RECEIVED

FEB - 8 1995

DEPT. OF ECOLOGY

GROUNDWATER MONITORING REPORT: APRIL - JUNE 1994

FORMER CHEVRON SERVICE STATION NO. 60090709 4211 PRESTON-FALL CITY ROAD SE FALL CITY, WASHINGTON

JUNE 13, 1994

Prepared for:

Chevron U.S.A. Products Company Site Assessment and Remediation Group 20500 Richmond Beach Drive NW Seattle, Washington 98177 Prepared by:

Groundwater Technology, Inc. 19033 West Valley Hwy, Suite D-104 Kent, Washington 98032

Steve Hartman Staff Geologist

Mark E. Nichols

Project Manager/Hydrogeologist

TABLE OF CONTENTS

1.0	INTRO 1.1 1.2	DDUCTION Purpose Scope of Work Scope Scope <th>1 1 1</th>	1 1 1
2.0	METH 2.1 2.2 2.3	HODS Groundwater Measurements Sampling Protocol Sample Analyses	2 2 2
3.0	RESU 3.1 3.2	JLTS	3
TABL	ES.		
	1	Well Casing and Groundwater Elevations	
	2	Groundwater Chemical Analyses Results	
FIGU	RES		
	1	Site Location Map	
	2	Site Plan	
	3	Groundwater Elevations and Contours	
APPE	NDICE	ES CONTRACTOR OF THE PROPERTY	
	Α	Field Monitoring and Sampling Data	
	В	Laboratory Analysis Test Results Laboratory QA/QC Chain-of-Custody	

GROUNDWATER MONITORING REPORT APRIL - JUNE 1994 FORMER CHEVRON SERVICE STATION #60090709 4211 PRESTON-FALL CITY ROAD SE FALL CITY, WASHINGTON

1.0 INTRODUCTION

1.1 Purpose

The results of routine groundwater monitoring and sampling for the former Chevron service station #60090709 are presented in this report. The site is located at 4211 Preston-Fall City Road SE in Fall City, Washington. The site location map and site plan are shown in Figures 1 and 2, respectively. The objectives of the monitoring and sampling activities are to evaluate groundwater quality and to monitor the movement of petroleum compounds that may be present on site. Groundwater Technology conducted site work and prepared this report in accordance with Chevron U.S.A. Products Company specifications NW-101692SEP for routine groundwater monitoring. The field work activities discussed in this report were performed on May 12, 1994.

1.2 Scope of Work

The work steps completed during this reporting period are listed below.

- Measured total well depth, depth to groundwater, thickness of separate-phase hydrocarbons (if present), and calculated groundwater elevations relative to an assumed site datum.
- Obtained groundwater samples from selected monitoring wells (MW-1, MW-2, MW-3, MW-4 and MW-5) during the site visit for chemical analysis.
- Treated and disposed on-site water generated during this well purgings. Prior to discharge to soil, the groundwater collected during purging was treated by filtering the water through two canisters of granular activated carbon connected in series.

2.0 METHODS

2.1 Groundwater Measurements

Groundwater measurements were obtained using an Oil Recovery Systems, Inc. Interface ProbeTM. The probe and measuring tape were cleaned using Alconox and distilled water prior to use at each well. Water level measurements were used to calculate groundwater elevations relative to the site datum. Water level measurements were made from the top of casing of each well and are accurate to approximately 0.01 feet.

2.2 Sampling Protocol

Those monitoring wells selected for sampling, which contained less than 0.02 feet of separate-phase hydrocarbons, were purged by bailing approximately three (3) well volumes, or until dry, prior to sampling. Each well was purged using a clean, unused disposable bailer or by pumping using a diaphragm-pump and clean, dedicated suction-tubing.

Wells which recharged slowly were allowed to recover to within 60 percent of the static water level, prior to sample collection, or for two hours, whichever came first.

The wells were sampled in order of least to most contaminated, if data were available to determine the order. Each well was sampled within 24 hours of purging.

The samples were decanted into properly prepared, laboratory-supplied containers and stored for shipment to the laboratory in cooled containers. A chain-of-custody form was filled-out and accompanied the samples to the laboratory. A laboratory-supplied, travel blank was sent with each sample set. Copies of field forms used to record monitoring and sampling data are included in Appendix A.

2.3 Sample Analyses

Per Chevron specifications, samples collected from this site were analyzed by EPA or Washington State methods as follows:

- Volatile aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylenes (BTEX), by EPA Method 8020.
- Total petroleum hydrocarbons-as-gasoline (TPH-G) by EPA Method 8015, modified.

