

Options for Cleaning Up Colville Post & Poles

Comments accepted:

November 29 – December 30, 2021

Submit comments:

Online at https://tcp.ecology.commentin put.com/?id=3bk4Q Or by mail or email to: Jeremy Schmidt, site manager 4601 North Monroe Street Spokane, WA 99205 Jeremy.Schmidt@ecy.wa.gov

Review documents online:

https://fortress.wa.gov/ecy/gsp/Sitepage.aspx?csid=46

Due to coronavirus, in-person document reviews are not currently available. Please contact Erika Beresovoy at erika.beresovoy@ecy.wa.gov or 509-385-2290 if you need printed documents.

Facility Site ID: 765 Site Cleanup ID: 46

Site address: 396 Highway 395 North, Colville, Stevens County

Draft contamination and cleanup options report available for public review and comment

The Washington State Department of Ecology (Ecology) seeks your input on the draft Remedial Investigation and Feasibility Study (RI/FS) Report for the Colville Post & Poles cleanup site (site). The RI documents the extent and locations of pentachlorophenol (PCP), diesel, and dioxin contamination in soil and groundwater at the site. The FS evaluates cleanup options.

The nearly 23-acre site is within 200 feet of the Colville River, which flows into Lake Roosevelt, a reservoir created by the Grand Coulee Dam on the Columbia River.

Site history

Colville Post & Poles, Inc., used the site to treat wood, primarily fence posts and rails, for about 60 years from the 1940s to 2005. Throughout the wood-treating period, PCP and diesel leaked from piping and drip pads. In 1989, a 10,000-gallon, above-ground storage tank leaked PCP to the ground.

In 2000, the Confederated Tribes of the Colville Reservation petitioned the U.S. Environmental Protection Agency (EPA) to assess contamination at the site. Colville Post & Poles, Inc., closed down in 2005 when the owners couldn't afford upgrades required to meet environmental standards.

To address immediate threats to people and the environment, the EPA took action in 2005 and 2006. They investigated the site, demolished treatment and storage buildings, installed groundwater monitoring wells, and excavated and safely disposed of some contaminated soil, debris, and drummed wastes.

Toxics Cleanup Program

The Eastern Washington Clean Sites Initiative funds this cleanup because the former site owners/operators are unable pay for it. The funding cleans up abandoned sites to create healthier communities. The money comes from the state's voter-approved tax on hazardous substances.

When funding became available in 2015, Ecology took steps toward completing site cleanup. We removed debris in and around surface water and concrete footings in the area where wood was treated, temporarily stockpiled debris as necessary, and did an initial assessment of soil and groundwater contamination. Five groundwater samples contained PCP and diesel at levels requiring cleanup.

Ecology completed the RI/FS to find out how much contamination remains and evaluate final cleanup options.

Investigations findings

The RI found that PCP and dioxin are spread across shallow soil throughout the site. The greatest impacts are observed in the former process area, along with several spots in the south stockpile area and a drainage channel.

A PCP-contaminated groundwater plume extends from the former process area to the western property line. The PCP plume's western margin is not completely defined, as it likely extends off-site. Diesel- and dioxin-contaminated groundwater is only present in the former process area.

Groundwater seeping into the Colville River is not affecting river water quality.

Cleanup options

Three cleanup options, called "alternatives" in the FS, were developed for soil, and four cleanup options were developed for groundwater.

Soil cleanup options

All soil cleanup options include disposing of the debris piles at a facility permitted to accept the waste. Contamination in the wetland areas would also be capped with 12 inches of clean soil because excavating the wetlands would be too disruptive to this sensitive habitat. Excavated areas would be replanted in all cleanup options, too.

- 1. Soil washing, estimated cost = \$21,985,231. Contaminated soil would be excavated and compiled at an on-site treatment area. A solvent that captures contaminants would be used to wash the soil. The washed soil would be sampled to verify the process was effective. The solvent would be treated and recycled, and the removed contaminants would be disposed off-site. Washed soil would be mixed with beneficial amendments and returned to the excavated areas. However, Ecology was concerned that soil washing wouldn't meet cleanup standards. After the draft RI/FS was completed, the effectiveness of this method was pilot-tested. That test showed that soil washing could not clean up the soil, so Ecology decided it is not a viable option.
- **2. Excavation and off-site disposal, estimated cost = \$26,820,847.** Contaminated soil would be excavated and disposed at the chemical waste facility in Arlington, Oregon.
- **3. On-site treatment, estimated cost = \$25,266,986.** Contaminated soil would be excavated and compiled at an on-site treatment area. Contaminants in the soil would be destroyed with thermal treatment by using heating electrodes and vapor recovery. Treated soil would be sampled to verify the process was effective, mixed with beneficial amendments, and returned to the excavated areas.

Groundwater cleanup options

All groundwater cleanup options include a monitoring program that would continue until groundwater quality met standards set to protect people and the environment.

1. Monitoring contamination as it decreases naturally, estimated cost = \$360,000. This option doesn't protect people or the environment, so we will not choose it.

- **2. Pump and treat, estimated cost = \$1,310,006.** Groundwater would be pumped to the surface and treated with activated carbon. The treated water would then be pumped back underground or into the Colville River so the water table would not be depleted.
- **3. Bioremediation, estimated cost = \$2,095,700.** Chemicals that stimulate microbes that consume PCP would be injected underground. Injections would be repeated until groundwater met standards.
- **4. Permeable reactive barrier, estimated cost = \$1,486,973.** A trench would be dug and the excavated soil mixed with zero-valent iron. This would be placed back into the trench to create the barrier. Contaminants in the groundwater react with the iron, which filters out the contaminants, cleaning the groundwater and leaving behind dissolved iron. Eventually the barrier would be excavated and disposed off-site.

Next steps

Ecology will hold an online public meeting to discuss the RI/FS if 10 or more people request it. After the comment period, we will respond to the comments we received, publish our responses online, and send them to the people who commented (if contact information was provided).

Then, we will use our assessment of the RI/FS and public input to draft a cleanup action plan. The draft plan will be available for public review and comment before becoming final.

Colville Post and Poles Conceptual Site Model

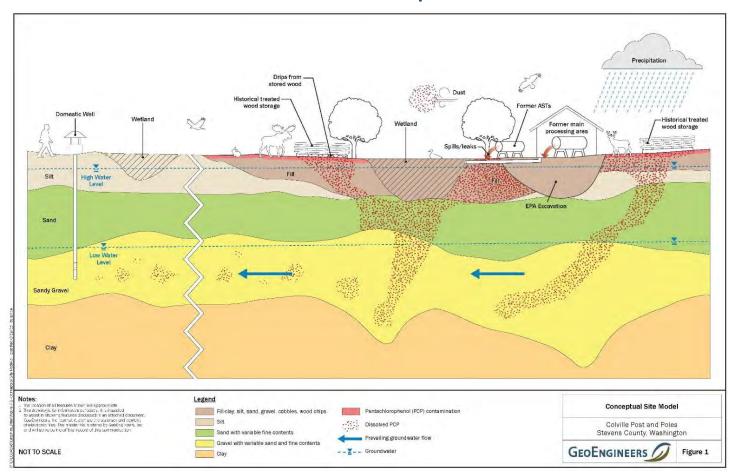
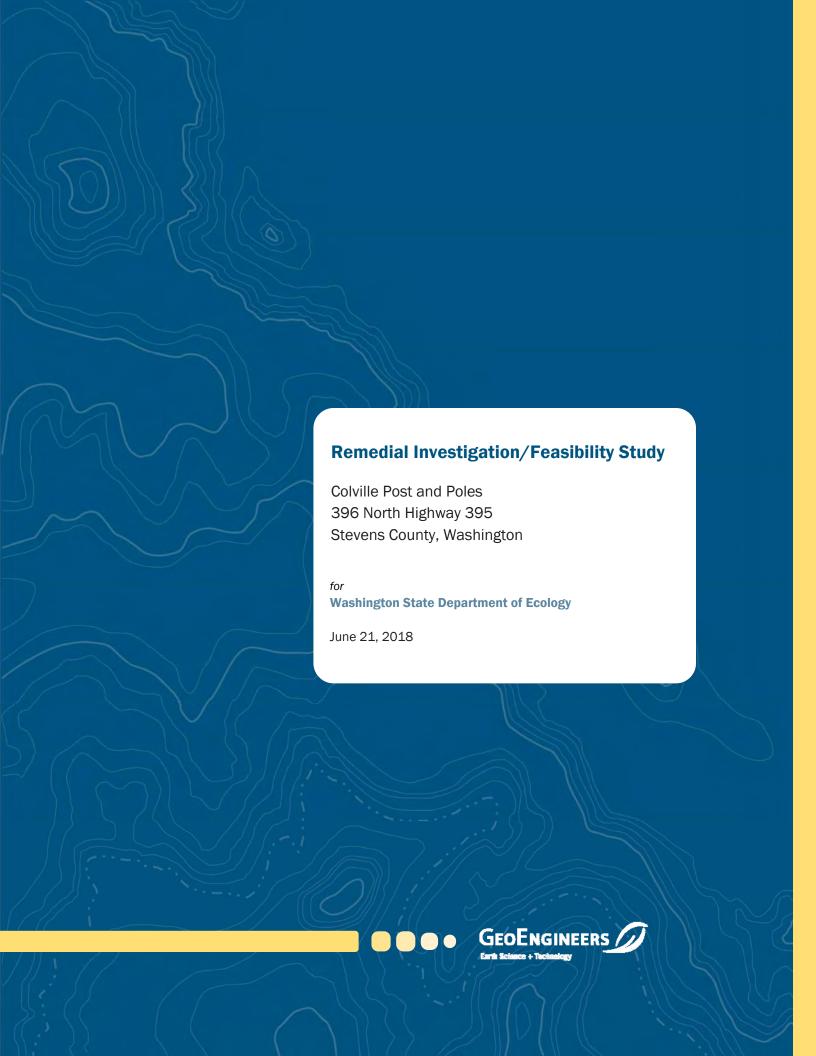



Figure 1. Model showing how the site became contaminated.

Remedial Investigation/Feasibility Study

Colville Post and Poles 396 North Highway 395 Stevens County, Washington

for Washington State Department of Ecology

June 21, 2018

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Remedial Investigation/Feasibility Study

Colville Post and Poles 396 North Highway 395 Stevens County, Washington

File No. 0504-098-01 June 21, 2018

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program – Eastern Regional Office 4601 North Monroe Street Spokane, Washington 99205

Attention: Jeremy Schmidt, PE

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Scott H. Lathen, PE

Environmental Engineer

Bruce D. Williams

Principal

SHL:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

EXEC	CUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1
1.1.	General Site Information	1
	Site History	
1.3.	Site Use	2
2.0	GEOLOGY AND HYDROGEOLOGY	2
2.1.	Regional Geology	3
	Site Geology	
	Site Hydrogeology	
	Wetlands	
	PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS	
	CURRENT SITE CHARACTERIZATION	
5.0	INDICATORS OF HAZARDOUS SUBSTANCE AND SCREENING LEVELS	9
5	5.1.1. Screening Levels	10
	5.1.1.1.Soil	
5	5.1.1.2.Groundwater	11
6.0	NATURE AND EXTENT OF CONTAMINATION	12
6	S.1.1. Soil	12
	S.1.2. Sediment	
_	S.1.3. Groundwater	
	S.1.4. River Bank Seeps S.1.5. Background and ROW Dioxin Samples	
	- · · · · · · · · · · · · · · · · · · ·	
	CONCEPTUAL SITE MODEL	
	Potential Exposure Pathways and Receptors	
	Shallow Surface Soil and Sediments	_
	Surface Water	
	PROPOSED CLEANUP STANDARDS	
	AREAS REQUIRING REMEDIATION	
	SUMMARY	
	FEASIBILITY STUDY INTRODUCTION	
	DEVELOPMENT OF REMEDIAL ACTION ALTERNATIVES	
	Remedial Action Objectives	
	General Categories of Response Actions and Initial Screening	
	L2.2.1. NO ACTION	
	L2.2.3. Engineering Controls	
	.2.2.4. Off-Site Disposal	

12.2.5. Treatment	19
12.3.Feasibility Study Considerations	19
12.4.Identification and Description of Cleanup Action Alternatives	19
12.4.1. Soil Alternative 1 – Soil Washing	21
12.4.2. Soil Alternative 2 - Excavation and Off-Site Disposal	22
12.4.3. Soil Alternative 3 - Thermal Desorption	23
12.4.4. Groundwater Alternative 1 - Monitored Natural Attenuation	24
12.4.5. Groundwater Alternative 2 - Pump and Treat	24
12.4.6. Groundwater Alternative 3 - Enhanced In-Situ Bioremediation	24
12.4.7. Groundwater Alternative 4 - Permeable Reactive Barrier	25
13.0 MTCA EVALUATION CRITERIA	25
13.1.Threshold Requirements	25
13.1.1. Protection of Human Health and the Environment	
13.1.2. Compliance with Cleanup Standards	26
13.1.3. Compliance with Applicable State and Federal Laws	
13.1.4. Provision for Compliance Monitoring	
13.2.0ther Requirements	26
13.3.MTCA Disproportionate Cost Analysis	27
13.3.1. Protectiveness	27
13.3.2. Permanence	27
13.3.3. Long-Term Effectiveness	27
13.3.4. Management of Short-term Risks	28
13.3.5. Implementability	
13.3.6. Consideration of Public Concerns	28
13.3.7. Cost	28
14.0 EVALUATION AND COMPARISON OF CLEANUP ALTERNATIVES	2 9
14.1.Threshold Requirements	29
14.2.MTCA Disproportionate Cost Analysis	
14.3.Protectiveness	
14.3.1. Soil	31
14.3.2. Groundwater	
14.4.Permanence	
14.4.1. Soil	
14.4.2. Groundwater	31
14.5.Long-Term Effectiveness	32
14.5.1. Soil	32
14.5.2. Groundwater	32
14.6.Management of Short-Term Risks	32
14.6.1. Soil	32
14.6.2. Groundwater	32
14.7.Technical and Administrative Implementability	33
14.7.1. Soil	
14.7.2. Groundwater	33
14.8.Consideration of Public Concerns	33

	l	
	oundwater	
	le Restoration Timeframe	
	oundwater	
	Call	
14.10.1. 14.10.2.	SoilGroundwater	
15.0 RECOMME	ENDED REMEDIAL ACTIONS	
	NS	
	DES	
LIST OF TABLES		00
=	osed Soil Screening Levels	
•	osed Groundwater Screening Levels	1
	Chemical Analytical Results - Total Petroleum Hydrocarbons, Metals and Pentachloroph	ienoi
	Chemical Analytical Results – Dioxins and Furans TEQ	
	mary of Groundwater Elevations and Field Quality Parameters	
	ndwater Chemical Analytical Results – Total Petroleum Hydrocarbons and	
Pentachlorophe		
	ndwater Chemical Analytical Results - Dioxins and Furans TEQ nmary of Quantities Used in Feasibility Study	
	nparison of Retained Remediation Alternatives - Soil	
	nparison of Retained Remediation Alternatives - Groundwater	
Table 13-1. Sum		
	luation of Cleanup Action Alternatives - Soil	
	luation of Cleanup Action Alternatives - Groundwater	
	nmary of MTCA Evaluation and Ranking of Cleanup Action Alternatives - Soil	
	nmary of MTCA Evaluation and Ranking of Cleanup Action Alternatives - Groundwater	
	rnative 1: Soil Washing - Soil	
Table 14-6. Alte	rnative 2: Excavation and Off-site Disposal - Soil	
Table 14-7. Alte	rnative 3: Thermal Desorption - Soil	
Table 14-8. Alte	rnative 1: Monitored Natural Attenuation - Groundwater	
Table 14-9. Alte	rnative 2: Pump and Treat - Groundwater	
Table 14-10. Alt	ternative 3: Enhanced In-Situ Bioremediation - Groundwater	
Table 14-11. Alt	ternative 4: Permeable Reactive Barrier - Groundwater	
LIST OF FIGURES	s	
Figure 1-1. Vicin	nity Map	
E. 40 III.	a deal Oile One sellengel Assessment Ones et language	

- Figure 1-2. Historical Site Operational Areas and Current Layout
- Figure 2-1. Estimated Top of Clay Looking West
- Figure 2-2. Depth to Top of Clay Layer
- Figure 2-3. Cross Section A-A'
- Figure 2-4. Cross Section B-B'
- Figure 2-5. Cross Section C-C'

LIST OF FIGURES (CONTINUED)

- Figure 2-6. Cross Section D-D'
- Figure 2-7. Wetland Delineations
- Figure 3-1. Explorations and Sampling Locations
- Figure 3-2. Phase II Removal Action Area (Fall 2006)
- Figure 3-3. Interim Action Site Plan
- Figure 4-1. Background Dioxins/Furans January 2017
- Figure 6-1. Surface (<2 ft bgs) Soil Screening Level Exceedances
- Figure 6-2. Subsurface (>2 ft bgs) Soil Screening Level Exceedances
- Figure 6-3. Approximate Groundwater Contamination Extent
- Figure 7-1. Conceptual Site Model
- Figure 9-1. Proposed Remediation Areas
- Figure 12-1. Soil Remediation Alternatives
- Figure 12-2. Groundwater Remediation Alternatives

APPENDICES

- Appendix A. Historical Data
 - Table A-1. Surface Soil Analytical Results
 - Table A-2. Subsurface Soil Chemical Analytical Results
 - Table A-3. Sediment Analysis Results
 - Table A-4. Groundwater Chemical Analytical Results
 - Table A-5. Surface Water Chemical Analytical Results
 - Table A-6. Confirmation Sampling Analytical Results
 - Figure A-1. Surface Soil Assessment Sample Locations
 - Figure A-2. Surface Soil Assessment Sample Locations Petroleum Hydrocarbons Concentrations
 - Figure A-3. Surface Soil Assessment Sample Locations PCP Concentrations
 - Figure A-4. Surface Soil Assessment Sample Locations Dioxin Concentrations
 - Figure A-5. Groundwater Sample Locations
 - Figure A-6. Groundwater Sample Locations Petroleum Hydrocarbon Concentrations
 - Figure A-7. Groundwater Sample Locations PCP Concentrations
 - Figure A-8. Subsurface Soil Sample Locations
 - Figure A-9. Subsurface Soil Sample Locations Petroleum Hydrocarbon Concentrations
 - Figure A-10. Subsurface Soil Sample Locations PCP Concentrations
 - Figure A-11. Sediment and Surface Water Sample Locations
 - Figure A-12. Phase I Removal Action Area January 2005
 - Figure A-13. Phase II Removal Action Area Fall 2006
- Appendix B. Pre-RI Assessment Data
 - Table B-1. Summary of Interim Action Field Activities
 - Table B-2. Summary of Soil Chemical Analytical Results SVOCs
 - Table B-3. Summary of Soil Chemical Analytical Results TPH, PAHs and PCP
 - Table B-4. Summary of Groundwater Chemical Analytical Results SVOCs
 - Table B-5. Summary of Groundwater Chemical Analytical Results PAHs, PCP and TPH
- Appendix C. Field Procedures
- Appendix D. Terrestrial Ecological Evaluation
- Appendix E. Laboratory Results and Data Validation
- Appendix F. FS Supporting Documentation and Cost Estimate Calculations

ACRONYMS AND ABBREVIATIONS

ARAR - Applicable or Relevant and Appropriate Requirements

AST – above-ground storage tank

ASTM - American Society for Testing and Materials

bgs - below ground surface

BNSF - Burlington Northern-Santa Fe

CAP - Cleanup Action Plan

COC - chemicals of concern

CPPI - Colville Post and Poles, Inc.

CSM - conceptual site model

CUL - cleanup level

CY - cubic yards

DCA - Disproportionate Cost Analysis

DNAPL - dense non-aqueous phase liquid

DRPH - diesel-range petroleum hydrocarbons

Ecology - Washington State Department of Ecology

EPA - United States Environmental Protection Agency

ev - electron volt

ft/ft - feet per foot

ft/day - feet per day

GAC - granular activated carbon

GRPH - gasoline-range petroleum hydrocarbons

HDPE - high density polyethylene

IHS - indicators of hazardous substance

LDR - Land Disposal Restriction

mg/kg - milligrams per kilogram

μg/kg - microgram per kilogram

MNA - Monitored Natural Attenuation

MTCA - Model Toxics Control Act

NFA - No Further Action

ng/kg - nanogram per kilogram

NWTPH-Dx - Northwest Total Petroleum Hydrocarbon - Diesel Range

ORP - oxidation/reduction potential

ORPH - oil-range petroleum hydrocarbons

PAH - polycyclic aromatic hydrocarbons

PCP - pentachlorophenol

pg/g - picograms per gram

ACRONYMS AND ABBREVIATIONS (CONTINUED)

PID – photoionization detector

ppm - parts per million

PRB - Permeable Reactive Barrier

PQL - practical quantification limit

RA - remedial action

RAL - remediation action level

RI/FS - remedial investigation/feasibility study

RAO - Remedial Action Objective

ROW - right-of-way

RSE - removal site evaluation

SAP - sampling and analysis plan

SL - screening level

SS - shallow sediments

SVOC - semi-volatile organic compounds

TEE - terrestrial ecological evaluation

TEQ - toxicity equivalent

TestAmerica - TestAmerica Laboratories, Inc.

VOC- volatile organic compound

WAC - Washington Administrative Code

WM - Waste Management

WSDOT - Washington State Department of Transportation

ZVI - zero valent iron

EXECUTIVE SUMMARY

A Remedial Investigation/Feasibility Study (RI/FS) was conducted for the former Colville Post and Poles facility (Site) located at 396 Highway 395 near Colville in Stevens County, Washington. The RI summarizes previous and recent site characterization activities to evaluate soil and groundwater contamination. The FS evaluates, compares and quantifies several remedial alternatives for both soil and groundwater. The RI/FS has been prepared in accordance with the Model Toxics Control Act (MTCA) and complies with the Washington State Department of Ecology (Ecology) guidance documents for preparing an RI and an FS.

The Site was operated as a wood-treating facility from the 1940s until January 2005. Multiple characterizations and remedial actions have occurred at the Site from 1989 to present day. The initial investigation was in response to an above-ground storage tank rupture and release of wood-treating solution to soil and groundwater.

In 2005, the US Environmental Protection Agency (EPA) conducted Phase I and Phase II investigations and remedial actions to address volatile organic compounds, pentachlorophenol (PCP), polycyclic aromatic hydrocarbons (PAHs), heavy oil and dioxin soil impacts. As part of these actions, Site structures were demolished, contaminated material and soil was excavated and disposed, and groundwater was monitored. Based on the analytical results, contaminant action levels were established for PCP and dioxins in soil. By 2009, the groundwater plume appeared to have stabilized and EPA ceased remedial actions.

In 2015, GeoEngineers prepared a Pre-RI evaluation for Ecology that included advancing direct-push borings in selected areas across the Site including the western property boundary, former process area, and wood waste pile. In general, soil analyte concentrations (gasoline-range petroleum hydrocarbons [GRPH], diesel-range petroleum hydrocarbons [DRPH], oil-range petroleum hydrocarbons [ORPH], PAHs and PCP) were reported below the MTCA Method B cleanup levels. Groundwater analyte concentrations for DRPH and PCP were greater than the MTCA Method B cleanup levels; notably in the process area and along an apparent groundwater plume extending from the former process area to the western property boundary.

Further assessment in 2016 included advancing 69 borings across the Site, including 53 shallow borings to depths up to 2 feet below ground surface. Soil samples were field screened and collected from each boring for laboratory analysis except MW-30, MW-31 and MW-32, due to saturated conditions. Fifteen groundwater monitoring wells were installed in selected borings and sampled on a quarterly basis from November 2016 through May 2018. Additionally, two seeps discharging from the wetland areas to the Colville River were sampled. Impacted soils were not encountered in the monitoring well borings, except at one location within the former process area.

Based on these latest assessment results, PCP concentrations remain in groundwater above cleanup levels, and appear to extend beyond the Site's western property boundary. Dioxins/furans are present in shallow soil (less than 18 inches below grade) across most of the Site, including wetland areas. Additionally, DRPH and PCP concentrations exceed cleanup levels in soil in the former process area and in several smaller areas within or near the former stockpile areas.

To meet the proposed cleanup standards at the Site, an FS was conducted in accordance with WAC 173-340-350(8) to evaluate cleanup alternatives. As part of a site-wide remediation strategy, remedial alternatives were separated into soil and groundwater remediation alternatives, with a few common

cleanup alternatives. Primary indicators of hazardous substance (IHSs) for soil are generally limited to dioxins and furans in the upper 18 inches of soil (with limited diesel and PCP hotspots). Primary IHSs for groundwater include PCP and diesel.

Common to each remedial alternative is disposal of non-hazardous debris piles at the Site and the approach to remediation of the existing Category 2 wetlands. Debris will be disposed of as non-hazardous waste at either Waste Management's Graham Road Facility in Medical Lake, Washington or at the Stevens County Landfill.

The remediation strategy for the wetlands is thin-layer placement (thin capping) in areas exceeding an ecological risk-based remediation level (RL) for dioxin. Six inches of clean soil will be placed in wetlands exceeding the RL. This remedial approach is designed to preserve the important ecological functions that the existing wetlands and riparian habitats provide threatened and sensitive species. Aggressive remediation strategies for the wetlands would heavily impact the wetlands, diminish their function and require long recovery times.

The selected remedial alternatives provide an appropriate range of permanent cleanup actions for the Site and include:

- Soil Alternative 1: Soil Washing
- Soil Alternative 2: Excavation
- Soil Alternative 3: Thermal Desorption
- Groundwater Alternative 1: Monitored Natural Attenuation (MNA)
- Groundwater Alternative 2: Pump and Treat
- Groundwater Alternative 3: Enhanced Bioremediation
- Groundwater Alternative 4: Permeable Reactive Barrier (PRB)

Each cleanup alternative was evaluated using the Disproportionate Cost Analysis (DCA) evaluation criteria as specified in WAC 173-340-360(2). Based on the DCA, remedial Soil Alternative 3: Thermal Desorption is the preferred alternative for soil remediation coupled with Groundwater Alternative 2: Pump and Treat for groundwater. Both of the selected options had the highest benefit rankings and the lowest estimated implementation costs. Estimated remediation costs for the selected soil and groundwater alternatives are \$25,000,000 and \$1,300,000 respectively for a total remediation cost of approximately \$26,300,000.

This summary is provided for general informational purposes and should not be solely relied upon. Please refer to the entire report to obtain a more comprehensive understanding of the RI activities and FS alternatives considered.

1.0 INTRODUCTION

This document presents the results of the Remedial Investigation/Feasibility Study (RI/FS) conducted at the former Colville Post and Poles, Inc. (CPPI) facility located at 396 Highway 395 North near Colville in Stevens County, Washington (herein referred to as the "site"). The site location is shown in Vicinity Map, Figure 1-1. Site soil and groundwater contamination have been documented during several previous assessments, including the recent pre-remedial investigation (pre-RI) site assessment (GeoEngineers 2016). Previous assessments and data evaluations indicate that site soil, sediment and groundwater contain contaminants at concentrations greater than Washington Model Toxics Control Act (MTCA) cleanup levels. This RI/FS addresses the magnitude and extent of contamination and evaluates and compares several remedial alternatives to ultimately achieve a No Further Action (NFA) designation.

The site is currently managed by the Washington State Department of Ecology (Ecology) under the 2015-2017 Clean Sites Initiative administered by Ecology's Eastern Regional Office Toxics Cleanup Program. Previous assessment and removal activities were primarily managed by the United States Environmental Protection Agency (EPA).

This RI/FS satisfies MTCA requirements and generally follows Ecology's RI and FS outlines (Ecology 2016). Data from previous investigations are summarized, recent groundwater monitoring results are presented, and a conceptual site model is developed within the RI portion of this document, which support the development of cleanup alternatives and identification of a preferred combination of two alternatives in the FS portion of this document.

1.1. General Site Information

CPPI is located approximately four miles northwest of Colville in Stevens County, Washington. The approximately 23-acre site is bound by Burlington Northern-Santa Fe (BNSF) Railroad and US Highway 395 to the north/northeast, the former Bonanza Mill site (a former metals beneficiation facility) to the east, the Colville River to the south and residential/agricultural land to the west, as shown in Historical Site Operational Areas and Current Layout, Figure 1-2. The site is generally flat, sloping towards the river and vegetated with native/invasive grasses, shrubs and trees. Delineated wetland areas following historical river meanders also are present.

Please note that the site, as referred to in this document, is limited to the 23-acre CPPI property. Prior work indicated groundwater was contaminated beneath the adjacent western and downgradient property. Access to this adjacent property for assessment and monitoring purposes within the RI was not permitted by the property owner; therefore, there is no current information to determine if contamination is still present west of the CPPI site. If and when access to the western property is approved, the definition and size of the site might change. Additional site information is provided in the table below.

GENERAL SITE INFORMATION

Site Information	Description
Site Name	Colville Post and Poles, Inc.
Site Address	396 Highway 395 North, near Colville, Washington
Ecology Regional Office	Eastern Region, 4601 North Monroe Street, Spokane, Washington 99205

Site Information	Description
Ecology Site Manager	Jeremy Schmidt, PE
Consultant	GeoEngineers, Spokane, Washington
Potentially Liable Person	Orphan site
Current Owner	Orphan site
Ecology Facility/Site ID	765
Cleanup Site ID	46
Public Land Survey System	NE ¼, NE ¼, Section 36, Township 36 North, Range 38 East

1.2. Site History

CPPI and its predecessors operated a wood-treating facility at the site from the late 1940s until January 2005. The facility treated various wood products using an approximately 95 percent diesel and 5 percent pentachlorophenol (PCP) heated solution. Solution components or mixtures were stored in aboveground storage tanks (ASTs); boiler fuel, waste oil and other materials were also stored in other tanks. Wood treatment took place in a dedicated treatment building in the north-central portion of the site. Freshly-treated wood products were placed above drip pads that collected and directed excess PCP solution into a 3,300-gallon sump. The recovered PCP solution was transferred to a separate storage tank for recycling.

Both treated and raw wood were stored in two areas; one to the northwest and another to the south of the main process area. Surface water runoff from the site (particularly around the process tanks) was directed to a pond south of the main facility. Decant water from the ponds was sprayed on adjacent pasture (exact location unknown) and retained oil was skimmed and recycled. Water recovered from the main process sump was filtered through woodchips and likely allowed to infiltrate or run off the ground surface at the site. Former key facility features are depicted in Depth to Top of Clay Layer, Figure 2-2.

Several early environmental investigations related to tank leaks and spill were conducted in the 1990s. In 2002, EPA began investigations that led site demolition and hotspot cleanup (primarily the main process area). Ecology began planning additional cleanup of the site in 2015 to address identified data gaps regarding the remaining contamination.

1.3. Site Use

Operations ceased in 2005 and site structures were demolished during subsequent remediation conducted by EPA. The site is currently undeveloped and vacant. Anticipated future site use is unknown; however, an environmental covenant, which might be established as part of the selected remedy, prohibits residential use of the site and restricts some types of activities (Ecology 2012). Stevens County would like to include this property in its flood management program.

2.0 GEOLOGY AND HYDROGEOLOGY

The following sections provide information regarding regional geology, site-specific geology and site hydrogeology.

2.1. Regional Geology

The site is situated within the Colville River valley which is part of the Northern Rocky Mountains Physiographic Region; defined by generally north-south trending mountain ranges and valleys. Bedrock in the area consists of Belt Supergroup metamorphic rocks overlain by metasedimentary rocks originally deposited when the area was covered by shallow oceans. Tectonic forces caused crustal melting and eventual emplacement of granitic batholiths such as the Selkirk Mountains. Crustal stretching caused local mountain uplifts and faults (Harrison et al. 1972). Recent glaciation covered the area, and with the retreat of the Columbia River Lobe of the ice sheet, meltwaters scoured the Columbia River and Colville River valleys. With further glacial retreat, the nascent Columbia and Colville Rivers reworked the morainal deposits and erosional metamorphic and granitic material from the adjacent uplands (Lewis et al. 2008).

2.2. Site Geology

Surface conditions in the main process area and northern and southern stockpile areas have been altered by placement of fill, consisting of imported fill and pit-run gravel. Fill ranges from 1 to 8 feet in thickness with the thickest fill in low-lying areas that corresponded with historical river meanders. Access roads on the site were also constructed of gravel. No filling occurred in the remainder of the site, except the wood waste pile (wood chips and bark) just south of the main process area and backfill following removal actions conducted by the EPA. Disturbed soils occur in the southern stockpile area and contain varying amounts of wood debris. The area adjacent to the river is relatively undisturbed and consists of alluvial soils (sand and gravels with some silts) deposited by the Colville River.

Subsurface conditions generally consist of unconsolidated alluvium from the Holocene Epoch. The alluvium is characterized by mostly unconsolidated silt, sand and gravel fill with some clay. Local deposits might include low-level terrace, marsh, peat, artificial fill and glacial deposits (Huntting et al. 1961).

Subsurface conditions encountered during previous assessments conducted by EPA and GeoEngineers' Pre-RI site assessment generally correlate with the Department of Natural Resources' geologic map (Colville quadrangle; 1:100,000). Available boring logs indicate subsurface conditions consist of interbedded sand, gravel and silt overlaying a clay unit. The clay unit was encountered at depths ranging between 10 and 24 feet below ground surface (bgs); and is reportedly at least 380 feet thick (Herrera 2005). This clay aquitard appears to be continuous beneath the site, potentially limiting the downward migration of dense, non-aqueous phase liquid (DNAPL) contaminants (like PCP). DNAPLs tend to pool within low points atop non-permeable units and once settled likely spread laterally through the more overlying porous materials.

A three-dimensional model based on topography data obtained from digital elevation models and data obtained from historical and recent borings was prepared to depict the top of the clay surface beneath the site (Estimated Top of Clay Looking West, Figure 2-1). The modeling was used to better visualize and focus on areas where DNAPL contamination might be present. Based on the model results, several elevational low spots in the top of clay exist at the following locations:

- Near the central portion of the site;
- Near the western property boundary; and
- Near two locations in the north-central portion of the site.

To further visualize the subsurface geology, GeoEngineers prepared cross sections generated from available boring logs from previous and current assessments along the transects shown in Figure 2-2. The geologic cross sections (Cross Sections A-A', B-B', C-C' and D-D') are presented in Figures 2-3 through 2-6, respectively.

2.3. Site Hydrogeology

Groundwater conditions were evaluated during EPA's assessment and remedial actions, and GeoEngineers' Pre-RI assessment. Previously, 19 groundwater monitoring wells (MW-1 through MW-4, W-01 through W-08, and MW-9 through MW-15) were installed throughout the site. Four additional wells (MW-16 through MW-19) were installed down-gradient of the site within adjacent properties to the west and northwest. The locations of these previously-installed monitoring wells are shown in the figures included in Appendix A.

A shallow aquifer underlies the site and surrounding area and consists of relatively coarse-grained alluvial sediment. Observed aquifer thickness ranges from about 3 to 15 feet and the top of the aquifer is as shallow as 2 feet below ground surface. The shallow aquifer generally is unconfined, though in places it appears to be confined by overlying silt. The shallow aquifer is underlain by a clay aquitard that underlies much of the Colville River valley and is hundreds of feet thick through much of the area (Kahle et. al. 2003).

Shallow groundwater flow direction beneath the site appears to fluctuate seasonally. During periods of low groundwater recharge (late summer and fall), the adjacent Colville River influences the shallow groundwater flow regime and groundwater flow direction across the site generally is west to northwest. During spring and early summer, abundant recharge from upland areas to the north and northeast site influences the shallow groundwater flow regime. During these periods, groundwater flow generally is directed to the southwest across the site.

Hydraulic gradient within the shallow aquifer beneath the site varies as a function of location. A steep gradient, on the order of 5×10^{-3} feet per foot (ft/ft) frequently was observed in the east portion of the site (between monitoring wells MW-28 and MW-35). Within the remainder of the site, observed hydraulic gradient was shallower, on the order of 8×10^{-4} ft/ft.

Localized groundwater flow in the unconfined aquifer is connected to and recharges the Colville River (Herrera 2005); Based on the observed groundwater flow regime, discharge from the shallow aquifer underlying the site to the Colville River likely occurs west to southwest of site boundaries.

2.4. Wetlands

Wetlands were identified in areas associated with former meanders of the Colville River. In 2005, Herrera Environmental Consultants, Inc. (Herrera) delineated an approximately 6.2-acre Category II wetland (Herrera 2005). Category II wetlands are those that, although not rare, provide important ecological functions that are difficult to replace. Herrera characterized the site wetlands as forested, scrub-shrub and emergent wetlands. The majority of the emergent wetland areas at the site are included in the National Wetlands Inventory. In Stevens County, this type of wetland requires a 150-foot buffer as a protective measure (Stevens County Code 13.30.020(6), 2003). No other wetlands were delineated by Herrera during the 2005 survey.

In 2015, GeoEngineers identified, delineated and assessed two additional onsite wetlands designated Wetland A and Wetland B (GeoEngineers 2016). Wetland A was classified as a palustrine emergent/scrub-

shrub/forested Category II wetland approximately 4.9 acres in size. Wetland B (0.1 acres) was classified as a palustrine emergent Category III wetland. An isolated portion of Wetland A north of the railroad tracks is connected to the main wetland by a ditch and culvert. Wetland B is a small isolated wetland within the former South Stockpile area. The Herrera delineated wetland and GeoEngineers Wetlands A and B locations are depicted in Wetland Delineations, Figure 2-7.

3.0 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

A chronological history of historical releases, assessments and remedial actions is presented below. Historical sampling locations for the investigations conducted for EPA are depicted in Explorations and Sampling Locations, Figure 3-1 and in Appendix A:

- 1989 A 10,000-gallon AST containing PCP wood-treating solution reportedly ruptured and released solution to the ground. There are no records indicating the release was addressed, except as documented below.
- 1991 Century West Engineering Corporation (Century West) conducted a limited site assessment and remediation focused near the ASTs. Soil and groundwater samples obtained during the assessment were contaminated with PCP and heavy oils. About 50 cubic yards (cy) of contaminated soil were excavated and stockpiled onsite (Century West Engineering 1991).
- 1991 Ecology subsequently collected soil samples from the treated-wood storage area near the dip tanks and potential run-off areas. Additionally, one sample was collected from a location considered as an unimpacted "background" area. The investigation concluded that soil contamination was restricted to the area near the ASTs (Ecology 1994).
- 1994 to 1997 CPPI's consultants (Total Consultants, Inc. and Techcon) assessed and remediated the area near the ASTs. Assessment activities included installing monitoring wells MW-1 through MW-4. Elevated phenols and heavy oil concentrations were measured in groundwater samples from MW-3. In 1997, about 150 cy of PCP-contaminated soil was excavated near the ASTs and stockpiled on-site. However, the final stockpile location was not documented. An additional 20 cy of contaminated soil was removed from near the treatment building and stockpiled at an unknown/undocumented location (Total Consultants 1994).
- 2002 Herrera conducted a removal site evaluation (RSE) for EPA that investigated contamination in surface soil, subsurface soil, sediment, groundwater and surface water. Free product was observed in the process area excavations, and surface soils contained elevated concentrations of polycyclic aromatic hydrocarbons (PAH), PCP, dioxins, petroleum hydrocarbons and volatile organic compounds (VOCs) (Herrera 2003, EPA 2009). Historical data are included in Appendix A.
- January 2005 Wood-treating operations ceased in January 2005, and shortly thereafter, EPA began a Phase I remedial action (RA). During the RA, EPA disposed of excess wood-treating solution from tanks and sumps, collected sediment and soil samples, and installed fencing around the process area to limit access and reduce the risk of direct-contact with contaminated materials (Herrera 2005). Areas that were excavated or capped are shown in Phase II Removal Action Areas (Fall 2006), Figure 3-2.
- June 2005 EPA returned to conduct a Phase II RSE. Surface soil samples (0 to 6 inches bgs), subsurface soil samples (1 foot to 11 feet bgs), and groundwater samples were collected. Eight new monitoring wells (W-01 through W-08) were also installed at this time. Ground-penetrating radar was

used to search the site for additional buried tanks (only a small pile of scrap metal was found in the South Stockpile Area). The Phase II RSE identified free product in the process area and a PCP groundwater plume extending westward from the process area, beneath the North Stockpile Area, and ultimately to the western property boundary. Petroleum hydrocarbons, PCP, and dioxin contamination were identified in subsurface and/or surface soils (Herrera 2005). Historical data are included in Appendix A.

- Fall 2006 EPA conducted a Phase II RA from September 2006 through March 2007. The contaminant action levels established for the RA included:
 - PCP in soil: 8 milligrams per kilogram (mg/kg), based on the MTCA Method B cleanup level (Method B CUL) at the time of the RA.
 - PCP in sediment: 0.36 mg/kg, based on research conducted by the Oak Ridge National Laboratory.
 - Dioxins/furans in soil: 1 microgram per kilogram (µg/kg).

EPA demolished the treatment and storage buildings. Contaminated debris (concrete and wood) and drummed wastes were disposed according to their contaminant levels at appropriate facilities. After building demolition, EPA's contractor excavated soil and sediment to the action levels noted above (Ecology and Environment 2009). Site excavations are shown in Figure 3-2 and include the following:

- Main Excavation Area Located in the process area near the treatment building. Confirmation samples from the sidewall and base of the excavation were analyzed using either a field screening kit or laboratory testing. The excavation measured about 165 feet by 50 feet and was about 9 feet deep. Free product was observed floating on infiltrated groundwater in the bottom of the excavation. Product recovery skimmers were used to capture about 300 gallons of free product. EPA ceased excavation activities in the main excavation area because of sidewall instability and infiltrating groundwater leaving contaminated soil in place. Field test kits and/or laboratory results indicated contaminant concentrations in 19 soil confirmation samples exceeded the established action levels for PCP.
- South Stockpile Area Contaminated soil mounds were present in this area, possibly from the historical remediation actions described above. Targeted excavations addressed specific locations where contaminated soil was encountered during the RSE assessments. Confirmation soil sample contaminant concentrations were less than the established action levels except for one sample location (associated with historical sample location SAWO8). Two additional sample locations adjacent to the wetlands contained dioxins at concentrations greater than the MTCA Method B CUL.
- North Stockpile Area Previous assessment data indicated contaminants in surface soil were spread across this area. Five sample locations contained dioxin concentrations greater than the MTCA Method B CUL. This area also was used during the RA as a contaminated stockpile staging area. After the stockpiles were disposed, about 6 inches of the underlying soil was removed from a large portion of this area. No confirmation samples were collected from this area following the additional soil removal.
- Drainage Area (Channel) The drainage area (described as a pond) located south of the process area was excavated until confirmation samples indicated the sediment PCP concentration was less than the established action level. The excavation was about 175 feet long by 50 feet wide and ranged between 1 and 4 feet in depth.

- Railroad Right of Way (ROW) A ROW section located north of the process area was previously used to store treated wood products. An area about 90 feet long by 10 feet wide and 2 feet deep was excavated. PCP concentrations in soil confirmation samples were less than the established action levels except in one sample location.
- Contaminated soil excavated from these areas was stockpiled, profiled and disposed. Approximately 4,811 tons of soil with PCP concentrations less than the land disposal restriction [LDR] limit of 74 mg/kg were disposed at Waste Management's Subtitle C landfill located in Arlington, Oregon (ChemWaste).
- Most of the stockpiled soil with PCP concentrations less than the LDR limit also contained dioxins/furans at concentrations greater than applicable LDR limits. To avoid the additional expense of treating this soil, a variance was obtained (based on adjusted concentrations using toxic equivalency factors) to directly dispose the soil at ChemWaste. However, 2,180 tons of soil with PCP concentrations greater than LDR limits required treatment prior to disposal at the same facility.
- Each excavated area (except the North Stockpile Area) was backfilled with imported pit-run gravel to approximately 1 foot below surrounding site grades. Imported topsoil was used to backfill the remaining 1-foot lift, including the North Stockpile Area, to match surrounding grades. The site was hydroseeded with a wild grass mixture in the spring of 2007.
- During backfill operations, six product recovery wells (RW-01 through RW-06) were installed in the process area to continue removal activities. The recovery wells operated from about December 2006 to October 2008, with about 21 liters of product recovered during the operational period. Additionally, 11 monitoring wells (MW-9 through MW-19) were installed to monitor groundwater conditions following the RA. Wells MW-9 through MW-15 were installed onsite and wells MW-16 through MW-18 were installed on the adjacent private property to the west. Monitoring well MW-19 was installed on private property to the northwest.
- June 2005 to August 2009 Groundwater monitoring was conducted from June 2005 to August 2009. In 2010, EPA concluded the groundwater plume had stabilized and contaminant concentrations were declining and decommissioned the 22 existing monitoring wells (MW-1, MW-2 and MW-4 [MW-3 was previously decommissioned]; W-01 through W-08; and MW-9 through MW-19) (E&E 2010).
- 2015 GeoEngineers, under contract with Ecology, conducted an Interim Action to address wetland permitting issues and remove and consolidate site debris. Removal and stockpile areas are depicted in Interim Action Site Plan, Figure 3-3. The consolidate site debris remains on the site and will be addressed during the remedial action.
- GeoEngineers also conducted a pre-RI assessment that included advancing 36 direct-push borings (DP-1 through DP-36) in select areas across the site including the western property boundary, process area, and wood waste pile area. Soil samples were collected at depths ranging from 8 to 25 feet bgs and were analyzed for petroleum hydrocarbons, PAHs, other semi-volatile organic compounds, and PCP. Dioxins/furans were not analyzed. Groundwater grab samples were collected from a subset of borings and analyzed for the same suite of chemicals as soil (GeoEngineers 2016). Chemical analytical data collected during the pre-RI assessment is presented in Appendix B.

4.0 CURRENT SITE CHARACTERIZATION

Recent site assessment activities were conducted to assess data gaps identified based on the historical sampling and remediation actions conducted by the EPA and the pre-RI assessment as described in the RI/FS Work Plan (GeoEngineers 2016b). Assessment actions primarily consisted of (1) installation and sampling groundwater monitoring wells and (2) shallow soil sampling. These data are discussed below; data collected prior to 2015 by the EPA are provided in Appendix A and the pre-RI assessment data is included in Appendix B. Figure 3-1 depicts the historical, pre-RI and RI sampling locations used to support the remedial investigation.

The sampling implemented based on the Final RI/FS Work Plan (GeoEngineers 2016b) addressed:

- Data gaps from previous investigations including the extent of elevated diesel-range petroleum hydrocarbons (DRPH), PCP, mercury and cadmium concentrations in sediment or shallow soil that were not addressed in EPA's remedial actions;
- The extent of dioxins/furan concentrations in shallow soil across the site; and
- The extent of PCP, DRPH and dioxin/furans in groundwater in the northern part of the site.

The RI assessment was conducted between fall 2016 and fall 2017. Groundwater sampling events were conducted on a quarterly basis from November 2016 through May 2018. Field procedures for collecting soil/sediment samples are included in Appendix C. RI assessment actions included the following actions:

Monitoring well installation – 16 monitoring wells (MW-10 through MW-35) were installed between November 2016 to May 2017. Well installation, soil sample results from the monitoring well borings, field procedures, monitoring well logs and groundwater sample results are summarized in "Well Installation and Groundwater Monitoring Report, Fourth Quarter 2016 through Fourth Quarter 2017" (GeoEngineers 2017). Soil samples from MW-30, MW-31 and MW-32 borings were not analyzed due to saturated conditions. Groundwater sampling results from the First and Second Quarter 2018 will be reported in pending groundwater monitoring reports.

Groundwater samples collected during each event were analyzed for:

- PCP using EPA Method 8270DSIM.
- DRPH using Northwest Method NWTPH-Dx.
- During the May 2017 groundwater monitoring event, groundwater samples were additionally analyzed for dioxins using EPA Method 8290. Based on the analytical results, only the groundwater samples collected from monitoring well MW-27 were analyzed for dioxins during the groundwater monitoring events after May 2017.

The soil samples collected during the monitoring well installations were analyzed for PCP and DRPH using the methods described above.

- Seep sampling Public comments to the RI Work Plan requested sampling of a seep to the Colville River to assess potential contaminant migration to the river. Shallow soil and groundwater samples were collected from two seep locations (Seep-1 and Seep-2) and were analyzed for PCP and DRPH using the methods listed above.
- Shallow soil sampling Shallow soil samples were collected from 53 locations throughout the site to address data gaps identified after reviewing the historical assessment and remedial actions conducted

by the EPA. The data gaps addressed by the soil sampling are summarized in the RI/FS Work Plan (GeoEngineers 2016b). Up to four soil samples were collected from each location at depths between 0 to 24 inches. The samples are identified as HA (soil samples collected with a hand auger or other hand tools)/TP (samples collected from shallow test pits excavated using a backhoe)-1 through 53. The shallow soil samples were collected during three events in December 2016, March 2017, and November 2017.

The shallow soil samples were analyzed for dioxins (73 samples), PCP (16 samples) and DRPH (6 samples) using the analytical methods listed above. Three samples were analyzed for metals (cadmium and mercury) using EPA 6000/7000 Series Methods.

- Background dioxin samples 10 shallow soil samples (BG-1 through BG-10) were collected to assess the regional background dioxin concentration for comparison to the dioxin concentrations encountered in site samples. The soil samples were collected using hand tools from shallow soil (about 0 to 6 inches bgs) from accessible right of ways. Sample locations are depicted in Background Dioxins/Furans – January 2017, Figure 4-1.
- Shallow sediment (SS) and ROW sampling Shallow sediment samples were collected from the delineated wetland areas to assess the dioxin impact to the wetland sediments. The 12 sediment samples were collected from 7 locations (SS-1 through SS-7) at depths between 0 to 12 inches bgs. The sediment samples were collected using hand tools and were analyzed for dioxins using the method listed above.

In addition to the sediment samples, six shallow soil samples were collected from four locations (ROW-1 through ROW-4) in the Washington State Department of Transportation (WSDOT) ROW of Highway 395 adjacent to the site. The ROW soil samples were collected to assess the potential dioxin impacts to off-site shallow soil. ROW samples were collected at depths between 0 to 18 inches bgs using hand tools and were analyzed for dioxins using the method listed above. The SS and ROW samples were collected in October 2017.

5.0 INDICATORS OF HAZARDOUS SUBSTANCE AND SCREENING LEVELS

To establish the nature and extent of contamination at a site, screening levels (SLs) are developed for contaminants that might pose a risk to people or ecological receptors at the site. The most likely contaminants of concern are those chemicals that were used by the facility during its operation. The former facility treated wood with solutions of PCP, dissolved in a diesel carrier. Dioxins were present as a cross-contaminant in the PCP. Other petroleum products were used as lubricants or boiler feedstock.

Previous investigations confirmed that PCP, petroleum hydrocarbons (diesel) and dioxins were widespread in soil at concentrations greater than risk-based SLs used in the past. PCP and petroleum also were repeatedly measured in groundwater beneath the main process area and northern stockpile area at concentrations exceeding historical risk-based SLs for these contaminants (dioxins were typically not detected in groundwater). A few other related chemicals (PAHs) occasionally co-occurred in soil or groundwater samples that had elevated concentrations of DRPH. A few samples collected from within the PCP/DRPH footprint had elevated concentrations of several metals (mercury and cadmium). PCP also was detected in sediment samples collected in the holding pond and its main drainage channel and in surface water collected from the pond and main channel.

Based on these findings from numerous prior investigations at the site, the following contaminants were selected as indicators of hazardous substance (IHS):

Contaminant of Concern	Soil IHS	Groundwater IHS
Pentachlorophenol	Yes	Yes
Diesel-range petroleum hydrocarbons	Yes	Yes
Dioxins/furans	Yes	No

These IHSs will be used to focus the evaluation of the nature and extent of contaminants and the remedies evaluated in the FS. Other potential chemicals that were found at the site were not included as IHSs because they were seldom detected greater than historical SLs and have limited geographic footprints. The selected IHSs are not only representative of those chemicals that pose the greatest risk, but collectively encompass the footprint of other (non-IHS) contaminants. Remedial alternatives that address the IHSs will also address non-IHS chemicals that exceed SLs.

SLs were developed for IHSs measured in each site media (soil and groundwater) and accounted for the potential receptors and exposure pathways present at the site.

5.1.1. Screening Levels

Soil and groundwater SLs were developed for the IHSs based on the unrestricted land use scenario and applicable exposure pathways.

The SLs considered for soil and groundwater contaminants are presented in Tables 5-1 and 5-2. The SLs selected for use in the RI are identified in the right-hand column of the tables.

5.1.1.1. Soil

Screening levels considered for soil are presented in Table 5-1. The soil SLs were based on the following criteria:

- Human Direct Contact -- MTCA standard Method B soil cleanup levels protective of human health for unrestricted land use (WAC 173-340-740[3][b]). These values were obtained from Ecology's "CLARC Master Spreadsheet.xlsx" dated August 2015 (CLARC database), which were calculated using equations in WAC 173-340-740(3)(b)(iii)(B).
- Terrestrial Ecological Evaluation (TEE) Site-specific values. A site-specific TEE was conducted for the Site (see Appendix D). The site does not qualify for any of the TEE off-ramps nor does it qualify for a simplified TEE approach because of its size and presence of threatened species and ecologically important habitats. These values were obtained from MTCA Table 749-3 or were derived as part of the site-specific TEE.
- Groundwater Protection -- Soil criteria protective of groundwater quality. These soil criteria address the soil-to-groundwater pathway and were calculated using the MTCA fixed parameter three-phase partitioning model (WAC 173-340-747[4]). Default assumptions provided in WAC 173-340-747(4)(b) (Equation 747-1 and Equation 747-2) for vadose and saturated zone soils were used in the

calculations, and model input parameter values (K_{oc} and Henry's Law constants) were taken directly from Ecology's CLARC database.

The default f_{oc} of 0.001 was used to calculate MTCA Method B soil cleanup levels based on the protection of groundwater.

MTCA (WAC 173-340-705[6]) specifies that the SL for a given constituent shall not be set at a level lower than the natural background concentration or the practical quantification limit (PQL), whichever is higher. Soil SLs were based on the lowest of the risk-based numerical criteria, adjusted upward, as needed, based on background concentrations and PQLs. The PQLs listed in Table 5-1 are the lowest PQLs reported by TestAmerica in Spokane.

Soil SLs listed in the columns titled "Preliminary Soil Screening Level" in Table 5-1 are the lowest risk-based concentration and have not been adjusted for background or PQLs. The SLs for vadose and saturated zone soil are presented in the last two columns of Table 5-1, after adjustment for background and PQL.

5.1.1.2. Groundwater

The groundwater SLs are presented in Table 5-2. The groundwater SLs are based on protection of the following media/exposure scenarios:

■ Protection of Drinking Water - Groundwater numerical criteria are based on the standard for potable groundwater, WAC 173-340-720[4][b]). MTCA Method B standard formula values based on the protection of human health via the consumption of drinking water were obtained from Ecology's "CLARC Master Spreadsheet.xlsx" dated August 2015. As noted in WAC 173-340-730(3)(b)(iii), the standard formula values are necessary when sufficiently protective drinking water criteria have not been established under applicable state and federal laws. If an existing state or federal drinking water criterion is sufficiently protective¹, then that state or federal criterion can be used as the cleanup level. If an existing state or federal criterion represents a cancer risk greater than 1 x 10-5 or a hazard (i.e., hazard quotient greater than 1) for non-cancerous effects, then the federal or other state criterion is adjusted downward to equal a cancer risk of 1 x 10-5 or a hazard quotient of 1. This adjustment was applied only to dioxins; all other criteria were sufficiently protective. Adjusted values are presented in Table 5-2 in the columns "Carc. Adjusted" and "Non-Carc. Adjusted," respectively.

MTCA (WAC 173-340-705[6]) specifies that the screening level for a given constituent shall not be set at a value below the natural background concentration or analytical PQL, whichever is higher. Preliminary groundwater SLs were selected based on the lowest of the applicable risk-based criteria described above. The SLs were then adjusted for PQLs (there are no established background levels for the site IHSs in groundwater). The PQLs listed in Table 5-2 were the lowest, regularly attained PQLs from groundwater samples analyzed by TestAmerica.

 $^{^{1}}$ Ecology considers a criterion sufficiently protective if the excess cancer risk is not greater than 1×10^{-5} or the hazard quotient is not greater than 1×10^{-5} (Ecology 2005).

Groundwater SLs listed in the column titled "Preliminary Groundwater Screening Level" in Table 5-2 are the lowest risk-based concentration and were not adjusted for background or PQLs. The SL for groundwater are presented in the last column of Table 5-2, after adjustment for PQL.

6.0 NATURE AND EXTENT OF CONTAMINATION

Contamination remaining at the site continues to impact both soil and groundwater; however, there is no indication that contamination extends to the Colville River south of the site. RI results for shallow soil (less than 2 feet bgs) indicate that dioxin/furans are widely distributed. PCP was detected in shallow soil during the RI at a few locations; DRPH was seldom detected. In the Pre-RI assessment, subsurface soil analytes (DRPH, PAHs and PCP) were not detected; however, detection limits were elevated due to soil moisture (Table B-3 in Appendix B). Impacted subsurface soils (i.e., visible sheen, staining or with odor) were not encountered in the direct-push borings, except at one location within the former process area. Dioxins/furans were not analyzed in the Pre-RI assessment.

Several PAHs, DRPH and PCP were detected in groundwater from selected groundwater grabs collected during the Pre-RI field event (Table B-5 in Appendix B). DRPH and PCP exceeded cleanup levels, notably in the process area and along an apparent PCP groundwater plume extending from the former process area to the western property boundary. RI groundwater quarterly groundwater monitoring data confirmed the continued presence of the PCP plume. The PCP plume's western edge is not bounded; contaminated groundwater likely extends offsite to the west and might be impacting the domestic well to the west based on historical data (Figure A-7 in Appendix A). More details on the distribution of contaminants by media are provided below.

The most recent data collected in support of the RI are provided in Tables 6-1 through 6-5. Historical and Pre-RI assessment data tables are provided in Appendix A and B, respectively. Laboratory reports and data validation for the samples collected during the RI are included in Appendix E.

6.1.1. Soil

The occurrence of screening level exceedances of one or more IHSs (PCP, DRPH and dioxins/furans) in shallow soil is shown in Surface Soil Screening Level Exceedances, Figure 6-1. Concentrations of IHSs exceeding screening levels in deeper soil was limited to PCP in the former process area (represented by DP-35 at 9 feet bgs).

PCP – The main process area and selected locations within the southern and northern stockpile areas were previously addressed as part of an interim action conducted by EPA. Remaining areas of concern in shallow soil occur in limited areas (northwest corner, a low-lying area immediately south of the northern stockpile area and an area associated with the southern stockpile area). The northwest corner exceedances represent a small area and concentrations are relatively low (about 10 times the screening level) whereas the two other areas represent "hot spots" where exceedances range from 40 to over 1,900 times the screening level. PCP does not appear to extend into deeper subsurface soil. PCP in direct-push borings from the Pre-RI effort was generally not detected, except at DP-35 in the former process area.

DRPH – DRPH was seldom detected in shallow soil outside of the former process area that was addressed as part of EPA's interim action. The only exceedances of DRPH occurred at depth (8 to 13 feet bgs based on DP-35 and MW-27) at in the former process area.

Dioxin/furan toxicity equivalent (TEQ) – Shallow soil sample results indicate dioxins/furans (expressed on a 2,3,7,8-TCDD TEQ basis) are detected throughout the site, with the highest concentrations associated with the former process area (including the former retention pond) and northern and southern stockpile areas. Concentrations in shallow soil within the southern and eastern wetlands and along the western site boundary are much lower and are below the screening level at a number of locations.

6.1.2. Sediment

PCP — PCP was evaluated in sediment in the 2002 and 2005 EPA RSEs; data are presented in Tables A-4 and A-6 and on Figure A-11 of Appendix A. PCP concentrations were elevated above the historical screening levels (based on protection of benthic invertebrates) in the pond south of the process area and in drainages adjacent to the north and south stockpile areas. The pond represented the highest concentrations and sediment was excavated to below screening levels, removing this source material. PCP was not detected in sediment in the lower reach of the drainage area adjacent to the river. Several sediment samples were collected within the Colville River downstream of the site and in wetlands east (upgradient) of the sites; PCP was not detected in any of these samples (Herrera 2005).

DRPH — This IHS was evaluated in sediment in the 2002 and 2005 EPA RSEs. DRPH was detected in sediment but did not exceed its screening level in any sample.

Dioxin TEQ – Dioxins/furans were not analyzed in sediment in the historical RSEs. Dioxins were analyzed in the sediment samples collected in October 2017. Sample results are summarized in Table 6-2. The dioxin TEQ exceeded the screening level in 6 of the 12 sediment samples. The dioxin results indicate shallow sediment is impacted with dioxins exceeding SLs in the drainage wetland area south of the process area and north stockpile area. Dioxin concentrations also exceeded SLs in a sediment sample (SS-4-1) located in the wetlands west of the south stockpile area.

6.1.3. Groundwater

Groundwater monitoring results obtained between the fourth quarter 2016 and fourth quarter 2017 are summarized in "Well Installation and Groundwater Monitoring Report, Fourth Quarter 2016 through Fourth Quarter 2017" (GeoEngineers 2017); groundwater monitoring reports from the first and second quarter 2018 are pending.

PCP – PCP was detected in groundwater samplings historically, during the pre-RI assessment and in the all rounds of groundwater monitoring in wells and borings in the former process and northern stockpile area, indicating a persistent PCP plume. The plume extends from the former process area to the western property boundary and appears to be defined by monitoring wells MW-20 through MW-22, and MW-24 through MW-27. It is bounded to the north, south and east by wells with either no detections of PCP or concentrations below the screening level. Concentrations in these wells have been variable over time; currently there are too few monitoring events (n=6) to evaluate the presence or absences of trends. The results of six rounds of groundwater sampling are shown, in composite, in Approximate Groundwater Contamination Extent, Figure 6-3.

DRPH – DRPH occurred infrequently in groundwater; when detected it co-occurred with detections of PCP. DRPH only exceeded its SL in two monitoring wells in the most recent groundwater monitoring events: MW-26 and MW-27 (Figure 6-3). In the Pre-RI assessment diesel exceeded its SL in DP-15, -20 and -24, which were adjacent to MW-25, -26, and 27. These locations are immediately west of the former main process area and along the southern portion of the northern stockpile area.

Dioxin TEQ – Dioxins were analyzed in each of the existing monitoring wells in May 2017. Dioxins were only detected in one well (MW-27) but did not exceed its screening level. Dioxins have been

6.1.4. River Bank Seeps

Seep water results indicated that shallow groundwater discharging into the river does not contain PCP, DRPH or oil-range petroleum hydrocarbons (ORPH) (these contaminants were not detected), based on one sampling event. Seep sampling locations are shown on Figure 6-3). Seep sediment results are presented in Table 6-1; seep water analytical results are presented in Table 6-4.

6.1.5. Background and ROW Dioxin Samples

Background dioxin sample results were compared to the Washington State background dioxin concentration (5.2 nanograms per kilogram [ng/kg]) to evaluate using a regional background concentration as the dioxin screening level. Background sample results are summarized in Table 6-2. The dioxin concentration from only one background sample location (BG-1) exceeded the state background concentration; therefore, the background samples were not used to set the site SL because using these sample results to would have resulted in a lower site SL.

The shallow ROW soil samples were collected to evaluate the presence of dioxins in shallow soil adjacent to the north side of the property. Dioxin concentrations exceeded the site SL in three of the six samples analyzed from two locations. ROW sample results are summarized in Table 6-2.

7.0 CONCEPTUAL SITE MODEL

GeoEngineers prepared a conceptual site model (CSM) to describe surface and subsurface site conditions, define the nature and extent of known contamination, and identify potential exposure pathways to site IHSs and potential receptors. The CSM was developed using data from the previous studies listed above, available monitoring well logs, results of the Pre-RI site assessment, the RI and our observations from site visits. The Conceptual Site Model is graphically depicted in Figure 7-1 and further described below.

7.1. Potential Exposure Pathways and Receptors

Site contamination resulted from over 60 years of wood treatment operations. Treatment operations primarily occurred in the former main process area; however, treated lumber, contaminated soil, and other wastes were placed throughout the site, impacting the ground surface and shallow soil. Because the process area was the primary source area, contamination extended to and impacted shallow groundwater. PCP- and DRPH-contaminated groundwater occurs in monitoring wells within and to the west of the former process area. A residence with a private well, located about 700 feet west (hydrogeologically downgradient) of the site is a potential exposure pathway for PCP. Based on predominant site groundwater flow direction

to the west and southwest, the Colville River may receive impacted groundwater directly from the CPPI property or downstream of the site and through off-site properties.

Potential receptors include nearby residents, site trespassers, the site owner, wildlife (terrestrial and avian), and aquatic organisms in the wetland. Release mechanisms, exposure points, and exposure routes for contamination contained at the site may include:

- 1. Direct contact with exposed contaminated surface soil and sediments (dermal contact and inhalation/ingestion of dust and contaminants).
- 2. Direct contact with/ingestion of groundwater contaminated with site IHSs. Groundwater contact/ingestion can occur at downgradient residential wells; or through seepage into the wetland areas or onto the ground surface during high water/ground saturation events. Additionally, contaminants present in surface soil and sediments might infiltrate into shallow groundwater.
- 3. Direct contact with/ingestion of surface water runoff into wetland areas.

7.2. Shallow Surface Soil and Sediments

Based on the historical assessments, shallow soils and sediments were contaminated with PCP, DRPH, ORPH, metals (mercury and cadmium) and dioxins/furans at concentrations greater than the established regulatory cleanup levels. PCP and dioxins/furans had the widest distribution and highest exceedances in soil and sediment with process area representing the main source. EPA's 2006 removal action addressed much of the process area contamination and several hot spots in the southern stockpile area. Several areas with one or more contaminants exceeding cleanup levels in soil or sediment were not addressed; however, contamination appears to be limited in depth (typically 18 inches or less).

Though the site is heavily vegetated, the surface soils and sediments are an exposure pathway for direct contact, particularly for soil invertebrates or small mammals that live within the wetlands.

7.3. Groundwater

Historical and current groundwater monitoring data indicate that a PCP-contaminated groundwater plume extends from the former process area through the northern stockpile area to the western site boundary. It is likely the groundwater contaminant plume extends off-the CPPI property, potentially impacting nearby residential wells to the west. Monitoring wells to the north, south and east are not contaminated, establishing plume boundaries in those directions.

GeoEngineers observed groundwater seepage in low areas (such as tire ruts) during the recent sampling events. The groundwater seepage is a potential direct contact/ingestion exposure point during spring precipitation runoff and other ground-saturating events. When the groundwater table is lower, precipitation infiltrating contaminated surface soil and sediment could mobilize contaminants into the shallow aquifer, contributing to the groundwater contamination.

7.4. Surface Water

Stormwater runoff contacting surficial soil can transport IHSs into nearby wetland areas, offsite ditches, and neighboring properties. Contaminated sediment transport could potentially impact the Colville River. These transport pathways are likely minor because site contaminants have not been detected in nearby wetlands, offsite ditches or river sediment.

8.0 PROPOSED CLEANUP STANDARDS

The screening levels identified in Section 5.0 are proposed as cleanup levels for the site IHSs. Table 8.1 below presents the proposed soil and groundwater cleanup levels. To focus the remediation on the areas of highest risk, while minimizing disturbance of the valuable wetland habitats, a remediation action level (RAL) of 200 ng/kg for dioxins/furans is proposed. This RAL represents a site-specific risk-based cleanup level that is protective of invertebrates that may live in site soil or sediment. Areas that exceed the RAL will be evaluated in the FS for active remedial technologies (e.g., removal, treatments, etc.). Areas exceeding the RAL encompass the former process area, northern and southern stockpile areas and excludes most of the delineated wetlands. Exceptions are portions of the former pond, main drainage channel below the pond, and a low-lying area on the southern boundary of the northern stockpile that drains to the main channel. These wetlands are impacted by exceedances of the dioxin RAL and PCP cleanup level. These wetlands will be evaluated for inclusion in the active remediation area in the FS.

TABLE 8.1: PROPOSED SOIL AND GROUNDWATER CLEANUP LEVELS AND REMEDIATION LEVELS

		Soil		Groundwater		
Contaminant	Basis of Cleanup Level	CUL	RAL	Units	CUL	Units
PCP	PQL (soil) and MCL (groundwater as drinking water)	0.1		mg/kg	1.0	μg/L
DRPH	MTCA Method A	2,000		mg/kg	500	μg/L
Dioxin/Furans (2,3,7,8 TCDD TEQ)	Human health risk (soil) and estimated PQL (groundwater)	13	200	ng/kg	Not an IHS	

Notes: ng/L = nanograms per liter; MCL = maximum contaminant level

9.0 AREAS REQUIRING REMEDIATION

Areas requiring remediation are depicted in Proposed Remediation Areas, Figure 9-1, and will form the basis of the FS evaluation. These areas exceed either the dioxin TEQ RAL or the PCP cleanup level in shallow soil across the site. An area of deeper PCP and diesel contamination in the former process area will be addressed to control sources to groundwater. The FS will evaluate the use of various remediation technologies within these areas. Areas with lower concentrations of dioxins will be considered during the development of the long-term monitoring plan for the site.

10.0 SUMMARY

Based on the 2015/2016 soil sampling and recent quarterly groundwater sample chemical analytical results, we have drawn the following conclusions:

- PCP and dioxins continue to impact shallow soil at the site and represent risk to site receptors. The greatest impacts are in the former process area and several hot spots associated with the south stockpile area and a drainage channel.
- A PCP-contaminated groundwater plume extends from the former process area to the western property line. The PCP plume's western margin is not completely defined, as it likely extends off-site.
- DRPH- and dioxin-contaminated groundwater is confined to the area the former process area.

- Contaminated groundwater does not appear to extend to the southern portion of the site, as indicated by the groundwater sampling results.
- Water discharging from on-site seeps is not impacting the Colville River.

11.0 FEASIBILITY STUDY INTRODUCTION

This FS was conducted to develop and evaluate cleanup alternatives to address soil and groundwater contamination identified during previous assessment work conducted by others, GeoEngineers' (pre-RI) assessment (GeoEngineers 2016) and GeoEngineers' RI. Previous assessments and data evaluations indicate that site soil and groundwater contain chemicals of concern (COCs) at concentrations greater than the site cleanup levels. Areas of the site requiring remediation were identified in Section 9.0.

12.0 DEVELOPMENT OF REMEDIAL ACTION ALTERNATIVES

This section identifies the remedial action objectives and the initial screening of remedial alternatives for the site. An evaluation of the alternatives is presented in Section 14.0.

12.1. Remedial Action Objectives

MTCA requires that cleanup actions meet the threshold requirements identified in WAC 173-340-360. According to this section of the code, the cleanup action shall:

- Protect human health and the environment Each remedial alternative is assessed for its ability to protect present and future public health, safety, welfare, and the environment.
- Comply with cleanup standards Proposed cleanup standards are identified in Section 8.0. The MTCA cleanup regulation specifies that a cleanup action alternative that does not comply with cleanup standards is an "interim action" not a "cleanup action."
- Comply with applicable state and federal laws.
- Provide for compliance monitoring The cleanup action must provide for monitoring to verify that the cleanup action remains effective over time.
- Use permanent solutions to the maximum extent practicable Permanent solutions are those in which cleanup standards can be met without further action being required such as long-term monitoring and inspection or institutional controls.
- Provide for a reasonable restoration time frame This refers to the estimate of time required to achieve cleanup standards or other performance standards.
- Consider public concerns This FS of remedial alternatives will seek to address the potential technical and administrative concerns of state and local regulatory entities, and concerns of the general public.

The primary remedial action objective (RAO) is to mitigate human exposure to contaminants by inhalation, dermal contact and ingestion. A secondary, although equally important, RAO is to mitigate ecological receptors (plants and animals) from exposure to contaminants.

12.2. General Categories of Response Actions and Initial Screening

The general categories of remedial response actions identified for the site include:

- No Action:
- Institutional Controls;
- Engineering Controls;
- Off-site Disposal; and
- On-site Treatment.

12.2.1. No Action

The no action alternative does not achieve the RAOs because it does not protect present and future public health, safety and welfare, and the environment. The no action alternative was not considered further.

12.2.2. Institutional Controls

Institutional controls involve the placement of access barriers such as fencing and barricades to motorized and non-motorized travel, as well as withdrawal or restrictions on development of affected lands from future use (i.e., deed restrictions). The primary purpose of these controls is to minimize development and human activities on contaminated areas and provide protection to an implemented solution. Institutional controls do not achieve the RAOs and were not considered further.

12.2.3. Engineering Controls

The engineering controls evaluated for this FS involve the use of containment technologies that serve as source control. These controls mitigate or reduce the migration of contaminants off site via the wind or erosion pathway and minimize leaching to groundwater by limiting precipitation infiltration and creating barriers to groundwater movement. The engineering controls do not affect the chemical composition of the contaminated materials nor do they reduce the toxicity of the materials. Engineering controls could include such measures as capping, placement of a coarse permeable barrier (to eliminate access to contaminated soil from burrowing animals), placement of a low-permeability (geomembrane) liner, grading, and revegetation.

The site is located within the 100-year floodplain of the Colville River and portions of the site flood annually during spring runoff. In addition, the site contains wetlands beneficial to wildlife including sensitive and threatened species. The continued presence of contaminated soil at the site limits use for high quality and beneficial habitat; therefore, leaving contaminated soil at the site is not desired. Engineering controls alone were not considered further.

12.2.4. Off-Site Disposal

Off-site disposal includes excavation and transport of contaminated material to an engineered, permitted landfill. Although this alternative can be very costly compared to other alternatives, it meets MTCA requirements and is retained as a remedial alternative.

12.2.5. Treatment

Treatment options include methods such as incineration, bioremediation, chemical oxidation, soil washing and carbon treatment. These methods result in contaminant removal or transformation to reduce the toxicity of the original contaminants. Treatment methods are protective of human and ecological receptors and allow a beneficial use of the site. These methods meet MTCA requirements and are retained as a remedial alternative.

12.3. Feasibility Study Considerations

The RI activities generally delineated the extent and types of contamination at the site; however, there are a few items to consider within the FS and during the remedial selection and engineering design components of this project:

- Periodic Site Flooding: Throughout RI activities, partial flooding of the site was observed concurrent with spring run-off conditions. Remedial alternative design and implementation at the site should account for periodic site flooding.
- Aquifer Characterization: Although groundwater gradient and flow direction have been previously estimated, many of the remedial technologies require additional characterization of the aquifer. Aquifer characterization is important to better understand during development of design parameters for many of the treatment alternatives. Aquifer properties including the hydraulic conductivity, porosity, groundwater velocity, soil carbon content should be further defined if the selected remedy is based upon aquifer characterization. Basic assumptions were used to estimate these properties for the purpose of this FS.
- Treatment Technologies: Many of the treatment technologies including soil washing and zero valent iron (ZVI) have not been implemented full scale or limited information on implementation is available. Bench tests and scaled-up pilot tests are likely required if these technologies are selected.
- On-site Wetlands: Approximately 5.64 acres of existing wetlands are present at the site. Through development of this FS, preservation of the existing wetlands for continued habitat, except for limited removal of hotspot areas, is the preferred approach as compared to full-scale removal of contaminated wetland soil which would result in habitat destruction and subsequent reconstruction. As a result, a single cleanup alternative was selected for most of the wetlands as discussed in Section 12.4.
- Existing Debris Piles: There are currently seven debris piles at the site. In addition, concrete and metal debris is scattered throughout the site. In addition to the debris piles, a pile of wood chips is located in the central portion of the property. Independent of which remedial alternative is selected, disposal of the debris from the site should be conducted concurrent with the selected remedial action. The debris piles likely can be disposed off-site as nonhazardous waste for much less than the contaminated soil.

12.4. Identification and Description of Cleanup Action Alternatives

Multiple remedial alternatives were developed for the CPPI site. As part of a site wide remediation strategy, remedial alternatives for the site were separated into soil and groundwater remediation alternatives, with a few common cleanup alternatives. Primary COCs for soil are generally limited to dioxins and furans in the upper 18 inches of soil at the site and diesel and PCP contamination in groundwater.

A source area of adsorbed phase PCP and diesel contamination in soil is also present. For the purpose of this FS, it is assumed that the adsorbed phase contamination extends from the ground surface to the clay soil stratum (about 20 feet bgs) within the extents identified in Soil Remediation Alternatives, Figure 12-1. It is also assumed that three of the four sides of the excavation would be sloped at a 2 horizontal to 1 vertical (2H:1V) slope 1 to achieve the assumed required excavation depth. The bottom of the excavation would include the approximate extents identified on Figure 12-1. Sloping results in an increase in excavation volume of about 30 percent compared to a vertical cut. Shoring in not anticipated for the excavation, but could be required if the excavation starts to encroach into the BNSF Railroad track right of way.

This area was partially excavated during previous cleanup activities conducted by the EPA at the site. Field screening and segregating previously imported fill could reduce the actual quantity of soil requiring treatment or removal, especially when constructing the side slopes. A contingency cost is included for each soil treatment alternative to manage groundwater infiltration into the open excavation, which will be treated using granulated activated carbon (GAC) before discharge on-site. If dewatering is required, it is likely cost prohibitive to dispose of significant quantities of fluids off site and on-site treatment should be employed.

Soil remediation alternatives are based on the assumption that soil from the PCP and diesel source area can be treated using the same technology as that used to treat shallow dioxin and furan contaminated soil. Quantities used for cost estimating purposes in the FS are identified in Table 12-1. Supporting documentation and calculations for cost estimates are provided in Appendix F.

Soil treatment areas are identified in Figure 12-1. The approximate groundwater treatment area is identified on Groundwater Remediation Alternatives, Figure 12-2. The selected remedial alternatives provide an appropriate range of permanent cleanup actions for the site and are summarized in Tables 12-2 and 12-3 for soil and groundwater respectively. The proposed alternatives are:

- Soil Alternative 1: Soil Washing
- Soil Alternative 2: Excavation
- Soil Alternative 3: Thermal Desorption
- Groundwater Alternative 1: Monitored Natural Attenuation (MNA)
- Groundwater Alternative 2: Pump and Treat
- Groundwater Alternative 3: Enhanced Bioremediation
- Groundwater Alternative 4: Permeable Reactive Barrier (PRB)

To fully address contamination at the site, the selected remedy will include both a soil and groundwater alternative.

Common to each remedial alternative is disposal of non-hazardous debris piles and wood chips at the site and remediation of the existing Category 2 wetlands. Debris is generally limited to seven existing piles of treated timber and soil and metal and concrete scattered throughout the site and it is expected that 50 percent of more of this material is debris (not soil). This debris can be disposed of using macro encapsulation at Waste Management's Arlington, Oregon facility. Macro encapsulation is where a specific

waste is placed into a containment unit constructed of high density polyethylene (HDPE). A flowable material like fly ash is then applied to seal any void spaces. The containment unit is then heat-welded shut.

The primary contamination in the wetlands is limited to dioxins in the upper 6 inches of soil. The riparian/wetlands are likely used by threatened and sensitive species including white tailed deer and yellow-billed cuckoo birds. Aggressive remediation strategies (i.e., removal) for the wetlands would heavily impact the existing wetland and diminish its function for years. As a result, the wetlands would need to be reconstructed at an additional cost and there could be a long lag-time to restore the wetland function following destruction and restoration of wetlands.

These wetlands also provide an important hydrological/physical buffer for the rest of the site and preservation of these features is important to enhance site recovery after remediation. As a result, thin-layer placement of imported soil into most of the wetlands is recommended to preserve the wetland function and protect ecological receptors. Thin-layer placement would involve placing approximately 6 inches of high quality wetland-appropriate soil over the extents of the wetland contamination. Thin-layer placement allows vegetation to survive but would cap and dilute the remaining dioxin and furans in surface soil. Thin layer placement can be conducted multiple times and it is likely that at least two placements would be needed, each occurring at least 11 months after the previous placement. Alternatively, areas of the wetlands with COC concentrations at least greater than the RAL of 200 picograms per gram (pg/g), could be excavated as identified on Figure 12-1. Final determination of the alternative to address the wetland areas will be based on additional pre-design assessment, public comments, and the expected final site use. For cost estimating purpose to evaluate the FS alternatives, the wetland areas adjacent to the process area are assumed to be included in the shallow soil remedies.

Cleanup action alternatives selected for evaluation represent a reasonable range of potentially applicable cleanup options to provide a basis for evaluation. The design parameters used to develop these cleanup action alternatives are based on engineering judgment and current knowledge of site conditions. The final design for the selected alternative could require additional characterization and analysis to better define the scope and costs associated with the final cleanup action.

Cleanup action alternatives were developed to be consistent with the current and anticipated future land uses at the site. Because the site sits adjacent to the Colville River and floods frequently, it is desired to treat or remove contamination at the site to restore the beneficial use of the site. As a result, capping contamination in place or consolidating the contamination and capping were not considered as alternatives. Components of each cleanup action alternatives evaluated for the site are described below and are summarized in Tables 12-2 and 12-3 for soil and groundwater, respectively.

12.4.1. Soil Alternative 1 - Soil Washing

Soil Alternative 1 involves excavating the upper 18 inches of soil (approximately 33,700 cubic yards) and adsorbed phase PCP and diesel source area (approximately 27,100 cubic yards) and employing a new soil washing technique to remove COCs (primarily dioxins and furans) from the soil called the ecoSPEARS RIDS system. This is a new technology developed by the National Aeronautics and Space Administration (NASA) Kennedy Space Center that has been proven to remove and concentrate hydrophobic contaminants from soil and sediments. This technology has not been proven for full scale remediation. Before implementation, both a lab treatability study and larger pilot study would be conducted before full scale implementation. The lab treatability study and larger 1,000-ton pilot study would take about 5 weeks and 3 months,

respectively, to implement. Full scale treatment time would be evaluated based up on the results of the other two studies, but would likely require multiple years to process the soil at the site. For this FS, we assumed a 3- to 4-year treatment window.

Once ready for full scale implementation, an on-site soil washing area would be designated. The upper 18 inches and deeper adsorbed phase source area soil in the designated soil remediation areas would be excavated and transferred to the soil washing area. Confirmation samples would be collected as needed to confirm the contaminated soil was successfully excavated.

The contaminated soil would then be processed through a proprietary system where a specialized food grade solvent is mixed with the contaminated soil. Dioxin, furan, diesel and PCP contamination are then expected to separate from the soil and become concentrated in the solvent. Performance sampling would be conducted to monitor the efficiency of the remediation by periodically sampling soil for COCs before and after soil washing.

The solvent is then separated from the soil and treated at the site to remove and destroy the contamination. The solvent treatment process involves exposing the solvent GAC filtration and chloride salts and dechlorinated dibenzo-p-dioxin are then adsorb to the GAC. The GAC would be disposed at Subtitle C landfill as F027 listed hazardous waste. By concentrating the contaminants into the solvent, breaking them down with the solvent and then removing the contaminants from the solvent with GAC, the off-site disposal mass is greatly reduced and is expected to be close to the actual mass of the contaminants. The treated solvent is then recovered and returned to ecoSPEARS for reuse.

The remediated soil is then placed back into the excavation area and vegetated with an appropriate seed mix. Residual food grade solvent left in the soil would be either volatized or biodegraded. Supplemental nutrients would be amended to the treated soil to enhance microbial activity and assist with revegetation of the soil after treatment.

The approximate cost for Soil Alternative 1 is \$45,000,000.

12.4.2. Soil Alternative 2 – Excavation and Off-Site Disposal

Soil Alternative 2 includes excavating the top 18 inches of soil from the designated soil remediation area and from the deeper adsorbed phase source area. Confirmation samples would be collected as needed to confirm that the contamination was successfully removed. The soil is then loaded into a truck for off-site disposal. The waste would be transported by truck and pup to an appropriate disposal facility. Because the CPPI site is a former wood treatment facility, contaminated soil generated from the site is a listed categorical hazardous waste (F021). Wastewater from the site is a listed F032 hazardous waste. The closest Subtitle C disposal facility that can directly accept listed hazardous waste is Clean Harbors Aragonite incineration facility located near Aragonite, Utah, about 70 miles west of Salt Lake City, Utah and about 860 miles from the site via road.

A previous remedial action conducted at the site by the EPA (Ecology and Environment 2010) was successful in applying for a waste disposal variance to allow the disposal of waste from the site at Waste Management's (WM) subtitle C Arlington, Oregon landfill facility. Preliminary discussions with WM indicate that the variance doesn't expire, and soil from the site could again be accepted at the Arlington Facility. The Arlington, Oregon facility is approximately 290 miles from the site via roads. For the purposes of this

FS we assumed transportation by truck to the Arlington, Oregon facility, but additional cost savings could be realized if a transportation by rail solution were developed. To transport by rail, either a new rail siding would need to be installed at the site or the waste would need to be transported by truck to a nearby active railroad siding with permission of the rail siding owner and operator.

In accordance with Title 40 of the United States Code of Federal Regulations, Chapter I, Subchapter I, Part 268 (40CFR 268.2) and for the purpose of this FS, waste from the site has been designated as either soil or debris. Soil and debris have different disposal requirements and as a result have different costs for disposal. Debris includes material greater than 60 millimeters and is manufactured or plant matter. Soil includes unconsolidated earth material consisting of clay, silt, sand, or gravel size particles. For the landfill option, soil can be disposed of as typical landfill material, while debris requires macro encapsulation, which incurs a greater cost per ton for disposal

After soil removal, soil would be imported to replace excavated soil and the site would be regraded to simulate natural contours and reduce erosion. Additional savings are available if import fill quantities to restore site grades are reduced and limited to just the deep adsorbed phase source area. The imported soil would be revegetated with an appropriate seed mixture.

The approximate cost for Soil Alternative 2 is \$27,000,000.

12.4.3. Soil Alternative 3 - Thermal Desorption

Soil Alternative 3 to remediate soil involves thermal desorption. The upper 18 inches of soil from the designated soil remediation area and deeper adsorbed phase source area would be excavated and consolidated to a treatment cell. Confirmation samples would be collected as needed to confirm that the contamination was successfully removed. The treatment cell would be constructed with a concrete base approximately 6,400 square yards in area and large enough to encapsulate approximately 35,000 cubic yards of soil at a time. Heating electrodes and vapor recovery wells are then installed into the consolidated soil. The soil pile is then capped with an insulated vapor cap.

To power the thermal treatment system a high capacity power drop would be needed at the site. The electrodes would be heated to about 700 to 800 degrees Celsius (°C) to achieve a soil treatment temperature of about 335 °C, which is the required temperature to thermally destroy the contamination. Steam and vapors from the heated pile would be collected using the vapor recovery system. The vapors would be processed through a GAC treatment unit before venting to the atmosphere. The GAC would be exchanged as needed after it becomes saturated with volatilized contaminants. Weekly vapor monitoring would be conducted during pile heating.

The thermal treatment process is expected to take about one season to construct the treatment cell and about 1 year of thermal treating per batch once the system is constructed. It is expected that the soil could be treated in two batches. After thermal treatment, the soil would be amended with imported topsoil and then replaced at the site. The soil would then be vegetated with an appropriate seed mix.

The approximate cost for Soil Alternative 3 is \$25,000,000.

12.4.4. Groundwater Alternative 1 - Monitored Natural Attenuation

Groundwater Alternative 1 is dependent on removing the adsorbed phase deep contamination as part of the selected soil remediation efforts and then allowing groundwater recharge and naturally occurring microbes to break down the remaining PCP and diesel contamination in groundwater. As a standalone alternative, MNA without the source area removal does not meet the MTCA threshold requirements and is Groundwater performance monitoring would be conducted to monitor groundwater parameters and quality.

The approximate cost for Groundwater Alternative 1 is about \$360,000.

