ID:
 305286-03

 Date Analyzed:
 05/16/13
 Date File:
 051618 D

Date Analyzed: 05/16/13 Data File: 051618.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	98	50	150

Concentration

ug/L (ppb)
11
<1
<1
1.1
44
4.2
78
61
10
28

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-8-051413	Client:	Aspect Consulting	g, LLC

Date Received: Project: Ken's Texaco, PO 120061, F&BI 305286 05/15/13 Lab ID: Date Extracted: 305286-04 05/16/13 Date Analyzed: 05/16/13 Data File: 051616.D Matrix: Water Instrument: GCMS9

Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

	Concentration
Compounds:	ug/L (ppb)
Hexane	3.7
Methyl t-butyl ether (MTBE)	<1
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	5.1
Toluene	1.2
Ethylbenzene	3.5
m,p-Xylene	4.6
o-Xylene	1.0
Naphthalene	3.1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-051413	Client:	Aspect Con	sulting, LLC
D . D . 1	0 = 14 = 14 0	ъ.	T. 1	DO 400004

Project: Date Received: 05/15/13 Ken's Texaco, PO 120061, F&BI 305286 Lab ID: Date Extracted: 05/16/13 305286-05 Date Analyzed: 05/16/13 Data File: 051621.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	97	50	150

	Concentration
Compounds:	ug/L (ppb)
Hexane	40
Methyl t-butyl ether (MTBE)	<1
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	2.6
Benzene	110
Toluene	7.7
Ethylbenzene	45
m,p-Xylene	65
o-Xylene	7.6
Naphthalene	15
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	2.6
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-12-051413	Client:	Aspect Con	sulting, LLC

Project: Date Received: 05/15/13 Ken's Texaco, PO 120061, F&BI 305286 Lab ID: Date Extracted: 05/16/13 305286-06 Date Analyzed: 05/16/13 Data File: 051617.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	98	50	150

Concentration

	Concentration
Compounds:	ug/L (ppb)
Hexane	<1
Methyl t-butyl ether (MTBE)	<1
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Project: Ken's Texaco, PO 120061, F&BI 305286 NA Lab ID: Date Extracted: 03-0892 mb 05/16/13 Date Analyzed: 05/16/13 Data File: 051609.D Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
99	50	150
98	50	150
97	50	150
	99 98	% Recovery: Limit: 99 50 98 50

Concentration

	Concentration
Compounds:	ug/L (ppb)
Hexane	<1
Methyl t-butyl ether (MTBE)	<1
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/30/13 Date Received: 05/15/13

Project: Ken's Texaco, PO 120061, F&BI 305286

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 305286-06 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	ug/L (ppb)	1,000	99	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 05/30/13 Date Received: 05/15/13

Project: Ken's Texaco, PO 120061, F&BI 305286

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

-	-	_	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	109	61-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 05/30/13 Date Received: 05/15/13

Project: Ken's Texaco, PO 120061, F&BI 305286

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 305286-06 (Matrix Spike)

Laboratory Couc. 303200-00 (ivia	ti ix Spike)				
				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Hexane	ug/L (ppb)	50	<1	92	61-127
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	98	68-125
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	95	78-113
Benzene	ug/L (ppb)	50	< 0.35	92	79-109
Toluene	ug/L (ppb)	50	<1	96	73-117
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	95	83-114
Ethylbenzene	ug/L (ppb)	50	<1	95	71-120
m,p-Xylene	ug/L (ppb)	100	<2	95	63-128
o-Xylene	ug/L (ppb)	50	<1	95	64-129
Naphthalene	ug/L (ppb)	50	<1	94	63-136
Vinyl chloride	ug/L (ppb)	50	< 0.2	93	61-139
Chloroethane	ug/L (ppb)	50	<1	121	68-126
1,1-Dichloroethene	ug/L (ppb)	50	<1	97	71-123
Methylene chloride	ug/L (ppb)	50	<5	95	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	95	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	73-119
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	95	78-113
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	98	79-116
Trichloroethene	ug/L (ppb)	50	<1	93	75-109
Tetrachloroethene	ug/L (ppb)	50	<1	95	72-113

ENVIRONMENTAL CHEMISTS

Date of Report: 05/30/13 Date Received: 05/15/13

Project: Ken's Texaco, PO 120061, F&BI 305286

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	ug/L (ppb)	50	96	91	51-153	5
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	101	97	70-122	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	97	94	79-109	3
Benzene	ug/L (ppb)	50	95	92	81-108	3
Toluene	ug/L (ppb)	50	99	95	83-108	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	97	94	85-113	3
Ethylbenzene	ug/L (ppb)	50	97	94	84-110	3
m,p-Xylene	ug/L (ppb)	100	96	93	84-112	3
o-Xylene	ug/L (ppb)	50	97	94	82-113	3
Naphthalene	ug/L (ppb)	50	97	96	75-131	1
Vinyl chloride	ug/L (ppb)	50	91	91	73-132	0
Chloroethane	ug/L (ppb)	50	120	118	68-126	2
1,1-Dichloroethene	ug/L (ppb)	50	97	97	75-119	0
Methylene chloride	ug/L (ppb)	50	96	94	63-132	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	97	95	76-118	2
1,1-Dichloroethane	ug/L (ppb)	50	98	96	80-116	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	97	95	81-111	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	97	94	79-109	3
1,1,1-Trichloroethane	ug/L (ppb)	50	101	97	80-116	4
Trichloroethene	ug/L (ppb)	50	95	92	77-108	3
Tetrachloroethene	ug/L (ppb)	50	97	94	78-109	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3.05 286 Chip Goodhue and S	AMPLE CHAIN OF CUSTODY	HE OS VIS	-13 V3/E04/AI4
Send Report To Bab Hanford Company Aspect Conculting	SAMPLERS (signature) PROJECT NAME/NO. Ken's Texaco	PO# 120061	Page #of TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
City, State, ZIP Bainbridge Island, WA Phone # Fax #	REMARKS *8260B ++ halogenated Vocs +* KK Metals; Cadmium, ch	romium, niskeljziu	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions
1-100	,	ANALYSES REQUESTE	ED 1

		<u>,</u>			,								SES I	REQI	<u>UEST</u>	ED			_				\Box
Sample ID	Lab ID	Date Sampled	Time Sampled	Samp	le Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by	HVOCs by8260*	SVOCs by 8270	Web SHE FOOT	napthalen e	MTBE	Chylene #	d'chloride	1ead (6020)	19 Ctal 5 WW			Note	:s	
MW-1-051413 MW-7-051413	OLEH	5/14/13	1430	Wa	ter	8	X	X	X				χ	X	X	χ	X		1	5) F	7 X	, <u>`</u>	
MW-7-051413	O2 T	1	1340			8	×	X	χ				X	X	X	X	X			53	3 2	al'	5 14
MW-10 - 05/4/3	03	i de	1210			8 .	X	X	χ				X	X	X	X	X	П		7 7	£.\$	B	39
MW-8-051413	OH AEN		1110			14	χ	X	χ	Χ		X	X	χ	Χ	X	1	K		-3	. <u> </u>	7	2/3
MW-11-051413 MW-12-051413	05 T		1310			. 14	X	χ	χ	X		X	X	K	Χ	X	X	X		<u>ر</u> کې	3	14	\mathcal{E}_{λ}
MW-12-05/4/3	86	\	1450	J		14	χ	χ	×	K		*	χ	X	χ	χ	X	X	S	2 \$	<u> </u>	3.	2
												<u> </u>											
		. ,										d po				i	44	##				-	
4.4												nalal					77	, 77				:	
												3					3	(4)					

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNAT	URE PRINT NA	AME COMPANY	DATE	TIME
Relinquished by:	78 JARED BE	AN Aspect	5/14/13	1845
me la form	Nhan Phan	FeBI	5715713	10:35
Relinquished by:		Samples	4	
Received by:		Samples	received at	С

3.05 286 Chip Goodhue and S	AMPLE CHAIN OF CUSTODY	HE OS VIS	-13 V3/E04/AI4
Send Report To Bab Hanford Company Aspect Conculting	SAMPLERS (signature) PROJECT NAME/NO. Ken's Texaco	PO# 120061	Page #of TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
City, State, ZIP Bainbridge Island, WA Phone # Fax #	REMARKS *8260B ++ halogenated Vocs +* KK Metals; Cadmium, ch	romium, niskeljziu	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions
1-100	,	ANALYSES REQUESTE	ED 1

		<u>,</u>			,								SES I	REQI	<u>UEST</u>	ED			_				\Box
Sample ID	Lab ID	Date Sampled	Time Sampled	Samp	le Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by	HVOCs by8260*	SVOCs by 8270	Web SHE FOOT	napthalen e	MTBE	Chylene #	d'chloride	1ead (6020)	19 Ctal 5 WW			Note	:s	
MW-1-051413 MW-7-051413	OLEH	5/14/13	1430	Wa	ter	8	X	X	X				χ	X	X	χ	X		1	A 10	7 X	, <u>`</u>	
MW-7-051413	O2 T	1	1340			8	×	X	χ				X	X	X	X	X			53	3 2	al'	5 14
MW-10 - 05/4/3	03	i de	1210			8 .	X	X	χ				X	X	X	X	X	П		7 7	£.\$	B	39
MW-8-051413	OH AEN		1110			14	χ	X	χ	Χ		X	X	χ	Χ	X	1	K		-3	. <u> </u>	7	2/3
MW-11-051413 MW-12-051413	05 T		1310			. 14	X	χ	χ	X		X	X	K	Χ	X	X	X		<u>ر</u> کې	3	14	\mathcal{E}_{λ}
MW-12-05/4/3	86	\	1450	J		14	χ	χ	×	K		*	χ	X	χ	χ	X	X	S	2 \$	<u> </u>	3.	2
												<u> </u>											
		. ,										d po				i	44	##				-	
4.4												nalal					77	, 77				:	
												3					3	(4)					

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNAT	URE PRINT NA	AME COMPANY	DATE	TIME
Relinquished by:	78 JARED BE	AN Aspect	5/14/13	1845
me la form	Nhan Phan	FeBI	5715713	10:35
Relinquished by:		Samples	4	
Received by:		Samples	received at	С

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 23, 2013

Bob Hanford, Project Manager Aspect Consulting, LLC 350 Madison Ave. N. Bainbridge Island, WA 98110-1810

Dear Mr. Hanford:

Included are the results from the testing of material submitted on August 16, 2013 from the Ken's Texaco 120061, F&BI 308260 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

 $c: data@aspect consulting.com, \ Parker\ Wittman$

ASP0823R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 16, 2013 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 308260 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
308260 -01	MW-1-081513
308260 -02	MW-8-081513
308260 -03	MW-7-081513
308260 -04	MW-10-081513
308260 -05	MW-12-081513
308260 -06	MW-11-081513

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/13 Date Received: 08/16/13

Project: Ken's Texaco 120061, F&BI 308260

Date Extracted: 08/19/13 Date Analyzed: 08/19/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
MW-1-081513 308260-01	2,900	126
MW-8-081513 308260-02	380	101
MW-7-081513 308260-03	1,900	115
MW-10-081513 308260-04	3,900	101
MW-12-081513 308260-05	<100	96
MW-11-081513 308260-06	2,600	101
Method Blank 03-1607 MB	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/13 Date Received: 08/16/13

Project: Ken's Texaco 120061, F&BI 308260

Date Extracted: 08/16/13 Date Analyzed: 08/16/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-1-081513 308260-01	570 x	<250	68
MW-8-081513 308260-02	200 x	<250	67
MW-7-081513 308260-03	460 x	<250	65
MW-10-081513 308260-04	850 x	<250	65
MW-12-081513 308260-05	80 x	<250	66
MW-11-081513 308260-06	820 x	320 x	63
Method Blank 03-1612 MB	<50	<250	61

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-1-081513	Client:	Aspect Consulting, LLC
Date Received:	08/16/13	Project:	Ken's Texaco 120061, F&BI 308260
Date Extracted:	08/16/13	Lab ID:	308260-01
Date Analyzed:	08/16/13	Data File:	081611.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	108	50	150
4-Bromofluorobenzene	109	50	150

1 Di omondo obombono	100
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Hexane	8.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-8-081513	Client:	Aspect Consulting, LLC
Date Received:	08/16/13	Project:	Ken's Texaco 120061, F&BI 308260
Date Extracted:	08/16/13	Lab ID:	308260-02
Date Analyzed:	08/16/13	Data File:	081612.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	105	50	150

4-Bromofluorobenzene	105
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	9.7
Toluene	2.9
Ethylbenzene	18
m,p-Xylene	6.9
o-Xylene	1.1
Naphthalene	5.5
Hexane	8.0
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-7-081513	Client:	Aspect Consulting, LLC
Date Received:	08/16/13	Project:	Ken's Texaco 120061, F&BI 308260
Date Extracted:	08/16/13	Lab ID:	308260-03
Date Analyzed:	08/16/13	Data File:	081613.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	106	50	150

1 Di omondor ob ombone	100
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Hexane	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-10-081513	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 08/16/13 Project: Ken's Texaco 120061, F&BI 308260

Lab ID: Date Extracted: 308260-04 08/16/13 Date Analyzed: 08/16/13 Data File: 081614.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	105	50	150

Concentration

Compounds:		ug/L (ppb)	
		(1 (TTD T)	_

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) 2.1 1,2-Dibromoethane (EDB) <1 Benzene 89 Toluene 45 Ethylbenzene 260 ve m,p-Xylene 490 ve o-Xylene 160 ve Naphthalene 70 Hexane 28

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-10-081513	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 08/16/13 Project: Ken's Texaco 120061, F&BI 308260

Lab ID: Date Extracted: 308260-04 1/10 08/16/13 Date Analyzed: 08/19/13 Data File: 081906.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	102	50	150

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<10
1,2-Dichloroethane (EDC)	<10
1,2-Dibromoethane (EDB)	<10
Benzene	85
Toluene	40
Ethylbenzene	170
m,p-Xylene	420
o-Xylene	140
Naphthalene	62
Hexane	21

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-12-081513	Client:	Aspect Consulting, LLC
Date Received:	08/16/13	Project:	Ken's Texaco 120061, F&BI 308260
Date Extracted:	08/16/13	Lab ID:	308260-05
Date Analyzed:	08/16/13	Data File:	081615.D
Matrix:	Water	Instrument:	GCMS9

Operator:

JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 50 150 98 Toluene-d8 101 50 150 50 150

<1

<1

<1

<1

<1

4-Bromofluorobenzene	105
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1
Hexane	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1

ug/L (ppb)

Units:

1,1-Dichloroethane

Trichloroethene

Tetrachloroethene

cis-1,2-Dichloroethene

1,1,1-Trichloroethane

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-081513	Client:	Aspect Consulting, LLC
Date Received:	08/16/13	Project:	Ken's Texaco 120061, F&BI 308260

Lab ID: 308260-06 Date Extracted: 08/16/13 Date Analyzed: 08/16/13 Data File: 081616.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	105	50	150

	Concentration
Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	5.8
1,2-Dibromoethane (EDB)	<1
Benzene	250 ve
Toluene	24
Ethylbenzene	84
m,p-Xylene	110
o-Xylene	13
Naphthalene	26
Hexane	46
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-081513	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 08/16/13 Project: Ken's Texaco 120061, F&BI 308260

Lab ID: Date Extracted: 308260-06 1/10 08/16/13 Date Analyzed: 08/19/13 Data File: 081907.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150

Concentration

	Concentration
Compounds:	ug/L (ppb)
Mallala MEDE	10
Methyl t-butyl ether (MTBE)	<10
1,2-Dichloroethane (EDC)	<10
1,2-Dibromoethane (EDB)	<10
Benzene	260
Toluene	25
Ethylbenzene	82
m,p-Xylene	110
o-Xylene	13
Naphthalene	25
Hexane	42
Vinyl chloride	<2
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	<10
1,1,1-Trichloroethane	<10
Trichloroethene	<10
Tetrachloroethene	<10

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: NA Project: Ken's Texaco 120061, F&BI 308260

Lab ID: Date Extracted: 08/16/13 03-1555 mb Date Analyzed: 08/16/13 Data File: 081610.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	100	50	150

4-Bromofluorobenzene	100	50	150
Compounds:	Concentration ug/L (ppb)		
Methyl t-butyl ether (MTBE)	<1		
1,2-Dichloroethane (EDC)	<1		
1,2-Dibromoethane (EDB)	<1		
Benzene	< 0.35		
Toluene	<1		
Ethylbenzene	<1		
m,p-Xylene	<2		
o-Xylene	<1		
Naphthalene	<1		
Hexane	<1		
Vinyl chloride	< 0.2		
Chloroethane	<1		
1,1-Dichloroethene	<1		
Methylene chloride	<5		
trans-1,2-Dichloroethene	<1		
1,1-Dichloroethane	<1		
cis-1,2-Dichloroethene	<1		
1,1,1-Trichloroethane	<1		
Trichloroethene	<1		
Tetrachloroethene	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/13 Date Received: 08/16/13

Project: Ken's Texaco 120061, F&BI 308260

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 308260-02 (Duplicate)

-	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	380	430	12

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	ug/L (ppb)	1,000	93	70-119

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/13 Date Received: 08/16/13

Project: Ken's Texaco 120061, F&BI 308260

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	91	91	61-133	0

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/13 Date Received: 08/16/13

Project: Ken's Texaco 120061, F&BI 308260

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 308260-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	93	68-125
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	94	78-113
Benzene	ug/L (ppb)	50	< 0.35	97	79-109
Toluene	ug/L (ppb)	50	<1	95	73-117
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	96	83-114
Ethylbenzene	ug/L (ppb)	50	<1	95	71-120
m,p-Xylene	ug/L (ppb)	100	<2	97	63-128
o-Xylene	ug/L (ppb)	50	<1	97	64-129
Naphthalene	ug/L (ppb)	50	<1	104	63-136
Hexane	ug/L (ppb)	50	8.5	94	61-127
Vinyl chloride	ug/L (ppb)	50	< 0.2	96	61-139
Chloroethane	ug/L (ppb)	50	<1	87	68-126
1,1-Dichloroethene	ug/L (ppb)	50	<1	96	71-123
Methylene chloride	ug/L (ppb)	50	<5	99	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	99	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	98	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	100	73-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	95	79-116
Trichloroethene	ug/L (ppb)	50	<1	97	75-109
Tetrachloroethene	ug/L (ppb)	50	<1	87	72-113

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/13 Date Received: 08/16/13

Project: Ken's Texaco 120061, F&BI 308260

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	98	97	70-122	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	100	97	79-109	3
Benzene	ug/L (ppb)	50	102	99	81-108	3
Toluene	ug/L (ppb)	50	100	100	83-108	0
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	106	101	85-113	5
Ethylbenzene	ug/L (ppb)	50	99	98	84-110	1
m,p-Xylene	ug/L (ppb)	100	103	101	84-112	2
o-Xylene	ug/L (ppb)	50	99	101	82-113	2
Naphthalene	ug/L (ppb)	50	93	98	75-131	5
Hexane	ug/L (ppb)	50	98	98	51-153	0
Vinyl chloride	ug/L (ppb)	50	98	99	73-132	1
Chloroethane	ug/L (ppb)	50	90	90	68-126	0
1,1-Dichloroethene	ug/L (ppb)	50	100	98	75-119	2
Methylene chloride	ug/L (ppb)	50	100	100	63-132	0
trans-1,2-Dichloroethene	ug/L (ppb)	50	102	102	76-118	0
1,1-Dichloroethane	ug/L (ppb)	50	103	102	80-116	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	103	102	81-111	1
1,1,1-Trichloroethane	ug/L (ppb)	50	102	103	80-116	1
Trichloroethene	ug/L (ppb)	50	100	100	77-108	0
Tetrachloroethene	ug/L (ppb)	50	92	90	78-109	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- \boldsymbol{a} The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

308360 308260 SA	MPLE CHAIN OF CUSTODY		5-13 DO4/V2
Send Report To Bab Hanford	SAMPLERS (signature) form	7	Page #of/_ TURNAROUND TIME
Company Aspect Consulting	PROJECT NAME/NO.	PO#	☐ Standard (2 Weeks) ☐ RUSH
Address 350 Modison Ave N.	Ken's Texaco	130061	Rush charges authorized by
City, State, ZIP Bankridge Island, WA	REMARKS		SAMPLE DISPOSAL ☐ Dispose after 30 days
Phone # Fax #			☐ Return samples ☐ Will call with instructions
	ANA	LYSES REQUESTE	ED

	,		· · · · · · · · · · · · · · · · · · ·								AN/	LYS	ES R	REQU	JEST	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled		e Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	HVOCs by8260	SVOCs by 8270	HFS	Napple of , Herane	MTSE	68, EDC				Notes
MW-1-081513	01 A-D	8/15/13	1735	wat.	er	4	X	\bigcirc	χ				0	0	0				0-per BH 8/16
MW-1-081513 MW-8-081513	02 A-H		115			8	X	0	χ	Χ			0	0	0				MŁ
MW-708 15/3	03 A-D		1205			4	X	0	χ				0	Ó	0				
MV -10-081517	04 A-8		<u>[tu</u>			8	4	O	X				0	Ö	0				
MW-12-001513	05 T		1231			8	Y	\circ	X	X		ŀ	0	٥	0				
MW-11-081513	06		1346			8	X	\Diamond	X	1			0	٥	0				
		_																	
						i													
													Sa	mpk	es re	eive	d at	5	_°C

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Laren	Aaron Pruitt	Aspect	8/16/13	10:00
Received by any	Nhan Phan	Te B_I	8/1/0/13	11:20
Relinquished by				
Received by:				

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 24, 2014

Bob Hanford, Project Manager Aspect Consulting, LLC 350 Madison Ave. N. Bainbridge Island, WA 98110-1810

Dear Mr. Hanford:

Included are the results from the testing of material submitted on January 17, 2014 from the Ken's Texaco 120061, F&BI 401201 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

 $c: data@aspect consulting.com, \ Parker\ Wittman$

ASP0124R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 17, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 401201 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
401201 -01	MW-1-011614
401201 -02	MW-7-011614
401201 -03	MW-8-011614
401201 -04	MW-10-011614
401201 -05	MW-11-011614
401201 -06	MW-12-011614

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/14 Date Received: 01/17/14

Project: Ken's Texaco 120061, F&BI 401201

Date Extracted: 01/20/14 Date Analyzed: 01/20/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-1-011614 401201-01	2,800	120
MW-7-011614 401201-02	770	119
MW-8-011614 401201-03	230	93
MW-10-011614 401201-04	1,100	109
MW-11-011614 401201-05	1,800	117
MW-12-011614 401201-06	<100	93
Method Blank 04-0117 MB	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/14 Date Received: 01/17/14

Project: Ken's Texaco 120061, F&BI 401201

Date Extracted: 01/20/14 Date Analyzed: 01/21/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 51-134)
MW-1-011614 401201-01	550 x	<250	96
MW-7-011614 401201-02	220 x	<250	101
MW-8-011614 401201-03	110 x	<250	110
MW-10-011614 401201-04	160 x	<250	103
MW-11-011614 401201-05	490 x	<250	99
MW-12-011614 401201-06	<50	<250	109
Method Blank 04-134 MB	<50	<250	103

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-1-011614	Client:	Aspect Consulting, LLC
Date Received:	01/17/14	Project:	Ken's Texaco 120061, F&BI 401201
Date Extracted:	01/21/14	Lab ID:	401201-01
Date Analyzed:	01/21/14	Data File:	012107.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
104	57	121
95	63	127
96	60	133
	104 95	% Recovery: Limit: 104 57 95 63

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-7-011614	Client:	Aspect Consulting, LLC
Date Received:	01/17/14	Project:	Ken's Texaco 120061, F&BI 401201
Date Extracted:	01/21/14	Lab ID:	401201-02
Date Analyzed:	01/21/14	Data File:	012108.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	98	60	133

Concentration ug/L (ppb)
< 0.35
<1
<1
<2
<1

ENVIRONMENTAL CHEMISTS

Client Sample ID: MV	W-8-011614	Client:	Aspect Consulting, LLC
Date Received: 01/	/17/14	Project:	Ken's Texaco 120061, F&BI 401201
Date Extracted: 01/	/17/14	Lab ID:	401201-03
Date Analyzed: 01/	/17/14	Data File:	011727.D
Matrix: Wa	ater	Instrument:	GCMS4
Units: ug	(/L (ppb)	Operator:	SP

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	93	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	3.6
Toluene	<1
Ethylbenzene	5.3
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-10-011614	Client:	Aspect Consulting, LLC
Date Received:	01/17/14	Project:	Ken's Texaco 120061, F&BI 401201
Date Extracted:	01/21/14	Lab ID:	401201-04
Date Analyzed:	01/21/14	Data File:	012109.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	13
Toluene	5.4
Ethylbenzene	46
m,p-Xylene	92
o-Xylene	15

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-011614	Client:	Aspect Consulting, LLC
Date Received:	01/17/14	Project:	Ken's Texaco 120061, F&BI 401201
Date Extracted:	01/17/14	Lab ID:	401201-05
Date Analyzed:	01/17/14	Data File:	011728.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	SP

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	94	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	54
Toluene	5.8
Ethylbenzene	65
m,p-Xylene	54
o-Xylene	4.1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-12-011614	Client:	Aspect Consulting, LLC
Date Received:	01/17/14	Project:	Ken's Texaco 120061, F&BI 401201
Date Extracted:	01/17/14	Lab ID:	401201-06
Date Analyzed:	01/17/14	Data File:	011729.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	SP

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	93	63	127
4-Bromofluorobenzene	95	60	133

	Concentration
Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank	Client:	Aspect Consulting, LLC
--------------------------------	---------	------------------------

Ken's Texaco 120061, F&BI 401201 Date Received: NA Project: Lab ID: Date Extracted: 01/17/14 04-0048 mb 01/17/14 Data File: 011714.D Date Analyzed: Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: SP

- -

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	98	60	133

Concentration Ug/L (ppb) Benzene Concentration Ug/L (ppb)

Benzene Toluene <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride < 5 trans-1,2-Dichloroethene <1 1.1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1 Trichloroethene <1 Tetrachloroethene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 401201
Date Extracted: 01/21/14 Lab ID: 04-0052 mb

Date Analyzed: 01/21/14 Data File: 012105.D

Matrix: Water Instrument: GCMS4

Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 104 57 121 Toluene-d8 93 63 127 4-Bromofluorobenzene 95 60 133

Concentration

Compounds: ug/L (ppb)

 Benzene
 <0.35</td>

 Toluene
 <1</td>

 Ethylbenzene
 <1</td>

 m,p-Xylene
 <2</td>

 o-Xylene
 <1</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/14 Date Received: 01/17/14

Project: Ken's Texaco 120061, F&BI 401201

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

v	·	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Gasoline	ug/L (ppb)	1,000	99	99	69-134	0

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/14 Date Received: 01/17/14

Project: Ken's Texaco 120061, F&BI 401201

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	111	105	58-134	6

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/14 Date Received: 01/17/14

Project: Ken's Texaco 120061, F&BI 401201

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 401202-11 (Matrix Spike)

			Percent	
Reporting	Spike	Sample	Recovery	Acceptance
Units	Level	Result	MS	Criteria
ug/L (ppb)	50	< 0.2	94	36-166
ug/L (ppb)	50	<1	143	46-160
ug/L (ppb)	50	<1	99	60-136
ug/L (ppb)	50	<5	101	67-132
ug/L (ppb)	50	<1	97	72-129
ug/L (ppb)	50	<1	98	70-128
ug/L (ppb)	50	<1	99	71-127
ug/L (ppb)	50	<1	97	69-133
ug/L (ppb)	50	<1	104	60-146
ug/L (ppb)	50	< 0.35	94	76-125
ug/L (ppb)	50	<1	96	66-135
ug/L (ppb)	50	<1	98	76-122
ug/L (ppb)	50	<1	99	10-226
ug/L (ppb)	50	<1	100	69-135
ug/L (ppb)	100	<2	99	69-135
ug/L (ppb)	50	<1	102	60-140
	Units ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50	Units Level Result ug/L (ppb) 50 <0.2	Reporting Units Spike Level Sample Result Recovery MS ug/L (ppb) 50 <0.2

	_		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	91	92	50-154	1
Chloroethane	ug/L (ppb)	50	134	137	58-146	2
1,1-Dichloroethene	ug/L (ppb)	50	95	95	67-136	0
Methylene chloride	ug/L (ppb)	50	91	93	39-148	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	94	95	68-128	1
1,1-Dichloroethane	ug/L (ppb)	50	94	96	79-121	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	94	97	80-123	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	95	95	73-132	0
1,1,1-Trichloroethane	ug/L (ppb)	50	100	101	83-130	1
Benzene	ug/L (ppb)	50	91	91	69-134	0
Trichloroethene	ug/L (ppb)	50	93	96	80-120	3
Toluene	ug/L (ppb)	50	95	96	72-122	1
Tetrachloroethene	ug/L (ppb)	50	98	98	76-121	0
Ethylbenzene	ug/L (ppb)	50	98	98	77-124	0
m,p-Xylene	ug/L (ppb)	100	98	99	83-125	1
o-Xylene	ug/L (ppb)	50	100	102	81-121	2

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/14 Date Received: 01/17/14

Project: Ken's Texaco 120061, F&BI 401201

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 401225-03 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	50	< 0.35	82	76-125
Toluene	ug/L (ppb)	50	<1	84	76-122
Ethylbenzene	ug/L (ppb)	50	<1	87	69-135
m,p-Xylene	ug/L (ppb)	100	<2	87	69-135
o-Xylene	ug/L (ppb)	50	<1	91	60-140

·	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	92	90	69-134	2
Toluene	ug/L (ppb)	50	94	92	72-122	2
Ethylbenzene	ug/L (ppb)	50	97	95	77-124	2
m,p-Xylene	ug/L (ppb)	100	98	95	83-125	3
o-Xylene	ug/L (ppb)	50	100	98	81-121	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- \boldsymbol{a} The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

401201	SAMPLE CHAIN OF CUSTODY	ME 01-	17-14 14/E93
Send Report To BOB HANFORD	SAMPLERS (signature)	inn esna	Yage # of TURNAROUND TIME
Company ASPECT CONSULTING	PROJECT NAME/NO.	PO#	X Standard (2 Weeks) □ RUSH
Address 350 Madison Ave. N.	Kens Texaco	120061	Rush charges authorized by
City, State, ZIP Bainbridge Island, NA.	REMARKS		SAMPLE DISPOSAL ☐ Dispose after 30 days
Phone # Fax #			☐ Return samples ☐ Will call with instructions

							1	U.		ANA	LYSE	S REC	UEST	ED					_
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 86218	₩OCs by8260	SVOCs by 8270	HFS Hexane/	Napthalene	FILDE	EDC				Notes	
MW-1-011614	01 A-D	1/16/14	11:13	water	4	X	X	X											
MW-7-011614	OF D		11:51*	1117 (NP)	4	X	X	X											
MW-8-011614 MW-10-011614	03 A-D 04 A-D	4	12:54		8	X	X	X	X										
MW-10-011614	04 A-D		12:25		4	X	X	X											
MN-11-011614	05 A-H		13:36		8	X	X	X	X										
MW-12-011614	05 A-H 06 A-H	\bigvee	1404	1 4	8	X	X	X	X										
												Sa	mple	100	ived	at_	3.	<u>e</u>	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Retinquished by:	Breean Zinimernian	Aspect	1/16/14	3:18
Received by www	Nhan Phan	FEBT	1/17/14	1300
Relinquished by:				
Received by:				

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 16, 2014

Bob Hanford, Project Manager Aspect Consulting, LLC 350 Madison Ave. N. Bainbridge Island, WA 98110-1810

Dear Mr. Hanford:

Included are the results from the testing of material submitted on May 9, 2014 from the Ken's Texaco, PO 120061, F&BI 405168 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

 $c: data@aspect consulting.com, \ Parker\ Wittman$

ASP0516R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 9, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061, F&BI 405168 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
405168 -01	MW-1-050814
405168 -02	MW-7-050814
405168 -03	MW-8-050814
405168 -04	MW-10-050814
405168 -05	MW-11-050814
405168 -06	MW-12-050814

The 8260C surrogate toluene-d8 exceeded the acceptance criteria for sample MW-1-050814. No analytes were detected in the sample, therefore the data were acceptable.

Chloroethane in the 8260C matrix spike, laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The analyte was not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/16/14 Date Received: 05/09/14

Project: Ken's Texaco, PO 120061, F&BI 405168

Date Extracted: 05/09/14 Date Analyzed: 05/09/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-1-050814 405168-01	2,700	98
MW-7-050814 405168-02	470	93
MW-8-050814 405168-03	750	85
MW-10-050814 405168-04	950	94
MW-11-050814 405168-05	2,700	82
MW-12-050814 405168-06	<100	75
Method Blank 04-0882 MB	<100	79

ENVIRONMENTAL CHEMISTS

Date of Report: 05/16/14 Date Received: 05/09/14

Project: Ken's Texaco, PO 120061, F&BI 405168

Date Extracted: 05/12/14 Date Analyzed: 05/12/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-1-050814 405168-01	570 x	<250	86
MW-7-050814 405168-02	160 x	<250	84
MW-8-050814 405168-03	200 x	<250	82
MW-10-050814 405168-04	300 x	<250	84
MW-11-050814 405168-05	920 x	<250	89
MW-12-050814 405168-06	<50	<250	87
Method Blank 04-957 MB	<50	<250	84

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-1-050814	Client:	Aspect Consulting, LLC
-------------------	-------------	---------	------------------------

Date Received: 05/09/14 Project: Ken's Texaco, PO 120061, F&BI 405168

Lab ID: Date Extracted: 05/09/14 405168-01 Date Analyzed: 05/09/14 Data File: 050911.D Matrix: Water Instrument: GCMS7 Units: ug/L (ppb) Operator: JS

_		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	94	108
Toluene-d8	110 vo	91	107
4-Bromofluorobenzene	106	91	110

Concentration

Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-7-050814	Client:	Aspect Consulting, LLC
-------------------	-------------	---------	------------------------

Date Received: 05/09/14 Project: Ken's Texaco, PO 120061, F&BI 405168

Lab ID: Date Extracted: 05/09/14 405168-02 Date Analyzed: 05/09/14 Data File: 050912.D Matrix: Water Instrument: GCMS7 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	94	108
Toluene-d8	104	91	107
4-Bromofluorobenzene	105	91	110

Concentration

Compounds: ug/L (ppb)
Benzene <0.35

Toluene <1
Ethylbenzene <1
m,p-Xylene <2
o-Xylene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-8-050814	Client:	Aspect Consulting, LLC
-------------------	-------------	---------	------------------------

Date Received: 05/09/14 Project: Ken's Texaco, PO 120061, F&BI 405168

Lab ID: Date Extracted: 05/12/14 405168-03 Date Analyzed: 05/12/14 Data File: 051217.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	85	117
Toluene-d8	102	93	107
4-Bromofluorobenzene	99	76	126

Concentration

Compounds:	ug/L (ppb)
Benzene	14
Toluene	4.1
Ethylbenzene	11
m,p-Xylene	12
o-Xylene	2.3
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-10-050814	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

 Date Received:
 05/09/14
 Project:
 Ken's Texaco, PO 120061, F&BI 405168

 Date Extracted:
 05/09/14
 Lab ID:
 405168-04

 Date Analyzed:
 05/09/14
 Data File:
 050915.D

Matrix: Water Instrument: GCMS7 Units: ug/L (ppb) Operator: JS

Upper Lower Surrogates: Limit: Limit: % Recovery: 1,2-Dichloroethane-d4 99 94 108 Toluene-d8 101 91 107 4-Bromofluorobenzene 103 91 110

1 Di omondoi obenzene	100	01	110
Compounds:	Concentration ug/L (ppb)		
Benzene	32		
Toluene	4.3		
Ethylbenzene	63		
m,p-Xylene	23		
o-Xylene	5.2		
Vinyl chloride	< 0.2		
Chloroethane	<1		
1,1-Dichloroethene	<1		
Methylene chloride	<5		
trans-1,2-Dichloroethene	<1		
1,1-Dichloroethane	<1		
cis-1,2-Dichloroethene	<1		
1,2-Dichloroethane (EDC)	<1		
1,1,1-Trichloroethane	<1		
Trichloroethene	<1		
Tetrachloroethene	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-050814	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 05/09/14 Project: Ken's Texaco, PO 120061, F&BI 405168

Lab ID: Date Extracted: 405168-05 05/12/14 Date Analyzed: 05/12/14 Data File: 051218.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	85	117
Toluene-d8	103	93	107
4-Bromofluorobenzene	99	76	126

Concentration

ug/L (ppb)
70
7.3
74
71
5.9
< 0.2
<1
<1
<5
<1
<1
<1
<1
<1
<1
<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-12-050814	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 05/09/14 Project: Ken's Texaco, PO 120061, F&BI 405168

Lab ID: Date Extracted: 05/09/14 405168-06 Date Analyzed: 05/09/14 Data File: 050914.D Matrix: Water Instrument: GCMS7 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	94	108
Toluene-d8	103	91	107
4-Bromofluorobenzene	102	91	110

Concentration

Compounds:	ug/L (ppb)

Benzene <0.35
Toluene <1
Ethylbenzene <1
m,p-Xylene <2
o-Xylene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco, PO 120061, F&BI 405168

05/09/14 Lab ID: Date Extracted: 04-0923 mb 05/09/14 Data File: 050910.D Date Analyzed: Matrix: Water Instrument: GCMS7 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	94	108
Toluene-d8	104	91	107
4-Bromofluorobenzene	101	91	110

Concentration Compounds: ug/L (ppb) Benzene <0.35 Toluene <1 Ethylbenzene <1 m,p-Xylene <2

o-Xylene <1 Vinyl chloride < 0.2 Chloroethane <1 1.1-Dichloroethene <1 Methylene chloride < 5 trans-1,2-Dichloroethene <1 1.1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1 Trichloroethene <1 Tetrachloroethene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Not Applicable Ken's Texaco, PO 120061, F&BI 405168 Date Received: Project:

05/12/14 Lab ID: Date Extracted: 04-0925 mb Date Analyzed: 05/12/14 Data File: 051216.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	102	93	107
4-Bromofluorobenzene	98	76	126

	Concentration	
Compounds:	ug/L (ppb)	
Benzene	< 0.35	
Toluene	<1	
Ethylbenzene	<1	
m,p-Xylene	<2	
o-Xylene	<1	
Vinyl chloride	< 0.2	
Chloroethane	<1	
1,1-Dichloroethene	<1	
Methylene chloride	<5	
trans-1,2-Dichloroethene	<1	
1,1-Dichloroethane	<1	
cis-1,2-Dichloroethene	<1	
1,2-Dichloroethane (EDC)	<1	
1,1,1-Trichloroethane	<1	
Trichloroethene	<1	
Tetrachloroethene	<1	

ENVIRONMENTAL CHEMISTS

Date of Report: 05/16/14 Date Received: 05/09/14

Project: Ken's Texaco, PO 120061, F&BI 405168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 405140-05 (Duplicate)

	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	140	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	94	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 05/16/14 Date Received: 05/09/14

Project: Ken's Texaco, PO 120061, F&BI 405168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

·	·	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	121	122	61-133	1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/16/14 Date Received: 05/09/14

Project: Ken's Texaco, PO 120061, F&BI 405168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 405168-03 (Matrix Spike)

		Percent								
	Reporting	Spike	Sample	Recovery	Acceptance					
Analyte	Units	Level	Result	MS	Criteria					
Vinyl chloride	ug/L (ppb)	50	< 0.2	97	58-136					
Chloroethane	ug/L (ppb)	50	<1	112	61-138					
1,1-Dichloroethene	ug/L (ppb)	50	<1	94	75-118					
Methylene chloride	ug/L (ppb)	50	<5	103	73-118					
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	98	82-111					
1,1-Dichloroethane	ug/L (ppb)	50	<1	95	85-110					
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	99	84-112					
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	91	81-114					
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	94	83-115					
Benzene	ug/L (ppb)	50	16	91 b	85-109					
Trichloroethene	ug/L (ppb)	50	<1	88	84-105					
Toluene	ug/L (ppb)	50	5.0	93	86-111					
Tetrachloroethene	ug/L (ppb)	50	<1	88	72-121					
Ethylbenzene	ug/L (ppb)	50	41	105 b	86-115					
m,p-Xylene	ug/L (ppb)	100	15	90	78-125					
o-Xylene	ug/L (ppb)	50	2.4	99	84-119					

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	107	107	72-124	0
Chloroethane	ug/L (ppb)	50	112	109	69-133	3
1,1-Dichloroethene	ug/L (ppb)	50	99	97	78-119	2
Methylene chloride	ug/L (ppb)	50	105	105	71-119	0
trans-1,2-Dichloroethene	ug/L (ppb)	50	104	102	82-116	2
1,1-Dichloroethane	ug/L (ppb)	50	102	101	81-116	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	102	102	82-116	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	99	99	81-113	0
1,1,1-Trichloroethane	ug/L (ppb)	50	100	99	84-117	1
Benzene	ug/L (ppb)	50	97	97	81-113	0
Trichloroethene	ug/L (ppb)	50	91	92	82-110	1
Toluene	ug/L (ppb)	50	94	94	85-112	0
Tetrachloroethene	ug/L (ppb)	50	93	93	78-117	0
Ethylbenzene	ug/L (ppb)	50	98	99	85-116	1
m,p-Xylene	ug/L (ppb)	100	99	99	84-119	0
o-Xylene	ug/L (ppb)	50	105	105	85-118	0

ENVIRONMENTAL CHEMISTS

Date of Report: 05/16/14 Date Received: 05/09/14

Project: Ken's Texaco, PO 120061, F&BI 405168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 405168-05 (Matrix Spike)

	Percent									
	Reporting	Spike	Sample	Recovery	Acceptance					
Analyte	Units	Level	Result	MS	Criteria					
Vinyl chloride	ug/L (ppb)	50	< 0.2	87	61-139					
Chloroethane	ug/L (ppb)	50	<1	143 vo	68-126					
1,1-Dichloroethene	ug/L (ppb)	50	<1	99	71-123					
Methylene chloride	ug/L (ppb)	50	<5	87	61-126					
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	86	72-122					
1,1-Dichloroethane	ug/L (ppb)	50	<1	86	79-113					
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	90	73-119					
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	1.9	89	78-113					
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	89	79-116					
Benzene	ug/L (ppb)	50	70	88 b	79-109					
Trichloroethene	ug/L (ppb)	50	<1	92	75-109					
Toluene	ug/L (ppb)	50	7.3	89	73-117					
Tetrachloroethene	ug/L (ppb)	50	<1	86	72-113					
Ethylbenzene	ug/L (ppb)	50	74	91 b	71-120					
m,p-Xylene	ug/L (ppb)	100	71	89 b	63-128					
o-Xylene	ug/L (ppb)	50	5.9	88	64-129					

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	89	90	73-132	1
Chloroethane	ug/L (ppb)	50	136 vo	147 vo	68-126	8
1,1-Dichloroethene	ug/L (ppb)	50	99	103	75-119	4
Methylene chloride	ug/L (ppb)	50	89	91	63-132	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	88	91	76-118	3
1,1-Dichloroethane	ug/L (ppb)	50	89	91	80-116	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	93	95	81-111	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	89	92	79-109	3
1,1,1-Trichloroethane	ug/L (ppb)	50	93	94	80-116	1
Benzene	ug/L (ppb)	50	89	91	81-108	2
Trichloroethene	ug/L (ppb)	50	94	96	77-108	2
Toluene	ug/L (ppb)	50	90	91	83-108	1
Tetrachloroethene	ug/L (ppb)	50	88	90	78-109	2
Ethylbenzene	ug/L (ppb)	50	89	92	84-110	3
m,p-Xylene	ug/L (ppb)	100	92	94	84-112	2
o-Xylene	ug/L (ppb)	50	92	94	82-113	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- $\mbox{\it ca}$ The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the α quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

405168	SAMPLE CHAIN OF CUSTODY	ME 05-09	-14 JOS //VZ /
Send Report To BOB HAN FOKD	SAMPLERS (signature)		Page # of TURNAROUND TIME
Company Aspect Consulting	PROJECT NAME/NO.	PO#	Standard (2 Weeks)
Address 350 Madison Ave. N.	Kens Texaco	120061	Rush charges authorized by
City, State, ZIP Bainbridge Island, WA	REMARKS	- 	SAMPLE DISPOSAL ☐ Dispose after 30 days
Phone # Fax #			☐ Return samples ☐ Will call with instructions
	I () AN	ALYSES REQUEST	FD I

	T		Y					\mathcal{C}		ANA	LYS	ES F	REQU	JEST	ED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 88218	HVOCs by8260	SVOCs by 8270	HFS							Notes	
MW-1-050814	DIA.D	5/8/14	1154	Water	4	X	X	X											
MN-7-050814	02 T		1235		4	Х	X	X											
MW-8-050814 MW-10-050814	03 H		1409		8	X	X	X	X									· ·	
MW-10-050814	04]		1319		8	X	X	X	X										
MW-11-050814	05		1503		8	X	X	X	X					1					
MW-12-050814	GEA D	Ψ	1547	<u> </u>	4	X	X	X											
Finally Latte		-4			1	-	1									•	Ami	erg Las	3
Empty bottle Empty bottles					6												40m HC	erglas ooml) l)w/ preser	af
•											}			i				ı	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinguished by: mmissmes	Breean Eimmerman	Aspect	5/8/14	645
Received by:	D1 V0	FEBI	5-9-14	18 00
Relinquished by:		Complete	1	
Received by:		Samples received at	□ °C	

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 3, 2014

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S. Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on September 23, 2014 from the Ken's Texaco 120061, F&BI 409405 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP1003R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 23, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 409405 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
409405 -01	MW-1-092214
409405 -02	MW-7-092214
409405 -03	MW-8-092214
409405 -04	MW-11-092214
409405 -05	MW-12-092214

Samples MW-11-092214 and MW-12-092214 were sent to Fremont for alkalinity, chloride, sulfate, nitrate and nitrite analyses. Review of the enclosed report indicates that all quality assurance were acceptable

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

Date Extracted: 09/24/14 Date Analyzed: 09/24/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-1-092214 409405-01	2,700	112
MW-7-092214 409405-02	890	123
MW-8-092214 409405-03	920	102
MW-11-092214 409405-04	1,300	109
MW-12-092214 409405-05	<100	84
Method Blank 04-1913 MB	<100	91

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

Date Extracted: 09/24/14 Date Analyzed: 09/24/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 51-134)
MW-1-092214 409405-01	560 x	<250	104
MW-7-092214 409405-02	250 x	<250	101
MW-8-092214 409405-03	170 x	<250	99
MW-11-092214 409405-04	260 x	<250	97
MW-12-092214 409405-05	<50	<250	96
Method Blank 04-1938 MB2	<50	<250	101

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-11-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

Lab ID: 409405-04 Date Extracted: 09/23/14 Date Analyzed: 09/23/14 Data File: 409405-04.051 Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 93 60 125 Holmium 89 60 125

Concentration

Analyte: ug/L (ppb)

 Lead
 <1</td>

 Manganese
 8,690

 Iron
 3,120 ve

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-11-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

Date Extracted: 09/23/14 Lab ID: 409405-04 x10
Date Analyzed: 09/23/14 Data File: 409405-04 x10.053

Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 95 60 125 Holmium 95 60 125

Concentration

Analyte: ug/L (ppb)

 Lead
 <10</td>

 Manganese
 7,920

 Iron
 3,060

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-12-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/23/14
 Lab ID:
 409405-05

 Date Analyzed:
 09/23/14
 Data File:
 409405-05.052

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 95 60 125 Holmium 94 60 125

Concentration

Analyte: ug/L (ppb)

Lead<1</th>Manganese46.3Iron136

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 409405

Date Extracted: 09/23/14 Lab ID: I4-596 mb
Date Analyzed: 09/23/14 Data File: I4-596 mb.028
Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 96 60 125 Holmium 96 60 125

Concentration

Analyte: ug/L (ppb)

Lead<1</th>Manganese<1</td>Iron<50</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

Lab ID: Date Extracted: 09/23/14 409405-04 09/24/14 Data File: 092341.D Date Analyzed: Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 101 57 121 Toluene-d8 100 63 127 4-Bromofluorobenzene 99 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-12-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

Lab ID: Date Extracted: 09/23/14 409405-05 09/24/14 Data File: 092342.D Date Analyzed: Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 102 57 121 Toluene-d8 102 63 127 4-Bromofluorobenzene 60 102 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409405

Lab ID: Date Extracted: 09/23/14 04-1896 mb 09/23/14 Data File: 092325.D Date Analyzed: Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 104 57 121 Toluene-d8 103 63 127 4-Bromofluorobenzene 60 104 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-11-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/24/14
 Lab ID:
 409405-04

 Date Analyzed:
 09/24/14
 Data File:
 006F0601.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 230

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-12-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/24/14
 Lab ID:
 409405-05

 Date Analyzed:
 09/24/14
 Data File:
 008F0801.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/24/14
 Lab ID:
 04-1897 mb

 Date Analyzed:
 09/24/14
 Data File:
 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 409405-05 (Duplicate)

-	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	ug/L (ppb)	1,000	99	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	111	108	63-142	3

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 409353-03 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	103	103	79-121	0
Manganese	ug/L (ppb)	20	1,480	255 b	333 b	47-155	27 b
Iron	ug/L (ppb)	100	235	116 b	113 b	50-150	3 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	103	83-115
Manganese	ug/L (ppb)	20	108	76-120
Iron	ug/L (ppb)	100	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 409405-04 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	102	69-133

·	_		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	102	104	73-132	2

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Analyte

Methane

Project: Ken's Texaco 120061, F&BI 409405

ug/L (ppb)

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 409405-04 (Duplicate)

	Reporting Units S	Sample Re	sult Duj	plicate	Relative Percent Difference	
Analyte			R	esult	(Limit 20)	
Methane	ug/L (ppb)	230	2	220	4	
Laboratory Code:	Laboratory Control	Sample				
	Reporting Units	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD

LCS

66

LCSD

65

Criteria

50-150

(Limit 20)

2

Level

500

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 409405

Lab ID: 1409245

September 30, 2014

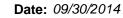
Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 9/23/2014 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malc. Ray

Sincerely,

Mike Ridgeway President

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 409405 **Lab Order:** 1409245

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1409245-001
 MW-11-092214
 09/22/2014 1:27 PM
 09/23/2014 11:48 AM

 1409245-002
 MW-12-092214
 09/22/2014 2:29 PM
 09/23/2014 11:48 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1409245**Date: **9/30/2014**

CLIENT: Friedman & Bruya

Project: 409405

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Analytical Report

WO#: **1409245**

Date Reported: 9/30/2014

Client: Friedman & Bruya Collection Date: 9/22/2014 1:27:00 PM

Project: 409405

Lab ID: 1409245-001 **Matrix:** Water

Client Sample ID: MW-11-092214

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA M	ethod 300.0			Bate	ch ID: R1	6959 Analyst: KT
Chloride	18.7	0.500	D	mg/L	5	9/23/2014 4:29:00 PM
Nitrite	ND	0.100		mg/L	1	9/23/2014 3:30:00 PM
Nitrate	0.426	0.100		mg/L	1	9/23/2014 3:30:00 PM
Sulfate	5.36	0.300		mg/L	1	9/23/2014 3:30:00 PM
Total Alkalinity by SM 2320B				Bate	ch ID: R1	7115 Analyst: KT
Alkalinity, Total (As CaCO3)	372	5.00		mg/L	1	9/30/2014 12:25:00 PM
Ferrous Iron by SM3500-Fe B				Bate	ch ID: R1	6929 Analyst: KT
Ferrous Iron	1.52	0.0300		mg/L	1	9/23/2014 1:22:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Analytical Report

WO#: **1409245**

Date Reported: 9/30/2014

Client: Friedman & Bruya Collection Date: 9/22/2014 2:29:00 PM

Project: 409405

Lab ID: 1409245-002 **Matrix:** Water

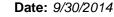
Client Sample ID: MW-12-092214

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Ion Chromatography by EPA	Method 300.0			Bate	ch ID: R	16959	Analyst: KT
Chloride	6.23	0.200	D	mg/L	2	9/23/2	2014 4:39:00 PM
Nitrite	ND	0.100		mg/L	1	9/23/	2014 3:40:00 PM
Nitrate	0.489	0.100		mg/L	1	9/23/	2014 3:40:00 PM
Sulfate	3.66	0.300		mg/L	1	9/23/	2014 3:40:00 PM
Total Alkalinity by SM 2320B				Bate	ch ID: R	17115	Analyst: KT
Alkalinity, Total (As CaCO3)	133	5.00		mg/L	1	9/30/	2014 12:35:00 PM
Ferrous Iron by SM3500-Fe B				Bate	ch ID: R	16929	Analyst: KT
Ferrous Iron	ND	0.0300		mg/L	1	9/23/	2014 1:23:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits


RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409245

Friedman & Bruya

Project: 409405

CLIENT:

QC SUMMARY REPORT

Total Alkalinity by SM 2320B

Project: 409405						· · · · · · · · · · · · · · · · · · ·
Sample ID: MB-R17115	SampType: MBLK		Units: mg/	L	Prep Date: 9/30/2014	RunNo: 17115
Client ID: MBLKW	Batch ID: R17115				Analysis Date: 9/30/2014	SeqNo: 342771
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	f Val %RPD RPDLimit Qua
Alkalinity, Total (As CaCO3)	ND	5.00				
Sample ID: LCS-R17115	SampType: LCS		Units: mg/	L	Prep Date: 9/30/2014	RunNo: 17115
Client ID: LCSW	Batch ID: R17115				Analysis Date: 9/30/2014	SeqNo: 342772
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	f Val %RPD RPDLimit Qua
Alkalinity, Total (As CaCO3)	95.0	5.00	100.0 0	95.0	80 120	
Sample ID: 1409245-001BDUP	SampType: DUP		Units: mg/	L.	Prep Date: 9/30/2014	RunNo: 17115
Client ID: MW-11-092214	Batch ID: R17115				Analysis Date: 9/30/2014	SeqNo: 342774
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	f Val %RPD RPDLimit Qua
Alkalinity, Total (As CaCO3)	355	5.00			3	72.5 4.81 20

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 9/30/2014

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

R

Work Order: 1409245

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

CLIENT: Friedmann Project: 409405	an & Bruya						Ferr	ous Iron by	/ SM350	0-Fe E
Sample ID: MB-R16929	SampType: MBLK			Units: mg/L		Prep Date: 9/23	/2014	RunNo: 1692	29	
Client ID: MBLKW	Batch ID: R16929					Analysis Date: 9/23	/2014	SeqNo: 3398	366	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	ND	0.0300								
Sample ID: LCS-R16929	SampType: LCS			Units: mg/L		Prep Date: 9/23	/2014	RunNo: 1692	29	
Client ID: LCSW	Batch ID: R16929					Analysis Date: 9/23	/2014	SeqNo: 3398	367	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.960	0.0300	1.000	0	96.0	90 11	0			
Sample ID: 1409245-002ADU	P SampType: DUP			Units: mg/L		Prep Date: 9/23	/2014	RunNo: 1692	29	
Client ID: MW-12-092214	Batch ID: R16929					Analysis Date: 9/23	/2014	SeqNo: 3398	370	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron NOTES:	0.0300	0.0300	etically valid				0	200	20	
Sample ID: 1409245-002AMS		THOI DC Stati	Stically valid.	Units: mg/L		Prep Date: 9/23	/2014	RunNo: 1692	29	
Client ID: MW-12-092214	Batch ID: R16929			5		Analysis Date: 9/23		SeqNo: 3398	-	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.970	0.0300	1.000	0	97.0	85 1	5			
Sample ID: 1409245-002AM \$	D SampType: MSD			Units: mg/L		Prep Date: 9/23	/2014	RunNo: 1692	29	
Client ID: MW-12-092214	Batch ID: R16929					Analysis Date: 9/23	/2014	SeqNo: 3398	372	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.980	0.0300	1.000	0	98.0	85 1	5 0.9700	1.03	20	_
Qualifiers: B Analyte detec	ted in the associated Method Blank		D Dilution wa	s required		E V	alue above quantitation ra	ange		

Analyte detected below quantitation limits

Reporting Limit

ND

S

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Date: 9/30/2014

Work Order: 1409245

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409405

Ferrous Iron by SM3500-Fe B

Sample ID: 1409245-002AMSD

SampType: MSD

Units: mg/L

Prep Date: 9/23/2014 Analysis Date: 9/23/2014

RunNo: 16929

SeqNo: 339872

Client ID: MW-12-092214

Project:

Analyte

Batch ID: R16929

Result

RL

SPK value SPK Ref Val

%REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

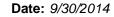
Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required D


Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range Е

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409245

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project:	409405						ion Chromatograp	ony by EPA Method	300.0
Sample ID: N	1B-R16959	SampType: MBLK			Units: mg/L		Prep Date: 9/23/2014	RunNo: 16959	
Client ID: M	IBLKW	Batch ID: R16959					Analysis Date: 9/23/2014	SeqNo: 340478	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chloride		ND	0.100						
Nitrite		ND	0.100						
Nitrate		ND	0.100						
Sulfate		ND	0.300						
Sample ID: L	.CS-R16959	SampType: LCS			Units: mg/L		Prep Date: 9/23/2014	RunNo: 16959	
Client ID: L	csw	Batch ID: R16959					Analysis Date: 9/23/2014	SeqNo: 340479	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual

•				_		•					
Client ID: LCSW	Batch ID: R16959					Analysis Da	te: 9/23/20	14	SeqNo: 340	479	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	3.08	0.100	3.000	0	103	85	115				
Nitrite	2.89	0.100	3.000	0	96.4	85	115				
Nitrate	3.13	0.100	3.000	0	104	85	115				
Sulfate	16.5	0.300	15.00	0	110	85	115				

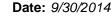
Sample ID: 1409250-001ADUP	SampType: DUP			Units: mg/L		Prep Da	te: 9/23/20	14	RunNo: 169	59	
Client ID: BATCH	Batch ID: R16959				Analysis Da	te: 9/23/20	14	SeqNo: 340			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	7.34	0.100						7.415	0.999	20	Е
Nitrite	ND	0.100						0		20	
Nitrate	0.113	0.100						0.1116	1.16	20	
Sulfate	5.71	0.300						5.704	0.0508	20	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required


J Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409245

QC SUMMARY REPORT

0.725

0.175

0.358

1.51

20

20

20

20

Е

Е

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 409405

Chloride

Nitrite

Nitrate

Sulfate

Sample ID: 1409250-001AMS	SampType: MS	Units: mg/L	Prep Date: 9/23/2014	RunNo: 16959
Client ID: BATCH	Batch ID: R16959		Analysis Date: 9/23/2014	SeqNo: 340482
Analyte	Result RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	10.8 0.100	3.000 7.415	114 80 120	E
Nitrite	2.99 0.100	3.000 0	99.6 80 120	
Nitrate	3.18 0.100	3.000 0.1116	102 80 120	
Sulfate	23.4 0.300	15.00 5.704	118 80 120	Е
Sample ID: 1409250-001AMSD	SampType: MSD	Units: mg/L	Prep Date: 9/23/2014	RunNo: 16959
Client ID: BATCH	Batch ID: R16959		Analysis Date: 9/23/2014	SeqNo: 340483
Analyte	Result RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

7.415

0.1116

5.704

0

80

80

80

80

111

99.8

102

120

120

120

120

120

10.83

2.989

3.184

23.39

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

10.8

2.99

3.17

23.7

0.100

0.100

0.100

0.300

R RPD outside accepted recovery limits

D Dilution was required

3.000

3.000

3.000

15.00

J Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Sample Log-In Check List

CI	ient Name:	FB	Work Order Nun	nber: 1409245	
Lo	gged by:	Erica Silva	Date Received:	9/23/2014 1	11:48:00 AM
Cha	in of Custo	<u>ody</u>			
1.	Is Chain of Cu	ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	Client		
Log	In				
	Coolers are p	resent?	Yes 🗸	No \square	NA 🗌
			_	_	
4.	Shipping cont	ainer/cooler in good condition?	Yes 🗹	No 🗌	_
5.	Custody seals	s intact on shipping container/cooler?	Yes	No 🗌	Not Required 🗹
6.	Was an atter	npt made to cool the samples?	Yes 🔽	No 🗆	NA \square
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes 🗹	No 🗌	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9.	Sufficient san	nple volume for indicated test(s)?	Yes 🗹	No \square	
10.	Are samples	properly preserved?	Yes 🗹	No 🗆	
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA \square
12.	Is the headsp	ace in the VOA vials?	Yes	No 🗆	NA 🗹
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗆	
14.	Does paperwo	ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No \square	
		t analyses were requested?	Yes 🗹	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🗸	No 🗌	
Spe	cial Handl	ing (if applicable)			
-		tified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person I	Notified: Date:			
	By Who		P .	Phone Fax	In Person
	Regardi				
	_	structions:			
19.	Additional ren	narks:			4

Item Information

Item #	Temp ⁰C	Condition
Cooler	13.8	
Sample	10.0	Good

170 1270

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michael Erdahl	SUBCONTRACTER	Page #of TURNAROUND TIME	
Company Friedman and Bruya, Inc.	PROJECT NAME/NO.	PO#	≪Standard (2 Weeks) □ RUSH
Address 3012 16th Ave W	409405	D-208	Rush charges authorized by:
City, State, ZIP_Seattle, WA 98119 Phone #_(206) 285-8282 Fax #_(206) 283-5044	REMARKS Please Email Results		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

																OCCUPATION AND ADDRESS OF THE PARTY OF THE P
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins and Furans by 8290	ЕРН	VPH	Nitrate Nitrate	Sulfate	Alkalinity	Chlorde	Dissolven Feren Iron			Notes
MW-11-092214		9/22/14	1327	water		T			×	×	×	×	X	_	_	
MW-12-09224.		· i'	1425.	+					×	K	×	X	×	\top		
		4														
															\top	
														\top	_	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

PRINT NAME	COMPANY	DATE	TIME
Michael Erdahl	Friedman & Bruya	9/23/14.	1130.
Enica Silva	EAI	9/22/14	11:48
		1/25/11	11 10
			The state of the s

409405	SAMPLE CHAIN OF CUSTODY $\mathcal{M} \in$	09/23/14 BI3/E
Send Report To KITS! Longley Company Aspect Consulting Address 401 2nd Ave S	PROJECT NAME/NO. PO# Cen'S Texaco - 120061 REMARKS	TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by SAMPLE DISPOSAL
City, State, ZIP <u>Seaffle</u> , WA 98104 Phone #206) 812 4744 Fax #		☐ Dispose after 30 days ☐ Return samples ☐ Will call with instructions
	and a sel	STED 42

										ANA	LYS		EQU	JEST	ED					
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	EDC. Only VOCs by8 2 60	SVOCs by 8270	HFS	Alkalinity jeh Utraklunis Su	Hethare	Dissolved Hm	Dissolved Ph	Dissolved Fe			Notes	
MW-1-092214	DIA-D	9/22/14	1124	H20	4	X	X													
MW-7-09224 MW-8-092214	02]		1209		4		1													
MW-8-092214	031		1249		4															
MW-11-092214	04 A-N		1327		14				X			X	X	X	X	X			·	
MW-11-092214 MW-12-092214	05A.1		1429	V	13	V	\rightarrow		X			X	X	X	X	X				
															_					
											_						_		 	
	<u> </u>										_	_		Sa		بحا	afre.	et	4.0	
														g.					र - व्य ाप्त	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Breean Zimmerman	Aspect Consulting	9/2/H	3:05
Received by:	Whan Phan	Fe BI	9/23/4	10:00
Relinquished by: /				
Received by:				

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 6, 2014

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S. Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on September 17, 2014 from the Ken's Texaco, PO 120061, F&BI 409282 project. There are 31 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP1006R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 17, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061, F&BI 409282 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
409282 -01	MW-14-7
409282 -02	MW-14-12
409282 -03	MW-14-18
409282 -04	MW-14-30
409282 -05	MW-13-5.5
409282 -06	MW-13-14
409282 -07	MW-13-21
409282 -08	MW-13-30
409282 -09	B-1-9
409282 -10	B-1-12
409282 -11	B-1-18
409282 -12	B-1-30
409282 -13	B-2-9.5
409282 -14	B-2-13
409282 -15	B-2-20
409282 -16	B-2-30
409282 -17	B-3-14
409282 -18	B-3-11.5
409282 -19	B-3-20
409282 -20	B-3-30

Samples MW-14-12, MW-13-14, B-1-12, B-2-13, and B-3-11.5 were sent to Fremont for EPH/VPH and total organic carbon analyses. In addition, samples MW-14-12, MW-14-18, MW-13-14, B-1-12, B-1-18, B-2-9.5, B-2-13, B-3-14 and B-3-11.5 were sent to Fremont for iron analysis. The report generated by Fremont Analytical will be forwarded to your office upon receipt.

Several compounds in the 8260C direct sparge analysis of samples B-3-14 and B-3-11.5 exceeded the calibration range of the instrument. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

Date Extracted: 09/17/14 Date Analyzed: 09/17/14

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW-14-12 409282-02	<2	92
MW-14-18 409282-03	<2	92
MW-13-14 409282-06	<2	92
B-1-12 409282-10	3.5	94
B-1-18 409282-11	<2	86
B-2-9.5 409282-13	12	96
B-2-13 409282-14	<2	94
B-3-14 409282-17 1/10	72	94
B-3-11.5 409282-18 1/20	400	101
Method Blank 04-1845 MB	<2	93

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

Date Extracted: 09/18/14 Date Analyzed: 09/18/14

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-132)
B-1-30 409282-12	<0.02	< 0.02	<0.02	<0.06	<2	92
B-2-30 409282-16	<0.02	<0.02	<0.02	< 0.06	<2	93
B-3-30 409282-20	<0.02	<0.02	<0.02	<0.06	<2	94
Method Blank 04-1845 MB	< 0.02	<0.02	<0.02	<0.06	<2	88

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	MW-14-12	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Date Extracted:	09/17/14	Lab ID:	409282-02

Date Analyzed: 09/17/14 Data File: 091717.D Matrix: Soil Instrument: GCMS7 mg/kg (ppm) Dry Weight Units: Operator: JS

Upper Lower Limit: Limit: Surrogates: % Recovery:

1,2-Dichloroethane-d4	108	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	99	50	150
Compounds:	Concentration mg/kg (ppm)		
Цоморо	<0.025		

Hexane < 0.025 Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene < 0.003 Toluene < 0.005 Ethylbenzene < 0.005 m,p-Xylene < 0.01 o-Xylene < 0.005 Naphthalene < 0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	MW-14-18	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Date Extracted:	09/17/14	Lab ID:	409282-03
Date Analyzed:	09/17/14	Data File:	091718.D

Matrix: Soil Instrument: GCMS7 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 150 101 50 Toluene-d8 98 50 150 4-Bromofluorobenzene 95 50 150

< 0.005

Compounds:	Concentration mg/kg (ppm)
Hexane	< 0.025
Methyl t-butyl ether (MTBE)	< 0.005
1,2-Dibromoethane (EDB)	< 0.005
1,2-Dichloroethane (EDC)	< 0.005
Benzene	< 0.003
Toluene	< 0.005
Ethylbenzene	< 0.005
m,p-Xylene	< 0.01
o-Xylene	< 0.005

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	MW-13-14	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Extracted	00/17/14	Lab ID:	400282 DB

409282-06Date Extracted: 09/17/14 Lab ID: 09/18/14 Data File: 091808.D Date Analyzed: Matrix: Soil Instrument: GCMS7 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	114	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)
Hexane	< 0.025
Methyl t-butyl ether (MTBE)	< 0.005
1,2-Dibromoethane (EDB)	< 0.005
1,2-Dichloroethane (EDC)	< 0.005
Benzene	< 0.003
Toluene	< 0.005
Ethylbenzene	< 0.005
m,p-Xylene	< 0.01
o-Xylene	< 0.005
Naphthalene	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	B-1-12	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
D . D 1	00/15/14	T I TD	400000 40

Date Extracted: 09/17/14 Lab ID: 409282-10 09/17/14 Data File: Date Analyzed: 091720.D Matrix: Instrument: GCMS7 Soil Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	104	50	150

< 0.005

Concentration Compounds: mg/kg (ppm) < 0.025 Hexane Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene < 0.003 Toluene < 0.005 Ethylbenzene < 0.005 m,p-Xylene < 0.01 o-Xylene < 0.005 Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	B-1-18	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Entra atad.	00/17/14	Lak ID.	400000 11

Date Extracted: 09/17/14 Lab ID: 409282-11 Date Analyzed: 09/17/14 Data File: 091722.D Matrix: Instrument: Soil GCMS7 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	95	50	150

< 0.01

< 0.005

< 0.005

Concentration Compounds: mg/kg (ppm) < 0.025 Hexane Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene < 0.003 Toluene < 0.005 Ethylbenzene < 0.005

m,p-Xylene

Naphthalene

o-Xylene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	B-2-9.5	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Entracted	00/17/14	Lab ID.	400000 10

Date Extracted: 09/17/14 Lab ID: 409282-13 Data File: Date Analyzed: 09/17/14 091723.D Matrix: Instrument: GCMS7 Soil Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	105	50	150

< 0.005

Concentration Compounds: mg/kg (ppm) < 0.025 Hexane Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene < 0.003 Toluene < 0.005 Ethylbenzene < 0.005 m,p-Xylene < 0.01 o-Xylene < 0.005

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	B-2-13	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Date Extracted:	09/17/14	Lab ID:	409282-14

Date Extracted: Lab ID: 409282-14 09/17/14 Date Analyzed: 09/17/14 Data File: 091724.D Matrix: Instrument: Soil GCMS7 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	50	150
Toluene-d8	107	50	150
4-Bromofluorobenzene	98	50	150

< 0.005

Concentration Compounds: mg/kg (ppm) < 0.025 Hexane Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene < 0.003 Toluene < 0.005 Ethylbenzene < 0.005 m,p-Xylene < 0.01 o-Xylene < 0.005

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	B-3-14	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Extracted	00/17/14	Lab ID:	400202 17

Date Extracted: 09/17/14 Lab ID: 409282-17 Date Analyzed: 09/17/14 Data File: 091725.D Matrix: Soil Instrument: GCMS7 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 107 50 150 Toluene-d8 181 ip 50 150

4-Bromofluorobenzene 116 50 150 Concentration Compounds: mg/kg (ppm) Hexane 2.3 ve

Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene < 0.003 Toluene < 0.005 Ethylbenzene 0.86 ve m,p-Xylene 0.12 o-Xylene < 0.005 Naphthalene 0.063

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	B-3-11.5	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Extracted	00/17/14	Lab ID:	400202 10

Date Extracted: 09/17/14 Lab ID: 409282-18 Date Analyzed: 09/17/14 Data File: 091726.D Matrix: Instrument: Soil GCMS7 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	220 ip	50	150
4-Bromofluorobenzene	112	50	150

0.013

0.36 ve

Concentration Compounds: mg/kg (ppm) 3.4 ve Hexane Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene 0.0039 Toluene < 0.005 Ethylbenzene 1.5 ve m,p-Xylene 2.4 ve

o-Xylene

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Ken's Texaco, PO 120061
	00454	T 1 TD	04.40=0.1

Date Extracted: Lab ID: 04-1876 mb 09/17/14 09/17/14 Data File: 091712.D Date Analyzed: Matrix: Instrument: GCMS7 Soil Units: mg/kg (ppm) Dry Weight Operator: JS

Comments to the	0/ D	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	95	50	150

Concentration mg/kg (ppm) Hexane <0.025 Methyl t-butyl ether (MTBE) <0.005 1,2-Dibromoethane (EDB) <0.005 1,2-Dichloroethane (EDC) <0.005 Benzene <0.003

 1,2-Dichloroethane (EDC)
 <0.005</td>

 Benzene
 <0.003</td>

 Toluene
 <0.005</td>

 Ethylbenzene
 <0.005</td>

 m,p-Xylene
 <0.01</td>

 o-Xylene
 <0.005</td>

 Naphthalene
 <0.005</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

Date Extracted: 09/17/14 Date Analyzed: 09/17/14

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 56-165)
MW-14-12 409282-02	< 50	<250	96
MW-14-18 409282-03	< 50	<250	94
MW-13-14 409282-06	< 50	<250	96
B-1-12 409282-10	< 50	<250	98
B-1-18 409282-11	< 50	<250	98
B-2-9.5 409282-13	< 50	<250	98
B-2-13 409282-14	< 50	<250	97
B-3-14 409282-17	< 50	<250	97
B-3-11.5 409282-18	<50	<250	98
Method Blank 04-1885 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-14-12	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Date Extracted:	09/24/14	Lab ID:	409282-02

 Date Extracted:
 09/24/14
 Lab ID:
 409282-02

 Date Analyzed:
 09/24/14
 Data File:
 409282-02.051

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	105	60	125
Indium	85	60	125
Holmium	92	60	125

	Concentration
Analyte:	mg/kg (ppm)

Chromium	8.66
Nickel	9.83
Zinc	34.5
Cadmium	<1
Lead	4.62
Manganese	1,240

ENVIRONMENTAL CHEMISTS

Operator:

AP

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-14-18	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Date Extracted:	09/24/14	Lab ID:	409282-03

Date Analyzed: 09/24/14 Data File: 409282-03.052 Matrix: Soil Instrument: ICPMS1 mg/kg (ppm) Dry Weight

Lower Upper **Internal Standard:** % Recovery: Limit: Limit: 106 60

Germanium 125 Indium 86 60 125 Holmium 92 60 125

Concentration Analyte: mg/kg (ppm)

Units:

Chromium 11.4 Nickel 18.0 Zinc 26.9 Cadmium <1 Lead 2.28 Manganese 642

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-13-14	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Estuadada	00/04/14	I -l. ID.	400000 00

Date Extracted:09/24/14Lab ID:409282-06Date Analyzed:09/24/14Data File:409282-06.054Matrix:SoilInstrument:ICPMS1

 $\label{eq:continuous_equation} \mbox{Units:} \qquad \mbox{mg/kg (ppm) Dry Weight} \qquad \mbox{Operator:} \qquad \mbox{AP}$

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	107	60	125
Indium	86	60	125
Holmium	92	60	125

	Concentration
Analyte:	mg/kg (ppm)

Chromium	6.25
Nickel	9.58
Zinc	21.4
Cadmium	<1
Lead	2.47
Manganese	703

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B-1-12	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Entracted	00/94/14	I ak ID.	400909 10

Date Extracted: 09/24/14 Lab ID: 409282-10 Date Analyzed: 09/24/14 Data File: 409282-10.055 Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Dry Weight Operator: AP

Lower Upper

Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	118	60	125
Indium	87	60	125
Holmium	95	60	125

	Concentration
Analyte:	mg/kg (ppm)
Chromium	6.07

Nickel 5.05 Zinc 28.4 Cadmium <1 Lead 3.37 Manganese 775

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B-1-18	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Estuadada	00/94/14	I al ID.	400000 11

Date Extracted:09/24/14Lab ID:409282-11Date Analyzed:09/24/14Data File:409282-11.056Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	107	60	125
Indium	85	60	125
Holmium	91	60	125

	Concentration
Analyte:	mg/kg (ppm)

 Chromium
 5.52

 Nickel
 5.91

 Zinc
 19.9

 Cadmium
 <1</td>

 Lead
 2.24

 Manganese
 368

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B-2-9.5	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Date Extracted:	09/24/14	I ah ID∙	409282-13

Date Extracted: Lab ID: 409282-13 09/24/14 09/24/14 Data File: Date Analyzed: 409282-13.057 Matrix: Instrument: ICPMS1 Soil mg/kg (ppm) Dry Weight Units: Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 95 60 125 Indium 74 60 125

 Germanium
 95
 60
 125

 Indium
 74
 60
 125

 Holmium
 78
 60
 125

 Concentration

 Analyte:
 mg/kg (ppm)

 Chromium
 5.63

 Nickel
 9.99

 Zinc
 22.5

 Cadmium
 <1</td>

 Lead
 4.15

 Manganese
 418

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B-2-13	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
D . D 1	00/04/14	T L TD	400000 14

 Date Extracted:
 09/24/14
 Lab ID:
 409282-14

 Date Analyzed:
 09/24/14
 Data File:
 409282-14.058

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	106	60	125
Indium	84	60	125
Holmium	89	60	125

	Concentration
Analyte:	mg/kg (ppm)

Chromium	7.81
Nickel	6.15
Zinc	29.5
Cadmium	<1
Lead	3.60
Manganese	694

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B-3-14	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Data Extracted:	00/24/14	I ah ID:	400202 17

Date Extracted:09/24/14Lab ID:409282-17Date Analyzed:09/24/14Data File:409282-17.059Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	104	60	125
Indium	83	60	125
Holmium	89	60	125

	Concentration
Analyte:	mg/kg (ppm)

Chromium 6.65
Nickel 8.35
Zinc 33.4
Cadmium <1
Lead 3.51
Manganese 598

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B-3-11.5	Client:	Aspect Consulting, LLC
Date Received:	09/17/14	Project:	Ken's Texaco, PO 120061
Date Extracted:	09/24/14	Lab ID.	409282-18

 Date Extracted:
 09/24/14
 Lab ID:
 409282-18

 Date Analyzed:
 09/24/14
 Data File:
 409282-18.060

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	108	60	125
Indium	84	60	125
Holmium	90	60	125

	Concentration
Analyte:	mg/kg (ppm)

Chromium	7.56
Nickel	9.18
Zinc	33.8
Cadmium	<1
Lead	10.4
Manganese	1,460

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Ken's Texaco, PO 120061

Date Extracted: 09/24/14 Lab ID: I4-599 mb
Date Analyzed: 09/24/14 Data File: I4-599 mb.032
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	93	60	125
Indium	89	60	125
Holmium	95	60	125

Concentration
Analyte: mg/kg (ppm)

 Chromium
 <1</td>

 Nickel
 <1</td>

 Zinc
 <5</td>

 Cadmium
 <1</td>

 Lead
 <1</td>

 Manganese
 <1</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 409267-03 (Duplicate)

Duplicate
Sample Result Result RPD
Analyte Reporting Units (Wet Wt) (Wet Wt) (Limit 20)
Gasoline mg/kg (ppm) <2 <2 nm

Laboratory Code: Laboratory Control Sample

Analyte Reporting Units Level LCS Criteria

Gasoline mg/kg (ppm) 20 95 71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 409267-03 (Duplicate)

			Duplicate	
		Sample Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

		Percent		
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	91	70-117
Ethylbenzene	mg/kg (ppm)	0.5	91	65-123
Xylenes	mg/kg (ppm)	1.5	89	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 409282-10 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet wt)	(Wet wt)	(Limit 20)
Hexane	mg/kg (ppm)	< 0.025	< 0.025	nm
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
Benzene	mg/kg (ppm)	< 0.003	< 0.003	nm
Toluene	mg/kg (ppm)	< 0.005	< 0.005	nm
Ethylbenzene	mg/kg (ppm)	< 0.005	< 0.005	nm
m,p-Xylene	mg/kg (ppm)	< 0.01	< 0.01	nm
o-Xylene	mg/kg (ppm)	< 0.005	< 0.005	nm
Naphthalene	mg/kg (ppm)	< 0.005	< 0.005	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	mg/kg (ppm)	0.05	109	106	70-130	3
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	0.05	101	107	70-130	6
1,2-Dibromoethane (EDB)	mg/kg (ppm)	0.05	97	98	70-130	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	104	107	70-130	3
Benzene	mg/kg (ppm)	0.05	96	98	70-130	2
Toluene	mg/kg (ppm)	0.05	93	93	70-130	0
Ethylbenzene	mg/kg (ppm)	0.05	98	99	70-130	1
m,p-Xylene	mg/kg (ppm)	0.1	98	100	70-130	2
o-Xylene	mg/kg (ppm)	0.05	100	102	70-130	2
Naphthalene	mg/kg (ppm)	0.05	95	104	70-130	9

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 409283-06 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	95	95	63-146	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5.000	93	79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/17/14

Project: Ken's Texaco, PO 120061, F&BI 409282

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 409392-16 (Matrix Spike)

-			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	7.02	95	94	57-128	1
Nickel	mg/kg (ppm)	25	6.55	91 b	90 b	69-112	1 b
Zinc	mg/kg (ppm)	50	10.2	103 b	99 b	55-129	4 b
Cadmium	mg/kg (ppm)	10	<1	104	106	83-116	2
Lead	mg/kg (ppm)	50	<1	107	106	59-148	1
Manganese	mg/kg (ppm	20	32.9	83 b	74 b	15-180	11 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	106	78-121
Nickel	mg/kg (ppm)	25	103	82-122
Zinc	mg/kg (ppm)	50	111	81-120
Cadmium	mg/kg (ppm)	10	106	54-114
Lead	mg/kg (ppm)	50	106	80-120
Manganese	mg/kg (ppm)	20	113	72-125

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

409282				SAMPLE	CHAIN (OF (CUS	STC	DDY	7	/	ME	- (99	7	17	1-14	, ,	154/0
Send Report To Lirsi Longley					LERS (sigr	natu	re)		/-	/		•					#_	o	of
Company ASpect		- 	<u>-</u>	PROJE	CT NAME	E/NC	t	A	(_		P	O#		[⊋∕Sta	ndard (AROUND 7 (2 Weeks)	ГІМЕ
Address 4012nd	AV	es,s	uitez	- Kei	n's Te	2XC	Ū	0			120	00	Le ,	1	[⊐RU	SH	s authorize	ed by
City, State, ZIP SCAT	ne, i	NA O	18104	REMA	RKS delitives =	he:	(UN	e, h	MB	E,r	naph	tha	lev	u,		□ Dis	pose a:	PLE DISPOS fter 30 days	
Phone #	Fax	x #		_ meta	ls=lead, c	ad	mil	ED(chno	mi	ım,ı	nick	ei, z	Ziĥc		□ Ret □ Wil	urn sar l call v	mples with instruct	tions
					- (VDY	Ľ	OUN	ga	v cy a	ANA	LYSE	ES R	EQU	EST	ED		·T		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS F11.	addinses	metals	EDH/NPH	1 0C	HOLD		Not	tes
MW-14-7	015	9/15/14	1420	SOIL	5											X			
MW-14-12	OZF		1440		6	X	X	X)	<	X	X	X				
MW-14-18	03 E	1 1	1450		5	X	X	X			1	X	Χ						
MW-14-30	04/		1500		5											X			
MW-13-5,5		9/16/14	0745		5											X			
MW-13-14	06 F		0810		6	Х	X	X		1	一、	X	X	X	X				
MW-13-21	OF E		0830		5					1		1	\top			X			

5

5

0840

1130

1140

Friedman & Bruya, Inc. 3012 16th Avenue West

MW-13-30

Óg

09 1

Seattle, WA 98119-2029

Ph. (206) 285-8282

B-1-12

Fax (206) 283-5044

SIGNATURE PRINT NAME COMPANY DATE TIME Relinquished by: 9/16/11/1530 Received by: 9-17-14 FEBT Relinquished by Received by: aples received at

FORMS\COC\COC.DOC

409282	SAMPLE CHAIN OF CUSTODY	ME 09-13	2 14 154/
Send Report To Pirsi Lingley	SAMPLERS (signature)		Page # 2 of 2
Company ASPECT	PROJECT NAME/NO.	PO#	✓ Standard (2 Weeks)
Address 401 2nd Ave S, Suite 201	Ken's Texaco	120061	Rush charges authorized by
City, State, ZIP Seattle, WA 98104	REMARKSfuel addities = he naphthalene, EDB, EDC	xane, MTBE,	SAMPLE DISPOSAL Dispose after 30 days
Phone # Fax #	maphthalene, EDB, EDC metals=lead, cadmium, chn Zinc, Iron, manga	omium, hickel nese	☐ Return samples ☐ Will call with instructions
	<u> </u>	LYSES REQUESTE	

		T.				ANALYSES REQUESTED							T				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B			HFS Fueladdities	metals	EDH/NPH	700	HOLD		Notes
13-1-18	11 6	9/16/14	1150	SOIL	5	χ	X	X			X		-	,			1 VI
B-1-30	12/		1200		5		/					1	<u> </u>	 	X		OP/7- Per KL
B-Z-9.5	13 /		1320		5	X	X	V)	X					-
B-2-13	13 b		1346		6	χ	X	X				X	X	χ			
13-2-20	156		1350		5		·						/	/ \	Χ		
B-2-30	16		1400		5		/					+			V		
B-3-14	17		1480		5	X	X	X		7	TX	X					
B-3 - 11.5	18 E		1420		6	X	$\hat{\mathbf{x}}$	Ì	\dashv	\dashv	X		X	χ			
B-3-20	18 F 19 G		1440		5				1	\dashv		1	<u> </u>			X	
B-3-30	20 V	<u> </u>	1450	1	5		/	1		\dashv						$\frac{1}{x}$	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

FORMS\COC\COC.	DOG
I OKNISICOCICOC.	שעע

CICNATUDE			<u> </u>	
SIGNATURE Relinquished by:	PRINT NAME	COMPANY	DATE	TIME
Received by:	AmyTile	Aspect	9/16/14	1530
Relinquished by:	8000	FEBZ	9-17-14	9:38
Received by:				
,		Samples receive	edat 4 o	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 6, 2014

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on September 16, 2014 from the Ken's Texaco 120061, F&BI 409267 project. There are 21 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

 $c: data@aspect consulting.com, \ Parker\ Wittman$

ASP1006R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 16, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 409267 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
409267 -01	MW-15-10
409267 -02	MW-15-12.5
409267 -03	MW-15-16
409267 -04	MW-15-29
409267 -05	MW-16-8
409267 -06	MW-16-14
409267 -07	MW-16-17.5
409267 -08	MW-16-30

Samples MW-15-12.5 and MW-16-14 were sent to Fremont for EPH/VPH and total organic carbon analyses. In addition, samples MW-15-12.5, MW-15-16, MW-16-14, MW-16-17.5 were sent to Fremont for iron analysis. The report generated by Fremont Analytical will be forwarded to your office upon receipt.