3.0 RESULTS

3.1 Groundwater Measurements

The depth to groundwater at the site ranged from approximately 17.15 to 17.66 feet below grade level. The apparent groundwater flow direction is northeasterly with a gradient of approximately 0.01. Groundwater elevations and contours are shown in Figure 3. Groundwater elevations and measurements for this reporting period and previous monitoring or sampling dates are summarized in Table 1.

3.2 Analytical Findings

Benzene and TPH-G concentrations were detected in samples from monitoring wells MW-1, MW-2, MW-4, and MW-5. Concentration ranged from 20 ppb to 180 ppb for benzene and 140 to 1200 ppb for TPH-G.

Phase-separated hydrocarbons were not detected in the monitored wells during this site visit. Model Toxics Control Act, Compliance Cleanup Levels - Method A [MTCA-CCLs (a)] and analytical results for this sampling event are summarized in Table 2. The laboratory method detection limits for this sampling event are also shown in Table 2. Complete laboratory results are included in Appendix B.

TABLES

Table 1 WELL CASINGS AND GROUNDWATER ELEVATIONS CHEVRON SERVICE STATION #60090709 4211 PRESTON-FALL CITY ROAD SE, FALL CITY, WASHINGTON

		1	1					
WELL I.D.	DATE	TOC (feet)	DTW (feet)	WTE (feet)				
MAI 4	11/11/100	98.88	12.20	86.68				
MW-1	11/14/90 01/03/91	98.88	16.60	82.28				
	01/03/91	98.88	13.27	85.61				
	01/25/91	98.88	17.71	81.17				
	09/05/91	98.88	20.18	78.70				
	01/10/92	98.88	19.07	79.81				
	02/14/92	97.16	17.87	79.29				
	12/18/92	97.16	17.69	79.47				
	01/18/93	97.16	19.63	77.53				
	05/27/93	97.16	17.31	79.85				
	11/22/93	97.16	18.56	78.60				
	05/12/94	97.16	17.66	79.50				
MW-2	11/14/90	98.90	12.11	86.79				
IVIVV-2	01/03/91	98.90	18.55	80.35				
	01/16/91	98.90	13.15	85.75				
	01/25/91	98.90	17.54	81.36				
-	09/05/91	98.90	20.01	78.89				
	01/10/92	98.90	18.93	79.97				
	02/14/92	96.99	17.56	79.43				
	12/18/92	96.99	17.38	79.61				
·	01/18/93	96.99	19.37	77.62				
-	05/27/93	96,99	17.00	79.99				
	11/22/93	96.99	18.31	78.68				
	05/12/94	96.99	17.41	79.58				
MW-3	11/14/90	99.24	12.15	87.09				
10100-3	01/03/91	99.24	18.78	80.46				
_	01/16/91	99,24	13.22	86.02				
	01/25/91	99.24	17.78	81.46				
	09/05/91	99.24	20.26	78,98				
	01/10/92	99.24	19.29	79,95				
	02/14/92	97.08	17.78	79.30				
	12/18/92	97.08	17.61	79.47				
	01/18/93	97.08	19.56	77.52				
	05/27/93	97.08	17.15	79.93				
	11/22/93	97.08	18.47	78.61				
	05/12/94	97.08	17.59	79.49				
MW-4	11/14/90	99.25	11.86	87.39				
	01/03/91	99.25	18.39	80.86				
	01/16/91	99.25	13.00	86.25				
	01/25/91	99.25	17.37	81.88				
	09/05/91	99.25	· 19.89	79.36				
	01/10/92	99.25	18.82	80.43				
	02/14/92	97.58	17.68	79.90				
-	12/18/92	97.58	17.43	80.15				
	01/18/93	97.58	19.52	78.06				
	05/27/93	97.58	17.15	80.43				

Table 1 WELL CASINGS AND GROUNDWATER ELEVATIONS CHEVRON SERVICE STATION #60090709 4211 PRESTON-FALL CITY ROAD SE, FALL CITY, WASHINGTON

WELL I.D.	DATE	TOC (feet)	DTW (feet)	WTE (feet)
A 0 A 7	11100100	07.50	40.50	70.00
MW-4 cont.	11/22/93	97.58	18.59	78.99
	05/12/94	97.58	17.64	79.94
MW-5	11/14/90	98.25	11.42	86.83
	01/03/91	98.25	17.98	80.27
	01/16/91	98.25	12.50	85.75
	01/25/91	98.25	16.99	81.26
	09/05/91	98.25	19.49	78.76
	01/10/92	98.25	18.40	79.85
	02/14/92	97.06	17.31	79.75
•	12/18/92	97.06	17.07	79.99
	01/18/93	97.06	19.11	77.95
	05/27/93	97.06	16.80	80.26
	11/22/93	97.06	18.14	78.92
	05/12/94	97.06	17.22	79.84

DTW - Depth to water

TOC = Top of casing & groundwater elevations expressed as feet above mean sea level.