12.4.5. Groundwater Alternative 2 - Pump and Treat

Primary COCs in groundwater include diesel and PCP. Groundwater Alternative 2 would involve installing a network of groundwater extraction and injection wells, pumping contaminated groundwater from the wells, treating the water at the surface and then reinjecting the treated water into the subsurface upgradient of the capture zone. The groundwater pumping system would operate continuously with regular performance monitoring to evaluate the influent and effluent of the treatment system. For estimating purposes, this FS assumes 10 groundwater extraction/injection wells and a pumping rate of 100 gallons per minute.

The proposed water treatment technology for the CPPI site is GAC. As water is pumped through the GAC, PCP and diesel contamination are adsorbed to the GAC particles and treated water is then reinjected into the subsurface or potentially discharged to the Colville River. Performance monitoring would be conducted to monitor the removal efficiency of the GAC and the GAC would be changed out as needed. Multiple GAC treatment canisters would be installed in series to accommodate exhausted canister changeout and minimize the chances of breakthrough. For estimating purposes, we assume that GAC would need to be changed out twice, with each change out weighting approximately two tons. Exhausted GAC would be disposed of as a FO27 listed hazardous waste.

The approximate cost for Groundwater Alternative 2 is \$1,300,000.

12.4.6. Groundwater Alternative 3 – Enhanced In-Situ Bioremediation

Groundwater Alternative 3 for groundwater involves the application of oxygen releasing compounds (ORC®) to break down PCP and diesel in the groundwater using aerobic microbial activity. The ORC® releases high amounts of oxygen into the subsurface to encourage aerobic conditions where naturally occurring microbes can break down the PCP and diesel contamination into water, carbon dioxide and free chlorine (Regenesis 2003). The ORC® would be applied by drilling a series of vertical injection points and then injecting the ORC® into the injection points.

For this FS, it was assumed that an injection area approximately 200 feet by 400 feet with injection points spaced 10 feet on center would be used for a total of about 800 injection points. ORC® would be injected into the saturated zone, estimated at a thickness of 15 feet for this FS. The ORC® would be applied at a rate of about 5 pounds per foot of saturated zone in each boring. We assumed the injection could be performed using direct push drilling methods (lance injections) using two crews at a time. Two applications were assumed for either retreatment of the original injection area or application to a similar sized injection area.

Although enhanced in-situ bioremediation is identified as a groundwater treatment alternative, it might also be applicable to remediate the adsorbed phase soil contamination area. If this technology is used to treat the adsorbed phase soil contamination, the selected soil treatment alternative would be limited to shallow dioxin and furan contamination. ORC® is not expected to be efficient at treating dioxin and furan contamination.

The approximate cost for Groundwater Alternative 3 is \$2,100,000, which does not include treatment of the adsorbed phase soil contamination.

12.4.7. Groundwater Alternative 4 - Permeable Reactive Barrier

Groundwater Alternative 4 involves excavation of a vertical trench in the northwest corner of the site and installing a ZVI PRB wall (Figure 12-2). A vertical trench would be excavated down to the clay aquitard at the site under slurry conditions. Soil excavated from the trench would be mixed with ZVI and then placed back into the excavation to create the PRB. For this feasibility study, we assumed a PRB wall approximately 700 feet long, 18 feet deep, and 6 feet thick, with a ZVI to soil mass ratio of 0.004.

As PCP and diesel contaminated groundwater flows through the PRB, the PCP and diesel react with the ZVI and the PCP undergoes a dichlorination process and produces ferrous iron (Fe2+) and free chlorine from contact with the ZVI. PCP and diesel are also removed from groundwater via sorption onto the ZVI surface (Gunawardana 2011). Literature on full scale implementation of a PRB ZVI wall to treat PCP and diesel is limited and there is a potential that pH and oxidation/reduction potential (ORP) can be impacted downgradient of the PRB. Bench scale testing would be required before full scale implementation.

The approximate cost for Groundwater Alternative 4 is \$1,500,000.

13.0 MTCA EVALUATION CRITERIA

This section presents a description of the threshold requirements for cleanup actions under MTCA and the additional criteria used in this FS to evaluate the cleanup action alternatives.

13.1. Threshold Requirements

Cleanup actions performed under MTCA must comply with several threshold requirements. Cleanup action alternatives that do not comply with these requirements are not considered suitable cleanup actions under MTCA. As provided in WAC 173-340-360(2)(a), cleanup action must:

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

13.1.1. Protection of Human Health and the Environment

Cleanup actions performed under MTCA must ensure that human health and the environment are protected.

13.1.2. Compliance with Cleanup Standards

Compliance with cleanup standards requires, in part, that cleanup levels are met at the applicable points of compliance. If a remedial action does not comply with cleanup standards, the remedial action is an interim action, not a cleanup action. Where a cleanup action involves containment of soil with hazardous substance concentrations exceeding cleanup levels at the point of compliance, the cleanup action may be determined to comply with cleanup standards, provided the requirements specified in WAC 173-340-740(6)(f) are met.

Cleanup alternatives must also comply with the Applicable or Relevant and Appropriate Requirements (ARARs) in accordance with WAC 173-340-710. An evaluation of the ARARs potentially applicable to each alternative was completed and is summarized in Summary of ARARs, Table 13-1. The alternatives evaluated in this FS comply with the intent of these laws and statutes and are protective of human health and the environment.

13.1.3. Compliance with Applicable State and Federal Laws

Cleanup actions conducted under MTCA must comply with applicable state and federal laws. The term "applicable state and federal laws" includes legally applicable requirements and those requirements that Ecology determines to be relevant and appropriate as described in WAC 173-340-710.

13.1.4. Provision for Compliance Monitoring

The cleanup action must allow for compliance monitoring in accordance with WAC 173-340-410. Compliance monitoring consists of protection monitoring, performance monitoring and conformational monitoring. Protection monitoring is conducted to confirm that human health and the environment are adequately protected during the construction, operation and maintenance phases of a cleanup action. Performance monitoring is conducted to confirm that the cleanup action has attained cleanup standards and/or, if applicable, remediation levels or other performance standards. Conformational monitoring is conducted to confirm the long-term effectiveness of the cleanup action once cleanup standards and/or, if applicable, remediation levels or other performance standards have been attained.

13.2. Other Requirements

Under MTCA, when selecting from the cleanup action alternatives that meet the threshold requirements described above, the alternatives must be further evaluated against the following additional criteria:

- Use permanent solutions to the maximum extent practicable (WAC 173-340-360[2][b][i]): MTCA Cleanup Regulation requires that when selecting from cleanup action alternatives that fulfill the threshold requirements, the selected action shall use permanent solutions to the maximum extent practicable (WAC 173-340-360[2][b][i]). MTCA specifies that the permanence of these qualifying alternatives shall be evaluated by balancing the costs and benefits of each of the alternatives using a "disproportionate cost analysis" in accordance with WAC 173-340-360(3)(e). The criteria for conducting a disproportionate cost analysis are described in Section 13.0.
- Provide a reasonable restoration time frame (WAC 173-340-360[2][b][ii]): In accordance with WAC 173-340-360(2)(b)(ii), selected cleanup actions must provide for a reasonable restoration time frame. The MTCA Cleanup Regulation lists factors to be considered in evaluating whether a cleanup action provides for a reasonable restoration time frame (WAC 173-340-360[4][b]).

■ Consideration of Public Concerns (WAC 173-340-360[2][b][iii]): Ecology will consider public comments submitted during the RI/FS process in making its preliminary selection of an appropriate cleanup action alternative. This preliminary selection is subject to further public review and comment when the proposed remedy is published in the Draft Cleanup Action Plan.

13.3. MTCA Disproportionate Cost Analysis

The MTCA disproportionate cost analysis (DCA) is used to evaluate which of the cleanup action alternatives that meet the threshold requirements are permanent to the maximum extent practicable. This analysis involves comparing the costs and benefits of the alternatives and selecting the alternative whose incremental costs are not disproportionate to the incremental benefits. The evaluation criteria for the DCA are specified in WAC 173-340-360(2) and include protectiveness, permanence, long-term effectiveness, management of short-term risks, implementability, and consideration of public concerns compared to overall cost.

As outlined in WAC 173-340-360(3)(e), the MTCA Cleanup Regulation provides a methodology that uses the criteria below to determine whether the costs associated with each cleanup action alternative are disproportionate relative to the incremental benefit of the alternative over the next lowest cost alternative. The comparison of benefits relative to costs may be quantitative, but will often be qualitative. When possible for this FS, quantitative factors such as mass of contaminant removed or percentage of area of impacts remaining were compared to costs for the alternatives evaluated, but many of the benefits associated with the criteria described below were necessarily evaluated qualitatively. Costs are disproportionate to benefits if the incremental costs of the more permanent alternative exceed the incremental degree of benefits achieved over the lower-cost alternative (WAC 173-340-360[e][ii]). Where two or more alternatives are equal in benefits, Ecology selects the less costly alternative (WAC 173-340-360[e][ii][c]).

The MTCA criteria used in the DCA are described below.

13.3.1. Protectiveness

The overall protectiveness of a cleanup action alternative is evaluated based on several factors. First, the extent to which human health and the environment are protected and the degree to which overall risk at a site is reduced are considered. Both on-site and off-site reductions in risk resulting from implementing the alternative are considered.

13.3.2. Permanence

MTCA specifies that when selecting a cleanup action alternative, preference shall be given to actions that are "permanent solutions to the maximum extent practicable." Evaluation criteria include the degree to which the alternative permanently reduces the toxicity, mobility or mass of hazardous substances, including the effectiveness of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment processes, and the characteristics and quantity of treatment residuals generated.

13.3.3. Long-Term Effectiveness

Long-term effectiveness is a parameter that expresses the degree of certainty that the cleanup action alternative will be successful in maintaining compliance with cleanup standards over the long-term

performance of the cleanup action. The MTCA Cleanup Regulation contains a specific preference ranking for different types of technologies that is to be considered as part of the comparative analysis. The ranking gives the highest preference to technologies such as reuse/recycling, treatment, immobilization/solidification, and disposal in an engineered, lined, and monitored facility. Lower preference rankings are given to technologies such as on-site isolation/containment with attendant engineered controls, and institutional controls and monitoring.

13.3.4. Management of Short-term Risks

Evaluation of this criterion considers the relative magnitude and complexity of actions required to maintain protection of human health and the environment during implementation of the cleanup action. Cleanup actions carry short-term risks, such as potential mobilization of contaminants during construction, or safety risks typical of large construction projects. Some short-term risks can be managed using best practices during project design and construction, while other risks are inherent to project alternatives and can offset the long-term benefits of an alternative.

13.3.5. Implementability

Implementability is an overall metric expressing the relative difficulty and uncertainty of implementing the cleanup action. Evaluation of implementability includes consideration of technical factors such as the availability of mature technologies and experienced contractors to accomplish the cleanup work. It also includes administrative factors associated with permitting and completing the cleanup.

13.3.6. Consideration of Public Concerns

The public involvement process under MTCA is used to identify potential public concerns regarding cleanup action alternatives. The extent to which an alternative addresses those concerns is considered as part of the evaluation process. This includes concerns raised by individuals, community groups, local governments, tribes, federal and state agencies, and other organizations that may have an interest in or knowledge of the site. The public concerns for this site would generally be associated with environmental concerns and performance of the cleanup action, which are addressed under other criteria such as protectiveness and permanence.

13.3.7. Cost

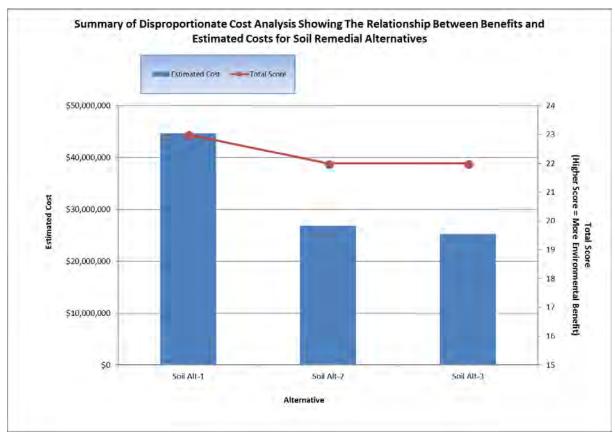
The analysis of cleanup action alternative costs under MTCA includes all costs associated with implementing an alternative, including design, construction, conformational monitoring, and institutional controls. Costs are intended to be comparable among different alternatives to assist in the overall analysis of relative costs and benefits of the alternatives. The costs to implement an alternative include the cost of construction and the net present value of any long-term costs. Long-term costs include operation and maintenance costs, monitoring costs, equipment replacement costs, and the cost of maintaining institutional controls. Unit costs used to develop cost estimates for the cleanup action alternatives in this FS were derived using a combination of published engineering reference manuals (i.e., R.S. Means), construction cost estimates solicited from applicable vendors and contractors, review of actual costs incurred during similar, applicable projects, and professional judgment.

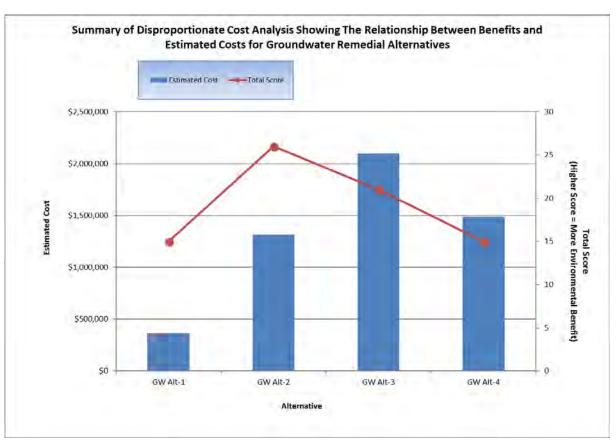
14.0 EVALUATION AND COMPARISON OF CLEANUP ALTERNATIVES

This section provides an evaluation and comparative analysis of cleanup action alternatives developed for the site. The alternatives are evaluated with respect to the MTCA evaluation criteria described in Section 13.0 and then compared to each other relative to expected performance under each criterion. The components of each remedial alternative are described in Section 12.4 and summarized in Tables 12-2 and 12-3 for soil and groundwater respectively. Detailed evaluation of the alternatives is presented in Evaluation of Cleanup Action Alternatives, Tables 14-1 and 14-2 for soil and groundwater respectively. The results of the evaluation are summarized in Summary of MTCA Evaluation and Ranking of Cleanup Action Alternatives, Tables 14-3 and 14-4 for soil and groundwater respectively.

To evaluate reasonableness of costs, planning level estimates were developed for reach remedial alternative. While adequate for decision making purposes, final cost estimates will depend on the scope of the final remedial design. Please note that (1) the estimated costs for each alternative are considered to be within a margin of +/- 20 percent; (2) unit costs were derived from local and national vendors; (3) long-term monitoring and maintenance costs beyond 5 years are not included in the estimates; and (4) costs are based on 2018 dollars.

14.1. Threshold Requirements


The alternatives developed meet the four MTCA threshold requirements described for cleanup actions: (1) protection of human health and the environment; (2) compliance with cleanup standards; (3) compliance with applicable state and federal regulations; and (4) provisions for compliance monitoring. Please note that Groundwater Alternative 1 does not meet the four MTCA threshold requirements unless combined with a soil alternative that addresses the deeper adsorbed contaminant source area, Considering the expectation that both soil and groundwater alternatives will be selected, Groundwater Alternative 1 meets MTCA threshold requirements and is carried forward in the DCA.


14.2. MTCA Disproportionate Cost Analysis

As discussed in Section 13.1.3, the MTCA analysis of disproportionate costs is used to determine which cleanup alternative meets threshold requirements and is permanent to the maximum extent practicable. The alternatives were evaluated based on the relative benefits ranking factors of the DCA. Using a numeric scoring scale of 1 (lowest) to 5 (highest) and the methodology described in Section 13.0 alternatives were ranked and evaluated as shown in Tables 14-1 and 14-2 for soil and groundwater respectively. Each individual criterion is evaluated based on how it applies to each alternative. Tables 14-3 and 14-4 for soil and groundwater respectively present the summary of these results, including the summation of the resulting scores for each alternative and the determination of disproportionate cost. The conclusions of this evaluation are summarized in the following sections and the graphs below.

Evaluation of each groundwater alternative assumes that the deeper adsorbed soil contamination is addressed by the selected soil remediation alternative, removing a continuing source of groundwater impacts. In the discussion below, "source area" refers to the existing groundwater contamination plume that extends approximately from the former process area to the west property line.

14.3. Protectiveness

14.3.1. Soil

Soil Alternative 2, off-site disposal achieves a high level of protectiveness as a result of permanently removing the contamination from the site and relocating it to a controlled facility, however this doesn't reduce the toxicity of the COCs. Soil Alternative 1, soil washing and Soil Alternative 3, thermal desorption also achieves high levels of protectiveness by reducing the toxicity of contamination, but they have the potential to leave residual contamination, daughter products or byproducts at the site.

14.3.2. Groundwater

Groundwater Alternative 2, pump and treat achieves the highest level of protectiveness by extracting the contaminants from groundwater and source areas and capturing them in the GAC for off-site disposal. Groundwater Alternative 3, bioremediation achieves a higher level of protectiveness compared to Groundwater Alternatives 1, MNA and 4, PRB because the source area is directly treated, but Groundwater Alternatives 3 and 4 involve introducing chemicals into the saturated zone, which makes them less protective than Groundwater Alternative 2. Groundwater Alternative 4 achieves a higher level of protectiveness than Groundwater Alternative 1 because it treats the water before off-site migration but doesn't address the source area and allows for the presence of contaminated water upgradient of the PRB wall. Groundwater Alternative 1 is the least protective because it doesn't address the contamination and relies on the natural recovery of groundwater which hasn't occurred since operations at the facility were ceased in 2005, though natural recovery will likely be accelerated by the removal of the adsorb deeper contaminated soil.

14.4. Permanence

14.4.1. Soil

Each of the alternatives were ranked as the highest level of permeance because the permanently destroy or remove the contaminants from the site. There is little chance for remobilization or exposure to site COCs after treatment.

14.4.2. Groundwater

Groundwater Alternative 2, pump and treat achieves the highest level of permanence by extracting the contaminants from the groundwater and source areas and capturing them in the GAC for off-site disposal. Groundwater Alternative 3, bioremediation achieves a higher level of protectiveness compared to Groundwater Alternatives 1, MNA and 4, PRB because the source area is directly treated but Groundwater Alternative 3 has the potential to not target some areas of contamination if the injected products follow preferential flow paths or not fully break down the contaminants that could result in the remobilization of the contaminant.

Groundwater Alternative 4 achieves a higher level of permanence than Groundwater Alternative 1 because it treats the water before off-site migration but doesn't address the source area. Groundwater Alternative 1 is the least permeant because it doesn't address the contamination and relies on the natural recovery of groundwater.

14.5. Long-Term Effectiveness

14.5.1. Soil

Soil Alternative 2, off-site disposal achieves the highest level of long-term effectiveness as a result of permanently removing the contamination from the site and relocating it to a controlled facility. Soil Alternative 1, soil washing and Soil Alternative 3, thermal desorption also achieve moderate to high levels of long-term effectiveness by reducing the toxicity of contamination, but they have the potential to leave residual contamination if the treatment processes are not 100 percent effective.

14.5.2. Groundwater

Groundwater Alternative 2, pump and treat achieves the highest level of long-term effectiveness by extracting the contaminants from the groundwater and source areas and capturing them in the GAC for off-site disposal. Groundwater Alternative 3, bioremediation and Groundwater Alternative 4, PRB achieve a moderate level of long-term effectiveness compared to Groundwater Alternative 1, MNA because they destroy or transform the contamination, but they have the potential to leave behind residual contamination, daughter products or byproducts at the site. Groundwater Alternative 1 provides a low long-term effectiveness because it doesn't address the contamination and it could take a long period of time to achieve the cleanup goals.

14.6. Management of Short-Term Risks

14.6.1. Soil

Soil Alternative 1, soil washing achieves the highest level of managing short term risks because the process involves a food grade solvent and the same excavation techniques as the other alternatives. The process for Soil Alternative 1 is also limited to onsite activities, with the exception of a small quantity of off-site GAC disposal at the conclusion of the remediation. Soil Alternative 3, thermal desorption manages short term risks better than Soil Alternative 2, off-site disposal because remediation activities are generally limited to on-site activities.

However; with Soil Alternative 3 there is a risk of gasses not captured by the SVE system and there are risks of explosion by heating the soil to extremely high temperatures and utilizing high amounts of electrical power to heat the soil. Soil Alternative 2 has the lowest level of short-term risk management because it involves transportation of waste over significant distances. The risk of an accident or spill are moderate, especially given the location of the site and the number of two lane highways that would be utilized to transport waste to the disposal facility.

14.6.2. Groundwater

Groundwater Alternative 1, MNA involves very little short-term risks, by not taking disruptive action at the site. Groundwater Alternative 2, pump and treat has a low to moderate risk and involves the installation of multiple groundwater wells, small electrical works and activities are generally limited to onsite. However, this alternative requires the greatest operation and maintenance, including maintaining operation of the system during freezing conditions. Groundwater Alternatives 3 and 4 have low to moderate risk because the introduction of ORC® into the subsurface which can result in uncontrolled off gassing and has the potential to migrate off site or impact workers at the site and the PRB can impact downstream water chemistry and it involves deep slurry trenching.

14.7. Technical and Administrative Implementability

14.7.1. Soil

Soil Alternative 2, off-site disposal is the most easily implemented because approval for the waste at the disposal facility has already been achieved and the process involves excavation of the contaminated areas (common to all three alternatives) and then loading it into a truck for transportation to the disposal area. This process is not difficult to implement from a technical or administrative standpoint. Soil Alternative 3, thermal desorption requires more technical analysis and planning than Soil Alternative 2. Technical considerations include energy uses, vapor capture systems, treatment cell construction and performance monitoring. Soil Alternative 1, soil washing is the least implementable solution when compared to the other two. Soil Alternative 1 involves utilizing a process that has not been proven for full scale remediation projects. The technology in question is proprietary and the effectiveness and reasonableness of the solution is not vetted.

14.7.2. Groundwater

Groundwater Alternative 1, MNA requires no action and as a result it is easy to implement. Groundwater Alternative 3, bioremediation has a lower level of implementation because it could require multiple applications and relies on additional monitoring, but it is a proven and effective technology. In addition, Groundwater Alternative 3 would require approval to introduce chemicals into the subsurface. Groundwater Alternatives 2 and 4 have moderate implementability. Groundwater Alternative 2, pump and treat would require underground injection control permitting of the water discharge and the pump and treat system can be operations and maintenance intensive. Groundwater Alternative 4, PRB also has a moderate implementability ranking. The PRB wall could require recharge depending on performance and it doesn't treat the actual plume, but is dependent on treating contaminated groundwater as it moves through the PRB. Downstream water chemistry concerns would also need to be addressed for Groundwater Alternative 4.

14.8. Consideration of Public Concerns

14.8.1. Soil

Soil Alternative 1, soil washing likely has the highest level of public acceptance because the cleanup activities are generally limited to the site. Soil Alternative 3, thermal desorption has a slightly lower public acceptance because there could be concerns of off-site vapor migration or risks of explosion or problems with the high energy use. Soil Alternative 2, off-site disposal has the lowest public acceptance because the impacts to traffic on the two-lane highway adjacent to the site could be significant. Traffic along this route is already a concern and the addition of multiple large trucks hauling waste and consuming diesel fuel would reduce the public acceptance for this alternative.

14.8.2. Groundwater

Groundwater Alternative 2, pump and treat has the highest level of public acceptance because remediation activities are generally limited to the site and the process involves direct removal of contaminants from the groundwater. Groundwater Alternatives 3, bioremediation and 4, PRB have lower levels of public acceptance because they introduce chemicals into the groundwater and could impact downgradient water chemistry. Groundwater Alternative 1, MNA has the lowest level of acceptance because it doesn't directly

address the groundwater contamination. Its costs are significantly less than the other alternatives which could be a positive to the public if the remediation is publicly funded.

14.9. Reasonable Restoration Timeframe

14.9.1. Soil

The restoration timeframe for the proposed alternatives is expected to be on the order of 2 to 4 years. This timeframe includes project design, permitting, contracting and construction. Remedial action timeframes range from 2 (Soil Alternative 2) to 4 years (Soil Alternative 1). In general, each remedial alternative requires about the same restoration timeframe and they are not significantly different.

14.9.2. Groundwater

The restoration timeframe for the proposed alternatives is expected to be on the order of 2 to 20 years. This timeframe includes project design, permitting, contracting and construction. Remedial action timeframes range from as low as 2 years (Groundwater Alternatives 2 and 3) and up to 20 years (Groundwater Alternatives 1 and 4). Groundwater Alternatives 2 and 3 are aggressive remediation strategies developed to remediate the site within a short time period. Groundwater Alternatives 1 and 4 are passive technologies, which generally require longer cleanup times. Groundwater Alternatives 1 and 4 are dependent upon the natural groundwater movement through the site and therefore require extended periods of time to allow for natural groundwater movement through the site.

14.10. Cost

14.10.1. Soil

For purposes of this evaluation, higher cost equates to a reduction in score. Soil Alternative 3, thermal desorption is the lowest cost alternative and therefore ranks the highest for cost. Soil Alternative 1, soil washing had the highest cost and was therefore ranked the lowest. The cost estimates for each soil remediation alternative were developed as described in Section 12.4 and are presented in Tables 14-5 through 14-7. Estimated costs include design, implementation and performance and conformational monitoring of the process.

14.10.2. Groundwater

For purposes of this evaluation, higher cost equates to a reduction in score. Groundwater Alternative 1, MNA is the lowest cost alternative and therefore ranks the highest for cost. The next cheapest alternative is Groundwater Alternative 2, pump and treat, which was estimated as only \$200,000 less than Alternative 4, PRB. Groundwater Alternative 3, bioremediation is the most expensive remediation alternative. The estimated costs for Groundwater Alternative 4 includes about \$467,000 to excavate, dispose and backfill the PRB trench. If the PRB can be left in place indefinitely, then the costs for Groundwater Alternative 4 is greatly reduced.

The cost estimates for each groundwater remediation alternative were developed as described in Section 12.4 and are presented in Tables 14-8 through 14-11. Estimated costs include design, implementation and performance monitoring. To equalize monitoring costs across each alternative, 5 years of monitoring costs were estimated for each alternative.

15.0 RECOMMENDED REMEDIAL ACTIONS

Based on the DCA, Soil Alternative 3, thermal desorption is the preferred alternative for soil remediation. For groundwater remediation, Groundwater Alternative 2, pump and treat is the preferred alternative. Both of the selected options had high benefit rankings and the lowest or second lowest estimated implementation costs. Although the costs for Groundwater Alternative 2 were higher than Groundwater Alternative 1, the overall benefit and shorter timeframe resulted in a significantly higher score. In compliance with MTCA [WAC 173-340-360(3)(e)(ii)(c)], Soil Alternative 3 and Groundwater Alternative 2 should be the preferred remedial alternatives.

16.0 LIMITATIONS

We have prepared this RI/FS for use by the Washington State Department of Ecology. This RI/FS is not intended for use by others, and the information contained herein is not applicable to other sites.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this work plan was prepared. No warranty or other conditions express or implied should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc.

17.0 REFERENCES

- Century West Engineering. 1991. "Colville Post and Poles, Inc., Environmental Site Investigation." September 18, 1991.
- Ecology and Environment, Inc. 2009. "Removal Action Report, Colville Post and Poles Site, Colville, Washington." September 29, 2009.
- Ecology and Environment, Inc. 2010. "Colville Post and Poles Site, Results of Groundwater Monitoring, June 2008, March 2009, and August 2009." May 21, 2010.
- GeoEngineers, Inc. 2015. "Revised Interim Action Sampling and Analysis Plan and Health and Safety Plan." January 16, 2015.
- GeoEngineers, Inc. 2016. "Pre-RI Soil and Groundwater Site Assessment, Wetland Delineation, & Interim Action Completion Report." January 22, 2016.
- GeoEngineers, Inc. 2016b. "Remedial Investigation/Feasibility Study Work Plan." November 3, 2016.
- GeoEngineers, Inc. 2017. "Well Installation and Groundwater Monitoring Report, Fourth Quarter 2016 through Fourth Quarter 2017." January 17, 2018.
- Gunawardana, Buddhika, et al. 2011. "Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review." Environmental Engineering Research, 20 Nov. 2011, pp. 187–203.

- Harrison, J.E., Kleinkopt, M.D., and Obradovich, J.D. 1972. Tectonic events at the intersection between the Hope fault and the Purcell trench, northern Idaho: US Geological Survey, Professional Paper 719, scale 1:125,000.
- Herrera Environmental Consultants. 2003. "Removal Site Evaluation, Colville Post & Pole, Colville, Washington." June 5, 2003.
- Herrera Environmental Consultants. 2005. "Phase II Removal Site Evaluation, Colville Post & Pole, Colville, Washington." December 2005.
- Kahle, S.C., Longpre, C.I., Smith, R.R., Sumioka, S.S., Watkins, A.M., and D.L. Kresch, 2003. Water Resources of the Ground-Water System in the Unconsolidated Deposits of the Colville River Watershed, Stevens County, Washington: U.S. Geological Survey Scientific Investigations Report 03-4128, 84 p.
- Lewis, R.S., Burmeister, R.F., Brechenridge, R.M., McFadden, M.D., and Phillips, W.M. 2008. Preliminary Geologic Map of the Sandpoint 30x60 minute Quadrangle, Idaho and Montana, and the Idaho Part of the Chewelah 30x60 Minute Quadrangle: Idaho Geological Survey. Digital Web Map DWM-94, scale 1:100,000.
- Regenesis. "Oxygen Release Compound, ORC® Remediation of Pentachlorophenol." ORC Technical Bulletin #2.2.2.4, 21 MAR. 2003.
- Total Consultants Inc. 1994. "Phase II Groundwater Investigation Report." May 3, 1994.
- United States Environmental Protection Agency (EPA). 2006. "Combined Phase II Removal and \$2 Million Exemption Request Special Circumstances Action Memorandum to conduct a Time Critical Removal Action at the Colville Post and Poles Site, Colville, Stevens County, Washington." September 11, 2006.
- Huntting, M. T., Bennett, W. A. G., Livingston, V. E. Jr., Moen, W. S. 1961. Geologic Map of Washington: Washington Division of Mines and Geology, scale 1:500,000.
- Washington Division of Geology and Earth Resources. 1990. "Geologic Map of the Colville 1:100,000 Quadrangle, Washington Idaho. Open File Report 90-13.
- Washington State Department of Ecology (Ecology). 2012. Environmental Covenant, Colville Post and Poles. 2 July 2012.
- Washington State Department of Ecology (Ecology). 1994. "Colville Post and Poles: Sampling Results and Forward Planning." January 7, 1994.

Table 5-1

Proposed Soil Screening Levels

Colville Post and Poles Stevens County, Washington

		Human Healt	h Direct Contact	Ecological			Concentr	ations Protective	of Groundwater				Modifying	Factors		
			3 Standard Formula estricted Land Use	Site-Specific TEE Ecological Indicator Soil				Soil Concentrat	ion Protective of Grour Level ⁵	ndwater Screening		nary Soil ing Level	Background		(After adju	ening Level ustment for nd and PQL)
	CAS	Carcinogen	Non-Carcinogen	Concentrations ¹	Koc²	Kd ³	H⁴	GW SL	Vadose Zone Soil	Saturated Soil	Vadose	Saturated	Concentration ⁶	PQL ⁷	Vadose	Saturated
Analyte	Number	mg/kg	mg/kg	mg/kg	L/kg	L/kg	(-)	μg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Petroleum Hydrocarbons																
Diesel-Range Hydrocarbons	NA	-		see Note 8	-		-		2000	2000	2000	2000		10.0	2000	2000
Semivolatile Organic Compounds (SV	OCs)															
Pentachlorophenol	87-86-5	2.5	400	3.0	592	0.592	0.000001	1.0	0.0158	0.0009	0.0158	0.0009		0.05	0.05	0.05
Dioxins and Furans																
					•			0.00011						_		
Dioxin TEQ	1746-01-6	0.000013	0.000093	0.0002	_		-	(110 pg/L)			0.000013	0.000013	0.0000052	0.000011	0.000013	0.000013

Notes:

 f_{oc} = Sediment fraction of organic carbon

 k_d = Distribution coefficient k_{oc} = Soil organic carbon-water partitioning coefficient

L/kg = liter per kilogram

μg/L = micrograms per liter

mg/kg = milligram per kilogram

MTCA = Washington State Model Toxics Control Act

NA = Not Applicable

PQL = Practical quantitation limit

TEQ = Toxic equivalent concentration

-- = No screening criteria available

Gray shading identifies the basis for the preliminary soil screening level.

Blue shading identifies the basis for the soil screening level (after PQL adjustment)

Green shading identifies the soil screening level after adjustment for background and the PQL

¹ Dioxin TEQ site-specific indicator soil concentration derived using default equations and parameter values in MTCA Tables 749-4 and 749-5, plus a literature-derived earthworm bioaccumulation factor (see text for details).

² Values for Koc are from Ecology's "CLARC Master Spreadsheet.xlsx" dated August 2015.

 $^{^3}$ For ionizing and non-ionizing organics, $K_d = K_{oc} \times f_{oc}$ and uses the MTCA default f_{oc} of 0.1% in upland soil. Metals Kd values are from Ecology's "CLARC Master Spreadsheet.xlsx" dated August 2015.

⁴ Values for H are from Ecology's "CLARC Master Spreadsheet.xlsx" dated August 2015. Values are temperature-adjusted based on 13 degrees Celsius when available; otherwise values are based on 25 degrees Celsius.

⁵ Soil concentrations protective of groundwater calculated per WAC 173-340-740(3)(b)(iii)(A) using Equations 747-1 and 747-2 referencing preliminary groundwater cleanup levels presented in Table 5-2. Method A Cleanup Values are used for total petroleum hydrocarbon soil concentrations protective of groundwater. Preliminary groundwater cleanup levels are presented in Table 5-2.

⁶ Dioxin TEQ background value from Ecology Technical Memorandum No. 8, Natural Background for Dioxins/Furans in WA Soils, August 9, 2010.

⁷ PQL is the lowest PQL reported by Test America.

Table 5-2

Proposed Groundwater Screening Levels

Colville Post and Poles

Stevens County, Washington

				Drinking W	ater Criteria				Modifying	Groundwater
				1	MTCA Method B Stan	dard Formula Value [®]	3,4	Preliminary	Factor	Screening Level
Analyte	CAS Number	Federal MCL ¹ µg/L	State MCL ² µg/L	Carc. µg/L	Carc. Adjusted µg/L	Non-Carc. μg/L	Non-Carc. Adjusted	Groundwater Screening Level µg/L	PQL ⁵ μg/L	(After PQL Adjustment) µg/L
Petroleum Hydrocarbons										
Diesel-Range Hydrocarbons ⁶	NA		_			500		500	240	500
Semivolatile Organic Compounds										
Pentachlorophenol	87-86-5	1.0	1.0	0.22	-	80	-	1.0	0.02	1.0
Dioxins and Furans										
Dioxin TEQ	1746-01-6	0.00003	0.00003	0.000007	0.0000067	0.0000112	0.0000112	0.00000673	0.00011	0.00011 (110 pg/L)

Notes:

µg/L = micrograms per literPQL = Practical quantitation limitMTCA = Washington State Model Toxics Control ActTEQ = Toxic equivalent concentrationMCL = Maximum contaminant level- = No screening criteria available

NA = Not Applicable

Gray shading identifies the basis for the preliminary groundwater screening level.

Blue shading identifies the basis for the groundwater screening level (after PQL adjustment)

Green shading identifies the groundwater screening level after adjustment for background and the PQL.

¹ National Primary Drinking Water Regulation; http://water.epa.gov/drink/contaminants.index.cfm; CLARC Master Spreadsheet.xlsx dated August 2015.

 $^{^2}$ Washington Primary Drinking Water Standards, WAC 246-290-130; CLARC Master Spreadsheet.xlsx dated August 2015.

 $^{^3}$ MTCA Method B groundwater screening levels calculated according to WAC-173-340-720(3)(b)(iii)(A)(equation 720-1) and WAC-173-340-720(3)(b)(iii)(B)(equation 720-2); CLARC Master Spreadsheet.xlsx dated August 2015.

 $^{^4}$ "Carc. Adjusted" (i.e., carcinogenic adjusted) and "Non-Carc. Adjusted" (i.e., non-carcinogenic adjusted) columns are applicable when a state or federal surface water standard is available, but is not considered to be "sufficiently protective" under MTCA (that is, the standard is based on a hazard quotient greater than 1 or a cancer risk greater than 1 x 10^{-5}). In these cases WAC 173-340-720(7)(b) and -730(5)(b) allows the standard to be adjusted downward to a hazard quotient of 1 or a cancer risk of 1 x 10^{-5} . For this table, the "Carc. Adjusted" and "Non-Carc. Adjusted" column are also used in cases where no state or federal standards are available.

⁵ PQL is the lowest PQL reported by TestAmerica.

⁶ Diesel-range hydrocarbons were not detected in soil within the conditional point of compliance (0 to 6 feet below ground surface) at a concentration greater than the site-specific TEE indicator soil concentration of 260 mg/kg and is, therefore, not an ecological contaminant of concern for soil.

Table 6-1

Soil Chemical Analytical Results - Total Petroleum Hydrocarbons, Metals and Pentachlorophenol¹

Colville Post and Poles

Stevens County, Washington

		Depth	Semi-volatile Organic Compounds EPA Method 8270D SIM (µg/kg)	NW	Hydrocarbons IPH-Dx g/kg)	Meta EPA Series 6 Metho (mg/	000/7000 ods
Sample ID	Date Collected	(feet)	Pentachlorophenol ²	Diesel-Range	Lube Oil-Range	Cadmium	Mercury
HA-1 (0-6")	12/06/16	0-0.5	680	72 J	270 J	-	_
HA-10 (0-6")	12/07/16	0-0.5	25 J				-
HA-15 (0-6")	12/07/16	0-0.5		14 U	66 J	-	-
HA-16 (0-6")	12/07/16	0-0.5		13 U	32 U	-	_
HA-17 (0-6")	12/07/16	0-0.5		51 J	330 J	-	-
HA-20 (0-6")	12/07/16	0-0.5	-	-	-	0.56 U	0.038 U
HA-21 (0-6")	12/07/16	0-0.5	_	-	-	0.61 U	0.042
HA-24 (0-6")	12/07/16	0-0.5	3,700	-	-	0.52 U	0.025
HA-25 (0-6")	12/07/16	0-0.5	2,000	-	-	-	_
HA-26 (0-6")	12/07/16	0-0.5	3,700				
HA-29 (0-6")	12/07/16	0-0.5	15,000	-	-	-	_
HA-30 (0-6")	12/07/16	0-0.5	9.6 U	_			
HA-35 (0-6")	12/07/16	0-0.5	480	-	-	-	_
HA-36 (0-6")	12/06/16	0-0.5	310	59 J	230 J	-	_
HA-37 (0-6")	12/06/16	0-0.5	120	25 J	97 J	-	_
HA-54(0-6)	03/01/17	0-0.5	1,100 J	-	-	-	_
HA-55(0-6)	03/01/17	0-0.5	2,100	-	-	-	_
HA-56(0-6)	03/01/17	0-0.5	350	-	_	-	-
HA-57(-0-6)	03/01/17	0-0.5	14,000	-	-	-	_
HA-58(0-6)	03/01/17	0-0.5	97,000	-	_	-	-
HA-59(0-6)	03/01/17	0-0.5	4,700			-	_
MW20-1 (2-3)	11/08/16	2-3	10 U	13 U	33 U	-	-
MW20-3 (13-14)	11/08/16	13-14	9.0 U	12 U	29 U	-	_
MW21-2 (7-8)	11/09/16	7-8	9.5 U	11 U	28 U		_
MW21-3 (16-17)	11/09/16	16-17	8.6 U	11 U	27 U	-	-
MW22-1 (6.5-7)	11/09/16	6.5-7	8.6 U	11 U	27 U	_	
MW22-2 (15.5-16)	11/09/16	15.5-16	9.2 U	12 U	29 U	-	-
MW23-1 (2-3)	11/09/16	2-3	9.3 U	12 U	30 U	_	_
MW23-3 (12.5-13)	11/09/16	12.5-13	8.9 U	11 U	28 U	-	

		Depth	Semi-volatile Organic Compounds EPA Method 8270D SIM (µg/kg)	NW	Hydrocarbons ГРН-Dx g/kg)	Meta EPA Series 6 Meth (mg/	6000/7000 ods
Sample ID	Date Collected	(feet)	Pentachlorophenol ²	Diesel-Range	Lube Oil-Range	Cadmium	Mercury
MW24-2 (6.5-7)	11/08/16	6.5-7	8.3 U	11 U	26 U		_
MW24-3 (11.5-12)	11/08/16	11.5-12	8.7 U	11 U	27 U	-	_
MW25-1 (5.5-6.5)	11/08/16	5.5-6.5	9.2 U	11 U	27 U	-	_
MW25-2 (9.5-10)	11/08/16	9.5-10	8.7 U	11 U	27 U	-	_
MW26-5 (25.5-26)	11/08/16	25.5-26	9.1 U	11 U	28 U	_	_
MW26-6 (8-9)	11/08/16	8-9	10 U	12 U	30 U	-	
MW27-2 (12-13)	11/07/16	12-13	14,000	20,000 J	900 J	-	
MW27-3 (16-17)	11/07/16	16-17	8.8 U	11 U	28 U	-	-
MW-28-1 (1)	11/07/16	1-1.5	10 U	13 U	32 U	-	
MW28-2 (18.5)	11/07/16	18.5	8.7 U	11 U	26 U	-	-
MW29-3 (13-13.5)	11/09/16	13-13.5	8.9 U	10 U	26 U	-	-
MW29-5 (4-5)	11/09/16	4-5	9.9 U	12 U	29 U	-	-
MW-33 (5.0-5.5)	05/25/17	5-5.5	21 J	12 U	29 U	-	
MW-33 (16.5-17.0)	05/25/17	16.5-17	8.6 U	10 U	26 U	-	-
MW-34 (15.5-16.0)	05/25/17	2-2.5	9.2 U	11 U	28 U	-	-
MW-34 (2.0-2.5)	05/25/17	15.5-16	10 U	12 U	30 U	-	-
MW-35 (1.5-2.0)	05/25/17	1.5-2	20 J	20	110	-	
MW-35 (14.5-15.0)	05/25/17	14.5-15	8.4 U	11 U	26 U	-	-
SEEP-1 (6-12")	12/07/16	0-0.5	51 J	14 U	34 U		-
SEEP-2 (6-12"')	12/07/16	0-0.5	38 J	15 U	37 U	-	-
MTCA Method A	Unrestricted Land Use Clea	nup Level ³	NE	2,000	2,000	2	2
	Screening Level ⁴		100	260	NE	0.03	0.01

NE = Not established; NL = Not listed; EPA = Environmental Protection Agency

Bold indicates analyte was detected at concentrations greater than the laboratory reporting limit

Shading indicates analyte was detected at concentrations above applicable cleanup levels

¹Samples analyzed by TestAmerica Laboratories, Inc. in Spokane Valley, Washington.

 $^{^2}$ The non-detected results for pentachlorophenol are reported at the laboratory method detection limit.

³ Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels.

⁴ MTCA Method B non-cancer and cancer cleanup levels for diesel- and lube-oil range petroleum hydrocarbons. For details on PCP cleanup value, please refer to Table 5-1 in the RI text. mg/kg = milligram per kilogram, µg/kg = microgram per kilogram

< = analyte was not detected at concentrations greater than the method reporting limit

^{&#}x27;--' = sample not analyzed for this compound

Table 6-2

Soil Chemical Analytical Results - Dioxins and Furans TEQ¹

Colville Post and Poles Stevens County, Washington

					Diox	in Congeners (CDDs)	(pg/g) ²				Furan Congene	rs (CDFs) (pg/g) ²	
			2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	1,2,3,4,6,7,8- HpCDD	OCDD	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF
Toxic Equiv	alency Factor		1	1	0.1	0.1	0.1	0.01	0.0003	0.1	0.03	0.3	0.1
Sample Identification	Sample Date	Depth (feet)		J	I	I			l			l.	1
BG-1 (0-6")	12/08/16	0-0.5	1.5 U	7.3 U	7.3 U	16	10	530	4,600	1.5 U	7.3 U	7.3 U	7.3 U
BG-2 (0-6")	12/09/16	0-0.5	1.2 U	6 U	6 U	6 U	6 U	19	200	1.2 U	6 U	6 U	6 U
BG-3 (0-6")	12/09/16	0-0.5	1.5 U	7.3 U	7.3 U	7.3 U	7.3 U	40	350	1.5 U	7.3 U	7.3 U	7.3 U
BG-4 (0-6")	12/08/16	0-0.5	1.2 U	6 U	6 U	6 U	6 U	22	210	1.2 U	6 U	6 U	6 U
BG-5 (0-6")	12/08/16	0-0.5	1.4 U	7.1 U	7.1 U	7.1 U	7.1 U	73	580	1.4 U	7.1 U	7.1 U	7.1 U
BG-6 (0-6")	12/08/16	0-0.5	1.3 U	6.3 U	6.3 U	6.3 U	6.3 U	15	110	1.3 U	6.3 U	6.3 U	6.3 U
BG-7 (0-6")	12/08/16	0-0.5	1.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	18	1.2 U	6.2 U	6.2 U	6.2 U
BG-8 (0-6")	12/08/16	0-0.5	1.2 U	6 U	6 U	6 U	6 U	150	2,100	1.2 U	6 U	6 U	6 U
BG-9 (0-6")	12/08/16	0-0.5	1.3 U	6.4 U	6.4 U	6.4 U	6.4 U	8	66	1.3 U	6.4 U	6.4 U	6.4 U
BG-10 (0-6")	12/09/16	0-0.5	1.3 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	29	1.3 U	6.5 U	6.5 U	6.5 U
HA-1 (0-6")	12/06/16	0-0.5	41 U	200 U	200 U	390	200 U	9,900	87,000	41 U	200 U	200 U	200 U
HA-2 (0-6")	12/06/16	0-0.5	4.7 U	23 U	23 U	97	49	2,400	21 ,000 J	4.7 U	23 U	23 U	23 U
HA-3 (0-6")	12/06/16	0-0.5	280 U	1400 U	1400 U	2900	1400 U	73,000	650,000	280 U	1400 U	1400 U	1400 U
HA-3A (6-12)	03/01/17	6-12	1800 U	8800 U	8800 U	8800 U	8800 U	190,000	1,600,000	1800 U	8800 U	8800 U	8800 U
HA-3A (12-18)	03/01/17	1-1.5	290 U	1400 U	1400 U	1700	1400 U	45,000	380,000	290 U	1400 U	1400 U	1400 U
TP-3 (1.5'-2.0')	11/09/17	1.5-2.0	2.5 U	13 U	13 U	20	13 U	580	5300	2.5 U	13 U	13 U	13 U
HA-4 (0-6')	12/06/16	0-0.5	130 U	660 U	660 U	780	660 U	24,000	220,000	130 U	660 U	660 U	660 U
HA-4A (6-12)	03/01/17	0.5-1	44 U	220 U	220 U	220 U	220 U	7,700	70,000	44 U	220 U	220 U	220 U
HA-4A (12-18)	03/01/17	1-1.5	98 U	490 U	490 U	490 U	490 U	13,000	110,000	98 U	490 U	490 U	490 U
TP-4 (1.5'-2.0')	11/09/17	1.5-2.0	1.4 U	7.2 U	7.2 U	7.2 U	7.2 U	83	1000	1.4 U	7.2 U	7.2 U	7.2 U
HA-5 (0-6")	12/06/16	0-0.5	19 U	97 U	97 U	280	150	7,000	64,000	19 U	97 U	97 U	97 U
HA-6 (0-6")	12/06/16	0-0.5	110 U	570 U	570 U	1200	570 U	33,000	310,000	110 U	570 U	570 U	570 U
HA-6A (6-12)	03/01/17	0.5-1	17 U	83 U	83 U	240	120	5,900	62,000	17 U	83 U	83 U	83 U
HA-6A (12-18)	03/01/17	1-1.5	33 U	160 U	160 U	340	160 U	6,800	50,000	33 U	160 U	160 U	160 U
TP-6 (1.5'-2.0')	11/09/17	1.5-2.0	1.1 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	37 J	1.1 U	5.6 U	5.6 U	5.6 U
HA-7 (0-6")	12/06/16	0-0.5	26 U	130 U	130 U	220	130 U	6,300	61,000	26 U	130 U	130 U	130 U
HA-8 (0-6")	12/06/16	0-0.5	15 U	73 U	73 U	120	73 U	3,400	36,000	15 U	73 U	73 U	73 U
HA-9 (0-6")	12/07/16	0-0.5	30 U	150 U	150 U	390	180	10,000	91,000	30 U	150 U	150 U	150 U
HA-10 (0-6")	12/07/16	0-0.5	1.3 U	6.4 U	6.4 U	6.4 U	6.4 U	130	1,000	1.3 U	6.4 U	6.4 U	6.4 U
HA-11 (0-6")	12/07/16	0-0.5	9.1 U	46 U	46 U	150	90	4,200	38,000 J	9.1 U	46 U	46 U	46 U
HA-11A (6-12)	03/01/17	0.5-1	5.4 U	27 U	27 U	52	27 U	1,900	19,000	5.4 U	27 U	27 U	27 U
HA-12 (0-6")	12/07/16	0-0.5	4.5 U	23 U	23 U	89	46	2,200	17,000	4.5 U	23 U	23 U	23 U
HA-13 (0-6")	12/06/16	0-0.5	170 U	870 U	870 U	970	990	37,000	330,000	170 U	870 U	870 U	870 U
HA-13A (6-12)	03/01/17	0.5-1	2 U	9.8 U	9.8 U	21	15	700	6600	2 U	9.8 U	9.8 U	9.8 U
HA-13A (12-18)	03/01/17	1-1.5	1.2 U	5.8 U	5.8 U	5.8 U	5.8 U	19	200	1.2 U	5.8 U	5.8 U	5.8 U
HA-14 (0-6")	12/06/16	0-0.5	13 U	65 U	65 U	210	150	5,300	51,000	13 U	65 U	65 U	65 U
HA-17 (0-6")	12/07/16	0-0.5	47 U	230 U	230 U	850	510	21,000	160,000	47 U	230 U	230 U	230 U
HA-17A (6-12)	03/01/17	0.5-1	1.4 U	7.1 U	7.1 U	10	7.3	290	2100	1.4 U	7.1 U	7.1 U	7.1 U
HA-18 (0-6")	12/07/16	0-0.5	1.4 U	7.2 U	7.2 U	22	7.7	440	3,000	1.4 U	7.2 U	7.2 U	7.2 U
HA-19 (0-6")	12/07/16	0-0.5	1.3 U	6.5 U	6.5 U	6.5 U	6.5 U	24	190	1.3 U	6.5 U	6.5 U	6.5 U
HA-20 (0-6")	12/07/16	0-0.5	30 U	150 U	150 U	490	200	11,000	90,000	30 U	150 U	150 U	150 U
HA-20A (6-12)	03/01/17	0.5-1	5.5 U	27 U	27 U	53	30	2,000	17,000	5.5 U	27 U	27 U	27 U

The field polymorph feeth Sumple Res General Description Sumple Res General						Diox	in Congeners (CDDs)	(pg/g) ²				Furan Congene	rs (CDFs) (pg/g) ²	
Trails Equivalence Patient 1				2.3.7.8-TCDD	1.2.3.7.8-PeCDD	1.2.3.4.7.8-HxCDD	1.2.3.6.7.8-HxCDD	1.2.3.7.8.9-HxCDD		OCDD	2.3.7.8-TCDF	1.2.3.7.8-PeCDF	2.3.4.7.8-PeCDF	1,2,3,4,7,8-HxCDF
Sample Market Company	Toxic Equiv	alency Factor							•	0.0003				0.1
120015290 1200754 2620 13.0 6.5	Sample Identification	Sample Date			1							1		
Marcia 120711 1008	HA-20A (12-18)	03/01/17	1-1.5	6 U	30 U	30 U	35	30 U	1,100	9,600	6 U	30 U	30 U	30 U
MAZDROP 12207128 0.00	TP-20 (1.5'-2.0')	11/09/17	1.5-2.0	1.3 U	6.6 U	6.6 U	6.6 U	6.6 U	34	210	1.3 U	6.6 U	6.6 U	6.6 U
M2210P 1727718 0.08 58 U 250 U 25	HA-21 (0-6")	12/07/16	0-0.5	1.4 U	7 U	7 U	46	14	1,000	6,900 J	1.4 U	7 U	7 U	7 U
MASS_0PC 1207/10 0.8 57 U 280 U 280 U 490 320 17000 180000 57 U 280 U 290 U 27 U 280 U 280 U 29 U 280 U 29 U 29 U 280 U 29 U	HA-22 (0-6")	12/07/16	0-0.5	1.4 U	7.1 U	7.1 U	14	9.1	400	3,600	1.4 U	7.1 U	7.1 U	7.1 U
MARTHER 1709	HA-23 (0-6")	12/07/16	0-0.5	52 U	260 U	260 U	620	270	15,000	140,000	52 U	260 U	260 U	260 U
1755 126 175 126 175 150	HA-25 (0-6")	12/07/16	0-0.5	57 U	280 U	280 U	490	320	17,000	180,000	57 U	280 U	280 U	280 U
1830 06 120 716 0.05 12 U 6.1 U 700 15000 12 U 6.1 U 10 U	HA-25A (6-12)	03/01/17	0.5-1	4.6 U	23 U	23 U	51	23 U	1,800	21 ,000 J	4.6 U	23 U	23 U	23 U
PASS_10PS 120/0716 0.05 3.8 U 25 U 25 U 62 44 1.000 15.000 3.6 U 25 U 22 U 24 U 44 1.000 1.000 4.4 U 22 U 22 U 4.000 4.0 U 22 U 22 U 4.0 U	TP-25 (1.5'-2.0')	11/09/17	1.5-2.0	1.2 U	6.1 U	6.1 U	6.1 U	6.1 U	87	1300	1.2 U	6.1 U	6.1 U	6.1 U
1938 66 1207/18 0.05	HA-30 (0-6")	12/07/16	0-0.5	1.2 U	6.1 U	6.1 U	6.1 U	6.1 U	44	560	1.2 U	6.1 U	6.1 U	6.1 U
M39 06 03/01/17 0.05 1.6 8.2 8.2 13 9.4 440 3.300 1.6 8.2 8.2 1 1 1 1 1 1 1 1 1	HA-32 (0-6")	12/06/16	0-0.5	3.6 U	18 U	18 U	82	44	1,900	15,000 J	3.6 U	18 U	18 U	18 U
1940 06 030017 0-05 21 U 100 U 100 U 310 140 7,600 66,000 21 U 100 U 100 U 1 100 U 140 U 140 14	HA-38 (0-6")	12/07/16	0-0.5	4.4 U	22 U	22 U	64	44	1700	13,000	4.4 U	22 U	22 U	22 U
HA40 12 13 030 14 15 1	HA-39 (0-6)	03/01/17	0-0.5	1.6 U	8.2 U	8.2 U	13	9.4	440	3,300	1.6 U	8.2 U	8.2 U	8.2 U
THAD (15-207)	HA-40 (0-6)	03/01/17	0-0.5	21 U	100 U	100 U	310	140	7,600	66,000	21 U	100 U	100 U	100 U
Head 10-6 03/01/17 0-15 0.5 0.5 0.5 0.4 0	HA-40 (12-18)	03/01/17	1-1.5	6.9 U	35 U	35 U	61	35 U	1,400	11,000	6.9 U	35 U	35 U	35 U
HA41 2128 03001/17 1.15 8.9 U		11/09/17	1.5-2.0	1.1 U	5.5 U	5.5 U	5.5 U	5.5 U	11	120	1.1 U	5.5 U	5.5 U	5.5 U
TF41(15)207		03/01/17	0-0.5	8.5 U	42 U	42 U	140	83	3,900	33,000	8.5 U	42 U	42 U	68
TF41(15)207		03/01/17	1-1.5		44 U	44 U	71	44 U	1700			44 U		44 U
1842 06 05/01/17 0.05 3.0 U 150 U 150 U 270 220 8,000 64,000 30 U 150 U 150 U 1444/2(1218) 05/01/17 1.15 220 U 1100 U 1100 U 2800 1800 55,000 330,000 220 U 1100 U 151 U 1742 1.15 1.20 U 1.10 U			1.5-2.0		6.2 U		6.2 U	6.2 U				6.2 U		6.2 U
HA-26 12-18 0.970 1.15 2.20 1.100											ļ			150 U
THA2[15:20] 11/09/17 15:20 1 U 5:1 U			-							· ·				1100 U
HA43 (1.06)										·		+		5.1 U
HA-54 (2-18)														180 U
HA-H4 (06)										· · · · · · · · · · · · · · · · · · ·				1600 U
HA-44 (12-18)									· · · · · · · · · · · · · · · · · · ·	·		+		400 U
HA45(06) 03/01/17 0.0.5									,	,				350 U
HA46(0.6) 03/01/17 0.0.5														230 U
HA46(1218) 03/01/17 1-1.5 1.3 U 6.7 U 6.7 U 6.7 U 6.7 U 42 390 1.3 U 6.7 U 6.7 U 6.7 U 1746(1.5 2.0) 11/09/17 1.5 2.0 1.4 U 7.2 U 1.3 U 1.			-							, , , , , , , , , , , , , , , , , , ,				6.8 U
TP-46 (1.5'-2.0')			-											6.7 U
HA47 (0-6) 03/01/17 0.0.5 1.4 U 7 U 7 U 8.9 7 U 330 3,400 1.4 U 7 U 7 U 7 U 7 U HA47 (12-18) 03/01/17 1.1.5 2.5 U 13 U 13 U 13 U 13 U 280 2,900 2.5 U 13 U 13 U 13 U 13 U HA48 (0-6) 03/01/17 0.0.5 1.5 U 7.6 U 7.														7.2 U
HA-47 (12-18) 03/01/17 1-1.5 2.5 U 13 U 13 U 13 U 13 U 13 U 280 2,900 2.5 U 13 U 13 U 13 U 13 U 14 U 15		<u> </u>												7 U
HA-48 (0-6) 03/01/17 0-0.5 1.5 U 7.6 U 7.6 U 34 13 660 3,800 1.5 U 7.6 U 7.6 U 7.6 U 14-49 (0-6) 03/01/17 0-0.5 12 U 61 U 61 U 61 U 210 89 5,500 49,000 J 12 U 61 U														13 U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , ,				7.6 U
HA-49 (12-18) 03/01/17 1-1.5 7.2 U 36 U 36 U 39 36 U 990 8,400 7.2 U 36 U 36 U 36 U HA-50 (0-6) 03/01/17 0-0.5 1.1 U 5.5 U 5.5 U 8.1 5.5 U 230 1,900 1.1 U 5.5 U 5.5 U 5.5 U 8.1 5.5 U 120														77
HA-50 (0-6) 03/01/17 0-0.5 1.1 U 5.5														36 U
HA-51 (0-6) 03/01/17 0-0.5 25 U 120 U 120 U 120 U 250 120 U 5,900 65,000 25 U 120 U 120 U 120 U 140 U		<u> </u>												5.5 U
HA51 (12-18) 03/01/17 1-1.5 14 U 72 U 72 U 72 U 72 U 1,700 16,000 14 U 72 U 7														120 U
HA-52 (0-6) 03/01/17 0-0.5 5.4 U 27 U 27 U 99 45 2,300 15,000 5.4 U 27 U 27 U 27 U 18 HA-53 (0-6) 03/01/17 0-0.5 25 U 130 U 130 U 320 130 7,400 66,000 25 U 130 U 130 U 130 U 140 U 18 HA-53 (12-18) 03/01/17 1-1.5 88 U 440 U 5.9 U 5.1 U 5.0 U										· ·		_		72 U
HA-53 (0-6) 03/01/17 0-0.5 25 U 130 U 130 U 320 130 7,400 66,000 25 U 130 U 130 U 130 U 140 U 14									,	· · · · · · · · · · · · · · · · · · ·				56
HA-53 (12-18) 03/01/17 1-1.5 88 U 440 U 44									,	· · · · · · · · · · · · · · · · · · ·				130 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														440 U
ROW-1-1(0-6") 10/16/17 0-0.5 1.0 U 5.1 U 5.1 U 5.1 U 5.1 U 37 330 1.0 U 5.1 U										· ·				5.9 U
ROW-2-1(0-6") 10/16/17 0-0.5 1.0 U 5 U 5 U 11 5.7 220 1,800 1.0 U 5.0 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.1 U</td></th<>														5.1 U
ROW-3-1(0-6") 10/16/17 0-0.5 1.4 U 7.2 U 7.7 50 15 750 5,600 1.4 U 7.2 U 7.2 U 7.2 U ROW-3-3 (12-18") 10/16/17 1-1.5 2.6 U 13 U 13 U 13 U 13 U 330 2800 J 2.9 U 13 U 13 U 13 U ROW-4-1(0-6") 10/16/17 0-0.5 1.3 U 8.0 18 44 38 1,100 9,100 J 1.3 U 6.4 U 6.4 U ROW-4-3 (12-18") 10/16/17 1-1.5 4.2 U 21 U 21 U 28 28 770 7400 4.2 U 21 U 21 U			 											5.0 U
ROW-3-3 (12-18") 10/16/17 1-1.5 2.6 U 13 U 13 U 13 U 13 U 330 2800 J 2.9 U 13 U 13 U 13 U ROW-4-1(0-6") 10/16/17 0-0.5 1.3 U 8.0 18 44 38 1,100 9,100 J 1.3 U 6.4 U 6.4 U ROW-4-3 (12-18") 10/16/17 1-1.5 4.2 U 21 U 21 U 28 28 770 7400 4.2 U 21 U 21 U										,				7.5
ROW-4-1(0-6") 10/16/17 0-0.5 1.3 U 8.0 18 44 38 1,100 9,100 J 1.3 U 6.4 U 6.4 U ROW-4-3 (12-18") 10/16/17 1-1.5 4.2 U 21 U 21 U 28 28 770 7400 4.2 U 21 U 21 U														13 U
ROW-4-3 (12-18") 10/16/17 1-1.5 4.2 U 21 U 21 U 28 28 770 7400 4.2 U 21 U 21 U														10
					ļ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,	,				21 U
200 1 100 1														9.6 U
SS-1-2 (6-12") 10/16/17 1-1.5 1.1 U 5.4 U														9.6 U

					Diox	cin Congeners (CDDs)	(pg/g) ²				Furan Congene	rs (CDFs) (pg/g) ²	
			2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	1,2,3,4,6,7,8- HpCDD	OCDD	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF
Toxic Equiv	/alency Factor		1	1	0.1	0.1	0.1	0.01	0.0003	0.1	0.03	0.3	0.1
Sample Identification	Sample Date	Depth (feet)			•								
SS-2-1(0-6")	10/16/17	0-0.5	2.0 U	10 U	10 U	10 U	10 U	320	1,900	2.0 U	10 U	10 U	10 U
SS-3-1(0-6")	10/16/17	0-0.5	2.0 U	10 U	14	44	23	1,100	9,600 J	2.0 U	10 U	10 U	10 U
SS-3-2 (6-12")	10/16/17	1-1.5	1.8 U	9.2 U	9.2 U	9.2 U	9.2 U	86	870	1.8 U	9.2 U	9.2 U	9.2 U
SS-4-1(0-6")	10/16/17	0-0.5	4.1 U	20 U	20 U	42	20 U	1,800	17,000 J	4.1 U	20 U	20 U	20 U
SS-4-2 (6-12")	10/16/17	1-1.5	1.9 U	9.5 U	9.5 U	9.5 U	9.5 U	95	1000	1.9 U	9.5 U	9.5 U	9.5 U
SS-5-1(0-6")	10/16/17	0-0.5	15 U	77 U	160	610	370	12,000	120,000 J	15 U	77 U	77 U	270
SS-5-2 (6-12")	10/16/17	1-1.5	27 U	140 U	140 U	150	140 U	4100	53000	27 U	140 U	140 U	140
SS-6-1(0-6")	10/16/17	0-0.5	130 U	660 U	660 U	3,700	1,200	78,000	650,000 J	130 U	660 U	660 U	660 U
SS-6-2 (6-12")	10/16/17	1-1.5	11,000 U	56,000 U	56,000 U	56,000 U	56000 U	590,000	5,000,000	11,000 U	56,000 U	56,000 U	56,000 U
SS-7-1(0-6")	10/16/17	0-0.5	1.3 U	6.6 U	6.6 U	6.6 U	6.6 U	39	370	1.3 U	6.6 U	6.6 U	6.6 U

					Furan Congene	rs (CDFs) (pg/g) ²			
			1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	Total TEQ ³ (detect only, pg/g)
Toxic Equiva	alency Factor		0.1	0.1	0.1	0.01	0.01	0.0003	
Sample Identification	Sample Date	Depth (feet)							
BG-1 (0-6")	12/08/16	0-0.5	7.3 U	7.3 U	7.3 U	93	7.3 U	520	10
BG-2 (0-6")	12/09/16	0-0.5	6 U	6 U	6 U	6 U	6 U	13	0.25
BG-3 (0-6")	12/09/16	0-0.5	7.3 U	7.3 U	7.3 U	7.3 U	7.3 U	17	0.51
BG-4 (0-6")	12/08/16	0-0.5	6 U	6 U	6 U	6 U	6 U	12 U	0.28
BG-5 (0-6")	12/08/16	0-0.5	7.1 U	7.1 U	7.1 U	11	7.1 U	18	1.0
BG-6 (0-6")	12/08/16	0-0.5	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	13 U	0.18
BG-7 (0-6")	12/08/16	0-0.5	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	12 U	0.01
BG-8 (0-6")	12/08/16	0-0.5	6 U	6 U	6 U	28	6 U	210	2.5
BG-9 (0-6")	12/08/16	0-0.5	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	13 U	0.10
BG-10 (0-6")	12/09/16	0-0.5	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	13 U	0.01
HA-1 (0-6")	12/06/16	0-0.5	200 U	200 U	200 U	950	200 U	3,500	175
HA-2 (0-6")	12/06/16	0-0.5	23 U	23 U	23 U	230	23 U	670	47
HA-3 (0-6")	12/06/16	0-0.5	1400 U	1400 U	1400 U	5400	1400 U	15,000	1274
HA-3A (6-12)	03/01/17	6-12	8800 U	8800 U	8800 U	10000	8800 U	28,000	2488
HA-3A (12-18)	03/01/17	1-1.5	1400 U	1400 U	1400 U	2800	1400 U	7,900	764
TP-3 (1.5'-2.0')	11/09/17	1.5-2.0	13 U	13 U	13 U	86 J	13 U	300	10
HA-4 (0-6')	12/06/16	0-0.5	660 U	660 U	660 U	5500	660 U	18,000	444
HA-4A (6-12)	03/01/17	0.5-1	220 U	220 U	220 U	1600	220 U	3,900	115
HA-4A (12-18)	03/01/17	1-1.5	490 U	490 U	490 U	3000	490 U	7,400	195
TP-4 (1.5'-2.0')	11/09/17	1.5-2.0	7.2 U	7.2 U	7.2 U	8	7.2 U	32	1.2
HA-5 (0-6")	12/06/16	0-0.5	97 U	97 U	97 U	880	97 U	2,800	142
HA-6 (0-6")	12/06/16	0-0.5	570 U	570 U	570 U	3300	570 U	11,000	579
HA-6A (6-12)	03/01/17	0.5-1	83 U	83 U	83 U	690	83 U	2,000	121
HA-6A (12-18)	03/01/17	1-1.5	160 U	160 U	160 U	620	160 U	1,100	124
TP-6 (1.5'-2.0')	11/09/17	1.5-2.0	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	11 U	0.01
HA-7 (0-6")	12/06/16	0-0.5	130 U	130 U	130 U	710	130 U	2,600	111
HA-8 (0-6")	12/06/16	0-0.5	73 U	73 U	73 U	530	73 U	2,100	63
HA-9 (0-6")	12/07/16	0-0.5	150 U	150 U	150 U	1100	150 U	3,500	196
HA-10 (0-6")	12/07/16	0-0.5	6.4 U	6.4 U	6.4 U	22	6.4 U	67	1.8
HA-11 (0-6")	12/07/16	0-0.5	46 U	46 U	46 U	830	46 U	2,800	87
HA-11A (6-12)	03/01/17	0.5-1	27 U	27 U	27 U	230	27 U	1,500	33
HA-12 (0-6")	12/07/16	0-0.5	23 U	23 U	23 U	320	23 U	1,000	44
HA-13 (0-6")	12/06/16	0-0.5	870 U	870 U	870 U	8600	870 U	36,000	762
HA-13A (6-12)	03/01/17	0.5-1	9.8 U	9.8 U	9.8 U	130	9.8 U	410	14
HA-13A (12-18)	03/01/17	1-1.5	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	12	0.25
HA-14 (0-6")	12/06/16	0-0.5	65 U	65 U	65 U	1000	65 U	3,000	115
HA-17 (0-6")	12/07/16	0-0.5	230 U	230 U	230 U	2300	230 U	5,800	419
HA-17A (6-12)	03/01/17	0.5-1	7.1 U	7.1 U	7.1 U	37	7.1 U	100	5.7
HA-18 (0-6")	12/07/16	0-0.5	7.2 U	7.2 U	7.2 U	35	7.2 U	74	8.6
HA-19 (0-6")	12/07/16	0-0.5	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	13	0.30
HA-20 (0-6")	12/07/16	0-0.5	150 U	150 U	150 U	1300	150 U	4,800	220
HA-20A (6-12)	03/01/17	0.5-1	27 U	27 U	27 U	330	27 U	2,000	37

					Furan Congene	rs (CDFs) (pg/g) ²			
			1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	Total TEQ ³ (detect only, pg/g)
Toxic Equiva	lency Factor		0.1	0.1	0.1	0.01	0.01	0.0003	
Sample Identification	Sample Date	Depth (feet)							•
HA-20A (12-18)	03/01/17	1-1.5	30 U	30 U	30 U	190	30 U	1,200	20
TP-20 (1.5'-2.0')	11/09/17	1.5-2.0	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	14	0.41
HA-21 (0-6")	12/07/16	0-0.5	7 U	7 U	7 U	93	7 U	350	19
HA-22 (0-6")	12/07/16	0-0.5	7.1 U	7.1 U	7.1 U	57	7.1 U	240	8.0
HA-23 (0-6")	12/07/16	0-0.5	260 U	260 U	260 U	1200	260 U	7,400	295
HA-25 (0-6")	12/07/16	0-0.5	280 U	280 U	280 U	2700	280 U	13,000	336
HA-25A (6-12)	03/01/17	0.5-1	23 U	23 U	23 U	210	23 U	940	32
TP-25 (1.5'-2.0')	11/09/17	1.5-2.0	6.1 U	6.1 U	6.1 U	17	6.1 U	110	1.5
HA-30 (0-6")	12/07/16	0-0.5	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	27	0.62
HA-32 (0-6")	12/06/16	0-0.5	18 U	18 U	18 U	250	18 U	670	39
HA-38 (0-6")	12/07/16	0-0.5	22 U	22 U	22 U	500	22 U	1,800	37
HA-39 (0-6)	03/01/17	0-0.5	8.2 U	8.2 U	8.2 U	43	8.2 U	190	8.1
HA-40 (0-6)	03/01/17	0-0.5	100 U	100 U	100 U	1100	100 U	2,000	152
HA-40 (12-18)	03/01/17	1-1.5	35 U	35 U	35 U	130	35 U	310	25
TP-40 (1.5'-2.0')	11/09/17	1.5-2.0	5.5 U	5.5 U	5.5 U	5.5 U	5.5 U	11 U	0.15
HA-41 (0-6)	03/01/17	0-0.5	42 U	42 U	42 U	5.5 0 550	42 U	980	84
	03/01/17					220		410	31
HA-41 (12-18)		1-1.5	44 U	44 U	44 U		44 U		
TP-41 (1.5'-2.0')	11/09/17	1.5-2.0	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	18	0.60
HA-42 (0-6)	03/01/17	0-0.5	150 U	150 U	150 U	1500	150 U	8,200	166
HA-42 (12-18)	03/01/17	1-1.5	1100 U	1100 U	1100 U	5700	1100 U	18,000	1171
TP-42 (1.5'-2.0')	11/09/17	1.5-2.0	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	16	0.55
HA-43 (0-6)	03/01/17	0-0.5	180 U	180 U	180 U	1700	180 U	8,700	156
HA-43 (12-18)	03/01/17	1-1.5	1600 U	1600 U	1600 U	3100	1600 U	20,000	276
HA-44 (0-6)	03/01/17	0-0.5	400 U	400 U	400 U	2600	400 U	5,800	437
HA-44 (12-18)	03/01/17	1-1.5	350 U	350 U	350 U	950	350 U	2,300	152
HA-45 (0-6)	03/01/17	0-0.5	230 U	230 U	230 U	500	230 U	2,300	124
HA-46 (0-6)	03/01/17	0-0.5	6.8 U	6.8 U	6.8 U	54	6.8 U	180	11
HA-46 (12-18)	03/01/17	1-1.5	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	15	0.54
TP-46 (1.5'-2.0')	11/09/17	1.5-2.0	7.2 U	7.2 U	7.2 U	7.2 UJ	7.2 U	14 U	0.61
HA-47 (0-6)	03/01/17	0-0.5	7 U	7 U	7 U	45	7 U	210	5.7
HA-47 (12-18)	03/01/17	1-1.5	13 U	13 U	13 U	33	13 U	160	4.0
HA-48 (0-6)	03/01/17	0-0.5	7.6 U	7.6 U	7.6 U	53	7.6 U	81	13
HA-49 (0-6)	03/01/17	0-0.5	61 U	61 U	61 U	820	61 U	1,500	116
HA-49 (12-18)	03/01/17	1-1.5	36 U	36 U	36 U	160	36 U	500	18
HA-50 (0-6)	03/01/17	0-0.5	5.5 U	5.5 U	5.5 U	27	5.5 U	64	4.0
HA-51 (0-6)	03/01/17	0-0.5	120 U	120 U	120 U	740	120 U	3,800	112
HA-51 (12-18)	03/01/17	1-1.5	72 U	72 U	72 U	170	72 U	1,100	24
HA-52 (0-6)	03/01/17	0-0.5	27 U	27 U	27 U	350	27 U	500	51
HA-53 (0-6)	03/01/17	0-0.5	130 U	130 U	130 U	600	130 U	2,300	145
HA-53 (12-18)	03/01/17	1-1.5	440 U	440 U	440 U	440 U	440 U	1,600	56
TP-53 (1.5'-2.0')	11/09/17	1.5-2.0	5.9 U	5.9 U	5.9 U	5.9 UJ	5.9 U	12 U	0.01
ROW-1-1(0-6")	10/16/17	0-0.5	5.1 U	5.1 U	5.1 U	8.6	5.1 U	20	0.56
ROW-2-1(0-6")	10/16/17	0-0.5	5.0 U	5.0 U	5.0 U	42	5.0 U	81	4.9
ROW-3-1(0-6")	10/16/17	0-0.5	16	7.2 U	7.2 U	160	7.2 U	300	20
ROW-3-3 (12-18")	10/16/17	1-1.5	13 U	13 U	13 U	53	13 U	130	4.7
ROW-4-1(0-6")	10/16/17	0-0.5	43	6.4 U	13	390	17	1,100	43
ROW-4-3 (12-18")	10/16/17	1-1.5	34	21 U	21 U	290	21 U	740	22
SS-1-1(0-6")	10/16/17	0-0.5	9.6 U	9.6 U	9.6 U	49	9.6 U	98	8.2
SS-1-2 (6-12")	10/16/17	1-1.5	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	11 U	0.10

					Furan Congene	rs (CDFs) (pg/g) ²			
			1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	Total TEQ ³ (detect only, pg/g)
Toxic Equiva	alency Factor		0.1	0.1	0.1	0.01	0.01	0.0003	
Sample Identification	Sample Date	Depth (feet)							•
SS-2-1(0-6")	10/16/17	0-0.5	10 U	10 U	10 U	13	10 U	64	3.9
SS-3-1(0-6")	10/16/17	0-0.5	38 J	10 U	10 U	130	10 U	520	2
SS-3-2 (6-12")	10/16/17	1-1.5	9.2 U	9.2 U	9.2 U	13	9.2 U	40	1.3
SS-4-1(0-6")	10/16/17	0-0.5	24	20 U	20 U	220	20 U	1,000	33
SS-4-2 (6-12")	10/16/17	1-1.5	9.5 U	9.5 U	9.5 U	15	9.5 U	58	1.
SS-5-1(0-6")	10/16/17	0-0.5	450	77 U	92	2,500	87	4,300	378
SS-5-2 (6-12")	10/16/17	1-1.5	140 U	140 U	140 U	770	140 U	580	9
SS-6-1(0-6")	10/16/17	0-0.5	970	660 U	660 U	9,000	660 U	22,000	1659
SS-6-2 (6-12")	10/16/17	1-1.5	56,000 U	56,000 U	56,000 U	61,000	56,000 U	140,000	805
SS-7-1(0-6")	10/16/17	0-0.5	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	13	0.50
Screening Level ⁴		-				-			13

pg/g = picogram per gram

< = analyte was not detected at concentrations greater than the method reporting limit

Bold indicates analyte was detected at concentrations greater than the laboratory reporting limit

Shading indicates analyte was detected at concentrations above applicable cleanup levels

¹Samples analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

² Dioxin/Furans analyzed by Environmental Protection Agency (EPA) Method 8290.

³Toxicity Equivalent Concentration (TEQ) calculated only using the dioxin/furans detected at concentrations greater than the laboratory reporting limit.

 $^{^4}$ For details on dioxin/furans screening level, please refer to Table 5-1 in the RI text.

^{&#}x27;--' = sample not analyzed for this compound

Table 6-3

Summary of Groundwater Elevations and Field Quality Parameters

Colville Post and Poles Stevens County, Washington

Well Number				Change in							
and Top of Casing	Date	Depth to Water ²	Groundwater Elevation ³	Groundwater Elevation	-11/-11	Specific	Redox	Dissolved	T b ! d ! d .	T	PID
Elevation ¹ (feet)	Measured	(feet)	(feet)	(feet)	pH (pH units)	Conductivity (µS/cm)	Potential (millivolts)	Oxygen (mg/L)	Turbidity (NTU)	Temperature (degrees C)	(ppm)
MW-20	1/17/17 ⁴	7.18	1536.20		6.97	1008	-162	0.30	7.661	9.29	0.4
1543.38	03/02/17	4.55	1538.83	2.63	7.03	1020	-287	0.00	9.186	8.26	0.9
	6/21/17 ⁵	5.25	1538.13	-0.70	7.04	938.4	-290	0.00	0.6572	10.03	0.9
	08/30/17	8.09	1535.29	-2.84	7.17	1398	37.5	0.83	8.8	15.9	1.0
	11/07/17	7.91	1535.47	0.18	7.00	1333	-130	0.00	0.5674	12.31	1.1
	02/12/18	5.01	1538.37	2.9	7.03	1470	-44	0.03	0.0177	8.94	0.7
MW-21	1/17/17 ⁴	8.47	1536.18		6.91	936	72.1	0.23	8.6	9.5	0.6
1544.65	03/02/17	5.93	1538.72	2.54	6.99	971.5	-283	0.00	6.134	7.88	1.0
	6/21/17 ⁵	6.67	1537.98	-0.74	683	1064	84.1	0.06	23.5	9.2	3.5
	08/30/17	9.37	1535.28	-2.70	7.03	1056	-6.1	0.23	7.7	13.6	3.5
	11/07/17	9.16	1535.49	0.21	7.04	1002	-159	0.00	0.7818	11.08	0.4
	02/12/18	6.43	1538.22	2.73	7.08	976.5	-26	0.01	2.884	8.79	0.4
MW-22	1/17/174	6.93	1536.27	-	6.96	1020	-138	0.19	28.16	8.60	0.3
1543.2	03/02/17	4.36	1538.84	2.57	7.04	978.5	-288	0.00	8.045	6.88	0.3
	6/21/17 ⁵	5.19	1538.01	-0.83	7.09	909.2	-230	0.01	3.098	9.03	0.7
	08/30/17	7.82	1535.38	-2.63	7.06	1054	40.1	0.28	5.2	14.2	1.1
	11/07/17	7.57	1535.63	0.25	6.98	975.1	-180	0.00	0.1129	9.93	0.6
	02/12/18	4.95	1538.25	2.62	7.22	1002	101	0.00	3.566	7.52	0.2
MW-23	1/17/174	7.89	1536.08	-	7.11	952	-99.7	0.08	46.2	7.7	0.2
1543.97	03/03/17	5.24	1538.73	2.65	7.29	1076	-166	0.00	9.403	6.44	0.8
	6/21/17 ⁵	6.25	1537.72	-1.01	7.52	645.8	-397	0.00	22.83	7.88	5.3
	08/30/17	8.47	1535.50	-2.22	7.24	782	-149.0	0.22	3.9	12.5	0.0
	11/07/17	8.10	1535.87	0.37	7.17	773.1	-203	0.00	0.0172	9.74	0.8
	02/12/18	6.18	1537.79	1.92	7.18	1011	-56	0.00	4.842	7.34	0.5

Well Number and Top of Casing	Date	Depth to	Groundwater Elevation ³	Change in Groundwater Elevation	pH (pH	Specific Conductivity	Redox Potential	Dissolved Oxygen	Turbidity	Temperature	PID
Elevation ¹ (feet)	Measured	(feet)	(feet)	(feet)	units)	(µS/cm)	(millivolts)	(mg/L)	(NTU)	(degrees C)	(ppm)
MW-24	1/17/174	9.21	1536.56		6.9	1073	-190	0.04	35.03	10.24	0.2
1545.77	03/02/17	6.47	1539.30	2.74	7.09	983.1	-216	0.00	8.837	7.26	0.5
	06/21/17	7.42	1538.35	-0.95	7.14	941.3	-253	1.22	5.172	11.64	0.6
	08/30/17	10.29	1535.48	-2.87	11.05*	1059	73.1	1.19	9.9	14.9	2.9
	11/07/17	10.07	1535.70	0.22	7.12	1026	-200	0.00	0.5588	12.06	0.9
	02/12/18	7.06	1538.71	3.01	7.33	1090	167.7	0.62	2.99	7.9	0.9
MW-25	1/17/174	7.56	1537.54	-	6.87	952	99.9	0.12	117.2	9.9	0.1
1545.10	03/02/17	5.94	1539.16	1.62	7.16	977.6	-288	0.00	3.299	7.98	0.4
	6/21/17 ⁵	6.90	1538.20	-0.96	6.93	115.2	72.1	0.01	8.9	10.6	4.4
	08/30/17	9.60	1535.50	-2.70	6.89	1089	70.7	0.31	9.2	18.3	1.8
	11/07/17	9.36	1535.74	0.24	6.90	1012	-150	0.07	0.3212	13.5	0.2
	02/12/18	6.53	1538.57	2.83	7.28	1100	183.9	0.59	1.79	8.4	1.0
MW-26	1/17/174	10.58	1536.88	-	7.07	981	37.1	0.09	5.1	9.4	0.6
1547.46	03/02/17	8.10	1539.36	2.48	7.16	998.6	-246	0.00	21.33	9.32	0.9
	6/21/17 ⁵	9.09	1538.37	-0.99	7.12	1163	-3.7	0.10	10.0	11.1	4.8
	08/30/17	11.86	1535.60	-2.77	7.14	1098	-208	0.00	6.2	14.35	2.7
	11/07/17	11.56	1535.90	0.30	7.25	979.8	-207	0.00	0.5	10.60	0.3
	02/12/18	8.65	1538.81	2.91	7.43	1084	25.3	0.53	1.75	8.9	0.8
MW-27	1/17/174	10.99	1537.38	-	7.14	993	-103.9	0.10	81.5	8.4	1.2
1548.37	03/02/17	9.10	1539.27	1.89	7.32	972.1	-232	0.00	20.09	7.66	0.7
	6/21/17 ⁵	9.88	1538.49	-0.78	7.27	1119	-138.9	0.01	20.5	10.9	0.5
	08/30/17	12.70	1535.67	-2.82	7.19	1032	-256	0.00	0.2	17.1	5.1
	11/07/17	12.25	1536.12	0.45	7.23	979.8	-226	0.00	0.5522	12.58	1.0
	02/12/18	9.44	1538.93	2.81	7.16	1478	-143	0.00	9.702	7.77	1.0
MW-28	1/17/174	6.35	1539.01	_	7.30	599.1	-118	3.74	2.777	7.40	1.0
1545.36	03/02/17	5.80	1539.56	0.55	7.77	523.3	-107	0.43	38.22	4.48	0.2
	6/21/17 ⁵	5.16	1540.20	0.64	7.82	612	-30.7	0.20	23.1	13.2	0.1
	08/30/17	7.94	1537.42	-2.78	7.48	552.1	-236	0.39	9.9	14.82	0.5
	11/07/17	7.77	1537.59	0.17	7.43	474.4	-108	6.08	20.93	10.05	0.2
	02/12/18	8.10	1537.26	-0.33	7.73	557	189.0	1.29	2.48	3.9	0.4

Well Number and Top of Casing	Date	Depth to	Groundwater Elevation ³	Change in Groundwater Elevation	pH (pH	Specific Conductivity	Redox Potential	Dissolved Oxygen	Turbidity	Temperature	PID
Elevation ¹ (feet)	Measured	(feet)	(feet)	(feet)	units)	(μS/cm)	(millivolts)	(mg/L)	(NTU)	(degrees C)	(ppm)
MW-29	1/17/17 ⁴	7.73	1535.68		7.18	561.5	-79	0.03	41.33	9.36	0.3
1543.41	03/03/17	5.21	1538.20	2.52	7.26	854.7	-223	0.00	1.120	6.78	0.7
	6/21/17 ⁵	6.02	1537.39	-0.81	7.37	704.0	-429	0.00	19.63	7.79	1.9
	08/30/17	7.86	1535.55	-1.84	7.22	595	-91.6	0.26	3.1	12.4	0.0
	11/07/17	7.54	1535.87	0.32	7.33	411.1	-172	0.00	0.4612	11.16	0.2
	02/12/18	6.20	1537.21	1.34	7.23	879.8	-64	0.00	1.295	6.96	0.4
MW-30	04/06/17	7.04	1541.35	-	7.32	972.2	-183	0.51	11.99	9.41	0.8
1548.39	6/21/17 ⁵	9.94	1538.45	-2.90	7.26	1119	9.2	0.84	5.4	10.9	0.9
	08/30/17	12.75	1535.64	-2.81	7.15	1036	-262	0.00	0.4	14.31	3.2
	11/07/17	12.38	1536.01	0.37	7.25	961.9	-175	0.00	0.4579	11.95	0.2
	02/12/18	9.45	1538.94	2.93	7.51	1108	184.7	1.59	4.24	9.0	0.3
MW-31	04/06/17	3.23	1541.15	-	7.19	988.4	-133	2.40	10.01	7.95	0.3
1544.38	6/21/17 ⁵	5.87	1538.51	-2.64	7.19	964.7	-236	2.79	0.503	10.30	1.9
	08/30/17	8.80	1535.58	-2.93	*	1075	258.9	1.53	9.5	14.4	2.9
	11/08/17	8.58	1535.80	0.22	7.10	1012	-158	0.55	3.309	12.35	0.3
	02/12/18	5.51	1538.87	3.07	7.38	1144	166.5	2.08	3.31	6.7	0.8
MW-32	04/06/17	3.10	1540.60	-	7.20	953.0	-94	5.59	18.27	8.06	_
1543.70	6/21/17 ⁵	5.30	1538.40		7.17	962.7	-215	4.66	0.1658	9.84	1.6
	08/30/17	8.29	1535.41	-2.99	7.29	1192	47.9	0.84	6.5	14.9	1.7
	11/07/17	8.16	1535.54	0.13	7.03	987.8	-116	1.11	1.095	10.92	0.7
	02/12/18	5.05	1538.65	3.11	7.45	1041	199.3	2.36	36.5	6.6	0.3
MW-33	06/21/17	6.35	1537.97	-	7.04	890	-107.6	0.01	4.5	10.6	
1544.32	08/30/17	8.77	1535.55	-2.42	7.25	971	-134.8	0.29	4.3	14.1	0.1
	11/07/17	8.41	1535.91	0.36	6.99	969.5	-210	0.00	0.3732	10.44	0.2
	02/12/18	6.10	1538.22	2.31	7.13	995.3	-90	0.00	0.2452	6.71	0.2
MW-34	06/21/17	5.90	1538.11		7.33	1037	-220.5	0.05	12.5	11.6	-
1544.01	08/30/17	8.17	1535.84	-2.27	*	1028	-279.0	0.35	8.3	13.2	1.1
	11/07/17	7.74	1536.27	0.43	7.41	1002	-208	0.03	1.516	10.12	0.3
	02/12/18	5.60	1538.41	2.14	7.48	1044	-42.7	0.73	4.16	8.4	0.9

Well Number and Top of Casing Elevation ¹ (feet)	Date Measured	Depth to Water ² (feet)	Groundwater Elevation ³ (feet)	Change in Groundwater Elevation (feet)	pH (pH units)	Specific Conductivity (µS/cm)	Redox Potential (millivolts)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (degrees C)	PID (ppm)
MW-35	06/21/17	5.59	1538.53	-	7.1	1074	84.3	0.17	9.9	12.9	-
1544.12	08/30/17	8.22	1535.90	-2.63	7.24	1063	-300	0.01	1.2	17.62	9.2
	11/07/17	7.56	1536.56	0.66	7.26	932.2	-162	0.01	0.325	12.32	0.6
	02/12/18	5.20	1538.92	2.36	7.46	1097	188.0	1.05	5.26	5.8	0.5

mg/L = milligram per liter; ppm = parts per million

¹ Elevations are referenced to NAVD 88. Top of casing elevation survey performed by Coffman Engineers on July 26, 2017.