The 8260C direct sparge hexane concentrations reported in samples MW-16-14 and MW-16-17.5 exceeded the calibration range of the instrument. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

Date Extracted: 09/17/14 Date Analyzed: 09/17/14

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
MW-15-12.5 409267-02 1/10	66	96
MW-15-16 409267-03	<2	94
MW-16-14 409267-06 1/20	1,500	86
MW-16-17.5 409267-07 1/2	18	94
Method Blank 04-1845 MB	<2	93

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

Date Extracted: 09/18/14 Date Analyzed: 09/18/14

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-132)
MW-15-29 409267-04	<0.02	< 0.02	< 0.02	< 0.06	<2	92
MW-16-30 409267-08	<0.02	< 0.02	<0.02	<0.06	<2	92
Method Blank	<0.02	< 0.02	<0.02	<0.06	<2	88

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Date Received: 09/16/14 Project: Ken's Texaco 120061, F&BI 409267

Lab ID: Date Extracted: 09/17/14 409267-02 Date Analyzed: 09/17/14 Data File: 091713.D Matrix: Soil Instrument: GCMS7 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	50	150
Toluene-d8	117	50	150
4-Bromofluorobenzene	109	50	150

$\begin{array}{cc} & & Concentration \\ Compounds: & & mg/kg \ (ppm) \end{array}$

Hexane	< 0.025
Methyl t-butyl ether (MTBE)	< 0.005
1,2-Dibromoethane (EDB)	< 0.005
1,2-Dichloroethane (EDC)	< 0.005
Benzene	< 0.003
Toluene	< 0.005
Ethylbenzene	< 0.005
m,p-Xylene	< 0.01
o-Xylene	< 0.005
Naphthalene	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: MW-15-16 Client: Aspect Consulting,	Client Sample ID: 1	MW-15-16	Client:	Aspect Consulting, LLC
---	---------------------	----------	---------	------------------------

Date Received: 09/16/14 Project: Ken's Texaco 120061, F&BI 409267

Lab ID: Date Extracted: 09/17/14 409267-03 Data File: 091714.D Date Analyzed: 09/17/14 Matrix: Instrument: GCMS7 Soil Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 108 50 150 Toluene-d8 99 50 150 4-Bromofluorobenzene 97 50 150

 $\begin{array}{c} & & Concentration \\ Compounds: & mg/kg \ (ppm) \\ \\ Hexane & < 0.025 \end{array}$

Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene < 0.003 Toluene < 0.005 Ethylbenzene < 0.005 m,p-Xylene < 0.01 o-Xylene < 0.005 Naphthalene < 0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: MW-16-14 Client	nt: Aspect Consulting, LLC
-----------------------------------	----------------------------

Date Received: 09/16/14 Project: Ken's Texaco 120061, F&BI 409267

Lab ID: Date Extracted: 409267-06 09/17/14 Date Analyzed: 09/17/14 Data File: 091715.D Matrix: Soil Instrument: GCMS7 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	112	50	150
Toluene-d8	298 ip	50	150
4-Bromofluorobenzene	121	50	150

Concentration

Compounds:	mg/kg (ppm)
Hexane	1.3 ve
Methyl t-butyl ether (MTBE)	< 0.005
1,2-Dibromoethane (EDB)	< 0.005
1,2-Dichloroethane (EDC)	< 0.005
Benzene	< 0.003
Toluene	< 0.005
Ethylbenzene	0.040
m,p-Xylene	0.030
o-Xylene	< 0.005
Naphthalene	0.033

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: MW-16-17.5 Client:	Aspect Consulting, LLC
--------------------------------------	------------------------

Date Received: 09/16/14 Project: Ken's Texaco 120061, F&BI 409267

Lab ID: Date Extracted: 09/17/14 409267-07 Date Analyzed: 09/18/14 Data File: 091806.D Matrix: Soil Instrument: GCMS7 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	50	150
Toluene-d8	150 ip	50	150
4-Bromofluorobenzene	112	50	150

Compounds:	Concentration mg/kg (ppm)
Hexane	0.19 ve
Methyl t-butyl ether (MTBE)	< 0.005
1,2-Dibromoethane (EDB)	< 0.005
1,2-Dichloroethane (EDC)	< 0.005
Benzene	< 0.003
Toluene	< 0.005
Ethylbenzene	0.0055
m,p-Xylene	< 0.01
o-Xylene	< 0.005
Naphthalene	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409267

09/17/14 Lab ID: 04-1876 mb Date Extracted: 09/17/14 Data File: 091712.D Date Analyzed: Matrix: Soil Instrument: GCMS7 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	95	50	150

Concentration Compounds: mg/kg (ppm) Hexane < 0.025 Methyl t-butyl ether (MTBE) < 0.005 1,2-Dibromoethane (EDB) < 0.005 1,2-Dichloroethane (EDC) < 0.005 Benzene < 0.003 Toluene < 0.005 Ethylbenzene < 0.005 m,p-Xylene < 0.01 o-Xylene < 0.005 Naphthalene < 0.005

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

Date Extracted: 09/17/14 Date Analyzed: 09/17/14

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

			Surrogate
Sample ID	Diesel Range	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 53-144)
MW-15-12.5 409267-02	<50	<250	97
MW-15-16 409267-03	<50	<250	97
MW-16-14 409267-06	<50	<250	94
MW-16-17.5 409267-07	<50	<250	87
Method Blank 04-1881 MB	<50	<250	87

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-15-12.5 Client: Aspect Consulting, LLC

Date Received: 09/16/14 Project: Ken's Texaco 120061, F&BI 409267

 Date Extracted:
 09/18/14
 Lab ID:
 409267-02

 Date Analyzed:
 09/18/14
 Data File:
 409267-02.014

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	108	60	125
Indium	90	60	125
Holmium	100	60	125

Concentration
Analyte: mg/kg (ppm)

 Chromium
 6.94

 Nickel
 8.30

 Zinc
 34.7

 Cadmium
 <1</td>

 Lead
 4.19

 Manganese
 1,160

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-15-16 Client: Aspect Consulting, LLC

Date Received: 09/16/14 Project: Ken's Texaco 120061, F&BI 409267

Date Extracted:09/18/14Lab ID:409267-03Date Analyzed:09/18/14Data File:409267-03.015Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	102	60	125
Indium	91	60	125
Holmium	99	60	125

Concentration
Analyte: mg/kg (ppm)

 Chromium
 11.9

 Nickel
 12.0

 Zinc
 50.7

 Cadmium
 <1</td>

 Lead
 5.06

 Manganese
 292

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-16-14	Client:	Aspect Consulting, LLC
------------	----------	---------	------------------------

Date Received: 09/16/14 Project: Ken's Texaco 120061, F&BI 409267

 Date Extracted:
 09/18/14
 Lab ID:
 409267-06

 Date Analyzed:
 09/18/14
 Data File:
 409267-06.016

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	106	60	125
Indium	90	60	125
Holmium	98	60	125

	Concentration
Analyte:	mg/kg (ppm)

Chromium	8.74
Nickel	10.7
Zinc	37.7
Cadmium	<1
Lead	6.44
Manganese	1,040

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-16-17.5	Client:	Aspect Consulting, LLC
------------	------------	---------	------------------------

Date Received: 09/16/14 Project: Ken's Texaco 120061, F&BI 409267

Lab ID: Date Extracted: 09/18/14 409267-07 Date Analyzed: 09/18/14 Data File: 409267-07.017 Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	101	60	125
Indium	90	60	125
Holmium	99	60	125

	Concentration
Analyte:	mg/kg (ppm)

Chromium	11.7
Nickel	12.1
Zinc	37.2
Cadmium	<1
Lead	4.11
Manganese	302

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409267

Date Extracted:09/18/14Lab ID:I4-587 mbDate Analyzed:09/18/14Data File:I4-587 mb.008Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	91	60	125
Indium	89	60	125
Holmium	91	60	125

<1

Concentration
Analyte: mg/kg (ppm)

Chromium <1
Nickel <1
Zinc <5
Cadmium <1
Lead <1

Manganese

14

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 409267-03 (Duplicate)

Sample Result Result RPD

Analyte Reporting Units (Wet Wt) (Wet Wt) (Limit 20)

Gasoline mg/kg (ppm) <2 <2 nm

Laboratory Code: Laboratory Control Sample

Analyte Reporting Units Level LCS Criteria

Gasoline mg/kg (ppm) 20 95 71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 409267-03 (Duplicate)

			Duplicate	
	;	Sample Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

		Percent						
		Spike	Recovery	Acceptance				
Analyte	Reporting Units	Level	LCS	Criteria				
Benzene	mg/kg (ppm)	0.5	90	69-120				
Toluene	mg/kg (ppm)	0.5	91	70-117				
Ethylbenzene	mg/kg (ppm)	0.5	91	65-123				
Xylenes	mg/kg (ppm)	1.5	89	66-120				
Gasoline	mg/kg (ppm)	20	95	71-131				

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 409282-10 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet wt)	(Wet wt)	(Limit 20)
Hexane	mg/kg (ppm)	< 0.025	< 0.025	nm
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
Benzene	mg/kg (ppm)	< 0.003	< 0.003	nm
Toluene	mg/kg (ppm)	< 0.005	< 0.005	nm
Ethylbenzene	mg/kg (ppm)	< 0.005	< 0.005	nm
m,p-Xylene	mg/kg (ppm)	< 0.01	< 0.01	nm
o-Xylene	mg/kg (ppm)	< 0.005	< 0.005	nm
Naphthalene	mg/kg (ppm)	< 0.005	< 0.005	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	mg/kg (ppm)	0.05	109	106	70-130	3
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	0.05	101	107	70-130	6
1,2-Dibromoethane (EDB)	mg/kg (ppm)	0.05	97	98	70-130	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	104	107	70-130	3
Benzene	mg/kg (ppm)	0.05	96	98	70-130	2
Toluene	mg/kg (ppm)	0.05	93	93	70-130	0
Ethylbenzene	mg/kg (ppm)	0.05	98	99	70-130	1
m,p-Xylene	mg/kg (ppm)	0.1	98	100	70-130	2
o-Xylene	mg/kg (ppm)	0.05	100	102	70-130	2
Naphthalene	mg/kg (ppm)	0.05	95	104	70-130	9

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 409274-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (nnm)	5 000	<50	117	111	64-133	5

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5.000	114	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/16/14

Project: Ken's Texaco 120061, F&BI 409267

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 409287-01 (Matrix Spike)

•		-	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	10.7	92 b	89 b	57-128	3 b
Nickel	mg/kg (ppm)	25	12.8	93 b	85 b	69-112	9 b
Zinc	mg/kg (ppm)	50	113	115 b	127 b	55-129	10 b
Cadmium	mg/kg (ppm)	10	<1	106	105	83-116	1
Lead	mg/kg (ppm)	50	53.6	108 b	101 b	59-148	7 b
Manganese	mg/kg (ppm	20	106	88 b	117 b	15-180	28 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	99	78-121
Nickel	mg/kg (ppm)	25	99	82-122
Zinc	mg/kg (ppm)	50	103	81-120
Cadmium	mg/kg (ppm)	10	103	54-114
Lead	mg/kg (ppm)	50	109	80-120
Manganese	mg/kg (ppm)	20	112	72-125

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

409267	SAMPLE CHAIN OF CUSTODY	ME 09-16	-14 BI2/VS2
Send Report To First Longley Company Aspect	PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO.	PO# 2006	Page # of TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
Address 401 Zvid Ave S, Swife 201 City, State, ZIP Seattle, NA	REMARKS		SAMPLE DISPOSAL ☐ Dispose after 30 days
Phone # Fax #	frel additives: hexane, MTBE, EDB, EDC metals: lead, cadmirm, chromin iron, manganese	m, nickel, zinc,	☐ Return samples ☐ Will call with instructions
	Al	NALYSES REQUEST	ED
	21 st		

										ANA	ALY:	SES I	REQ	UEST	ED			T		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	addition	metais	EPH/VP14	701	AnoH			Notes	
MW-15-10	012-5	9/15/14	1030	Soil	5											X		V-	- Der K	 L
MW-15-12.5	02A.F		1045		6	X	X	Χ				X	X	X	X			1/60	7/14 (E	<u> </u>
MW-15-16	13 A.E		1100		5	Х	Χ	X				Χ	X							
MW.15-29	04 T		1110		5		V	V								X				
MW-16-8	05		1245		5											X				
MW-16-14	06 A.F		1300		.6	Х	X	X				X	X	X	X					
MW-16-17.5	OF A.E		1310		5	X	X	Χ				Χ	X							
MW-16-30	08 T		1320		5	1	V	V								X				
	_													Sai	nple	rec	eivec	at_	2	
										Ì										

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Amytice	ASpect	9/15/14	
Received by:	Dd v0	F8BI	9-16-14	14.0
Relinquished by:				
Received by:				

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 6, 2014

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S. Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on September 24, 2014 from the Ken's Texaco 120061, F&BI 409436 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP1006R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 24, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 409436 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
409436 -01	MW-10-092314
409436 -02	MW-13-092314
409436 -03	MW-14-092314
409436 -04	MW-15-092314
409436 -05	MW-16-092314
409436 -06	MW-50-092314

Samples MW-15-092314 and MW-16-092314 were sent to Fremont for alkalinity, chloride, sulfate, nitrate and nitrite analyses. Review of the enclosed report indicates that all quality assurance were acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

Date Extracted: 09/24/14 Date Analyzed: 09/25/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-10-092314 409436-01	<100	90
MW-13-092314 409436-02	<100	89
MW-14-092314 409436-03	<100	88
MW-15-092314 409436-04	<100	90
MW-16-092314 409436-05	2,400	93
Method Blank 04-1913 MB	<100	91

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

Date Extracted: 09/25/14 Date Analyzed: 09/26/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-10-092314 409436-01	<50	<250	97
MW-13-092314 409436-02	<50	<250	99
MW-14-092314 409436-03	<50	<250	99
MW-15-092314 409436-04	<50	<250	91
MW-16-092314 409436-05	670 x	<250	97
Method Blank 04-1958 MB	<50	<250	91

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-15-092314 Client: Aspect Consulting, LLC

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

 Date Extracted:
 10/01/14
 Lab ID:
 409436-04

 Date Analyzed:
 10/02/14
 Data File:
 409436-04.046

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 86 60 125 Holmium 94 60 125

Concentration

Analyte: ug/L (ppb)

 Lead
 <1</td>

 Manganese
 581

 Iron
 51.3

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-16-092314 Client: Aspect Consulting, LLC

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

 Date Extracted:
 10/01/14
 Lab ID:
 409436-05

 Date Analyzed:
 10/02/14
 Data File:
 409436-05.049

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 87 60 125 Holmium 97 60 125

Concentration

Analyte: ug/L (ppb)

Lead<1</th>Manganese2,450Iron132

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 409436

Date Extracted:10/01/14Lab ID:I4-616 mbDate Analyzed:10/02/14Data File:I4-616 mb.044Matrix:WaterInstrument:ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 88 60 125 Holmium 94 60 125

Concentration

Analyte: ug/L (ppb)

Lead<1</th>Manganese<1</td>Iron<50</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 09/25/14 409436-02 Date Analyzed: 09/25/14 Data File: 092508.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	97	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 409436-03 09/25/14 Date Analyzed: 09/25/14 Data File: 092509.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	100	76	126

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 09/25/14 409436-04 Date Analyzed: 09/25/14 Data File: 092510.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	98	76	126

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 409436-05 09/25/14 Date Analyzed: 09/25/14 Data File: 092511.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	102	93	107
4-Bromofluorobenzene	99	76	126

Compounder	Concentration	Compounds	Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	25
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	15
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	17
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	24
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	4.4
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	6.3
Trichloroethene	<1	sec-Butylbenzene	12
1,2-Dichloropropane	<1	p-Isopropyltoluene	3.7
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	29
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-50-092314 Client	nt: Aspect Consulting, LLC
---------------------------------------	----------------------------

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 409436-06 09/25/14 Date Analyzed: 09/25/14 Data File: 092512.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	101	93	107
4-Bromofluorobenzene	99	76	126

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Compounds.	ug/L (ppb)	Compounds.	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	25
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	15
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	17
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	24
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	4.5
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	6.6
Trichloroethene	<1	sec-Butylbenzene	12
1,2-Dichloropropane	<1	p-Isopropyltoluene	3.8
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	30
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409436

09/25/14 Lab ID: 04-1903 mb Date Extracted: Date Analyzed: 09/25/14 Data File: 092507.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	85	117
Toluene-d8	98	93	107
4-Bromofluorobenzene	98	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-15-092314 Client: Aspect Consulting, LLC

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

 Date Extracted:
 09/24/14
 Lab ID:
 409436-04

 Date Analyzed:
 09/24/14
 Data File:
 010F1001.D

Matrix: Water Instrument: GC8
Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-16-092314 Client: Aspect Consulting, LLC

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

 Date Extracted:
 09/24/14
 Lab ID:
 409436-05

 Date Analyzed:
 09/24/14
 Data File:
 011F1101.D

Matrix: Water Instrument: GC8
Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 300

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409436

Date Extracted: 09/24/14 Lab ID: 04-1897 mb
Date Analyzed: 09/24/14 Data File: 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 409405-05 (Duplicate)

-	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	ug/L (ppb)	1,000	99	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 409452-03 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	620	101	93	64-141	8

			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Diesel Extended	ug/L (ppb)	2.500	94	96	61-133	2	

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 409436-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	100	111	79-121	10
Manganese	ug/L (ppb)	20	581	0 b	131 b	47-155	200 b
Iron	ug/L (ppb)	100	51.3	100 b	112 b	50-150	11 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	102	83-115
Manganese	ug/L (ppb)	20	109	76-120
Iron	ug/L (ppb)	100	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 409450-42 (Matrix Spike)

•	-			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	80	55-144
Chloromethane	ug/L (ppb)	50	<10	77	67-131
Vinyl chloride Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	<0.2 <1	86 107	61-139 66-129
Chloroethane	ug/L (ppb) ug/L (ppb)	50	<1	95	68-126
Trichlorofluoromethane	ug/L (ppb)	50	<1	93	71-128
Acetone	ug/L (ppb)	250	<10	94	48-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	92	71-123
Methylene chloride	ug/L (ppb)	50	< 5	101	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	98	68-125
trans-1,2-Dichloroethene 1.1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	94 95	72-122 79-113
2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50	<1	102	58-132
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	73-119
Chloroform	ug/L (ppb)	50	<1	98	80-112
2-Butanone (MEK)	ug/L (ppb)	250	<10	96	69-123
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	93	78-113
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	99	79-116
1,1-Dichloropropene	ug/L (ppb)	50	<1	96	67-121
Carbon tetrachloride Benzene	ug/L (ppb)	50 50	<1 <0.35	98 93	72-123 79-109
Trichloroethene	ug/L (ppb) ug/L (ppb)	50 50	<0.35 <1	93 96	75-109 75-109
1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50	<1	96 96	80-111
Bromodichloromethane	ug/L (ppb)	50	<1	99	78-117
Dibromomethane	ug/L (ppb)	50	<1	98	80-112
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	111	79-123
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	102	76-120
Toluene	ug/L (ppb)	50	<1	99	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	105	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	103	81-111
2-Hexanone 1,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	250 50	<10 <1	102 100	75-126 81-111
Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50	<1	102	72-113
Dibromochloromethane	ug/L (ppb)	50	<1	108	69-129
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	104	83-114
Chlorobenzene	ug/L (ppb)	50	<1	100	75-115
Ethylbenzene	ug/L (ppb)	50	<1	103	71-120
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	106	78-122
m,p-Xylene	ug/L (ppb)	100	<2	107	63-128
o-Xylene Styrene	ug/L (ppb)	50 50	<1 <1	109 110	64-129 70-122
Isopropylbenzene	ug/L (ppb) ug/L (ppb)	50	<1	109	76-122 76-118
Bromoform	ug/L (ppb)	50	<1	108	49-138
n-Propylbenzene	ug/L (ppb)	50	<1	106	74-117
Bromobenzene	ug/L (ppb)	50	<1	103	70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	112	81-112
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	103	79-120
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	99	72-119
2-Chlorotoluene 4-Chlorotoluene	ug/L (ppb)	50 50	<1 <1	105 105	77-114 81-109
tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	50	<1	115	81-116
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	114	74-118
sec-Butylbenzene	ug/L (ppb)	50	<1	112	77-118
p-Isopropyltoluene	ug/L (ppb)	50	<1	113	64-132
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	103	81-111
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	100	78-110
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	102	81-111
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	111	69-129
1,2,4-Trichlorobenzene Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	108 97	74-115 67-120
Naphthalene	ug/L (ppb) ug/L (ppb)	50 50	<1	119	63-136
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	107	79-115
, ,	-0 - (FF-)				

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

· ·	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	103	105	54-149	2
Chloromethane	ug/L (ppb)	50 50	93 99	94 101	67-133 73-132	1 2
Vinyl chloride Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	117	115	69-123	2
Chloroethane	ug/L (ppb)	50	106	105	68-126	1
Trichlorofluoromethane	ug/L (ppb)	50	103	103	70-132	0
Acetone	ug/L (ppb)	250	104	104	44-145	0
1,1-Dichloroethene Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	98 106	99 106	75-119 63-132	1
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50 50	101	101	70-122	0
trans-1,2-Dichloroethene	ug/L (ppb)	50	98	98	76-118	0
1,1-Dichloroethane	ug/L (ppb)	50	99	99	80-116	0
2,2-Dichloropropane	ug/L (ppb)	50	104	104	62-141	0
cis-1,2-Dichloroethene Chloroform	ug/L (ppb)	50 50	103 102	103 102	81-111 81-109	0 0
2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	250	96	99	53-140	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	96	97	79-109	1
1,1,1-Trichloroethane	ug/L (ppb)	50	102	103	80-116	1
1,1-Dichloropropene	ug/L (ppb)	50	99	100	78-112	1
Carbon tetrachloride	ug/L (ppb)	50	102	104	72-128	2
Benzene Trichloroethene	ug/L (ppb) ug/L (ppb)	50 50	96 98	97 99	81-108 77-108	1 1
1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	99	99	82-109	0
Bromodichloromethane	ug/L (ppb)	50	103	105	76-120	2
Dibromomethane	ug/L (ppb)	50	102	102	80-110	0
4-Methyl-2-pentanone	ug/L (ppb)	250	110	109	59-142	1
cis-1,3-Dichloropropene	ug/L (ppb)	50	106	107	76-128	1
Toluene trans-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 50	99 106	99 107	83-108 76-128	0 1
1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	102	104	82-110	2
2-Hexanone	ug/L (ppb)	250	104	104	53-145	o 0
1,3-Dichloropropane	ug/L (ppb)	50	102	101	83-110	1
Tetrachloroethene	ug/L (ppb)	50	102	103	78-109	1
Dibromochloromethane	ug/L (ppb)	50	109	110	63-140	1
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	105 99	108 100	85-113 84-108	3 1
Ethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	103	103	84-110	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	107	107	76-125	0
m,p-Xylene	ug/L (ppb)	100	107	107	84-112	0
o-Xylene	ug/L (ppb)	50	108	109	82-113	1
Styrene Isopropylbenzene	ug/L (ppb) ug/L (ppb)	50 50	111 108	111 110	84-116 81-122	0 2
Bromoform	ug/L (ppb) ug/L (ppb)	50 50	109	111	40-161	2
n-Propylbenzene	ug/L (ppb)	50	103	105	81-115	2
Bromobenzene	ug/L (ppb)	50	100	102	80-113	2
1,3,5-Trimethylbenzene	ug/L (ppb)	50	111	111	83-117	0
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	101	102	79-118	1
1,2,3-Trichloropropane 2-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	98 103	99 103	74-116 79-112	1
4-Chlorotoluene	ug/L (ppb)	50 50	103	104	81-113	0
tert-Butylbenzene	ug/L (ppb)	50	110	113	81-119	3
1,2,4-Trimethylbenzene	ug/L (ppb)	50	111	112	83-116	1
sec-Butylbenzene	ug/L (ppb)	50	110	110	83-116	0
p-Isopropyltoluene 1,3-Dichlorobenzene	ug/L (ppb)	50 50	111 100	112 101	82-119 83-111	1 1
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	97	98	83-111 82-109	1
1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	100	101	83-111	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	109	110	62-133	1
1,2,4-Trichlorobenzene	ug/L (ppb)	50	104	104	77-117	0
Hexachlorobutadiene	ug/L (ppb)	50	96	97	74-118	1
Naphthalene 1.2.3-Trichlorobenzene	ug/L (ppb)	50 50	115 105	117 107	75-131 82-115	2 2
1,2,3-11 ICHIOI ODEHZEHE	ug/L (ppb)	อบ	100	107	0£-113	۵

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 409405-04 (Duplicate)

	Reporting Units S	Sample Result	Duplicate	Relative Percent Difference (Limit 20) 4		
Analyte	1 8	1	Result	(Limit 20)		
Methane	ug/L (ppb)	230	220	4		
Laboratory Code:	Laboratory Control S	Sample				

			Percent	Percent		
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)
Methane	ug/L (ppb)	500	66	65	50-150	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 409436

Lab ID: 1409268

October 01, 2014

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 9/24/2014 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Mal c. Fedy

Sincerely,

Mike Ridgeway President

Date: 10/01/2014

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 409436 **Lab Order:** 1409268

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1409268-001
 MW-15-092314
 09/23/2014 1:11 PM
 09/24/2014 11:44 AM

 1409268-002
 MW-16-092314
 09/23/2014 1:20 AM
 09/24/2014 11:44 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1409268**Date: **10/1/2014**

CLIENT: Friedman & Bruya

Project: 409436

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1409268**

Date Reported: 10/1/2014

CLIENT: Friedman & Bruya

Project: 409436

Lab ID: 1409268-001 **Collection Date:** 9/23/2014 1:11:00 PM

Client Sample ID: MW-15-092314 Matrix: Water

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA	Method 300.0		Bato	ch ID: R1	7009 Analyst: KT
Chloride	2.30	0.100	mg/L	1	9/24/2014 3:54:00 PM
Nitrite	ND	0.100	mg/L	1	9/24/2014 3:54:00 PM
Nitrate	ND	0.100	mg/L	1	9/24/2014 3:54:00 PM
Sulfate	2.08	0.300	mg/L	1	9/24/2014 3:54:00 PM
Total Alkalinity by SM 2320B			Bato	ch ID: R1	7041 Analyst: KT
Alkalinity, Total (As CaCO3)	70.0	5.00	mg/L	1	9/25/2014 4:41:00 PM
Ferrous Iron by SM3500-Fe B			Bato	ch ID: R1	6987 Analyst: KT
Ferrous Iron	ND	0.0300	mg/L	1	9/24/2014 1:05:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: **1409268**

Date Reported: 10/1/2014

CLIENT: Friedman & Bruya

Project: 409436

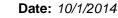
Client Sample ID: MW-16-092314 Matrix: Water

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA	Method 300.0		Bato	ch ID: R1	7009 Analyst: KT
Chloride	3.62	0.100	mg/L	1	9/24/2014 4:33:00 PM
Nitrite	ND	0.100	mg/L	1	9/24/2014 4:33:00 PM
Nitrate	ND	0.100	mg/L	1	9/24/2014 4:33:00 PM
Sulfate	0.944	0.300	mg/L	1	9/24/2014 4:33:00 PM
Total Alkalinity by SM 2320B			Bato	ch ID: R1	7041 Analyst: KT
Alkalinity, Total (As CaCO3)	118	5.00	mg/L	1	9/25/2014 4:44:00 PM
Ferrous Iron by SM3500-Fe B			Bato	ch ID: R1	6987 Analyst: KT
Ferrous Iron	ND	0.0300	mg/L	1	9/24/2014 1:05:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits


RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409268

Alkalinity, Total (As CaCO3)

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Alkalinity by SM 2320B

Project: 409436						lot	al Alkalinity by SM 2	320B
Sample ID: MB-R17041	SampType: MBLK			Units: mg/L		Prep Date: 9/25/2014	RunNo: 17041	
Client ID: MBLKW	Batch ID: R17041					Analysis Date: 9/25/2014	SeqNo: 341477	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, Total (As CaCO3)	ND	5.00						
Sample ID: LCS-R17041	SampType: LCS			Units: mg/L		Prep Date: 9/25/2014	RunNo: 17041	
Client ID: LCSW	Batch ID: R17041					Analysis Date: 9/25/2014	SeqNo: 341478	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, Total (As CaCO3)	100	5.00	100.0	0	100	80 120		
Sample ID: 1409268-002ADUP	SampType: DUP			Units: mg/L		Prep Date: 9/25/2014	RunNo: 17041	
Client ID: MW-16-092314	Batch ID: R17041					Analysis Date: 9/25/2014	SeqNo: 341491	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual

Qualifiers: B		Analyte detected in the associated Method Blank
---------------	--	---

H Holding times for preparation or analysis exceeded

115

5.00

S Spike recovery outside accepted recovery limits

117.5

2.15

20

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Date: 10/1/2014

Work Order: 1409268

QC SUMMARY REPORT

CLIENT: Friedman & Bruva

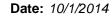
Project: 409436	вышуа							Ferr	ous Iron b	y SM350	0-Fe B
Sample ID: MB-R16987	SampType: MBLK			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: MBLKW	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0640	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	ND	0.0300									
Sample ID: LCS-R16987	SampType: LCS			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: LCSW	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0641	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.950	0.0300	1.000	0	95.0	90	110				
Sample ID: 1409268-001BDUP	SampType: DUP			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: MW-15-092314	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0644	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	ND	0.0300						0		20	
Sample ID: 1409268-001BMS	SampType: MS			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: MW-15-092314	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0645	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	1.00	0.0300	1.000	0	100	85	115				
Sample ID: 1409268-001BMSD	SampType: MSD			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: MW-15-092314	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0646	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	1.02	0.0300	1.000	0	102	85	115	1.000	1.98	20	

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Dilution was required D


Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409268

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project:	Friedman & 409436	Bruya						I	on Chr	omatograp	hy by EPA	A Method	300.0
Sample ID: I	MB-R17009	SampType	: MBLK			Units: mg/L		Prep Date:	9/24/201	14	RunNo: 170	009	
Client ID:	MBLKW	Batch ID:	R17009					Analysis Date:	9/24/201	14	SeqNo: 341	014	
Analyte		1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride			ND	0.100									
Nitrite			ND	0.100									
Nitrate			ND	0.100									
Sulfate			ND	0.300									
Sample ID:	LCS-R17009	SampType	LCS			Units: mg/L		Prep Date:	9/24/201	14	RunNo: 170	009	
			D.4=000						0/04/00/	14	Coallot 244	015	
Client ID:	LCSW	Batch ID:	R17009					Analysis Date:	9/24/201	1-7	SeqNo: 341	010	
Client ID: Analyte	LCSW		R17009 Result	RL	SPK value	SPK Ref Val	%REC	•		RPD Ref Val	%RPD	RPDLimit	Qual
	LCSW			RL 0.100	SPK value	SPK Ref Val		•			·		Qual
Analyte	LCSW		Result				%REC	LowLimit H	HighLimit		·		Qual
Analyte Chloride	LCSW		Result 2.90	0.100	3.000	0	%REC 96.8	LowLimit H	HighLimit		·		Qual
Analyte Chloride Nitrite	LCSW		2.90 2.79	0.100 0.100	3.000 3.000	0	%REC 96.8 92.9	LowLimit H	HighLimit 110 110		·		Qual
Analyte Chloride Nitrite Nitrate Sulfate	1409268-001ADUP		2.90 2.79 3.03 15.7	0.100 0.100 0.100	3.000 3.000 3.000	0 0 0	%REC 96.8 92.9 101	90 90 90 90	110 110 110 110 110	RPD Ref Val	·	RPDLimit	Qual

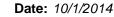
Sample ID: 1409268-001ADUP	e ID: 1409268-001ADUP SampType: DUP			Units: mg/L Prep Date: 9/24/2014					RunNo: 17009		
Client ID: MW-15-092314	Batch ID: R17009					Analysis Da	te: 9/24/20	14	SeqNo: 341	017	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	2.34	0.100						2.304	1.39	20	
Nitrite	ND	0.100						0		20	
Nitrate	ND	0.100						0		20	
Sulfate	2.10	0.300						2.082	0.894	20	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required


J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409268

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409436

Ion Chromatography by EPA Method 300.0

Sample ID: 1409268-001AMS Client ID: MW-15-092314	SampType: MS Batch ID: R17009			Units: mg/L		Prep Date: 9/24/2014 Analysis Date: 9/24/2014			RunNo: 17009 SeqNo: 341018		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	PD Ref Val	%RPD	RPDLimit	Qual
Chloride	5.23	0.100	3.000	2.304	97.5	80	120				
Nitrite	2.76	0.100	3.000	0	91.8	80	120				
Nitrate	3.07	0.100	3.000	0	102	80	120				
Sulfate	17.9	0.300	15.00	2.082	106	80	120				

Sample ID: 1409268-001AMSD	ample ID: 1409268-001AMSD SampType: MSD			Units: mg/L		Prep Da	te: 9/24/20	14	RunNo: 17009		
Client ID: MW-15-092314	Batch ID: R17009					Analysis Dat	e: 9/24/20	14	SeqNo: 341	019	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	5.26	0.100	3.000	2.304	98.6	80	120	5.229	0.649	20	
Nitrite	2.81	0.100	3.000	0	93.5	80	120	2.755	1.80	20	
Nitrate	3.08	0.100	3.000	0	103	80	120	3.075	0.302	20	
Sulfate	18.0	0.300	15.00	2.082	106	80	120	17.92	0.255	20	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Sample Log-In Check List

Client Name: FB	Work Order Numb	per: 1409268	
Logged by: Erica Silva	Date Received:	9/24/2014	11:44:00 AM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗹	No \square	Not Present
2. How was the sample delivered?	Client		
<u>Log In</u>			
3. Coolers are present?	Yes 🗸	No \square	NA 🗆
4. Shipping container/cooler in good condition?	Yes 🗸	No 🗆	
5. Custody seals intact on shipping container/cooler?	Yes	No \square	Not Required ✓
6. Was an attempt made to cool the samples?	Yes 🔽	No 🗆	NA \square
7. Were all coolers received at a temperature of >0°C to 10.0°C	Yes 🗹	No 🗌	na 🗆
8. Sample(s) in proper container(s)?	Yes 🗸	No \square	
9. Sufficient sample volume for indicated test(s)?	Yes 🗹	No \square	
10. Are samples properly preserved?	Yes 🗹	No \square	
11. Was preservative added to bottles?	Yes	No 🗹	NA 🗆
12. Is the headspace in the VOA vials?	Yes	No 🗆	NA 🗹
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌	
14. Does paperwork match bottle labels?	Yes 🗹	No \square	
15. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗆	
16. Is it clear what analyses were requested?	Yes 🗹	No \square	
17. Were all holding times able to be met?	Yes 🗹	No \square	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this order?	Yes	No \square	NA 🗹
Person Notified: Da By Whom: Via Regarding: Client Instructions:		one Fax	In Person
19. Additional remarks:			

10.

Item Information

Item #	Temp ⁰C	Condition		
Cooler	7.3	Good		
Sample	5.4	Good		

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

	L	2	0	20
1		U	1	W 0

Send Report To	Michae	l Erdahl		C	SUBCON	TRAC'	TER	Fre	mont	ļ .			lr	-	ge#	of /
		an and Bruya th Ave W	, Inc.		PROJEC	T NAM 1094				D-2	PO#			Standard (2 Weeks) RUSH Rush charges authorized by:		ed by:
City, State, ZIP			06) 283-5044		REMARI	CS Please I	Email l		s					Dispose Return	MPLE DISP after 30 day samples l with instru	S
Sample ID	Lab ID	Date Sampled	Time Sampled	Ma	trix #0		EPH	Cherick Light	VM-46/ Nitrate	Sulfate	Alkalinity	Diss Luck Forms Iron				Notes
MW-16-092314		9/23/14	1311	wat	c 3	1		X	×	х	X	_	_		_	
Mh-58-092314		1	1320		3			×	>	×	_	×				
Friedman & Bruya, 3012 16th Avenue V Seattle, WA 98119-2	Vest	Received by:	SIGNATURE	1		hael Er			Е		Frie	COM edman	IPAN & Bru		DATE V21/M	TIME
Ph. (206) 285-8282 Fax (206) 283-5044		Relinquished by Received by:	000	7		lare	91	199	5			100		1	9/24	1114

40943 <u>6</u> SA	MPLE CHAIN OF CUSTODY ME 99-2	14-14 1 14/ 504/
Send Report To KIVSI Longley Company Assect Consulting Address 401 2nd Ave S	PROJECT NAME/NO. PO# Kens Texaco 120061	Page # ofA TURNAROUND TIME □ Standard (2 Weeks) □ RUSH Rush charges authorized by
City, State, ZIP <u>Seattle</u> , WA 98104 Phone (206) 812 4746 Fax #	REMARKS	SAMPLE DISPOSAL ☐ Dispose after 30 days ☐ Return samples ☐ Will call with instructions
	ANALYSIS EQUESTI	

	• • • • • • • • • • • • • • • • • • • •		7.5							ANTA	TVC	S RE	<u> </u>	CORE				
	· · · · · ·	***		[· ·						ANA			QUE	SIEL	<u>, </u>	· ·		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	IFS	nithese/natries	Methane	7	y	Dissolved Fe	Desdad Ferris	Notes
MW-10-092314	016	9/23/14	1007	H20		X	×	4	ś.,									(8)-per KL
MW-10-092314 MW-13-092314	024		1215		\mathcal{B}			X	X					\Box	$\langle $			9/24/14
MN-14-092314	03H		1103		8			Χ	X					×				pt C
MW-15-092314	04 N		1433		14		\prod	X	X			X (&	06	20	3(1	X	$\widehat{\mathbf{X}}$	
MW-16-092314	050		1311		17		T	X	X			XX	()	X >	()X	(Ø	
MW -50-092314	96°C		1320	\	3	4			X		7	()	$\langle \cdot \rangle$	< ×			_	* canceled park
																		9/24/14 =<
				-									San	pp o s	rece	dve	d aq	3 · ·c
																		`

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Breean Zimmerman	Aspect Consulting	9/23/14	3:15 DN
Received by:	DS VO	FeBI	9-24-14	
Received by:				
Received by:				

FORMS\COC\COC.DOC

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 409267

Lab ID: 1409178

October 06, 2014

Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 9/17/2014 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Total Metals by EPA Method 6020 Total Organic Carbon by EPA Method 9060 Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malc. Rody

Sincerely,

Mike Ridgeway President

Date: 10/06/2014

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 409267 **Lab Order:** 1409178

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1409178-001	MW-15-12.5	09/15/2014 10:45 AM	09/17/2014 3:13 PM
1409178-002	MW-15-16	09/15/2014 11:00 AM	09/17/2014 3:13 PM
1409178-003	MW-16-14	09/15/2014 1:00 PM	09/17/2014 3:13 PM
1409178-004	MW-16-17.5	09/15/2014 1:10 PM	09/17/2014 3:13 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1409178**Date: **10/6/2014**

CLIENT: Friedman & Bruya

Project: 409267

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1409178**Date Reported: **10/6/2014**

Client: Friedman & Bruya Collection Date: 9/15/2014 10:45:00 AM

Project: 409267

Lab ID: 1409178-001 **Matrix:** Soil

Client Sample ID: MW-15-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydroca	rbons by NWE	PH		Batch	n ID: 8759	Analyst: EC
Aliphatic Hydrocarbon (C8-C10)	11.5	5.61		mg/Kg-dry	1	10/4/2014 6:41:00 PM
Aliphatic Hydrocarbon (C10-C12)	ND	5.61		mg/Kg-dry	1	10/4/2014 6:41:00 PM
Aliphatic Hydrocarbon (C12-C16)	ND	5.61		mg/Kg-dry	1	10/4/2014 6:41:00 PM
Aliphatic Hydrocarbon (C16-C21)	ND	5.61		mg/Kg-dry	1	10/4/2014 6:41:00 PM
Aliphatic Hydrocarbon (C21-C34)	10.5	5.61		mg/Kg-dry	1	10/4/2014 6:41:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	5.61		mg/Kg-dry	1	10/5/2014 7:02:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	5.61		mg/Kg-dry	1	10/5/2014 7:02:00 AM
Aromatic Hydrocarbon (C12-C16)	ND	5.61		mg/Kg-dry	1	10/5/2014 7:02:00 AM
Aromatic Hydrocarbon (C16-C21)	ND	5.61		mg/Kg-dry	1	10/5/2014 7:02:00 AM
Aromatic Hydrocarbon (C21-C34)	8.86	5.61	В	mg/Kg-dry	1	10/5/2014 7:02:00 AM
Surr: 1-Chlorooctadecane	94.1	65-140		%REC	1	10/4/2014 6:41:00 PM
Surr: o-Terphenyl	101	65-140		%REC	1	10/5/2014 7:02:00 AM
Volatile Petroleum Hydrocarbo	ns by NWVPH			Batch	n ID: 8761	Analyst: EM
Aliphatic Hydrocarbon (C5-C6)	ND	1.54		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Aliphatic Hydrocarbon (C6-C8)	15.9	1.54		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Aliphatic Hydrocarbon (C8-C10)	22.9	1.54		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Aliphatic Hydrocarbon (C10-C12)	26.3	15.4	D	mg/Kg-dry	10	9/25/2014 8:03:00 PM
Aromatic Hydrocarbon (C8-C10)	22.4	1.54		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Aromatic Hydrocarbon (C10-C12)	59.7	15.4	D	mg/Kg-dry	10	9/25/2014 8:03:00 PM
Aromatic Hydrocarbon (C12-C13)	19.8	1.54		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Benzene	ND	0.386		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Toluene	ND	0.386		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Ethylbenzene	ND	0.386		mg/Kg-dry	1	9/25/2014 7:40:00 AM
m,p-Xylene	ND	0.386		mg/Kg-dry	1	9/25/2014 7:40:00 AM
o-Xylene	ND	0.386		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Naphthalene	ND	0.386		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Methyl tert-butyl ether (MTBE)	ND	0.386		mg/Kg-dry	1	9/25/2014 7:40:00 AM
Surr: 1,4-Difluorobenzene	101	65-140		%REC	1	9/25/2014 7:40:00 AM
Surr: Bromofluorobenzene	113	65-140		%REC	1	9/25/2014 7:40:00 AM
Total Metals by EPA Method 60	<u>20</u>			Batch	n ID: 8775	Analyst: TN
Iron	35,300	5.03		mg/Kg-dry	1	9/22/2014 2:39:53 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: 1409178

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/15/2014 10:45:00 AM

Project: 409267

Lab ID: 1409178-001 **Matrix:** Soil

Client Sample ID: MW-15-12.5

Result Qual Units DF **Date Analyzed Analyses** RL **Sample Moisture (Percent Moisture)** Batch ID: R16889 Analyst: KZ Percent Moisture wt% 9/22/2014 9:11:43 AM 11.1 Batch ID: 8819 Analyst: KT Total Organic Carbon by EPA Method 9060 **Total Organic Carbon** 0.0500 ND %-dry 9/22/2014 12:43:51 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: **1409178**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/15/2014 11:00:00 AM

Project: 409267

Lab ID: 1409178-002 **Matrix:** Soil

Client Sample ID: MW-15-16

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020	<u>)</u>			Batc	h ID: 877	5 Analyst: TN
Iron	31,500	6.32		mg/Kg-dry	1	9/22/2014 3:03:52 PM
Sample Moisture (Percent Moistu	<u>ıre)</u>			Batc	h ID: R16	8889 Analyst: KZ
Percent Moisture	29.3			wt%	1	9/22/2014 9:11:43 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: **1409178**Date Reported: **10/6/2014**

Client: Friedman & Bruya Collection Date: 9/15/2014 1:00:00 PM

Project: 409267

Lab ID: 1409178-003 **Matrix:** Soil

Client Sample ID: MW-16-14

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydroca	rbons by NWE	<u>PH</u>		Batch	n ID: 8759	Analyst: EC
Aliphatic Hydrocarbon (C8-C10)	17.2	5.94		mg/Kg-dry	1	10/4/2014 7:25:00 PM
Aliphatic Hydrocarbon (C10-C12)	11.3	5.94		mg/Kg-dry	1	10/4/2014 7:25:00 PM
Aliphatic Hydrocarbon (C12-C16)	ND	5.94		mg/Kg-dry	1	10/4/2014 7:25:00 PM
Aliphatic Hydrocarbon (C16-C21)	ND	5.94		mg/Kg-dry	1	10/4/2014 7:25:00 PM
Aliphatic Hydrocarbon (C21-C34)	10.9	5.94		mg/Kg-dry	1	10/4/2014 7:25:00 PM
Aromatic Hydrocarbon (C8-C10)	6.24	5.94		mg/Kg-dry	1	10/5/2014 7:45:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	5.94		mg/Kg-dry	1	10/5/2014 7:45:00 AM
Aromatic Hydrocarbon (C12-C16)	6.90	5.94		mg/Kg-dry	1	10/5/2014 7:45:00 AM
Aromatic Hydrocarbon (C16-C21)	12.8	5.94		mg/Kg-dry	1	10/5/2014 7:45:00 AM
Aromatic Hydrocarbon (C21-C34)	22.0	5.94	В	mg/Kg-dry	1	10/5/2014 7:45:00 AM
Surr: 1-Chlorooctadecane	101	65-140		%REC	1	10/4/2014 7:25:00 PM
Surr: o-Terphenyl	97.9	65-140		%REC	1	10/5/2014 7:45:00 AM
/olatile Petroleum Hydrocarboi	ns by NWVPH			Batch	n ID: 8761	Analyst: EM
Aliphatic Hydrocarbon (C5-C6)	17.7	1.74		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Aliphatic Hydrocarbon (C6-C8)	46.1	17.4	D	mg/Kg-dry	10	9/29/2014 2:58:00 PM
Aliphatic Hydrocarbon (C8-C10)	18.2	1.74		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Aliphatic Hydrocarbon (C10-C12)	21.6	1.74		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Aromatic Hydrocarbon (C8-C10)	23.6	1.74		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Aromatic Hydrocarbon (C10-C12)	57.2	17.4	D	mg/Kg-dry	10	9/29/2014 2:58:00 PM
Aromatic Hydrocarbon (C12-C13)	15.3	1.74		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Benzene	ND	0.436		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Toluene	0.915	0.436		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Ethylbenzene	ND	0.436		mg/Kg-dry	1	9/25/2014 8:48:00 AM
m,p-Xylene	ND	0.436		mg/Kg-dry	1	9/25/2014 8:48:00 AM
o-Xylene	ND	0.436		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Naphthalene	ND	0.436		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Methyl tert-butyl ether (MTBE)	0.560	0.436		mg/Kg-dry	1	9/25/2014 8:48:00 AM
Surr: 1,4-Difluorobenzene	82.1	65-140		%REC	1	9/25/2014 8:48:00 AM
Surr: Bromofluorobenzene	108	65-140		%REC	1	9/25/2014 8:48:00 AM
Total Metals by EPA Method 60	<u>20</u>			Batch	n ID: 8775	Analyst: TN
Iron	37,400	5.39		mg/Kg-dry	1	9/22/2014 3:14:11 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409178**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/15/2014 1:00:00 PM

Project: 409267

Lab ID: 1409178-003 **Matrix:** Soil

Client Sample ID: MW-16-14

Result Qual Units DF **Date Analyzed Analyses** RL **Sample Moisture (Percent Moisture)** Batch ID: R16889 Analyst: KZ Percent Moisture wt% 9/22/2014 9:11:43 AM 18.4 Batch ID: 8819 Analyst: KT **Total Organic Carbon by EPA Method 9060 Total Organic Carbon** 0.0500 ND %-dry 9/22/2014 12:43:51 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409178**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/15/2014 1:10:00 PM

Project: 409267

Lab ID: 1409178-004 **Matrix:** Soil

Client Sample ID: MW-16-17.5

Result Qual Units DF **Date Analyzed Analyses** RL **Total Metals by EPA Method 6020** Batch ID: 8775 Analyst: TN Iron 27,600 4.82 mg/Kg-dry 9/22/2014 3:17:37 PM Batch ID: R16889 Analyst: KZ Sample Moisture (Percent Moisture) 9/22/2014 9:11:43 AM Percent Moisture 16.1 wt%

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Work Order: 1409178

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

CLIENT: Friedman & Project: 409267	Bruya					-	Total Or	ganic Carb	on by EP	A Method	d 9060
Sample ID: MB-8819	SampType: MBLK			Units: %-dry		Prep Date	9/22/201	4	RunNo: 169	924	
Client ID: MBLKS	Batch ID: 8819					Analysis Date	9/22/201	4	SeqNo: 339	9802	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.0500									
Sample ID: LCS-8819	SampType: LCS			Units: %-dry		Prep Date	9/22/201	4	RunNo: 169	924	
Client ID: LCSS	Batch ID: 8819					Analysis Date	9/22/201	4	SeqNo: 339	9803	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	0.645	0.0500	0.6510	0	99.1	41.1	157				
Sample ID: 1409178-001ADUP	SampType: DUP			Units: %-dry		Prep Date	9/22/201	4	RunNo: 169	924	
Client ID: MW-15-12.5	Batch ID: 8819					Analysis Date	9/22/201	4	SeqNo: 339	9810	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.0500						0		30	
Sample ID: 1409178-001AMS	SampType: MS			Units: %-dry		Prep Date	9/22/201	4	RunNo: 169	924	
Client ID: MW-15-12.5	Batch ID: 8819					Analysis Date	9/22/201	4	SeqNo: 339	9811	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	0.859	0.0500	1.000	0	85.9	50.2	118				
Sample ID: 1409178-001AMSD	SampType: MSD			Units: %-dry		Prep Date	9/22/201	4	RunNo: 169	924	
Client ID: MW-15-12.5	Batch ID: 8819					Analysis Date	9/22/201	4	SeqNo: 339	9812	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	0.841	0.0500	1.000	0	84.1	50.2	118	0.8586	2.04	20	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409178

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project: 409267	k Bruya							Total Me	tals by EP	A Method	d 602
Sample ID: MB-8775	SampType: MBLK			Units: mg/K	Kg	Prep Da	te: 9/19/20)14	RunNo: 169	909	
Client ID: MBLKS	Batch ID: 8775					Analysis Dat	te: 9/22/20)14	SeqNo: 339	9544	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron	ND	5.50									
Sample ID: LCS-8775	SampType: LCS			Units: mg/K	Σg	Prep Da	te: 9/19/2 0)14	RunNo: 169	909	
Client ID: LCSS	Batch ID: 8775					Analysis Da	te: 9/22/20)14	SeqNo: 339	9545	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron	5,260	5.50	5,180	0	102	10.2	220.1				
Sample ID: 1409178-001ADUP	SampType: DUP			Units: mg/K	(g-dry	Prep Da	te: 9/19/2 0	014	RunNo: 169	909	
Client ID: MW-15-12.5	Batch ID: 8775					Analysis Da	te: 9/22/20)14	SeqNo: 339	9547	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron	34,400	4.99						35,270	2.54	30	
Sample ID: 1409178-001AMS	SampType: MS			Units: mg/K	(g-dry	Prep Da	te: 9/19/2 0)14	RunNo: 169	909	
Client ID: MW-15-12.5	Batch ID: 8775					Analysis Da	te: 9/22/20)14	SeqNo: 339	9549	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron NOTES:	32,700	4.99	453.6	35,270	-565	75	125				S
S - Analyte concentration was too		overy.									
Sample ID: 1409178-001AMSD	SampType: MSD			Units: mg/K	(g-dry	·	te: 9/19/20		RunNo: 169		
Client ID: MW-15-12.5	Batch ID: 8775					Analysis Da			SeqNo: 339		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron	32,900	4.95	449.9	35,270	-530	75	125	32,700	0.556	30	S

Qualifiers: B Analyte detected in the associated Method Blank

.

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409178

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Metals by EPA Method 6020

Project: 409267 Sample ID: 1409178-001AMSD

Client ID: MW-15-12.5

SampType: MSD

Units: mg/Kg-dry

Prep Date: 9/19/2014

RunNo: 16909

RL

Analysis Date: 9/22/2014

SeqNo: 339550

Analyte

Batch ID: 8775

Result

SPK value SPK Ref Val

%REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit

Qual

NOTES:

S - Analyte concentration was too high for accurate spike recovery.

Sample ID: 1409178-001APDS

MW-15-12.5

SampType: PDS

Batch ID:

Units: mg/Kg-dry

Prep Date: 9/19/2014 Analysis Date: 9/22/2014

75

RunNo: 16909

SeqNo: 339551

Analyte

Iron

Client ID:

Result 76,800

8775

RL SPK value

5.03

SPK Ref Val 77,100

500

%REC -36.8

LowLimit HighLimit RPD Ref Val

125

%RPD

RPDLimit Qual

S

NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required D

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

ND Not detected at the Reporting Limit

R RPD outside accepted recovery limits

Work Order: 1409178

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Extractable Petroleum Hydrocarbons by NWEPH

S Spike recovery outside accepted recovery limits

Sample ID: 1409176-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 9/17/20	14	RunNo: 172	230	
Client ID: BATCH	Batch ID: 8759					Analysis Dat	te: 10/4/20	14	SeqNo: 344	1956	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C8-C10)	ND	5.51						0		30	
Aliphatic Hydrocarbon (C10-C12)	ND	5.51						0		30	
Aliphatic Hydrocarbon (C12-C16)	ND	5.51						0		30	
Aliphatic Hydrocarbon (C16-C21)	7.79	5.51						8.584	9.72	30	
Aliphatic Hydrocarbon (C21-C34)	46.8	5.51						42.99	8.49	30	
Surr: 1-Chlorooctadecane	4.38		4.407		99.3	65	140		0		
Sample ID: LCS-8759	SampType: LCS			Units: mg/K	g	Prep Dat	te: 9/17/20	14	RunNo: 172	230	
Client ID: LCSS	Batch ID: 8759					Analysis Dat	te: 10/4/20	14	SeqNo: 344	1959	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C8-C10)	19.1	5.00	20.00	0	95.4	70	130				
Aliphatic Hydrocarbon (C10-C12)	9.85	5.00	10.00	0	98.5	70	130				
Aliphatic Hydrocarbon (C12-C16)	9.44	5.00	10.00	0	94.4	70	130				
Aliphatic Hydrocarbon (C16-C21)	11.3	5.00	10.00	0	113	70	130				
Aliphatic Hydrocarbon (C21-C34)	10.4	5.00	10.00	0	104	70	130				
Surr: 1-Chlorooctadecane	3.71		4.000		92.7	65	140				
Sample ID: MB-8759	SampType: MBLK			Units: mg/K	g	Prep Dat	te: 9/17/20	14	RunNo: 172	230	
Client ID: MBLKS	Batch ID: 8759					Analysis Dat	te: 10/4/20	14	SeqNo: 344	1960	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C8-C10)	ND	5.00									
Aliphatic Hydrocarbon (C10-C12)	ND	5.00									
Aliphatic Hydrocarbon (C12-C16)	ND	5.00									
Aliphatic Hydrocarbon (C16-C21)	ND	5.00									
Aliphatic Hydrocarbon (C21-C34)	ND	5.00									
Surr: 1-Chlorooctadecane	4.03		4.000		101	65	140				

RL Reporting Limit

Work Order: 1409178

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Extractable Petroleum Hydrocarbons by NWEPH

Project: 409267

Sample ID: MB-8759 SampType: MBLK Units: mg/Kg Prep Date: 9/17/2014 RunNo: 17230

Client ID: MBLKS Batch ID: 8759 Analysis Date: 10/4/2014 SeqNo: 344960

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: 1409176-001ADUP	SampType: DUP			Prep Date: 9/17/2014		14	RunNo: 17230				
Client ID: BATCH	Batch ID: 8759					Analysis Da	e: 10/5/20	14	SeqNo: 344	1973	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	5.51						0		30	
Aromatic Hydrocarbon (C10-C12)	ND	5.51						0		30	
Aromatic Hydrocarbon (C12-C16)	ND	5.51						0		30	
Aromatic Hydrocarbon (C16-C21)	ND	5.51						0		30	
Aromatic Hydrocarbon (C21-C34)	82.0	5.51						82.01	0	30	В
Surr: o-Terphenyl	4.06		4.407		92.0	65	140		0		

Sample ID: LCS-8759	SampType: LCS		Units: mg/Kg			Prep Dat	e: 9/17/2014	RunNo: 17 2	230	
Client ID: LCSS	Batch ID: 8759					Analysis Dat	e: 10/5/2014	SeqNo: 344	1987	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	9.17	5.00	10.00	0	91.7	70	130			
Aromatic Hydrocarbon (C10-C12)	10.1	5.00	10.00	0	101	70	130			
Aromatic Hydrocarbon (C12-C16)	10.4	5.00	10.00	0	104	70	130			
Aromatic Hydrocarbon (C16-C21)	10.6	5.00	10.00	0	106	70	130			
Aromatic Hydrocarbon (C21-C34)	10.3	5.00	10.00	0	103	70	130			В
Surr: o-Terphenyl	3.94		4.000		98.6	65	140			

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Analytical

Date: 10/6/2014

Work Order: 1409178

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409267

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: MB-8759	SampType: MBLK		Units: mg/Kg Prep Date: 9/17/2014				14	RunNo: 17230			
Client ID: MBLKS	Batch ID: 8759					Analysis Date	e: 10/5/2 0	14	SeqNo: 344	1988	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	5.00									
Aromatic Hydrocarbon (C10-C12)	ND	5.00									
Aromatic Hydrocarbon (C12-C16)	ND	5.00									
Aromatic Hydrocarbon (C16-C21)	ND	5.00									
Aromatic Hydrocarbon (C21-C34)	17.3	5.00									
Surr: o-Terphenyl	3.71		4.000		92.8	65	140				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409178

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409267

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1409178-001BDUP	SampType	DUP			Units: mg/	Kg-dry	Prep Da	te: 9/17/2 0	014	RunNo: 17 1	100	
Client ID: MW-15-12.5	Batch ID:	8761					Analysis Da	te: 9/25/2 0	014	SeqNo: 342	2530	
Analyte	ı	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		ND	1.54		0	0			0		25	
Aliphatic Hydrocarbon (C6-C8)		17.1	1.54		0	0			15.92	7.05	25	
Aliphatic Hydrocarbon (C8-C10)		22.1	1.54		0	0			22.92	3.77	25	E
Aliphatic Hydrocarbon (C10-C12)		19.5	1.54		0	0			23.99	20.8	25	
Aromatic Hydrocarbon (C8-C10)		22.9	1.54		0	0			22.36	2.43	25	
Aromatic Hydrocarbon (C10-C12)		57.9	1.54		0	0			44.86	25.3	25	RE
Aromatic Hydrocarbon (C12-C13)		19.1	1.54		0	0			19.78	3.41	25	
Benzene		ND	0.386		0	0			0		25	
Toluene		ND	0.386		0	0			0		25	
Ethylbenzene		ND	0.386		0	0			0		25	
m,p-Xylene		ND	0.386		0	0			0		25	
o-Xylene		ND	0.386		0	0			0		25	
Naphthalene		ND	0.386		0	0			0		25	
Methyl tert-butyl ether (MTBE)		ND	0.386		0	0			0		25	
Surr: 1,4-Difluorobenzene		2.04		1.929		106	65	140		0		
Surr: Bromofluorobenzene		2.27		1.929		118	65	140		0		

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

R - High RPD. The method is in control as indicated by the laboratory control sample (LCS).

Sample ID: 1409179-001BMS	SampType: MS		Units: mg/Kg-dry F		Prep Date: 9/17/2014		14	RunNo: 17100			
Client ID: BATCH	Batch ID: 8761			Analysis Date			te: 9/25/20	14	SeqNo: 342	2534	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	23.3	1.78	26.77	0	87.2	70	130				
Aliphatic Hydrocarbon (C6-C8)	6.04	1.78	8.922	0	67.7	70	130				S
Aliphatic Hydrocarbon (C8-C10)	7.48	1.78	8.922	0	83.9	70	130				
Aliphatic Hydrocarbon (C10-C12)	9.37	1.78	8.922	0	105	70	130				
Aromatic Hydrocarbon (C8-C10)	25.9	1.78	35.69	0	72.5	70	130				

Qualifiers: Analyte detected in the associated Method Blank

Dilution was required Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Reporting Limit

Not detected at the Reporting Limit

Value above quantitation range

Work Order: 1409178

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409267

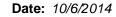
Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1409179-001BMS	SampType: MS			Units: mg/k	(g-dry	Prep Da	te: 9/17/20	14	RunNo: 17 1	100	
Client ID: BATCH	Batch ID: 8761					Analysis Da	te: 9/25/20	14	SeqNo: 342	2534	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	7.38	1.78	8.922	0	82.7	70	130				
Aromatic Hydrocarbon (C12-C13)	8.14	1.78	8.922	0	91.2	70	130				
Benzene	7.11	0.446	8.922	0	79.7	70	130				
Toluene	6.94	0.446	8.922	0	77.8	70	130				
Ethylbenzene	6.52	0.446	8.922	0	73.0	70	130				
m,p-Xylene	13.5	0.446	17.84	0	75.8	70	130				
o-Xylene	6.68	0.446	8.922	0	74.9	70	130				
Naphthalene	6.00	0.446	8.922	0	67.2	70	130				S
Methyl tert-butyl ether (MTBE)	7.87	0.446	8.922	0	88.2	70	130				
Surr: 1,4-Difluorobenzene	2.15		2.230		96.5	65	140				
Surr: Bromofluorobenzene	2.25		2.230		101	65	140				

NOTES:

S - Outlying QC recoveries were observed. The method is in control as indicated by the LCS.

Sample ID: LCS-8761	SampType: LCS	Units: mg/Kg			Prep Da	te: 9/17/2 0	14	RunNo: 17100			
Client ID: LCSS	Batch ID: 8761					Analysis Da	te: 9/25/20	14	SeqNo: 342	2542	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	29.8	2.00	30.00	0	99.3	70	130				
Aliphatic Hydrocarbon (C6-C8)	7.81	2.00	10.00	0	78.1	70	130				
Aliphatic Hydrocarbon (C8-C10)	10.2	2.00	10.00	0	102	70	130				
Aliphatic Hydrocarbon (C10-C12)	8.46	2.00	10.00	0	84.6	70	130				
Aromatic Hydrocarbon (C8-C10)	44.2	2.00	40.00	0	110	70	130				
Aromatic Hydrocarbon (C10-C12)	8.28	2.00	10.00	0	82.8	70	130				
Aromatic Hydrocarbon (C12-C13)	9.27	2.00	10.00	0	92.7	70	130				
Benzene	9.52	0.500	10.00	0	95.2	70	130				
Toluene	10.1	0.500	10.00	0	101	70	130				
Ethylbenzene	10.1	0.500	10.00	0	101	70	130				
m,p-Xylene	20.1	0.500	20.00	0	101	70	130				


Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
- J Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Work Order: 1409178

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409267

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: LCS-8761	SampType: LCS	Units: mg/Kg				Prep Date: 9/17/2014		14	RunNo: 17100		
Client ID: LCSS	Batch ID: 8761					Analysis Dat	te: 9/25/20	14	SeqNo: 342	2542	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	10.3	0.500	10.00	0	103	70	130				
Naphthalene	8.98	0.500	10.00	0	89.8	70	130				
Methyl tert-butyl ether (MTBE)	9.75	0.500	10.00	0	97.5	70	130				
Surr: 1,4-Difluorobenzene	2.53		2.500		101	65	140				
Surr: Bromofluorobenzene	2.69		2.500		107	65	140				

Sample ID: MB-8761	SampType: MBLK			Units: mg/Kg		Prep Date: 9/17/	2014	RunNo: 17 1	00	
Client ID: MBLKS	Batch ID: 8761					Analysis Date: 9/25/	2014	SeqNo: 342	2543	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLim	it RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	2.00		0	0					
Aliphatic Hydrocarbon (C6-C8)	ND	2.00		0	0					
Aliphatic Hydrocarbon (C8-C10)	ND	2.00		0	0					
Aliphatic Hydrocarbon (C10-C12)	ND	2.00		0	0					
Aromatic Hydrocarbon (C8-C10)	ND	2.00		0	0					
Aromatic Hydrocarbon (C10-C12)	ND	2.00		0	0					
Aromatic Hydrocarbon (C12-C13)	ND	2.00		0	0					
Benzene	ND	0.500		0	0					
Toluene	ND	0.500		0	0					
Ethylbenzene	ND	0.500		0	0					
m,p-Xylene	ND	0.500		0	0					
o-Xylene	ND	0.500		0	0					
Naphthalene	ND	0.500		0	0					
Methyl tert-butyl ether (MTBE)	ND	0.500		0	0					
Surr: 1,4-Difluorobenzene	2.45		2.500		97.9	65 14	0			
Surr: Bromofluorobenzene	2.45		2.500		98.1	65 14	0			

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Sample Log-In Check List

Chain of Custody 1. Is Chain of Custody complete? Yes ✓ No Not Present □ 2. How was the sample delivered? Courier Log In 3. Coolers are present? Yes ✓ No ✓ NA □ 3. Coolers are present? Yes ✓ No ✓ NA □ Samples received at appropriate temperature. 4. Shipping container/cooler in good condition? Yes ✓ No □ Not Required ✓ 5. Custody seals intact on shipping container/cooler? Yes ✓ No □ Not Required ✓ 6. Was an attempt made to cool the samples? Yes ✓ No □ NA □ 7. Were all coolers received at a temperature of >0°C to 10.0°C Yes ✓ No □ NA □ 8. Sample(s) in proper container(s)? Yes ✓ No □ No □ 9. Sufficient sample volume for indicated test(s)? Yes ✓ No □
1. Is Chain of Custody complete? 2. How was the sample delivered? Courier
2. How was the sample delivered? Courier Log In Coolers are present? Yes No No NA NA Samples received at appropriate temperature. Samples received at appropriate temperature. Simples received at appropriate temperature. No Not Required No Not Required No Not Required No Not Required No No Not Required No Not Required
3. Coolers are present? Yes No No NA Samples received at appropriate temperature. 4. Shipping container/cooler in good condition? 5. Custody seals intact on shipping container/cooler? Yes No No Not Required 6. Was an attempt made to cool the samples? Yes No No No Not Required 7. Were all coolers received at a temperature of >0°C to 10.0°C Yes No
3. Coolers are present? Yes No No NA Samples received at appropriate temperature. 4. Shipping container/cooler in good condition? Yes No No Not Required Not Required No Not Required Not Required No Not Required No Not Required No Not Required No N
3. Coolers are present? Yes No No NA Samples received at appropriate temperature. 4. Shipping container/cooler in good condition? Yes No No Not Required Not Required No Not Required Not Required No Not Required No Not Required No Not Required No N
4. Shipping container/cooler in good condition? 5. Custody seals intact on shipping container/cooler? Yes □ No □ Not Required □ No □ Not □ Not □
5. Custody seals intact on shipping container/cooler? Yes □ No □ Not Required ☑ No □ Not □
6. Was an attempt made to cool the samples? Yes ✓ No □ NA □ 7. Were all coolers received at a temperature of >0°C to 10.0°C Yes ✓ No □ NA □ 8. Sample(s) in proper container(s)? Yes ✓ No □
7. Were all coolers received at a temperature of >0°C to 10.0°C Yes ✓ No □ NA □ 8. Sample(s) in proper container(s)? Yes ✓ No □
8. Sample(s) in proper container(s)? Yes No
9 Sufficient sample volume for indicated test(s)? Yes ✓ No
O. Tamilian Tamilian II. Managada 1001(0).
10. Are samples properly preserved? Yes ✓ No □
11. Was preservative added to bottles? Yes ☐ No ☑ NA ☐
12. Is the headspace in the VOA vials? Yes □ No □ NA ☑
13. Did all samples containers arrive in good condition(unbroken)? Yes ✓ No □
14. Does paperwork match bottle labels? Yes ✓ No □
15. Are matrices correctly identified on Chain of Custody? Yes ✓ No □
16. Is it clear what analyses were requested? Yes ✓ No □
17. Were all holding times able to be met? Yes ✓ No □
Special Handling (if applicable)
18. Was client notified of all discrepancies with this order? Yes ☐ No ☐ NA ✔
Person Notified: Date:
By Whom: Via: eMail Phone Fax In Person
Regarding:
Client Instructions:
19. Additional remarks:

Item Information

Item #	Temp ⁰C	Condition
Sample	8.2	Good

140-1110

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER	_t	Page #of TURNAROUND TIME
PROJECT NAME/NO. 2	PO# D-208	Standard (2 Weeks) RUSH Rush charges authorized by:
REMARKS Please Email Results		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

	_													 PERSON AND PR	ii iiisti uctions
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins and Furans by 8290	ЕРН	VPH	Nitrate	Sulfate	Alkalinity	TOC	Iran		Notes
MW-15-12.5		9/15/14	1045	Soil	2		X	×				×	X		
MW-15-16		1	1100		1								×		
MW-16-14			1300		2		×	×				×	×		
MW-16-17.5		4	1310	1	1								×		W
															,

Friedman & Bruya, Inc. 3012 16th Avenue West

Send Report To Michael Erdahl

City, State, ZIP Seattle, WA 98119

Friedman and Bruya, Inc.

3012 16th Ave W

Phone #__(206) 285-8282 Fax #__(206) 283-5044

Company_

Address

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE /	PRINT NAME	COMPANY	DATE	TIME
Rollinguistiget A. C. C.	Michael Erdahl	Friedman & Bruya	9/17/14	9:45AM.
Received by:	Enica Silva	FAI	9/17/14	15:13
Received by:				¥2.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 409282

Lab ID: 1409179

October 06, 2014

Attention Michael Erdahl:

Fremont Analytical, Inc. received 9 sample(s) on 9/17/2014 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Total Metals by EPA Method 6020 Total Organic Carbon by EPA Method 9060 Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malc. Rody

Sincerely,

Mike Ridgeway President

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 409282 **Lab Order:** 1409179

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1409179-001	MW-14-12	09/15/2014 2:40 PM	09/17/2014 3:13 PM
1409179-002	MW-14-18	09/15/2014 2:50 PM	09/17/2014 3:13 PM
1409179-003	MW-13-14	09/16/2014 8:10 AM	09/17/2014 3:13 PM
1409179-004	B-1-12	09/16/2014 11:40 AM	09/17/2014 3:13 PM
1409179-005	B-1-18	09/16/2014 11:50 AM	09/17/2014 3:13 PM
1409179-006	B-2-9.5	09/16/2014 1:20 PM	09/17/2014 3:13 PM
1409179-007	B-2-13	09/16/2014 1:40 PM	09/17/2014 3:13 PM
1409179-008	B-3-14	09/16/2014 2:30 PM	09/17/2014 3:13 PM
1409179-009	B-3-11.5	09/16/2014 2:20 PM	09/17/2014 3:13 PM

Case Narrative

WO#: **1409179**Date: **10/6/2014**

CLIENT: Friedman & Bruya

Project: 409282

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1409179**Date Reported: **10/6/2014**

Client: Friedman & Bruya Collection Date: 9/15/2014 2:40:00 PM

Project: 409282

Lab ID: 1409179-001 **Matrix:** Soil

Client Sample ID: MW-14-12

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydroca	rbons by NWE	PH		Batch	n ID: 8759	Analyst: EC
Aliphatic Hydrocarbon (C8-C10)	ND	5.83		mg/Kg-dry	1	10/4/2014 8:08:00 PM
Aliphatic Hydrocarbon (C10-C12)	ND	5.83		mg/Kg-dry	1	10/4/2014 8:08:00 PM
Aliphatic Hydrocarbon (C12-C16)	ND	5.83		mg/Kg-dry	1	10/4/2014 8:08:00 PM
Aliphatic Hydrocarbon (C16-C21)	10.9	5.83		mg/Kg-dry	1	10/4/2014 8:08:00 PM
Aliphatic Hydrocarbon (C21-C34)	10.3	5.83		mg/Kg-dry	1	10/4/2014 8:08:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	5.83		mg/Kg-dry	1	10/5/2014 8:29:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	5.83		mg/Kg-dry	1	10/5/2014 8:29:00 AM
Aromatic Hydrocarbon (C12-C16)	ND	5.83		mg/Kg-dry	1	10/5/2014 8:29:00 AM
Aromatic Hydrocarbon (C16-C21)	14.4	5.83		mg/Kg-dry	1	10/5/2014 8:29:00 AM
Aromatic Hydrocarbon (C21-C34)	17.4	5.83	В	mg/Kg-dry	1	10/5/2014 8:29:00 AM
Surr: 1-Chlorooctadecane	95.8	65-140		%REC	1	10/4/2014 8:08:00 PM
Surr: o-Terphenyl	91.5	65-140		%REC	1	10/5/2014 8:29:00 AM
Volatile Petroleum Hydrocarbor	ns by NWVPH			Batch	n ID: 8761	Analyst: EM
Aliphatic Hydrocarbon (C5-C6)	ND	1.78		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Aliphatic Hydrocarbon (C6-C8)	ND	1.78		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Aliphatic Hydrocarbon (C8-C10)	ND	1.78		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Aliphatic Hydrocarbon (C10-C12)	ND	1.78		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Aromatic Hydrocarbon (C8-C10)	ND	1.78		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	1.78		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Aromatic Hydrocarbon (C12-C13)	ND	1.78		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Benzene	ND	0.446		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Toluene	ND	0.446		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Ethylbenzene	ND	0.446		mg/Kg-dry	1	9/25/2014 11:02:00 AM
m,p-Xylene	ND	0.446		mg/Kg-dry	1	9/25/2014 11:02:00 AM
o-Xylene	ND	0.446		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Naphthalene	ND	0.446		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Methyl tert-butyl ether (MTBE)	ND	0.446		mg/Kg-dry	1	9/25/2014 11:02:00 AM
Surr: 1,4-Difluorobenzene	98.1	65-140		%REC	1	9/25/2014 11:02:00 AM
Surr: Bromofluorobenzene	103	65-140		%REC	1	9/25/2014 11:02:00 AM
Total Metals by EPA Method 60	<u>20</u>			Batch	n ID: 8775	Analyst: TN
Iron	32,100	5.19		mg/Kg-dry	1	9/22/2014 3:21:02 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/15/2014 2:40:00 PM

Project: 409282

Lab ID: 1409179-001 **Matrix:** Soil

Client Sample ID: MW-14-12

Result Qual Units DF **Date Analyzed Analyses** RL **Sample Moisture (Percent Moisture)** Batch ID: R16889 Analyst: KZ Percent Moisture wt% 9/22/2014 9:11:43 AM 19.7 Batch ID: 8819 Analyst: KT **Total Organic Carbon by EPA Method 9060 Total Organic Carbon** 0.0500 ND %-dry 9/22/2014 12:43:51 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/15/2014 2:50:00 PM

Project: 409282

Lab ID: 1409179-002 **Matrix:** Soil

Client Sample ID: MW-14-18

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batc	h ID: 87	75 Analyst: TN
Iron	32,600	4.95		mg/Kg-dry	1	9/22/2014 3:24:28 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batc	h ID: R1	6889 Analyst: KZ
Percent Moisture	11.1			wt%	1	9/22/2014 9:11:43 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409179**Date Reported: **10/6/2014**

Client: Friedman & Bruya Collection Date: 9/16/2014 8:10:00 AM

Project: 409282

Lab ID: 1409179-003 **Matrix:** Soil

Client Sample ID: MW-13-14

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydroca	rbons by NWE	<u>PH</u>		Batch	n ID: 8759	Analyst: EC
Aliphatic Hydrocarbon (C8-C10)	ND	5.44		mg/Kg-dry	1	10/4/2014 8:52:00 PM
Aliphatic Hydrocarbon (C10-C12)	ND	5.44		mg/Kg-dry	1	10/4/2014 8:52:00 PM
Aliphatic Hydrocarbon (C12-C16)	ND	5.44		mg/Kg-dry	1	10/4/2014 8:52:00 PM
Aliphatic Hydrocarbon (C16-C21)	ND	5.44		mg/Kg-dry	1	10/4/2014 8:52:00 PM
Aliphatic Hydrocarbon (C21-C34)	10.6	5.44		mg/Kg-dry	1	10/4/2014 8:52:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	5.44		mg/Kg-dry	1	10/5/2014 9:13:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	5.44		mg/Kg-dry	1	10/5/2014 9:13:00 AM
Aromatic Hydrocarbon (C12-C16)	ND	5.44		mg/Kg-dry	1	10/5/2014 9:13:00 AM
Aromatic Hydrocarbon (C16-C21)	10.9	5.44		mg/Kg-dry	1	10/5/2014 9:13:00 AM
Aromatic Hydrocarbon (C21-C34)	17.5	5.44	В	mg/Kg-dry	1	10/5/2014 9:13:00 AM
Surr: 1-Chlorooctadecane	97.3	65-140		%REC	1	10/4/2014 8:52:00 PM
Surr: o-Terphenyl	91.6	65-140		%REC	1	10/5/2014 9:13:00 AM
/olatile Petroleum Hydrocarbo	ns by NWVPH			Batch	n ID: 8761	Analyst: EM
Aliphatic Hydrocarbon (C5-C6)	ND	1.63		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Aliphatic Hydrocarbon (C6-C8)	ND	1.63		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Aliphatic Hydrocarbon (C8-C10)	ND	1.63		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Aliphatic Hydrocarbon (C10-C12)	ND	1.63		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	1.63		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Aromatic Hydrocarbon (C10-C12)	ND	1.63		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Aromatic Hydrocarbon (C12-C13)	ND	1.63		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Benzene	ND	0.408		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Toluene	ND	0.408		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Ethylbenzene	ND	0.408		mg/Kg-dry	1	9/25/2014 1:17:00 PM
m,p-Xylene	ND	0.408		mg/Kg-dry	1	9/25/2014 1:17:00 PM
o-Xylene	ND	0.408		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Naphthalene	ND	0.408		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.408		mg/Kg-dry	1	9/25/2014 1:17:00 PM
Surr: 1,4-Difluorobenzene	97.9	65-140		%REC	1	9/25/2014 1:17:00 PM
Surr: Bromofluorobenzene	102	65-140		%REC	1	9/25/2014 1:17:00 PM
Total Metals by EPA Method 60	<u>20</u>			Batch	n ID: 8775	Analyst: TN
Iron	34,800	5.06		mg/Kg-dry	1	9/22/2014 3:27:54 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/16/2014 8:10:00 AM

Project: 409282

Lab ID: 1409179-003 **Matrix:** Soil

Client Sample ID: MW-13-14

Result Qual Units DF **Date Analyzed Analyses** RL **Sample Moisture (Percent Moisture)** Batch ID: R16889 Analyst: KZ Percent Moisture wt% 9/22/2014 9:11:43 AM 16.3 Batch ID: 8819 Analyst: KT Total Organic Carbon by EPA Method 9060 **Total Organic Carbon** 0.0500 ND %-dry 9/22/2014 12:43:51 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409179**Date Reported: **10/6/2014**

Client: Friedman & Bruya Collection Date: 9/16/2014 11:40:00 AM

Project: 409282

Lab ID: 1409179-004 **Matrix:** Soil

Client Sample ID: B-1-12

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydroca	rbons by NWE	<u>PH</u>		Batch	n ID: 8759	Analyst: EC
Aliphatic Hydrocarbon (C8-C10)	ND	5.70		mg/Kg-dry	1	10/4/2014 9:35:00 PM
Aliphatic Hydrocarbon (C10-C12)	ND	5.70		mg/Kg-dry	1	10/4/2014 9:35:00 PM
Aliphatic Hydrocarbon (C12-C16)	ND	5.70		mg/Kg-dry	1	10/4/2014 9:35:00 PM
Aliphatic Hydrocarbon (C16-C21)	ND	5.70		mg/Kg-dry	1	10/4/2014 9:35:00 PM
Aliphatic Hydrocarbon (C21-C34)	10.2	5.70		mg/Kg-dry	1	10/4/2014 9:35:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	5.70		mg/Kg-dry	1	10/5/2014 9:57:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	5.70		mg/Kg-dry	1	10/5/2014 9:57:00 AM
Aromatic Hydrocarbon (C12-C16)	ND	5.70		mg/Kg-dry	1	10/5/2014 9:57:00 AM
Aromatic Hydrocarbon (C16-C21)	11.1	5.70		mg/Kg-dry	1	10/5/2014 9:57:00 AM
Aromatic Hydrocarbon (C21-C34)	23.2	5.70	В	mg/Kg-dry	1	10/5/2014 9:57:00 AM
Surr: 1-Chlorooctadecane	93.2	65-140		%REC	1	10/4/2014 9:35:00 PM
Surr: o-Terphenyl	90.6	65-140		%REC	1	10/5/2014 9:57:00 AM
Volatile Petroleum Hydrocarbo	ns by NWVPH			Batch	n ID: 8761	Analyst: EM
Aliphatic Hydrocarbon (C5-C6)	ND	2.11		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Aliphatic Hydrocarbon (C6-C8)	ND	2.11		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Aliphatic Hydrocarbon (C8-C10)	ND	2.11		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Aliphatic Hydrocarbon (C10-C12)	ND	2.11		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	2.11		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Aromatic Hydrocarbon (C10-C12)	2.24	2.11		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Aromatic Hydrocarbon (C12-C13)	ND	2.11		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Benzene	ND	0.526		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Toluene	ND	0.526		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Ethylbenzene	ND	0.526		mg/Kg-dry	1	9/25/2014 1:51:00 PM
m,p-Xylene	ND	0.526		mg/Kg-dry	1	9/25/2014 1:51:00 PM
o-Xylene	ND	0.526		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Naphthalene	ND	0.526		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.526		mg/Kg-dry	1	9/25/2014 1:51:00 PM
Surr: 1,4-Difluorobenzene	91.6	65-140		%REC	1	9/25/2014 1:51:00 PM
Surr: Bromofluorobenzene	106	65-140		%REC	1	9/25/2014 1:51:00 PM
Total Metals by EPA Method 60	20			Batch	n ID: 8775	Analyst: TN
Iron	42,400	243	D	mg/Kg-dry	50	9/25/2014 5:01:38 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/16/2014 11:40:00 AM

Project: 409282

Lab ID: 1409179-004 **Matrix:** Soil

Client Sample ID: B-1-12

Result Qual Units DF **Date Analyzed Analyses** RL **Sample Moisture (Percent Moisture)** Batch ID: R16889 Analyst: KZ Percent Moisture wt% 9/22/2014 9:11:43 AM 14.1 Batch ID: 8819 Analyst: KT Total Organic Carbon by EPA Method 9060 **Total Organic Carbon** 0.0500 ND %-dry 9/22/2014 12:43:51 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/16/2014 11:50:00 AM

Project: 409282

Lab ID: 1409179-005 **Matrix:** Soil

Client Sample ID: B-1-18

Result Qual Units DF **Date Analyzed Analyses** RL **Total Metals by EPA Method 6020** Batch ID: 8775 Analyst: TN Iron 27,600 4.98 mg/Kg-dry 9/22/2014 3:34:45 PM Batch ID: R16889 Analyst: KZ Sample Moisture (Percent Moisture) 9/22/2014 9:11:43 AM Percent Moisture 11.7 wt%

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/16/2014 1:20:00 PM

Project: 409282

Lab ID: 1409179-006 **Matrix:** Soil

Client Sample ID: B-2-9.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020	<u>)</u>			Batc	h ID: 87	75 Analyst: TN
Iron	33,700	5.21		mg/Kg-dry	1	9/22/2014 3:38:10 PM
Sample Moisture (Percent Moistu	ıre)			Batc	h ID: R1	6889 Analyst: KZ
Percent Moisture	17.5			wt%	1	9/22/2014 9:11:43 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409179**Date Reported: **10/6/2014**

Client: Friedman & Bruya Collection Date: 9/16/2014 1:40:00 PM

Project: 409282

Lab ID: 1409179-007 **Matrix:** Soil

Client Sample ID: B-2-13

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydroca	rbons by NWEI	<u>PH</u>		Batch	n ID: 8759	Analyst: EC
Aliphatic Hydrocarbon (C8-C10)	ND	6.29		mg/Kg-dry	1	10/4/2014 10:18:00 PM
Aliphatic Hydrocarbon (C10-C12)	ND	6.29		mg/Kg-dry	1	10/4/2014 10:18:00 PM
Aliphatic Hydrocarbon (C12-C16)	ND	6.29		mg/Kg-dry	1	10/4/2014 10:18:00 PM
Aliphatic Hydrocarbon (C16-C21)	ND	6.29		mg/Kg-dry	1	10/4/2014 10:18:00 PM
Aliphatic Hydrocarbon (C21-C34)	11.7	6.29		mg/Kg-dry	1	10/4/2014 10:18:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	6.29		mg/Kg-dry	1	10/5/2014 10:40:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	6.29		mg/Kg-dry	1	10/5/2014 10:40:00 AM
Aromatic Hydrocarbon (C12-C16)	ND	6.29		mg/Kg-dry	1	10/5/2014 10:40:00 AM
Aromatic Hydrocarbon (C16-C21)	8.37	6.29		mg/Kg-dry	1	10/5/2014 10:40:00 AM
Aromatic Hydrocarbon (C21-C34)	16.9	6.29	В	mg/Kg-dry	1	10/5/2014 10:40:00 AM
Surr: 1-Chlorooctadecane	103	65-140		%REC	1	10/4/2014 10:18:00 PM
Surr: o-Terphenyl	95.5	65-140		%REC	1	10/5/2014 10:40:00 AM
Volatile Petroleum Hydrocarbo	ns by NWVPH			Batch	n ID: 8761	Analyst: EM
Aliphatic Hydrocarbon (C5-C6)	ND	1.92		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Aliphatic Hydrocarbon (C6-C8)	ND	1.92		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Aliphatic Hydrocarbon (C8-C10)	ND	1.92		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Aliphatic Hydrocarbon (C10-C12)	ND	1.92		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	1.92		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Aromatic Hydrocarbon (C10-C12)	ND	1.92		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Aromatic Hydrocarbon (C12-C13)	ND	1.92		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Benzene	ND	0.479		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Toluene	ND	0.479		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Ethylbenzene	ND	0.479		mg/Kg-dry	1	9/25/2014 2:25:00 PM
m,p-Xylene	ND	0.479		mg/Kg-dry	1	9/25/2014 2:25:00 PM
o-Xylene	ND	0.479		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Naphthalene	ND	0.479		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.479		mg/Kg-dry	1	9/25/2014 2:25:00 PM
Surr: 1,4-Difluorobenzene	96.0	65-140		%REC	1	9/25/2014 2:25:00 PM
Surr: Bromofluorobenzene	102	65-140		%REC	1	9/25/2014 2:25:00 PM
Total Metals by EPA Method 60	<u>20</u>			Batch	n ID: 8775	Analyst: TN
Iron	33,100	5.66		mg/Kg-dry	1	9/22/2014 3:41:36 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/16/2014 1:40:00 PM

Project: 409282

Lab ID: 1409179-007 **Matrix:** Soil

Client Sample ID: B-2-13

Result Qual Units DF **Date Analyzed Analyses** RL **Sample Moisture (Percent Moisture)** Batch ID: R16889 Analyst: KZ Percent Moisture 22.2 wt% 9/22/2014 9:11:43 AM Batch ID: 8819 Analyst: KT Total Organic Carbon by EPA Method 9060 **Total Organic Carbon** 0.0500 9/22/2014 12:43:51 PM ND %-dry

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/16/2014 2:30:00 PM

Project: 409282

Lab ID: 1409179-008 **Matrix:** Soil

Client Sample ID: B-3-14

Result Qual Units DF **Date Analyzed Analyses** RL **Total Metals by EPA Method 6020** Batch ID: 8775 Analyst: TN Iron 29,300 5.56 mg/Kg-dry 9/22/2014 3:45:01 PM Batch ID: R16889 Analyst: KZ Sample Moisture (Percent Moisture) 9/22/2014 9:11:43 AM Percent Moisture 22.1 wt%

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409179**Date Reported: **10/6/2014**

Client: Friedman & Bruya Collection Date: 9/16/2014 2:20:00 PM

Project: 409282

Lab ID: 1409179-009 **Matrix:** Soil

Client Sample ID: B-3-11.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydroca	rbons by NWE	<u>PH</u>		Batch	n ID: 8759	Analyst: EC
Aliphatic Hydrocarbon (C8-C10)	18.5	5.99		mg/Kg-dry	1	10/4/2014 11:02:00 PM
Aliphatic Hydrocarbon (C10-C12)	11.2	5.99		mg/Kg-dry	1	10/4/2014 11:02:00 PM
Aliphatic Hydrocarbon (C12-C16)	ND	5.99		mg/Kg-dry	1	10/4/2014 11:02:00 PM
Aliphatic Hydrocarbon (C16-C21)	ND	5.99		mg/Kg-dry	1	10/4/2014 11:02:00 PM
Aliphatic Hydrocarbon (C21-C34)	10.9	5.99		mg/Kg-dry	1	10/4/2014 11:02:00 PM
Aromatic Hydrocarbon (C8-C10)	7.80	5.99		mg/Kg-dry	1	10/5/2014 11:23:00 AM
Aromatic Hydrocarbon (C10-C12)	6.98	5.99		mg/Kg-dry	1	10/5/2014 11:23:00 AM
Aromatic Hydrocarbon (C12-C16)	ND	5.99		mg/Kg-dry	1	10/5/2014 11:23:00 AM
Aromatic Hydrocarbon (C16-C21)	7.01	5.99		mg/Kg-dry	1	10/5/2014 11:23:00 AM
Aromatic Hydrocarbon (C21-C34)	19.8	5.99	В	mg/Kg-dry	1	10/5/2014 11:23:00 AM
Surr: 1-Chlorooctadecane	92.5	65-140		%REC	1	10/4/2014 11:02:00 PM
Surr: o-Terphenyl	96.3	65-140		%REC	1	10/5/2014 11:23:00 AM
Volatile Petroleum Hydrocarbo	ns by NWVPH			Batch	n ID: 8761	Analyst: EM
Aliabatia I hydragarban (CE CC)	11.5	1.09		20 0 /l/ or dur.	1	9/25/2014 2:59:00 PM
Aliphatic Hydrocarbon (C5-C6) Aliphatic Hydrocarbon (C6-C8)	50.2	1.09	D	mg/Kg-dry mg/Kg-dry	1 10	9/25/2014 2:59:00 PM 9/25/2014 9:10:00 PM
Aliphatic Hydrocarbon (C8-C10)	21.5	10.9	D	mg/Kg-dry	10	9/25/2014 9:10:00 PM
Aliphatic Hydrocarbon (C10-C10)	21.5 41.1	10.9	D	mg/Kg-dry	10	9/25/2014 9:10:00 PM 9/25/2014 9:10:00 PM
Aromatic Hydrocarbon (C8-C10)	44.8	1.09	D	mg/Kg-dry	10	9/25/2014 9:10:00 PM 9/25/2014 2:59:00 PM
Aromatic Hydrocarbon (C10-C12)	122	10.9	D	mg/Kg-dry	10	9/25/2014 2:39:00 PM 9/25/2014 9:10:00 PM
Aromatic Hydrocarbon (C12-C13)			D	mg/Kg-dry		
Benzene	15.3 ND	1.09 0.273			1 1	9/25/2014 2:59:00 PM
Toluene	0.625	0.273		mg/Kg-dry	1	9/25/2014 2:59:00 PM
	6.92	0.273		mg/Kg-dry mg/Kg-dry	1	9/25/2014 2:59:00 PM
Ethylbenzene	5.25	0.273		mg/Kg-dry	1	9/25/2014 2:59:00 PM 9/25/2014 2:59:00 PM
m,p-Xylene o-Xylene	0.341	0.273		mg/Kg-dry	1	9/25/2014 2:59:00 PM
Naphthalene	1.61	0.273		mg/Kg-dry	1	9/25/2014 2:59:00 PM
•	ND	0.273		mg/Kg-dry	1	9/25/2014 2:59:00 PM
Methyl tert-butyl ether (MTBE) Surr: 1,4-Difluorobenzene	87.2	65-140		%REC	1	9/25/2014 2:59:00 PM
Surr: Bromofluorobenzene	93.6	65-140		%REC	1	9/25/2014 2:59:00 PM
Total Metals by EPA Method 60	<u>20</u>			Batch	n ID: 8775	Analyst: TN

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409179**

Date Reported: 10/6/2014

Client: Friedman & Bruya Collection Date: 9/16/2014 2:20:00 PM

Project: 409282

Lab ID: 1409179-009 **Matrix:** Soil

Client Sample ID: B-3-11.5

Result Qual Units DF **Date Analyzed Analyses** RL **Sample Moisture (Percent Moisture)** Batch ID: R16889 Analyst: KZ Percent Moisture wt% 9/22/2014 9:11:43 AM 18.7 Batch ID: 8819 Analyst: KT Total Organic Carbon by EPA Method 9060 **Total Organic Carbon** 0.0500 9/22/2014 12:43:51 PM ND %-dry

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Work Order: 1409179

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project: 409282							Total O	rganic Carl	oon by EP	A Metho	d 906
Sample ID: MB-8819	SampType: MBLK			Units: %-dry		Prep Da	te: 9/22/2 0)14	RunNo: 16 9	924	
Client ID: MBLKS	Batch ID: 8819					Analysis Da	te: 9/22/2 0)14	SeqNo: 339	9802	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.0500									
Sample ID: LCS-8819	SampType: LCS			Units: %-dry		Prep Da	te: 9/22/2 0)14	RunNo: 169	924	
Client ID: LCSS	Batch ID: 8819					Analysis Da	te: 9/22/20)14	SeqNo: 339	9803	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Total Organic Carbon	0.645	0.0500	0.6510	0	99.1	41.1	157				
Sample ID: 1409178-001ADUP	SampType: DUP			Units: %-dry		Prep Da	te: 9/22/2 0)14	RunNo: 169	924	
Client ID: BATCH	Batch ID: 8819					Analysis Da	te: 9/22/20)14	SeqNo: 339	9810	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Total Organic Carbon	ND	0.0500						0		30	
Sample ID: 1409178-001AMS	SampType: MS			Units: %-dry		Prep Da	te: 9/22/2 0)14	RunNo: 169	924	
Client ID: BATCH	Batch ID: 8819					Analysis Da	te: 9/22/20)14	SeqNo: 339	9811	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	0.859	0.0500	1.000	0	85.9	50.2	118				
Sample ID: 1409178-001AMSD	SampType: MSD			Units: %-dry		Prep Da	te: 9/22/2 0)14	RunNo: 169	924	
Client ID: BATCH	Batch ID: 8819					Analysis Da	te: 9/22/2 0)14	SeqNo: 339	9812	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Total Organic Carbon	0.841	0.0500	1.000	0	84.1	50.2	118	0.8586	2.04	20	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409179

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Metals by EPA Method 6020

409282 **Project:**

> Units: mg/Kg Prep Date: 9/19/2014

RunNo: 16909

Sample ID: MB-8775 SampType: MBLK Client ID: **MBLKS** Batch ID: 8775 Analysis Date: 9/22/2014 SeqNo: 339544

%RPD RPDLimit SPK value SPK Ref Val Result RL %REC LowLimit HighLimit RPD Ref Val Qual Analyte

ND 5.50 Iron

Units: mg/Kg Sample ID: LCS-8775 SampType: LCS Prep Date: 9/19/2014 RunNo: 16909 Client ID: LCSS Batch ID: 8775 Analysis Date: 9/22/2014 SeqNo: 339545 RL SPK value SPK Ref Val %RPD RPDLimit Result %REC LowLimit HighLimit RPD Ref Val Qual Analyte 5.260 0 102 10.2 220.1 Iron 5.50 5.180

Sample ID: 1409178-001ADUP SampType: **DUP** Units: mg/Kg-dry Prep Date: 9/19/2014 RunNo: 16909 Client ID: **BATCH** Batch ID: 8775 Analysis Date: 9/22/2014 SeqNo: 339547 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte

Iron 34,400 4.99 35.270 2.54 30

Sample ID: 1409178-001AMS SampType: MS Units: mg/Kg-dry Prep Date: 9/19/2014 RunNo: 16909 Client ID: BATCH Batch ID: 8775 Analysis Date: 9/22/2014 SeqNo: 339549 SPK value SPK Ref Val Analyte Result RI %RFC LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Qual

S Iron 32.700 4.99 453.6 35,270 -565 75 125

NOTES:

S - Analyte concentration was too high for accurate spike recovery.