WTE = Water table elevation

FALCTY-W.WK1

Table 2 GROUNDWATER CHEMICAL ANALYSES RESULTS CHEVRON SERVICE STATION #60090709 4211 PRESTON-FALL CITY ROAD SE, FALL CITY, WASHINGTON

WELL I.D.	DATE	BENZENE (ppb)	TOLUENE (ppb)	ETHYL- BENZENE (ppb)	XYLENES (ppb)	TPH-G (ppb)	TPH-D (ppb)	TPH-O (ppb)	TPH-418.1 (ppm)
MTCA-CCLs(a)		5	40	30	20	1000	1000	1000	1
MDL		0.5	0.5	0.5	0,5	100	-	==	<u>.</u>
MW-1	01/16/91	185	6	47_	52	1200	ND	ND	1.2
	09/05/91	28	9	18	23	1800	ND		
	09/05/91	28	8	17	21	1800	ND		
	01/10/92	ND	2	6	9	430	ND		 -
	01/18/93	89	10	9	17	1330	300	ND	
	05/27/93	31	1.8	4.5	9.1	1200			
	11/22/93	8.1	2.3	3.9	. 8.0	1200			
	05/12/94	20	ND	3.7	3.6	1200			
						0.400	ND.	44000	
MW-2	01/16/91	995	137	6	71	3100	ND	14600	7.4
	09/05/91	62	4	6	10	900	ND		
	01/10/92	ND	ND	1	ND	94	ND		
Duplicate	01/10/92	ND	ND	1	ND	110	ND		
	01/18/93	38	ND	ND	ND	ND	ND	ND	
	05/27/93	23	1	1	2.4	360 1100			
	11/22/93	98	2.8	4.1 ND	15 7.5	180			
	05/12/94	98	2.5	עא	7.5	100			
MW-3	01/16/91	3	ND	ND.	2	ND	ND		9800
	09/05/91	0.3	ND	ND	ND	ND	ND		
	01/10/92	ND	ND	ND	ND	ND	ND		-
	01/18/93	ND	ND	ND	ND	ND	ND	ND	
	05/27/93	ND		ND	ND	ND			
	11/22/93	ND		ND		ND			-
	05/12/94	ND	ND	ND		ND			

Table 2 GROUNDWATER CHEMICAL ANALYSES RESULTS CHEVRON SERVICE STATION #60090709 4211 PRESTON-FALL CITY ROAD SE, FALL CITY, WASHINGTON

WELL I.D.	DATE	BENZENE (ppb)	TOLUENE (ppb)	ETHYL- BENZENE (ppb)	XYLENES (ppb)	TPH-G (ppb)	TPH-D (ppb)	TPH-O (ppb)	TPH-418.1 (ppm)
MTCA-CCLs(a)		5	40	30	20	1000	1000	1000	1
MDL		0.5	0,5	0,5	0,5	100			
MW-4	01/16/91	560	9	24	25	ND	ND	ND	ND
	09/05/91	820	17	110	280	2900	ND		
	01/10/92	640	6	. 13	120	1400	ND		
·	01/18/93	850	4	46	178	900	ND	ND	
	05/27/93	1000	15	80	240	1400		=-	
Dilution	11/22/93	810	4.1	98	380	1600			
Dilution	05/12/94	180	1.1	27	90	600			
MW-5	01/16/91	653	12	47	50	ND	ND	ND	ND
	09/05/91	2900	130	230	890	6900	ND		
Duplicate	01/16/91	625	12	45	49				
	01/10/92	150	3	4	40	540	ND		
	01/18/93	702	9	22	145	730	ND	ND	
Dilution	05/27/93	210	3,1	21	62	400			
Dilution	11/22/93	1100	9.6	66	200	1400			
	05/12/94	66	ND	2.7	17	140			

ppb = Parts per billion

ppm = Parts per million

TPH-G = Total petroleum hydrocarbons as gasoline (ppb)

TPH-D = Total petroleum hydrocarbons as diesel (ppb)

TPH-O = TPH as oil (EPA Methods 3510/8015/Washington DOE Method WTPH-D extended)

TPH-418.1 = TPH by EPA Method 418.1 (ppm)

-- = Not sampled or groundwater not detected.