²Depth to groundwater measured relative to the north side of the PVC well casing.

³ Groundwater elevations calculated using the formula: Groundwater Elevation = Top of Casing Elevation - Depth to Water

⁴ Elevation data collected on January 17, 2017. Field water quality measurements collected on December 8, 2017.

⁵ Elevation data collected on June 21, 2017. Field water quality measurements for MW-20 through MW-32 collected on May 21, 2017, and for MW-33 through MW-35 on June 21, 2017.

^{-- =} not measured

^{*}pH measurements were either not taken or were abnormal due to calibration malfunction

Table 6-4

Groundwater Chemical Analytical Results - Total Petroleum Hydrocarbons and

Pentachlorophenol¹

Colville Post and Poles

Stevens County, Washington

			Total Petroleum	SV0Cs ³		
			Diesel-range	Lube Oil-range		
Sample			Hydrocarbons	Hydrocarbons	Pentachloropheno	
Location	Sample Name	Sample Date	mg/L	mg/L	μg/L	
MW-20	MW-20:120816	12/08/16	0.13 U	0.22 U	2.6	
	MW-20:030217	03/02/17	0.25 U	0.41 U	0.35	
	MW-20:050917	05/09/17	0.25 U	0.41 U	0.097	
	MW-20:083017	08/30/17	0.25 U	0.42 U	0.078 U	
	MW-20:110717	11/07/17	0.25 U	0.41 U	1.4	
	MW-20:021218	02/12/18	0.24 U	0.41 U	1.3	
MW-21	MW-21:120816	12/08/16	0.13 U	0.22 U	30	
	MW-21:030217	03/02/17	0.25 U	0.41 U	29	
	MW-21:050917	05/09/17	0.26 U	0.44 U	41	
	MW-21:083017	08/30/17	0.24 U	0.41 U	51	
	MW-21:110717	11/07/17	0.24 U	0.41 U	80	
	MW-21:021218	02/12/18	0.25 U	0.41 U	18	
MW-22	MW-22:120816	12/08/16	0.13 U	0.22 U	3.2	
	MW-22:030217	03/02/17	0.25 U	0.41 U	0.60	
	MW-22:050917	05/09/17	0.24 U	0.40 U	0.48	
	MW-22:083017	08/30/17	0.25 U	0.42 U	27	
	MW-22:110717	11/07/17	0.24 U	0.41 U	7.5	
	MW-22:021218	02/12/18	0.24 U	0.41 U	2.5	
MW-23	MW-23:120816	12/08/16	0.13 U	0.21 U	0.084 U	
	MW-23:030317	03/03/17	0.24 U	0.40 U	0.078 U	
	MW-23:050917	05/09/17	0.24 U	0.41 U	0.079 U	
	MW-23:083017	08/30/17	0.25 U	0.41 U	0.079 U	
	MW-23:110717	11/07/17	0.24 U	0.41 U	0.21 U	
	MW-23:021218	02/12/18	0.24 U	0.41 U	0.077 U	
MW-24	MW-24:120816	12/08/16	0.19	0.21 U	190	
	MW-24:030217	03/02/17	0.25 U	0.41 U	100	
	MW-24:050917	05/09/17	0.25 U	0.41 U	1.0	
	MW-24:083017	08/30/17	0.25 U	0.41 U	1.7	
	MW-24:110817	11/08/17	0.25 U	0.41 U	38	
	MW-24:021218	02/12/18	0.25 U	0.41 U	54	
MW-25	MW-25:120816	12/08/16	0.15	0.21 U	36	
	MW-25:030217	03/02/17	0.25 U	0.41 U	16	
	MW-25:050917	05/09/17	0.26 U	0.44 U	3.6	
	MW-25:083017	08/30/17	0.24 U	0.40 U	97	
	MW-25:110717	11/07/17	0.25 U	0.41 U	31	
	MW-25:021218	02/12/18	0.25 U	0.42 U	54	
MW-26	MW-26:120816	12/08/16	0.73	0.20 U	150	
	MW-26:030217	03/02/17	0.55	0.41 U	43	
	MW-26:050917	05/09/17	0.40	0.41 U	120	
	MW-26:083017	08/30/17	0.34	0.41 U	120	
	MW-26:110717	11/08/17	0.38	0.41 U	69	
	MW-26:021218	02/12/18	0.42	0.41 U	75	

			Total Petroleum	Hydrocarbons ²	SV0Cs ³
			Diesel-range	Lube Oil-range	
Sample			Hydrocarbons	Hydrocarbons	Pentachloropheno
Location	Sample Name	Sample Date	mg/L	mg/L	μg/L
MW-27	MW-27:120816	12/08/16	1.4	0.22 U	26 J
	MW-DUP:120816	12/08/16	0.86	0.41 U	17 J
	MW-27:030217	03/02/17	0.82	0.42 U	3.3 J
	DUP:030217	03/02/17	1.3	0.22 U	3.2 J
	MW-27:050917	05/09/17	0.87	0.41 U	5.3
	DUP:050917	05/09/17	0.78	0.42 U	5.9
	MW-27:083117	08/31/17	0.92	0.42 U	24
	DUP:083117	08/31/17	0.95	0.41 U	23
	MW-27:110817	11/08/17	0.87	0.41 U	16
	DUP:110817	11/08/17	0.92	0.41 U	16
	MW-27:021218	02/12/18	0.72	0.41 U	6.6
	DUP:021218	02/12/18	0.78	0.41 U	3.2
MW-28	MW-28:120816	12/08/16	0.13 U	0.22 U	0.21
	MW-28:011317	01/13/17	0.13 U	0.21 U	0.10
	MW-28:030217	03/02/17	0.25 U	0.41 U	0.12
	MW-28:050917	05/09/17	0.26 U	0.43 U	0.087 U
	MW-28:083117	08/31/17	0.24 U	0.40 U	0.095
	MW-28:110817	11/08/17	0.25 U	0.41 U	0.21 U
	MW-28:021218	02/12/18	0.25 U	0.41 U	0.078 U
MW-29	MW-29:120816	12/08/16	0.13 U	0.22 U	0.083 U
20	MW-29:030317	03/03/17	0.24 U	0.41 U	0.077 UJ
	MW-29:050917	05/09/17	0.25 U	0.41 U	0.080 U
	MW-29:083017	08/30/17	0.25 U	0.42 U	0.078 U
	MW-29:110717	11/07/17	0.25 U	0.41 U	0.21 U
	MW-29:021218	02/12/18	0.24 U	0.41 U	0.078 U
MW-30	MW-30:040617	04/06/17	0.25 U	0.41 U	6.0
	MW-30:050917	05/09/17	0.25 U	0.42 U	0.078 U
	MW-30:083117	08/31/17	0.25 U	0.42 U	38
	MW-30:110817	11/08/17	0.25 U	0.41 U	120
	MW-30:021218	02/12/18	0.25 U	0.42 U	0.080 U
MW-31	MW-31:040617	04/06/17	0.25 U	0.42 U	0.080 U
02	MW-31:050917	05/09/17	0.25 U	0.41 U	0.079 U
	MW-31:083017	08/30/17	0.25 U	0.41 U	0.080 U
	MW-31:110817	11/08/17	0.25 U	0.41 U	0.21 U
	MW-31:021218	02/12/18	0.25 U	0.42 U	0.082 U
MW-32	MW-32:040617	04/06/17	0.25 U	0.42 U	0.094
52	MW-32:050917	05/09/17	0.24 U	0.41 U	0.077 U
	MW-32:083017	08/30/17	0.25 U	0.42 U	0.39
	MW-32:110717	11/07/17	0.25 U	0.41 U	0.21 U
	MW-32:021218	02/12/18	0.25 U	0.41 U	0.081 U
MW-33	MW-32:021213	06/21/17	0.25 U	0.41 U	0.031 U
00	MW-33:083017	08/30/17	0.25 U	0.41 U	0.089
	MW-33:110717	11/07/17	0.25 U	0.41 U	0.21 U
	MW-33:021218	02/12/18	0.24 U	0.41 U	0.077 U
MW-34	MW-34:062117	06/21/17	0.24 U	0.41 U	0.077 U
14144-04	MW-34:083117	08/31/17	0.24 U	0.43 U	0.077 U
	MW-34:110817	11/08/17	0.24 U	0.40 U	0.077 U
	MW-34:021218	02/12/18	0.25 U	0.41 U	0.21 U

			Total Petroleum	Hydrocarbons ²	SV0Cs ³
			Diesel-range	Lube Oil-range	
Sample			Hydrocarbons	Hydrocarbons	Pentachlorophenol
Location	Sample Name	Sample Date	mg/L	mg/L	μg/L
MW-35	MW-35:062117	06/21/17	0.24 UJ	0.40 UJ	0.13
	MW-35:083117	08/31/17	0.24 U	0.41 U	0.078 U
	MW-35:110817	11/08/17	0.25 U	0.41 U	0.73
	MW-35:021218	02/12/18	0.24 U	0.40 U	0.21
SEEP-1	SEEP-1:GW:120716	12/07/16	0.14 U	0.23 U	0.078 U
SEEP-2	SEEP-2:GW:120716	12/07/16	0.13 U	0.22 U	0.083 U
	Screening Levels ⁴		0.5	0.5	1

U = analyte was not detected at concentrations greater than the method reporting limit

Bold indicates analyte was detected at concentrations greater than the laboratory reporting limit

Shading indicates analyte was detected at concentrations above applicable cleanup levels

¹Samples analyzed by TestAmerica Laboratories, Inc. in Spokane Valley, Washington.

 $^{^2\}mbox{Diesel-}$ and oil-range hydrocarbons analyzed by Northwest Method NWTPH-Dx.

³Pentachlorophenol (PCP) analyzed by Environmental Protection Agency (EPA) Method 8270DSIM.

⁴ Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels used for diesel- and oil-range petroleum hydrocarbons. For details on PCP cleanup value, please refer to Table 5-2 in the RI text. mg/L = milligram per liter; µg/L = microgram per liter; NE = Not established

Table 6-5

Groundwater Chemical Analytical Results - Dioxins and Furans TEQ¹

Colville Post and Poles

Stevens County, Washington

				MW-20	MW-21	MW-22	MW-23	MW-24	MW-25	MW-26	MW-27	MW-27	MW-27	MW-27	MW-27	MW-27
Analyte				MW-20:050917	MW-21:050917	MW-22:050917	MW-23:050917	MW-24:050917	MW-25:050917	MW-26:050917	MW-27:050917	DUP:050917	MW-27:083117	DUP:083117	MW-27:110817	DUP:110817
Group	Analyte	Unit	TEF ³	05/09/17	05/09/17	05/09/17	05/09/17	05/09/17	05/09/17	05/09/17	05/09/17	05/09/17	08/31/17	08/31/17	11/08/17	11/08/17
	2,3,7,8-TCDD	pg/L	1	9.7 U	9.8 U	9.8 U	9.8 U	9.7 U	9.8 U	9.9 U	9.8 U	10 U	15 U	12 U	9.9 U	19 U
	1,2,3,7,8-PeCDD	pg/L	1	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
Dissis	1,2,3,4,7,8-HxCDD	pg/L	0.1	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
Dioxin Congeners ²	1,2,3,6,7,8-HxCDD	pg/L	0.1	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
Oongcheis	1,2,3,7,8,9-HxCDD	pg/L	0.1	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
	1,2,3,4,6,7,8-HpCDD	pg/L	0.01	48 U	49 U	49 U	49 U	48 U	49 U	49 U	56	59	76 U	61 U	49 U	97 U
	OCDD	pg/L	0.0003	97 U	98 U	98 U	98 U	97 U	98 U	99 U	590	620	880 J	690 J	370 J	500 J
	2,3,7,8-TCDF	pg/L	0.1	9.7 U	9.8 U	9.8 U	9.8 U	9.7 U	9.8 U	9.9 U	9.8 U	10 U	15 U	12 U	9.9 U	19 U
	1,2,3,7,8-PeCDF	pg/L	0.03	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
	2,3,4,7,8-PeCDF	pg/L	0.3	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
	1,2,3,4,7,8-HxCDF	pg/L	0.1	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
Furan	1,2,3,6,7,8-HxCDF	pg/L	0.1	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
Congeners ²	1,2,3,7,8,9-HxCDF	pg/L	0.1	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
	2,3,4,6,7,8-HxCDF	pg/L	0.1	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
	1,2,3,4,6,7,8-HpCDF	pg/L	0.01	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
	1,2,3,4,7,8,9-HpCDF	pg/L	0.01	48 U	49 U	49 U	49 U	48 U	49 U	49 U	49 U	50 U	76 U	61 U	49 U	97 U
	OCDF	pg/L	0.0003	97 U	98 U	98 U	98 U	97 U	98 U	99 U	98 U	100 U	150 U	120 U	99 U	190 U
	Total TEQ of CDDs and	CDFs (detects o	only) (pg/L)) ND	ND	ND	ND	ND	ND	ND	0.737	0.776	0.264	0.207	0.111	0.150
		Screening Le	evel ⁴ (pg/L)	110	-			-					-			

Analyte Group	Analyte	Unit	TEF ³	MW-27 MW-27:021218 02/12/18	MW-27 DUP:021218 02/12/18	MW-28 MW-28:050917 05/09/17	MW-29 MW-29:050917 05/09/17	MW-30 MW-30:050917 05/09/17	MW-31 MW-31:050917 05/09/17	MW-32 MW-32:050917 05/09/17	MW-33 MW-33:062117 06/21/17	MW-34 MW-34:062117 06/21/17	MW-35 MW-35:062117 06/21/17
	2,3,7,8-TCDD	pg/L	1	9.8 U	9.7 U	9.8 U	9.8 U	10 U	9.7 U	9.7 U	10 U	10 U	9.5 U
	1,2,3,7,8-PeCDD	pg/L	1	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
Dioxin	1,2,3,4,7,8-HxCDD	pg/L	0.1	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
Congeners ²	1,2,3,6,7,8-HxCDD	pg/L	0.1	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
Congonoro	1,2,3,7,8,9-HxCDD	pg/L	0.1	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
	1,2,3,4,6,7,8-HpCDD	pg/L	0.01	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
	OCDD	pg/L	0.0003	270	170	98 U	98 U	100 U	97 U	97 U	100 U	100 U	95 U
	2,3,7,8-TCDF	pg/L	0.1	9.8 U	9.7 U	9.8 U	9.8 U	10 U	9.7 U	9.7 U	10 U	10 U	9.5 U
	1,2,3,7,8-PeCDF	pg/L	0.03	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
	2,3,4,7,8-PeCDF	pg/L	0.3	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
	1,2,3,4,7,8-HxCDF	pg/L	0.1	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
Furan	1,2,3,6,7,8-HxCDF	pg/L	0.1	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
Congeners ²	1,2,3,7,8,9-HxCDF	pg/L	0.1	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
	2,3,4,6,7,8-HxCDF	pg/L	0.1	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
	1,2,3,4,6,7,8-HpCDF	pg/L	0.01	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
	1,2,3,4,7,8,9-HpCDF	pg/L	0.01	49 U	48 U	49 U	49 U	50 U	48 U	49 U	51 U	51 U	48 U
	OCDF	pg/L	0.0003	98 U	97 U	98 U	98 U	100 U	97 U	97 U	100 U	100 U	95 U
_		TEQ (dete	cts only) (pg/L)	0.38	0.05	ND							
		Cleanu	ıp Level ⁴ (pg/L)	110		·	·	·	·	·	·	·	

pg/L = picogram per liter; TEF = toxic equivalency factor

ND = not detected; U = analyte was not detected at concentrations greater than the method reporting limit

Bold indicates analyte was detected at concentrations greater than the laboratory reporting limit

Shading indicates analyte was detected at concentrations above applicable cleanup levels

¹ Samples analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

 $^{^{2}}$ Dioxins and furans analyzed by Environmental Protection Agency (EPA) Method 8290.

³ Toxicity Equivalent Concentration (TEQ) calculated only using the dioxins/furans detected at concentrations greater than the laboratory reporting limit.

 $^{^4\}mbox{For details}$ on TEQ screening levels, please refer to Table 5.2 in the RI text.

Table 12-1

Summary of Quantities Used in Feasibility Study

Colville Post and Poles Stevens County, Washington

Item	Quantity	Units	Assumptions				
Shallow (<18 inches) Dioxin and Furan Contami	nated Soil						
Areal extent	13.92	acres	From Google Earth				
Volume of contaminated soil	33,686	cubic yards	18 inches deep				
Estimated soil weight	53,056	tons	1.575 tons per cubic yard				
Adsorbed Phase Source Area PCP and Diesel Co	ntaminated So	il	•				
Areal extent	0.84	acres	From Google Earth				
Volume of contaminated soil	27,122	cubic yards	20 feet deep to clay layer				
Volume to Soil to be Excavated using 2:1 Slope	35,122	cubic yards	Slope is 2H:1V and only three sides of the excavation sloped to avoid interfering with railroad.				
Estimated soil weight	42,717	tons	1.575 tons per cubic yard				
Debris	•	•	1				
Volume of debris	3,000	cubic yards	Based on seven debris piles, wood chip pile and misc. scattered concrete and steel debris.				
Wetlands	•	•	•				
Areal extent	5.64	acres	Based on GeoEngineers 2015 Survey				
Disturbed Wetlands	1.45	acres	Based on GeoEngineers 2015 Survey				
Thin Layer Placement Wetlands	4.19	acres	Based on GeoEngineers 2015 Survey				
Wetland Thin Lift Cover	6,760	cubic yards	Total of two 6 inch lifts (12 inches total)				

Table 12-2

Comparison of Retained Remediation Alternatives - Soil

Colville Post and Poles Stevens County, Washington

Remedial Method	Conceptual Description	Benefits	Limitations	Relative Cost	Construction Feasibility	Duration of O&M	Impacts to Future Development, Adjacent Land Uses	MTCA Preference
Alternative 1 - Soil Washing	soil (shallow and deep) and deposit at a treatment area. Confirmation samples will be collected as soil is excavated. Soil will be washed with a solvent and performance samples of the soil before and after washing will be collected. The solvent will be	Permanent closure with soil remediated to concentrations less than site specific cleanup levels. Requires minimal energy use compared to other options. Contaminated soil not transported on public roads. Reduces long-term monitoring. Minimal waste disposed of off site. Minimizes wetland recovery time.	Requires treatability and pilot study to confirm effectiveness. Unproven technology. Requires removing site vegetation. Soil processing could take multiple years with processing rates of f-about 80 tons/day.	High	Moderate	Moderate (3-4 years)	concentrations less than cleanup	High MTCA preference. Soil remediated to concentrations less than site-specific cleanup levels.
Alternative 2 - Excavation and Off- site Disposal	macroencapsulation in Arlington, Oregon. Excavate shallow and	Permanent closure with all waste removed from the Site. Reduces long-term monitoring. Minimizes wetland recovery time.	Requires removing site vegetation. Long construction schedule. Contaminated materials hauled on public roadways. Uses significant resources to transport a large volume of soil by truck. Requires import of soil to replace the soil removed.		Easy	Short (2 years)		High MTCA preference. Contaminated soil removed from the site.
Alternative 3 - Thermal Desorption	deep contaminated soil and construct a treatment cell with an insulated floor and cap, heating electrodes and a vapor recovery system. Confirmation samples will be collected as soil is excavated. Soil is thermally treated in two batches. Treated soil will be	Permanent closure with soil remediated to concentrations less than site specific cleanup levels. Moderate costs because no soil import/export Contaminated materials not transported on public roadways. Reduces long-term monitoring. Minimizes wetland recovery time.	Requires removing site vegetation. Long construction schedule. Requires power infrastructure and high energy demand.	Low	Moderate	Moderate (4 years)	concentrations less than cleanup	High MTCA preference. Soil remediated to concentrations less than site-specific cleanup levels.

Table 12-3

Comparison of Retained Remediation Alternatives - Groundwater

Remedial Method	Conceptual Description	Benefits	Limitations	Relative Cost	Construction Feasibility	Duration of O&M	Impacts to Future Development, Adjacent Land Uses	MTCA Preference
Alternative 1 - Monitored Natural Attenuation	Conduct regular groundwater monitoring until natural attenuation reduces groundwater contaminants to concentrations less than the site cleanup levels.	Low cost and minimal maintenance.	Does not control offsite contaminant migration. Long remediation timeframe. Does not address existing contaminant concentrations and is not protective of potential receptors.	Low	Easy	Long (5-20 years)	High. Long-term remediation timeframe affecting site use. Does not quickly address downgradient groundwater contamination.	Low MTCA preference. Not protective of onsite or downgradient receptors.
Alternative 2 - Groundwater Pump and Treat	Install extraction and re-injection wells and pump groundwater to establish a hydraulic capture zone and restrict groundwater flow and contamination in the downgradient direction. Pumped groundwater would be treated through granulated activated carbon (GAC) adsorption treatment units. Treated water is reinjected into the subsurface or discharged to the Colville River. Performance monitoring is conducted before and after GAC treatment.	Captures and treats groundwater to filter out contaminants. Protects downgradient receptors by controlling offsite contaminant migration. Removes source of groundwater contamination. Can remove other contaminants from groundwater. Proven technology. Initial estimates indicate long carbon life. Doesn't significantly alter water chemistry.	Requires installing power service. Maintenance can be costly and difficult, including problems during freezing conditions. Requires changeout of the filter media and regular performance monitoring. GAC consumption rates can be larger based upon other chemicals present in groundwater.	Moderate	Moderate	Moderate (2-5 years)	Low. Site remediated to concentrations less than cleanup levels. Remediation infrastructure onsite until remediation concluded. Minimal impact to land after removal of pumping equipment and abandonment of injection wells.	High MTCA preference. Groundwater remediated to concentrations less than site-specific cleanup levels. Off-site contaminant migration controlled.
Alternative 3 - Enhanced In-Situ Bioremediation	Use a direct push boring machine to drill 800 holes into the subsurface and inject chemicals to stimulate microbial degradation of the PCP and diesel. Repeat injections and monitoring until contaminant concentrations are reduced less than site specific cleanup levels. Groundwater monitoring would be conducted to monitor performance.	Moderate costs. Minimal site infrastructure and maintenance. Permanent closure with groundwater remediated to less than the site specific cleanup levels. Proven technology for PCP and diesel remediation.	Does not control offsite contaminant or injected product migration. Might require multiple injections. Requires injection of chemicals into the subsurface and groundwater chemistry could be impacted.	Moderate	Easy	Moderate to Long (2-10 years)	Moderate. Might require multiple injections and could alter subsurface soil and groundwater chemistry	Moderate MTCA preference. Groundwater remediated to concentrations less than site- specific cleanup levels.
Alternative 4 - Permeable Reactive Barrier	Excavate a 700 foot long by 6 foot wide by 18 foot deep trench under slurry conditions. The excavated soil is then mixed with zero valent iron (ZVI) and placed back into the excavation to form the permeable reactive barrier (PRB). As groundwater flows through the PRB, the ZVI reacts with PCP to break it down. Additional PCP is adsorbed to the ZVI within the PRB. Upgradient and downgradient groundwater monitoring conducted to monitor performance. The PRB would eventually be disposed off-site.	Moderate costs. Minimal site infrastructure and associated maintenance for the passive treatment system. Controls offsite migration of contaminants.	Proven effectiveness of technology is limited. Adsorbed PCP to the PRB might required excavation and disposal of the PRB after remediation. ZVI could require recharge if performance is reduced.	Moderate	Moderate	Long (5-20 years)	Low	Moderate MTCA preference. Groundwater remediated onsite and offsite migration controlled. Long remediation timeframe possible.

Table 13-1

Summary of ARARs

			l	Soil Alternatives	•	1	Groundwat	ter Alternatives		
ADAD	Chemical, Location, or Action Specific	Degralated Activity	Alternative 1 -	Alternative 2 - Excavation and Off-site Disposal	Alternative 3 - Thermal Desorption	Alternative 1 - Monitored Natural Attenuation	Alternative 2 - Groundwater Pump and Treat	Alternative 3 - Enhanced In-Situ Bioremediation	Alternative 4 - Permeable Reactive Barrier	Fuchination
ARAR Stevens County Codes	ARAR	Regulated Activity	Con Washing	Біорозаі	Description	Acconduction	Hout	Bioromodiation	Barrior	Evaluation
Ordinance 4-1990	Action	Solid Waste Disposal	Applies	Applies	Applies	Does Not Apply	Applies	Does Not Apply	Applies	Waste generated in Stevens County must be disposed in Stevens County if disposal facility is permitted to receive it.
Washington State Regulations										
Washington Administrative Code (WAC) 173- 60	Action	Noise Levels	Applies	Applies	Applies	Does Not Apply	Applies	Applies	Applies	Maximum noise levels are applicable depending on action selected.
WAC 173-160	Action	Well Construction and Maintenance	Does Not Apply	Does Not Apply	Does Not Apply	Applies	Applies	Applies	Does Not Apply	Minimum standards for construction and maintenance of water and monitoring wells, and decommissioning.
WAC 173-162	Action	Well Contractors and Operators	Does Not Apply	Does Not Apply	Does Not Apply	Does Not Apply	Applies	Applies	Does Not Apply	Procedures for well contractors and operators, applicable to installation and decommissioning of wells and borings.
WAC 173-201A	Chemical	Water Quality Standards for Surface Waters	Applies	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
WAC 173-303	Chemical/Action	Dangerous Waste Management	Applies	Applies	Applies	Does Not Apply	Applies	Applies	Applies	Identified dangerous waste onsite.
WAC 173-304	Chemical/Action/ Location	Solid Waste Handling Standards	Applies	Applies	Applies	Does Not Apply	Applies	Does Not Apply	Applies	The facility was operated prior to and after 1985, when WAC 173-304 was promulgated. Therefore regulatory compliance is required.
WAC 173-333	Chemical	Bioaccumulation Toxins Rule	Applies	Applies	Applies	Applies	Applies	Applies	Applies	Criteria to identify persistent, bioaccumulative toxins that pose human and ecological threats, and action plan.
WAC 173-340 (and subsets)	Chemical/Action	Toxic Waste Cleanup (MTCA)	Applies	Applies	Applies	Applies	Applies	Applies	Applies	The remedial action will be conducted under MTCA. Remedial alternatives will comply with MTCA regulations.
WAC 173-400	Action	Fugitive Emissions	Applies	Applies	Applies	Applies	Applies	Does Not Apply	Applies	Requires owner to take reasonable precautions to prevent fugitive emissions.
WAC 197-11 and 173-802; Revised Code of Washington (RCW) 43.21C	Action	State Environmental Policy Act	Applies	Applies	Applies	Applies	Applies	Applies	Applies	A SEPA review is required for projects with potential significant environmental impacts. Stevens County would likely be the lead agency and make the determination of compliance with SEPA.
WAC 296-155	Action	Safety Standards for Construction Work	Applies	Applies	Applies	Does Not Apply	Applies	Applies	Applies	Applicable during construction activities.
WAC 296-62	Action	General Occupational Health Standards	Applies	Applies	Applies	Does Not Apply	Applies	Applies	Applies	Applicable during construction activities.
WAC 246-290	Chemical	State Maximum Contaminant Level (MCL) limits	Applies	Applies	Applies	Applies	Applies	Applies	Applies	State MCLs are applicable to potential groundwater sources of drinking water in accordance with MTCA.
RCW 90.03-0.44	Action	Surface and Groundwater Withdrawal	Does Not Apply	Does Not Apply	Does Not Apply	Does Not Apply	Applies	Does Not Apply	Does Not Apply	Substantive compliance with regulations is applicable since action could involve withdrawal or diversion of groundwater or surface water.
RCW 90.48	Action	Water Pollution Control (Construction Stormwater Permit)	Applies	Applies	Applies	Does Not Apply	Applies	Does Not Apply	Applies	A Stormwater Pollution Prevention Plan (SWPPP) is required for each remediation alternative.
RCW 119A	Chemical	Drinking Water Regulations	Applies	Applies	Applies	Applies	Applies	Applies	Applies	MTCA has risk-based MCLs to protect consumers using public water supplies (surface water and groundwater)

				Soil Alternatives	i		Groundwat	er Alternatives		
ARAR	Chemical, Location, or Action Specific ARAR	Regulated Activity	Alternative 1 - Soil Washing	Alternative 2 - Excavation and Off-site Disposal	Alternative 3 - Thermal Desorption	Alternative 1 - Monitored Natural Attenuation	Alternative 2 - Groundwater Pump and Treat	Alternative 3 - Enhanced In-Situ Bioremediation	Alternative 4 - Permeable Reactive Barrier	Evaluation
Federal Regulations		·		•						
Title 40 Code of Federal Regulations (CFR) 50	Action	Clean Air Act	Applies	Applies	Applies	Does Not Apply	Does Not Apply	Does Not Apply	Does Not Apply	MTCA requires cleanup actions comply with applicable regulations.
Title 40 CFR Part 131	Chemical	Water Quality Standards (National Toxics Rule)	Applies	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Title 40 CFR Part 141/143	Chemical	Drinking Water Regulations (MCLs)	Applies	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Title 42 USC Chapter 103; 40 CFR Chapter I, Subchapter J	Chemical/Action	Hazardous Waste (RCRA)	Applies	Applies	Applies	Does Not Apply	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
US Environmental Protection Agency	Chemical	Regional Screening Levels (RSLs)	Applies	Applies	Applies	Applies	Applies	Applies	Applies	RSLs are used as a screening tool, used as part of the risk assessment process.
Title 16 of United States Code (USC) Section 469	Location	Archaeological and Historic Preservation Act	Applies	Applies	Applies	Applies	Applies	Applies	Applies	Would be applicable if actions cause loss or adverse impacts to significant, prehistoric, historic, and archaeological data
Title 16 USC, Sections 661-667, 2901-2911	Location	Fish and Wildlife Conservation Act	Applies	Does Not Apply		Does Not Apply	Does Not Apply	Does Not Apply	Does Not Apply	Applicable for actions that involve the Colville River or wetlands, including thin layer placement.
Title 16 USC Section 668-668d	Location	Bald Eagle Protection Act	Applies	Applies	Applies	Does Not Apply	Applies	Applies	Applies	Applicable and actions would be carried out in a way that avoids unnecessarily adversely affecting bald and golden eagles.
Title 16 USC §703 50 CFR §10.12	Location	Migratory Bird Treaty Act	Applies	Applies	Applies	Does Not Apply	Does Not Apply	Does Not Apply	Applies	Applicable and actions would be carried out in a way that avoids taking or killing of protected birds and their nests.
Title 16 USC §1361 et seq. 50 CFR 216	Location	Endangered Species Act	Applies	Applies	Applies	Does Not Apply	Does Not Apply	Does Not Apply	Applies	Protect species of fish, wildlife, and plants that are listed.
Title 25 USC Section 3001-3013	Location	Native American Graves Protection and Reparation Act	Applies	Applies	Applies	Does Not Apply	Does Not Apply	Does Not Apply	Applies	Would be applicable if actions cause disturbance or alteration of graves.
Title 33 USC Chapter 26§1251 et seq.; 40 CFR Chapter 1, Subchapter D	Chemical/Action	Water Pollution Control (Clean Water Act)	Applies	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Title 33 USC Section 300g-1	Action/Location	Water Pollution Control (Safe Drinking Water Act)	Applies	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Executive Order 11990	Location	Protection of Wetlands	Applies	Applies	Applies	Applies	Does Not Apply	Does Not Apply	Does Not Apply	Applicable for actions that involve the Colville River and onsite wetlands.
Executive Order 11988	Location	Protection of Floodplains	Applies	Applies	Applies	Does Not Apply	Does Not Apply	Does Not Apply	Applies	Applicable for actions that take place within the 100-year floodplain of the Colville River.

Evaluation of Cleanup Action Alternatives - Soil

Alternative Numbers	Alternative 1	Alternative 2	Alternative 3
Alternative Descriptions	Alternative 1 - Soil Washing	Alternative 2 - Excavation and Off-site Disposal	Alternative 3 - Thermal Desorption
	Clear and grub vegetation. Dispose of debris piles using macroencapsulation in Arlington, Oregon. Excavate contaminated soil (shallow and deep) and deposit at a treatment area. Confirmation samples will be collected as soil is excavated. Soil will be washed with a solvent and performance samples of the soil before and after washing will be collected. The solvent will be treated and recycled. Impurities recovered from the solvent will be disposed of offsite. Treated soil will be amended and replaced on the site. Restore site vegetation. Two rounds of thin layer (6 inches) soil placement for the wetlands.	Clear and grub vegetation. Dispose of debris piles using macroencapsulation in Arlington, Oregon. Excavate shallow and deep contaminated soil and load into haul trucks for disposal at Waste Management's Chemical Waste facility near Arlington, Oregon. Confirmation samples will be collected as soil is excavated. Restore the site with imported fill and vegetation. Two rounds of thin layer (6 inches) soil placement for the wetlands.	Clear and grub vegetation. Dispose of debris piles using macroencapsulation in Arlington, Oregon. Excavate shallow and deep contaminated soil and construct a treatment cell with an insulated floor and cap, heating electrodes and a vapor recovery system. Confirmation samples will be collected as soil is excavated. Soil is thermally treated in two batches. Treated soil will be amended and replaced on the site after collecting performance samples after treatment. Restore site vegetation. Two rounds of thin layer (6 inches)soil placement for the wetlands.
	Alternative	l e Ranking Under MTCA	
1. Compliance with MTCA Thre	shold Criteria		
Protection of Human Health	Yes - Alternative provides protection	Yes - Alternative provides protection of	Yes - Alternative provides protection of
and the Environment	of human health and environment.	human health and environment.	human health and environment.
Compliance with Cleanup Standards	Yes - Alternative provides compliance with cleanup standards.	Yes - Alternative provides compliance with cleanup standards.	Yes - Alternative provides compliance with cleanup standards.
Compliance with Applicable State and Federal Regulations	Yes - Alternative will comply with applicable state and federal regulations.	Yes - Alternative will comply with applicable state and federal regulations.	Yes - Alternative will comply with applicable state and federal regulations.
Provision for Compliance Monitoring	Yes - Alternative includes confirmation and performance sampling and monitoring.	Yes - Alternative includes confirmation sampling.	Yes - Alternative includes confirmation and performance sampling and monitoring.
2. Restoration Time Frame	•		
	Initial restoration timeframe is moderate (3-4 years) due to a preliminary processing estimate of 100-120 tons per day.	Initial restoration timeframe short, as disposal is expected to take 2 years.	Initial restoration timeframe is moderate. Remediation expected to take 4 years to treat two batches and replace soil.

Alternative Numbers	Alternative 1		Alternative 2		Alternative 3	
3. Disproportionate Cost Anal	ysis - Relative Benefits Ranking	1				
		Score		Score		Score
Protectiveness	Possibility to leave some food grade residual solvent in soil. Removes contaminants from the site.	4	Higher level of protectiveness with source removal and disposal off-site. Doesn't destroy contamination, only moves it. Decreased protectiveness because of highway transport.	4	Reduces toxicity of contaminants by thermally destroying them.	4
Permanence	Permanent closure with soil remediated to concentrations less than the site specific cleanup levels.	5	Permanent closure with source removed and disposal off-site.	5	Permanent closure with soil remediated to concentrations less than the site specific cleanup levels.	5
Long-Term Effectiveness	Effective soil treating for permanent closure.	4	Long term effectiveness with source removed and disposal offsite.	5	Effective soil treating for permanent closure.	4
Management of Short-Term Risks	Lower to moderate level of short-term risks with no export or import of material from the site.	4	Moderate to high short term risk with export and import of material from the site. High vehicle traffic on a two lane highway over long travel distances.	2	Moderate short-term risks with minimal import of material to the site. Risks include off gassing from pile and potential for explosion and very high electrical uses.	3
Technical and Administrative Implementability	Low to moderate level of Implementability and relies on treatability and pilot study results.	2	Moderate to high level of implementation. Especially if a transportation by rail solution is developed.	4	Moderate to low level of Implementability; requires power infrastructure and usage.	3
Consideration of Public Concerns	Moderate to high level of public acceptance because contaminated materials are not hauled offsite and treatment is onsite.	4	Low to moderate level of public acceptance because contaminated materials are excavated and hauled on public roads.	2	Moderate level of public acceptance because contaminated materials are not hauled offsite and treatment is onsite. Public concerns for vapor treatment and off gassing.	3
Total Score		23		22		22

¹Alternatives were scored using a scale of 1 to 5 with a score of 1 being the least amount of benefits provided by the alternative and a score of 5 being the most amount of benefits provided by the alternative.

Evaluation of Cleanup Action Alternatives - Groundwater

Colville Post and Poles Stevens County, Washington

Alternative Numbers	Alternative 1 ¹	Alternative 2	Alternative 3	Alternative 4
Alternative Descriptions	Alternative 1 - Monitored Natural Attenuation	Alternative 2 - Groundwater Pump and Treat	Alternative 3 - Enhanced In-Situ Bioremediation	Alternative 4 - Permeable Reactive Barrier
	concentrations less than the site cleanup levels.	and pump groundwater to establish a hydraulic capture zone and restrict	holes into the subsurface and inject chemicals to stimulate microbial degradation of the PCP and diesel. Repeat injections and monitoring until contaminant concentrations are reduced less than site specific cleanup levels. Groundwater monitoring would be conducted to monitor performance.	Excavate a 700 foot long by 6 foot wide by 18 foot deep trench under slurry conditions. The excavated soil is then mixed with zero valent iron (ZVI) and placed back into the excavation to form the permeable reactive barrier (PRB). As groundwater flows through the PRB, the ZVI reacts with PCP to break it down. Additional PCP is adsorbed to the ZVI within the PRB. Upgradient and downgradient groundwater monitoring conducted to monitor performance. The PRB would eventually be disposed off-site.
		Alternative Ranking	Under MTCA	
1. Compliance with MTCA	Threshold Criteria			
Protection of Human Health and the Environment	No - Alternative does not protect human health and the environment.	Yes - Alternative provides protection of human health and the environmental.	Yes - Alternative provides protection of human health and the environmental.	Yes - Alternative provides protection of human health and the environmental.
Compliance with Cleanup Standards	No - Alternative does not comply with cleanup standards	Yes - Alternative complies with cleanup standards.	Yes - Alternative complies with cleanup standards.	Yes - Alternative complies with cleanup standards.
Compliance with Applicable State and Federal Regulations	No - Alternative will not comply with applicable state and federal regulations.	Yes - Alternative will comply with applicable state and federal regulations.	Yes - Alternative will comply with applicable state and federal regulations.	Yes - Alternative will comply with applicable state and federal regulations.
Provision for Compliance Monitoring	Yes - Alternative includes long-term monitoring.	Yes - Alternative includes long-term monitoring.	Yes - Alternative includes provision for compliance monitoring (i.e., compliance sampling during remedial excavation, and long-term surface water and sediment monitoring).	Yes - Alternative includes long-term monitoring.
2. Restoration Time				
	Long (5-20 years)	Moderate (2-5 years)	Moderate to Long (2-10 years)	Long (5-20 years)

File No. 0504-098-01 Table 14-2 | June 21, 2018

Alternative Numbers	mbers Alternative 1 ¹		Alternative 2		Alternative 3	Alternative 4		
3. Disproportionate Cost	Analysis - Relative Benefits Ra	nking ²						
		Score		Score		Score		Score
Protectiveness	No protectiveness achieved	1	Protects by capturing and treating contaminated groundwater. Protects downgradient receptors by controlling offsite contaminant migration. Removes source of	5	Protective remediation of groundwater. Chemicals injected could have byproducts or change soil and water chemistry.	4	Low to moderate protectiveness because this does not remediate concentrations in the plume, only downgradient.	2
Permanence	No reduction in the toxicity, mobility, and mass of material onsite.	1	Contaminants are permanently removed from groundwater.	5	Moderate to high permanence as injections will reduce contaminant source mass; multiple injections may be required.	4	Low to moderate permanence; controls offsite contaminant migration.	2
Long-Term Effectiveness	No long-term effectiveness	1	Effective for long-term after contaminant source is removed and contaminants removed from groundwater.	5	Moderate long-term effectiveness with no control for offsite contaminant or injected product migration. May require multiple injections. Chemicals are not removed, but transformed.	3	Moderate long-term effectiveness. Contamination is transformed and captured by the PRB wall, but not removed entirely.	2
Management of Short- Term Risks	Lowest short-term risks because no action is taken.	5	Low to moderate short-term risks. Requires minimal electrical needs.	4	Moderate short-term risks. Off gassing from reactions have occurred and are possible when injecting chemicals.	3	Moderate short-term risks. There is a risk to modify water chemistry downgradient of the wall and during wall construction.	3
Technical and Administrative Implementability	Highest level of implementability because no actions taken at the site.	5	Moderate level of implementability. Requires power service and regular maintenance and performance monitoring.	3	Moderate to high level of Implementability, and relies on additional monitoring and may require multiple injections.	4	Moderate level of implementability, does not remediate contaminant plume and PRB might require recharge. Additional bench scale testing required.	3
Consideration of Public Concerns	Lowest level of public acceptance because contaminated materials remain onsite with no control on migration offsite.	2	Moderate to high level of public acceptance. Some concern could exist with depleting an aquifer or discharging into the groundwater or river.	4	Moderate level of public acceptable because contaminated groundwater is remediated onsite, but no control for offsite migration of injected products and contaminants. Possible public concerns related to chemicals and by products.	3	Moderate level of public concern; contaminant plume will not be remediated; Alternative will control offsite migration. Possible concerns about changing chemistry down gradient of the wall.	3
Total Score		15		26		21		15

Alternative Numbers Alternative 1 ¹ Alternative 2 Alternative 3 Alternative 4
--

¹Groundwater Alternative 1 does not meet the four MTCA threshold requirements unless combined with a soil alternative. Considering the expectation that both soil and groundwater alternatives will be selected ²Alternatives were scored using a scale of 1 to 5 with a score of 1 being the least amount of benefits provided by the alternative and a score of 5 being the most amount of benefits provided by the alternative.

Summary of MTCA Evaluation and Ranking of Cleanup Action Alternatives - Soil

Colville Post and Poles

Stevens County, Washington

		Alternative 2 - Excavation and Off-	
	Alternative 1 - Soil Washing	site Disposal	Alternative 3 - Thermal Desorption
Alternative Ranking Under MTCA			
1. Compliance with MTCA Threshold Criteria ¹	Yes	Yes	Yes
2. Restoration Time Frame	Restoration timeframe is moderate	Restoration timeframe is low (estimated 2	· · · · · · · · · · · · · · · · · · ·
	(estimated 3-4 seasons).	seasons).	seasons).
3. Disproportionate Cost Analysis Relative Benefits Ranking			
Protectiveness	4	4	4
Permanence	5	5	5
Long-Term Effectiveness	4	5	4
Management of Short-Term Risks	4	2	3
Technical and Administrative Implementability	2	4	3
Consideration of Public Concerns	4	2	3
Total of Scores	23	22	22
4. Disproportionate Cost Analysis			
	\$44,691,905	\$26,820,847	\$25,266,986
Costs Disproportionate to Incremental Benefits	Yes	Yes	No
Practicability of Remedy	Medium Practicability	High Practicability	Medium Practicability
Remedy Permanent to Maximum Extent Practicable	Permanent	Permanent	Permanent
Overall Alternative Ranking	3rd	2nd	1st

Notes:

¹WAC 173-340-360(2)(a)

²Low cost is a benefit.

Summary of MTCA Evaluation and Ranking of Cleanup Action Alternatives - Groundwater

Colville Post and Poles

Stevens County, Washington

	Alternative 1 - Monitored Natural Attenuation	Alternative 2 - Groundwater Pump and Treat	Alternative 3 - Enhanced In-Situ Bioremediation	Alternative 4 - Permeable Reactive Barrier
Alternative Ranking Under MTCA	-		•	•
1. Compliance with MTCA Threshold Criteria ¹	No	Yes	Yes	Yes
2. Restoration Time Frame	Immediate for implementation, but length to achieve cleanup goals could be up to 20 years.	Short timeframe for installation of extraction wells, injection wells and remediation system structure. Estimated 2 to 5 year remediation timeframe.	Initial restoration timeframe is short with injections occurring over 1 to 2 months. Estimated 2 to 5 years of performance monitoring and an additional application.	Initial restoration timeframe is short, with the wall installed in 1 to 2 months. PRB is dependent on groundwater gradients and velocities. And actual remediation could extend over a long period of time.
3. Disproportionate Cost Analysis Relative Benefits I	Ranking			
Protectiveness	1	5	4	2
Permanence	1	5	4	2
Long-Term Effectiveness	1	5	3	2
Management of Short-Term Risks	5	4	3	3
Technical and Administrative Implementability	5	3	4	3
Consideration of Public Concerns	2	4	3	3
Total of Scores	15	26	21	15
4. Disproportionate Cost Analysis				
	\$360,000	\$1,310,006	\$2,095,700	\$1,486,973
Costs Disproportionate to Incremental Benefits	S No	No	No	No
Practicability of Remedy	Not Practicable	High Practicability	Medium Practicability	Medium Practicability
Remedy Permanent to Maximum Extent Practicable	<u> </u>	Permanent	Permanent	Not Permanent
Overall Alternative Ranking	4th	1 st	2nd	3rd

Notes:

¹WAC 173-340-360(2)(a)

²Low cost is a benefit.

File No. 0504-098-01 Table 14-4 | June 21, 2018

Alternative 1: Soil Washing - Soil

Colville Post and Poles Stevens County, Washington

Scope Item	Unit	Unit Cost	Quantity	Extended
Design/Project Management				
Design, work plan and procurement	lump sum	\$100,000.00	1	\$100,000
			Task Sub-Total	\$100,000
Construction Oversight / Project Management / Reporting				
Construction monitoring/oversight - assume 4 seasons				
construction, includes PM and Per Diem	day	\$2,000.00	900	\$1,800,000
Analytical (Performance and Confirmation Sampling)	lump sum	\$100,000.00	1	\$100,000
Remedial action report	lump sum	\$40,000.00	1	\$40,000
		•	Task Sub-Total	\$1,940,000
Contaminated Soil Excavation			•	
Mobilization	lump sum	\$200,000.00	1	\$200,000
Clearing and grubbing ¹	acre	\$8,500.00	13.92	\$118,320
Excavation of contaminated shallow soil ¹	cubic yard	\$7.00	33,686	\$235,805
Excavation of contaminated source area ¹	cubic yard	\$15.00	35,122	\$526,825
On-site Dewatering Treatment and Discharge ²	lump sum	\$100,000.00	1	\$100,000
			Task Sub-Total	\$1,180,950
Debris Disposal				
Hauling and disposal ³	cubic yard	\$318.00	3,000	\$954,000
	•	•	Task Sub-Total	\$954,000
Soil Washing			·	
Utilities (power drop) ⁴	lump sum	\$50,000.00	1	\$50,000
Lab study ⁵	lump sum	\$30,000.00	1	\$30,000
Pilot study ⁵	lump sum	\$700,000.00	1	\$700,000
Soil processing and handling ⁵	Ton	\$350.00	95,773	\$33,520,438
Power usage ⁶	Year	\$50,000.00	4	\$200,000
		•	Task Sub-Total	\$34,500,438
Site Restoration			_	
Site grading ⁷	acre	\$10,500.00	13.92	\$146,160
Wetland restoration ⁸	acre	\$15,000.00	1.45	\$21,750
Wetland thin lift (12 inches) ⁹	cubic yard	\$35.00	6,760	\$236,595
Revegetation ⁷	acre	\$3,500.00	13.92	\$48,720
			Task Sub-Total	\$453,225
		Remedia	al Action Sub-Total	\$37,088,613
		Remedial Action	Contingency (15%)	\$5,563,292
Engi	neering, Constructio	n Oversight, Project Mana		\$2,040,000
		Total Estimated Costs fo	r Soil Alternative 1	\$44,691,905

- 1) Cost estimated from WSDOT Bid Check Report, Deer Park Intersection Improvements, Appendix F.
- 2) Cost assumes \$17,000 for GAC servicing and delivery, \$7,000 for sampling, \$3,000 per month equipment rental for 12 months and \$40,000 to install, operate and decommission system including GAC disposal.
- 3) Cost estimated from Waste Management, Appendix F.
- 4) Cost provided by Avista, Appendix F
- 5) Cost provided EcoSPEARS, Appendix F.
- 6) Estimated Cost.
- 7) Cost estimated from contractor bid for a similar project.
- 8) Estimated costs based on experience.
- 9) Cost provided by local landscape supplier, Appendix F. Estimated costs are considered to be within a margin of +/- 30 percent. Refer to Table 1 for assumptions used to generate material quantities.

Alternative 2: Excavation and Off-site Disposal - Soil

Colville Post and Poles Stevens County, Washington

Scope Item	Unit	Unit Cost	Quantity	Extended
Design / Work Plan / Project Management			•	
Design, Work Plan, Plans/Specs, Project Management	lump sum	\$100,000.00	1	\$100,000
			Task Sub-Total	\$100,000
Construction Oversight / Project Management / Reporting				
Construction monitoring/oversight - assume 2 seasons construction,				
includes PM and Per Diem	day	\$2,000.00	480	\$960,000
Analytical (Confirmation Sampling)	lump sum	\$50,000.00	1	\$50,000
Remedial action report	lump sum	\$40,000.00	1	\$40,000
			Task Sub-Total	\$1,050,000
Contaminated Soil Excavation, Hauling and Disposal				
Mobilization	lump sum	\$200,000.00	1	\$200,000
Clearing and Grubbing ¹	acre	\$8,500.00	13.92	\$118,320
Excavation of contaminated shallow soil ¹	cubic yard	\$7.00	33,686	\$235,805
Excavation of contaminated source area ¹	cubic yard	\$15.00	35,122	\$526,825
Hauling and Disposal (Hazardous Material) ²	ton	\$184.50	95,773	\$17,670,060
On-site Dewatering Treatment and Discharge ³	lump sum	\$100,000.00	1	\$100,000
			Task Sub-Total	\$18,851,009
Debris Disposal			•	
Hauling and disposal ²	cubic yard	\$318.00	3,000	\$954,000
	-1	1	Task Sub-Total	\$954,000
Site Restoration			•	
Site grading ⁴	acre	\$10,500.00	13.92	\$146,160
Import fill material ⁵	cubic yard	\$30.00	68,808	\$2,064,242
Wetland restoration ⁶	acre	\$15,000.00	1.45	\$21,750
Wetland thin lift (12 inches) ⁵	cubic yard	\$35.00	6,760	\$236,595
Revegetation ⁴	acre	\$3,500.00	13.92	\$48,720
	L	<u> </u>	Task Sub-Total	\$2,517,467
				· ,
		Ren	nedial Action Sub-Total	\$22,322,476
		Remedial Act	ion Contingency (15%)	\$3,348,371
Engineer	ing, Construction (Oversight, Project M	anagement, Reporting	\$1,150,000
	Т	otal Estimated Cost	ts for Soil Alternative 2	\$26,820,847

Notes:

- 1) Cost estimated from WSDOT Bid Check Report, Deer Park Intersection Improvements, Appendix F.
- 2) Cost estimated from Waste Management for disposal at the Arlington, Oregon facility, Appendix F.
- 3) Cost assumes \$17,000 for GAC servicing and delivery, \$7,000 for sampling, \$3,000 per month equipment rental for 12 months and \$40,000 to install, operate and decommission system including GAC disposal.
- 4) Cost estimated from contractor bid for a similar project.
- 5) Cost provided by local landscape supplier, Appendix F.
- 6) Estimated costs based on experience.

Estimated costs are considered to be within a margin of +/- 30 percent.

Refer to Table 1 for assumptions used to generate material quantities.

Alternative 3: Thermal Desorption - Soil

Scope Item	Unit	Unit Cost	Quantity	Extended
Design / Work Plan / Project Management				
Design, Work Plan, Plans/Specs, Project Management	lump sum	\$125,000.00	1	\$125,000
			Task Sub-Total	\$125,000
Construction Oversight / Project Management / Reporting			•	
Construction monitoring/oversight - assume 4 seasons of				
construction, includes PM and Per Diem	day	\$2,000.00	960	\$1,920,000
Analytical (Performance and Confirmation Sampling)	lump sum	\$100,000.00	1	\$100,000
Remedial action report	lump sum	\$40,000.00	1	\$40,000
			Task Sub-Total	\$2,060,000
Contaminated Soil Excavation				
Mobilization	lump sum	\$200,000.00	1	\$200,000
Clearing and Grubbing ¹	acre	\$8,500.00	13.92	\$118,320
Excavation of contaminated shallow soil ¹	cubic yard	\$7.00	33,686	\$235,805
Excavation of contaminated source area ¹	cubic yard	\$15.00	35,122	\$526,825
On-site Dewatering Treatment and Discharge ²	lump sum	\$100,000.00	1	\$100,000
			Task Sub-Total	\$1,180,950
Debris Disposal			•	
Hauling and disposal ³	cubic yard	\$318.00	3,000	\$954,000
	•		Task Sub-Total	\$954,000
Thermal Desorption			•	
Utilities (power drop) ⁴	lump sum	\$100,000.00	1	\$100,000
Construct treatment cell ⁵	lump sum	\$400,000.00	1	\$400,000
Construct second batch treatment ⁵	lump sum	\$200,000.00	1	\$200,000
Thermal Soil Treatment ⁶	Cubic Yard	\$270.00	60,808	\$16,418,174
Vapor Monitoring ⁷	each	\$270.00	104	\$28,080
	•	•	Task Sub-Total	\$17,146,254

Scope Item	Unit	Unit Cost	Quantity	Extended
Site Restoration	<u> </u>			
Site grading (treated soil and import soil) ⁸	acre	\$10,500.00	13.92	\$146,160
Import top soil (6 inches) ⁹	cubic yard	\$30.00	11,229	\$336,864
Wetland restoration ¹⁰	acre	\$15,000.00	1.45	\$21,750
Wetland thin lift (12 inches) ⁹	cubic yard	\$35.00	6,760	\$236,595
Revegetation ⁸	acre	\$3,500.00	13.92	\$48,720
Task Sub-Total				\$790,089
Remedial Action Sub-Total				\$20,071,292
Remedial Action Contingency (15%)				\$3,010,694
Engineering, Construction Oversight, Project Management, Reporting				\$2,185,000
Total Estimated Costs for Soil Alternative 3			\$25,266,986	

- 1) Cost estimated from WSDOT Bid Check Report, Deer Park Intersection Improvements, Appendix F.
- 2) Cost assumes \$17,000 for GAC servicing and delivery, \$7,000 for sampling, \$3,000 per month equipment rental for 12 months and \$40,000 to install, operate and decommission system including GAC disposal.
- 3) Cost estimated from Waste Management, Appendix F.
- 4) Similar cost provided by Avista and then doubled to accomodate larger power needs, Appendix F
- 5) Assumes a 6,400 square yard, 6-inch thick concrete slab. Concrete costs estimated at \$120,000 not including design, rebar, form work, foundation prep and
- 6) Unit cost provided by Casdade Thermal, Appendix F.
- 7) Assumes one vapor sample per week for 2 years analyzed for Dioxin, Furan, PCP and TPH.
- 6) Cost estimated from contractor bid for a similar project.
- 7) Cost provided by local landscape supplier, Appendix F.
- 8) Estimated costs based on experience.

Estimated costs are considered to be within a margin of +/- 30 percent.

Refer to Table 1 for assumptions used to generate material quantities.

Alternative 1: Monitored Natural Attenuation - Groundwater

Colville Post and Poles Stevens County, Washington

Scope Item	Unit	Unit Cost	Quantity	Extended
Work Plan / Project Management				
Work Plan / Project Management	lump sum	\$50,000.00	1	\$50,000
Task Sub-Total				
Decommission Monitoring Wells				
Decommission Monitoring Wells	lump sum	\$10,000.00	1	\$10,000
			Task Sub-Total	\$10,000
Reporting			-	
Remedial Action Report	lump sum	\$20,000.00	1	\$20,000
			Task Sub-Total	\$20,000
		Rem	edial Action Sub-Total	\$0
		Remedial Acti	ion Contingency (15%)	\$0
w	ork Plan, Project Man	agement, Reporting	, Decommission Wells	\$80,000
		Pomodial /	Action Estimated Total	
1		Kellieulai A	ACTION ESTIMATED TOTAL	\$80,000
Groundwater Monitoring (5 Years)		Reilleulai A	Action Estimated Total	\$80,000
<u> </u>	event	\$20,000	8	\$80,000 \$160,000
Quarterly Groundwater Monitoring/Inspection and Reporting (Years 1 and 5)	event			. ,
Quarterly Groundwater Monitoring/Inspection and Reporting	event event			. ,

Notes:

Estimated costs are considered to be within a margin of +/- 30 percent.

Refer to Table 1 for assumptions used to generate material quantities.

Alternative 2: Pump and Treat - Groundwater

Colville Post and Poles Stevens County, Washington

Scope Item	Unit	Unit Cost	Quantity	Extended
Design / Work Plan / Project Management				
Design, Work Plan, Plans/Specs, Project Management	lump sum	\$125,000.00	1	\$125,000
Task Sub-Total				\$125,000
Construction Oversight / Project Management / Reporting				
Construction monitoring/oversight - assume 1 month construction,				
includes PM and Per Diem	day	\$2,000.00	20	\$40,000
Remedial action report	lump	\$40,000.00	1	\$40,000
			Task Sub-Total	\$80,000
Pump and Treat System (Assumes 2 year treatment)			-	
Utilities (power drop) ¹	lump sum	\$50,000.00	1	\$50,000
Install 10 extraction wells and 1 injection point ²	lump sum	\$100,000.00	1	\$100,000
Treatment system install ²	lump sum	\$200,000.00	1	\$200,000
Treatment system rental ³	monthly	\$5,405.00	24	\$129,720
Carbon media purchase (4,000 pounds) ³	lump sum	\$6,085.00	1	\$6,085
Carbon servicing (disposal and replace media once) ³	lump sum	\$27,100.00	2	\$54,200
Annual operating costs ²	annual	\$40,000.00	2	\$80,000
O&M ²	annual	\$25,000.00	2	\$50,000
	Task Sub-Total			\$670,005
Performance Sampling			•	
Analytical ²	annual	\$20,000.00	2	\$40,000
	•		Task Sub-Total	\$40,000
Decommission Wells			•	
Decommission monitoring wells ²	lump sum	\$10,000.00	1	\$10,000
Decommission treatment system wells and system ²	lump sum	\$30,000.00	1	\$30,000
	· ·	•	Task Sub-Total	\$40,000
				<u> </u>
		Re	medial Action Sub-Total	\$750,005
		Remedial A	ction Contingency (15%)	\$75,001
Engineering, Construction Oversight, Project Management, Reporting			\$205,000	
-	<u> </u>		I Action Estimated Total	\$1,030,006
Annual Maintenance and Monitoring (5 Years)				, ,,
Quarterly Groundwater Monitoring/Inspection and Reporting				
(Years 1 and 5)	event	\$20,000	8	\$160,000
Bi-Annual Groundwater Monitoring and Reporting				
(Years 2-4)	event	\$20,000	6	\$120,000
Total Estimated Costs for Groundwater Alternative 2			\$1,310,006	

- 1) Cost provided by Avista, Appendix F
- 2) Estimated cost based on experience.
- 3) Unit cost provided by Baker Corp, Appendix F Estimated costs are considered to be within a margin of +/- 30 percent. Refer to Table 1 for assumptions used to generate material quantities.

Alternative 3: Enhanced In-Situ Bioremediation - Groundwater

Colville Post and Poles

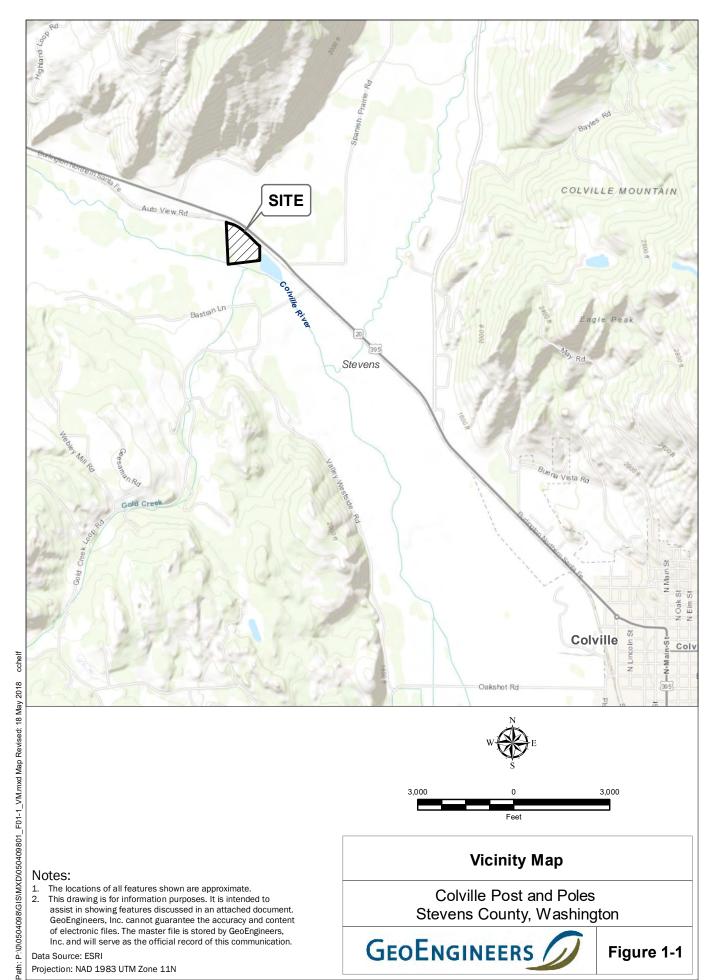
Stevens County, Washington

Scope Item	Unit	Unit Cost	Quantity	Extended
Design / Work Plan / Project Management				
Design, Work Plan, Project Management	lump sum	\$100,000.00	1	\$100,000
			Task Sub-Total	\$100,000
Construction Oversight / Project Management / Reporting				
Construction monitoring/oversight - assume 40 days of direct-push				
injections, includes PM and Per Diem (Initial 800 injections) ¹	day	\$2,000.00	40	\$80,000
Construction monitoring/oversight - assume 40 days of direct-push				
injections, includes PM and Per Diem (800 follow-up injections) ¹	day	\$2,000.00	40	\$80,000
Remedial action report	lump	\$40,000.00	1	\$40,000
·	· · · · · · · · · · · · · · · · · · ·	1	Task Sub-Total	\$200,000
ORC Injections			<u>'</u>	·
D 1111 144 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Drilling (assumes two direct push drill rigs) ¹	day	\$6,000.00	80	\$480,000
Amendments (ORC) ²	lump sum	\$369,000.00	2	\$738,000
ORC Mixing and Application ¹	lump sum	\$50,000.00	2	\$100,000
			Task Sub-Total	\$1,318,000
		Re	medial Action Sub-Total	\$1,318,000
		Remedial Ad	ction Contingency (15%)	\$197,700
Engineer	ing, Construction (Oversight, Project I	Management, Reporting	\$300,000
Remedial Action Estimated Total				
Annual Maintenance and Monitoring (5 Years)				
Quarterly Groundwater Monitoring/Inspection and Reporting				
(Years 1 and 5)	event	\$20,000	8	\$160,000
Bi-Annual Groundwater Monitoring and Reporting				
(Years 2-4)	event	\$20,000	6	\$120,000
	-			40.005.700
	Total Esti	mated Costs for Gr	oundwater Alternative 3	\$2,095,700

- 1) Estimated costs based on experience.
- 2) Estimated cost based on discussions with Regenesis and calculations, Appendix F Estimated costs are considered to be within a margin of +/- 30 percent. Refer to Table 1 for assumptions used to generate material quantities.

Alternative 4: Permeable Reactive Barrier - Groundwater

Colville Post and Poles


Stevens County, Washington

Scope Item	Unit	Unit Cost	Quantity	Extended
Design / Work Plan / Specifications / Project Management			•	
Design, Work Plan, Plans/Specs, Project Management	lump sum	\$125,000.00	1	\$125,000
Bench scale testing	lump sum	\$30,000.00	1	\$30,000
			Task Sub-Total	\$155,000
Construction Oversight / Project Management / Reporting				
Construction monitoring/oversight - assume 5 week construction,				
includes PM and Per Diem	day	\$2,000.00	25	\$50,000
Remedial action report	lump	\$40,000.00	1	\$40,000
	•		Task Sub-Total	\$90,000
Installation of ZVI Wall ¹			•	
Mobilization	lump sum	\$67,525.28	1	\$67,525
Mix Sand and ZVI	cubic yards	\$82.21	1,400	\$115,094
Install ZVI Wall	cubic yards	\$95.91	1,400	\$134,274
Regrade site	cubic yards	\$57.68	200	\$11,536
Demobilization	lump sum	\$41,246.67	1	\$41,247
	•	•	Task Sub-Total	\$369,676
Disposal of ZVI Wall			•	
Excavate ZVI wall ²	day	\$1,800.00	10	\$18,000
Disposal of ZVI Wall ³	ton	\$184.50	2,205	\$406,823
Backfill excavated trench ⁴	cubic yards	\$30.00	1,400	\$42,000
	•		Task Sub-Total	\$466,823
		Re	emedial Action Sub-Total	\$836,498
Remedial Action Contingency (15%)			\$125,475	
Engineering, Construction Oversight, Project Management, Reporting				\$245,000
Remedial Action Estimated Total				\$1,206,973
Annual Maintenance and Monitoring (5 Years)				· · ·
Quarterly Groundwater Monitoring/Inspection and Reporting				
(Years 1 and 5)	event	\$20,000	8	\$160,000
(Years 2-4)	event	\$20,000	6	\$120,000
	Total Fetin	mated Costs for G	oundwater Alternative 4	\$1,486,973
Total Estimated Costs for Groundwater Alternative 4				\$1, 7 60,973

- 1) Estimated costs based on quote from contractor, Appendix F.
- 2) Estimated costs based on experience.
- 3) Cost estimated from Waste Management, Appendix F.
- 4) Cost provided by local landscape supplier, Appendix F. Estimated costs are considered to be within a margin of +/- 30 percent. Refer to Table 1 for assumptions used to generate material quantities.

The locations of all features shown are approximate.
This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.
GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ESRI

Projection: NAD 1983 UTM Zone 11N

Vicinity Map

Colville Post and Poles Stevens County, Washington

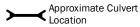
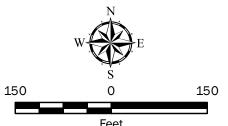


Figure 1-1

Decision Area Boundary (Herrera 2003)

Location

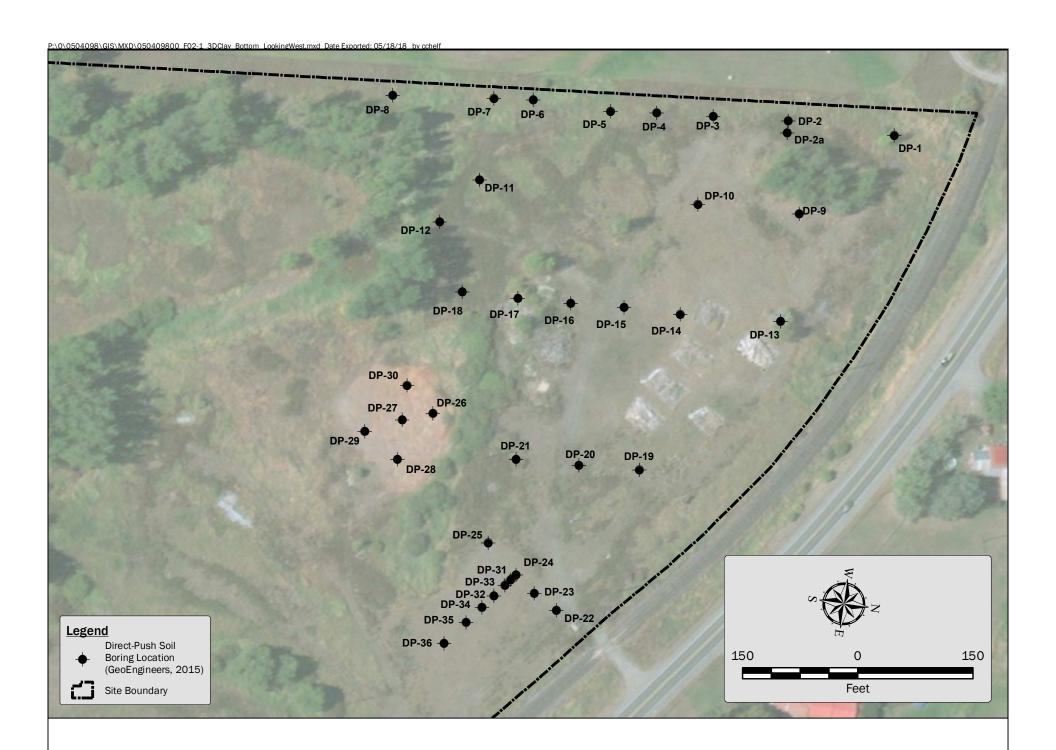

Property Boundary

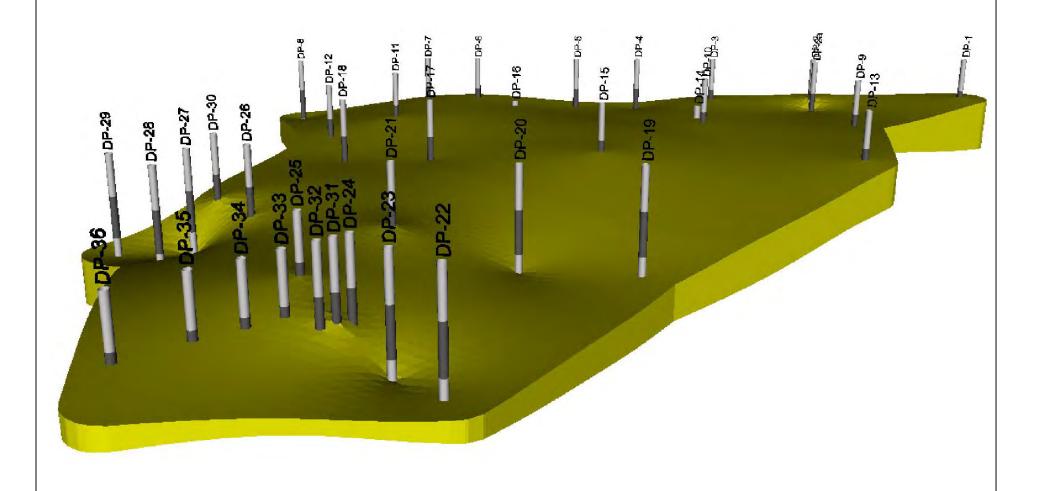
- 1. The locations of all features shown are approximate and are referenced
- from the Herrera 2003 "Removal Site Evaluation Report."

 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

 ${\tt Data\ Source:ESRI,\ Siteboundary\ provided\ by\ EPA\ and\ Washington\ Department\ of\ Ecology.}$

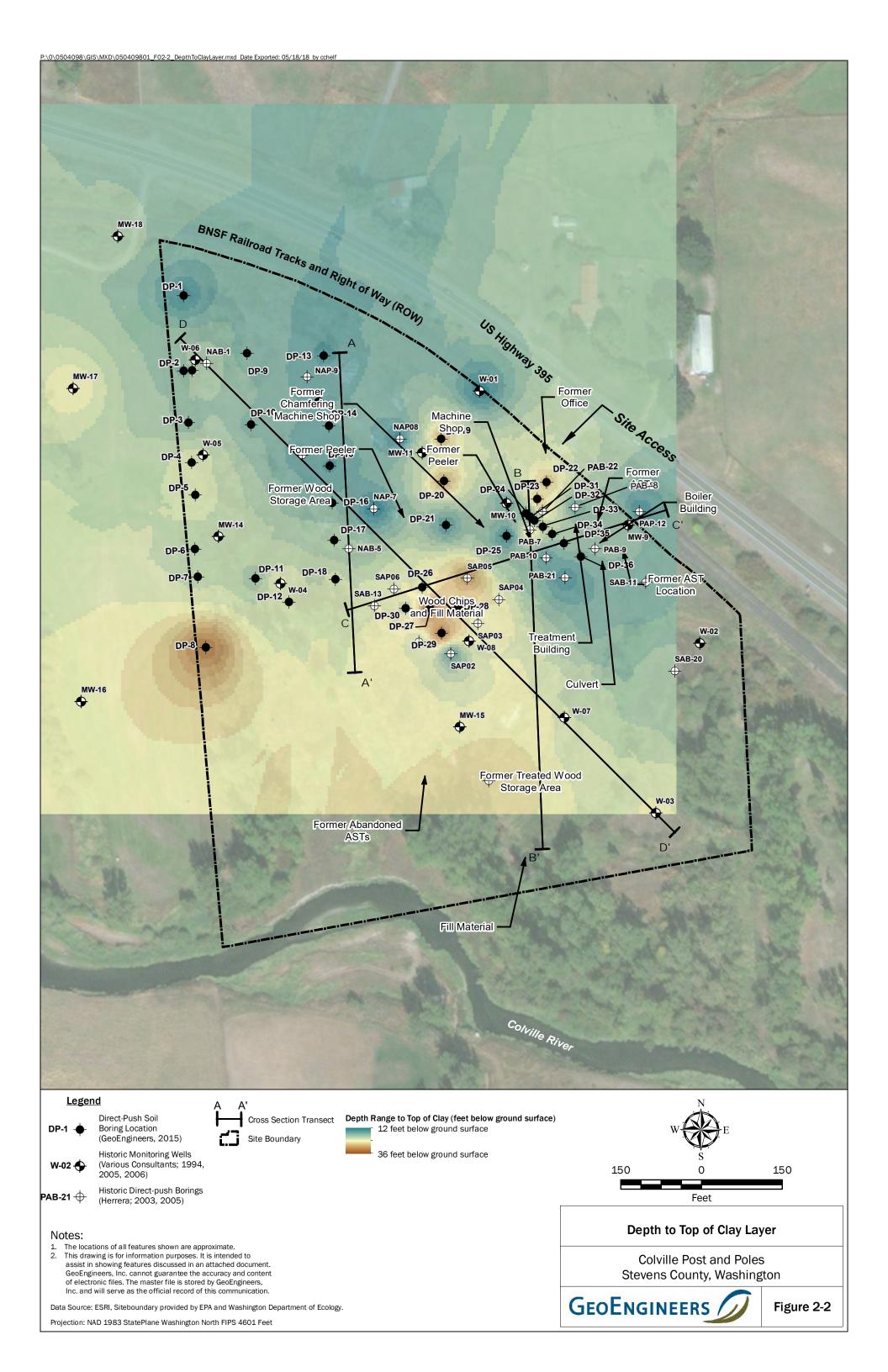
Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

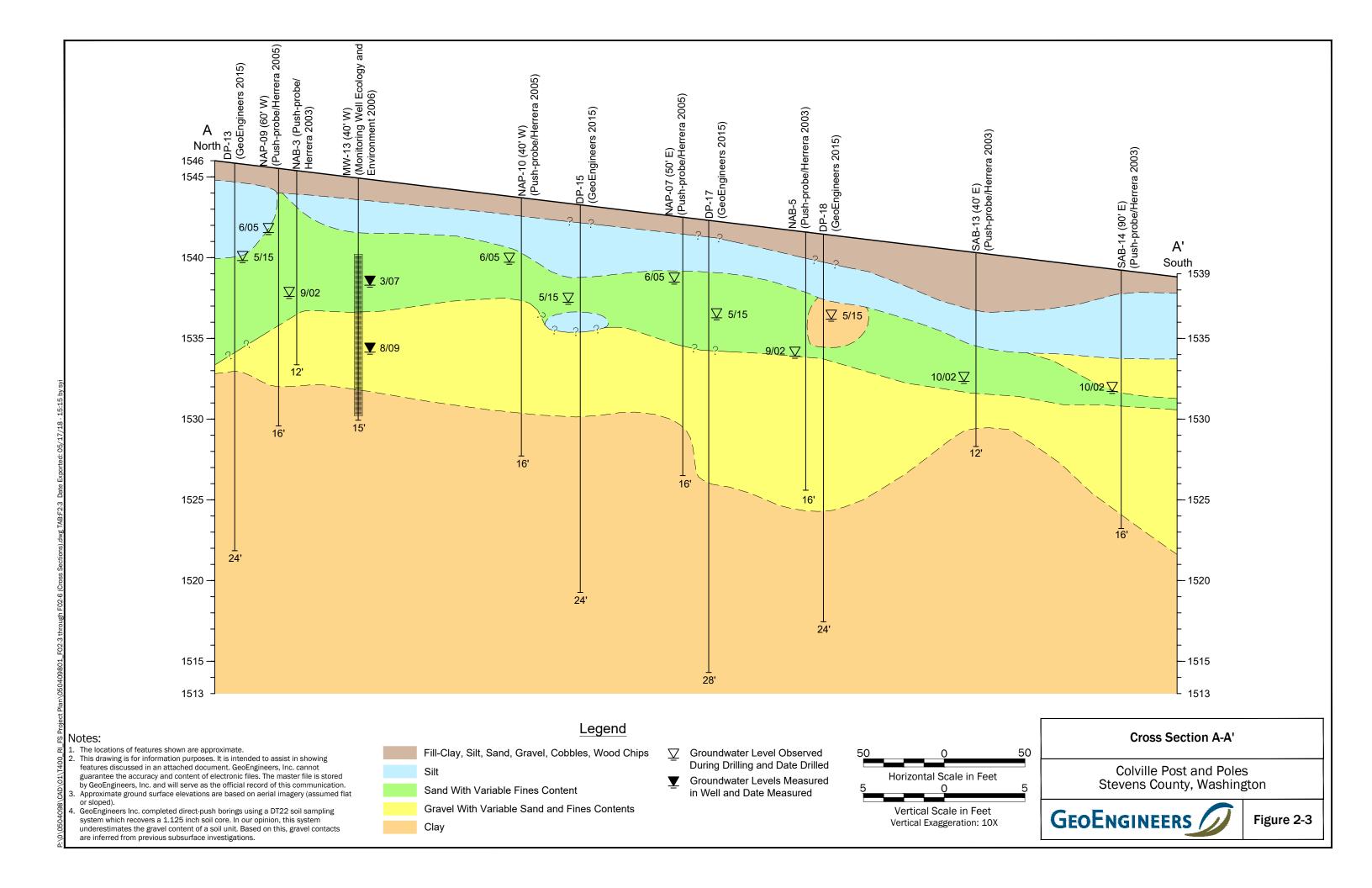


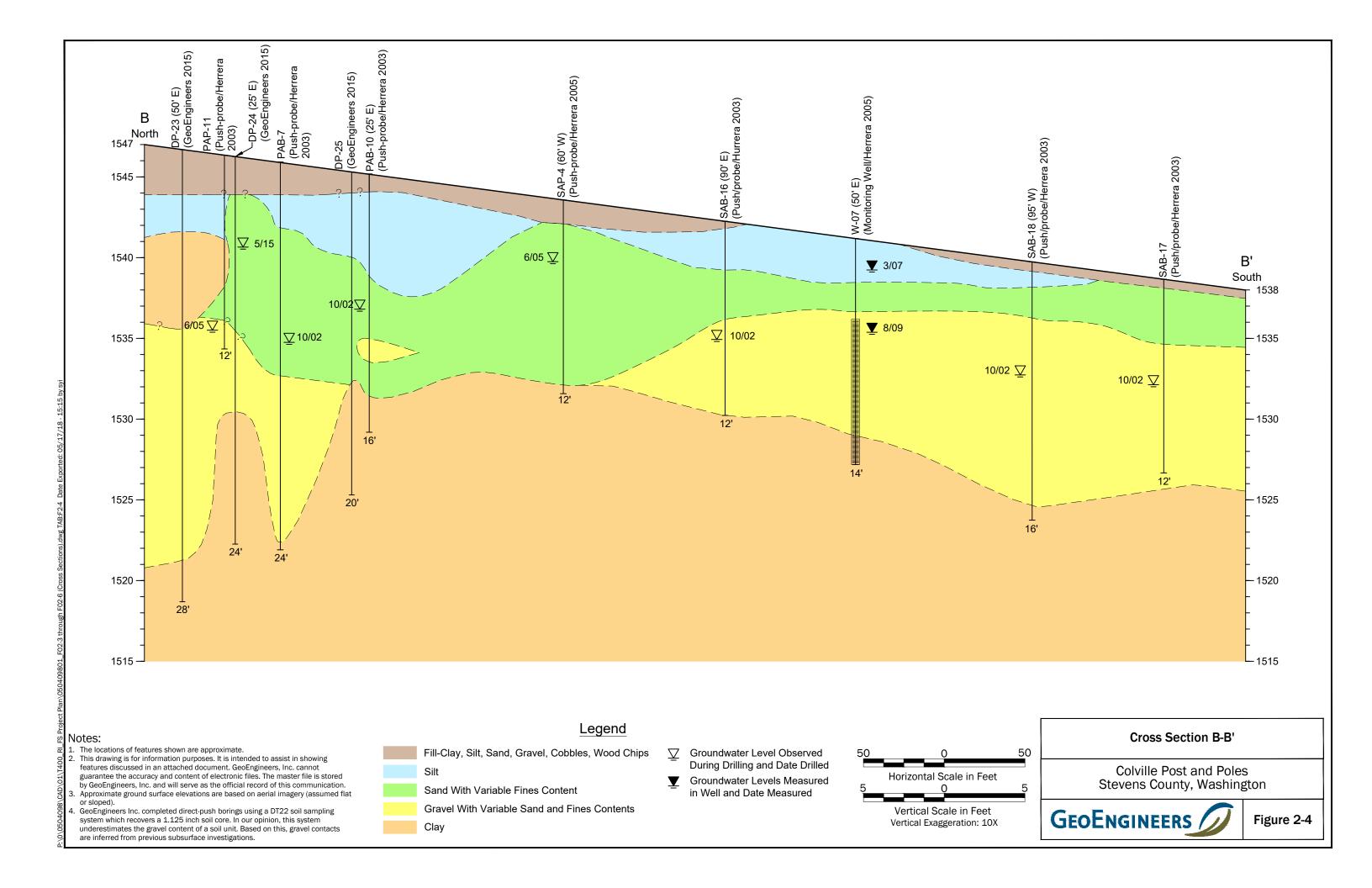

Historical Site Operational Areas and Current Layout

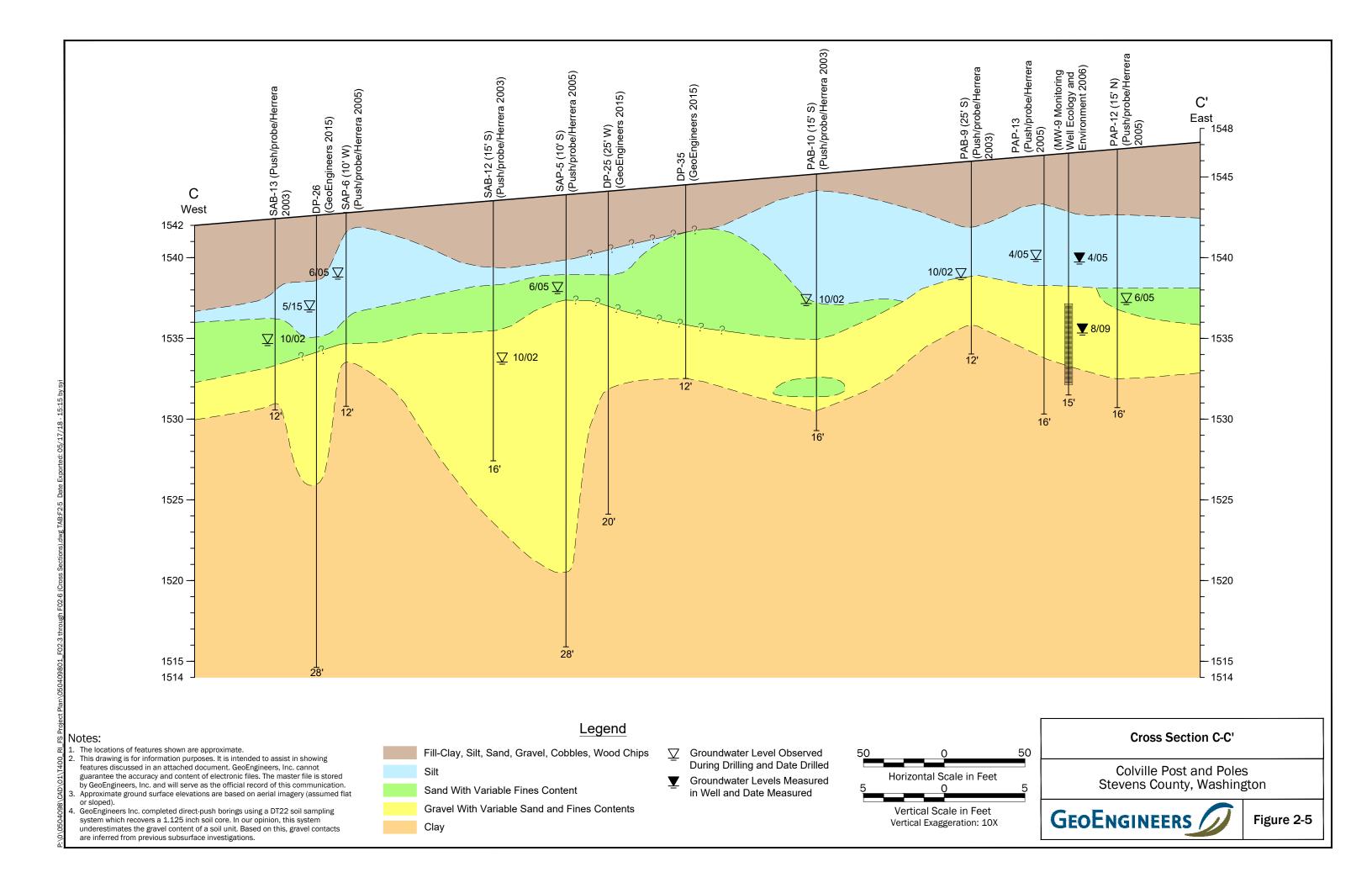
Colville Post and Poles Stevens County, Washington

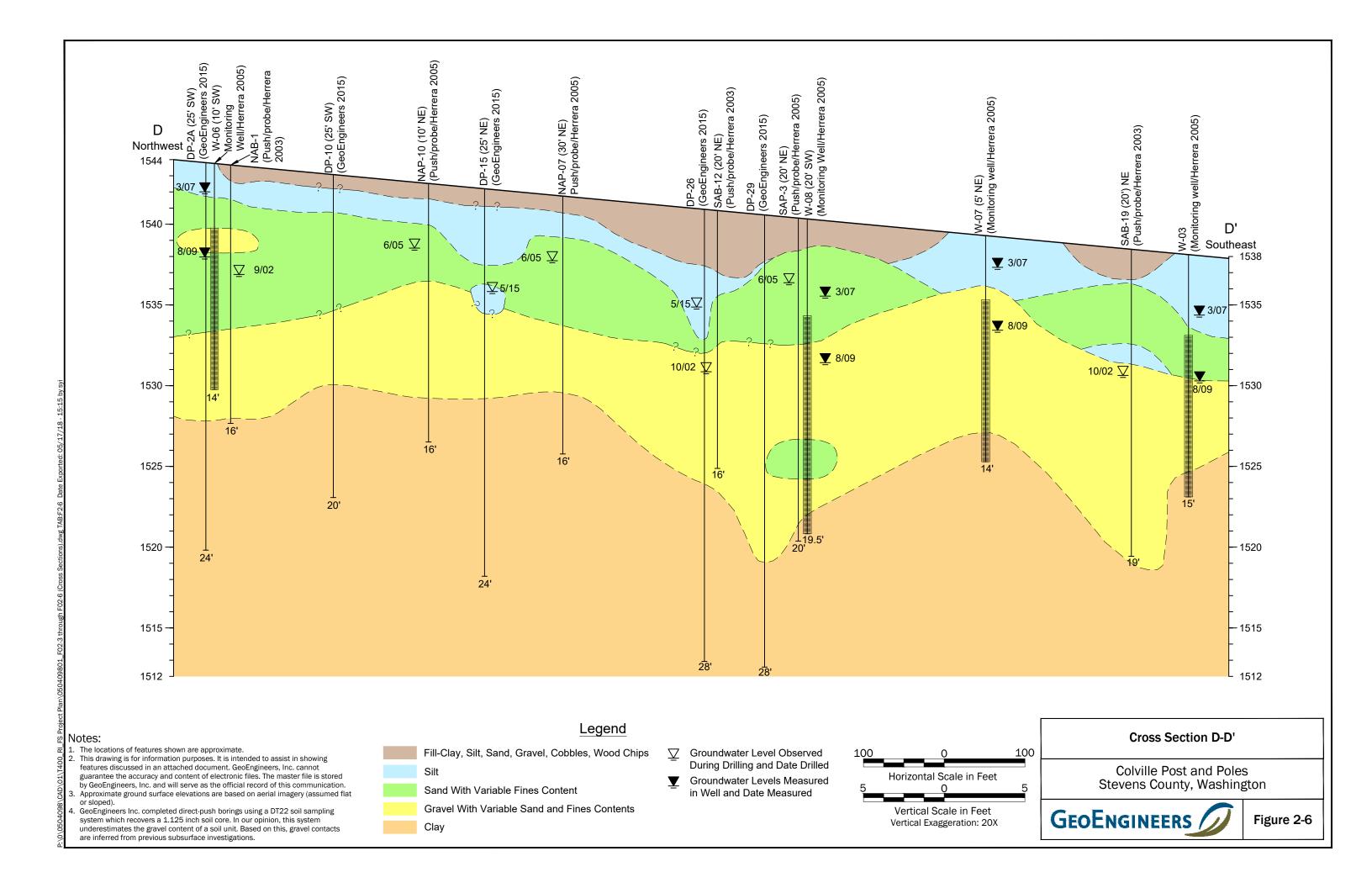
Figure 1-2

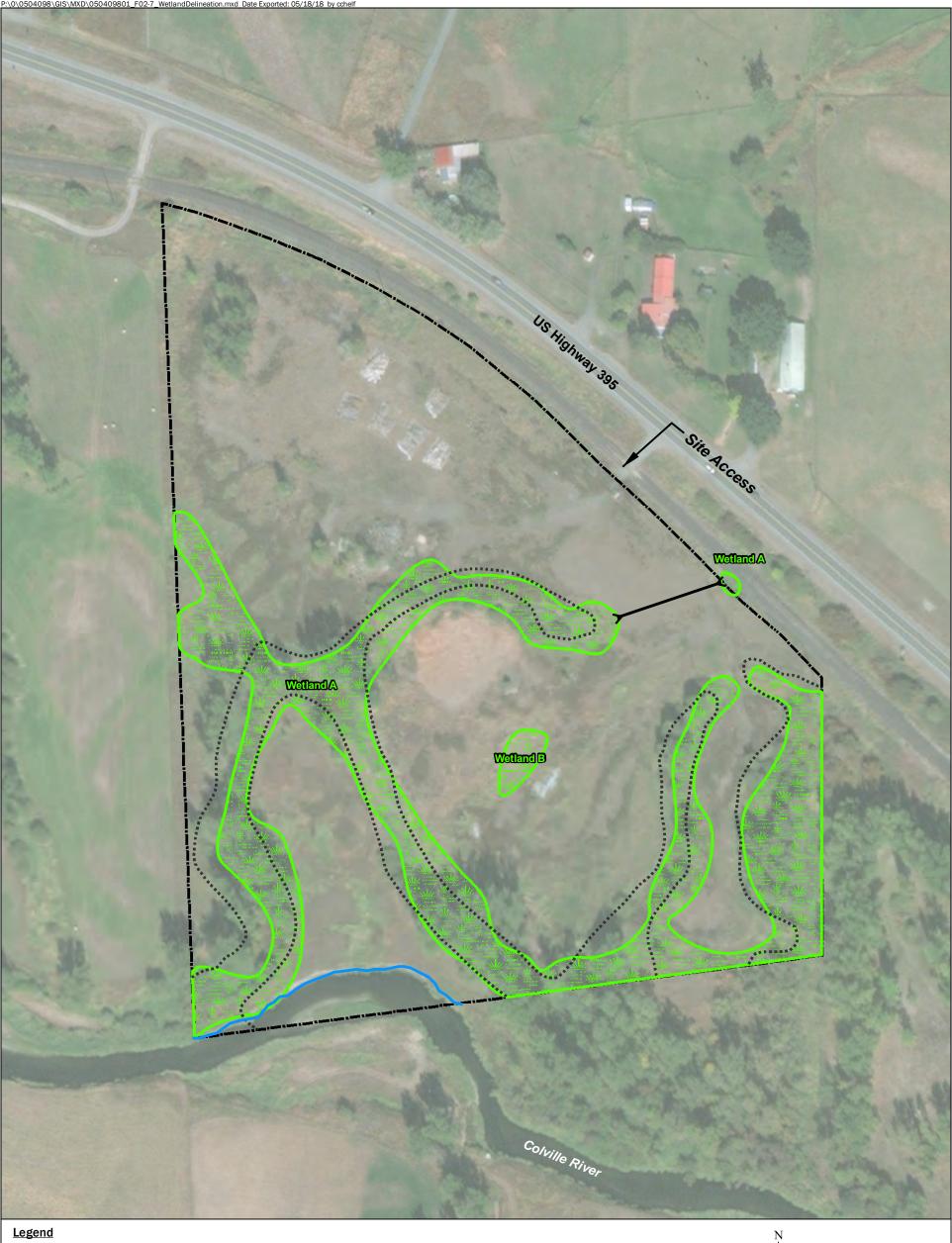

- The locations of all features shown.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Data Source: ESRI.