Sample ID: 1409178-001AMSD Prep Date: 9/19/2014 RunNo: 16909 SampType: MSD Units: mg/Kg-dry Client ID: Analysis Date: 9/22/2014 **BATCH** Batch ID: 8775 SeqNo: 339550 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Qual Analyte 75 S Iron 32,900 4.95 449.9 35,270 -530 125 32,700 0.556 30

Qualifiers: Analyte detected in the associated Method Blank

RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits

Reporting Limit

Dilution was required

D

Value above quantitation range

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Qual

Work Order: 1409179

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409282

Total Metals by EPA Method 6020

Sample ID: 1409178-001AMSD SampType: MSD Units: mg/Kg-dry Prep Date: 9/19/2014 RunNo: 16909

Client ID: **BATCH** Batch ID: **8775** Analysis Date: **9/22/2014** SeqNo: **339550**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Project:

S - Analyte concentration was too high for accurate spike recovery.

Sample ID: 1409178-001APDS	SampType: PDS		Units: mg/Kg-dry			Prep Da	te: 9/19/20	14	RunNo: 169		
Client ID: BATCH	Batch ID: 8775					Analysis Da	te: 9/22/20	14	SeqNo: 339	9551	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron	35,100	5.03	457	35,300	-36.8	75	125				S

NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

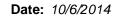
Sample ID: CCV-8775D	SampType: CCV			Units: µg/L Prep Date: 9/25/2014 R				RunNo: 16909			
Client ID: CCV	Batch ID: 8775				Analysis Date: 9/25/2014				SeqNo: 341		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron	1,570	55.0	1,500	0	105	90	110				

Sample ID: CCV-8775E	SampType: CCV			Units: µg/L		Prep Dat	te: 9/25/2014	RunNo: 16909	
Client ID: CCV	Batch ID: 8775					Analysis Dat	te: 9/25/2014	SeqNo: 341367	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Iron	1,560	55.0	1,500	0	104	90	110		

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

R RPD outside accepted recovery limits

Work Order: 1409179

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Extractable Petroleum Hydrocarbons by NWEPH

Spike recovery outside accepted recovery limits

Project: 409282						Extra	ictable P	etroleum F	lydrocarbo	ons by N	WEPH
Sample ID: 1409176-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 9/17/20	14	RunNo: 172	230	
Client ID: BATCH	Batch ID: 8759					Analysis Dat	te: 10/4/20	14	SeqNo: 34 4	1956	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	5.51						0		30	
Aliphatic Hydrocarbon (C10-C12)	ND	5.51						0		30	
Aliphatic Hydrocarbon (C12-C16)	ND	5.51						0		30	
Aliphatic Hydrocarbon (C16-C21)	7.79	5.51						8.584	9.72	30	
Aliphatic Hydrocarbon (C21-C34)	46.8	5.51						42.99	8.49	30	
Surr: 1-Chlorooctadecane	4.38		4.407		99.3	65	140		0		
Sample ID: LCS-8759	SampType: LCS			Units: mg/K	g	Prep Dat	te: 9/17/20	14	RunNo: 172	230	
Client ID: LCSS	Batch ID: 8759					Analysis Dat	te: 10/4/20	14	SeqNo: 344	1959	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	19.1	5.00	20.00	0	95.4	70	130				
Aliphatic Hydrocarbon (C10-C12)	9.85	5.00	10.00	0	98.5	70	130				
Aliphatic Hydrocarbon (C12-C16)	9.44	5.00	10.00	0	94.4	70	130				
Aliphatic Hydrocarbon (C16-C21)	11.3	5.00	10.00	0	113	70	130				
Aliphatic Hydrocarbon (C21-C34)	10.4	5.00	10.00	0	104	70	130				
Surr: 1-Chlorooctadecane	3.71		4.000		92.7	65	140				
Sample ID: MB-8759	SampType: MBLK			Units: mg/K	g	Prep Dat	te: 9/17/20	14	RunNo: 172	230	
Client ID: MBLKS	Batch ID: 8759			_	_	Analysis Dat	te: 10/4/20	14	SeqNo: 344	1960	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	5.00									
Aliphatic Hydrocarbon (C10-C12)	ND	5.00									
Aliphatic Hydrocarbon (C12-C16)	ND	5.00									
Aliphatic Hydrocarbon (C16-C21)	ND	5.00									
Aliphatic Hydrocarbon (C21-C34)	ND	5.00									
Surr: 1-Chlorooctadecane	4.03		4.000		101	65	140				
Qualifiers: B Analyte detected in	the associated Method Blank		D Dilution wa	as required			E Value	above quantitation ra	ange		
H Holding times for pro	eparation or analysis exceeded		J Analyte de	tected below quantitation	limits		ND Not d	etected at the Report	ing Limit		

Reporting Limit

Work Order: 1409179

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409282

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: MB-8759 SampType: MBLK Units: mg/Kg Prep Date: 9/17/2014 RunNo: 17230

Analysis Date: 10/4/2014 SeqNo: 344960

Client ID: **MBLKS** Batch ID: 8759 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte

Sample ID: 1409176-001ADUP	SampType: DUP			Units: mg/Kg-dry			Prep Date: 9/17/2014			RunNo: 17230		
Client ID: BATCH	Batch ID: 8759					Analysis Da	te: 10/5/20	14	SeqNo: 344	1973		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Aromatic Hydrocarbon (C8-C10)	ND	5.51						0		30		
Aromatic Hydrocarbon (C10-C12)	ND	5.51						0		30		
Aromatic Hydrocarbon (C12-C16)	ND	5.51						0		30		
Aromatic Hydrocarbon (C16-C21)	ND	5.51						0		30		
Aromatic Hydrocarbon (C21-C34)	82.0	5.51						82.01	0	30	В	
Surr: o-Terphenyl	4.06		4.407		92.0	65	140		0			

Sample ID: LCS-8759	SampType: LCS			Units: mg/Kg		Prep Dat	e: 9/17/2014	RunNo: 17 2	230	
Client ID: LCSS	Batch ID: 8759					Analysis Dat	e: 10/5/2014	SeqNo: 344	1987	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	9.17	5.00	10.00	0	91.7	70	130			
Aromatic Hydrocarbon (C10-C12)	10.1	5.00	10.00	0	101	70	130			
Aromatic Hydrocarbon (C12-C16)	10.4	5.00	10.00	0	104	70	130			
Aromatic Hydrocarbon (C16-C21)	10.6	5.00	10.00	0	106	70	130			
Aromatic Hydrocarbon (C21-C34)	10.3	5.00	10.00	0	103	70	130			В
Surr: o-Terphenyl	3.94		4.000		98.6	65	140			

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

Analytical

Date: 10/6/2014

Work Order: 1409179

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409282

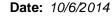
Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: MB-8759	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 9/17/2 0)14	RunNo: 17 2	230	
Client ID: MBLKS	Batch ID: 8759					Analysis Dat	e: 10/5/2 0)14	SeqNo: 344	1988	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	5.00									
Aromatic Hydrocarbon (C10-C12)	ND	5.00									
Aromatic Hydrocarbon (C12-C16)	ND	5.00									
Aromatic Hydrocarbon (C16-C21)	ND	5.00									
Aromatic Hydrocarbon (C21-C34)	17.3	5.00									
Surr: o-Terphenyl	3.71		4.000		92.8	65	140				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409179

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409282

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1409178-001BDUP	SampType	DUP			Units: mg/	Kg-dry	Prep Da	ite: 9/17/2 0	014	RunNo: 17100			
Client ID: BATCH	Batch ID:	8761					Analysis Da	te: 9/25/2 0	014	SeqNo: 342	2530		
Analyte	1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Aliphatic Hydrocarbon (C5-C6)		ND	1.54		0	0			0		25		
Aliphatic Hydrocarbon (C6-C8)		17.1	1.54		0	0			15.92	7.05	25		
Aliphatic Hydrocarbon (C8-C10)		22.1	1.54		0	0			22.92	3.77	25	E	
Aliphatic Hydrocarbon (C10-C12)		19.5	1.54		0	0			23.99	20.8	25		
Aromatic Hydrocarbon (C8-C10)		22.9	1.54		0	0			22.36	2.43	25		
Aromatic Hydrocarbon (C10-C12)		57.9	1.54		0	0			44.86	25.3	25	RE	
Aromatic Hydrocarbon (C12-C13)		19.1	1.54		0	0			19.78	3.41	25		
Benzene		ND	0.386		0	0			0		25		
Toluene		ND	0.386		0	0			0		25		
Ethylbenzene		ND	0.386		0	0			0		25		
m,p-Xylene		ND	0.386		0	0			0		25		
o-Xylene		ND	0.386		0	0			0		25		
Naphthalene		ND	0.386		0	0			0		25		
Methyl tert-butyl ether (MTBE)		ND	0.386		0	0			0		25		
Surr: 1,4-Difluorobenzene		2.04		1.929		106	65	140		0			
Surr: Bromofluorobenzene		2.27		1.929		118	65	140		0			

NOTES:

R - High RPD. The method is in control as indicated by the laboratory control sample (LCS).

Sample ID: 1409179-001BMS SampType: MS			Units: mg/Kg-dry		Prep Date: 9/17/2014			RunNo: 17			
Client ID: MW-14-12	Batch ID: 8761					Analysis Da	te: 9/25/20	14	SeqNo: 342	2534	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	23.3	1.78	26.77	0	87.2	70	130				
Aliphatic Hydrocarbon (C6-C8)	6.04	1.78	8.922	0	67.7	70	130				S
Aliphatic Hydrocarbon (C8-C10)	7.48	1.78	8.922	0	83.9	70	130				
Aliphatic Hydrocarbon (C10-C12)	9.37	1.78	8.922	0	105	70	130				
Aromatic Hydrocarbon (C8-C10)	25.9	1.78	35.69	0	72.5	70	130				
	20.0	0	00.00		72.0		100				

Qualifiers: Analyte detected in the associated Method Blank

Dilution was required

Analyte detected below quantitation limits Not detected at the Reporting Limit

RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

Reporting Limit

Spike recovery outside accepted recovery limits

Value above quantitation range

E - Estimated value. The amount exceeds the linear working range of the instrument.

Date: 10/6/2014

Work Order: 1409179

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409282

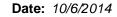
Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1409179-001BMS	SampType: MS			Units: mg/k	(g-dry	Prep Da	te: 9/17/2 0	14	RunNo: 17 1	100	
Client ID: MW-14-12	Batch ID: 8761					Analysis Da	te: 9/25/20	14	SeqNo: 342	2534	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	7.38	1.78	8.922	0	82.7	70	130				
Aromatic Hydrocarbon (C12-C13)	8.14	1.78	8.922	0	91.2	70	130				
Benzene	7.11	0.446	8.922	0	79.7	70	130				
Toluene	6.94	0.446	8.922	0	77.8	70	130				
Ethylbenzene	6.52	0.446	8.922	0	73.0	70	130				
m,p-Xylene	13.5	0.446	17.84	0	75.8	70	130				
o-Xylene	6.68	0.446	8.922	0	74.9	70	130				
Naphthalene	6.00	0.446	8.922	0	67.2	70	130				S
Methyl tert-butyl ether (MTBE)	7.87	0.446	8.922	0	88.2	70	130				
Surr: 1,4-Difluorobenzene	2.15		2.230		96.5	65	140				
Surr: Bromofluorobenzene	2.25		2.230		101	65	140				

NOTES:

S - Outlying QC recoveries were observed. The method is in control as indicated by the LCS.

Sample ID: LCS-8761	SampType: LCS			Units: mg/Kg	ı	Prep Da	ite: 9/17/20	14	RunNo: 17 ′	100	
Client ID: LCSS	Batch ID: 8761					Analysis Da	te: 9/25/20	14	SeqNo: 342542		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	29.8	2.00	30.00	0	99.3	70	130				
Aliphatic Hydrocarbon (C6-C8)	7.81	2.00	10.00	0	78.1	70	130				
Aliphatic Hydrocarbon (C8-C10)	10.2	2.00	10.00	0	102	70	130				
Aliphatic Hydrocarbon (C10-C12)	8.46	2.00	10.00	0	84.6	70	130				
Aromatic Hydrocarbon (C8-C10)	44.2	2.00	40.00	0	110	70	130				
Aromatic Hydrocarbon (C10-C12)	8.28	2.00	10.00	0	82.8	70	130				
Aromatic Hydrocarbon (C12-C13)	9.27	2.00	10.00	0	92.7	70	130				
Benzene	9.52	0.500	10.00	0	95.2	70	130				
Toluene	10.1	0.500	10.00	0	101	70	130				
Ethylbenzene	10.1	0.500	10.00	0	101	70	130				
m,p-Xylene	20.1	0.500	20.00	0	101	70	130				


Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
- J Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Work Order: 1409179

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409282

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: LCS-8761 SampType: LCS				Units: mg/Kg	Prep Da	te: 9/17/20	14	RunNo: 17 1			
Client ID: LCSS	Batch ID: 8761					Analysis Da	te: 9/25/20	14	SeqNo: 342	2542	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	10.3	0.500	10.00	0	103	70	130				
Naphthalene	8.98	0.500	10.00	0	89.8	70	130				
Methyl tert-butyl ether (MTBE)	9.75	0.500	10.00	0	97.5	70	130				
Surr: 1,4-Difluorobenzene	2.53		2.500		101	65	140				
Surr: Bromofluorobenzene	2.69		2.500		107	65	140				

Sample ID: MB-8761	SampType: MBLK		•	Units: mg/Kg		Prep Date: 9/17/2014		RunNo: 171	00	
Client ID: MBLKS	Batch ID: 8761					Analysis Date: 9/25	2014	SeqNo: 342	2543	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLim	it RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	2.00		0	0					
Aliphatic Hydrocarbon (C6-C8)	ND	2.00		0	0					
Aliphatic Hydrocarbon (C8-C10)	ND	2.00		0	0					
Aliphatic Hydrocarbon (C10-C12)	ND	2.00		0	0					
Aromatic Hydrocarbon (C8-C10)	ND	2.00		0	0					
Aromatic Hydrocarbon (C10-C12)	ND	2.00		0	0					
Aromatic Hydrocarbon (C12-C13)	ND	2.00		0	0					
Benzene	ND	0.500		0	0					
Toluene	ND	0.500		0	0					
Ethylbenzene	ND	0.500		0	0					
m,p-Xylene	ND	0.500		0	0					
o-Xylene	ND	0.500		0	0					
Naphthalene	ND	0.500		0	0					
Methyl tert-butyl ether (MTBE)	ND	0.500		0	0					
Surr: 1,4-Difluorobenzene	2.45		2.500		97.9	65 14	0			
Surr: Bromofluorobenzene	2.45		2.500		98.1	65 14	0			

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Sample Log-In Check List

Cli	ent Name:	FB	Work Order N	umber: 1409179		
Lo	gged by:	Erica Silva	Date Received	d: 9/17/2014	3:13:00 PM	
Cha	in of Custo	<u>ody</u>				
1.	Is Chain of Cເ	ustody complete?	Yes 🗹	No \square	Not Present	
2.	How was the s	sample delivered?	<u>Courier</u>			
Log	<u>In</u>					
3.	Coolers are pr	resent?	Yes	No 🗹	NA \square	
		Samples red	ceived at appr	oprite temperature	<u>.</u>	
4.	Shipping cont	ainer/cooler in good condition?	Yes 🗹	No \square		
5.	Custody seals	s intact on shipping container/cooler?	Yes	No \square	Not Required 🗹	
6.	Was an attem	npt made to cool the samples?	Yes 🗹	No 🗆	NA 🗆	
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes 🗹	No 🗌	NA 🗆	
8.	Sample(s) in բ	proper container(s)?	Yes 🗸	No 🗌		
9.	Sufficient sam	nple volume for indicated test(s)?	Yes 🗸	No 🗆		
10.	Are samples p	properly preserved?	Yes 🗸	No 🗌		
		tive added to bottles?	Yes	No 🗸	NA \square	
12	Is the headspa	ace in the VOA vials?	Yes	No 🗆	NA 🗹	
		es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗆		
		ork match bottle labels?	Yes 🗸	No \square		
15	Are matrices of	correctly identified on Chain of Custody?	Yes 🗸	No 🗆		
		t analyses were requested?	Yes 🗸	No 🗆		
		ing times able to be met?	Yes 🗸	No \square		
Spe	cial Handli	ing (if applicable)				
		tified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
	Person N	Notified: Date:				
	By Whor		l ⊟ eMail □	Phone Fax	In Person	
	Regardir		Oividii]o.io		
	-	structions:				
19.	Additional rem	,				

Item Information

Item #	Temp ⁰C	Condition
Sample	8.2	Good

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To	Michael Erdahl			SU	BCONT	TRACT	ER	Frem	tnont				7	Page # of TURNAROUND TIME		
Company	Friedman and Bruya, Inc. 3012 16th Ave W				PROJECT NAME/NO. 2 PO# 409282 D-208						Standard (2 Weeks) RUSH Rush charges authorized by:					
City, State, ZIP_Seattle, WA 98119 Phone #_(206) 285-8282 Fax #_(206) 283-5044			RE	REMARKS Please Email Results						1 0	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions					
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins and Furans by 8290	ЕРН	ИРН	Nitrate	Sulfate	Alkalinity	Lon	Toc			Notes
MW-14-12		9/15/14	1440	Soil	2		×	×				×	×			
MW-14-18		4	1450		ı							X				
MW-13-14		9/16/14	0310		2		×	×				×	×			
B-1-12		9/16/14	1140		2		Y	×				×	×			
B-1-18			1150		1							×				
B-2-9.5			1320		-							×				
B-2-13			1340		2		X	×					×			
B-3-14			1430		(×				
B-3-11.5		4	1420	1	Z		×	×				×	×			
Friedman & Bruya	, Inc.		SIGNATURE			P	RINT	NAMI	E			CO	MPAN	JY		DATE TIM

3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquishedby	Michael Erdahl	Friedman & Bruya	9/17/14	11:23
Received by:	Erica Silva	FAI	9/17/14	15:13
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 15, 2014

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included is the amended report from the testing of material submitted on September 23, 2014 from the Ken's Texaco 120061, F&BI 409405 project. Per your request, BTEX was added to the gasoline results.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

 $c: data@aspect consulting.com, Parker\ Wittman$

ASP1003R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 3, 2014

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S. Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on September 23, 2014 from the Ken's Texaco 120061, F&BI 409405 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP1003R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 23, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 409405 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
409405 -01	MW-1-092214
409405 -02	MW-7-092214
409405 -03	MW-8-092214
409405 -04	MW-11-092214
409405 -05	MW-12-092214

Samples MW-11-092214 and MW-12-092214 were sent to Fremont for alkalinity, chloride, sulfate, nitrate and nitrite analyses. Review of the enclosed report indicates that all quality assurance were acceptable

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

Date Extracted: 09/24/14 Date Analyzed: 09/24/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-1-092214 409405-01	<1	16	7.6	20	2,700	122
MW-7-092214 409405-02	2.2	<1	3.6	11	890	100
MW-8-092214 409405-03	36	14	63	44	920	95
MW-11-092214 409405-04	34	8.2	41	38	1,300	97
MW-12-092214 409405-05	<1	<1	<1	<3	<100	82
Method Blank 04-1913 MB	<1	<1	<1	<3	<100	86

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

Date Extracted: 09/24/14 Date Analyzed: 09/24/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 51-134)
MW-1-092214 409405-01	560 х	<250	104
MW-7-092214 409405-02	250 x	<250	101
MW-8-092214 409405-03	170 x	<250	99
MW-11-092214 409405-04	260 x	<250	97
MW-12-092214 409405-05	<50	<250	96
Method Blank 04-1938 MB2	<50	<250	101

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-11-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/23/14
 Lab ID:
 409405-04

 Date Analyzed:
 09/23/14
 Data File:
 409405-04.051

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 93 60 125 Holmium 89 60 125

Concentration

Analyte: ug/L (ppb)

 Lead
 <1</td>

 Manganese
 8,690

 Iron
 3,120 ve

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-11-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

Date Extracted: 09/23/14 Lab ID: 409405-04 x10
Date Analyzed: 09/23/14 Data File: 409405-04 x10.053

Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 95 60 125 Holmium 95 60 125

Concentration

Analyte: ug/L (ppb)

 Lead
 <10</td>

 Manganese
 7,920

 Iron
 3,060

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-12-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/23/14
 Lab ID:
 409405-05

 Date Analyzed:
 09/23/14
 Data File:
 409405-05.052

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 95 60 125 Holmium 94 60 125

Concentration

Analyte: ug/L (ppb)

Lead<1</th>Manganese46.3Iron136

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 409405

Date Extracted: 09/23/14 Lab ID: I4-596 mb
Date Analyzed: 09/23/14 Data File: I4-596 mb.028
Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 96 60 125 Holmium 96 60 125

Concentration

Analyte: ug/L (ppb)

Lead<1</th>Manganese<1</td>Iron<50</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

Lab ID: Date Extracted: 09/23/14 409405-04 09/24/14 Data File: 092341.D Date Analyzed: Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 101 57 121 Toluene-d8 100 63 127 4-Bromofluorobenzene 99 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-12-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

Lab ID: Date Extracted: 09/23/14 409405-05 09/24/14 Data File: 092342.D Date Analyzed: Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 102 57 121 Toluene-d8 102 63 127 4-Bromofluorobenzene 60 102 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409405

Lab ID: Date Extracted: 09/23/14 04-1896 mb 09/23/14 Data File: 092325.D Date Analyzed: Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 104 57 121 Toluene-d8 103 63 127 4-Bromofluorobenzene 60 104 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-11-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/24/14
 Lab ID:
 409405-04

 Date Analyzed:
 09/24/14
 Data File:
 006F0601.D

Matrix: Water Instrument: GC8
Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 230

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-12-092214 Client: Aspect Consulting, LLC

Date Received: 09/23/14 Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/24/14
 Lab ID:
 409405-05

 Date Analyzed:
 09/24/14
 Data File:
 008F0801.D

Matrix: Water Instrument: GC8
Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409405

 Date Extracted:
 09/24/14
 Lab ID:
 04-1897 mb

 Date Analyzed:
 09/24/14
 Data File:
 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 409405-05 (Duplicate)

	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	88	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	93	73-126
Xylenes	ug/L (ppb)	150	92	74-118
Gasoline	ug/L (ppb)	1,000	99	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	111	108	63-142	3

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 409353-03 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	103	103	79-121	0
Manganese	ug/L (ppb)	20	1,480	255 b	333 b	47-155	27 b
Iron	ug/L (ppb)	100	235	116 b	113 b	50-150	3 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	103	83-115
Manganese	ug/L (ppb)	20	108	76-120
Iron	ug/L (ppb)	100	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Project: Ken's Texaco 120061, F&BI 409405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 409405-04 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	102	69-133

· ·	_		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	102	104	73-132	2

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/14 Date Received: 09/23/14

Analyte

Methane

Project: Ken's Texaco 120061, F&BI 409405

ug/L (ppb)

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 409405-04 (Duplicate)

Analyte	Reporting Units	Sample Res		plicate esult	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	230	2	220	4	
Laboratory Code	e: Laboratory Control	Sample				
	Reporting Units		Percent Recovery	Percent Recovery	Acceptance	RPD

LCS

66

LCSD

65

Criteria

50-150

(Limit 20)

2

Level

500

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 409405

Lab ID: 1409245

September 30, 2014

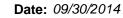
Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 9/23/2014 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malc. Ray

Sincerely,

Mike Ridgeway President

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 409405 **Lab Order:** 1409245

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1409245-001
 MW-11-092214
 09/22/2014 1:27 PM
 09/23/2014 11:48 AM

 1409245-002
 MW-12-092214
 09/22/2014 2:29 PM
 09/23/2014 11:48 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1409245**Date: **9/30/2014**

CLIENT: Friedman & Bruya

Project: 409405

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Analytical Report

WO#: **1409245**

Date Reported: 9/30/2014

Client: Friedman & Bruya Collection Date: 9/22/2014 1:27:00 PM

Project: 409405

Lab ID: 1409245-001 **Matrix:** Water

Client Sample ID: MW-11-092214

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA M	ethod 300.0			Bate	ch ID: R1	6959 Analyst: KT
Chloride	18.7	0.500	D	mg/L	5	9/23/2014 4:29:00 PM
Nitrite	ND	0.100		mg/L	1	9/23/2014 3:30:00 PM
Nitrate	0.426	0.100		mg/L	1	9/23/2014 3:30:00 PM
Sulfate	5.36	0.300		mg/L	1	9/23/2014 3:30:00 PM
Total Alkalinity by SM 2320B				Bate	ch ID: R1	7115 Analyst: KT
Alkalinity, Total (As CaCO3)	372	5.00		mg/L	1	9/30/2014 12:25:00 PM
Ferrous Iron by SM3500-Fe B				Bate	ch ID: R1	6929 Analyst: KT
Ferrous Iron	1.52	0.0300		mg/L	1	9/23/2014 1:22:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Analytical Report

WO#: **1409245**

Date Reported: 9/30/2014

Client: Friedman & Bruya Collection Date: 9/22/2014 2:29:00 PM

Project: 409405

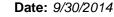
Lab ID: 1409245-002 **Matrix:** Water

Client Sample ID: MW-12-092214

Analyses	Result	RL	Qual	Units	DF	Dat	te Analyzed	
Ion Chromatography by EPA I	Method 300.0			Bato	ch ID: R	16959	Analyst: KT	
Chloride	6.23	0.200	D	mg/L	2	9/23/2	2014 4:39:00 PM	
Nitrite	ND	0.100		mg/L	1	9/23/2	2014 3:40:00 PM	
Nitrate	0.489	0.100		mg/L	1	9/23/2	2014 3:40:00 PM	
Sulfate	3.66	0.300		mg/L	1	9/23/2	2014 3:40:00 PM	
Total Alkalinity by SM 2320B				Bato	ch ID: R	17115	Analyst: KT	
Alkalinity, Total (As CaCO3)	133	5.00		mg/L	1	9/30/2	2014 12:35:00 PM	
Ferrous Iron by SM3500-Fe B				Bato	ch ID: R	16929	Analyst: KT	
Ferrous Iron	ND	0.0300		mg/L	1	9/23/2	2014 1:23:00 PM	

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range


J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Work Order: 1409245

Friedman & Bruya

Project: 409405

CLIENT:

QC SUMMARY REPORT

Total Alkalinity by SM 2320B

Project: 409405						· · · · · · · · · · · · · · · · · · ·
Sample ID: MB-R17115	SampType: MBLK		Units: mg/	L	Prep Date: 9/30/2014	RunNo: 17115
Client ID: MBLKW	Batch ID: R17115				Analysis Date: 9/30/2014	SeqNo: 342771
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	f Val %RPD RPDLimit Qua
Alkalinity, Total (As CaCO3)	ND	5.00				
Sample ID: LCS-R17115	SampType: LCS		Units: mg/	L	Prep Date: 9/30/2014	RunNo: 17115
Client ID: LCSW	Batch ID: R17115				Analysis Date: 9/30/2014	SeqNo: 342772
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	f Val %RPD RPDLimit Qua
Alkalinity, Total (As CaCO3)	95.0	5.00	100.0 0	95.0	80 120	
Sample ID: 1409245-001BDUP	SampType: DUP		Units: mg/	L.	Prep Date: 9/30/2014	RunNo: 17115
Client ID: MW-11-092214	Batch ID: R17115				Analysis Date: 9/30/2014	SeqNo: 342774
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	f Val %RPD RPDLimit Qua
Alkalinity, Total (As CaCO3)	355	5.00			3	72.5 4.81 20

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Date: 9/30/2014

Work Order: 1409245

Friedman & Bruya

CLIENT:

QC SUMMARY REPORT

Ferrous Iron by SM3500-Fe B

Project:	409405									reni	ous iron b	y Sivissu	о-ге с
Sample ID: MB-	3-R16929	SampType	: MBLK			Units: mg/L		Prep Da	te: 9/23/201 4	1	RunNo: 169	29	
Client ID: MBI	BLKW	Batch ID:	R16929					Analysis Da	te: 9/23/201 4	1	SeqNo: 339	866	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			ND	0.0300									
Sample ID: LCS	S-R16929	SampType	: LCS			Units: mg/L		Prep Da	te: 9/23/201 4	1	RunNo: 169	29	
Client ID: LCS	sw	Batch ID:	R16929					Analysis Da	te: 9/23/201 4	1	SeqNo: 339	867	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			0.960	0.0300	1.000	0	96.0	90	110				
Sample ID: 140)9245-002ADUP	SampType	: DUP			Units: mg/L		Prep Da	te: 9/23/201 4	1	RunNo: 169	29	
Client ID: MW	V-12-092214	Batch ID:	R16929					Analysis Da	te: 9/23/201 4	1	SeqNo: 339	870	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron NOTES:		(0.0300	0.0300						0	200	20	
RPDs calculat	ated on results at or n	ear the reporti	ng limit may	not be statis	tically valid.								
Sample ID: 140)9245-002AMS	SampType	: MS			Units: mg/L		Prep Da	te: 9/23/201 4	1	RunNo: 169	29	
Client ID: MW	V-12-092214	Batch ID:	R16929					Analysis Da	te: 9/23/201 4	ı	SeqNo: 339	871	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			0.970	0.0300	1.000	0	97.0	85	115				
Sample ID: 140)9245-002AMSD	SampType	: MSD			Units: mg/L		Prep Da	te: 9/23/201 4	1	RunNo: 169	29	
	V 40 000044							Analysis Da	te: 9/23/201 4	1	SeqNo: 339	872	
Client ID: MW	V-12-092214	Batch ID:	R16929					,					
Client ID: MW Analyte	V-12-092214		R16929 Result	RL	SPK value	SPK Ref Val	%REC	•	HighLimit I		%RPD	RPDLimit	Qual

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

Date: 9/30/2014

Work Order: 1409245

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409405

Ferrous Iron by SM3500-Fe B

Sample ID: 1409245-002AMSD

SampType: MSD

Units: mg/L

Prep Date: 9/23/2014 Analysis Date: 9/23/2014

RunNo: 16929

SeqNo: 339872

Client ID: MW-12-092214

Project:

Analyte

Batch ID: R16929

Result

RL

SPK value SPK Ref Val

%REC

LowLimit HighLimit RPD Ref Val

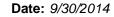
%RPD RPDLimit Qual

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required D

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range Е

ND Not detected at the Reporting Limit

Work Order: 1409245

QC SUMMARY REPORT

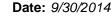
CLIENT: Friedman & Bruya

	9405						Ion Chromatogra	phy by EPA Meth	od 300.0
Sample ID: MB-R16959	SampType: MBLK			Units: mg/L		Prep Dat	te: 9/23/2014	RunNo: 16959	
Client ID: MBLKW	Batch ID: R16959					Analysis Dat	te: 9/23/2014	SeqNo: 340478	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLim	it Qual
Chloride	ND	0.100							
Nitrite	ND	0.100							
Nitrate	ND	0.100							
Sulfate	ND	0.300							
Sample ID: LCS-R16959	SampType: LCS			Units: mg/L		Prep Dat	te: 9/23/2014	RunNo: 16959	
Client ID: LCSW	Batch ID: R16959					Analysis Dat	te: 9/23/2014	SeqNo: 340479	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLim	it Qual
Chloride	3.08	0.100	3.000	0	103	85	115		
Nitrite	2.89	0.100	3.000	0	96.4	85	115		
Nitrate	3.13	0.100	3.000	0	104	85	115		
Sulfate	16.5	0.300	15.00	0	110	85	115		

Sample ID: 1409250-001ADUP	SampType: DUP			Units: mg/L		Prep Da	te: 9/23/20	14	RunNo: 169	59	
Client ID: BATCH	Batch ID: R16959					Analysis Da	te: 9/23/20	14	SeqNo: 340	481	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	7.34	0.100						7.415	0.999	20	Е
Nitrite	ND	0.100						0		20	
Nitrate	0.113	0.100						0.1116	1.16	20	
Sulfate	5.71	0.300						5.704	0.0508	20	

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded


R RPD outside accepted recovery limits D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409245

QC SUMMARY REPORT

0.725

0.175

0.358

1.51

Е

Ε

20

20

20 20

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project:	409405
----------	--------

Chloride

Nitrite

Nitrate

Sulfate

Sample ID: 1409250-001AMS	SampType: MS	Units: mg/L	Prep Date: 9/23/2014	RunNo: 16959
Client ID: BATCH Analyte	Batch ID: R16959 Result RL	SPK value SPK Ref Val	Analysis Date: 9/23/2014 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 340482 %RPD RPDLimit Qual
Chloride	10.8 0.100	3.000 7.415	114 80 120	E
Nitrite	2.99 0.100	3.000 0	99.6 80 120	
Nitrate	3.18 0.100	3.000 0.1116	102 80 120	
Sulfate	23.4 0.300	15.00 5.704	118 80 120	Е
Sample ID: 1409250-001AMSD	SampType: MSD	Units: mg/L	Prep Date: 9/23/2014	RunNo: 16959
Client ID: BATCH	Batch ID: R16959		Analysis Date: 9/23/2014	SeqNo: 340483
Analyte	Result RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

7.415

0.1116

5.704

0

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

3.000

3.000

3.000

15.00

J Analyte detected below quantitation limits

RL Reporting Limit

0.100

0.100

0.100

0.300

10.8

2.99

3.17

23.7

E Value above quantitation range

80

80

80

80

120

120

120

120

10.83

2.989

3.184

23.39

111

99.8

102

120

ND Not detected at the Reporting Limit

Sample Log-In Check List

CI	ient Name:	FB	Work Order Nun	nber: 1409245	
Lo	gged by:	Erica Silva	Date Received:	9/23/2014 1	11:48:00 AM
Cha	in of Custo	<u>ody</u>			
1.	Is Chain of Cu	ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	Client		
Log	In				
	Coolers are p	resent?	Yes 🗸	No \square	NA 🗌
			_	_	
4.	Shipping cont	ainer/cooler in good condition?	Yes 🗹	No 🗌	_
5.	Custody seals	s intact on shipping container/cooler?	Yes	No 🗌	Not Required 🗹
6.	Was an atter	npt made to cool the samples?	Yes 🔽	No 🗆	NA \square
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes 🗹	No 🗌	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9.	Sufficient san	nple volume for indicated test(s)?	Yes 🗹	No \square	
10.	Are samples	properly preserved?	Yes 🗹	No 🗆	
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA \square
12.	Is the headsp	ace in the VOA vials?	Yes	No 🗆	NA 🗹
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗆	
14.	Does paperwo	ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No \square	
		t analyses were requested?	Yes 🗹	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🗸	No 🗌	
Spe	cial Handl	ing (if applicable)			
-		tified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person I	Notified: Date:			
	By Who		P .	Phone Fax	In Person
	Regardi	-			
	_	structions:			
19.	Additional ren	narks:			4

Item Information

Item #	Temp ⁰C	Condition
Cooler	13.8	
Sample	10.0	Good

170 1270

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michael Erdahl	SUBCONTRACTER	Page #of TURNAROUND TIME			
Company Friedman and Bruya, Inc.	PROJECT NAME/NO.	PO#	≪Standard (2 Weeks) □ RUSH		
Address 3012 16th Ave W	409405	D-208	Rush charges authorized by:		
City, State, ZIP_Seattle, WA 98119 Phone #_ (206) 285-8282 Fax #_ (206) 283-5044	REMARKS Please Email Results		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions		

																OCCUPATION AND ADDRESS OF THE PARTY OF THE P
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins and Furans by 8290	ЕРН	VPH	Nitrate Nitrate	Sulfate	Alkalinity	Chlorde	Dissolven Feren Iron			Notes
MW-11-092214		9/22/14	1327	water		T			×	×	×	×	×	_	_	
MW-12-09224.		· i'	1425.	+					×	K	×	X	×	\neg		
		1														
															\top	
														\top	_	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

PRINT NAME	COMPANY	DATE	TIME
Michael Erdahl	Friedman & Bruya	9/23/14.	1130.
Enica Silva	EAI	9/22/14	11:48
		1/25/11	11 10
			The state of the s

409405				SAMPLE (_	_			M	E.	0	9/	2.	3/14	BIS
Send Report To	1	onglei	1	SAMPI	ERS (sign	atu	<u> </u>	eu	<u>~</u>	X	m		M	_			AROUN	
Company Aspect	Cons	ultin	y		CT NAME				(1]	PO#			⊐ RUS	SH	(2 Week	
Address 401 2nd	AV	e S	<u> </u>		s Tex	ac	0	- 124	06	1				['			es author	
City, State, ZIP Seaff	le,	WA	98104	REMAI	RKS					-]			PLE DIS after 30 d	
Phone (206) 812 474	He Fa	x #									É	•		Į þ	□ Reti	urn sa	emples with inst	•
						ı			AN	ALY	SE	S REOL	JEST					
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B		_	Alkalinity Jeh	Hethore	red In	Z	Drawfred fe			Notes
Mw-1-092214	DIA-D	9/20/14	1124	H20	4	×	X	0									O-D	or KL
MW-7-09224	02 T		1209		4		,	0									, l	4/14
MW-8-092214	031		1249		4	П		0										14
MW-11-092214	04 A-1		1327		14			OY			X	X	X	X	X			
MW-12-092214	OCA-1		1429	V	13	>	Y	ď			X	X	X	X	X			
	<u> </u>																	
	 																	
	<u> </u>																	
	<u> </u>												. 8 e				and skill	مره ما
													,					
Friedman & Bruya, Inc. 3012 16th Avenue West	celli Quis	SIGN	ATURE				NA						MP/			_	DATE	TIME
	Received	by:	<u> </u>	}	Brecan.	_	,		nas					MS	uHg	9	psh	3:05
·	M Celinquis	hed by:	ins	/\	man	P	sa	<u>~</u>		_	F<	: B_	<u> </u>			77	23/H	10:00

Received by:

Fax (206) 283-5044

FORMSYCOCYCOC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 15, 2014

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included is the amended report from the testing of material submitted on September 24, 2014 from the Ken's Texaco 120061, F&BI 409436 project. Per your request, sample MW-10-092314 has had BTEX added to the gasoline analysis.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP1006R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 6, 2014

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S. Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on September 24, 2014 from the Ken's Texaco 120061, F&BI 409436 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP1006R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 24, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 409436 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-10-092314
MW-13-092314
MW-14-092314
MW-15-092314
MW-16-092314
MW-50-092314

Samples MW-15-092314 and MW-16-092314 were sent to Fremont for alkalinity, chloride, sulfate, nitrate and nitrite analyses. Review of the enclosed report indicates that all quality assurance were acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

Date Extracted: 09/24/14 Date Analyzed: 09/25/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-10-092314 409436-01	<1	<1	<1	<3	<100	85
Method Blank 04-1913 MB	<1	<1	<1	<3	<100	86

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

Date Extracted: 09/24/14 Date Analyzed: 09/25/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-13-092314 409436-02	<100	89
MW-14-092314 409436-03	<100	88
MW-15-092314 409436-04	<100	90
MW-16-092314 409436-05	2,400	93
Method Blank 04-1913 MB	<100	91

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

Date Extracted: 09/25/14 Date Analyzed: 09/26/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-10-092314 409436-01	<50	<250	97
MW-13-092314 409436-02	<50	<250	99
MW-14-092314 409436-03	<50	<250	99
MW-15-092314 409436-04	< 50	<250	91
MW-16-092314 409436-05	670 x	<250	97
Method Blank 04-1958 MB	<50	<250	91

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-15-092314 Client: Aspect Consulting, LLC

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

 Date Extracted:
 10/01/14
 Lab ID:
 409436-04

 Date Analyzed:
 10/02/14
 Data File:
 409436-04.046

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 86 60 125 Holmium 94 60 125

Concentration

Analyte: ug/L (ppb)

 Lead
 <1</td>

 Manganese
 581

 Iron
 51.3

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-16-092314 Client: Aspect Consulting, LLC

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

 Date Extracted:
 10/01/14
 Lab ID:
 409436-05

 Date Analyzed:
 10/02/14
 Data File:
 409436-05.049

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 87 60 125 Holmium 97 60 125

Concentration

Analyte: ug/L (ppb)

Lead<1</th>Manganese2,450Iron132

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 409436

Date Extracted: 10/01/14 Lab ID: I4-616 mb
Date Analyzed: 10/02/14 Data File: I4-616 mb.044
Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 88 60 125 Holmium 94 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1 Manganese <1 Iron <50

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: 409436-02 Date Extracted: 09/25/14 Date Analyzed: 09/25/14 Data File: 092508.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	97	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 09/25/14 409436-03 Date Analyzed: 09/25/14 Data File: 092509.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	100	76	126

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 409436-04 09/25/14 Date Analyzed: 09/25/14 Data File: 092510.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	98	76	126

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 409436-05 09/25/14 Date Analyzed: 09/25/14 Data File: 092511.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	102	93	107
4-Bromofluorobenzene	99	76	126

Compounder	Concentration	Compounds	Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	25
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	15
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	17
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	24
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	4.4
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	6.3
Trichloroethene	<1	sec-Butylbenzene	12
1,2-Dichloropropane	<1	p-Isopropyltoluene	3.7
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	29
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

Lab ID: Date Extracted: 409436-06 09/25/14 Date Analyzed: 09/25/14 Data File: 092512.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	101	93	107
4-Bromofluorobenzene	99	76	126

Compounds: ug/L (ppb) Compounds: ug/L (ppb) Dichlorodifluoromethane <1 1,3-Dichloropropane <1 Chloromethane <10 Tetrachloroethene <1 Vinyl chloride <0.2 Dibromochloromethane <1 Brommenthane <1 1,2-Dibromoethane (EDB) <1 Chloroethane <1 Chlorobenzene <1 Chloroethane <1 Chlorobenzene <2 Acetone <10 1,1,1,2-Tetrachloroethane <1 I,1-Dichloroethene <1 m,p-Xylene 15 Methylene chloride <5 o-Xylene <1 Methyl t-butyl ether (MTBE) <1 Styrene <1 I,1-Dichloroethene <1 Styrene <1 Itrans-1,2-Dichloroethene <1 Bromoform <1 1,1-Dichloroethane <1 Bromoform <1 2,2-Dichloroethene <1 Bromoform <1 2,2-Dichloroethene <1 1,3,5-Trimethylbenzene <1 <td< th=""><th></th><th>Concentration</th><th></th><th>Concentration</th></td<>		Concentration		Concentration
Chloromethane <10 Tetrachloroethene <1 Vinyl chloride <0.2	Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Chloromethane <10 Tetrachloroethene <1 Vinyl chloride <0.2	Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Bromomethane <1 1,2-Dibromoethane (EDB) <1 Chloroethane <1 Chlorobenzene <1 Trichlorofluoromethane <1 Ethylbenzene 25 Acetone <10 1,1,1,2-Tetrachloroethane <1 1,1-Dichloroethene <1 m,p-Xylene 15 Methylene chloride <5 o-Xylene <1 Methyl t-butyl ether (MTBE) <1 Styrene <1 Trans-1,2-Dichloroethene <1 Bromoform <1 1,1-Dichloroethane <1 Bromoform <1 1,1-Dichloropropane <1 Bromoform <1 Chloroform <1 1,3,5-Trimethylbenzene <1 Chloroform <1 1,2-Dichloroethane <1 1,2-Z-Tetrachloroethane <1 1,1,1-Trichloroethane <1 1,2-Z-Tetrachloroethane <1 1,1,1-Trichloroethane <1 1,2-Z-Tetrachloroethane <1 1,1,1-Trichloroethane (EDC) <1 1,2,3-Trichloropropane <1 1,1,1-Trichloropropane <1 2-Chlorotoluene <1 1,1,1-Trichloropropene <1 2-Chlorotoluene <1 1,1-Dichloropropene <1 2-Chlorotoluene <1 2-Chlorotolue	Chloromethane	<10		<1
Bromomethane <1 1,2-Dibromoethane (EDB) <1 Chloroethane <1 Chlorobenzene <1 Trichlorofluoromethane <1 Ethylbenzene 25 Acetone <10 1,1,1,2-Tetrachloroethane <1 1,1-Dichloroethene <1 m,p-Xylene 15 Methylene chloride <5 o-Xylene <1 Methyl t-butyl ether (MTBE) <1 Styrene <1 Trans-1,2-Dichloroethene <1 Bromoform <1 1,1-Dichloroethane <1 Bromoform <1 1,1-Dichloropropane <1 Bromoform <1 Chloroform <1 1,3,5-Trimethylbenzene <1 Chloroform <1 1,2-Dichloroethane <1 1,2-Z-Tetrachloroethane <1 1,1,1-Trichloroethane <1 1,2-Z-Tetrachloroethane <1 1,1,1-Trichloroethane <1 1,2-Z-Tetrachloroethane <1 1,1,1-Trichloroethane (EDC) <1 1,2,3-Trichloropropane <1 1,1,1-Trichloropropane <1 2-Chlorotoluene <1 1,1,1-Trichloropropene <1 2-Chlorotoluene <1 1,1-Dichloropropene <1 2-Chlorotoluene <1 2-Chlorotolue	Vinyl chloride	< 0.2	Dibromochloromethane	<1
Chloroethane <1 Chlorobenzene <1 Trichlorofluoromethane <1		<1	1,2-Dibromoethane (EDB)	<1
Acetone <10	Chloroethane	<1	· · · · · · · · · · · · · · · · · · ·	<1
1,1-Dichloroethene <1	Trichlorofluoromethane	<1	Ethylbenzene	25
Methylene chloride<5o-Xylene<1Methyl t-butyl ether (MTBE)<1	Acetone	<10	1,1,1,2-Tetrachloroethane	<1
Methyl t-butyl ether (MTBE) <1	1,1-Dichloroethene	<1	m,p-Xylene	15
trans-1,2-Dichloroethene <1 Isopropylbenzene 17 1,1-Dichloroethane <1 Bromoform <1 2,2-Dichloropropane <1 n-Propylbenzene 24 cis-1,2-Dichloroethene <1 Bromobenzene <1 Chloroform <1 1,3,5-Trimethylbenzene 4.5 2-Butanone (MEK) <10 1,1,2,2-Tetrachloroethane <1 1,2-Dichloroethane (EDC) <1 1,2,3-Trichloropropane <1 1,1-Trichloroethane <1 2-Chlorotoluene <1 1,1-Dichloropropene <1 4-Chlorotoluene <1 Carbon tetrachloride <1 tert-Butylbenzene <1 Benzene <0.35 1,2,4-Trimethylbenzene 6.6 Trichloroethene <1 sec-Butylbenzene 12 1,2-Dichloropropane <1 p-Isopropyltoluene 3.8 Bromodichloromethane <1 1,3-Dichlorobenzene <1 Dibromomethane <1 1,4-Dichlorobenzene <1 4-Methyl-2-pentanone <1 1,2-Dichlorobenzene <1 cis-1,3-Dichloropropane <1 1,2-Dibromo-3-chloropropane <1 Toluene <1 1,2,4-Trichlorobenzene <1 Trians-1,3-Dichloropropene <1 Hexachlorobutadiene <1 1,1,2-Trichloroethane <1 Naphthalene 30	Methylene chloride	<5	o-Xylene	<1
1,1-Dichloroethane <1	Methyl t-butyl ether (MTBE)	<1	Styrene	<1
2,2-Dichloropropane<1n-Propylbenzene24cis-1,2-Dichloroethene<1	trans-1,2-Dichloroethene	<1	Isopropylbenzene	17
cis-1,2-Dichloroethene <1	1,1-Dichloroethane	<1	Bromoform	<1
Chloroform <1	2,2-Dichloropropane	<1	n-Propylbenzene	24
2-Butanone (MEK) <10	cis-1,2-Dichloroethene	<1	Bromobenzene	<1
1,2-Dichloroethane (EDC)<1	Chloroform	<1	1,3,5-Trimethylbenzene	4.5
1,1,1-Trichloroethane<1	2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,1-Dichloropropene<1	1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
Carbon tetrachloride<1tert-Butylbenzene<1Benzene<0.35	1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
Benzene<0.351,2,4-Trimethylbenzene6.6Trichloroethene<1	1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Trichloroethene<1sec-Butylbenzene121,2-Dichloropropane<1	Carbon tetrachloride	<1	tert-Butylbenzene	<1
1,2-Dichloropropane<1	Benzene	< 0.35		6.6
Bromodichloromethane <1 1,3-Dichlorobenzene <1 Dibromomethane <1 1,4-Dichlorobenzene <1 4-Methyl-2-pentanone <10 1,2-Dichlorobenzene <1 cis-1,3-Dichloropropene <1 1,2-Dibromo-3-chloropropane <10 Toluene <1 1,2,4-Trichlorobenzene <1 trans-1,3-Dichloropropene <1 Hexachlorobutadiene <1 1,1,2-Trichloroethane <1 Naphthalene 30	Trichloroethene	<1	sec-Butylbenzene	12
Dibromomethane<11,4-Dichlorobenzene<14-Methyl-2-pentanone<10	1,2-Dichloropropane	<1		3.8
4-Methyl-2-pentanone<10	Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
cis-1,3-Dichloropropene <1 1,2-Dibromo-3-chloropropane <10 Toluene <1 1,2,4-Trichlorobenzene <1 trans-1,3-Dichloropropene <1 Hexachlorobutadiene <1 1,1,2-Trichloroethane <1 Naphthalene 30	Dibromomethane	<1	1,4-Dichlorobenzene	<1
Toluene <1 1,2,4-Trichlorobenzene <1 trans-1,3-Dichloropropene <1 Hexachlorobutadiene <1 1,1,2-Trichloroethane <1 Naphthalene 30	4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
trans-1,3-Dichloropropene <1 Hexachlorobutadiene <1 1,1,2-Trichloroethane <1 Naphthalene 30	cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
1,1,2-Trichloroethane <1 Naphthalene 30		<1		<1
• · · · • • • • • • • • • • • • • • • •	trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
2-Hexanone <10 1,2,3-Trichlorobenzene <1		<1		30
	2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409436

09/25/14 Lab ID: 04-1903 mb Date Extracted: Date Analyzed: 09/25/14 Data File: 092507.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	85	117
Toluene-d8	98	93	107
4-Bromofluorobenzene	98	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-15-092314 Client: Aspect Consulting, LLC

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

 Date Extracted:
 09/24/14
 Lab ID:
 409436-04

 Date Analyzed:
 09/24/14
 Data File:
 010F1001.D

Matrix: Water Instrument: GC8
Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-16-092314 Client: Aspect Consulting, LLC

Date Received: 09/24/14 Project: Ken's Texaco 120061, F&BI 409436

 Date Extracted:
 09/24/14
 Lab ID:
 409436-05

 Date Analyzed:
 09/24/14
 Data File:
 011F1101.D

Matrix: Water Instrument: GC8
Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 300

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 409436

Date Extracted: 09/24/14 Lab ID: 04-1897 mb
Date Analyzed: 09/24/14 Data File: 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 409405-05 (Duplicate)

	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	88	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	93	73-126
Xylenes	ug/L (ppb)	150	92	74-118
Gasoline	ug/L (ppb)	1,000	99	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 409452-03 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	620	101	93	64-141	8

			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Diesel Extended	ug/L (ppb)	2.500	94	96	61-133	2	

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 409436-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	100	111	79-121	10
Manganese	ug/L (ppb)	20	581	0 b	131 b	47-155	200 b
Iron	ug/L (ppb)	100	51.3	100 b	112 b	50-150	11 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	102	83-115
Manganese	ug/L (ppb)	20	109	76-120
Iron	ug/L (ppb)	100	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 409450-42 (Matrix Spike)

•	-			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	80	55-144
Chloromethane	ug/L (ppb)	50	<10	77	67-131
Vinyl chloride Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	<0.2 <1	86 107	61-139 66-129
Chloroethane	ug/L (ppb) ug/L (ppb)	50	<1	95	68-126
Trichlorofluoromethane	ug/L (ppb)	50	<1	93	71-128
Acetone	ug/L (ppb)	250	<10	94	48-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	92	71-123
Methylene chloride	ug/L (ppb)	50	< 5	101	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	98	68-125
trans-1,2-Dichloroethene 1.1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	94 95	72-122 79-113
2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50	<1	102	58-132
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	73-119
Chloroform	ug/L (ppb)	50	<1	98	80-112
2-Butanone (MEK)	ug/L (ppb)	250	<10	96	69-123
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	93	78-113
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	99	79-116
1,1-Dichloropropene	ug/L (ppb)	50	<1	96	67-121
Carbon tetrachloride	ug/L (ppb)	50	<1	98	72-123
Benzene	ug/L (ppb)	50 50	< 0.35	93 96	79-109
Trichloroethene 1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	96 96	75-109 80-111
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50	<1	99	78-117
Dibromomethane	ug/L (ppb)	50	<1	98	80-112
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	111	79-123
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	102	76-120
Toluene	ug/L (ppb)	50	<1	99	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	105	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	103	81-111
2-Hexanone	ug/L (ppb)	250	<10	102	75-126
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb)	50 50	<1 <1	100 102	81-111 72-113
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	102	69-129
1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	50	<1	104	83-114
Chlorobenzene	ug/L (ppb)	50	<1	100	75-115
Ethylbenzene	ug/L (ppb)	50	<1	103	71-120
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	106	78-122
m,p-Xylene	ug/L (ppb)	100	<2	107	63-128
o-Xylene	ug/L (ppb)	50	<1	109	64-129
Styrene	ug/L (ppb)	50	<1	110	70-122
Isopropylbenzene Bromoform	ug/L (ppb)	50 50	<1 <1	109 108	76-118 49-138
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50	<1	106	74-117
Bromobenzene	ug/L (ppb) ug/L (ppb)	50	<1	103	70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	112	81-112
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	103	79-120
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	99	72-119
2-Chlorotoluene	ug/L (ppb)	50	<1	105	77-114
4-Chlorotoluene	ug/L (ppb)	50	<1	105	81-109
tert-Butylbenzene	ug/L (ppb)	50	<1	115	81-116
1,2,4-Trimethylbenzene	ug/L (ppb)	50 50	<1	114 112	74-118
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	112	77-118 64-132
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50	<1	103	81-111
1.4-Dichlorobenzene	ug/L (ppb)	50	<1	100	78-110
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	102	81-111
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	111	69-129
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	108	74-115
Hexachlorobutadiene	ug/L (ppb)	50	<1	97	67-120
Naphthalene	ug/L (ppb)	50	<1	119	63-136
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	107	79-115

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code. Laboratory Com	cror Sample		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
A l						
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane Chloromethane	ug/L (ppb) ug/L (ppb)	50 50	103 93	105 94	54-149 67-133	2 1
Vinyl chloride	ug/L (ppb)	50	99	101	73-132	2
Bromomethane	ug/L (ppb)	50	117	115	69-123	2
Chloroethane	ug/L (ppb)	50	106	105	68-126	1
Trichlorofluoromethane	ug/L (ppb)	50	103	103	70-132	0
Acetone	ug/L (ppb)	250	104	104	44-145	0
1,1-Dichloroethene	ug/L (ppb)	50	98	99	75-119	1
Methylene chloride	ug/L (ppb)	50 50	106 101	106 101	63-132 70-122	0 0
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	98	98	70-122 76-118	0
1,1-Dichloroethane	ug/L (ppb)	50	99	99	80-116	0
2,2-Dichloropropane	ug/L (ppb)	50	104	104	62-141	Õ
cis-1,2-Dichloroethene	ug/L (ppb)	50	103	103	81-111	0
Chloroform	ug/L (ppb)	50	102	102	81-109	0
2-Butanone (MEK)	ug/L (ppb)	250	96	99	53-140	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	96	97	79-109	1
1,1,1-Trichloroethane 1,1-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 50	102 99	103 100	80-116 78-112	1 1
Carbon tetrachloride	ug/L (ppb)	50	102	104	72-128	2
Benzene	ug/L (ppb)	50	96	97	81-108	1
Trichloroethene	ug/L (ppb)	50	98	99	77-108	1
1,2-Dichloropropane	ug/L (ppb)	50	99	99	82-109	0
Bromodichloromethane	ug/L (ppb)	50	103	105	76-120	2
Dibromomethane	ug/L (ppb)	50	102	102	80-110	0
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	110 106	109 107	59-142 76-128	1 1
Toluene	ug/L (ppb)	50	99	99	83-108	0
trans-1,3-Dichloropropene	ug/L (ppb)	50	106	107	76-128	1
1,1,2-Trichloroethane	ug/L (ppb)	50	102	104	82-110	2
2-Hexanone	ug/L (ppb)	250	104	104	53-145	0
1,3-Dichloropropane	ug/L (ppb)	50	102 102	101	83-110	1 1
Tetrachloroethene Dibromochloromethane	ug/L (ppb) ug/L (ppb)	50 50	102	103 110	78-109 63-140	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	105	108	85-113	3
Chlorobenzene	ug/L (ppb)	50	99	100	84-108	ĺ
Ethylbenzene	ug/L (ppb)	50	103	103	84-110	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	107	107	76-125	0
m,p-Xylene	ug/L (ppb)	100 50	107 108	107 109	84-112 82-113	0 1
o-Xylene Styrene	ug/L (ppb) ug/L (ppb)	50	111	111	84-116	0
Isopropylbenzene	ug/L (ppb)	50	108	110	81-122	2
Bromoform	ug/L (ppb)	50	109	111	40-161	2
n-Propylbenzene	ug/L (ppb)	50	103	105	81-115	2
Bromobenzene	ug/L (ppb)	50	100	102	80-113	2
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	111 101	111 102	83-117 79-118	0 1
1,2,3-Trichloropropane	ug/L (ppb)	50	98	99	74-116	1
2-Chlorotoluene	ug/L (ppb)	50	103	103	79-112	0
4-Chlorotoluene	ug/L (ppb)	50	104	104	81-113	0
tert-Butylbenzene	ug/L (ppb)	50	110	113	81-119	3
1,2,4-Trimethylbenzene	ug/L (ppb)	50 50	111	112	83-116	1 0
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	110 111	110 112	83-116 82-119	1
1,3-Dichlorobenzene	ug/L (ppb)	50	100	101	83-111	1
1,4-Dichlorobenzene	ug/L (ppb)	50	97	98	82-109	1
1,2-Dichlorobenzene	ug/L (ppb)	50	100	101	83-111	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	109	110	62-133	1
1,2,4-Trichlorobenzene	ug/L (ppb)	50	104	104	77-117	0
Hexachlorobutadiene Naphthalene	ug/L (ppb) ug/L (ppb)	50 50	96 115	97 117	74-118 75-131	1 2
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50	105	107	82-115	2
, ,	-o - (rr-)					

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/14 Date Received: 09/24/14

Project: Ken's Texaco 120061, F&BI 409436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 409405-04 (Duplicate)

Analyte	Reporting Units S	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	230	220	4	
Laboratory Code:	Laboratory Control S	Sample			

			Percent	Percent		
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)
Methane	ug/L (ppb)	500	66	65	50-150	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 409436

Lab ID: 1409268

October 01, 2014

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 9/24/2014 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Mal c. Fedy

Sincerely,

Mike Ridgeway President

Date: 10/01/2014

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 409436 **Lab Order:** 1409268

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1409268-001
 MW-15-092314
 09/23/2014 1:11 PM
 09/24/2014 11:44 AM

 1409268-002
 MW-16-092314
 09/23/2014 1:20 AM
 09/24/2014 11:44 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1409268**Date: **10/1/2014**

CLIENT: Friedman & Bruya

Project: 409436

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Analytical Report

WO#: **1409268**

Date Reported: 10/1/2014

CLIENT: Friedman & Bruya

Project: 409436

Lab ID: 1409268-001 **Collection Date:** 9/23/2014 1:11:00 PM

Client Sample ID: MW-15-092314 Matrix: Water

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA	Method 300.0		Bato	ch ID: R1	7009 Analyst: KT
Chloride	2.30	0.100	mg/L	1	9/24/2014 3:54:00 PM
Nitrite	ND	0.100	mg/L	1	9/24/2014 3:54:00 PM
Nitrate	ND	0.100	mg/L	1	9/24/2014 3:54:00 PM
Sulfate	2.08	0.300	mg/L	1	9/24/2014 3:54:00 PM
Total Alkalinity by SM 2320B			Bato	ch ID: R1	7041 Analyst: KT
Alkalinity, Total (As CaCO3)	70.0	5.00	mg/L	1	9/25/2014 4:41:00 PM
Ferrous Iron by SM3500-Fe B			Bato	ch ID: R1	6987 Analyst: KT
Ferrous Iron	ND	0.0300	mg/L	1	9/24/2014 1:05:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Analytical Report

WO#: **1409268**

Date Reported: 10/1/2014

CLIENT: Friedman & Bruya

Project: 409436

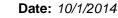
Client Sample ID: MW-16-092314 Matrix: Water

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA	Method 300.0		Bato	ch ID: R1	7009 Analyst: KT
Chloride	3.62	0.100	mg/L	1	9/24/2014 4:33:00 PM
Nitrite	ND	0.100	mg/L	1	9/24/2014 4:33:00 PM
Nitrate	ND	0.100	mg/L	1	9/24/2014 4:33:00 PM
Sulfate	0.944	0.300	mg/L	1	9/24/2014 4:33:00 PM
Total Alkalinity by SM 2320B			Bato	ch ID: R1	7041 Analyst: KT
Alkalinity, Total (As CaCO3)	118	5.00	mg/L	1	9/25/2014 4:44:00 PM
Ferrous Iron by SM3500-Fe B			Bato	ch ID: R1	6987 Analyst: KT
Ferrous Iron	ND	0.0300	mg/L	1	9/24/2014 1:05:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits


RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409268

Alkalinity, Total (As CaCO3)

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Alkalinity by SM 2320B

Project: 409436						lot	al Alkalinity by SM 2	320B
Sample ID: MB-R17041	SampType: MBLK			Units: mg/L		Prep Date: 9/25/2014	RunNo: 17041	
Client ID: MBLKW	Batch ID: R17041					Analysis Date: 9/25/2014	SeqNo: 341477	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, Total (As CaCO3)	ND	5.00						
Sample ID: LCS-R17041	SampType: LCS			Units: mg/L		Prep Date: 9/25/2014	RunNo: 17041	
Client ID: LCSW	Batch ID: R17041					Analysis Date: 9/25/2014	SeqNo: 341478	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, Total (As CaCO3)	100	5.00	100.0	0	100	80 120		
Sample ID: 1409268-002ADUP	SampType: DUP			Units: mg/L		Prep Date: 9/25/2014	RunNo: 17041	
Client ID: MW-16-092314	Batch ID: R17041					Analysis Date: 9/25/2014	SeqNo: 341491	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual

Qualifiers: B		Analyte detected in the associated Method Blank
---------------	--	---

H Holding times for preparation or analysis exceeded

115

5.00

S Spike recovery outside accepted recovery limits

117.5

2.15

20

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Date: 10/1/2014

Work Order: 1409268

QC SUMMARY REPORT

CLIENT: Friedman & Bruva

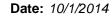
Project: 409436	вышуа							Ferr	ous Iron b	y SM350	0-Fe B
Sample ID: MB-R16987	SampType: MBLK			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: MBLKW	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0640	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	ND	0.0300									
Sample ID: LCS-R16987	SampType: LCS			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: LCSW	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0641	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.950	0.0300	1.000	0	95.0	90	110				
Sample ID: 1409268-001BDUP	SampType: DUP			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: MW-15-092314	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0644	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	ND	0.0300						0		20	
Sample ID: 1409268-001BMS	SampType: MS			Units: mg/L		Prep Date:	9/24/201	4	RunNo: 169	987	
Client ID: MW-15-092314	Batch ID: R16987					Analysis Date:	9/24/201	4	SeqNo: 340	0645	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	1.00	0.0300	1.000	0	100	85	115				
Sample ID: 1409268-001BMSD	SampType: MSD			Units: mg/L		Prep Date	9/24/201	4	RunNo: 169	987	
Client ID: MW-15-092314	Batch ID: R16987					Analysis Date	9/24/201	4	SeqNo: 340	0646	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	1.02	0.0300	1.000	0	102	85	115	1.000	1.98	20	

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Dilution was required D


Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409268

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project:		Bruya						I	on Chr	omatograp	hy by EPA	A Method	300.0
Sample ID:	MB-R17009	SampType	: MBLK			Units: mg/L		Prep Date:	9/24/201	14	RunNo: 170	009	
Client ID:	MBLKW	Batch ID:	R17009					Analysis Date:	9/24/201	14	SeqNo: 341	014	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride			ND	0.100									
Nitrite			ND	0.100									
Nitrate			ND	0.100									
Sulfate			ND	0.300									
Sample ID:	LCS-R17009	SampType	: LCS			Units: mg/L		Prep Date:	9/24/201	14	RunNo: 170	009	
Client ID:	LCSW	Batch ID:	R17009					Analysis Date:	9/24/201	14	SeqNo: 341	015	
								,					
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	•	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte Chloride			Result 2.90	RL 0.100	SPK value	SPK Ref Val	%REC 96.8	•	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
								LowLimit H		RPD Ref Val	%RPD	RPDLimit	Qual
Chloride			2.90	0.100	3.000	0	96.8	LowLimit H	110	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride Nitrite			2.90 2.79	0.100 0.100	3.000 3.000	0	96.8 92.9	LowLimit H	110 110	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride Nitrite Nitrate Sulfate	1409268-001ADUP		2.90 2.79 3.03 15.7	0.100 0.100 0.100	3.000 3.000 3.000	0 0 0	96.8 92.9 101	90 90 90	110 110 110 110		%RPD		Qual

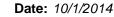
Sample ID: 1409268-001ADUP	ple ID: 1409268-001ADUP SampType: DUP			Units: mg/L Prep Date: 9/24/2014			14	RunNo: 17009			
Client ID: MW-15-092314	Batch ID: R17009					Analysis Da	te: 9/24/20	14	SeqNo: 341	017	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	2.34	0.100						2.304	1.39	20	
Nitrite	ND	0.100						0		20	
Nitrate	ND	0.100						0		20	
Sulfate	2.10	0.300						2.082	0.894	20	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required


J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1409268

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

409436

Ion Chromatography by EPA Method 300.0

Sample ID: 1409268-001AMS Client ID: MW-15-092314	SampType: MS Batch ID: R17009			Units: mg/L		•	e: 9/24/2014		RunNo: 170 SeqNo: 341		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	PD Ref Val	%RPD	RPDLimit	Qual
Chloride	5.23	0.100	3.000	2.304	97.5	80	120				
Nitrite	2.76	0.100	3.000	0	91.8	80	120				
Nitrate	3.07	0.100	3.000	0	102	80	120				
Sulfate	17.9	0.300	15.00	2.082	106	80	120				

Sample ID: 1409268-001AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 9/24/20	14	RunNo: 170	09	
Client ID: MW-15-092314	Batch ID: R17009		Analysis Date: 9/24/2014						SeqNo: 341019		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	5.26	0.100	3.000	2.304	98.6	80	120	5.229	0.649	20	
Nitrite	2.81	0.100	3.000	0	93.5	80	120	2.755	1.80	20	
Nitrate	3.08	0.100	3.000	0	103	80	120	3.075	0.302	20	
Sulfate	18.0	0.300	15.00	2.082	106	80	120	17.92	0.255	20	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Sample Log-In Check List

Cli	ient Name:	FB	Work Or	der Num	ber: 1409268	
Lo	gged by:	Erica Silva	Date Red	ceived:	9/24/2014	11:44:00 AM
<u>Cha</u>	in of Custo	<u>ody</u>				
1.	Is Chain of Cu	ustody complete?	Yes	✓	No \square	Not Present
2.	How was the	sample delivered?	Client	ţ		
Log	In					
	Coolers are p	resent?	Yes	✓	No \square	NA \square
4.	Shipping cont	ainer/cooler in good condition?	Yes	~	No 📙	
5.	Custody seals	intact on shipping container/cooler?	Yes		No 📙	Not Required ✓
6.	Was an attem	pt made to cool the samples?	Yes	✓	No 🗆	NA \square
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes	✓	No 🗆	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗌	
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No \square	
10.	Are samples p	properly preserved?	Yes	✓	No \square	
11.	Was preserva	tive added to bottles?	Yes		No 🗹	NA 🗆
12.	Is the headsp	ace in the VOA vials?	Yes		No 🗌	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperwo	ork match bottle labels?	Yes	✓	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
		t analyses were requested?	Yes	✓	No 🗌	
17.	Were all holdi	ng times able to be met?	Yes	✓	No 🗌	
Spe	cial Handl	ing (if applicable)				
		tified of all discrepancies with this order?	Yes		No \square	NA 🗹
	Person I	Notified: Date:	:			
	By Who		eMai	I 🗌 PI	hone Fax	☐ In Person
	Regardii					
	_	structions:				
19	Additional ren	narks:				

Item Information

Item #	Temp ⁰C	Condition
Cooler	7.3	Good
Sample	5.4	Good

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

	L	2	0	20
1		U	1	W 0

Send Report To	Michae	l Erdahl		C	SUBCON	VTRAC'	TER	Fre	mont	ļ .			_	-	ge#	of /
		an and Bruya th Ave W	, Inc.		1.02400000000000000000000000000000000000	PROJECT NAME/NO. PO D-219							0	RUSH_	rd (2 Weeks) rges authoriz	ed by:
City, State, ZIP			06) 283-5044		REMARI	CS Please I	Email l		s				SAMPLE DISPOSA Dispose after 30 days Return samples Will call with instructions			S
Sample ID	Lab ID	Date Sampled	Time Sampled	Ma	trix #0		EPH	Cherick Light	VM-46/ Nitrate	Sulfate	Alkalinity	Diss Luck Forms Iron				Notes
MW-16-092314		9/23/14	1311	wat	c 3	1		X	×	х	X	_	1		_	
MW-58-092314		1	1320		3			×	>	×	_	×				
Friedman & Bruya, 3012 16th Avenue V Seattle, WA 98119-2	Vest	Received by:	SIGNATURE	1		hael Er			Е		Frie	COMPANY DATE edman & Bruya		TIME		
Ph. (206) 285-8282 Fax (206) 283-5044		Relinquished by Received by:	Da	7		lare	91	199	5			100		1	9/24	1114

409436 SA	MPLE CHAIN OF CUSTODY ME 09-2	14-14 1 14/1504
Company Assect Consulting Address 401 2nd Ave S	PROJECT NAME/NO. PO# Kens Toxaco 120061	TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
City, State, ZIP Seattle, WA 98104 Phone (206) 812 4944 Fax #	REMARKS	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions
	ANALYS REQUEST	ED Const

							ANALYS S REQUESTED										
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	, 8270	HFS HIKA I 1909),Ch		VA Him	4 Pb	7	I § A	O-perkl loiniiy Notes Ms
MW-10-092314	이중	9/23/14	1007	H=0	7	X	×	10	5. .								(8)-per KL
MW-13-092314	024	1	1215		8			X	X					X			9/24/14
MN-14-092314	03#		1103		8	П		X	X					X			M4.
MW-15-092314	04 N		1433		14	П	T	X	X		X	X	8	$\langle \chi \rangle$	X	$\langle \hat{\mathbf{x}} \rangle$	
MN-16-092314	050		1311		17		J	X	X		X	X	X	Y	X	8	
MW -50-092314	06°C	V	1320	Y	3	4	多		X		×	X	X	X	X		* canceled park
									_	\downarrow							912414 ac
									\dashv	\dashv	-	8		, i	ė citor	ed a	<i>3</i> ⊱ •c
												1					

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Kolinguished by:	Brocan Zimmerman	Aspeot Consultive	9/23/14	3:150n
Reteived by:	20 00	_ '	9-24-14	
Relinquished by:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 6, 2015

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on December 24, 2014 from the Ken's Texaco 120061, F&BI 412393 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP0106R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 24, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 412393 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
412393 -01	MW-7-122314
412393 -02	MW-8-122314
412393 -03	MW-10-122314
412393 -04	MW-14-122314

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/15 Date Received: 12/24/14

Project: Ken's Texaco 120061, F&BI 412393

Date Extracted: 12/24/14 Date Analyzed: 12/24/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-7-122314 412393-01	<1	<1	1.5	3.5	460	112
MW-8-122314 412393-02	46	12	60	29	1,100	119
MW-10-122314 412393-03	<1	<1	<1	<3	<100	108
MW-14-122314 412393-04	<1	<1	<1	<3	<100	106
Method Blank 04-2556 MB	<1	<1	<1	<3	<100	104

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/15 Date Received: 12/24/14

Project: Ken's Texaco 120061, F&BI 412393

Date Extracted: 12/24/14 Date Analyzed: 12/26/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
MW-7-122314 412393-01	110 x	<250	112
MW-8-122314 412393-02	160 x	<250	106
MW-10-122314 412393-03	< 50	<250	100
MW-14-122314 412393-04	<50	<250	95
Method Blank 04-2563 MB	< 50	<250	97

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-14-122314 Client: Aspect Consulting, LLC

Date Received: 12/24/14 Project: Ken's Texaco 120061, F&BI 412393

Date Extracted: 12/24/14 Lab ID: 412393-04 12/29/14 Data File: 412393-04.015 Date Analyzed: Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: AP

Lower

Upper **Internal Standard:** % Recovery: Limit: Limit: 91 125 Holmium 60

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 412393

Date Extracted: 12/24/14 Lab ID: I4-822 mb Data File: I4-822 mb.036 Date Analyzed: 12/29/14 Matrix: Water Instrument: ICPMS1

AP Units: ug/L (ppb) Operator:

Lower Upper **Internal Standard:** % Recovery: Limit: Limit:

Holmium 98 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-122314 Client: Aspect Consulting, LLC

Date Received: 12/24/14 Project: Ken's Texaco 120061, F&BI 412393

Date Extracted: 12/24/14 Lab ID: 412393-03 Data File: Date Analyzed: 12/24/14 122411.D GCMS9 Matrix: Water Instrument: Units: ug/L (ppb) Operator: SP

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 85 101 117 Toluene-d8 104 93 107 4-Bromofluorobenzene 98 76 126

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 412393

Date Extracted: 12/24/14 Lab ID: 04-2530 mb 12/24/14 Data File: Date Analyzed: 122407.D Matrix: GCMS9 Water Instrument: Units: ug/L (ppb) Operator: SP

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 85 100 117 Toluene-d8 104 93 107 4-Bromofluorobenzene 98 76 126

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-14-122314 Client: Aspect Consulting, LLC

Date Received: 12/24/14 Project: Ken's Texaco 120061, F&BI 412393

Date Extracted: 12/24/14 Lab ID: 412393-04 Data File: Date Analyzed: 12/24/14 122412.D Matrix: GCMS9 Water Instrument: Units: ug/L (ppb) Operator: SP

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 85 102 117 Toluene-d8 104 93 107 76 4-Bromofluorobenzene 99 126

Concentration

Compounds: ug/L (ppb)

Hexane <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 412393

Date Extracted: 12/24/14 Lab ID: 04-2530 mb 12/24/14 Data File: Date Analyzed: 122407.D Matrix: GCMS9 Water Instrument: Units: ug/L (ppb) Operator: SP

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 85 100 117 Toluene-d8 104 93 107 4-Bromofluorobenzene 98 76 126

Concentration

Compounds: ug/L (ppb)

Hexane <1

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/15 Date Received: 12/24/14

Project: Ken's Texaco 120061, F&BI 412393

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 412393-04 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	102	65-118
Toluene	ug/L (ppb)	50	106	72-122
Ethylbenzene	ug/L (ppb)	50	109	73-126
Xylenes	ug/L (ppb)	150	107	74-118
Gasoline	ug/L (ppb)	1,000	102	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/15 Date Received: 12/24/14

Project: Ken's Texaco 120061, F&BI 412393

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	J	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	97	108	63-142	11

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/15 Date Received: 12/24/14

Project: Ken's Texaco 120061, F&BI 412393

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 412393-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	102	103	79-121	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	109	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/15 Date Received: 12/24/14

Project: Ken's Texaco 120061, F&BI 412393

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 412393-03 (Matrix Spike)

, ,	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	105	78-113

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	101	99	79-109	2

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/15 Date Received: 12/24/14

Project: Ken's Texaco 120061, F&BI 412393

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 412393-03 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Hexane	ug/L (ppb)	50	<1	98	61-127

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	ug/L (ppb)	50	98	97	51-153	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

412393		an ala		SAMPLE (ERS (sign			TOI	OY	MŁ	12	-24-	14	P	age#	
Send Report To	t Clm d Ava	sulfi e , S	y		CT NAME S Texa			00	61	,]	PO#		□ Stan	ndard SH	(2 Weeks) es authorized by
City, State, ZIP <u>Sea</u> Phone Phone P		<i> WH</i>	9810	# REMAR	RKS								1 1	⊐ Disp ⊐ Retu	pose a um sa	PLE DISPOSAL after 30 days amples with instructions
									A	NALY	SES I	REQUES	ΓED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	by 80	VOCs by8260	VOCs by 8270	east	exane				Notes

	· · · · · · · · · · · · · · · · · · ·									ANA	ALY:	SES I	REQU	JEST	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	EDC.	Tital	Hexane					Notes
MW-7-122314 MW-8-122314 MW-10-122314 MW-14-122314	OIAD	12/23/4	0859	H20	4	X	Х	X										
MW-8-122314	02T	Li	0940		4	X	X	X										
MW-10-122314	13A-6		1014		7	X	X	X			X							
MW-14-122314	out.H	V	1051	\downarrow	8	X	X	X				X	X					
	<u> </u>					·			,									
			<u>.</u>															
		Date																
														Sar	nolei	in.	at 2	/ : sp.
																k		

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Breean Zimmerman	Aspect Concert	12/23/14	12:10pm
Received by:	D& VO	FABI	12/24/14	8:92
Relinquished by:			 	
Received by:				

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 9, 2015

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on December 24, 2014 from the Kens Texaco-120061, F&BI 412405 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP0109R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 24, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Kens Texaco-120061, F&BI 412405 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
412405 -01	MW-1-122114
412405 -02	MW-11-122214
412405 -03	MW-12-122214
412405 -04	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 12/24/14

Project: Kens Texaco-120061, F&BI 412405

Date Extracted: 01/05/15 Date Analyzed: 01/05/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (% Recovery) Limit (50-150)
Trip Blank 412405-04	<1	<1	<1	<3	93
Method Blank	<1	<1	<1	<3	88

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 12/24/14

Project: Kens Texaco-120061, F&BI 412405

Date Extracted: 12/29/14 Date Analyzed: 12/29/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-1-122114 412405-01	<1	<1	7.0	16	2,000	ip
Method Blank 04-2557 MB	<1	<1	<1	<3	<100	105

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 12/24/14

Project: Kens Texaco-120061, F&BI 412405

Date Extracted: 12/29/14 Date Analyzed: 12/29/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
MW-1-122114 412405-01	320 x	<250	85
Method Blank 04-2571 MB	<50	<250	84

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 12/24/14

Project: Kens Texaco-120061, F&BI 412405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	84	85	72-119	1
Toluene	ug/L (ppb)	50	83	96	71-113	15
Ethylbenzene	ug/L (ppb)	50	83	96	72-114	15
Xylenes	ug/L (ppb)	150	76	86	72-113	12

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 12/24/14

Project: Kens Texaco-120061, F&BI 412405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 412409-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	98	65-118
Toluene	ug/L (ppb)	50	102	72-122
Ethylbenzene	ug/L (ppb)	50	106	73-126
Xylenes	ug/L (ppb)	150	105	74-118
Gasoline	ug/L (ppb)	1,000	102	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 12/24/14

Project: Kens Texaco-120061, F&BI 412405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

·	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	82	85	63-142	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

412 405	SAMPLE CHAIN OF CUSTODY HE 12-24-	14 A04/BEG, VO
Send Report To KIVSI Angley Company Aspect Consulting	PROJECT NAME/NO. PO# Kens Texaco - 120061	Page # of TURNAROUND TIME Standard (2 Weeks) RUSH
Address 40/2nd A ve S City, State, ZIP <u>Seattle</u> , WA 90104 Phone #206) 612 4746 Fax #		Rush charges authorized by SAMPLE DISPOSAL Dispose after 30 days
Phone (#206) 812 4746 Fax #	ANALYSES REQUESTE	☐ Return samples ☐ Will call with instructions
	Seel oline 8270 8270	ष्ट्र क

										ANA	LYS	EST	EOU	JEST	ED		$\overline{}$			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	FDE 198764	SVOCs by 8270	HFS	internation of	Hethan	Dischel Hn	A Ph		i I		Notes	
MW-1-120214	A-3	12 22/4	1303	Hz0	4	X	X	X												
MW-1-122214 MW-11-122214 MW-12-122214	A-4		1338		14		1		X			X	X	X	X	X		Hole	per KL	12/24
MW-12-122214	A-9	V	1435	V	16	V	シ	>				χ	X	X	X	X		+		M4.
Trip blank	CHAN				2			0										ł		
B12/24																		0-p	e KL	
																		1/2	lis no	-\
																		4	1	
-																		(A)	•	
														0			ceiv	ed at_	2	
				-																

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044 FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Rainquished by:	Breean Zimmerman	Aspect	12/22/14	3:1500
Received by:	Jama Brug	FEB	12/24	0930
Refinquished by:			1,4,	
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 15, 2015

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on December 30, 2014 from the Ken's Texaco 120061, F&BI 412427 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP0115R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 30, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 412427 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
412427 -01	MW-15-122914
412427 -02	MW-16-122914
412427 -03	MW-13-122914
412427 -04	MW-55-122914

Samples MW-15-122914 and MW-16-122914 were sent to Amtest for sulfate, nitrate and nitrite as N, ferrous iron and alkalinity analyses. Review of the enclosed report indicates that all quality assurance were acceptable.