MTCA-CCLs(a) = Model Toxics Control Act, Compliance Cleanup Levels, Method A

MDL = Method Detection Limits

Dilution = Diluted at laboratory. See laboratory report for method detection limit.

FALCTY-C.WK1

FIGURES

APPENDIX A FIELD MONITORING AND SAMPLING DATA

JDE#	<u> </u>		 	GROUND				SAMPLIN	IG DATA	linamusen i urinen se n	adnes
Address:					CHEVRO	N SITE N	O. 6009-0	709			
4211 Preston-l	Fall City Rd.										
Fall City, WA	40.									5-12	-94
Sampling Person	nel:										·
MONITORING	MW-3	MW-2	MW-5	MW-4	MW-1						
WELL#								ļ			1
General Data						 -					
Time						•					
DTB	23	24	21	22	23	-					
DTP											
DTW	17.59	17.41	17.22	17.64	17-66	-	- 				
WC	5,41	6.59	3.78	4.36	5.34		 	-		<u> </u>	
Purge Data		- :2 /		7 . 7	7 . 7				-		
Method	DiB	DB	DB	013	DB		 		-		
Gal. Purged	D 13	3.5	7	OB 2	DB 3 3						
# Casing Vol.	3	3.4	3	3	3						
				- 			<u> </u>				
Sampling Data											
Date	5,12.94	5.12.94	517.94	5.12-94	5-17-94		-				
Time	1:00	1210	11 70		1:40	•					
Technique	12.13	DB.	DB	DB	DB	`	-				
Preservation	401	401	HOI	HCI	401						
Other	Ice	I Cl	Ice	ICC	Ice	•					
Observation											
Sheen (y/n)	Ŋ	Ν	N	N	N	-					
Odor (y/n)	N St	N	N N	N	λ/						
1		,		, <u>, , , , , , , , , , , , , , , , , , </u>						_	
Well Condition											
(good/poor)	6	G	G	0-	P			•			
Locked (y/n)	. Y	4	4	Y	V			·			
Labs:	-1		1		7						
BTEX	X	X	X	X	X	-					
TPHG	X	X	X	X	X						
-				-						/)
NOTES/ABBRE	V.:		COMMEN	rs:		,				1	
DTW = DEPTH			MW	1 2"	OUC NE	Lds ,	to be 1	aises	alrone	Cement	
DTP = DEPTH	************	T									
DTB = DEPTH					<u>-</u>		•				
WC = WATER O		****		• • •							
DB = DISPOSA											
DP = DIAGPHR			· · · · · · · · · · · · ·								
DI - DIAGETIN	MINI FUNIF.		L,								

APPENDIX B

LABORATORY ANALYSIS TEST RESULTS
LABORATORY QA/QC
CHAIN-OF-CUSTODY

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335

Karen L. Mixon, Laboratory Manager

RECEIVED JUN - 1 1994

ATI I.D. # 9405-092

№ y 26, 1994

Groundwater Technology, Inc. 19033 West Valley Highway 5 ite D-104

I nt WA 98032

1 tention : Mark Nichols

Project Number: 020604446

I oject Name : Chevron-Fall City

laine M. Walker

Dear Mr. Nichols:

(May 12, 1994, Analytical Technologies, Inc. (ATI), received six samples for analysis. The samples were analyzed with EPA methodology equivalent methods as specified in the attached analytical schedule. ! e results, sample cross reference, and quality control data are enclosed.

I ease note that this report has a summary report for the fuels analyses. 12 you have any questions, please call.

g ncerely,

Liaine M. Walker Project Manager

L_W/hal/mrj

1 closure

ATI I.D. # 9405-092

SAMPLE CROSS REFERENCE SHEET

CLIENT : GROUNDWATER TECHNOLOGY, INC.

PROJECT # : 020604446

PROJECT NAME : CHEVRON-FALL CITY

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9405-092-1	MW-3	05/12/94	WATER WATER WATER WATER WATER WATER
9405-092-2	MW-2	05/12/94	
9405-092-3	MW-5	05/12/94	
9405-092-4	MW-4	05/12/94	
9405-092-5	MW-1	05/12/94	
9405-092-6	TB-LB	N/A	

---- TOTALS ----

MATRIX # SAMPLES
WATER 6

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ATI I.D. # 9405-092

ANALYTICAL SCHEDULE

CLIENT : GROUNDWATER TECHNOLOGY, INC.