Projection: NAD 1983 HARN StatePlane Washington North FIPS 4601 Feet


Estimated Top of Clay Looking West





Wetland Area Delineated (GeoEngineers, 2015)

★ Approximate Culvert Location

Previous wedian. (Herrera, 2005)

Site Boundary Previous Wetland Approximate Boundary

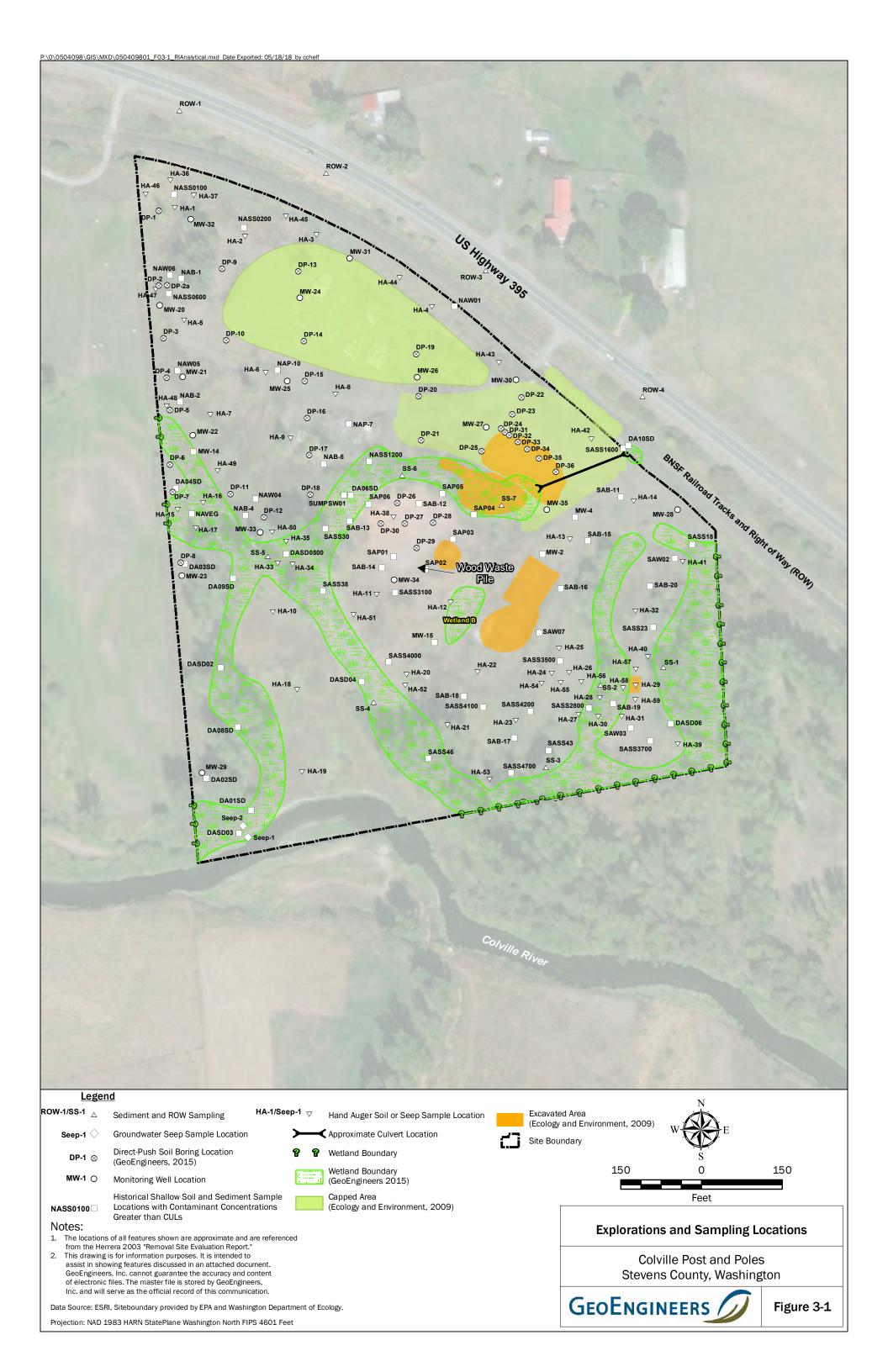
Ordinary High Water Mark (OHWM)

Notes:

- The locations of all features shown are approximate and are referenced from the Herrera 2003 "Removal Site Evaluation Report."
 This drawing is for information purposes. It is intended to
- assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ESRI, Siteboundary provided by EPA and Washington Department of Ecology. Previous wetland boundary digitized from ecology and environment, inc, Figure 3-1, Phase I Removal Action January 2005, 9/6/2007

Projection: NAD 1983 UTM Zone 11N



Wetland Delineations

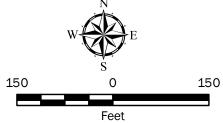
Colville Post and Poles Stevens County, Washington

Figure 2-7

Capped Area (Ecology and Environment, 2009)

Decision Area Boundary (Herrerra, 2003)

Site Boundary

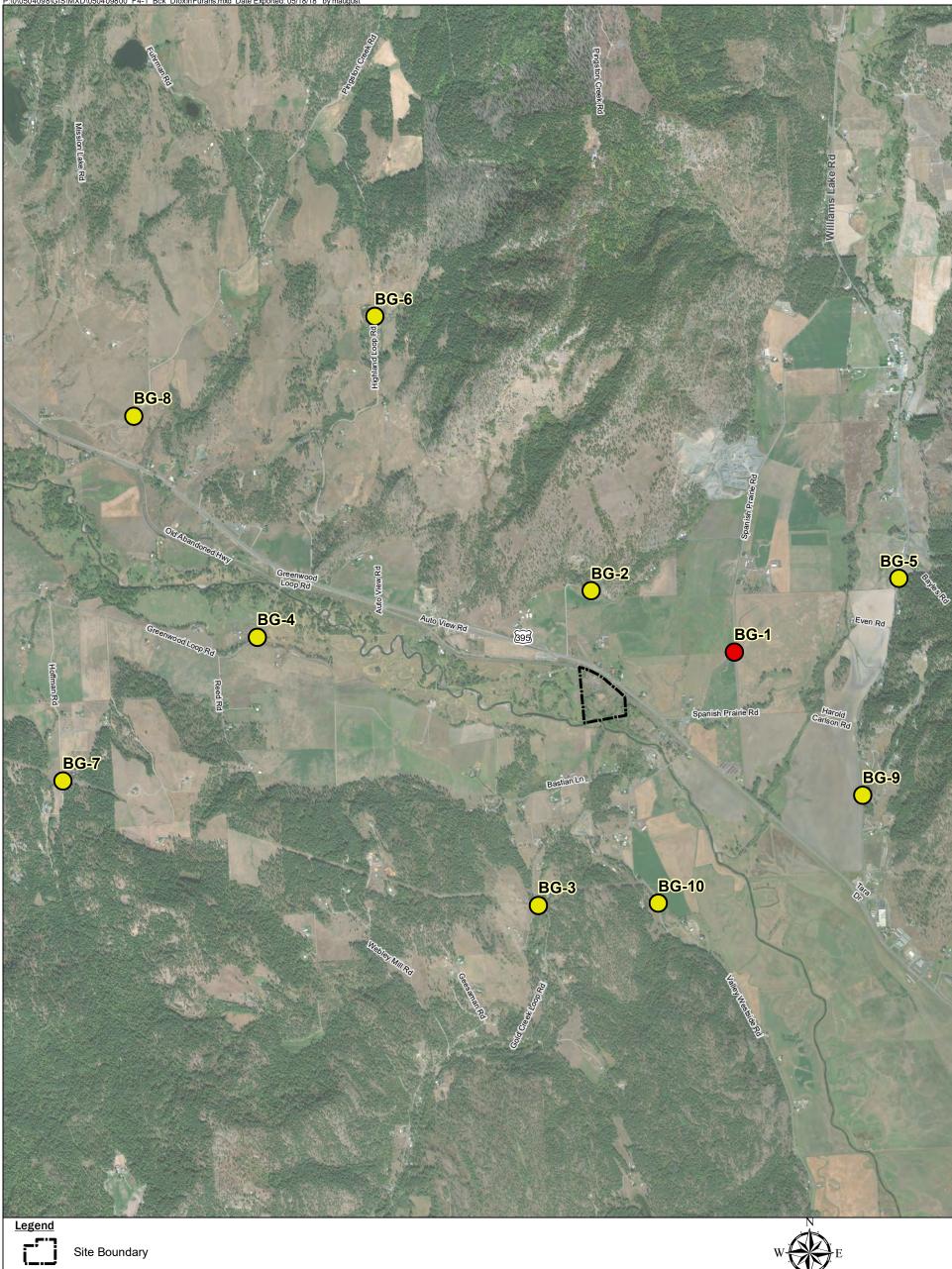

Mapped Streams

Notes:

- The locations of all features shown are approximate and are referenced from the Herrera 2003 "Removal Site Evaluation Report."
 This drawing is for information purposes. It is intended to
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ESRI, Siteboundary provided by EPA and Washington Department of Ecology. Site features from Ecology and environment, inc, Figure 3-2, 9/22/2009

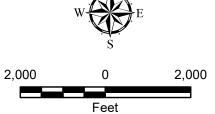
Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet


Phase II Removal Action Area Fall 2006

Colville Post and Poles Stevens County, Washington

Figure 3-2

Sample Location Number and Approximate Location with Chemical Result Less than MTCA Method B Cleanup Levels

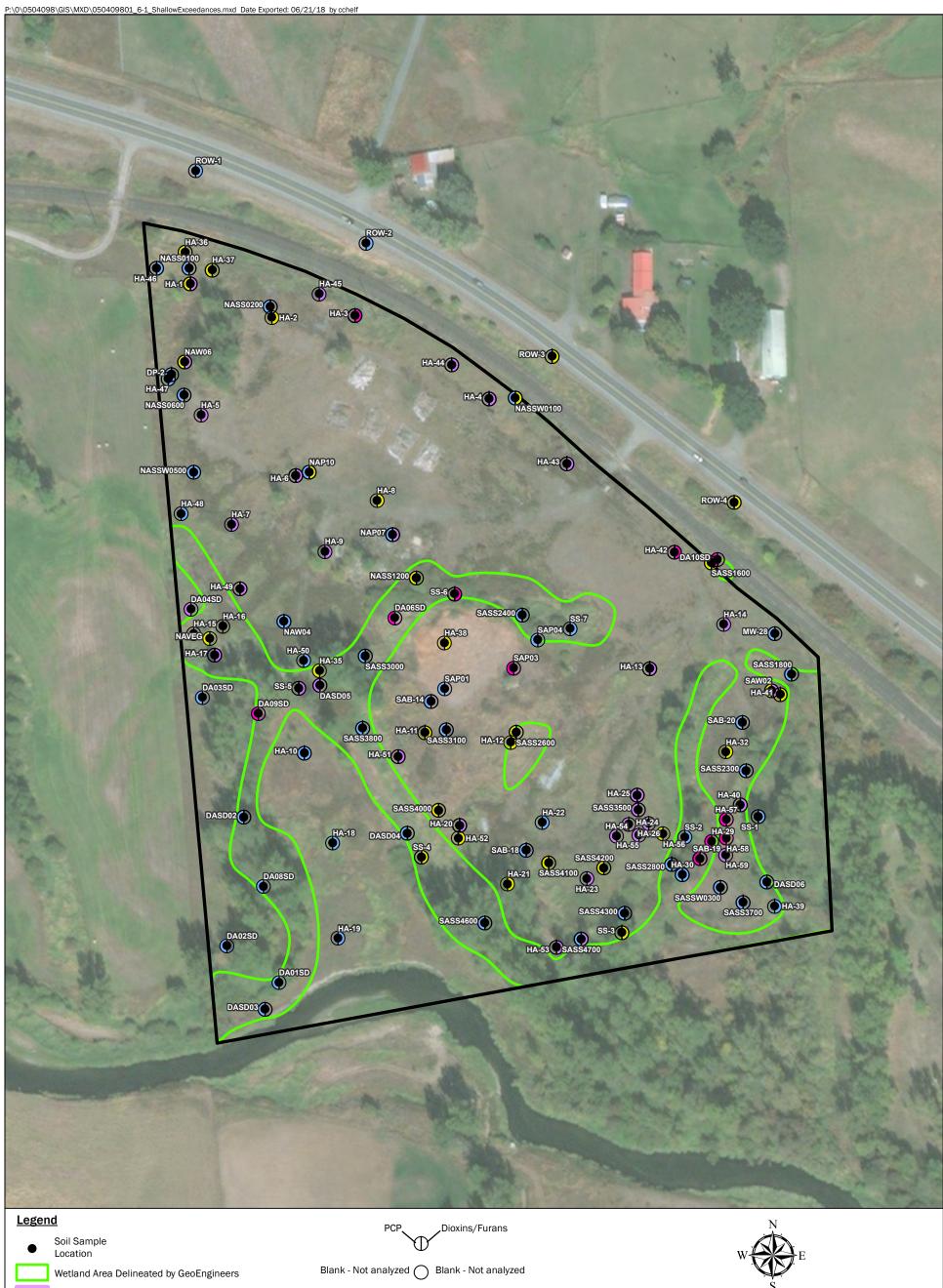

Dioxins/Furans (2,3,7,8 TCDD Toxic Equivalent Concentration) Above Natural Background for Dioxins/Furans in Washington Soils of 5.2 pg/g

Notes:

- 1. The locations of all features shown are approximate.
 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Imagery from ESRI ArcGIS Online.

Projection: NAD 1983 HARN StatePlane Washington North FIPS 4601 Feet



Background Dioxins/Furans - January 2017

Colville Post and Poles Stevens County, Washington

Figure 4-1

Notes: The locations of all features shown are approximate.

Shallow Soil Remediation Area

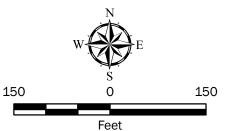
This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ESRI

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

PCP detected at a Dioxins/furans TEQ detected at a concentration less than concentration less than 100 $\mu g/kg$ or not detected 13 pg/g or not detected

PCP detected at a concentration between 100 and 999 µg/kg

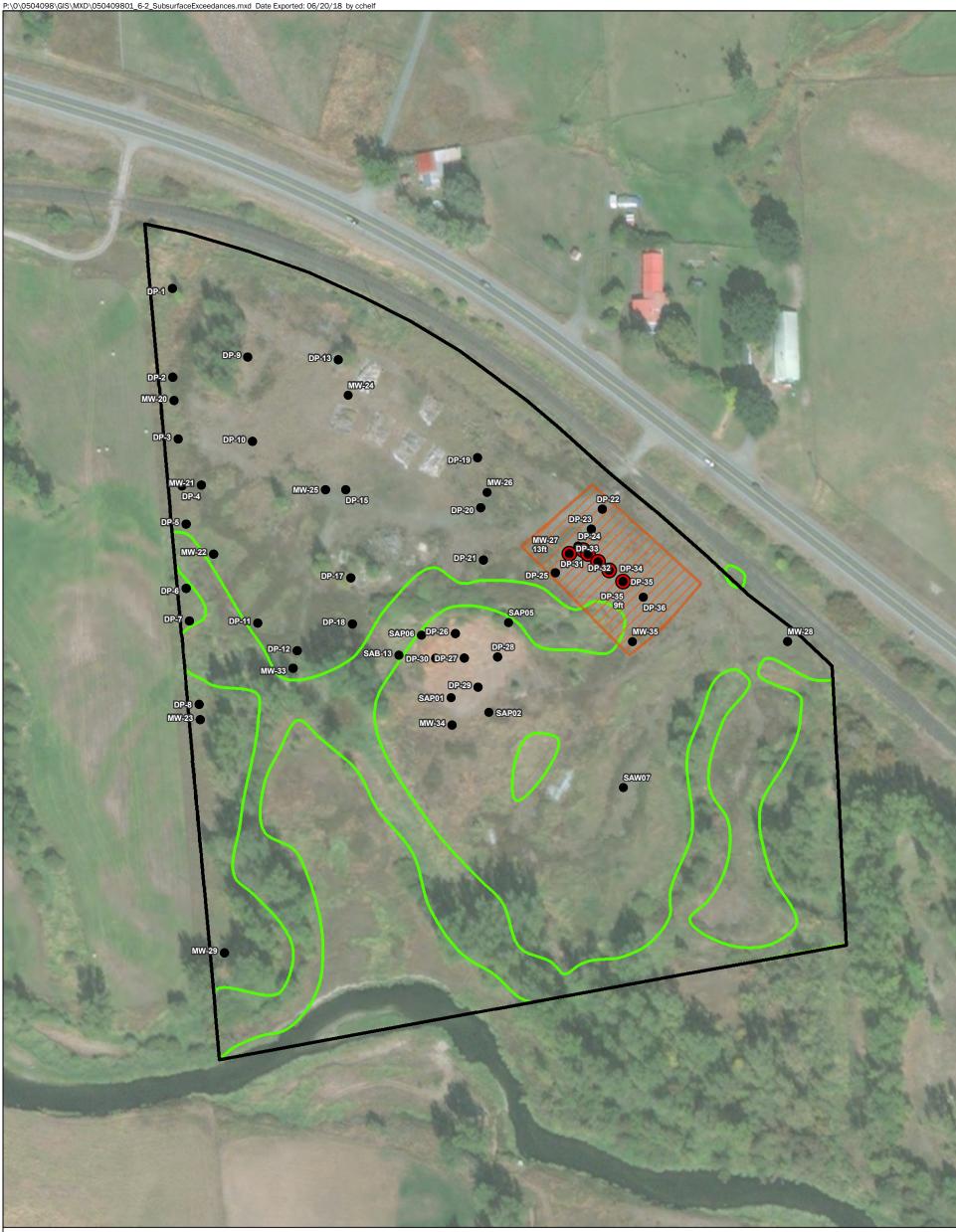

concentration between 13 and 100 pg/g

PCP detected at a concentration between 1,000 and 10,000 μ g/kg

Dioxins/furans TEQ detected at a concentration between 100 and 1,000 pg/g

Dioxins/furans TEQ detected at a

PCP detected at a Dioxins/furans TEQ detected at a concentration greater concentration greater than 10,000 µg/kg than 1,000 pg/g



Surface (<18 inches bgs) Soil **Screening Level Exceedances**

Colville Post and Poles Stevens County, Washington

Figure 6-1

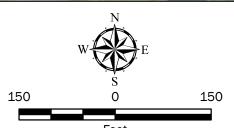
<u>Legend</u>

Soil Sample Location

Sample Exceeds Screening Level for PCP, Dioxin/Furans, or DRPH

Wetland Area Delineated by GeoEngineers

Adsorbed Phase Deep Soil Remediation Area

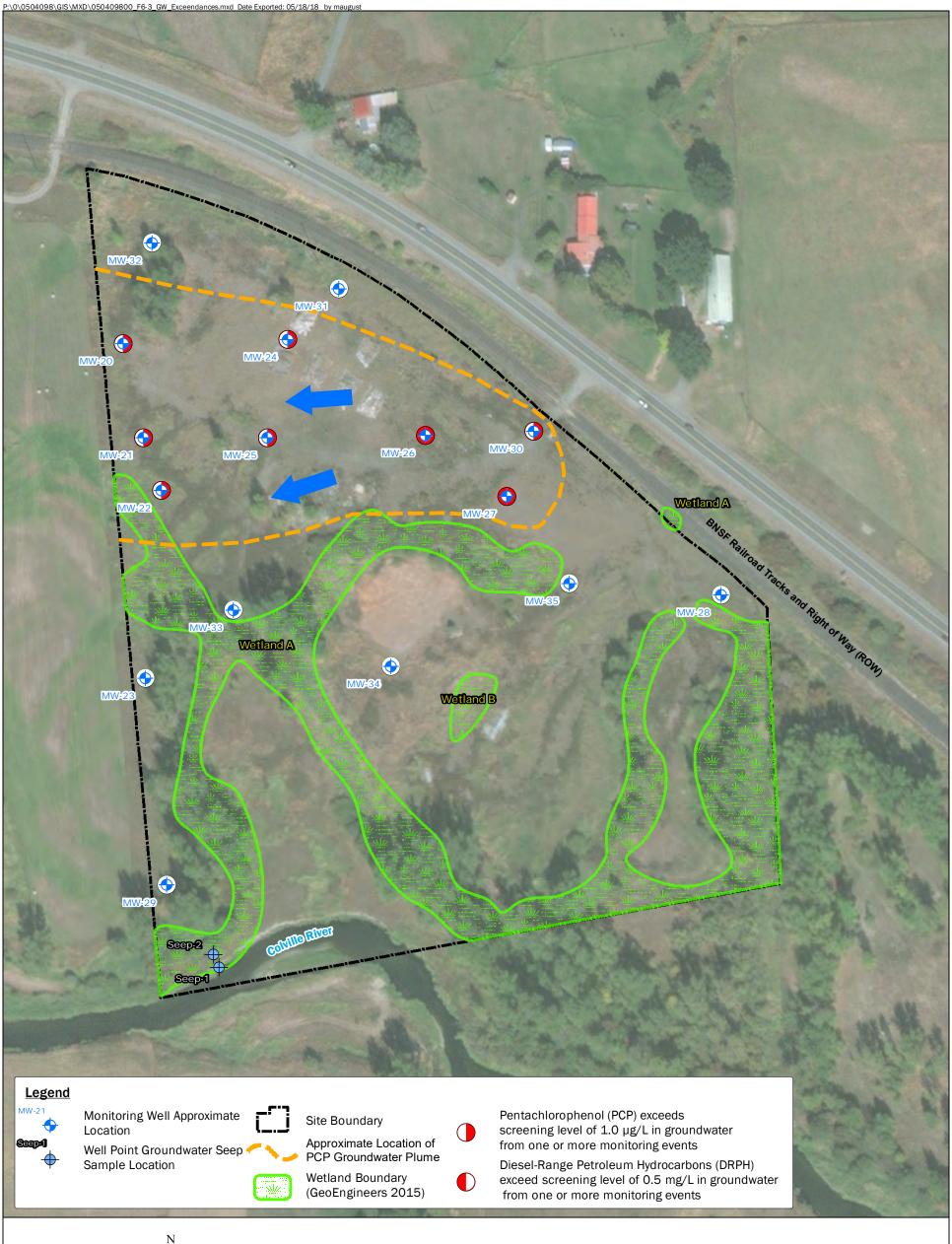

Notes:

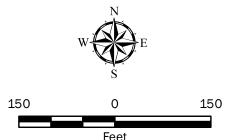
The locations of all features shown are approximate.
This drawing is for information purposes. It is intended to

assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ESRI

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet



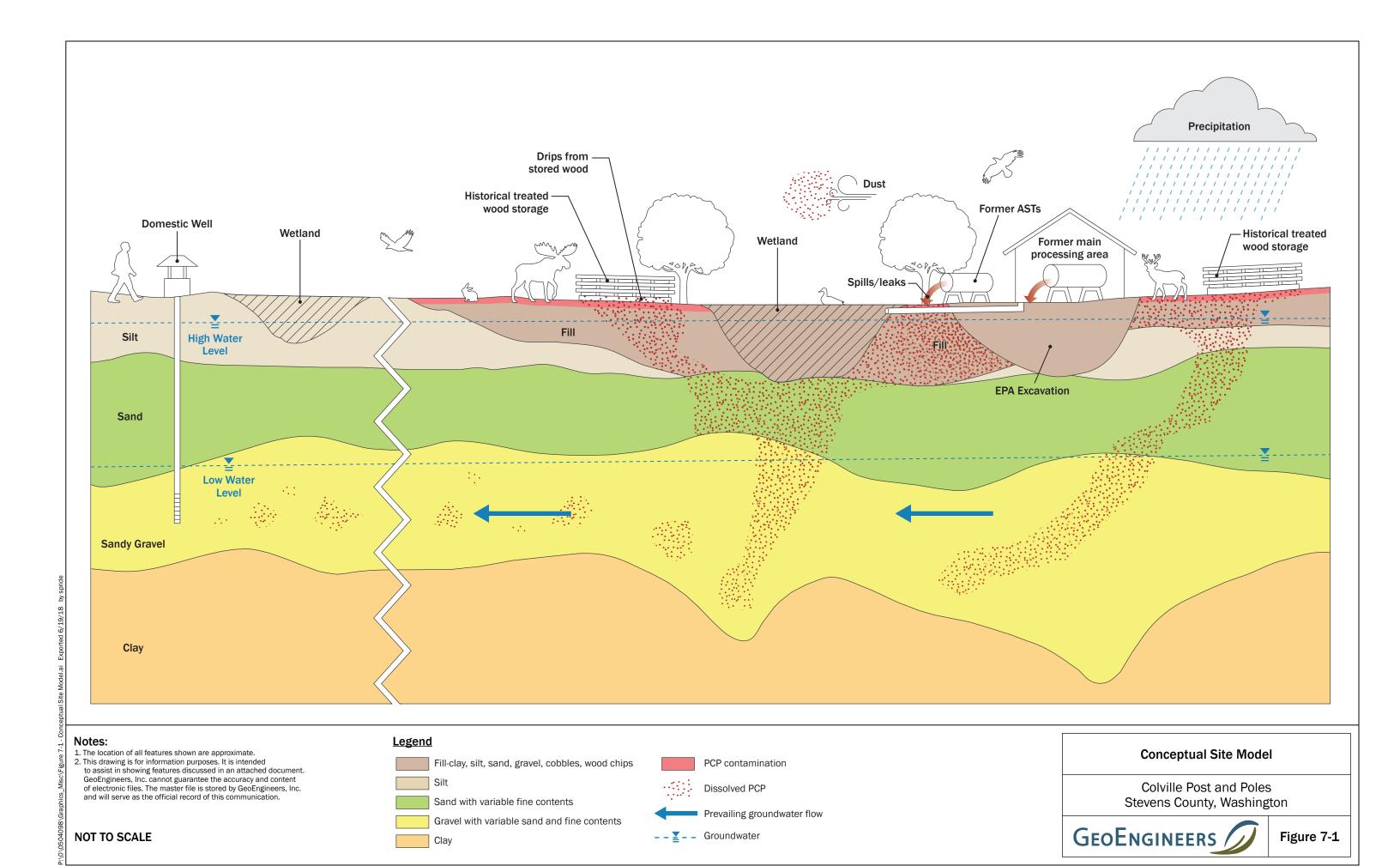

Subsurface (>18 inches bgs) Soil **Screening Level Exceedances**

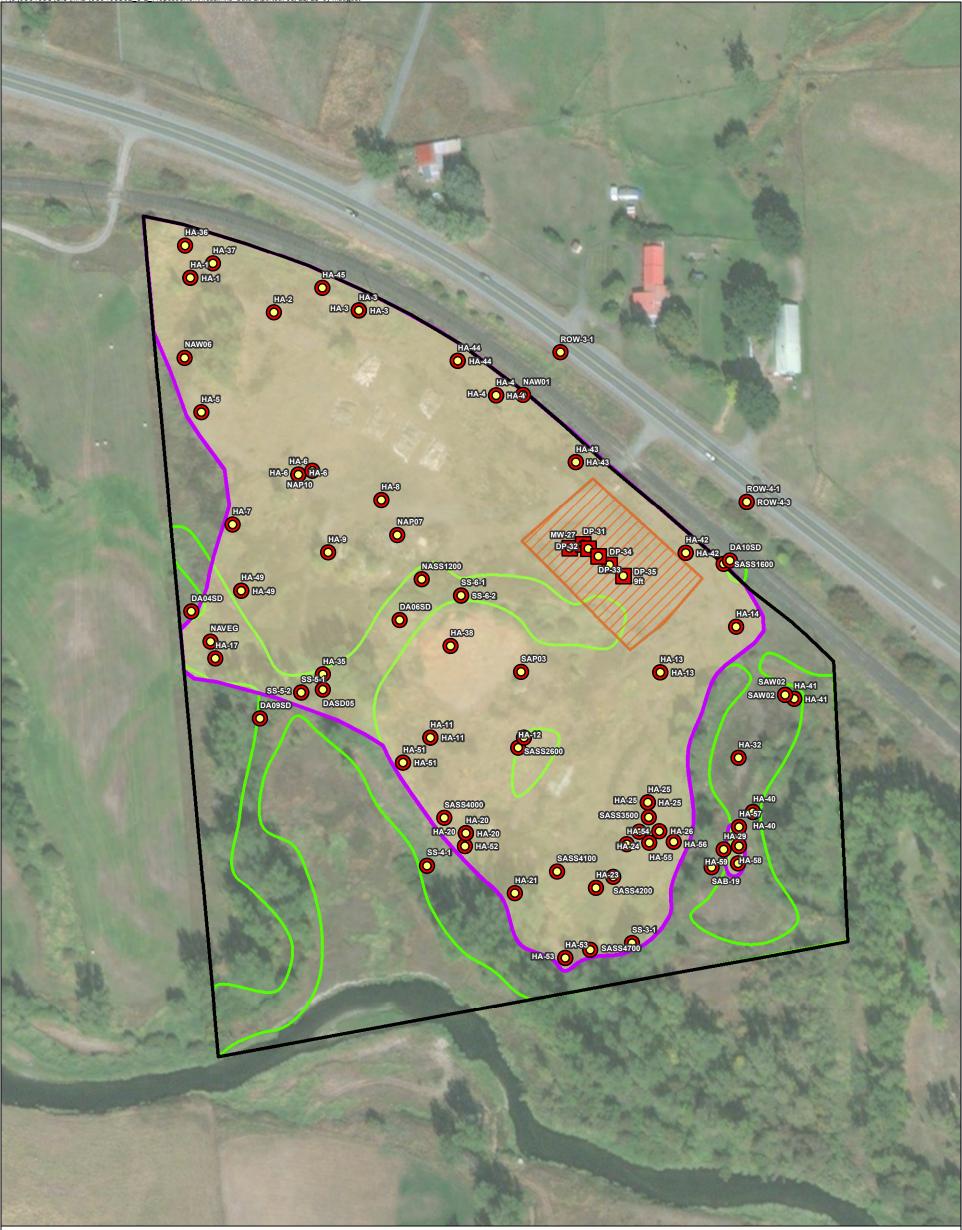
Colville Post and Poles Stevens County, Washington

Figure 6-2

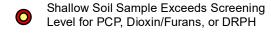
- Groundwater sample data were collected on February 12, 2018.
 The locations of all features shown are approximate.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

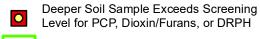
Data Source: Imagery from ESRI ArcGIS Online.


Projection: NAD 1983 HARN StatePlane Washington North FIPS 4601 Feet


Approximate Groundwater Contamination Extent

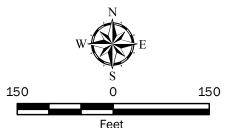
Colville Post and Poles Stevens County, Washington




Figure 6-3

Legend

Wetland Area Delineated by GeoEngineers


Shallow Soil Remediation Areas Deep Soil Remediation Area

Notes:

 The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. $\ensuremath{\mathsf{GeoEngineers}}$, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ESRI

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

Proposed Remediation Areas

Colville Post and Poles Stevens County, Washington

Figure 9-1

APPENDIX AHistorical Data

Surface Soil Analytical Results

					Detroleum Hudre	carbons ² (mg/kg)	1				Cami Valatila C	Argonio Oomano					
					Petroleum Hydro	carbons (mg/kg)			Ī		Semi-volatile u	rganic Compo	unas	I	T	T	
Sample ID	Sample Location	Sample Type	Exploration Type	Date Collected	DRPH	ORPH	1,2,4-Trichloro benzene	2-methyl naphthalene	bis(2- Chloroisopropyl) ether	Acenaphthene	Anthracene	Benz(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Benzyl Alcohol
Process Area																	
PASSP1100	PAP11	Surface Soil	Push-probe	June 2005	165 J	1220		0.0179 J			0.0192 J						
PASSP1200	PAP12	Surface Soil	Push-probe	June 2005	144 J	246 J		0.193			0.0247 J						
PASSP1200D	PAP12	Surface Soil	Push-probe	June 2005	111 J	177 J		0.117			0.0296						
PASSP1300	PAP13	Surface Soil	Push-probe	June 2005	16,400	197 J		<0.0213			<0.0213						
PASS0100		Surface Soil		October 2002				<0.43			<0.43	0.018 J	<0.43	<0.43	<0.43	<0.43	
PASS0200		Surface Soil		October 2002				<0.34			<0.34	<0.34	<0.34	<0.34	0.032 J	<0.34	
PASS0300		Surface Soil		October 2002				<3.8			<3.8	0.016 J	<0.38	<0.38	<0.38	<0.38	
PASS0400		Surface Soil		October 2002				0.074 J			0.12 J	<0.36	0.88 J	0.94 J	0.84 J	0.67 J	
PA01SS ¹		Surface Soil		January 2005				<2.38	<29.8		<2.38				2.88		<5.96
PA02SS ¹		Surface Soil		January 2006				<2.04	25.5 R		1.47 J				<2.04		<5.11
PA03SS ¹		Surface Soil		January 2007				3.09	27.3 R		3.45				<2.19		<5.47
PA04SS ¹		Surface Soil		January 2008				56.8	34.1 R		48.9				<2.73		<6.82
PA05SS ¹		Surface Soil		January 2009				<1.99	24.8 R		2.94				<1.99		<4.97
BKSS0100		Surface Soil		October 2002				<0.35			<2.66	<0.35	<0.35	<0.35	0.044 J	<0.35	
BK01SS1		Surface Soil		January 2005				<2.66	<33.2						<2.66		14.1
North Stockpil	e Area						_				_					_	
NASSW0100	NAW01	Surface Soil	Monitoring Well	June 2005	NA	NA		NA			NA						
NASSW0400	NAW04	Surface Soil	Monitoring Well	June 2005	NA	NA		NA			NA						
NASSW0500	NAW05	Surface Soil	Monitoring Well	June 2005	NA	NA		NA			NA						
NASSW0600	NAW06	Surface Soil	Monitoring Well	June 2005	37.3 J	153 J		NA			NA						
NASSP0700	NAP07	Surface Soil	Push-probe	June 2005	8.13 J	79		NA			NA						
NASSP0800	NAP08	Surface Soil	Push-probe	June 2005	25.7 J	248		NA			NA						<u> </u>
NASSP0900	NAP09	Surface Soil	Push-probe	June 2005	NA	NA		NA			NA						
NASSP1000	NAP10	Surface Soil	Push-probe	June 2005	NA	NA		NA			NA						<u> </u>
NASS0100		Surface Soil		September 2002	490	1,900					<0.47	<0.47					
NASS0200		Surface Soil		September 2002	20	130					<0.35	0.024 J					
NASS0300		Surface Soil		September 2002	870	2,100					0.026 J	<0.37					<u> </u>
NASS0600		Surface Soil		September 2002	180	1,100					<0.43	<0.43					
NASS1200		Surface Soil		September 2002	24	200					<0.35	<0.35					
NAVEG		Surface Soil		October 2002				ļ			<0.36	<0.36					
BKSS0100		Surface Soil									<0.35	<0.35					<u> </u>
South Stockpil		, , , , , , , , , , , , , , , , , , , 		1		1	1	T	1	Г	Г	<u> </u>		1			·
SASSW0200	SAW02	Surface Soil	Monitoring Well	June 2005	NA	NA		NA			<0.0228						 '
SASSW0300	SAW03	Surface Soil	Monitoring Well	June 2005	NA	NA		NA			<0.0224						
SASSW0300D	SAW03	Surface Soil	Monitoring Well	June 2005	NA	NA		NA			<0.0213						
SASSW0800	SAW08	Surface Soil	Monitoring Well	June 2005	7,750	352		NA			0.426						
SASS1600		Surface Soil		October 2002	66.0	410.0		0.062 J		0.025 J	0.062 J	0.19 J	0.2 J	0.2 J	0.16 J	0.22 J	<0.48
SASS2400		Surface Soil		October 2002	110.0	370.0		<0.56		<0.56	<0.56	<0.56	<0.56	<0.56	<0.56	<0.56	<0.56

SASS2600	Surface Soil	October 2002	140.0	280.0		0.051 J		<0.45	<0.45	<0.45	<0.45	<0.45	<0.45	<0.45	<0.45
SASS2700	Surface Soil	October 2002	260.0	1,300.0		<0.37		<0.37	<0.37	<0.37	<0.37	0.021 J	0.026 J	<0.37	<0.37
SASS3100	Surface Soil	October 2002	11.0	57.0		<0.36		<0.36	<0.36	<0.36	<0.36	<0.36	<0.36	<0.36	<0.36
SASS3400	Surface Soil	October 2002	26.0	160.0		<0.4		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
SASS3500	Surface Soil	October 2002	47.0	94.0		0.046 J		<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<.39
SASS3700	Surface Soil	October 2002	14.0	110.0		<0.35		<0.35	<0.35	<0.35	0.022 J	<0.35	0.026 J	<0.35	<0.35
SASS4000	Surface Soil	October 2002	31.0	120.0		<0.41		<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<.41	<0.41
SASS4100	Surface Soil	October 2002	16.0	48.0		<0.35		<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35
SASS4200	Surface Soil	October 2002	20.0	160.0		0.013 J		<0.38	<0.38	0.035 J	0.033 J	0.038 J	0.097 J	0.035 J	<0.38
SASS4700	Surface Soil	October 2002	48.0	210.0		0.091 J		<0.44	<0.44	<0.44	<0.44	<0.44	<0.44	<0.44	<0.44
SAMOUND	Surface Soil	October 2002				<0.38		<3.8	<3.8	0.22 J	0.047 J	0.065 J	0.055 J	<0.38	<0.38
SASPREAD	Surface Soil	October 2002				<0.37		<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37
SA02SS ¹	Surface Soil	January 2005				1.04 J	<35.2		<2.81				<2.81		<7.03
SA03SS ¹	Surface Soil	January 2005				2.36 J	<33.6		<2.68				<2.68		<6.71
MTCA Method B Cle	eanup Level		460 ²	2,000	800			4,800	24,000	0.137 ca	0.137 ca	0.137 ca		0.137 ca	

											Semi-Volatile O	rganic Comp	ounds					
Sample ID	Sample	Sample Type	Exploration Type	Date Collected	Benzoic Acid	Bis(2- ethylhexyl) phthalate	Butyl Benzyl Phthalate	Chrysene	Dibenzofuran	Di-n-butyl phthalate	Fluoranthene	Fluorene	Hexachloro benzene	Indeno(1,2,3- cd) pyrene	Naphthalene	PCP	Phenanthrene	Pyrene
Process Area		Campic Type																
PASSP1100	PAP11	Surface Soil	Push-probe	June 2005		0.131 J				NA		0.0337			<0.025	4.23	0.046	<0.025
PASSP1200	PAP12	Surface Soil	Push-probe	June 2005		0.115 J				NA		<0.0261			0.0392	31.3	0.184	<0.0261
PASSP1200D	PAP12	Surface Soil	Push-probe	June 2005		<0.243				NA		0.116			0.0211 J	22.2	0.191	0.155
PASSP1300	PAP13	Surface Soil	Push-probe	June 2005		<0.213				NA		<0.0213			<0.0213	280	<0.0213	0.813
PASS0100		Surface Soil	·	October 2002		0.23 J		0.068 J	<0.43			<0.43	<0.43		<0.43	5.2	0.087 J	0.12 J
PASS0200		Surface Soil		October 2002		<0.34		<0.34	<0.34			<0.34	<0.34		<0.34	<2.1	<0.34	<0.34
PASS0300		Surface Soil		October 2002		0.28 J		0.1 J	<3.8			<3.8	<3.8		<3.8	130	<3.8	0.47
PASS0400		Surface Soil		October 2002		0.37		0.65	0.02 J			0.038 J	0.068 J		0.018 J	80	0.44	0.85
PA01SS ¹		Surface Soil		January 2005	71.5 R							<2.38	<2.38			25,500	<2.38	<2.38
PA02SS ¹		Surface Soil		January 2006	<61.3							<2.04	<2.04			597	<2.04	<2.04
PA03SS ¹		Surface Soil		January 2007	<65.6							5.26 JH	4.12			9,820	6.59	6.7
PA04SS ¹		Surface Soil		January 2008	44.3 J							28.7 JH	<2.73			19,700	58.5	72.1
PA05SS ¹		Surface Soil		January 2009	<59.6							2.49 JH	<1.99			640	<1.99	3.18
BKSS0100		Surface Soil		October 2002		<0.35		<0.35	<0.35			<0.35	<0.35		<0.35	<2.1	<0.35	<0.35
BK01SS1		Surface Soil		January 2005	79.7 R							<2.66	<2.66			<13.3	<2.66	<2.66
North Stockpile	Area				•			•	•	•	•	•	•	•	•		•	
NASSW0100	NAW01	Surface Soil	Monitoring Well	June 2005		0.0365 J				<0.114		NA			NA	0.0662 J	<0.0228	<0.0228
NASSW0400	NAW04	Surface Soil	Monitoring Well	June 2005		0.0252 J				<0.115		NA			NA	<0.0115	<0.0229	<0.0229
NASSW0500	NAW05	Surface Soil	Monitoring Well	June 2005		0.0333 J				<0.128		NA			NA	<0.128	<0.0255	<0.0255
NASSW0600	NAW06	Surface Soil	Monitoring Well	June 2005		<0.202				0.0227 J		NA			NA	0.129	<0.0202	<0.0202
NASSP0700	NAP07	Surface Soil	Push-probe	June 2005		0.0311				<0.0988		NA			NA	0.139	<0.0198	0.0142 J
NASSP0800	NAP08	Surface Soil	Push-probe	June 2005		<0.211				0.0198 J		NA			NA	0.21	0.0073 J	0.015 J
NASSP0900	NAP09	Surface Soil	Push-probe	June 2005		<0.207				0.0191 J		NA			NA	0.0331 J	<0.0207	<0.0207
NASSP1000	NAP10	Surface Soil	Push-probe	June 2005		0.0231 J				<0.108		NA			NA	<0.108	<0.0216	<0.0216
NASS0100		Surface Soil		September 2002		0.064 J		<0.47					<0.47			<2.9	<0.47	<0.47
NASS0200		Surface Soil		September 2002		0.057 J		0.018 J					<0.35			<2.1	<0.35	<0.35
NASS0300		Surface Soil		September 2002		0.14 J		0.11 J					0.019 J			2.6	0.087 J	0.18 J
NASS0600		Surface Soil		September 2002		0.05 J		<0.43					<0.43			<2.6	<0.43	<0.43
NASS1200		Surface Soil		September 2002		0.1 J		<0.35					<0.35			0.2 J	<0.35	<0.35
NAVEG		Surface Soil		October 2002		0.062 J		0.015 J					<0.36			0.24 J	<0.36	<0.36
BKSS0100		Surface Soil				<0.35		<0.35					<0.35			<2.1	<0.35	<0.35
South Stockpile	Area																	
SASSW0200	SAW02	Surface Soil	Monitoring Well	June 2005		NA				NA		NA			NA	0.421	0.00785 J	NA
SASSW0300	SAW03	Surface Soil	Monitoring Well	June 2005		NA				NA		NA			NA	0.0861 J	<0.0224	NA
SASSW0300D	SAW03	Surface Soil	Monitoring Well	June 2005		NA				NA		NA			NA	0.0562 J	<0.0213	NA
SASSW0800	SAW08	Surface Soil	Monitoring Well	June 2005		NA				NA		NA			NA	73.5	2.97	NA
SASS1600		Surface Soil		October 2002		0.12 J		0.25 J	0.025 J	<0.48	0.46 J	0.036 J		0.16 J	0.11 J	0.26 J	0.61	0.59
SASS2400		Surface Soil		October 2002		<0.56		<0.56	<0.56	<0.56	<0.56	<0.56		<0.56	<0.56	<3.4	<0.56	<0.56

SASS2600	Surface Soil	October 2002		<0.45		<0.45	0.018 J	<0.45	<0.45	<0.45		< 0.45	0.033 J	0.25 J	0.036 J	<0.45
SASS2700	Surface Soil	October 2002		0.075 J		0.02 J	<0.37	<0.37	<0.37	<0.37		<0.37	<0.37	1.2 J	0.023 J	0.022 J
SASS3100	Surface Soil	October 2002		<0.36		<0.36	<0.36	<0.36	<0.36	<0.36		<0.36	<0.36	<2.2	<0.36	<0.36
SASS3400	Surface Soil	October 2002		0.041 J		<0.4	<0.4	<0.4	<0.4	<0.4		<0.4	<0.34	0.9 J	0.036 J	0.018 J
SASS3500	Surface Soil	October 2002		0.032 J		0.023 J	<0.39	<0.39	<0.39	<0.39		<0.39	<0.39	4.2	0.16 J	0.035 J
SASS3700	Surface Soil	October 2002		0.028 J		<0.35	<0.35	<0.35	<0.35	<0.35		< 0.35	<0.35	<2.1	<0.35	<0.35
SASS4000	Surface Soil	October 2002		0.046 J		<0.41	<0.41	<.41	<0.41	<0.41		<0.41	<0.41	0.44 J	<0.41	<0.41
SASS4100	Surface Soil	October 2002		0.029 J		<0.35	<0.35	<0.35	<0.35	<0.35		< 0.35	<0.35	0.34 J	<0.35	<0.35
SASS4200	Surface Soil	October 2002		0.033 J		0.04 J	<0.38	<0.38	0.05 J	<0.38		0.054 J	<0.38	0.73 J	0.034 J	0.034 J
SASS4700	Surface Soil	October 2002		<0.44		<0.44	0.087 J	<0.44	0.019 J	<0.44		<0.44	0.33 J	<2.7	0.057 J	0.022J
SAMOUND	Surface Soil	October 2002		0.11 J		0.61	<3.8	<3.8	<3.8	<3.8		<0.38	<0.38	130	<3.8	1.4
SASPREAD	Surface Soil	October 2002		0.041 J		<0.37	<0.37	<0.37	<0.37	<0.37		<0.37	<0.37	0.75 J	0.014 J	0.014 J
SA02SS ¹	Surface Soil	January 2005	84.4 R							<2.81	<2.81			241	2.38 J	1.12 J
SA03SS ¹	Surface Soil	January 2005	80.5 R							<2.68	<2.68			1,930	7.12	<2.68
MTCA Method B Clear	nup Level			71.4	16,000	0.137 ca		8,000	3,200	3,200	0.625 ca		1,600	2.50		2,400

								Volatile O	rganic Compounds (µ	ıg/kg)				NWTPH-D	x (mg/kg)	Dioxins/Fura	ns ⁴ (µg/kg)
Sample ID	Sample Location	Sample Type	Exploration Type	Date Collected	1,2,4-Trimethyl benzene	1,2,3-Trichloro propane	1,3,5-Trimethyl benzene	Acetone	Dichloromethane (Methylene Chloride)	m,p-Xylenes	Naphthalene	o-Xylene	Toluene	DRO	RRO	2,3,7,8-TCDD (TEQ 1987 EPA)	2,3,7,8-TCDD (1989 I-TEQ)
Process Area	•	•						•						•	•		
PASSP1100	PAP11	Surface Soil	Push-probe	June 2005												NA	
PASSP1200	PAP12	Surface Soil	Push-probe	June 2005												NA	
PASSP1200D	PAP12	Surface Soil	Push-probe	June 2005												NA	
PASSP1300	PAP13	Surface Soil	Push-probe	June 2005												NA	
PASSO100		Surface Soil		October 2002		<6.5	<26		<13	<6.5	<26			420	510		3.941 J
PASS0200		Surface Soil		October 2002		<5	<20		4.2 J	5 J	<20			7.9 J	16 J		0.03557 J
PASS0300		Surface Soil		October 2002		31	38 J		<57	<29	20 J			18,000	800		NA
PASS0400		Surface Soil		October 2002		<5.3	<21		<11	<5.3	<21			2,000	2,600		NA
PA01SS ¹		Surface Soil		January 2005													
PA02SS ¹		Surface Soil		January 2006													
PA03SS ¹		Surface Soil		January 2007													
PA04SS ¹		Surface Soil		January 2008													
PA05SS ¹		Surface Soil		January 2009													
BKSS0100		Surface Soil		October 2002		<5.1	<21		1 J	1.7 J	<21			<26	13 J		NA
BK01SS1		Surface Soil		January 2005													
North Stockpile	Area		•		•	•	•	-			•					•	
NASSW0100	NAW01	Surface Soil	Monitoring Well	June 2005												0.012	
NASSW0400	NAW04	Surface Soil	Monitoring Well	June 2005												0.0007	
NASSW0500	NAW05	Surface Soil	Monitoring Well	June 2005												0.00005	
NASSW0600	NAW06	Surface Soil	Monitoring Well	June 2005												0.03	
NASSP0700	NAP07	Surface Soil	Push-probe	June 2005												0.05	
NASSP0800	NAP08	Surface Soil	Push-probe	June 2005												0.078	
NASSP0900	NAP09	Surface Soil	Push-probe	June 2005												0.022	
NASSP1000	NAP10	Surface Soil	Push-probe	June 2005												0.026	
NASSO100		Surface Soil		September 2002				<69	<14	<6.9		<6.9	<6.9	490 J	1,900 J		
NASS0200		Surface Soil		September 2002				<52	5.5 J	5.5		1.7 J	2.3 J	20 J	130		
NASS0300		Surface Soil		September 2002				<55	6.4 J	6		2.2 J	1.3 J	870	2,100		
NASS0600		Surface Soil		September 2002				<64	<13	<6.4		<6.4	<6.4	180	1,100		
NASS1200		Surface Soil		September 2002				<51	<11	4.8 J		2.3 J	0.95 J	24 J	200		
NAVEG		Surface Soil		October 2002				12 J	4.7 J	2 J		1.1 J	<5.5	320	3,100		
BKSS0100		Surface Soil						<51	1 J	1.7 J		<5.1	<5.1	<26	13 J		
South Stockpile	Area		<u> </u>					1	-	-		· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u> </u>	
SASSW0200	SAW02	Surface Soil	Monitoring Well	June 2005												0.043	
SASSW0300	SAW03	Surface Soil	Monitoring Well	June 2005												NA	
SASSW0300D	SAW03	Surface Soil	Monitoring Well	June 2005	1											NA	
SASSW0800	SAW08	Surface Soil	Monitoring Well	June 2005												1.3	
SASS1600		Surface Soil	3 3	October 2002				<70	<14	<7		<7	<7	66	410		NA
SASS2400		Surface Soil		October 2002				<83	<17	<8.3		<8.3	<8.3	110	370		NA

MTCA Method B Clea	anup Level		 143 ca	8	3,000,000	133,000 ca	160,000,000	1,600,000	160,000,000	160,000,000	2,000a	2,000a	0.000000005 2	0.000000005 2
SA03SS ¹	Surface Soil	January 2005												
SA02SS ¹	Surface Soil	January 2005				<u>-</u>								
SASPREAD	Surface Soil	October 2002			<55	2.8 J	<5.5		<5.5	<5.5	130 J	410 J		NA
SAMOUND	Surface Soil	October 2002			20 J	5.5 J	<5.7		<5.7	<5.7	6,000	710 J		NA
SASS4700	Surface Soil	October 2002			<66	<14	<6.6		<6.6	<6.6	48 J	210 J		0.1329 J
SASS4200	Surface Soil	October 2002			<56	<12	<5.6		<5.6	<5.6	20 J	160		NA
SASS4100	Surface Soil	October 2002			<52	2.8 J	<5.2		<5.2	<5.2	16 J	48 J		NA
SASS4000	Surface Soil	October 2002			<60	<12	5.4 J		1.8 J	1.7 J	31 J	120 J		NA
SASS3700	Surface Soil	October 2002			<51	1.4 J	9.2		2.8 J	2.7 J	14 J	110		NA
SASS3500	Surface Soil	October 2002			<57	1.2 J	<5.7		<5.7	<5.7	47	94 J		NA
SASS3400	Surface Soil	October 2002			<59	<12	<5.9		<5.9	<5.9	26 J	160		NA
SASS3100	Surface Soil	October 2002			<53	1.7 J	5.8		1.8 J	1.5 J	11 J	57 J		NA
SASS2700	Surface Soil	October 2002			<55	<11	2.3 J		1.2 J	1.1 J	260	1,300		NA
SASS2600	Surface Soil	October 2002			<67	2.1 J	<6.7		<6.7	<6.7	140 J	280 J		NA

							Inc	rganics (mg	/kg)					Inorganio	cs (mg/kg)			
Sample ID	Sample	Somple Type	Exploration	Data Callagted	2,3,7,8-TCDD (TEQ 1997 WHO)	Antimony	Arsenic	Porvilium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
Sample ID Process Area	Location	Sample Type	Туре	Date Collected		Antimony	Alsellic	Berymum	Caumum	Cinomium	оорро.		moreary	Menor	Colonium	C	mamam	
	DAD44	Curfoss Cail	Duck probe	luna 200F	NIA													
PASSP1100	PAP11 PAP12	Surface Soil	Push-probe	June 2005	NA NA												1	
PASSP1200		Surface Soil	Push-probe	June 2005														
PASSP1200D	PAP12	Surface Soil	Push-probe	June 2005	NA NA													
PASSP1300	PAP13	Surface Soil	Push-probe	June 2005	NA 2.02.1	110.7	4	0.00.1	4.47	40.5	25.0	40	0.00.1	24.0	40.0	40.0	0.01	0700
PASSO100		Surface Soil		October 2002	3.23 J	<10.7	4	0.82 J	1.17	42.5	35.6	46	0.02 J	34.6	<2.2	<2.2	0.2 J	2760
PASS0200		Surface Soil		October 2002	0.0349 J	<10.3	4.3	<1	<1	9	10.5	14.2 J	0.01 J	12.5	<2.6	<2.1	<2.6	44.2
PASS0300		Surface Soil		October 2002	NA NA	3.4 J	3.6	0.2 J	0.64 J	14.8	14.2	36.3	<0.02	10.8	<2.3	<2.3	<1.1	122
PASS0400		Surface Soil		October 2002	NA	2.5 J	3	0.35 J	0.81 J	14.5	22	25.7	0.02	16.7	<2.2	<0.9	<0.2	733
PA01SS ¹		Surface Soil		January 2005													<u> </u>	
PA02SS ¹		Surface Soil		January 2006														
PA03SS ¹		Surface Soil		January 2007														
PAO4SS ¹		Surface Soil		January 2008														
PA05SS ¹		Surface Soil		January 2009														
BKSS0100		Surface Soil		October 2002	NA	<10.3	4.5	0.34 J	0.38 J	16.2	15.7	9.4 J	<0.02	15.2	<1	<2.1	<1	46.7
BK01SS1		Surface Soil		January 2005														
North Stockpile Ar	ea	T	T			T		1	1	· ·				ı	1		T	T
NASSW0100	NAW01	Surface Soil	Monitoring Well	June 2005	0.055													
NASSW0400	NAW04	Surface Soil	Monitoring Well	June 2005	0.0038													
NASSW0500	NAW05	Surface Soil	Monitoring Well	June 2005	0.0001													
NASSW0600	NAW06	Surface Soil	Monitoring Well	June 2005	0.12													
NASSP0700	NAP07	Surface Soil	Push-probe	June 2005	0.18													
NASSP0800	NAP08	Surface Soil	Push-probe	June 2005	0.30													
NASSP0900	NAP09	Surface Soil	Push-probe	June 2005	0.088													
NASSP1000	NAP10	Surface Soil	Push-probe	June 2005	0.089													
NASS0100		Surface Soil		September 2002		<11.7	4.2	0.3 J	0.8 J	8.8	23.1	<23.5	0.05	15.9	<2.5	<2.4	<2.9	66.7
NASS0200		Surface Soil		September 2002		<10.4	4.2	0.4 J	<1	13.5	12.6	16.7 J	0.03	12.7	<4.2	<2.1	0.6 J	67.5
NASS0300		Surface Soil		September 2002		<11	5.4	0.3 J	0.4 J	13.5	16.2	14.7 J	0.03	19.4	<4.4	<2.2	0.6 J	74.7
NASS0600		Surface Soil		September 2002		<10.8	5.9	0.4 J	0.68 J	15.3	25.5	13.7 J	0.04	23.1	<2.2	<2.2	<1.1	91.8
NASS1200		Surface Soil		September 2002		<10.4	3.7	0.29 J	0.64 J	14.9	29.7	10.7 J	0.04	28.6	<2.1	<2.1	<1	84
NAVEG		Surface Soil		October 2002		<10.9	2.9	0.3 J	0.6 J	10.6	15.2	12.3 J	0.02	15.5	<4.4	<2.2	0.5 J	78.2
BKSS0100		Surface Soil				<10.3	4.5	0.34 J	0.38 J	16.2	15.7	9.4 J	0.02	15.2	<1	<2.1	<1	46.7
South Stockpile Ar	rea	-	-	-		-		-	-				-	-	-		-	-
SASSW0200	SAW02	Surface Soil	Monitoring Well	June 2005	0.15													
SASSW0300	SAW03	Surface Soil	Monitoring Well	June 2005	NA													
SASSW0300D	SAW03	Surface Soil	Monitoring Well	June 2005	NA													
SASSW0800	SAW08	Surface Soil	Monitoring Well	June 2005	7.2												1	
SASS1600		Surface Soil	<u> </u>	October 2002	NA	<10.3	2.3 J	0.4 J	<1	11.5	24.6	23.2	0.05	15.9	16.8	<2.1	<1	163
SASS2400		Surface Soil		October 2002	NA	<9.4	0.8 J	0.4 J	0.6 J	10.8	9.5	<18.7	0.03	11.9	7.4	<1.9	<0.9	237

SASS2600	Surface Soil	October 2002	NA	<11.2	<2.8	0.4 J	1 J	11.4	11.5	<22.4	0.03	12.7	<2.8	<2.2	<2.8	93.3
SASS2700	Surface Soil	October 2002	NA	<11	3.4	0.3 J	<1.1	11.5	14.1	<22	0.02	17	<4.4	<2.2	<1.1	81.1
SASS3100	Surface Soil	October 2002	NA	<10.6	<2.7	0.4 J	<1.1	11.4	8.8	13.2 J	0.02	10.1	<4.3	<2.1	<1.1	53.1
SASS3400	Surface Soil	October 2002	NA	<12	3.4	0.42 J	0.75 J	14.5	17.4	18 J	0.03	16.4	<2.4	<2.4	<1.2	80.9
SASS3500	Surface Soil	October 2002	NA	<11.6	3.4	0.5 J	0.9 J	15	14.6	<23.2	0.03	16.4	<4.6	<2.3	<1.2	72.6
SASS3700	Surface Soil	October 2002	NA	<10.3	4.9	0.3 J	<1	20.1	19.1	56.8	0.02	19	<4.1	<2.1	0.5 J	77.5
SASS4000	Surface Soil	October 2002	NA	<12.4	2.1	0.55 J	0.88 J	16.3	14.2	18.7 J	0.04	13.8	<2.5	<2.5	<1.2	92.9
SASS4100	Surface Soil	October 2002	NA	<10.5	2.6 J	0.3 J	<1.1	9.8	6.4	<21	0.01 J	12.3	<4.2	<2.1	<1.1	48.9
SASS4200	Surface Soil	October 2002	NA	<11.2	2.8	0.36 J	0.67 J	12.7	13	14.3 J	0.02	13.1	<2.2	<2.2	<1.1	72.4
SASS4700	Surface Soil	October 2002	0.130 J	<11	8	0.4 J	0.6 J	10.8	18	<22	0.03	13	<2.5	<2.2	<2.8	75.8
SAMOUND	Surface Soil	October 2002	NA	<11.3	4.2	0.5 J	<1.1	17.6	22.4	14.3 J	0.02	21.3	<4.5	<2.3	0.6 J	80.7
SASPREAD	Surface Soil	October 2002	NA	6.4 J	4.8	1.1 J	1 J	49.4	40.9	30	0.03	47.7	0.7 J	<2.2	0.6 J	130
SA02SS ¹	Surface Soil	January 2005														
SA03SS ¹	Surface Soil	January 2005														
MTCA Method B Cleanup	Level		0.0000000052	-	24	160	80	2,000(crIII)	2,960	1,000a	24	1,600	400	400	5.6	24,000

Notes:

¹Sample Concentration compared to backround sample BK01SS to determine if compound concentration is elevated.

Values reported on a dry-weight basis

Shaded and **bolded** analytical results indicate concentration exceeds state cleanup criterion.

J = The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

JH = The associated numerical value is an estimated quantity and is biased high because quality control criteria were not met.

μg/kg = microgram per kilogram; mg/kg = milligram per kilogram

²Soil, Method B, accounting for ecological risk, unrestricted land use

Subsurface Soil Chemical Analytical Results¹

						Petroleum Hydro	carbons ² (mg/kg)	Semi-Vo	latile Organic Compounds	s³ (mg/kg)	Semi-Volat	ile Organic Con	npounds ³ (mg/kg)
Sample ID	Sample Location	Sample Depth (feet bgs)	Sample Type	Exploration Type	Date Collected	DRPH	ОПРН	1,2-Dichlorobenzene	2,4,5-Trichlorophenol	2-methylnaphthalene	Acenaphthene	Anthracene	Benz(a)anthracene
Process Area													
PASBP1109	PAP11	9	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
PASBP1111	PAP11	11	Subsurface Soil	Push-probe	June 2005	5,590	323			NA		NA	
PASBP1111D	PAP11	11	Subsurface Soil	Push-probe	June 2005	5,820	225 J			NA		NA	
PASBP1204	PAP12	4	Subsurface Soil	Push-probe	June 2005	9.39 J	<76.7			NA		NA	
PASBP1204D	PAP12	4	Subsurface Soil	Push-probe	June 2005	<36.9	<73.8			NA		NA	
PASBP1208	PAP12	8	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
PASBP1306	PAP13	6	Subsurface Soil	Push-probe	June 2005	18.5 J	<131			NA		NA	
PASBP1308	PAP13	8	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
PASB0701	PAB-7	1	Subsurface Soil	Push-probe	October 2002	4.5 J	11 J	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47
PASB0711	PAB-7	11	Subsurface Soil	Push-probe	October 2002	6,800 J	230 J	0.025 J	<3.7 UJ	19 J	2.3 J	1 J	0.085 J
PASB0721	PAB-7	21	Subsurface Soil	Push-probe	October 2002	85	10 J	<0.36	<0.36	0.089 J	0.047 J	0.024 J	<0.36
PASB0801	PAB-8	1	Subsurface Soil	Push-probe	October 2002	13 J	58 J	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46
PASB0814	PAB-8	14	Subsurface Soil	Push-probe	October 2002	20 J	35 J	<0.36	<0.36	<0.36	<0.36	<0.36	<0.36
PASB0906	PAB-9	6	Subsurface Soil	Push-probe	October 2002	450 J	140 J	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41
PASB0908	PAB-9	8	Subsurface Soil	Push-probe	October 2002	18 J	12 J	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38
PASB1001	PAB-10	1	Subsurface Soil	Push-probe	October 2002	15,000 J	960 J	<0.42	<4.2	19	4.2	<4.2	0.17 J
PASB1006	PAB-10	6	Subsurface Soil	Push-probe	October 2002	6,800 J	550	0.047 J	<5.3	42	5.5	1.6	0.18 J
PASB1012	PAB-10	12	Subsurface Soil	Push-probe	October 2002	440	40 J	<0.38	0.025 J	1.9	0.33 J	0.089 J	<0.38
PASB2106	PAB-21	6	Subsurface Soil	Push-probe	October 2002	190	47 J	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41
PASB2111	PAB-21	11	Subsurface Soil	Push-probe	October 2002	<27	<110	<0.36	<0.36	<0.36	<0.36	<0.36	<0.36
PASB2212	PAB-22	12	Subsurface Soil	Push-probe	October 2002	17 J	84 J	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43
PASB2221	PAB-22	21	Subsurface Soil	Push-probe	October 2002	10 J	20 J	<0.36	<0.36	<0.36	<0.36	<0.36	<0.36
North Stockpile Area													
NASBP0804	NAP08	4	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
South Stockpile Area													
SASBH0501	SAH05	1	Subsurface Soil	Push-probe	June 2005	90.2 J	267 J			NA		NA	
SASBH0604	SAH06	4	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
SASBH0704	SAH07	4	Subsurface Soil	Push-probe	June 2005	17.1 J	69.4			NA		NA	
SASBH0801	SAH01	1	Subsurface Soil	Push-probe	June 2005	89 J	193 J			NA		NA	
SASBP0102	SAP01	2	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
SASBP0104	SAP01	4	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
SASBP0204	SAP02	4	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
SASBP0302	SAP03	2	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
SASBP0401	SAP04	1	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
SASBP0505	SAP05	5	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
SASBP0604	SAP06	4	Subsurface Soil	Push-probe	June 2005	NA	NA			NA		NA	
SASBW0704	SAW07	4	Subsurface Soil	Monitoring Well	June 2005	NA	NA			NA		NA	

						Petroleum Hydro	carbons ² (mg/kg)	Semi-Vo	latile Organic Compounds	s ³ (mg/kg)	Semi-Volat	ile Organic Con	npounds ³ (mg/kg)
Sample ID	Sample Location	Sample Depth (feet bgs)	Sample Type	Exploration Type	Date Collected	DRPH	ORPH	1,2-Dichlorobenzene	2,4,5-Trichlorophenol	2-methylnaphthalene	Acenaphthene	Anthracene	Benz(a)anthracene
SASBW0804	SAW08	4	Subsurface Soil	Monitoring Well	June 2005	NA	NA			NA		NA	
SASBW0806	SAW08	6	Subsurface Soil	Monitoring Well	June 2005	NA	NA			NA		NA	
SASB1304	SAB-13	4	Subsurface Soil	Push-probe	October 2002	23 J	120 J			<0.47		<0.47	<0.47
SASB1402	SAB-14	2	Subsurface Soil	Push-probe	October 2002	21 J	70 J			<0.42		<0.42	0.035 J
SASB1801	SAB-18	1	Subsurface Soil	Push-probe	October 2002	22 J	65 J			<0.36		<0.36	<0.36
SASB1901	SAB-19	1	Subsurface Soil	Push-probe	October 2002	26 J	48 J			0.02 J		0.04 J	<0.52
SASB2001	SAB-20	1	Subsurface Soil	Push-probe	October 2002	11 J	31 J			<0.36		<0.36	<0.36
MTCA Method B Clea	nup Level					460	2,000	7,200	8,000		4,800	24,000	0.137 ca
EPA Region 9 PRG							-	370	62,000		29,000	100,000	2.10

							Semi-V							
	Sample	Sample Depth						<u> </u>	Bis(2-ethylhexyl)	Butyl Benzyl			Di-n-butyl	
Sample ID	Location	(feet bgs)	Sample Type	Exploration Type	Date Collected	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	phthalate	Phthalate	Chrysene	Dibenzofuran	phthalate	Fluoranthene
Process Area														
PASBP1109	PAP11	9	Subsurface Soil	Push-probe	June 2005				NA				NA	
PASBP1111	PAP11	11	Subsurface Soil	Push-probe	June 2005				NA				NA	
PASBP1111D	PAP11	11	Subsurface Soil	Push-probe	June 2005				NA				NA	
PASBP1204	PAP12	4	Subsurface Soil	Push-probe	June 2005				NA				NA	
PASBP1204D	PAP12	4	Subsurface Soil	Push-probe	June 2005				NA				NA	
PASBP1208	PAP12	8	Subsurface Soil	Push-probe	June 2005				NA				NA	
PASBP1306	PAP13	6	Subsurface Soil	Push-probe	June 2005				NA				NA	
PASBP1308	PAP13	8	Subsurface Soil	Push-probe	June 2005				NA				NA	
PASB0701	PAB-7	1	Subsurface Soil	Push-probe	October 2002	<0.47	<0.47	<0.47	0.037 J		<0.47	<0.47	<0.47	<0.47
PASB0711	PAB-7	11	Subsurface Soil	Push-probe	October 2002	<0.37 UJ	<0.37 UJ	<0.37 UJ	0.29 J		0.16 J	1.7 J	<3.7 UJ	0.26 J
PASB0721	PAB-7	21	Subsurface Soil	Push-probe	October 2002	<0.36	<0.36	<0.36	0.72		<0.36	0.03 J	<0.36	<0.36
PASB0801	PAB-8	1	Subsurface Soil	Push-probe	October 2002	<0.46	<0.46	<0.46	0.045 J		<0.46	<0.46	<0.46	<0.46
PASB0814	PAB-8	14	Subsurface Soil	Push-probe	October 2002	<0.36	<0.36	<0.36	0.084 J		<0.36	<0.36	<0.36	<0.36
PASB0906	PAB-9	6	Subsurface Soil	Push-probe	October 2002	<0.41	<0.41	<0.41	0.07 J		0.057 J	<0.41	0.12 J	<0.41
PASB0908	PAB-9	8	Subsurface Soil	Push-probe	October 2002	<0.38	<0.38	<0.38	0.2 J		<0.38	<0.38	<0.38	<0.38
PASB1001	PAB-10	1	Subsurface Soil	Push-probe	October 2002	0.046 J	0.057 J	0.027 J	0.32 J		0.78	4.2	<4.2	0.5
PASB1006	PAB-10	6	Subsurface Soil	Push-probe	October 2002	0.047 J	0.048 J	<0.53	0.36 J		0.39 J	4 J	<0.53	0.29 J
PASB1012	PAB-10	12	Subsurface Soil	Push-probe	October 2002	<0.38	<0.38	<0.38	0.12 J		0.029 J	0.23 J	<0.38	<0.38
PASB2106	PAB-21	6	Subsurface Soil	Push-probe	October 2002	<0.41	<0.41	<0.41	0.063 J		<0.41	<0.41	<0.41	<0.41
PASB2111	PAB-21	11	Subsurface Soil	Push-probe	October 2002	<0.36	<0.36	<0.36	0.025 J		<0.36	<0.36	<0.36	<0.36
PASB2212	PAB-22	12	Subsurface Soil	Push-probe	October 2002	<0.43	0.034 J	<0.43	0.11 J		<0.43	<0.43	<0.43	<0.43
PASB2221	PAB-22	21	Subsurface Soil	Push-probe	October 2002	0.039 J	<0.36	0.03 J	0.089 J		<0.36	<0.36	<0.36	<0.36
North Stockpile Are	ea													
NASBP0804	NAP08	4	Subsurface Soil	Push-probe	June 2005				NA				NA	
South Stockpile Ar	rea													
SASBH0501	SAH05	1	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBH0604	SAH06	4	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBH0704	SAH07	4	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBH0801	SAH01	1	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBP0102	SAP01	2	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBP0104	SAP01	4	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBP0204	SAP02	4	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBP0302	SAP03	2	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBP0401	SAP04	1	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBP0505	SAP05	5	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBP0604	SAP06	4	Subsurface Soil	Push-probe	June 2005				NA				NA	
SASBW0704	SAW07	4	Subsurface Soil	Monitoring Well	June 2005				NA				NA	

							Semi-V							
Sample ID	Sample Location	Sample Depth (feet bgs)	Sample Type	Exploration Type	Date Collected	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Bis(2-ethylhexyl) phthalate	Butyl Benzyl Phthalate	Chrysene	Dibenzofuran	Di-n-butyl phthalate	Fluoranthene
SASBW0804	SAW08	4	Subsurface Soil	Monitoring Well	June 2005				NA				NA	
SASBW0806	SAW08	6	Subsurface Soil	Monitoring Well	June 2005				NA				NA	
SASB1304	SAB-13	4	Subsurface Soil	Push-probe	October 2002	<0.47	<0.47		0.098 J	<0.47	<0.47			<0.47
SASB1402	SAB-14	2	Subsurface Soil	Push-probe	October 2002	0.025 J	0.027 J		0.15 J	0.021 J	0.033 J			0.033 J
SASB1801	SAB-18	1	Subsurface Soil	Push-probe	October 2002	<0.36	<0.36		0.045 J	<0.36	<0.36			<0.36
SASB1901	SAB-19	1	Subsurface Soil	Push-probe	October 2002	0.038 J	<0.52		0.28 J	<0.52	0.1 J			<0.52
SASB2001	SAB-20	1	Subsurface Soil	Push-probe	October 2002	<0.36	<0.36		<0.36	<0.36	<0.36			<0.36
MTCA Method B Cle	eanup Level					0.137 ca	-	0.137 ca	71.4	16,000	0.137 ca	_	8,000	3,200
EPA Region 9 PRG						2.10		21	120	100,000	210	3,100	62,000	22,000

								Semi-Volatile	e Organic Co	mpounds ³ (mg/k	g)					
	Sample	Sample Depth		Exploration		FI	1		_			1,2,4-	1,2-	1,3,5-	1,4-	2-Butanone
Sample ID	Location	(feet bgs)	Sample Type	Туре	Date Collected	Fluorene	Isophorone	Naphthalene	PCP	Phenanthrene	Pyrene	Trimethylbenzene	Dichlorobenzene	Trimethylbenzene	Dichlorobenzene	(MEK)
Process Area	DIDII								0.0005.1							
PASBP1109	PAP11	9	Subsurface Soil	Push-probe	June 2005	NA		NA NA	0.0385 J	NA NA	NA					
PASBP1111	PAP11	11	Subsurface Soil	Push-probe	June 2005	NA		NA NA	24.2	NA	NA					
PASBP1111D	PAP11	11	Subsurface Soil	Push-probe	June 2005	NA		NA	25.7	NA 	NA					
PASBP1204	PAP12	4	Subsurface Soil	Push-probe	June 2005	NA		NA	0.498	NA 	NA					
PASBP1204D	PAP12	4	Subsurface Soil	Push-probe	June 2005	NA		NA	0.187	NA	NA					
PASBP1208	PAP12	8	Subsurface Soil	Push-probe	June 2005	NA		NA	0.0201 J	NA	NA					
PASBP1306	PAP13	6	Subsurface Soil	Push-probe	June 2005	NA		NA	0.126 J	NA	NA					
PASBP1308	PAP13	8	Subsurface Soil	Push-probe	June 2005	NA		NA	0.0278 J	NA	NA					
PASB0701	PAB-7	1	Subsurface Soil	Push-probe	October 2002	<0.47	<0.47	<0.47	<2.9	<0.47	<0.47	<28	<6.9	<28	<6.9	<28
PASB0711	PAB-7	11	Subsurface Soil	Push-probe	October 2002	4.5 J	<0.37 UJ	2.3 J	50 J	10 J	1.2 J	6400	380 J	1800 J	110 J	- R
PASB0721	PAB-7	21	Subsurface Soil	Push-probe	October 2002	0.091 J	<0.36	<0.36	0.77 J	0.25 J	0.035 J	<22	<5.4	<22	<5.4	<22
PASB0801	PAB-8	1	Subsurface Soil	Push-probe	October 2002	<0.46	<0.46	<0.46	<2.8	<0.46	<0.46	<28	<6.8	<28	<6.8	36
PASB0814	PAB-8	14	Subsurface Soil	Push-probe	October 2002	<0.36	<0.36	<0.36	<2.2	<0.36	<0.36	<22	<5.3	<22	<5.3	<22
PASB0906	PAB-9	6	Subsurface Soil	Push-probe	October 2002	<0.41	<0.41	<0.41	0.36 J	<0.41	0.18 J	<25	<6.1	<25	<6.1	<25
PASB0908	PAB-9	8	Subsurface Soil	Push-probe	October 2002	<0.38	<0.38	<0.38	<2.3	<0.38	<0.38	<22	<5.5	<22	<5.5	<22
PASB1001	PAB-10	1	Subsurface Soil	Push-probe	October 2002	14	<0.42	1.8	410	18	1.3	<25	<6.1	<25	<6.1	<25
PASB1006	PAB-10	6	Subsurface Soil	Push-probe	October 2002	9.3	0.88	1.7	500 J	9.2	1.2	110 J	12 J	34 J	7.8 J	<160
PASB1012	PAB-10	12	Subsurface Soil	Push-probe	October 2002	0.51	<0.38	<0.38	15	1	0.17 J	360 J	47 J	130 J	27 J	- R
PASB2106	PAB-21	6	Subsurface Soil	Push-probe	October 2002	<0.41	<0.41	<0.41	<2.5	<0.41	<0.41	<25	<6.1	<25	<6.1	26
PASB2111	PAB-21	11	Subsurface Soil	Push-probe	October 2002	<0.36	<0.36	<0.36	<2.2	<0.36	<0.36	<22	<5.4	<22	<5.4	<22
PASB2212	PAB-22	12	Subsurface Soil	Push-probe	October 2002	<0.43	<0.43	<0.43	<2.6	<0.43	<0.43	<26	<6.5	<26	<6.5	<26
PASB2221	PAB-22	21	Subsurface Soil	Push-probe	October 2002	<0.36	<0.36	<0.36	0.47 J	<0.36	<0.36	<22	<5.4	<22	<5.4	<22
North Stockpile Ar	rea															
NASBP0804	NAP08	4	Subsurface Soil	Push-probe	June 2005	NA		NA	<0.112	NA	NA					
South Stockpile A	rea															
SASBH0501	SAH05	1	Subsurface Soil	Push-probe	June 2005	NA		NA	10.3	NA	NA					
SASBH0604	SAH06	4	Subsurface Soil	Push-probe	June 2005	NA		NA	0.235	NA	NA					
SASBH0704	SAH07	4	Subsurface Soil	Push-probe	June 2005	NA		NA	1.39	NA	NA					
SASBH0801	SAH01	1	Subsurface Soil	Push-probe	June 2005	NA		NA	5.8	NA	NA					
SASBP0102	SAP01	2	Subsurface Soil	Push-probe	June 2005	NA		NA	0.0524 J	NA	NA					
SASBP0104	SAP01	4	Subsurface Soil	Push-probe	June 2005	NA		NA	<0.102	NA	NA					
SASBP0204	SAP02	4	Subsurface Soil	Push-probe	June 2005	NA		NA	<0.113	NA	NA					
SASBP0302	SAP03	2	Subsurface Soil	Push-probe	June 2005	NA		NA	20.5	NA	NA					
SASBP0401	SAP04	1	Subsurface Soil	Push-probe	June 2005	NA		NA	0.056 J	NA	NA					
SASBP0505	SAP05	5	Subsurface Soil	Push-probe	June 2005	NA		NA	<0.116	NA	NA					
SASBP0604	SAP06	4	Subsurface Soil	Push-probe	June 2005	NA		NA	0.0347 J	NA	NA					
SASBW0704	SAW07	4	Subsurface Soil	i i	June 2005	NA		NA	<0.109	NA	NA					

								Semi-Volatile	e Organic Co	mpounds ³ (mg/k	g)					
	Sample	Sample Depth		Exploration							_	1,2,4-	1,2-	1,3,5-	1,4-	2-Butanone
Sample ID	Location	(feet bgs)	Sample Type	Туре	Date Collected	Fluorene	Isophorone	Naphthalene	PCP	Phenanthrene	Pyrene	Trimethylbenzene	Dichlorobenzene	Trimethylbenzene	Dichlorobenzene	(MEK)
SASBW0804	SAW08	4	Subsurface Soil	Monitoring Well	June 2005	NA		NA	<0.112	NA	NA					
SASBW0806	SAW08	6	Subsurface Soil	Monitoring Well	June 2005	NA		NA	<0.123	NA	NA					
SASB1304	SAB-13	4	Subsurface Soil	Push-probe	October 2002				<2.9	<0.47	<0.47	<28				18 J
SASB1402	SAB-14	2	Subsurface Soil	Push-probe	October 2002				<2.6	<0.42	0.031 J	<26				19 J
SASB1801	SAB-18	1	Subsurface Soil	Push-probe	October 2002				<2.2	<.36	<0.36	1.5 J				31
SASB1901	SAB-19	1	Subsurface Soil	Push-probe	October 2002				20	0.13 J	0.13 J	<32				<32
SASB2001	SAB-20	1	Subsurface Soil	Push-probe	October 2002				<2.2	<0.36	<0.36	<22				<22
MTCA Method B Cl	eanup Level					3,200	1,050 ca	1,600	8.33		2,400		7,200,000	-	41,700 ca	48,000,000
EPA Region 9 PRG	_		_	•		26,000	1,800	190	9		29,000	170	370	70	8	27,000