The dissolved manganese samples were filtered and preserved with nitric acid. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/30/14

Project: Ken's Texaco 120061, F&BI 412427

Date Extracted: 12/30/14 Date Analyzed: 12/30/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-15-122914 412427-01	<1	<1	<1	<3	<100	110
MW-16-122914 412427-02	<1	<1	11	<3	660	116
MW-13-122914 412427-03	<1	<1	<1	<3	<100	108
MW-55-122914 412427-04	<1	<1	16	<3	750	119
Method Blank 04-2559 MB	<1	<1	<1	<3	<100	108

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/30/14

Project: Ken's Texaco 120061, F&BI 412427

Date Extracted: 12/30/14 Date Analyzed: 12/30/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
MW-15-122914 412427-01	<50	<250	88
MW-16-122914 412427-02	350 x	<250	85
MW-13-122914 412427-03	<50	<250	87
MW-55-122914 412427-04	260 x	<250	87
Method Blank 04-2571 MB2	<50	<250	89

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-15-122914 pc f Client: Aspect Consulting, LLC

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427

Date Extracted: 01/08/15 Lab ID: 412427-01 412427-01.033 01/09/15 Data File: Date Analyzed: Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper **Internal Standard:** % Recovery: Limit: Limit:

Germanium 89 60 125

Concentration

Analyte: ug/L (ppb)

Manganese 847

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-16-122914 pc f Client: Aspect Consulting, LLC

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427

Date Extracted: 01/08/15 Lab ID: 412427-02 01/09/15 Data File: Date Analyzed: 412427-02.037 Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: AP

Lower Upper

Internal Standard: % Recovery: Limit: Limit: Germanium 83 60 125

Concentration

Analyte: ug/L (ppb)

Manganese 3,280

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 412427

Date Extracted:01/08/15Lab ID:15-015 mbDate Analyzed:01/09/15Data File:15-015 mb.031Matrix:WaterInstrument:ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Germanium 93 60 125

Concentration

Analyte: ug/L (ppb)

Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-15-122914 Client: Aspect Consulting, LLC

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427

 Date Extracted:
 01/02/15
 Lab ID:
 412427-01

 Date Analyzed:
 01/02/15
 Data File:
 412427-01.052

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 95 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-16-122914 Client: Aspect Consulting, LLC

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427

 Date Extracted:
 01/02/15
 Lab ID:
 412427-02

 Date Analyzed:
 01/02/15
 Data File:
 412427-02.053

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 103 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-13-122914 Client: Aspect Consulting, LLC

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427

Date Extracted: 01/02/15 Lab ID: 412427-03 01/02/15 Data File: 412427-03.054 Date Analyzed: Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper **Internal Standard:** % Recovery: Limit: Limit:

Holmium 98 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 412427

Date Extracted: 01/02/15 Lab ID: I5-001 mb Data File: I5-001 mb.011 Date Analyzed: 01/02/15 Matrix: Instrument: ICPMS1 Water

Units: ug/L (ppb) Operator: AP

Lower Upper **Internal Standard:** % Recovery: Limit: Limit:

Holmium 99 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-15-122914	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427
Date Extracted: 12/31/14 Lab ID: 412427-01

Date Extracted: 12/31/14 Lab 1D: 412427-01
Date Analyzed: 12/31/14 Data File: 123114.D
Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 102 85 117 Toluene-d8 97 93 107 4-Bromofluorobenzene 99 76 126

Concentration

Compounds: ug/L (ppb)

Hexane <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-16-122914	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

 Date Received:
 12/30/14
 Project:
 Ken's Texaco 120061, F&BI 412427

 Date Extracted:
 12/31/14
 Lab ID:
 412427-02

Date Analyzed: 12/31/14 Data File: 123115.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	85	117
Toluene-d8	97	93	107
4-Bromofluorobenzene	100	76	126

Concentration

Compounds: ug/L (ppb)

Hexane 7.2 Naphthalene 8.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-13-122914	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427

Date Extracted: 12/31/14 Lab ID: 412427-03 Date Analyzed: Data File: 12/31/14 123116.D Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 102 85 117 Toluene-d8 98 93 107 4-Bromofluorobenzene 101 76 126

Concentration

Compounds: ug/L (ppb)

Hexane <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 412427

Date Extracted: 12/31/14 Lab ID: 04-2578 mb 12/31/14 Data File: Date Analyzed: 123108.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 103 85 117 Toluene-d8 98 93 107 4-Bromofluorobenzene 99 76 126

Concentration

Compounds: ug/L (ppb)

Hexane <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-15-122914 Client: Aspect Consulting, LLC

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427

 Date Extracted:
 01/05/15
 Lab ID:
 412427-01

 Date Analyzed:
 01/05/15
 Data File:
 008F0801.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 6.3

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-16-122914 Client: Aspect Consulting, LLC

Date Received: 12/30/14 Project: Ken's Texaco 120061, F&BI 412427

 Date Extracted:
 01/05/15
 Lab ID:
 412427-02

 Date Analyzed:
 01/05/15
 Data File:
 009F0901.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 63

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 412427

 Date Extracted:
 01/05/15
 Lab ID:
 05-002 mb

 Date Analyzed:
 01/05/15
 Data File:
 007F0701.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/30/14

Project: Ken's Texaco 120061, F&BI 412427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

•	•	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	99	99	65-118	0
Toluene	ug/L (ppb)	50	101	101	72-122	0
Ethylbenzene	ug/L (ppb)	50	105	104	73-126	1
Xylenes	ug/L (ppb)	150	102	102	74-118	0
Gasoline	ug/L (ppb)	1,000	102	96	69-134	6

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/30/14

Project: Ken's Texaco 120061, F&BI 412427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	3	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	82	85	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/30/14

Project: Ken's Texaco 120061, F&BI 412427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 412427-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Manganese	ug/L (ppb)	20	847	176 b	0 b	47-155	200 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Manganese	ug/L (ppb)	20	106	76-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/30/14

Project: Ken's Texaco 120061, F&BI 412427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 412406-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	4.27	106	102	79-121	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/30/14

Project: Ken's Texaco 120061, F&BI 412427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 412442-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Hexane	ug/L (ppb)	50	24	88 b	61-127
Naphthalene	ug/L (ppb)	50	12	106 b	63-136

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	ug/L (ppb)	50	91	88	51-153	3
Naphthalene	ug/L (ppb)	50	106	108	75-131	2

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/30/14

Methane

Project: Ken's Texaco 120061, F&BI 412427

ug/L (ppb)

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 412442-02 (Duplicate)

	Reporting Units	Sampl		plicate	Relative Percent Difference			
Analyte		Result	t R	esult	(Limit 20)			
Methane	ug/L (ppb)	<5		<5	nm			
Laboratory Code: Laboratory Control Sample								
			Percent	Percent				
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD		
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)		

78

69

60

50-150

14

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jan 13 2015 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Dear MICHAEL ERDAHL:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW-15-122914	Water	14-A020108	MIN, NUT, MET
MW-16-122914	Water	14-A020109	MIN, NUT, MET

Your samples were received on Tuesday, December 30, 2014. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Project #: 412427 PO Number: D-347

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

Am Test Inc.

13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Attention: MICHAEL ERDAHL

Project #: 412427 PO Number: D-347

All results reported on an as received basis.

Date Received: 12/30/14 Date Reported: 1/13/15

AMTEST Identification Number 14-A020108
Client Identification MW-15-122914
Sampling Date 12/29/14, 12:59

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ferrous Iron	< 0.01	mg/l		0.01	SM 3500Fe D	BP	12/30/14

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	120	mg/l		1	SM 2320B	BP	01/07/15
Sulfate	3.67	mg/l		0.1	EPA 300.0	MR	12/30/14

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite Nitrogen	0.002	mg/l		0.001	SM 4500-NO2 B	BP	12/30/14
Nitrate Nitrogen	< 0.02	mg/l		0.01	Calculated		
Nitrate + Nitrite	< 0.02	mg/l		0.02	EPA 353.2	MR	01/08/15

Friedman & Bruya, Inc. Project Name: AmTest ID: 14-A020109

AMTEST Identification Number Client Identification Sampling Date

14-A020109 MW-16-122914 12/29/14, 11:20

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ferrous Iron	1.57	mg/l		0.01	SM 3500Fe D	BP	12/30/14

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	140	mg/l		1	SM 2320B	BP	01/07/15
Sulfate	5.97	mg/l		0.1	EPA 300.0	MR	12/30/14

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite Nitrogen	0.016	mg/l		0.001	SM 4500-NO2 B	BP	12/30/14
Nitrate Nitrogen	0.88	mg/l		0.01	Calculated		
Nitrate + Nitrite	0.90	mg/l		0.02	EPA 353.2	MR	01/08/15

Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 14-A020108 to 14-A020109

DUPLICATES

SAMPLE#	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
14-A020079	Alkalinity (as CaCO3)	mg/l	480	490	2.1
14-A020112	Sulfate	mg/l	2.24	2.41	7.3

MATRIX SPIKES

SAMPLE#	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
15-A000145	Nitrate + Nitrite	mg/l	< 0.02	0.40	0.50	80.00 %
15-A000145	Nitrate + Nitrite	mg/l	< 0.02	0.41	0.50	82.00 %
15-A000228	Nitrate + Nitrite	mg/l	0.070	0.50	0.50	86.00 %
15-A000228	Nitrate + Nitrite	mg/l	0.070	0.50	0.50	86.00 %
15-A000238	Nitrate + Nitrite	mg/l	< 0.02	0.46	0.50	92.00 %
15-A000238	Nitrate + Nitrite	mg/l	< 0.02	0.46	0.50	92.00 %
15-A000029	Nitrate + Nitrite	mg/l	4.0	8.9	5.0	98.00 %
15-A000029	Nitrate + Nitrite	mg/l	4.0	9.3	5.0	106.00 %
14-A020108	Nitrite Nitrogen	mg/l	0.002	0.030	0.027	103.70 %
14-A020108	Nitrite Nitrogen	mg/l	0.002	0.030	0.027	103.70 %
14-A020112	Sulfate	mg/l	2.24	4.45	2.00	110.50 %

MATRIX SPIKE DUPLICATES

SAMPLE#	ANALYTE	UNITS	SAMPLE + SPK	MSD VALUE	RPD
Spike	Nitrate + Nitrite	mg/l	0.40	0.41	2.5
Spike	Nitrate + Nitrite	mg/l	0.50	0.50	0.00
Spike	Nitrate + Nitrite	mg/l	0.46	0.46	0.00
Spike	Nitrate + Nitrite	mg/l	8.9	9.3	4.4
Spike	Nitrite Nitrogen	mg/l	0.030	0.030	0.00

STANDARD REFERENCE MATERIALS

UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY						
mg/l	240	220	91.7 %						
mg/l	0.50	0.49	98.0 %						
	0.50	0.50	100. %						
mg/l	0.50	0.51	102. %						
mg/l	0.50	0.49	98.0 %						
mg/l	0.040	0.042	105. %						
mg/l	2.00	1.99	99.5 %						
mg/l	0.50	0.52	104. %						
	mg/l mg/l mg/l mg/l mg/l mg/l	mg/l 240 mg/l 0.50 mg/l 0.50 mg/l 0.50 mg/l 0.50 mg/l 0.040 mg/l 2.00	mg/l 240 220 mg/l 0.50 0.49 mg/l 0.50 0.50 mg/l 0.50 0.51 mg/l 0.50 0.49 mg/l 0.040 0.042 mg/l 2.00 1.99						

BLANKS

ANALYTE	UNITS	RESULT
Alkalinity (as CaCO3)	mg/l	< 1
Nitrate + Nitrite	mg/l	< 0.02
Nitrate + Nitrite	mg/l	< 0.02

BLANKS continued....

ANALYTE	UNITS	RESULT
Nitrate + Nitrite	mg/l	< 0.02
Nitrate + Nitrite	mg/l	< 0.02
Nitrite Nitrogen	mg/l	< 0.001
Sulfate	mg/l	< 0.1
Ferrous Iron	mg/l	< 0.01

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

Send Report To N	<u> Iichael</u>	Erdahl						A	mtes	T -					T	URNA	ROUND TI	ME
CompanyF	riedmai	an and Bruya, Inc. PROJECT NAME/NO. PO#							Standard (2 Weeks)									
Address 3	012·16t	h Ave W				41	242	4	•		D-7	347		F	Rush charges authorized by:			
City, State, ZIP_S	<u>eattle, V</u>	WA 98119	****		REN	IARKS				•							E DISPOS. r 30 days	AL
Phone # (206) 285	-8282	Fax # <u>(2</u> 6	06) 283-5044			Please Email Results						☐ Return samples ☐ Will call with instructions						
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	rix	# of jars	Dioxirs and Furans by 8290	ВРН	VPH	Nitrate	Sulfate	Alkalinity	Nitak/Mitak	Frank			No ·	tes
MW-15-172914	20108	12/29/14	1259	wate	, ess						X	×	×	×				
MW-16-122914	20109	V	1120	l v	/						¥	¥	X	×			·	
		·											·					

Friedman & Bruya	, Inc.		SIGNATURE	•	,,,,,,			PRINT	'NAM	E			CO	MPA	NY	T	DATE	TIME

3012 16th Avenue West
Seattle, WA 98119-2029
Ph. (206) 285-8282
Far (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Michael Erdahl	Friedman & Bruya	12/30/14	10:20
Received by:		`\.	1	
Relinquished by:				
Received by: Andrea Dolls			12/30/14	场· 1:20

412427				SAMPLE (CHAIN ()F (CUS	STO	DY	Μ	E,	12/3	0/1	1 14		AIG/AOY)
Send Report To		ongle sulfi		1	ERS (SIE) CT NAME UNS TO	•		200	061		3	O#		□ Sta	andard JSH	#of
City, State, ZIP	H1-e,	, WA. '	90104	REMAI	RKS				NA. Ç	ALYS	SES R	EQUE:	STED	□ Re □ Wi	spose turn s	IPLE DISPOSAL after 30 days amples with instructions
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	SCHOOL SWEET	Suttite	Naphulene	Hexane	Methy fre	Nitrate Mit	Terroux Iran	Notes
MW-15-197914	11/1-	inhale:	1259	11 19	15	V				k /			X			

KL. M4 12/30/14

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044
FORMSICOCICOC.DOC

PRINT NAME	COMPANY	DATE	TIME
Breean Immorman	Assect Consulta	12/29/14	1440
Whan Phan	FIBI	10/30/14	1000
			·
	Breean Emmerman	Breean Finnerman Aspect Consulty	Breean Finnerman Aspect Consulty 12/29/14

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 15, 2015

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on December 31, 2014 from the Ken's Texaco 120061, F&BI 412442 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP0115R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 31, 2014 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 412442 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
412442 -01	MW-11-123014
412442 -02	MW-12-123014

The samples were sent to Amtest for sulfate, nitrate and nitrite as N, ferrous iron and alkalinity analyses. Review of the enclosed report indicates that all quality assurance were acceptable.

The dissolved manganese samples were filtered at Friedman and Bruya on December 31, 2014 at 0917. The data were flagged accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/31/14

Project: Ken's Texaco 120061, F&BI 412442

Date Extracted: 12/31/14 Date Analyzed: 12/31/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-11-123014 412442-01	40	12	59	50	1,900	120
MW-12-123014 412442-02	<1	<1	<1	<3	<100	103
Method Blank 04-2559 MB	<1	<1	<1	<3	<100	108

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/31/14

Project: Ken's Texaco 120061, F&BI 412442

Date Extracted: 01/02/15 Date Analyzed: 01/02/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 51-134)
MW-11-123014 412442-01	1,100 x	540 x	121
MW-12-123014 412442-02	55 x	<250	110
Method Blank	< 50	<250	107

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-11-123014 f Client: Aspect Consulting, LLC

Date Received: 12/31/14 Project: Ken's Texaco 120061, F&BI 412442

Date Extracted: 12/31/14 Lab ID: 412442-01 x10
Date Analyzed: 01/06/15 Data File: 412442-01 x10.014

Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: AP

Germanium 97 60 125

Concentration

Analyte: ug/L (ppb)

Manganese 17,900

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-12-123014 f Client: Aspect Consulting, LLC

Date Received: 12/31/14 Project: Ken's Texaco 120061, F&BI 412442

 Date Extracted:
 12/31/14
 Lab ID:
 412442-02

 Date Analyzed:
 01/06/15
 Data File:
 412442-02.011

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Germanium 89 60 125

Concentration

Analyte: ug/L (ppb)

Manganese 216

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 412442

Date Extracted: 12/31/14 Lab ID: I4-832 mb
Date Analyzed: 01/06/15 Data File: I4-832 mb.009
Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Germanium 97 60 125

Concentration

Analyte: ug/L (ppb)

Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-11-123014 Client: Aspect Consulting, LLC

Date Received: 12/31/14 Project: Ken's Texaco 120061, F&BI 412442

 Date Extracted:
 01/02/15
 Lab ID:
 412442-01

 Date Analyzed:
 01/02/15
 Data File:
 412442-01.056

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 91 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 412442

Date Extracted: 01/02/15 Lab ID: I5-001 mb Data File: I5-001 mb.011 Date Analyzed: 01/02/15 Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: AP

Lower Upper **Internal Standard:** % Recovery: Limit: Limit:

Holmium 99 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-123014	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 12/31/14 Project: Ken's Texaco 120061, F&BI 412442
Date Extracted: 12/31/14 Lab ID: 412442-01

Date Analyzed: 12/31/14 Data File: 123117.D

Matrix: Water Instrument: GCMS9

Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 101 85 117 99 Toluene-d8 93 107 4-Bromofluorobenzene 99 76 126

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 412442

Date Extracted: 12/31/14 Lab ID: 04-2578 mb 12/31/14 Data File: Date Analyzed: 123108.D Matrix: GCMS9 Water Instrument: Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 103 85 117 Toluene-d8 98 93 107 4-Bromofluorobenzene 99 76 126

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-11-123014 Client: Aspect Consulting, LLC

Date Received: 12/31/14 Project: Ken's Texaco 120061, F&BI 412442

 Date Extracted:
 01/05/15
 Lab ID:
 412442-01

 Date Analyzed:
 01/05/15
 Data File:
 010F1001.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 270

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-12-123014 Client: Aspect Consulting, LLC

Date Received: 12/31/14 Project: Ken's Texaco 120061, F&BI 412442

 Date Extracted:
 01/05/15
 Lab ID:
 412442-02

 Date Analyzed:
 01/05/15
 Data File:
 011F1101.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 412442

Date Extracted: 01/05/15 Lab ID: 05-002 mb
Date Analyzed: 01/05/15 Data File: 007F0701.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/31/14

Project: Ken's Texaco 120061, F&BI 412442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

•	•	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	99	99	65-118	0
Toluene	ug/L (ppb)	50	101	101	72-122	0
Ethylbenzene	ug/L (ppb)	50	105	104	73-126	1
Xylenes	ug/L (ppb)	150	102	102	74-118	0
Gasoline	ug/L (ppb)	1,000	102	96	69-134	6

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/31/14

Project: Ken's Texaco 120061, F&BI 412442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

·	·	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	107	58-134	7

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/31/14

Project: Ken's Texaco 120061, F&BI 412442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 412442-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Manganese	ug/L (ppb)	20	216	187 b	112 b	47-155	50 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Manganese	ug/L (ppb)	20	119	76-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/31/14

Project: Ken's Texaco 120061, F&BI 412442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 412406-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	4.27	106	102	79-121	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/31/14

Project: Ken's Texaco 120061, F&BI 412442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 412442-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	91	78-113

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	93	92	79-109	1

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/15 Date Received: 12/31/14

Methane

Project: Ken's Texaco 120061, F&BI 412442

ug/L (ppb)

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 412427-02 (Duplicate)

Analyte	Reporting Units	Sampl Result		plicate esult	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	<5		<5	nm	
Laboratory Code:	Laboratory Control	Sample	ъ.	.		
	D 41 - II 4	C 11	Percent	Percent	Α .	DDD
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)

69

78

60

50-150

14

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jan 13 2015 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Dear MICHAEL ERDAHL:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW-11-123014	Water	14-A020140	MIN, NUT, MET
MW-12-123014	Water	14-A020141	MIN, NUT, MET

Your samples were received on Wednesday, December 31, 2014. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Project #: 412442 PO Number: D-347

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

Am Test Inc.

13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Attention: MICHAEL ERDAHL

Project #: 412442 PO Number: D-347

All results reported on an as received basis.

Date Received: 12/31/14 Date Reported: 1/13/15

AMTEST Identification Number 14-A020140
Client Identification MW-11-123014
Sampling Date 12/30/14, 11:30

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ferrous Iron	0.10	mg/l		0.01	SM 3500Fe D	BP	01/05/15

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	1100	mg/l		1	SM 2320B	BP	01/07/15
Sulfate	5.84	mg/l		0.1	EPA 300.0	MR	12/31/14

Nutrients

100000000000000000000000000000000000000							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite Nitrogen	< 0.001	mg/l		0.001	SM 4500-NO2 B	AB	12/31/14
Nitrate Nitrogen	< 0.02	mg/l		0.01	Calculated		
Nitrate + Nitrite	< 0.02	mg/l		0.02	EPA 353.2	MR	01/08/15

Friedman & Bruya, Inc. Project Name: AmTest ID: 14-A020141

AMTEST Identification Number Client Identification Sampling Date

14-A020141 MW-12-123014 12/30/14, 12:31

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ferrous Iron	< 0.01	mg/l		0.01	SM 3500Fe D	BP	01/05/15

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	260	mg/l		1	SM 2320B	BP	01/07/15
Sulfate	11.8	mg/l		0.1	EPA 300.0	MR	12/31/14

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite Nitrogen	< 0.001	mg/l		0.001	SM 4500-NO2 B	AB	12/31/14
Nitrate Nitrogen	0.62	mg/l		0.01	Calculated		
Nitrate + Nitrite	0.62	mg/l		0.02	EPA 353.2	MR	01/08/15

Aaron W. Young Laboratory Manager Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 14-A020140 to 14-A020141

DUPLICATES

SAMPLE#	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
14-A020079	Alkalinity (as CaCO3)	mg/l	480	490	2.1
14-A020141	Sulfate	mg/l	11.8	11.8	0.00

MATRIX SPIKES

SAMPLE#	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
15-A000145	Nitrate + Nitrite	mg/l	< 0.02	0.40	0.50	80.00 %
15-A000145	Nitrate + Nitrite	mg/l	< 0.02	0.41	0.50	82.00 %
15-A000228	Nitrate + Nitrite	mg/l	0.070	0.50	0.50	86.00 %
15-A000228	Nitrate + Nitrite	mg/l	0.070	0.50	0.50	86.00 %
15-A000238	Nitrate + Nitrite	mg/l	< 0.02	0.46	0.50	92.00 %
15-A000238	Nitrate + Nitrite	mg/l	< 0.02	0.46	0.50	92.00 %
15-A000029	Nitrate + Nitrite	mg/l	4.0	8.9	5.0	98.00 %
15-A000029	Nitrate + Nitrite	mg/l	4.0	9.3	5.0	106.00 %
14-A020141	Nitrite Nitrogen	mg/l	< 0.001	0.026	0.026	100.00 %
14-A020141	Nitrite Nitrogen	mg/l	< 0.001	0.026	0.026	100.00 %
14-A020141	Sulfate	mg/l	11.8	24.0	12.0	101.67 %
14-A020141	Ferrous Iron	mg/l	< 0.01	0.47	0.50	94.00 %
14-A020141	Ferrous Iron	mg/l	< 0.01	0.47	0.50	94.00 %

MATRIX SPIKE DUPLICATES

SAMPLE#	ANALYTE	UNITS	SAMPLE + SPK	MSD VALUE	RPD
Spike	Nitrate + Nitrite	mg/l	0.40	0.41	2.5
Spike	Nitrate + Nitrite	mg/l	0.50	0.50	0.00
Spike	Nitrate + Nitrite	mg/l	0.46	0.46	0.00
Spike	Nitrate + Nitrite	mg/l	8.9	9.3	4.4
Spike	Nitrite Nitrogen	mg/l	0.026	0.026	0.00
Spike	Ferrous Iron	mg/l	0.47	0.47	0.00

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Alkalinity (as CaCO3)	mg/l	240	220	91.7 %
Nitrate + Nitrite	mg/l	0.50	0.49	98.0 %
Nitrate + Nitrite	mg/l	0.50	0.50	100. %
Nitrate + Nitrite	mg/l	0.50	0.51	102. %
Nitrate + Nitrite	mg/l	0.50	0.49	98.0 %
Nitrite Nitrogen	mg/l	0.040	0.044	110. %
Sulfate	mg/l	2.00	1.89	94.5 %
Ferrous Iron	mg/l	0.50	0.48	96.0 %

BLANKS

ANALYTE	UNITS	RESULT
Alkalinity (as CaCO3)	mg/l	< 1
Nitrate + Nitrite	mg/l	< 0.02
Nitrate + Nitrite	mg/l	< 0.02
Nitrate + Nitrite	mg/l	< 0.02
Nitrate + Nitrite	mg/l	< 0.02
Nitrite Nitrogen	mg/l	< 0.001
Sulfate	mg/l	< 0.1
Ferrous Iron	mg/l	< 0.01

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To N	/lichael	Erdahl			SUE	BCONT	RACTE	er A	ntes	. (-							Of ROUND TI	
Company F			. Inc.		PRO	JECT 1	NAME	NO.				PO#		×	Stand RUSE	ard (2	Weeks)	
		h Ave W				412	442				17-3	47					uthorized b	y:
City, State, ZIP_S Phone #_ (206) 285	eattle, V	WA 98119	06) 283-5044		REMARKS Please Email Results							SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions						
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	crix	# of jars	Dioxins and Furans by 8290	БРН	VPH	Nikiler Nitrateasn	Sulfate	Alkalinity	Flras				No ·	tes ,
mw-11-123014	20140	12/30/19	1130	water						メ	X	X	×					
MW-12-123014	20141	, †	1231	1						×	ゝ	×	X					
		· · · · · · · · · · · · · · · · · · ·			·-·													
4																		
																		i
Water Control of the		·																
WS-IIII (Color Marcon M																		
·																		
Friedman & Bruna	Tnc [SIGNIATURE		-		т.	DINT	TARA	no.			00	NATO A N	TX7	1	DAME	TITA (TI

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by	Michael Erdahl	Friedman & Bruya	12/31/14	930
Received by: Julya Botts			12/31/14	10:20
Relinquished by:				
Received by:				

412442	SAMPLE CHAIN OF CUSTODY	ME 1	2/3//19 1 3/
Send Report To Kirsi Longley Company Aspect Consulting	PROJECT NAME/NO. Kens Texaco/120061	PO#	Page # of
Address 401 2nd Ave. S City, State, ZIP Seaffle, WA 9910 Phone (206) 812 4746 Fax #	REMARKS		SAMPLE DISPOSAL ☐ Dispose after 30 days ☐ Return samples
	ANALYS	SES REQUESTE	Will call with instructions

		· · · · · · · · · · · · · · · · · · ·				T				 	70TO	NEO.			<u> </u>				
	T	T			r	-	r—	г —	A	NAL	SES	KEQU	EST	Ŧ9)	· .				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	THE PERSON NAMED IN	EDC	Total lead	Alkalinita.	With afe KNVTA as Kithagen	Salfale	Ferrans lian		Notes	
MW-11-123014	01 7	12/30/14	1/30	#20	15	X	X	X		ΧX		X	X	X	X	X	11		
MW-11-123014 MW-12-123014 Empty Bothes	02K	1	1231	J	//	X	X	X		$\langle V \rangle$			X	X	X	X	AHe	reed	lab
Empty Bothes	-	NA	N/A	None	13														
			•																
													ادر	nple) [100	elve.	at	_•c	
												I							

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Brecan Timmerman	Aspect Consul		
mily Cum	Whan Phan		12/3/14	0800
Relinquished by:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 10, 2015

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms. Longley:

Included are the results from the testing of material submitted on March 26, 2015 from the Ken's Texaco 120061, F&BI 503492 project. There are 36 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman

ASP0410R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 26, 2015 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 503492 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
503492 -01	MW13-032515
503492 -02	MW14-032515
503492 -03	MW10-032515
503492 -04	MW12-032515
503492 -05	MW11-032515
503492 -06	Trip Blank
503492 -07	MW-1-032515
503492 -08	MW-7-032515
503492 -09	MW-8-032515
503492 -10	MW-15-032515
503492 -11	MW-16-032515
503492 -12	MW-55-032515

Samples MW12-032515, MW11-032515, MW-15-032515, and MW-16-032515 were sent to Amtest for ferrous iron, alkalinity, sulfate, and nitrate and nitrite as N analyses. Review of the enclosed report indicates that all quality assurance were acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/27/15 Date Analyzed: 03/27/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW13-032515 503492-01	<100	95
MW14-032515 503492-02	<100	97
MW10-032515 503492-03	100	96
MW11-032515 503492-05	1,600	129
MW-8-032515 503492-09	2,300	130
MW-16-032515 503492-11	470	110
Method Blank 05-599 MB	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/27/15 Date Analyzed: 03/27/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW12-032515 503492-04	<1	<1	<1	<3	<100	87
Trip Blank 503492-06	<1	<1	<1	<3	<100	82
MW-1-032515 503492-07	2.8	12	6.3	18	1,800	108
MW-7-032515 503492-08	1.6	5.6	2.5	5.1	740	93
MW-15-032515 503492-10	<1	<1	<1	<3	<100	87
MW-55-032515 503492-12	1.3	<1	15	<3	550	93
Method Blank 05-599 MB	<1	<1	<1	<3	<100	86

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/26/15 Date Analyzed: 03/26/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW13-032515 503492-01	<50	<250	105
MW14-032515 503492-02	< 50	<250	91
MW10-032515 503492-03	< 50	<250	98
MW12-032515 503492-04	61 x	<250	102
MW11-032515 503492-05	720 x	330 x	94
MW-1-032515 503492-07	330 x	<250	100
MW-7-032515 503492-08	250 x	<250	91
MW-8-032515 503492-09	470 x	<250	97
MW-15-032515 503492-10	<50	<250	90
MW-16-032515 503492-11	120 x	<250	94
Method Blank 05-626 MB	<50	<250	90

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW12-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

 Date Extracted:
 03/31/15
 Lab ID:
 503492-04

 Date Analyzed:
 04/01/15
 Data File:
 503492-04.066

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: ML

Germanium 83 60 125

Concentration

Analyte: ug/L (ppb)

Manganese 1,070

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW11-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/31/15 Lab ID: 503492-05 x10
Date Analyzed: 04/06/15 Data File: 503492-05 x10.010

Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: ML

Lower Upper

Internal Standard: % Recovery: Limit: Limit: Germanium 95 60 125

Concentration

Analyte: ug/L (ppb)

Manganese 25,800

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-15-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

 Date Extracted:
 03/31/15
 Lab ID:
 503492-10

 Date Analyzed:
 04/01/15
 Data File:
 503492-10.068

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: ML

Germanium 95 60 125

Concentration

Analyte: ug/L (ppb)

Manganese 1,730

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-16-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/31/15 Lab ID: 503492-11 Data File: 503492-11.069 Date Analyzed: 04/01/15 Matrix: Instrument: ICPMS1 Water

Units: ug/L (ppb) Operator: ML

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Germanium 94 60 125

Concentration

Analyte: ug/L (ppb)

Manganese 3,100

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/31/15 Lab ID: I5-188 mb Data File: I5-188 mb.060 Date Analyzed: 04/01/15 Matrix: Instrument: ICPMS1 Water

Units: ug/L (ppb) Operator: ML

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Germanium 98 60 125

Concentration

Analyte: ug/L (ppb)

Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW11-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/26/15 Lab ID: 503492-05 Data File: 503492-05.069 Date Analyzed: 03/27/15 Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: ML

Lower Upper **Internal Standard:** % Recovery: Limit: Limit:

Holmium 86 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-8-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/26/15 Lab ID: 503492-09 Data File: 503492-09.070 Date Analyzed: 03/27/15 Matrix: Water Instrument: ICPMS1 Units: ML

ug/L (ppb) Operator:

Lower Upper **Internal Standard:** % Recovery: Limit: Limit: 125

Holmium 95 60

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-16-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

 Date Extracted:
 03/26/15
 Lab ID:
 503492-11

 Date Analyzed:
 03/27/15
 Data File:
 503492-11.071

 Matrix:
 Water
 Instrument:
 ICPMS1

Units: ug/L (ppb) Operator: ML

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 97 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/26/15 Lab ID: I5-178 mb
Date Analyzed: 03/27/15 Data File: I5-178 mb.064
Matrix: Water Instrument: ICPMS1

Units: ug/L (ppb) Operator: ML

Holmium 99 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW10-032515	Client:	Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492 Date Extracted: 03/26/15 Lab ID: 503492-03 Data File: Date Analyzed: 032707.D 03/27/15 Matrix: Water Instrument: GCMS4

Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

Concentration

1.9

Compounds:	ug/L (ppb)
1,2-Dichloroethane (EDC)	<1
Benzene	3.0
Toluene	1.0
Ethylbenzene	7.0
m,p-Xylene	8.2
o-Xylene	<1

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW11-032515	Client:	Aspect Consulting, LLC
D . D . 1	00/00/4 =	ъ .	TZ 1 TE 400004 TO

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492 Date Extracted: 03/26/15 Lab ID: 503492-05 Data File: Date Analyzed: 03/27/15 032710.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	98	60	133

Concentration

Compounds:	ug/L (ppb)
1,2-Dichloroethane (EDC)	<1
Benzene	35
Toluene	4.2
Ethylbenzene	50
m,p-Xylene	39
o-Xylene	3.4
Naphthalene	9.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-8-032515	Client:	Aspect Consulting, LLC

Project: Date Received: 03/26/15 Ken's Texaco 120061, F&BI 503492 Date Extracted: 03/26/15 Lab ID: 503492-09 Data File: Date Analyzed: 03/27/15 032708.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	96	60	133

Concentration

Compounds:	ug/L (ppb)	
1,2-Dichloroethane (EDC)	<1	
Benzene	56	
Toluene	38	
Ethylbenzene	160 ve	
m,p-Xylene	220	
o-Xylene	31	
Naphthalene	37	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-8-032515	Client:	Aspect Consulting, LLC
-------------------	-------------	---------	------------------------

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492
Date Extracted: 03/26/15 Lab ID: 503492-09 1/10

Date Extracted. 03/20/15 Lab ld. 503492-09 1/10

Date Analyzed: 03/27/15 Data File: 032711.D

Matrix: Water Instrument: GCMS7

Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	94	108
Toluene-d8	100	91	107
4-Bromofluorobenzene	98	91	110

Compounds:	ug/L (ppb)
1,2-Dichloroethane (EDC)	<10
Benzene	56
Toluene	34
Ethylbenzene	150
m,p-Xylene	200
o-Xylene	27
Naphthalene	32

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/26/15 Lab ID: 05-0609 mb 03/26/15 Data File: Date Analyzed: 032607.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	ug/L (ppb)
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW13-032515	Client:	Aspect Consulting, LLC
		_	

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492 Date Extracted: 03/26/15 Lab ID: 503492-01 Data File: 032705.D Date Analyzed: 03/27/15 Matrix: Water Instrument: GCMS4

Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	ug/L (ppb)
Hexane	<1
Benzene	< 0.35
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Ethylbenzene	<1
Methyl t-butyl ether (MTBE)	<1
Naphthalene	<1
Toluene	<1
1,2,4-Trimethylbenzene	<1
1,3,5-Trimethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW14-032515	Client:	Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492 Date Extracted: 03/26/15 Lab ID: 503492-02 Data File: Date Analyzed: 03/27/15 032706.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	ug/L (ppb)
Hexane	<1
Benzene	< 0.35
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Ethylbenzene	<1
Methyl t-butyl ether (MTBE)	<1
Naphthalene	<1
Toluene	<1
1,2,4-Trimethylbenzene	<1
1,3,5-Trimethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
•	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-15-032515	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492 Date Extracted: 03/26/15 Lab ID: 503492-10 Data File: Date Analyzed: 03/27/15 032709.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	ug/L (ppb)
Hexane	<1
Benzene	< 0.35
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Ethylbenzene	<1
Methyl t-butyl ether (MTBE)	<1
Naphthalene	<1
Toluene	<1
1,2,4-Trimethylbenzene	<1
1,3,5-Trimethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
•	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-16-032515	Client:	Aspect Consulting, LL	.C

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492 Date Extracted: 03/26/15 Lab ID: 503492-11 Date Analyzed: Data File: 032609.D 03/26/15 Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	95	60	133

Concentration ug/L (ppb) Hexane 3.2Benzene < 0.35

1,2-Dibromoethane (EDB) <1 1,2-Dichloroethane (EDC) <1 Ethylbenzene 14 Methyl t-butyl ether (MTBE) <1 Naphthalene 8.3 Toluene <1 1,2,4-Trimethylbenzene <1 1,3,5-Trimethylbenzene 1.4 m,p-Xylene <2 o-Xylene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 503492

Date Extracted: 03/26/15 Lab ID: 05-0609 mb 03/26/15 Data File: Date Analyzed: 032607.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	ug/L (ppb)
Hexane	<1
Benzene	< 0.35
1,2-Dibromoethane (EDB)	<1
1,2-Dichloroethane (EDC)	<1
Ethylbenzene	<1
Methyl t-butyl ether (MTBE)	<1
Naphthalene	<1
Toluene	<1
1,2,4-Trimethylbenzene	<1
1,3,5-Trimethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW12-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

 Date Extracted:
 04/02/15
 Lab ID:
 503492-04

 Date Analyzed:
 04/02/15
 Data File:
 006F0601.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 17

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW11-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

 Date Extracted:
 04/03/15
 Lab ID:
 503492-05 1/10

 Date Analyzed:
 04/03/15
 Data File:
 003F0301.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 450

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-15-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

 Date Extracted:
 04/02/15
 Lab ID:
 503492-10

 Date Analyzed:
 04/02/15
 Data File:
 008F0801.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-16-032515 Client: Aspect Consulting, LLC

Date Received: 03/26/15 Project: Ken's Texaco 120061, F&BI 503492

 Date Extracted:
 04/02/15
 Lab ID:
 503492-11

 Date Analyzed:
 04/02/15
 Data File:
 009F0901.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 73

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 503492

 Date Extracted:
 04/02/15
 Lab ID:
 05-0648 mb

 Date Analyzed:
 04/02/15
 Data File:
 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503492-05 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	52	46	11
Toluene	ug/L (ppb)	10	11	3
Ethylbenzene	ug/L (ppb)	54	56	4
Xylenes	ug/L (ppb)	45	47	3
Gasoline	ug/L (ppb)	1,600	1,700	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	88	65-118
Toluene	ug/L (ppb)	50	89	72-122
Ethylbenzene	ug/L (ppb)	50	89	73-126
Xylenes	ug/L (ppb)	150	88	74-118
Gasoline	ug/L (ppb)	1,000	97	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	· ·	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	78	86	61-133	10

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 503424-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Manganese	ug/L (ppb)	20	118	124	124	47-155	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Manganese	ug/L (ppb)	20	118	89-123

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 503477-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	94	95	79-121	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	103	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503492-11 (Matrix Spike)

			Percent	
Reporting	Spike	Sample	Recovery	Acceptance
Units	Level	Result	MS	Criteria
ug/L (ppb)	50	<1	91	69-133
ug/L (ppb)	50	< 0.35	95	76-125
ug/L (ppb)	50	<1	103	76-122
ug/L (ppb)	50	14	99 b	69-135
ug/L (ppb)	100	<2	100	69-135
ug/L (ppb)	50	<1	101	60-140
ug/L (ppb)	50	8.3	107	44-164
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 100 ug/L (ppb) 50	Units Level Result ug/L (ppb) 50 <1	Reporting Units Spike Level Level Sample Recovery Result Recovery MS ug/L (ppb) 50 <1

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	94	91	73-132	3
Benzene	ug/L (ppb)	50	99	95	69-134	4
Toluene	ug/L (ppb)	50	107	104	72-122	3
Ethylbenzene	ug/L (ppb)	50	103	100	77-124	3
m,p-Xylene	ug/L (ppb)	100	104	101	83-125	3
o-Xylene	ug/L (ppb)	50	104	102	81-121	2
Naphthalene	ug/L (ppb)	50	111	108	64-133	3

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503492-11 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Hexane	ug/L (ppb)	50	3.2	101	52-150
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	93	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	91	69-133
Benzene	ug/L (ppb)	50	< 0.35	95	76-125
Toluene	ug/L (ppb)	50	<1	103	76-122
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	103	69-134
Ethylbenzene	ug/L (ppb)	50	14	99 b	69-135
m,p-Xylene	ug/L (ppb)	100	<2	100	69-135
o-Xylene	ug/L (ppb)	50	<1	101	60-140
1,3,5-Trimethylbenzene	ug/L (ppb)	50	1.4	101	66-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	99	59-146
Naphthalene	ug/L (ppb)	50	8.3	107	44-164

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	ug/L (ppb)	50	107	103	57-137	4
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	97	94	64-147	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	94	91	73-132	3
Benzene	ug/L (ppb)	50	99	95	69-134	4
Toluene	ug/L (ppb)	50	107	104	72-122	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	109	105	82-125	4
Ethylbenzene	ug/L (ppb)	50	103	100	77-124	3
m,p-Xylene	ug/L (ppb)	100	104	101	83-125	3
o-Xylene	ug/L (ppb)	50	104	102	81-121	2
1,3,5-Trimethylbenzene	ug/L (ppb)	50	105	102	78-123	3
1,2,4-Trimethylbenzene	ug/L (ppb)	50	103	100	79-122	3
Naphthalene	ug/L (ppb)	50	111	108	64-133	3

ENVIRONMENTAL CHEMISTS

Date of Report: 04/10/15 Date Received: 03/26/15

Project: Ken's Texaco 120061, F&BI 503492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 503492-11 (Duplicate)

Analyte	Reporting Units	Sample Ro		plicate esult	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	<5		<5	nm	
Laboratory Code:	Laboratory Control	Sample	Donosant	Damanat		
	Reporting Units	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)
Methane	ug/L (ppb)	78	61	65	50-150	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Apr 8 2015 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Dear MICHAEL ERDAHL:

Enclosed please find the analytical data for your 503492 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW12-032515	Water	15-A004124	MIN, NUT, MET
MW11-032515	Water	15-A004125	MIN, NUT, MET
MW15-032515	Water	15-A004126	MIN, NUT, MET
MW16-032515	Water	15-A004127	MIN, NUT, MET

Your samples were received on Thursday, March 26, 2015. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

PO Number: D-449

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand

MIN=Minerals

Am Test Inc.

13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Attention: MICHAEL ERDAHL

Project Name: 503492 PO Number: D-449

All results reported on an as received basis.

Date Received: 03/26/15 Date Reported: 4/8/15

AMTEST Identification Number Client Identification Sampling Date 15-A004124 MW12-032515 03/25/15, 14:35

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ferrous Iron	< 0.01	mg/l		0.01	SM 3500Fe D	BP	03/27/15

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	370	mg/l		1	SM 2320B	BP	04/03/15
Sulfate	11.9	mg/l		0.1	EPA 300.0	MR	03/27/15

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite	< 0.005	mg/l		0.005	EPA 300.0	MR	03/26/15
Nitrate	0.332	mg/l		0.025	EPA 300.0	MR	03/26/15

Friedman & Bruya, Inc. Project Name: 503492 AmTest ID: 15-A004125

AMTEST Identification Number Client Identification Sampling Date

15-A004125 MW11-032515 03/25/15, 15:45

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ferrous Iron	6.35	mg/l		0.01	SM 3500Fe D	BP	03/27/15

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	1200	mg/l		1	SM 2320B	BP	04/03/15
Sulfate	5.70	mg/l		0.1	EPA 300.0	MR	03/26/15

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite	< 0.005	mg/l		0.005	EPA 300.0	MR	03/26/15
Nitrate	< 0.025	mg/l		0.025	EPA 300.0	MR	03/26/15

Friedman & Bruya, Inc. Project Name: 503492 AmTest ID: 15-A004126

AMTEST Identification Number Client Identification Sampling Date 15-A004126 MW15-032515 03/25/15, 15:44

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ferrous Iron	< 0.01	mg/l		0.01	SM 3500Fe D	BP	03/27/15

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	130	mg/l		1	SM 2320B	BP	04/03/15
Sulfate	2.29	mg/l		0.1	EPA 300.0	MR	03/26/15

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite	< 0.005	mg/l		0.005	EPA 300.0	MR	03/26/15
Nitrate	< 0.025	mg/l		0.025	EPA 300.0	MR	03/26/15

Friedman & Bruya, Inc. Project Name: 503492 AmTest ID: 15-A004127

AMTEST Identification Number
Client Identification
Sampling Date
15-A
03/25

15-A004127 MW16-032515 03/25/15, 14:28

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ferrous Iron	3.43	mg/l		0.01	SM 3500Fe D	BP	03/27/15

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	160	mg/l		1	SM 2320B	BP	04/03/15
Sulfate	4.94	mg/l		0.1	EPA 300.0	MR	03/26/15

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite	< 0.005	mg/l		0.005	EPA 300.0	MR	03/26/15
Nitrate	0.821	mg/l		0.025	EPA 300.0	MR	03/26/15

Aaron W. Young Laboratory Manager Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 15-A004124 to 15-A004127

DI	JP	ı	CA	TES
$\boldsymbol{\omega}$	9	_		

SAMPLE#	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
15-A003861	Alkalinity (as CaCO3)	mg/l	56.	56.	0.00

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
15-A004124	Ferrous Iron	mg/l	< 0.01	0.53	0.50	106.00 %
15-A004124	Ferrous Iron	mg/l	< 0.01	0.53	0.50	106.00 %

MATRIX SPIKE DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE + SPK	MSD VALUE	RPD
Spike	Ferrous Iron	mg/l	0.53	0.53	0.00

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Alkalinity (as CaCO3)	mg/l	240	250	104. %
Nitrate	mg/l	2.00	2.05	102. %
Nitrate	mg/l	2.00	1.82	91.0 %
Nitrite	mg/l	2.00	2.03	102. %
Nitrite	mg/l	2.00	1.85	92.5 %
Sulfate	mg/l	2.00	2.04	102. %
Sulfate	mg/l	2.00	2.07	104. %
Ferrous Iron	mg/l	0.50	0.53	106. %

BLANKS

DEAMING		
ANALYTE	UNITS	RESULT
Nitrate	mg/l	< 0.025
Nitrate	mg/l	< 0.025
Nitrite	mg/l	< 0.005
Nitrite	mg/l	< 0.005
Sulfate	mg/l	< 0.1
Sulfate	mg/l	< 0.1
Ferrous Iron	mg/l	< 0.01

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

a 10 (m)		ווי כר	•		SUE	CONT	RACTI	ER A	mtes			-		_ [Page#		of
Send Report <u>To</u>	<u>iviichael</u>	Erdahl			ממ	JECT :	እነ ለ አለው		hur .6.2	· 		PO#		- ,			ROUND T	IME
Companyl	Friedma	n and Bruya	, Inc.		FAC										ų Stan ∃ RUS.	aara (2 H	Weeks)	
Address	3012·16t	h Ave W		<u></u> .		_	503	192			D-	440	1.		Rush c	narges	authorized	by:
City, State, ZIP_S			00) 909 5044	<u>. </u>	REN	ARKS Ple	ease Eı	nail R	esults			,	- 11 ET WEFE		□ Dispe □ Retu	ose afte rn sam		
Phone #_ (206) 28	5-8 <u>282</u>	rax#(Z	06) 283-5044	<u> </u>										<u>, </u>	⊃ Will	call wi	th instructi	ons
Sample ID	Lab ID	Date Sampled	Time Sampled	Ma	trix	# of jars	Dioxins and Furans by 8290	EPH	Nitakes N VPH	Nitrate as ^M	Sulfate	Alkalinity	Terrous Iran				N	fotes
MW12-032515	4124	3/25/15	1435	wa!	2~	2			×	×	Х	×	×	i				
MWI -032515	4125	/.	1545	I.		Z			×	×	Y	×	. ×				5.40	<u> </u>
MW15-032515	4126		1544			2			Х	×	Y	×	×				UPS	
Mb16 -032515	4127	4	1428	J		2			*	Х	×	×	×					
																		
		•																
		•		-	· · ·											-		
																	-	
										• •								
,															 			
v .																		
Friedman & Bruya	, Inc.		SIGNATURE	-		<u> </u>	· · · · · · · · · · · · · · · · · · ·	PRINT	' NAM	E		1.	CC) OMPA	NY	1	DATE	TIME
3012 16th Avenue	West	Relinquished t				Mich	ael Er	dahl				Fri		n & B			7,	

Ph. (206) 285-8282
Fax (206) 283-5044

Seattle, WA 98119-2029

SIGNATURE	7 PRINT NAME	COMPANY	DATE	TIME
Relinquished by	Michael Erdahl	Friedman & Bruya	3/26/15	09:45
Received by:	·		3/26/15	12:30
Relinquished by:			4-00	
Received by:		•		

Send Report to Ers. Longley Company Aspect Consultines Address 401 Second Ave. Swith #201 City, State, ZIP Scattle, WA 98104	SAMPLERS (signature) PO# PROJECT NAME/NO. Ven's Texaco # 120001 REMARKS Dissolved was sauge freid filled	Page #of TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions
Phone # 200-812-4746 Fax #		will call with instructions
	, ANALYSES REQUEST	ED e
	oline oline 8250 × 720 ×	22 8 6

							ANALYSES REQUESTED								-			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260 *	SVOCs by 8270	S M	naphthalen E EDC only	tal lead	क्ता सम्भाष्ट्र	ni Natas R Nitrita as N	W William	Wraus ,	Notes
MW13-032515	OX A-H	3/25/15	1150	3	8	メ	X	X	X									
MW14-032515	02	ic	1300	3	8	X	X	X	X									
MW14-032515 MW12-032515 MW12-032515	03	<u>f</u> c	1335	3	8	X	X	X				\times						***************************************
BW 12-032515	04 A-	۲,	1435	3	10	X	X	X			X	·		X	X	X	X	
MWII-032515	05A-		1545	3	15	X	X	X			X	\times	\times	X	X	X	X	
Trip Blank	06A.		_	₩.	24		X	X									ì	
					'. B		•											
				,														
				•	•													20
														SI	mpi	e re	COIV	d at <u>5, 2 °</u> c

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

r	20	D	MC	cc	~	റ്ററ	DOC	
г	٠,	'K	VI. 7		F V		1 M M	

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinctished by:	Kirsi longten	Aspect	3/26/15	907
Received by:	1. Harresdown	FBh	3/26/15	¥07
Relinquished by				
Received by:				
# VOC list includes no	iphthalene, texane, MTBE,	EDC	•	

503492		\$			F CUSTOD	Y03/4/5	V5/B	05/AIG	
Send Report To UVSIV Company Aspect (Address 40) Susual	&nsulti	~y .#20	PROJECT LUN'S	ERS (sign TEXAL + 1200	/NO.		PO#	XStandard □ RUSH	AROUND TIME
City, State, ZIP Scattle Phone # 200 812 U7	, WA 98	104	*		sample	field filk	end	Ď Dispose a □ Return sa	PLE DISPOSAL after 30 days amples with instructions
						ANALYSES	S REQUESTE	ED	
Sample ID	Lab Date	Time	Sample Type	# of	Diesel Gasoline by 8021B	by 8270 by 8270	cad cad	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Notes

						, ANALYSES REQUESTED												
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	FVC vc 124 € VOCs by 8260 ★	SVOCs by 8270	metagne	EDC ONLY	total Icad	alkalinity &	Witherthe as N NITWITH AS N	Dissolved MN	Ferrous Iran	Notes
MW-1-032515	0743	1	1147		4	X	X	X										
MW-1-032515 MW-7-032515	081		1245		4	X	χ	X										
MW-8-032515	Ogh.	I	1324		9	X	\times	X				X	X					
MW-15-032515			1544		i4	X	X	X	X		X			X	X	X	X	
MN-16-032515	11 A-	o	1428		15	X	X	X	X		X		X	X	X	X	X	
MW-55-032515			1435		132		X	X									ŗ	1 cmpty
					·			·										
				,														
					•									San	plec	rec	eived	at 32°C
									İ									

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

•	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
	Relinquished by	Kirsi long len	Aspect	326/15	907
)	Received by:	- Mitt Cangs for	+Btue	1/26/15	107
	Relinquished by.	J	¥		_
	Received by:				

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 15, 2016

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on September 8, 2016 from the Ken's 120061, F&BI 609122 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0915R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 8, 2016 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's 120061, F&BI 609122 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
609122 -01	MW-18-13
609122 -02	MW-18-28
609122 -03	MW-19-13
609122 -04	MW-19-26
609122 -05	MW-20-15
609122 -06	MW-20-17
609122 -07	MW-20-20
609122 -08	MW-20-28
609122 -09	MW-21-15
609122 -10	MW-21-18
609122 -11	MW-21-28

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/08/16

Project: Ken's 120061, F&BI 609122

Date Extracted: 09/09/16

Date Analyzed: 09/12/16 and 09/13/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
MW-18-13 609122-01	<0.02	<0.02	< 0.02	< 0.06	<2	85
MW-18-28 609122-02	<0.02	<0.02	< 0.02	< 0.06	<2	84
MW-19-13 609122-03	<0.02	<0.02	< 0.02	< 0.06	<2	85
MW-19-26 609122-04	<0.02	< 0.02	< 0.02	< 0.06	<2	94
MW-20-15 609122-05	0.68	3.7	3.0	6.1	790	ip
MW-20-17 609122-06 1/10	41	41	20	130	6,500	96
MW-20-20 609122-07	<0.02	< 0.02	< 0.02	< 0.06	<2	94
MW-20-28 609122-08	<0.02	<0.02	< 0.02	< 0.06	<2	93
MW-21-15 609122-09	<0.02	< 0.02	< 0.02	< 0.06	<2	94
MW-21-18 609122-10	<0.02	< 0.02	< 0.02	< 0.06	<2	81

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/08/16

Project: Ken's 120061, F&BI 609122

Date Extracted: 09/09/16

Date Analyzed: 09/12/16 and 09/13/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
MW-21-28 609122-11	<0.02	<0.02	<0.02	<0.06	<2	83
Method Blank 06-1859 MB2	< 0.02	<0.02	<0.02	< 0.06	<2	83

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/08/16

Project: Ken's 120061, F&BI 609122

Date Extracted: 09/09/16 Date Analyzed: 09/09/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 48-168)
MW-18-13 609122-01	<50	<250	94
MW-18-28 609122-02	<50	<250	98
MW-19-13 609122-03	<50	<250	103
MW-19-26 609122-04	<50	<250	103
MW-20-15 609122-05	<50	<250	99
MW-20-17 609122-06	1,100 x	<250	102
MW-20-20 609122-07	<50	<250	94
MW-20-28 609122-08	<50	<250	97
MW-21-15 609122-09	<50	<250	97
MW-21-18 609122-10	<50	<250	100

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/08/16

Project: Ken's 120061, F&BI 609122

Date Extracted: 09/09/16 Date Analyzed: 09/09/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 48-168)
MW-21-28 609122-11	<50	<250	99
Method Blank	<50	<250	97

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/08/16

Project: Ken's 120061, F&BI 609122

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 609127-01 (Duplicate)

·	-	Sample Result	Duplicate Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	18	16	12

Percent			
	Spike	Recovery	Acceptance
Reporting Units	Level	LCS	Criteria
mg/kg (ppm)	0.5	84	69-120
mg/kg (ppm)	0.5	92	70-117
mg/kg (ppm)	0.5	93	65-123
mg/kg (ppm)	1.5	95	66-120
mg/kg (ppm)	20	100	71-131
	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	Reporting Units Level mg/kg (ppm) 0.5 mg/kg (ppm) 0.5 mg/kg (ppm) 0.5 mg/kg (ppm) 1.5	Reporting Units Spike Level Recovery LCS mg/kg (ppm) 0.5 84 mg/kg (ppm) 0.5 92 mg/kg (ppm) 0.5 93 mg/kg (ppm) 1.5 95

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/08/16

Project: Ken's 120061, F&BI 609122

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 609122-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	100	95	73-135	5

			Percent	
	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	94	74-139

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

609122	SAMPLE CHAIN OF CUSTODY	ME 09/	US/16 CI2/VS/BO
Report To KIRSI LONGLEY Company ASPECT Address K-longley Daspetansulting	PROJECT NAME Repris 17(X)(5)	PO#	Page # of TURNAROUND TIME
City, State, ZIP	REMARKS	INVOICE TO	SAMPLE DISPOSAL O Dispose after 30 days O Archive Samples O Other
		ANALYSES REQUE	STED

						ANALYSES REQUESTED									
Sample II)	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM			Notes
MW-18-13 MW-18-28	01 A-E	9/6	13:50	56.1	5		X	X	X						
MW-18-28	02	9/6	12):10	. •	4		X	×	λ						
MW-19-13	03	4/6	16:50	٠,	5		ደ	X	X						
MW-19-26	04	7/6	17:25	O	5		X	×	X						
MW-20 - 15	05	9/7	11:10	١,	5		×	X	X						
MW-20-17	06	N.	09:50	, ,	3		4	×	X						
MW-20-20	60	()	10:45	Ç.	3		4	×	X						
	ox	11	10:50	χİ	3		*	×	X						
MW-20-28 MW-21-15	09	ı l	13:25	V	5		X	×	χ						
MW-21-18	10/		13:30	, (5		X	X	×						

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Mythen von der AL	Aspect	9/7	14:15
Received by: Relinquished by:	Whan Phan	FEBI	9/8/16	0950
Received by:	i i	Samples received at	°C	

609122			SAMPLE	CHAIN	OF ('US	TO	DY	C COMMON CO	ME	-	0	9/	18/	16		2 2	/USI / B
Report Tolars, Lan Company Klangley &	ng. Ley Daspocteonsult	ny com	SAMPL PROJEC	ERS (MANG T NAME		W.	- (PO			(1)	Stand RUSI	ÜRNA Iard 1 I	AROUND TI urnaround	ME
Address City, State, ZIP Phone & ZIZ 4746			REMAR				O 6					CE T		0 0	Dispa Archi Othe	SAMP se aft	cauthorized LE DISPOS er 30 days mples	
	<u> </u>	<u> </u>	T	T	T		₁			NA			:QUI	ESTE	(1)			
Sample II)	Lab 1D	Date Sampled	Time Sampled	Sample Type	# of Jara	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 802:B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM					Not	es
MW-21-28	II A.E	9/7	13:40	501	5		*	አ	X									
					,													
															-			
				İ				<u> </u>										
Friedman & Bruya, Inc.	SI Relinquished by:	GNATURE			PRI	NT N	IAM	E			ļ		COM		JΥ		DATE	TIME
3012 16 th Avenue West	Received by:	NVVC		Matte	ewye	nol	~ <u>A</u>	لمو	·				per	*			9/7	14:15
oold to Avenue west	m	hol /m	N	Wha	M	Ph	an				1	2 B	I				9/8/16	0157

Seattle, WA 98119-2029

Ph. (206) 285-8282

Relinquished by:

Received by:

ME 09/08/16

°C

Samples received at

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 15, 2016

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on September 9, 2016 from the Ken's 120061, F&BI 609153 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0915R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 9, 2016 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's 120061, F&BI 609153 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
609153 -01	MW-22-17
609153 -02	MW-22-28

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/09/16

Project: Ken's 120061, F&BI 609153

Date Analyzed: 09/13/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
MW-22-17 609153-01	< 0.02	< 0.02	< 0.02	< 0.06	<2	85
MW-22-28 609153-02	< 0.02	<0.02	<0.02	< 0.06	<2	83
Method Blank	<0.02	<0.02	<0.02	< 0.06	<2	83

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/09/16

Project: Ken's 120061, F&BI 609153

Date Extracted: 09/12/16 Date Analyzed: 09/12/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
MW-22-17 609153-01	< 50	<250	63
MW-22-28 609153-02	<50	<250	63
Method Blank	<50	<250	74

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/09/16

Project: Ken's 120061, F&BI 609153

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 609157-06 (Duplicate)

			Duplicate	
	!	Sample Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	97	69-120
Toluene	mg/kg (ppm)	0.5	97	70-117
Ethylbenzene	mg/kg (ppm)	0.5	99	65-123
Xylenes	mg/kg (ppm)	1.5	97	66-120
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 09/15/16 Date Received: 09/09/16

Project: Ken's 120061, F&BI 609153

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 609179-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	88	91	64-133	3

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	90	58-147

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

4	Report To Si Si Si Si Si Si Si Si Si Si Si Si Si	or correct or an expense of decembers		Ken'	ERS (diama ET NAME S / 20	lure)	Ţ				olia-Olia	PC	CK T	Marie Conference	0 0 K	Stan RUS ush c	URN dard H harge SAMI ove al	AROUND TIME Turnsround on authorized by PLE DISPOSAL for 30 days amples	,
-										7	(NA	YS	as re	QUI	STE	D			
	Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jara	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 802;B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SDA					Notes	
	MW-22-17	01 A-E	9/7	16:00	Soi)	5		X	λ	х									
	MW-22-17 MW-22-28	01 A-E	10	16:35	50;/	5			タ									<u> </u>	
·- •	<u> </u>																		
	*													:	: ru c	r Va	,	2 ℃	
		T																	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DAΊ	TIME
Relinquished by:	Meither won der Ale	Aspect	9/8	16:00
Received by	JASON STARY	Tred Ex	9-9-16	0953
Relinquished by:				
Received by:	- Nhan Phan	FEBI	9/9/16	1052

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 24, 2016

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on October 6, 2016 from the Ken's Texaco, PO 120061, F&BI 610063 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP1024R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 6, 2016 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
610063 -01	MW-11-100516
610063 -02	MW-16-100516
610063 -03	MW-8-100516
610063 -04	MW-20-100516

Samples MW-11-100516 and MW-16-100516 were sent to Amtest for sulfate, alkalinity, chloride, nitrate and nitrite analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/06/16

Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted: 10/06/16

Date Analyzed: 10/06/16 and 10/07/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-11-100516 610063-01	20	7.7	48	56	1,900	97
MW-16-100516 610063-02	<1	<1	3.5	<3	660	96
MW-8-100516 610063-03 1/10	330	37	250	94	4,500	90
MW-20-100516 610063-04	41	40	15	71	4,100	103
Method Blank 06-2017 MB	<1	<1	<1	<3	<100	93

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/06/16

Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted: 10/07/16 Date Analyzed: 10/07/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-11-100516 610063-01	590 x	290 x	98
MW-16-100516 610063-02	100 x	<250	103
MW-8-100516 610063-03 1/1.2	820 x	<300	104
MW-20-100516 610063-04	570 x	<250	89
Method Blank 06-2114 MB	<50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-11-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted: 10/13/16 Lab ID: 610063-01 x10
Date Analyzed: 10/13/16 Data File: 610063-01 x10.047

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

 Iron
 5,200

 Manganese
 14,800

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-16-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted:10/13/16Lab ID:610063-02Date Analyzed:10/13/16Data File:610063-02.041Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Iron4,550Manganese1,400

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted:10/13/16Lab ID:I6-676 mbDate Analyzed:10/13/16Data File:I6-676 mb.045Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-11-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

 Date Extracted:
 10/10/16
 Lab ID:
 610063-01

 Date Analyzed:
 10/10/16
 Data File:
 610063-01.080

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: water instrument: ICPMS/ Upits: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-16-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted: 10/10/16 Lab ID: 610063-02 Data File: Date Analyzed: 10/10/16 610063-02.081 Matrix: Water Instrument: ICPMS2 Units: AP

ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-8-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

 Date Extracted:
 10/10/16
 Lab ID:
 610063-03

 Date Analyzed:
 10/10/16
 Data File:
 610063-03.082

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-20-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

 Date Extracted:
 10/10/16
 Lab ID:
 610063-04

 Date Analyzed:
 10/10/16
 Data File:
 610063-04.083

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Lead 2.02

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted: 10/10/16 Lab ID: I6-667 mb
Date Analyzed: 10/10/16 Data File: I6-667 mb.023
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted: 10/06/16 Lab ID: 610063-01 Data File: Date Analyzed: 10/06/16 100611.D Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 100 57 121 Toluene-d8 99 63 127 4-Bromofluorobenzene 101 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-20-100516	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted: 10/06/16 Lab ID: 610063-04 Data File: Date Analyzed: 10/06/16 100612.D Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	100	60	133

Concentration

Compounds: ug/L (ppb)

110 Hexane Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 Naphthalene 7.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco, PO 120061, F&BI 610063

Date Extracted: 10/06/16 Lab ID: 06-2095 mb Data File: Date Analyzed: 10/06/16 100609.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	102	60	133

Concentration

Compounds:	ug/L (ppb)
Compounds.	ug/L (ppb)

Hexane <1
Methyl t-butyl ether (MTBE) <1
1,2-Dichloroethane (EDC) <1
1,2-Dibromoethane (EDB) <1
Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-11-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

 Date Extracted:
 10/07/16
 Lab ID:
 610063-01

 Date Analyzed:
 10/07/16
 Data File:
 006F0601.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 210

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-16-100516 Client: Aspect Consulting, LLC

Date Received: 10/06/16 Project: Ken's Texaco, PO 120061, F&BI 610063

 Date Extracted:
 10/07/16
 Lab ID:
 610063-02

 Date Analyzed:
 10/07/16
 Data File:
 008F0801.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 89

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, PO 120061, F&BI 610063

 Date Extracted:
 10/07/16
 Lab ID:
 06-2097 mb

 Date Analyzed:
 10/07/16
 Data File:
 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/06/16

Project: Ken's Texaco, PO 120061, F&BI 610063

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 610063-02 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	3.5	3.7	6
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	660	680	3

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	94	65-118
Toluene	ug/L (ppb)	50	94	72-122
Ethylbenzene	ug/L (ppb)	50	88	73-126
Xylenes	ug/L (ppb)	150	90	74-118
Gasoline	ug/L (ppb)	1,000	91	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/06/16

Project: Ken's Texaco, PO 120061, F&BI 610063

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

·	· ·	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	99	106	61-133	7

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/06/16

Project: Ken's Texaco, PO 120061, F&BI 610063

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 610166-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	< 50	98	102	70-130	4
Manganese	ug/L (ppb)	20	<1	102	105	70-130	3

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	102	85-115
Manganese	ug/L (ppb)	20	106	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/06/16

Project: Ken's Texaco, PO 120061, F&BI 610063

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 610088-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	100	98	70-130	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	103	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/06/16

Project: Ken's Texaco, PO 120061, F&BI 610063

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 610079-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Hexane	ug/L (ppb)	50	<1	109	52-150
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	100	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	86	69-133
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	105	69-134
Naphthalene	ug/L (ppb)	50	<1	93	44-164

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	ug/L (ppb)	50	108	104	57-137	4
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	97	96	64-147	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	86	86	73-132	0
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	107	107	82-125	0
Naphthalene	ug/L (ppb)	50	97	96	64-133	1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/06/16

Methane

Project: Ken's Texaco, PO 120061, F&BI 610063

ug/L (ppb)

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 610063-01 (Duplicate)

Analyte	Reporting Units	Sample Re		plicate esult	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	210		250	17	
Laboratory Code:	Laboratory Control	Sample				
			Percent	Percent		
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)

78

59

76

50-150

3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Oct 20 2016 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Dear MICHAEL ERDAHL:

Enclosed please find the analytical data for your 610063 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID TEST	
MW-11-100516	Water	16-A026554 MIN, NUT	
MW-16-100516	Water	16-A026555 MIN, NUT	

Your samples were received on Thursday, October 6, 2016. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Project #: 610063 PO Number: E-308

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Project Name: 610063 Project #: 610063 PO Number: E-308

All results reported on an as received basis.

Date Received: 10/06/16 Date Reported: 10/20/16

AMTEST Identification Number Client Identification Sampling Date

16-A026554 MW-11-100516 10/05/16, 09:50

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	730	mg/l		1	SM 2320B	PT	10/19/16
Chloride	81.8	mg/l		0.05	EPA 300.0	MJ	10/06/16
Sulfate	5.30	mg/l		0.1	EPA 300.0	MJ	10/06/16

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite	< 0.005	mg/l		0.005	EPA 300.0	MJ	10/06/16
Nitrate	< 0.025	mg/l		0.025	EPA 300.0	MJ	10/06/16
Nitrate+Nitrite	< 0.025	mg/l		0.025	EPA 300.0	Calculated	

Friedman & Bruya, Inc. Project Name: 610063 AmTest ID: 16-A026555

AMTEST Identification Number 16-A026555 **Client Identification** MW-16-100516 **Sampling Date** 10/05/16, 10:35

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	54.	mg/l		1	SM 2320B	PT	10/19/16
Chloride	21.7	mg/l		0.05	EPA 300.0	MJ	10/06/16
Sulfate	75.2	mg/l		0.1	EPA 300.0	MJ	10/06/16

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite	< 0.005	mg/l		0.005	EPA 300.0	MJ	10/06/16
Nitrate	0.397	mg/l		0.025	EPA 300.0	MJ	10/06/16
Nitrate+Nitrite	0.397	mg/l		0.025	EPA 300.0	Calculated	

Aaron W. Young Laboratory Manager

P.3

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 16-A026554 to 16-A026555

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
16-A027095	Alkalinity (as CaCO3)	mg/l	120	120	0.00
16-A027107	Alkalinity (as CaCO3)	mg/l	110	110	0.00
16-A026447	Alkalinity (as CaCO3)	mg/l	86.	92.	6.7
16-A026707	Alkalinity (as CaCO3)	mg/l	30.	30.	0.00
16-A026775	Alkalinity (as CaCO3)	mg/l	160	160	0.00
16-A026563	Chloride	mg/l	4.36	4.03	7.9
16-A026571	Nitrate	mg/l	1.54	1.57	1.9
16-A026571	Nitrite	mg/l	< 0.005	< 0.005	
16-A026563	Sulfate	mg/l	2.40	2.72	12.

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
16-A026563	Chloride	mg/l	4.36	22.8	20.0	92.20 %
16-A026571	Nitrate	mg/l	1.54	3.70	2.00	108.00 %
16-A026571	Nitrite	mg/l	< 0.005	2.10	2.00	105.00 %
16-A026563	Sulfate	mg/l	2.40	17.1	20.0	73.50 %

STANDARD REFERENCE MATERIALS

UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
mg/l	240	250	104. %
mg/l	240	250	104. %
mg/l	240	260	108. %
mg/l	2.00	1.92	96.0 %
mg/l	2.00	2.01	100. %
mg/l	2.00	1.91	95.5 %
mg/l	2.00	2.01	100. %
mg/l	2.00	1.92	96.0 %
mg/l	2.00	2.02	101. %
mg/l	2.00	1.75	87.5 %
mg/l	2.00	2.07	104. %
	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	mg/l 240 mg/l 240 mg/l 240 mg/l 240 mg/l 2.00 mg/l 2.00 mg/l 2.00 mg/l 2.00 mg/l 2.00 mg/l 2.00 mg/l 2.00 mg/l 2.00 mg/l 2.00 mg/l 2.00 mg/l 2.00	mg/l 240 250 mg/l 240 250 mg/l 240 260 mg/l 2.00 1.92 mg/l 2.00 2.01 mg/l 2.00 1.91 mg/l 2.00 2.01 mg/l 2.00 1.92 mg/l 2.00 2.02 mg/l 2.00 1.75

BLANKS

ANALYTE UNITS RESULT	
711112772	
Alkalinity (as CaCO3) mg/l < 1	
Alkalinity (as CaCO3) mg/l < 1	
Alkalinity (as CaCO3) mg/l < 1	
Alkalinity (as CaCO3) mg/l < 1	
Chloride mg/l < 0.05	

QC Summary for sample numbers: 16-A026554 to 16-A026555...

BLANKS continued....

ANALYTE	UNITS	RESULT
Chloride	mg/l	< 0.05
Nitrate	mg/l	< 0.025
Nitrate	mg/l	< 0.025
Nitrite	mg/l	< 0.005
Nitrite	mg/l	< 0.005
Sulfate	mg/l	< 0.1
Sulfate	mg/l	< 0.1

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michael	l Erdahl			SUBCONTRACTER					TURNAROUND TIME								
Company Friedma	an and Br	uya, Inc.		PROJEC	T NAM	E/NO	•				O# XStandard (2 Weeks) RUSH						
Address 3012 16	th Ave W			610063			(E-308			Rush charges authorized by:						
City, State, ZIP_Seattle, WA 98119				REMAR									SAMPLE DISPOSAL □ Dispose after 30 days				
Phone #(206) 285-8282	5-8282 Fax # (206) 283-5044				Please 1	Email	Resul	lts						leturn Vill cal		oles h instructi	ons
			40						ANAI	YSE	S REG	UES'	ГED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	ВРН	VPH	Nitrate	Sulfate	Alkalinity	TOC-9060M	Chloide	Nitablet Nitaite as N		1	Votes
MW-11-100516	26554	10/5/16	0950	water						X	X		×	×			
MW-16-100516	55	4	1035	J						Х	X		74	入			
-turk trade to the																	
				-													
-,																	
																	· · · · · · · · · · · · · · · · · · ·
											-					-	
Friedman & Bruya, Inc.	<u> </u>	SIGNA	TURE			PRIN	IT NA	ME			1	COM	PAN	<u>I</u> Y		DATE	TIME
3012 16th Avenue West	Relinquis		DEA	M	lichael F						Fried	man a			14	0/6/16	0804AM
Seattle, WA 98119-2029	Received	by:		1	FLANNA	+ 5	raar	,			A117				11:27 AM		
Ph. (206) 285-8282	Relinquis	hed by:	J. Programmed						EDEX			~ (\top	(/ / (0)	
Fax (206) 283-5044	Received	by:															

610063	SAMPLE CHAIN OF CUSTODY	ME	10/6/16 U3/AT2
Report To Kirsi Longiey	SAMPLERS (signature)		Page # of
Company Aspect Consultacy	PROJECT NAME (2004)	PO#	Standard Turnaround
Address 401 2nd Ave 5 #201	den's Texaco	120041	Rush charges authorized by:
City, State, ZIP Seattle, WA 98104	REMARKS	INVOICE TO	SAMPLE DISPOSAL Dispose after 30 days
Phone 206-81247 Email	_		☐ Archive Samples ☐ Other
		ANALYSES REQUE	STED
		m 0 2 2 7	2 2

	···											SRE	CQUE	ESTE	<u>D</u>				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Tutallead	MIKINEM/ Suitate	20	enteriore Ninte/Altroite	pss. Memae	<u>ER</u>	Votes
MW-11-100516	01 A-J	10/5/16	0950	W	10								/					T	
MW -16-100516	02 A-J		1035		10												V	1	
MW - 8 - 100516	03 A-E		1116		5														
MW - 20 - 100516	04 A-E		1200		5													7	
																		\perp	
											Sa	mplo	s red	eive	d at	2	٥,	1	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Rochel Bobich	Aspect	10/5/16	1200
Received by May how	Whan Phan	FCB_T	10/6/16	0730
Relinquished by:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 24, 2016

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on October 5, 2016 from the Kens Texaco 120061, F&BI 610043 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP1024R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 5, 2016 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Kens Texaco 120061, F&BI 610043 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
610043 -01	MW-13-100416
610043 -02	MW-14-100416
610043 -03	MW-10-100416
610043 -04	MW-7-100416
610043 -05	MW-15-100416
610043 -06	MW-01-100416

Sample MW-15-100416 was sent to Amtest for sulfate, alkalinity, chloride, nitrate and nitrite analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/05/16

Project: Kens Texaco 120061, F&BI 610043

Date Extracted: 10/05/16 Date Analyzed: 10/05/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-13-100416 610043-01	<1	<1	<1	<3	<100	95
MW-14-100416 610043-02	<1	<1	<1	<3	<100	96
MW-10-100416 610043-03	<1	<1	<1	<3	<100	93
MW-7-100416 610043-04	<1	<1	<1	<3	<100	95
MW-15-100416 610043-05	<1	<1	<1	<3	<100	95
MW-01-100416 610043-06	<1	<1	2.2	3.8	550	97
Method Blank 06-2015 MB	<1	<1	<1	<3	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/05/16

Project: Kens Texaco 120061, F&BI 610043

Date Extracted: 10/06/16 Date Analyzed: 10/06/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-13-100416 610043-01 1/1.3	<65	<325	83
MW-14-100416 610043-02	< 50	<250	90
MW-10-100416 610043-03	< 50	<250	74
MW-7-100416 610043-04	< 50	<250	75
MW-15-100416 610043-05	< 50	<250	92
MW-01-100416 610043-06	73 x	<250	70
Method Blank 06-2089 MB	<50	<250	72

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-15-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 610043-05

 Date Analyzed:
 10/05/16
 Data File:
 610043-05.072

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron80.3Manganese530

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 I6-659 mb2

 Date Analyzed:
 10/05/16
 Data File:
 I6-659 mb2.071

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-13-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 610043-01

 Date Analyzed:
 10/06/16
 Data File:
 610043-01.030

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-14-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 610043-02

 Date Analyzed:
 10/06/16
 Data File:
 610043-02.034

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-10-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 610043-03

 Date Analyzed:
 10/06/16
 Data File:
 610043-03.035

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-7-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 610043-04

 Date Analyzed:
 10/06/16
 Data File:
 610043-04.040

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead 1.09

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-15-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 610043-05

 Date Analyzed:
 10/06/16
 Data File:
 610043-05.044

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-01-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 610043-06

 Date Analyzed:
 10/06/16
 Data File:
 610043-06.048

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Kens Texaco 120061, F&BI 610043

Date Extracted: 10/05/16 Lab ID: I6-662 mb
Date Analyzed: 10/06/16 Data File: I6-662 mb.019
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

Date Extracted: 10/06/16 Lab ID: 610043-03 Data File: Date Analyzed: 10/06/16 100610.D Matrix: GCMS4 Water Instrument: Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 99 57 121 Toluene-d8 99 63 127 4-Bromofluorobenzene 101 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Kens Texaco 120061, F&BI 610043

Date Extracted: 10/06/16 Lab ID: 06-2095 mb 10/06/16 Data File: Date Analyzed: 100609.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 99 57 121 Toluene-d8 99 63 127 4-Bromofluorobenzene 102 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-15-100416 Client: Aspect Consulting, LLC

Date Received: 10/05/16 Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 610043-05

 Date Analyzed:
 10/05/16
 Data File:
 008F0701.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Kens Texaco 120061, F&BI 610043

 Date Extracted:
 10/05/16
 Lab ID:
 06-2057 mb

 Date Analyzed:
 10/05/16
 Data File:
 006F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/05/16

Project: Kens Texaco 120061, F&BI 610043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 610022-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	92	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	86	73-126
Xylenes	ug/L (ppb)	150	88	74-118
Gasoline	ug/L (ppb)	1,000	89	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/05/16

Project: Kens Texaco 120061, F&BI 610043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	3	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	90	80	61-133	12

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/05/16

Project: Kens Texaco 120061, F&BI 610043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 610031-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	114	105	111	70-130	6
Manganese	ug/L (ppb)	20	340	180 b	190 b	70-130	5 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	100	85-115
Manganese	ug/L (ppb)	20	100	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/05/16

Project: Kens Texaco 120061, F&BI 610043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 610022-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	90	88	70-130	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/05/16

Project: Kens Texaco 120061, F&BI 610043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 610079-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	86	69-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	86	86	73-132	0

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/05/16

Project: Kens Texaco 120061, F&BI 610043

ug/L (ppb)

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 610043-05 (Duplicate)

Methane

Analyte	Reporting Units	Sampl Resul		plicate esult	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	<5		<5	nm	
Laboratory Code:	Laboratory Control	Sample				
			Percent	Percent		
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)

79

75

50-150

5

59

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Oct 20 2016 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Dear MICHAEL ERDAHL:

Enclosed please find the analytical data for your 610043 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW-15-100416	Water	16-A026551	MIN, NUT

Your sample was received on Thursday, October 6, 2016. At the time of receipt, the sample was logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Project #: 610043 PO Number: E-308

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand

MIN=Minerals

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Project Name: 610043 Project #: 610043 PO Number: E-308

All results reported on an as received basis.

Date Received: 10/06/16 Date Reported: 10/20/16

AMTEST Identification Number Client Identification Sampling Date

16-A026551 MW-15-100416 10/04/16, 13:45

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	< 1	mg/l		1	SM 2320B	PT	10/19/16
Chloride	27.6	mg/l		0.05	EPA 300.0	MJ	10/06/16
Sulfate	134.	mg/l		0.1	EPA 300.0	MJ	10/06/16

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite	< 0.005	mg/l		0.005	EPA 300.0	MJ	10/06/16
Nitrate	1.23	mg/l		0.025	EPA 300.0	MJ	10/06/16
Nitrate+Nitrite	1.23	mg/l		0.025	EPA 300.0	Calculated	

Aaron W. Young Laboratory Manager Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample number: 16-A026551

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
16-A027095	Alkalinity (as CaCO3)	mg/l	120	120	0.00
16-A027107	Alkalinity (as CaCO3)	mg/l	110	110	0.00
16-A026447	Alkalinity (as CaCO3)	mg/l	86.	92.	6.7
16-A026707	Alkalinity (as CaCO3)	mg/l	30.	30.	0.00
16-A026775	Alkalinity (as CaCO3)	mg/l	160	160	0.00
16-A026563	Chloride	mg/l	4.36	4.03	7.9
16-A026571	Nitrate	mg/l	1.54	1.57	1.9
16-A026571	Nitrite	mg/l	< 0.005	< 0.005	
16-A026563	Sulfate	mg/l	2.40	2.72	12.

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
16-A026563	Chloride	mg/l	4.36	22.8	20.0	92.20 %
16-A026571	Nitrate	mg/l	1.54	3.70	2.00	108.00 %
16-A026571	Nitrite	mg/l	< 0.005	2.10	2.00	105.00 %
16-A026563	Sulfate	mg/l	2.40	17.1	20.0	73.50 %

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Alkalinity (as CaCO3)	mg/l	240	250	104. %
Alkalinity (as CaCO3)	mg/l	240	250	104. %
Alkalinity (as CaCO3)	mg/l	240	260	108. %
Chloride	mg/l	2.00	1.92	96.0 %
Chloride	mg/l	2.00	2.01	100. %
Nitrate	mg/l	2.00	1.91	95.5 %
Nitrate	mg/l	2.00	2.01	100. %
Nitrite	mg/l	2.00	1.92	96.0 %
Nitrite	mg/l	2.00	2.02	101. %
Sulfate	mg/l	2.00	1.75	87.5 %
Sulfate	mg/l	2.00	2.07	104. %

BLANKS

ANALYTE UNITS RESULT	
711112772	
Alkalinity (as CaCO3) mg/l < 1	
Alkalinity (as CaCO3) mg/l < 1	
Alkalinity (as CaCO3) mg/l < 1	
Alkalinity (as CaCO3) mg/l < 1	
Chloride mg/l < 0.05	

QC Summary for sample number: 16-A026551...

BLANKS continued....