PROJECT # : 020604446

PROJECT NAME : CHEVRON-FALL CITY

ANALYSIS	TECHNIQUE	REFERENCE	LAB
BETX	GC/PID	EPA 8020	R
TOTAL PETROLEUM HYDROCARBONS	GC/FID	WA DOE WTPH-G	R

R = ATI - Renton

SD = ATI - San Diego

PHX = ATI - Phoenix PNR = ATI - Pensacola

FC = ATI - Fort Collins

SUB = Subcontract

Analytical Summary Report

Client: Groundwater Technology, Inc.

Project: Chevron-Fall City (020604446)

Analysis: WA DOE WTPH-0	G/8020(BETX)	Matrix:	WATER Units: 1	ig/L		
ATI Sample #: Client ID: Date Sampled: Date Extracted: Date Analyzed:	Method Blank N/A N/A	0 Method Blank N/A N/A 05/12/94	0 . Method Blank N/A N/A 05/13/94	1 MW-3 05/12/94 N/A 05/13/94	2 MW-2 05/12/94 N/A 05/13/94	3 MW-5 05/12/94 N/A 05/13/94
Benzene Ethylbenzene Toluene Total Xylenes Gasoline (Toluene to Dodecane	<0.5 <0.5 <0.5 <0.5)<100	<0.5 <0.5 <0.5 <0.5 <100	<0.5 . <0.5 . <0.5 . <100	<0.5 <0.5 <0.5 <0.5 <100	98 <0.5 2.5 7.5 180	66 2.7 <0.5 17 140
Surrogate Recoveries (%)						
Bromofluorobenzene Trifluorotoluene	106 106	109 106	107 104	107 106	105 104	106 103
ATI Sample #: Client ID: Date Sampled: Date Extracted: Date Analyzed:	MW-4 05/12/94 N/A	5 MW-1 05/12/94 N/A 05/13/94	6 TB-LB N/A N/A 05/13/94			
Benzene Ethylbenzene Toluene Total Xylenes Gasoline (Toluene to Dodecane	180 D3 27 1.1 90	20 3.7 <0.5 3.6 1200	0.7 <0.5 2.0 0.9 <100		. ·	
Surrogate Recoveries (%)					•	
Bromofluorobenzene Trifluorotoluene	105 104	111 104	103 104			
Surrogate Limits: (BFB:76-120 D3 Value from a five fol	0 TFT:50-150) d diluted analysis.					

Quality Control Summary Report

Client: Groundwater Technology, Inc.

Project: Chevron-Fall City (020604446)