					T						I				1		
Sample ID	Sample Location	Sample Depth (feet bgs)	Sample Type	Exploration Type	Date Collected	4- Isopropyltoluene	Acetone	Carbon Disulfide	Dichloromethane (Methylene Chloride)	Ethylbenzene	Isopropylbenzene	m,p-Xylenes	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec- Butylbenzene
Process Area																	
PASBP1109	PAP11	9	Subsurface Soil	Push-probe	June 2005												
PASBP1111	PAP11	11	Subsurface Soil	Push-probe	June 2005												
PASBP1111D	PAP11	11	Subsurface Soil	Push-probe	June 2005												
PASBP1204	PAP12	4	Subsurface Soil	Push-probe	June 2005												
PASBP1204D	PAP12	4	Subsurface Soil	Push-probe	June 2005												
PASBP1208	PAP12	8	Subsurface Soil	Push-probe	June 2005												
PASBP1306	PAP13	6	Subsurface Soil	Push-probe	June 2005												
PASBP1308	PAP13	8	Subsurface Soil	Push-probe	June 2005												
PASB0701	PAB-7	1	Subsurface Soil	Push-probe	October 2002	<28	<69	<6.9	3.3 J	<6.9	<28	<6.9	<28	<28	<28	<6.9	<28
PASB0711	PAB-7	11	Subsurface Soil	Push-probe	October 2002	820 J	- R	<550	270 J	200 J	240 J	750	13,000	2100 J	490 J	650	460 J
PASB0721	PAB-7	21	Subsurface Soil	Push-probe	October 2002	<22	16 J	<5.4	1.7 J	<5.4	<22	<5.4	1.7 J	<22	<22	<5.4	<22
PASB0801	PAB-8	1	Subsurface Soil	Push-probe	October 2002	<28	180	<6.8	8 J	<6.8	<28	<6.8	<28	<28	<28	<6.8	<28
PASB0814	PAB-8	14	Subsurface Soil	Push-probe	October 2002	<22	16 J	<5.3	4.7 J	<5.3	<22	<5.3	<22	<22	<22	<5.3	<22
PASB0906	PAB-9	6	Subsurface Soil	Push-probe	October 2002	<25	15 J	<6.1	<13	<6.1	<25	<6.1	<25	<25	<25	<6.1	<25
PASB0908	PAB-9	8	Subsurface Soil	Push-probe	October 2002	<22	14 J	<5.5	1.4 J	<5.5	<22	<5.5	<22	<22	<22	<5.5	<22
PASB1001	PAB-10	1	Subsurface Soil	Push-probe	October 2002	<25	<61	<6.1	2.2 J	<6.1	<25	<6.1	<25	<25	<25	<6.1	<25
PASB1006	PAB-10	6	Subsurface Soil	Push-probe	October 2002	18 J	170 J	12 J	49 J	<38	<160	15 J	200	<160	<160	8.9 J	<160
PASB1012	PAB-10	12	Subsurface Soil	Push-probe	October 2002	58 J	- R	<120	85 J	<120	<450	<120	710	160 J	<450	22 J	<450
PASB2106	PAB-21	6	Subsurface Soil	Push-probe	October 2002	<25	140	<6.1	<13	<6.1	<25	4.7 J	<25	<25	<25	1.5 J	<25
PASB2111	PAB-21	11	Subsurface Soil	Push-probe	October 2002	<22	19 J	<5.4	<11	<5.4	<22	<5.4	<22	<22	<22	<5.4	<22
PASB2212	PAB-22	12	Subsurface Soil	Push-probe	October 2002	<26	<65	<6.5	<13	<6.5	<26	2.6 J	<26	<26	<26	0.95 J	<26
PASB2221	PAB-22	21	Subsurface Soil	Push-probe	October 2002	<22	16 J	<5.4	<11	<5.4	<22	<5.4	<22	<22	<22	<5.4	<22
North Stockpile	Area																
NASBP0804	NAP08	4	Subsurface Soil	Push-probe	June 2005												
South Stockpile	Area																
SASBH0501	SAH05	1	Subsurface Soil	Push-probe	June 2005												
SASBH0604	SAH06	4	Subsurface Soil	Push-probe	June 2005												
SASBH0704	SAH07	4	Subsurface Soil	Push-probe	June 2005												
SASBH0801	SAH01	1	Subsurface Soil	Push-probe	June 2005												
SASBP0102	SAP01	2	Subsurface Soil	Push-probe	June 2005												
SASBP0104	SAP01	4	Subsurface Soil	Push-probe	June 2005												
SASBP0204	SAP02	4	Subsurface Soil	Push-probe	June 2005												
SASBP0302	SAP03	2	Subsurface Soil	Push-probe	June 2005												
SASBP0401	SAP04	1	Subsurface Soil	Push-probe	June 2005												
SASBP0505	SAP05	5	Subsurface Soil	Push-probe	June 2005												
SASBP0604	SAP06	4	Subsurface Soil	Push-probe	June 2005												
SASBW0704	SAW07	4	Subsurface Soil	Monitoring Well	June 2005												

	Sample	Sample Depth		Exploration		4-		Carbon	Dichloromethane								sec-
Sample ID	Location	(feet bgs)	Sample Type	Туре	Date Collected	Isopropyltoluene	Acetone	Disulfide	(Methylene Chloride)	Ethylbenzene	Isopropylbenzene	m,p-Xylenes	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	Butylbenzene
SASBW0804	SAW08	4	Subsurface Soil	Monitoring Well	June 2005												
SASBW0806	SAW08	6	Subsurface Soil	Monitoring Well	June 2005												
SASB1304	SAB-13	4	Subsurface Soil	Push-probe	October 2002		85		<14	<6.9		3.1 J				1.1 J	
SASB1402	SAB-14	2	Subsurface Soil	Push-probe	October 2002		140		<13	<6.3		<6.3				<6.3	
SASB1801	SAB-18	1	Subsurface Soil	Push-probe	October 2002		520		20	0.92 J		21				5.5	
SASB1901	SAB-19	1	Subsurface Soil	Push-probe	October 2002		<79		16	<7.9		<7.9				<7.9	
SASB2001	SAB-20	1	Subsurface Soil	Push-probe	October 2002		<55		11	<5.5		3.7 J				1.1 J	
MTCA Method B	Cleanup Level					-	8,000,000	8,000,000	133,000 ca	8,000,000		160,000,000	1,600,000	-	-	160,000,000	-
EPA Region 9 PR	G					-	6,000	720	21	20	240	_	190	240	240	420	220

									Dioxins/F	Furans ⁴ (µg/kg)				Inorg	ganics (mg/kg	g)				
	Sample	Sample Depth		Exploration	-			2,3,7,8-TCDD (TEQ		2,3,7,8-TCDD (TEQ	2,3,7,8-TCDD				June (g/	o,				
Sample ID	Location	(feet bgs)	Sample Type	Туре	Date Collected	PCE	Toluene	1987 EPA)	(1989 I-TEQ)	1997 WHO)	(1998 WHO TEQ)	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel
Process Area																				
PASBP1109	PAP11	9	Subsurface Soil	Push-probe	June 2005			NA		NA										
PASBP1111	PAP11	11	Subsurface Soil	Push-probe	June 2005			NA		NA										
PASBP1111D	PAP11	11	Subsurface Soil	Push-probe	June 2005			NA		NA										
PASBP1204	PAP12	4	Subsurface Soil	Push-probe	June 2005			NA		NA										
PASBP1204D	PAP12	4	Subsurface Soil	Push-probe	June 2005			NA		NA										
PASBP1208	PAP12	8	Subsurface Soil	Push-probe	June 2005			NA		NA										
PASBP1306	PAP13	6	Subsurface Soil	Push-probe	June 2005			NA		NA										
PASBP1308	PAP13	8	Subsurface Soil	Push-probe	June 2005			NA		NA										
PASB0701	PAB-7	1	Subsurface Soil	Push-probe	October 2002	1.9 J	<6.9		NA		NA	<11.7	3.2	0.49 J	0.71 J	19.6	24.4	13.8 J	0.01 J	24.4
PASB0711	PAB-7	11	Subsurface Soil	Push-probe	October 2002	<550	<550		NA		NA	6.4 J	3.7	<1.1	0.5 J	11.7	9.2	<22.3	0.02 J	14.4
PASB0721	PAB-7	21	Subsurface Soil	Push-probe	October 2002	<5.4	<5.4		NA		NA	<10.9	8.3	0.12 J	<1.09	7.5	5.7	8.6 J	<0.01	10.3
PASB0801	PAB-8	1	Subsurface Soil	Push-probe	October 2002	<6.8	<6.8		NA		NA	<11.4	5.5	0.6 J	<1.1	18.2	31.9	18.1 J	0.03	28.1
PASB0814	PAB-8	14	Subsurface Soil	Push-probe	October 2002	<5.3	<5.3		NA		NA	<10.6	4.5	<1.1	0.4 J	6.3	7.1	<21.3	0.01 J	10
PASB0906	PAB-9	6	Subsurface Soil	Push-probe	October 2002	<6.1	<6.1		NA		NA	8 J	3.9	0.3 J	<1.2	11	13.9	<24.4	0.01 J	15
PASB0908	PAB-9	8	Subsurface Soil	Push-probe	October 2002	<5.5	<5.5		NA		NA	<11.3	1.8 J	0.16 J	<1.13	10.2	9.4	7.9 J	<0.02	11.4
PASB1001	PAB-10	1	Subsurface Soil	Push-probe	October 2002	<6.1	<6.1		11.51 J		8.79 J	7.4 J	<3.1	0.6 J	<1.3	19.6	13.7	<25	0.03	21.5
PASB1006	PAB-10	6	Subsurface Soil	Push-probe	October 2002	<38	<38		NA		NA	<11.3	7.8	0.4 J	0.5 J	12.6	44.1	10.1 J	0.03	25.8
PASB1012	PAB-10	12	Subsurface Soil	Push-probe	October 2002	<120	<120		NA		NA	<11.4	4.1	<1.1	<1.1	8.5	9.1	<22.9	0.01 J	13.7
PASB2106	PAB-21	6	Subsurface Soil	Push-probe	October 2002	<6.1	1.3 J		NA		NA	<12.4	1.9	0.35 J	0.37 J	14	21.5	10.3 J	0.02	15.8
PASB2111	PAB-21	11	Subsurface Soil	Push-probe	October 2002	<5.4	<5.4		NA		NA	<10.8	3.3	0.15 J	0.3 J	9.9	8.5	5.2 J	<0.02	12.2
PASB2212	PAB-22	12	Subsurface Soil	Push-probe	October 2002	<6.5	<6.5		NA		NA	<10.7	4.6	0.3 J	0.71 J	15.6	14.8	8.7 J	0.02	18.9
PASB2221	PAB-22	21	Subsurface Soil	Push-probe	October 2002	<5.4	<5.4		NA		NA	<10.7	3	0.09 J	0.27 J	4.6	3.3	<21.5	0.01 J	7.7
North Stockpile A	rea																			
NASBP0804	NAP08	4	Subsurface Soil	Push-probe	June 2005			NA		NA										
South Stockpile A	Area																			
SASBH0501	SAH05	1	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBH0604	SAH06	4	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBH0704	SAH07	4	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBH0801	SAH01	1	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBP0102	SAP01	2	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBP0104	SAP01	4	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBP0204	SAP02	4	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBP0302	SAP03	2	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBP0401	SAP04	1	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBP0505	SAP05	5	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBP0604	SAP06	4	Subsurface Soil	Push-probe	June 2005			NA		NA										
SASBW0704	SAW07	4	Subsurface Soil	Monitoring Well	June 2005			NA		NA										

									Dioxins/F	urans ⁴ (µg/kg)				Inorg	ganics (mg/kg	g)			1	
	Sample	Sample Depth		Exploration				1 ' ' '		2,3,7,8-TCDD (TEQ	2,3,7,8-TCDD								1	
Sample ID	Location	(feet bgs)	Sample Type	Туре	Date Collected	PCE	Toluene	1987 EPA)	(1989 I-TEQ)	1997 WHO)	(1998 WHO TEQ)	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel
SASBW0804	SAW08	4	Subsurface Soil	Monitoring Well	June 2005			NA		NA										
SASBW0806	SAW08	6	Subsurface Soil	Monitoring Well	June 2005			NA		NA										
SASB1304	SAB-13	4	Subsurface Soil	Push-probe	October 2002		1.3 J					<11.7	2.8	0.44 J	0.38 J	13.2	9.5	6.5 J	0.02	12.3
SASB1402	SAB-14	2	Subsurface Soil	Push-probe	October 2002		<6.3					<10.5	1.7	0.48 J	0.65 J	15.5	13.3	14.8 J	0.03	14
SASB1801	SAB-18	1	Subsurface Soil	Push-probe	October 2002		9.7					3.7 J	4.7	0.21 J	0.33 J	8.4	6.7	5.3 J	0.02 J	10.2
SASB1901	SAB-19	1	Subsurface Soil	Push-probe	October 2002		<7.9					4.2 J	2.4	0.56 J	0.82 J	17.8	18.2	25.6	0.03	17.4
SASB2001	SAB-20	1	Subsurface Soil	Push-probe	October 2002		1.5 J					2.5 J	1.4	0.33 J	0.24 J	11.6	7.6	7 J	0.02	10
MTCA Method B (Cleanup Level					19,600 ca	160,000,000	0.000000005	0.000000005	0.000000005	0.000000005	-	24	160	80	2,000(crIII)	2,960	1,000a	24	1,600
EPA Region 9 PRO	i i					3	520	0.16 / (5 to 20)	0.16 / (5 to 20)	0.16 / (5 to 20)	0.16 / (5 to 20)	410	1.6 ca	1,900	450	450	41,500	750	310	20,000

							Inorgai	nics (mg/kg)	
Sample ID	Sample Location	Sample Depth (feet bgs)	Sample Type	Exploration Type	Date Collected	Selenium	Silver	Thallium	Zinc
Process Area									
PASBP1109	PAP11	9	Subsurface Soil	Push-probe	June 2005				
PASBP1111	PAP11	11	Subsurface Soil	Push-probe	June 2005				
PASBP1111D	PAP11	11	Subsurface Soil	Push-probe	June 2005				
PASBP1204	PAP12	4	Subsurface Soil	Push-probe	June 2005				
PASBP1204D	PAP12	4	Subsurface Soil	Push-probe	June 2005				
PASBP1208	PAP12	8	Subsurface Soil	Push-probe	June 2005				
PASBP1306	PAP13	6	Subsurface Soil	Push-probe	June 2005				
PASBP1308	PAP13	8	Subsurface Soil	Push-probe	June 2005				
PASB0701	PAB-7	1	Subsurface Soil	Push-probe	October 2002	<1.2	<2.3	<1.2	98.4
PASB0711	PAB-7	11	Subsurface Soil	Push-probe	October 2002	<2.8	<2.2	<2.8	50.1
PASB0721	PAB-7	21	Subsurface Soil	Push-probe	October 2002	<1.1	<2.2	<1.1	30.5
PASB0801	PAB-8	1	Subsurface Soil	Push-probe	October 2002	<4.6	<2.3	0.6 J	99.5
PASB0814	PAB-8	14	Subsurface Soil	Push-probe	October 2002	<21.3	<2.1	<1.1	30.8
PASB0906	PAB-9	6	Subsurface Soil	Push-probe	October 2002	4.6	<2.4	<3.1	45.8
PASB0908	PAB-9	8	Subsurface Soil	Push-probe	October 2002	<1.1	<2.3	<1.1	46.4
PASB1001	PAB-10	1	Subsurface Soil	Push-probe	October 2002	<3.1	<2.5	<3.1	92
PASB1006	PAB-10	6	Subsurface Soil	Push-probe	October 2002	15.7	<2.3	0.6 J	68.1
PASB1012	PAB-10	12	Subsurface Soil	Push-probe	October 2002	<4.6	<2.3	<1.1	38.7
PASB2106	PAB-21	6	Subsurface Soil	Push-probe	October 2002	3.7	<2.5	<1.2	62.1
PASB2111	PAB-21	11	Subsurface Soil	Push-probe	October 2002	<2.2	<2.2	<1.1	38.2
PASB2212	PAB-22	12	Subsurface Soil	Push-probe	October 2002	3.9	<2.2	<1.1	73.2
PASB2221	PAB-22	21	Subsurface Soil	Push-probe	October 2002	<2.2	<2.2	<1.1	21.1
North Stockpile Area									
NASBP0804	NAP08	4	Subsurface Soil	Push-probe	June 2005				
South Stockpile Area									
SASBH0501	SAH05	1	Subsurface Soil	Push-probe	June 2005				
SASBH0604	SAH06	4	Subsurface Soil	Push-probe	June 2005				
SASBH0704	SAH07	4	Subsurface Soil	Push-probe	June 2005				
SASBH0801	SAH01	1	Subsurface Soil	Push-probe	June 2005				
SASBP0102	SAP01	2	Subsurface Soil	Push-probe	June 2005				
SASBP0104	SAP01	4	Subsurface Soil	Push-probe	June 2005				
SASBP0204	SAP02	4	Subsurface Soil	Push-probe	June 2005				
SASBP0302	SAP03	2	Subsurface Soil	Push-probe	June 2005				
SASBP0401	SAP04	1	Subsurface Soil	Push-probe	June 2005				
SASBP0505	SAP05	5	Subsurface Soil	Push-probe	June 2005				
SASBP0604	SAP06	4	Subsurface Soil	Push-probe	June 2005				
SASBW0704	SAW07	4	Subsurface Soil	Monitoring Well	June 2005				

							Inorgan	ics (mg/kg)	
Sample ID	Sample Location	Sample Depth (feet bgs)	Sample Type	Exploration Type	Date Collected	Selenium	Silver	Thallium	Zinc
SASBW0804	SAW08	4	Subsurface Soil	Monitoring Well	June 2005				
SASBW0806	SAW08	6	Subsurface Soil	Monitoring Well	June 2005				
SASB1304	SAB-13	4	Subsurface Soil	Push-probe	October 2002	<1.7	<2.3	<1.2	55.4
SASB1402	SAB-14	2	Subsurface Soil	Push-probe	October 2002	<2.1	<2.1	<1.1	73.1
SASB1801	SAB-18	1	Subsurface Soil	Push-probe	October 2002	<2.2	<2.2	<1.1	39.1
SASB1901	SAB-19	1	Subsurface Soil	Push-probe	October 2002	<2.2	<2.2	<1.1	95.7
SASB2001	SAB-20	1	Subsurface Soil	Push-probe	October 2002	<2.2	<2.2	<1.1	46.7
MTCA Method B Cleanup Level						400	400	5.6	24,000
EPA Region 9 PRG						5,100	5,100	67	100,000

Notes:

Shaded and **bolded** analytical results indicate concentration exceeds state cleanup criterion.

MTCA = Model Toxic Control Act (Ecology 2001)

 $\mu g/kg$ = microgram per kilogram; mg/kg = milligram per kilogram; bgs = below ground surface

¹Samples analyzed at Columbia Analytical Services, Inc. of Kelso, Washington

²Diesel- and oil-range petroleum hydrocarbons (DRPH and ORPH, respectively) analyzed using Northwest Method NWTPH-Dx.

³Semi-volatile organic compounds analyzed using Environmental Protection Agency (EPA) Method 8270C.

⁴Dioxins/furans analyzed using EPA Method 8290.

J = The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met.

UJ = The material was analyzed for, but was not detected. The reported detection limit is estimated because quality control criteria were not met.

Sediment Analytical Results

				Petroleum Hydro	carbons (mg/kg)					Semi-Volatile	e Organic Comp	oounds (mg/k	·g)				
Sample ID	Sample Location	Sample Type	Date Collected	DRPH	ORPH	1,2,4- Trichloro benzene	2-methyl naphthalene	bis(2- Chloroisopropyl) ether	Acenaphthylene	Anthracene	Benzo(a)	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) perylene	Benzofluora nthenes	Phenol	Benzyl Alcohol
BK01SD			January 2005				<3.2		<3.2	2.15 J	5.48	9.07			20.1	<8	<8
BK02SD			January 2005				<2.6		<2.6	<2.6	<2.6	<2.6			<5.21	<6.51	3.75 J
CR01SD ¹			January 2005				<2.75		<2.75	1.11 J	<2.75	<2.75			2 J	<6.87	<6.87
CR02SD ¹			January 2005				<2.35		<2.35	<2.35	<2.35	<2.35			<4.71	<5.89	<5.89
CR03SD ¹			January 2005				<2.35		<2.35	<2.35	<2.35	<2.35			<4.7	5.33 J	<5.88
DA01SD ²			January 2005				<3.35		<3.35	<3.35	<3.35	<3.35			<6.7	<8.37	14.9
DA02SD ²			January 2005				<2.51		<2.51	<2.51	<2.51	<2.51			<5.01	<6.26	14.3
DA03SD ²			January 2005				<2.29		<2.29	<2.29	<2.29	<2.29			<4.57	<5.72	11.3
DA04SD ²			January 2005				<2.59		<2.59	<2.59	<2.59	<2.59			<5.19	<6.48	10.3
DA05SD ²			January 2005				<3.09		<3.09	<3.09	<3.09	<3.09			<6.19	<7.73	<7.73
DA06SD ²			January 2005				<4.46		<4.46	<4.46	<4.46	<4.46			<8.91	19.8	8.78 J
DA07SD ²			January 2005				7.75		4.2	8.77	<34.6	<3.46			<6.92	3.86 J	3.76 J
DA08SD ²			January 2005				<4.2		<4.2	<4.2	<4.2	<4.2			<8.4.	<10.5	<10.5
DA09SD ²			January 2005				<4.77		<4.77	<4.77	<4.77	<4.77			<9.54	8.88 J	62.1
DA10SD ²			January 2005				2.03 J		1.06 J	1.32 J	3.86	4.6			6.29 J	2.44 J	<8.26
DASD0100		Sediment (Drainage)	October 2002	270	600	<0.69	<0.69			0.034 J				<0.69			<0.69
DASD0200		Sediment (Drainage)	October 2002	87 J	850	<0.82	<0.82			<0.82				<0.82			<0.82
DASD0300		Sediment (Drainage)	October 2002	9.4 J	93 J	<0.38	<0.38			<0.38				<0.38			<0.38
DASD0400		Sediment (Drainage)	October 2002	43 J	150 J	<0.76	<0.76			<0.76				<0.76			<0.76
DASD0500		Sediment (Drainage)	October 2002	960	1,700	<1.1	0.058 J			<1.1				<1.1			0.23 J
DASD6200		Sediment (Drainage)	October 2002	130 J	700 J	<0.91	<0.91			<0.91				<0.91			0.051 J
SASS1800		Sediment (Drainage)	October 2002	16 J	110 J	<0.58	<0.58			<0.58				<0.58			<0.58
SASS2300		Sediment (Drainage)	October 2002	7.3 J	40 J	<0.35	<0.35			<0.35				<0.35			<0.35
SASS2800		Sediment (Drainage)	October 2002	20 J	170 J	<0.7	<0.7			<0.7				0.074 J			<0.7
SASS3000		Sediment (Drainage)	October 2002	24 J	100 J	<0.51	<0.51			<0.51				<0.51			<0.51
SASS3800		Sediment (Drainage)	October 2002	69 J	490	<0.8	<0.8			<0.8				<0.8			<0.8
SASS4300		Sediment (Drainage)	October 2002	43 J	350 J	<0.85	<0.85			<0.85				<0.85			<0.85
SASS4600		Sediment (Drainage)	October 2002	23 J	300	<0.48	<0.48			<0.48				<0.48			0.085 J
BKSD0100		Sediment (Drainage)	October 2002	16 J	100 J	<0.39	<0.39			<0.39				<0.39			<0.39
	MT	CA Cleanup Levels	•	460 ⁵	2,000	35 ³	320 ⁴	-	48,000 ⁴	24,000 ⁴	1,400 4	140 ³	1.4		1,400 ³	24,000 ⁴	8,000 4

										Semi-Volatile 0	Organic Comp	ounds (mg/kg)						
Sample ID	Sample Location	Sample Type	Date Collected	3-&4- Methylphenol	N-nitroso-di-n- propylamine	Benzoic Acid	Bis(2- ethylhexyl)p hthalate	Butyl Benzyl Phthalate	Chrysene	Dibenzofuran	Di-n-butyl phthalate	Fluoranthene	Fluorene	Hexachloro benzene	Indeno(1,2,3- cd) pyrene	Pentachloro phenol	Phenanthrene	Pyrene
BK01SD			January 2005	<8	<8	96 R			14.2			2.08 J	<3.2			<16	2.48 J	<3.2
BK02SD			January 2005	<6.51	<6.51	78.1 R			8.89			<2.6	<2.6			<13	<2.6	<2.6
CR01SD ¹			January 2005	14.7	<6.87	82.5 R			2.97			4.96	1.21 J			<13.7	4.66	3.75
CR02SD ¹			January 2005	<5.89	<5.89	70.6 R			<2.35			<2.35	<2.35			<11.8	<2.35	<2.35
CR03SD ¹			January 2005	4.26 J	<5.88	70.5 R			<2.35			<2.35	<2.35			<11.8	<2.35	<2.35
DA01SD ²			January 2005	<8.37	<8.37	33.8 J			<3.35			1.99 J	<3.35			<16.7	<3.35	2.44 J
DA02SD ²			January 2005	<6.26	<6.26	297 J			<2.51			<2.51	<2.51			<12.5	<2.51	<2.51
DA03SD ²			January 2005	<5.72	<5.72	68.6 R			<2.29			<2.29	<2.29			<11.4	<2.29	<2.29
DA04SD ²			January 2005	<6.48	<6.48	77.8 R			<2.59			<2.59	<2.59			9.41 J	<2.59	<2.59
DA05SD ²			January 2005	<7.73	<7.73	92.8 R			<3.09			<3.09	<3.09			5.35 J	<3.09	<3.09
DA06SD ²			January 2005	<11.1	<11.1	134 R			<4.46			<4.46	<4.46			11.4 J	<4.46	<4.46
DA07SD ²			January 2005	<8.65	<8.65	104 R			7.72			<3.46	7.82			2520	17.8	11.3
DA08SD ²			January 2005	<10.5	<10.5	126 R			<4.2			<4.2	<4.2			<21	<4.2	<4.2
DA09SD ²			January 2005	5.24 J	18.5	143 R			<4.77			<4.77	<4.77			45.3	<4.77	0.971 J
DA10SD ²			January 2005	<8.26	<8.26	99.2 R			2.71 J			8.76	<3.31			90.4	6.64	9.26
DASD0100		Sediment (Drainage)	October 2002				0.19 J		0.036 J			<0.69	<0.69			0.85 J	0.036 J	0.041 J
DASD0200		Sediment (Drainage)	October 2002				0.047 J		<0.82			<0.82	<0.82			<5	<0.82	<0.82
DASD0300		Sediment (Drainage)	October 2002				<0.38		<0.38			<0.38	<0.38			<2.3	<0.38	<0.38
DASD0400		Sediment (Drainage)	October 2002				<0.76		<0.76			<0.76	<0.76			<4.6	<0.76	<0.76
DASD0500		Sediment (Drainage)	October 2002				0.1 J		0.2 J			0.14 J	0.75 J			4.3 J	4.3	<0.73
DASD6200		Sediment (Drainage)	October 2002				<0.91		<0.91			<0.91	<0.91			<5.6	<0.91	<0.91
SASS1800		Sediment (Drainage)	October 2002				<0.58		<0.58			<0.58	<0.58			<3.5	<0.58	<0.58
SASS2300		Sediment (Drainage)	October 2002				0.041 J		<0.35			<0.35	<0.35			<2.2	<0.35	<0.35
SASS2800		Sediment (Drainage)	October 2002				<0.7		<0.7			<0.7	<0.7			<4.3	<0.7	<0.7
SASS3000		Sediment (Drainage)	October 2002				<0.51		<.51			<0.51	<0.51			<3.1	<0.51	<0.51
SASS3800		Sediment (Drainage)	October 2002				<0.8		<0.8			<0.8	<0.8			<4.8	<0.8	<0.8
SASS4300		Sediment (Drainage)	October 2002				0.076 J		<0.85			<0.85	<0.85			<5.2	<0.85	<0.85
SASS4600		Sediment (Drainage)	October 2002				<0.48		<0.48			<0.48	<0.48			<2.9	<0.48	<0.48
BKSD0100		Sediment (Drainage)	October 2002				<0.39		<0.39	<0.39		<0.39	<.39			<2.4	<0.39	<0.39
	MTC	A Cleanup Levels	-	80.000 ³	0.14 ³	320,000 4	71 ³		140 ³	80 ⁴	8.000 4	3,200 4	3,200,000 4	0.63 ³		2.5	_	2,400 4

							Volatil	e Organic Compound	ls (µg/kg)				Dio	xins/Furans (µg/k	(g)	Ino	rganics (mg/	/kg)
Sample ID	Sample Location	Sample Type	Date Collected	1,2,4- Trimethylbe nzene	1,2,3- Trichloropro pane	1,3,5- Trimethylbe nzene	Acetone	Dichloromethane (Methylene Chloride)	m,p-Xylenes	Naphthalene	o-Xylene	Toluene	2,3,7,8-TCDD (TEQ 1987 EPA)	2,3,7,8-TCDD (1989 I-TEQ)	2,3,7,8-TCDD (TEQ 1997 WHO)	Antimony	Arsenic	Beryllium
BK01SD			January 2005															
BK02SD			January 2005						1									
CR01SD ¹			January 2005						1									
CR02SD ¹			January 2005						1									
CR03SD ¹			January 2005															
DA01SD ²			January 2005															
DA02SD ²			January 2005															
DA03SD ²			January 2005															
DA04SD ²			January 2005															
DA05SD ²			January 2005															
DA06SD ²			January 2005															
DA07SD ²			January 2005															
DA08SD ²			January 2005															
DA09SD ²			January 2005															
DA10SD ²			January 2005															
DASD0100		Sediment (Drainage)	October 2002					<21	<11		<11					<9.5	1.8	0.34 J
DASD0200		Sediment (Drainage)	October 2002					<25	<13		<13					<11.2	5.7	0.7 J
DASD0300		Sediment (Drainage)	October 2002					<12	<5.7		<5.7					<11.3	1.5 J	0.21 J
DASD0400		Sediment (Drainage)	October 2002					3.3 J	3.5 J		<12					5.5 J	4.9	0.8 J
DASD0500		Sediment (Drainage)	October 2002					<33	<17		<17					<11	6.3	0.47 J
DASD6200		Sediment (Drainage)	October 2002					<27	6.9 J		2.1 J					5.2 J	3.4	0.3 J
SASS1800		Sediment (Drainage)	October 2002					<18	<8.6		<8.6					<9.7	<2.4	0.6 J
SASS2300		Sediment (Drainage)	October 2002					3.4 J	<5.1		<5.1					<10.5	<2.6	0.3 J
SASS2800		Sediment (Drainage)	October 2002					8.1 J	<11		<11					3.8	0.6 J	1.2
SASS3000		Sediment (Drainage)	October 2002					<16	<7.7		<7.7					<10.9	1.6	0.62 J
SASS3800		Sediment (Drainage)	October 2002					9.8 J	<12		<12					<10.9	4.7	0.5 J
SASS4300		Sediment (Drainage)	October 2002					7.1 J	<13		<13					<9.6	3.8	0.6 J
SASS4600		Sediment (Drainage)	October 2002					<15	<7.2		1.4 J					<10.4	2.2	0.59 J
BKSD0100		Sediment (Drainage)	October 2002					3.4 J	<5.9		<5.9					<11.8	4.1	0.6 J
	MTC	CA Cleanup Levels		-	0.033 ³	800 ⁴	72,000 ⁴	0.02	9	5	9	7	0.0000000055	0.000000005 5	0.000000005 5	32 ⁴	20	160 ⁴

								Inorganic	s (mg/kg)				
Sample ID	Sample Location	Sample Type	Date Collected	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
BK01SD			January 2005										
BK02SD			January 2005										
CR01SD ¹			January 2005										
CR02SD ¹			January 2005										
CR03SD ¹			January 2005										
DA01SD ²			January 2005										
DA02SD ²			January 2005										
DA03SD ²			January 2005										
DA04SD ²			January 2005										
DA05SD ²			January 2005										
DA06SD ²			January 2005										
DA07SD ²			January 2005										
DA08SD ²			January 2005										
DA09SD ²			January 2005										
DA10SD ²			January 2005										
DASD0100		Sediment (Drainage)	October 2002	0.62 J	11.4	15.1	14.6 J	0.03	11.3	8.5	<1.9	<0.9	172
DASD0200		Sediment (Drainage)	October 2002	0.7 J	20	25.8	38.8	0.06	23.7	6.6	<2.2	0.6 J	194
DASD0300		Sediment (Drainage)	October 2002	0.4 J	8.8	4.8	4.8 J	0.01 J	8.6	<1.1	<2.3	<1.1	46.9
DASD0400		Sediment (Drainage)	October 2002	1.2	24.4	23.8	158	0.07	26.4	2.6	<2.1	<2.6	160
DASD0500		Sediment (Drainage)	October 2002	1.19	15.7	19.1	33	0.04	16.9	3.2	<2.2	<1.1	225
DASD6200		Sediment (Drainage)	October 2002	1 J	7	13.3	<20.4	0.04	9.9	10.5	<2	<2.6	141
SASS1800		Sediment (Drainage)	October 2002	0.8 J	16.2	19.7	29.3	0.04	19.5	4.5	<1.9	0.6 J	89.6
SASS2300		Sediment (Drainage)	October 2002	<1.1	7.2	4.9	6.4 J	0.01 J	7.4	<4.2	<2.1	0.5 J	37.7
SASS2800		Sediment (Drainage)	October 2002	17.2	16.2	36.2	0.04	16.2	2.4	<1.9	0.7 J	90.3	3.8
SASS3000		Sediment (Drainage)	October 2002	0.86 J	18.2	18	21.1 J	0.03	15.9	3	<2.2	<1.1	99.3
SASS3800		Sediment (Drainage)	October 2002	0.5 J	15.8	20.7	51.7	0.03	18	<4.4	<2.2	<1.1	105
SASS4300		Sediment (Drainage)	October 2002	0.6 J	17.1	20.2	39.8	0.05	18.4	5.6	<1.9	0.6 J	123
SASS4600		Sediment (Drainage)	October 2002	1.16	19	23.4	70.2	0.06	19.8	5.4	<2.1	<1	118
BKSD0100		Sediment (Drainage)	October 2002	<1.2	17.7	21.5	44	0.03	22.9	<4.7	<2.4	0.8 J	151
	MTC	CA Cleanup Levels		2	2,000(crIII)	3,200 4	1,000	24	1,600	400 ⁴	400 4	5.6	24000 ⁴

Notes:

Values reported on a dry-weight basis

Shaded and **bolded** analytical results indicate concentration exceeds state cleanup criterion.

μg/kg = microgram per kilogram; mg/kg = milligram per kilogram

¹Sample concentration compared to backround sample BK01SD to determine if compound concentration is elevated.

²Sample concentration compared to backround sample BKO2SD to determine if compound concentration is elevated.

³Soil, Method B, Carcinogen, Standard Formula Value, Direct Contact (ingestion only), unrestricted land use.

 $^{^4}$ Soil, Method B, Non-carcnogen, Standard Formula Value, Direct Contact (ingestion only), unrestricted land use.

 $^{^5\}mbox{Soil},$ Method B, accounting for ecological risk, unrestricted land use.

J = The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Groundwater Chemical Analytical Results

	1				1										
			Petroleum Hydro	ocarbons (mg/L)		Т	T		Semi-Volati	e Organic Compounds	(µg/L)	1	T	ı	
	Sample				1,2-	1,4-	2,4,5-	2,4,6-	2,4-	2-	3-&4-		4,6-Dinitro-2-	4-Chloro-3-	
Sample ID	_	Date Collected	DRPH	ORPH	Dichlorobenzene	Dichlorobenzene	trichlorophenol	Trichlorophenol	dichlorophenol	methylnaphthalene	methylphenol	4-nitroaniline	methylphenol	methylphenol	Acenaphthene
Process Area	•			•	•	•	•					•	•		
06121019		December 2006	0.620	NA			NA		NA	NA	NA	NA			NA
07030023	1	March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070121	MW-09	July 2007	0.062 J	NA			NA		NA	NA	NA	NA			NA
07119021	1	November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09080704		August 2009	<0.00025	NA			NA		NA	NA	NA	NA			NA
06121026		December 2006	2.8	NA			NA		NA	NA	NA	NA			NA
07030043		March 2007	2.8	NA			NA		NA	NA	NA	NA			NA
07070135	MW-10	July 2007	3.1	NA			NA		NA	NA	NA	NA			NA
07119033	IVIVV-IO	November 2007	2.2	NA			NA		NA	NA	NA	NA			NA
08060016		Jun-08	NA	NA			NA		NA	NA	NA	NA			NA
09080727		August 2009	NA	NA			NA		NA	NA	NA	NA			NA
PAGWP1109	PAP11	June 2005	0.734 J	<0.477			NA		NA	103	NA	3.03			14.5
PAGWP1208	PAP12	June 2005	32.9	1.84 J			NA		NA	<0.473	NA	<1.89			<0.189
PAGWP1308	PAP13	June 2005	0.342 J	<0.476			NA		NA	<0.488	NA	<1.95			<0.195
06121036		December 2006	7.2	NA			NA		NA	NA	NA	NA			NA
07030015	RW-03	March 2007	4	NA			NA		NA	NA	NA	NA			NA
07070122		July 2007	3	NA			NA		NA	NA	NA	NA			NA
07119035		November 2007	12	NA			NA		NA	NA	NA	NA			NA
PAGW0711		October 2002			1.2 J		1 J	2.4 J	<9.6	130					14
PAG20811		October 2002			<9.6		<9.6	<9.6	<9.6	<9.6					<9.6
PAGW0907		October 2002			<9.6		<9.6	<9.6	<9.6	5.9 J					1.1 J
PAGW1008		October 2002			<9.6		2.6 J	0.73 J	2.2 J	42					5.3 J
PAGW2107		October 2002			<9.6		<9.6	<9.6	<9.6	5 J					1.4 J
PAGW2212		October 2002			<9.6		<9.6	1.5 J	<9.6	1.1 J					<9.6
North Stockpile				T	1	1	T					1	T	T	
NAGWP0705	NAP07	June 2005	<0.2337 J	<0.473 J			<1.9		<1.9	<0.476	NA	NA			<0.19
NAGWP0805	NAP08	June 2005	1.07 J	1.25 J			<1.9		<1.9	<0.476	NA	NA			<0.19
NAGWP0906	NAP09	June 2005	0.79 J	0.222 J			0.568 J		0.828 J	<0.476	NA	NA			<0.19
NAGWP1005	NAP10	June 2005	0.121 J	0.114 J			<1.9		<1.9	<0.476	NA	NA			<0.19
NAGWW0106		June 2005	<0.237	<0.475			<1.88		<1.88	<0.471	NA NA	NA NA			<0.188
W-01		September 2005	<0.244	NA NA			NA NA		NA NA	NA NA	NA	NA NA			NA NA
06010007		January 2006	<0.050	NA NA			NA NA		NA NA	NA NA	NA NA	NA NA			NA NA
06040008		April 2006	<0.052 J	NA NA			NA NA		NA NA	NA NA	NA	NA NA			NA NA
06080120	NAW01 /W 01	August 2006	<0.053	NA NA			NA NA		NA NA	NA NA	NA NA	NA NA			NA NA
06121001 07030025	NAW01/W-01	December 2006 March 2007	0.047 J 0.084 J	NA NA			NA NA		NA NA	NA NA	NA NA	NA NA			NA NA
07030025	1	July 2007	0.084 J	NA NA			NA NA		NA NA	NA NA	NA NA	NA NA			NA NA
07070130	1	November 2007	<0.050	NA NA			NA NA		NA NA		NA NA	NA NA			NA NA
08060013	1	March 2009	<0.050 NA	NA NA			NA NA		NA NA	NA NA	NA NA	NA NA			NA NA
09080721	1	August 2009	NA NA	NA NA			NA NA		NA NA	NA NA	NA NA	NA NA			NA NA
NAGWW0106D	NAW01	June 2005	<0.236	<0.473			<1.9		<1.9	0.212 J	NA NA	NA NA			<0.19
INVOAMMOTOOD	INAVVOT	Julie 2005	\U.230	NO.413			`1.9		×1.9	U.Z1Z J	INA	INA			\U.19

			Petroleum Hydro	ocarbons (mg/L)					Semi-Volati	le Organic Compounds	(µg/L)				
	Sample				1,2-	1,4-	2,4,5-	2,4,6-	2,4-	2-	3-&4-		4,6-Dinitro-2-	4-Chloro-3-	
Sample ID	Location	Date Collected	DRPH	ORPH	•	Dichlorobenzene	* *		dichlorophenol		methylphenol	4-nitroaniline	methylphenol	methylphenol	Acenaphthene
NAGWW0403		June 2005	<0.237	<0.47			<1.9		<1.9	3.32	NA	NA			0.383
W-04	NAW04/W-04		<0.244	NA			NA		NA	NA	NA	NA			NA
06010003	1	January 2006	0.095	NA			NA		NA	NA	NA	NA			NA
06040010		April 2006	0.095 J	NA			NA		NA	NA	NA	NA			NA
06080122	1	August 2006	0.095 J	NA			NA		NA	NA	NA	NA			NA
06121014	1	December 2006	0.053 J	NA			NA		NA	NA	NA	NA			NA
07030026	1	March 2007	0.043 J	NA			NA		NA	NA	NA	NA			NA
07070126	1	July 2007	0.087 J	NA			NA		NA	NA	NA	NA			NA
07119028		November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09080706	1	August 2009	<0.250 J	NA			NA		NA	NA	NA	NA			NA
NAGWW0504		June 2005	0.283 J	0.0952 J			<1.89		<1.89	0.643	NA	NA			0.078 J
W-05		September 2005	<0.243	NA			NA		NA	NA	NA	NA			NA
06010006		January 2006	0.210	NA			NA		NA	NA	NA	NA			NA
06040012		April 2006	0.210 J	NA			NA		NA	NA	NA	NA			NA
06080121	1	August 2006	0.420 J	NA			NA		NA	NA	NA	NA			NA
06121018	NAW05/W-05	December 2006	0.150 J	NA			NA		NA	NA	NA	NA			NA
07030031	NAW05/ W-05	March 2007	0.140	NA			NA		NA	NA	NA	NA			NA
07070127]	July 2007	1.2	NA			NA		NA	NA	NA	NA			NA
07119030]	November 2007	0.550	NA			NA		NA	NA	NA	NA			NA
08060011		June 2008	NA	NA			NA		NA	NA	NA	NA			NA
09030707]	March 2009	NA	NA			NA		NA	NA	NA	NA			NA
09080724		August 2009	NA	NA			NA		NA	NA	NA	NA			NA
NAGWW0603		June 2005	0.284 J	<0.473			<1.89		<1.89	2.93	NA	NA			0.348
W-06]	September 2005	0.0789 J	NA			NA		NA	NA	NA	NA			NA
06010001		January 2006	0.270	NA			NA		NA	NA	NA	NA			NA
06040011		April 2006	<0.052 J	NA			NA		NA	NA	NA	NA			NA
06080118	NAW06/W-06	August 2006	<0.053	NA			NA		NA	NA	NA	NA			NA
06121017		December 2006	<0.240	NA			NA		NA	NA	NA	NA			NA
07030027	1	March 2007	0.18	NA			NA		NA	NA	NA	NA			NA
07070129	1	July 2007	0.069 J	NA			NA		NA	NA	NA	NA			NA
07119031	1	November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09080723		August 2009	NA	NA			NA		NA	NA	NA	NA			NA
06121024		December 2006		NA			NA		NA	NA	NA	NA			NA
07030044	1	March 2007	0.590	NA			NA		NA	NA	NA	NA			NA
07070133	MW-11 (lower	July 2007	1.9	NA			NA		NA	NA	NA	NA			NA
07119034	interval)	November 2007	1.4	NA			NA		NA	NA	NA	NA			NA
08060015	1	June 2008	NA	NA			NA		NA	NA NA	NA	NA			NA
09030710	1	March 2009	NA	NA			NA		NA	NA	NA	NA			NA
09080726		August 2009	0.320 J	NA			NA		NA	NA	NA	NA			NA
06121025	MW-12 (upper	December 2006	0.760	NA			NA		NA	NA	NA	NA			NA
07030045	interval)	March 2007	0.340	NA			NA		NA	NA	NA	NA			NA
07070134		July 2007	1.0	NA			NA		NA	NA	NA	NA			NA
06121021	1	December 2006	0.52	NA			NA		NA	NA	NA	NA			NA
07030029	1	March 2007	2.7	NA			NA		NA	NA	NA	NA			NA
07070132]	July 2007	0.38	NA			NA		NA	NA	NA	NA			NA
07119032	MW-13	November 2007	2.2	NA			NA		NA	NA	NA	NA			NA
08060014]	June 2008	NA	NA			NA		NA	NA	NA	NA			NA
09030709]	March 2009	NA	NA			NA		NA	NA	NA	NA			NA
09080725		August 2009	NA	NA			NA		NA	NA	NA	NA			NA

			Petroleum Hydro	ocarbons (mg/L)					Semi-Volati	le Organic Compounds	(µg/L)				
	Sample				1,2-	1,4-	2,4,5-	2,4,6-	2,4-	2-	3-&4-		4,6-Dinitro-2-	4-Chloro-3-	
Sample ID	Location	Date Collected	DRPH	ORPH	•	Dichlorobenzene			dichlorophenol		methylphenol	4-nitroaniline	methylphenol	methylphenol	Acenaphthene
06121012		December 2006	0.041 J	NA			NA		NA	NA	NA	NA			NA
07030028		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070128	MW-14	July 2007	0.095 J	NA			NA		NA	NA NA	NA	NA			NA
07119027		November 2007	<0.050	NA NA			NA NA		NA NA	NA NA	NA	NA NA			NA NA
08060010		June 2008	NA	NA			NA		NA	NA	NA	NA			NA
NAGW0107		October 2002													
NAGW0207		October 2002													
NAGW0308		October 2002													
NAGW0406		October 2002													
NAGW0508		October 2002													
NAGW0611		October 2002													
South Stockpile	Area						-		-	-					
SAGWMW105		June 2005	<0.237	<0.474			NA		NA	<0.474	<3.79	NA			<0.19
SAGWMW105D		June 2005	<0.237	<0.473			NA		NA	<0.475	<3.8	NA			<0.19
MW-01		September 2005	0.124 J	NA			NA		NA	NA	NA	NA			NA
06010008		January 2006	0.120	NA			NA		NA	NA	NA	NA			NA
06040006		April 2006	0.110 J	NA			NA		NA	NA	NA	NA			NA
06080107	MW-1	August 2006	0.110	NA			NA		NA	NA	NA	NA			NA
06121007		December 2006	<0.240	NA			NA		NA	NA	NA	NA			NA
07030016		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070119		July 2007	260	NA			NA		NA	NA	NA	NA			NA
07119019		November 2007	120	NA			NA		NA	NA	NA	NA			NA
08060006		June 2008	NA	NA			NA		NA	NA	NA	NA			NA
SAGWMW205		June 2005	0.212 J	<0.478			NA		NA	<0.474	<3.8	NA			<0.19
MW-02		September 2005	<0.244	NA			NA		NA	NA	NA	NA			NA
06010009		January 2006	0.140	NA			NA		NA	NA	NA	NA			NA
06040005		April 2006	0.086 J	NA			NA		NA	NA	NA	NA			NA
06080106	MW-2	August 2006	0.054	NA			NA		NA	NA	NA	NA			NA
06121007		December 2006	<0.240	NA			NA		NA	NA	NA	NA			NA
07030019		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070120		July 2007	0.069 J	NA			NA		NA	NA	NA	NA			NA
07119020		November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09080719		August 2009	<0.250	NA			NA		NA	NA	NA	NA			NA
SAGWMW407		June 2005	<0.237	<0.473			NA		NA	<0.475	<3.8	NA			<0.19
MW-04		September 2005	<0.237	NA			NA		NA	NA	NA	NA			NA
06010010		January 2006	0.08	NA			NA		NA	NA	NA	NA			NA
06040004		April 2006	0.160 J	NA			NA		NA	NA	NA	NA			NA
06080105	MW-4	August 2006	0.052	NA			NA		NA	NA	NA	NA			NA
06121008		December 2006	0.084 J	NA			NA		NA	NA	NA	NA			NA
07030020		March 2007	0.083 J	NA			NA		NA	NA	NA	NA			NA
07070118		July 2007	0.044 J	NA			NA		NA	NA NA	NA	NA			NA
07119018		November 2007	<0.050	NA			NA NA		NA	NA NA	NA	NA NA		-	NA NA
09080720	04504	August 2009	<0.250	NA			NA NA		NA NA	NA 10.5	NA 1.04	NA NA		-	NA 10.0
SAGWP0104	SAP01	June 2005	0.606 J	0.606 J			NA NA		NA NA	<0.5	4.64	NA NA		 	<0.2
SAGWP0203	SAP02	June 2005	0.274 J	0.443 J			NA		NA	<0.485	<3.88	NA NA		-	<0.194
SAGWP0302	SAP03	June 2005	0.271 J	0.277 J			NA NA		NA	<0.476	<3.81	NA NA		-	<0.19
SAGWP0404	SAP04	June 2005	0.0925 J	<0.473			NA NA		NA NA	<0.476	<3.81	NA NA		<u> </u>	<0.19
SAGWP0505	SAP05	June 2005	0.352 J	0.205 J			NA NA		NA NA	<0.481	<3.85	NA NA		1	<0.192
SAGWP0602	SAP06	June 2005	0.293 J	0.616 J			NA		NA	<0.5	<4	NA			<0.2

			Petroleum Hydro	ocarbons (mg/L)					Semi-Volati	le Organic Compounds	s (µg/L)				
	Sample				1,2-	1,4-	2,4,5-	2,4,6-	2,4-	2-	3-&4-		4,6-Dinitro-2-	4-Chloro-3-	
Sample ID	Location	Date Collected	DRPH	ORPH	•	Dichlorobenzene			dichlorophenol	methylnaphthalene	methylphenol	4-nitroaniline	methylphenol	methylphenol	Acenaphthene
SAGWW0203		June 2005	<0.236	<0.472			NA		NA	3.01	<3.8	NA			0.377
W-02		September 2005	<0.238	NA			NA		NA	NA	NA	NA			NA
06010012		January 2006	<0.049	NA			NA		NA	NA	NA	NA			NA
06040002		April 2006	<0.054 J	NA			NA		NA	NA	NA	NA			NA
06080102	SAW02/W-02	August 2006	<0.053	NA			NA		NA	NA	NA	NA			NA
06121002	<i>5,11102,11</i> 02	December 2006	<0.240	NA			NA		NA	NA	NA	NA			NA
07030017		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070114		July 2007	0.037 J	NA			NA		NA	NA	NA	NA			NA
07119014		November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09080701		August 2009	<0.250	NA			NA		NA	NA	NA	NA			NA
SAGWW0305		June 2005	<0.238	<0.475			NA		NA	4.07	<3.82	NA			0.597
W-03		September 2005	<0.239	NA			NA		NA	NA	NA	NA			NA
06010011		January 2006	<0.049	NA			NA		NA	NA	NA	NA			NA
06040001		April 2006	<0.052	NA			NA		NA	NA	NA	NA			NA
06080101	SAW03/W-03	August 2006	<0.052	NA			NA		NA	NA	NA	NA			NA
06121015	,	December 2006	<0.240	NA			NA		NA	NA	NA	NA			NA
07030018		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070113		July 2007	0.036 J	NA			NA		NA	NA	NA	NA			NA
07119013		November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09070702		August 2009	<0.250	NA			NA		NA	NA	NA	NA			NA
SAGWW0703		June 2005	<0.236	<0.473			NA		NA	3.78	<3.79	NA			0.453
W-07		September 2005	0.287 J	NA			NA		NA	NA	NA	NA			NA
06010005		January 2006	<0.048	NA			NA		NA	NA	NA	NA			NA
06040003		April 2006	<0.052 J	NA			NA		NA	NA	NA	NA			NA
06080103	SAW07/W-07	August 2006	<0.052	NA			NA		NA	NA	NA	NA			NA
06121003	,	December 2006	<0.240	NA			NA		NA	NA	NA	NA			NA
07030021		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070115		July 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07119015		November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09080703		August 2009	<0.250 J	NA			NA		NA	NA	NA	NA			NA
SAGWW0806		June 2005	<0.237	<0.474			NA		NA	4.02	<3.81	NA			0.432
W-08		September 2005	NA	NA			NA		NA	NA	NA	NA			NA
06010004		January 2006	0.051	NA			NA		NA	NA	NA	NA			NA
06040007		April 2006	0.079 J	NA			NA		NA	NA	NA	NA			NA
06080104	0.0000 // 0.00	August 2006	0.076	NA			NA		NA	NA	NA	NA			NA
06121006	SAW08/W-08	December 2006	<0.240	NA			NA		NA	NA	NA	NA			NA
07030022		March 2007	<0.130	NA			NA		NA	NA	NA	NA			NA
07070117		July 2007	0.045 J	NA			NA		NA	NA	NA	NA			NA
07119017		November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
08060005		June 2008	NA NA	NA			NA		NA	NA NA	NA	NA			NA
09080704		August 2009	<0.250 J	NA			NA		NA	NA	NA	NA			NA
06121004		December 2006	<0.250	NA			NA		NA	NA NA	NA	NA			NA
07030028		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070116	MW-15	July 2007	0.071 J	NA			NA		NA	NA	NA	NA			NA
07119016		November 2007	<0.050	NA			NA		NA	NA NA	NA	NA			NA
09080705		August 2009	<0.250 J	NA	<u> </u>		NA		NA	NA	NA	NA			NA

			Petroleum Hydro	ocarbons (mg/L)					Semi-Volatil	le Organic Compounds	s (μg/L)				
	Sample				1,2-	1,4-	2,4,5-	2,4,6-	2,4-	2-	3-&4-		4,6-Dinitro-2-	4-Chloro-3-	
Sample ID	Location	Date Collected	DRPH	ORPH	Dichlorobenzene	Dichlorobenzene	trichlorophenol	Trichlorophenol	dichlorophenol	methylnaphthalene	methylphenol	4-nitroaniline	methylphenol	methylphenol	Acenaphthene
SAGW1107		October 2002				0.059 J				<0.2			<0.2	0.04 J	
SAGW1210		October 2002				NA				0.021 J			<0.2	0.12 J	
SAGW1308		October 2002				0.028 J				<0.2			<0.2	0.063 J	
SAGW1408		October 2002				NA				0.012 J			<0.2	0.041 J	
SAGW1508		October 2002				NA				<0.2			<0.2	<0.48	
SAGW1608		October 2002				NA				<0.2			<0.2	<0.48	
SAGW1707		October 2002				0.038 J				<0.2			<0.2	0.036 J	
SAGW1807		October 2002				NA				<0.2			<0.2	0.037 J	
SAGW1908		October 2002				0.018 J				<0.2			<0.2	0.041 J	
SAGW2007		October 2002				0.034 J				<0.2			<0.2	0.043 J	
SAGWMW02		October 2002				NA				<0.2			0.084 J	0.057 J	
Offsite (Downgra	dient) Wells	-		-	-		•	-		-				·	
06121009		December 2006	<0.250	NA			NA		NA	NA	NA	NA			NA
07030012		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070124	MW-16	July 2007	0.069 J	NA			NA		NA	NA	NA	NA			NA
07119024	INIAA-TQ	November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09030704		June 2008	NA	NA			NA		NA	NA	NA	NA			NA
09080708		August 2009	<0.250	NA			NA		NA	NA	NA	NA			NA
06121010		December 2006	0.072 J	NA			NA		NA	NA	NA	NA			NA
07030013		March 2007	0.048 J	NA			NA		NA	NA	NA	NA			NA
07070125		July 2007	0.074 J	NA			NA		NA	NA	NA	NA			NA
07119025	MW-17	November 2007	0.230	NA			NA		NA	NA	NA	NA			NA
08060009		June 2008	NA	NA			NA		NA	NA	NA	NA			NA
09030706		March 2009	NA	NA			NA		NA	NA	NA	NA			NA
09090710		August 2009	NA	NA			NA		NA	NA	NA	NA			NA
06121011		December 2006	<0.240	NA			NA		NA	NA	NA	NA			NA
07030014		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070123		July 2007	0.077 J	NA			NA		NA	NA	NA	NA			NA
07119023	MW-18	November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
08060008		June 2008	NA	NA			NA		NA	NA	NA	NA			NA
09030705		March 2009	NA	NA			NA		NA	NA	NA	NA			NA
09080709		August 2009	<0.250	NA			NA		NA	NA	NA	NA			NA
06121020		December 2006	<0.250	NA			NA		NA	NA	NA	NA			NA
7030015		March 2007	<0.120	NA			NA		NA	NA	NA	NA			NA
07070122	MW-19	July 2007	0.083 J	NA			NA		NA	NA	NA	NA			NA
07119022		November 2007	<0.050	NA			NA		NA	NA	NA	NA			NA
09080707		August 2009	<0.250	NA			NA		NA	NA	NA	NA			NA
MTCA Method B	Cleanup Level		0.5	0.5	720.0		1,600	7.95 ca	48		80				960
EPA Region 9 PR	G				370.00		3,600	4	110		180	3.20			370

										Semi-Volatile	Organic Comp	ounds (µg/L)							
Commis ID	Sample	Data Callantad	Anthracene	Benzo(A)	Benzoic Acid	Bis(2-ethylhexyl) Phthalate	Butylbenzyl Phthalate	Chrysene	Dibenzofuran	Diethyl phthalate	Dimethyl Phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Isonhorone	Naphthalene	PCP	Phenanthrene
Sample ID Process Area	Location	Date Collected	Antinuoono	ununuoono	Aoiu	Tittilalato	Titildideo	Onlysons	Dibonzoraran	pirtiidiato	i intiididto	pinnalato	pittiaiato	Tidorantiioiio	Tidorono	юфпоголо	тарпананоно	1 01	Thomandiono
06121019		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	110	NA
07030023		March 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.22 J	NA NA
07070121	MW-09	July 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	1.5	NA NA
07119021	WW-05	November 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	2.1	NA NA
09080704		August 2009	NA NA	NA NA	NA NA		NA NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	2.6	NA NA
06121026		December 2006	NA NA	NA NA	NA		NA NA	NA	NA NA	NA		NA	NA NA	NA NA	NA NA		NA NA	1800	NA NA
07030043		March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	1300	NA
07070135	•	July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	1000	NA
07119033	MW-10	November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	870	NA
08060016		Jun-08	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	450	NA
09080727	•	August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	68	NA
PAGWP1109	PAP11	June 2005	3.97	0.191	NA		<2.84	<0.189	NA	NA		<1.89	NA	NA	10.9		24	2,690	18.3
PAGWP1208	PAP12	June 2005	<0.189	<0.189	NA		3.14	<0.189	NA	NA		1.63 J	NA	NA	<0.189		<0.473	<1.89	<0.189
PAGWP1308	PAP13	June 2005	<0.195	0.172 J	NA		<2.93	0.151 J	NA	NA		0.608 J	NA	NA	<0.195		<0.488	55.8	<0.195
06121036		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	16,000	NA
07030015	RW-03	March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	710	NA
07070122	KW-03	July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	3,800	NA
07119035		November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	6,600	NA
PAGW0711		October 2002	2.8 J			2 J			9.8					0.71 J	21	27	40	8,000	34
PAG20811		October 2002	<9.6			<9.6			<9.6					<9.6	<9.6	<9.6	<9.6	6.2 J	<9.6
PAGW0907		October 2002	<9.6			2.3 J			0.66 J					<9.6	1.7 J	<9.6	0.51 J	65	3.5 J
PAGW1008		October 2002	<9.6			3.6 J			3.1 J					<9.6	5.4 J	1.9 J	5.7 J	2,200	8.7 J
PAGW2107		October 2002	<9.6			2.1 J			0.66 J					<9.6	1.3 J	<9.6	0.77 J	65	2.2 J
PAGW2212		October 2002	<9.6			<9.6			0.62 J					<9.6	0.97 J	8.5 J	<9.6	2,400	0.88 J
North Stockpile	1					.								•	•				
NAGWP0705	NAP07	June 2005	NA	NA	NA		NA	NA	<1.9	NA		NA	NA	<0.19	<0.19		<0.476	<1.9	<0.19
NAGWP0805	NAP08	June 2005	NA	NA	NA		NA	NA	0.278 J	NA		NA	NA	<0.19	0.11 J		<0.476	121	<0.19
NAGWP0906	NAP09	June 2005	NA	NA	NA		NA	NA	<1.9	NA		NA	NA	<0.19	<0.19		<0.476	875	<0.19
NAGWP1005	NAP10	June 2005	NA	NA	NA		NA	NA	<1.9	NA		NA	NA	<0.19	<0.19		<0.476	40.1	<0.19
NAGWW0106	ļ	June 2005	NA	NA	NA		NA	NA	<1.88	NA		NA	NA	<0.188	<0.188		<0.471	<1.88	0.0534 J
W-01		September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA NA		NA NA	<0.195 J	NA NA
06010007	•	January 2006	NA NA	NA NA	NA		NA NA	NA NA	NA NA	NA NA		NA	NA NA	NA NA	NA NA		NA NA	1.44	NA NA
06040008	ŀ	April 2006 August 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	<u> </u>	NA NA	<0.25 <0.25	NA NA
06080120 06121001	NAW01/W-01	December 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	-	NA NA	<0.25 40	NA NA
07030025	INVANOTA MA-OT	March 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	76	NA NA
07030025	ŀ	July 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	1	NA NA	<0.34 J	NA NA
07070130	ŀ	November 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	50	NA NA
08060013	•	March 2009	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	18	NA NA
09080721	ŀ	August 2009	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	2.1 J	NA NA
NAGWW0106D	NAW01	June 2005	NA NA	NA NA	NA NA		NA NA	NA NA	<1.9	NA NA		NA NA	NA NA	<0.19	<0.19		0.365 J	<1.9	<0.19
MAGVIVIOTOOD	INVANOT	Julic 2000	INA	INA	INA		INA	INA	`1.5	INA		INA	INA	10.13	·0.13	1	0.000)	71.3	·0.13

									!	Semi-Volatile	Organic Comp	ounds (µg/L)							
Sample ID	Sample Location	Date Collected	Anthracene	Benzo(A) anthracene	Benzoic Acid	Bis(2-ethylhexyl) Phthalate	Butylbenzyl Phthalate	Chrysene	Dibenzofuran	Diethyl phthalate	Dimethyl Phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Isophorone	Naphthalene	PCP	Phenanthrene
NAGWW0403	NAW04/W-04	June 2005	NA	NA	NA		NA	NA	0.665 J	NA		NA	NA	0.305	0.319		11.9	<1.9	1.01
W-04	,	September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.195 J	NA
06010003		January 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.25	NA
06040010		April 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06080122		August 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.25	NA
06121014		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.097	NA
07030026		March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.22 J	NA
07070126		July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.33 J	NA
07119028		November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
09080706		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.48 J	NA
NAGWW0504		June 2005	NA	NA	NA		NA	NA	<1.89	NA		NA	NA	0.0945 J	0.103 J		2.7	256	0.18 J
W-05		September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	385	NA
06010006		January 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	146	NA
06040012		April 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	134	NA
06080121		August 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	280	NA
06121018	NAW05/W-05	December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	160	NA
07030031	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	3.3 J	NA
07070127		July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	72	NA
07119030		November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	860	NA
08060011		June 2008	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	1000	NA
09030707		March 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	800	NA
09080724		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	540 J	NA
NAGWW0603		June 2005	NA	NA	NA		NA	NA	0.653 J	NA		NA	NA	0.238	0.459		10.8	153	0.889
W-06		September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	78.8	NA
06010001		January 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06040011		April 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.27	NA
06080118	NAW06/W-06	August 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	6.8	NA
06121017		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	25 J	NA
07030027	4	March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	14	NA
07070129		July 2007	NA	NA	NA		NA	NA	NA NA	NA		NA	NA NA	NA NA	NA		NA	12	NA NA
07119031		November 2007	NA	NA	NA		NA	NA NA	NA NA	NA		NA NA	NA NA	NA NA	NA		NA NA	420.2	NA NA
09080723		August 2009	NA	NA	NA		NA	NA NA	NA NA	NA		NA	NA NA	NA NA	NA NA		NA NA	13 J	NA NA
06121024	4	December 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA	NA NA	NA NA	NA NA		NA NA	920	NA NA
07030044 07070133	NAVA/ 4.4	March 2007 July 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	100 J 2,400	NA NA
07070133	MW-11 (lower	November 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	1,700	NA NA
08060015	interval)	June 2008	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	580	NA NA
09030710	- ""	March 2009	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	370	NA NA
09080726	-	August 2009	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	270 J	NA NA
06121025	MW-12	December 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	500	NA NA
07030045	(upper	March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	240	NA
07070134	interval)	July 2007	NA	NA	NA		NA NA	NA	NA	NA		NA	NA	NA	NA		NA	1,100	NA NA
06121021		December 2006	NA	NA	NA		NA NA	NA NA	NA NA	NA		NA	NA NA	NA NA	NA		NA NA	360	NA NA
07030029	1	March 2007	NA	NA NA	NA		NA NA	NA NA	NA NA	NA		NA	NA NA	NA NA	NA		NA NA	2,100	NA NA
07070132	1	July 2007	NA	NA	NA		NA NA	NA	NA NA	NA		NA	NA NA	NA NA	NA	†	NA	67 J	NA
07119032	MW-13	November 2007	NA	NA	NA		NA NA	NA NA	NA NA	NA		NA NA	NA NA	NA NA	NA NA	1	NA	3,500	NA NA
08060014	1414A-TO	June 2008	NA	NA NA	NA NA		NA NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA		NA	1,800	NA NA
09030709	1	March 2009	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA	1,200	NA NA
09080725	1	August 2009	NA NA																
03030725		August 2003	INA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	680	NA

									;	Semi-Volatile	Organic Comp	ounds (µg/L)							
Sample ID	Sample Location	Date Collected	Anthracene	Benzo(A) anthracene	Benzoic Acid	Bis(2-ethylhexyl) Phthalate	Butylbenzyl Phthalate	Chrysene	Dibenzofuran	Diethyl phthalate	Dimethyl Phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Isophorone	Naphthalene	PCP	Phenanthrene
06121012		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.19	NA
07030028		March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.25 J	NA
07070128	MW-14	July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.89	NA
07119027		November 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.5	NA NA
08060010		June 2008	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.5	NA NA
NAGW0107		October 2002	<9.6	14/1	14/1		<9.6	14/1	107	<9.6	<9.6	<9.6	14/1	107	14/1	<9.6	107	17 J	<9.6
NAGW0207		October 2002	<9.6				<9.6			0.72 J	<9.6	<9.6				<9.6		39	<9.6
NAGW0308		October 2002	<9.7				<9.7			<9.7	<9.7	<9.7				<9.7		92	<9.7
NAGW0406		October 2002	<0.2				<0.2			0.096 J	0.086 J	0.044 J				<0.2		0.24 J	<0.2
NAGW0508		October 2002	<0.2				<0.2			0.12 J	0.081 J	0.049 J				<0.2		1.3	<0.2
NAGW0611		October 2002	0.028 J				0.031 J			0.059 J	0.027 J	0.029 J				0.026 J		7.8	0.013 J
South Stockpile	Area						-	<u> </u>	•				•	•		•	•		
SAGWMW105		June 2005	<0.19	NA	<9.48		<2.84	NA	<1.9	<1.9		0.731 J	<1.9	<0.19	<0.19		<0.474	<1.9	0.0473 J
SAGWMW105D		June 2005	<0.19	NA	<9.51		<2.85	NA	<1.9	<1.9		0.614 J	<1.9	<0.19	<0.19		<0.475	<1.9	<0.19
MW-01		September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.211 J	NA
06010008		January 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06040006		April 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.25	NA
06080107	MW-1	August 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.25	NA
06121007		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.11	NA
07030016		March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.34	NA
07070119		July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	120	NA
07119019		November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	74	NA
08060006		June 2008	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
SAGWMW205		June 2005	<0.19	NA	<9.49		<2.85	NA	<1.9	<1.9		1.34 J	<1.9	<0.19	<0.19		<0.474	<1.9	<0.19
MW-02		September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.195 J	NA
06010009		January 2006	NA NA	NA	NA		NA	NA NA	NA NA	NA		NA	NA NA	NA NA	NA		NA NA	0.7	NA NA
06040005		April 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	0.48	NA NA
06080106 06121007	MW-2	August 2006 December 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.25 <0.10	NA NA
07030019		March 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	0.067 J	NA NA
07070120		July 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA	NA NA		NA	<0.35	NA NA
07119020		November 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.5	NA NA
09080719		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.47	NA
SAGWMW407		June 2005	<0.19	NA	<9.51		<2.85	NA	<1.9	<1.9		1.03 J	<1.9	<0.19	<0.19		<0.475	<1.9	<0.19
MW-04		September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.193 J	NA
06010010		January 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.22 J	NA
06040004		April 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.16 J	NA
06080105	MW-4	August 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.25	NA
06121008	IVI VV- 4	December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.097	NA
07030020		March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.15 J	NA
07070118		July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.35	NA
07119018		November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
09080720		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.74	NA
SAGWP0104	SAP01	June 2005	<0.2	NA	11.4 J		1.29 J	NA	<2	0.958 J		4.27	<0.2	<0.2	<0.2		<0.5	<2	<0.2
SAGWP0203	SAP02	June 2005	<0.194	NA	2.39 J		<2.91	NA	<1.94	0.579 J		<3.76	<0.194	<0.194	<0.194		<0.485	<1.94	<0.194
SAGWP0302	SAP03	June 2005	<0.19	NA	9.52 J		<2.86	NA	<1.9	<1.9		<1.9	<0.19	<0.19	<0.19		<0.476	<1.9	<0.19
SAGWP0404	SAP04	June 2005	<0.19	NA	<9.52 J		<2.86	NA	<1.9	<1.9		<1.9	<0.19	<0.19	<0.19		<0.476	<1.9	<0.19
SAGWP0505	SAP05	June 2005	<0.192	NA	<9.62 J		<2.88	NA	<1.92	<1.92		<1.92	<0.192	<0.192	<0.192		<0.481	<1.92	<0.192
SAGWP0602	SAP06	June 2005	<0.2	NA	<10 J		<3	NA	<2	<2		<2	<0.2	<0.2	<0.2	<u> </u>	<0.5	<2	<0.2

									;	Semi-Volatile	Organic Comp	ounds (µg/L)							
	Sample			Benzo(A)	Benzoic	Bis(2-ethylhexyl)	Butylbenzyl			Diethyl	Dimethyl	Di-n-butyl	Di-n-octyl						
Sample ID	Location	Date Collected	Anthracene	anthracene	Acid	Phthalate	Phthalate	Chrysene	Dibenzofuran	phthalate	Phthalate	phthalate	phthalate	Fluoranthene	Fluorene	Isophorone	Naphthalene	PCP	Phenanthrene
SAGWW0203		June 2005	<0.19	NA	<9.51		<2.85	NA	0.667 J	<1.9		<1.9	0.312 J	0.311	0.414		11.3	<1.9	0.973
W-02		September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA
06010012] [January 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06040002		April 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06080102	SAW02/W-02	August 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.25	NA
06121002	0/1W02/ W 02	December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.10	NA
07030017] [March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.34	NA
07070114] [July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.35	NA
07119014		November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
09080701		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.48	NA
SAGWW0305		June 2005	<0.191	NA	<9.55		<2.87	NA	1.07 J	<1.91		<1.91	0.448 J	0.348	0.521		13.2	<1.91	1.32
W-03		September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.191 J	NA
06010011		January 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06040001		April 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06080101	SAW03/W-03	August 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06121015	ļ ļ	December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.098	NA
07030018		March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.36	NA
07070113		July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.35	NA
07119013		November 2007	NA	NA	NA		NA	NA	NA NA	NA		NA	NA	NA NA	NA NA		NA	<0.5	NA
09070702		August 2009	NA 10.400	NA	NA 10, 47		NA 10.04	NA	NA 0.000 I	NA 11.00		NA 11.00	NA 10.100	NA 0.305	NA 0.40		NA 10.0	<0.51	NA 1.01
SAGWW0703	ļ ļ	June 2005	<0.189	NA NA	<9.47		<2.84	NA	0.808 J	<1.89		<1.89	<0.189	0.395	0.49		12.2	<1.89	1.21
W-07	{	September 2005	NA NA	NA NA	NA		NA NA	NA NA	NA NA	NA		NA NA	NA NA	NA NA	NA NA		NA NA	0.203 J	NA NA
06010005 06040003	{	January 2006 April 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.24 <0.24	NA NA
06040003	ł -	August 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.25	NA NA
06121003	SAW07/W-07	December 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.25	NA NA
07030021	ł	March 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.10	NA NA
07070115	ł	July 2007	NA NA	NA NA	NA NA		NA NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	0.25 J	NA NA
07119015	†	November 2007	NA NA	NA	NA		NA	NA	NA NA	NA NA		NA	NA	NA NA	NA		NA	<0.5	NA
09080703	†	August 2009	NA	NA NA	NA		NA NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA		NA NA	<0.48 J	NA
SAGWW0806		June 2005	0.0233 J	NA	<9.52		<2.86	NA	0.776 J	<1.9		<1.9	<1.9	0.323	0.42		13.7	<1.9	1.1
W-08	i	September 2005	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<1.93	NA
06010004	i	January 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06040007	1 1	April 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06080104	1	August 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.24	NA
06121006	SAW08/W-08		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.024 J	NA
07030022	1	March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.34	NA
07070117	1	July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.35	NA
07119017	1	November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
08060005	1	June 2008	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
09080704]	August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.47 J	NA
06121004		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.013 J	NA
07030028] [March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.34	NA
07070116	MW-15	July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.39	NA
07119016]	November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
09080705		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.47 J	NA

										Semi-Volatile	Organic Comp	ounds (µg/L)							
Sample ID	Sample Location	Date Collected	Anthracene	Benzo(A) anthracene	Benzoic Acid	Bis(2-ethylhexyl) Phthalate	Butylbenzyl Phthalate	Chrysene	Dibenzofuran	Diethyl phthalate	Dimethyl Phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Isophorone	Naphthalene	PCP	Phenanthrene
SAGW1107		October 2002				<2	0.027 J			0.15 J	0.15 J	0.058 J		<0.2		0.024 J	<0.2	<0.96	<0.2
SAGW1210		October 2002				1.9 J	<0.2			0.094 J	0.12 J	0.051 J		<0.2		0.028 J	0.013 J	0.058 J	<0.2
SAGW1308		October 2002				0.79 J	<0.2			0.13 J	0.16 J	0.062 J		<0.2		0.04 J	0.015 J	<0.96	<0.2
SAGW1408		October 2002				4.3	0.03 J			0.081 J	0.029 J	0.036 J		<0.2		0.044 J	0.016 J	0.075 J	<0.2
SAGW1508		October 2002				0.41 J	<0.2			0.035 J	<0.2	0.034 J		<0.2		0.015 J	<0.2	<0.96	<0.2
SAGW1608		October 2002				0.59 J	<0.2			0.07 J	0.047 J	<0.2		<0.2		0.017 J	<0.2	<0.96	<0.2
SAGW1707		October 2002				2.4	0.027 J			0.099 J	0.1 J	0.044 J		<0.2		0.027 J	<0.2	<0.96	<0.2
SAGW1807		October 2002				98	0.034 J			0.1 J	0.11 J	0.066 J		<0.2		0.027 J	0.019 J	<0.96	<0.2
SAGW1908		October 2002				0.64 J	0.029 J			0.059 J	0.024 J	0.042 J		<0.2		<0.2	0.029 J	1	0.014 J
SAGW2007		October 2002				<2	0.041 J			0.73	0.15 J	0.044 J		<0.2		<0.2	0.089 J	0.072 J	<0.2
SAGWMW02		October 2002				0.66 J	<0.2			0.083 J	0.12 J	0.064 J		<0.2		<0.2	<0.2	0.21 J	<0.2
Offsite (Downgra	dient) Wells													_					
06121009		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	0.012 J	NA
07030012		March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.36 J	NA
07070124	MW-16	July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.35	NA
07119024		November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
09030704		June 2008	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.51	NA
09080708		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.47	NA
06121010		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	47	NA
07030013		March 2007	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA		NA	NA NA	NA NA	NA NA		NA NA	11 J	NA NA
07070125	MW-17	July 2007	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA		NA	NA NA	NA NA	NA NA		NA NA	11	NA NA
07119025	IVIVV-17	November 2007 June 2008	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	320 300	NA NA
08060009 09030706		March 2009	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	280	NA NA
09090710		August 2009	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	270	NA NA
06121011		December 2006	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA		NA NA	NA NA	NA NA	NA NA		NA NA	<0.097	NA NA
07030014		March 2007	NA NA	NA NA	NA		NA NA	NA NA	NA NA	NA		NA	NA NA	NA NA	NA NA		NA NA	<0.35	NA NA
07070123		July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.35	NA
07119023	MW-18	November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
08060008		June 2008	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
09030705		March 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.51	NA
09080709		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.47	NA
06121020		December 2006	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.096	NA
7030015		March 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.34	NA
07070122	MW-19	July 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.34	NA
07119022		November 2007	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.5	NA
09080707		August 2009	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA		NA	<0.47	NA
MTCA Method B	Cleanup Leve	I	2,400	0.012	64,000	6.25	3,200	0.012		12,800		1,600	320	640	640	92.1 ca	160	0.792	
EPA Region 9 PR	G		1,800	0.092	150,000	4.80	7,300	9.20	12	29,000		3,600	1,500	1,500	240	71	6.20	0.560	

									Volati	le Organic (Compounds (ıg/L)					
	Sample				1,2,4-	1,2-	1,3,5-	1,4-	4-		Carbon			m,p-		n-	n-
Sample ID	Location	Date Collected	Phenol	Pyrene		*	Trimethylbenzene	*	Isopropyltoluene	Benzene	Disulfide	Ethylbenzene	Isopropylbenzene	Xylenes	Naphthalene	Butylbenzene	Propylbenzene
Process Area	20041011	Date Concetton	<u> </u>		<u> </u>						<u> </u>	<u> </u>		-			
06121019		December 2006	NA	NA													
07030023		March 2007	NA	NA													
07070121	MW-09	July 2007	NA	NA													
07119021		November 2007	NA	NA													
09080704		August 2009	NA	NA													
06121026		December 2006	NA	NA													
07030043		March 2007	NA	NA													
07070135		July 2007	NA	NA													
07119033	MW-10	November 2007	NA	NA													
08060016		Jun-08	NA	NA													
09080727		August 2009	NA	NA													
PAGWP1109	PAP11	June 2005	NA	3.86													
PAGWP1208	PAP12	June 2005	NA	<0.189													
PAGWP1308	PAP13	June 2005	NA	<0.195													
06121036		December 2006	NA	NA													
07030015	RW-03	March 2007	NA	NA													
07070122	KW-03	July 2007	NA	NA													
07119035		November 2007	NA	NA													
PAGW0711		October 2002	<9.6	2.6 J	12	1.2	3.3	0.31 J	0.73 J	0.14 J		1.2	0.36 J	3.8	37	1.6 J	0.82 J
PAG20811		October 2002	<9.6	<9.6	<2	<0.5	<2	<0.5	<2	<0.5		<0.5	<2	<0.5	1.3 J	<2	<2
PAGW0907		October 2002	<9.6	0.85 J	<2	<0.5	<2	<0.5	<2	<0.5		<0.5	<2	<0.5	<2	<2	<2
PAGW1008		October 2002	4.2 J	<9.6	2.5	0.35 J	0.74 J	0.17 J	0.25 J	<0.5		<0.5	<2	0.33 J	5.8	0.53 J	<2
PAGW2107		October 2002	<9.6	<9.6	0.41 J	<0.5	0.14 J	<0.5	<2	<0.5		<0.5	<2	<0.5	0.72 J	<2	<2
PAGW2212		October 2002	<9.6	<9.6	0.67 J	<0.5	<2	<0.5	<2	0.32 J		0.46 J	0.12 J	0.64	<2	<2	0.17 J
North Stockpile A																_	_
NAGWP0705	NAP07	June 2005	NA	<0.19													
NAGWP0805	NAP08	June 2005	NA	<0.19													
NAGWP0906	NAPO9	June 2005	NA	<0.19													
NAGWP1005	NAP10	June 2005	NA	<0.19													
NAGWW0106		June 2005	NA	<0.188													
W-01		September 2005	NA	NA													
06010007		January 2006	NA	NA													
06040008		April 2006	NA	NA													
06080120		August 2006	NA	NA													ļ
06121001	NAW01/W-01	December 2006	NA	NA												-	
07030025		March 2007	NA NA	NA												-	
07070130		July 2007	NA	NA													
07119018		November 2007	NA NA	NA													
08060013		March 2009	NA NA	NA													
09080721	NAMAGA	August 2009	NA NA	NA <0.10													
NAGWW0106D	NAW01	June 2005	NA	<0.19	1											l	

									Volati	le Organic C	Compounds (µ	ıg/L)					
Sample ID	Sample Location	Date Collected	Phenol	Pyrene	1,2,4- Trimethylbenzene	1,2- Dichlorobenzene	1,3,5- Trimethylbenzene	1,4- Dichlorobenzene	4- Isopropyltoluene	Benzene	Carbon Disulfide	Ethylbenzene	Isopropylbenzene	m,p- Xylenes	Naphthalene	n- Butylbenzene	n- Propylbenzene
NAGWW0403	NAW04/W-04	June 2005	NA	0.122 J													
W-04	,	September 2005	NA	NA													
06010003		January 2006	NA	NA													
06040010		April 2006	NA	NA													
06080122		August 2006	NA	NA													
06121014		December 2006	NA	NA													
07030026		March 2007	NA	NA													
07070126		July 2007	NA	NA													
07119028		November 2007	NA	NA													
09080706		August 2009	NA	NA													
NAGWW0504		June 2005	NA	<0.189													
W-05		September 2005	NA	NA													
06010006		January 2006	NA	NA													
06040012		April 2006	NA	NA													
06080121		August 2006	NA	NA													
06121018	NAW05/W-05	December 2006	NA	NA													
07030031	14AW03/ W-03	March 2007	NA	NA													
07070127		July 2007	NA	NA													
07119030		November 2007	NA	NA													
08060011		June 2008	NA	NA													
09030707		March 2009	NA	NA													
09080724		August 2009	NA	NA													
NAGWW0603		June 2005	NA	0.112 J													
W-06		September 2005	NA	NA													
06010001		January 2006	NA	NA													
06040011		April 2006	NA	NA													
06080118	NAW06/W-06	August 2006	NA	NA													
06121017	,	December 2006	NA	NA													
07030027		March 2007	NA	NA													
07070129		July 2007	NA	NA													
07119031		November 2007	NA	NA													
09080723		August 2009	NA	NA													
06121024		December 2006	NA	NA													
07030044		March 2007	NA	NA													
07070133	MW-11 (lower	July 2007	NA	NA													
07119034	interval)	November 2007	NA	NA													
08060015		June 2008	NA	NA													
09030710		March 2009	NA	NA													
09080726 06121025		August 2009 December 2006	NA	NA NA													
07030045	MW-12 (upper	March 2007	NA NA	NA NA													
	interval)			NA NA													
07070134 06121021		July 2007 December 2006	NA NA	NA NA													
07030029		March 2007	NA NA	NA NA													
07030029			NA NA														
07070132	NAVA / 4.0	July 2007 November 2007	NA NA	NA NA													
08060014	MW-13	June 2008	NA NA	NA NA													
09030709		June 2008 March 2009	NA NA	NA NA													
																	
09080725		August 2009	NA	NA													

									Volati	le Organic C	Compounds (µ	ıg/L)					
Comple ID	Sample	Data Callagtad	Phenol	Pyrene	1,2,4- Trimethylbenzene	1,2- Dichlorobenzene	1,3,5- Trimethylbenzene	1,4- Dichlorobenzene	4- Isopropyltoluene	Benzene	Carbon Disulfide	Fthylhenzene	Isopropylbenzene	m,p- Xylenes	Nanhthalene	n- Rutylhenzene	n- Propylbenzene
Sample ID 06121012	Location	Date Collected December 2006		•	Timiotily identical	2.0o.o.o.o.i.zo.i.o	omy.bonzone	21011010201120110	юфторуполионо	Domeono	Diodinao		юфторущение	Aylonoo	Hapitalalollo	- Daty is on Lone	Поружение
			NA	NA													
07030028	NAVA (1 A	March 2007	NA	NA													
07070128	MW-14	July 2007	NA	NA													
07119027		November 2007	NA	NA													
08060010		June 2008	NA	NA													
NAGW0107		October 2002		<9.6													
NAGW0207		October 2002		<9.6													
NAGW0308		October 2002		<9.7													
NAGW0406		October 2002		<0.2													<u> </u>
NAGW0508		October 2002		<0.2													
NAGW0611		October 2002		<0.2											<u> </u>	ļ	<u> </u>
South Stockpile A	irea	L 0005	11.0	10.10	1				Ī	1	1		ı		1	1	
SAGWMW105 SAGWMW105D		June 2005 June 2005	<1.9	<0.19													
MW-01			<1.9	<0.19													
06010008		September 2005 January 2006	NA NA	NA NA													
06040006		April 2006	NA NA	NA NA													
06080107	MW-1	August 2006	NA NA	NA NA													
06121007	10100 1	December 2006	NA NA	NA NA													
07030016		March 2007	NA NA	NA NA													
07070119		July 2007	NA NA	NA													
07119019		November 2007	NA	NA													
08060006		June 2008	NA	NA											<u> </u>		
SAGWMW205		June 2005	<1.9	<0.19											<u> </u>		
MW-02		September 2005	NA	NA													
06010009		January 2006	NA	NA													
06040005		April 2006	NA	NA													
06080106	2444	August 2006	NA	NA													
06121007	MW-2	December 2006	NA	NA													
07030019		March 2007	NA	NA													
07070120		July 2007	NA	NA													
07119020		November 2007	NA	NA													
09080719		August 2009	NA	NA													
SAGWMW407		June 2005	<1.9	<0.19													
MW-04		September 2005	NA	NA													
06010010		January 2006	NA	NA													
06040004		April 2006	NA	NA													
06080105	MW-4	August 2006	NA	NA													
06121008		December 2006	NA	NA													
07030020		March 2007	NA	NA													
07070118		July 2007	NA	NA													
07119018		November 2007	NA	NA													
09080720	04504	August 2009	NA 1.00 L	NA 10.0											ļ	ļ	
SAGWP0104	SAP01	June 2005	1.98 J	<0.2											ļ	ļ	
SAGWP0203	SAP02	June 2005	<1.94	<0.194											ļ	ļ	
SAGWP0302	SAP03	June 2005	<1.9	<0.19													
SAGWP0404	SAP04	June 2005	<1.9	<0.19													\vdash
SAGWP0505	SAP05	June 2005	<1.92	<0.192													\vdash
SAGWP0602	SAP06	June 2005	<2	<0.2											<u> </u>	<u>I</u>	