ANALYTE	UNITS	RESULT
Chloride	mg/l	< 0.05
Nitrate	mg/l	< 0.025
Nitrate	mg/l	< 0.025
Nitrite	mg/l	< 0.005
Nitrite	mg/l	< 0.005
Sulfate	mg/l	< 0.1
Sulfate	mg/l	< 0.1

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michael Erdahl				SUBCONTRACTER Amtest							Page#ofTURNAROUND TIME						
Company Friedma	an and Br	uya, Inc.		PROJECT NAME/NO. PO#						tandar RUSH_	d (2	Weeks)					
	Sth Ave W			610043 E-308					Rush charges authorized by:								
City, State, ZIP Seattle, WA 98119			REMAR	KS Please l	Emoil	Door	1+0					SAMPLE DISPOSAL □ Dispose after 30 days □ Return samples					
Phone #(206) 285-8282Fax #(206) 283-5044					riease		nesu						☐ Will call with instructions				ons
									ANAI	YSE	SRE	QUES	TED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	EPH	VPH	Nitrate	Sulfate	Alkalinity	TOC-9060M	Witzler Nitite	Chloride		N	Totes
MW-15-100416	3	10/4/16	1345	water	3					X	*		X	X			
					485												
											+						
											_						
Friedman & Bruya, Inc.		SIGNA	TURE	7	<u> </u>	PRIN		ME					IPAN			DATE	TIME
3012 16th Avenue West	Retinquie		-	N	lichael E	Erdahl					Fried	man	and B	ruya	1	0/5/16	0855 AM.
Seattle, WA 98119-2029	Received				ALANA	A	SIA	A-B			AM	TEST		T=6.4	l i	0/5/16	17:12
Ph. (206) 285-8282	Relinquis	hed by:		1				FA	EX								
Fax (206) 283-5044	Received	by:															

	610043			SAMPLE			CUS'	TOL	Y	١	٩E	IC) /s	-//	P	V_	3/4	15	/ Do
	Report To Kirsi Lon	gley		SAMPL	ERS (signo	uture)	D	\		_		,		/		Page # FURN	<u> </u>	UND	TIME
	Company Aspect Cor	nsulting	1	ł	OT NAME					PC) #				dard	Turn			
	Address 401 2nd Av	e. 5	*201	_		Kens Texaco 12				20061 Rush char			charg	es aut	horize	ed by:			
	City, State, ZIP Seattle	, WA	98104	REMAR	KS					IN	IVOI	CE TO	O		Disp	SAM ose a	PLE I fter 3	DISPO 0 days	SAL
- .	Phone 206-812-4746 Email			-										[[Arch Othe	nive S	ample	es	
£D	206-340-2831									ANA	LYSE	SRE	QUI	ESTE	ED	(ه	e l		
OT INCLUDE	Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	wTPH-Diesel	WI'PH-Gasoline BTEX by 8021B	446. VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Total Lead	AIKIINI+y/ Sulfate	DISS FR.	Chloride N:+1+c/x1+a+	biss. Methan	EDC	otes
ž	MW-21-100316		10/4/16		W				Z \				\bigcup						
1	MW-22 100316						Ì												
	MW -13 -100\$16	01 A-E		1050		5	Ì		1										
	MW-14-100816	02 A-G		1135		5												1/2	Loap
C13	MW -10 -100016	03 A -\$		1210		5													1)
رة ليا <u>ن</u>	MW -7 -100\$16	et A.E		1240		5													
72	WM -12 -100 \$ 16	05 A-H		1345		10						`		/	\	1		1/2	LCRAI
Z	MW -11-100316										ļ	Ì	$ egthinspace{1.5em} olimits $	/				M	JOS Crook
<	MW 10 - 1003 10						Ì					`		$\overline{\ \ }$			1		
	MW - 01 -100\$16	06A-E		1410		5					ž								
			GNATURE			PRI	VT NA	ME			7	CO	OMI	PAN	Y		DA	TE	TIME
		rquished by:	7		Rack		Bob		`		As	pect	<u>C</u> ,	o nsv	4 (+n	9	10/-	4/14	1442
	·	wed of the	20		Janu	25 B	PUYE	9			F	* P	,				10/		0700
	Seattle, WA 98119-2029 Relig	quished by:						,			1								

Ph. (206) 285-8282

Received by:

Samples required and

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 24, 2016

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on October 4, 2016 from the Kens Texaco, PO 120061, F&BI 610022 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP1024R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 4, 2016 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Kens Texaco, PO 120061, F&BI 610022project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-18-100316
MW-19-100316
MW-12-100316

Sample MW-12-100316 was sent to Amtest for sulfate, alkalinity, chloride, nitrate and nitrite analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/04/16

Project: Kens Texaco, PO 120061, F&BI 610022

Date Extracted: 10/05/16 Date Analyzed: 10/05/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-18-100316 610022-01	<1	<1	<1	<3	<100	95
MW-19-100316 610022-02	<1	<1	<1	<3	<100	96
MW-12-100316 610022-03	<1	<1	<1	<3	<100	94
Method Blank 06-2015 MB	<1	<1	<1	<3	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/04/16

Project: Kens Texaco, PO 120061, F&BI 610022

Date Extracted: 10/04/16 Date Analyzed: 10/04/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-18-100316 610022-01	<50	<250	89
MW-19-100316 610022-02	< 50	<250	90
MW-12-100316 610022-03	<50	<250	94
Method Blank 06-2067 MB	<50	<250	71

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-18-100316 Client: Aspect Consulting, LLC

Date Received: 10/04/16 Project: Kens Texaco, PO 120061, F&BI 610022

 Date Extracted:
 10/05/16
 Lab ID:
 610022-01

 Date Analyzed:
 10/06/16
 Data File:
 610022-01.021

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-19-100316 Client: Aspect Consulting, LLC

Date Received: 10/04/16 Project: Kens Texaco, PO 120061, F&BI 610022

 Date Extracted:
 10/05/16
 Lab ID:
 610022-02

 Date Analyzed:
 10/06/16
 Data File:
 610022-02.022

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW-12-100316 Client: Aspect Consulting, LLC

Date Received: 10/04/16 Project: Kens Texaco, PO 120061, F&BI 610022

 Date Extracted:
 10/05/16
 Lab ID:
 610022-03

 Date Analyzed:
 10/06/16
 Data File:
 610022-03.025

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Kens Texaco, PO 120061, F&BI 610022

Date Extracted: 10/05/16 Lab ID: I6-662 mb
Date Analyzed: 10/06/16 Data File: I6-662 mb.019
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-12-100316 Client: Aspect Consulting, LLC

Date Received: 10/04/16 Project: Kens Texaco, PO 120061, F&BI 610022

Date Extracted:10/04/16Lab ID:610022-03Date Analyzed:10/05/16Data File:610022-03.070Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 196 Manganese 1,940

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Kens Texaco, PO 120061, F&BI 610022

Date Extracted:10/04/16Lab ID:I6-659 mbDate Analyzed:10/04/16Data File:I6-659 mb.081Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-12-100316 Client: Aspect Consulting, LLC

Date Received: 10/04/16 Project: Kens Texaco, PO 120061, F&BI 610022

 Date Extracted:
 10/05/16
 Lab ID:
 610022-03

 Date Analyzed:
 10/05/16
 Data File:
 007F0601.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Kens Texaco, PO 120061, F&BI 610022

 Date Extracted:
 10/05/16
 Lab ID:
 06-2057 mb

 Date Analyzed:
 10/05/16
 Data File:
 006F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/04/16

Project: Kens Texaco, PO 120061, F&BI 610022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 610022-01 (Duplicate)

	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	92	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	86	73-126
Xylenes	ug/L (ppb)	150	88	74-118
Gasoline	ug/L (ppb)	1,000	89	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/04/16

Project: Kens Texaco, PO 120061, F&BI 610022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

·	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	86	84	61-133	2

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/04/16

Project: Kens Texaco, PO 120061, F&BI 610022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 610022-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	90	88	70-130	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/04/16

Project: Kens Texaco, PO 120061, F&BI 610022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 610031-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	114	105	111	70-130	6
Manganese	ug/L (ppb)	20	340	180 b	190 b	70-130	5 b

-	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	100	85-115
Manganese	ug/L (ppb)	20	100	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 10/24/16 Date Received: 10/04/16

Project: Kens Texaco, PO 120061, F&BI 610022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 610043-05 (Duplicate)

Analyte	Reporting Units	Sample Re		plicate esult	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	<5		<5	nm	
Laboratory Code: I	Laboratory Control	Sample	Percent	Percent		
Analyte	Reporting Units	Spike Level	Recovery LCS	Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Methane	ug/L (ppb)	59	79	75	50-150	5

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Oct 20 2016 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Dear MICHAEL ERDAHL:

Enclosed please find the analytical data for your 610022 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID TEST
MW-12-100316	Water	16-A026433 MIN, NUT

Your sample was received on Tuesday, October 4, 2016. At the time of receipt, the sample was logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Project #: 610022 PO Number: E-308

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand

MIN=Minerals

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Project Name: 610022 Project #: 610022 PO Number: E-308

All results reported on an as received basis.

Date Received: 10/04/16 Date Reported: 10/20/16

AMTEST Identification Number Client Identification Sampling Date

16-A026433 MW-12-100316 10/03/16, 13:05

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Alkalinity (as CaCO3)	280	mg/l		1	SM 2320B	PT	10/19/16
Chloride	17.2	mg/l		0.05	EPA 300.0	MJ	10/05/16
Sulfate	19.0	mg/l		0.1	EPA 300.0	MJ	10/05/16

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrite	< 0.005	mg/l		0.005	EPA 300.0	MJ	10/05/16
Nitrate	8.34	mg/l		0.025	EPA 300.0	MJ	10/05/16
Nitrate+Nitrite	8.34	mg/l		0.025	EPA 300.0	Calculated	

Aaron W. Young Laboratory Manager Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample number: 16-A026433

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
16-A027095	Alkalinity (as CaCO3)	mg/l	120	120	0.00
16-A027107	Alkalinity (as CaCO3)	mg/l	110	110	0.00
16-A026447	Alkalinity (as CaCO3)	mg/l	86.	92.	6.7
16-A026707	Alkalinity (as CaCO3)	mg/l	30.	30.	0.00
16-A026775	Alkalinity (as CaCO3)	mg/l	160	160	0.00
16-A026415	Chloride	mg/l	208.	207.	0.48
16-A026384	Nitrate	mg/l	3.48	3.48	0.00
16-A026455	Nitrate	mg/l	< 0.025	< 0.025	
16-A026384	Nitrite	mg/l	< 0.005	< 0.005	
16-A026455	Nitrite	mg/l	< 0.005	< 0.005	
16-A026415	Sulfate	mg/l	10.4	13.0	22.

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
16-A026415	Chloride	mg/l	208.	608.	400.	100.00 %
16-A026384	Nitrate	mg/l	3.48	5.36	2.00	94.00 %
16-A026455	Nitrate	mg/l	< 0.025	2.03	2.00	101.50 %
16-A026384	Nitrite	mg/l	< 0.005	1.92	2.00	96.00 %
16-A026455	Nitrite	mg/l	< 0.005	2.01	2.00	100.50 %
16-A026415	Sulfate	mg/l	10.4	378.	400.	91.90 %

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Alkalinity (as CaCO3)	mg/l	240	250	104. %
Alkalinity (as CaCO3)	mg/l	240	250	104. %
Alkalinity (as CaCO3)	mg/l	240	260	108. %
Chloride	mg/l	2.00	2.03	102. %
Chloride	mg/l	2.00	2.03	102. %
Nitrate	mg/l	2.00	2.04	102. %
Nitrite	mg/l	2.00	2.04	102. %
Sulfate	mg/l	2.00	2.01	100. %
Sulfate	mg/l	2.00	2.15	108. %

BLANKS

ANALYTE	UNITS	RESULT
Alkalinity (as CaCO3)	mg/l	< 1
Alkalinity (as CaCO3)	mg/l	< 1
Alkalinity (as CaCO3)	mg/l	< 1

QC Summary for sample number: 16-A026433...

BLANKS continued....

ANALYTE	UNITS	RESULT
Alkalinity (as CaCO3)	mg/l	< 1
Chloride	mg/l	0.10
Chloride	mg/l	< 0.05
Nitrate	mg/l	< 0.025
Nitrite	mg/l	< 0.005
Sulfate	mg/l	< 0.1
Sulfate	mg/l	< 0.1

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michae	l Erdahl			SUBÇO	NTRAC	TER	go garing di shi di ar di ina di shi san ki di ara di shi san di shi shi shi shi shi shi shi shi shi sh	and the second s	and the second s						e# RNAR	OUND T	IME C		
•	an and Br	uya, Inc.		PROJE	CT NAM	ENO.				PO) #			tandar USH	d (2 V	Veeks)	nds.		
Address 3012 16	6th Ave W			610022 E-308						Rush charges authorized by:									
City, State, ZIP_Seattle,	WA 9811	9		REMAR	RKS								SAMPLE DISPOSAL Dispose after 30 days						
Phone #(206) 285-8282	Fax #_	(206) 283-	5044		Please	Email	Resu	lts ———						eturn s Vill call		es instructi	ons		
									ANAI	LYSE	SREG	QUES'	TED						
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	ЕРН	VPH	+ Mitrate	Sulfate	Alkalinity	TOC-9060M	Chloride			N	otes		
MW-12-100316	26435	10/03/16	13:05	W					V	\checkmark	1		V						
		, ,																	
						,					<u> </u>								
137711441744																			
			•																
			-																
														**					
																	···		
Friedman & Bruya, Inc.		SIGNA	יונפע			PRIN	TT NI A	ME			<u> </u>	COM	PANY	<u></u>	 1	DATE	TIME		
3012 16th Avenue West	Relinquis		TOILE	17 ··· 18	Iichael I			1			Fried					§ .	8:45 A		
Seattle, WA 98119-2029	Received	by:			ALANA	14	TAC		* 5×5°(13g	AN	TEST		7 = 7 1 3		0/4/16	3:30		
Ph. (206) 285-8282	Relinquis	hed by:	Seaton Se		. I man. I Lett A		21715	11,2			7 ()	· Aur J. I		1 - (1 -	110	7 410	J 1/ W		
Fax (206) 283-5044	Received	by:																	

610022			SAMPLE			CUS	STC	DY				ME	•	10/	41	16	-	202/AI2/
Report To Kirsi Longle	:4	<u>.</u> .	SAMPL	ERS (signo	iture))	\checkmark	\						T		Turn		UND TIME
Report To Kirsi Longle Company Aspect Cons Address 401 2nd Ave	y. sulting < #)		CT NAME		ı				12	PC			12	RUS	SH_ <u>M</u>	M - 1	around 2-100316 thorized by:
City, State, ZIP Seattle; Phone 206-812-4-716 Email			REMAR								IVOI		ГО] [Dis Arc Oth	pose a hive S	fter 3	DISPOSAL 0 days es
200. 3-10. 2651					"				I	NA)	LYSE	S R	EQU	ESTE	D	0		
Sample ID	Láb ID	Date Sample	Time d Sampled	Sample Type	# of Jars	N NTPH-HCID	NWTPH-Djesel	الند TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Total Lead	AHEITETY/ Startore	Dasy Fe	Chies de ANZ	Meri	Notes
MW-18-100316	01 A-Ė	10/03/11	1145 و	N	5			N.				-	/					
1	oa A-E		1215	W	5			1	1				/					
MW - 12-100316	03 A-J		1305	M	10								/					
																		·*
																	!	
													,					
											S	lam:	es re	ceiv	ed a	3	٠,	•

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Rachel Bobich	Aspect	10/3/16	245
Received by:	Whan Phan	FEBI	10/4/16	0736
Relinquished by: 1				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 7, 2017

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included is the amended report from the testing of material submitted on January 20, 2017 from the Ken's Texaco 120061, F&BI 701226 project. Per your request, sample ID MW8-20170117 has been amended to MW18-20170117.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0202R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 2, 2017

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on January 20, 2017 from the Ken's Texaco 120061, F&BI 701226 project. There are 35 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0202R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 20, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco 120061, F&BI 701226 project. Samples were logged in under the laboratory ID's listed below.

701226 -01 MW8-20170119 701226 -02 MW11-20170119 701226 -03 MW16-20170119
701226 -03 MW16-20170119
701226 -04 MW21-20170118
701226 -05 MW1-20170118
701226 -06 MW13-20170118
701226 -07 MW10-20170118
701226 -08 MW19-20170118
701226 -09 MW7-20170118
701226 -10 MW14-20170118
701226 -11 MW18-20170117

Samples MW8-20170119, MW11-20170119, and MW16-20170119 were sent to Fremont Analytical for nitrate, nitrite, chloride, alkalinity, and sulfate analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/26/17

Date Analyzed: 01/26/17 and 01/27/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW8-20170119 701226-01 1/10	440	70	310	180	6,200	82
MW11-20170119 701226-02	35	<1	66	65	2,900	88
MW16-20170119 701226-03	<1	1.5	5.5	<3	970	82
MW21-20170118 701226-04	<1	<1	<1	<3	<100	79
MW1-20170118 701226-05	<1	<1	2.8	4.0	720	83
MW13-20170118 701226-06	<1	<1	<1	<3	<100	84
MW10-20170118 701226-07	<1	<1	<1	<3	<100	80
MW19-20170118 701226-08	<1	<1	<1	<3	<100	81
MW7-20170118 701226-09	<1	<1	<1	<3	100	83
MW14-20170118 701226-10	<1	<1	<1	<3	<100	82

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/26/17

Date Analyzed: 01/26/17 and 01/27/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW18-20170117 701226-11	<1	<1	<1	<3	<100	79
Method Blank 07-153 MB	<1	<1	<1	<3	<100	78

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/20/17 Date Analyzed: 01/20/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW8-20170119 701226-01	< 50	<250	94
MW11-20170119 701226-02	890 x	370 x	90
MW16-20170119 701226-03	130 x	<250	79
MW21-20170118 701226-04	< 50	<250	92
MW1-20170118 701226-05	96 x	<250	85
MW13-20170118 701226-06	< 50	<250	88
MW10-20170118 701226-07	< 50	<250	86
MW19-20170118 701226-08	< 50	<250	86
MW7-20170118 701226-09	110 x	<250	97
MW14-20170118 701226-10	< 50	<250	81

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/20/17 Date Analyzed: 01/20/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW18-20170117 701226-11	790 x	<250	91
Method Blank 07-132 MB	<50	<250	90

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW8-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/23/17 Lab ID: 701226-01 x10
Date Analyzed: 01/24/17 Data File: 701226-01 x10.049

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Iron
 7,500

 Manganese
 10,700

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW11-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/23/17
 Lab ID:
 701226-02 x10

 Date Analyzed:
 01/24/17
 Data File:
 701226-02 x10.050

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 8,120 Manganese 19,000

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW16-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/23/17
 Lab ID:
 701226-03

 Date Analyzed:
 01/24/17
 Data File:
 701226-03.051

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Iron
 1,620

 Manganese
 1,250

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/23/17
 Lab ID:
 I7-036 mb

 Date Analyzed:
 01/23/17
 Data File:
 I7-036 mb rr.071

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW8-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-01

 Date Analyzed:
 01/25/17
 Data File:
 701226-01.062

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW11-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-02

 Date Analyzed:
 01/25/17
 Data File:
 701226-02.063

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW16-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-03

 Date Analyzed:
 01/25/17
 Data File:
 701226-03.064

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW21-20170118 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-04

 Date Analyzed:
 01/25/17
 Data File:
 701226-04.065

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead 1.32

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW1-20170118 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-05

 Date Analyzed:
 01/25/17
 Data File:
 701226-05.068

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: water instrument: iCPMS

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead 3.96

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW13-20170118 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-06

 Date Analyzed:
 01/25/17
 Data File:
 701226-06.070

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW10-20170118 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-07

 Date Analyzed:
 01/25/17
 Data File:
 701226-07.071

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW19-20170118 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

Date Extracted:01/25/17Lab ID:701226-08Date Analyzed:01/25/17Data File:701226-08.072Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW7-20170118 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-09

 Date Analyzed:
 01/25/17
 Data File:
 701226-09.073

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW14-20170118 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/25/17 Lab ID: 701226-10
Date Analyzed: 01/25/17 Data File: 701226-10.074
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW18-20170117 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/25/17
 Lab ID:
 701226-11

 Date Analyzed:
 01/25/17
 Data File:
 701226-11.075

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/25/17 Lab ID: I7-042 mb
Date Analyzed: 01/25/17 Data File: I7-042 mb.060
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW11-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/20/17 Lab ID: 701226-02 Data File: Date Analyzed: 01/20/17 012034.D Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 62 142 99 Toluene-d8 105 55 145 4-Bromofluorobenzene 99 65 139

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW10-20170118	Client:	Aspect Consulting, LLC
-------------------	---------------	---------	------------------------

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/20/17 Lab ID: 701226-07 Data File: Date Analyzed: 01/20/17 012035.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	105	55	145
4-Bromofluorobenzene	103	65	139

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 701226

Date Extracted: 01/20/17 Lab ID: 07-083 mb 01/20/17 Data File: Date Analyzed: 012014.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 102 57 121 Toluene-d8 103 63 127 4-Bromofluorobenzene 100 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW8-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/27/17
 Lab ID:
 701226-01

 Date Analyzed:
 01/27/17
 Data File:
 010F1001.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 530

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW11-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/27/17
 Lab ID:
 701226-02

 Date Analyzed:
 01/27/17
 Data File:
 011F1101.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 320

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW16-20170119 Client: Aspect Consulting, LLC

Date Received: 01/20/17 Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/27/17
 Lab ID:
 701226-03

 Date Analyzed:
 01/27/17
 Data File:
 012F1201.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 130

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco 120061, F&BI 701226

 Date Extracted:
 01/27/17
 Lab ID:
 07-0147 mb

 Date Analyzed:
 01/27/17
 Data File:
 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 701226-06 (Duplicate)

	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	105	65-118
Toluene	ug/L (ppb)	50	104	72-122
Ethylbenzene	ug/L (ppb)	50	106	73-126
Xylenes	ug/L (ppb)	150	102	74-118
Gasoline	ug/L (ppb)	1,000	96	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	Ü	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	103	108	61-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 701215-07 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	< 50	97	97	70-130	0
Manganese	ug/L (ppb)	20	4.63	99	97	70-130	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	102	85-115
Manganese	ug/L (ppb)	20	100	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 701226-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	1.32	81	81	70-130	0

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Lead	ug/L (ppb)	10	102	85-115	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 701215-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	69-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	110	108	73-132	2

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/20/17

Project: Ken's Texaco 120061, F&BI 701226

ug/L (ppb)

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

83

50-150

2

Laboratory Code: 701321-01 (Duplicate)

Methane

Analyte	Reporting Units	Sample Re		plicate esult	Relative Percent Difference (Limit 20)	İ
Methane	ug/L (ppb)	3,400 ve	e 3,6	800 ve	6	
Laboratory Code:	Laboratory Control	Sample	D .	D .		
			Percent	Percent		
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)

85

59

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 701226

Work Order Number: 1701207

January 27, 2017

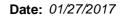
Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 1/20/2017 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Mil c. Redy

Sincerely,

Mike Ridgeway Laboratory Director

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 701226 **Work Order:** 1701207

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1701207-001	MW8-20171119	01/19/2017 2:00 PM	01/20/2017 9:50 AM
1701207-002	MW11-20171119	01/19/2017 9:45 AM	01/20/2017 9:50 AM
1701207-003	MW16-20171119	01/19/2017 11:20 AM	01/20/2017 9:50 AM

Case Narrative

WO#: **1701207**Date: **1/27/2017**

CLIENT: Friedman & Bruya

Project: 701226

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1701207**

Date Reported: 1/27/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1701207**Date Reported: **1/27/2017**

Client: Friedman & Bruya Collection Date: 1/19/2017 2:00:00 PM

Project: 701226

Lab ID: 1701207-001 **Matrix:** Water

Client Sample ID: MW8-20171119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA Me	ethod 300.0			Batc	h ID: R3	4073 Analyst: KT
Chloride	82.8	1.00	D	mg/L	10	1/20/2017 12:32:00 PM
Nitrate (as N)+Nitrite (as N)	ND	0.500	D	mg/L	5	1/20/2017 11:52:00 AM
Sulfate NOTES: Diluted due to matrix.	2.69	1.50	D	mg/L	5	1/20/2017 11:52:00 AM
Total Alkalinity by SM 2320B				Batc	h ID: R3	34127 Analyst: KT
Alkalinity, Total (As CaCO3)	432	2.50		mg/L	1	1/27/2017 4:30:00 PM

Original

Analytical Report

Work Order: **1701207**Date Reported: **1/27/2017**

Client: Friedman & Bruya Collection Date: 1/19/2017 9:45:00 AM

Project: 701226

Lab ID: 1701207-002 **Matrix:** Water

Client Sample ID: MW11-20171119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA M	ethod 300.0			Bato	h ID: R3	4073 Analyst: KT
Chloride	147	2.00	D	mg/L	20	1/20/2017 12:43:00 PM
Nitrate (as N)+Nitrite (as N)	ND	1.00	D	mg/L	10	1/20/2017 12:02:00 PM
Sulfate NOTES: Diluted due to matrix.	3.52	3.00	D	mg/L	10	1/20/2017 12:02:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R3	4127 Analyst: KT
Alkalinity, Total (As CaCO3)	1,280	2.50		mg/L	1	1/27/2017 4:40:00 PM

Original

Analytical Report

Work Order: **1701207**Date Reported: **1/27/2017**

Client: Friedman & Bruya Collection Date: 1/19/2017 11:20:00 AM

Project: 701226

Lab ID: 1701207-003 **Matrix:** Water

Client Sample ID: MW16-20171119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA M	Method 300.0			Bato	h ID: R3	4073 Analyst: KT
Chloride	4.44	0.100		mg/L	1	1/20/2017 12:12:00 PM
Nitrate (as N)+Nitrite (as N)	0.116	0.100		mg/L	1	1/20/2017 12:12:00 PM
Sulfate	0.936	0.300		mg/L	1	1/20/2017 12:12:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R3	Analyst: KT
Alkalinity, Total (As CaCO3)	106	2.50		mg/L	1	1/27/2017 4:50:00 PM

Original

Date: 1/27/2017

Work Order: 1701207

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

701226

Total Alkalinity by SM 2320B

Sample ID MB-R34127	SampType: MBLK	Units: mg/L	Prep Date: 1/27/2017	RunNo: 34127

Client ID: MBLKW Batch ID: R34127 Analysis Date: 1/27/2017 SeqNo: 649872

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) ND 2.50

Sample ID LCS-R34127	SampType: LCS		Units: mg/L		Prep Date:	1/27/2017	RunNo: 341	27	
Client ID: LCSW	Batch ID: R34127				Analysis Date:	1/27/2017	SeqNo: 649	873	
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit High	hLimit RPD Ref Val	%RPD	RPDLimit	Qual

Alkalinity, Total (As CaCO3) 111 2.50 100.0 0 111 80 120

Sample ID 1701210-001CDUP	SampType: DUP		Units: mg/L		Prep Date:	1/27/2017	RunNo: 341	27	
Client ID: BATCH	Batch ID: R34127				Analysis Date:	1/27/2017	SeqNo: 649	875	
Analyte	Result F	RL	SPK value SPK Ref Val	%REC	LowLimit Hig	ghLimit RPD Ref Val	%RPD	RPDLimit	Qual

Alkalinity, Total (As CaCO3) 250 2.50 248.0 0.803 20

Original Page 8 of 12

ND

0.300

Work Order: 1701207

Sulfate

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 701226							Ion Ch	romatograp	ohy by EP	A Method	1 300.0
Sample ID MB-R34073	SampType: MBLK			Units: mg/L		Prep Da	te: 1/20/2 0)17	RunNo: 340	073	
Client ID: MBLKW	Batch ID: R34073				,	Analysis Da	te: 1/20/2 0)17	SeqNo: 648	3629	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	ND	0.100									
Nitrate (as N)+Nitrite (as N)	ND	0.100									

Sample ID LCS-R34073	SampType: LCS			Units: mg/L		Prep Da	te: 1/20/2 0)17	RunNo: 340)73	
Client ID: LCSW	Batch ID: R34073					Analysis Da	te: 1/20/2 0	17	SeqNo: 648	3630	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	3.08	0.100	3.000	0	103	90	110				
Nitrate (as N)+Nitrite (as N)	6.17	0.100	6.000	0	103	90	110				
Sulfate	15.6	0.300	15.00	0	104	90	110				

Sample ID 1701207-003ADUP	SampType: DUP			Units: mg/L		Prep Da	te: 1/20/2 0)17	RunNo: 340	073	
Client ID: MW16-20171119	Batch ID: R34073					Analysis Da	te: 1/20/2 0)17	SeqNo: 648	3636	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	4.45	0.100						4.436	0.218	20	
Nitrate (as N)+Nitrite (as N)	0.126	0.100						0.1159	8.67	20	
Sulfate	0.954	0.300						0.9363	1.90	20	

Sample ID 1701207-003AMS	SampType: MS			Units: mg/L		Prep Da	te: 1/20/2 0	17	RunNo: 340)73	
Client ID: MW16-20171119	Batch ID: R34073					Analysis Da	te: 1/20/2 0	17	SeqNo: 648	8637	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	7.02	0.100	3.000	4.436	86.1	80	120				
Nitrate (as N)+Nitrite (as N)	6.30	0.100	6.000	0.1159	103	80	120				
Sulfate	15.8	0.300	15.00	0.9363	99.4	80	120				

Page 9 of 12 Original

Date: 1/27/2017

Work Order: 1701207

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

701226

Ion Chromatography by EPA Method 300.0

Sample ID 1701207-003AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 1/20/2 0)17	RunNo: 340	073	
Client ID: MW16-20171119	Batch ID: R34073			Analysis Date: 1/20/2017 SeqNo: 648638							
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	7.03	0.100	3.000	4.436	86.5	80	120	7.020	0.161	20	
Nitrate (as N)+Nitrite (as N)	6.37	0.100	6.000	0.1159	104	80	120	6.300	1.15	20	
Sulfate	15.9	0.300	15.00	0.9363	99.8	80	120	15.84	0.352	20	

Original Page 10 of 12

Sample Log-In Check List

CI	ient Name:	FB			Work Order Num	ber: 1701207		
Lo	ogged by:	Chelsea W	ard		Date Received:	1/20/2017	7 9:50:00 AM	
Cha	in of Custo	od <u>v</u>						
	Is Chain of C	-	olete?		Yes 🗸	No 🗌	Not Present	
2.	How was the	sample deliv	vered?		<u>Client</u>			
1 00	In							
<u>Log</u>		rocont?			Yes 🗹	No 🗌	NA 🗆	
3.	Coolers are p	oresent?			res 💌	NO 🗀	NA L	
4.	Shipping con	tainer/cooler	in good condition?		Yes 🗸	No \square		
5.			shipping container/cooler? ustody Seals not intact)		Yes	No 🗌	Not Required 🗹	
6.	Was an atten	npt made to	cool the samples?		Yes 🗸	No 🗌	NA 🗌	
7.	Were all item	s received a	t a temperature of >0°C to 10.0)°C*	Yes 🗸	No \square	NA 🗆	
8.	Sample(s) in	proper conta	ainer(s)?		Yes 🗸	No 🗌		
_			for indicated test(s)?		Yes 🗸	No 🗌		
10.	Are samples	properly pres	served?		Yes 🗹	No \square		
11.	Was preserva	ative added t	to bottles?		Yes	No 🗸	NA \square	
12	Is there head	space in the	VOA vials?		Yes	No 🗌	NA 🗸	
			s arrive in good condition(unbrol	ken)?	Yes 🗹	No 🗌		
	Does paperw				Yes 🗸	No \square		
15.	Are matrices	correctly ide	ntified on Chain of Custody?		Yes 🗸	No 🗌		
16.	Is it clear wha	at analyses v	vere requested?		Yes 🗸	No 🗌		
17.	Were all hold	ing times ab	le to be met?		Yes 🗸	No 🗌		
Spe	cial Handli	ina (if app	olicable)					
-			liscrepancies with this order?		Yes	No 🗌	NA 🗸	
		Notified:		Date				1
	By Who			Via:	p.	hone Fax	☐ In Person	
	Regardi							
	_	structions:						
19.	Additional rer	narks:						1
Item I	Information							
		Item #	Temp °C					

5.7

2.9

Cooler

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER PO#

Page #	of
TURNAR	OUND TIME
Standard (2 W	eeks)
Rush charges au	thorized by:
	DISPOSAL
Dispose after 3	0 days
☐ Return sample	S
☐ Will call with i	nstructions

1701207

Send Report To Michael Erdahl	- FREMONT	
Company Friedman and Bruya, Inc.	PROJECT NAME/NO.	PO#
Address3012 16th Ave W	701226	E-463
City, State, ZIP_Seattle, WA 98119	REMARKS	
Phone #(206) 285-8282Fax #(206) 283-5044	Please Email Results	
		ANALYSES REQUESTE
	2	

									111111	LIDE	DILLIG	CLD	ענידד				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	EPH	VPH	Nitrate	Sulfate	Alkalinity	TOC-9060M	NITRATE/NITRITE	CALORIDE		Notes	
MWB-20171119		1 10	1400	W	2					/	1		/	,			\dashv
MW11-20171119		1/19	0945	W	2					1/	1			1			\dashv
MW16-2017119		1/19	1120		2					V /	1		V	,			4
		1/(9)	1120	w	0					/	V		~	~	4		
																	٦
																	\dashv
				3													\dashv
																	4
							-			_							
																	٦
																	1
																	+
										_							-
Friedman & Bruss Inc		GIGNIA	NY 170														

Fried	lman	&.	Bruy	a,	Inc
3012					

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE Relinquished by:	PRINT NAME	COMPANY	DATE	TIME
Received by	Michael Erdahl	Friedman and Bruya	1/20/17	950
Relinquished by:	Clansin	FAI	1017	098
Received by:				

701226			G 4 3 5 7		A DE CITE	יחייהי	ŊΨ	,	ME	01-	20	-13	7		AIS /	VW3	' <i>i</i>
					AIN OF CUS	510					\neg	_	Page			/	ALL
Send Report To Kirsi L	onglex				(signature)					<u> </u>	_	ه بر			NOUND TIM		
Company ASRCT Co	nsultine	<u> </u>	1	ROJECT N	•	,			_	RUSH							
Address Clongley @ 95p	ect consult	ting, sow	,	Ken's 10/2006/ 1200						ملاؤ							
City, State, ZIP Scottle	LA	MINH	11	PROJECT ADDRESS 101 East University way								SAMPLE DISPOSAL Dispose after 30 days					
		.,,,,										1:4	Return	n san	nples ith instruction	ons	
Phone # 2012 912 47416 Fax #				· ELECTRO	NIC DATA REC	QUES'	TED .				\dashv				eived at		<
Email Address	L								لــــ	۲.	<u> </u>						
	——								ANAB		REQU	ESTI	ā.	¥,			
Sample ID	Lab ID	Date	Time	Sample Ty	# of containers	TPH-Diesel	TPH-Gasonne BTEX by 8021B	VOCe by 8260	SVOCs by 8270	200	John I and	Dissolved	Sulfate	Nitrate/Aith	Not	es	
An O abido (a	A) A.T	1/19	1400	W	Wa		メメ	Н	3		X	V	义	Y	UND SERVING	النون لمور	منعين
MW8-20170119	OLAI	1/19	0945	W	119	y.	TI		>		又	文	又	又			
MW11-20178119	02 T	1		W	y 9	$\hat{\mathbf{x}}$			1 1	X)	又	女	I	ト			
MW16-20170119	03	1/10	11:20	W	5	丈	文文	1		+	又	1	1	1			1
MW 21-2017018	OY A.E	1/18	11:35	W	5	TX.	1	╁╴	++	十	又	+	1				1
MW1-20170118	05	1/18	19:40		5	$\overline{}$		+	++	+	T _X	1	\dagger	1	1		1
MW13-20170118	90	1,/18	16:00	W			$\frac{2}{1}$	+	1 1	十、	ᠵᡰᡷ	+	+-	+	 		1
MWID-20170119	07	1/18	19:00	W	5	X	<u> </u>	+	++	+	44	十	╁	╁	 	<u> </u>	1
MW 19 -2017 0118	18	1/12	08:30	W	5	7	XX	-	+	+	1	1		1	C STATE	1	_+•
MW7-20170118	09	1/18	17:30	W	5	M	<u> </u>	-	1-1			4.	4	7	-	***	1
NW 14-2017018	10	1/18	14:30	W	5	M	义义	<u>L</u>			لال	_		┸,	DATE	TIME	4
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquished	SIGNATI	JRE () =		PRIN				\dashv	Ac	COM Hech		1		12017	800	1
Seattle, WA 98119-2029	Received	121-17	- CV	Y	is: lo	7	~}					1			1/20/10	9.5	
Ph. (206) 285-8282	Relinquished	by:	- U	U F	see yo	<u> </u>	کــد					<u>.~</u>					
Fax (206):283-5044	Received by:																
FORMS\COC\COC.DOC				1					\ <u> </u>	2 . 1		\ .	د.				

* Dissolved metals field fithered

701226			SAM	PLE CHA	IN OF CU	J ST (OD'	¥	7	YE	0	10.	20	- l	7	•	AIS	Z
Sand Report To 1415; 1	ong lay		[5	SAMPLERS	(signature)							-		1	TU	KNA	KOOND 11	ME
Company Aspert Address Llongley Classe City, State, ZIP	J / · · · · · · · · · · · · · · · · · ·				PROJECT NAME/NO. Ven's Texaco 1200(0) PROJECT ADDRESS							Ru	SUSI SUSI SUSI SUSI SUSI SUSI SUSI SUSI	arges	authorized LE DISPOS ter 30 days	I by:		
Phone #Fax # Email Address				ELECTRONIC DATA REQUESTED									• Will call with instructions Samples Received at °C					
	1									NA	LYS	ES R	BQU:	EST!	BD			
Sample ID	Lab ID	Date	Time	Sample Typ	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	$\neg \tau$	SVOCe by 8270		Total Leud					No	tes
	11 k.E	1/17	14:00	w	5	X	X	X				1				_		
216117															_	-	 	
2/6/17				<u> </u>		_	_				_		 	-	\vdash	╂—	 	
					<u> </u>	-	-	-	\vdash		-	-		-				
																\bot		
	 			<u> </u>		╀	-	-		-		+	+	+	+	+		
				+	 	T	\dagger	+	+	T	T	1	1	10		73	correct at	
·						1	T	†	1	1								
Friedman & Bruya, Inc.		SIGNAT	URE		PRIN	TN	AMI	3					OMI	PAN	Y	_	DATE	TIME
3012 16th Avenue West	Relinquished b	水水水	197/	Yà	vsi laha	10	۸_				P	De	ىلى				1/20/13	800
Seattle, WA 98119-2029	Received by:			E	Eux Jan			EOB			1/20/7	905						
Ph. (206) 285-8282 Fax (206) 283-5044	Received by:	~J·									+-	<u></u>						

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 26, 2017

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on April 12, 2017 from the Ken's Texaco, PO 120061, F&BI 704187 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0426R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 12, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061, F&BI 704187 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-12-041017
MW-13-041017
MW-14-041017
MW-15-041017
MW-19-041017
MW-21-041017
MW-22-041117
MW-10-041117

Sample MW-12-041017 was sent to Fremont Analytical for alkalinity, chloride, nitrate, nitrite, and sulfate analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/12/17 Date Analyzed: 04/12/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-12-041017 704187-01	<1	<1	<1	<3	<100	74
MW-13-041017 704187-02	<1	<1	<1	<3	<100	79
MW-14-041017 704187-03	<1	<1	<1	<3	<100	78
MW-15-041017 704187-04	<1	<1	<1	<3	<100	77
MW-19-041017 704187-05	<1	<1	<1	<3	<100	78
MW-21-041017 704187-06	<1	<1	<1	<3	<100	74
MW-22-041117 704187-07	<1	<1	<1	<3	<100	76
MW-10-041117 704187-08	33	11	51	85	1,500	80
Method Blank 07-711 MB	<1	<1	<1	<3	<100	78

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/12/17 Date Analyzed: 04/12/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID	<u>Diesel Range</u>	Motor Oil Range	Surrogate (% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 41-152)
MW-12-041017 704187-01	200 x	<250	89
MW-13-041017 704187-02	<50	<250	95
MW-14-041017 704187-03	<50	<250	105
MW-15-041017 704187-04	< 50	<250	97
MW-19-041017 704187-05	< 50	<250	94
MW-21-041017 704187-06	< 50	<250	93
MW-22-041117 704187-07	<50	<250	91
MW-10-041117 704187-08	550 x	<250	97
Method Blank 07-765 MB	<50	<250	85

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-12-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/14/17 Lab ID: 704187-01 Data File: Date Analyzed: 04/17/17 704187-01.049 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-13-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/14/17 Lab ID: 704187-02
Date Analyzed: 04/17/17 Data File: 704187-02.084
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-14-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted:04/14/17Lab ID:704187-03Date Analyzed:04/17/17Data File:704187-03.085Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-15-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/14/17 Lab ID: 704187-04
Date Analyzed: 04/17/17 Data File: 704187-04.086
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-19-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

 Date Extracted:
 04/14/17
 Lab ID:
 704187-05

 Date Analyzed:
 04/17/17
 Data File:
 704187-05.098

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-21-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

 Date Extracted:
 04/14/17
 Lab ID:
 704187-06

 Date Analyzed:
 04/17/17
 Data File:
 704187-06.099

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-22-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted:04/14/17Lab ID:704187-07Date Analyzed:04/17/17Data File:704187-07.100Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-10-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted:04/14/17Lab ID:704187-08Date Analyzed:04/17/17Data File:704187-08.101Matrix:WaterInstrument:ICPMS2Units:ug/L (ppb)Operator:AP

ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/14/17 Lab ID: I7-196 mb
Date Analyzed: 04/17/17 Data File: I7-196 mb.043
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-12-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/13/17 Lab ID: 704187-01 Data File: Date Analyzed: 04/13/17 704187-01.075 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Iron 410 Manganese 12,200 ve

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-12-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

 Date Extracted:
 04/13/17
 Lab ID:
 704187-01 x10

 Date Analyzed:
 04/14/17
 Data File:
 704187-01 x10.051

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Manganese 10,800

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/13/17 Lab ID: I7-194 mb
Date Analyzed: 04/13/17 Data File: I7-194 mb.033
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/13/17 Lab ID: 704187-08 Data File: Date Analyzed: 04/13/17 041310.D Matrix: GCMS4 Water Instrument: Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 100 57 121 Toluene-d8 96 63 127 4-Bromofluorobenzene 102 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco, PO 120061, F&BI 704187

Date Extracted: 04/13/17 Lab ID: 07-757 mb 04/13/17 Data File: Date Analyzed: 041309.D Matrix: GCMS4 Water Instrument: Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 98 57 121 Toluene-d8 98 63 127 4-Bromofluorobenzene 100 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-12-041017 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, PO 120061, F&BI 704187

 Date Extracted:
 04/18/17
 Lab ID:
 704187-01

 Date Analyzed:
 04/18/17
 Data File:
 008F0801.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 390

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, PO 120061, F&BI 704187

 Date Extracted:
 04/18/17
 Lab ID:
 07-808 mb

 Date Analyzed:
 04/18/17
 Data File:
 007F0701.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, PO 120061, F&BI 704187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 704177-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<1	<1	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	118	65-118			
Toluene	ug/L (ppb)	50	120	72-122			
Ethylbenzene	ug/L (ppb)	50	122	73-126			
Xylenes	ug/L (ppb)	150	117	74-118			
Gasoline	ug/L (ppb)	1,000	106	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, PO 120061, F&BI 704187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	103	63-142	1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, PO 120061, F&BI 704187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 704237-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	1.06	100	96	75-125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, PO 120061, F&BI 704187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020A

Laboratory Code: 704085-12 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	156	105	99	75-125	6
Manganese	ug/L (ppb)	20	603	144 b	123 b	75-125	16

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	103	80-120
Manganese	ug/L (ppb)	20	104	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, PO 120061, F&BI 704187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 704209-04 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	96	69-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1.2-Dichloroethane (EDC)	ug/L (ppb)	50	91	96	73-132	5

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, PO 120061, F&BI 704187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 704193-06 1/10 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Methane	ug/L (ppb)	520	580	11

			Percent	Percent		
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)
Methane	ug/L (ppb)	59	94	96	50-150	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 704187

Work Order Number: 1704127

April 19, 2017

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 4/12/2017 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Mil c. Redy

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 04/19/2017

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 704187 **Work Order:** 1704127

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

1704127-001 MW-12-041017 04/10/2017 10:40 AM 04/12/2017 10:48 AM

Case Narrative

WO#: **1704127**Date: **4/19/2017**

CLIENT: Friedman & Bruya

Project: 704187

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1704127

Date Reported: 4/19/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1704127**Date Reported: **4/19/2017**

Client: Friedman & Bruya Collection Date: 4/10/2017 10:40:00 AM

Project: 704187

Lab ID: 1704127-001 **Matrix:** Water

Client Sample ID: MW-12-041017

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA N	lethod 300.0			Batc	h ID: R3	5534 Analyst: KT
Chloride	42.2	1.00	D	mg/L	10	4/13/2017 10:22:00 AM
Nitrite (as N)	ND	0.500	D	mg/L	5	4/12/2017 12:13:00 PM
Nitrate (as N)	2.49	0.500	D	mg/L	5	4/12/2017 12:13:00 PM
Sulfate	20.0	1.50	D	mg/L	5	4/12/2017 12:13:00 PM
NOTES:						
Diluted due to matrix.						
Total Alkalinity by SM 2320B				Batc	h ID: R3	5630 Analyst: MW
Alkalinity, Total (As CaCO3)	664	2.50		mg/L	1	4/19/2017 1:50:00 PM

Original

Date: 4/19/2017

Work Order: 1704127

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

704187

Total Alkalinity by SM 2320B

Sample ID MB-R35630	SampType: MBLK	Units: mg/L	Prep Date: 4/19/2017	RunNo: 35630
---------------------	----------------	-------------	----------------------	---------------------

Client ID: MBLKW Batch ID: R35630 Analysis Date: 4/19/2017 SeqNo: 682511

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) ND 2.50

Sample ID LCS-R35630	SampType: LCS			Units: mg/L		Prep Da	te: 4/19/2 0	017	RunNo: 356	30	
Client ID: LCSW	Batch ID: R35630					Analysis Da	te: 4/19/2 0	017	SeqNo: 682	2512	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Alkalinity, Total (As CaCO3) 110 2.50 100.0 0 110 80 120

Sample ID 1704142-001ADUP	SampType: DUP		Units: mg/L		Prep Date: 4/19/2017	RunNo: 35630
Client ID: BATCH	Batch ID: R35630				Analysis Date: 4/19/2017	SeqNo: 682517
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) 132 2.50 132.0 0 20

Original Page 6 of 11

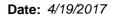
Date: 4/19/2017

Work Order: 1704127

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0


Project: 704187

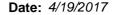
NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Froject. 704107											
Sample ID MB-R35518	SampType: MBLK	_		Units: mg/L	_	Prep Dat	e: 4/12/2017	7	RunNo: 35	518	_
Client ID: MBLKW	Batch ID: R35518					Analysis Dat	e: 4/12/2017	7	SeqNo: 680	0390	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	ND	0.100									
Nitrate (as N)	ND	0.100									
Sulfate	ND	0.300									
Sample ID LCS-R35518	SampType: LCS			Units: mg/L		Prep Dat	e: 4/12/2017	7	RunNo: 35	518	
Client ID: LCSW	Batch ID: R35518					Analysis Dat	e: 4/12/201 7	7	SeqNo: 686	391	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	2.84	0.100	3.000	0	94.6	90	110				
Nitrate (as N)	2.93	0.100	3.000	0	97.8	90	110				
Sulfate	14.7	0.300	15.00	0	97.9	90	110				
Sample ID 1704121-001BDUP	SampType: DUP			Units: mg/L		Prep Dat	e: 4/12/2017	7	RunNo: 35	518	
Client ID: BATCH	Batch ID: R35518					Analysis Dat	e: 4/12/2017	7	SeqNo: 680	0393	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	ND	0.100						0		20	
Nitrate (as N)	ND	0.100						0		20	
Sulfate	45.1	0.300						44.91	0.413	20	
Sample ID 1704121-001BMS	SampType: MS			Units: mg/L		Prep Dat	e: 4/12/2017	7	RunNo: 35	518	
Client ID: BATCH	Batch ID: R35518					Analysis Dat	e: 4/12/2017	7	SeqNo: 680	0394	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	2.81	0.100	3.000	0	93.6	80	120				
Nitrate (as N)	3.05	0.100	3.000	0	102	80	120				
Sulfate	62.7	0.300	15.00	44.91	119	80	120				E
NOTES											

Original Page 7 of 11

Work Order: 1704127


QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 704187							Ion Ch	romatograp	ohy by EP	A Method	300.
Sample ID 1704121-001BMSD	SampType: MSD			Units: mg/L		Prep Date	e: 4/12/20	17	RunNo: 35	518	
Client ID: BATCH	Batch ID: R35518					Analysis Date	e: 4/12/20	17	SeqNo: 68	0395	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	2.84	0.100	3.000	0	94.7	80	120	2.809	1.18	20	
Nitrate (as N)	2.87	0.100	3.000	0	95.8	80	120	3.050	6.00	20	
Sulfate	62.9	0.300	15.00	44.91	120	80	120	62.72	0.261	20	Ε
NOTES: E - Estimated value. The amoun	nt exceeds the linear workin	g range of	the instrumen	t.							
Sample ID MB-R35534	SampType: MBLK			Units: mg/L		Prep Date	e: 4/13/2 0	117	RunNo: 35	534	
Client ID: MBLKW	Batch ID: R35534					Analysis Date	e: 4/13/20	17	SeqNo: 68	0703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	ND	0.100									
Sample ID LCS-R35534	SampType: LCS			Units: mg/L		Prep Date	e: 4/13/20	117	RunNo: 35	534	
Client ID: LCSW	Batch ID: R35534					Analysis Date	e: 4/13/20	17	SeqNo: 68	0704	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	2.78	0.100	3.000	0	92.6	90	110				
Sample ID 1704142-001ADUP	SampType: DUP			Units: mg/L		Prep Date	e: 4/13/2 0	17	RunNo: 35	534	
Client ID: BATCH	Batch ID: R35534					Analysis Date	e: 4/13/20	17	SeqNo: 68	0711	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	4.68	0.100						4.656	0.508	20	
Sample ID 1704142-001AMS	SampType: MS			Units: mg/L		Prep Date	e: 4/13/2 0	17	RunNo: 35	534	
Client ID: BATCH	Batch ID: R35534					Analysis Date	e: 4/13/20	17	SeqNo: 68	0712	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	7.35	0.100	3.000	4.656	90.0	80	120				Е

Original Page 8 of 11

Work Order: 1704127

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

704187

Ion Chromatography by EPA Method 300.0

Sample ID 1704142-001AMS

SampType: MS Units: mg/L Prep Date: 4/13/2017

RunNo: 35534

Client ID: BATCH

Analysis Date: 4/13/2017

SeqNo: 680712

Batch ID: R35534

Result

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

NOTES:

Analyte

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1704142-001AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 4/13/20)17	RunNo: 355	34	
Client ID: BATCH	Batch ID: R35534					Analysis Da	te: 4/13/20	17	SeqNo: 680	713	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	7.38	0 100	3 000	4 656	90.7	80	120	7 355	0.309	20	F

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Page 9 of 11 Original

Sample Log-In Check List

CI	ient Name:	FB			Work Order	Number: 170 4	4127	
Lo	ogged by:	Erica Silva	a		Date Receiv	ved: 4/12	/2017 10:48:00 AM	
<u>Cha</u>	in of Custo	ody						
1.	Is Chain of C	ustody comp	plete?		Yes 🗸	No [Not Present	
2.	How was the	sample deli	vered?		<u>FedEx</u>			
<u>Log</u>	<u>In</u>							
_	Coolers are p	resent?			Yes \square	No 5	✓ NA 🗆]
			<u>9</u>	Sample rec	eived at app	ropriate tempe	erature	
4.	Shipping con	tainer/coole	r in good condition?		Yes 🗸	No [
5.			n shipping container/cooler? Custody Seals not intact)		Yes	No 5	✓ Not Required □	
6.	Was an atten	npt made to	cool the samples?		Yes 🗸	No [NA 🗆	
7.	Were all item	s received a	at a temperature of >0°C to 1	0.0°C*	Yes 🗸	No [□ NA □]
8.	Sample(s) in	proper conta	ainer(s)?		Yes 🗸	No [
9.	Sufficient san	nple volume	e for indicated test(s)?		Yes 🗹	No [
10.	Are samples	properly pre	eserved?		Yes 🗸	No [
11.	Was preserva	ative added	to bottles?		Yes	No [✓ NA □]
12.	Is there head	space in the	e VOA vials?		Yes 🗌	No [□ NA ✓	
13.	Did all sample	es container	rs arrive in good condition(unl	broken)?	Yes 🗸	No [
14.	Does paperw	ork match b	oottle labels?		Yes 🗸	No [
15.	Are matrices	correctly ide	entified on Chain of Custody?		Yes 🗸	No [
16.	Is it clear wha	at analyses v	were requested?		Yes 🗸	No [
17.	Were all hold	ing times ab	ole to be met?		Yes 🗹	No [
Spe	cial Handli	ing (if apı	plicable)					
-		•	discrepancies with this order?	•	Yes \square	No [□ NA 🗸]
	Person	Notified:		Date	Г		_	
	By Who			Via:	eMail [Phone F	Fax In Person	
	Regardi							
	_	structions:	<u>, </u>					
19.	Additional rer		,					
Item	Information							
		Item #	Temp °C					

5.9

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

1704127

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Mich	ael Erdahl			SUBCO	NTRAC	TER	Fren	nont								OUND T	
CompanyFried	man and B	ruya, Inc.		PROJEC		/E/NO				PC			\square R	USH_		leeks) (
Address3012	16th Ave W	<u></u>			0418	7			(= -5	91		Rus		2 	thorized	
City, State, ZIP Seattle Phone #_ (206) 285-828			5044	REMAR	KS A Please	Spc ct Email	sty Resu	le EI lts	<u> </u>				□R	ispose a eturn s	after : ample	DISPOS 30 days es instructi	
				1					ANAI	LYSE	SREC	QUES	TED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	ЕРН	VPH	Nitrate	Sulfaté	Alkalinity	TOC 9969M	Chloside			N	íotes
MW-12-041017		4/10/17	1040	witer	2				χ	>	×	×	×				
	16																
															\exists		
Friedman & Bruya, Inc.		O SIGNA	TURE	7		PRIN	T NA	ME		\dashv		COM	PANY			ATE	TIME

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

Received b

Michael Erdahl

COMPANY Friedman and Bruya

10,06

Received by:

704187	SAMPLE CHAIN OF CUSTODY	ME 04/12	17 WY ATO
Report To Kirsi Langley	SAMPLERS (signature)	rek	Page # of TURNAROUND TIME
Company Aspect Consulting Address	PROJECT NAME Len'S Texa (0	120061	☐ Standard Turnaround ☐ RUSH Rush charges authorized by:
City, State, ZIP Seattle Office Phone Email	REMARKS	invoice to Accti Payable	SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other
		ANALYSES REQUE	STED 3

						<u> </u>				INAI	YSI	ES RI	EQUE	STE	D				· · · · · · · · · · · · · · · · · · ·	*	_	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	10 to 11 12 m/(402)	Alkainin	Chleride		书	Dissalved Fe	Dissolvand Mn	Dissingt Method		
MW-12-041017	OIAK	4/16/17	1040	Water	1ì		X	X	X				凶	X	×	×	X	X	\times	<u>区</u>		
MW-13-041017	02 A-E	4/10/17	1140	water	5		X	X	X				X	-				<i>_</i>	·			
MW-14-041017	03	4/10/17	1225	water	5		X	X	X				X				<u></u>				_	
MW-15-041017	04	4/10/17	1310	water	5		X	X	X				X	· .			<u> </u>		*************			
MW-19-041017	05	4/10/17	1405	water	5		X	X	X				X							\perp	_	
MW-21-041017	06	4/10/17	1515	water	5		X	X	Х.				X									
MW-22-041117	07-	4/11/17	0905	water	5		X	X	X				X				<u> </u>	*************			_	
MW-10-041117	08 V	4/11/17	1005	water	5		X	Х	Х				$X \mid$				<u></u>		·	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	(K	D
MMMANHADAHMMA		MINIMA																		_	4	
											-											

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Kristin Beck	Hiped	4/11/17	
Received by: Management	Whan Phan	FLBI	4/12/17	MYC
Relinquished by:			3 .	,
Received by:		Samples received	(at	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 26, 2017

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on April 12, 2017 from the Ken's Texaco, 120061, F&BI 704193 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0426R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 12, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, 120061, F&BI 704193 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
704193 -01	MW-1-041117
704193 -02	MW-7-041117
704193 -03	MW-18-041117
704193 -04	MW-16-041117
704193 -05	MW-8-041217
704193 -06	MW-11-041217

Samples MW-16-041117, MW-8-041217, and MW-11-041217 were sent to Fremont analytical for alkalinity, chloride, nitrate, nitrite, and sulfate analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/14/17 Date Analyzed: 04/14/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-1-041117 704193-01	1.9	<1	7.1	12	1,600	86
MW-7-041117 704193-02	<1	<1	2.8	4.6	930	84
MW-18-041117 704193-03	<1	<1	<1	<3	<100	84
MW-16-041117 704193-04	<1	<1	28	4.6	2,300	73
MW-8-041217 704193-05 1/10	290	100	320	410	6,300	80
MW-11-041217 704193-06	51	12	96	100	2,600	88
Method Blank 07-787 MB	<1	<1	<1	<3	<100	77

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/13/17 Date Analyzed: 04/13/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

			Surrogate
Sample ID	<u>Diesel Range</u>	<u> Motor Oil Range</u>	<u>(% Recovery)</u>
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 47-140)
MW-1-041117 704193-01	420 x	<250	98
MW-7-041117 704193-02	350 x	<250	108
MW-18-041117 704193-03	< 50	<250	108
MW-16-041117 704193-04	430 x	<250	87
MW-8-041217 704193-05	670 x	<250	110
MW-11-041217 704193-06	800 x	270 x	111
Method Blank 07-765 MB2	<50	<250	94

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-1-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/14/17 Lab ID: 704193-01 Data File: Date Analyzed: 04/17/17 704193-01.102 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-7-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/14/17 Lab ID: 704193-02
Date Analyzed: 04/17/17 Data File: 704193-02.103
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-18-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/14/17 Lab ID: 704193-03 Data File: Date Analyzed: 04/17/17 704193-03.107 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-16-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/14/17 Lab ID: 704193-04
Date Analyzed: 04/17/17 Data File: 704193-04.108
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-8-041217 Client: Aspect Consulting, LLC

Ken's Texaco, 120061, F&BI 704193 Date Received: 04/12/17 Project:

Date Extracted: 04/14/17 Lab ID: 704193-05 Data File: Date Analyzed: 04/17/17 704193-05.109 Matrix: Water Instrument: ICPMS2 Units: AP

ug/L (ppb) Operator:

Concentration Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-11-041217 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

 Date Extracted:
 04/14/17
 Lab ID:
 704193-06

 Date Analyzed:
 04/17/17
 Data File:
 704193-06.110

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/14/17 Lab ID: I7-196 mb
Date Analyzed: 04/17/17 Data File: I7-196 mb.043
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-16-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted:04/13/17Lab ID:704193-04Date Analyzed:04/13/17Data File:704193-04.076Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

 Iron
 3,740

 Manganese
 4,130

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-8-041217 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

 Date Extracted:
 04/13/17
 Lab ID:
 704193-05 x10

 Date Analyzed:
 04/14/17
 Data File:
 704193-05 x10.052

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

 Iron
 7,240

 Manganese
 12,900

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-11-041217 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

 Date Extracted:
 04/13/17
 Lab ID:
 704193-06 x10

 Date Analyzed:
 04/14/17
 Data File:
 704193-06 x10.053

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

 Iron
 9,780

 Manganese
 24,600

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted:04/13/17Lab ID:I7-194 mbDate Analyzed:04/13/17Data File:I7-194 mb.033Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-041217 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/13/17 Lab ID: 704193-06 Data File: Date Analyzed: 04/13/17 041312.D Matrix: GCMS4 Water Instrument: Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 100 57 121 Toluene-d8 97 63 127 4-Bromofluorobenzene 103 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Ken's Texaco, 120061, F&BI 704193

Date Extracted: 04/13/17 Lab ID: 07-757 mb 04/13/17 Data File: Date Analyzed: 041309.D Matrix: GCMS4 Water Instrument: Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 98 57 121 Toluene-d8 98 63 127 4-Bromofluorobenzene 100 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-16-041117 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

 Date Extracted:
 04/18/17
 Lab ID:
 704193-04 1/10

 Date Analyzed:
 04/24/17
 Data File:
 003F0301.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 570

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-8-041217 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

 Date Extracted:
 04/18/17
 Lab ID:
 704193-05 1/10

 Date Analyzed:
 04/24/17
 Data File:
 004F0401.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 440

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-11-041217 Client: Aspect Consulting, LLC

Date Received: 04/12/17 Project: Ken's Texaco, 120061, F&BI 704193

 Date Extracted:
 04/18/17
 Lab ID:
 704193-06 1/10

 Date Analyzed:
 04/24/17
 Data File:
 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 520

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Ken's Texaco, 120061, F&BI 704193

 Date Extracted:
 04/18/17
 Lab ID:
 07-808 mb

 Date Analyzed:
 04/18/17
 Data File:
 007F0701.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, 120061, F&BI 704193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 704193-03 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	112	65-118
Toluene	ug/L (ppb)	50	113	72-122
Ethylbenzene	ug/L (ppb)	50	114	73-126
Xylenes	ug/L (ppb)	150	110	74-118
Gasoline	ug/L (ppb)	1,000	100	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, 120061, F&BI 704193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

•	•	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	103	63-142	1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, 120061, F&BI 704193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 704237-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	1.06	100	96	75-125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, 120061, F&BI 704193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020A

Laboratory Code: 704085-12 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	156	105	99	75-125	6
Manganese	ug/L (ppb)	20	603	144 b	123 b	75-125	16

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	103	80-120
Manganese	ug/L (ppb)	20	104	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, 120061, F&BI 704193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 704209-04 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	96	69-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	91	96	73-132	5

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/17 Date Received: 04/12/17

Project: Ken's Texaco, 120061, F&BI 704193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES **USING METHOD RSK 175**

Laboratory Code: 704193-06 1/10 (Duplicate)

Analyte	Reporting Units Sample Result			plicate esult	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	520	;	580	11	
Laboratory Code: Laboratory Control Sample Percent Percent						
	Reporting Units	Spike	Recovery	Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)
Methane	ug/L (ppb)	59	94	96	50-150	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- $ip\ Recovery\ fell\ outside\ of\ control\ limits.\ Compounds\ in\ the\ sample\ matrix\ interfered\ with\ the\ quantitation\ of\ the\ analyte.$
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 704193

Work Order Number: 1704142

April 19, 2017

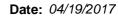
Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 4/12/2017 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

And c. Redy

Sincerely,

Mike Ridgeway Laboratory Director

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 704193 **Work Order:** 1704142

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1704142-001	MW-16-041117	04/11/2017 2:20 PM	04/12/2017 3:10 PM
1704142-002	MW-8-041217	04/12/2017 8:55 AM	04/12/2017 3:10 PM
1704142-003	MW-11-041217	04/12/2017 10:00 AM	04/12/2017 3:10 PM

Case Narrative

WO#: **1704142**Date: **4/19/2017**

CLIENT: Friedman & Bruya

Project: 704193

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1704142**

Date Reported: 4/19/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1704142**Date Reported: **4/19/2017**

Client: Friedman & Bruya Collection Date: 4/11/2017 2:20:00 PM

Project: 704193

Lab ID: 1704142-001 **Matrix:** Water

Client Sample ID: MW-16-041117

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA	Method 300.0			Bato	h ID: F	R35534 Analyst: KT
Chloride	4.66	0.100		mg/L	1	4/13/2017 10:31:00 AM
Nitrite (as N)	ND	0.100		mg/L	1	4/13/2017 10:31:00 AM
Nitrate (as N)	ND	0.100		mg/L	1	4/13/2017 10:31:00 AM
Sulfate	3.39	0.300		mg/L	1	4/13/2017 10:31:00 AM
Total Alkalinity by SM 2320B				Bato	h ID: F	R35630 Analyst: MW
Alkalinity, Total (As CaCO3)	132	2.50		mg/L	1	4/19/2017 1:20:00 PM

Analytical Report

Work Order: **1704142**Date Reported: **4/19/2017**

Client: Friedman & Bruya Collection Date: 4/12/2017 8:55:00 AM

Project: 704193

Lab ID: 1704142-002 **Matrix:** Water

Client Sample ID: MW-8-041217

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA M	lethod 300.0			Bato	h ID: R3	5534 Analyst: KT
Chloride	93.4	2.50	D	mg/L	25	4/13/2017 11:30:00 AM
Nitrite (as N)	ND	0.500	D	mg/L	5	4/13/2017 10:41:00 AM
Nitrate (as N)	ND	0.500	D	mg/L	5	4/13/2017 10:41:00 AM
Sulfate	7.72	1.50	D	mg/L	5	4/13/2017 10:41:00 AM
NOTES:						
Diluted due to matrix.						
Total Alkalinity by SM 2320B				Bato	h ID: R3	5630 Analyst: MW
Alkalinity, Total (As CaCO3)	380	2.50		mg/L	1	4/19/2017 1:30:00 PM

Analytical Report

Work Order: **1704142**Date Reported: **4/19/2017**

Client: Friedman & Bruya Collection Date: 4/12/2017 10:00:00 AM

Project: 704193

Lab ID: 1704142-003 **Matrix:** Water

Client Sample ID: MW-11-041217

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA I	Method 300.0			Bato	h ID: R3	5534 Analyst: KT
Chloride	163	5.00	D	mg/L	50	4/13/2017 11:40:00 AM
Nitrite (as N)	ND	1.00	D	mg/L	10	4/13/2017 10:51:00 AM
Nitrate (as N)	0.994	1.00	JD	mg/L	10	4/13/2017 10:51:00 AM
Sulfate	27.9	3.00	D	mg/L	10	4/13/2017 10:51:00 AM
NOTES: Diluted due to matrix.						
Total Alkalinity by SM 2320B				Bato	h ID: R3	5630 Analyst: MW
Alkalinity, Total (As CaCO3)	968	2.50		mg/L	1	4/19/2017 1:40:00 PM

Date: 4/19/2017

Work Order: 1704142

Friedman & Bruya CLIENT:

Project: 704193

QC SUMMARY REPORT

Total Alkalinity by SM 2320B

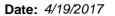
Sample ID MB-R35630 SampType: MBLK Units: ma/L Prep Date: 4/19/2017 RunNo: 35630 Client ID: MBLKW Batch ID: R35630

Analysis Date: 4/19/2017 SeqNo: 682511

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

ND Alkalinity, Total (As CaCO3) 2.50

Sample ID LCS-R35630 SampType: LCS Units: mg/L Prep Date: 4/19/2017 RunNo: 35630 Client ID: LCSW R35630 Analysis Date: 4/19/2017 SeqNo: 682512 Batch ID: SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val Analyte Result RL %REC %RPD RPDLimit Qual


Alkalinity, Total (As CaCO3) 0 80 120 110 2.50 100.0 110

Sample ID 1704142-001ADUP SampType: DUP RunNo: 35630 Units: mg/L Prep Date: 4/19/2017 Client ID: MW-16-041117 Batch ID: R35630 Analysis Date: 4/19/2017 SeqNo: 682517

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) 132 2.50 132.0 0 20

Page 8 of 12 Original

Work Order: 1704142

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 704193				3	, ., .,
Sample ID MB-R35534	SampType: MBLK		Units: mg/L	Prep Date: 4/13/2017	RunNo: 35534
Client ID: MBLKW	Batch ID: R35534			Analysis Date: 4/13/2017	SeqNo: 680703
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	ND	0.100			

Nitrite (as N)	ND	0.100
Nitrate (as N)	ND	0.100
Sulfate	ND	0.300

Sample ID LCS-R35534	SampType: LCS			Units: mg/L		Prep Dat	te: 4/13/201	17	RunNo: 35534		
Client ID: LCSW	Batch ID: R35534					Analysis Dat	te: 4/13/201	17	SeqNo: 680	704	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	2.78	0.100	3.000	0	92.6	90	110				
Nitrite (as N)	2.76	0.100	3.000	0	92.0	90	110				
Nitrate (as N)	2.86	0.100	3.000	0	95.4	90	110				
Sulfate	14.6	0.300	15.00	0	97.4	90	110				

Sample ID 1704142-001ADUP	SampType: DUP			Units: mg/L		Prep Da	te: 4/13/2 ()17	RunNo: 355	534	
Client ID: MW-16-041117	Batch ID: R35534					Analysis Da	te: 4/13/2 0)17	SeqNo: 680	711	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	4.68	0.100						4.656	0.508	20	
Nitrite (as N)	ND	0.100						0		20	
Nitrate (as N)	ND	0.100						0		20	
Sulfate	3.48	0.300						3.392	2.49	20	

Sample ID 1704142-001AMS	SampType: MS			Units: mg/L		Prep Da	te: 4/13/2 0	17	RunNo: 35	534	
Client ID: MW-16-041117	Batch ID: R35534					Analysis Da	te: 4/13/2 0	17	SeqNo: 680	712	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride Nitrite (as N)	7.35 2.90	0.100 0.100	3.000 3.000	4.656 0	90.0 96.5	80 80	120 120				E

Original Page 9 of 12

Date: 4/19/2017

Work Order: 1704142

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

704193

Ion Chromatography by EPA Method 300.0

Sample ID 1704142-001AMS	, ,,			Units: mg/L		Prep Da	te: 4/13/20)17	RunNo: 35534 SeqNo: 680712 %RPD RPDLimit		
Client ID: MW-16-041117	Batch ID: R35534					Analysis Da	te: 4/13/20)17	SeqNo: 680)712	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	2.87	0.100	3.000	0	95.6	80	120				
Sulfate	18.4	0.300	15.00	3.392	99.8	80	120				

NOTES:

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1704142-001AMSD	Sample ID 1704142-001AMSD SampType: MSD					Prep Da	te: 4/13/2 0)17	RunNo: 35	534	
Client ID: MW-16-041117	N-16-041117 Batch ID: R35534					Analysis Da	te: 4/13/2 0)17	SeqNo: 680	0713	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	7.38	0.100	3.000	4.656	90.7	80	120	7.355	0.309	20	E
Nitrite (as N)	2.96	0.100	3.000	0	98.6	80	120	2.895	2.12	20	
Nitrate (as N)	2.88	0.100	3.000	0	96.2	80	120	2.867	0.623	20	
Sulfate	18.4	0.300	15.00	3.392	99.9	80	120	18.37	0.0550	20	

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Original Page 10 of 12

Sample Log-In Check List

C	lient Name:	FB		Work Or	der Numb	er: 1704142		
Lo	ogged by:	Erica Silva		Date Re	ceived:	4/12/2017	7 3:10:00 PM	
<u>Cha</u>	in of Cust	ody						
1.	Is Chain of C	ustody complete?		Yes	✓	No 🗌	Not Present	
2.	How was the	sample delivered?		<u>FedE</u>	<u>x</u>			
Log	ln .							
_	— Coolers are p	present?		Yes		No 🗸	NA 🗌	
0.			Sample	received at a	ppropriat	te temperatur	<u>'e</u>	
4.	Shipping con	tainer/cooler in good condition		Yes	_	No \square		
5.		ls present on shipping contair nments for Custody Seals not		Yes		No 🗹	Not Required	
6.	Was an atten	npt made to cool the samples	?	Yes	✓	No 🗌	NA 🗆	
7.	Were all item	s received at a temperature of	of >0°C to 10.0°C*	Yes	✓	No 🗆	NA \square	
8.	Sample(s) in	proper container(s)?		Yes	✓	No \square		
9.	Sufficient sar	mple volume for indicated test	(s)?	Yes	✓	No \square		
10.	Are samples	properly preserved?		Yes	✓	No \square		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square	
12.	Is there head	space in the VOA vials?		Yes		No 🗌	NA 🗸	
13.	Did all sampl	es containers arrive in good o	ondition(unbroken)?	? Yes	✓	No \square		
14.	Does paperw	ork match bottle labels?		Yes	✓	No \square		
15.	Are matrices	correctly identified on Chain	of Custody?	Yes	✓	No \square		
		at analyses were requested?		Yes	✓	No \square		
17.	Were all hold	ing times able to be met?		Yes	✓	No \square		
Spe	cial Handl	ing (if applicable)						
-		otified of all discrepancies with	n this order?	Yes		No 🗌	NA 🗸	
	Person	Notified:	Da	ate				
	By Who	m: ,	Vi	a: 🔲 eMai	I 🗌 Pho	one Fax	In Person	
	Regardi	ng:						
	Client In	structions:						
19.	Additional rer	marks:						
ltem	<u>Information</u>							
		Item #	Temp °C					
	Sample		3.4					

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michael Erdahl		SUBCO	NTRAC	TER	ren	ent								ROUND	of
Company Friedman and Bruya.	Inc.	PROJEC		IE/NO			,)#		□ RI	USH_		ا (Ve eks)	
Address 3012 16th Ave W		1	0419	3			6	-5	35		Rush charges authorized by:				d by:
City, State, ZIP_Seattle, WA 98119 Phone #_ (206) 285-8282 Fax #_ (206)	REMAR	KS Please	A Email	Resu	EQU	us i	EDU			□ Re	spose eturn	after samp	E DISPO 30 days es instruct		
							ANAI	LYSE	SREC	QUES	red			- X.1	
Sample III Lah III	Date Time mpled Sampled	Matrix	# of jars	Dioxins/Furans	ЕРН	VPH	Nitrate	Sulfate	Alkalinity	TOC-9060M	N.A.H			1	Notes
MW-16-641117 4/11	117 1420	water	Z		-31016-2-2		×	×	×	X	X				***************************************
MW-8-041217 4/1	12/17 0855	1	2				×	×	×	X	×				
MW-11-041217	1000	\	2				×	×	×	入	х				
											+				HI
3012 16th Avenue West Relinguished by	SIGNATURE	Mic	chael E	PRIN' rdahl	T NA	ME				COMI nan ar	PANY nd Bru	ya	1	ATE	TIME 1403
Seattle, WA 98119-2029 Received by: Ph. (206) 285-8282 Relinquished by		Br	Brianna Barnes FA				TAN				15/0				

Fax (206) 283-5044

Received by:

704193			SAMPLE	E CHAIN	oF	CU	STC	DY	7	A	1E	0	14/	16	2//	7	A.	I3/	VW	4/	/
Report To Kirsi Long	alpu		SAMPL	ERS (signo	iture)	V	, D	B	e	2						Page # TURN	¥	TINI	_ of _ or	NE.	
Company Aspect Col	ocilting		PROJE	CT NAME	/-	<u> </u>					PO	#			(Star	ıdard				1111	
	VEZNICINA)		Kei	Ken's Texaco /20					/20061 RUSH_ Rush char				rges authorized by:				-				
Address	~ ^CP:	<u> </u>	- [REMARKS					+	INVOICE TO				- -	SAMPLE DISPOSA						
City, State, ZIP Seattle Office REMAI										A	cct	5) X	(Dist Arcl	ose a nive S	fter 3 Sampl	0 da; es	ys		
Phone Email Klongley aspect consulting.com										10	4	<u>zbl</u>	<u>Q</u>		Oth						
						_				INAL	ASE D	S RE		ESTE	D	T	122				7
			The state of the s			E G	esel	FPH-Gasoline	3TEX by 8021B	3260(8270	D SI	3		Ž	وا	E Par	,		2	Methon.
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	I-Gas	X by	s by	s by	827(1/64	ي	- }		3	THE STATE OF THE S	We.	=	2
	er eremene eremene eremene eremene eremene eremene eremene eremene eremene eremene eremene eremene eremene ere					TF	TL	ŢŢ	BTE	VOCs by 8260C FV	SVOC	PAHs	Q S	ED	Alkalini	3	豈	葛	SSI	30	500
MW-1-04/117	0/ A- E	4/11/17	1050	water	5		Х	X	X				X								
MW-7-041117			1150		5		Χ	X	X		***************************************		Χ								
MW-18-041117	03 A-E		1250		5		Χ	χ	χ		A COMPANY COMP		X								
MW-16-041117	OY A-K	V	1420				χ	X	X				X		X	X	X	Χ	X	X	X
MW-8-041217	05 A-K	4/12/17	0855		Ù		X	X	X				X		X	X	X	X	X	X	X
MW-11-041217	06 A-N	<u> </u>	1000	V	14		X	X	X				\boxtimes	X	X	X	X	X	X	X	X
				**************************************	*									ì							
													Sa	mpie	s rec	eive	i at	3		<i>)</i>	

		JNATURE			PRIN	N TV	AMI	3				, C	OMI	PAN	Y		D/	TE		TIM	E
Friedman & Bruya, Inc.	Relinquished by:	KAT Bee	<u> L</u>	Kn	stin	Be	ch	***************************************				Spec	•		·····		1/12	117	1	335	- '
3012 16th Avenue West	Received by:	1m/w-	paraelina di manda di manda di manda di manda di manda di manda di manda di manda di manda di manda di manda di	Wha	N 1	1/	h				+	2	3 T				4/6	<u> 413</u>	1)	<u> </u>	
Seattle, WA 98119-2029	Relinquished by:	,		-												-	4	1			

Ph. (206) 285-8282

	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
	Relinquished by: Holde	Kristin Beck	Aspect	1/12/17	1335
	Received by: M M M	Whan Phan	FLBT	[4/0/17	1335
	Relinquished by:				
-	Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 9, 2017

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on May 3, 2017 from the Ken's Texaco, PO 120061, F&BI 705050 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0509R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 3, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061, F&BI 705050 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Aspect Consulting, LLC</u>

705050 -01 MW-12-050217

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/09/17 Date Received: 05/03/17

Project: Ken's Texaco, PO 120061, F&BI 705050

Date Extracted: 05/04/17 Date Analyzed: 05/04/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
MW-12-050217 705050-01	< 50	<250	73
Method Blank 07-954 MB2	<50	<250	72

ENVIRONMENTAL CHEMISTS

Date of Report: 05/09/17 Date Received: 05/03/17

Project: Ken's Texaco, PO 120061, F&BI 705050

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

· ·	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	83	89	63-142	7

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

705050			SAMPLI	E CHAIN	OF	СŲ	ŞTC	DY				M	5 6	05/	03	/17,	Do
Report To KIVJI Company Aspect Address City, State, ZIP Slad Phone E	Longley Consulting He Office mailklongley		PROJE	ERS (signo CT NAME h'S Tea RKS	7	H.	22	16	le	12 IN	PO 006 VOIC ACC Paya	# E TO		Sta DRU Rush Dis	Page TUR ndare SH_chare SAM pose		ed by:
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline			SVOCs by 8270D K	PAHs 8270D SIM	UEST	ED		No	otes
MW-12-02051	7 01 AB	5/2/17	1245	water	2		X										
															rece	ved at	2 00
Friedman & Bruya, Inc.	SI Relinquished by:	GNATURE		t.	PRIN Istin	D	AME					JCOI TOP	MPAN ef	JΥ		DATE 5/3/ /4	TIME
3012 16th Avenue West	Received by:			Ril	-1	~_~ ~_~	工				Fe	1/	- 7			5-3-17	452
Seattle, WA 98119-2029 Ph. (206) 285-8282	Relinquished by: Received by: Market	Namo		Nhan	Ph	an,						e B_	T	***************************************		3/3/17	1030

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 21, 2017

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on July 13, 2017 from the Ken's Texaco, PO 120061, F&BI 707156 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0721R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 13, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061, F&BI 707156 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
707156 -01	MW-19-071117
707156 -02	MW-10-071217
707156 -03	MW-1-071217
707156 -04	MW-18-071217
707156 -05	MW-7-071217

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707156

Date Extracted: 07/17/17 Date Analyzed: 07/17/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-19-071117 707156-01	<1	<1	<1	<3	<100	76
MW-10-071217 707156-02	11	3.8	19	9.7	400	75
MW-1-071217 707156-03	<1	<1	2.9	4.0	620	81
MW-18-071217 707156-04	<1	<1	<1	<3	<100	75
MW-7-071217 707156-05	<1	<1	<1	<3	160	75
Method Blank 07-1438 MB	<1	<1	<1	<3	<100	79

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707156

Date Extracted: 07/14/17 Date Analyzed: 07/14/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-19-071117 707156-01	< 50	<250	94
MW-10-071217 707156-02	240 x	<250	94
MW-1-071217 707156-03	200 x	<250	95
MW-18-071217 707156-04	< 50	<250	99
MW-7-071217 707156-05	230 x	<250	93
Method Blank 07-1502 MB	< 50	<250	93

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-19-071117 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/14/17
 Lab ID:
 707156-01

 Date Analyzed:
 07/14/17
 Data File:
 707156-01.039

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-10-071217 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted:07/14/17Lab ID:707156-02Date Analyzed:07/14/17Data File:707156-02.040Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-1-071217 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted: 07/14/17 Lab ID: 707156-03 Data File: Date Analyzed: 07/14/17 707156-03.041 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-18-071217 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted: 07/14/17 Lab ID: 707156-04 Data File: Date Analyzed: 07/14/17 707156-04.042 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-7-071217 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted: 07/14/17 Lab ID: 707156-05 Data File: Date Analyzed: 07/14/17 707156-05.047 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: NA Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/14/17
 Lab ID:
 I7-373 mb2

 Date Analyzed:
 07/14/17
 Data File:
 I7-373 mb2.048

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-071217 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061 Date Extracted: 07/14/17 Lab ID: 707156-02 Data File: 071411.D Date Analyzed: 07/14/17 Matrix: Water Instrument: GCMS4 Operator: Units: ug/L (ppb) JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	101	60	133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Ken's Texaco, PO 120061
Date Extracted: 07/14/17 Lab ID: 07-1439 mb

Date Analyzed: 07/14/17 Data File: 071405.D

Matrix: Water Instrument: GCMS4

Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 102 57 121 Toluene-d8 101 63 127 4-Bromofluorobenzene 100 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707156

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 707156-01 (Duplicate)

	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	102	65-118
Toluene	ug/L (ppb)	50	100	72-122
Ethylbenzene	ug/L (ppb)	50	101	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	95	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707156

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	· ·	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	96	61-133	9

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707156

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 707132-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	84	79	75-125	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707156

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 707151-06 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	105	69-133	1

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	98	73-132		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

7	707156		j.	SAMPLÈ	CHAIN	OF C	ŲS	ТО	DΥ		1	11			UT		11:	7 u	۱۲	AI3
I	Report To Kirsi Long	ley			SAMPLERS (signature) PROJECT NAME PO#					Page #of TURNAROUND TIME ///2 Standard Turnaround										
	Company Aspect Con	sulting		Ken's Texaco			120061			Rush charges authorized by: SAMPLE DISPOSAL										
	City, State, ZIP Seattle Office			REMAR	REMARKS			A			Ac	INVOICE TO Accts Payable			Dispose after 30 days Archive Samples Other			analysesony versule		
	Phone Emai	<u> </u>								A	ANALYSES REQUE		44.4	ESTED						
	Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH.HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270	10-Ta 1 1 b			Ø	Not	es 	R
	MW-19-07/117	可食	7/11/17	1470	Water	5		X	X	X					<u>. </u>		10	7/13/	P	
- 15	F151F0-01-WM		7/12/17	1150		5		X	X	X			$\perp \rangle$	$\langle \downarrow \rangle$	<u> </u>			4	1	
Г	F15170-1-WM			1205		8		X	X	X				\perp					}	
	MW210-071217			4000 1120		18	\	×	M	X	<u>-</u>	╁	4	4	\pm	1	1			
	FLS1F0-81-WM			1330	<u> </u>	5		X	X	X		_ -	\}	4						
	MW-7-071217	05 A	1	1245	$ \mathbf{V} $	5		X	X	K			λ							
	<u> </u>														ملاو	17000	المراد	4	<	5
											1									
				*		*9**	•													
		S	IGNATJURE			PRI	NT l	VAM	Œ,			7.5	C	ЭМР	ANY			DATE	T	ME
	Friedman & Bruya, Inc.	Relinquished b <u>y:</u>	KAR.	d		Krist	ín_	Be	ck			A	pe	cŁ			7	113/17		
	3012 16 th Avenue West	Received by:	1 201.	4	<u> </u>) <i>a</i>	1/0					۶F	40				7-	-13-17	10	11
	Seattle, WA 98119-2029	Relinquish ed by:													<u> </u>					
	Ph. (206) 285-8282	Received by:		10 m															1	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 21, 2017

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on July 13, 2017 from the Ken's Texaco, PO 120061, F&BI 707165 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0721R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 13, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061, F&BI 707165 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
707165 -01	MW-22-071217
707165 -02	MW-21-071317
707165 -03	MW-16-071317
707165 -04	MW-8-071317
707165 -05	MW-11-071317

Samples MW-16-071317, MW-8-071317, and MW-11-071317 were sent to Fremont Analytical for alkalinity, chloride, nitrate, nitrite, and sulfate analyses. The report is enclosed.