Analysis: WA DOE WTPH	-G/8020(BEI	A)	М								
Extracted: N/A	А	nalyzed: 05/1	1/94	S	ample ID: Bla	nk					
Compound	Sample Result	Duplicate Result	RPD	Spike Added	Spike Result	Spike %Rec	Spike Dup. Result	Spike Di %Rec	ıp. RPD	Limits %Rec	Limit RPD
	<0.500	o seed	N/A	20.0	19.7	99	N/A N/A	N/A	N/A	89-110	10
BENZENE Toluene	<0.500	N/A N/A	N/A	20.0	18.5	93		N/A	N/A	89-113	10
				40.0	36.6	92	N/A	N/A	N/A	89-111	10
TOTAL XYLENES	: 리크램(프리크) - (프리트)			1000	987	99	N/A	N/A	N/A	78-116	20
GASOLINE	<100	N/A	N/A	1000	987	99	N/A	IN/A	IN/A	76-110	20
Quality Control Surrogate Re	coveries (%)										
Compound	Sample	Sp	ike	Spik	e Dup.	Limits					
BROMOFLUOROBENZENE	106					76-120					
			0	N/A							
Analysis: WA DOE WTPH	106 - G/8020(BET	10 (X)		N/A latrix: WATE		50-150		Blank S	pike/Bla	nk Spike Du	plicate
	-G/8020(BET	(X)	М	N/A latrlx: WATE		50-150 ug/L		Blank S	pike/Bla	nk Spike Du	plicate
	-G/ 8020 (BET	(X) Analyzed: 05/1	М	N/A latrix: WATE S	R Units:	50-150 ug/L	Spike Dup.			nk Splke Du	plicate Limit
Analysis: WA DOE WTPH Extracted: N/A	-G/8020(BET	(X)	М	N/A latrlx: WATE	R Units:	50-150 ug/L	Spike Dup. Result	Blank S Spike Di %Rec			
Analysis: WA DOE WTPH Extracted: N/A Compound	-G/8020(BET A Sample Result	(Nalyzed: 05/1 Duplicate Result	M 2/94 RPD	N/A latrix: WATE S Spike Added	R Units: ample ID: Bla Spike Result	50-150 ug/L nk Spike	Result	Spike D	up. RPD	Limits	Limit
Analysis: WA DOE WTPH Extracted: N/A Compound BENZENE	Sample Result	Analyzed: 05/1 Duplicate Result N/A	2/94 RPD N/A	N/A latrix: WATE S Spike Added 20.0	R Units: ample ID: Bla Spike Result 20.2	50-150 ug/L nk Spike %Rec 101	Result N/A	Spike D %Rec N/A	ıp. RPD N/A	Limits %Rec	Limi [,] RPD
Analysis: WA DOE WTPH Extracted: N/A Compound BENZENE TOLUENE	Sample Result <0.500 <0.500	Analyzed: 05/1 Duplicate Result N/A N/A	2/94 RPD N/A N/A	N/A latrix: WATE S Spike Added 20.0 20.0	R Units: ample ID: Bla Spike Result 20.2 19.0	50-150 ug/L .nk Spike %Rec 101 95	Result N/A N/A	Spike D %Rec N/A N/A	up. RPD N/A N/A	Limits %Rec 89-110	Limi RPD 10 10
Analysis: WA DOE WTPH Extracted: N/A Compound BENZENE TOLUENE TOTAL XYLENES	Sample Result <0.500 <0.500 <0.500	Duplicate Result N/A N/A N/A N/A	2/94 RPD N/A N/A N/A	N/A latrix: WATE Spike Added 20.0 20.0 40.0	R Units: ample ID: Bla Spike Result 20.2 19.0 37.9	50-150 ug/L .nk Spike %Rec 101 95 95	Result N/A N/A N/A	Spike Do %Rec N/A N/A N/A	IP. RPD N/A N/A N/A	Limits %Rec 89-110 89-113 89-111	Limit RPD 10 10 10
Analysis: WA DOE WTPH Extracted: N/A Compound BENZENE TOLUENE TOTAL XYLENES	Sample Result <0.500 <0.500	Analyzed: 05/1 Duplicate Result N/A N/A	2/94 RPD N/A N/A	N/A latrix: WATE S Spike Added 20.0 20.0	R Units: ample ID: Bla Spike Result 20.2 19.0	50-150 ug/L .nk Spike %Rec 101 95	Result N/A N/A	Spike D %Rec N/A N/A	up. RPD N/A N/A	Limits %Rec 89-110 89-113	Limi RPD 10 10
Analysis: WA DOE WTPH Extracted: N/A Compound BENZENE TOLUENE	Sample Result <0.500 <0.500 <0.500 <100	Duplicate Result N/A N/A N/A N/A	2/94 RPD N/A N/A N/A	N/A latrix: WATE Spike Added 20.0 20.0 40.0	R Units: ample ID: Bla Spike Result 20.2 19.0 37.9	50-150 ug/L .nk Spike %Rec 101 95 95	Result N/A N/A N/A	Spike Do %Rec N/A N/A N/A	IP. RPD N/A N/A N/A	Limits %Rec 89-110 89-113 89-111	Limi RPD 10 10 10
Analysis: WA DOE WTPH Extracted: N/A Compound BENZENE TOLUENE TOTAL XYLENES GASOLINE	Sample Result <0.500 <0.500 <0.500 <100	Analyzed: 05/1 Duplicate Result N/A N/A N/A N/A N/A	2/94 RPD N/A N/A N/A	N/A latrix: WATE Spike Added 20.0 20.0 40.0 1000	R Units: ample ID: Bla Spike Result 20.2 19.0 37.9	50-150 ug/L .nk Spike %Rec 101 95 95	Result N/A N/A N/A	Spike Do %Rec N/A N/A N/A	IP. RPD N/A N/A N/A	Limits %Rec 89-110 89-113 89-111	Limi RPD 10 10 10
Analysis: WA DOE WTPH Extracted: N/A Compound BENZENE TOLUENE TOTAL XYLENES GASOLINE Quality Control Surrogate Re	Sample Result <0.500 <0.500 <0.500 <100 ecoveries (%)	Analyzed: 05/1 Duplicate Result N/A N/A N/A N/A N/A	## A M	N/A latrix: WATE Spike Added 20.0 20.0 40.0 1000	R Units: Ample ID: Bla Spike Result 20.2 19.0 37.9 1010 e Dup.	50-150 ug/L .nk Spike %Rec 101 95 95 101	Result N/A N/A N/A	Spike Do %Rec N/A N/A N/A	IP. RPD N/A N/A N/A	Limits %Rec 89-110 89-113 89-111	Limi RPD 10 10

Quality Control Summary Report

Client: Groundwater Technology, Inc.