									Volati	le Organic C	compounds (µ	ıg/L)					
	Sample				1,2,4-	1,2-	1,3,5-	1,4-	4-		Carbon			m,p-		n-	n-
Sample ID	Location	Date Collected	Phenol	Pyrene	Trimethylbenzene			Dichlorobenzene	Isopropyltoluene	Benzene	Disulfide	Ethylbenzene	Isopropylbenzene	Xylenes	Naphthalene		Propylbenzene
SAGWW0203		June 2005	<1.9	0.12 J													
W-02		September 2005	NA	NA													
06010012		January 2006	NA	NA													
06040002		April 2006	NA	NA													
06080102	SAW02/W-02	August 2006	NA	NA													
06121002	3AW02/W-02	December 2006	NA	NA													
07030017		March 2007	NA	NA													
07070114		July 2007	NA	NA													
07119014		November 2007	NA	NA													
09080701		August 2009	NA	NA													
SAGWW0305		June 2005	<1.91	0.159 J													
W-03		September 2005	NA	NA													
06010011		January 2006	NA	NA													
06040001		April 2006	NA	NA													
06080101	SAW03/W-03	August 2006	NA	NA													
06121015	<i>G</i> , 00, 00	December 2006	NA	NA													
07030018		March 2007	NA	NA													
07070113		July 2007	NA	NA													
07119013		November 2007	NA	NA													
09070702		August 2009	NA	NA													
SAGWW0703		June 2005	<1.89	0.171 J													
W-07		September 2005	NA	NA													
06010005		January 2006	NA	NA													
06040003		April 2006	NA	NA													
06080103	SAW07/W-07	August 2006	NA	NA													
06121003		December 2006	NA	NA													
07030021		March 2007	NA	NA													
07070115		July 2007	NA	NA													
07119015		November 2007	NA	NA													
09080703		August 2009	NA 11.0	NA 0.45 I													
SAGWW0806		June 2005	<1.9	0.15 J													
W-08 06010004		September 2005	NA NA	NA NA													
06010004		January 2006	NA NA	NA NA													
06040007		April 2006 August 2006	NA NA	NA NA													
06121006	SAW08/W-08	December 2006	NA NA	NA NA													
07030022	3AW08/W-08	March 2007	NA NA	NA NA											-		
07030022		July 2007	NA NA	NA NA											<u> </u>		
07119017		November 2007	NA NA	NA NA											-		
08060005		June 2008	NA NA	NA NA													
09080704		August 2009	NA NA	NA NA													
06121004		December 2006	NA NA	NA NA											 	 	
07030028		March 2007	NA NA	NA NA													
07070116	MW-15	July 2007	NA NA	NA NA											 	 	
07119016		November 2007	NA	NA NA													
09080705		August 2009	NA NA	NA NA											 	 	
00000100		August 2000	1 1/7	INA											<u> </u>	1	

									Volati	le Organic C	Compounds (µ	ıg/L)					
	Sample				1,2,4-	1,2-	1,3,5-	1,4-	4-		Carbon			m,p-		n-	n-
Sample ID	Location	Date Collected	Phenol	Pyrene	Trimethylbenzene	=		Dichlorobenzene	Isopropyltoluene	Benzene	Disulfide	Ethylbenzene	Isopropylbenzene	Xylenes	Naphthalene	Butylbenzene	Propylbenzene
SAGW1107		October 2002	0.08 J								<0.5						
SAGW1210		October 2002	0.22 J								<0.5						
SAGW1308		October 2002	0.09 J								<0.5						
SAGW1408		October 2002	0.12 J								<0.5						
SAGW1508		October 2002	0.35 J								<0.5						
SAGW1608		October 2002	0.049 J								<0.5						
SAGW1707		October 2002	0.1 J								<0.5						
SAGW1807		October 2002	0.057 J								<0.5						
SAGW1908		October 2002	0.048 J								<0.5						
SAGW2007		October 2002	0.16 J								0.38 J						
SAGWMW02		October 2002	0.064 J								<0.5						
Offsite (Downgrad	lient) Wells	-	=	-	•	•	•	-	-	•	-	•	-	•	· -	-	
06121009		December 2006	NA	NA													
07030012		March 2007	NA	NA													
07070124	MW-16	July 2007	NA	NA													
07119024	10100-10	November 2007	NA	NA													
09030704		June 2008	NA	NA													
09080708		August 2009	NA	NA													
06121010		December 2006	NA	NA													
07030013		March 2007	NA	NA													
07070125		July 2007	NA	NA													
07119025	MW-17	November 2007	NA	NA													
08060009		June 2008	NA	NA													
09030706		March 2009	NA	NA													
09090710		August 2009	NA	NA													
06121011		December 2006	NA	NA													
07030014		March 2007	NA	NA													
07070123		July 2007	NA	NA													
07119023	MW-18	November 2007	NA	NA													
08060008		June 2008	NA	NA													
09030705		March 2009	NA	NA													
09080709		August 2009	NA	NA													
06121020		December 2006	NA	NA													<u></u>
7030015		March 2007	NA	NA													
07070122	MW-19	July 2007	NA	NA													
07119022		November 2007	NA	NA													
09080707		August 2009	NA	NA													
MTCA Method B C	-		9,600	480		720		1.82		0.795 ca		800	1,600	16,000	160		
EPA Region 9 PRG	<u> </u>		11,000	180	12	370	12	0.50		0.34		2.9	240	-	6.2	240	240

						NIW/TDLI	Dx (µg/L)							Inordonios						
				1		NWIPH-	DX (µg/ L)			ı		 		Inorganics		I			1	
	Sample			sec-																
Sample ID	Location	Date Collected	o-Xylene	Butylbenzene	Toluene	DRO	RRO	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
Process Area																				
06121019		December 2006																		
07030023		March 2007																		
07070121	MW-09	July 2007																		
07119021		November 2007																		
09080704		August 2009																		
06121026		December 2006																		
07030043		March 2007																		
07070135	MW 10	July 2007																		
07119033	MW-10	November 2007																		
08060016		Jun-08																		
09080727		August 2009																		
PAGWP1109	PAP11	June 2005																		
PAGWP1208	PAP12	June 2005																		
PAGWP1308	PAP13	June 2005																		
06121036		December 2006																		-
07030015		March 2007																		
07070122	RW-03	July 2007																		-
07119035		November 2007																		-
PAGW0711		October 2002	4.3	0.35 J	0.78	13,000	810	<50	<5	<5	<5	<5	14.7	<2	<0.2	<20	<5	<10	<5	11.2
PAG20811		October 2002	<0.5	<2	<0.5	52 J	<500	<50	<5	<5	<5	<5	6.3 J	1.9 J	<0.2	<20	<5	<10	<5	15.2
PAGW0907		October 2002	<0.5	<2	<0.5	2,600	430 J	<50	<5	<5	2.5 J	<5	7.0 J	2.5	<0.2	<20	<5	<10	<5	20.8
PAGW1008		October 2002	0.28 J	<2	0.2 J	2,700	200 J	<50	<5	<5	<5	<5	5.6 J	1 J	<0.2	<20	<5	<10	<5	7.7 J
PAGW2107		October 2002	0.19 J	1.1 J	0.1 J	1,300	230 J	<50	<25	<5	<5	<5	9.1 J	6.4	<0.2	<20	7.8 J	<10	<5	31.4
PAGW2212		October 2002	1.4	<2	0.33 J	2,100	300 J	<50	<25	<5	<5	8.5	13.2	8.8	<0.2	20.6	<25	<10	<5	51.1
North Stockpile A	Area					_,			<u> </u>	_					<u> </u>		_	-		
NAGWP0705	NAP07	June 2005																		
NAGWP0805	NAP08	June 2005																		-
NAGWP0906	NAP09	June 2005																		
NAGWP1005	NAP10	June 2005																		
NAGWW0106	-	June 2005										1								
W-01		September 2005																		
06010007		January 2006										 								
06040008		April 2006																		
06080120		August 2006										 		†						
06121001	NAW01/W-01													1						
07030025		March 2007																	 	
07070130		July 2007																	 	
07119018		November 2007																	 	
08060013		March 2009										 							 	
09080721		August 2009										 					 		 	
NAGWW0106D	NAW01	June 2005										 		 					 	
	IVIVOT	Julio 2005					<u> </u>	<u> </u>		l		<u>. </u>		<u> </u>		l			<u>. </u>	

Sample ID Lo	Sample Location AW04/W-04	June 2005 September 2005 January 2006 April 2006	o-Xylene	sec- Butylbenzene	Toluene	DRO														
NAGWW0403 NAV W-04 06010003 06040010 06080122 06121014 07030026	Location	June 2005 September 2005 January 2006 April 2006	o-Xylene		Toluene	DRO														
NAGWW0403 NAV W-04 06010003 06040010 06080122 06121014 07030026		June 2005 September 2005 January 2006 April 2006					RRO	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
W-04 06010003 06040010 06080122 06121014 07030026	NV04/ W-04	September 2005 January 2006 April 2006				-		7	741001110	Zorymani	- Cuaiiia	• · · · · · · · · · · · · · · · · · · ·	оорро:		moreury	- THORES	Coloniani	0		
06010003 06040010 06080122 06121014 07030026		January 2006 April 2006																		
06040010 06080122 06121014 07030026	-	April 2006																		
06080122 06121014 07030026	-																			
06121014 07030026	<u> </u>	August 2006																		
07030026	L	December 2006														†				
		March 2007																		
		July 2007																		
07119028	-	November 2007																		
09080706	<u> </u>	August 2009																		
NAGWW0504		June 2005																		
W-05		September 2005																		
06010006		January 2006																		
06040012		April 2006																		
06080121		August 2006																		
06121018	AVA/OF (VA) OF	December 2006																		
07030031	AW05/W-05	March 2007																		
07070127		July 2007																		
07119030		November 2007																		
08060011		June 2008																		
09030707		March 2009																		
09080724		August 2009																		
NAGWW0603		June 2005																		
W-06		September 2005																		
06010001		January 2006																		
06040011		April 2006																		
06080118 NAV	AW06/W-06	August 2006																		
06121017		December 2006																		
07030027		March 2007																		
07070129	_	July 2007																		
07119031	_	November 2007																		
09080723		August 2009																		
06121024	-	December 2006																		
07030044	-	March 2007																		
07070133 MW	W-11 (lower	July 2007																		
07119034 ir	interval)	November 2007																		
08060015	-	June 2008														ļ				
09030710	-	March 2009														<u> </u>				
09080726		August 2009														-				
06121025 MW-	W-12 (upper	December 2006																		
07030045 ir	interval)	March 2007																		
07070134		July 2007																		
06121021	Ļ	December 2006																		
07030029	Ļ	March 2007														ļ				
07070132	Ļ	July 2007														ļ				
	MW-13	November 2007														ļ				
08060014	Ļ	June 2008																		
09030709	ļ.	March 2009																		
09080725		August 2009																		

						NWTPH-	Dx (µg/L)							Inorganics						
	Comple			sec-																
Sample ID	Sample Location	Date Collected	o-Xylene	Butylbenzene	Toluene	DRO	RRO	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
06121012		December 2006																		
07030028		March 2007																		
07070128	MW-14	July 2007																		
07119027	1	November 2007															+			
08060010	1	June 2008															+			
NAGW0107		October 2002			<0.5	<250	<500	<50	<5	<5	<5	<5	7.1 J	1.3 J	<0.2	<20	1.8 J	<10	<5	22.5
NAGW0207	1	October 2002			<0.5	58 J	<500	<50	<5	<5	<5	<5	<10	<2	<0.2	<20	2.1 J	<10	<5	5.7 J
NAGW0308		October 2002			<0.5	140 J	46 J	<50	<5	<5	<5	<5	<10	<2	<0.2	<20	<5	<10	<5	7.1 J
NAGW0406	1	October 2002			<0.5	78 J	190 J	<50	20.9	4.8 J	<5	110	131	89	<0.2	109	<5	<10	1	576
NAGW0508	1	October 2002			<0.5	<250	31 J	<50	1.5	<5	<5	<5	8.1	3.2	<0.2	<20	<5	<10	<5	28.5
NAGW0611	1	October 2002			0.17 J	<250	<500	<50	<5	<5	<5	<5	6.3 J	<2	<0.2	<20	<10	<10	<5	<10
South Stockpile	Area						·	•	=		-			=	•	•	-		•	
SAGWMW105		June 2005																		
SAGWMW105D]	June 2005																		
MW-01		September 2005																		
06010008	1	January 2006																		
06040006		April 2006																		
06080107	MW-1	August 2006																		
06121007	1	December 2006																		
07030016	1	March 2007															+			
07070119	-	July 2007																		
07119019 08060006	4	November 2007 June 2008																		
SAGWMW205		June 2005															+			
MW-02	1	September 2005															1			
06010009	1	January 2006															+			
06040005	1	April 2006																		
06080106		August 2006															1			
06121007	MW-2	December 2006																		
07030019		March 2007																		
07070120	1	July 2007																		
07119020	1	November 2007																		
09080719		August 2009																		
SAGWMW407		June 2005																		
MW-04]	September 2005																		
06010010	1	January 2006																		
06040004	1	April 2006																		
06080105	MW-4	August 2006																		
06121008	1	December 2006																		
07030020	1	March 2007															-			
07070118	1	July 2007															+			
07119018 09080720	4	November 2007 August 2009															+			
SAGWP0104	SAP01	June 2005																		
SAGWP0104 SAGWP0203	SAP01 SAP02	June 2005 June 2005															+ +			
SAGWP0203 SAGWP0302	SAP02 SAP03	June 2005															+ -			
SAGWP0404	SAP04	June 2005															+		+	
SAGWP0505	SAP05	June 2005															† †			
SAGWP0602	SAP06	June 2005															†			
	1 3 33	2 3.1.0 2000		<u> </u>			I	L	<u>I</u>	I	L	<u>i</u>		<u>I</u>	I	1			<u>ı</u>	

						NWTPH-I	Dx (μg/L)							Inorganics						
				555			- - ,													
	Sample		o Vulono	Sec-	Toluono	DRO	BBO		•	5	0.4.1		•			AII	0.1	0"	- 1	
Sample ID	Location	Date Collected	o-Xylene	Butylbenzene	Toluene	DRU	RRO	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
SAGWW0203		June 2005																		
W-02		September 2005																		
06010012		January 2006																		
06040002		April 2006																		
06080102	SAW02/W-02	August 2006 December 2006																		
06121002 07030017	1	March 2007																		
07030017	1	July 2007																		
07070114	•	November 2007																		
09080701	•	August 2009																		
SAGWW0305		June 2005																		
W-03	1	September 2005																		
06010011	1	January 2006																		
06040001	1	April 2006																		
06080101	1	August 2006																		
06121015	SAW03/W-03	December 2006																		
07030018		March 2007																		
07070113		July 2007																		
07119013	1	November 2007																		
09070702	1	August 2009																		
SAGWW0703		June 2005																		
W-07	1	September 2005																		
06010005		January 2006																		
06040003]	April 2006																		
06080103	SAW07/W-07	August 2006																		
06121003	SAW01/W-01	December 2006																		
07030021		March 2007																		
07070115]	July 2007																		
07119015]	November 2007																		
09080703		August 2009																		
SAGWW0806		June 2005																		
W-08		September 2005																		
06010004		January 2006																		
06040007		April 2006																		
06080104		August 2006																		
06121006	SAW08/W-08	December 2006																		
07030022		March 2007																		
07070117		July 2007																		
07119017 08060005		November 2007 June 2008																		
09080704	1	August 2009																		
06121004		December 2006																		
07030028		March 2007															+			
07030028	MW-15	July 2007																		
07070116	1414A-TO	November 2007																		
09080705		August 2009																		
20000100	<u> </u>	August 2000		l .				l .	l			<u> </u>		l		1			<u> </u>	

						NWTPH-I	Dx (μg/L)							Inorganics						
	Sample		o Vulono	Sec-	Toluono	DRO	RRO	A . 11		D	0.4	Q	0			M ² -1-1	Out of a	011	The U	
Sample ID	Location	Date Collected	o-Xylene	Butylbenzene	Toluene	_		Antimony	Arsenic	Beryllium -	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium -	Silver	Thallium -	Zinc
SAGW1107		October 2002			0.1 J	<250	<500	36.7 J	<5 .5	<5 .5	<5 .5	<5 -5	5.6 J	1 J	<0.2	<20	<5	<10	<5 .5	9.7 J
SAGW1210		October 2002			0.18 J	78 J	34 J	<50	<5 - - 0	<5	<5	<5	6.3 J	<2	<0.2	<20	<10	<10	< 5	5.4 J
SAGW1308		October 2002			0.11 J	89 J	55 J	<50	7.6	<5	<5	4 J	10.5	6.8	<0.2	<20	1.7 J	<10	<5	19.7
SAGW1408		October 2002			<0.5	70 J	54 J	<50	6.7	<5 -5	<5	<5	14.8	7.2	<0.2	<20	<5	<10	<5	31.9
SAGW1508		October 2002			0.16 J	<250	<500	<50	<5	<5	2.5 J	<5	4.9 J	<2	<0.2	<20	<5	<10	<5	5.6 J
SAGW1608		October 2002			0.2 J	<250	<500	<50	<5 7.0	<5	<5	<5	4.9 J	1.1 J	<0.2	<20	<10	<10	<5 	12.4
SAGW1707		October 2002			0.13 J	<250	<500	<50	7.9	<5 -	<5 -	4.2 J	11.2	4.4	<0.2	<20	<10	<10	<5 -	18.3
SAGW1807		October 2002			0.18 J	<250	62 J	<50	<5 -	<5 -	<5 -	7.1	12	4.9	<0.2	<20	<5 -	<10	<5 -	33.7
SAGW1908		October 2002			0.12 J	<250	<500	<50	<5	<5 -	< 5	3.8 J	5.6 J	2.7	<0.2	<20	<5	<10	<5	11
SAGW2007		October 2002			0.22 J	<250	<500	45.8 J	2.4 J	<5 -	<5	<5 -	7.7 J	1.7 J	<0.2	<20	1.4 J	<10	<5 -	11.8
SAGWMW02		October 2002			<0.5	78 J	140 J	<50	<25	<5	2.1 J	<5	<10	<2	<0.2	<20	<25	<10	<5	2.7 J
Offsite (Downgrad	dient) Wells	D 1 0000	1	ı		1	1	1	ı	ı			I I		<u> </u>	1	1			
06121009		December 2006																		
07030012		March 2007																		
07070124	MW-16	July 2007																		
07119024		November 2007													ļ		1			
09030704		June 2008															 			
09080708		August 2009															 			
06121010		December 2006																		
07030013		March 2007																		
07070125	NAVA 4.7	July 2007																		
07119025	MW-17	November 2007																		
08060009		June 2008																		
09030706		March 2009																		
09090710		August 2009				1														
06121011		December 2006																		
07030014		March 2007																		
07070123	MW-18	July 2007																		
07119023	INIAN-TQ	November 2007																		
08060008		June 2008																		
09030705		March 2009													 	1				
09080709		August 2009																		
06121020		December 2006																		
7030015	104/10	March 2007													ļ					
07070122	MW-19	July 2007													ļ		 			
07119022		November 2007													ļ					
09080707		August 2009													ļ					
MTCA Method B	-		16,000		1,600	500	500		0.0583 ca	32	8	50	592	15	4.8	320	80	80	1.12	4,800
EPA Region 9 PR	G		420	240	720			15	0.045 ca	73	18	55,000 (Cr III)	1,500		11	730	180	180	2.40	11,000

Notes:

Shaded and **bolded** analytical results indicate concentration exceeds state cleanup criterion.

J = The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met

MTCA - Model Toxic Control Act (Ecology 2001)

µg/kg = microgram per kilogram

mg/kg = milligram per kilogram

Table A-5

Surface Water Chemical Analytical Results

Colville Post and Poles Stevens County, Washington

			Petroleum Hydr	ocarbons (mg/L)	
Sample ID	Sample Location	Date Collected	DRPH	ORPH	PCP
PASUMP02		10/2/2002	490	970	2.8 J
SUMSW01		10/2/2002	660	1500	3
MTCA Method B Cle	anup Level		500		0.792 ca
EPA Region 9 PRG			500		0.56

Notes:

Shaded and **bolded** analytical results indicate concentration exceeds state cleanup criterion.

Table A-6

Confirmation Sampling Analytical Results

Colville Post and Poles Stevens County, Washington

					DCD Tost Ki	t Results (1)	
						thod 4010A	
					(mg		DCD Lob Doculto
					Standard	Diluted	PCP Lab Results SW-486 Method
Sample ID	Location ID	Sample Date	Matrix	Location Description	Dilution	Result	8270 (mg/kg)
6090703	RR00SS03	9/26/2006	Soil	Railroad Right-of-way	>28	NA	47
6090704	RR00SS0	9/26/2006	Soil	Railroad Right-of-way	>28	NA	74
6090705	DAP05	9/26/2006	Sediment	Drainage Area Pathway	NA	NA	9.2
6090707	DAP02	9/26/2006	Sediment	Drainage Area Pathway	NA	NA	5.4
6090708	DAP03	9/26/2006	Sediment	Drainage Area Pathway	NA	NA	9.3
6090709	DAP04	9/26/2006	Sediment	Drainage Area Pathway	NA	NA	13
6090713	DAP09	9/26/2006	Sediment	Drainage Area Pathway	NA	NA	130
6090714	DAP10	9/26/2006	Sediment	Drainage Area Pathway	NA	NA	23
6090722	TB02SB09	10/1/2006	Soil	Treatment Building	>28	>560	4,100
6090723	TB02SB11	10/1/2006	Soil	Treatment Building	>28	>549	720
6090725	TDP01SB01	10/2/2006	Soil	Treatment Drainage Path	>28	24	5.5
6090733	TB04SB06	10/4/2006	Soil	Treatment Building	>28	NA	310
6090738	TBS02SB07	10/9/2006	Soil	Treatment Building Support	>28	>554	4.6
6090743	TLA09SB02	10/9/2006	Soil	Truck Loading Area	>28	>554	390
6090750	TLA05SB03	10/11/2006	Soil	Truck Loading Area	>28	59	18
6090752	PACW04	10/12/2006	Soil	Process Area Confirmation Wall	>28	257	3.5
6090753	PACW08	10/12/2006	Soil	Process Area Confirmation Wall	>28	532	57
6090755	PACF09	10/13/2006	Soil	Process Area Confirmation Floor	>28	418	51
6090756	PACF14	10/13/2006	Soil	Process Area Confirmation Floor	>28	158	6.8
6090763	AST02SB01	10/2/2006	Soil	Above-Ground Storage Tanks	13	NA	NA
6090764	AST02SB02	10/2/2006	Soil	Above-Ground Storage Tanks	11	NA	NA
6090765	AST02SB03	10/2/2006	Soil	Above-Ground Storage Tanks	6.0	NA	NA
6090766	AST02SB04	10/2/2006	Soil	Above-Ground Storage Tanks	>28	NA	NA
6090770	AST03SB04	10/9/2006	Soil	Above-Ground Storage Tanks	23	NA	NA
6090772	CPA00SS01	10/2/2006	Soil	Concrete Pad Area	>28	>560	NA
6090773	CPA00SS02	10/2/2006	Soil	Concrete Pad Area	>27	>137	NA
6090779	HP01SB03	10/9/2006	Soil	Heap Area	11	NA	NA
6090785	PACF01	10/12/2006	Soil	Process Area Confirmation Floor	>28	NA	NA
6090787	PACF04	10/12/2006	Soil	Process Area Confirmation Floor	>28	NA	NA
6090788	PACF05	10/12/2006	Soil	Process Area Confirmation Floor	>28	>560	NA
6090789	PACF06	10/12/2006	Soil	Process Area Confirmation Floor	>28	>554	NA
6090790	PACF07	10/12/2006	Soil	Process Area Confirmation Floor	>28	>566	NA
6090791	PACF08	10/12/2006	Soil	Process Area Confirmation Floor	>28	>560	NA
6090792	PACF10	10/12/2006	Soil	Process Area Confirmation Floor	>28	460	NA
6090793	PACF11	10/12/2006	Soil	Process Area Confirmation Floor	>28	>566	NA
6090794	PACF12	10/12/2006	Soil	Process Area Confirmation Floor	27	NA	NA
6090795	PACF13	10/12/2006	Soil	Process Area Confirmation Floor	>28	>566	NA
6090797	PACF16	10/13/2006	Soil	Process Area Confirmation Floor	10	<14	NA
6090801	PACW07	10/13/2006	Soil	Process Area Confirmation Wall	>28	159	NA
6090803	PS02SB01	10/2/2006	Soil	Penta Shed	9.6	NA	NA

						t Results (1) thod 4010A	
						/kg)	PCP Lab Results
					Standard Dilution	Diluted Result	SW-486 Method
Sample ID	Location ID	Sample Date	Matrix	Location Description			8270 (mg/kg)
6090813	SPR00SS01	10/2/2006	Soil	Soil Spread Area	9.2	NA	NA
6090814	SPR00SS03	10/2/2006	Soil	Soil Spread Area	12	NA	NA
6090815	SPR00SS04	10/2/2006	Soil	Soil Spread Area	>28	25	NA
6090819	SPR02SB06	10/10/2006	Soil	Soil Spread Area	4.1	NA	NA
6090821	TB02SB02	10/1/2006	Soil	Treatment Building	>28	NA	NA
6090822	TB02SB03	10/1/2006	Soil	Treatment Building	>28	NA	NA
6090823	TB02SB04	10/1/2006	Soil	Treatment Building	>28	NA	NA
6090824	TB02SB06	10/1/2006	Soil	Treatment Building	>28	NA	NA
6090825	TB02SB07	10/1/2006	Soil	Treatment Building	>29	NA	NA
6090826	TB02SB08	10/1/2006	Soil	Treatment Building	>28	NA	NA
6090827	TB02SB10	10/1/2006	Soil	Treatment Building	>28	NA	NA
6090830	TB02SB14	10/1/2006	Soil	Treatment Building	19	NA	NA
6090831	TB02SB15	10/1/2006	Soil	Treatment Building	>27	NA	NA
6090833	TB02SB17	10/1/2006	Soil	Treatment Building	7.2	NA	NA
6090834	TB02SB18	10/1/2006	Soil	Treatment Building	>28	NA	NA
6090835	TB02SB19	10/1/2006	Soil	Treatment Building	>28	>560	NA
6090836	TB02SB20	10/1/2006	Soil	Treatment Building	>28	28	NA
6090837	TB02SB21	10/1/2006	Soil	Treatment Building	14	NA	NA
6090838	TB04SB01	10/4/2006	Soil	Treatment Building	4.4	NA	NA
6090839	TB04SB02	10/4/2006	Soil	Treatment Building	4.7	NA	NA
6090840	TB04SB03	10/4/2006	Soil	Treatment Building	>28	NA	NA
6090841	TB04SB04	10/4/2006	Soil	Treatment Building	>27	NA	NA
6090842	TB04SB05	10/4/2006	Soil	Treatment Building	>28	NA	NA
6090843	TB04SB07	10/4/2006	Soil	Treatment Building	>28	NA	NA
6090844	TB04SB08	10/4/2006	Soil	Treatment Building	>28	NA	NA
6090845	TB04SB09	10/4/2006	Soil	Treatment Building	>28	NA	NA
6090846	TB04SB10	10/4/2006	Soil	Treatment Building	>28	NA	NA
6090847	TBS00SS01		Soil	Treatment Building Support	>28	NA	NA
6090848	TBS00SS02	10/2/2006	Soil	Treatment Building Support	>27	NA	NA
6090850	TBS00SS04	10/2/2006	Soil	Treatment Building Support	19	NA	NA
6090851	TBS00SS05	10/2/2006	Soil	Treatment Building Support	>28	NA	NA
6090852	TBS00SS06	10/2/2006	Soil	Treatment Building Support	>27	NA	NA
6090859	TBS02SB09	10/9/2006	Soil	Treatment Building Support	>28	229	NA
6090860	TBS02SB10	10/9/2006	Soil	Treatment Building Support	>28	26	NA
6090863	TBS04SB02	10/11/2006	Soil	Treatment Building Support	>28	17	NA NA
6090864	TBS04SB02	10/11/2006	Soil	Treatment Building Support	>28	>560	NA NA
6090865	TBS04SB03	10/11/2006	Soil	Treatment Building Support	12	<14	NA NA
6090866	TBS04SB05	10/11/2006	Soil	Treatment Building Support	8.9	31	NA NA
	TBS04SB07		Soil			242	
6090868		10/11/2006		Treatment Building Support	>28		NA NA
6090869	TBS04SB08	10/11/2006	Soil	Treatment Building Support	>28	10	NA NA
6090870	TBS04SB06	10/11/2006	Soil	Treatment Building Support	>28 / >28	130 / 123	NA NA
6090871	TDP00SS01	10/2/2006	Soil	Treatment Drainage Path	>28	NA NA	NA NA
6090872	TDP00SS01	10/2/2006	Soil	Treatment Drainage Path	>29	NA NA	NA NA
6090873	TDP00SS01	10/4/2006	Soil	Treatment Drainage Path	>28	NA	NA
6090874	TDP00SS01	10/4/2006	Soil	Treatment Drainage Path	>28	NA	NA
6090882	TLA01SB09	10/4/2006	Soil	Truck Loading Area	23	NA	NA

						t Results (1) thod 4010A	
						/kg)	PCP Lab Results
	ļ <u>.</u>				Standard Dilution	Diluted Result	SW-486 Method
•	Location ID	•	Matrix	Location Description			8270 (mg/kg)
6090884	TLA01SB12	10/4/2006	Soil	Truck Loading Area	4.9	NA	NA
6090885	TLA01SB13	10/4/2006	Soil	Truck Loading Area	21	NA	NA
6090886	TLA01SB14	10/4/2006	Soil	Truck Loading Area	3.2	NA	NA
6090887	TLA01SB15	10/4/2006	Soil	Truck Loading Area	>27	NA	NA
6090896	TLA05SB02	10/9/2006	Soil	Truck Loading Area	>28	51	NA
6090897	TLA05SB04	10/11/2006	Soil	Truck Loading Area	>28	>566	NA
6090898	TLA05SB05	10/11/2006	Soil	Truck Loading Area	11	NA	NA
6090899	TLA05SB06	10/11/2006	Soil	Truck Loading Area	3.1	NA	NA
6090901	TLA06SB01	10/9/2006	Soil	Truck Loading Area	>28	<14	NA
6090902	TLA07SB01	10/9/2006	Soil	Truck Loading Area	>28	84	NA
6090905	TLA09SB01	10/9/2006	Soil	Truck Loading Area	15	NA	NA
6090916	RR00SS05	10/14/2006	Soil	Railroad Right-of-Way	>28	>566	NA
6090917	RR00SS06	10/14/2006	Soil	Railroad Right-of-Way	>28	>560	NA
6090918	RR00SS07	10/14/2006	Soil	Railroad Right-of-Way	>28	>554	NA
6090919	RR00SS08	10/14/2006	Soil	Railroad Right-of-Way	>28	>560	NA
6090920	RR00SS09	10/14/2006	Soil	Railroad Right-of-Way	>28	>554	48
6090921	RR00SS10	10/14/2006	Soil	Railroad Right-of-Way	>28	51	NA
6090922	RR00SS11	10/14/2006	Soil	Railroad Right-of-Way	>28	NA	2.7
6090923	RR00SS12	10/14/2006	Soil	Railroad Right-of-Way	>28 / >28	>566 / >564	NA
6090925	AST05SB01	10/11/2006	Soil	Above-Ground Storage Tanks	>28	129	NA
6090926	PACW10	10/16/2006	Soil	Process Area Confirmation Wall	>28	>566	NA
6090927	PACW11	10/16/2006	Soil	Process Area Confirmation Wall	>28	46	NA
6090930	PACW14	10/16/2006	Soil	Process Area Confirmation Wall	>28	223	NA
6090931	PACW15	10/16/2006	Soil	Process Area Confirmation Wall	2.6	<14	NA
6090941	DAP17	10/1702006	Sediment	Drainage Area Pathway	7.6	NA	NA
6090948	DAP24	10/18/2006	Sediment	Drainage Area Pathway	>14	NA	NA
6090949	DAP25	10/18/2006	Sediment	Drainage Area Pathway	10	NA	NA
6090955	DAP31	10/19/2006	Sediment	Drainage Area Pathway	>14	NA	NA
6090956	DAP32		Sediment	Drainage Area Pathway	>14	NA	NA
6090959	RP2W	10/19/2006	Water	Recovery Pit	NA	NA	65 mg/L
6090966	DAP36	10/20/2006	Soil	Drainage Area Pathway	>14	NA	NA NA
6090968	RR14	10/20/2006	Soil	Railroad Right-of-Way	3.6	<14	NA
6090971	RR17	10/20/2006	Soil	Railroad Right-of-Way	<0.70	32	NA
6090975	RR20	10/23/2006	Soil	Railroad Right-of-Way	>28/28	NA	NA
6090976	RR21	10/23/2006	Soil	Railroad Right-of-Way	>28	NA	NA
6090977	RR22	10/23/2006	Soil	Railroad Right-of-Way	>27	NA	NA NA
6090978	RR23	10/23/2006	Soil	Railroad Right-of-Way	>27	NA NA	NA
6090979	RR24	10/23/2006	Soil	Railroad Right-of-Way	>28	NA NA	NA NA
6090979	RR25	10/23/2006	Soil	Railroad Right-of-Way	>29	NA NA	NA NA
6090981	PACW16	10/23/2006	Soil	Railroad Right-of-Way	>28	NA NA	NA NA
6090983	PACW18	10/23/2006	Soil	Process Area Confirmation Wall	>28	105	NA NA
6090984	PACW16 PACF17	10/23/2006	Soil	Process Area Confirmation Wall	>28	322	NA NA
6090988	TDAW01	10/23/2006	Soil	Treatment Drainage Area Wall	>28	NA	NA NA
6090989	TDAW02	10/23/2006	Soil	Treatment Drainage Area Wall	>28	NA NA	NA NA
6090990	TDAW03	10/23/2006	Soil	Treatment Drainage Area Wall	>28	NA NA	NA NA
6090991	TDAW04	10/23/2006	Soil	Treatment Drainage Area Wall	12	NA	NA

Sample 1D							t Results (1) thod 4010A	
Sample ID Location ID Sample Date Matrix Location Description Dilution Result \$270 (mg/kg)						(mg	/kg)	PCP Lab Results
Semple Coloration Colorat								SW-486 Method
	Sample ID	Location ID	Sample Date	Matrix	Location Description	Dilution	Result	8270 (mg/kg)
	6090992	TDAW05	10/23/2006	Soil	Treatment Drainage Area Wall	>28	NA	NA
Segregor DAPW03	6090993	DAPW01	10/23/2006	Sediment	Drainage Area Pond Wall	>14/>14	NA	NA
December Day	6090994	DAPW02	10/23/2006	Sediment	Drainage Area Pond Wall	>14	NA	NA
December Dispuss Content December	6090995	DAPW03	10/23/2006	Sediment	Drainage Area Pond Wall	>14	NA	NA
6090999 DAPWOT 10/23/2006 Sediment Drainage Area Pond Wall 9.9 NA NA 6091000 DAPW09 10/23/2006 Sediment Drainage Area Pond Wall >14 NA NA 6091006 DAPW09 10/28/2006 Sediment Drainage Area Pond Wall >14 NA NA 6091007 DAP41 10/26/2006 Sediment Drainage Area Pond Wall >22 NA NA 6091007 DAPW12 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091009 DAPW13 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091010 DAPW15 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091012 DAPW16 10/26/2006 Sediment Drainage Area Pond Wall 3.7 NA NA 6091012 DAPW16 10/26/2006 Sediment Drainage Area Pond Wall 18 NA NA 6091012 </td <td>6090996</td> <td>DAPW04</td> <td>10/23/2006</td> <td>Sediment</td> <td>Drainage Area Pond Wall</td> <td>>14</td> <td>NA</td> <td>NA</td>	6090996	DAPW04	10/23/2006	Sediment	Drainage Area Pond Wall	>14	NA	NA
Description DAPW08 10/23/2006 Sediment Drainage Area Pond Wall Drainage Area Pond Wall NA NA NA NA NA NA NA	6090997	DAPW05	10/23/2006	Sediment	Drainage Area Pond Wall	>14	NA	NA
6091001 DAPW09 10/23/2006 Sediment Drainage Area Pond Wall >14 NA NA 6091006 DAP40 10/26/2006 Sediment Drainage Area Pathway >27 NA NA 6091007 DAP41 10/26/2006 Sediment Drainage Area Pathway >29 NA NA 6091008 DAPW12 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091010 DAPW14 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091011 DAPW15 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091012 DAPW16 10/26/2006 Sediment Drainage Area Pond Wall 3.7 NA NA 6091012 DAPW17 10/26/2006 Soil Treatment Drainage Area Pond Wall 3.7 NA NA 6091012 DAPW18 10/26/2006 Soil Treatment Drainage Area Floor >28/25/29 NA NA <td< td=""><td>6090999</td><td>DAPW07</td><td>10/23/2006</td><td>Sediment</td><td>Drainage Area Pond Wall</td><td>9.9</td><td>NA</td><td>NA</td></td<>	6090999	DAPW07	10/23/2006	Sediment	Drainage Area Pond Wall	9.9	NA	NA
Control Cont	6091000	DAPW08	10/23/2006	Sediment	Drainage Area Pond Wall	>14	NA	NA
6091007 DAP41 10/26/2008 Sediment Drainage Area Pathway >29 NA NA 6091008 DAPW12 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091009 DAPW13 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091011 DAPW14 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091012 DAPW15 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091013 DAPW17 10/26/2006 Sediment Drainage Area Pond Wall 18 NA NA 6091017 TDAF18 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091017 TDAF19 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091012 TDAF29 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 60910	6091001	DAPW09	10/23/2006	Sediment	Drainage Area Pond Wall	>14	NA	NA
6091008 DAPW12 10/26/2008 Sediment Drainage Area Pond Wall >28 NA NA 6091009 DAPW13 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091010 DAPW14 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091012 DAPW16 10/26/2006 Sediment Drainage Area Pond Wall 3.7 NA NA 6091012 DAPW16 10/26/2006 Sediment Drainage Area Pond Wall 3.7 NA NA 6091014 TDAF18 10/26/2006 Soil Treatment Drainage Area Floor Wall 18 NA NA 6091015 TDAF19 10/26/2006 Soil Treatment Drainage Area Floor >28 963 NA 6091017 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091021 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA	6091006	DAP40	10/26/2006	Sediment	Drainage Area Pathway	>27	NA	NA
6091009 DAPW13 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091010 DAPW14 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091011 DAPW15 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091012 DAPW16 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091013 DAPW17 10/26/2006 Sediment Drainage Area Pond Wall 18 NA NA 6091015 TDAF13 10/26/2006 Soil Treatment Drainage Area Floor >28 963 NA 6091015 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091017 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091019 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA <td< td=""><td>6091007</td><td>DAP41</td><td>10/26/2006</td><td>Sediment</td><td>Drainage Area Pathway</td><td>>29</td><td>NA</td><td>NA</td></td<>	6091007	DAP41	10/26/2006	Sediment	Drainage Area Pathway	>29	NA	NA
DAPW14	6091008	DAPW12	10/26/2006	Sediment	Drainage Area Pond Wall	>28	NA	NA
6091011 DAPW15 10/26/2006 Sediment Drainage Area Pond Wall 3.7 NA NA 6091012 DAPW16 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091013 DAPW17 10/26/2006 Soil Treatment Drainage Area Floor >28,92.29 NA NA 6091015 TDAF19 10/26/2006 Soil Treatment Drainage Area Floor >28,92.29 NA NA 6091016 TDAF20 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091018 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091019 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091020 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Wall >28 516 NA	6091009	DAPW13	10/26/2006	Sediment	Drainage Area Pond Wall	>28	NA	NA
6091012 DAPW16 10/26/2006 Sediment Drainage Area Pond Wall >28 NA NA 6091013 DAPW17 10/26/2006 Sediment Drainage Area Pond Wall 18 NA NA 6091015 TDAF18 10/26/2006 Soil Treatment Drainage Area Floor >228/>29 NA NA 6091015 TDAF19 10/26/2006 Soil Treatment Drainage Area Floor >28 963 NA 6091016 TDAF20 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091017 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091018 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091020 TDAF23 10/26/2006 Soil Treatment Drainage Area Floor >28 592 NA 6091021 TDAF24 10/26/2006 Soil Treatment Drainage Area Wall >28 516 NA	6091010	DAPW14	10/26/2006	Sediment	Drainage Area Pond Wall	>28	NA	NA
6091013 DAPW17 10/26/2006 Sediment Drainage Area Pond Wall 18 NA NA 6091014 TDAF18 10/26/2006 Soil Treatment Drainage Area Floor >28/299 NA NA 6091016 TDAF19 10/26/2006 Soil Treatment Drainage Area Floor >28 963 NA 6091016 TDAF20 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091017 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091018 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091021 TDAF23 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091021 TDAF24 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 100 NA <tr< td=""><td>6091011</td><td>DAPW15</td><td>10/26/2006</td><td>Sediment</td><td>Drainage Area Pond Wall</td><td>3.7</td><td>NA</td><td>NA</td></tr<>	6091011	DAPW15	10/26/2006	Sediment	Drainage Area Pond Wall	3.7	NA	NA
6091014 TDAF18 10/26/2006 Soil Treatment Drainage Area Floor >28/>29 NA NA 6091015 TDAF19 10/26/2006 Soil Treatment Drainage Area Floor >28 963 NA 6091016 TDAF20 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091018 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091018 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >27 >1,098 NA 6091020 TDAF23 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Wall >28 1,000 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA	6091012	DAPW16	10/26/2006	Sediment	Drainage Area Pond Wall	>28	NA	NA
6091015 TDAF19 10/26/2006 Soil Treatment Drainage Area Floor >28 963 NA 6091016 TDAF20 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091017 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091019 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >27 >1,098 NA 6091019 TDAF23 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091021 TDAF24 10/26/2006 Soil Treatment Drainage Area Floor >28 592 NA 6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 1.000 NA 6091022 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA	6091013	DAPW17	10/26/2006	Sediment	Drainage Area Pond Wall	18	NA	NA
6091016 TDAF20 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091017 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091018 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >27 >1,098 NA 6091020 TDAF23 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091020 TDAF24 10/26/2006 Soil Treatment Drainage Area Floor >28 592 NA 6091021 TDAF24 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091021 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 516 NA 6091021 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091023 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA <t< td=""><td>6091014</td><td>TDAF18</td><td>10/26/2006</td><td>Soil</td><td>Treatment Drainage Area Floor</td><td>>28/>29</td><td>NA</td><td>NA</td></t<>	6091014	TDAF18	10/26/2006	Soil	Treatment Drainage Area Floor	>28/>29	NA	NA
6091017 TDAF21 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091018 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >27 >1,098 NA 6091019 TDAF23 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091020 TDAF24 10/26/2006 Soil Treatment Drainage Area Floor >28 592 NA 6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 1,000 NA 6091022 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA	6091015	TDAF19	10/26/2006	Soil	Treatment Drainage Area Floor	>28	963	NA
6091018 TDAF22 10/26/2006 Soil Treatment Drainage Area Floor >27 >1,098 NA 6091019 TDAF23 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091020 TDAF24 10/26/2006 Soil Treatment Drainage Area Floor >28 592 NA 6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 1,000 NA 6091023 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 908 NA 6091024 TDAW08 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091026 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 597 NA	6091016	TDAF20	10/26/2006	Soil	Treatment Drainage Area Floor	>28	NA	NA
6091019 TDAF23 10/26/2006 Soil Treatment Drainage Area Floor >28 NA NA 6091020 TDAF24 10/26/2006 Soil Treatment Drainage Area Floor >28 592 NA 6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 1,000 NA 6091023 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 908 NA 6091024 TDAW08 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091026 TDAW10 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091028 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 527 NA	6091017	TDAF21	10/26/2006	Soil	Treatment Drainage Area Floor	>28	NA	NA
6091020 TDAF24 10/26/2006 Soil Treatment Drainage Area Floor >28 592 NA 6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 1,000 NA 6091023 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 908 NA 6091024 TDAW08 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091026 TDAW10 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091027 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 557 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA	6091018	TDAF22	10/26/2006	Soil	Treatment Drainage Area Floor	>27	>1,098	NA
6091021 TDAF25 10/26/2006 Soil Treatment Drainage Area Floor >28 516 NA 6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 1,000 NA 6091023 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 908 NA 6091024 TDAW08 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091026 TDAW10 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091027 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 597 NA 6091028 TDAW12 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA	6091019	TDAF23	10/26/2006	Soil	Treatment Drainage Area Floor	>28	NA	NA
6091022 TDAW06 10/26/2006 Soil Treatment Drainage Area Wall >28 1,000 NA 6091023 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 908 NA 6091024 TDAW08 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091026 TDAW10 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091027 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 597 NA 6091028 TDAW12 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA 6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA	6091020	TDAF24	10/26/2006	Soil	Treatment Drainage Area Floor	>28	592	NA
6091023 TDAW07 10/26/2006 Soil Treatment Drainage Area Wall >28 908 NA 6091024 TDAW08 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091026 TDAW10 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091027 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 597 NA 6091028 TDAW12 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA 6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA 6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA	6091021	TDAF25	10/26/2006	Soil	Treatment Drainage Area Floor	>28	516	NA
6091024 TDAW08 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091026 TDAW10 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091027 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 597 NA 6091028 TDAW12 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA 6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA 6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA 6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA	6091022	TDAW06	10/26/2006	Soil	Treatment Drainage Area Wall	>28	1,000	NA
6091025 TDAW09 10/26/2006 Soil Treatment Drainage Area Wall >28 NA NA 6091026 TDAW10 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091027 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 597 NA 6091028 TDAW12 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA 6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA 6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA 6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA 6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 <td>6091023</td> <td>TDAW07</td> <td>10/26/2006</td> <td>Soil</td> <td>Treatment Drainage Area Wall</td> <td>>28</td> <td>908</td> <td>NA</td>	6091023	TDAW07	10/26/2006	Soil	Treatment Drainage Area Wall	>28	908	NA
6091026 TDAW10 10/26/2006 Soil Treatment Drainage Area Wall >28 51 NA 6091027 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 597 NA 6091028 TDAW12 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA 6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA 6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA 6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA 6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091040	6091024	TDAW08	10/26/2006	Soil	Treatment Drainage Area Wall	>28	NA	NA
6091027 TDAW11 10/26/2006 Soil Treatment Drainage Area Wall >28 597 NA 6091028 TDAW12 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA 6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA 6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA 6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA 6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091025	TDAW09	10/26/2006	Soil	Treatment Drainage Area Wall	>28	NA	NA
6091028 TDAW12 10/26/2006 Soil Treatment Drainage Area Wall >28 122 NA 6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA 6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA 6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA 6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA 6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091035 TPSW03 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091026	TDAW10	10/26/2006	Soil	Treatment Drainage Area Wall	>28	51	NA
6091029 TDAW13 10/26/2006 Soil Treatment Drainage Area Wall >29 108 NA 6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA 6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA 6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA 6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091027	TDAW11	10/26/2006	Soil	Treatment Drainage Area Wall	>28	597	NA
6091030 TDAW14 10/26/2006 Soil Treatment Drainage Area Wall >29 104 NA 6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA 6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA 6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091035 TPSW03 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091028	TDAW12	10/26/2006	Soil	Treatment Drainage Area Wall	>28	122	NA
6091031 TDAW15 10/26/2006 Soil Treatment Drainage Area Wall 10 NA NA 6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA 6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091035 TPSW03 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091029	TDAW13	10/26/2006	Soil	Treatment Drainage Area Wall	>29	108	NA
6091032 TDAW16 10/26/2006 Soil Treatment Drainage Area Wall 7.2 NA NA 6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091035 TPSW03 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091030	TDAW14	10/26/2006	Soil	Treatment Drainage Area Wall	>29	104	NA
6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091035 TPSW03 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091031	TDAW15	10/26/2006	Soil	Treatment Drainage Area Wall	10	NA	NA
6091033 TPSW01 10/26/2006 Water Test Pit 6 >0.80 NA NA 6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091035 TPSW03 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091032	TDAW16	10/26/2006	Soil	_	7.2	NA	NA
6091034 TPSW02 10/26/2006 Water Test Pit 7 >0.80 NA NA 6091035 TPSW03 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091033	TPSW01	10/26/2006	Water	_	>0.80	NA	NA
6091035 TPSW03 10/26/2006 Water Test Pit 8 0.26 NA NA 6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14	6091034	TPSW02		Water	Test Pit 7	>0.80	NA	NA
6091040 RRF28 10/28/2006 Soil Railroad Right-of-Way >28 <14 NA 6091041 RRF29 10/28/2006 Soil Railroad Right-of-Way >27 47 NA 6091042 TDAF26 10/28/2006 Soil Treatment Drainage Area Floor >14 993 NA 6091043 TDAF27 10/28/2006 Soil Treatment Drainage Area Floor >14 >1,050 NA 6091044 TDAF28 10/28/2006 Soil Treatment Drainage Area Floor >14 937 NA 6091045 TDAF29 10/28/2006 Soil Treatment Drainage Area Floor >14 895 NA								
6091041 RRF29 10/28/2006 Soil Railroad Right-of-Way >27 47 NA 6091042 TDAF26 10/28/2006 Soil Treatment Drainage Area Floor >14 993 NA 6091043 TDAF27 10/28/2006 Soil Treatment Drainage Area Floor >14 >1,050 NA 6091044 TDAF28 10/28/2006 Soil Treatment Drainage Area Floor >14 937 NA 6091045 TDAF29 10/28/2006 Soil Treatment Drainage Area Floor >14 895 NA	-							
6091042 TDAF26 10/28/2006 Soil Treatment Drainage Area Floor >14 993 NA 6091043 TDAF27 10/28/2006 Soil Treatment Drainage Area Floor >14 >1,050 NA 6091044 TDAF28 10/28/2006 Soil Treatment Drainage Area Floor >14 937 NA 6091045 TDAF29 10/28/2006 Soil Treatment Drainage Area Floor >14 895 NA	-							
6091043 TDAF27 10/28/2006 Soil Treatment Drainage Area Floor >14 >1,050 NA 6091044 TDAF28 10/28/2006 Soil Treatment Drainage Area Floor >14 937 NA 6091045 TDAF29 10/28/2006 Soil Treatment Drainage Area Floor >14 895 NA	-							
6091044 TDAF28 10/28/2006 Soil Treatment Drainage Area Floor >14 937 NA 6091045 TDAF29 10/28/2006 Soil Treatment Drainage Area Floor >14 895 NA					, and the second	<u> </u>		
6091045 TDAF29 10/28/2006 Soil Treatment Drainage Area Floor >14 895 NA						+		
						+		
						<u> </u>		

					PCP Test Kit Results (1) SW-486 Method 4010A (mg/kg) PCP Lab I		PCP Lab Results
Sample ID	Location ID	Sample Date	Matrix	Location Description	Standard Dilution	Diluted Result	SW-486 Method 8270 (mg/kg)
6091047	TDAW17	10/28/2006	Soil	Treatment Drainage Area Wall	>14	750	NA NA
6091048	TDAW18	10/28/2006	Soil	Treatment Drainage Area Wall	>14	84	NA
6091049	TDAW19	10/28/2006	Soil	Treatment Drainage Area Wall	7.3	<26	NA
6091053	RRF31	10/31/2006	Soil	Railroad Right-of-Way Floor	>10	97	12
	MTCA Method B Cleanup Levels					2.5	

Notes:

 $Shaded\ and\ \textbf{bolded}\ analytical\ results\ indicate\ concentration\ exceeds\ state\ cleanup\ criterion.$

Projection: NAD 1983 UTM Zone 11N


Notes

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

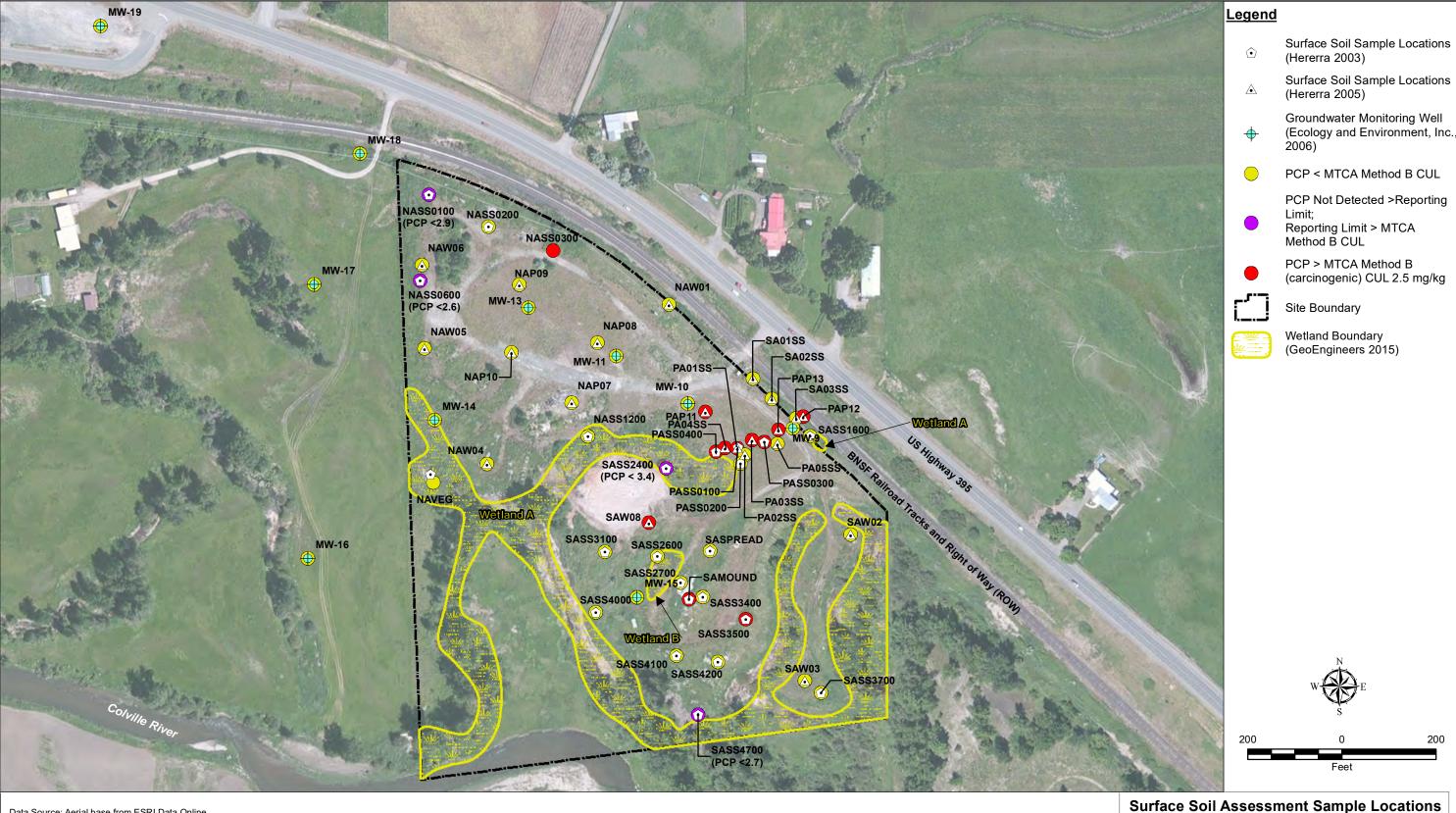
Surface Soil Assessment Sample Locations

Colville Post and Poles Colville, Washington

Projection: NAD 1983 UTM Zone 11N

Notes

1. The locations of all features shown are approximate.


2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

3. CUL = Cleanup Levels

Surface Soil Assessment Sample Locations Petroleum Hydrocarbons Concentrations

Colville Post and Poles Colville, Washington

Projection: NAD 1983 UTM Zone 11N


Notes

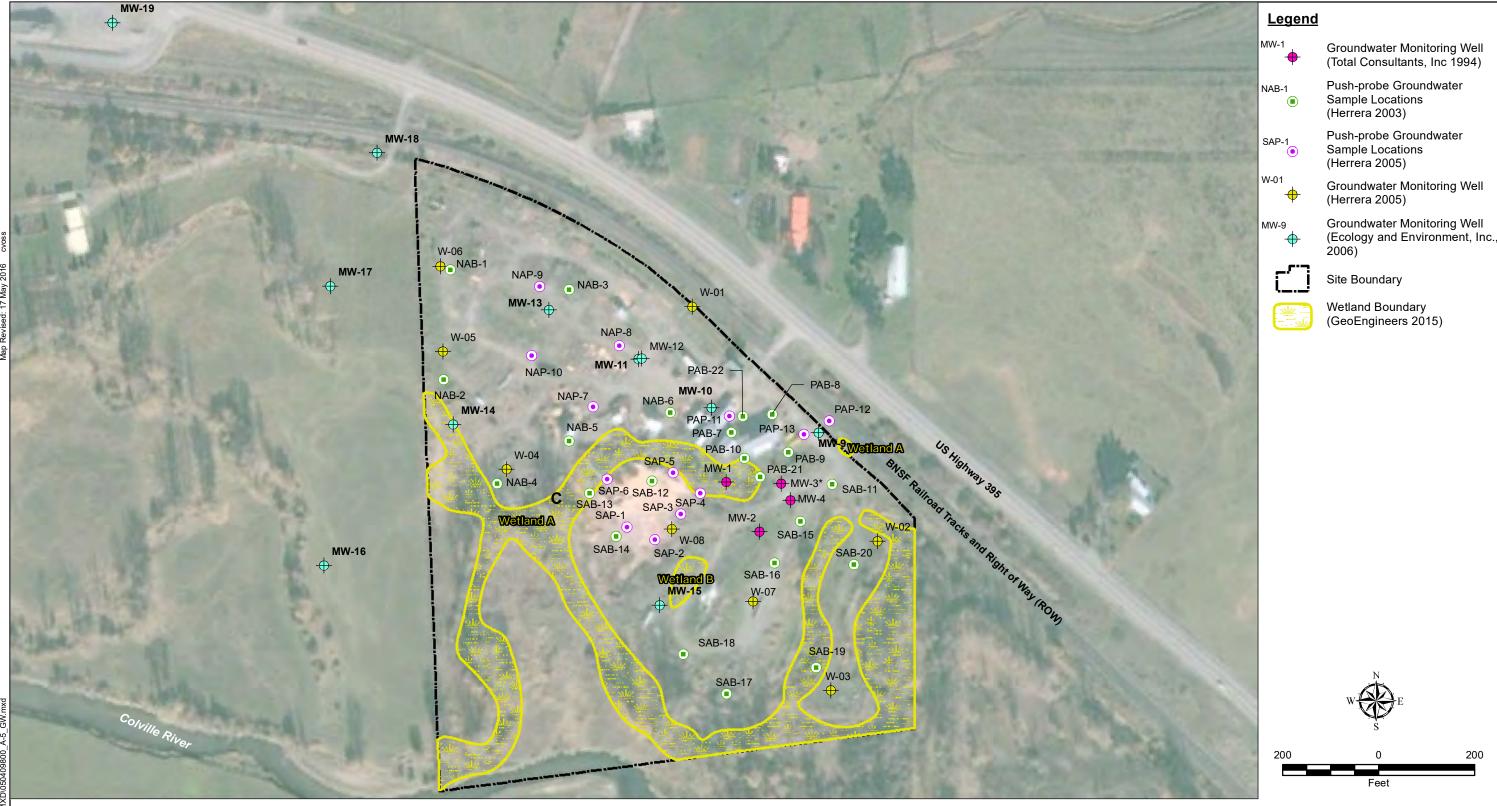
The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Surface Soil Assessment Sample Locations PCP Concentrations

Colville Post and Poles Colville, Washington

Projection: NAD 1983 UTM Zone 11N

Notes


1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

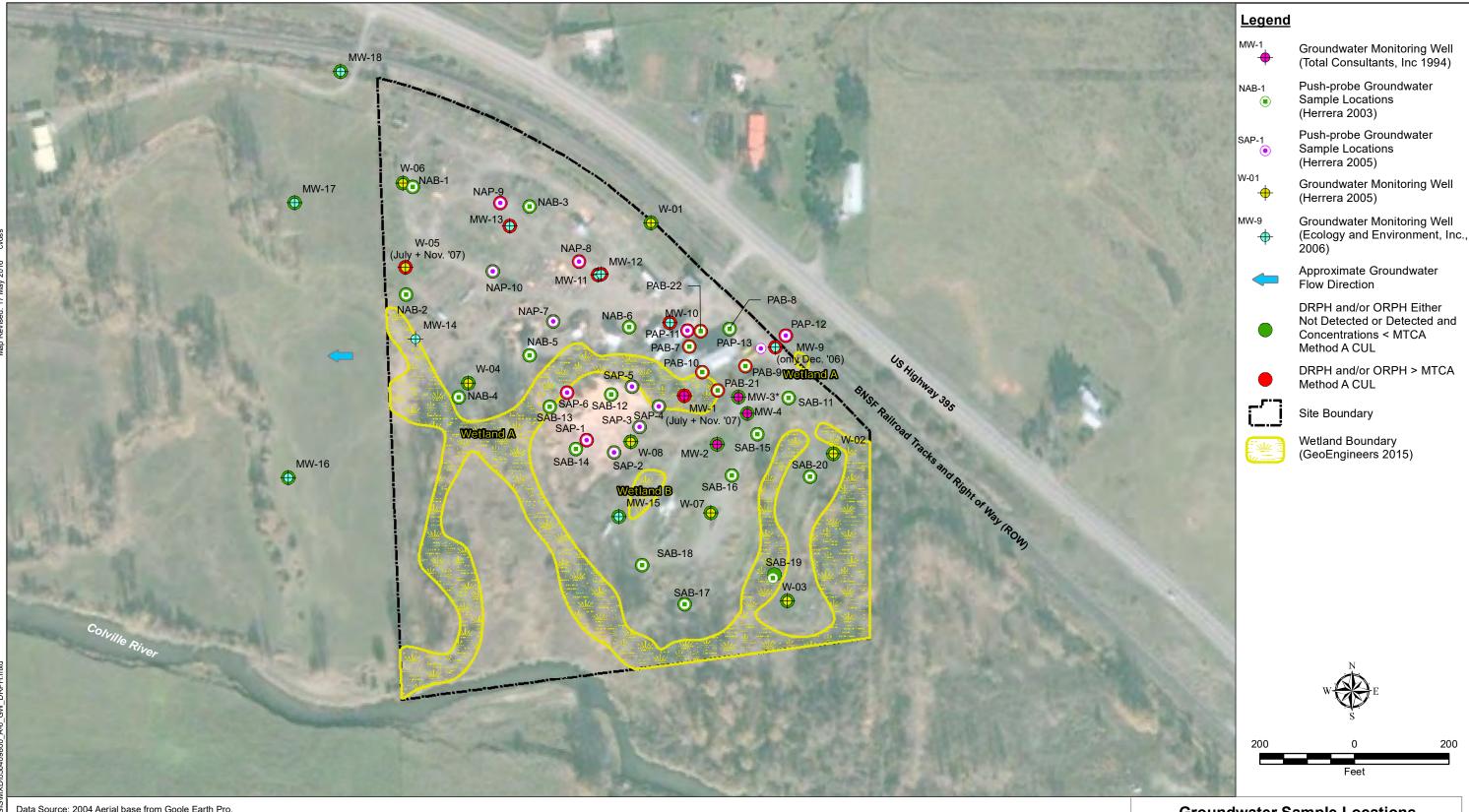
Surface Soil Assessment Sample Locations Dioxin Concentrations

Colville Post and Poles Colville, Washington

Data Source: 2004 Aerial base from Goole Earth Pro. Site boundary provided by EPA.

Projection: NAD 1983 UTM Zone 11N

Notes


- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

3. * MW-3 was removed by 1995.

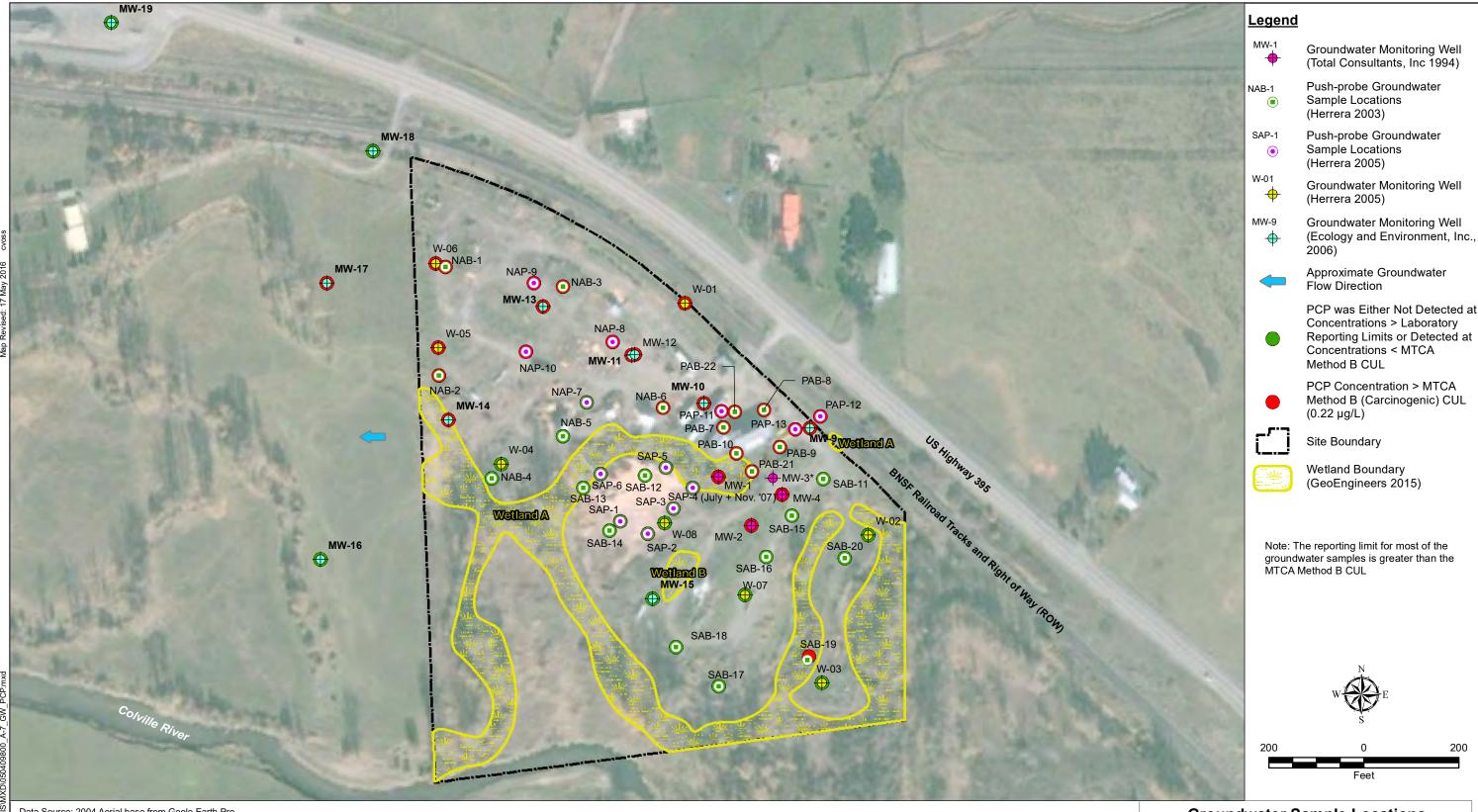
Groundwater Sample Locations

Colville Post and Poles Colville, Washington

Data Source: 2004 Aerial base from Goole Earth Pro. Site boundary provided by EPA.

Projection: NAD 1983 UTM Zone 11N

1. The locations of all features shown are approximate.


2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc.

and will serve as the official record of this communication. 3. * MW-3 was removed by 1995. 4. CUL = Cleanup Levels

Groundwater Sample Locations Petroleum Hydrocarbon Concentrations

Colville Post and Poles Colville, Washington

Data Source: 2004 Aerial base from Goole Earth Pro. Site boundary provided by EPA.

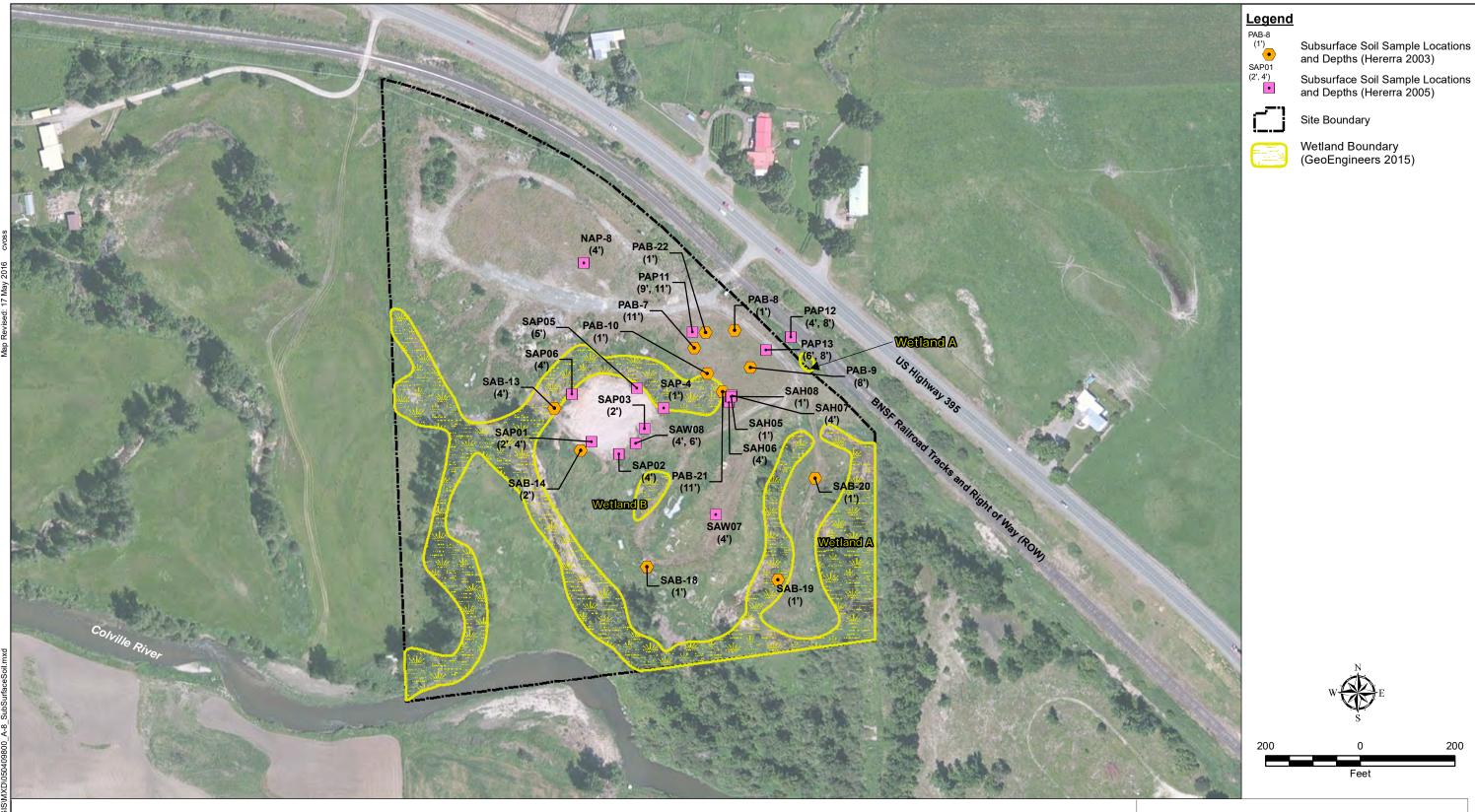
Projection: NAD 1983 UTM Zone 11N

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

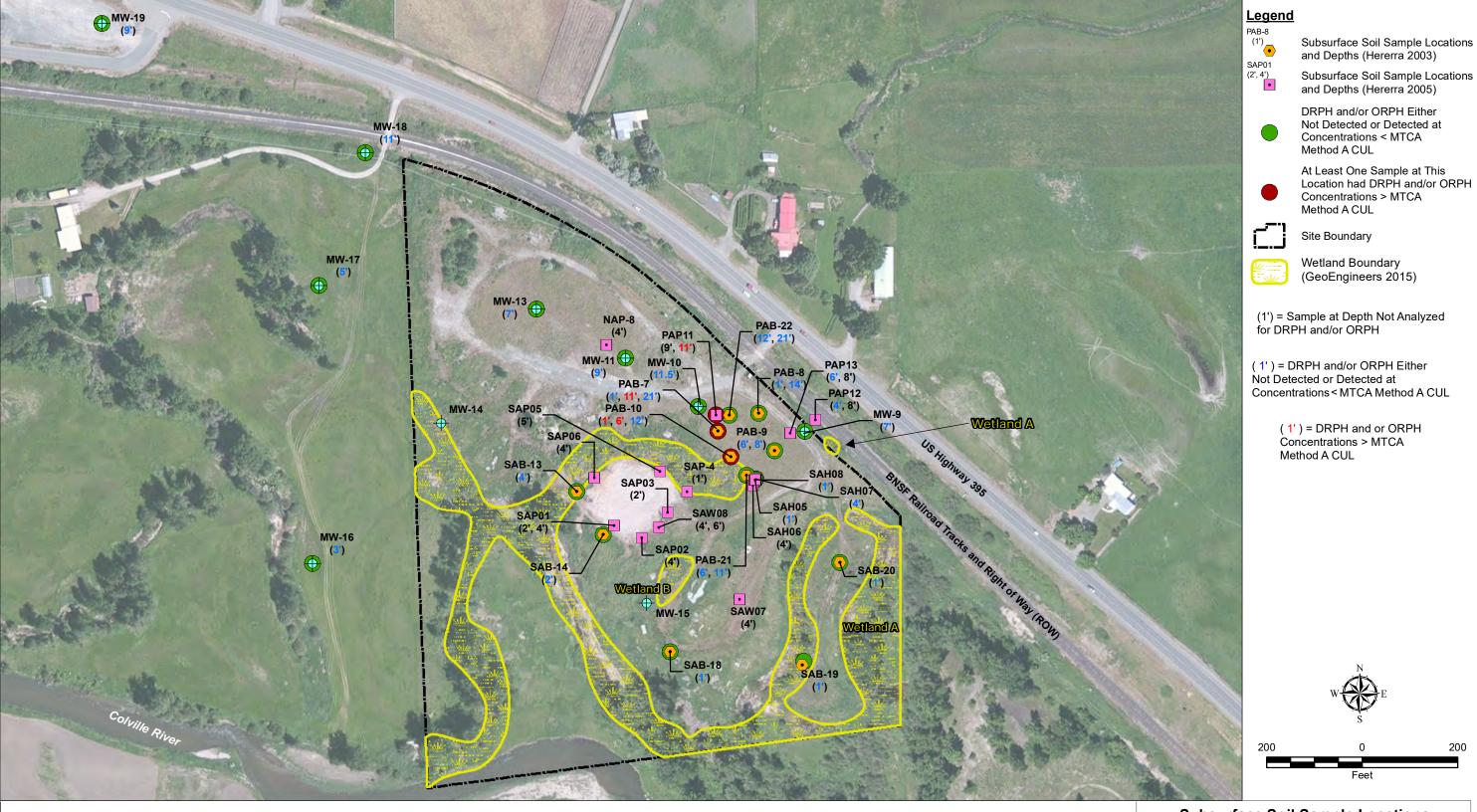

3. * MW-3 was removed by 1995.

4. CUL = Cleanup Levels

Groundwater Sample Locations PCP Concentrations

Colville Post and Poles Colville, Washington

Projection: NAD 1983 UTM Zone 11N


Notes

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Subsurface Soil Sample Locations

Colville Post and Poles Colville, Washington

Projection: NAD 1983 UTM Zone 11N

Notes

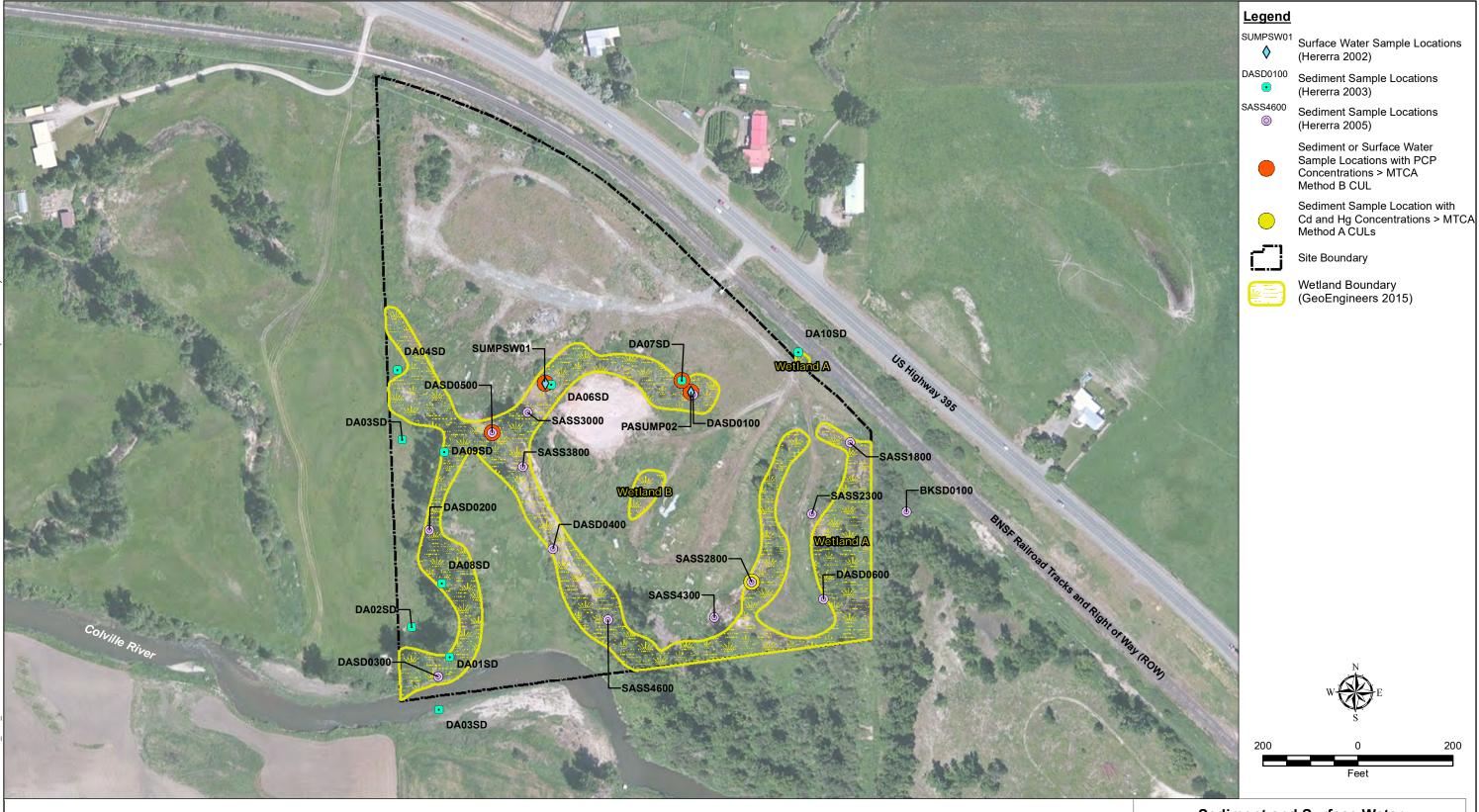
The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached docur

to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Subsurface Soil Sample Locations Petroleum Hydrocarbon Concentrations

Colville Post and Poles Colville, Washington

Projection: NAD 1983 UTM Zone 11N

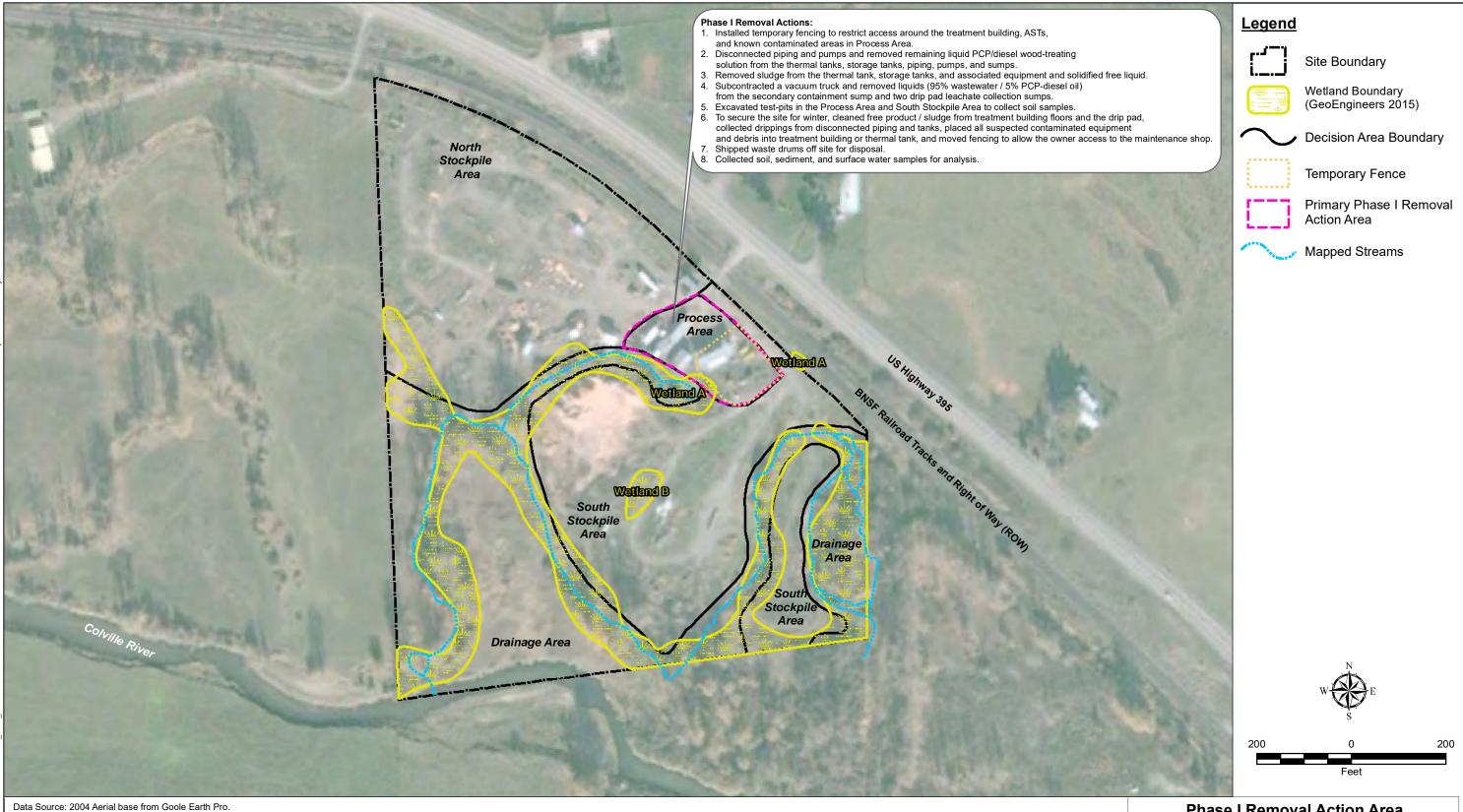

Notes

The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Subsurface Soil Sample Locations PCP Concentrations

Colville Post and Poles Colville, Washington

Projection: NAD 1983 UTM Zone 11N


Notes

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Sediment and Surface Water Sample Locations

Colville Post and Poles Colville, Washington

Data Source: 2004 Aerial base from Goole Earth Pro. Site boundary provided by EPA. Temporary fence and Primary Phase I removal action area and streams from Ecology and environment, inc, Figure 3-1, 9/6/2007.

Projection: NAD 1983 UTM Zone 11N

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Phase I Removal Action Area January 2005

Colville Post and Poles Colville, Washington

Data Source: Aerial base from ESRI Data Online. Site features from Ecology and environment, inc, Figure 3-2, 9/22/2009. Projection: NAD 1983 UTM Zone 11N

1. The locations of all features shown are approximate.
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Phase II Removal Action Area Fall 2006

Colville Post and Poles Colville, Washington

ecology and environment, inc. International Specialists in the Environment

720 Third Avenue, Suite 1700, Seattle, WA 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

October 8, 2007

Michael Boykin, On-Scene Coordinator United States Environmental Protection Agency, Region 10 1200 Sixth Street Seattle, Washington 98101

RE:

Contract No. EP-S7-06-02; Technical Direction Document No. 05-12-0003

Results of Quarterly Groundwater Monitoring, July 2007

Colville Post and Poles Site

Dear Mr. Boykin:

Enclosed please find a memorandum with the results of quarterly groundwater monitoring performed in July 2007 at the Colville Post and Poles site in Colville, Washington. If you have any further questions or comments, please contact me at (206) 624-9537.

Sincerely,

ECOLOGY AND ENVIRONMENT, INC.

Jeffrey Fowlow

START-3 Project Leader

cc: Steven Hall, START-3 Project Manager, E & E, Seattle, Washington

MEMORANDUM

DATE: October 8, 2007

TO: Michael Boykin, On-Scene Coordinator, U.S. EPA, Seattle, WA

FROM: Steven G. Hall, START-3 Project Manager, E & E, Seattle, WA

SUBJECT: Colville Post and Poles Site

Results of Quarterly Groundwater Monitoring, July 2007

REFERENCE: Contract No. EP-S7-06-02

Technical Direction Document No. 05-12-0003

The United States Environmental Protection Agency (EPA) has tasked Ecology and Environment, Inc. (E & E) under Superfund Technical Assessment and Response Team (START)-3 Contract EP-S7-06-02, Technical Direction Document 05-12-0003, to provide quarterly groundwater monitoring and sampling at the Colville Post and Poles site in Colville, Washington (Figure 1).

This technical memorandum describes the results of the quarterly groundwater monitoring performed at the site from July 16 through 18, 2007. The July 2007 sampling event is the eighth performed at the site since monitoring began in June 2005¹. The objective of the quarterly groundwater sampling events is to evaluate site hydraulic conditions through groundwater measurements of site monitoring wells and to collect groundwater samples for analytical testing from the site monitoring wells and neighboring domestic wells.

There are 22 monitoring wells for the site, including 18 on the Colville Post and Poles site itself and four located to the west and downgradient of the site. There are also six surface water gages (SW-01 through SW-06) used to monitor surface water elevations at the site.

Access to Neighboring Domestic Wells

Since January 2006, neighboring domestic wells have been included in the quarterly sampling events. EPA currently has access to 12 domestic wells on 11 neighboring properties, and all 12 wells were sampled during the July 2007 sampling event. Copies of access agreements for the sampled domestic wells are maintained on file at EPA.

Upon receipt and validation of the analytical results for the July 2007 sampling event, EPA sent Owner Notification Tables to each property owner with a summary of the domestic well results for their property. Copies of the Owner Notification Tables for the July 2007 sampling event are maintained on file at EPA.

¹ Previous groundwater monitoring events have been performed in June and September 2005; January, April, August, and December 2006; and March 2007.

Groundwater Conditions

On July 16, 2007, START-3 measured and recorded static groundwater levels in 22 monitoring wells, six recovery wells, and two domestic wells at the site and vicinity. START-3 also measured surface water levels at the six surface water gages.