A 6020A internal standard failed the acceptance criteria for sample MW-22-071217 due to matrix interferences. The data were flagged accordingly. The sample was diluted and reanalyzed.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707165

Date Extracted: 07/14/17

Date Analyzed: 07/14/17 and 07/17/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-22-071217 707165-01	<1	<1	<1	<3	<100	76
MW-21-071317 707165-02	<1	<1	<1	<3	<100	79
MW-16-071317 707165-03	<1	<1	5.0	<3	510	81
MW-8-071317 707165-04 1/10	490	120	460	390	7,800	79
MW-11-071317 707165-05	61	3.9	38	37	1,500	80
Method Blank 07-1437 MB	<1	<1	<1	<3	<100	80

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707165

Date Extracted: 07/14/17 Date Analyzed: 07/14/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-22-071217 707165-01 1/1.8	<90	<450	73
MW-21-071317 707165-02 1/1.4	<70	<350	93
MW-16-071317 707165-03 1/1.4	240 x	<350	86
MW-8-071317 707165-04 1/1.4	1,400 x	<350	92
MW-11-071317 707165-05 1/1.4	1,300 x	670 x	91
Method Blank 07-1502 MB	<50	<250	93

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-16-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted: 07/17/17 Lab ID: 707165-03 x5 Data File: Date Analyzed: 07/18/17 707165-03 x5.036

Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration Analyte: ug/L (ppb)

Iron

4,150 Manganese 3,420

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-8-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/17/17
 Lab ID:
 707165-04 x10

 Date Analyzed:
 07/18/17
 Data File:
 707165-04 x10.037

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

 Iron
 9,280

 Manganese
 14,900

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-11-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/17/17
 Lab ID:
 707165-05 x20

 Date Analyzed:
 07/18/17
 Data File:
 707165-05 x20.038

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

 Iron
 7,570

 Manganese
 22,500

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: NA Project: Ken's Texaco, PO 120061

Date Extracted: 07/17/17 Lab ID: I7-375 mb Data File: Date Analyzed: 07/18/17 I7-375 mb.021 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-22-071217 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted: 07/14/17 Lab ID: 707165-01 Data File: Date Analyzed: 07/18/17 707165-01.077 Matrix: Water Instrument: ICPMS2 Units: AP ug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Lead 1.07 J

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-22-071217 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted: 07/14/17 Lab ID: 707165-01 x5
Date Analyzed: 07/18/17 Data File: 707165-01 x5.084

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-21-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted:07/14/17Lab ID:707165-02Date Analyzed:07/18/17Data File:707165-02.078Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-16-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted: 07/14/17 Lab ID: 707165-03 Data File: Date Analyzed: 07/18/17 707165-03.079 Matrix: Water Instrument: ICPMS2 Units: AP

ug/L (ppb) Operator:

Concentration Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-8-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/14/17
 Lab ID:
 707165-04

 Date Analyzed:
 07/18/17
 Data File:
 707165-04.080

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-11-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

Date Extracted:07/14/17Lab ID:707165-05Date Analyzed:07/18/17Data File:707165-05.083Matrix:WaterInstrument:ICPMS2

Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: NA Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/14/17
 Lab ID:
 I7-373 mb2

 Date Analyzed:
 07/14/17
 Data File:
 I7-373 mb2.048

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061 Date Extracted: 07/14/17 Lab ID: 707165-05 Data File: 071410.D Date Analyzed: 07/14/17 Matrix: Water Instrument: GCMS4 Operator: Units: ug/L (ppb) JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	101	60	133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Ken's Texaco, PO 120061
Date Extracted: 07/14/17 Lab ID: 07-1439 mb

Date Analyzed: 07/14/17 Data File: 07/14/5.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 102 57 121 Toluene-d8 101 63 127 4-Bromofluorobenzene 100 60 133

Concentration

Compounds: ug/L (ppb)

1,2-Dichloroethane (EDC) <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-16-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/14/17
 Lab ID:
 707165-03

 Date Analyzed:
 07/14/17
 Data File:
 006F0601.D

Concentration

Compounds: ug/L (ppb)

Methane 38

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-8-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/14/17
 Lab ID:
 707165-04

 Date Analyzed:
 07/14/17
 Data File:
 008F0801.D

Concentration

Compounds: ug/L (ppb)

Methane 350

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-11-071317 Client: Aspect Consulting, LLC Date Received: 07/13/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/14/17
 Lab ID:
 707165-05 1/10

 Date Analyzed:
 07/14/17
 Data File:
 011F1101.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 490

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: NA Project: Ken's Texaco, PO 120061

Date Extracted: 07/14/17 Lab ID: 07-1482 mb Date Analyzed: 07/14/17 Data File: 05F1101.D Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 707165-01 (Duplicate)

	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Benzene	ug/L (ppb)	50	103	65-118	
Toluene	ug/L (ppb)	50	100	72-122	
Ethylbenzene	ug/L (ppb)	50	101	73-126	
Xylenes	ug/L (ppb)	150	96	74-118	
Gasoline	ug/L (ppb)	1,000	98	69-134	

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	· ·	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	96	61-133	9

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020A

Laboratory Code: 707132-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	439	106 b	74 b	75-125	36 b
Manganese	ug/L (ppb)	20	4,720 ve	0 b	0 b	75-125	0 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	98	80-120
Manganese	ug/L (ppb)	20	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 707132-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	84	79	75-125	6

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Lead	ug/L (ppb)	10	101	80-120	

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 707151-06 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	105	69-133	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	98	73-132

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/17 Date Received: 07/13/17

Project: Ken's Texaco, PO 120061, F&BI 707165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 707165-03 (Duplicate)

Analyte	Reporting Units	Sample Re		olicate esult	Relative Percent Difference (Limit 20)	
Methane	ug/L (ppb)	38		40	5	
Laboratory Code: I	Laboratory Control	Sample	Percent	Percent		
Analyte	Reporting Units	Spike Level	Recovery LCS	Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Methane	ug/L (ppb)	59	78	77	50-150	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- $ip\ Recovery\ fell\ outside\ of\ control\ limits.\ Compounds\ in\ the\ sample\ matrix\ interfered\ with\ the\ quantitation\ of\ the\ analyte.$
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 707165

Work Order Number: 1707118

July 19, 2017

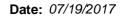
Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 7/14/2017 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

And c. Rady

Sincerely,

Mike Ridgeway Laboratory Director

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 707165 **Work Order:** 1707118

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1707118-001	MW-16-071317	07/13/2017 9:35 AM	07/14/2017 8:38 AM
1707118-002	MW-8-071317	07/13/2017 10:45 AM	07/14/2017 8:38 AM
1707118-003	MW-11-071317	07/13/2017 12:01 PM	07/14/2017 8:38 AM

Case Narrative

WO#: **1707118**Date: **7/19/2017**

CLIENT: Friedman & Bruya

Project: 707165

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1707118**

Date Reported: 7/19/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1707118**Date Reported: **7/19/2017**

Client: Friedman & Bruya Collection Date: 7/13/2017 9:35:00 AM

Project: 707165

Lab ID: 1707118-001 **Matrix:** Water

Client Sample ID: MW-16-071317

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA I	Method 300.0			Bato	h ID: R3	37465 Analyst: MW
Chloride	15.3	1.00	D	mg/L	10	7/14/2017 4:37:00 PM
Nitrite (as N)	0.172	0.200	JD	mg/L	2	7/14/2017 3:11:00 PM
Nitrate (as N)	1.80	0.200	D	mg/L	2	7/14/2017 3:11:00 PM
Sulfate	8.23	0.600	D	mg/L	2	7/14/2017 3:11:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R3	37440 Analyst: MW
Alkalinity, Total (As CaCO3)	151	2.50		mg/L	1	7/17/2017 3:40:00 PM

Original

Analytical Report

Work Order: **1707118**Date Reported: **7/19/2017**

Client: Friedman & Bruya Collection Date: 7/13/2017 10:45:00 AM

Project: 707165

Lab ID: 1707118-002 **Matrix:** Water

Client Sample ID: MW-8-071317

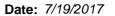
Analyses	Result	RL	Qual	Units	DF	Dat	te Analyzed
Ion Chromatography by EPA	Method 300.0			Batc	h ID: R3	7465	Analyst: MW
Chloride	113	10.0	D	mg/L	100	7/14/2	2017 4:58:00 PM
Nitrite (as N)	ND	1.00	D	mg/L	10	7/14/2	2017 3:32:00 PM
Nitrate (as N)	ND	1.00	D	mg/L	10	7/14/2	2017 3:32:00 PM
Sulfate	33.5	30.0	D	mg/L	100	7/14/2	2017 4:58:00 PM
Total Alkalinity by SM 2320B				Batc	h ID: R3	7440	Analyst: MW
Alkalinity, Total (As CaCO3)	483	2.50		mg/L	1	7/17/2	2017 3:45:00 PM

Original

Analytical Report

Work Order: **1707118**Date Reported: **7/19/2017**

Client: Friedman & Bruya Collection Date: 7/13/2017 12:01:00 PM


Project: 707165

Lab ID: 1707118-003 **Matrix:** Water

Client Sample ID: MW-11-071317

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Ion Chromatography by EPA I	Method 300.0			Batc	h ID: R3	7465	Analyst: MW
Chloride	139	10.0	D	mg/L	100	7/14/2	2017 7:04:00 PM
Nitrite (as N)	ND	1.00	D	mg/L	10	7/14/	2017 7:25:00 PM
Nitrate (as N)	ND	1.00	D	mg/L	10	7/14/	2017 7:25:00 PM
Sulfate	13.3	3.00	D	mg/L	10	7/14/	2017 7:25:00 PM
Total Alkalinity by SM 2320B				Batc	h ID: R3	7440	Analyst: MW
Alkalinity, Total (As CaCO3)	1,110	2.50		mg/L	1	7/17/	2017 3:50:00 PM

Original

Work Order: 1707118

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 707165							ion Cr	iromatogra	pny by Er	A Wetho	a 300.
Sample ID MB-R37465	SampType: MBLK			Units: mg/L		Prep Date	7/14/20)17	RunNo: 374	165	
Client ID: MBLKW	Batch ID: R37465					Analysis Date	: 7/14/20)17	SeqNo: 720	176	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	ND	0.100									
Nitrite (as N)	ND	0.100									
Nitrate (as N)	ND	0.100									
Sulfate	ND	0.300									
Sample ID LCS-R37465	SampType: LCS			Units: mg/L		Prep Date	: 7/14/20)17	RunNo: 374	165	
Client ID: LCSW	Batch ID: R37465					Analysis Date	: 7/14/20)17	SeqNo: 720)177	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.730	0.100	0.7500	0	97.3	90	110				
Nitrite (as N)	0.684	0.100	0.7500	0	91.2	90	110				
Nitrate (as N)	0.725	0.100	0.7500	0	96.7	90	110				
Sulfate	3.45	0.300	3.750	0	92.1	90	110				
Sample ID 1707118-002ADUP	SampType: DUP			Units: mg/L		Prep Date	: 7/14/20)17	RunNo: 374	165	
Client ID: MW-8-071317	Batch ID: R37465					Analysis Date	: 7/14/20)17	SeqNo: 720)183	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	112	10.0						112.7	0.267	20	D
Nitrite (as N)	ND	10.0						0		20	D
Nitrate (as N)	ND	10.0						0		20	D
Sulfate	36.8	30.0						33.50	9.39	20	D
Sample ID 1707118-002AMS	SampType: MS			Units: mg/L		Prep Date	: 7/14/20)17	RunNo: 374	165	
Client ID: MW-8-071317	Batch ID: R37465					Analysis Date	: 7/14/20)17	SeqNo: 720)184	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	194	10.0	75.00	112.7	108	80	120				D
Nitrite (as N)	70.6	10.0	75.00	0	94.1	80	120				D

Original Page 8 of 12

Date: 7/19/2017

Work Order: 1707118

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

707165

Ion Chromatography by EPA Method 300.0

Sample ID 1707118-002AMS Client ID: MW-8-071317	SampType: MS Batch ID: R37465			Units: mg/L		·	te: 7/14/20 1		RunNo: 37 4 SeqNo: 72 0		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	75.3	10.0	75.00	0	100	80	120				D
Sulfate	411	30.0	375.0	33.50	101	80	120				D

Sample ID 1707118-002AMSD	SampType: MSD			Units: mg/L		Prep Date: 7/14/2017			RunNo: 374			
Client ID: MW-8-071317	Batch ID: R37465				Analysis Date: 7/14/2017				SeqNo: 720185			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Chloride	193	10.0	75.00	112.7	107	80	120	194.0	0.361	20	D	
Nitrite (as N)	68.5	10.0	75.00	0	91.3	80	120	70.60	3.02	20	D	
Nitrate (as N)	74.0	10.0	75.00	0	98.7	80	120	75.30	1.74	20	D	
Sulfate	405	30.0	375.0	33.50	99.0	80	120	410.5	1.42	20	D	

Original Page 9 of 12

Date: 7/19/2017

Work Order: 1707118

Alkalinity, Total (As CaCO3)

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Alkalinity by SM 2320B

20

1.40

151.2

Project:	707165							To	tal Alkalinity by SN	1 2320B
Sample ID	MB-R37440	SampType: MBLK			Units: mg/L		Prep Date:	7/17/2017	RunNo: 37440	
Client ID:	MBLKW	Batch ID: R37440					Analysis Date:	7/17/2017	SeqNo: 719528	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ghLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, To	otal (As CaCO3)	ND	2.50							
Sample ID	LCS-R37440	SampType: LCS			Units: mg/L		Prep Date:	7/17/2017	RunNo: 37440	
Client ID:	LCSW	Batch ID: R37440					Analysis Date:	7/17/2017	SeqNo: 719529	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ghLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, To	otal (As CaCO3)	111	2.50	100.0	0	111	80	120		
Sample ID	1707118-001BDUP	SampType: DUP			Units: mg/L		Prep Date:	7/17/2017	RunNo: 37440	
Client ID:	MW-16-071317	Batch ID: R37440					Analysis Date:	7/17/2017	SeqNo: 719539	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ghLimit RPD Ref Val	%RPD RPDLimit	Qual

2.50

149

Original Page 10 of 12

Sample Log-In Check List

CI	ient Name:	FB		Work Order Number: 1707118						
Lo	ogged by:	Erica Silva	ı		Date Received:	7/14/201	7 8:38:00 AM			
<u>Cha</u>	in of Custo	od <u>y</u>								
1.	Is Chain of C	ustody comp	olete?		Yes 🗸	No 🗌	Not Present			
2.	How was the	sample deliv	vered?		<u>FedEx</u>					
Log	In									
_	Coolers are p	resent?			Yes	No 🗸	NA 🗆			
0.	·		<u>Sar</u>	nples rec	eived at approp	oriate temperatu	<u>ure</u>			
4.	Shipping con	tainer/cooler	in good condition?	•	Yes 🗹	No \square				
5.			n shipping container/cooler? ustody Seals not intact)		Yes	No 🗹	Not Required			
6.	Was an atten	npt made to	cool the samples?		Yes 🗸	No 🗌	NA 🗆			
7.	Were all item	s received a	t a temperature of >0°C to 10.	0°C*	Yes 🗸	No 🗌	NA \square			
8.	Sample(s) in	proper conta	ainer(s)?		Yes 🗸	No 🗌				
9.	Sufficient sar	nple volume	for indicated test(s)?		Yes 🗸	No \square				
10.	Are samples	properly pre	served?		Yes 🗸	No \square				
11.	Was preserva	ative added	to bottles?		Yes	No 🗸	NA \square			
12.	Is there head	space in the	VOA vials?		Yes	No 🗌	NA 🗹			
13.	Did all sample	es container	s arrive in good condition(unbro	oken)?	Yes 🗹	No \square				
14.	Does paperw	ork match b	ottle labels?		Yes 🗸	No \square				
15.	Are matrices	correctly ide	entified on Chain of Custody?		Yes 🗸	No 🗌				
16.	Is it clear wha	at analyses v	vere requested?		Yes 🗸	No 🗌				
17.	Were all hold	ing times ab	le to be met?		Yes 🗸	No 🗌				
Spe	cial Handli	ing (if app	olicable)							
_			discrepancies with this order?		Yes	No \square	NA 🗸			
	Person	Notified:		Date						
	By Who	m:		Via:	eMail	Phone Fax	In Person			
	Regardi									
	Client In	structions:								
19.	Additional rer	marks:								
Item I	Information									
		Item #	Temp °C							

2.7

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

1707118

Send Report To Michael Erdahl				SUBCONTRACTER Franch							Page # of TURNAROUND TIME						
	an and B	ruva Inc			CT NAM			.,		P	O#			Standa	rd (2	Weeks)	Week C
	6th Ave W				7071	65				F.	4			RUSH sh cha		uthorize	TIME S
City, State, ZIP_Seattle				REMA		T	D	1.					0 1	Dispos	e after	E DISPO	OSAL
Phone #(206) 285-8282	Fax #_	(206) 283-	5044		Please	Email	Kesu	Its	Aspect	END				Return Will ca	samp ll with	oles 1 instruc	tions
									ANA	LYSI	ES REC	QUES	TED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	ЕРН	VPH	Nitrate	Sulfate	Alkalinity	TOC-9060M	N.tak	Chloriote		<i>a-0</i>	Notes
MW-16-071317		7/13/17	0935	water					×	×	×		X	×			
MW-8-071317		1	1045	1					×	×	×		*	×			
MW-11-071317		+	120]	4					K	×	K		x	×			
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquist	SIGNA'	TURE				T NA	ME				COM			I	DATE	TIME
		- ce	4	M	lichael E	rdahl					Friedr	nan ai	nd Br	uya	7/	14/12	68:00 Am
Seattle, WA 98119-2029	Received b	_ \		E	Brianna Barnes				FAI				417	0838			
Ph. (206) 285-8282	Relinquish	ed by:					-								11		-070
Fax (206) 283-5044	Received b	y:									+						

707165			SAMPLE	E CHAIN	OF	CUS	то	DΥ	1	YE	σ 7 -	13	_17	<i>L</i>	(Z	יסל	11 C	I3/	ʹͺϒϒ
Report To Kivsi Lo	molera		SAMPL	ERS (signa	iture)	1	L	1	0				**************************************	E (CE	Page#		of		! -,
Company ASPECT	2 3 6 7	• 0	PROJE	CT NAME				50	3/C	P)#		مُوٰ اٰ⊢	Stan	dard		UND T around		,
1	Consulti	<u> </u>	\mathcal{V}	en's To	-	e a			/	200	261	1		RUS tush c		es aut	horize	l bv:	
Address	102 -1) () i = -										DISPOS							
City, State, ZIP_Sla	the St	tice_					Ac				Disp	ose af	ter 30) days)tZIJ				
Phone E	nail		_	······································						Payable Archive Samples									
				T	T		·····		AN	ALYS		EQU)	ESTE	D				,	9
		**************************************				А	sel	line	21B	SVOCs by 8270D	SIM	\tilde{a}		کے	•	131	l, a	1	Metho
Sample ID	Lab ID	Date Sampled	Time	Sample	# of	1	PPH-Diesel	Gaso	by 80	by 8	8270D	6	()	<u> </u>	3	N.	TNot	es E	K
15 April 19		Sampled	Sampled	Туре	Jars	TPH	TPH	TPH-Gasoline	BTEX by 8021B VOCs by 8960C	OCs	Hs 8	Tota		Alkalinit	Shlori	型	别		S
In All									m 5	λs	PA	1	لمدلها	ユ	\circ	×	시/-	4	Ē
MW-22-0712		7/12/17	1500	water	5		<u> </u>	X	식_			上							
MW-21-07131	7 02 +	7/13/17	0800		5		X	$\times \mid_{\Sigma}$				X							
MW-16-073	17 03 A-L		0935		12		X	$\chi \mid \rangle$	$\langle $			X		χ	X	X	XX	X	X
MW-8-0713	17/04/		1045		12		X	$\langle \rangle$	$\langle $			X		Χ	χ	χ	XX	X	X
MW-11-0713	17051	1	1201	1	12		χÌ	Vγ				X	X	X	X	Х	XI	(X	X
							4						Z \		-/-	, '	1/		1/
							-			-				777					
			-												,			***************************************	
										<u> </u>	S	amp	les :	rece	ved	at	2	C	
							-			_									
		**************************************															wax		
Friedman & Bruya, Inc. Relinquished by:			PRINT NAME			COM			PAN	Y		DA	TE	<u> </u>	ME				
3012 16 th Avenue West	Mattilah		Kristin Beck			Aspect			1/1	3/17	/	25							
Seattle, WA 98119-2029				EAC Yours			+ F&B			+	7/13	17-	<u> </u>	ST					

Ph. (206) 285-8282

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 20, 2017

Kirsi Longley, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Longley:

Included are the results from the testing of material submitted on July 12, 2017 from the Ken's Texaco, PO 120061, F&BI 707132 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com

ASP0720R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 12, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Ken's Texaco, PO 120061, F&BI 707132 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
707132 -01	MW-12-071117
707132 -02	MW-13-071117
707132 -03	MW-14-071117
707132 -04	MW-15-071117

Sample MW-12-071117 was sent to Fremont Analytical for alkalinity, chloride, nitrate, nitrite, and sulfate analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/17 Date Received: 07/12/17

Project: Ken's Texaco, PO 120061, F&BI 707132

Date Extracted: 07/12/17 Date Analyzed: 07/12/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW-12-071117 707132-01	<1	<1	<1	<3	<100	68
MW-13-071117 707132-02	<1	<1	<1	<3	<100	69
MW-14-071117 707132-03	<1	<1	<1	<3	<100	69
MW-15-071117 707132-04	<1	<1	<1	<3	<100	69
Method Blank 07-1433 MB	<1	<1	<1	<3	<100	75

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/17 Date Received: 07/12/17

Project: Ken's Texaco, PO 120061, F&BI 707132

Date Extracted: 07/14/17 Date Analyzed: 07/14/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
MW-12-071117 707132-01	130 x	<250	93
MW-13-071117 707132-02	< 50	<250	100
MW-14-071117 707132-03	< 50	<250	96
MW-15-071117 707132-04	<50	<250	56
Method Blank 07-1502 MB	< 50	<250	93

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: MW-12-071117 Client: Aspect Consulting, LLC Date Received: 07/12/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/17/17
 Lab ID:
 707132-01 x5

 Date Analyzed:
 07/18/17
 Data File:
 707132-01 x5.034

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Iron 469 Manganese 4,620

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC Date Received: NA Project: Ken's Texaco, PO 120061

Lab ID: Date Extracted: 07/17/17 I7-375 mb Date Analyzed: 07/18/17 Data File: I7-375 mb.021 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: AP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-12-071117 Client: Aspect Consulting, LLC Date Received: 07/12/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/13/17
 Lab ID:
 707132-01

 Date Analyzed:
 07/13/17
 Data File:
 707132-01.058

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-13-071117 Client: Aspect Consulting, LLC Date Received: 07/12/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/13/17
 Lab ID:
 707132-02

 Date Analyzed:
 07/13/17
 Data File:
 707132-02.061

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-14-071117 Client: Aspect Consulting, LLC Date Received: 07/12/17 Project: Ken's Texaco, PO 120061

Lab ID: Date Extracted: 07/13/17 707132-03 Date Analyzed: 07/13/17 Data File: 707132-03.062 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: MW-15-071117 Client: Aspect Consulting, LLC Date Received: 07/12/17 Project: Ken's Texaco, PO 120061

Lab ID: Date Extracted: 07/13/17 707132-04 Date Analyzed: 07/13/17 Data File: 707132-04.063 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Method Blank Client: Aspect Consulting, LLC Date Received: NA Project: Ken's Texaco, PO 120061

Date Extracted: 07/13/17 Lab ID: I7-373 mb
Date Analyzed: 07/13/17 Data File: I7-373 mb.056
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: MW-12-071117 Client: Aspect Consulting, LLC Date Received: 07/12/17 Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/12/17
 Lab ID:
 707132-01

 Date Analyzed:
 07/12/17
 Data File:
 006F0601.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane 57

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Gasses By RSK 175

Client Sample ID: Method Blank Client: Aspect Consulting, LLC Date Received: NA Project: Ken's Texaco, PO 120061

 Date Extracted:
 07/12/17
 Lab ID:
 07-1477 mb

 Date Analyzed:
 07/12/17
 Data File:
 005F0501.D

Matrix: Water Instrument: GC8 Units: ug/L (ppb) Operator: JS

Concentration

Compounds: ug/L (ppb)

Methane <5

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/17 Date Received: 07/12/17

Project: Ken's Texaco, PO 120061, F&BI 707132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 707113-02 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

	Percent						
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	104	65-118			
Toluene	ug/L (ppb)	50	103	72-122			
Ethylbenzene	ug/L (ppb)	50	105	73-126			
Xylenes	ug/L (ppb)	150	99	74-118			
Gasoline	ug/L (ppb)	1,000	100	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/17 Date Received: 07/12/17

Project: Ken's Texaco, PO 120061, F&BI 707132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	96	61-133	9

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/17 Date Received: 07/12/17

Project: Ken's Texaco, PO 120061, F&BI 707132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020A

Laboratory Code: 707132-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	439	106 b	74 b	75-125	36 b
Manganese	ug/L (ppb)	20	4,720 ve	0 b	0 b	75-125	0 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	98	80-120
Manganese	ug/L (ppb)	20	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/17 Date Received: 07/12/17

Project: Ken's Texaco, PO 120061, F&BI 707132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 707132-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	84	79	75-125	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/17 Date Received: 07/12/17

Project: Ken's Texaco, PO 120061, F&BI 707132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED GASSES USING METHOD RSK 175

Laboratory Code: 707132-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Methane	ug/L (ppb)	57	59	3

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methane	ug/L (ppb)	59	74	73	50-150	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W.

Seattle, WA 98119

RE: 707132

Work Order Number: 1707091

July 18, 2017

Attention Michael Erdahl:

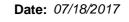
Fremont Analytical, Inc. received 1 sample(s) on 7/12/2017 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.


Thank you for using Fremont Analytical.

Jul c. Rady

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 707132 **Work Order:** 1707091

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

1707091-001 MW-12-071117 07/11/2017 10:25 AM 07/12/2017 11:27 AM

Case Narrative

WO#: **1707091**Date: **7/18/2017**

CLIENT: Friedman & Bruya

Project: 707132

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1707091**

Date Reported: 7/18/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

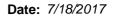
SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1707091**Date Reported: **7/18/2017**

Client: Friedman & Bruya Collection Date: 7/11/2017 10:25:00 AM


Project: 707132

Lab ID: 1707091-001 **Matrix:** Water

Client Sample ID: MW-12-071117

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA M	ethod 300.0			Bato	h ID: R3	7441 Analyst: KT
Chloride	32.1	2.00	D	mg/L	20	7/12/2017 2:20:00 PM
Nitrite (as N)	ND	2.00	D	mg/L	20	7/12/2017 2:20:00 PM
Nitrate (as N)	4.58	2.00	D	mg/L	20	7/12/2017 2:20:00 PM
Sulfate	35.1	6.00	D	mg/L	20	7/12/2017 2:20:00 PM
NOTES:						
Diluted due to matrix.						
Total Alkalinity by SM 2320B				Bato	h ID: R3	7440 Analyst: MW
Alkalinity, Total (As CaCO3)	439	2.50		mg/L	1	7/17/2017 3:35:00 PM

Original

Work Order: 1707091

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Sample ID LCS-R37441	SampType: LCS			Units: mg/L		Prep Da	te: 7/12/2 0	 017	RunNo: 374	141	
Client ID: LCSW	Batch ID: R37441			J		Analysis Da			SeqNo: 719		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.718	0.100	0.7500	0	95.7	90	110				
Nitrite (as N)	0.718	0.100	0.7500	0	95.7	90	110				
Nitrate (as N)	0.718	0.100	0.7500	0	95.7	90	110				
Sulfate	3.56	0.300	3.750	0	95.0	90	110				
Sample ID MB-R37441	SampType: MBLK			Units: mg/L		Prep Da	te: 7/12/2 0	017	RunNo: 374	141	
Client ID: MBLKW	Batch ID: R37441					Analysis Da	te: 7/12/2 0	017	SeqNo: 719	9599	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	ND	0.100									
NI:4=:4= /== NI\	ND	0.100									
Nitrite (as N)											
Nitrite (as N) Nitrate (as N)	ND	0.100									
,	ND ND	0.100 0.300									
Nitrate (as N)				Units: mg/L		Prep Da	te: 7/13/2 0	017	RunNo: 37 4	141	
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP	ND			Units: mg/L		Prep Da Analysis Da			RunNo: 37 4 SeqNo: 71 9		
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP Client ID: BATCH	ND SampType: DUP		SPK value	Units: mg/L SPK Ref Val	%REC	Analysis Da	te: 7/13/2 0				Qual
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP Client ID: BATCH Analyte	SampType: DUP Batch ID: R37441	0.300	SPK value	-	%REC	Analysis Da	te: 7/13/2 0	017	SeqNo: 719	9628	Qual
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP Client ID: BATCH Analyte Chloride Nitrite (as N)	ND SampType: DUP Batch ID: R37441 Result	0.300 RL	SPK value	-	%REC	Analysis Da	te: 7/13/2 0	RPD Ref Val	SeqNo: 719 %RPD	9628 RPDLimit	
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP Client ID: BATCH Analyte Chloride Nitrite (as N)	SampType: DUP Batch ID: R37441 Result 3.86	0.300 RL 0.200	SPK value	-	%REC	Analysis Da	te: 7/13/2 0	RPD Ref Val 3.900 0 0.3640	SeqNo: 719 %RPD 0.979	P628 RPDLimit 20	D
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N)	SampType: DUP Batch ID: R37441 Result 3.86 ND	0.300 RL 0.200 0.200	SPK value	-	%REC	Analysis Da	te: 7/13/2 0	RPD Ref Val 3.900 0	SeqNo: 719 %RPD 0.979 0	P628 RPDLimit 20 20	D D
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N) Sulfate	SampType: DUP Batch ID: R37441 Result 3.86 ND 0.362	0.300 RL 0.200 0.200 0.200	SPK value	-	%REC	Analysis Da LowLimit	te: 7/13/2 0	3.900 0 0 0.3640 8.378	SeqNo: 719 %RPD 0.979 0 0.551	20 20 20 20 20 20	D D D
Nitrate (as N) Sulfate	SampType: DUP Batch ID: R37441 Result 3.86 ND 0.362 8.45	0.300 RL 0.200 0.200 0.200	SPK value	SPK Ref Val	%REC	Analysis Da LowLimit	te: 7/13/20 HighLimit	3.900 0 0.3640 8.378	SeqNo: 719 %RPD 0.979 0 0.551 0.856	20 20 20 20 20 20	D D D
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1707081-001CMS Client ID: BATCH	SampType: DUP Batch ID: R37441 Result 3.86 ND 0.362 8.45 SampType: MS	0.300 RL 0.200 0.200 0.200		SPK Ref Val	%REC	Analysis Da LowLimit Prep Da Analysis Da	te: 7/13/20 HighLimit te: 7/13/20	3.900 0 0.3640 8.378	SeqNo: 719 %RPD 0.979 0 0.551 0.856	20 20 20 20 20 20	D D D
Nitrate (as N) Sulfate Sample ID 1707081-001CDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1707081-001CMS	SampType: DUP Batch ID: R37441 Result 3.86 ND 0.362 8.45 SampType: MS Batch ID: R37441	0.300 RL 0.200 0.200 0.200 0.600		SPK Ref Val Units: mg/L		Analysis Da LowLimit Prep Da Analysis Da	te: 7/13/20 HighLimit te: 7/13/20	3.900 0 0.3640 8.378	SeqNo: 719 %RPD 0.979 0 0.551 0.856 RunNo: 374 SeqNo: 719	20 20 20 20 20 20 20	D D D

Original Page 6 of 10

Date: 7/18/2017

Work Order: 1707091

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

707132

Ion Chromatography by EPA Method 300.0

Sample ID	1707081-001CMS	SampType: MS			Units: mg/L		Prep Date:	7/13/2017	RunNo: 37 4	141	
Client ID:	ВАТСН	Batch ID: R37441					Analysis Date:	7/13/2017	SeqNo: 719	9629	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ighLimit RPD Ref Val	%RPD	RPDLimit	Qual

Nitrate (as N) 1.80 0.200 0.3640 80 120 D 1.500 95.6 16.3 8.378 80 120 D Sulfate 0.600 105 7.500

Sample ID 1707081-001CMSD	SampType: MSD			Units: mg/L		Prep Dat	e: 7/13/20	17	RunNo: 374	141	
Client ID: BATCH	Batch ID: R37441					Analysis Da	e: 7/13/20	17	SeqNo: 719	9631	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	5.51	0.200	1.500	3.900	108	80	120	5.472	0.765	20	D
Nitrite (as N)	1.45	0.200	1.500	0	96.7	80	120	1.428	1.53	20	D
Nitrate (as N)	1.80	0.200	1.500	0.3640	95.9	80	120	1.798	0.222	20	D
Sulfate	16.4	0.600	7.500	8.378	106	80	120	16.27	0.552	20	D

Original Page 7 of 10

Date: 7/18/2017

Work Order: 1707091

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

707132

Total Alkalinity by SM 2320B

Sample ID MB-R37440	SampType: MBLK	Units: mg/L	Prep Date:	7/17/2017	RunNo: 37440
Client ID: MBLKW	Batch ID: R37440		Analysis Date:	7/17/2017	SeqNo: 719528

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) ND 2.50

Sample ID LCS-R37440	SampType: LCS		Units: mg/L		Prep Da	te: 7/17/201	RunNo: 37440					
Client ID: LCSW	Batch ID: R37440					Analysis Da	te: 7/17/201	7	SeqNo: 71 9			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Alkalinity, Total (As CaCO3)	111	2.50	100.0	0	111	80	120					

Sample ID 1707118-001BDUP	SampType: DUP		Units: mg/L	Prep Date:	7/17/2017	RunNo: 37440	
Client ID: BATCH	Batch ID: R37440			Analysis Date:	7/17/2017	SeqNo: 719539	
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, Total (As CaCO3)	149	2.50			151.2	1.40 20	

Original Page 8 of 10

Sample Log-In Check List

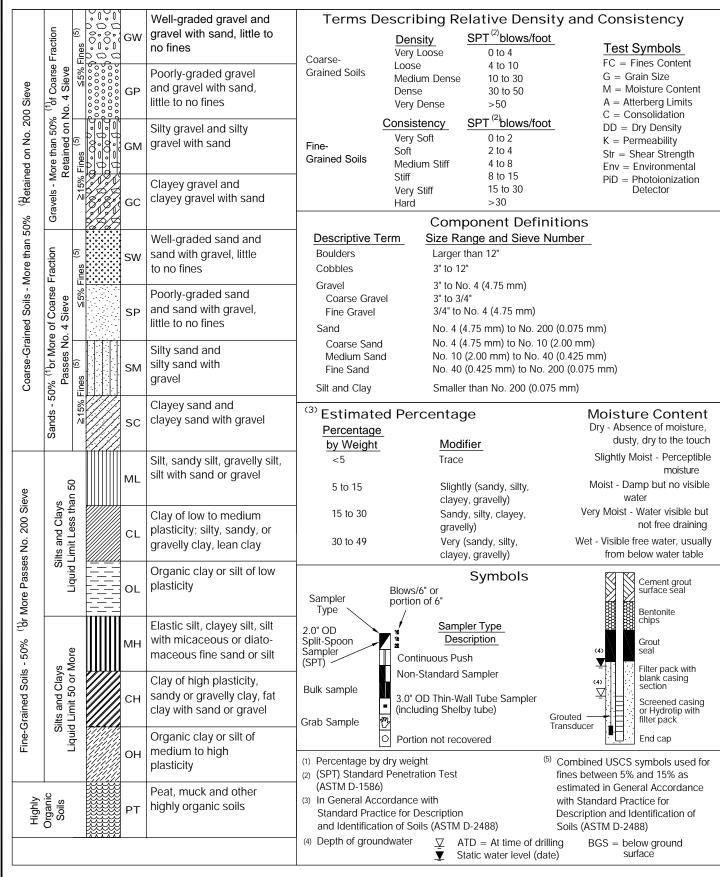
С	lient Name:	FB		Work Order N			
L	ogged by:	Erica Silv	а	Date Receive	d: 7/12/201	7 11:27:00 AM	
Cha	ain of Cust	<u>ody</u>					
1.	Is Chain of C	ustody com	plete?	Yes 🗸	No 🗌	Not Present	
2.	How was the	sample del	ivered?	<u>FedEx</u>			
Log	<u>ı In</u>						
3.	Coolers are p	oresent?		Yes 🗸	No 🗌	NA 🗌	
4.	Shipping con	tainer/coole	er in good condition?	Yes 🗹	No 🗌		
5.			on shipping container/cooler? Custody Seals not intact)	Yes	No 🗹	Not Required	
6.	Was an atter	npt made to	cool the samples?	Yes 🗸	No 🗌	NA \square	
7.	Were all item	s received	at a temperature of >0°C to 10.0°C*	Yes 🗸	No 🗆	na 🗆	
8.	Sample(s) in	proper con	tainer(s)?	Yes 🗹	No 🗌		
9.	Sufficient sar	mple volume	e for indicated test(s)?	Yes 🗸	No 🗌		
10.	Are samples	properly pro	eserved?	Yes 🗸	No 🗌		
11.	Was preserv	ative added	to bottles?	Yes	No 🗸	NA \square	
12.	Is there head	Ispace in the	e VOA vials?	Yes	No 🗌	NA 🗸	
13.	Did all sampl	es containe	ers arrive in good condition(unbroken)?	Yes 🗸	No 🗌		
14.	Does paperw	ork match b	pottle labels?	Yes 🗸	No 🗌		
15.	Are matrices	correctly id	entified on Chain of Custody?	Yes 🗹	No 🗌		
16.	Is it clear wha	at analyses	were requested?	Yes 🗸	No 🗌		
17.	Were all hold	ling times a	ble to be met?	Yes 🗸	No 🗌		
Spe	ecial Handl	ing (if ap	plicable)				
18.	Was client no	otified of all	discrepancies with this order?	Yes 🗸	No 🗆	NA \square	
	Person	Notified:	Michael Erdahl Date		7/12/2017		
	By Who	om:	Erica Silva Via:	☐ eMail 🗸] Phone \square Fax	☐ In Person	
	Regardi	ing:	Analytical request / TAT				
	Client Ir						
19.	Additional rei	marks:					

Item Information

Item #	Temp ºC
Cooler	1.7
Sample	3.1

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

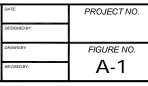

1707091

Send Report To Micha	SUBCONTRACTER										Page # of o								
					PROJECT NAME/NO. PO							-	TURNAROUND TIME □ Standard (2 Weeks)						
					7071	27				F-				RUSH		uthorize	TIME 00 00 00 00 00 00 00 00 00 00 00 00 00		
	6th Ave W			REMAR		32				1			_						
City, State, ZIP_Seattle	, WA 981	19												S. Dispos	AMPL e after	E DISPO	OSAL		
Phone #(206) 285-8282	Fax #	(206) 283-	5044	L	Please	Email	Resu	ılts		-			 □ Dispose after 30 days □ Return samples □ Will call with instructions 						
									ANAI	YSE	S REG	UES	TED		1				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	EPH		o)	Sulfate		80M		chloride		2000	Notes		
MW-12-071117		7/11/17	1025	W	3				×	X	×		X	×		04 / N	Erdahl		
		1	200				e-1-1/2									7/12/1	1 25		
																414	101		
				-		-	_		_										
						_	-		_	_		_	_						
						-	-	-	\dashv	-		-	_		-				
					\dashv	\dashv	\dashv	-	-		-+	-	-	_	_				
						-	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv		\dashv				
Friedman & Bruya, Inc.		SIGNA	TURE			PRIN'	T NA	ME		-		COMI	PANIV			ATE	MIN 412		
3012 16th Avenue West Relinquished by				Mic	chael E]	COMPANY Friedman and Bruya					ATE	TIME		
Seattle, WA 98119-2029 Received by:					GIALLO C					AI	7/4/7 10				10:30				
Ph. (206) 285-8282 Relinquished by:					2 (20	CVI		+	-	7/			7/	12/17	11:27		
Fax (206) 283-5044				70-7								1							

	707132	ž.			SAMPLI	Е СНАІ	N OF	ÇUS'	ΓΟΙ	Y		мĒ	. (17	1/2	//=	7-	,	VW.	2/AI4		
Report To Kirsi Longley					SAMPL	SAMPLERS (signature)									Ìr	1	Page #	<u> </u>	of ND Ti	WE C		
			CT NAM			1 1		,	PC) #				idard	ard Turnaround							
	Address	~~ <u>~</u> _1\	sulting	antika di Malainia da Salainia da Ariganga Sanga Bangah yang yang yang yang yang da ga	1 te	en's c	Texa	0			120061							ges authorized by:				
	City, State, ZIP Scatt	16	Office	offer Conventional Add Materials (* 16. Mary India A. Australia I. Agressional Add 1 years and a dig 1 years ag	REMAR				·····			IVOI	го	- - k	Dier	മെ മ	MPLE DISPOSAL					
	PhoneE									***************************************	T	Accts Payable					Dispose after 30 days Archive Samples Other					
						***************************************		<u> </u>			ANALYSES REQUESTED 250 0.											
			Winds - Andrew Control	V Perronali de la prima de la prima de la prima de la prima de la prima de la prima de la prima de la prima de	avade immediations and a second a second and a second and a second and a second and a second and	AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA		AD	ssel	ozine 021B	8260C	3270D	PAHs 8270D SIM	2	132	2	A P	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Tank Park	Y		
•••••	Sample ID		Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Dlesel	STEX by 8021B	VOCs by 8	SVOCs by 8270D	8270	4	3	200	TO THE	BE	TO ME	鄞		
								TI		BITE	VOC	SVOC	PAHs	Tota	The state of the s	至	李	33	13	3		
	MW-12-07/11	7	0/ A-L	7/11/17	1025	Water	12		< >	X	Eg			X	X	X	X	XX	XI	X		
	MW-13-071113		O2 A-E	7/11/17	1125		5		< x	X				χ						3		
	MW-14-07111	7	03 A-E	7/11/17	1505		5			X				X								
	MW-15-07111	7	04 A-E	7/11/17	1255	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5)	()	()				Χ								

																***********	Name of the second second	one was to some or his own	urura ah de arasa anda afad	والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج		
					and the second s									which have a mark					and the second second			
					Annual Control of the								San	aple	s re	ceiv	ed a	2	.°C			
																,		·				
Friedman & Bruya, Inc. Relinquished by						PRINT NAME							1		PAN	ANY DATE T			TIME			
3012 16th Apenue West Received by:				<u>el</u>	Kristin Beck					Aspect					7/14/17							
Seattle, WA 98119-2029 Relinquished by:						Nhan Phan						<u></u>	~C	51	<u></u>			<u> </u>	<u> </u>	1025		
Ph. (206) 285-8282 Received by:																		***************************************				

APPENDIX D


Boring Logs

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

Exploration Log Key

	Mana						Boring Log		
	Jusha			-	t Numbe	er	Boring Number	Sheet	
	■CONSULTII	· -		12	0061		B-1	1 of 1	
Project Nar							Ground Surface Elev		
ocation:	Ellensburg, WA							401	
Oriller/Meth							Depth to Water (ft BGS)	13'	
Sampling N	Method: Continuous Core	:					Start/Finish Date	9/16/2014	_
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
1 -				0			Moist, brown-gray, sandy GRAVEL (G sand, fine gravel	SP); fine to medium	- 1
3 +				0			Moist, red-brown, slightly gravelly, sar coarse gravel	ndy SILT (ML);	+ 2 + 3
4	Barahala haakfillad	<u>s</u>		0			Moist, brown, silty, sandy GRAVEL (G	GM)	4
5 + 6 + >	Borehole backfilled with hydrated bentonite chips (NSF/ANSI 60)	3		0					+ 5 + 6
7 + 8 + 8 +				0.2			Grades to brown, sandy GRAVEL (GR gravel with cobbles, no odors	P); fine sand, coarse	+ 7 - 8
9 +			B-1-9	0.2					+ s
11+ 12+			B-1-12	3.3 124.1			Grades to brown, silty, sandy GRAVE gravel, cobbles up to 6" in diameter, s		+ 1 - 1:
13 - 14 - 15 - 15 -		S2		4.7 1.9					-1 -1 -1
16				0.7			Grades to wet, brown, slightly silty, sa	ndy GRAVEI	-1
17 18 19 19 19 19 19 19 19		S3	B-1-18	2.2 4.1 0.4			(GP-GM); cobbles, no odor	ndy Grewing	+ 17 + 18 + 19
20 -				0			Wet, brown, sandy, very gravelly SILT	(ML); no odor	-2 -2
22+				0			Wet, brown, sandy, silty GRAVEL (Gr coarse gravel, no odor	M); coarse sand,	-2: -2:
24 +		2		0			Wet, brown, sandy, gravelly SILT (ML cobbles, no odor); coarse gravel with	+2 +2
26 -				0			Grades to brown, sandy, silty GRAVE gravel with cobbles, no odor		- ₂
28 - > 29 - >				0			Wet, red-brown, very sandy GRAVEL sand, fine gravel, no cobbles	(GP); fine to coarse	-2 -2
30 - 31 -			B-1-30			6000	Bottom of Boring at 30 ft BGS		-3 -3
Sam No Red	npler Type: covery	PID	- Photoionization The Station	n Detect Water	•	dspace I	, ,	AET	
=	uous Core		∇	r Level (Approved by: K	(SL	

	Aspe						Boring Log		
	X UP U				t Numbe	er	Boring Number	Sheet	
	■CONSULTI			12	0061		B-2	1 of 1	
Project Na							Ground Surface Elev		
Location:	Ellensburg, WA								
Driller/Metl							Depth to Water (ft BGS)	11'	
Sampling N	Method: Continuous Core						Start/Finish Date	9/16/2014	_
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)
1 - 2 - 3 - 3 - 3		S ₁		0 0		000000000000000000000000000000000000000	Moist, brown, sandy GRAVEL (GP); fill	fine sand, fine gravel	, - 1 - 2 - 3
4 + 5 + 6 + 7 + 7 + 2 + 7 + 7 + 7 + 7 + 7 + 7 + 7	Borehole backfilled with hydrated bentonite chips (NSF/ANSI 60)	S2		0 0		000000000000000000000000000000000000000			- 4 - 5 - 6 - 7
8 + 9 +		S3	B-2-9.5	0 5.6			Moist, brown, blue-gray mottled, san	dy, silty GRAVEL	+ 8 9
10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 10 - 10 - 10 - 10 - 10 - 10		\$4	B-2-13	3.6 4.1 308.2 166.7 308.1 19.4 11.6 0.8 0.3			(GM); cobbles up to 6" in diameter, r Wet, blue-gray, brown mottled, grave petrol odor Grades to Wet, brown, red mottled, s gravel Wet, red-brown, sandy SILT (ML); tr	silty SAND (SM); trace	- 12 - 13 - 14
20 – 21 – 22 – 23 – 24 – 24 – 25 – 26 – 26 – 26 – 26 – 26 – 26 – 26			B-2-20	0 0			Wet, red-brown, sandy GRAVEL (GF	P); trace silt, coarse	-20 -21 -22 -23
25 - 26 - 27 - 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29		S5		0 0 0		000000000000000000000000000000000000000	sand, fine gravel with cobbles up to 6	o in diameter	-25 -26 -27 -28 -29
	npler Type:	PIC	B-2-30	n Detect		dspace I	Bottom of Boring at 30 ft BGS Measurement) Logged by:	AET	-31
○ No Red				c Water I	_evel		Approved by:	KSL	
Contin	uous Core			er Level (ATD)		. 		
				`	,		Figure No.		

	ı	Mana						Boring Log		
		Aspe					t Number	Boring Number	Sheet	
		CONSULT		•		12	0061	B-3	1 of 1	
Project N		Ken's Texac						Ground Surface Elev		
Location: Driller/Me		Ellensburg, WA Holt-Brian / Sor						Depth to Water (ft BGS)	12'	
	Method:	Continuous Cor						Start/Finish Date	9/16/2014	
Depth /		orehole Completion		Sample		PID	Drive/ Material		3.10/2011	De
Elevation (feet)	N NI	orenoie Completion		Type/ID	Tests	(ppm)	Recovery (inches)	Description		(
								Gravel fill, no fines, coarse gravel Moist, red brown, slightly silty, sand	W CDAVEL (CD CM):	4
1 +						0		fine sand, coarse gravel, cobbles u	p to 6" in diameter, no	†
2 +								odor		+ :
3 +						0				+
4										1
_				(0		0				
5 +		Borehole backfilled with hydrated		S1				No Recovery		\dagger
6 +		bentonite chips (NSF/ANSI 60)								+
7 🕂		(,								+
8 +								1		
9 +									Ť	
10+						68.8	1 7000	Very moist, blue-brown, gray mottle	ed, sandy, silty GRAVEL	+
1					8.8.	(GM); fine to medium sand, coarse	gravel with cobbles	+		
2			B-3-11.5	390.7 371.0				1		
				371.0		Becomes wet				
3+						44.6	8.8.			+
14+						226.6	7 PM	Wet, blue-gray SAND (SP); fine to	medium sand, petrol	+′
15				S2	B-3-14.5	26.1		odor	•	+
16+						E7.5	(0) (0) (1)			ֈ.
						57.5		Wet, red-brown with slightly green GRAVEL (GM); cobbles	tinge, silty, sandy	
17+						26.7		Wet, blue gray SILT (ML); trace sa	nd	†
18+										
19 🕂						1.5		Grades to red-brown, slightly silty, (GP-GM)	sandy GRAVEL	+
20+			L		B-3-20	2.5 0	337	` ´		\perp_2
					D-3-20			Wet, brown SAND (SP); medium s	sand	
21+								Wet, brown to red-brown, slightly s (GP-GM); fine to medium sand, co	ilty, sandy GRAVEL	+2
22+						0		diameter	nnice uh (0 0 III	+2
23										+:
24						0	1 1000			+2
25 +				S3						+2
				ω		0				
26+						0	600			+2
27										+2
28 +						0				+2
29										+2
						0				
30+					B-3-30			Bottom of Boring at 30 ft BGS		+3
31										+3
									٨٢٦	
_	ampler Typ	pe:		P	ID - Photoioniza			Measurement) Logged by:	AET	
	decovery inuous Co	nre			∇	atic Water I		Approved by:	KSL	
Conti	iiiuous CO	ло			<u> </u> Wa	ater Level (ATD)			
								Figure No.		

		Acnost						Boring Log		
		Aspect cons	SULTING ISPECTIVE			t Numb	er	Boring Number	Sheet	
<u> </u>		Kanla Tayaa			80	0129		MW-1	1 of 1	
Project N Location	lame	Ken's Texac						Ground Surface Elev	104.77 Relative Site	
Driller/Me	ethod	Cascade Drilling		Stem Auger				Depth to Water	16.20	
Sampling				er Weight: 300 lb	/ Hamm	er Drop):	Start/Finish Date	7/21/2008	
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description		Depth (ft)
		8" flushmount monument, 2" J-plug well cap, concrete seal, 0'-1'						Very dense, slightly moist, brow slightly silty GRAVEL (GM). Co	vn, slightly sandy, arse gravel, 3 in.	+
5 +		40 PVC casing, threaded connection, 0'-14'			0.0	12 50/6		Slightly clayey, silty.		- - 5
+		Hydrated bentonite chips 1'-12'			0.0	12 17 22				-
10-			MW-1-10.5		0.5	8 16 17				-10 -
+ + + 15+		#2/12 silica sand filter pack, 12'-24'	MW-1-15.5	TPH-D, TPH-G, BTEX	14.5	12 12 12 6	D	Medium dense, very moist, oliv SILT (ML). Slight petroleum od	e gray, slightly clayey or.	- - -15
† + +		2" diameter, schedule 40 PVC screen, 10-slot, 14'-24'			146	5 3 2		Loose.		† - -
20-		□ □ □	MW-1-20.5	TPH-D, TPH-G, BTEX	15.8	5 3 3				-20
		Threaded PVC endcap			1.4	18 50/6		Very dense, wet, olive gray, class SAND/GRAVEL (SC-GC), with sand, medium gravel.	yey, silty, root fragments. Fine	
25 -								Boring terminated at 24 ft BGS		-25 -
+										<u> </u>
O No Re	lmpler T ecovery OD D& Sample		P	∇	on Detection Det	Level	leadspac	ce Measurement) Logged by Approved		
3	•					. ,		Figure No.	A - 2	

		Asnoct	aultin-					Boring Log		
		ASPECT con			-	t Numb	er	Boring Number	Sheet	
		Venie Teves			08	0129		MW-2	1 of 1	
roject Na ocation	ame	Ken's Texac						Ground Surface Elev	104.63 Relative Site	
ocation Driller/Me	thod	Ellensburg, War		Stem Auger				Depth to Water	16.35	
Sampling				er Weight: 300 lb /	/ Hamm	er Dror):	Start/Finish Date	7/21/2008	
Depth /		orehole Completion	Sample		PID	Blows/	Material			De
levation (feet)	DI		Type/ID	Tests	(ppm)	6"	Туре	Description		(
 		8" flushmount monument, 2" J-plug well cap, concrete seal, 0'-1'	,					Loose, slightly moist, brown, s sandy SILT (ML). Coarse angu	lightly clayey, slightly ılar sand.	+
5 —		2" diameter schedule 40 PVC casing, threaded connection 0'-16.5'				2 3 3				+
+		Hydrated bentonite chips, 1'-14.5'			3 3 3		Slightly gravelly. Fine subround	ded gravel.	† †	
0+				8.2	2 2 3	.0.	Very moist, gray to black. No of Loose, dark gray, very moist, of Medium sand. Coarse gravel,	gravelly SAND (SP).	+ +1	
+ + + + + + + + + + + + + + + + + + + +					44.7	50/6	0 0000	Very stiff, wet, dark gray, sligh (SP-GP). Medium to coarse sa Petroleum odor.	tly silty SAND/GRAVEL	+
5+		#2/12 silica sand filter pack 14.5'-26.5'	MW-2-14.5	TPH-D, TPH-G, BTEX	237	4 3 4		Loose, gray to orange, clayey, Loose, moist, brown yellow SII odor. Loose, moist, gray, fine SAND	LT (ML). Slight petroleum (SP).	
+		2" diameter, schedule 40 PVC screen,			0.5	3 4 6		Loose, moist, yellow red, sligh	tty clayey SiLT (ML).	_
20 -		10-slot, 16.5'-26.5'				3 2 2		Very dense, gray, very moist, (SC-SM).	clayey, silty, fine SAND	+ -2 +
+			MW-2-22.0	TPH-D, TPH-G, BTEX	3.9	14 25 31		Moist, green gray to olive gray (SW). Medium to coarse sand	, slightly silty SAND . Petroleum odor.	+
25 -		Three dead DVC and a second			0.6	50/5		Very stiff, wet, brown, silty, ver Fine sand. Coarse subangular	y gravelly SAND (SP). gravel, 2 in.	
 - -	<u>eta</u>	Threaded PVC endcap					0	Boring terminated at 26.5 ft BC	GS.	-
No Re □ 3.25"	mpler Ty ecovery OD D&N Sampler	// Split-Spoon	P	∇	Water	Level	adspac	ce Measurement) Logged by		<u></u>
– Kina S	sampier			- vvate	r Level	(ATD)				

		Aspect	k! c-					Boring Log		
		ASPECT CONS	SULTING ISPECTIVE		-	t Numb	er	Boring Number	Sheet	
Dunin at N	(Kon's Toyon			08	0129		MW-3	1 of 2	
Project N Location	iame	Ken's Texac						Ground Surface Elev	104.03 Relative Site	
Driller/Me	ethod	Cascade Drilling		Stem Auger				Depth to Water	16.55	
Sampling								Start/Finish Date	7/21/2008	
Depth / Elevation (feet)	E	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description	n	Depth (ft)
1 -		8" flushmount monument, 2" J-plug well cap, concrete seal, 0'-1'					•.	Very loose, moist, dark gray, c (ML). Fine to coarse gravel, su petroleum odor.		- 1 - 2
3 -							 			- 3
4 +		2" diameter schedule 40 PVC casing, threaded connection				2	,			- 4
5 -		0'-16.5'	MW-3-4.0	TPH-D, TPH-G, BTEX	51.1	1 1				- 5
6 +						2	,	Slightly gravelly.		- 6
7 +		Hydrated bentonite chips, 1'-17'			49.5	2 2	•	Siignity graveily.		- 7
8 +							•,			- 8
9 +			MW-3-9.0	TPH-D, TPH-G, BTEX		50/6	•	Very stuff, very gravelly.		+ 9 +10
11 +							•			-11
12-					13.5	50/		Slightly moist, olive gray.		-12
13-							•.			-13
14-					22.2	7 7 15	1 0000	Medium dense, slightly moist, SILT/GRAVEL (GM-ML). Coar petroleum odor.	olive gray, slightly clayey se gravel. Slight	14 -15
16-		▼. #2/12 silica sand filter			15.	50/6	3000	Very stiff, moist, brown, slightly SILT (ML). Coarse gravel, 2in. petroleum odor.		16 -17
18-		pack 17'-29'		TOUR TOUR		3 3	•.	Loose, slightly moist, olive gray (CL). Slight petroleum odor.	y to brown, silty CLAY	-18 19
20-			MW-3-19.5	TPH-D, TPH-G, BTEX	4.2	6		(CL). Slight petroleum odor.		-20
21 -		2" diameter, schedule 40 PVC screen, 10-slot, 19'-29'				5		Stiff, moist, brown yellow, sand	dy SILT (ML). Fine sand.	-21 - -22
21 - 22 - 23 - 24 - 24 - Sal No Re Ring S			MW-3-23.0		0.0	6 8		Very slight petroleum odor.		-23
24-					0.0	12 50/2		Very stiff, very moist, brown ye SAND (SM). Medium sand. Co	ellow, silty, very gravelly parse gravel, 3in. Very	24
Sa	ı r. :⊟r. ımpler T	ype:	P	ID - Photoionizati	on Dete	ctor (He	eadspac	Let Measurement) Logged by	y: BMS	
No Re	ecoverv			⊻ Stati	c Water er Level	Level	- F	Approved		
	p.10			·· an		, .		Figure No	. A-	

		Aspect						Boring Log		
						t Numb	er	Boring Number	Sheet	
D N.	Ellensburg, WA hod Cascade Drilling / Hollow Stem Au Method D&M, 300 lb. Jars				08	0129		MW-3	2 of 2	
Project Na Location	ame							Ground Surface Elev	104.03 Relative Site	
Driller/Me	thod			Stem Auger				Depth to Water	16.55	
Sampling								Start/Finish Date	7/21/2008	
Depth / Elevation	Во	rehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description	1	Depth (ft)
(feet)			Турель		(ррш)	0	Type	slight petroleum odor.		(11)
26-								Very stiff, wet, silty, very sandy	CAVEL (GD) Coarso	 26
27+			MW-3-27.0		0.0	50/5		sand. Fine gravel.	GAVEE (GF). Coarse	- 27
28+										-28
29	<u>;</u> =;	Threaded PVC endcap								-29
30+										-30
31 -										-31
32-										-32
33-									-33	
34-									-34	
35-										-35
36-										-36
37										-37
38-										-38
39-										-39
40-										-40
41 -										-41
42-										-42
43-										-43
44-										-44
45 –										-45
46-										-46
47										-47
48-										-48
49-										-49
901	mpler Ty	ne.		ID Photoics	vization Data	otor (LI:	noden s	ce Measurement) Logged by	r: BMS	
			Р	_	Static Water		auspa	•		
3.25" Ring S	OD D&N Sampler	1 Split-Spoon		\Box	Nater Level			Approved	by: RRH	
	ng Sampler							Figure No	. A-	

	Λο	spectcons	—— cultina					Boring Log		
	A	IN-DEPTH PER				t Numb	er	Boring Number	Sheet	
	1/		_		080	0129		MW-4	1 of 1	
Project Na Location		en's Texac						Ground Surface Elev		
Driller/Me		Illensburg, WA ascade Drilling		tem Auger				Depth to Water (24 ft BGS	ATD)	
Sampling		&M, 300 lb. Ja		item Auger				Start/Finish Date	7/22/2008	
Depth /			Sample		PID	Blows/	Material		1722/2000	Depth
Elevation (feet)	Borehole	e Completion	Type/ID	Tests	(ppm)	6"	Type	Description	CII T/CDAV/FI	(ft)
1 -							00 00 00	Very dense, slightly moist, brown, (GM-ML). Fine to coarse gravel, s	ubrounded.	- 1
2 + 3 +	Hydr	ated bentonite					00 00 00 00 00 00 00 00 00 00 00 00 00		•	- 2 - 3
4 -	COOR COOL 1	backfill				40	, 000°		-	- 4
5 +					0.1	12 15 50	0000 0000		-	- 5
6 -							00.00		-	- 6
7 +					0.0	50/1		Very dense, slightly moist, brown, Fine gravel, subangular.	gravelly SILT (ML).	7
8 +							•		-	- 8
9 +					0.0	18 50/2	◆.	Brown to brown yellow. Fine to co	arse gravel.	9
10+									-	-10 -11
12-			MW-4-12.0			4 4	•.	Medium dense.	-	-12
13-			10100-4-12.0		0.0	10	,		-	-13
14-							•		-	-14
15-							,		-	-15
16-						22		Very dense, slightly moist, brown,	 slightly clayey,	-16
17+					0.0	50/6		slightly gravelly, very silty SAND (Coarse gravel, 2 in.	SM). Fine sand.	-17 -18
19-						12	,	Dense, moist, dark brown, gravell	v clavev SILT (MI.)	-19
20-			MW-4-19.0		0.0	15 16		Fine gravel, subangular.	y, dayey oill (Mil).	-20
21 -									-	-21
22-			MW-4-22.0	TPH-D, TPH-G, BTEX	0.0	2 3 10		Medium dense, moist, dark brown (SM). Medium dense, moist, light brown	, slightly gravelly, silty	-22
21 - 22 - 23 - 24 - Sar	∇					E0/0		CLAY (CL). Coarse gravel, angular Very dense, wet, brown, silty, ven (GW). Fine to medium sand. Med	y sandy GRAVEL	-23 -24
			MW-4-24.5		0.0	J00/6	Ø. Ø	subangular. Boring terminated at 24.5 ft BGS		1
Sar	mpler Type:		PI	ID - Photoionizatio	n Detec	tor (He	adspac	<u> </u>	BMS	
☐ No Re	ecovery			_	Water	,		ŕ	DDU	
3.25" Ring S	OD D&M Sp Sampler	lit-Spoon		∇	Level (Approved by:	KKH	
						,		Figure No.	A -	

	Aspec	~ +					oring Well Constructi		_
	CONSULTIN				ect Numb 20061	per	Well Number MW-13	Sheet 1 of 1	
Project Name:	Ken's Texaco			1.	20001		Ground Surface Elev.	1011	
ocation:	Ellensburg, WA /						Top of Casing Elev.		_
Oriller/Method:	Holt-Brian / Sonio						Depth to Water (ft BGS)	14'	
Sampling Method	d: Continuous Core						Start/Finish Date	9/16/2014	
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		C
	Flush 8-in monument Thermos cap			0			Asphalt	T (MIL) Size As we discuss	7
1 †				0			Moist, brown, gravelly, sandy SIL sand, fine to coarse gravel, no od		t
2 +		S1							t
3 +	Bentonite chip seal	31		0		0000	Moist, brown, sandy GRAVEL (G cobbles up to 6" in diameter, fine	P); coarse gravel with	7
4	(NSF/ANSI 60)			0		3000	coobles up to o in diameter, line	Sand, no odoi	1
				0		0000			
5 +	2-in diameter schedule 40 PVC with		MW-13-5	.5 0			Moist, brown, gravelly, sandy SIL	T (ML); fine to medium	Ť
6 +	treaded connection (0-8 ft)		10100-10-0			0000	sand, fine to coarse gravel Moist, brown, sandy GRAVEL (G	P): fine to medium sand.	1
7 🕂 🔛 🛙	(0.07)			0		0000	coarse gravel with cobbles	,,,	+
3 + 🔛 🖟	#10/20 sand filter pack (8-25 ft) 2-in diameter schedule 40 PVC 10	S2		0		0000			
						0000	Trace silt, 8-10.5 ft BGS		
9 †	(8-25 ft)			0		0000			1
0+									-
ı1+				0			Moist, brown, silty, sandy GRAVE in diameter within sandy silt matri		
2				0			in diameter within bandy one math		
	\$ 0 0 0 0					8.8.8			
3+ [:::];				0					-
4 : : : : : :	· · · · ·		MW-13-1						-
15+ :=;	, .'V	S3		0		2.5.6	Becomes very silty		ł
6+	, v . (0					4
7-	•					0000	Wet, brown, sandy GRAVEL (GP medium sand, cobbles up to 6" in		
	• • • • • • • • • • • • • • • • • • •			0		0000			
8† :						10000			
9+	· • • • • • • • • • • • • • • • • • • •			0		0000			
	,			0		0000			-
1	• •		NAVA / 12 C						
	· • • • • • • • • • • • • • • • • • • •		MW-13-2	0			Wet, light gray, orange mottled, s coarse gravel, fine to medium sar		
2							odor	,, g,	1
3	>			0			Grades to wet, light gray, orange	mottled, silty SAND (SM);	_
24+	• •			0			scattered organics, trace gravel, r	no odor	
5+	•	S4		0					
	Threaded PVC endcap						Wet, brown to red-brown, sandy	GRAVEL (GP); trace silt,	1
26+				0		0000	fine to medium sand, coarse grav		Ī
27				0		0000			1
28+	Bentonite chip seal					0000			+
29+	(NSF/ANSI 60)			0					+
30			MW-13-3	0		0000			1
			10100-13-3	,0			Bottom of Boring at 30 ft BGS		
31+									İ
Sampler 1	Гуре:		PID -	Photoioniza	tion Dete	ector	Logged by:	AET	_
O No Recovery	No Recovery		Ā	Static Wate	r Level		Approved by	v: KSL	
Continuous (Core		$\bar{\Delta}$	Water Level	(ATD)		, pp. oved b	, 	
							Figure No.		

		Aspec	: t		Proi	ect Numb		toring Well Construction Well Number	on Log Sheet	
		CONSULTIN				20061	,CI	MW-14	1 of 1	
Project Nan	ne:	Ken's Texaco						Ground Surface Elev.		
ocation:		Ellensburg, WA /						Top of Casing Elev.		
Oriller/Meth	nod:	Holt-Brian / Sonio						Depth to Water (ft BGS)	12'	
Sampling M Depth /	1ethod:	Continuous Core				1		Start/Finish Date	9/15/2014	_
Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Materia Type			De
		Flush 8-in monument Thermos cap						Moist, red-brown, silty, gravelly SA medium sand, coarse gravel	AND (SM); fine to	
1 †					0			medium sana, coarse graver		t
2 +					0.3					+
3 +		Bentonite chip seal			0					+
4 +		(NSF/ANSI 60)			0			Moist, gray-brown, slightly silty, sa	andy GRAVEL (GP-GM);	; _
5 +		2-in diameter	S1				1898	coarse gravel with cobbles, no odd	or	1
		schedule 40 PVC with	31		0.6					
6 +		treaded connection (0-8 ft)			0.4					t
7 +				MW-14-7	0.7					+
3 +					0.2		Rogal,			+
9 🕂 📑					0			0		+
10+								\$		_
9					0		818	Grades to very moist, blue-gray, s GRAVEL (GM); with cobbles, no	lightly silty, sandy odor	
					1.9		8.8) 		Ť
2+		. ¥		MW-14-12						
3+					0 0.1			Grade to wet, red-brown, slightly s (GP-GM); coarse gravel with cobb	silty, sandy GRAVEL bles. no odor	+
14+					0.3		1000			+
15 +		2-in diameter	S2		0.8		Riggi,	V		1
		schedule 40 PVC 10 slot screen (10-25 ft)					1000 A			
16+		3101 3010011 (10-23 11)			0		1898			T
7+					0					t
8+				MW-14-18	0.2					+
19+					0		1898			+
20 +					0		1000			+
21 +							Kigi,	0		-
					0		100 d			
22+					0		1898	1		+
23 +					0			V		t
24 +					0					+
25 +		Threaded PVC endcap	S3		0					+
26+		inicaded i vo chacap			0		1000			+
27+								0 		1
					0					
28+		Bentonite chip seal (NSF/ANSI 60)			0		000	Wet, red-brown, sandy GRAVEL ((GP); coarse sand with	\top
29+					0		0000	cobbles		+
30 +				MW-14-30			0000	Bottom of Boring at 30 ft BGS		+
31+								bottom or borning at 60 it bee		+
_	pler Ty	pe:		PID - Ph			ector	Logged by:	AET	
○ No Rec	-	ore.		∇	atic Wate			Approved by	r. KSL	
Continu	Continuous Core			$\overline{\underline{\lor}}$ Water Level (ATD)						
	Continuous Core							Figure No.		

		Aspec	^ +		Dro!:	ect Numb		toring Well Construct Well Number	tion Log Sheet	
		CONSULTIN			-	ect Numi 20061	per	MW-15	1 of 1	
Project Nar	me:	Ken's Texaco			<u>'</u>	20001		Ground Surface Elev.	1011	
Location:		Ellensburg, WA /						Top of Casing Elev.	_	
Driller/Meth	nod:	Holt-Brian / Sonic						Depth to Water (ft BGS)	13'	
Sampling N	/lethod:	Continuous Core			_			Start/Finish Date	9/15/2014	
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Materia Type	Description	on	Dep (ft
		Flush 8-in monument Thermos cap	П		0			Moist, brown-red, gravelly, sligh	tly silty SAND (SP-SM)	
1 +								- -		+ 1
2 +			0.4		0					+ 2
3 +		Bentonite chip seal	S1		0			[-		+ 3
4 +		(NSF/ANSI 60)			0					1
_		0 : 1:								
5 +		2-in diameter schedule 40 PVC with			0		1000	Moist, gray, GRAVEL (GP); fill,	2" diameter angular gravel,	+ 5
6 +		treaded connection (0-8 ft)	S2		0		0000	5 110 0001		+ 6
7 +					0		1000	Moist, brown-gray, very gravelly	sandy SILT (ML): no	+ 7
8 +					0			odor, boulders up to 6" in diame	ter	ļ,
		#10 20 aand filter	62					Moist, brown-gray, silty, sandy (cobbles up to 6" in diameter	GRAVEL (GM); no odor,	
9 †	#10-20 sand filter pack (8-25.3 ft) 2-in diameter schedule 40 PVC 10	S3		0					+ !	
10+				MW-15-10	0		3.8.			
11 🕂 📙		T .			3.0			Moist, brown-gray, very gravelly gravel with cobbles	, sandy SILT (ML); coarse	+1
12+		schedule 40 PVC 10 slot screen (10-15 ft)						graver with cobbies		+1
		: :∇		MW-15-12.5	26.1			Petroleum-like odor		<u> </u> 1
13+ [3.1			Grades to wet, blue-gray, orang		T
14					2.4			silty SAND (SP-SM); fine to me becomes predominately orange		+1
15 + :			S4		4.4			\ \ \ \ \ \ \ \ \ \ \ \ \		J 1
16 +				MW-15-16	0 0.1			Wet, blue-gray SAND (SP); fine	-medium sand, trace	1 1
17+							9790	gravel		<u>/</u>
					0			Wet, brown, blue mottled, silty,	Salidy GRAVEL (GIVI)	
18+					0		1000	Grades to wet, red, slightly silty,	sandy GRAVEL (GP-GM)	+ 1
19 🕇 📙					0					+1
20 +		2-in diameter			0		1000	Wet, red-brown, sandy GRAVE	(GP): with cobble up to	+2
21 +		schedule 40 PVC with treaded connection			0		0000	6" in diameter, trace silt, no odo	r	+2
 		(15-25 ft)								+2
22+					0		3000			
23+					0		2000	Becomes brown, with white flec	ks, wood	+2
24 +					0		0000			-2
25 +	: <u>ا</u>	Threaded DVC and ac-	S5				1000			+2
26+		Threaded PVC endcap			0		0000)))		+2
					0		1000			
27+							10000	ŏ		+2
28+		Bentonite chip seal (NSF/ANSI 60)			0		10000)))		+2
29		(1.5. // 2.101.00)			0)))		-2
30+				MW-15-30			ШЩ	Grades to moist, brown, gravelly	/ SILT (ML)	 3
				14144-10-00				Bottom of Boring at 30 ft BGS		
31+										+3
_	Sampler Type:			PID - Photoionization Detector				Logged by: AET		-
_	No Recovery				tic Wate	r Level		Approved	bv: KSL	
Continu	Continuous Core			 ✓ Water Level (ATD) 				7 фр. очес	-,- ·· ··-	
								Figure No		

	1	Aspec	ct		Proi	ect Numb		coring Well Construction Well Number	n Log Sheet	
		CONSULTIN			-	20061)C1	MW-16	1 of 1	
Project Nam	ne:	Ken's Texaco)	'				Ground Surface Elev.		
Location:		Ellensburg, WA /						Top of Casing Elev.		
Oriller/Metho	od:	Holt-Brian / Sonio	:					Depth to Water (ft BGS)	14'	
Sampling M	ethod:	Continuous Core				1	1	Start/Finish Date	9/15/2014	_
Depth / Elevation (feet)	Во	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		De
1 + 2 + 3		Flush 8-in monument Thermos cap			0		000000000000000000000000000000000000000	Moist, brown, slightly silty, very sand with cobbles up to 6" in diameter, su gravel, fill	dy GRAVEL (GP-GM); nb-rounded coarse	_
3 - 4 -		Bentonite chip seal (NSF/ANSI 60)			0.3		000000000000000000000000000000000000000			-
5 + 6 +		2-in diameter schedule 40 PVC with treaded connection	S1		0 0.2		000000000000000000000000000000000000000			
7 -		(0-8 ft)			0.6		000000000000000000000000000000000000000			+
8 + P	#10-20 sand filter pack (8-25 ft) 1 - *** 2 - *** 3 - *** ** ** ** ** ** ** ** **			MW-16-8	0.7		000000000000000000000000000000000000000			† - -
10+					1.9		000000000000000000000000000000000000000			+
12+					5.5 71.4		000000000000000000000000000000000000000	Very moist to wet, blue-gray, brown GRAVEL (GM)	mottled, sandy, silty	Ŧ
4+ 15+ 6+		2-in diameter schedule 40 PVC 10 slot screen (10-25 ft)	S2	MW-16-14	83.5 26.7 16.8			Grades to wet, blue-gray, slightly gra	avelly SILT (ML)	 -
17 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -				MW-16-17.5	65.2 153.1 16.5			Grades to wet, blue-gray, silty, very fine gravel, fine sand	gravelly SAND (SM);	+
19 					0.3 1.5 0		0000000	Very moist, red-brown, slightly silty, (GP-GM); slight odor, fine to coarse coarse gravel	gravel, predominately	<u> </u>
21 -					0 0 0			Wet, red-brown, sandy, silty GRAVE with cobbles, no odor		 -
23+					0			Wet, gray, sandy GRAVEL (GP); me gravel Becomes red-brown Wet, brown, sandy, silty GRAVEL (†
25+ 26+ ×		Threaded PVC endcap	S3		0 0		0000000	Wet, brown to red-brown, trace to sl GRAVEL (GM); coarse gravel with of diameter, no odor		_
27+ 28+					0 0		000000000000000000000000000000000000000	Becomes gray-brown		
29+ 30- 31-				MW-16-30	0		0000	Becomes red-brown Bottom of Boring at 30 ft BGS		
31+ Samp	oler Typ	pe:		PID - Pho	otoioniza	ation Dete	ector	Logged by:	AET	İ
=	No Recovery Continuous Core			∇	ic Wate			Approved by:	KSL	
	Continuous Core					,		Figure No.		

			~ ‡			- 1/	noniu	oring Well Construction		
		Aspe				ct Numb 30129	er	Well Number MW-10	Sheet 1 of 1	
Project Na	amo:	Ken's Texac			00	00129		Ground Surface Elev.	1 01 1	
ocation:	airie.			Ellensburg, WA				Top of Casing Elev.	104.50 Relative	e Site
Driller/Met	hod:	Holt Services Ir						Depth to Water	12.48 ft BTOC - 2/	
		: SPT auto hamn		Stelli Augei				Start/Finish Date	2/4/2013	
Depth /					PID	Blows/	Material			
Elevation (feet)	B(orehole Completion	Sample Type/ID	Tests	(ppm)	6"	Material Type	Description		De _l
10-		8" flushmount monument, 2" thermos cap, concrete seal, 0'-2' 2" diameter schedule 40 PVC casing, threaded connection 0'-7' Hydrated bentonite chips, 2'-5' 10/20 silica sand filter pack 5'-25.5' 2/13/2013 2 2" diameter, schedule 40 PVC screen, 10-slot, 7'-22' Threaded PVC endcap		MW-10-20	0.6 0.1 0.5	2 4 3 9 7 5 10 50/6	00000000000000000000000000000000000000	Loose, moist, brown, sandy, very (GM/FILL); scattered organics. Becomes medium dense, wet. Very dense, wet, brown yellow wis SAND (SP); fine to medium sand GRAVEL (GP). Refusal at 25.5 ft BGS.	th iron stain, gravelly	- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15
Sar	npler Ty	 /pe:		PID - Pho	 otoioniza	tion De	tector	Logged by:	AET	
◯ No Re	covery	etration Test		₹ Stat	ic Wate	r Level		Approved by		
	A D1E06	3)		<u>-</u> Wat	er Level	(ATD)				

	VΔcr	oect		De-!			oring Well Constructi Well Number		
	7-2	SULTING			ect Numb 80129	er	Well Number MW-11	Sheet 1 of 1	
Project Na				- 0	00129		Ground Surface Elev.	1 01 1	
ocation:			Ellopobura WA					104.55 Relativ	e Site
ocation. Driller/Me			, Ellensburg, WA				Top of Casing Elev. Depth to Water	12.96 ft BTOC - 2	
	Method: SPT auto	vices Inc / Hollow	Stern Auger				Start/Finish Date	2/4/2013	
Depth /				T	Blows/	Ī		27 1720 10	
Elevation (feet)	Borehole Complet	Type/ID	Tests	PID (ppm)	6"	Material Type	Description		De (
5 - + + + + + + + + + + + + + + + + + +	8" flushmount monument, 2" cap, concrete 0'-2' 2" diameter sc 40 PVC casing threaded conn 0'-10' Hydrated bent chips, 2'-8' 10/20 silica sa pack 8'-26'	thermos seal, whedule g, lection onite	MW-11-15	0.5 1.5 0.4	4 34 14		Dense, moist, brown, orange, a gravelly, very silty SAND (SM); Becomes very moist to wet, stro	fine sand, no odors.	
- - - 0- -	2" diameter, so 40 PVC scree 10-slot, 10-25	n, 🖰		1.3 0.4	50/5 50/5	\$00000000 \$000000000 \$000000000	Very dense, wet, brown, slightly (GP-GM); fine to medium sand.	- silty, sandy GRAVEL	+ + + + + + + + + + + + + + + + + + + +
_			MW-11-23	9.6	50/6) ,	Very dense, wet, brown and ora very silty SAND (SM); fine sand	inge mottled, gravelly, l.	7
5+ + + + + + + + + + + + + + + + + + +	Threaded PVC	C endcap		1.9	40 50/4.5		Very dense, wet, brown, orange mottled, silty, very sandy GRAV medium sand. Boring terminated at 26 ft BGS.	EL (GM); fine to	<u></u>
Sai	mpler Type:		PID - Ph	otoioniz	ation De	tector	Logged by:	AET	
_	ecovery		_			COLOI	Logged by.	· · ·	
Stand	ard Penetration Tes M D1586)	st		tic Wate			Approved b	y: RRH	
⊐ (ASTN	พ มา586)		≚ Wa	ter Leve	er (ATD)		Figure No.	A -	
							i igui e NO.	, ·	

		Aspe	ct		Proie	ct Numb	/IONIt	oring Well Construction Well Number	on Log Sheet	
		CONSULTI	N G			80129	ei	MW-12	1 of 1	
Project N	ame.	Ken's Texac			- 0	30123		Ground Surface Elev.	1011	
ocation:		-		Ellensburg, WA				Top of Casing Elev.	105.26 Relative	Sit
Driller/Me		Holt Services In						Depth to Water	12.85 ft BTOC - 2/	13/2
		d: SPT auto hamn						Start/Finish Date	2/5/2013	
Depth /		orehole Completion	Sample		PID	Blows/	Material			De
Elevation (feet)		8" flushmount monument, 2" thermos cap, concrete seal,	Type/ID	Tests	(ppm)	6"	Туре	Loose, moist, brown, slightly san (ML/FILL); numerous organics.	dy, gravelly SILT	+
+		0'-2'			0	2				+
- 5 -		2" diameter schedule 40 PVC casing, threaded connection 0'-10' Hydrated bentonite				3 3		No recovery		+
+		chips, 2'-8'				3 3 3		No recovery.		+
		10/20 silica sand filter pack 8'-25.5'				50/6				
10-			0		0	1 2 3		Loose, moist, brown, slightly san (ML/FILL); numerous organics.	dy, gravelly SILT	<u> </u>
+ + +		▼2/13/2013 . 2" diameter, schedule			0	2 3 2		Becomes dark brown.		†
15-		. 40 PVC screen, . 10-slot, 10'-25'	0		0	2 3 4				
+ + + + + + + + + + + + + + + + + + + +		: 		MW-12-17.5	0 0	11 36 45		Very dense, wet, red brown, slight SAND (SP-SM); fine to medium	ntly silty, gravelly sand.	_ _ _ _
20 +					0	50/6	00.000	Very dense, wet, red brown, slight GRAVEL (GW-GM); fine to medi		+
			0	MW-12-23	0	39 50/4		Very dense, wet, red brown, sand to medium sand, cobbles.	dy GRAVEL (GW); fine	-
25 + + + + + + + + + + + + + + + + + + +		Threaded PVC endcap			0	50/5	0000	Very dense, wet, red brown, sand gravel, fine to coarse sand. Boring terminated at 25.5 ft BGS		<u></u>
<u></u>									AFT	-
○ No Re	lard Per	netration Test			otoioniza ic Wate er Leve	r Level	tector	Logged by: Approved by	AET : RRH	
– (ASTI	וספוחוא	0)		- vval	CI LEVE	· (\(\tau\)		Figure No.	A -	

Location: Driller/Method: Sampling Method: Depth / Elevation (feet) Boreh Hych	Ken's Texace 101 East University Holt Services In SPT auto hamner shole Completion Hydrated bentonite thip backfill	N G co ersity Way, El nc / Hollow St			Blows/6"	Material Type	Well Number MW-5 Ground Surface Elev. Top of Casing Elev. Depth to Water Start/Finish Date Description	Sheet 1 of 1 2/5/2013 - 2/6/20	013
Location: Driller/Method: Sampling Method: Depth / Elevation (feet) Hy ch	Ken's Texac 101 East Unive Holt Services Ir SPT auto hamn shole Completion	co ersity Way, El nc / Hollow Sto ner	em Auger	PID	Blows/		Ground Surface Elev. Top of Casing Elev. Depth to Water Start/Finish Date Description		013
Driller/Method: Sampling Method: Depth / Elevation (feet) The second of the second of	Holt Services In SPT auto hamn chole Completion	nc / Hollow Sto	em Auger				Depth to Water Start/Finish Date Description	2/5/2013 - 2/6/20	013
Sampling Method: Depth / Elevation (feet) Hy ch	SPT auto hamn	ner					Start/Finish Date Description	2/5/2013 - 2/6/20	013
Depth / Elevation (feet) Hy ch	chole Completion		Tests				Description	2/5/2013 - 2/6/20	013
10- - - - - - - - - - - - - - - - - - -	-tydrated bentonite	Sample Type/ID	Tests					1	$\overline{}$
10- -						DYDY		ļ	Dep (ft
20+ + + + + + + + + + + + + + + + + + +				0 0	13 32 31 8 50/5 50/3.5		Very dense, moist, brown, silty, grafine sand. Refusal at 9 ft BGS	- - -	- 10 - 15 20 25
Sampler Type No Recovery Standard Penetre (ASTM D1586)				otoionizatic Wate	r Level	ector	Logged by: A	NET RRH	

(feet)	Ken's Texact 101 East Univer Holt Services In SPT auto hammer	N G O ersity Way, E ac / Hollow St			ct Numb 30129	er	Well Number MW-6 Ground Surface Elev. Top of Casing Elev.	Sheet 1 of 1
Driller/Method: Sampling Method: Depth / Elevation (feet) Bor	Ken's Texace 101 East Unive Holt Services In SPT auto hamn	oersity Way, E oc / Hollow St ner	em Auger		50120		Ground Surface Elev.	
Driller/Method: Sampling Method: Depth / Elevation (feet) Bor	101 East Unive Holt Services In SPT auto hamm	ersity Way, E nc / Hollow St ner	em Auger					
Oriller/Method: Sampling Method: Depth / Elevation (feet) Bor	Holt Services In SPT auto hamm	ner	em Auger					
Depth / Elevation (feet) Bor	SPT auto hamm	ner Sample					Depth to Water	
Depth / Elevation (feet) Bor		Sample	Tests				Start/Finish Date	2/6/2013
(feet)	enoie completion	Type/ID	Tests	PID	Blows/	Material		
5 -	Hydrated bentonite chip backfill			(ppm) 0	50/2	Туре	Very low recovery, drill action indicates	
10-		0		0	14 50/6		Very low recovery, drill action indicates cobbles. Refusal at 6 ft BGS	gravel and
15-								
20-								
25								
†								†
+								+
Sampler Typ	oe:		PID - Pho	toioniza	ation De	tector	Logged by: AE	Γ
No Recovery Standard Pene (ASTM D1586)	etration Test		$\overline{}$	ic Wate er Level			Approved by: RRI	H

		Mana	<u></u>					oring Well Construction		
		Aspe	CT			ect Numb	per	Well Number	Sheet	
		CONSULTI			0	80129		MW-7	1 of 1	
roject N		Ken's Texac						Ground Surface Elev.	104.40 Relative	Sito
ocation:				Ellensburg, WA				Top of Casing Elev. Depth to Water	11.67 ft BTOC - 2/1	
Oriller/Me		Holt Services Ir		Stem Auger				Start/Finish Date	2/6/2013	0,2
Depth /		d: SPT auto hamr		<u> </u>		Blows/		Stativillish Date	2/0/2010	
Elevation (feet)	B V/	orehole Completion	Sample Type/ID	Tests	PID (ppm)	6"	Material Type	Description	vanhaa	Dep (ft
+		8" flushmount monument, 2" thermos cap, concrete seal, 0'-2'				4 7		No recovery due to a rock in driv	esnoe.	 - -
5 -		40 PVC casing, threaded connection 0'-8.5' Hydrated bentonite chips, 2'-6.5'			0	7 6 6 6) t	Medium dense, moist, brown, gr (ML).	avelly, sandy SILT	- + 5 -
_		. 10/20 silica sand filter pack 6.5'-23.5'			0	14 42 42		Very dense, moist, brown, gray a sandy, silty GRAVEL (GM); fine gravel with cobbles, scattered or	sand, fine to coarse	- - -
10+		<u>▼</u> 2/13/2013			0	50/2				+1 + -
15-		. 2" diameter, schedule 40 PVC screen, 10-slot, 8.5'-23.5'			0	10 14 17 5		Medium dense, moist, brown, or mottled, gravelly, sandy SILT (M		- - -1
+			0	MW-7-16.5	0 0	3 4		Loose, wet, green gray SAND (S sand.	SP); fine to medium	-
+					0	18 50/5		Hard, wet, light green gray to wh silty CLAY; trace coarse black s	ite and orange mottled, and.	<u></u>
20 +			<u> </u>		0 0	9 11 12		Medium dense, wet, orange, wh slightly gravelly, silty SAND (SM	ite, green gray mottled,); fine to medium sand.	-2 -
+		Threaded PVC endcap	0			50/5		No recovery due to rock in drives	shoe.	-
25-								Refusal at 23.5 ft BGS.		_
Sai	mpler T	ype:		PID - Pho	otoioniz	ation De	tector	Logged by:	AET	
◯ No Re	ecovery			<u>▼</u> Stat	tic Wate	er Level		Approved by		
,		•				. /		Figure No.	A -	

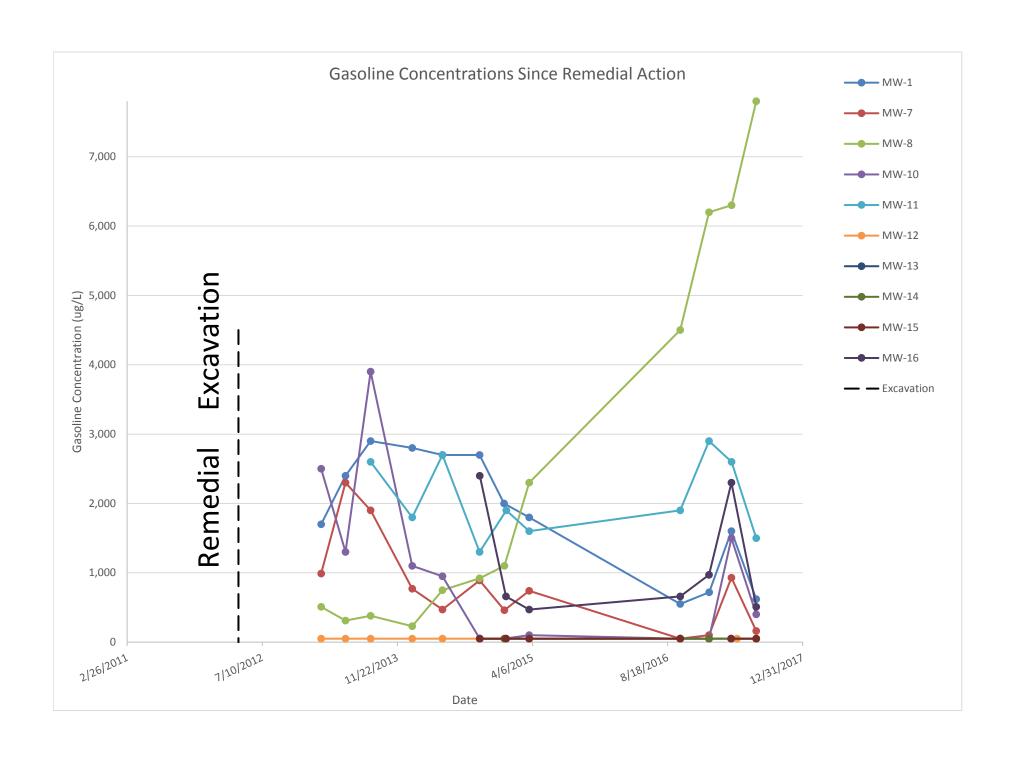
		Aspe	Ct	<u> </u>	Proje	ct Numb	er	oring Well Construction Well Number	Sheet	
		CONSULTI	NG			80129		MW-8	1 of 1	
Project Na	ame:	Ken's Texac						Ground Surface Elev.		
ocation:				Ellensburg, WA				Top of Casing Elev.	104.26 Relative	Site
Oriller/Met	thod:	Holt Services Ir						Depth to Water	12.97 ft BTOC - 2/1	13/2
		l: SPT auto hamn						Start/Finish Date	2/6/2013 - 2/7/2	2013
Depth /					PID	Blows/	Material			Dep
Elevation (feet)	в 771 - 7 7	orehole Completion	Sample Type/ID	Tests	(ppm)	6"	Type	Description		(f
+ 2		8" flushmount monument, 2" thermos cap, concrete seal, 0'-2' 2" diameter schedule 40 PVC casing,			0	5 23 36		Very dense, moist, brown and gra GRAVEL (GM); fine sand, cobble	ay mottled, sandy, slity is.	_
5	ı	threaded connection 0'-10' Hydrated bentonite chips, 2'-8'	0		0	33 33 27				 - !
- - - 0-		10/20 silica sand filter pack 8'-25.5'	0		0	50/2		Darle in drive shore		 - -1
		▼ 2/13/2013 2" diameter, schedule	0		0	37 50/5		Rock in driveshoe. Trace sand.		 - - -
15-		40 PVC screen, 10-slot, 10'-25'	-			50/1		No recovery.		-1 - - -
20 -			•			50/2				-2
+				MW-8-23	0	50/6	0.00.00.00	Very dense, wet, brown, slightly s GRAVEL (GW-GM); fine to coars	silty, slightly sandy e gravel.	 - -
25		Threaded PVC endcap	0			50/4		No recovery. Boring terminated at 25.5 ft BGS		+2 -
Sar	mpler Ty	vpe.		PID - Pho	otoloniza	ation Do	tector	Logged by:	AET	
No Re	ecovery			▼ Sta	tic Wate er Leve	er Level	COLOI	Approved by		