Project: Chevron-Fall City (020604446)

An		_				Blank Spike/Blank Spike Duplicate										
	alyzed: 05/13/	/94	S	ample ID: Blar	ık											
Sample	Duplicate		Spike	Spike	Spike	Spike Dup.	Spike Du		Limits	Limits RPD						
Result	Result	RPD	Added	Result	%Rec	Result	%Rec	RPD	%Rec							
<0.500										10 10						
<0.500	N/A			37.1	93	N/A	N/A	N/A	89-111	10						
<100	N/A	N/A	1000	1010	101	N/A	N/A	N/A	78-116	20						
veries (%)																
Sample	Spike	e	Spike	e Dup.	Limits											
107	107		N/A		76-120											
104	108				50-150					_						
/8020(BETX	()	M	atrix: WATE	l Units:	ug/L		Matrix Spl	ke/Mati	tx Spike Duj	olicate						
An	alyzed: 05/12,	/94	S	ample ID: 940	5-078-1											
Sample	Duplicate		Spike	Spike	Spike	Spike Dup.	-	•	Limits	Limits						
Result	Result	RPD	Added	Result	%Rec	Result	%Rec	RPD	%Rec	RPD						
<100	<100	NC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20						
overies (%)																
Sample	Sam	ple Dup.	Spik	e Dup.	Limits											
106	103	•	N/A		50-150											
6/8020(BETX	C)	M	atrix: WATE	R Units:	ug/L		Matrix Sp	lke/Mati	dx Spike Duj	olicate						
Αn	nalyzed: 05/11,	/94		ample ID: 940)5-068-1	_	-	•								
	-		Spike	Spike	Spike	Spike Dup.	Spike Du	p.	Limits	Limits						
Result	Result	RPD	Added	Result	%Rec	Result	%Rec	RPD	%Rec	RPD						
<0.500	N/A	N/A	20.0	19.7	99	19.4	97	2	86-113	10						
										10 10						
<100	<100	NC	1000	1010	101	991	99	2	80-113	20						
<100 <100 NC ntrol Surrogate Recoverles (%)																
Sample	Spik	e	Spik	e Dup.	Limits	_										
113	108		107		76-120 50-150											
	<0.500 <0.500 <0.500 <0.500 <100 veries (%) Sample 107 104 /8020(BET) An Sample Result <100 veries (%) Sample 106 /8020(BET) Ar Sample 106 /8020(BET) Ar Sample 106 /8020(BET) Ar Sample 106 /8020(BET) Ar Sample Result <0.500 <0.500 <0.500 <100 veries (%) Sample	<0.500 N/A <0.500 N/A <0.500 N/A <0.500 N/A <100 N/A veries (%) Sample Spike 107 107 104 108 /8020(BETX) Analyzed: 05/12 Sample Duplicate Result Result <100 <100 veries (%) Sample Sam 106 103 /8020(BETX) Analyzed: 05/11 Sample Duplicate Result Result <0.500 N/A <0.500 N/A <0.500 N/A <100 <100 veries (%) Sample Sam Sample Duplicate Result Result <0.500 N/A <0.500 N/A <0.500 N/A <100 <100 veries (%) Sample Spike 113 108	<0.500 N/A N/A N/A <0.500 N/A N/A N/A <0.500 N/A N/A N/A N/A <100 N/A	Co.500	<0.500 N/A N/A 20.0 20.2 <0.500 N/A N/A 20.0 18.9 <0.500 N/A N/A 40.0 37.1 <100 N/A N/A 1000 1010 veries (%) Sample Spike Spike Dup. 107 107 N/A N/A 108 N/A //B020(BETX) Matrix: WATER Units: Analyzed: 05/12/94 Sample ID: 940 Sample Duplicate Spike Spike Result Result RPD Added Result <100 <100 NC N/A	<0.500 N/A N/A 20.0 20.2 101 <0.500 N/A N/A 20.0 18.9 95 <0.500 N/A N/A 40.0 37.1 93 <100 N/A N/A 1000 1010 101 veries (%) Sample Spike Spike Dup. Limits 107 107 N/A 50-150 //8020(BETX) Matrix: WATER Units: ug/L Sample Duplicate Spike Spike Spike Spike Result Result RPD Added Result %Rec <100 <100 N/A N/A N/A 50-150 Sample Duplicate Spike Spike Spike Spike Result %Rec <100 <100 NC N/A	<0.500 N/A N/A 20.0 20.2 101 N/A <0.500 N/A N/A 20.0 18.9 95 N/A <0.500 N/A N/A 40.0 37.1 93 N/A <	<0.500 N/A N/A 20.0 20.2 101 N/A N/A 20.500 N/A N/A 20.0 18.9 95 N/A N/A 40.500 N/A N/A 40.0 37.1 93 N/A N/A N/A 20.0 1010 101 N/A	<0.500 N/A N/A 20.0 20.2 101 N/A N/A N/A N/A N/A <0.500 N/A N/A 20.0 18.9 95 N/A N/A N/A N/A <0.500 N/A N/A 40.0 37.1 93 N/A	<0.500 N/A N/A 20.0 20.2 101 N/A N/A N/A 89-110 <0.500 N/A N/A 20.0 18.9 95 N/A N/A N/A 89-113 <0.500 N/A N/A 40.0 37.1 93 N/A N/A N/A 89-113 <0.500 N/A N/A 1000 1010 101 N/A N/A N/A 89-113 <0.500 N/A N/A N/A 40.0 37.1 93 N/A N/A N/A N/A 89-116						