The elevation data, which represent conditions in the shallow unconfined aquifer at the site, are presented in Table 1. Past data and a chart summarizing average groundwater elevations for previous monitoring events are included in Attachment A (Herrera 2005, Herrera 2006, E & E 2006a, E & E 2006b, E & E 2007a, E & E 2007b, and E & E 2007c). The average groundwater elevation² on July 16, 2007, was 1531.90 feet above mean sea level (MSL), which is 2.92 feet lower than in April 2007 and 3.36 feet lower than in March 2007. The groundwater elevation changes are consistent with seasonal changes in precipitation and elevations recorded during past monitoring events.

Table 1 also contains product level data for recovery wells RW-01 through RW-06. During the July 2007 sampling event, free product was observed in five of the six recovery wells, with product thicknesses ranging from 0.04 (RW-04) to 0.21 (RW-01) feet. Recovery well RW-05 did not contain any measurable free product, and none of the monitoring wells contained any observable product or sheen.

Figure 2 presents groundwater surface contours based on the static groundwater level data collected on July 16, 2007. Note that domestic well DW-09 is not included in the groundwater contours in this figure because the groundwater levels in this well are significantly higher than those located on site and the relationship between the groundwater level in this well and the aquifer in the immediate vicinity has not been determined.

The horizontal hydraulic gradient across the site was 0.0020 foot/foot (ft/ft) on July 16. This gradient was calculated from the vertical distance divided by the horizontal distance between the 1,530.5 feet and 1,532.0 feet groundwater contour lines. Groundwater velocity across the site is estimated to range from 0.13 feet per day (ft/day) to 13 ft/day based on the following equation:

$$v = KI/Sy$$

where:

 ν is velocity (in feet per day), K is hydraulic conductivity (in gallons per day per square feet [gal/day/ft²]) ³, I is horizontal hydraulic gradient (in ft/ft), and Sy is specific yield (dimensionless).

The values for hydraulic conductivity used in calculations were 100 gallons/day/foot² for silty sand and 10,000 gallons/day/foot² for sandy gravel (Heath 1983). The value for specific yield used in calculations was 0.2 based on the midpoint of specific yield for sand (0.1 to 0.3) and for gravel (0.15 to 0.30; Herrera 2005).

² Average groundwater elevation values do not include DW-09, located across Highway 395 from the site, in which the groundwater level is significantly higher than those on site.

³ Gallons are converted to cubic feet in the equation.

The hydraulic characteristics for all rounds of quarterly monitoring are provided below. The values for the June and September 2005 quarters were obtained/calculated from data provided in Herrera reports (Herrera 2005, Herrera 2006, Fedirchuk 2005a, Fedirchuk 2005b).

	Average Groundwater	Hydraulic	Estimated Groundwater
	Elevation	Gradient	Velocity Range
Field Event	(feet above mean sea level)	<u>(ft/ft)</u>	<u>(ft/day)</u>
June 2005	1534.16	0.0017	0.11 to 11
September 2005	1531.23	0.0008	0.05 to 5
January 2006	1535.33	0.0019	0.13 to 13
April 2006	1536.61	0.0015	0.10 to 10
August 2006	1531.82	0.0013	0.08 to 8.7
December 2006	1532.83	0.0019	0.13 to 13
March 2007	1535.26	0.0010	0.067 to 6.7
April 2007	1534.82	0.0010	0.067 to 6.7
July 2007	1531.90	0.0020	0.13 to 13

Groundwater Sampling and Results

On July 17 and 18, 2007, START-3 collected a total of 36 groundwater samples from the site and neighboring properties. The 36 samples included 22 monitoring wells, 12 neighboring domestic wells, one recovery well (RW-03), and one field duplicate from an on-site monitoring well (W-01).

Groundwater samples were collected in accordance with the Site-Specific Sampling Plan (SSSP; E & E 2006c). START-3 collected the monitoring well samples using the low-flow method with a peristaltic pump and dedicated polyethylene tubing. For each monitoring well, START-3 pumped water from the well at an approximate rate of 1 liter per minute and monitored the water quality parameters (temperature, pH, dissolved oxygen, conductivity, turbidity, and salinity) with a field water quality instrument. Once the readings stabilized, START-3 collected the sample. The sample from recovery well RW-03 was also collected using the peristaltic pump and dedicated tubing, but the water was not purged or monitored prior to sampling because the well contained free product and was collected as an estimate of worst-case contamination. The domestic well samples were collected from the nearest spigot to the groundwater pump, after the water was allowed to purge for 10 minutes.

The samples were submitted for laboratory analysis to STL-Seattle in Tacoma, Washington, under chain of custody protocol. The groundwater samples were submitted for the analysis of semi-volatile organic compounds (SVOCs) by SW-846 Method 8270 and for the analysis of diesel- and heavy oil-range hydrocarbon constituents using the Washington State Department of Ecology NWTPH-Dx method. Laboratory analytical reports, including data validation memoranda, are included in Attachment B.

The analytical results of the groundwater samples are presented in Tables 2, 3, and 4 and Figures 3 and 4. Table 2 presents the results of the two primary constituents of concern, PCP and diesel-range organics (DRO), in the monitoring and recovery wells, while Table 3 presents the PCP and DRO results for the domestic wells. Complete results for all analytes are presented in Table 4. PCP and DRO results are indicated on Figure 3 for the monitoring and recovery wells and Figure 4 for all monitoring, recovery, and domestic wells.

Pentachlorophenol Results

Monitoring Wells

During the July 2007 groundwater sampling event, PCP was detected in groundwater samples from 11 of the 18 on-site monitoring wells, one of the four off-site monitoring wells, and none of the 12 domestic wells.

PCP was detected in on-site monitoring wells in patterns that were generally consistent with previous sampling events. The highest concentrations of PCP were detected in the monitoring wells located to the west and downgradient of the former process area. PCP was detected at a concentration of 1,000 micrograms per liter (μ g/L) in MW-10, 2,400 μ g/L in MW-11, and 1,100 μ g/L in MW-12. Additional wells to the west and downgradient of this plume area also contained PCP, although at lower concentrations: 67 J μ g/L in MW-13, 72 μ g/L in W-05, 14 μ g/L in W-06, and 11 μ g/L in MW-17 (offsite). PCP was also detected at a trace concentration (0.89 μ g/L) in MW-14. PCP was not detected in the other monitoring wells to the west of the source area, including on-site wells W-01 and W-04 and offsite wells MW-16, MW-18, and MW-19. The detection limit for PCP was approximately 0.35 μ g/L.

In the source area (the former process area), PCP was detected at a concentration of 3,800 μ g/L in recovery well RW-03. This concentration is higher than in March 2007 (710 μ g/L), but lower than in December 2006 (16,000 μ g/L). To the south and east of the source area, PCP was detected at a concentration of 120 μ g/L in MW-1, 1.5 μ g/L in MW-09, 0.39 μ g/L in MW-15, and 0.25 J in W-07. PCP was not detected in the other monitoring wells in this location, including MW-2, MW-4, W-02, W-03, and W-08.

These results indicate that the contaminant plume is persisting downgradient to the west from the source area and is migrating off site through the area of MW-17 on the neighboring property. However, the area of higher concentrations has receded somewhat from March 2007. For example, the highest concentration of PCP in a monitoring well was detected in MW-13 (2,100 and 1,300 J μ g/L) in March 2007. During July, though, MW-13 contained PCP at a concentration of 67 J μ g/L, while the highest concentration was detected in MW-11 (2,400 μ g/L), which is located to the east of MW-17 and closer to the source area. Additionally, W-01, which has contained PCP as high as 76 μ g/L in March 2007, did not contain PCP (less than 0.34 UJ μ g/L) in July 2007. This may be related to seasonal groundwater changes, with the area of higher concentrations receding as the groundwater level lowers during the drier summer months.

PCP has never been detected at such a high concentration (120 μ g/L) in MW-1 during previous sampling events. MW-1 did contain a trace level of PCP (0.211 J μ g/L) in September 2005, and PCP has not been detected in the other sampling events. The presence of PCP at a concentration of 120 μ g/L in MW-1 during July 2007 could be an indication that the contaminant plume is extending to the south from the process area. MW-1 is the monitoring well located closest to the south of the source area.

Domestic Wells

PCP was not detected in any of the 12 domestic wells sampled in July 2007. Detection limits for PCP were approximately 0.35 $\mu g/L$.

Comparison of PCP Results to Applicable Standards and Cleanup Levels

The PCP results in Tables 2 and 3 have been compared to several relevant cleanup levels, including the Federal Maximum Contaminant Level (MCL) of 1.0 μ g/L, the U.S. EPA Region 6 Human Health Medium-Specific Screening Level (HHMSSL) for tap water of 0.56 μ g/L, the Washington Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method B cleanup level for unrestricted groundwater of 0.729 μ g/L, and the MTCA Method C industrial cleanup level of 7.29 μ g/L. Monitoring wells MW-1, W-05, W-06, MW-10, MW-11, MW-12, MW-13, and MW-17 exceeded all four of these standards; MW-09 exceeded the MCL, the HHMSSL, and the MTCA method B cleanup level; and MW-14 exceeded the HHMSSL and the MTCA method B cleanup level.

Semivolatile Organic Compound Results

Table 4 includes the results for all analyses performed, including the complete list of SVOCs analyzed by the laboratory. Besides PCP, a few additional SVOCs were detected at relatively low concentrations in the samples, including anthracene, fluoranthene, fluorene, naphthalene, pyrene, and others. For complete details, please refer to Table 4. With the exception of one SVOC, bis(2-ethyl hexyl) phthalate, none of the SVOCs were present in the samples above standards for drinking water. Bis (2-ethyl hexyl) phthalate was detected in laboratory blanks and, therefore, may be attributed to cross-contamination. Some of the SVOCs were also detected in some of the domestic well samples. However, those SVOCs with an MCL did not exceed the MCL in any domestic well sample.

Total Petroleum Hydrocarbons

During the July 2007 sampling event, DRO was detected in groundwater samples from 21 of the 22 monitoring wells, with a concentration as high as 3,100 μ g/L in MW-10 (Table 2). Four of the monitoring wells (W-05, MW-10, MW-11, and MW-12) contained DRO at concentrations above the MTCA Method A cleanup level of 500 μ g/L. In general, the pattern of the DRO contaminant plume was similar to that of PCP, with lower concentrations in MW-13 (380 μ g/L compared to 2,700/2,800 μ g/L in March 2007) and higher concentrations in MW-11 (1,900 μ g/L compared to 590 μ g/L in March 2007) and MW-12 (1,000 μ g/L compared to 340 μ g/L in March 2007). DRO was detected in the recovery well sample RW-03 at a concentration of 3,000 μ g/L, which is lower than in March 2007 (4,000 μ g/L).

DRO was detected in several monitoring wells for the first time since monitoring began. Monitoring wells W-02 and W-03, located upgradient of the source area on the eastern portion of the site, both contained DRO at trace levels (37 J and 36 J μ g/L, respectively). Previously, W-02 and W-03 had never contained either PCP or DRO. To the west of the source area, DRO was also detected for the first time at trace levels in MW-15 (71 J μ g/L), MW-16 (69 J μ g/L), MW-18 (77 J μ g/L), and MW-19 (83 J μ g/L).

DRO was detected in one of the domestic wells (DW-06) at a trace concentration of 42 J μ g/L, which is below the MTCA Method A cleanup level of 500 μ g/L.

Heavy oil-range organics (Table 4) were detected in six of the monitoring wells, including W-04, W-05, MW-10, MW-12, MW-16, and MW-19, at concentrations ranging from 69 J to 240 J μ g/L. Recovery well RW-03 contained heavy oil-range organics at a concentration of 230 J μ g/L. One of the domestic

wells, DW-01, contained heavy oil-range organics at a concentration of 100 J μ g/L, which is below the MTCA Method A cleanup level of 500 μ g/L.

Summary and Recommendations

The results of the July 2007 sampling event indicates that a contaminant plume of PCP and DRO persists at the Colville Post and Poles site. The plume contained PCP at concentrations as high as 2,400 μ g/L (MW-11) and DRO at concentrations as high as 3,100 μ g/L (MW-10). The plume extends to the west of the source area (former Process Area) and continues off-site onto the neighboring property through the location of MW-17. The area of highest contaminant concentrations has receded since March 2007, which may be caused by the lower groundwater levels observed during July 2007. However, PCP was detected at a concentration of 120 μ g/L in MW-1, where PCP had not been detected in the past five sampling events. These results indicate that the contaminant plume may be extending to the south from the source area.

None of the domestic wells contained PCP, although DW-01 contained heavy oil-range organics at a concentration of 100 J $\mu g/L$ and DW-06 contained DRO at a concentration of 42 J $\mu g/L$. Both detections were lower than applicable state cleanup levels.

Groundwater elevations fell by an average of 3.36 feet from March 2007. Groundwater elevations and hydraulic conductivity were typical for the season, and the hydraulic gradient was generally to the west, as has been observed in the past.

START-3 recommends continued quarterly groundwater sampling of the monitoring wells and neighboring domestic wells to monitor the concentrations of contaminants in on-site groundwater and to determine the impact to groundwater on neighboring properties.

References

SUMMARY OF GROUNDWATER AND SURFACE WATER ELEVATION DATA JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

Monitoring Well ⁽¹⁾	Measurement Date	Reference Elevation (feet above MSL) (2)	Depth to Product (feet) (3)	Depth to Water (feet) (3)	Product Thickness (feet)	Water Level Elevation (feet above MSL) (4)
MW-1	7/16/2007	1539.18	none	7.11	0.00	1532.07
MW-2	7/16/2007	1539.45	none	7.35	0.00	1532.10
MW-4	7/16/2007	1541.02	none	8.75	0.00	1532.27
W-01	7/16/2007	1540.36	none	8.26	0.00	1532.10
W-02	7/16/2007	1538.12	none	5.70	0.00	1532.42
W-03	7/16/2007	1539.49	none	7.34	0.00	1532.15
W-04	7/16/2007	1536.73	none	5.19	0.00	1531.54
W-05	7/16/2007	1537.70	none	6.10	0.00	1531.60
W-06	7/16/2007	1536.55	none	4.77	0.00	1531.78
W-07	7/16/2007	1537.26	none	5.42	0.00	1531.84
W-08	7/16/2007	1540.20	none	8.36	0.00	1531.84
MW-09	7/16/2007	1542.69	none	10.23	0.00	1532.46
MW-10	7/16/2007	1544.53	none	12.46	0.00	1532.07
MW-11	7/16/2007	1542.92	none	10.87	0.00	1532.05
MW-12	7/16/2007	1543.05	none	11.01	0.00	1532.04
MW-13	7/16/2007	1541.75	none	9.81	0.00	1531.94
MW-14	7/16/2007	1538.98	none	7.38	0.00	1531.60
MW-15	7/16/2007	1541.18	none	9.54	0.00	1531.64
MW-16	7/16/2007	1535.52	none	5.01	0.00	1530.51
MW-17	7/16/2007	1537.57	none	6.18	0.00	1531.39
MW-18	7/16/2007	1538.68	none	6.94	0.00	1531.74
MW-19	7/16/2007	1543.40	none	11.90	0.00	1531.50
DW-05	7/16/2007	1538.61	none	7.82	0.00	1530.79
DW-09	7/18/2007	1545.12	none	6.26	0.00	1538.86
RW-01	7/16/2007	1544.49	12.56	12.35	0.21	1532.14
RW-02	7/16/2007	1544.67	12.57	12.44	0.13	1532.23
RW-03	7/16/2007	1544.15	12.07	11.91	0.16	1532.24
RW-04	7/16/2007	1543.05	10.89	10.85	0.04	1532.20
RW-05	7/16/2007	1542.72	none	10.53	0.00	1532.19
RW-06	7/16/2007	1541.94	9.86	9.71	0.15	1532.23
SW-01	7/16/2007	1538.33	none	No Water	0.00	NA
SW-02	7/16/2007	1538.38	none	No Water	0.00	NA
SW-03	7/16/2007	1538.89	none	No Water	0.00	NA
SW-04	7/16/2007	1540.39	none	No Water	0.00	NA
SW-05	7/16/2007	1540.19	none	No Water	0.00	NA
SW-06	7/16/2007	1538.56	none	6.22	0.00	1532.34

Notes: (1) Monitoring Wells NAW-01, SAW-02, SAW-03, NAW-04, NAW-05, NAW-06, SAW-07, and SAW-08 have been re-designated W-01 through W-08 in this report.

- (2) Elevations of reference points (top of well casing) were surveyed relative to mean sea level.
- (3) Depth to product or water measurements were taken from reference point marks on top of well casing.
- (4) Elevation in feet (mean sea level).

Key:

MSL = mean sea level
NA = not available
NM = not measured

SUMMARY OF PCP AND DRO RESULTS IN MONITORING WELLS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

Monitoring Well ⁽¹⁾	Sample ID	COLVILLE, STEVEN Collected By	Sample Date	PCP (µg/L)	DRO (µg/L)
MTCA Method A	·	Бy	Date	(hg/±/)	(μg/L) 500
	cleanup level (unrestri	cted)		0.729	
	cleanup level (industri			7.29	
				0.56	
	6 HHMSSL tap water			1.0	
	Contaminant Level (N	, i	6/17/2005	1	
MW-1 MW-1	SAGWMW105 MW-01	START-2 (Herrera)	6/17/2005 9/14/2005	1.9 U 0.211 J ⁽²⁾	237 U
MW-1	06010008	START-2 (Herrera) START-3 (E & E)	1/17/2006	0.211 J 0.24 U	124 J 120
MW-1	06040006	START-3 (E & E)	4/18/2006	0.24 U	110 J
MW-1	06080107	START-3 (E & E)	8/17/2006	0.25 U	110 3
MW-1	06121007	START-3 (E & E)	12/3/2006	0.23 U	240 U
MW-1	07030016	START-3 (E & E)	3/20/2007	0.34 U	120 U
MW-1	07070119	START-3 (E & E)	7/17/2007	120	260
MW-2	SAGWMW205	START-2 (Herrera)	6/17/2005	1.9 U	212 J
MW-2	MW-02	START-2 (Herrera)	9/13/2005	0.195 UJ ⁽²⁾	244 U
MW-2	06010009	START-3 (E & E)	1/17/2006	0.70	140
MW-2	06040005	START-3 (E & E)	4/18/2006	0.48	86 J
MW-2	06080106	START-3 (E & E)	8/17/2006	0.25 U	54
MW-2	06121005	START-3 (E & E)	12/3/2006	0.10 U	240 U
MW-2	07030019	START-3 (E & E)	3/20/2007	0.067 J	120 U
MW-2	07070120	START-3 (E & E)	7/17/2007	0.35 U	69 J
MW-4	SAGWMW407	START-2 (Herrera)	6/17/2005	1.9 U	237 U
MW-4	MW-04	START-2 (Herrera)	9/13/2005	0.193 UJ ⁽²⁾	237 U
MW-4	06010010	START-3 (E & E)	1/18/2006	0.22 J	80
MW-4	06040004	START-3 (E & E)	4/18/2006	0.16 J	160 J
MW-4	06080105	START-3 (E & E)	8/17/2006	0.25 U	52
MW-4	06121008	START-3 (E & E)	12/3/2006	0.097 U	84 J
MW-4	07030020	START-3 (E & E)	3/20/2007	0.15 J	83 J
MW-4	07070118	START-3 (E & E)	7/17/2007	0.35 U	44 J
W-01	NAGWW0106	START-2 (Herrera)	6/17/2005	1.88 U	237 U
W-01	W-01	START-2 (Herrera)	9/13/2005	0.195 UJ ⁽²⁾	244 U
W-01	06010007	START-3 (E & E)	1/17/2006	1.44	50 U
W-01	06040008 / 09 (5)	START-3 (E & E)	4/18/2006	0.25 U / 0.24 U ⁽⁵⁾	52 U / 52 UJ ⁽⁵⁾
W-01	06080120	START-3 (E & E)	8/17/2006	0.25 U	53 U
W-01	06121001	START-3 (E & E)	12/2/2006	40	47 J
W-01	07030025	START-3 (E & E)	3/21/2007	76	84 J
W-01	07070130 / 31 (5)	START-3 (E & E)	7/18/2007	0.34 UJ / 0.34 UJ ⁽⁵⁾	46 J / 42 J ⁽⁵⁾
W-02	SAGWW0203	START-2 (Herrera)	6/17/2005	1.9 U	238 U
W-02	W-02	START-2 (Herrera)	9/14/2005	NA	238 U
W-02	06010012	START-3 (E & E)	1/18/2006	0.24 U	49 U
W-02	06040002	START-3 (E & E)	4/18/2006	0.24 U	54 UJ
W-02	06080102	START-3 (E & E)	8/17/2006	0.25 U	53 U
W-02	06121002	START-3 (E & E)	12/2/2006	0.10 U	240 U
W-02	07030017	START-3 (E & E)	3/20/2007	0.34 U	120 U
W-02	07070114	START-3 (E & E)	7/17/2007	0.35 U	37 J
W-03 (3)	SAGWW0305	START-2 (Herrera)	6/17/2005	1.91 U ⁽³⁾	238 U
W-03	W-03	START-2 (Herrera)	9/14/2005	0.191 UJ ⁽²⁾	239 U
W-03	06010011	START-3 (E & E)	1/18/2006	0.24 U	49 U
W-03	06040001	START-3 (E & E)	4/18/2006	0.24 U	52 UJ
W-03	06080101	START-3 (E & E)	8/17/2006	0.24 U	52 U
W-03	06121015	START-3 (E & E)	12/4/2006	0.098 U	240 U
W-03	07030018	START-3 (E & E)	3/20/2007	0.36 U	120 U
W-03	07070113	START-3 (E & E)	7/17/2007	0.35 U	36 J

SUMMARY OF PCP AND DRO RESULTS IN MONITORING WELLS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

3.6 %	T	COLVILLE, STEVEN			
Monitoring Well ⁽¹⁾	Sample ID	Collected By	Sample Date	PCP (µg/L)	DRO (μg/L)
MTCA Method A	cleanup level				500
MTCA Method B	cleanup level (unrestri	cted)		0.729	
MTCA Method C	cleanup level (industri	al)		7.29	
EPA Region 6 200	6 HHMSSL tap water			0.56	
Federal Maximum	Contaminant Level (N	MCL)		1.0	
W-04	NAGWW0403	START-2 (Herrera)	6/17/2005	1.9 U	237 U
W-04	W-04	START-2 (Herrera)	9/13/2005	0.195 UJ ⁽²⁾	244 U
W-04	06010003	START-3 (E & E)	1/17/2006	0.25 U	95
W-04	06040010	START-3 (E & E)	4/18/2006	0.24 U	95 J
W-04	06080122	START-3 (E & E)	8/17/2006	0.25 U	95 J
W-04	06121014	START-3 (E & E)	12/4/2006	0.097 U	53 J
W-04	07030026	START-3 (E & E)	3/21/2007	0.22 J	43 J
W-04	07070126	START-3 (E & E)	7/18/2007	0.33 UJ	87 J
W-05 (3)	NAGWW0504	START-2 (Herrera)	6/17/2005	256 ⁽³⁾	283 J
W-05	W-05	START-2 (Herrera)	9/13/2005	385	243 U
W-05	06010006	START-3 (E & E)	1/17/2006	146	210
W-05	06040012	START-3 (E & E)	4/18/2006	134	210 J
W-05	06080121	START-3 (E & E)	8/17/2006	280	420 J
W-05	06121018	START-3 (E & E)	12/4/2006	160	150 J
W-05	07030031	START-3 (E & E)	3/21/2007	3.3 J	140
W-05	07070127	START-3 (E & E)	7/18/2007	72	1,200
W-06	NAGWW0603	START-2 (Herrera)	6/17/2005	153	284 J
W-06 (4)	W-06 ⁽⁵⁾	START-2 (Herrera)	9/13/2005	78.8 / 86.1 (4), (5)	78.9 / 82.9 J ⁽⁵⁾
W-06	06010001 / 02 (5)	START-3 (E & E)	1/17/2006	118 / 113 (5)	270 / 270 ⁽⁵⁾
W-06	06040011	START-3 (E & E)	4/18/2006	0.24 U	52 UJ
W-06	06080118 / 19 (5)	START-3 (E & E)	8/17/2006	0.27 / 0.31 (5)	53 / 53 U ⁽⁵⁾
W-06	06121017	START-3 (E & E)	12/4/2006	6.8	240 U
W-06	07030027	START-3 (E & E)	3/21/2007	25 J	180
W-06	07070129	START-3 (E & E)	7/18/2007	14	69 J
W-07 W-07 ⁽⁴⁾	SAGWW0703	START-2 (Herrera)	6/17/2005	1.89 U 0.203 J (2) (4)	236 U
	W-07	START-2 (Herrera)	9/14/2005		287 J
W-07	06010005	START-3 (E & E)	1/17/2006	0.24 U	48 U
W-07	06040003	START-3 (E & E)	4/18/2006	0.24 U	52 UJ
W-07	06080103	START-3 (E & E)	8/17/2006	0.25 U	52 U
W-07	06121003	START-3 (E & E)	12/3/2006	0.10 U	240 U
W-07 W-07	07030021 07070115	START-3 (E & E) START-3 (E & E)	3/20/2007 7/17/2007	0.35 U 0.25 J	120 U 120 U
W-07 W-08	SAGWW0806	START-3 (E & E) START-2 (Herrera)	6/17/2005	1.9 U	237 U
W-08	W-08	START-2 (Herrera)	9/14/2005	1.9 U	NA
W-08	06010004	START-3 (E & E)	1/17/2006	0.24 U	51
W-08	06040007	START-3 (E & E)	4/18/2006	0.24 U	79 J
W-08	06080104	START-3 (E & E)	8/17/2006	0.24 U	76
W-08	06121006	START-3 (E & E)	12/3/2006	0.024 J	240 U
W-08	07030022	START-3 (E & E)	3/20/2007	0.34 U	130 U
W-08	07070117	START-3 (E & E)	7/17/2007	0.35 U	45 J
MW-09	06121019	START-3 (E & E)	12/4/2006	110	620
MW-09	07030023	START-3 (E & E)	3/20/2007	0.22 J	120 U
MW-09	07070121	START-3 (E & E)	7/17/2007	1.5	62 J
MW-10	06121026	START-3 (E & E)	12/5/2006	1,800	2,800
MW-10	07030043	START-3 (E & E)	3/21/2007	1,300	2,800
MW-10	07070135	START-3 (E & E)	7/18/2007	1,000	3,100
MW-11 (deep)	06121024	START-3 (E & E)	12/5/2006	920	1,700
MW-11 (deep)	07030044	START-3 (E & E)	3/21/2007	100 J	590
MW-11 (deep)	07070133	START-3 (E & E)	7/18/2007	2,400	1,900

SUMMARY OF PCP AND DRO RESULTS IN MONITORING WELLS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE

COLVILLE, STEVENS COUNTY, WASHINGTON

3.5 1. 1	1	COLVILLE, STEVEN			
Monitoring Well ⁽¹⁾	Sample	Collected	Sample	PCP	DRO
Well	ID	Ву	Date	(μg/L)	(µg/L)
MTCA Method A c	leanup level				500
MTCA Method B cl	leanup level (unrestri	cted)		0.729	
MTCA Method C cl	leanup level (industri	al)		7.29	
EPA Region 6 2006	HHMSSL tap water			0.56	
Federal Maximum (Contaminant Level (N	MCL)		1.0	
MW-12 (shallow)	06121025	START-3 (E & E)	12/5/2006	500	760
MW-12 (shallow)	07030045	START-3 (E & E)	3/21/2007	240	340
MW-12 (shallow)	07070134	START-3 (E & E)	7/18/2007	1,100	1,000
MW-13	06121021 / 22 (5)	START-3 (E & E)	12/5/2006	360 / 370 ⁽⁵⁾	520 / 520 ⁽⁵⁾
MW-13	07030029 / 30 (5)	START-3 (E & E)	3/21/2007	2,100 / 1,300 J ⁽⁵⁾	2,700 / 2,800 ⁽⁵⁾
MW-13	07070132	START-3 (E & E)	7/18/2007	67 J	380
MW-14	06121012	START-3 (E & E)	12/4/2006	0.19	41 J
MW-14	07030028	START-3 (E & E)	3/21/2007	0.25 J	120 U
MW-14	07070128	START-3 (E & E)	7/18/2007	0.89	95 J
MW-15	06121004	START-3 (E & E)	12/3/2006	0.013 J	250 U
MW-15	07030024	START-3 (E & E)	3/20/2007	0.34 U	120 U
MW-15	07070116	START-3 (E & E)	7/17/2007	0.39	71 J
MW-16	06121009	START-3 (E & E)	12/3/2006	0.012 J	250 U
MW-16	07030012	START-3 (E & E)	3/20/2007	0.36 UJ	120 U
MW-16	07070124	START-3 (E & E)	7/17/2007	0.35 U	69 J
MW-17	06121010	START-3 (E & E)	12/3/2006	47	72 J
MW-17	07030013	START-3 (E & E)	3/20/2007	11 J	48 J
MW-17	07070125	START-3 (E & E)	7/17/2007	11	74 J
MW-18	06121011	START-3 (E & E)	12/3/2006	0.097 U	240 U
MW-18	07030014	START-3 (E & E)	3/20/2007	0.35 U	120 U
MW-18	07070123	START-3 (E & E)	7/17/2007	0.35 U	77 J
MW-19	06121020	START-3 (E & E)	12/5/2006	0.096 U	250 U
MW-19	07030015	START-3 (E & E)	3/20/2007	0.34 U	120 U
MW-19	07070122	START-3 (E & E)	7/17/2007	0.34 U	83 J
RW-03	06121036	START-3 (E & E)	12/5/2006	16,000	7,200
RW-03	07030046	START-3 (E & E)	3/21/2007	710	4,000
RW-03	07070136	START-3 (E & E)	7/18/2007	3,800	3,000

Notes: Results in BOLD typeface indicate a detected compound.

- (1) Monitoring Wells NAW-01, SAW-02, SAW-03, NAW-04, NAW-05, NAW-06, SAW-07, and SAW-08 have been re-designated W-01 through W-08 in this report.
- $(2) \ J-flags \ have \ been \ added \ to \ these \ results \ as \ a \ result \ of \ START-3 \ validation \ performed \ in \ May \ 2007.$
- (3) Data for SAW-03 (W-03) and NAW-05 (W-05) from June 2005 were switched in December 2005 (Herrera) report.
- (4) Data for NAW-06 (W-06) and SAW-07 (W-07) from September 2005 have been switched.
- (5) The two results for these samples indicate that field duplicates were collected and analyzed.

Key:

DRO = Diesel-Range Organics

 $HHMSSL \qquad = Human \ Health \ Medium-Specific \ Screening \ Levels$

 $\begin{array}{ll} J & = estimated \ value \\ \mu g/L & = micrograms \ per \ liter \end{array}$

MTCA = Model Toxic Control Act (Washington State)

 $\begin{array}{ll} PCP & = Pentachlorophenol \\ U & = not \ detected \end{array}$

SUMMARY OF PCP AND DRO RESULTS IN DOMESTIC WELLS AND SURFACE WATER SAMPLES JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

Domestic Well ID	Sample ID	Collected By	Sample Type	Aquifer	Sample Date	PCP (µg/L)	DRO (µg/L)
MTCA Method	A cleanup lev	·	Sumper Cyps		l.		500
MTCA Method			d)			0.729	
MTCA Method	C cleanup lev	el (industrial)				7.29	
EPA Region 6 2			0.56				
Federal Maxim	um Contamina		1.0				
DOMESTIC	WELL SAM	PLES					
DW-01	06010013	E & E	Domestic Well	Upper	1/18/2006	0.24 U	50 U
DW-01	06040013	E & E	Domestic Well	Upper	4/18/2006	0.24 U	51 U
DW-01	06080108	E & E	Domestic Well	Upper	8/17/2006	0.24 U	55 U
DW-01	06121027	E & E	Domestic Well	Upper	12/5/2006	0.099 U	240 U
DW-01	07030001	E & E	Domestic Well	Upper	3/20/2007	0.37 U	130 U
DW-01	07070101	E & E	Domestic Well	Upper	7/17/2007	0.35 U	120 U
DW-02	06010014	E & E	Domestic Well	Upper	1/18/2006	0.24 U	50 U
DW-02	06040014	E & E	Domestic Well	Upper	4/18/2006	0.24 U	51 U
DW-02	06080116	E & E	Domestic Well	Upper	8/17/2006	0.24 U	54 U
DW-02	06121031	E & E	Domestic Well	Upper	12/5/2006	0.0064 J	240 U
DW-02	07030002	E & E	Domestic Well	Upper	3/20/2007	0.33 U	120 U
DW-02	07070102	E & E	Domestic Well	Upper	7/17/2007	0.35 U	120 U
DW-03	06010015	E & E	Domestic Well	Upper	1/18/2006	0.24 U	52 U
DW-03	06040015	E & E	Domestic Well	Upper	4/18/2006	0.24 U	53 U
DW-03	06080114	E & E	Domestic Well	Upper	8/17/2006	0.24 U	53 U
DW-03	06121033	E & E	Domestic Well	Upper	12/5/2006	0.11 U	260 U
DW-03	07030003	E & E	Domestic Well	Upper	3/20/2007	0.34 U	120 U
DW-03	07070103	E & E	Domestic Well	Upper	7/17/2007	0.35 U	120 U
DW-04	06010016	E & E	Domestic Well	Upper	1/18/2006	0.24 U	50 U
DW-04	06040016	E & E	Domestic Well	Upper	4/18/2006	0.24 U	53 U
DW-04	06080115	E & E	Domestic Well	Upper	8/17/2006	0.25 U	53 U
DW-04	06121034	E & E	Domestic Well	Upper	12/5/2006	0.10 U	260 U
DW-04	07030004	E & E	Domestic Well	Upper	3/20/2007	0.35 UJ	130 U
DW-04	07070104	E & E	Domestic Well	Upper	7/17/2007	0.35 U	120 U
DW-05	06040017	E & E	Domestic Well	Upper	4/18/2006	0.24 U	52 U
DW-05	06080117	E & E	Domestic Well	Upper	8/17/2006	0.24 U	55 U
DW-05	06121030	E & E	Domestic Well	Upper	12/5/2006	0.12	240 U
DW-05	07030005	E & E	Domestic Well	Upper	3/20/2007	0.26 J	130 U
DW-05	07070105	E & E	Domestic Well	Upper	7/17/2007	0.35 U	130 U
DW-06	06040018	E & E	Domestic Well	Upper	4/19/2006	0.24 U	52 U
DW-06	06080112	E & E	Domestic Well	Upper	8/17/2006	0.25 U	53 U
DW-06	NS (1)	E & E	Domestic Well	Upper	12/5/2006	NS (1)	NS ⁽¹⁾
DW-06	07030006	E & E	Domestic Well	Upper	3/20/2007	0.35 U	120 U
DW-06	07070106	E & E	Domestic Well	Upper	7/17/2007	0.35 UJ	42 J
DW-07	06040019	E&E	Domestic Well	Lower	4/19/2006	0.24 U	53 U
DW-07	06080111	E & E	Domestic Well	Lower	8/17/2006	0.24 U	53 U
DW-07	06121029	E&E	Domestic Well	Lower	12/5/2006	0.096 U	240 U
DW-07	07030007	E&E	Domestic Well	Lower	3/20/2007	0.35 UJ	120 U
DW-07	07070107	E&E	Domestic Well	Lower	7/17/2007	0.35 UJ	140 U
DW-08	06040020	E&E	Domestic Well	Upper	4/19/2006	0.24 U	53 U
DW-08	06080110	E&E	Domestic Well	Upper	8/17/2006	0.25 U	53 U
DW-08	06121035	E&E	Domestic Well	Upper	12/5/2006	0.10 U	260 U
DW-08	07030008	E&E	Domestic Well	Upper	3/20/2007	0.45 J	120 U
DW-08	07070108	E&E	Domestic Well	Upper	7/17/2007	0.35 UJ	120 U
DW-09 (2) DW-09 (2)	06040021	E&E	Domestic Well (Irrigation)	Upper	4/19/2006	0.24 U	52 U
DW-09	07070109	E & E	Domestic Well (Irrigation)	Upper	7/17/2007	0.35 U	120 U

SUMMARY OF PCP AND DRO RESULTS IN DOMESTIC WELLS AND SURFACE WATER SAMPLES JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE

COLVILLE, STEVENS COUNTY, WASHINGTON

			COLVILLE, STEVENS COUN	11, WASHING	TON	1	1
Domestic	Sample	Collected			Sample	PCP	DRO
Well ID	ID	By	Sample Type	Aquifer	Date	(μg/L)	(μg/L)
MTCA Method							500
MTCA Method			d)			0.729	
MTCA Method						7.29	
EPA Region 62		*	1)			0.56 1.0	
Federal Maxim							
DW-10 (2)	06040022	E & E	Domestic Well (Drinking Water)	Upper	4/19/2006	0.24 U	54 U
DW-10 (2)	07030009	E & E	Domestic Well (Drinking Water)	Upper	3/20/2007	0.36 UJ	130 U
DW-10 (2)	07070110	E & E	Domestic Well (Drinking Water)	Upper	7/17/2007	0.35 UJ	120 U
DW-11	06040023	E & E	Domestic Well	Upper	4/19/2006	0.24 U	52 U
DW-11	06080109	E & E	Domestic Well	Upper	8/17/2006	0.24 U	53 U
DW-11	06121028	E & E	Domestic Well	Upper	12/5/2006	0.040 J	240 U
DW-11	07030010	E & E	Domestic Well	Upper	3/20/2007	0.35 U	120 U
DW-11	07070111	E & E	Domestic Well	Upper	7/17/2007	0.35 U	120 U
DW-12	06040024	E & E	Domestic Well	Upper	4/19/2006	0.24 U	54 U
DW-12	06080113	E & E	Domestic Well	Upper	8/17/2006	0.24 U	52 U
DW-12	06121032	E & E	Domestic Well	Upper	12/5/2006	0.099 U	37 J
DW-12	07030011	E&E	Domestic Well	Upper	3/20/2007	0.34 U	130 U
DW-12	07070112	E&E	Domestic Well	Upper	7/17/2007	0.35 U	120 U
SURFACE V	VATER SAM	PLES (April	2006 and March 2007, only)				
SW-01	06040025	E & E	Surface Water	Upper	4/19/2006	0.41	110 J
SW-02	06040026	E & E	Surface Water	Upper	4/19/2006	0.68	270 J
0307SW-01	07030032	E & E	Surface Water	Upper	3/21/2007	0.42	Not Analyzed
0307SW-02	07030033	E & E	Surface Water	Upper	3/21/2007	0.54	Not Analyzed
0307SW-03	07030034	E & E	Surface Water	Upper	3/21/2007	1.2	Not Analyzed
0307SW-04	07030035	E & E	Surface Water	Upper	3/21/2007	0.17 J	Not Analyzed
0307SW-05	07030036	E & E	Surface Water	Upper	3/21/2007	0.29 Ј	Not Analyzed
0307SW-06	07030037	E&E	Surface Water	Upper	3/21/2007	0.32 J	Not Analyzed
0307SW-07	07030038	E & E	Surface Water	Upper	3/21/2007	0.22 Ј	Not Analyzed
0307SW-08	07030039	E&E	Surface Water	Upper	3/21/2007	0.065 J	Not Analyzed
0307SW-09	07030039	E&E	Surface Water	Upper	3/21/2007	0.12 J	Not Analyzed
0307SW-09	07030040	E&E	Surface Water	Upper	3/21/2007	1.2	Not Analyzed
0307SW-10	07030041	E&E	Surface Water	Upper	3/21/2007	0.10 J	Not Analyzed Not Analyzed
				Оррег	3/21/2007	PCP	DRO
SEDIMENT	SAMPLES (N	March 2007, o	only)			(µg/kg)	(µg/kg)
0307SD-02	07030051	E & E	Sediment	N/A	3/21/2007	280 U	Not Analyzed
0307SD-05	07030052	E & E	Sediment	N/A	3/21/2007	190 U	Not Analyzed
Notes:	Results in BOLI) typeface indica	te a detected compound.		· · · · · · · · · · · · · · · · · · ·		

(1) DW-06 was not sampled on 12/05/2006 because the domestic well was shut down for the winter.

(2) Groundwater monitoring of domestic wells DW-99 and DW-10 was discontinued after the April 2006 sampling event at the request of the property owner. Monitoring of DW-10 continued with the March 2007 sampling event.

Key:

= Diesel-Range Organics

DRO = Human Health Medium-Specific Screening Levels = estimated value HHMSSL

μg/kg = micrograms per kilogram μg/L MTCA N/A

= micrograms per kitogram
= micrograms per liter
= Model Toxic Control Act (Washington State)
= not applicable
= Not Sampled

PCP U = Pentachlorophenol= not detected

SUMMARY OF ANALYTICAL RESULTS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

		ILLE, STEVENS				
Sample Number:	07070101	07070102	07070103	07070104	07070105	07070106
Sample Location:	DW-01	DW-02	DW-03	DW-04	DW-05	DW-06
Sample Date:	7/17/2007	7/17/2007	7/17/2007	7/17/2007	7/17/2007	7/17/2007
SVOCs (µg/L)						
1,2,4-Trichlorobenzene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
1,2-Dichlorobenzene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
1,3-Dichlorobenzene 1,4-Dichlorobenzene	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 UJ 0.20 UJ
1-Methylnaphthalene	0.030 U	0.030 U	0.030 U	0.20 U	0.20 U	0.20 UJ
2,4,5-Trichlorophenol	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
2,4,6-Trichlorophenol	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 UJ
2,4-Dichlorophenol	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
2,4-Dimethylphenol	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
2,4-Dinitrophenol	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ
2,4-Dinitrotoluene 2,6-Dinitrotoluene	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 UJ 0.20 UJ
2-Chloronaphthalene	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U	0.030 UJ
2-Chlorophenol	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
2-Methylnaphthalene	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ
2-Methylphenol	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
2-Nitroaniline	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
2-Nitrophenol	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
3 & 4 Methylphenol 3,3'-Dichlorobenzidine	0.40 U 1.0 U	0.40 U 1.0 U	0.40 U 1.0 U	0.40 U 1.0 U	0.40 U 1.0 U	0.40 UJ 1.0 UJ
3-Nitroaniline	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
4,6-Dinitro-2-methylphenol	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 UJ
4-Bromophenyl phenyl ether	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
4-Chloro-3-methylphenol	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
4-Chloroaniline	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ
4-Chlorophenyl phenyl ether	0.20 U 0.30 U	0.20 U	0.20 U	0.20 U	0.20 U 0.30 U	0.20 UJ
4-Nitroaniline 4-Nitrophenol	0.30 U	0.30 U 1.0 U	0.30 U 1.0 U	0.30 U 1.0 U	0.30 U	0.30 UJ 1.0 UJ
Acenaphthene	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ
Acenaphthylene	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 UJ
Anthracene	0.0023 J	0.020 U	0.020 U	0.020 U	0.020 U	0.020 UJ
Benzo[a]anthracene	0.010 J	0.030 U	0.030 U	0.030 U	0.030 U	0.030 UJ
Benzo[a]pyrene	0.025	0.020 U	0.020 U	0.020 U	0.020 U	0.020 UJ
Benzo[g,h,i]perylene Benzofluoranthene	0.0090 J 0.060	0.030 U 0.040 U	0.030 U 0.040 U	0.030 U 0.040 U	0.030 U 0.040 U	0.030 UJ 0.040 UJ
Benzoituorantnene Benzoic acid	1.0 U	0.040 U	1.0 U	1.0 U	0.040 U	1.0 UJ
Benzyl alcohol	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Bis(2-chloroethoxy)methane	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Bis(2-chloroethyl)ether	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Bis(2-chloroisopropyl) ether	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Bis(2-ethylhexyl) phthalate	1.5 U 0.30 U	1.5 U 0.31	1.5 U 0.30 U	1.5 U 0.30 U	1.5 U 0.30 U	0.26 J 0.051 J
Butyl benzyl phthalate Carbazole	0.30 U 0.20 UJ	0.31 0.20 UJ	0.30 U 0.20 UJ	0.30 U 0.20 UJ	0.30 U 0.20 UJ	0.051 J 0.20 UJ
Chrysene	0.0087 J	0.020 U	0.020 U	0.020 U	0.020 U	0.020 UJ
Dibenz(a,h)anthracene	0.017 J	0.030 U	0.030 U	0.030 U	0.030 U	0.030 UJ
Dibenzofuran	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Diethyl phthalate	0.021 J	0.013 J	0.013 J	0.20 U	0.010 J	0.20 UJ
Dimethyl phthalate	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Di-n-butyl phthalate Di-n-octyl phthalate	0.19 J 0.20 U	0.14 J 0.035 J	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.043 J 0.20 UJ
Fluoranthene	0.20 U	0.025 U	0.025 U	0.20 U	0.20 U 0.025 U	0.20 UJ 0.025 UJ
Fluorene	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U	0.030 UJ
Hexachlorobenzene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Hexachlorobutadiene	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 UJ
Hexachlorocyclopentadiene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
Hexachloroethane	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 UJ
Indeno[1,2,3-cd]pyrene Isophorone	0.013 J 0.20 U	0.030 U 0.20 U	0.030 U 0.20 U	0.030 U 0.20 U	0.030 U 0.20 U	0.030 UJ 0.20 UJ
Naphthalene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Nitrobenzene	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
N-Nitrosodi-n-propylamine	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
N-Nitrosodiphenylamine	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ
Pentachlorophenol	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 UJ
Phenanthrene	0.015 J	0.040 U	0.040 U	0.040 U	0.040 U	0.040 UJ
Phenol Pyrene	0.30 U 0.0041 J	0.30 U 0.030 U	0.30 U 0.030 U	0.30 U 0.030 U	0.30 U 0.030 U	0.30 UJ 0.030 UJ
	0.0041 J	0.030 U	U.U.SU U	0.030 U	0.030 U	0.030 03
TPH-DRO (µg/L)						
Diesel Range Organics Oil Range Organics	120 U 100 J	120 U 240 U	120 U 240 U	120 U 240 U	130 U 250 U	42 J 240 U

Key is on last page.

SUMMARY OF ANALYTICAL RESULTS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

	COLVI	ILLE, STEVENS	COUNTY, WASH	HINGTON		
Sample Number:	07070107	07070108	07070109	07070110	07070111	07070112
Sample Location:	DW-07	DW-08	DW-09	DW-10	DW-11	DW-12
Sample Date:	7/17/2007	7/17/2007	7/17/2007	7/17/2007	7/17/2007	7/17/2007
SVOCs (µg/L)	0.20 111	0.20.111	0.20.11	0.20.111	0.20.11	0.20.11
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	0.20 UJ 0.20 UJ	0.20 UJ 0.20 UJ	0.20 U 0.20 U	0.20 UJ 0.20 UJ	0.20 U 0.20 U	0.20 U 0.20 U
1,3-Dichlorobenzene	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
1,4-Dichlorobenzene	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
1-Methylnaphthalene	0.030 UJ	0.030 UJ	0.030 U	0.030 UJ	0.030 UJ	0.030 U
2,4,5-Trichlorophenol	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
2,4,6-Trichlorophenol	0.30 UJ	0.30 UJ	0.30 U	0.30 UJ	0.30 U	0.30 U
2,4-Dichlorophenol	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 UJ	0.20 U
2,4-Dimethylphenol	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 U
2,4-Dinitrophenol	2.5 UJ	2.5 UJ	2.5 U	2.5 UJ	2.5 UJ	2.5 U
2,4-Dinitrotoluene	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 UJ	0.20 U
2,6-Dinitrotoluene	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
2-Chloronaphthalene	0.030 UJ	0.030 UJ	0.030 U	0.030 UJ	0.030 U	0.030 U
2-Chlorophenol 2-Methylnaphthalene	0.20 UJ 0.10 UJ	0.20 UJ 0.10 UJ	0.20 U 0.10 U	0.20 UJ 0.10 UJ	0.20 U 0.10 U	0.20 U 0.10 U
2-Methylphenol	0.10 UJ 0.20 UJ	0.10 UJ 0.20 UJ	0.10 U	0.10 UJ	0.10 U	0.10 U
2-Metnyipnenoi 2-Nitroaniline	0.20 UJ	0.20 UJ 0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
2-Nitrophenol	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
3 & 4 Methylphenol	0.40 UJ	0.40 UJ	0.40 U	0.40 UJ	0.40 U	0.40 U
3,3'-Dichlorobenzidine	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 U
3-Nitroaniline	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
4,6-Dinitro-2-methylphenol	2.0 UJ	2.0 UJ	2.0 U	2.0 UJ	2.0 UJ	2.0 U
4-Bromophenyl phenyl ether	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
4-Chloro-3-methylphenol	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
4-Chloroaniline	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ
4-Chlorophenyl phenyl ether	0.20 UJ 0.30 UJ	0.20 UJ 0.30 UJ	0.20 U 0.30 U	0.20 UJ 0.30 UJ	0.20 UJ 0.30 U	0.20 U 0.30 U
4-Nitroaniline 4-Nitrophenol	0.30 UJ 1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	0.30 U	1.0 U
Acenaphthene	0.050 UJ	0.050 UJ	0.050 U	0.050 UJ	0.050 U	0.050 U
Acenaphthylene	0.040 UJ	0.040 UJ	0.040 U	0.040 UJ	0.040 U	0.040 U
Anthracene	0.020 UJ	0.020 UJ	0.020 U	0.020 UJ	0.020 U	0.020 U
Benzo[a]anthracene	0.030 UJ	0.030 UJ	0.030 U	0.030 UJ	0.030 U	0.030 U
Benzo[a]pyrene	0.020 UJ	0.020 UJ	0.020 U	0.020 UJ	0.020 U	0.020 U
Benzo[g,h,i]perylene	0.030 UJ	0.030 UJ	0.030 U	0.030 UJ	0.030 U	0.030 U
Benzofluoranthene	0.040 UJ	0.040 UJ	0.040 U	0.040 UJ	0.040 U	0.040 U
Benzoic acid	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 U
Benzyl alcohol	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Bis(2-chloroethoxy)methane	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl) ether	0.20 UJ 0.20 UJ	0.20 UJ 0.20 UJ	0.20 U 0.20 U	0.20 UJ 0.20 UJ	0.20 U 0.20 U	0.20 U 0.20 U
Bis(2-ethylhexyl) phthalate	0.26 J	0.16 J	1.5 U	0.20 UJ	1.5 U	1.5 U
Butyl benzyl phthalate	0.040 J	0.041 J	0.30 U	0.089 J	0.30 U	0.30 U
Carbazole	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	R	0.20 UJ
Chrysene	0.020 UJ	0.020 UJ	0.020 U	0.020 UJ	0.020 U	0.020 U
Dibenz(a,h)anthracene	0.030 UJ	0.030 UJ	0.030 U	0.030 UJ	0.030 U	0.030 U
Dibenzofuran	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Diethyl phthalate	0.20 UJ	0.20 UJ	0.012 J	0.011 J	0.20 U	0.20 U
Dimethyl phthalate	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
Di-n-butyl phthalate Di-n-octyl phthalate	0.033 J 0.20 UJ	0.034 J 0.20 UJ	0.20 U 0.20 U	0.098 J 0.20 UJ	0.20 U 0.20 U	0.14 0.038 J
Fluoranthene	0.20 UJ 0.025 UJ	0.20 UJ 0.025 UJ	0.20 U	0.20 UJ 0.025 UJ	0.20 U 0.025 U	0.038 J 0.025 U
Fluorene	0.025 UJ	0.023 UJ	0.030 U	0.023 UJ	0.030 UJ	0.023 U
Hexachlorobenzene	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
Hexachlorobutadiene	0.30 UJ	0.30 UJ	0.30 U	0.30 UJ	0.30 UJ	0.30 U
Hexachlorocyclopentadiene	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 U
Hexachloroethane	0.30 UJ	0.30 UJ	0.30 U	0.30 UJ	0.30 U	0.30 U
Indeno[1,2,3-cd]pyrene	0.030 UJ	0.030 UJ	0.030 U	0.030 UJ	0.030 U	0.030 U
Isophorone	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 UJ	0.023 J
Naphthalene	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
Nitrobenzene	0.20 UJ	0.20 UJ	0.20 U	0.20 UJ	0.20 U	0.20 U
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	0.20 UJ 0.20 UJ	0.20 UJ 0.20 UJ	0.20 U 0.20 U	0.20 UJ 0.20 UJ	0.20 U 0.20 U	0.20 U 0.20 U
N-Nitrosodiphenylamine Pentachlorophenol	0.20 UJ 0.35 UJ	0.20 UJ 0.35 UJ	0.20 U	0.20 UJ 0.35 UJ	0.20 U	0.20 U
Phenanthrene	0.040 UJ	0.040 UJ	0.040 U	0.040 UJ	0.040 U	0.040 U
Phenol	0.30 UJ	0.30 UJ	0.30 U	0.30 UJ	0.30 U	0.30 U
Pyrene		0.030 UJ	0.030 U	0.030 UJ	0.030 U	0.0034 J
	0.030 UJ	0.050 03				
	0.030 UJ	0.030 03		•		
TPH-DRO (µg/L)				120 11	120 11	120 11
	0.030 UJ 140 U 270 U	120 U 240 U	120 U 240 U	120 U 230 U	120 U 240 U	120 U 240 U

SUMMARY OF ANALYTICAL RESULTS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

	COLV	ILLE, STEVENS	COUNTY, WASI	HING TON		
Sample Number:	07070113	07070114	07070115	07070116	07070117	07070118
Sample Location:	W-03	W-02	W-07	MW-15	W-08	MW-04
Sample Date:	7/17/2007	7/17/2007	7/17/2007	7/17/2007	7/17/2007	7/17/2007
SVOCs (µg/L)						
1,2,4-Trichlorobenzene	0.20 U					
1,2-Dichlorobenzene	0.20 U					
1,3-Dichlorobenzene	0.20 U					
1,4-Dichlorobenzene	0.20 U					
1-Methylnaphthalene	0.030 U					
2,4,5-Trichlorophenol	0.20 U					
2,4,6-Trichlorophenol	0.30 U					
2,4-Dichlorophenol	0.20 U 1.0 U	0.20 U 0.99 U	0.20 U	0.20 U 1.0 U	0.20 U 1.0 U	0.20 U
2,4-Dimethylphenol 2,4-Dinitrophenol	2.5 U	2.5 UJ	1.0 U 2.5 U	2.5 U	2.5 U	1.0 U 2.5 U
2,4-Dinitrotoluene	0.20 U					
2,6-Dinitrotoluene	0.20 U					
2-Chloronaphthalene	0.030 U	0.030 U	0.030 U	0.011 J	0.030 U	0.030 U
2-Chlorophenol	0.20 U					
2-Methylnaphthalene	0.10 U	0.099 U	0.10 U	0.011 J	0.10 U	0.10 U
2-Methylphenol	0.20 U					
2-Nitroaniline 2-Nitrophenol	0.20 U 0.20 U					
3 & 4 Methylphenol	0.40 U					
3,3'-Dichlorobenzidine	1.0 U	0.99 U	1.0 U	1.0 U	1.0 U	1.0 U
3-Nitroaniline	0.20 U	0.20 UJ	0.20 U	0.20 U	0.20 U	0.20 U
4,6-Dinitro-2-methylphenol	2.0 U					
4-Bromophenyl phenyl ether	0.20 U					
4-Chloro-3-methylphenol	0.20 U					
4-Chloroaniline	0.20 UJ	0.20 U	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ
4-Chlorophenyl phenyl ether 4-Nitroaniline	0.20 U 0.30 U	0.20 U 0.30 U	0.20 U 0.30 U	0.017 J 0.30 U	0.20 U 0.30 U	0.20 U 0.30 U
4-Nitrophenol	1.0 U	0.99 U	1.0 U	1.0 U	1.0 U	1.0 U
Acenaphthene	0.050 U	0.050 U	0.050 U	0.0035 J	0.050 U	0.050 U
Acenaphthylene	0.040 U					
Anthracene	0.020 U	0.020 U	0.020 U	0.018 J	0.020 U	0.020 U
Benzo[a]anthracene	0.030 U					
Benzo[a]pyrene	0.020 U					
Benzo[g,h,i]perylene Benzofluoranthene	0.030 U 0.040 U	0.030 U 0.040 U	0.030 U 0.040 U	0.030 U 0.041	0.030 U 0.040 U	0.030 U 0.040 U
Benzoic acid	1.0 U	0.040 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzyl alcohol	0.20 U					
Bis(2-chloroethoxy)methane	0.20 U					
Bis(2-chloroethyl)ether	0.20 U					
Bis(2-chloroisopropyl) ether	0.20 U					
Bis(2-ethylhexyl) phthalate	2.2 U	1.5 U	1.6 U	1.5 U	4.4 U	3.9 U
Butyl benzyl phthalate	0.30 U	0.53 J	0.30 U	0.30 U	0.30 U	0.30 U
Carbazole	0.20 UJ 0.020 U	0.20 U 0.020 U	0.20 UJ 0.020 U	0.20 UJ 0.020 U	0.20 UJ 0.020 U	0.20 UJ 0.020 U
Chrysene Dibenz(a,h)anthracene	0.020 U	0.020 U	0.020 U	0.020 U	0.030 U	0.020 U
Dibenzofuran	0.20 U	0.20 U	0.20 U	0.015 J	0.20 U	0.20 U
Diethyl phthalate	0.024 J	0.040 J	0.017 J	0.20 U	0.025 J	0.019 J
Dimethyl phthalate	0.022 J	0.20 U	0.018 J	0.015 J	0.024 J	0.20 U
Di-n-butyl phthalate	0.20 U	0.38 J	0.20 U	0.20 U	0.12 J	0.13 J
Di-n-octyl phthalate	0.036 J	0.20 U				
Fluoranthene Fluorene	0.025 U 0.030 U	0.025 U 0.030 U	0.025 U 0.030 U	0.016 J 0.010 J	0.025 U 0.030 U	0.025 U 0.030 U
Hexachlorobenzene	0.030 U 0.20 U	0.030 U 0.20 U	0.030 U	0.010 J 0.033 J	0.030 U	0.030 U
Hexachlorobutadiene	0.20 U	0.30 U				
Hexachlorocyclopentadiene	1.0 U	0.99 U	1.0 U	1.0 U	1.0 U	1.0 U
Hexachloroethane	0.30 U					
Indeno[1,2,3-cd]pyrene	0.030 U					
Isophorone	0.20 U	0.20 U	0.20 U	0.20 U	0.48	0.20 U
Naphthalene	0.20 U					
Nitrobenzene	0.20 U					
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	0.20 U 0.20 U	0.20 U 0.20 UJ	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U
N-Nitrosodipnenyiamine Pentachlorophenol	0.20 U	0.20 UJ 0.35 U	0.20 U	0.20 U 0.39	0.20 U	0.20 U
Phenanthrene	0.040 U	0.013 J	0.040 U	0.022 J	0.040 U	0.040 U
Phenol	0.30 U					
Pyrene	0.030 U	0.030 U	0.030 U	0.012 J	0.030 U	0.030 U
TPH-DRO (µg/L)	•					
Diesel Range Organics	36 J	37 J	120 U	71 J	45 J	44 J
Oil Range Organics	240 U	240 UJ	250 U	250 U	240 U	250 U
on range organics	2-70 €	2-10 UJ	cted compound.	2J0 U	270 U	250 0

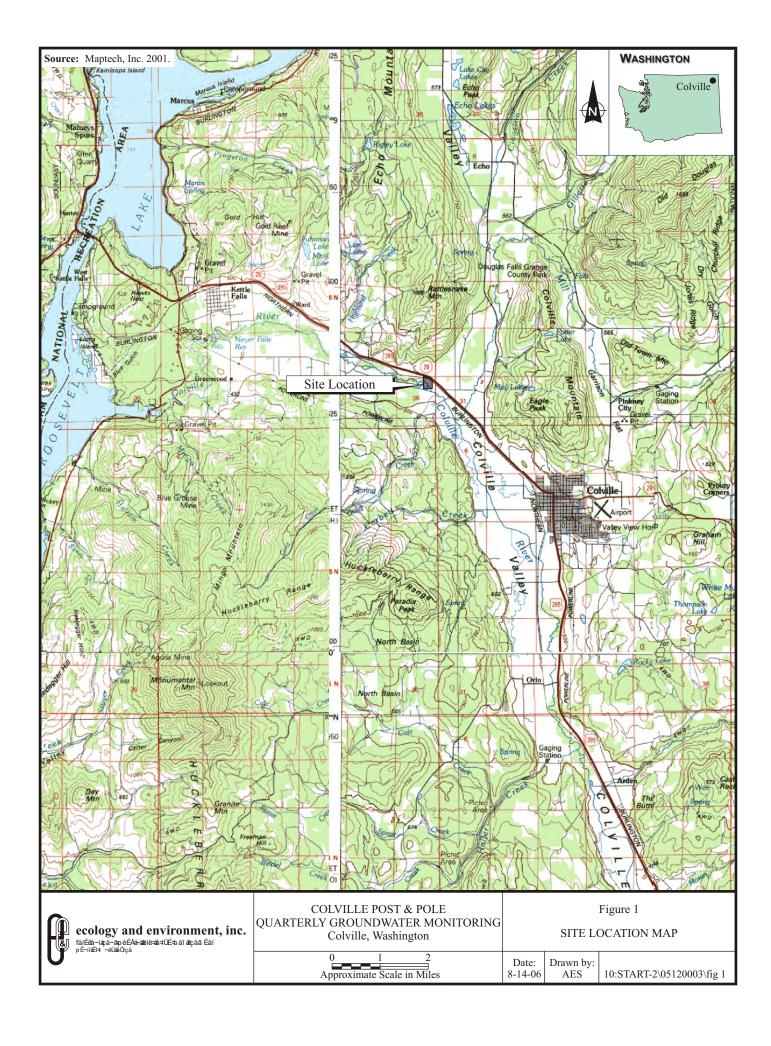
Key is on last page.

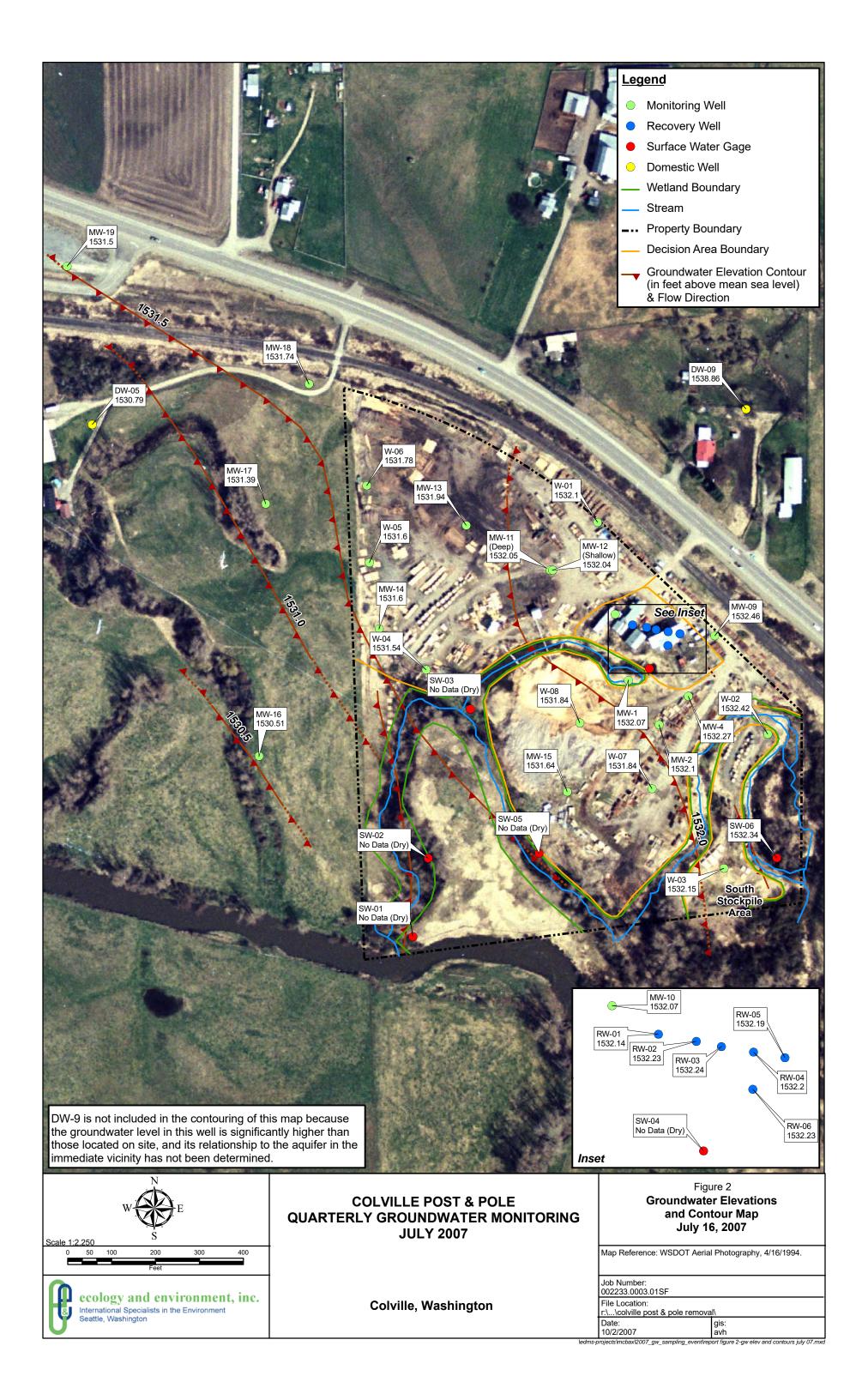
SUMMARY OF ANALYTICAL RESULTS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

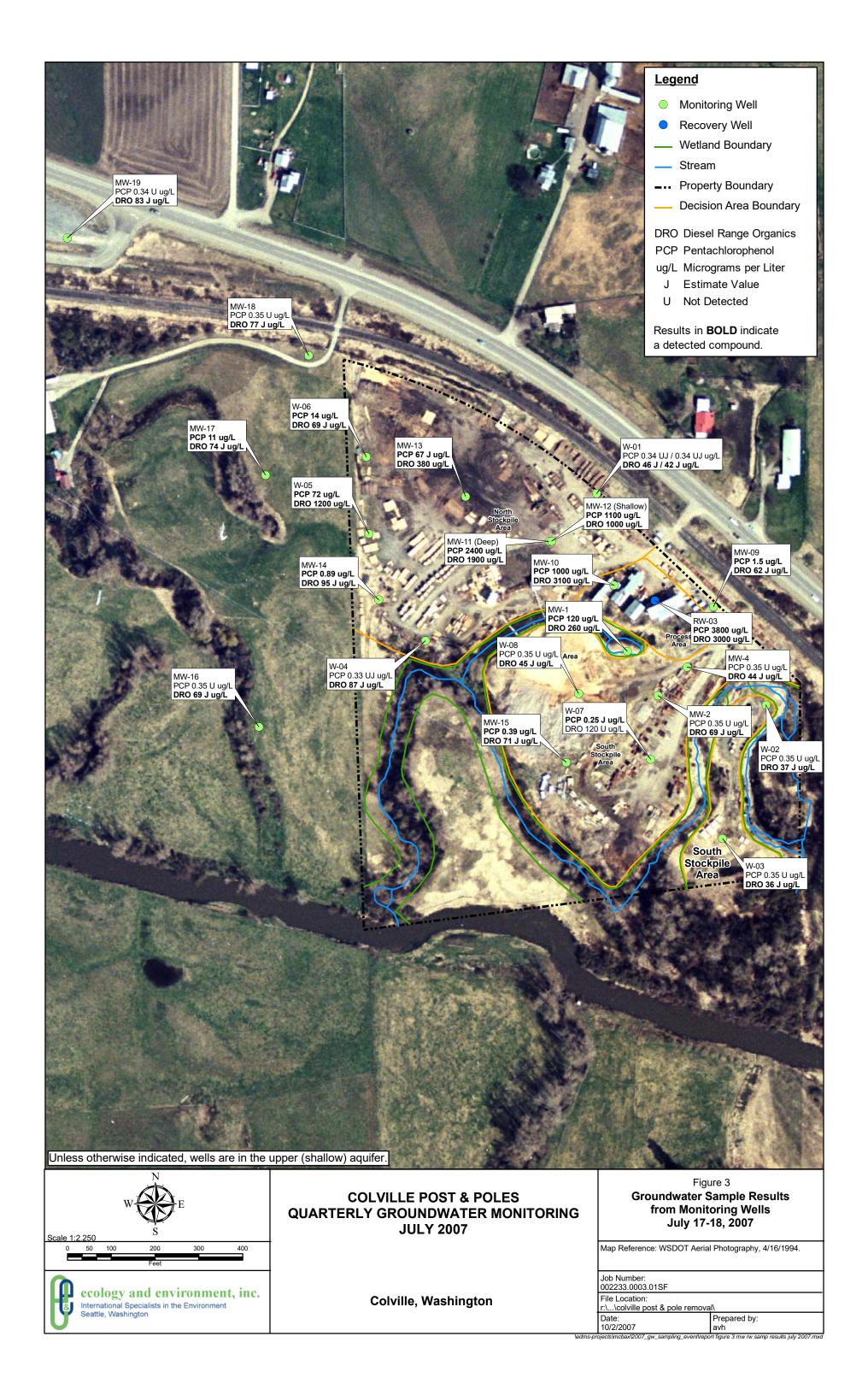
	COLV	ILLE, STEVENS	COUNTY, WASE	HINGTON		
Sample Number:	07070119	07070120	07070121	07070122	07070123	07070124
Sample Location:	MW-01	MW-02	MW-09	MW-19	MW-18	MW-16
Sample Date:	7/17/2007	7/17/2007	7/17/2007	7/17/2007	7/17/2007	7/17/2007
SVOCs (µg/L)	•			•	•	
1,2,4-Trichlorobenzene	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
1,2-Dichlorobenzene	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
1,3-Dichlorobenzene	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
1,4-Dichlorobenzene	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
1-Methylnaphthalene	0.33	0.030 U	0.14	0.029 U	0.030 U	0.030 U
2,4,5-Trichlorophenol	0.63	0.20 U	0.014 J	0.19 U	0.20 U	0.20 U
2,4,6-Trichlorophenol	0.073 J	0.30 U	0.30 U	0.29 U	0.30 U	0.30 U
2,4-Dichlorophenol	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
2,4-Dimethylphenol	1.0 U	1.0 U	1.0 U	0.97 U	1.0 U	0.99 U
2,4-Dinitrophenol	2.5 U	2.5 U 0.20 U	2.5 U	2.4 U	2.5 U	2.5 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	0.20 U 0.20 U	0.20 U	0.20 U 0.20 U	0.19 U 0.19 U	0.20 U 0.20 U	0.20 U 0.20 U
2-Chloronaphthalene	0.20 U	0.20 U	0.030 U	0.19 U	0.20 U	0.20 U
2-Chlorophenol	0.20 U	0.030 U	0.030 U	0.029 U	0.20 U	0.20 U
2-Methylnaphthalene	0.067 J	0.10 U	0.078 J	0.097 U	0.10 U	0.099 U
2-Methylphenol	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
2-Nitroaniline	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
2-Nitrophenol	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
3 & 4 Methylphenol	0.40 U	0.40 U	0.40 U	0.39 U	0.40 U	0.40 U
3,3'-Dichlorobenzidine	1.0 U	1.0 U	1.0 U	0.97 U	1.0 U	0.99 UJ
3-Nitroaniline	0.20 U	0.20 U	0.20 U	0.19 UJ	0.20 UJ	0.20 UJ
4,6-Dinitro-2-methylphenol	2.0 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U
4-Bromophenyl phenyl ether	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
4-Chloro-3-methylphenol	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	0.20 UJ 0.20 U	0.20 UJ 0.20 U	0.20 UJ 0.20 U	0.19 U 0.19 U	0.20 U 0.20 U	0.20 U 0.20 U
4-Nitroaniline	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.30 U
4-Nitrophenol	1.0 U	1.0 U	1.0 U	0.97 U	1.0 U	0.99 U
Acenaphthene	0.050 U	0.050 U	0.011 J	0.049 U	0.051 U	0.050 U
Acenaphthylene	0.040 U	0.040 U	0.040 U	0.039 U	0.040 U	0.040 U
Anthracene	0.020 U	0.020 U	0.020 U	0.019 U	0.020 U	0.020 U
Benzo[a]anthracene	0.030 U	0.030 U	0.030 U	0.029 U	0.030 U	0.030 UJ
Benzo[a]pyrene	0.020 U	0.020 U	0.020 U	0.019 U	0.020 U	0.020 U
Benzo[g,h,i]perylene	0.030 U	0.030 U	0.030 U	0.029 U	0.030 U	0.030 U
Benzofluoranthene	0.040 U	0.040 U	0.040 U	0.039 U	0.040 U	0.040 U
Benzoic acid	1.0 U	1.0 U	1.0 U	0.97 U	1.0 U	0.99 U
Benzyl alcohol Bis(2-chloroethoxy)methane	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.19 U 0.19 U	0.20 U 0.20 U	0.20 U 0.20 U
Bis(2-chloroethyl)ether	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
Bis(2-chloroisopropyl) ether	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
Bis(2-ethylhexyl) phthalate	2.0 U	2.3 U	1.6 U	85 J	9.7 J	2.8 U
Butyl benzyl phthalate	0.30 U	0.30 U	0.30 U	0.072 J	0.060 J	0.17 J
Carbazole	0.022 J	0.20 UJ	0.20 UJ	0.19 U	0.20 U	0.20 U
Chrysene	0.020 U	0.020 U	0.020 U	0.019 U	0.020 U	0.020 UJ
Dibenz(a,h)anthracene	0.030 U	0.030 U	0.030 U	0.029 U	0.030 U	0.030 U
Dibenzofuran	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
Diethyl phthalate	0.022 J	0.014 J	0.013 J	0.060 J	0.20 U	0.20 U
Dimethyl phthalate	0.20 U	0.20 U	0.20 U 0.20 U	0.057 J	0.20 U	0.20 U 0.11 J
Di-n-butyl phthalate Di-n-octyl phthalate	0.12 J 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.078 J 0.19 U	0.20 U 0.20 U	0.11 J 0.20 U
Fluoranthene	0.025 U	0.025 U	0.025 U	0.024 U	0.025 U	0.025 U
Fluorene	0.030 U	0.025 U	0.030 U	0.024 U	0.030 U	0.025 U
Hexachlorobenzene	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
Hexachlorobutadiene	0.30 U	0.30 U	0.30 U	0.29 U	0.30 U	0.30 U
Hexachlorocyclopentadiene	1.0 U	1.0 U	1.0 U	0.97 U	1.0 U	0.99 U
Hexachloroethane	0.30 U	0.30 U	0.30 U	0.29 U	0.30 U	0.30 U
Indeno[1,2,3-cd]pyrene	0.030 U	0.030 U	0.030 U	0.029 U	0.030 U	0.030 U
Isophorone	1.2	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
Naphthalene	0.41	0.20 U	0.031 J	0.011 J	0.20 U	0.20 U
Nitrobenzene	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.19 U 0.19 UJ	0.20 U 0.20 UJ	0.20 U 0.20 UJ
N-Nitrosodiphenylamine Pentachlorophenol	0.20 U 120	0.20 U 0.35 U	0.20 U 1.5	0.19 UJ 0.34 U	0.20 UJ 0.35 U	0.20 UJ 0.35 U
Phenanthrene	0.0081 J	0.040 U	0.040 U	0.34 U	0.040 U	0.040 U
Phenol	0.30 U	0.30 U	0.30 U	0.29 U	0.30 U	0.30 U
Pyrene	0.030 U	0.030 U	0.030 U	0.029 U	0.030 U	0.030 U
TPH-DRO (μg/L)						
	1 200	(n -	(2.7	62.7	F	
Diesel Range Organics	260	69 J	62 J	83 J	77 J	69 J
Oil Range Organics	250 U	250 U	240 U	130 J	240 U	100 J

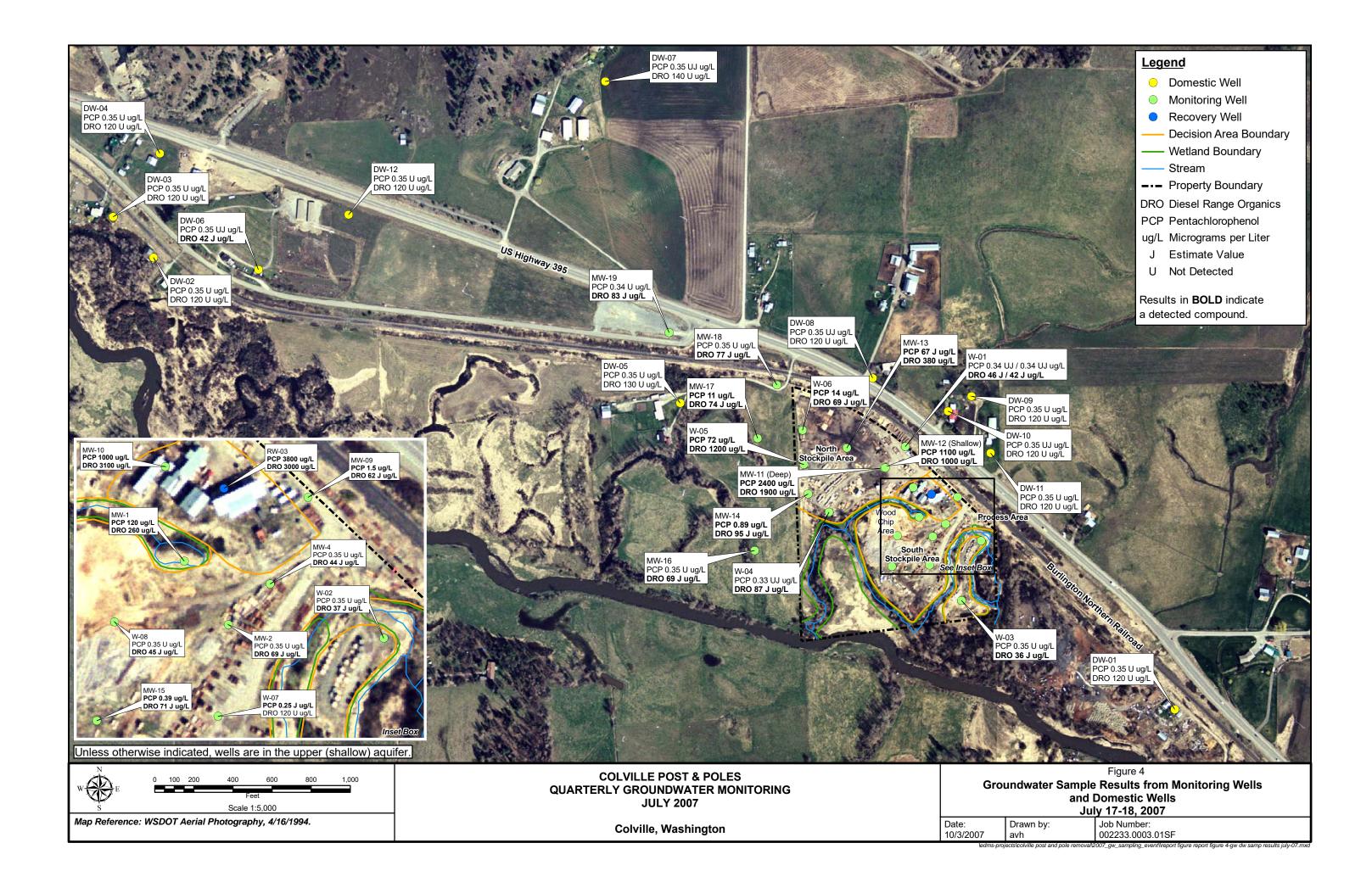
SUMMARY OF ANALYTICAL RESULTS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

	COLV	LLE, SIEVENS	COUNTY, WASH	INGTON		
Sample Number:	07070125	07070126	07070127	07070128	07070129	07070130 (1)
Sample Location:	MW-17	W-04	W-05	MW-14	W-06	W-01
Sample Date:	7/17/2007	7/18/2007	7/18/2007	7/18/2007	7/18/2007	7/18/2007
SVOCs (µg/L)	!					
1,2,4-Trichlorobenzene	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
1,2-Dichlorobenzene	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
1,3-Dichlorobenzene	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
1,4-Dichlorobenzene	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
1-Methylnaphthalene	0.029 UJ	0.029 UJ	0.029 UJ	0.029 U	0.030 UJ	0.029 UJ
2,4,5-Trichlorophenol	0.20 UJ	0.19 UJ	0.047 J	0.19 U	0.20 UJ	0.20 UJ
2,4,6-Trichlorophenol	0.29 UJ	0.29 UJ	0.29 UJ	0.29 U	0.30 UJ	0.29 UJ
2,4-Dichlorophenol	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
2,4-Dimethylphenol	0.98 UJ	0.95 UJ	0.97 UJ	0.97 U	1.0 UJ	0.98 UJ
2,4-Dinitrophenol 2,4-Dinitrotoluene	2.5 UJ 0.20 UJ	2.4 UJ 0.19 UJ	2.4 UJ 0.19 UJ	2.4 U 0.19 U	2.5 UJ 0.20 UJ	2.5 UJ 0.20 UJ
2,6-Dinitrotoluene	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
2-Chloronaphthalene	0.029 UJ	0.029 UJ	0.029 UJ	0.029 U	0.030 UJ	0.029 UJ
2-Chlorophenol	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
2-Methylnaphthalene	0.098 UJ	0.095 UJ	0.097 UJ	0.097 U	0.1 UJ	0.098 UJ
2-Methylphenol	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
2-Nitroaniline	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
2-Nitrophenol	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
3 & 4 Methylphenol	0.39 UJ	0.38 UJ	0.39 UJ	0.39 U	0.40 UJ	0.39 UJ
3,3'-Dichlorobenzidine	0.98 UJ	0.95 UJ	0.97 UJ	0.97 U	1.0 UJ	0.98 UJ
3-Nitroaniline 4,6-Dinitro-2-methylphenol	0.20 UJ 2.0 UJ	0.19 UJ 1.9 UJ	0.19 UJ 1.9 UJ	0.19 UJ 1.9 U	0.20 UJ 2.0 UJ	0.20 UJ 2.0 UJ
4,6-Dinitro-2-metnyipnenoi 4-Bromophenyl phenyl ether	0.20 UJ	0.063 J	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
4-Chloro-3-methylphenol	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
4-Chloroaniline	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
4-Chlorophenyl phenyl ether	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
4-Nitroaniline	0.29 UJ	0.29 UJ	0.29 UJ	0.29 U	0.30 UJ	0.29 UJ
4-Nitrophenol	0.98 UJ	0.95 UJ	0.97 UJ	0.97 U	1.0 UJ	0.98 UJ
Acenaphthene	0.049 UJ	0.048 UJ	0.049 UJ	0.049 U	0.050 UJ	0.049 UJ
Acenaphthylene	0.039 UJ	0.038 UJ	0.039 UJ	0.039 U	0.040 UJ	0.039 UJ
Anthracene Benzo[a]anthracene	0.020 UJ 0.029 UJ	0.043 0.029 UJ	0.019 UJ 0.029 UJ	0.019 U 0.029 U	0.020 UJ 0.030 UJ	0.020 UJ 0.029 UJ
Benzo[a]pyrene	0.029 UJ	0.029 UJ 0.019 UJ	0.029 UJ	0.029 U	0.020 UJ	0.029 UJ
Benzo[g,h,i]perylene	0.029 UJ	0.029 UJ	0.029 UJ	0.029 U	0.030 UJ	0.029 UJ
Benzofluoranthene	0.039 UJ	0.038 UJ	0.039 UJ	0.039 U	0.040 UJ	0.039 UJ
Benzoic acid	0.98 UJ	0.95 UJ	0.97 UJ	0.97 U	1.0 UJ	0.98 UJ
Benzyl alcohol	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
Bis(2-chloroethoxy)methane	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
Bis(2-chloroethyl)ether	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	0.20 UJ
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate	0.20 UJ 2.2	0.19 UJ 0.97 J	0.19 UJ 1.5	0.19 U 1.6 U	0.20 UJ 3.7	0.20 UJ 2.4
Butyl benzyl phthalate	0.069 J	0.97 J	0.11 J	0.12 J	0.61	0.090 J
Carbazole	0.20 UJ	0.19 UJ	0.19 UJ	0.19 U	0.20 UJ	
Chrysene	0.020 UJ	0.019 UJ	0.019 UJ			0.20 UJ
D.01 (11) (1			0.019 03	0.019 U	0.020 UJ	0.20 UJ 0.020 UJ
Dibenz(a,h)anthracene	0.029 UJ	0.029 UJ	0.029 UJ	0.029 U	0.020 UJ 0.030 UJ	0.020 UJ 0.029 UJ
Dibenzofuran	0.20 UJ	0.029 UJ 0.051 J	0.029 UJ 0.19 UJ	0.029 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate	0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ	0.029 UJ 0.19 UJ 0.19 UJ	0.029 U 0.19 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ
Diethyl phthalate Dimethyl phthalate	0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ	0.029 U 0.19 U 0.19 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate	0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 0.20 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 0.20 UJ 0.22	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorene	0.20 UJ 0.025 UJ 0.029 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.25 UJ 0.030 UJ 0.20 UJ 0.030 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.025 UJ 0.029 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthen Fluoranthen Fluorene Hexachlorobenzene Hexachlorobentadiene Hexachlorocyclopentadiene	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.97 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.025 UJ 0.030 UJ 0.20 UJ 0.30 UJ 1.0 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.20 UJ 0.029 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorantene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.29 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.29 U 0.29 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.025 UJ 0.025 UJ 0.030 UJ 0.30 UJ 1.0 UJ 0.30 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-octyl phthalate Din-octyl phthalate Din-octyl phthalate Fluoranthene Fluorane Hexachlorobutadiene Hexachlorobutadiene Hexachlorocthane Indeno[1,2,3-cd]pyrene	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.98 UJ 0.29 UJ 0.99 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.05 UJ 0.029 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.97 UJ 0.29 UJ 0.29 UJ 0.29 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U 0.97 U 0.029 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 0.20 UJ 0.025 UJ 0.030 UJ 0.30 UJ 1.0 UJ 0.30 UJ 0.30 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.025 UJ 0.025 UJ 0.029 UJ 0.20 UJ 0.98 UJ 0.98 UJ 0.99 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachloroethane Indeno[1,2,3-cd]pyrene Isophorone	0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.029 UJ 0.029 UJ 0.029 UJ 0.029 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.29 U 0.29 U 0.29 U 0.19 U 0.29 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.025 UJ 0.030 UJ 0.30 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.20 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-octyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Naphthalene	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.39 U 0.39 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.025 UJ 0.030 UJ 0.30 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.20 UJ 0.29 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-octyl phthalate Din-octyl phthalate Din-octyl phthalate Pluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachloroethane Indeno[1,2,3-cd]pyrene Isophorone Naphthalene Nitrobenzene	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.95 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.97 UJ 0.29 UJ 0.90 UJ 0.19 UJ	0.029 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U 0.29 U 0.029 U 0.19 U 0.19 U 0.19 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 0.20 UJ 0.025 UJ 0.030 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.20 UJ 0.30 UJ 0.20 UJ 0.30 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.025 UJ 0.025 UJ 0.029 UJ 0.20 UJ 0.29 UJ 0.98 UJ 0.99 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-octyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Naphthalene	0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.39 U 0.39 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.025 UJ 0.030 UJ 0.30 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.20 UJ 0.29 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorotethane Indeno[1,2,3-cd]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propylamine	0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.98 UJ 0.29 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.084 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.19 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U 0.29 U 0.19 U 0.19 U 0.29 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 0.20 UJ 0.025 UJ 0.030 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-octyl phthalate Din-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Nexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hotachlorocyclopentadiene Nexachlorocyclopentadiene Nexa	0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.98 UJ 0.29 UJ 0.20 UJ 0.30 UJ 0.30 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.33 UJ 0.339	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.19 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U 0.29 U 0.19 U 0.19 U 0.19 U 0.19 U 0.39 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 0.20 UJ 0.030 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.98 UJ 0.29 UJ 0.29 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dinethyl phthalate Din-butyl phthalate Din-botyl phthalate Din-octyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine Pentachlorophenol Phenanthrene Phenol	0.20 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.33 UJ 0.039 0.039	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.29 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U 0.29 U 0.19 U 0.29 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.025 UJ 0.030 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.20 UJ 0.30 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.25 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Fluorante Fluorante Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachloroethane Indeno[1,2,3-ed]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine Pentachlorophenol Phenanthrene	0.20 UJ 0.025 UJ 0.029 UJ 0.29 UJ 0.98 UJ 0.29 UJ 0.20 UJ 0.30 UJ 0.30 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.33 UJ 0.339	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.19 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U 0.29 U 0.19 U 0.19 U 0.19 U 0.19 U 0.39 U 0.19 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 0.20 UJ 0.030 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.025 UJ 0.029 UJ 0.98 UJ 0.29 UJ 0.29 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dinethyl phthalate Din-butyl phthalate Din-botyl phthalate Din-octyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nexachlorocyclopentadiene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine Pentachlorophenol Phenanthrene Phenol	0.20 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.33 UJ 0.039 0.039	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.29 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U 0.29 U 0.19 U 0.29 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.025 UJ 0.030 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.20 UJ 0.30 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.25 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ
Dibenzofuran Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-octyl phthalate Din-octyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorotethane Indeno[1,2,3-cd]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene	0.20 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ	0.029 UJ 0.051 J 0.19 UJ 0.19 UJ 0.19 UJ 0.028 J 0.024 UJ 0.032 0.088 J 0.29 UJ 0.95 UJ 0.29 UJ 0.19 UJ 0.29 UJ 0.33 UJ 0.039 0.039	0.029 UJ 0.19 UJ 0.19 UJ 0.19 UJ 0.076 J 0.054 J 0.070 0.029 UJ 0.19 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.19 UJ 0.29 UJ	0.029 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.024 U 0.029 U 0.19 U 0.29 U 0.97 U 0.29 U 0.19 U 0.29 U	0.020 UJ 0.030 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.22 UJ 0.025 UJ 0.030 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.30 UJ 0.20 UJ 0.30 UJ 0.20 UJ	0.020 UJ 0.029 UJ 0.029 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.20 UJ 0.25 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.29 UJ 0.20 UJ