		Acno	ct			N	/lonit	oring Well Construction		
		Aspe	UI ING			ct Numb 30129	er	Well Number MW-9	Sheet 1 of 1	
Project N	amo:	Ken's Texa			00	50129		Ground Surface Elev.	1 01 1	
ocation:	arrie.			Ellensburg, WA				Top of Casing Elev.		
Driller/Me	thod:	Holt Services I						Depth to Water	15 ft BGS (AT	D)
		SPT auto ham		tom rager				Start/Finish Date	2/5/2013	
Depth /		rehole Completion	Sample		PID	Blows/	Material			De
Elevation (feet)	В	eriole Completion	Type/ID	Tests	(ppm)	6"	Type	Very dense, moist, brown, slightly (GP-GM); with cobbles.	silty, sandy GRAVEL	(
+		Hydrated bentonite chip backfill			0 0	9 27 23	000000000000000000000000000000000000000			+
5 +			0		0	19 38 50/4	50000000000000000000000000000000000000			+ !
+			<u>.</u>		0	30 50/2	10000000 10000000000000000000000000000	Very dense, moist, brown, orange, sandy, silty GRAVEL (GM); with co	and gray mottled, bbbles.	<u> </u>
10+			Ō		0	50/5		Rock in driveshoe.		-1
 		7			0	50/5	000000000000000000000000000000000000000	Very dense, moist, brown and gree sandy GRAVEL (GP); trace silt, wit	en gray mottled, very th cobbles, no odors.	
15+	-	<u>7</u>		MW-9-16	13.8 110	25 27 10		Stiff, light green gray and orange n CLAY (CL); petroleum odor.		†1 †
								Auger bit and sampler stuck down 17 ft BGS.	hole, abandoned at	
20-										-2
25-										- - -2
+ + + + + + + + + + + + + + + + + + + +										+
○ No Re	mpler Typecovery ard Pene M D1586)	etration Test			otoioniza tic Wate er Leve	r Level	tector	Logged by: Approved by:		
(///011	5 1000)	•		vval	.J. LUVG	· (, ., D)		Figure No.	A -	

	۸	cnoci	.				Ken's Texaco				Monitoring V		
7	_	spec ¹	-	4		-		Specific Location		tt	Coordinates (WA SPS NAD83 ft)	Exploration Num	
		ONSULTING Contractor		:ast uipm		ersity	Way, Ellensbu ⊤	rg, WA, West sig Sampling Meth		treet.	E:1628651 N:607788 Ground Surface (GS) Elev. (NAVD88)	MW-18	8
		t Services	Sonic	•		ia		Grab	ou		1565.9'	Ecology Well Ta	ag No.
		Operator	Explorati		-	-	V	Vork Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	BKY384 Depth to Water (Belo	ow GS
		David	Son			2(0)	,	9/6/2016	n Batoo		1565.7'	18.25' (Statio	
Depth	Elev.	Exploration	Completion	Sa	ample		Analytical ple Number &	Field Tests	Materia		Description	10.20 (Glain	Dep
(feet)	(feet)	▼ Flush	Notes nonument in	Ту	pe/ID	ı	ab Test(s)		Type	Concre	nto.		(ft)
	1565	Conc	rete pression plug							CONCIE	QUATERNARY ALLUVI	UM	1
											ight brown silty SAND (SM); fine		T
-	-							PID= 0		beds.			
-	-	2 inc	h Schedule 40					PID= 0		Moist, li	ight brown and light gray, sandy, ith cobbles; fine to coarse gravel.	silty GRAVEL	+
			riser to 13 feet					1 15-0	8,8,	(Givi) w	itti cobbies, iirie to coarse gravei.	•	
								PID= 0					
5 -	-	Bent	onite chips					PID= 0		9			+ 5
	1560							PID= 0	8.8.	1			+
	_							FID=0					
	_							PID= 0		<u> </u>			T
1	-							PID= 0	8:8:	8			+
	-							PID= 0					+
10-	_							FID=0		}			- 10
10								PID= 0	8.8.	\ {			10
1	_1555							PID= 0		3			+
-	-		drilling 12 to 14					PID= 0	8,8	§		ملئني المسم	+
	_	feet	0 silica sand	Ц	-13			115 0	8.8.		es very moist, mottled red brown, ed clay content .	and with	
			o omoa oana	en.	MW-18-13		PH-Gx, BTEX, WTPH-Dx	PID= 0)			
	-				2	IN	WTPH-DX	PID= 0	8,8	1			†
15	-	. □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	6/2016					PID= 0) () (Wet hr	own and gray mottled, gravelly S	II T (MH) with	 15
	1550	2 inc	h Schedule 40							cobbles	; medium plasticity.	ier (ivii i) with	1
		PVC scree	h Schedule 40 0.010-inch slot en 13 to 28 feet					PID= 0					
	-							PID= 0					T
+	-		3/2016					PID= 0					+
	-							PID= 0					+
20-	_							PID-0					-20
20								PID= 0		Become	es sandy .		T20
	1545							PID= 0	9000	Moist, o	dark brown, sandy, silty GRAVEL	(GM);	+
+	-							PID= 0	8:8:	subrour	nded to angular gravel.		+
	_												
								PID= 0		Ĭ			
	-							PID= 0	8.8.	K			T
25-	-							PID= 0		2			-25
	1540							DID 0		}			1
								PID= 0	8.86	X			
1	_				8:			PID= 0		Wet, lig	ht gray, slightly silty SAND (SP-S	SM); fine to	T
	-	Threa	aded cap	612	WW-18-28	NWT	PH-Gx, BTEX,	PID= 0		medium Slightly	n sand. moist, mottled light and dark gra	y-brown and	+
	-				M		WTPH-Dx	PID= 0	8.8.	red-bro	wn, silty GRAVEL (GM) with cob	bles.	+
30-	_	Don't	onite chips					LID= 0		<u>}</u>			30
307		Delle	ornio ornpa							Bottom	of exploration at 30 ft. bgs.		-30
		gend								Coo Free	loration Log Kov for contend to		1
g g	(M)	Crab Comple	ore 4" ID			₩ ~	▼ Static Wa			of symbo	loration Log Key for explanation ols	Exploration	on
Sample Method		Grab Sample				Water Level		vel A I D		Loaged F	by: Matthew Von Der Ahe	Log MW-18	
ω≥										Approve	d by: JGF-12/13/2017	Sheet 1 of 1	l

	Δ	spe	c+			Ken's Texaco				Monitoring V		
		NSULT		1∩1 F	ast Univ	Project Address & Site rersity Way, Ellensbur	•	de of R.S	itreet	Coordinates (WA SPS NAD83 ft) E:1628654 N:607719	Exploration Num	
		ontractor			uipment	Croity Way, Elichobar	Sampling Meth		il COL.	Ground Surface (GS) Elev. (NAVD88)	MW-19	
	Hol	t Services	3	Sonic	Rotary R	Rig	Grab			1564.5'	Ecology Well Ta BKY385	ıg No.
	(Operator		Explorati	ion Metho	d(s) W	ork Start/Completion	on Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Beld	ow GS)
		David		Son	ic rotary		9/6/2016			1563.8'	19.8' (Static	:)
Depth (feet)	Elev. (feet)	Explo	oration C and No	ompletion tes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Materia Type	ıl	Description		Depth (ft)
			concrete	onument in		Lab Test(s)		P. N. N.	Concr	ete.		7
-			Compre	ssion plug					Moiot	QUATERNARY ALLUVII	JM	1
_									. IVIOISI,	light brown, silty SAND (SM).		
							PID= 0		Moiet	brown, sandy, silty GRAVEL (GM) with cobbles:	4
-	-	8 8	2 inch S PVC ris	schedule 40 er to 13 feet			PID= 0			coarse gravel.) with cobbles,	†
_	<u> </u>	88					PID= 0		₫			+
5 -	1560		Bentoni	to chine			FID=0	8:8:				
5 -			Delifoll	ic cinho			PID= 0		 			+ 5
-	†						PID= 0		\$			+
_							DID :) \$			1
							PID= 0		7			
_	Ī						PID= 0		4			T
-	<u> </u>						PID= 0					+
10-	1555								4			- 10
10							PID= 0	8.8				10
-	-						PID= 0					†
_	-		∑ 9/6/20)16			PID= 0		§ 			+
			40:00 -	:::			PID- 0	9.00	s ecom	les very moist, mottled brown and cs.	gray, trace	
			10x20 S	ilica sand	1	NWTPH-Gx, BTEX,	PID= 0					T
-	1550					NWTPH-Dx	PID= 0	8.8				+
15-	1550						DID. 0					15
							PID= 0		Wet, m	nottled brown, red-brown, and gray vith cobbles; medium plasticity.	y, gravelly SILT	
-	Ť		2 inch S PVC 0.0	Schedule 40 010-inch slot 13 to 28 feet			PID= 0			γ		Ť
-	_		3010011	10 10 20 1001			PID= 0		Wet m	nottled light brown, red-brown, and	d grav gravelly	+
_									SILT (I	ML) with cobbles; medium plasticit	ty, rapid dilatency.	1
							PID= 0					
-	1545						PID= 0	3700	Wet, d	ark brown, sandy, silty GRAVEL (GM) with cobbles;	†
20 -	-		▼ 9/8/20)16	H		PID= 0	8:8:	subrou	inded to angular gravel.		-20
_	1								d			1
							PID= 0		\delta			
-	t						PID= 0	8 · 8 ·) }			†
-	-						PID= 0	111))			+
_	1								4			
	1540						PID= 0					
25-	†						PID= 0		d			-25
_	-				3 00		DID- 0	8.8	3			+
						NWTPH-Gx, BTEX, NWTPH-Dx	PID= 0					
_							PID= 0		Ď			T
-	+		Threade	ed cap			PID= 0	DI 42) E	Moist.	light brown, sandy SILT (ML) with	cobbles.	+
_		⊠ ×										1
00	1535						PID= 0			ark brown, sandy, silty GRAVEL (GM) with cobbles.	
30-	Ť	× × N	Bentoni	te chips					4	of exploration at 30 ft. bgs.		30
		gend Continuo	ous core	e 4" ID		▼ Static Wa	ter Level	,		oloration Log Key for explanation	Exploration	on
hod		Grab Sar				Water Fev			of symb	OOIS	Log	J
Sample	2					Le W			Logged	by: Matthew Von Der Ahe ed by: JGF-12/13/2017	MW-19	
	ı					I			Approve	54 by. JUF-12/13/2017	Sheet 1 of 1	

	Λ.				Ken's Texaco				Monitoring V		
	СО	Spect NSULTING Ontractor	101 East	Univers	Project Address & Site ity Way, Ellensburg, \ Street	Specific Location WA, South side Sampling Meth		sity at B	Coordinates (WA SPS NAD83 ft) E:1628674 N:607639 Ground Surface (GS) Elev. (NAVD88	Exploration Num	
		Services		uipinienii Rotary F	Pia	Sampling Meth Grab	ou		1564'	Ecology Well Ta BKY386	
		perator		ion Metho	•	ork Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	ow GS)
	ı	David	Soni	ic rotary		9/7/2016			1563.5'	18.13' (Stati	c)
	Elev. (feet)	Exploration C and No	ompletion	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Materia Type	ı	Description		Depth (ft)
		N - N concret	nonument in e ession plug				8X 8X 8X	Concre			7
-	† [N Compre	sssion plug					Slightly	FILL moist, gravelly, silty SAND (SM).	-	+
-	+					PID= 0		Slightly	QUATERNARY ALLUVI moist, silty SAND (SM) with cob		1
-	+	2 inch S	Schedule 40 er to 9 feet			PID= 0			prown, sandy, silty GRAVEL (GM		+
-	1560		or to o reet			PID= 0	9.8				+
5 -		Bentoni	te chips				300				- 5
1.						PID= 0		2			
		*				PID= 0		Ĭ			
	Ţ [PID= 0		\$			
-	†	· · 10x20 s	ilica sand			PID= 0		<u> </u>			†
-	1555					PID= 0		3			†
10-	†			\mathbf{H}		PID= 0		₫ S			10
-						PID= 0	8,8,				+
-	+	2 inch S	Schedule 40 010-inch slot			PID= 0	8.8	k 			+
-		screen	9 to 19 feet			PID= 40					+
.	-1550										1
15-						PID= 1000	8.8	{ •			- 15
'3			016	The state of the s	NWTPH-Gx, BTEX, NWTPH-Dx	PID= 3000		Strong	petroleum-like odor 15 to 18 feet	bgs.	13
	T		310		I I I I I I	PID= 5000		Wet, lig	ht brown, silty SAND (SM); fine t	to medium sand.	T
-	†			M	NWTPH-Gx, BTEX,	PID= 200					†
-	†	▼ 9/8/20	016		NW I PH-DX	PID= 110			lark brown, sandy, silty GRAVEL	(GM) with	†
-	1545	Threade	ed cap			PID= 30	8.8.	cobbles			+
20-	+			m,	NWTPH-Gx, BTEX,	PID= 0	8.8.) }			-20
-	+				NWTPH-Dx	PID= 3		Become	es very moist .		+
-						PID= 0		Decourse	oo vory moist.		+
								4			_
	15/0					PID= 0	8.8.	8			
	+1540					PID= 0		2			
25-	†	Bentoni	te chips			PID= 0		9			-25
-	†					PID= 0		4			†
-	†					PID= 0	8.8.	\ \ \			+
-	+			40 J	NWTPH-Gx, BTEX,	PID= 0	a V 6 0	Wet. m	ottled brown and orange-brown, g	gravelly, siltv	+
	-1535				NWTPH-Dx	PID= 0			SM) with cobbles.	S	+
30-						2 0		D-44	of conference at 20 ft to a		30
	<u> </u>							Bottom	of exploration at 30 ft. bgs.		
0 -	Leg	end Continuous core	e 4" ID		▼ Static Wa	ter Level		See Expl	oration Log Key for explanation	Explorati	on
Sample		Grab Sample			Water Leve	vel ATD		•		Log MW-20	
ASPECT STANDARD EXPLORATION LOG TEMPLATE PUGINI WAPROJECT SKENS TEXACO GPJ December 27, 2017 Sample 0	≦				> -			Approve	by: Matthew Von Der Ahe d by: JGF-12/13/2017	Sheet 1 of 1	l
۲ 🗀											


•	Δ	Spe	c+				en's Texaco				Monitoring V		
	Occ	NSUL [*] Contractor			Universi uipment	-		Specific Location I/A, South side Sampling Meth		ersity Way	Coordinates (WA SPS NAD83 ft) E:1628767 N:607641 Ground Surface (GS) Elev. (NAVD88	Exploration Number	
		t Service	es	1	Rotary R	- 1		Grab			1564.4'	Ecology Well Tag BKY387	
		Operator			ion Method	d(s)	Wa	ork Start/Completion	on Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Belov	
		David		Soni	ic rotary		nalidiaal	9/7/2016			1564.1'	16.26' (Static)	
epth feet)	Elev. (feet)	Exp	and No		Sample Type/ID	Samp La	nalytical le Number & lb Test(s)	Field Tests	Mater Type	ial	Description		Depti (ft)
			concrete	nonument in e ession plug						Concr	rete.		
-										Slightly	y moist, gravelly, silty SAND (SM)		Ť
-	_		>					PID= 0	8.8	Moist	QUATERNARY ALLUVI light brown, sandy, silty GRAVEL		-
-	-		2 inch S	Schedule 40 er to 9 feet				PID= 0		cobble		-	F
_	_		7 7 70 113	ci to 3 icci					16			-	_
5 -	1560		Pontoni	te chips				PID= 0	8 8				_
_			Bentoni	te chips				PID= 0	8.8	ا		-	- 5
-	t							PID= 0				-	†
-	+							PID= 0	ă s			-	-
-	<u> </u>		10x20 s	ilica sand				PID= 0	818			-	-
_	_							PID= 0	8.8			-	
0-	1555											-	10
			. 2 inch S	Schedule 40				PID= 0					
			PVC 0.0	010-inch slot 9 to 19 feet				PID= 0	818				
-								PID= 0				-	_
-	_			016				PID= 0				-	-
-	1550		-					PID= 0	918	Becom	nes very moist, mottled orange-bro	own .	_
5-			-		m.	NIW/TD	H-Gx, BTEX,	PID= 0				-	15
-	_		▼ 9/8/20	016			VTPH-Dx	PID= 0	8:8			-	_
_	_											-	_
								PID= 0					
					W.		H-Gx, BTEX, VTPH-Dx	PID= 0	8 8				
-	1545		Threade	ed cap		INV	VIPH-DX	PID= 0		Wet, b	rown, gravelly SILT (ML); mediun	n plasticity,	_
0-	-				H			PID= 0		mediui	m dilatency.	-	-20
-			\$					PID= 0				-	-
-								PID= 0		0 10/54	ork brown goods silt ODAVEL	(CM) with college	-
_										via vvet, α	ark brown, sandy, silty GRAVEL	(GIVI) WITH CODDIES.	
			<u>}</u>					PID= 0	910				
-	1540							PID= 0				-	
5-	+		Bentoni	te chips				PID= 0	8 · 8			-	-25
-	<u> </u>							PID= 0				_	-
-	-							PID= 0	Q b			-	-
_					900					T	harries are well Of T (All)	-4:-:	-
_							H-Gx, BTEX, VTPH-Dx	PID= 0		III IVIOIST,	brown, gravelly SILT (ML); low plants	asticity.	
	1535		>					PID= 0					
0-		ZUXI	4							Bottom	of exploration at 30 ft. bgs.		-30
		gend Continu	OUS COR	- 4" ID			▼ Static Wat	er Level			oloration Log Key for explanation	Exploratio	n
Sample		Grab Sa		J 7 1D		Water	¥ Static Wat			of symb		Log	•••
Sar	2					Fe 🤾				Logged	by: Matthew Von Der Ahe ed by: JGF-12/13/2017	MW-21	
	I					- 1				pp.040		Sheet 1 of 1	

Aspect Consulting				Ken's Texaco - 120061 Project Address & Site Specific Location 101 East University Way, Ellensburg, WA, South side of University Way.						Monitoring Well Log			
										Coordinates (WA SPS NAD83 ft)	Exploration Number		
					Universit uipment	ty Way, Ellensburg,	Sampling Method			E:1628842 N:607644 Ground Surface (GS) Elev. (NAVD88)	MW-22		
Holt Services			25	·	Rotary R	ia	Grab			1564.5'	Ecology Well Tag BKY388	No.	
	Operator Operator				ion Method		Work Start/Completion Dates			Top of Casing Elev. (NAVD88)	Depth to Water (Belov	w GS)	
		David		Sonic rotary			9/7/2016	6		1564.1'	17.26' (Static)		
Depth	Elev.		oloration C and No	ompletion	Sample Type/ID	Campic Number &	Field Tests	Materia	I	Description	(2007)	Depti	
(leet)	(feet)	M 1	₹ Flush m	onument in	Турель	Lab Test(s)		Type	Concre	ete .		(ft)	
_			concrete Compre	e ssion plug						FILL			
									Slightly	moist, gravelly, silty SAND (SM).			
-	İ		>				PID= 0		Slightly	QUATERNARY ALLUVIUM y moist, gray and brown, sandy, silty GRAVEL (GR		1) †	
	-		2 inch S	chedule 40 er to 8 feet			PID= 0		with cot	cobbles.	-	+	
_	1		3 7 7 0 110	01 10 0 1001				8.8.	3		_	_	
	1560		>				PID= 0						
5 -	†		Bentoni	Bentonite chips			PID= 0		4		-	- 5	
	+		>				PID= 0	8:8:	9		-	+	
	1		<u> </u>	silica sand								_	
			10x20 s				PID= 0		Ş				
	+		·				PID= 0	8.8			-	Ť	
	1555						PID= 0	8.8			-	Ť	
	†		2 inch S PVC 0.0 screen 8	schedule 40 010-inch slot 3 to 18 feet			PID= 0	2020			-	- 10	
	Ť						PID= 0				-	T	
-	†		. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)16			PID= 0	Q.O.	Become	es very moist and mottled orange	-brown	t	
15-	+						PID= 0	8,8,			-	†	
	1550						PID= 0		Very ha	rd drilling 14 to 17 feet bgs .	-	†	
	†		.				PID= 0				-	15	
-	_						PID= 0	8:8:			-	Ť	
-	-		9/8/20	116		NWTPH-Gx, BTEX	, PID= 0				-	<u> </u>	
-	_		Threade	ed cap		NWTPH-Dx	PID= 0		٩ >		-	+	
20 - -	1545						PID= 0			ght brown, SILT (MH); medium plasticity, slow cy, trace gravel.		†	
	+		^ ^ ^				PID= 0			y, trace graver. lark brown, silty GRAVEL (GM) v	vith cobbles.	-20	
			>				PID= 0		7		-	+	
- - 25-	+						PID= 0		 		-	+	
	-		}				PID= 0	8.8.				+	
	1540		^ >				PID= 0				-	+	
			Bentonite chips			PID= 0		Become	Becomes sandy and very moist .	-	-25		
			> > >				PID= 0	910	3		-	_	
-							PID= 0		3		-	+	
30-	1525					NWTPH-Gx, BTEX	PID= 0	8.8.			-	+	
			^ ^ ^			NWTPH-Dx	PID= 0	8.8.				+	
	1535							1150	Bottom	of exploration at 30 ft. bgs.		30	
	Leg	jend								· · · · · · · · · · · · · · · · · · ·			
e F		Continu	ous core	e 4" ID			ater Level		See Expl of symbo	oration Log Key for explanation ols		Exploration	
Sample		Grab Sa	arripie			Water Fe	SVELATU		Logged b	d by: Matthew Von Der Ahe	Log MW-22		
						1			Approved	d by: JGF-12/13/2017	Sheet 1 of 1		

APPENDIX E

Groundwater Quality Trend Graphs

APPENDIX F

Off-Site Sources Information

F. Off-Site Sources Discussion

Historically the University Auto Dealership operated as a gasoline station and auto dealership with an auto service center. The 1928 Sanborn Map, presented in Appendix E, depicts a "gas and oil" station near the center of the property with a canopy extending northward towards East University Way (then referred to as East 8th Avenue). Presumably the pump island was beneath the canopy, on the north side of the property, just west of center. The Sanborn Maps do not depict where the tanks were located in the 1928 gasoline station configuration. The Sanborn Maps depict three more gasoline stations to the west of the University Auto Center property. The 1956 aerial photograph, presented in Appendix E, is of poor quality, but generally confirms the same gasoline station configuration as the 1928 Sanborn map. Reportedly during the 1970's energy crisis, the tanks were used by a local fuel distributor to store diesel and heating oil (Fulcrum, 2008). The 1970 aerial photograph resolution is poor, but it appears that the property has been redeveloped with an "L" shaped gasoline station-like building further to the east than the 1928 configuration. The redevelopment of the property was confirmed by the Kittitas County Tax Assessor, which notes the existing building construction age of 1965. The 1981 and 1983 aerial photographs confirm the redevelopment of the property at some time prior to 1970. Property-use appears to be consistent with a car dealership as indicated by the uniformity of parked cars. By 2005, it appears that a canopy from the north side of the property was removed, leaving behind a triangular shaped patch in the concrete.

The most recent gasoline station operated three gasoline and diesel USTs (approximately 3,000 gallons each), which were closed in the 1980's. The date of UST removal is unknown. Reportedly, no soil or groundwater sampling was conducted when the tanks were removed as their removal predated UST regulations (Fulcrum Environmental Consulting, 2008). The USTs were located adjacent west of the existing building while the pump island was located north of the building with East University Way frontage. Annotated figures depicting the UST basin, in relation to MW-20 are presented in Appendix E. The property also historically operated two 500-gallon waste oil tanks that were closed in place in 1991 and removed in 1992 (White Shield Inc., 1992). The waste oil tanks were formerly located on the southeast side of the existing building adjacent to the alley.

1992 Waste Oil Tank Removal

White Shield Inc. (1992) conducted a UST site assessment during and after removal of the two 500-gallon waste oil USTs and associated piping. Both tanks and piping were removed from an excavation 6 feet wide, 10 feet long, and 7 feet deep. Oil stains and free oil were observed in the pea gravel on the surface of the tanks and below the fill spouts indicating product spillage during filling activities occurred. Impacted tank backfill (e.g. pea gravel) and impacted native soils were excavated and stockpiled. Field screening was conducted on the excavation side walls and excavation bottom using an organic vapor analyzer for the headspace screening method and thin-layer chromatography for diesel. Reportedly no petroleum contamination was observed. One soil sample was collected from the bottom of the excavation and two sidewall composite samples were collected for laboratory analysis. Three stockpile soil samples were collected for characterization.

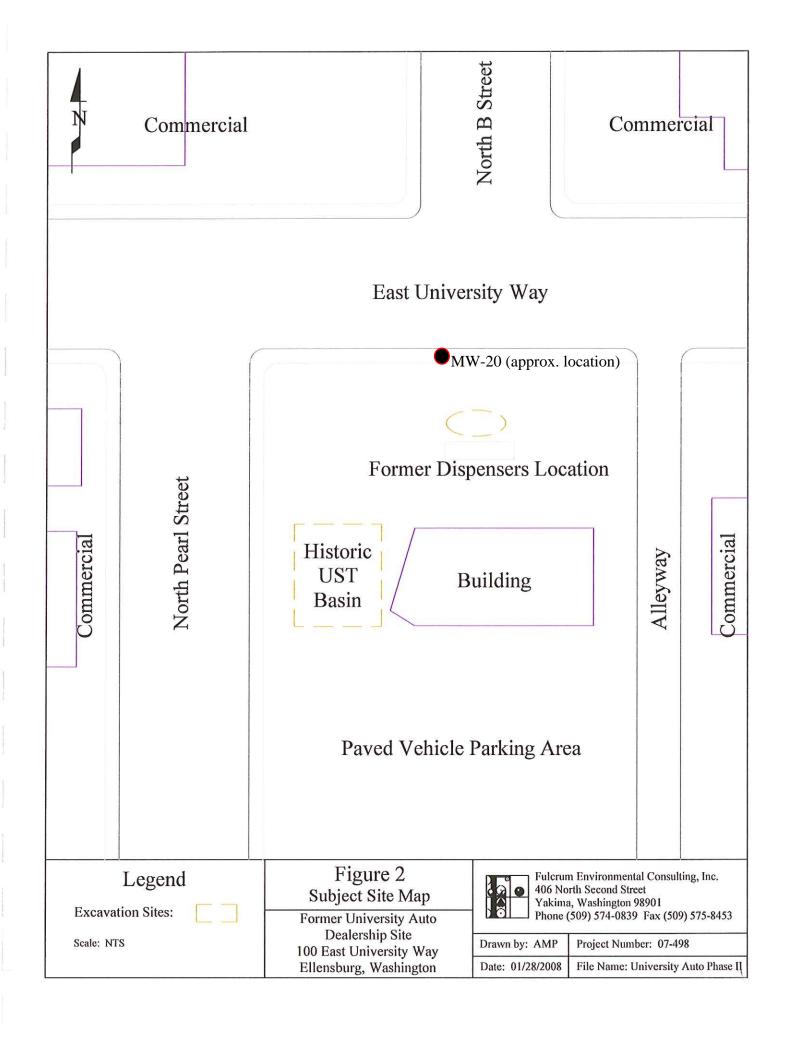
Laboratory analysis for petroleum hydrocarbons (using analytical method WTPH-418.1 modified) indicated concentrations were detected below MTCA Method A cleanup levels. The bottom sample was not detected above the laboratory reporting limit of 100 mg/kg for "total heavy oils" while the two sidewall composite samples had detectable concentrations of 39 mg/kg and 48 mg/kg for "total heavy oils". Stockpile samples had concentrations of "total heavy oil" ranging from 648 mg/kg to 1158 mg/kg. The stockpile soil was taken off-site for landfarming treatment. No groundwater was encountered during the 1992. White Shield Inc. noted that there were no groundwater monitoring wells on the property in 1992.

Ecology made a determination of No Further Action (NFA) for the waste oil tank removal in 2006.

2007 UST Investigation

Fulcrum Environmental Consulting, Inc. conducted a UST investigation in 2007 to confirm removal of the gasoline and diesel USTs on the west side of the existing building and to evaluate the potential for historical releases to the subsurface. Vent pipes for the USTs were observed still attached to the southwest corner of the building at the time of Fulcrum's investigation and a depression with asphalt cracking were observed in the general area where the UST basin was suspected to be located. Fulcrum trenched to 12.5 feet bgs in two locations in the vicinity of the former UST basin to observe soil conditions. The vent pipes leading from the UST basin to the building were removed at this time. On the north side of the UST basin trenches, Fulcrum observed voids and distribution line "pipe segments" extending north from the basin toward the former pump island area. The condition of the soil and groundwater adjacent to these distribution lines, north of the UST basin were not investigated. Gray discolored soil with a diesel odor was also observed on the "north boundary" of the site. The report is unclear as to whether this gray discolored soil was sampled and exactly where it was located. UST basin backfill included concrete, asphalt, and metal piping debris. Fulcrum also investigated the presumed location of the former pump island, but the report did not provide a full description of these excavation activities or observations.

Fulcrum collected 10 bottom and sidewall samples from the trenches in the UST basin at depths of approximately 12 to 12.5 feet and 6 feet bgs, respectively. Two soil samples were collected from the former dispenser location excavation at 3 feet bgs. All soil samples were analyzed by a laboratory for diesel-, heavy oil-, and gasoline range petroleum hydrocarbons, BTEX, and lead. Lead was detected in three samples at concentrations below MTCA Method A. Diesel was detected in one sample collected on the north sidewall of the UST basin excavation, but at a concentration below MTCA Method A. No gasoline or BTEX were detected in any samples. No groundwater was encountered in either of the excavations. Fulcrum concluded that there were no indications of a release to the environment.

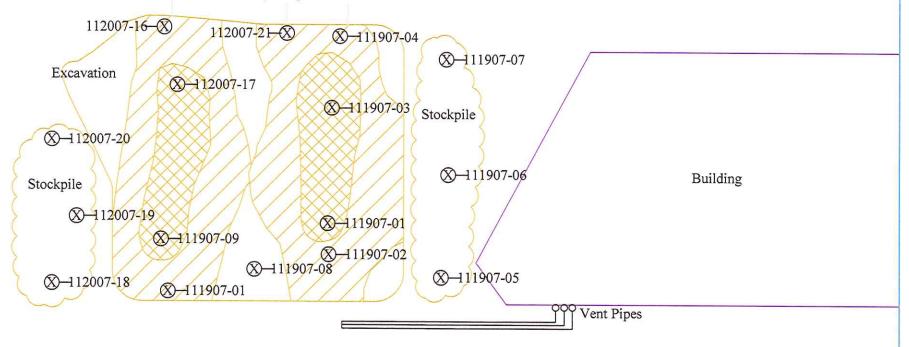

Ecology confirmed in 2009 that the NFA made in 2006 should remain unchanged for petroleum products in soil. The site was subsequently removed from the Confirmed and Suspected Contaminated Sites List and the Leaking Underground Storage Tank List.

Off-Site Source Evaluation

Fulcrum did not adequately characterize this site for impacted media caused by releases from the USTs and related infrastructure. Diesel was detected in the north sidewall sample collected below the piping (112007-21), but Fulcrum did not report this detection in Table 1. The figure depicting the sample locations has duplicate samples labeled 111907-01; does not depict sample 111907-10; and depicts bottom samples in areas shaded as "lesser elevations" which is unclear. The northwest quarter of the property, where the fuel distribution lines were observed extending north of the former UST area, was not investigated. The gray discolored soil with a diesel odor was left in place and not investigated further. And finally, the excavation extended only to 12.5 feet at its deepest point. Groundwater is known to be at 15 feet bgs in this area, so their excavation was not deep enough to adequately characterize the condition of groundwater.

Based on the aerial photograph review, it appears that there were two gasoline station configurations. If this is the case, then the Fulcrum investigation did not adequately characterize the potential for releases caused by the 1928 configuration, which was further west on the property than the present-day building.

The annotated figures presented in Appendix E depict the location of the excavations and the former pump island relative to the location of monitoring well MW-20. As noted above, soil samples collected at 15 and 17 feet bgs at MW-20, had concentrations of gasoline-range TPH and BTEX above MTCA Method A cleanup levels. Diesel was also elevated in the soil sample at 17 feet bgs, but it was below MTCA Method A cleanup levels. The detections of petroleum related compounds in soil at depths below what was characterized by Fulcrum is further indication of the inadequacy of their investigation to characterize the horizontal and vertical extent of their release. In groundwater, dieseland gasoline-range TPH and benzene were detected at MW-20 in October 2016 at concentrations exceeding MTCA Method A cleanup levels. The diesel detection was not qualified by the laboratory, so it is indicative of a diesel release. As depicted on Figures 4, 7, and 8, the water table and groundwater gradient of this area are extremely flat, despite an overall general south to southwest flow direction. The flat gradient suggests that MW-20 is effectively cross-gradient from the former UST infrastructure at the University Auto Center property. Given the history of diesel usage at the University Auto Center property and the cross-gradient proximity of MW-20 to the historical fueling activities at this property, it is most likely that impacts to soil and groundwater in monitoring well MW-20 are related to historical releases on the University Auto Center property. As a result of this evaluation, MW-20 was removed from the remedial investigation as a compliance point for the Ken's Texaco Site.



X

Former Dispensers Location

⊗—112007-11 Stockpile

Former Pipe Segments

Legend

Sample Locations: Pit Bottom:

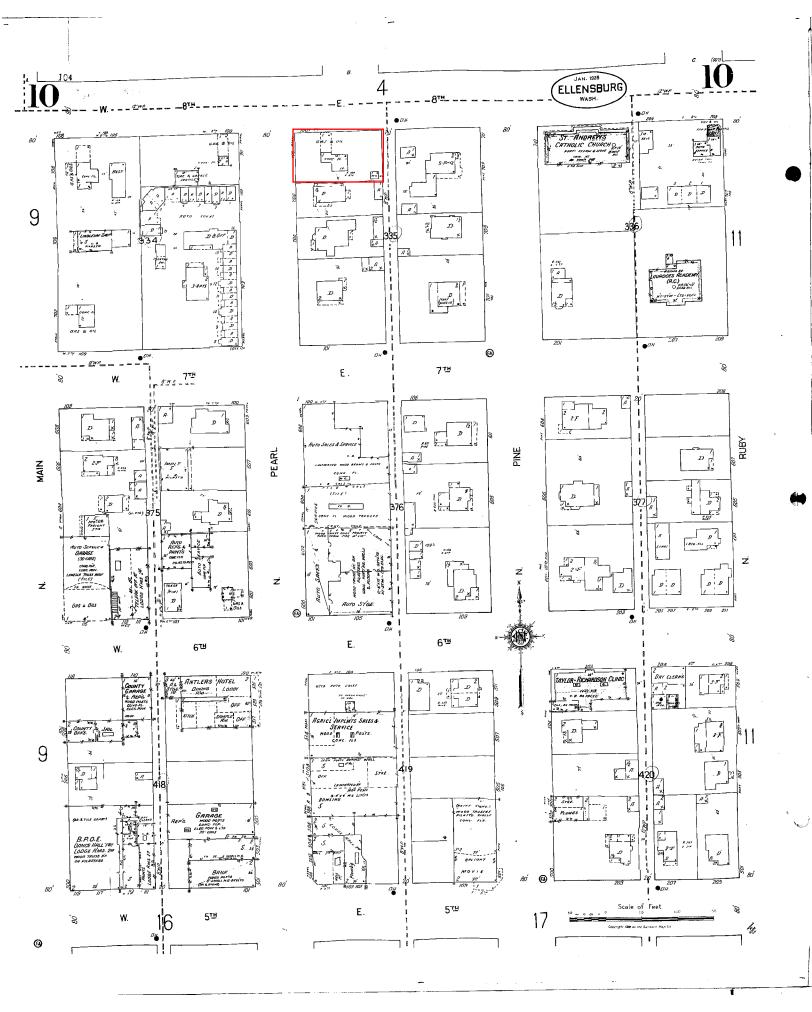
Lesser Elevation:

Scale: NTS

Figure 3

Excavation & Sample Locations Map

Former Univerity Auto Dealership Site 100 East University Way Ellensburg, Washington



Fulcrum Environmental Consulting, Inc. 406 North Second Street Yakima, Washington 98901 Phone (509) 574-0839 Fax (509) 575-8453

Drawn by: AMP Project Number: 07-498

Date: 01/28/2008

File Name: University Auto Phase II

11 cro 00162 Jms

UST SITE ASSESSMENT REPORT

DEPARTMENT OF ECOLOGY UNDERGROUND STORAGE TANKS

DEC 07 1992

UNIVERSITY AUTO CENTER ELLENSBURG, WA

Prepared for: AER-EX, Inc. 312 Ridgeview Lane Ellensburg, WA 98926

DECEMBER, 1992

WHITE

SHIELD

P.O. BOX 477, 246 DIVISION STREET, GRANDVIEW, WA 28930 TELEPHONE: (509) 882-1144 VOICE (509) 882-4566 FAX

WHITE SHIELD, INC.

P.O. BOX 477 • GRANDVIEW, WA 98930 • (509) 882-1144 FAX (509) 882-4566

December 3, 1992

Mr. Mike Smith AER-EX, Inc. 312 Ridgeview Lane Ellensburg, WA 98926

SUBJECT: SITE ASSESSMENT REPORT - UNIVERSITY AUTO CENTER -

ELLENSBURG, WASHINGTON

Dear Mike:

Enclosed, please find two copies of a UST closure site assessment report for the above referenced site, as required by the Washington State Department of Ecology (WSDOE). Based on the data and findings reported herein, we find no evidence of petroleum contamination exceeding WSDOE cleanup guidelines at the site.

The WSDOE requires that you retain this report for a minimum of ten years. We recommend that you retain it indefinitely. The WSDOE also requires us to submit a copy of the <u>Underground Storage Tank Site Check/Site Assessment Checklist</u> to the Olympia office and it is attached to this report as Appendix D.

We understand that, since you provided the decommissioning services, you will send a copy of the <u>Underground Storage Tank Permanent Closure/Change-in-Service Checklist</u> as required to the Olympia office of the WSDOE.

We appreciate the opportunity to provide you with technical assistance for your UST closure. Please call us at (509) 882-1144 should you have any questions or need any additional information.

Respectfully Yours,

WHITE SHIELD, INC.

Charles O. Robinson, Environment Technician

Project Number: AER-0892

cc: Department of Ecology, Olympia Headquarters

Department of Ecology, Central Regional Office

TABLE OF CONTENTS

1.0	Introduction 1.1	Purpose
	1.2	Scope of Work
2.0	Background	Information 1
	2.1	Site Location 1
	2.2	Site Description and History 1
	2.3	Soils Description
3.0	Field Activiti	es
	3.1	General Investigative Methods 4
	3.2	Tank Inspection 4
	3.3	Site Assessment 4
	3.4	Treatment of Petroleum Contaminated Soils 5
4.0	Investigative	Methods
	4.1	Field Screening 5
	4.2	Soil Sampling 7
	4.3	Soil Analysis Summary 8
5.0	Conclusion	
	5.1	Summary
	5.2	Recommendations
6.0	Limitations	
TIST	OF FIGURES	
LIUI	Figure 1	Site Location Map 2
	Figure 2	Site Sketch
	Figure 3	Land Farm Location
LIST	OF APPENDI	CES
	Appendix A:	Field Sampling Log
	Appendix B:	Laboratory Reports and Chain of Custody
		Method A Cleanup Levels as established by the Model Toxics Control
		Act, Chapter 173-340 WAC
	Appendix D:	Underground Storage Tank Site Check/Site Assessment Checklist
		Table V: End Use Criteria for Petroleum Contaminated Soil

EXECUTIVE SUMMARY

White Shield, Inc. (WSI) provided site assessment services upon removal of two 500 gallon waste oil tanks, located at the rear of the University Auto Center, Ellensburg, WA.

Based on our visual observations, analytical laboratory analyses, site information, and interviews, we found no evidence of petroleum contamination in excess of Washington State Department of Ecology cleanup levels.

1.0 Introduction

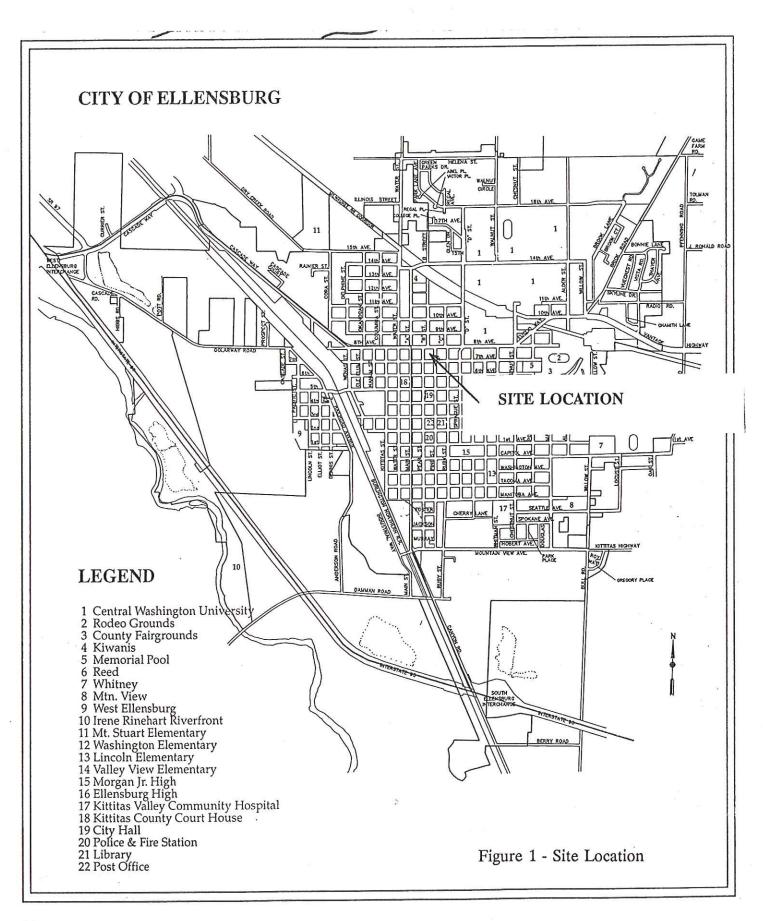
1.1 Purpose

This report describes findings and actions taken for work associated with Underground Storage Tank (UST) removal. The work and investigation responds to regulatory requirements set forth by the United States Environmental Protection Agency (EPA) and in compliance with Chapter 173-360 WAC and Chapter 173-340 WAC of the State of Washington and enforced by the Department of Ecology (WSDOE).

1.2 Scope of Work

This report completes site assessment services provided by White Shield, Inc. (WSI), for two 500 gallon waste oil USTs at the rear of the University Auto Center. AER-EX, Incorporated provided the UST decommissioning services.

2.0 Background Information


2.1 Site Location

The site is located at 8th Avenue and Pearl Street in downtown Ellensburg. The site is described as the NE 1/4 Section 35, T8N, R18E, WM. Refer to Figure 1, Site Location Map.

2.2 Site Description and History

We understand that this UST system formerly supported temporary storage for waste oil generated on the site. The installation date of the USTs is unknown. They were removed on November 12, 1992 by AER-EX, Inc.

The tanks were located in the alley between Pearl Street and Pine Street at the rear of the University Auto Center Service Bays. The University Auto Center lot lies immediately to the south of the tanks. A medium density single family residential area begins on the east side of the alley. The area to the north and west is commercial. Refer Figure 2, Site Sketch and Sampling Plan.

UNIVERSIT 'AUTO BUILDINZ M 102 107 10 5 RESIDENTIAL AREA nk h Site Sketch and Sampling Plan Figure 2)

22

.0. .00.

All of the piping was completely contained within the excavation. The petroleum products were poured directly into the USTs. The bedding around the USTs consisted of native soils. The UST system contained no leak detection or secondary containment. No groundwater monitoring wells are present at the site.

2.3 Soils Description

Our inspection found the soil to be a very rocky silt loam with cobbles to 6 inches. Using the Unified Soil Classification System, the soil would probably be classified as a poorly graded gravel with a GP to GM classification.

3.0 Field Activities

3.1 General Investigative Methods

We visually inspected each UST, the soil and the fill. We also used field screening, analytical laboratory analyses, and interviews for data. The methods and general conclusions are discussed below.

3.2 Tank Inspection

We removed attached soil and scale to completely expose the tanks. With the soil and scale removed, we carefully examined each tank. The tanks were in good condition. The tanks exhibited moderate evidence of corrosion and pitting, but with no apparent holes. There were oil stains and oil coated pea gravel on the surface of the tanks, below the fill spouts, indicating that there may have been some spillage of product around the fill spouts.

3.3 Site Assessment

Charles Robinson, a site assessor registered with the Washington State Department of Ecology Underground Storage Tank Program, performed the site assessment on November 12, 1992 during and after removal of the USTs. Both tanks were contained in a single excavation approximately 6 feet x 10 feet x 7 feet deep. Soil samples from the bottom of the excavation and the four side walls were field screened using TLC screening for waste oil. The field screening detected no petroleum contamination in the soil. Based on the field screening results and the small size of the excavation, a single soil sample was collected from the bottom of the excavation between the two USTs and two composite samples from the side walls were submitted to Wy'East Environmental Sciences for laboratory analysis. Because of the excessive amount of rock in the soil, soil samples were collected in one quart

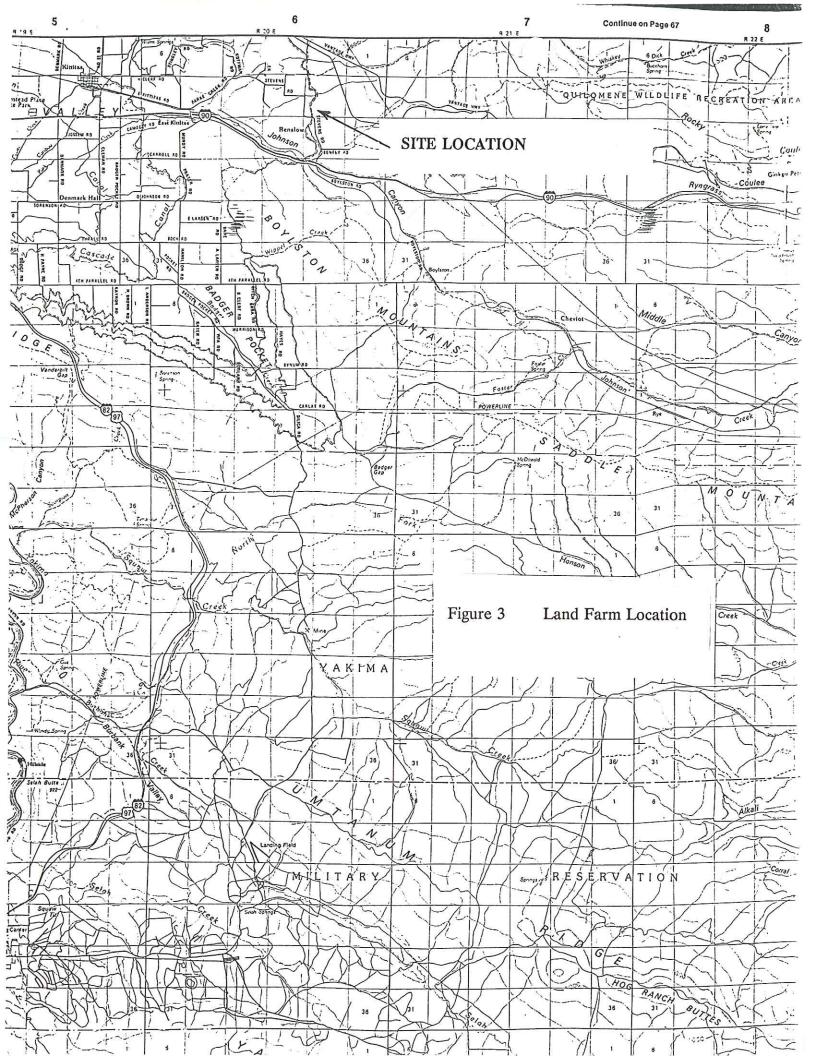
jars. The analytical results indicated that petroleum hydrocarbon concentrations fall below Model Toxics Control Act Method A cleanup guidelines.

Three soil samples were submitted for laboratory analysis from the stockpile for characterization. The stockpiled soil was removed from the site by AER-EX, Inc. immediately following the completion of the site assessment. Refer to Section 3.4.

There was no indication of groundwater within the excavation or reason to suspect groundwater contamination from this UST system.

Refer to the Field Sampling Log, Appendix A, and the sampling plan, Figure 2 for sample location and excavation extent.

As required by WSDOE, we have completed the <u>Underground Storage Tank Site Check/Site Assessment Checklist</u> for each tank and have enclosed them in this report as Appendix D. The <u>Underground Storage Tank Permanent Closure/Change-in-Service Checklist</u> as required by WSDOE will be submitted under separate cover by AER-EX, Inc.


3.4 Treatment of Petroleum Contaminated Soils

The stockpiles of excavated soils were removed from the site by AER-EX, Inc. Based on the analytical results of samples AER-0892-106 through 108 from the stockpile, Appendix B, the soil is a Class 3 soil. <u>Table V. End Use Criteria for Petroleum Contaminated Soils</u> (Appendix E) requires disposal at permitted municipal landfill or treatment. The soil will be spread at the John Clerf property located approximately 9 miles east of Kittitas in the S 1/2, SE 1/4, Sec 11, T17N, R20E, WM, for treatment by landfarming. Refer to Figure 3 for location.

4.0 Investigative Methods

4.1 Field Screening

For field analysis of compounds containing volatile organics, WSI uses a Foxboro Organic Vapor Analyzer in conjunction with the interim headspace method as recommended by the manufacturer. This method is used to confirm the presence or absence of volatile components in the soil and provides only a rough indication of the contaminant concentrations. The analysis procedure involves:

- 1. Selecting a clean, wide mouth jar (1 qt.) and filling the bottom 1/3 with a discrete soil sample.
- 2. Place aluminum foil over the top of the jar and place a ring over the jar to create a seal.
- 3. Boil the sample for 10 minutes. This causes the volatile compounds to become vapors and collect in the space above the soil.
- 4. Remove the sample from the boiling water and insert the instrument probe through the aluminum foil for vapor analysis.
- 5. Record the instrument response on the Field Form.

For field analysis of semi-volatile (diesel) and non-volatile compounds (motor oil), WSI uses Thin Layer Chromatography (TLC) for qualitative and quantitative analysis. This analytical technique utilizes the principle of chromatography to separate individual components for comparison to known standards.

TLC is classified as a solid-liquid chromatographic system, meaning there are two phases through which an extract of the sample is passed; a solid phase (silica gel) and a liquid phase (a solvent such as hexane).

The solid phase is stationary and is coated on a glass plate. During the chromatography process, the liquid phase carries the sample through the solid phase. The solvent moves at a fairly constant rate through the solid phase. However, the compound in the sample (analyte) are partitioned by a relative attractiveness of the analyte between the solid phase and the liquid phase. Analytes strongly attracted to the silica will remain on the silica longer and move more slowly than analytes that are not as strongly attracted to the silica. When the chromatography is stopped, the distance the analyte has moved relative to the distance the solvent has moved is used to identify the compound. When the plate is viewed under ultraviolet light, the analytes can be seen and compared to standards of known concentration for quantitative analysis.

4.2 Soil Sampling

The Sampling Plan, Figure 3 and attached Field Sampling Log (Appendix A) shows the location, depth and types of samples taken. In general, sample collection and control followed the following protocol:

- 1. Select a laboratory certified clean sample jar for sample collection.
- 2. Using clean latex gloves and clean sampling utensils (tri-sodium phosphate, chlorine solution, tap water rinse and distilled water

rinse cycle) tightly pack the soil sample in the sample jar to the top of the jar to prevent any airspace.

- 3. Label the jar with the soil sample number, the type of laboratory test required, the date, name of site and sampler. The sample is then entered on the chain of custody form.
- 4. Cool the sample in wet ice to approximately 4 degrees centigrade.
- 5. Repack the samples for shipment to the laboratory in blue ice and a cooler.
- 6. Relinquish sample to courier for shipment to the laboratory.

4.3 Soil Analysis Summary

The laboratory analysis of the composite Sample # AER-0892-101S and 103S from the west and south walls showed 48 ppm, composite Sample #AER-0892-104S and 105S, from the north and east walls showed 39 ppm heavy oil to be present. Sample #AER-0892-102S, from the bottom showed no petroleum contamination to be present.

Results of the analyses are shown in Appendix B. These results indicate contamination levels below the Model Toxics Control Act Method A Cleanup Levels for Petroleum Releases (Appendix C). The cleanup for diesel and oil is 200 ppm.

5.0 Conclusion

5.1 Summary

Based upon the analytical results and our investigation, WSI finds no evidence of petroleum concentrations remaining within the excavation on the site in excess of the Cleanup Levels as established by the Model Toxics Control Act (WAC 173-340-720).

5.2 Recommendations

WSI recommends that the petroleum contaminated soils be treated by landfarming. WSI recommends that the landfarmed soils be monitored and sampled at 3 month to 6 month intervals to determine the success of the remediation. WSI finds that no further action is necessary associated with the decommissioning of the UST system on this site.

6.0 Limitations

In performing our professional services, WSI uses a degree of care ordinarily exercised under similar circumstances by members of our profession. No warranty, expressed or implied, is made or intended. Our conclusions and recommendations, developed from our field and laboratory investigation reported herein, are based upon this firm's understanding of the project and are in concurrence with generally accepted practice.

APPENDIX A Field Sampling Log

٧. ا	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11/12/92	7.51	2-0897_		1.
SAMPLE H	Loca	HITON	DEPTH	. MATRIX	TLC		
SAMPLE H						8	
ER-0892-10	1 . W. h	Jal/	5'	561	CN.		
ER-0892-101			17	Sal	ND	4	
ER-1892-10=	Bi .W	JALL	5'	Soil	ND		
P-0892-107			5 '	50.1		ν,	
ER-084~105	F · l	UALL	5'	50,1	-		1
72 060 Log	10 CTD	-1101115	_			-	-
R-0892 106		EKPILE TOCKPILE	†				-
		DCKPILE					
0672.752	51						
					,		
	0						
					100	-	
		is a			,	-	
		0					
						· ·	<u> </u>
					-		
	-						

							-
		5'					
-			*				1
		200	H 2				
¥*							
			***		10		
		* *************************************	7,				
							3,5
			****		5.40)		
			,	•		**	
		×					iii
	3				v		
•				Ę	10		

APPENDIX B Laboratory Reports and Chain of Custody

SUMMARY OF SAMPLE ANALYSIS UNIVERSITY AUTO - ELLENSBURG, WA - PROJECT #AER-0892

SITE ASSESSMENT - NOVEMBER 12, 1991

SAMPLE	LOCATION	DEPTH	MATRIX	WTPH-41	8.1
				ppm	
AER-0892-101S AER-0892-103S		5 5	Soil Soil	48	Composite
AER-0892-104S AER-0892-105S		5 5	Soil Soil	39	Composite
AER-0892-102S	Bottom	7	Soil	ND	
AER-0892-106S AER-0892-107S AER-0892-108S	Stockpile Stockpile Stockpile		Soil Soil Soil	1158 648 914	
Laboratory Renov	rting Limit				

Laboratory Reporting Limit:

WTPH-418.1 Modified:

100 ppm

W.E.S. Wy' East Environmental Sciences, Inc.

Research, Laboratory & Consulting Services

LABORATORY REPORT

White Shield, Inc. PO Box 477 Grand View, WA 98930

PROJECT NAME / SITE:

University Auto

REPORT NUMBER:

11582

PROJECT NUMBER:

AER-0892

REPORT DATE:

11-20-92

EXTRACTION DATE:

11-18-92 for Lab ID 7482-7487

11-19-92 for Lab ID 7488-7489

WASHINGTON TPH-418.1 MODIFIED

Analyte: Total Heavy Oils Quantification, Dry Weight Basis

Reporting Limit: 100 mg/Kg (ppm)

Field ID	Lab ID C=composite sample	Matrix	Sample mg/Kg (ppm)
AED 0002 101 S + 102 S		COII	
AER-0892-101 S + 103 S	7482-7483 C	SOIL	48
AER-0892-102 S	7484	SOIL	ND
AER-0892-104 S + 105 S	7485-7486 C	SOIL	39
AER-0892-106 SP	7487	SOIL	1158
AER-0892-107 SP	7488	SOIL	648
AER-0892-108 SP	7489	SOIL	914
BLANK	•	-	ND

ND Not Detected (below reporting limit or detection limit)

WY'EAST ENVIRONMENTAL SCIENCES, INC.

CHAIN OF CUSTODY

1128 S.W. 13th, Portland, OR 97205 (503) 223-2737 FAX: 223-6168

011582

CHAIN OF CUSTODY

PROJECT # AZE -0892_ PRO.	PROJECT NAME: Ususan +	7.4	P.O.#		TODAY'S DATE:	
N.		1	PHONE: 509-897-1144	-1144		
REPORT ATTENTION: Chuch Pabing	binga		FAX: 509-882-45/6	2-45/6		
SAMPLES COLLECTED BY: Chuck Rebins on	Spinson	DATE COLLECTED	2	ECTED:		
FIELD I.D.	(SOIL, WATER)	CONTAINE	PRESERVATIVE	ANALYSIS REQUIRED	EQUIRED	LAB I.D.
AER-0892-1013 W.W.L.	, Š	19t. Jar	40 (Iso	WTPH-418.1 > A	74, 24,2	2483
AER-0892-1035 5. Wall	, j	19t Jan	48 Toc		A lendon	2483
AER-0892 1025 Botton	_,°e∑	19t. Jan	4°C 1ce	1.814-418-1		hshl
AER-0892-1045 N.Wall	Ś	14. Jan	4°C Ice	WTP4-418.1	Composite	2485
AER-0892-1055 E. Wall	VÍ	19t. Jar	4°C ICe	MTPH-418.1 >	-	2486
				١		
AER-0892-1065P Stacple	S.	Scz Ler	A°C	WTPH-418.1		2872
HER-0892-107SP Stackal	Ś	- 5475	7 7	WIPH-418.1		2488
AER-0892-1085P Stackple	Š	-)	4°C	LJPH-418.1		9847
-		0	,			}
						×
RELINQUISHED BY:	DATE/TIME	IME 16.92	RECEIVED BY:	in Baugh	DATE/TIME	11.500 11.500
RELINQUISHED BY:	DATE/fME		RECEIVED BY LAB:	5	ÓATÉ/TIME	TIME
REMARKS:				UPS FED-EX	X GREYHOUND	ND MAIL

APPENDIX C Method A Cleanup Levels

Table 2

Method A Cleanup Levels - Soil *

Hazardous Substance	CAS Number	Cleanup Level	
Arsenic	7440-38-2	20.0 mg/kg b	
Benzene	71-43-2	0.5 mg/kg °	
Cadmium	7440-43-9	2.0 mg/kg d	
Chromium	7440-47-3	100.0 mg/kg •	
DDT	50-29-3	1.0 mg/kg f	
Ethylbenzene	100-41-4	20.0 mg/kg 8	
Ethylene dibromide	106-93-4	0.001 mg/kg h	
Lead	7439-92-1	250.0 mg/kg ¹	
Lindane	58-89-9	1.0 mg/kg j	
Methylene chloride	75-09-2	0.5 mg/kg k	
Mercury (inorganic)	7439-97-6	1.0 mg/kg ¹	
PAHs (carcinogenic)		1.0 mg/kg m	
PCB Mixtures		1.0 mg/kg n	
Tetrachloroethylene	127-18-4	0.5 mg/kg °	
Toluene	108-88-3	40.0 mg/kg P	
TPH (gasoline)	E 68	100.0 mg/kg q	
TPH (diesel)		200.0 mg/kg ^r	
TPH (other)		200.0 mg/kg *	
1,1,1 Trichloroethane	71-55-6	20.0 mg/kg ^t	
Trichloroethylene	79-01-5	0.5 mg/kg u	
Xylenes	1330-20-7	20.0 mg/kg v	
as a S	an e		

a Caution on misusing method A tables. Method A tables have been developed for specific purposes. They are intended to provide conservative cleanup levels for sites undergoing routine cleanup actions or those sites with relatively few hazardous substances. The tables may not be appropriate for defining cleanup levels at other sites. For these reasons, the values in these tables should not automatically be used to define cleanup levels that must be met for financial, real estate, insurance coverage or placement, or similar transactions or purposes. Exceedances of the values in these tables do not necessarily trigger requirements for cleanup action under this chapter.

b Arsenic. Cleanup level based on background concentrations in the state of Washington.

Benzene. Cleanup level based on protection of ground water.

APPENDIX D UST Site Check/Site Assessment Checklist

UNDERGROUND STORAGE TANK Site Check/Site Assessment Checklist

Owner	For Office Use Only
Site#	
	×

	Site #
	INSTRUCTIONS:
	When a release has not been confirmed and reported, this Site Check/Site Assessment Chaoking MENT OF ECOLOG completed and signed by a person registered with Ecology. The results of the site check or site assessment ment must be included with this checklist. This form must be submitted to Ecology at the address shown below within 30 days after completion of the site check/site assessment.
	SITE INFORMATION: Include the Ecology site ID number if the tanks are registered with Ecology. This number may be found on the tank owner's invoice or tank permit. TANK INFORMATION: Please list all tanks for which the site check or site assessment is being conducted. Use the owner's tank ID numbers if available, and indicate tank capacity and substance stored.
	REASON FOR CONDUCTING SITE CHECK/SITE ASSESSMENT: Please check the appropriate item.
	CHECKLIST: Please initial each item in the appropriate box. SITE ASSESSOR INFORMATION: This form must be signed by the registered site assessor who is responsible for conducting the site check/site assessment. Underground Storage Tank Section Department of Ecology P. O. Box 47655 Olympia, WA 98504-7655
1	SITE INFORMATION Selection and Ladsing and
	Site/Business Name: University Acts Center
	Site Address: 8th & Pearl Telephone: (59) 925-1455
	Ellensburg WA: 98926 ZIP-Code
1	TANK INFORMATION
	Tank ID No.
1	WASTEOID THORES TO THE STORY OF THE STORY OF THE WASTE ON
	-2 WASTEOK Waste Oil
	of e regulated substance has next superiors.
The state of	REASON FOR CONDUCTING SITE CHECK/SITE ASSESSMENT
	Check one: Investigate suspected release due to on-site environmental contamination Investigate suspected release due to off-site environmental contamination. Extend temporary closure of UST system for more than 12 months. UST system undergoing change-in-service.
	UST system permanently closed-in-place. UST system permanently closed with tank removed. Abandoned tank containing product. Required by Ecology or delegated agency for UST system closed before 12/22/88. Other (describe):
1	Callot (accorde)

APPENDIX E Table V: End Use Criteria for Petroleum Contaminated Soil

TABLE V. END USE CRITERIA FOR PETROLEUM-CONTAMINATED SOILS

			Soil C	lass (ppm)	
Analyte	Analytical Method	, i.	2	3	4
Heavy fuel hydrocarbons (C24-C30)	WTPH- : 418.1 mod.	<60 •. · ,	60-200	200-2000	>2000
Diesel (C12-C24)	WTPH-D	<25	25-200	200-500	>500
Gasoline (C6-C12)	WTPH-G	<5	5-100	1,00-250	>250
Benzene	8020	<0.005	0.005-0.5	≤0,5	>0.5
Ethylbenzene . **	8020	<0.005	0.005-20	≤20	>20
Toluene	8020	<0.005	0.005-40	≤40	>40
Xylenes (total)	8020	<0.005	0.005-20	≤20	>20
Carriery of the second					9

Treatment is recommended for all Class 3 and 4 soils.

NOTES:

Class 1 Soil Uses:

Any use which will not cause threat to human health or the environment.

Class 2 Soil Uses:

Backfill at the cleanup site

Fill in commercial or industrial areas

Cover or fill in permitted landfills

Road subgrade or other road construction fill

Fill in or near: wetlands, surface water, ground water, drinking water wells or utility trenches is NOT recommended. Use as residential topsoil is also NOT recommended.

Class 3 Soil Uses:

Treatment -

Disposal at the original site (no solid waste diposal permit needed)

Road construction (no solid waste diposal permit needed)

Use or disposal in permitted, municipal landfills

Permitted as a new PCS landfill

(An evaluation should be made to ensure that disposal will not cause a threat to human health or the environment, e.g. use near water bodies)

Class 4 Soil Uses:

Treatment

Disposal in a permitted, municipal landfill

Permitted as a new PCS landfill

Fulcrum Environmental Consulting, Inc. 406 North Second Street, Yakima, Washington 98901 Phone: (509) 574-0839 Fax: (509) 575-8453

MEMO

To:

Toxics Program

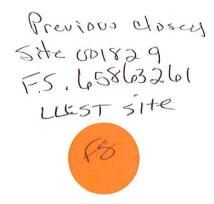
Washington State Department of Ecology

February 1, 2008 Page 1 of 1

From:

Ryan Mathews

Fulcrum Environmental Consulting, Inc.


RE:

UST Investigation Report

Enclosed please find one bound copy of the Underground Storage Tank Investigation report for the tank investigation conducted at the Former University Auto Dealership site located at 100 East University Way in Ellensburg, Washington.

If you should have any questions, please feel free to call me at 574-0839.

UNDERGROUND STORAGE TANK INVESTIGATION REPORT

Former University Auto Dealership 100 East University Way Ellensburg, Washington

101

Project Number 07-498

January 31, 2008

Prepared for:

Allen Faltus

University Auto Center

P.O. Box 619

Ellensburg, Washington 98942

Prepared by:

Fulcrum Environmental Consulting, Inc.

406 North Second Street

Yakima, Washington 98901-2361

(509) 574-0839

Authored by:

Date: 01/31/2008

Ryan K. Mathews, CHMM, Project Manager Certified UST Site Assessor #5071810.U7

Reviewed by:

Date: 01/31/2008

Travis L. Trent, PG, Managing Principal Certified UST Site Assessor #1059647-U7

Travis Lyle Trent

TABLE OF CONTENTS

SEC	<u>PAGE</u>
EXE	CUTIVE SUMMARYi
1.0	INTRODUCTION1
2.0	SCOPE OF WORK1
3.0	DISCUSSION OF PERTINENT REGULATIONS AND GUIDANCE1
	3.1 UST Guidance13.2 MTCA Regulations13.3 Cleanup Standard Selected2
4.0	ENVIRONMENTAL SETTING
	4.1 Regional Setting24.2 Site Setting2
5.0	BACKGROUND3
6.0	SITE INVESTIGATION
7.0	SAMPLE COLLECTION4
8.0	LABORATORY RESULTS5
9.0	RESULTS AND CONCLUSIONS6
10.0	LIMITATIONS7
TAB	BLES
	Table 1: Laboratory Results – Former University Auto Center Site5
FIG	URES & APPENDICES
	Figure 1: General Site Map Figure 2: Subject Site Map Figure 3: Excavation and Sample Locations Map
	Appendix A Personnel Certificates Appendix B Site Photographs Appendix C Laboratory Analytical Results Appendix D UST Site Check/Site Assessment Checklist

EXECUTIVE SUMMARY

On November 19 and 20, 2007, Fulcrum Environmental Consulting, Inc. (Fulcrum), completed underground storage tank (UST) investigation activities at the former University Auto Center sales and dealership site located on University Way in Ellensburg, Washington.

Purpose of the investigation was to confirm past removal and to complete site assessment investigations of three USTs historically located west of the site building (historic UST basin). The tanks were reported to have been associated with a gasoline service station that operated at the site prior to acquisition by University Auto.

Excavation activities were completed by Belsaas & Smith, Inc. and included removal of asphalt or concrete surfacing, excavation of site soils, and backfilling of the site.

Although use of the tanks pre-dates current Washington State Department of Ecology (Ecology) regulations, Fulcrum performed and provided site services consistent with Ecology's UST Site Assessment regulations. Fulcrum collected soil samples at select locations along the bottom and sidewalls of the excavation, below accessible portions of UST system piping, adjacent to the historic fuel dispensers, and from excavated soils.

Soil sampling locations were collected consistent with Ecology guidelines. Samples were analyzed by Libby Environmental for gasoline; benzene, toluene, ethylbenzene, xylene (BTEX); diesel; and lead. Except for naturally occurring concentrations of lead, no contaminants were identified at concentrations above method detection limits.

Fulcrum's investigation confirmed that each of the three USTs had been previously removed from the area west of the University Auto Dealership site. No indications of a release to the environment from the historic site USTs, portions of piping investigation, or adjacent to the dispenser island were identified.

1.0 INTRODUCTION

On November 19 and 20, 2007, Fulcrum Environmental Consulting, Inc. (Fulcrum) completed investigation and sampling of three previously removed underground storage tanks (UST) from the Former University Auto Dealership site. The site is located at 100 East University in Ellensburg, Washington. See Figure 1 for the general site location. Fulcrum was retained by University Auto Center to complete the project scope of work. Purpose of the investigation was to confirm past removal and to complete site assessment investigations of three USTs historically located west of the site building. The tanks were reported to have been associated with a gasoline service station that operated at the site prior to property acquisition by University Auto Center.

No information suggesting that the tanks had leaked or otherwise resulted in a release to the environment prior to their removal was identified during this investigation. Although the tanks predate regulations for a UST Site Assessment, Fulcrum has preformed this investigation consistent with Washington State Department of Ecology (Ecology) UST Site Assessment requirements.

2.0 SCOPE OF WORK

Fulcrum was retained by University Auto Center to complete a UST site assessment of three historically removed USTs. Purpose of the investigation was to confirm past removal and to confirm absence of residual contamination. Fulcrum's scope of work for this project included oversight of excavation activities, investigation of the tank basin, sampling of the former tank basin and excavated soils, sub-contract analysis of confirmatory samples, and project reporting. Ryan Mathews of Fulcrum was the Certified UST Site Assessor (Certificate No: 5071810.U7) for the project. See Appendix A for professional certifications. Belsaas & Smith, Inc. was retained by University Auto Center to remove asphalt and concrete surfacing, excavate site soils, assist in Fulcrum's investigation, and backfill the site to the owner's specifications.

3.0 DISCUSSION OF PERTINENT REGULATIONS AND GUIDANCE

3.1 UST Guidance

Washington Administrative Code (WAC) 360-173-190 provides requirements for completion of UST site assessment services in the State of Washington. Because the tanks were last used more than 30-years ago, regulations requiring the completion of a site check or site assessment do not directly apply. However, these regulations represent the standard of care for UST investigations in the State of Washington and as such, were followed to the extent possible in the absence of the actual tanks.

3.2 MTCA Regulations

In March of 1989, the Model Toxics Control Act (MTCA) went into effect in Washington State. The MTCA regulations set standards to ensure quality of cleanup and protection of human health and the environment. A major portion of the MTCA regulation (completed in 1991) was the development of numerical cleanup standards and requirements for cleanup actions. Three options were established under MTCA for site-specific cleanup levels: Method A, B, and C. Method A defines cleanup levels for 25 of the most common hazardous substances found at sites. Method B

levels are set using a site risk assessment, which enables consideration of site-specific characteristics. Method C is similar to Method B, however the individual substance's cancer risk portion of the assessment is set at 1 in 100,000 rather than 1 in 1,000,000.

Rule amendments to MTCA, which became effective August 15, 2001, changed the cleanup levels of petroleum hydrocarbon contamination. Whereas diesel and heavy oil concentrations were increased, the MTCA Method A cleanup levels for gasoline and gasoline components (Benzene, Toluene, Ethylbenzene, and Xylene) were lowered significantly.

3.3 Cleanup Standard Selected

Washington State Department of Ecology's (Ecology) MTCA Method A cleanup tables were developed to provide conservative cleanup levels for sites undergoing routine cleanup actions or those sites with relatively few hazardous substances. Method A cleanup levels are specifically designated as appropriate for residential facilities and are appropriate for a conservative approach at commercial sites. Therefore, Fulcrum has determined that Ecology's MTCA Method A cleanup levels to be the most appropriate regulatory guidance for evaluating the need for site cleanup at the subject site.

4.0 ENVIRONMENTAL SETTING

4.1 Regional Setting

The site is located within the Kittitas Valley, present on the western margin of the Columbia Plateau, an extensive featureless plain overlain by middle Tertiary basaltic lava interlayed with sedimentary materials. Regional geomorphology is dominated by the east/west trending anticline and syncline structures of the Yakima fold belt, the erosional effects of the Columbia River and its tributaries, and the complex faults and uplift of the North Cascades. Large-scale alluvial features associated with the Spokane floods, glacial deposits, and windborn loess deposits dominate the near surface geology of this portion of the Columbia Plateau.

Groundwater flow direction is a function of localized variations in geology and topography but overall trends in a south to southeast direction in the area of the subject site. Well logs located at the Washington State Department of Ecology were reviewed to assess depth to groundwater reported at depths from 8-feet (ft.) below ground surface (bgs) to 10-ft. bgs. Local groundwater depth will vary as rainfall and irrigation practices affect the level of water.

4.2 Site Setting

The former University Auto Center dealership site is located at 100 East University Way in Ellensburg, Washington, within the Kittitas Valley in Central Washington State. Historically, the site was recognized as 100 West 8th Avenue. The site is located one block east of Main Street, in the north central portion of Ellensburg, Washington and is approximately 1,560-ft. above sea level.

Properties adjacent to the site are primarily of commercial in use. Central Washington University is located north and east of the site. The site is located along a commercial portion of North Main that connects the downtown area of Ellensburg with Interstate 90. See Figure 2 for subject site location.

Historically, the site was located near the crossroads of U.S. Highway 97 and Vantage Highway, predecessors to U.S. Interstate 90 and U.S. Interstate 82. Businesses at the crossroads included automotive fueling and service stations and other traveler amenities and restaurants. Following construction of the interstates, these businesses moved south and west near Interstate 90.

The majority of soil at the site was present beneath an impermeable cover. A layer of asphalt parking lot covers soil on the exterior of the building. Site soils included sands, clays, and cobbles.

5.0 BACKGROUND

Allen Faltus, with University Auto Center, was the primary contact for the project and can be reached at (509) 962-7151.

Mr. Faltus reported that the three USTs were last used in the 1970s or 1980s. He believed the USTs to have been used for gasoline storage associated with the onsite fueling station. Mr. Faltus recalled that during the 1970s energy crisis, the tanks may have been used by a local fuel distributor for temporary storage of diesel fuel or heating oil. Mr. Faltus was unable to recall the capacity of the USTs, but believed them to be of at least 3,000-gallon capacity and each of the same relative size. A dispenser island, with two dispensers, was historically located north of the site building. Mr. Faltus was unable to recall the orientation, direction, and spacing of the USTs.

Upon acquisition of the site by University Auto fueling services ceased. Subsequently, the canopy, standards, and dispensers were removed from the site and the site building was renovated.

Two underground storage tanks; a used oil/waste oil and a heating oil, each reported to be less than 1,000 gallons, were previously removed from the site under a separate project. No additional investigation of these USTs was completed as a portion of this investigation as these USTs have been separately investigated and reported by others.

6.0 SITE INVESTIGATION

On October 8, 2007, Ryan Mathews of Fulcrum, Allen Faltus of University Auto Center, and Russ Smith of Belssas & Smith, Inc. reviewed site conditions. The area of the historic UST basin was observed to be located west of the site building. At the southwest corner of the building, three vent pipes, each approximately 2.5-inches in diameter, remained attached to the building. Cracking and slight depressions in the asphalt parking area generally coincided with the reported former location of the USTs.

On November 19, and November 20, 2007, Ryan Mathews, along with Mr. Faltus, Mr. Smith and Paul Rugh, operator with Belsass & Smith, arrived onsite. Mr. Mathews completed a review of the proposed investigation activities and site-specific safety and health considerations.

Asphalt parking lot coverings had been previously removed by Belsaas & Smith from the approximate extents of the former UST basin. Below the asphalt covering, approximately 2 to 4-inches of gray crushed gravel was present.

Excavation activities began at the southeastern corner of the former UST basin, and continued in a northerly direction. The easterly north-south excavation was completed during the first day of site activities. Following sample collection, in all except the northeast portion of the excavation, stockpiled soils were returned to the excavation to prevent sloughing of the east sidewall and the potential of undermining the sidewalk or site building.

Subsequently on November 20, 2007, excavation activities began from the southwest corner to the northwest corner of the former UST basin. Less than 6-feet of soil was present at any location between the two roughly shaped north-south trenches. During excavation activities both trenches were connected near the center of the former UST basin. See Figure 3 for excavation diagram. See Appendix B for site photographs.

The three vent pipes attached to the southeast corner of the building were removed from the building and the remaining portions of underground piping, along the south portion of the excavation, were removed. Extent of piping was limited to a few feet of length into the excavation and did not assist in identifying the historic orientation of the USTs.

Visible delineation was present between native soils and imported backfill. Native soils were observed to consist primarily of brown clayey loam. Imported soils consisted of medium brown colored soil of poorly sorted gravels and cobbles intermixed in sandy loam. Density of cobbles decreased with depth of excavation. Concrete, asphalt, and metal piping debris was encountered in backfilled soils and appeared to be consistent with materials that might be generated during the excavation and removal of the USTs.

Excavation bottom and sidewall samples were preferentially collected from native soils adjacent to the native and imported soil boundary. Along the north boundary of the excavation, segments of piping or identifiable voids were identified consistent with UST System piping. Soil samples from the excavation sidewalls were preferentially selected from below these areas to assist in evaluation of potential for a release from UST system piping. See Section 7.0 for sampling information.

No odors typical of gasoline or BTEX constituents were noted during site excavation. No UST or other fuel tanks were identified within the excavation. Except for a localized area of gray discoloration, no indications of a release to the environmental, such as soil staining or petroleum odors, were noted within the removed soil.

An area of gray discoloration was visible along the north boundary of the site. A slight diesel odor was apparent. Following localized investigation at the area of discoloration, no additional material was identified. Subsequent excavation in sloughed soils did not locate the discolored soil. Extent of discolored soil was estimated to be less than 1 cubic foot of soil and was determined to be a de minimis condition.

7.0 SAMPLE COLLECTION

Soil samples were collected from the excavation and stockpiled soils and were labeled 111907-01 through 111907-10 and 112007-11 through 112007-21. Samples were collected and placed in containers based on the analysis to be performed. Sampling containers utilized included 4-ounce borosilicate glass jars with Teflon lined lids and 40-milliliter glass vials collected by impinger sampler.

Each 4-ounce soil sample was obtained by either direct collection or by a grab sample from a backhoe bucket of soil collected from the desired location. All direct collection samples were collected by hand using new nitrile gloves. Samples collected from backhoe bucket were obtained from the relatively undisturbed soil between the teeth by hand using new nitrile gloves.

Each 40-milliliter vial sample was collected using an impinger sampler to minimize loss of volatile organic compounds. Disposable, single-use impingers were utilized to collect a measured soil sample of undisturbed soil. Following each sample collection, the sample was immediately placed into a new 40-milliliter vial. Consistent with Ecology guidance, sample preparation, including extraction by Methanol was completed at the laboratory within 24-hours of sample collection.

The 4-ounce jars were utilized for analysis by Northwest Total Petroleum Hydrocarbon (NWTPH) Diesel Extended (Dx Ext) analysis and for lead by Environmental Protection Agency (EPA) Method 7000 series. The 40-milliliter glass vials were utilized for NWTPH-Gasoline (Gx) and benzene, toluene, ethylbenzene, and xylenes (BTEX) analysis. All samples for laboratory analysis were deposited into labeled containers, packaged with ice, and delivered under chain-of-custody by common carrier to the laboratory.

Samples were shipped via common carrier under chain-of-custody to Libby Environmental, LLC (Libby) located in Olympia, Washington for analysis. Libby subcontracted portions of laboratory analysis to a third-party laboratory. See Appendix C for laboratory analytical results.

8.0 LABORATORY RESULTS

Laboratory results were received from Libby on November 28, 2007 and December 17, 2007. Received samples included analysis for NWTPH-Dx, NWTPH-Gx, BTEX, and lead.

Table 1: Laboratory Results – Former University Auto Center Site

		Analyte ¹								
Sample Number/Description	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel	Mineral Oil	lio	Lead	
111907-01: Excavation Bottom, Southeast, 12.5-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND	
111907-02: Southeast trench, south sidewall, 6-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	5.9	
111907-03: Excavation Bottom, East Center, 12-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND	
111907-04: East Trench, North sidewall, 6-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND	
111907-05: Stockpile, Southeast	ND	ND	ND	ND	ND	ND	ND	ND	ND	
111907-06: Stockpile, West Center	ND	ND	ND	ND	ND	ND	ND	ND	ND	

^{1 =} Parts per million

ND = None Detected

Table 1: Laboratory Results - Former University Auto Center Site (Continued)

THE IT EMBOLITORY INC.	ory Results – Former University Auto Center Site (Continued)								
		1		<i>F</i>	Analyte				
Sample Number/Description	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel	Mineral Oil	lio	Lead
111907-07: Stockpile, North	ND	ND	ND	ND	ND	ND	ND	ND	ND
111907-08: Excavation Bottom, West Trench, 12.5-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND
111907-09: West Trench, West Sidewall, 6-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	8.7
111907-10: West Trench, South Sidewall, 6-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND
112007-11: Overburden Soil, North Stockpile, South	(in	-	-	-	-				-
112007-12: Overburden Soil, North Stockpile, East	-	-	-	-	_	ND	ND	ND	-
112007-13: Overburden Soil, North Stockpile, North	-	-	-	-0	-				-
112007-14: Dispenser Location, West Extent, 3-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND
112007-15: Dispenser Location, East/Center Extent, 3-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND
112007-16: West Trench, North Sidewall, 6-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND
112007-17: Excavation Bottom, Northwest. 10-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND
112007-18: West Stockpile, South	-	=	. 	-	-				ND
112007-19: West Stockpile, Center	47	•			-	ND	ND	ND	ND
112007-20: West Stockpile, North	H);	-		-	014				6
112007-21: West Trench, North Sidewall Below Piping, 4-ft. bgs.	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTCA Method A Cleanup Level	30/100	0.03	7	6	9	2,000	4,000	2,000	250

1 = Parts per million

ND = None Detected

- = Sample Not Analyzed

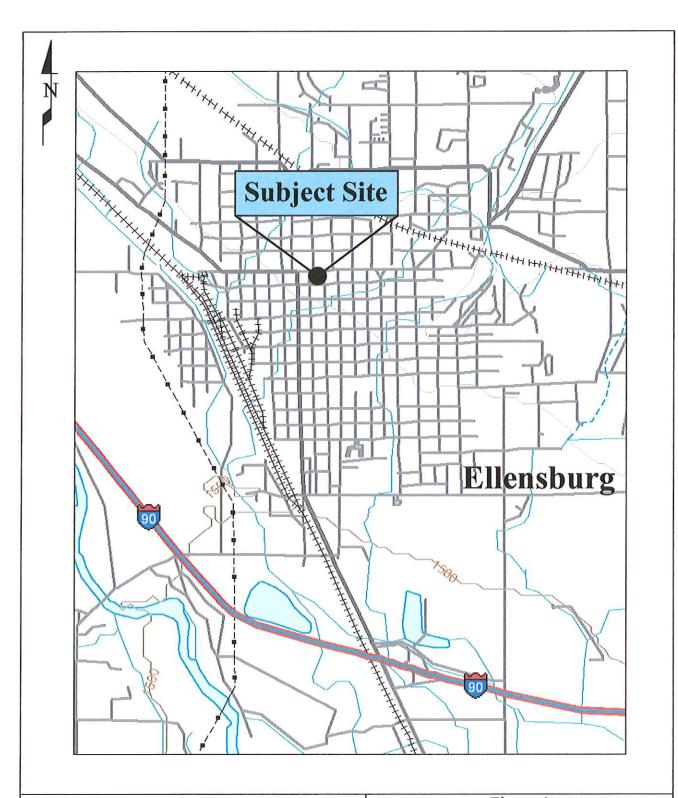
Laboratory results did not identified any detectable constituents in the submitted samples.

9.0 RESULTS AND CONCLUSIONS

Fulcrum was retained by University Auto Center to complete a UST site assessment of three USTs historically removed from the former University Auto Dealership site located at 100 East University Way in Ellensburg, Washington. Purpose of the investigation was to confirm past removal and to complete site assessment investigations of three USTs historically located west of the site building. The tanks were reported to have been associated with a gasoline service station that operated at the site prior to acquisition by University Auto.

Although use of the tanks pre-dates current Ecology regulations, Fulcrum performed and provided site services consistent with Ecology's UST Site Assessment regulations. Fulcrum collected soil samples at select locations along the bottom and sidewalls of the excavation, below accessible portion of UST system piping, adjacent to the historic fuel dispensers, and from excavated soils. Laboratory analysis was completed for diesel, heavy oil, oil, lead, gasoline, benzene, toluene, ethylbenzene, and xylenes. Except for naturally occurring levels of lead in site soils, all tested contaminants were below method detection limits.

Fulcrum's investigation confirmed that each of the three USTs had been previously removed from the area west of the University Auto Dealership building. No indications of a release to the environment or residual petroleum hydrocarbon or lead impact from the historic site USTs, portions of piping investigation, or adjacent to the dispenser island were identified.


10.0 LIMITATIONS

Fulcrum Environmental Consulting, Inc. has performed professional services in accordance with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. The conclusions and recommendations are based upon our field observations, field screening, and independent laboratory analysis. The scope of services for this project is limited to the investigation of the historic location of three underground storage tanks located west of the University Auto Dealership site building and limited investigation of UST system piping, and the historic dispenser location.

Site assessment services included observation of removal activities, site investigation, and sample collection. Tank cleaning and removal activities were not included within Fulcrum's scope of services. Fulcrum makes no warranties expressed or implied as to the accuracy or completeness of other's work included or referenced herein, nor the use of segregated portions of this report. This document does not imply that the property is free of other environmental concerns. This report is solely for the use and information of our client. Any reliance on this report by a third party is at that party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing at the time services were performed. Fulcrum Environmental Consulting, Inc. is not responsible for the impact of changes in environmental standards, practices, or regulations subsequent to the performance of services. Fulcrum Environmental Consulting, Inc. assumes no liability for conditions that were not included in our scope of services, or conditions not generally recognized as predictable when services were performed.