		Chov	ron Facili	ty Numb	or	- <u>-</u>	00	9-	U	<u>(0)</u>		-		-	—	-		 Chovro	n Co	ntacl	(Non	no) _			<u> </u>	<u>-</u> //\	<u>-</u> K.		 <u>\</u> y_!e.	1. J.		
Chevron U.S 20500 Richmond Bea	och Drive N.VI.	Cons		ty Address	. 0	70	Y~/	24	440	0							- - \	aboro	itory	Name Relea	(Pho	nuper ∖∀Ր oue) =	Υ <i>Τι</i>	CAI	54	16 - TEC 4	C) HM 3 b	5. OLC 2	30 30	ES	INC.	<u> </u>
Seattle, WA FAX (206)54		A	oultant Project Co															Collect	don D	atg 🚙	<u> </u>	12	- /	7		16-0530 TECHNOLOGIES, INC. 436230 VE Scray						_
		<u> </u>	·	(P	omo) <u> </u>	62	51	544	11	Fax 1	lumb	or) <i>2</i> (26 2	25/	845	52_	- 5	Signat	ure	1	ž~	ع	g.	1:1	y						_	
lumber	Sample Rumbor	Number of Containors	A = Air	G = Grab C = Composite D = Discrete		Sample Preservation (1)	or No)	TPH-G/BTEX (8015 mod./8020)	3020)	a			la Instructions	TPH-IR (418.1)					or Dissokrad LEAD	ned					/						7405-09	12
Sample Number	Lab Sam	Number	Matrix S = Soll W = Water	2775 2000	Time	Sample	lcod (Yes	TPH-6/E (8015 m) XIII	TPH-HCI State:	TPH-G State:	TPH-D State:	TPH Spec	TPH-IR (418.1)	Purgeable (8010)	Purgedb (8020)	Purgedb (8240)	Extracto (8270)	Total and/ State:												Remarks	
MW-3	1 4	13	W	q	1.00	V	У	/																	<u> </u>	\perp	\perp	_	-			
MW-2	2	13	W	d	1:10	/	у	✓			ļ			-											<u> </u>	-	-	_	-			
MW-5.	3	13	W_	d	1:26	1	ļу			ļ			_		ļ			 					-			\vdash	+	+	-	+		
MW-4		13	W	d	1:35		<u>y</u>	V				 	_	ļ		<u> </u>		<u> </u>	<u> </u>	<u> </u>	-		 -		 	-	+			+		_
MW-1	\$	113	W	9	1:40	-	Y	1		<u> </u>		ļ	_	-				-	 	├			-			-	+	- -	+	\dashv		
TB-LB	6	13	W	d			 y	-			-					· .	· ·		-	-	-	-		<u> -</u> -	-	+-			-	\dashv		
						-						-							<u></u>													
															_			_		ļ	-	-		_	-			_	-	-		
		ļ	<u> </u>	ļ			-	-	-	-	-		-	<u> </u>		_		-		-	 	ļ -	 		-	+	+		_	\dashv		
	<u> </u>	-				+	-		-	-			ļ						-	-		+		-			-					
																								•						_		
Rollingulation By	(Signpture)		1 -	anization	- 1		/Tim	•i!!:	28	`#	Z	B) (1	X					A	alzatlo		5	5-(2	_	4.28			Turn	Aro	2	1mo		
Relinquished By - Relinquished By	(Signature)			anization		Date	/Tim	•				For I		ture) atory	Ву (Slgna		Orgar 	nizatio			Date/ Date/							10	Do D Do	ys	