LEGEND

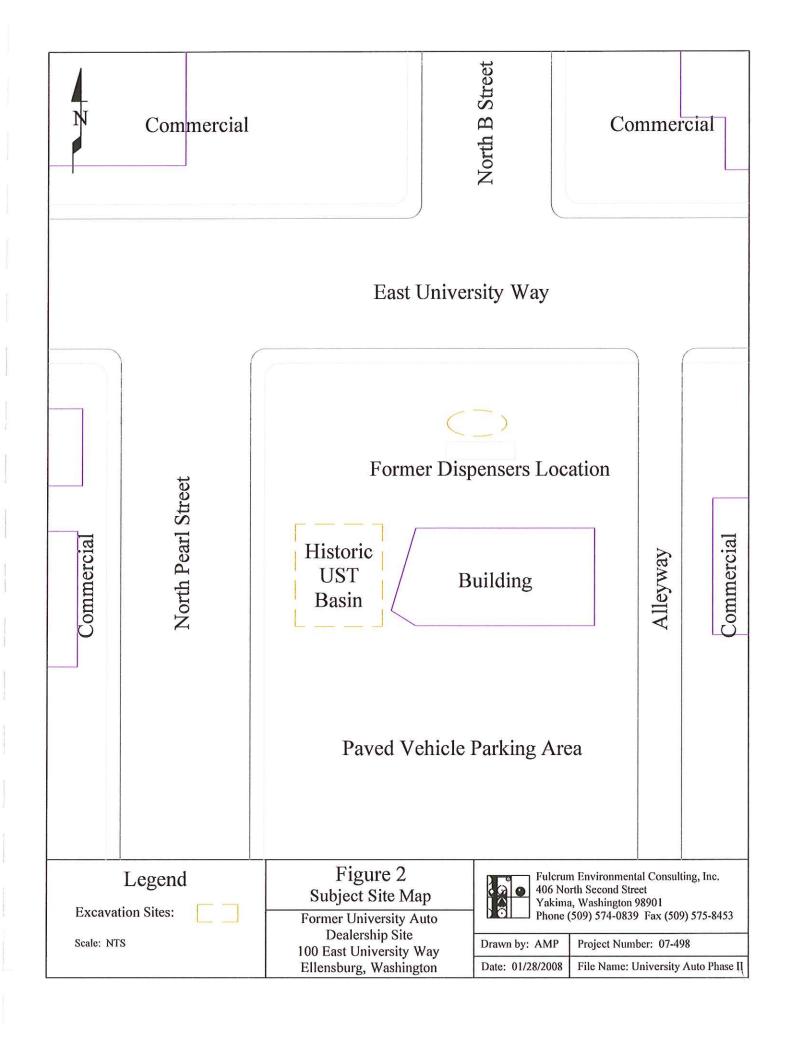
Subject site:

Approximate Scale: 1/2 mile ⊢

Map Base Courtesy of 3-D Topoquad, Delorme Yarmouth, ME 04096

Figure 1

General Site Map


Former University Auto Dealership Site 100 East University Way, Ellensburg, Washington

Fulcrum Environmental Consulting, Inc. 406 North Second Avenue Yakima, Washington 98901 Phone (509) 574-0839 Fax (509) 575-8453

Prepared By: AMP Project Number: 07-498

Date: 01/25/2008 File Name: University Auto Phase II

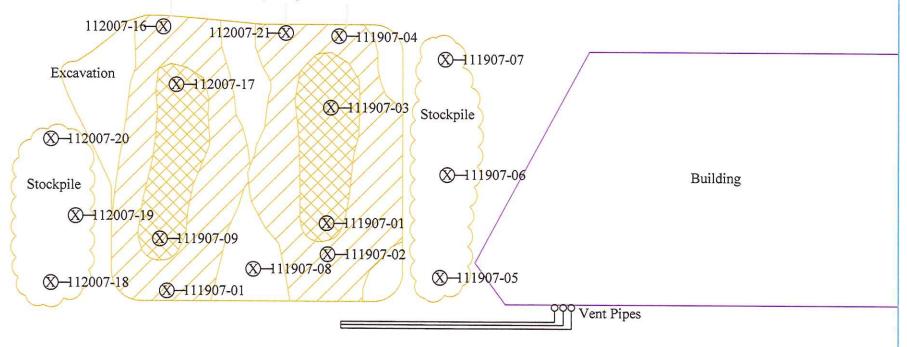
N

Excavation

112007-13-(X)

112007-14-(X)

⊗ 12007-15


112007-12--

Former Dispensers Location

⊗-112007-11

Stockpile

Former Pipe Segments

Legend

Sample Locations: Pit Bottom:

Lesser Elevation:

Scale: NTS

Figure 3

Excavation & Sample Locations Map

Former Univerity Auto Dealership Site 100 East University Way Ellensburg, Washington

Fulcrum Environmental Consulting, Inc. 406 North Second Street Yakima, Washington 98901 Phone (509) 574-0839 Fax (509) 575-8453

Drawn by: AMP

Project Number: 07-498

Date: 01/28/2008

File Name: University Auto Phase II

APPENDIX A

Personnel Certificates

INTERNATIONAL CODE COUNCII RYAN K MATHEWS

The International Code Council attests that the individual numed on this certificate has satisfactorily demonstrated forowledge as required by the International Code Council by successfully completing the prescribed written examination based on codes and standards then in exflect, and is hereby issued this certification as:

WASHINGTON STATE SITE ASSESSMENT

given this day of December 1, 2005

My Shee

5071810-U7 Certificate Number

James L. Witt ICC Chief Executive Officer

President, ICC Board of Directors

INTERNATIONAL CODE COUNCIL TRAVIS L TRENT

The International Code Council attests that the individual numed on this certificate has satisfactority demonstrated knowledge as required by the International Code Council by successfully completing the preserited avitten examination based on codes and standards then in effect, and is hereby issued this certification as:

WASHINGTON STATE SITE ASSESSMENT

given this day of August 31, 2006

Hung L. Breen

1059647-U7 Certificate Number

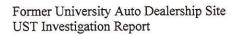
Janu R. Will

President, ICC Board of Directors

James L. Witt ICC Chief Executive Officer

APPENDIX B

Site Photographs

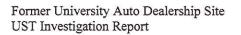


Site conditions present following asphalt removal prior to excavation of the former UST basin.

Soils present within the excavation boundaries.

Southwest corner of the site building with remnant UST vent piping.

Excavation activities within the east trench of the excavation.

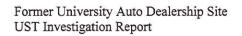


Sloughing soils undermining asphalt and concrete along the east boundary of he excavation

The north extent of the east trench.

Excavation of imported backfill in the east trench of the excavation.

Soils present within the excavation boundaries.



Excavation activities at the northwest corner of the former UST basin.

Soils present within the excavation boundaries.

Excavation activities near the north center of the former UST basin.

Yellow flagging tape used to mark the excavation extents prior to backfilling.

Appendix B - 3

Excavation extents at the former dispenser island location.

Backfilling of site soils neat the southwest portion of the excavated area.

Former University Auto Dealership Site UST Investigation Report

Excavated overburden at the former dispenser island.

Excavation at the northern most poriotn of the

Appendix B - 4

APPENDIX C

Laboratory Analytical Results

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

November 28, 2007

Ryan Mathews
Fulcrum Environmental Consulting, Inc.
222 North 2nd Street
Suite A
Yakima, WA 98901

Dear Mr. Mathews:

Please find enclosed the analytical data report for the University Auto UST Project located in Ellensburg, Washington. Soil samples were analyzed for Gasoline by NWTPH-Gx, BTEX by EPA Method 8021B, and Total Lead by EPA Method 7000 Series on November 23 & 25, 2007.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt

Myrall

President

Libby Environmental, Inc.

UNIVERSITY AUTO UST PROJECT Ellensburg, Washington Fulcrum Environmental, Inc. Client Project #07-498 Libby Project No.L071120-2

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample Number	Date Analyzed	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Gasoline (mg/kg)	Surrogate Recovery (%)
Method Blank	11/23/07	nd	nd	nd	nd	nd	83
LCS	11/23/07	88%	113%				84
111907-01	11/23/07	nd	nd	nd	nd	nd	80
111907-02	11/23/07	nd	nd	nd	nd	nd	80
111907-03	11/23/07	nd	nd	nd	nd	nd	80
111907-04	11/23/07	nd	nd	nd	nd	nd	76
111907-05	11/23/07	nd	nd	nd	nd	nd	67
111907-06	11/23/07	nd	nd	nd	nd	nd	68
111907-07	11/23/07	nd	nd	nd	nd	nd	105
111907-08	11/23/07	nd	nd	nd	nd	nd	84
111907-09	11/23/07	nd	nd	nd	nd	nd	84
111907-10	11/23/07	nd	nd	nd	nd	nd	70
111907-10 Dup	11/23/07	nd	nd	nd	nd	nd	82
MS	11/23/07	94%	110%				75
Practical Quantita	ation Limit	0.02	0.05	0.05	0.05	10	-

[&]quot;nd" Indicates not detected at the listed detection limits.
"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

UNIVERSITY AUTO UST PROJECT Ellensburg, Washington Fulcrum Environmental, Inc. Client Project #07-498 Libby Project No.L071120-2

Analyses of Total Lead in Soil by EPA Method 7421

Sample	Date	Lead	=
Number	Analyzed	(mg/kg)	
Method Blank	11/25/07	nd	
111907-01	11/25/07	nd	
111907-02	11/25/07	5.9	
111907-03	11/25/07	nd	
111907-04	11/25/07	nd	
111907-05	11/25/07	nd	
111907-06	11/25/07	nd	
111907-07	11/25/07	nd	
111907-08	11/25/07	nd	
111907-09	11/25/07	8.7	
111907-10	11/25/07	nd	
111907-10 Dup	11/25/07	nd	
Practical Quantitation	n Limit	5.0	

[&]quot;nd" Indicates not detected at the listed detection limits.

UNIVERSITY AUTO UST PROJECT Ellensburg, Washington Fulcrum Environmental, Inc. Client Project #07-498 Libby Project No.L071120-2

QA/QC for Lead in Soil by EPA Method 7421

Sample	Date	Lead	
Number	Analyzed	(mg/kg)	
LCS	11/25/07	109%	
111907-10 MS	11/25/07	102%	
111907-10 MSD	11/25/07	128%	
RPD	11/25/07	22.6	
Practical Quantitation	Limit	5.0	

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

Sample Number Date	Libby Environmental, Inc.	nental, Inc.	Chain	of Custody Record			
Full curv Emilian mental 1960 Project Manager Exam Mathews 1992 N. 2nd & St. Suite H. 2860 Project Manager Exam Mathews 1992 N. 2nd & St. Suite H. 2860 Project Manager Exam Strategy Why The Sample Contains. 1119/02 1992 N. 1992 N. 1992 Project Manager Example Contains. 1119/02 1992 N. 1992 N. 1992 Project Manager Example Contains. 1119/02 1993 N. 1993	9 Libby Road NE	Ph: 360-352-27	110 154		Pa	_	Col
C		m Environ	١.	Project Manager: Coro	4	1 / June	\$13
C 7 + (9 C Container Con	1 3	$\mathbf{J} = \mathbf{H}$	901)575-8453	Location: Ellensk	3		1
Feet Note: Container Con		H		Collector:	Date of C		
1945 Time Type Contamer	5	\$2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 10 10 10 10 10 10 10 10 10 10 10 10 10		
13.5	Sample Number		Type	The state of the s	574 600 140	Field Note/# Containers	
	11907-01		Glass Br			1-9m/200is	
		6.			7	1- Ker 2 Dear	
	111907-03	121	X		>>.	1-500 7 0000	
1 2	1119 07 -04	6.	*		X	1- Jun 3 Vous	
			*		۷,	1-800/1000	
	11907-06		*		× ;	1-500	
	- 1		X		× \	307 707	
		12,	X		<i>y</i> -`	1-80-1	*
Date / Time Received by Date / Time Sample Receipt: Remarks:	11907-09	e:	*		X	1-200 8 000	
Date / Time Date / Time	01-106111	6,	× ×		×-	1- 1000 0 000	
Date Time Received by Date Time Sample Receipt: Remarks:							
Date / Time Date / Time Date / Time Date / Time Sample Receipt: Received by Date / Time Cold? Cold? Date / Time Seals Intact? TAT 24HR 48HR(
Date / Time Date / Time							
Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Cold? Date / Time Seals Intact? Total Number of Containers TAT 24HR 48HR							
Date / Time Received by Cold? It q Date / Time Sample Receipt: Remarks: It q Date / Time Sample Receipt: Remarks: Date / Time Seals Intact? Cold? Cold? Cold? Cold? Cold? Cold? Cold? Cold? Cold? Cold? Cold? Cold? Cold? Cold? Cold							
Date / Time Received by Code / Time Sample Receipt: Remarks: I 4 07 4:15 pm Code / Time Sample Receipt: Remarks: I 4 07 4:15 pm Received by Date / Time Seals Intact? Cold? Cold? Code / Time Seals Intact? Total Number of Containers TAT 24HR 48HR Total Number of Containers TAT 24HR 48HR Table / Time Total Number of Containers TAT 24HR 48HR Table / Table / Time Table / Time / Table / Time Table / Time / Table / Table / Table / Table / Table / Table / Table / Table / Table / Table / Table / Table / Table							
Date / Time It							
11/19/07 4:15 p.m. MW (1-20-07) Batel Time Received by Date I Time Seals Intact? Cold? Date I Time Seals Intact? Total Number of Containers TAT 24HR 48HR	} linewished by:	Date / Time	Received by //	144	Sample Receipt:	Remarks:	
Date / Time Received by Cool Condition? Cold? Date / Time Seals Intact? Date / Time Seals Intact? Total Number of Containers TAT 24HR 48HR	Colone		٠)	1400 (1-200	7		
Cold? Date J Time Seals Intact? Total Number of Containers TAT 24HR 48HR	dinquished by.	100		Date / Time	Good Condition?		
Oate / Time Received by Date / Time Seals Intact? Total Number of Containers TAT 24HR 48HR			>	100	Cold?		
	linquished by:	Date / Time	Received by	Dale / Time	Seals Intact?	24HR 48HR	

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

November 28, 2007

Ryan Mathews
Fulcrum Environmental Consulting, Inc.
222 North 2nd Street
Suite A
Yakima, WA 98901

Dear Mr. Mathews:

Please find enclosed the analytical data report for the University Auto UST Project located in Ellensburg, Washington. Soil samples were analyzed for Gasoline by NWTPH-Gx, BTEX by EPA Method 8021B, and Total Lead by EPA Method 7000 Series on November 23 & 25, 2007.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt

Shy 2 Cill

President

Libby Environmental, Inc.

UNIVERSITY AUTO UST PROJECT Ellensburg, Washington Fulcrum Environmental, Inc. Client Project #07-498 Libby Project No.L071120-2

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	11/23/07	nd	nd	nd	nd	nd	83
LCS	11/23/07	88%	113%				84
112007-14	11/23/07	nd	nd	nd	nd	nd	103
112007-15	11/23/07	nd	nd	nd	nd	nd	109
112007-16	11/23/07	nd	nd	nd	nd	nd	99
112007-17	11/23/07	nd	nd	nd	nd	nd	76
112007-21	11/23/07	nd	nd	nd	nd	nd	90
112007-21 Dup	11/23/07	nd	nd	nd	nd	nd	91
112007-21 MS	11/23/07	94%	110%				75
Practical Quantita	ation Limit	0.02	0.05	0.05	0.05	10	

[&]quot;nd" Indicates not detected at the listed detection limits.
"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

UNIVERSITY AUTO UST PROJECT Ellensburg, Washington Fulcrum Environmental, Inc. Client Project #07-498 Libby Project No.L071120-2

Analyses of Total Lead in Soil by EPA Method 7421

Sample	Date	Lead
Number	Analyzed	(mg/kg)
Method Blank	11/25/07	nd
112007-14	11/25/07	nd
112007-15	11/25/07	nd
112007-16	11/25/07	nd
112007-17	11/25/07	nd
112007-21	11/25/07	6
D		
Practical Quantitation	n Limit	5.0

[&]quot;nd" Indicates not detected at the listed detection limits.

UNIVERSITY AUTO UST PROJECT Ellensburg, Washington Fulcrum Environmental, Inc. Client Project #07-498 Libby Project No.L071120-2

QA/QC for Lead in Soil by EPA Method 7421

Sample	Date	Lead	
Number	Analyzed	(mg/kg)	
LCS	11/25/07	109%	
MS	11/25/07	102%	
MSD	11/25/07	128%	
RPD	11/25/07	22.6	
Practical Quantita	ntion Limit	5.0	

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

Libby Environmental, Inc.	nental, Inc.		Cha	in of cu	Chain of custody Record	ord	
4139 Libby Road NE	Ph: 360-352-2110	-2110		186		1	9.00
≥.	Fax: 360-352-4154	4154		Date:	17.5		Page: of
Client:	relation society.			Project	Project Manager:	5-140-5-5	
Address: (7)		S Walson ?	-2.	Project	Project Name: [15/1 CHILL 1/64	
Phone:	Fax:		5/2/3	Location:	11117213/13	A. (J.)	
Client Project #				Collector	·×.		Date of Collection:
				1 /0	100	1	
Sample Number	Depth Time	Sample	Container	200 205	William Willia	Son Soo Stocked IN THE THE	Field Note/# Containers
1 12067-41	1		-7	₩			
2 1465.40	\						
3 / 12007-13				8			
4 113027.14	. 2					>.	
5 11200 1115	, . 				7	×	
6 N2667-16	, 9				>	>.	
7 1/5067-17	. 0				×	.> ₇	
8 11/2021/6	1						
9 112007-19	\						
10 12007.20	Ĭ.						
11 1/2007 2.	117	Į.			y.	×	
12							
13							
14							
15							
16							
17							
18 // //			C				
Relinquished by:	Date / Time //≲∩/	60 10 10 10 10 10 10 10 10 10 10 10 10 10	Received by		Date / Time	Sample Receipt:	Remarks:
Relinquished by:	Date / Time		Received by	2	Date / Time	Good Condition?	
				./		Cold?	
Relinquished by:	Date / Time	Œ	Received by		Date / Time	Seals Intact?	
Distribution White - Lab, Yellow - File, Pink - Originator	k - Originator					Total Number of Containers	TAT 24HR 48HR 5-Day

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

December 17, 2007

Ryan Mathews Fulcrum Environmental Consulting, Inc. 222 North 2nd Street Suite A Yakima, WA 98901

Dear Mr. Mathews:

Please find enclosed the analytical data report for the University Auto UST Project located in Ellensburg, Washington. Soil samples were analyzed for Diesel by NWTPH-Dx on December 14, 2007.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt

President

Libby Environmental, Inc.

UNIVERSITY AUTO UST PROJECT Ellensburg, Washington Fulcrum Environmental

Libby Project No.L071213-1

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	12/14/2007	106	nd	nd	nd
111907-01	12/14/2007	72	nd	nd	nd
111907-02	12/14/2007	89	nd	nd	nd
111907-03	12/14/2007	72	nd	nd	nd
111907-04	12/14/2007	73	nd	nd	nd
111907-05	12/14/2007	70	nd	nd	nd
111907-06	12/14/2007	91	nd	nd	nd
111907-07	12/14/2007	89	nd	nd	nd
111907-08	12/14/2007	104	nd	nd	nd
111907-09	12/14/2007	69	nd	nd	nd
111907-10	12/14/2007	97	nd	nd	nd
112007-11,12,13	12/14/2007	85	nd	nd	nd
112007-14	12/14/2007	89	nd	nd	nd
112007-15	12/14/2007	122	nd	nd	nd
112007-16	12/14/2007	99	nd	nd	nd
112007-17	12/14/2007	83	nd	nd	nd
112007-18,19,20	12/14/2007	102	nd	nd	nd
112007-21	12/14/2007	116	nd	nd	
112007-21 Dup	12/14/2007	106	31	nd	nd nd
v _P	12.1.1.2007	100	<i>J</i> 1	IIU	nd
Practical Quantitation	on Limit		25	40	40

[&]quot;nd" Indicates not detected at the listed detection limits.
"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

4 111907-04

S

2 111907-02

1 11907-0

7 11907-07 8 11907-08

10 1119D7-10

Ţ 5 73 4 5 16

d. Falmer Relinquished by:

18

Relinquished by:

Relinquished by:

9 11907-09

8 11907-06 111907-05

4139 Libby Road NE

Olympia, WA 98506

Client Project #

Address: Phone:

Client:

	Libby Environmental, Inc. Chain of Custody Record	
	. Ph. 360-352-2110	22
v _s	Olympia, WA 98506 Fax: 360-352-4154 Date:	
	Client: Frucha Gilder The	Jo Of
.¢;	Address: 227 North 2ND Sheet U.L.	
,	Phone: 509 574 0825 Ear 422 627	
	Location: Closes College	, ,
	Collector: 1450 Mars Date of Collection:	ction: 11/20/2017
	/	
×	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2)	Sample Number Depth Time Type Type Container Of OF OF CAN AND THE TYPE OF OF OF OF OF OF OF OF OF OF OF OF OF	
*	10007-01	Field Note/# Containers
A.	(1207-02	-Que / 110c
X	(* 3 (12007-13)	-
	112007-19 31	Jan 1 100
34	112007-15	1 -
×:/c	1	Jan 12 1000
× 1.	(12007-17 1001	100 / 2 1/2 1
47	81-200711	Say / Down
ナン		Can / 1 Dou
*		Ser 1 1000
,	(12007-24 4/ 3	- Jan 11 Voa
		- Jan 12 Vous
	13	, 0
	14	
-1.		
1,-	1, 1	
1 4-		
رد		
1º	1/80/07 3:30am	ırks:
	Repelved by Dale, Time	
ΙŒ	Relinquished by: Date / Time	
	received by Date // lime	(
ă	Distribution white - Lab, Yellow - File, Pink - Originator TAT	24HR 48HR 5-Day

APPENDIX D

UST Site Check/Site Assessment Checklist

UNDERGROUND STORAGE TANK

Site Check/Site Assessment Checklist

FOR OFFICE USE ONLY
Site #:
Facility Site ID #:

INSTRUCTIONS

When a release has not been confirmed and reported, this Site Check/Site Assessment Checklist must be completed and signed by a person certified by ICC or a Washington registered professional engineer who is competent, by means of examination, experience, or education, to perform site assessments. The results of the site check or site assessment must be included with this checklist. This form must be submitted to Ecology at the address shown below within 30 days after completion of the site check/site assessment.

<u>SITE INFORMATION:</u> Include the Ecology site ID number if the tanks are registered with Ecology. This number may be found on the tank owner's invoice or tank permit.

<u>TANK INFORMATION:</u> Please list all tanks for which the site check or site assessment is being conducted. Use the owner's tank ID numbers if available, and indicate tank capacity and substance stored.

REASON FOR CONDUCTING SITE CHECK/SITE ASSESSMENT: Please check the appropriate item.

CHECKLIST: Please initial each item in the appropriate box.

<u>SITE ASSESSOR INFORMATION</u>: This information must be signed by the registered site assessor who is responsible for conducting the site check/site assessment.

Underground Storage Tank Section Department of Ecology PO Box 47655 Olympia WA 98504-7655

SITE INFORMATION					
Site ID Number (Available from Ecology if the tanks are registered):					
Site/Business Name: ## Former University Auto PEALERS HIP S.TE					
		Telephone: ()/4			
Site Address: 100 EAST	Street				
EUENSBURG Cily	WA	98926			
City	State	Zip Code			
TANK INFORMATION					
Tank ID No.	Tank Capacity	Substance Stored			
USTS were previously removed west of the site building.					
Tanks were reported to have been med for gasoline service					
but may have been used in the 1970s for dissel storage.					
REASON FOR CONDUCTING SIT	E CHECK/SITE ASSESSMENT				
Check one:					
Investigate suspected relea	ase due to on-site environmental contamination				
Investigate suspected release due to off-site environmental contamination.					
Extend temporary closure of UST system for more than 12 months.					
UST system undergoing ch	ange-in-service.				
UST system permanently c	losed with tank removed.				
Abandoned tank containing	product.				
	egated agency for UST system closed before 1				
✓ Other (describe): Confir	in previous removal and condu	et Site Assessment.			

CHECKLIST				
Each item of the following checklist shall be initialed by the pers Ecology whose signature appears below.	on registered with the Department of	YES	NO	
The location of the UST site is shown on a vicinity map.				
A brief summary of information obtained during the site inspection is provided.				
(see Section 3.2 in site assessment guidance)				
3. A summary of UST system data is provided. (see Section 3.1	.)	RKM		
4. The soils characteristics at the UST site are described. (see Section 5.2)				
5. Is there any apparent groundwater in the tank excavation?				
6. A brief description of the surrounding land use is provided. (see Section 3.1)				
7. Information has been provided indicating the number and types of samples collected, methods used to collect and analyze the samples, and the name and address of the laboratory used to perform the analyses.				
8. A sketch or sketches showing the following items is provided:				
- location and ID number for all field samples collected		Rkm		
- groundwater samples distinguished from soil samples (if a	pplicable)	NA		
- samples collected from stockpiled excavated soil		Mhm		
- tank and piping locations and limits of excavation pit		AKM		
- adjacent structures and streets		Um		
- approximate locations of any on-site and nearby utilities		RKM		
9. If sampling procedures different from those specified in the guidance were used, has justification for using these alternative sampling procedures been provided? (see Section 3.4)				
 A table is provided showing laboratory results for each samp constituents analyzed for and corresponding concentration, that method. 		RKM		
11. Any factors that may have compromised the quality of the data or validity of the results are described.				
10 Th				
 The results of this site check/site assessment indicate that a substance has occurred. 	confirmed release of a regulated		AKN	
Substance has occurred.				
SITE ASSESSOR INFORMATION	<u></u>			
RYAN K. MATHEWS	FLUCKUM ENVIKONMENTA CONSULT	726		
Person registered with Ecology	Firm Affiliated with			
Business Address: 406 NoRTH 2ND STREET Street	Telephone: (<u>59</u>) <u>579 083 9</u>		-	
YAKIMA WA	98901 Zip Code			
City State I hereby certify that I have been in responsible charge of performing the		areone		
submitting false information are subject to penalties under Chapter 17.		er sons		
1/31/2008 Ryan KN Jan				
Nate // / Signature	of Person Registered with Ecology			

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

15 W Yakima Ave, Ste 200 • Yakima, WA 98902-3452 • (509) 575-2490

January 22, 2009

Mr. Ryan Matthews Fulcrum Environmental 406 North 2nd Street Yakima, WA 98901

> No Further Action at the following Site: Re:

> > Site Name:

University Auto Center

Site Address:

100 East University Way, Ellensburg

Facility/Site No.: 65863261

VCP Project No.: CE0300

Dear Mr. Matthews:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the University Auto Center (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

NO. Ecology has determined that no further remedial action is necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Description of the Site

This opinion applies only to the above-referenced Site. The Site is defined by the nature and extent of contamination associated with the following release:

petroleum products into the soil

Basis for the Opinion

This opinion is based on the information contained in the following documents:

Mr. Ryan Matthews January 22, 2009 Page 2

- Underground Storage Tank Investigation Report, Fulcrum Environmental Consulting, Inc., January 31, 2008
- UST Site Assessment Report, White Shield, Inc., December 1992
- Site Correspondence File, Ecology's Central Regional Office

Those documents are kept in the Central Files of the Central Regional Office of Ecology (CRO) for review by appointment only. You can make an appointment by calling the CRO resource contact, Roger Johnson, at (509) 454-7658.

This opinion is void if any of the information contained in those documents is materially false or misleading.

Analysis of the Cleanup

Ecology has concluded that **no further remedial action** is necessary to clean up contamination at the Site. This site's corresponding 1992 *UST Site Assessment Report* was reviewed by staff in both 2001 and 2006. In 2006, a determination of No Further Action (NFA) was made. The Department Decision Recommendation containing that determination is included as an enclosure to this letter. Although the subsequent *UST Site Assessment Report* was received and reviewed in 2008, it did not contain any new information regarding an additional release of petroleum products. Indeed, its soil sampling results confirmed soil exceeding cleanup levels was not present. Therefore, the NFA determination made in 2006 remained unchanged.

As of today, and based on a further review of the supporting documentation listed above, Ecology has determined that the independent remedial action(s) conducted at the Site are sufficient to meet the substantive requirements contained in MTCA and its implementing regulations, Chapter 70.105D RCW and Chapter 173-340 WAC, for characterizing and addressing the contamination at the Site. Therefore, pursuant to WAC 173-340-515(5), Ecology is issuing this opinion that no further remedial action is necessary at the Site.

Listing of the Site

Because this site received a No Further Action determination in 2006, it was removed from the applicable statewide lists of hazardous waste sites at that time, including:

- Confirmed and Suspected Contaminated Sites List
- Leaking Underground Storage Tank List

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Mr. Ryan Matthews January 22, 2009 Page 3

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion does not:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you performed is substantially equivalent. Courts make that determination. *See* RCW 70.105D.080 and WAC 173-340-545.

3. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. See RCW 70.105D.030(1)(i).

Termination of Agreement

Thank you for cleaning up the Site under the Voluntary Cleanup Program (VCP). This opinion terminates the VCP Agreement governing this project (CE0300).

For more information about the VCP and the cleanup process, please visit our web site: www. ecy.wa.gov/programs/tcp/vcp/vcpmain.htm. If you have any questions about this opinion or the termination of the Agreement, please contact me at (509) 454-7886.

Sincerely,

Valerie Bound Unit Supervisor

CRO Toxics Cleanup Program

Enclosure

cc: Allen Faltus

Dolores Mitchell, VCP Financial Manager

WASHINGTON STATE DEPARTMENT OF ECOLOGY TOXICS CLEANUP PROGRAM VCP SITE LOG

FACILITY	FACILITY / SITE NUMBER: 65863261			YEAR: 2008		
VCP PROJECT (ACCOUNT) NUMBER: CE0300			MONTH: I	MONTH: December		
SIC: J1C57			PAYROLL	PAYROLL 1-15		
EMPLOYE	E'S NAME:	Valerie Bound	PERIOD	16-31		
DATE	HOURS	ACTIVITY	DESCRIPTION			
12/30	3.0	Completed letter, reviewed docum	ents/reports			
		y se	х с			
			8	**		
		,	a	6		
	<u> </u>					
	, s					
				8)		
		8	, r			
			Э	75		
		AND COMPANY OF THE PROPERTY OF				
N-DEMA	ND BILLING		by the Site Manager assigned to the ot other staff or attorneys working o			
	_	your final charges for this VCP proj		mand		
		charges, then check the following boys need to submit site logs before fin		lso check		
		If so, how many other site logs need		iso check		
I	DATA ON THIS	S FORM IS CONSISTENT WITH THE	E EMPLOYEE'S TIMESHEET.			
MDI OVEE	'S SIGNATU	DE UMINIBAUM	DATE 12 DATE 12	30-01		
TLUILE	BIGNATU	The Management	DATE 10	U		

Hours entered in BAIRTS 12/36/08 +8

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

VCP INTERNAL REVIEW CHECKLIST

Sit	e Name:	University Auto	Center	If applicable (prope	erty-specific):		
Fa	cility / Site No	.: 65863261		Tax Parcel(s) No.:			
V	CP Project No.	: CE0330		Property Address:	100 E University Way		
Sit	e Manager:	VB Date sul	bmitted:12/30/08				
W	hat opinion a	re you providing the	Applicant in the at	ttached draft Letter?	y w		
	Partial Suffice Further Actio	A <i>Please attach all previd</i> iency, FA at Site		☐ Further A☐ Property			
0	7- 207			ordinator of information Activity is created in IS	submitted by applicant?		
Re	port Received	Date/Project Activity	Initiation Date: 12/8/	08			
Du	e Date for Res	ponse to Applicant (90	days from Initiation	Date): 3/8/09			
0	VCP application	on reviewed to ensure a	all information is curre	nt? ⊠ Yes □ N	0		
54	• •			United No.			
	If No, please be sure to provide the Data Coordinator with any changes needed. BARTS: If issuing NFA opinion, notify applicant that letter will be held until final payment is received.						
0				will be neld until linal p	bayment is received.		
	Have you com	pleted your site logs?	Yes □ No				
0	Is this a regula	nted UST/LUST site?	☐ Yes ⊠ No If	Yes, coordinate with LU	JST staff.		
•	Do any other g	overnment agencies or	Ecology Programs ha	ve interest in site activiti	es?		
	Yes 🗵	No If Yes, please be	sure to cc: the appropri	iate agency/program con	tact.		
•	Has the enviro	nmental sampling data	been entered into EIM	[?			
		No If Yes, when? Da			* ,		
	Will additional data be generated requiring EIM submittal?						
	2002	No					
2	= 5 5 3	• ====================================	EA aninian hava vay	accordinated with COEE	co Nva INa		
•				coordinated with COEE on at the site been adequ			
	⊠ Yes ☐	No If No, please be s	ure data gaps are clear	ly identified in the opini	on letter.		
•	Are institutional controls, such as an environmental covenant, needed for the site?						
	☐ Yes ⊠	No Unknown at t	his time (Feasibility St	tudy not completed yet)			

	If Yes, is a compliance mo	nitoring plan red	quired to be submitted?		
	28			quirements in the opinion letter.	
	If an environmental coven- county, and included as an			Ecology, filed with the appropriate No	
•	Are periodic reviews necessary at the Site (e.g., where institutional and/or engineered controls, and/or non-permanent remedies are part of the cleanup action)?				
	Yes No If Yes.	, when should th	ne first review be comple	eted? Date:	
•	Was geologic, hydrogeology Yes No	gic, or engineeri ☑ Not Applicab		censed professional?	
				hat these types of work when submittensed professional, as required by Chap	
•	Has a Terrestrial Ecologica	al Evaluation Fo	orm been submitted?	Yes □ No	
	Has it been accepted?	🛛 Yes 🗌 No	0		
	If No to either question, pl	ease include a c	omment in your opinion	letter.	
Co	omments or responses not	related to the	opinion letter (Docume	ent relevant information):	
Sign and Date, When Approved for Transmittal If you have comments, do not sign. Check the comments box and fill in the date. Check the comments resolved box when applicable, then sign and date.					
Do	er Reviewer (if applicable)			Date	
	Comments, see attached Comments Resolved	Date:		Date	
	Walerie Boun	L		12-30-08	
Uı	nit Supervisor	100		Date	
	Comments, see attached Comments Resolved	Date:			
Sex	M20 U. 12 STANDON U. 12 STANDON	The Ex			
Se	ction Manager (if not deleg Comments, see attached Comments Resolved	gated) Date:		Date	

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

15 W Yakima Ave, Ste 200 • Yakima, WA 98902-3452 • (509) 575-2490

December 9, 2008

Mr. Ryan Mathews Fulcrum Environmental Inc. 406 N 2nd St Yakima WA 98901

Dear Mr. Mathews:

An application for the Voluntary Cleanup Program was received on December 8, 2008. The purpose of this letter is to acknowledge receipt of your application and to provide you with the name of the Site Manager assigned your file.

Site Name:

University Auto Center

Site Manager:

Valerie Bound

Facility Site Number: 65863261

VCP ID Number:

CE0300

Our database has been updated to reflect your participation in the Voluntary Cleanup Program. If you have any questions, please contact the site manager at (509) 454-7886.

Thank you for your commitment to the environment and the Voluntary Cleanup Program.

Sincerely,

Frosti Smith

Voluntary Cleanup Program Coordinator

Central Regional Office

Toxics Cleanup Program

Enclosure:

VCP Agreement

MEMORANDUM

DATE: December 3, 2008

TOTAL PAGES: 2

DEC 0 8 2008

TO:

Frosti Smith

CO:

Department of Ecology

FROM: Ryan Mathews, CMC, CHMM

Fulcrum Environmental Consulting, Inc.

406 North 2nd Street

Yakima, Washington 98901

p: 509.574.0839 f: 509.575.8453

University Auto Center VCP Review Request RE:

Fulcrum Environmental Consulting, Inc. (Fulcrum) is requesting that the Washington State Department of Ecology (Ecology) complete a Voluntary Cleanup Program review of a report prepared for the Former University Auto Center site. The specific parcel for which the VCP review is requested is located at 100 East University Way in Ellensburg, Washington (University and Pearl Site). Three underground storage tanks (USTs) were historically removed from the site. Fulcrum is requesting review investigation confirming removal and completed UST Site Assessment.

Purpose of this summary memorandum is to provide a historical review of the University and Pearl Site and University Auto Center properties located adjacent.

University and Pearl Site History

The University and Pearl Site is located the intersection of University Way (formerly 8th Avenue) and Pearl Street in Ellensburg, Washington. The site currently consists of a large dealership/sales building and associated paved asphalt lot and occupies the west ½ of a city block in Ellensburg. In 2005, University Auto Center constructed a new facility and moved from the University and Pearl Site. Since that time the site has been utilized primarily under lease by Central Washington University for student parking.

In 1992, White Shield completed removal of two 500-gallon waste oil underground storage tank (UST) from the University and Pearl Site. During removal contamination was identified, remediated, and Ecology prepared a Department Decision Recommendation of No-Further Action determination (2001) for activities related to the two waste oil USTs. No further VCP review of this historic remediation action is requested.

Adjacent Properties

Adjacent properties owned and operated by University Auto Center have been investigated and remediation efforts completed. Specifically the property located at 607 North Pearl Street in Ellensburg, Washington (607 Site). The 607 Site served as the maintenance and repair facility for University Auto Center. In 2001, the site building was destroyed by fire. In the process of completing site cleanup activities, petroleum, metal, and chlorinated solvent contamination were identified. Remedial activities at the 607 Site are not associated with the requested VCP review.

Additionally, The 607 Site is also currently listed as a hazardous waste generator. The generator status is not associated with the current use of the University and Pearl Site.

Current VCP Request

Fulcrum is requesting review of the report titled, *Underground Storage Tank Investigation Report, Former University Auto Dealership, 100 East University Way, Ellensburg, Washington*, dated January 31, 2008. As the report summarizes, three underground storage tanks (approximately 3,000-gallons each), were formerly located west of the current site building. In the 1980s the three USTs were removed from the site. No environmental sampling was completed at the time. In 2007, Fulcrum completed a UST Site Assessment of the area to confirm that the tanks had been removed and to collect soil samples consistent with Ecology's

If you should have any questions, please let me know.

VCP AGREEMENT

INSTRUCTIONS: Submit this Agreement (original) to Ecology as part of your Application. Before submitting, enter the Customer's name and the Site's address on the first page and sign the Agreement on the second page. If your Application is accepted, then Ecology will do the following: 1) identify the Site and VCP project in the box below; 2) sign the Agreement; and 3) send you a copy of the completed Agreement.

This document constitutes an Agreement between the State of Washington Department of Ecology (Ecology) and Fulcrum Environmental Consulting, Inc.

(Customer) to provide informal site-specific technical consultations under the Voluntary Cleanup

Program (VCP) for the Site identified below and associated with the following address:

Former University Auto Center, 100 East University Way, Ellensburg, Washington

The purpose of this Agreement is to facilitate independent remedial action at the Site. Ecology is entering into this Agreement under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC. If a term in this Agreement is defined in MTCA or Chapter 173-340 WAC, then that definition shall govern.

Services Provided by Ecology

Upon request, Ecology agrees to provide the Customer informal site-specific technical consultations on the independent remedial actions proposed for or performed at the Site consistent with WAC 173-340-515(5). Those consultations may include assistance in identifying applicable regulatory requirements and opinions on whether the remedial actions proposed for or conducted at the Site meet those requirements.

Ecology may use any appropriate resource to provide the Customer with the requested consultative services. Those resources may include, but shall not be limited to, those of Ecology and the Office of the Attorney General. However, Ecology shall not use independent contractors unless the Customer provides Ecology with prior written authorization.

In accordance with RCW 70.105D.030(1)(i), any opinions provided by Ecology under this Agreement are advisory only and not binding on Ecology. Ecology, the state, and officers and employees of the state are immune from all liability. Furthermore, no cause of action of any nature may arise from any act or omission in providing, or failing to provide, informal advice and assistance under the VCP.

Payment for Services by Customer

The Customer agrees to pay all costs incurred by Ecology in providing the informal site-specific technical consultations requested by the Customer consistent with WAC 173-340-515(6) and 173-340-550(6). Those costs may include the costs incurred by attorneys or independent contractors used by Ecology to provide the requested consultative services. Ecology's hourly costs shall be determined based on the method in WAC 173-340-550(2).

Ecology shall mail the Customer a monthly itemized statement of costs (invoice) by the tenth day of each month (invoice date) that there is a balance on the account. The invoice shall include a summary of the costs incurred, payments received, identity of staff involved, and amount of time staff spent on the project.

The Customer shall pay the required amount by the due date, which shall be thirty (30) calendar days after the invoice date. If payment has not been received by the due date, then Ecology shall withhold

FOR	Facility / Site Name	: University	Auto Center	
COMPLETION BY	Facility / Site No.:	6586326		. Ver
ECOLOGY ONLY	VCP Project No.:	CE 0300		

any requested opinions and notify the Customer by certified mail that the debt is past due. If payment has not been received within sixty (60) calendar days of the invoice date, then Ecology shall stop all work under the Agreement and may, as appropriate, assign the debt to a collection agency under Chapter 19.16 RCW. The Customer agrees to pay the collection agency fee incurred by Ecology in the course of debt collection.

Reservation of Rights / No Settlement

This Agreement does not constitute a settlement of liability to the state under MTCA. This Agreement also does not protect a liable person from contribution claims by third parties for matters addressed by the Agreement. The state does not have the authority to settle with any person potentially liable under MTCA except in accordance with RCW 70.105D.040(4). Ecology's signature on this Agreement in no way constitutes a covenant not to sue or a compromise of any Ecology rights or authority.

Ecology reserves all rights under MTCA, including the right to require additional or different remedial actions at the Site should it deem such actions necessary to protect human health and the environment, and to issue orders requiring such remedial actions. Ecology also reserves all rights regarding the injury to, destruction of, or loss of natural resources resulting from the release or threatened release of hazardous substances at the Site.

Effective Date, Modifications, and Severability

The effective date of this Agreement shall be the date on which this Agreement is signed by the Toxics Cleanup Program's Section Manager or delegated representative. This Agreement may be amended by mutual agreement of Ecology and the Customer. Amendments shall be in writing and shall be effective when signed by the Toxics Cleanup Program's Section Manager or delegated representative. If any provision of this Agreement proves to be void, it shall in no way invalidate any other provision of this Agreement.

Termination of Agreement

Either party may terminate this Agreement without cause by sending written notice by U.S. mail to the other party. The effective date of termination shall be the date Ecology sends notice to the Customer or the date Ecology receives notice from the Customer, whichever occurs first. Unless otherwise directed, issuance of a No Further Action opinion, either for the Site as a whole or for a portion of the real property located within the Site, shall constitute notice of termination by Ecology.

Under this Agreement, the Customer is only responsible for costs incurred by Ecology before the effective date of termination. However, termination of this Agreement shall not affect any right Ecology may have to recover its costs under MTCA or any other provision of law.

Representations and Signatures

The undersigned representative of the Customer hereby certifies that he or she is fully authorized to enter into this Agreement and to execute and legally bind the Customer to comply with the Agreement.

Fulcrum Enivronmental Consulting, Inc.
Name of Customer
Ryan (Worth
Signature
Ryan K. Mathews
Printed Name of Signatory
Principal
Title of Signatory
Date: 12/03/2008

If you need this document in an alternative format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

REQUEST FOR OPINION FORM

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Use this form to request a written opinion on your planned or completed independent remedial action under the Voluntary Cleanup Program (VCP). Attach to this form the plans or reports documenting the remedial action. Please submit only one form for each request.

otep 1. IDENTIT TIME MOOSE MISTER STATE							
Please identify below the hazardous waste site for which you are requesting a written opinion under the VCP. This information may be found on the VCP Agreement.							
Facility/Site Name: Former University Auto Center							
Facility/Site Address: 100 East University Way, Ellensburg, WA							
Facility/Site No: 6586 3261 VCP Project No.: CEO 300							
Step 2: REQUEST WRITTEN OPINION ON PLAN OR REPORT							
What type of independent remedial action plan or report are you submitting to Ecology for review under the VCP? Please check all that apply.							
Remedial investigation plan							
Remedial investigation report							
Feasibility study report							
Property cleanup* plan (* cleanup of one or more parcels located within the Site)							
Property cleanup* report							
Site cleanup plan							
☐ Site cleanup report							
Other – please specify:							
Do you want Ecology to provide you with a written opinion on the planned or completed independent remedial action?							
⊠ Yes □ No							
Please note that Ecology's opinion will be limited to:							
 Whether the planned or completed remedial action at the site meets the substantive requirements of the Model Toxics Control Act (MTCA), and/or 							
Whether further remedial action is necessary at the site under MTCA.							

Step 3: REPRESENTATIONS AND SIGNATURE

The undersigned representative of the Customer hereby certifies that he or she is fully authorized to request services from Ecology under the Agreement for this VCP Project.

Name: Ryan Mathews / / Title: Principal

Signature: // / / / Date: 12/03/2008

Organization/Fulcrum/Environmental Consulting, Inc.

Mailing address: 406 North 2nd Street

City: Yakima | State: WA | Zip code: 98901

Phone: 509.574.0839 | Fax: 509.575.8453 | E-mail: rmathews@efulcrum.net

Step 4: SUBMITTAL

Please mail your completed form and the independent remedial action plan or report that you are requesting Ecology review to the site manager Ecology assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:
Attn: Sara Maser
3190 160th Ave. SE
Bellevue, WA 98008-5452

Southwest Region:

Central Region:
Attn: Mark Dunbar
15 W. Yakima Ave., Suite 200
Yakima, WA 98902

Eastern Region:

Attn: Scott Rose Attn: Patti Carter
P.O. Box 47775 N. 4601 Monroe
Olympia, WA 98504-7775 Spokane WA 99205-1295

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

APPLICATION FORM

Under the Voluntary Cleanup Program (VCP), the Department of Ecology (Ecology) may provide informal site-specific technical consultations to persons conducting independent remedial actions at a hazardous waste site. Ecology may provide such consultations under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC.

To enter the VCP, complete and submit to the Department of Ecology (Ecology) a VCP Application. The Application consists of the following two documents:

- 1. Application Form (including required attachments). THIS DOCUMENT
- 2. Agreement.

For guidance on how to complete your Application, please refer to the Application Instructions, which are available separately on the VCP web site: www.ecy.wa.gov/programs/tcp/vcp/vcpmain.htm.

Part 1 - ADMINISTRATION								
A. Customer Information. The Customer is the person or organization requesting services from Ecology under the VCP, and is responsible for paying the costs incurred by Ecology. The authority and duty of the Customer are explained in the Agreement.								
Name of Customer: Fulcrum Environmental, Inc								
What type of en	tity is the Custom	er?						
If the Customer is a "person," then the Customer shall serve as both the Manager and Billing Contact for the Project. When identifying the Project Manager below, please enter the name of the Customer and his or her contact information.								
	Organization	If the Customer is an "organization," then please identify below both a Manager and Billing Contact for the Project. Those persons must be employed by the organization.						
What is the Cust	tomer's involvem	ent at the Site? Please check all that apply.						
□ Property owner □ Business owner (operator) □ Past property owner □ Mortgage holder □ Future property owner □ Consultant □ Property lessee □ Attorney □ Other – please specify:								
If not the curren	t property owner,	is the Customer acting as the agent for the property owner?						
\boxtimes	Yes 🗌 No							
If not the curren	t property owner,	is the Customer authorized to grant access to the property?						
\boxtimes	Yes 🗌 No							

RECEIVED

DEC 0 8 2008

Part 1 – ADMINISTRATION continued

B. Project Manager Information. Ecology will send this person all official correspondence. Please enter the required information below.									
Name: Ryan Mathews	Name: Ryan Mathews Title: Principal								
Mailing address: 406 North 2 nd S	treet								
City: Yakima		State: WA		Zip: 98901					
Phone: 509.574.0839	Fax: 509.574.8453		E-mail: rm	athews@efulcrum.net					
C. Project Billing Contact Infor	mation. Ecology wil	I send this pe	erson mont	thly invoices.					
Is the Project Billing Contact the s	Is the Project Billing Contact the same as the Project Manager?								
	wered "YES," then	**	100						
☐ No If you ans	wered "NO," then p	lease enter th	ne required	l information below.					
Name:			Title:						
Mailing address:									
City:		State:		Zip:					
Phone:	Fax:		E-mail:						
D. Project Consultant Informat	ion.								
Is the Customer a consultant?									
	wered "YES," then	skip to the ne	ext question	n.					
	swered "NO" and t ent remedial action, t			consultant to conduct the information below.					
Name:			Title:						
Organization:									
Mailing address:									
City:		State:		Zip:					
Phone:	Fax:		E-mail:						
Do you want Ecology to contact th	ne Project Consultan	t?							
☐ Yes ☐ No									
E. Property Owner Information									
Is the Customer the owner of the	property where indep	endent reme	edial action	is being conducted?					
☐ Yes If you answ	ered "YES," then en	ter the type o	of entity and	d skip to the next question.					
⊠ No If you answ	vered "NO," then ple	ase enter all	of the requ	uired information below.					
Name: Allen Faultus			Title:						
Organization:									
Mailing address: P.O. Box 619									
City: Ellensburg		State: WA		Zip: 98942					
Phone: 509.962.7151	Fax: 509.962.7161		E-mail:						

Part 1 – ADMINISTRATION continued What type of entity is the property owner? Please check only one. Private County Tribal Municipal Federal Mixed Public School State Other – please specify: F. Request for Written Opinion. Are you submitting a remedial action plan or report with your VCP Application? ⊠ Yes □ No If you answered "YES" above, do you want Ecology to provide you with a written opinion on the planned or completed remedial action? Please note that Ecology's opinion will be limited to: ☐ Whether the planned or completed remedial action at the site meets the substantive requirements of the Model Toxics Control Act (MTCA), and/or ☐ Whether further remedial action is necessary at the site under MTCA. Do you expect to request additional written opinions in the future? G. Reporting Requirements. Please comply with the following reporting requirements when requesting written opinions on planned or completed remedial actions: Licensing. Documents submitted containing geologic, hydrologic, or engineering work must be under the seal of an appropriately licensed professional, as required by Chapters 18,43 and 18,220 RCW. ☐ Data Submittal. Environmental sampling data must be submitted in both a printed form and an electronic form capable of being transferred into Ecology's data management systems. For instructions on how to submit the data, please refer to the following Ecology web site: www.ecy.wa.gov/programs/tcp/data submittal/Data Requirements.htm. Failure to comply with these requirements may result in unnecessary delays. Ecology will not issue a

No Further Action (NFA) opinion unless these requirements are satisfied.

					THE RESERVE TO LABOUR THE PARTY OF THE PARTY			
Part 2 - DESCRIF	TION OF THE S	ITE						
Name of the Site. If Ecology has already identified the Site, enter the name provided by Ecology. Otherwise, enter a suggested name for the Site. You may also include an alternate name.								
Name: Former Uni								
Iternate Name: University Auto Center/8 th & Pearl, University & Pearl								
B. Location of Pr The "source prope For example, if pe the UST was locate	rty" is the propert roleum was relea	who	re hazardous	SUI	ostances we	re relea	ased into the environment. Derty is the property where	
Do you know on w	hich property the	relea	ses occurred	?				
☐ Ye	Yes If you answered "YES," then please refer to the source property when answering the following questions.							
No If you answered "NO," then please refer to the property addressed by your remedial action (cleanup) when answering the following questions.								
Physical Address	. Please enter the	e phy	sical address	of t	ne property l	below.		
Street Address: 10	00 East University	Way	<i>!</i>					
City: Ellensburg	City: Ellensburg State: WA Zip: 98942							
Geographic Posi guidance on how t	tion. Please ento	er th	e geographic lease refer to	al p	osition of th ructions on t	e propo the VCF	erty below. For additional web site.	
		Degrees: 46			Minutes: 59		Seconds: 57	
COORDINATES	LONGITUDE:	Degrees: -120			Minutes: 32		Seconds: 46	
	TION ON PROPERTY: ase or center of parcel]	Cent	er					
	LLECTION METHOD: S or address matching]							
	LLECTION SOURCE: [i.e., map scale]	Goog	gle Earth					
Fig. base reference	ORIZONTAL DATUM: e for coordinate system]							
li.e., base reference	ACCURACY LEVEL: [i.e., +/- feet or meters]							
Legal Description								
<u> </u>	1: Township: 8N		Range: 18E		Section: 35		Quarter-Quarter: NE	
Tax Parcel #(s						•		

An "a	affected property" is erty. For example, pe	erties affected by the Releases (Affected Properties). a property affected by the release of hazardous substances on the source etroleum released from a leaking UST on one property (source property) may ground water onto an adjacent property (affected property).
Do a	ny of the releases affe	ect any properties adjacent to the source property?
	☐ Yes	If you answered "YES," then please identify below each property that you know has been affected by the releases on the source property. If you need to identify additional properties, please attach additional pages.
	⊠ No	If you answered "NO," then skip to the next question.
	Unknown	If you answered "UNKNOWN," then skip to the next question.
1.	Address:	
	Tax Parcel(s):	
2.	Address:	
	Tax Parcel(s):	
3.	Address:	
	Tax Parcel(s):	
4.	Address:	
	Tax Parcel(s):	
D. Id	lentification of Publi	c Right-of-Ways affected by the Releases.
Do a	ny of the releases affe	ect any public right-of-ways (e.g., streets)?
	☐ Yes ⊠	No Unknown
If you	answered "YES" ab	ove, please specify below. Otherwise, skip to the next question.
-		
Attac	h additional pages if neces	esary.
E. E	xtent of the Site.	
What	is the approximate a	real extent of the Site? Please check only one.
	⊠ > 5,000 s	NO.

F. Description of Release(s) at the Site.
Source of Release(s).
What are the source(s) of the release(s) at the Site? Please check all that apply.
Point source (e.g., leaking tank) Non-point source (e.g., contaminated soil used as fill) Area-wide lead and arsenic soil contamination (see questions below) Other – please specify: Unknown
To the extent known, please describe the source(s) of the release(s):
Investigation was part of a site assessment of historically remover gasoline and diesel fuel tansk
associated with the historic gasoline service station. Sampling results identified no indication of a
release to the environment.
Attach additional pages if necessary.
Circumstances of Release(s). To the extent known, please describe below the circumstances of the release(s).
See above
Attach additional pages if necessary.
Circumstances of Release Discovery. To the extent known, please describe below the
circumstances of the discovery of the release(s).
N/A
Attach additional pages if necessary.

Area-Wide Soil Contamination. For information refer to the following web site: www.ecy. information about the Tacoma Smelter Plume to the following web site: www.ecy.	wa.gov/pro	grams/tcp/ar the associa	rea wide/are ted Manage	e <mark>a wide hp.l</mark> ement Plan, p	<u>ntml</u> . For				
Is the Site located within an area affected by smelter emissions, such as the TSP area?									
☐ Yes ☐ Unknown									
To determine whether your Site is located wi site identified above.	thin the TS	P area, pleas	se refer to th	ne map on th	e TSP web				
Is the Site located on a former apple or pear	orchard in o	peration pric	or to 1947?						
☐ Yes ☒ No ☐ Unkno									
Is the Site impacted by area-wide arsenic and	d/or lead so	il contamina	tion?						
☐ Yes ☒ No ☐ Unkno									
		1-40	O'the The f	-112	tions not an				
G. Nature and Extent of Hazardous Substato conditions after the release, but prior to any									
Hazardous Substances and Affected Meditable the hazardous substances released at the substances. Use the codes at the bottom of the substances.	he Site and								
AFFECTED MEDIA									
Hazardous Substance	SOIL	GROUND WATER	Surface Water	SEDIMENT	AIR				
EXAMPLE: Benzene	С	S	N/A	N/A	В				
Gasoline	0								
Benzene	0								
Toluene	О								
Ethylbenzene	0								
Xylenes	О								
Diesel	О								
Mineral Oil	0								
Oil	0								
Lead	В								
When identifying the affected media in the table above, please • C = confirmed, above cleanup level	use one of the	following codes:							
C = confirmed, above cleanup level B = confirmed, below cleanup level									
O = confirmed, not present									
S = suspected									
N/A = not suspected									

• U = unknown

Drinking Water.
Does any of the contamination at the Site pose a threat or potential threat to an existing drinking water source (ground water or surface water)?
☐ Yes ☐ Unknown
If you answered "YES" above, what type of drinking water system is threatened by the contamination? Please check all that apply.
☐ Single Family ☐ Community
Indoor Air.
Are contaminant odors present in any buildings, manholes, or other confined spaces?
☐ Yes ☐ Unknown
If you answered "YES" above, please specify:
No contamination was identified
Attach additional pages if necessary.
H. Maps of the Site.
Please attach to this application map(s) that identify, to the extent known, the following:
 □ The location of the site. □ The properties, and any public right-of ways, affected by the site. □ The source(s) of the release(s) at the site. □ The nature and extent of contamination at the site. □ Any human or ecological receptors impacted by the site (e.g., drinking water wells). □ The physical characteristics of the site (e.g., property lines, building and road outlines, surface water bodies, water supply wells, ground water flow direction, and utility right-of-ways). □ The properties adjacent to the site and the uses of those properties (e.g., gas station, dry

Part 3 - OPERATIONAL HISTORY OF THE SITE A. Current Use of Source Property. Note that the following questions refer only to the Source Property, not other properties affected by the Site. Answer these guestions to the best of your ability. Current Property Owners. To the extent known, please identify below the current owner of the source property. Name: Allen Faltus Title: Organization: Mailing address: P.O. Box 619 Zip code: 98942 State: WA City: Ellensburg Phone: 509.962.7151 Current Business Owner (Operator). To the extent known, please identify below the current owner of the business located on the source property. Title: Name: Organization: Mailing address: State: Zip code: City: Phone: Current Business Operations. To the extent known, please identify below the current operations of the business located on the source property. What is the current land use of the source property? Please check all that apply. Residential School Childcare facility Commercial Industrial Park Agricultural Other – please specify: Commercial property not currently in Is there a currently operational commercial or industrial business located on the source property? ⊠ No Yes Unknown If you answered "YES" above, please identify in the following table the current business operations using the North American Industry Classification System (NAICS) codes and specifying the operations. NAICS CODE **DESCRIPTION OF OPERATIONS** EX: 447110 Gasoline Stations with Convenience Stores

Part 3 – OPERATIONAL HISTORY OF THE SITE continued

Is there a solid waste handling fac	cility located on the Source Property	1?						
☐ Yes ☐ Unknown								
If you answered "YES" above, please identify:								
Attach additional pages if necessary.								
Is there a dangerous waste treatment, storage, or disposal facility located on the Source Property?								
☐ Yes ☐ Unknown								
If you answered "YES" above, ple	ase identify:							
Attach additional pages if necessary.			•					
Regulation of Current Business	o Operations.							
Does the business operate under substances into the environment	any federal, state, or local permits (e.g., NPDES permit)?	related to t	he release of hazardous					
☐ Yes ⊠ No	Unknown							
	ease specify the regulated operation	n, the nam	e of the permit, and the					
date it was issued in the table bel								
REGULATED OPERATION	PERMIT	DATE ISSUED						
EX: Wastewater discharge	NPDES permit	02/02/02						
Has a state or federal notice of enthe release of hazardous substant	forcement action (e.g., notice of vices at the business?	olation) eve	r been issued related to					
☐ Yes ☒ No	Unknown							
If you answered "yes" above, plea	se specify (notice and year issued):							
	ed in any other spills or other un		releases on the source					
Yes No	Unknown							
If you answered "YES" above, plea								
RELEASE	DATE OF RELEASE	STATUS OF	RELEASE					
	I and the second							

Part 3 - OPERATIONAL HISTORY OF THE SITE continued

Storage Tank Information. In table below, please identify all above ground storage tanks (AST) and underground storage tanks (UST) that have been used for storing hazardous substances on the source property, irrespective of whether the tanks are still in use or in place. If you are unable to provide answers to specific questions regarding a tank, please enter "U" for unknown.

IDENTIFICATION					STATUS AND CLOSURE				RELEASES	
Hazardous Substance	Type (AST/UST)	Size (Gallons)	TANK ID	DATE INSTALL	IN USE (Y/N)	DATE CLOSED	CLOSURE METHOD (*)	Past (Y/N)	CURRENT (Y/N)	
EX: Diesel	UST	10,000	4	02/87	N	05/98	Removed	Υ	N	
Gas & Diesel	UST	3,000	3		N	1980s	Removed	N	N	
Gas & Diesel	UST	3,000	4		N	1980s	Removed	N	N	
Gas & Diesel	UST	3,000	5		N	1980s	Removed	N	N	
	UST	500	1		N	1991	Removed	Υ	N	
Waste Oil	UST	500	2		N	1991	Removed	N	N	
Waste Oil	031	300					tions = Removed	or Close	d in Plac	

B. Past Use of Source Property. Note that the following questions refer only to the Source Property, not other properties affected by the Site. Please answer these questions to the best of your ability.

Past Property Owners. To the extent known, please identify below the owner of the source property at the time the release occurred. Title: Name: Organization: Mailing address: Zip code: State: City: E-mail: Fax: Phone: Past Business Owners (Operators). To the extent known, please identify below the owner of the business (operator) at the time the release occurred. Title: Name: Allen Faltus Organization: University Auto Center Mailing address: P.O. Box 619 Zip code: 98942 State: WA City: Ellesnburg E-mail: Fax: Phone: Identification of Past Business Operations. Please identify in the following table the past operations of businesses located on the source property using the North American Industry Classification System (NAICS) codes and/or specifying the operations. **DESCRIPTION OF OPERATIONS** NAICS CODE Gasoline Stations with Convenience Stores EX: 447110 Used Car Dealership 441120 Gasoline Stations with Convenience Stores 447110

Part 3 - OPERATIONAL HISTORY OF THE SITE continued

C. Future Use of Source and Affected Properties. The following questions refer to both source and affected properties. Please answer these questions to the best of your ability.
Will any ownership interest in the source or affected properties be conveyed prior to, or upon completion of, the cleanup?
☐ Yes ☐ No ☐ Unknown
If you answered "YES" above, please specify:
N/A
Attach additional pages if necessary.
Will any of the source or affected properties, or portions of those properties, be redeveloped as part of the cleanup?
☐ Yes ☐ No ☐ Unknown
If you answered "YES" above, please specify the proposed land use below. Please check all that apply.
☐ Residential ☐ School ☐ Commercial ☐ Childcare facility ☐ Industrial ☐ Park ☐ Agricultural ☐ Other – please specify:
Please also specify the activities proposed for that land use:
N/A
Attach additional pages if necessary.

Part 4 – ADMINISTRATIVE HISTORY OF THE	SITE
Have you previously reported the release(s) of haza	rdous substances at the Site to Ecology?
☐ Yes – If so, when?	No □ Unknown
Has the cleanup of the Site, or any portion of the Sit	e, ever been managed under the VCP?
☐ Yes – If so, please specify the VCI☒ No☐ Unknown	
Has the cleanup of the Site, or any portion of the order or decree?	Site, ever been managed under a federal or state
☐ Yes – If so, please specify the type☐ No☐ Unknown	e and docket number:
Part 5 – DESCRIPTION OF INDEPENDENT RE	MEDIAL ACTIONS AT THE SITE
A. Scope of Remedial Actions.	
Do you plan to characterize and address all contamination located on affected adjacent properti	of the contamination at the Site, including any es, as part of the VCP project?
⊠ Yes □ No □ Unknown	
contamination (properties, portions of a property,	elow the scope of the VCP project, including the media and/or hazardous substances) that you DO part of the VCP project. Please include additional
Attach additional pages if necessary	

Part 5 - DESCRIPTION OF INDEPENDENT REMEDIAL ACTIONS AT THE SITE continued

B. Status of Remedial Actions.

What is the current status of remedial actions at the site? Please check all that apply in the table below.

REMEDIAL ACTION	PLANNED	ONGOING	COMPLETED	NOT APPLICABLE
INITIAL RESPONSE (UST ONLY)				Х
INTERIM ACTION				Х
REMEDIAL INVESTIGATION			Х	
FEASIBILITY STUDY				Х
CLEANUP ACTION				Х

C. Documentation of Remedial Actions.

Please list in the table below all known remedial action plans or reports produced for the site, including:

- · The title of the plan or report,
- The author (e.g. consulting firm) of the plan or report,
- · The date the plan or report was produced,
- Whether the plan or report has been submitted to Ecology,
- The date the plan or report was submitted to Ecology.

	Tizi e	AUTUOD	DATE	SUBMITTED TO ECOLOGY		
	TITLE	AUTHOR	DATE	Y/N?	DATE	
Ex:	John Doe's Site: Remedial Investigation Work Plan	Mom's Consulting Firm	02/20/05	NO	N/A	
1.	UST Site Assessment Report, University Auto Center, Ellensburg, WA	White Shield, Inc	12/03/92	Yes	12/07/92	
2.	Underground Storage Tank Investigation Report, Former University Auto Dealership, 100 East University Way, Ellensburg, Washington	Fulcrum Environmental, Inc	1/31/08	Yes		
3.						
4.						
5.						
6.						
7.						
8.						
9.						
10.						

Part 6 – STATEMENT AND SIGNATURE							
A. Statement and Signature. The undersigned affirms that the information contained in this application is true and accurate to the best of his or her knowledge. Please note that someone other than the Customer may sign this Application Form.							
Name: Ryan Mathews			Title:	Principal			
Signature:					Date: 12/03/08		
Organization: Fulcrum Enivronme	ental Consulting, INC						
Mailing address: 402 North 2 nd St	ree						
City: Yakima		State:	WA		Zip code: 98942		
Phone: 509.574.0838	Fax: 509.574.8453		E-mail: rmathews@efulcrum				
B. Affiliation.							
What is the signatory's involvement	nt at the Site? Please	check	all tha	t apply.			
 ☐ Customer ☐ Property Owner ☒ Consultant ☐ Attorney ☐ Other – please specify: 							

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION EXCLUSION FORM

Under the Model Toxics Control Act (MTCA), a Terrestrial Ecological Evaluation (TEE) is not required if the Site meets the criteria in WAC 173-340-7491 for an exclusion. If you determine that your Site does not require a TEE, please complete this form and submit it to the Department of Ecology (Ecology) at the appropriate time, either with your VCP Application or with a subsequent request for a written opinion. Please note that exclusion from the TEE does not exclude the Site from an evaluation of aquatic or sediment ecological receptors.

If your Site does not meet the criteria for exclusion under WAC 173-340-7491, then you may have to conduct a simplified TEE in accordance with WAC 173-340-7492 or a site-specific TEE in accordance with WAC 173-340-7493. If you have questions about conducting a simplified or site-specific TEE, please contact the Ecology site manager assigned to your Site or the appropriate Ecology regional office.

Step 1: IDENTIFY HAZARDOUS WASTE SITE AND EVALUATOR

	Please identify below the hazardous waste site for which you are documenting an exclusion from conducting a TEE and the name of the person who conducted the evaluation.							
Facility/Site Name: Former University Auto Center								
Facility/Site	e Address: 100 East University Way							
Facility/Site	e No: 65863261 VC	CP Project No.: CEO300						
Name of Ev	valuator: Ryan Mathews, Fulcrum Envi	ironmental Consulting, Inc.						
Step 2: Do	OCUMENT BASIS FOR EXCLUSION	ON						
7491(1).	The bases for excluding a site from a terrestrial ecological evaluation are set forth in WAC 173-340-7491(1). Please identify below the basis for excluding your Site from further evaluation. Please check all that apply.							
POINT OF C	COMPLIANCE - WAC 173-340-7491(1)(A	4)						
1-🖂	No contamination present at site.							
2-	All contamination is 15 feet below grou	ınd level prior to remedial activities.						
3-□	All contamination is six feet below ground level and an institutional control has been implemented as required by WAC 173-340-440.							
All contamination is below a site-specific point of compliance established in compliance wit WAC 173-340-7490(4)(b) with an institutional control implemented as required by WAC 173-340-440. Please provide documentation that describes the rationale for setting a site specific point of compliance.								
BARRIERS	TO EXPOSURE - WAC 173-340-7491(1)(b)						
5-	roads) that prevent exposure to plan implemented as required by WAC 173	overed by physical barriers (such as buildings or paved into and wildlife and an institutional control has been 3-340-440. An exclusion based on future land use must belopment that is acceptable to Ecology. RECEIVET						

Step 2: DOCUMENT BASIS FOR EXCLUSION continued

UNDEVELOPED LAND - WAC 173-340-7491(1)(c)

"Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil.

"Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.

There is less than one-quarter acre of contiguous undeveloped land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.

7- For sites not containing any of the chemicals mentioned above, there is less than one-and-a-half acres of contiguous undeveloped land on or within 500 feet of any area of the Site.

BACKGROUND CONCENTRATIONS - WAC 173-340-7491(1)(d)

8- Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.

Step 3: PROVIDE EXPLANATION FOR EXCLUSION (IF NECESSARY)	
Attach additional pages if necessary.	

Step 4: SUBMITTAL

Please mail your completed form to Ecology at the appropriate time, either with your VCP Application or with a subsequent request for a written opinion. If you complete the form after you enter the VCP, please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:
Attn: Sara Maser
3190 160th Ave. SE
Bellevue, WA 98008-5452
Southwest Region:
Attn: Scott Rose
P.O. Box 47775

Olympia, WA 98504-7775

Attn: Mark Dunbar
15 W. Yakima Ave., Suite 200
Yakima, WA 98902
Eastern Region:
Patti Carter

Patti Carter
N. 4601 Monroe
Spokane WA 99205-1295

Central Region:

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

15 West Yakima Avenue, Suite 200 • Yakima, Washington 98902-3452 • (509) 575-2490

February 1, 2006

City of Ellensburg 501 North Anderson Street Ellensburg, WA 98926

To Whom It May Concern:

I am writing to verify the current street name for Eighth Avenue / University Way in Ellensburg.

Ecology records have various facilities listed at addresses on Eighth Avenue and University Way in Ellensburg. In the past, I have contacted the City to verify that addresses listed as Eighth Avenue are in fact on University Way.

I am now seeking written confirmation that the street name was changed in order to update Ecology database records. If there have been other street name changes in recent years, I would be interested in receiving information about those as well.

Your assistance in this matter is appreciated. If you have any questions about this letter, please call me at (509) 454-7841.

Sincerely,

Frosti Smith

Data Coordinator

Toxics Cleanup Program

Central Regional Office

cc: Rachael Erickson, Database Administrator

Department Decision Recommendation

RE: LUST # 1829

Site: University Auto Center/8th & Pearl

City: Ellensburg

County: Kittitas

In keeping with the requirement of WAC 173-340-310 (4) I recommend that this site receive a No Further Action determination.

Supporting Criteria:

In November 1992 White Shield, Inc. performed an UST closure site assessment after removing two 500-gallon waste oil tanks from the site. The tanks were located in the alley between Pearl and Pine Streets at the rear of the University Auto Center service bays.

The report states that the tanks and all associated piping were contained within one excavation. Upon removal, the tanks were reported to be in good condition with no apparent holes. Some staining was observed in the pea gravel on the surface of the tanks and was assumed to be related to small spills around the fill spout.

The excavation extended to a depth of seven feet, however, no groundwater was encountered. Five soil samples were collected from the base and sidewalls of the excavation; three samples (including composites of the sidewall samples) were analyzed for total petroleum hydrocarbons by Method WTPH 418.1. Laboratory analysis did not detect petroleum in the bottom sample and the sidewall samples indicated a maximum level of 48 ppm TPH. Additionally, three samples were collected from the stockpile; the highest TPH level was 1158 ppm. All of these results are below the current MTCA cleanup levels for heavy oil.

The stockpiled soil was taken to the John Clerf property for remediation by landfarming; it is located approximately nine miles east of Kittitas. No additional soil samples of the landfarmed soil have been taken to determine if the landfarming was effective. However, due to the adjustments made to the cleanup levels in the revised MTCA, the levels detected during the 1992 cleanup do not warrant remedial actions. Therefore, this site requires no further action.

This Department Decision Recommendation should be reviewed and re-evaluated based on an new information about these sites.							
Investigator(s)	Krystal Rodriguez	Lyskal Kadigue					
	Print and sign name(s)	0 8					
DATE:1/11/	06						
Walerie	Drus.						
Section Supervisor	, Acting						
DATE:							
		 ;					

Zerby, Christina E.

From: Davis, Tara

Sent: Friday, May 24, 2002 11:25 AM

To: Zerby, Christina E.

Subject: RE: University Auto Center

Hello!

Tell Rachel that I can understand why her head hurts. I didn't do this...just so you know. I caught this because of the report that came in for the 7th & Pearl st. On several sites, I have noticed that tanks are being marked 'removed' before any report w/documents come in. I went to mark in comments that the tanks should not have been marked removed...(I didn't finish my thought) but intended to delete what I had said, because I don't need to be making negative comments in there. A number of sites have been marked 'removed' and don't have any supporting documents. I have been doing tons...well, ... several file reviews for NWRO and have found a tremendous amount of 'removed' instead of 'closure in process' sites....so any time you find something like this, please let me know. I have been leaving sites the way they are marked and doing research by contacting regional offices, owner or contacting the consultant.

So, I will research this further and deal with it on Tuesday. I am leaving early and won't be able to do this today...but I will next week.

Have a safe and wonderful weekend...and don't forget to buckle up!

Tara

----Original Message----From: Zerby, Christina E.

Sent: Friday, May 24, 2002 10:37 AM

To: Davis, Tara

Subject: FW: University Auto Center

Per my voice mail. We can discuss more if further clarification is needed.

Christina

----Original Message----From: Caron, Rachel

Sent: Friday, May 24, 2002 10:20 AM **To:** Zerby, Christina E.; Smith, Frosti K. **Subject:** University Auto Center

Here's the update.

I pulled the University Auto Center file. As far as I can tell, the 1992 site is about a block away from the 2002 tank excavation. So, the sites should be listed as 2 different sites, not the same one. So, even though they are listed on ISIS as the same, the 1992 University Auto Center file pertains to the 8th Ave and Pearl site and the new report we just received pertains to the 7th Ave and Pearl site.

As far as the four tanks listed on ISIS, I'm not sure if the four listed in the 2002 report are those tanks. In the 2002 report, it says those tanks were not registered with Ecology. So, are there 4 more tanks out there (at the 8th and Pearl site) or were they just entered into the system when HQ received the 2002 report?

So, this is how I see it:

Site 1829 is located at 8th and Pearl, there were two 500 gallon waste oil tanks removed in 1992, and

the site has an RCU.

Site ?? is located at 7th and Pearl, four tanks were removed in January of this year and should be put on the LUST list separately from the 1829 site.

This is making my head hurt.

Rachel

University Auto Center

WASHINGTON STATE DEPARTMENT OF	
E C O L O G Y TELEPHONE	REPORT
	• +
Call From: Dave Green AGR Sciences	Date: 2-5-02
AGR Sciences	Time: amyom
7.0	(circle)
Phone No.:	
Call To: R Caran	
	1
Subject: Technical ASSISSTO	ace & Reportinga
Summary:	Release
Questions on Method &	3 Calculations
GOOGHAND ON PARITY	
Record release	
Location: University An	to Center
7th Ave + Pearl Sti	in Ellensburg
1 / 1/6 . 1/600. 1 (3) 1	VI CIRISPIDE
4 tanks removed	
31,000 Gallon lead	led
\$1 695 gal heats	
Amt of release not kner	vn
PCS on site	
2 gw impacted	
J. C. Timper C. C.	
will turn in report when	n due
Sign	nature
ECY 010-46(a)	Date

SMCL LAKIII SOL LS

I HAGL 182

February 5, 2001

Mr. Art McEwen Yakima Health District 104 North First Street Yakima, WA 98901

SUBJECT:

REQUEST FOR INFORMATION REGARDING ALLOWABLE VOLATILE ORGANIC COMPOUND CONCENTRATIONS ADMISSIBLE TO ANDERSON DEMOLITION PITS, YAKIMA, WA

Dear Mr. McEwen.

Sage Earth Sciences, Inc. (Sage) was retained by University Auto Center (UAC), Ellenaburg, WA to perform closure site assessment of an Underground Storage Tank (UST) system and two unlined catch basins at their facility located 7th Avenue and Pearl Street, Ellenaburg, WA. Petroleum Contaminated Soil (PCS) was found in the UST Basin and Catch Basin areas. However, Volatile Organic Compounds (VOC's) and RCRA Metals were also found to originate from the catch basin locations. Some of the VOC's were found to extend into the UST basin area.

Sage has verbal approval to transport soil with the highest VOC concentrations to Roosevelt, WA for disposal. UAC proposes to initially transport soil generated at the catch basin locations to Roosevelt due to the high VOC and total lead concentrations. However, to reduce transport fees for the currently unknown quantity of soil, UAC hopes to discontinue transport of impacted soil to Roosevelt when VOC and lead concentrations are sufficiently low to allow treatment/disposal at the Anderson Demolition Pits facility.

SAGE EARTH SC1. ES

03 PAGE

Sage requests that you provide us with the maximum allowable concentrations for transport of EACH of the following compounds to the Anderson Demolition Pits facility:

		41
•	Gaso	live.
	ORDO.	uio.

Diesel and Heavy Oil,

Benzene,

Toluene,

Ethylbenzene,

Xylenes

Barrum,

Lead, - 250

7,022,00 mg Kg Isopropylbenzene (Cumene),

• tert-Butylbenzene, 1551 Cp H14 1,2,4-Trimethylbenzene, - PSEU ROCUMEN-E 7929 CgH2

sec-Butylbenzene, 1550

• p-Isopropyltoluene (Cymene), 2/20 1,2-Dichlorobenzene.

Please provide the information requested in writing to:

David Green Sage Earth Sciences, Inc. P.O. Box 1644 Zillah, WA 98953

If you have any questions, please call me at (509) 829-6400.

Respectfully.

SAGE EARTH SCIENCES, INC.

David L. Green **Geologist**

Cc: file

LUST File Review 12/20/01 R. Caron

Site Name:

University Auto Center

Site ID:

1829

Address:

8th and Pearl, Ellensburg

County:

Kittitas

Reference:

UST Site Assessment Report, University Auto Center, Ellensburg, WA.,

White Shield, Inc., December 1992.

Summary:

Two 500 gallon waste oil tanks were removed from the site in November

1992. The excavated area was approximately 6 feet x 10 feet, and 7 feet

deep.

No waste oil was detected in soil samples (bottom and 4 side-wall) from the excavated area that were screened in the field using TLC screening. No groundwater was encountered during excavation. One sample from the bottom of the excavation and two composite samples from the side walls were analyzed using WTPH-418.1. Results indicated that heavy oils were not present in these samples at concentrations greater than MTCA Method A levels for soil. Additional soil samples were taken from the soil stockpile on site. Heavy oil concentrations ranged from 648 ppm to 1158 ppm.

The report indicated that the stockpiled soil was removed from the site and was to be transported to the John Clef property, located approximately 9 miles east of Kittitas for treatment by landfarming.

Action:

It is my recommendation, based on the information contained in the report listed above, that this site be listed as Reported Cleaned Up. Reasons for this include the fact that soil samples taken after PCS was removed from the tank excavation indicate that heavy oils are not present at concentrations above MTCA Method A levels for soil.

(12/90)

ECY 010-182

UNDERGR JND STORAGE TANK

Permanent Closure/Change-In-Service Checklist

Underground Storage Tank Sect DEPARTMENT OF ECOLOGY

U0000162

The purpose of this form is to certify the proper closure/change-in-service of underground storage dank (UST) systems. These activities must be conducted in accordance with Chapter 173.360 WAC. Washington Stane CLASTON These require the tank owner or operator to notify Ecology in writing 30 days prior to closure or change-in-service of tanks. This must be done by completing the 30 Day Notice form (ECY 010-155).

This Permanent Closure Checklist shall be completed and signed by a Licensed Decommissioning Supervisor. The supervisor shall be on site when all tank permanent closure/change-in-service activities are being conducted. The firm which employs the licensed supervisor shall also be licensed by the Washington State Department of Ecology as a Service Provider. If any of the activities listed below have been supervised by a different licensed supervisor, a separate checklist must be filled out and signed by the licensed supervisor performing those activities.

For further information about completing this form, please contact the Department of Ecology UST Program.

A separate checklist must be completed for each UST system (tank and associated piping), except that UST systems at one site may be reported together by completing page 2 of this form separately for each system. The completed checklist should be mailed to the following address within 30 days of the completion of the closure or change-in-service.

Department of Ecology UNDERGROUND STORAGE TANKS Mail Stop PV-11 Olympia, WA 98504-8711 DEC 1 4 1992 1. UST SYSTEM OWNER AND LOCATION igniversity Auto Site Owner/Operator: Owners Address: 9892 (Telephone: Site ID Number (on invoice or available from Ecology if tank is registered):

1 WasTanil (00 1829)

2 WasTanil university Auto Site/Business Name: Site Address: 2. TANK PERMANENT CLOSURE/CHANGE-IN-SERVICE PERFORMED BY: Hev-Ex Inc. License Number: 5002062 Firm: Address: 98926 (509) 925-9338 Telephone: Mihe SmiTh Decommissioning License Number: WOO 1441 Licensed Supervisor: page :

This page must be completed separately for each tank permanently closed (decommissioned) or change-in-service at the site. For additional tanks you may photocopy this form prior to completing.

bø8e g	\$		CX 010-162 (15/80)
		99 9 90	Date Comes or Authorited Representative
			26-8-21
			Date Signalure of Licensed Service Provider (firm) Owner or Authoritzed Representative
			They want to the second
	(Personal Control of the Control of		ADDITIONAL REQUIRED SIGNATURES
			Date Signature of Ucensed Supervisor
			That a time of the contract of
os pu	sivities ar ans anoit	iosure ac iosure ac	om not applicable ereby certify that I have been the licensed supervisor present on site during the above listed permanent best of my knowledge they have been conducted in compliance with all applicable state and federal lar seedures pertaining to underground storage tanks. sons submitting false information are subject to penalties under Chapter I ₁ 73.360 WAC.
		N	and federal regulations?
		_	of Washington's dangerous waste regulations (Chapter 173-303 WAC)? It removed, was tank properly labeled and disposed of in accordance with all applicable local, state
10	идаты		Have all sludges removed from the tank been designated and disposed of in accordance with the state of WACDA
St.Fee	-2510-45049		Have all tank openings been plugged or capped? NOTE: One plug should have 1/8 inch vent hole.
	1 1 1	1	Have the drop tube, fill pipe, gauge pipe, pumps and other tank fixtures been removed?
		/	Has the tank been properly purged or inerted?
		1	Have all liquid and accumulated sludges been removed from the tank?
		1	Have all non-product lines been capped or removed?
		1	Has all product piping been capped or removed?
		1	Has all liquid been removed from product lines?
ΑN	elow.	ppears b	Each item of the following checklist shall be initialed by the licensed supervisor whose signature s
	1,7,4	Şin.	CHECKLIST
101	വരണ്കുടവ	att thiw	Unless an external release detection system is operating at the time of closure or change in service, and a report is p 173-360-390, a site assessment must be conducted. This site assessment must be conducted by a person registered Ecology to perform site assessments. Results of the site assessment must be included with the Site Assessment Cha
			Has a site assessment been completed? Yes
			Always contact local authorities regarding permit requirements.
			Local permit(s) (if any) obtained from: Ellansburg fixes Dept
	(6		If change-in-service, indicate new substance stored in tank:
			If in-place closure is used, the tank has been filled with the following substance:
	PIVICE	a&-ni-agn	Type of closure: Closure with Tank Removal Cha
_ '	81 101	<u>Λ</u> :eɔivı	Last substance stored: Was feed: Was feed: Date of closure/change-in-se
		1.	Tank capacity in gallons: A - 500 4. Date of last use: 10 - 4
		ए का छा।	belleteri year 6
11	niaga, Z	e - 1	TANK CLOSURE/CHANGE-IN-SERVICE INFORMATION

Underground Storage Tank Permit

S	P & B & B B B B B B B B B B B B B B B B	verage Provided ternational Mail	If the permit should be sent to an address different from the owner's, please ECY 010-165 place a correctly addressed mailing label over the address shown above.	Owner: Name: University Auto center	Signal elges of the signal of	Official Title	print or Tacco = 1+05 JUL 1 1991	enalty of law that the underground attributed of law that the underground attributed of small and the ments.	
00, June 1990	O., State & ZIP Code Ellensbus ostage sertified Fee special Delivery Fee Return Receipt Showing o Whom & Date Delivered Return Receipt Showing to Whom, Date, & Address of Delivery OTAL Postage & Fees Postmark or Date			Space for owner to locality with the pro-	identify thank to product distribut	992 ank Id.	Ellensbury ma 989	ECOLOGY Strat Pearl St.	Site Location: Un Jersity Auto Center

PRIVATE 00

APPENDIX G

Documentation of Terrestrial Ecological Evaluation

Terrestrial Ecological Evaluation Process-Simplified or Site-Specific Evaluation?

Documentation Form

	Terrestrial Concern	Response (Circle One)
*1	Is the site is located on or directly adjacent to an area where management or land use plans will maintain or restore native or semi-native vegetation?	Yes /No
*2a	Is the site used by a <u>threatened or endangered</u> <u>species?</u>	Yes /No
*2b	Is the site used by a <u>wildlife species classified by the</u> <u>state department of fish and wildlife as a "priority</u> <u>species" or "species of concern"</u> under Title 77 RCW?	Yes /No
*2c	Is the site used by a plant species classified by the Washington state department of Natural Resources natural heritage program as "endangered," "threatened," or "sensitive" under Title 79 RCW.	Yes /No
*3	Is the site (area where the contamination is located) located on a property that contains at least ten acres of native vegetation within 500 feet of the area where the contamination is located?	Yes /No
4	Has the department determined that the site may present a risk to significant wildlife populations?	Yes ANO

^{*1} This includes for example, green-belts, protected wetlands, forestlands, locally designated environmentally sensitive areas, open space areas managed for wildlife, and some parks or outdoor recreation areas. This does not include park areas used for intensive sport activities such as baseball or football.

^{*2}a What are the threatened or endangered species in Washington state?

^{*2}b Which plant species are classified as threatened, endangered, or sensitive? Where can I find out more information about this topic?

^{*2}c For plants, "used" means that a plant species grows at the site or has been found growing at the site. For animals, "used" means that individuals of a species have been observed to live, feed or breed at the site.

^{*3} For this analysis, do not include native vegetation beyond the property boundary.

The following sources shall be used in making this determination: Natural Vegetation of Oregon and Washington, J.F. Franklin and C.T. Dyrness, Oregon State University Press, 1988, and L.C. Hitchcock, C.L. Hitchcock, J.W. Thompson and A. Cronquist, 1955-1969, <u>Vascular Plants of the Pacific Northwest(5</u> volumes). Areas planted with native species for ornamental or landscaping purposes shall not be considered to be native vegetation. [WAC 173-340-7491(2)(c)(i)]

(Here's a link to the <u>Seattle Public Library</u> and the <u>Washington State</u> <u>Library</u> to borrow a copy of Natural Vegetation of Oregon and Washington, J.F. Franklin and C.T. Dyrness, Oregon State University Press, 1988, or you may purchase it through your favorite bookseller. Here's an additional link to a useful online <u>Field Guide to Selected Rare</u> <u>Plants of Washington</u> developed by the Washington State Department of Natural Resources' Natural Heritage Program (WNHP) and the Spokane District of the U.S.D.I. Bureau of Land Management (BLM) which contains fact sheets for 139 vascular plant species and one lichen species.

Here is an aid to calculating area and an aerial photo depicting a site, its 500 foot boundary and several labeled circles identifying various areas for reference in judging the area of native vegetation within the 500 foot radius.

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

[TEE Home]

Table 749-1 Simplified Terrestrial Ecological Evaluation-Exposure Analysis Procedure

Estimate the area of contiguous (connected) <u>undeveloped larea</u> area of the site to the nearest 1/2 acre (1/4 acre if the area is			feet of any
1) From the table below, find the number of points corresponding to the area and enter this number in the field to the right.			
Ken's Texaco, 120061, 101 University Ave, Ellensburg WA	Area (acres)	Points	
on's readed, 120001, for oniversity Ave, Elichsburg WA	0.25 or less	4	
Site Minimum points = 5	0.5	5	
Site score = 9	1.0	6	
Simplified TEE Exposure Analysis Procedure is complete.	1.5	7	
	2.0	8	
	2.5	9	
	3.0	10	
	3.5	11	
	4.0 or more	12	
2) Is this an <u>industrial</u> or <u>commercial</u> property? If yes, enter a score of 3. If no, enter a score of 1			
3) ^a Enter a score in the box to the right for the habitat quality of the site, using the following rating system ^b . High=1, Intermediate=2, Low=3			
4) Is the undeveloped land likely to attract wildlife? If yes, enter a score of 1 in the box to the right. If no, enter a score of 2^{c}			
5) Are there any of the following soil contaminants presendioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin, cendosulfan, endrin, heptachlor, benzene hexachloride, toxa pentachlorophenol, pentachlorobenzene? If yes, enter a scright. If no, enter a score of 4.	hlordane, dieldrin, aphene, hexachlorob		4
6) Add the numbers in the boxes on lines 2-5 and enter this right. If this number is larger than the number in the box of evaluation may be ended.			9

Notes for Table 749-1

Low: Early <u>successional</u> vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.

^a It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score of (1) for questions 3 and 4.

^b **Habitat rating system.** Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

High: Area is ecologically significant for one or more of the following reasons: Late-<u>successional</u> native plant communities present; relatively high species diversity; used by an uncommon or rare species; <u>priority habitat</u> (as defined by the Washington Department of fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.

Intermediate: Area does not rate as either high or low.

[Area Calculation Aid] [Aerial Photo with Area Designations] [TEE Table 749-1] [Index of Tables]

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]

^c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use b mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.