SUMMARY OF ANALYTICAL RESULTS JULY 2007 QUARTERLY GROUNDWATER SAMPLING COLVILLE POST AND POLES SITE COLVILLE, STEVENS COUNTY, WASHINGTON

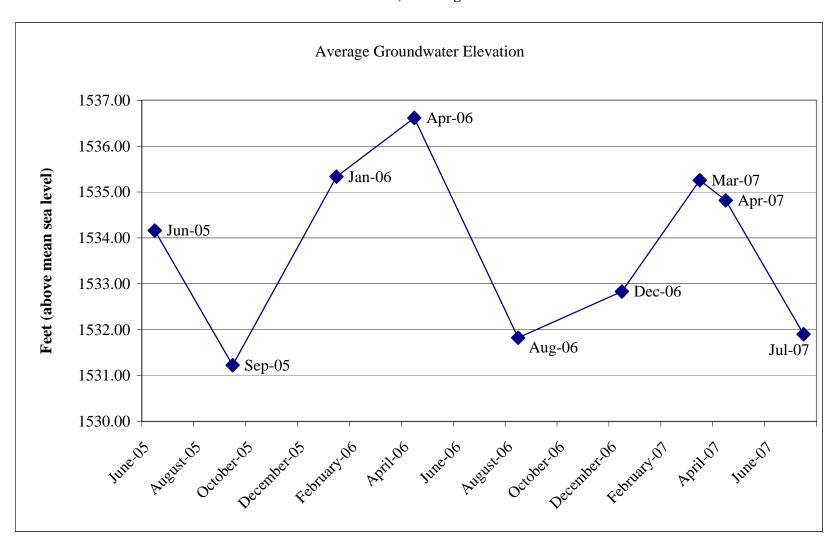

		ILLE, STEVENS	COUNTY, WASH	INGTON		
Sample Number:	07070131 (1)	07070132	07070133	07070134	07070135	07070136
Sample Location:	W-01 FD	MW-13	MW-11	MW-12	MW-10	RW-01
Sample Date:	7/18/2007	7/18/2007	7/18/2007	7/18/2007	7/18/2007	7/18/2007
SVOCs (µg/L)						
1,2,4-Trichlorobenzene	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
1,2-Dichlorobenzene	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
1,3-Dichlorobenzene	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
1,4-Dichlorobenzene	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
1-Methylnaphthalene	0.029 UJ	0.030 U	4.8	0.031 U	72	110
2,4,5-Trichlorophenol	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.21 U	0.20 U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	0.29 UJ 0.20 UJ	0.30 UJ 0.20 UJ	0.30 UJ 0.20 UJ	0.31 UJ 0.20 UJ	0.31 U 0.21 U	0.30 U 0.20 U
2,4-Dimethylphenol	0.28 UJ	0.99 UJ	0.99 UJ	1.0 UJ	1.0 U	1.0 U
2,4-Dinitrophenol	2.5 UJ	2.5 UJ	2.5 UJ	2.6 UJ	2.6 U	2.5 U
2,4-Dinitrotoluene	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
2,6-Dinitrotoluene	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
2-Chloronaphthalene	0.029 UJ	0.030 U	0.030 U	0.031 U	0.031 U	0.030 U
2-Chlorophenol	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.21 U	0.20 U
2-Methylnaphthalene	0.098 UJ	0.099 U	0.099 U	0.10 U	0.10 U	80
2-Methylphenol 2-Nitroaniline	0.20 UJ 0.20 UJ	0.20 UJ 0.20 U	0.20 UJ 0.20 U	0.20 UJ 0.20 U	0.21 U 0.21 U	0.20 U 0.20 U
2-Nitrophenol	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.21 U	0.20 U
3 & 4 Methylphenol	0.39 UJ	0.4 UJ	0.4 UJ	0.41 UJ	0.045 J	3.8 J
3,3'-Dichlorobenzidine	0.98 UJ	0.99 U	0.99 U	1.0 U	1.0 U	1.0 U
3-Nitroaniline	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 UJ	0.20 UJ
4,6-Dinitro-2-methylphenol	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.1 U	2.0 U
4-Bromophenyl phenyl ether	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
4-Chloro-3-methylphenol 4-Chloroaniline	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.21 U	0.20 U
4-Chlorophenyl phenyl ether	0.20 UJ 0.20 UJ	0.20 U 0.20 U	0.69 0.20 U	0.20 U 0.20 U	0.21 U 0.21 U	0.20 U 0.20 U
4-Nitroaniline	0.29 UJ	0.30 U	0.30 U	0.20 U	0.21 U	0.30 U
4-Nitrophenol	0.98 UJ	0.99 UJ	0.99 UJ	1.0 UJ	1.0 U	1.0 U
Acenaphthene	0.049 UJ	0.050 U	0.77	0.051 U	4.6	8.1
Acenaphthylene	0.039 UJ	0.040 U	0.040 U	0.041 U	0.041 U	0.040 U
Anthracene	0.020 UJ	0.020 U	0.020 U	0.020 U	0.021 U	0.020 U
Benzo[a]anthracene	0.029 UJ	0.030 U	0.030 U	0.031 U	0.031 U	0.030 U
Benzo[a]pyrene	0.020 UJ 0.029 UJ	0.020 U	0.020 U 0.030 U	0.020 U 0.031 U	0.021 U 0.031 U	0.020 U
Benzo[g,h,i]perylene Benzofluoranthene	0.029 UJ	0.030 U 0.040 U	0.040 U	0.031 U	0.031 U 0.041 U	0.030 U 0.040 U
Benzoic acid	0.98 UJ	0.99 UJ	0.99 UJ	1.0 UJ	1.0 U	1.0 U
Benzyl alcohol	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.21 U	0.20 U
Bis(2-chloroethoxy)methane	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
Bis(2-chloroethyl)ether	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
Bis(2-chloroisopropyl) ether	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
Bis(2-ethylhexyl) phthalate	1.6 0.046 J	2.2 0.052 J	1.4 J	2.3	1.5 U 0.098 J	21 J 0.30 U
Butyl benzyl phthalate Carbazole	0.046 J 0.20 UJ	0.052 J 0.20 U	0.30 U 2.7	0.049 J 0.74	0.098 J 2.9	0.30 U
Chrysene	0.020 UJ	0.020 U	0.020 U	0.020 U	0.021 U	0.020 U
Dibenz(a,h)anthracene	0.029 UJ	0.030 U	0.030 U	0.031 U	0.031 U	0.030 U
Dibenzofuran	0.20 UJ	0.19 J	1.5	0.20 U	3.4	0.20 U
Diethyl phthalate	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
Dimethyl phthalate	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
Di-n-butyl phthalate	0.050 J	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U 0.20 U
Di-n-octyl phthalate Fluoranthene	0.20 UJ 0.025 UJ	0.20 U 0.025 U	0.20 U 0.025 U	0.20 U 0.026 U	0.21 U 0.026 U	0.20 U 0.025 U
Fluorene	0.025 UJ	0.33	2.8	0.020 0	9.1	7.0
Hexachlorobenzene	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
Hexachlorobutadiene	0.29 UJ	0.30 U	0.30 U	0.31 U	0.31 U	0.30 U
Hexachlorocyclopentadiene	0.98 UJ	0.99 U	0.99 U	1.0 U	1.0 U	1.0 U
Hexachloroethane	0.29 UJ	0.30 U	0.30 U	0.31 U	0.31 U	0.30 U
Indeno[1,2,3-cd]pyrene	0.029 UJ	0.030 U	0.030 U	0.031 U	0.031 U	0.030 U
Isophorone	0.20 UJ	0.20 U 0.20 U	0.20 U	0.42	1.8	4.2
Naphthalene Nitrobenzene	0.20 UJ 0.20 UJ	0.20 U 0.20 U	2.0 0.20 U	0.20 U 0.20 U	8.0 0.21 U	19 0.20 U
N-Nitrosodi-n-propylamine	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 U	0.20 U
N-Nitrosodiphenylamine	0.20 UJ	0.20 U	0.20 U	0.20 U	0.21 UJ	0.20 UJ
Pentachlorophenol	0.34 UJ	67 J	2,400	1,100	1,000	3,800
Phenanthrene	0.039 UJ	0.040 U	0.040 U	0.041 U	5.8	0.040 U
Phenol	0.29 UJ	0.30 UJ	0.30 UJ	0.31 UJ	0.31 U	0.28 J
Pyrene	0.029 UJ	0.030 U	0.030 U	0.031 U	0.10	0.34
TPH-DRO (μg/L)	-					
IIII-DIO (pg/L)						
Diesel Range Organics	42 J	380	1,900	1,000	3,100	3,000


Bold type indicates a detected compound.
(1) Sample 07070131 is a field duplicate of 07070130. Notes:


Key:
DRO
EPA
FD
ID
J
MCL
μg/L
μg/kg
NA
PQL
R
SVOC
TPH
U

Environmental Protection Agency
Field Duplicate
Identification
State of St

Attachment A Historic Groundwater Level Data


				Attachme	nt A				
			9						
			Summary	of Quarterly Grou		n Data			
				Colville Post and Colville, Was					
				Corvine, was	anington				T
			Groundw	ater Elevations (fe	et ahove mean sea	level`			
Monitoring	6/17/05	9/13/05	1/16/06	4/17/06	8/16/06	12/6/06	3/19/07	4/22/07	7/16/07
Feature	June 2005	Sept. 2005	Jan. 2006	April 2006	August 2006	December 2006	March 2007	April 2007	July 2007
MW-1	1534.64	1531.38	1535.56	1536.78	1531.94	1533.67	1535.53	1535.04	1532.07
MW-2	1534.70	1531.53	1535.52	1536.84	1532.02	1533.32	1535.50	1534.97	1532.10
MW-4	1534.67	1531.67	1535.70	1536.81	1532.10	1533.69	1535.68	1535.21	1532.27
W-01	1534.16	1530.92	1535.38	1536.60	1531.77	1532.68	1535.47	1534.96	1532.10
W-02	1534.83	1531.85	1535.98	1536.86	1532.22	1533.72	1535.93	1535.40	1532.42
W-03	1534.34	1531.69	1535.81	1536.89	1532.09	1533.20	1535.74	1535.21	1532.15
W-04	1533.70	1530.78	1535.06	1536.47	1531.43	1532.15	1535.17	1534.65	1531.54
W-05	1533.28	1530.50	1534.43	1535.94	1531.38	1531.85	1534.66	1534.32	1531.60
W-06	1533.31	1530.51	1534.43	1536.07	1531.52	1531.89	1534.79	1534.46	1531.78
W-07	1534.03	1531.41	1535.38	1536.74	1531.84	1532.88	1535.31	1534.77	1531.84
W-08	1534.10	1531.25	1535.41	1536.76	1531.75	1532.88	1535.42	1534.88	1531.84
MW-09						1534.43	1536.30	1535.86	1532.46
MW-10						1532.96	1535.51	1535.05	1532.07
MW-11						1532.67	1535.40	1534.95	1532.05
MW-12						1532.69	1535.41	1534.94	1532.04
MW-13						1532.24	1535.13	1534.71	1531.94
MW-14						1532.00	1534.86	1534.44	1531.60
MW-15						1532.57	1535.24	1534.69	1531.64
MW-16						1531.58	1533.96	1533.75	1530.51
MW-17			-			1531.63	1534.34	1534.05	1531.39
MW-18						1531.77	1534.73	1534.38	1531.74
MW-19						1531.03	1534.08	1534.14	1531.50
DW-05						Not Measured	1533.73	1533.73	1530.79
DW-09						1542.50 (1)	1542.78 ⁽¹⁾	1542.39 ⁽¹⁾	1538.86 (1)
RW-01						1533.48	1535.68	1535.17	1532.14
RW-02			-			1533.55	1535.75	1535.19	1532.23
RW-03						1533.53	1535.75	1534.97	1532.24
RW-04						1533.53	1535.73	1535.25	1532.20
RW-05						1533.50	1535.70	1535.22	1532.19
RW-06						1533.51	1535.72	1535.22	1532.23
SW-01						1532.05	1533.78	1533.67	NA
SW-02						1532.04	1535.24	1534.67	NA
SW-03						1532.36	1535.57	1534.98	NA
SW-04						1534.79	1535.57	1535.18	NA
SW-05						No Water	1535.63	1535.02	NA
SW-06						1533.56	1535.96	1535.53	1532.34
(1)									<u> </u>
Maximum (1)	1534.83	1531.85	1535.98	1536.89	1532.22	1534.79	1536.30	1535.86	1532.46
Minimum (1)	1533.28	1530.50	1534.43	1535.94	1531.38	1531.03	1533.73	1533.67	1530.51
Average (1)	1534.16	1531.23	1535.33	1536.61	1531.82	1532.83	1535.26	1534.82	1531.90
Difference between									
Max and Min	1.55	1.35	1.55	0.95	0.84	3.76	2.57	2.19	1.95
Difference in average								·	
value from last event	n.a.	-2.93	4.11	1.28	-4.79	1.01	2.43	-0.44	-2.92

value from last event n.a. -2.93 4.11 1.28 -4.79 1.01 2.43 -0.44 -2.92

Note: (1) Data from DW-09 is not included in the maximum, minium, and average calculations because its groundwater elevations are significantly higher than those found on the site.

Attachment A

Chart of Quarterly Groundwater Elevation Data Colville Post and Poles Site Colville, Washington

Attachment B Analytical Data and Data Validation Memoranda

720 Third Avenue, Suite 1700, Seattle, WA 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

MEMORANDUM

DATE:

August 6, 2007

TO:

Steve Hall, Project Manager, E & E, Seattle, Washington

FROM:

Mark Woodke, START-3 Chemist, E & E, Seattle, Washington TW

SUBJ:

Organic Data Quality Assurance Review, Colville Post and Pole Removal

Assessment Site, Colville, Washington

REF:

TDD: 05-12-0003

PAN: 002233.0003.01SF

The data quality assurance review of 36 water samples collected from the Colville Post and Pole Removal Assessment site in Colville, Washington, has been completed. Semivolatile Organic Compounds (SVOCs) analysis (EPA Method 8270C) was performed by STL-Seattle, Tacoma, Washington.

The samples were numbered:

07070101	07070102	07070103	07070104	07070105
07070106	07070107	07070108	07070109	07070110
07070111	07070112	07070113	07070114	07070115
07070116	07070117	07070118	07070119	07070120
07070121	07070122	07070123	07070124	07070125
07070126	07070127	07070128	07070129	07070130
07070126 07070131 07070136	07070127	07070128	07070129	07070135

Data Qualifications:

1. Sample Holding Times: Acceptable.

The samples were maintained and received within the QC limits of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$. The samples were collected on July 17 or 18, 2007, were extracted by July 20, 2007, and were analyzed by July 25, 2007, therefore meeting holding time criteria of less than 7 days between collection and extraction and less than 40 days between extraction and analysis.

2. Tuning: Acceptable.

Tuning was performed at the beginning of each 12-hour analysis sequence. All results were within OC limits.

3. Initial Calibration: Satisfactory.

All average Relative Response Factors (RRFs) were greater than the QC limit of 0.050. All Relative Standard Deviations (RSDs) were less than the QC limit of 30% except benzoic acid and 2,4-dinitrophenol in the July 9, 2007 calibration (associated with samples 07070101 through 07070121 [except for sample 07070114] and the dilution for sample 07070119) and the surrogate 2-fluorophenol (no action taken based on this outlier), benzoic acid, and 2-nitroaniline in the July 16, 2007 calibration (associated with all other samples and dilutions). Associated positive results were qualified as estimated quantities (J).

4. Continuing Calibration: Acceptable.

All RRFs were greater than the QC limit of 0.050. All % differences were less than the QC limit of 25% or the outliers did not result in sample qualifications.

5. Blanks: Satisfactory.

A method blank was analyzed for each 20 sample batch per matrix. There were no detections in any method blank except benzoic acid (0.96 μ g/L), di-n-butyl phthalate (0.011 μ g/L), butyl benzyl phthalate (0.029 μ g/L), and bis(2-ethylhexyl)phthalate (0.97 μ g/L) in Prep Batch 20823, and bis(2-ethylhexyl)phthalate (0.95 μ g/L) in Prep Batch 120828. Associated sample results less than five times the benzoic acid blank result (10 times for the other contaminants) were qualified as not detected (U).

6. System Monitoring Compounds (SMCs): Satisfactory.

All SMC recoveries were within OC limits except terphenyl-d14 (high recoveries in samples 07070101, 07070102, 07070111, and 07070114; no action taken based on one high outlier per sample), phenol-d5 (less than 10% recovery in sample 07070133 and 07070134; positive acid fraction analytes were qualified as estimated quantities [J] and non-detect acid fraction analytes were qualified as estimated quantities [UJ]), 2-fluorophenol (less than 10% recovery) and nitrobenzene (low recovery in sample 07070126; positive analytes were qualified as estimated quantities [J] and non-detect analytes were qualified as estimated quantities [UJ]), 2-fluorophenol (low recovery; no action based on this outlier alone) and phenol and 2,4,6-tribromophenol (0% recoveries in sample 07070132; positive acid fraction analytes were qualified as estimated quantities [J] and non-detect acid fraction analytes were qualified as estimated quantities [UJ]), 2-fluorophenol, phenol-d5, and nitrobenzene (less than 10% recoveries; positive analytes were qualified as estimated quantities [J] and non-detect analytes were qualified as estimated quantities [UJ]) and 2-fluorobiphenyl (low recoveries in samples 07070106, 07070107, 07070110, 07070125, and 07070127; no additional action taken), 2-fluorophenol, phenol-d5, nitrobenzene, and 2-fluorobiphenyl (all less than 10% recoveries in samples 07070108; positive base/neutral fraction analytes were qualified as estimated quantities [J] and non-detect analytes were qualified as estimated quantities [UJ]), 2fluorobiphenyl and terphenyl-d14 (high recoveries in samples 07070122 and 07070123; positive acidfraction analytes were qualified as estimated quantities [J]), and 2-fluorophenol, phenol-d5, and nitrobenzene (0% recoveries; positive analytes were qualified as estimated quantities [J] and non-detect analytes were qualified as estimated quantities [UJ]) and 2-fluorobiphenyl (low recoveries in samples 07070129, 07070130, and 07070131; no additional action taken). The laboratory indicated that emulsions and/or matrix effects caused many of the low recoveries listed above.

7. Matrix Spike (MS)/MS Duplicate (MSD)/Blank Spike (BS)/BS Duplicate (BSD) Analysis: Satisfactory.

All spike analyses were performed per SDG or per matrix per concentration level, whichever was more frequent. All BS/BSD recoveries were within the QC limits except the following with low recoveries in batch 20823: 4-chloroaniline and carbazole; and the following with low recoveries in batch 20828: 3-nitroaniline, n-nitrosodiphenylamine. Positive results and sample quantitation limits in the associated samples (batch 20823 = samples 07070101 through 07070121 [except for sample 07070114] and batch 20828 = samples 07070114 and 07070122 through 07070136) were qualified as estimated quantities (J or UJ, respectively).

All MS/MSD recoveries were within the QC limits except the following in sample 07070111: low recoveries - isophorone, 2,4-dichlorophenol, 4-chloroaniline, 2,4-dinitrophenol, dibenzofuran, 2,4-dinitrotoluene, 4-chlorophenyl phenylether, fluorene, 4,6-dinitro-2-methylphenol, carbazole (0% recovery), and 1-methylnaphthalene and the following with high recoveries: 2-methylnaphthalene, hexachlorocyclopentadiene, 2-chloronaphthalene, acenaphthylene, 2,6-dinitrotoluene, acenaphthene, n-nitrosodiphenylamine, 4-bromophenyl phenylether, hexachlorobenzene, phenanthrene, anthracene, di-nbutyl phthalate, fluoranthene, pyrene, butyl benzyl phthalate, 3,3'-dichlorobenzidine, benzo(a)anthracene, chrysene, bis(2-ethylhexyl)phthalate, di-n-octyl phthalate, benzofluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene; and the following with low recoveries in sample 07070114: di-n-butylphthalate and butyl benzyl phthalate. Results in the associated spiked samples were qualified as follows: high recoveries-J for positive results; low recoveries-J for positive results and R for non-detects.

8. Duplicate Analysis: Satisfactory.

Spike duplicate analysis was performed per SDG or per matrix per concentration level, whichever was more frequent. Spike duplicate outliers previously qualified due to spike recovery outliers are not discussed here as no additional qualifiers were added. The following MS duplicate results exceeded QC limits and were qualified J or UJ based on duplicate outliers: sample 07070111-benzyl alcohol and hexachlorobutadiene; sample 07070114-2,4-dinitrophenol. There were several other spike duplicate outliers, however, no additional qualifiers were applied based on duplicate outliers as they were already qualified based on spike results.

9. Internal Standards: Satisfactory.

All internal standards (IS) were within \pm 30 seconds of the continuing calibration IS retention times. All area counts were within 50 % to 200 % of the continuing calibration area counts except chrysene with a low recovery in samples 07070124 and 07070130 and chrysene and perylene with low recoveries in sample 07070129. Positive sample results associated with low recoveries were qualified as estimated quantities (J) and non-detects were qualified as estimated quantities (UJ).

10. Precision and Bias Determination: Not Performed.

Samples necessary to determine precision and bias were not provided to the laboratory. All results were flagged "PND" (Precision Not Determined) and "RND" (Recovery Not Determined), although the flags do not appear on the data sheets.

11. Performance Evaluation Sample Analysis: Not Provided.

Performance evaluation samples were not provided to the laboratory.

12. Overall Assessment of Data for Use

The overall usefulness of the data is based on the criteria outlined in the OSWER Guidance Document "Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan, and Data Validation Procedures" (EPA/540/G-90/004), the analytical method, and, when applicable, the Office of Emergency and Remedial Response Publication "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review". Based upon the information provided, the data are acceptable for use with the above stated data qualifications.

Data Qualifiers and Definitions

- J The associated numerical value is an estimated quantity because the reported concentrations were less than the sample quantitation limits or because quality control criteria limits were not met.
- U The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit.
- UJ The material was analyzed for but was not detected. The associated numerical value is the estimated sample quantitation limit.

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070101

Lab Sample ID:

580-6583-1

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010375.D

Dilution:

1.0

Prep Batch: 580-20823

Initial Weight/Volume: Final Weight/Volume: 1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 1215 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
Phenol	ND	man ha a lamanta de de la companya d	0.0074	0.30 🕖
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1.4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1.2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND	Marine	0.0014	0.20
4-Chloroaniline	ND	NAME OF THE PARTY	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichiorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	, ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20 🗸
Diethyl phthalate	0.021	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

STL Seattle

Page 7 of 1182

Job Number: 580-6583-1

Client Sample ID:

07070101

Lab Sample ID:

580-6583-1

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Client: Environmental Quality Mgt., Inc.

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

Prep Batch: 580-20823

ak010375.D

Dilution:

1.0

Initial Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 1215 07/20/2007 0932 Final Weight/Volume: Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	ND		0.013	0.20 🗸
4-Bromophenyl phenyl ether	ND	•	0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachiorophenoi	ND		0.013	0.35 🆞
Phenanthrene	0.015	J	0.0024	0.040
Anthracene	0.0023	J	0.0019	0.020
Di-n-butyl phthalate	0.19	J K asa	0.0088	0.20
Fluoranthene	0.0058	7 , \$\$ 44.0	0.0027	0.025
Pyrene	0.0041	J	0.0020	0.030,
Butyl benzyl phthalate	8.28		0.024	0.30 ()
3,3'-Dichlorobenzidine	ND	L. V	0.16	1.0 U
Benzo[a]anthracene	0.010	J	0.0033	0.030
Chrysene	0.0087	J	0.0045	0.020
Bis(2-ethylhexyl) phthalate	6.45	- J-B	0.032	1.5 🕖
•	ND	/ Dapa	0.018	0.20])
Di-n-octyl phthalate Benzofluoranthene	0.060		0.0055	0.040
 	0.025		0.0027	0.020
Benzo[a]pyrene	0.013	J	0.0051	0.030
indeno[1,2,3-cd]pyrene	0.017	j	0.0046	0.030
Dibenz(a,h)anthracene	0.0090	Ĵ	0.0060	0.030
Benzo[g,h,i]perylene	ND	- CNi-	0.0090	0.20
Carbazole	ND	. V	0.0052	0.030
1-Methylnaphthalene	ND			V
Surrogate	%Rec		Acceptar	nce Limits
2-Fluorophenol	30	WHERE ALTERNATION WAS ARREST TO ANGEL TO A CONTRACT OF THE PROPERTY OF THE PRO	10 - 12	Ó
Phenoi-d5	23		10 - 10:	2
Nitrobenzene-d5	86		34 - 140	6
2-Fluorobiphenyl	114		35 - 14:	3
2,4,6-Tribromophenol	71		29 - 15	1
Terphenyl-d14	573	ΧI	35 - 160	6
responential of the	-			

MW 8-607

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070102

Lab Sample ID:

580-6583-2

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010376.D

Dilution:

1.0

Prep Batch: 580-20823

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

07/22/2007 1242 Date Analyzed: 07/20/2007 0932 Date Prepared:

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Phenol	ND	St Could Community as a second public of the contract of the community of the contract of the	0.0074	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichiorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND	•	0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND	/	0.0014	0.20
4-Chloroaniline	ND	/ flair	0.019	0.20
Hexachlorobutadiene	ND	. , .	0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.013	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methyiphenoi	ND		0.053	2.0
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

Page 9 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070102

Lab Sample ID:

580-6583-2

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

ak010376.D

Prep Batch: 580-20823

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 1242 07/20/2007 0932 Final Weight/Volume: Injection Volume:

Analyte	Resuit (ug/L)	Qualifier	MDL	RL , j
N-Nitrosodiphenylamine	ND	New Yorkstone Control of the Contr	0.013	0.20 🇸
4-Bromophenyi phenyi ether	ND		0.010	0.20
Hexachiorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	,	0.0019	0.020 🖤
Di-n-butyl phthalate	0.14	J.M.N.	0.0088	0.20
Fluoranthene	ND		0.0027	0.025 🕖
Pyrene	ND	,	0.0020	0.030 (/
Butyl benzyl phthalate	0.31	AL.	0.024	0.30
3,3'-Dichlorobenzidine	ND	S 8-	0.16	1.0 V
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND	,	0.0045	0.020♥
Bis(2-ethylhexyl) phthalate	£29	-JAW	0.032	1.5 <i>U</i>
Di-n-octyl phthalate	0.035	J.	0.018	0.20
Benzofluoranthene	ND		0.0055	0.040 🔾
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND	,	0.0060	0.030 \
Carbazole	ND	× m	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec	Acceptance Limits		nce Limits
2-Fluorophenol	33	AND CONTRACTOR OF A STATE OF THE PROPERTY OF T	10 - 120	
Phenoi-d5	21		10 - 10	2

90

110

74

667

ΧI

34 - 146

35 - 143

29 - 151

35 - 166

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyi-d14

2,4,6-Tribromophenol

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070103

Lab Sample ID:

580-6583-3

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

Lab File ID:

ak010377.D

Dilution:

1.0

Prep Batch: 580-20823

initial Weight/Volume:

1000 mL

Date Analyzed:

Final Weight/Volume:

1 mL

Date Prepared:

07/22/2007 1309 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Phenol	ND		0.0074	0.30 🕖
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND .		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
sophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichiorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND	Ann	0.0014	0.20
4-Chloroaniline	ND	MALL	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachiorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND ·		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND	•	0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND	_	0.012	0.20
Diethyl phthalate	0.013	J	0.0093	0.20
4-Chlorophenyi phenyi ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

Page 11 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070103

Lab Sample ID:

580-6583-3

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010377.D

Dilution:

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

RL

Date Analyzed:

1.0

07/22/2007 1309

Final Weight/Volume: Injection Volume:

1 mL

07/20/2007 0932 Date Prepared:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND	- Control Cont	0.013	0,20 V
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	A	0.0019	0.020 🎶
Di-n-butyl phthalate	On Order Oranness and Constitution of the Cons	-JEW	0.0088	0.20 <i>U</i>
Fluoranthene	ND	1.1	0.002 7	0.025 🔰
Pyrene	ND		0.0020	0.030 ,[/
Butyl benzyl phthalate	9.961	J B m≀	0.024	0.30 0
3,3'-Dichlorobenzidine	ND	11.4	0.16	1.0 V
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND		0.0045	0.020 🎶
Bis(2-ethylhexyl) phthalate	Commission from the commission of the commission		0.032	1.5
Di-n-octyl phthalate	ND	1444-	0.018	0.20 ()
Benzofluoranthene	ND		0.0055	0.040
	ND		0.0027	0.020
Benzo[a]pyrene	ND		0.0051	0.030
Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene	ND		0.0046	0.030
	ND		0.0060	0.030
Benzo[g,h,i]perylene	ND	ANN	0.0090	0.20
Carbazole	ND	• •	0.0052	0.030
1-Methylnaphthalene	ND			V
Surrogate	%Rec	Acceptance Limits		
2-Fluorophenol	35	######################################	10 - 12	=
Phenol-d5	24		10 - 10	
Nitrobenzene-d5	97	34 - 146		
MILODONIZONO do	0.0		25 1	43

86

75

99

MW 2.607

35 - 143

29 - 151

35 - 166

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070104

Lab Sample ID:

580-6583-4

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

Prep Batch: 580-20823

Lab File ID:

ak010378.D

Dilution:

1.0

Initial Weight/Volume:

1000 mL

Date Analyzed:

07/22/2007 1336

Final Weight/Volume:

1 mL

Date Prepared:

07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL and
Phenol	ND		0.0074	0.30 🗸
Bis(2-chloroeth y l)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20 \
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40 /
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND .		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND	_	0.0014	0.20
4-Chloroaniline	ND	MAN	0.019	0.20
Hexachlorobutadiene	ND	•	0.016	0.30
4-Chloro-3-methylphenol	ND	•	0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenoi	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND [*]		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND ·		0.056	0.20
Acenaphthene	ND		0,0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0
				- A

STL Seattle

Page 13 of 1182

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070104

Lab Sample ID:

580-6583-4

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

Preparation:

3510C

Lab File ID:

ak010378.D

Dilution:

1.0

Prep Batch: 580-20823

1000 mL

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared: 07/22/2007 1336 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND		0.013	0.20 V
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0,0024	0.040
Anthracene	ND	4	0.0019	0.020, 📉
Di-n-butyl phthalate	E Din Dalla de la companya del la companya de la companya de la companya del la companya de la c	LBMM	0.0088	0.20 V ₋
Fluoranthene	ND	8.4- /	0.0027	0.025 🕖
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	0.049	- J / NN	0.024	0.30 🔰
3,3'-Dichlorobenzidine	ND	\$ 00.00	0.16	1.0 ()
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND		0.0045	0.020 🎷
Bis(2-ethylhexyl) phthalate	D-63	— JBMA	0.032	1.5 🗸
Di-n-octyl phthalate	ND	1 1000	0.018	0.20 🕡
Benzofluoranthene	ND		0.0055	0.040
Benzojajpyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030 /
Dibenz(a,h)anthracene	ND		0.0046	0.030 \
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	Min	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec	Acceptance Limits		
2-Fluorophenol	35	anne ganapolity ny ny mpanishahara ara 1999 (1994-balah makabat 1994) (1997-1996) (1998-1999-1994) (1998-1994	10 - 12	20
Phenol-d5	26		10 - 10)2
Nitrobenzene-d5	95		34 - 14	ł6
2-Fluorobiphenyl	85		35 - 14	13
2,4,6-Tribromophenol	69		29 - 15	51
Terphenyl-d14	110		35 - 16	66

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070105

Lab Sample ID:

580-6583-5

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010379.D

Dilution:

1.0

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

Date Analyzed:

07/22/2007 1404

Final Weight/Volume: Injection Volume:

1 mL

Date Prepared:

07/20/2007 0932

Analyte	Result (ug/L)	Qualifier	MDL	RL 🔥
Phenol	ND	ORDONOMINATOR CONTRACTOR NAME OF TAXABLE AND	0.0074	0.30 🗸
Bis(2-chioroethyl)ether	ND		0.018	0.20 /
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20 \
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20 \
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		8800.0	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND	*	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ФИ		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichiorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030 🥻
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.010	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20 🔰
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

Page 15 of 1182

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070105

Lab Sample ID:

580-6583-5

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010379.D

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

Dilution: Date Analyzed: 1.0

07/22/2007 1404

Final Weight/Volume:

1 mL

Date Prepared:

07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL / I	
N-Nitrosodiphenylamine	ND		0.013	0.20 🗸	
4-Bromophenyl phenyl ether	ND		0.010	0.20	
Hexachlorobenzene	ND		0.0082	0.20	
Pentachiorophenoi	ND		0.013	0.35	
Phenanthrene	ND		0.0024	0.040	
Anthracene	ND		0.0019	0.020	
Di-n-butyl phthalate	*0.028	——JBMi-	0.0088	0.20 🚶	
Fluoranthene	ND ·) B	0.0027	0.025 🗘	
Pyrene	ND		0.0020	0.030	
Butyl benzyl phthalate	« 0.042		0.024	0.30 🗸	
3,3'-Dichlorobenzidine	ND	2 "	0.16	1.0 <i>U</i>	
Benzojajanthracene	ND		0.0033	0.030	
Chrysene	ND		0.0045	0.020 🗸	
Bis(2-ethylhexyl) phthalate	0.34	-JAM	0.032	1.5 U ,	
Di-n-octyl phthalate	ND	/ *** .	0.018	0.20 U	
Benzofluoranthene	ND		0.0055	0.040	
Benzo[a]pyrene	ND		0.0027	0.020	
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030	
Dibenz(a,h)anthracene	ND		0.0046	0.030 🖠	
Benzo[g,h,i]perylene	ND .		0.0060	0.030	
Carbazole	ND	Am	0.0090	0.20 7	
1-Methylnaphthalene	ND		0.0052	0.030 🎶	
, (114 tr.) = F				A	
Surrogate	%Rec	Acceptance Limits			
2-Fluorophenol	43	and the state of t	10 - 12	=	
Phenoi-d5	31		10 - 10		
Nitrobenzene-d5	101		34 - 14	=	
2-Fluorobipheny!	89		35 - 14		
2,4,6-Tribromophenol	77		29 - 15		
Terphenyl-d14	106		35 - 16	6	
•					

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070106

Lab Sample ID:

580-6583-6

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

instrument iD:

SEA040

Preparation:

3510C

Lab File ID:

ak010380.D

Dilution:

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

1.0

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared: 07/22/2007 1431 07/20/2007 0932

Injection Volume:

Analyta	Result (ug/L)	Qualifier	MDL	RL A
Analyte	op op de menor and to be a menor and opposite menor of the second of the	Aprilla (** 1) Phillia (** 10 m o Fill 20 h A Banto 1 10 Fill 6 h 10 m o Fill 20 Fill	0.0074	0.30 (/)
Phenol	ND		0.018	0.20
Bis(2-chloroethyl)ether	ND	•	0.022	0.20
2-Chlorophenol	ND		0.011	0.20
1,3-Dichlorobenzene	ND		0.012	0.20
1,4-Dichlorobenzene	ND		0.013	0.20
Benzyl alcohol	ND		0.011	0.20
1,2-Dichlorobenzene	ND		0.038	0.20
2-Methylphenol	ND		0.0088	0.20
Bis(2-chloroisopropyl) ether	ND		0.017	0.40
3 & 4 Methylphenol	ND		0.020	0.20
N-Nitrosodi-n-propylamine	ND	*	0.013	0.30
Hexachloroethane	ND		0.0075	0.20
Nitrobenzene	ND		0.011	0.20
Isophorone	ND		0.021	0.20
2-Nitrophenol	ND		0.018	1.0
2,4-Dimethylphenol	ND		0.021	1.0
Benzoic acid	ND		0.0095	0.20
Bis(2-chloroethoxy)methane			0.013	0.20
2,4-Dichlorophenol	ND		0.010	0.20
1,2,4-Trichlorobenzene	ND		0.0014	0.20
Naphthalene	ND	*	0.019	0.20
4-Chloroaniline	ND		0.016	0.30
Hexachlorobutadiene	ND		0.014	0.20
4-Chloro-3-methylphenol	ND		0.0055	0.10
2-Methylnaphthalene	ND		0.012	1.0
Hexachlorocyclopentadiene	ND		0.010	0.30
2,4,6-Trichlorophenol	ND		0.0085	0.20
2,4,5-Trichlorophenol	ND		0.0030	0.030
2-Chloronaphthalene	ND		0.0030	0.20
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	, ND		0.0026	0.040
Acenaphthylene	ND		0.0020	0.20
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.0012	0.050
Acenaphthene	ND		0.0012	2.5
2,4-Dinitrophenol	ND		0.056	1.0
4-Nitrophenol	ND		0.0098	0.20
Dibenzofuran	ND			0.20
2.4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	1 3
4-Nitroaniline	ND		0.018	0.30
4-Nitroaniine 4,6-Dinitro-2-methylphenol	ND		0.053	2.0
4,0-Dinitio-4-metry prients				Y X

Page 17 of 1182

Job Number: 580-6583-1

Client Sample ID:

07070106

Lab Sample ID:

580-6583-6

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Client: Environmental Quality Mgt., Inc.

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010380.D

Dilution:

1.0

Prep Batch: 580-20823

1000 mL

Initial Weight/Volume:

1 mL

Date Analyzed: Date Prepared: 07/22/2007 1431

07/20/2007 0932

Final Weight/Volume:

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL 1.2.
N-Nitrosodiphenylamine	ND		0.013	0.20
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachiorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	ž.	0.0019	0.020
Di-n-butyl phthalate	0.043	J₿	0.0088	0.20
Fluoranthene	ND	1	0.0027	0.025
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	0.051	J B∳	0.024	0.30
3,3'-Dichlorobenzidine	ND		0.16	1.0 (1)
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND		0.0045	0.020
Bis(2-ethylhexyl) phthalate	0.26	រ∄ំ	0.032	1.5
Di-n-octyl phthalate	ND	W	0.018	0.20 V
Benzofluoranthene	ND	* '	0.0055	0.040
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	. ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	*	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec		Accepta	nce Limits
2-Fluorophenol	20.00,000 en la calabración com como observa o conseque	× 1	10 - 12	0
Phenol-d5	3	XΙ	10 - 10	2
Nitrobenzene-d5	2	ΧI	34 - 14	6
2-Fluorobiphenyl	_ 19	ΧI	35 - 14	3
2,4,6-Tribromophenol	66		29 - 15	1
Terphenyl-d14	96		35 - 16	6
. 4: L.::::::				

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070107

Lab Sample ID:

580-6583-7

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Prep Batch: 580-20823

Lab File ID:

ak010381.D 1000 mL

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared: 07/22/2007 1458 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL //
Phenol	ND	90 process year of the Control of th	0.0074	0.30
Bis(2-chioroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2.4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND	*	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl-phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2.6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2.4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

Page 19 of 1182

STL Seattle

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070107

Lab Sample ID:

580-6583-7

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

ak010381.D

Dilution:

1.0

Prep Batch: 580-20823

Lab File ID:

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 1458 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL 4.A
N-Nitrosodiphenylamine	ND	20020202222222222222222222222222222222	0.013	0.20
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	tL.	0.0019	0.020 🎶
Di-n-butyl phthalate	0.033	Jβ	0.0088	0.20
Fluoranthene	ND	1	0.0027	0.025 $V \mathcal{J}_{}$
Pyrene	ND	į	0.0020	0.030
Butyl benzyl phthalate	0.040	J₿	0.024	0.30
3,3'-Dichlorobenzidine	ND		0.16	1.0 <i>(/)</i>
Benzo[a]anthracene	ND	4	0.0033	0.030
Chrysene	ND		0.0045	0.020
Bis(2-ethylhexyl) phthalate	0.36	J₿;	0.032	1.5
Di-n-octyl phthalate	ND		0.018	0.20 VJ
Benzofluoranthene	ND		0.0055	0.040
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo(g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	*	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec		Acceptan	ce Limits
2-Fluorophenol	CONTROL OF THE PROPERTY OF THE	Χl	10 - 120	CONTRACTOR AND
Phenol-d5	4	ΧI	10 - 102	
Nitrobenzene-d5	4	ΧI	34 - 146	;
2-Fluorobiphenyl	29	ΧI	35 - 143	;
2,4,6-Tribromophenol	63		29 - 151	
Terphenyl-d14	106		35 - 166	;

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070108

Lab Sample ID:

580-6583-8

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

82**7**0C

Analysis Batch: 580-20992

instrument iD:

Preparation:

3510C

Prep Batch: 580-20823

Lab File ID:

ak010382.D

Dilution:

1.0

Initial Weight/Volume:

1000 mL

Date Analyzed:

07/22/2007 1526

Final Weight/Volume:

1 mL

Date Prepared:

STL Seattle

07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,)
Phenol	ND	THE THE PROPERTY OF SECURITION OF STREET, ST. S.	0.0074	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20 🌱 🧡
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND	*	0.019	0.20
Hexachiorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	N D		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	N D		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0093	0,20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

Page 21 of 1182

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070108

Lab Sample ID:

580-6583-8

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

Preparation:

3510C

Prep Batch: 580-20823

Lab File ID:

ak010382.D

Dilution:

Initial Weight/Volume:

1000 mL

1.0

07/22/2007 1526

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND		0.013	0.20
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	}	0.0019	0.020
Di-n-butyl phthalate	0.034	J₿	0.0088	0.20
Fluoranthene	ND	1	0.0027	0.025
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	0.041	7 B	0.024	0.30
3,3'-Dichlorobenzidine	ND		0.16	1.0 (1)
Benzo[a]anthracene	ND	į	0.0033	0.030
Chrysene	ND	i	0.0045	0.020 🗸 🎶
Bis(2-ethylhexyl) phthalate	0.16	1 ∯ [∑]	0.032	1.5
Di-n-octyl phthalate	ND	W	0.018	0.20 (/)
Benzofluoranthene	ND	•	0.0055	0.040
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030 📗 🛔
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	*	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030 🕌 🏑
				Ψ,
Surrogate	%Rec		Acceptan	ce Limits
2-Fluorophenol	O CONTRACTOR OF THE PROPERTY O	XI	10 - 120	Secretarian de la company de l
Phenol-d5	1	ΧI	10 - 102	2
Nitrobenzene-d5	0	ΧI	34 - 148	3
2-Fluorobiphenyl	3	ΧI	35 - 143	
2,4,6-Tribromophenol	48		29 - 151	·
Terphenyl-d14	101		35 - 166	3

(MM

Job Number: 580-6583-1

Client Sample ID:

07070109

Lab Sample ID:

580-6583-9

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Prep Batch: 580-20823

Lab File ID:

ak010383.D

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 1553 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL .
Phenol	ND	00040000-0000-14 pier in a p provincem quantum de destina e d'Aribinade de Oriente (1900)	0.0074	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1.4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0,038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachioroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichiorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chioroaniline	ND	- The	0.01 9	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2.6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.012	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20 ()
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2,0

Page 23 of 1182

STL Seattle

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070109

Lab Sample ID:

580-6583-9

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

10 - 120

10 - 102

34 - 146

35 - 143

29 - 151

35 - 166

Preparation:

3510C

Lab File ID:

Prep Batch: 580-20823

ak010383.D

Dilution:

1.0

Initial Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 1553 07/20/2007 0932 Final Weight/Volume: Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND		0.013	0.20
4-Bromophenyl phenyl ether	ND .	,	0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	,	0.0019	0.020
Di-n-butyl phthalate	0.065	JEWA	8800.0	0.20 🔰 🏋
Fluoranthene	ND	Chan	0.0027	0.025 🔰
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	0.064	- JBM	0.024	0.30
3,3'-Dichlorobenzidine	ND		0₂16	1.0
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND	,	0.0045	0.020 📈
Bis(2-ethylhexyl) phthalate	the first of the second second second second	- JBAN	0.032	1.5 <i>(</i>),
Di-n-octyl phthalate	ND	//W -O	0.018	0.20
Benzofluoranthene	ND		0.0055	0.040 🚩
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030 \
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	MW	0.0090	0.20
1-Methylnaphthaiene	ND		0.0052	0.030
Surrogate	%Rec		Accepta	ance Limits

13

12

37

48

71

104

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Phenol-d5

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070110

Lab Sample ID:

580-6583-10

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

Preparation:

3510C

Prep Batch: 580-20823

Lab File ID:

ak010384.D

Dilution:

1.0

Initial Weight/Volume:

1000 mL

Date Analyzed:

07/22/2007 1620

Final Weight/Volume: Injection Volume:

1 mL

Date Prepared: 07/20/2007

7 0932	injection volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
Phenol	ND	2010 C 1.2 To C 10 of a 10 octobro 10 octobr	0.0074	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzył alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND	*	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroanifine	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2.4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.011	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0
· • • • • • • • • • • • • • • • • • • •			\sim (

Page 25 of 1182

STL Seattle

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070110

Lab Sample ID:

580-6583-10

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

instrument ID:

Preparation:

3510C

Prep Batch: 580-20823

Lab File ID:

ak010384.D

Dilution:

1.0

Initial Weight/Volume:

1000 mL

Date Analyzed:

07/22/2007 1620

Final Weight/Volume:

1 mL

Date Prepared:

07/20/2007 0932

Injection	Volume:	

Analyte	Result (ug/L)	Qualifier	MDL	RL /
N-Nitrosodiphenylamine	ND	gild po history d'h omer h om nitra a l al-lake a 1700 1700 170 170 170 170 170 170 170 1	0.013	0.20 人)
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	ń	0.0019	0.020 🖤 🖤
Di-n-butyl phthalate	0.098	J₽Ŋ	0.0088	0.20
Fluoranthene	ND	Oppositive	0.0027	0.025 V, J
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	0.089	J 🚮	0.024	0.30
3,3'-Dichlorobenzidine	ND	И	0.16	1.0
Benzo[a]anthracene	ND	Wales and the same of the same	0.0033	0.030
Chrysene	ND	ones.	0.0045	0.020
Bis(2-ethylhexyl) phthalate	0.14	JBį̇̃	0.032	1.5
Di-n-octyl phthalate	ND	Mr.	0.018	0.20
Benzofluoranthene	ND	•	0.0055	0.040
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	*	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030 🗸 🏑
Surrogate	%Rec		Acceptano	ce Limits
2-Fluorophenol	2	ΧI	10 - 120	7474C7+phrese+weener\$x840X00UDAA9UUAAXUUBAYUUXXUOFUUUXA
Phenol-d5	5	Χi	10 - 102	•
Nitrobenzene-d5	7	XΙ	34 - 146	
2-Fluorobiphenyl	29	ΙX	35 - 143	
2,4,6-Tribromophenol	68		29 - 151	
Terphenyl-d14	110		35 - 166	

Job Number: 580-6583-1

Client Sample ID:

07070111

Lab Sample ID:

580-6583-11

Client Matrix: Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-20992

Instrument ID:

SEA040 ak010385.D

Preparation: Dilution:

1.0

Prep Batch: 580-20823

Lab File ID:

Initial Weight/Volume: 1000 mL

07/22/2007 1648 Date Analyzed:

Final Weight/Volume:

1 mL

Date Prepared:

07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
Phenol	ND	OND OF THE PARTY O	0.0074	0.30 🗸
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chiorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0,30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenoi	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND	/m	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0
i, a a man a mening species in		- 4		• •

Page 27 of 1182

Job Number: 580-6583-1

Client Sample ID:

07070111

Lab Sample ID:

580-6583-11

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010385.D

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

1 mL

Dilution:

1.0

07/22/2007 1648

Date Analyzed: Date Prepared:

07/20/2007 0932

Injection Volume:

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL , a
N-Nitrosodiphenylamine	ND		0.013	0.20
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	,	0.0019	0.020
Di-n-butyl phthalate	6.069	J Dim	0.0088	0.20 🗸
Fluoranthene	ND	,	0.0027	0.025
Pyrene	ND	,	0.0020	0.030 1
Butyl benzyl phthalate	0:691	——J#14,	0.024	0.30 U
3,3'-Dichlorobenzidine	ND	1.41 0	0.16	1.0 Ų
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND	a	0.0045	ر 🕻 0.020
Bis(2-ethylhexyl) phthalate	Ail 6	-J-M.W	0.032	1.5 🔰
Di-n-octyl phthalate	ND	/ ** *	0.018	0.20 📿
Benzofluoranthene	ND		0.0055	0.040
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	NĎ		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	NO	M	- 0.0090	0.20 Ju K
1-Methylnaphthalene	ND		0.0052	0.030
				AL O
Surrogate	%Rec		Acceptance	e Limits
2-Fluorophenol	28		10 - 120	
Phenol-d5	22		10 - 1 02	
Nitrobenzene-d5	70		34 - 146	
2-Fluorobiphenyl	99		35 - 143	
2,4,6-Tribromophenol	66		29 - 151	
Terphenyl-d14	585	ΧI	35 - 166	

Job Number: 580-6583-1

Client Sample ID:

07070112

Lab Sample ID:

580-6583-12

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Prep Batch: 580-20823

Lab File ID:

ak010388.D

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

07/22/2007 1810 Date Analyzed: Date Prepared: 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL , 1
Phenol	ND	Management Andrews Common of Marie Personal Common of Marie Co	0.0074	0.30 🗸
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	" ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20 V
Isophorone	0.023	J	0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND	Ma	0.018	1.0
Benzoic acid	- Oio	- P/Mn	0.021	1.0 🕽
Bis(2-chloroethoxy)methane	ND	, , , -	0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND	,	0.0014	0.20
4-Chloroaniline	ND	* Min	0.019	0.20
Hexachiorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	. ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichiorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

Page 29 of 1182

MW 8-607

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070112

Lab Sample ID:

580-6583-12

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010388.D

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

Dilution:

1.0

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/22/2007 1810 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL (
N-Nitrosodiphenylamine	ND	жен Максимоны С. об ин да Байланингроз в тупо и ири или харошици (; у 1000 и 1000 д.) Бигичи	0.013	0.20 🗸
4-Bromophenyi phenyi ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND		0.0019	0.020 🗸
Di-n-butyl phthalate	0.14	J Bank	0.0088	0.20
Fluoranthene	ND	A 190 1-	0.0027	0.025 ()
Pyrene	0.0034	J ,	0.0020	0.030
Butyl benzyl phthalate	· Ozu Zataniania	——J-B/A/	0.024	0.30
3,3'-Dichlorobenzidine	ND	/11	0.16	1.0
Benzo[a]anthracene	ND		0.0033	0.030 🍹
Chrysene	ND	1	0.0045	0.020
Bis(2-ethylhexyl) phthalate	- Off O Townson	- JAN	0.032	1.5 🕖
Di-n-octyl phthalate	0.038	J´ʻ``	0.018	0.20
Benzofluoranthene	ND		0,0055	0.040 ()
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND	1	0.0060	0.030
Carbazole	ND	MW	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec			ance Limits
2-Fluorophenol	36		10 - 1	_ -
Phenol-d5	23		10 - 1	02
Nitrobenzene-d5	97		34 - 1	
2-Fluorobiphenyl	81		35 - 1	
2,4,6-Tribromophenol	64		29 - 1	51
-, .,	00		25 1	66

88

35 - 166

Terphenyl-d14

Job Number: 580-6583-1

Client Sample ID:

07070113

Lab Sample ID:

580-6583-13

07/20/2007 0932

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010389.D

Dilution:

1.0

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

Date Analyzed: Date Prepared: 07/22/2007 1837

Final Weight/Volume:

1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL , ,
Phenol	ND		0.0074	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20 🏅
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohoi	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	NÐ		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND	/	0.0014	0.20
4-Chloroaniline	ND	My	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND	4	0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20 /
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20 🎶
Dimethy! phthalate	0.022	J	0.012	0.20
Acenaphthylene	ND		0.0026	0.040 🗘
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.024	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20 🖒
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

STL Seattle

Page 31 of 1182

mw 8607

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070113

Lab Sample ID:

580-6583-13

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010389.D

Prep Batch: 580-20823

Dilution:

1.0

Initial Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared: 07/22/2007 1837

07/20/2007 0932

Final Weight/Volume:

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND	right (file the season become a file to the season of	0.013	0.20 🗸
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND	·	0.013	0.35
Phenanthrene	ND		0.0024	0.040 🚶
Anthracene	ND	1	0.0019	0.020 🔰
Di-n-butyl phthalate	8.049	-JPW	0.0088	0.20 🕻
Fluoranthene	ND	***	0.0027	0.025(*)
Pyrene	ND		0.0020	0.030 🚺
Butyl benzyl phthalate	0.074	and the second s	0.024	0.30(/″,
3,3'-Dichlorobenzidine	ND	.a. 11	0.16	1.0 <i>V</i>
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND .		0.0045	0.020 🎶
Bis(2-ethylhexyl) phthalate	2.2 🕖	Am	0.032	1.5
Di-n-octyl phthalate	0.036	້ປົ	0.018	0.20
Benzofluoranthene	ND		0.0055	0.040 🕖
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	- WW	0.0090	(ي ا, 0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec		Accepta	ince Limits

38

32

95

83

66

90

Mr

10 - 120

10 - 102

34 - 146

35 - 143

29 - 151

35 - 166

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Phenol-d5

Job Number: 580-6583-1

Client Sample ID:

07070114

Lab Sample ID:

580-6583-14

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

HP04990.D

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1010 mL 1 mL

Date Analyzed: Date Prepared: 07/22/2007 1831 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL , ,
Phenol	ND	gguggementale.chministeris arb thrifted to collected the fabrical and the second 1990 to 400 1990 to	0.0073	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyi alcohoi	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0087	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND ·		0.013	0.30
Nitrobenzene	ND		0.0074	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	0.99
Benzoic acid	ND		0.021	0.99
Bis(2-chloroethoxy)methane	ND		0.0094	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.0099	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND		0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0054	0.099
Hexachlorocyclopentadiene	ND		0.012	0.99
2,4,6-Trichlorophenol	ND		0.0099	0.30
2,4,5-Trichiorophenol	ND		0.0084	0.20
2-Chioronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2.6-Dinitrotoluene	ND	_	0.014	0.20
3-Nitroaniline	ND	Mla	0.055	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.057	2.5
4-Nitrophenol	ND		0.16	0.99
Dibenzofuran	ND		0.0097	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.040	J	0.0092	ر 0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.052	2.0
• •				a a

Page 33 of 1182

0.052

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070114

Lab Sample ID:

580-6583-14

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP04990.D

Prep Batch: 580-20828

Initial Weight/Volume:

Dilution:

1010 mL

1.0

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared: 07/22/2007 1831 07/20/2007 0946

Injection	Volume:
111300011	volunio.

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	ND	Mill	0.013	0.20 V J
4-Bromophenyl phenyl ether	ND	·	0.0099	0.20
Hexachlorobenzene	ND		0.0081	0.20
Pentachiorophenol	ND		0.013	0.35
Phenanthrene	0.013	J	0.0024	0.040
Anthracene	ND .		0.0019	0.020 🔰
Di-n-butyl phthalate	0.38		0.0087	0.20
Fluoranthene	ND S		0.0027	0.025 <i>V</i>
Pyrene	ND		0.0020	0.030 🕖
Butyl benzyl phthalate	0.53 💍		0.024	0.30
3,3'-Dichlorobenzidine	ND T		0.16	0.99 🕡
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND .		0.0045	0.020, \
Bis(2-ethylhexyl) phthalate	0.78 J	JANU .	0.032	1.5 🔰
Di-n-octyl phthalate	ND		0.018	0.20 🔰
Benzofluoranthene	ND		0.0054	0.040 🕽
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND .		0.0050	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0059	0.030
Carbazole	ND		0.0089	0.20
1-Methylnaphthalene	ND		0.0051	0.030 🌾
Surrogate	%Rec		Acceptance	e Limits
2-Fluorophenol	23	وي هو المراجع و	10 - 120	PPPPOWOO deschaire and and correct population of referency years to be recommend on the defail delicities with
Phenol-d5	19		10 - 102	
Nitrobenzene-d5	7 7		34 - 146	
2-Fluorobiphenyl	133		35 - 143	
2,4,6-Tribromophenol	87		29 - 151	
Terphenyl-d14	638	١X	35 - 166	

MW

Job Number: 580-6583-1

Client Sample ID:

07070115

Lab Sample ID:

580-6583-15

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010390.D

Dilution:

1.0

Prep Batch: 580-20823

Initial Weight/Volume: Final Weight/Volume: 1000 mL 1 mL

Date Analyzed: Date Prepared: 07/22/2007 1904 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Phenol	ND	an grammy menter and menter and a beginning to the delication for the delication of the management of the delication of the same of the sa	0.0074	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20 🚶
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND.	A	0.0014	0.20
4-Chloroaniline	ND	Am	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthaiene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND ·		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20 🏏
Dimethyl phthalate	0.018	J	0.012	0.20
Acenaphthylene	ND		0.0026	0.040 🗸
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenoi	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.017	J	0.0093	0.20 💘
4-Chlorophenyl phenyl ether	ND		0.012	0.20 🖒
Fluorene	ND		0.0042	0.030 1
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0
•				

Page 35 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070115

Lab Sample ID:

580-6583-15

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

Preparation:

3510C

Lab File ID:

ak010390.D

Dilution:

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

1.0

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/22/2007 1904 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND		0.013	0.20
4-Bromopheny! phenyl ether	ND		0.010	0.20
Hexachiorobenzene	ND		0.0082	0.20
Pentachlorophenol	0.25	J	0.013	0.35
Phenanthrene	ND -		0.0024	0.040 🗸
Anthracene	ND		0.0019	0.020 🛴
Di-n-butyl phthalate	Di Ostonia	- JPW	0.0088	0.20 🗸
Fluoranthene	ND	W.	0.0027	0.025 🗸
Pyrene	ND	,	0.0020	0.030
Butyl benzyl phthalate	8 -26	JB/M	0.024	0.30 🔰
3,3'-Dichlorobenzidine	ND	***	0.16	1.0 🗸
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND	<i>A</i>	0.0045	0.020 🗸
Bis(2-ethylhexyl) phthalate	1.6 U	BW	0.032	1.5
Di-n-octyl phthalate	ND	r	0.018	0.20 🗸
Benzofluoranthene	ND		0.0055	0.040
Benzo[a]pyrene	ND		0.002 7	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0,030
Benzo[g,h,i]perylene	ND	1	0.0060	0.030
Carbazole	ND	/h-	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec		Accepta	nce Limits
2-Fluorophenol	30	дил в веждуние 1000,000 мг. 20000000 до други, була и фондальской в Боличинания в генев добину учени идо	10 - 12	O
Phenoi-d5	26	10 - 102		
Nitrobenzene-d5	84	34 - 146		
2-Fluorobiphenyl	73		35 - 14	3
2,4,6-Tribromophenol	52		29 - 15	1
Terphenyl-d14	76		35 - 16	6

Job Number: 580-6583-1

Client Sample ID:

07070116

Lab Sample ID:

580-6583-16

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID: Lab File ID:

SEA040 ak010391.D

Preparation:

3510C

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

Dilution: Date Analyzed: 1.0

Final Weight/Volume:

1 mL

Date Prepared:

07/22/2007 1932 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
Phenol	ND		0.0074	0.30 🗸
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20 🕻
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenoi	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	. ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND	_	0.0014	0.20
4-Chloroaniline	ND	Mer.	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	0.011	J	0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0 🗸
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	0.011	j	0.0030	0.030
2-Nitroaniline	ND		0.011	0.20 📙
Dimethyl phthalate	0.015	J	0.012	0.20
Acenaphthylene	ND		0.0026	0.040 🔱
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20 🌓
Acenaphthene	0.0035	J	0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5 U
4-Nítrophenol	ND .		0.16	1.0
Dibenzofuran	0.015	J	0.0098	0.20
2.4-Dinitrotoluene	ND		0.012	0.20 <i>Q</i>
Diethyl phthalate	ND		0.0093	0.20 🕹
4-Chlorophenyl phenyl ether	0.017	J	0.012	0.20
Fluorene	0.010	j	0.0042	0.030
4-Nitroaniline	ND		0.018	0.30 ()
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

STL Seattle

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070116

Lab Sample ID:

580-6583-16

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

Dilution:

Prep Batch: 580-20823

ak010391.D

1.0

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared: 07/22/2007 1932 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND	and the second s	0.013	0.20 🔰
4-Bromophenyl phenyl ether	ND		0.010	0.20 🔰
Hexachiorobenzene	0.033	J	0.0082	0.20
Pentachlorophenol	0.39		0.013	0.35
Phenanthrene	0.022	J	0.0024	0.040
Anthracene	0.018	J "	0.0019	0.020
Di-n-butyl phthalate	0.073	- JAm	0.0088	0.20 $ \mathcal{U} $
Fluoranthene	0.016	J* ···	0.0027	0.025
Pyrene	0.012	J	0.0020	0.030
Butyl benzyl phthalate	ND		0.024	0.30
3,3'-Dichlorobenzidine	ND		0.16	1.0
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND		0.0045	0.020
Bis(2-ethylhexyl) phthalate	ND		0.032	1.5
Di-n-octyl phthalate	ND		0.018	0.20
Benzofluoranthene	0.041		0.0055	0.040
Benzo[a]pyrene	ND		0.0027	0.020 []
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030 🗸
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	MMM	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec		Acceptan	ce Limits
2-Fluorophenol	35	10 - 120		
Phenol-d5	24		10 - 102	2
Nitrobenzene-d5	103		34 - 146	3
2-Fluorobiphenyl	87		35 - 143	3
2,4,6-Tribromophenol	65		2 9 - 151	1
Terphenyl-d14	91		35 - 166	3
reiphenyeura	.			-

MIN

Job Number: 580-6583-1

Client Sample ID:

07070117

Lab Sample ID:

580-6583-17

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: 8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

3510C

Prep Batch: 580-20823

Lab File ID:

ak010392.D

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared: 07/22/2007 1959 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL 1/1
Phenol	ND	as a president and a second and a second of the second of	0.0074	0.30 🗸
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	. ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20 😾
isophorone	0.48		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2.4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichiorobenzene	ND		0.010	0.20
Naphthalene	ND	,	0.0014	0.20
4-Chloroaniline	ND	VIII.	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	0.024	J	0.012	0.20
Acenaphthylene	ND		0.0026	0.040 🕖
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.025	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0
,			o /	A

Page 39 of 1182

NOV 8-607

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070117

Lab Sample ID:

580-6583-17

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010392.D

Dilution:

Prep Batch: 580-20823

1,0

Initial Weight/Volume:

MO

1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 1959 07/20/2007 0932 Final Weight/Volume: Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND	de trivélitika (verteurum és en tunn un mendelét formannem men grapagnya, en mag	0.013	0.20
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	,	0.0019	0.020 🗸
Di-n-butyl phthalate	0.12	ر _{معا} کھ J	0.0088	0.20
Fluoranthene	ND	JAW	0.0027	0.025 📿
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	- Quite from the same of the s		0.024	0.30 <i>U</i> _
3,3'-Dichlorobenzidine	ND	\$ · · •	0.16	1.0 🔰
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND	/	0.0045	0.020 🎶
Bis(2-ethylhexyl) phthalate	4.4 <i>U</i>	Æ _{k.} ∕	0.032	1,5
Di-n-octyl phthalate	ND	, 150	0.018	0.20 🚺
Benzofluoranthene	ND		0.0055	0.040 🏅
Benzo[a]pyrene	ND		0.002 7	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND	/ www	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec		Accepta	ince Limits
2-Fluorophenol	32	ampyropusem videnings out bijgede for derikke beledikke in de 1800 billion in 1800 billion in 1800 billion in	10 - 12	20
Phenol-d5	20	· ·	10 - 10)2
Nitrobenzene-d5	83		34 - 14	
2-Fluorobiphenyl	71		35 - 14	13
			00 41	-4

57

7**7**

MULIX

29 - 151

35 - 166

2,4,6-Tribromophenol

Terphenyl-d14

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070118

Lab Sample ID:

580-6583-18

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-20992

Instrument ID: Lab File ID:

SEA040 ak010393.D

Preparation: Dilution:

Prep Batch: 580-20823

Date Analyzed:

1.0

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

Date Prepared:

07/22/2007 2026 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL , \
Phenol	ND	ann ann an Contraction and Section 2015 (1975) (1975) (1975) (1975) (1975) (1975)	0.0074	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2.4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND	ANN	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2.6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.019	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0
T,O-Diriki O-Z-iniolityiphonoi	. 10			4.

Page 41 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070118

Lab Sample ID:

580-6583-18

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010393.D

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

Dilution: Date Analyzed: 1.0

07/22/2007 2026

Final Weight/Volume: Injection Volume:

1 mL

Date Prepared:

07/20/2007 0932

Analyte	Result (ug/L)	Qualifier	MDL	RL , ()
N-Nitrosodiphenylamine	ND	and the control of th	0.013	0.20 🗸
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND		0.0019	0.020
Di-n-butyl phthalate	0.13	Jømn	0.0088	0.20
Fluoranthene	ND	<i>y</i>	0.0027	0.025 V
Pyrene	ND		0.0020	0.030 🕻 🕽
Butyl benzyl phthalate	46 24 American	-JAM	0.024	0.30
3,3'-Dichlorobenzidine	ND	1. 4.40	0.16	1.0 U
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND		0.0045	0.020 🏑
Bis(2-ethylhexyl) phthalate	3.9 /	<i>F</i> w	0.032	1.5
Di-n-octyl phthalate	ND	/ 0	0.018	0.20 🕖
Benzofluoranthene	ND		0.0055	0.040 🐧
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND	_	0.0060	0.030
Carbazole	ND	MW	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec	Acceptance Limits		
	10	may extension and the second s	10 - 11	20

Surrogate	%Rec	Acceptance L	
2-Fluorophenol	49	10 - 120	
Phenol-d5	44	10 - 102	
Nitrobenzene-d5	117	34 - 146	
2-Fluorobiphenyl	101	35 - 143	
2,4,6-Tribromophenol	83	29 - 151	
Ternhenvi-d14	108	35 - 166	

MW

Job Number: 580-6583-1

Client Sample ID:

07070119

Lab Sample ID:

580-6583-19

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-20992

Instrument ID:

SEA040 ak010394.D

Preparation:

Prep Batch: 580-20823

Lab File ID:

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared: 07/22/2007 2054 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL 🛵
Phenol	ND		0.0074	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitro s odi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20 🔰
Isophorone	1.2		0.011	0.20
2-Nitrophenol	ND		0.021	0.20 (1)
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND -		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	0.41		0.0014	0.20
4-Chloroaniline	ND	MY	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	0.067	J	0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0 //
2,4,6-Trichlorophenol	0.073	J	0.010	0.30
2,4,5-Trichlorophenol	0.63		0.0085	0.20
2-Chloronaphthalene	0.019	J	0.0030	0.030
2-Nitroaniline	ND		0.011	0.20 ()
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.022	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND	-	0.012	0.20 \)
Fluorerie	ND		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0
7,0-Danio Z-menyiphenor	110		3.000	2.0

Page 43 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070119

Lab Sample ID:

580-6583-19

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040 ak010394.D

Preparation:

3510C

Lab File ID:

Dilution:

1.0

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared: 07/22/2007 2054 07/20/2007 0932 Final Weight/Volume:

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL , /
N-Nitrosodiphenylamine	ND	enterformetric relationship to the contract of the second second to the second	0.013	0.20
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachiorobenzene	ND		0.0082	0.20
Phenanthrene	0.0081	J	0.0024	0.040
Anthracene	ND		0.0019	0.020 🕖
Di-n-butyl phthalate	0.12	J B my	0.0088	0.20
Fluoranthene	ND	1	0.0027	0.025 🕖
Pyrene	ND	æ	0.0020	0.030 🕖
Butyl benzyl phthalate	- Calabaran	- JAm	0.024	0.30 (<i>J</i>
3,3'-Dichlorobenzidine	ND	, , , ,	0.16	1.0 🗸
•	ND		0.0033	0.030
Benzo[a]anthracene	ND		0.0045	0.020 🔰
Chrysene Bis(2-ethylhexyl) phthalate	2.0	BWW	0.032	1.5
Di-n-octyl phthalate	ND	1 100.	0.018	0.20 [)
Benzofluoranthene	ND		0.0055	0.040 🖟
	ND		0.0027	0.020
Benzo[a]pyrene	ND		0,0051	0.030
Indeno[1,2,3-cd]pyrene	ND		0.0046	0.030
Dibenz(a,h)anthracene	ND	,	0.0060	0.030
Benzo[g,h,i]perylene	0.022	J fram	0.0090	0.20
Carbazole	0.33	- /1400	0.0052	0.030
1-Methylnaphthalene	0.55			
Surrogate	%Rec			ance Limits
2-Fluorophenol	34	10 - 120		
Phenol-d5	29	10 - 102		
Nitrobenzene-d5	79		34 - 14	
2-Fluorobiphenyl	63		35 - 14	43
2,4,6-Tribromophenol	68		29 - 1	51
Terphenyl-d14	72		35 - 1	66
1 ethtlettäta ta	· -			

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070119

Lab Sample ID:

580-6583-19

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-20992

Instrument ID: Lab File ID:

SEA040 ak011112.D

Preparation: Dilution:

Prep Batch: 580-20823

Date Analyzed:

100

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

07/24/2007 0939 Date Prepared:

07/20/2007 0932

Injection Volume:

Analyte

Result (ug/L)

Qualifier

MDL 1.3

RL

Pentachlorophenol

120

35

MIN

Job Number: 580-6583-1

Client Sample ID:

07070120

Lab Sample ID:

580-6583-20

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

instrument ID:

SEA040

Preparation:

3510C

Lab File ID:

ak010395.D

Dilution:

Prep Batch: 580-20823

1000 mL

1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared: 07/22/2007 2121

07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Phenol	ND		0.0074	0.30 🚺
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.01 7	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	, ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND	/	0.0014	0.20
4-Chloroaniline	ND	Nu	0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichtorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0.0085	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20
Acenaphthene	ND		0.0012	0.050
2,4-Dinitrophenol	ND		0.058	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20 \
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.014	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20 (/
Fluorene	ND		0.0042	0.030 (
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0
7,0 = 2,00 = =				-

Page 46 of 1182

Job Number: 580-6583-1

Client Sample ID:

07070120

Lab Sample ID:

580-6583-20

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID: Lab File ID:

SEA040 ak010395.D

Preparation: Dilution:

3510C

Prep Batch: 580-20823

Initial Weight/Volume:

1000 mL

Date Analyzed:

1.0

Final Weight/Volume:

1 mL

Date Prepared:

07/22/2007 2121 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND	A CONTRACTOR OF THE PROPERTY O	0.013	0.20
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND	/	0.0019	0.020
Di-n-butyl phthalate	0.042	- J-Ban	0.0088	0.20 🗸
Fluoranthene	ND	,,,	0.0027	0.025 🕖
Pyrene	ND	A	0.0020	0.030 🕖
Butyl benzyl phthalate	.0.097		0.024	0.30 🗸
3,3'-Dichlorobenzidine	ND	, V-	0.16	1.0
Benzo[a]anthracene	ND		0.0033	0.030
Ch ry sene	ND	/	0.0045	0.020 🎶
Bis(2-ethylhexyl) phthalate	2.3 🔰	A	0.032	1.5
Di-n-octyl phthalate	ND	7 190	0.018	0.20
Benzofluoranthene	ND		0.0055	0.040 🏅
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND	/	0.0060	0.030
Carbazole	ND	hrm	0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec		Acceptanc	e Limits
2-Fluorophenol	41	enteres en la company de l	10 - 120	dy amount in 1944 and any construction and an analysis of the second of
Phenoi-d5	29		10 - 102	
Nitrobenzene-d5	100		34 - 146	
2-Fluorobiphenyl	89		35 - 143	
2,4,6-Tribromophenol	72		29 - 151	
Terphenyl-d14	90		35 - 166	

MW

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070121

Lab Sample ID:

580-6583-21

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

3510C

ak010396.D

Prep Batch: 580-20823

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

1000 mL

Date Analyzed:

07/22/2007 2149

Final Weight/Volume:

1 mL

Date Prepared:

07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
Phenol	ND	gamente de la companya del la companya de la compan	0.0074	0.30 🗸
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0088	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0075	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0095	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	0.031	J	0.0014	0.20
4-Chloroaniline	ND	Show	0.019	0.20 Ų 🕽
Hexachlorobutadiene	ND		0.016	0.30
4-Chioro-3-methylphenol	ND		0.014	0.20 🎶
2-Methylnaphthalene	0.078	J	0.0055	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0 🗸
2,4,6-Trichlorophenoi	ND		0.010	0.30
2,4,5-Trichlorophenol	0.014	J	0.0085	0.20
2-Chloronaphthalene	ND ×		0.0030	0.030 🕖
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2.6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND		0.056	0.20 🜙
Acenaphthene	0.011	J	0.0012	0.050 _{គ្នា វា}
2,4-Dinitrophenol	ND		0.058	2.5 🔱
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0098	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	0.013	J	0.0093	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20 🗸
Fluorene	ND		0.0042	0.030 \
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.053	2.0

Page 48 of 1182

mw for

STL Seattle

Job Number: 580-6583-1

Client Sample ID:

07070121

Lab Sample ID:

580-6583-21

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-20992

Instrument ID:

SEA040

Preparation:

Lab File ID:

ak010396.D

Dilution:

1.0

Prep Batch: 580-20823

Initial Weight/Volume: Final Weight/Volume: 1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 2149 07/20/2007 0932

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND	A De Carlos Control Co	0.013	0.20
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20 🌙
Pentachiorophenol	1,5		0.013	0.35
Phenanthrene	ND		0.0024	0.040 U
Anthracene	ND	,	0.0019	0.020
Di-n-butyl phthalate	a Dan Dan San San San San San San San San San S		0.0088	0.20 ()
Fluoranthene	ND	* K*	0.0027	0.025 U
Pyrene	ŅD	_	0.0020	0.030 🕖
Butyl benzyl phthalate	<0.040		0.024	0.30 🗸
3,3'-Dichlorobenzidine	ND	¥ 48-	0.16	1.0
Benzo[a]anthracene	ND		0.0033	0.030 🕯 🎾
Chrysene	ND . r		0.0045	0.020 🎶
Bis(2-ethylhexyl) phthalate	1,6 U	Byer	0.032	1.5
Di-n-octyl phthalate	ND -	s hea	0.018	0.20
Benzofluoranthene	ND		0.0055	0.040 🕯
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030 🚪
Benzo[g,h,i]perylene	ND	/	0.0060	0.030
Carbazole	ND	m	0.0090	0.20
1-Methylnaphthalene	0.14	·	0.0052	0.030
Surrogate	%Re c		Accepta	ince Limits
2-Fluorophenol	41		10 - 12	20
Phenoi-d5	34		10 - 10)2
Nitrobenzene-d5	111		34 - 14	46
2-Fluorobiphenyl	93		35 - 14	13

74

98

· IIW

29 - 151

35 - 166

2,4,6-Tribromophenol

Terphenyl-d14

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070122

Lab Sample ID:

580-6583-22

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP04993.D

Prep Batch: 580-20828

1030 mL

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/22/2007 1953 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Phenol	ND		0.0072	0.29
Bis(2-chloroethyl)ether	ND		0.017	0.19
2-Chlorophenol	ND		0.021	0.19
1,3-Dichlorobenzene	ND		0.011	0.19
1,4-Dichlorobenzene	ND		0.012	0.19
Benzyl alcohol	ND		0.013	0.19
1,2-Dichlorobenzene	ND		0.011	0.19
2-Methylphenol	ND		0.037	0.19
Bis(2-chloroisopropyl) ether	ND		0.0085	0.19
3 & 4 Methylphenol	ND		0.017	0.39
N-Nitrosodi-n-propylamine	ND		0.019	0.19
Hexachloroethane	ND		0.013	0.29
Nitrobenzene	ND		0.0073	0.19
Isophorone	ND		0.011	0.19
2-Nitrophenol	ND		0.020	0.19
2,4-Dimethylphenol	ND		0.017	0.97
Benzoic acid	ND		0.020	0.97
Bis(2-chloroethoxy)methane	ND		0.0092	0.19
2,4-Dichlorophenol	ND		0.013	0.19
1,2,4-Trichlorobenzene	ND		0.0097	0.19 🔰
Naphthalene	0.011	J	0.0014	0.19
4-Chloroaniline	ND		0.018	0.19 🕖
Hexachlorobutadiene	ND		0.016	0.29
4-Chloro-3-methylphenol	ND		0.014	0.19
2-Methylnaphthalene	ND		0.0053	0.097
Hexachlorocyclopentadiene	ND		0.012	0.97
2,4,6-Trichlorophenol	ND		0.0097	0.29
2,4,5-Trichlorophenol	ND		0.0083	0.19
2-Chloronaphthalene	ND		0.0029	0.029
2-Nitroaniline	ND		0.011	0.19
Dimethyl phthalate	0.057	J	0.012	0.19
Acenaphthylene	ND		0.0025	0.039 Ų
2,6-Dinitrotoluene	ND	1.	0.014	0.19
3-Nitroaniline	ND	/ Mm	0.054	0.19
Acenaphthene	ND		0.0012	0.049
2,4-Dinitrophenol	ND		0.056	2.4
4-Nitrophenol	ND		0.16	0.97
Dibenzofuran	ND		0.0095	0.19
2,4-Dinitrotoluene	ND		0.012	0.19
Diethyl phthalate	0.060	J	0.0090	0.19
4-Chlorophenyl phenyl ether	ND		0.012	0.19
Fluorene	ND		0.0041	0.029
4-Nitroaniline	ND		0.017	0.29
	ND		0.051	1.9
4,6-Dinitro-2-methylphenol	ND	•	0.051	1.9

Page 50 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070122

Lab Sample ID:

580-6583-22

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-21040

Instrument ID: Lab File ID:

SEA023

Preparation:

HP04993.D

Dilution:

Prep Batch: 580-20828

Initial Weight/Volume:

1030 mL

Date Analyzed: Date Prepared: 1.0

07/22/2007 1953

Final Weight/Volume: Injection Volume:

1 mL

07/20/2007 0946

Analyte	Result (ug/L)	Qualifier	MDL	RL	
N-Nitrosodiphenylamine	ND	mu	0.013	0.19	
4-Bromophenyl phenyl ether	ND		0.0097	0.19	
Hexachlorobenzene	ND		0.0080	0.19	
Pentachiorophenoi	ND		0.013	0.34	
Phenanthrene	ND		0.0023	0.039	
Anthracene	ND		0.0018	0.019	
Di-n-butyl phthalate	0.078	J	0.0085	0.19 🦿	
Fluoranthene	ND		0.0026	0.024 <i>U</i>	
Pyrene	ND		0.0019	0.029 ()	
Butyl benzyl phthalate	0.072	J	0.023	0.29	
3,3'-Dichlorobenzidine	ND		0.16	0.97 🕖	
Benzo[a]anthracene	ND		0.0032	0.029	
Chrysene	ND		0.0044	0.019 🎷	
Bis(2-ethylhexyl) phthalate	85		0.031	1.5	
Di-n-octyl phthalate	ND T		0.017	0.19 🕖	
Benzofluoranthene	ND		0.0053	0.039	
Benzo[a]pyrene	ND		0.0026	0.019 🍹	
Indeno[1,2,3-cd]pyrene	ND		0.0050	0.029	
Dibenz(a,h)anthracene	ND		0.0045	0.029	
Benzo[g,h,i]perylene	ND		0.0058	0.029	
Carbazole	ND		0.0087	0.19	
1-Methylnaphthalene	ND		0,0050	0.029	
Surrogate	%Rec		Acceptance Limits		
2-Fluorophenol	34	nggypyn y cycgannaarengen dinnoegogled Ydooladii de baddiin lab o'n helmellicherd Hill	10 - 120		
Phenol-d5	27		10 - 102		
Nitrobenzene-d5	115		34 - 146		
2-Fluorobiphenyl	158	١x	35 - 143		
2,4,6-Tribromophenol	88		29 - 151		
Terphenyl-d14	711	IX	35 - 16	6	

MW QLA

Job Number: 580-6583-1

Client Sample ID:

07070123

Lab Sample ID:

580-6583-23

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

Preparation:

3510C

Lab File ID:

HP04994.D

Dilution:

Prep Batch: 580-20828

990 mL

1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/22/2007 2021 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,)
Phenol	ND		0.0075	0.30
Bis(2-chloroethyl)ether	ND	+	0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ŅD		0,0089	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.00 7 6	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0096	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND		0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0056	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.30
2,4,5-Trichlorophenol	ND		0,0086	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND	ar .	0.014	0.20
3-Nitroaniline	ND	J M	0.057	0.20
Acenaphthene	ND		0.0012	0.051
2,4-Dinitrophenol	ND		0.059	2.5
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	ND		0.0099	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0094	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0,0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.054	2.0

Page 52 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070123

Lab Sample ID:

580-6583-23

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: 8270C 3510C Analysis Batch: 580-21040

Instrument ID: Lab File ID:

SEA023 HP04994.D

Prep Batch: 580-20828

Initial Weight/Volume:

Dilution:

1.0

Final Weight/Volume:

990 mL 1 mL

Date Analyzed: Date Prepared: 07/22/2007 2021 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
N-Nitrosodiphenylamine	ND	2 Mrs	0.013	0.20	
4-Bromophenyl phenyl ether	ND	1	0.010	0.20	
Hexachiorobenzene	ND		0.0083	0.20	
Pentachlorophenol	ND		0.013	0.35	
Phenanthrene	ND		0.0024	0.040	
Anthracene	ND		0.0019	0.020	
Di-n-butyl phthalate	ND		0.0089	0.20	
Fluoranthene	ND		0.0027	0.025	
Pyrene	ND		0.0020	0.030	
Butyl benzyl phthalate	0.060	J ·	0.024	0.30	
3,3'-Dichlorobenzidine	ND		0.16	1.0	
Benzo[a]anthracene	ND		0.0033	0.030	
Chrysene	ND ,		0.0045	0.020 🎶	
Bis(2-ethylhexyl) phthalate	9.7		0.032	1.5	
Di-n-octyl phthalate	ND T		0.018	0.20	
Benzofluoranthene	ND		0.0056	0.040	
Benzo[a]pyrene	ND		0.0027	0.020	
Indeno[1,2,3-cd]pyrene	ND		0.0052	0.030	
Dibenz(a,h)anthracene	ND		0.0046	0.030	
Benzo[g,h,i]perylene	ND		0.0061	0.030	
Carbazole	ND		0.0091	0.20	
1-Methylnaphthalene	ND		0.0053	0.030	
				A	
Surrogate	%Rec		Acceptance Limits		
2-Fluorophenol	21		10 - 120		
Phenol-d5	22		10 - 102		
Nitrobenzene-d5	78		34 - 146		
2-Fluorobiphenyl	147	IX	35 - 143		
2,4,6-Tribromophenol	85		29 - 151		
Terphenyl-d14	777	١x	35 - 166		

Job Number: 580-6583-1 Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070124

Lab Sample ID:

580-6583-24

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Result (ug/L)

Method:

8270C

Analysis Batch: 580-21040

instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

Qualifier

HP04995.D

Dilution:

Analyte

1.0

Prep Batch: 580-20828

Initial Weight/Volume:

1010 mL

Date Analyzed:

07/22/2007 2048

Final Weight/Volume: Injection Volume:

MDL

1 mL

Date Prepared:

07/20/2007 0946

Note that the property of the contract of the		0.0073	0.30 (/
Phenol	ND ND	0.0073	0.20
Bis(2-chloroethyl)ether	ND	0.022	0.20
2-Chlorophenol	ND	0.011	0.20
1,3-Dichlorobenzene	ND ND	0.012	0.20
1,4-Dichlorobenzene	ND	0.013	0.20
Benzyl alcohol		0.013	0.20
1,2-Dichlorobenzene	ND NB	0.038	0.20
2-Methylphenol	ND		0.20
Bis(2-chloroisopropyl) ether	ND	0.0087	,
3 & 4 Methylphenol	ND	0.017	0.40
N-Nitrosodi-n-propylamine	ND	0.020	0.20
Hexachloroethane	ND	0.013	0.30
Nitrobenzene	ND	0.0074	0.20
isophorone	ND	0.011	0.20
2-Nitrophenol	ND	0.021	0.20
2,4-Dimethylphenol	ND	0.018	0.99
Benzoic acid	ND	0.021	0.99
Bis(2-chloroethoxy)methane	ND	0.0094	0.20
2,4-Dichlorophenol	ND	0.013	0.20
1,2,4-Trichlorobenzene	ND	0.0099	0.20
Naphthalene	ND	0.0014	0.20
4-Chloroaniline	ND	0.019	0.20
Hexachlorobutadiene	ND	0.016	0.30
4-Chloro-3-methylphenol	ND	0.014	0.20
2-Methylnaphthalene	ND	0.0054	0.099
Hexachlorocyclopentadiene	ND	0.012	0.99
2,4,6-Trichlorophenol	ND [*]	0.0099	0.30
2,4,5-Trichlorophenol	ND	0.0084	0.20
2-Chioronaphthalene	ND	0.0030	0.030
2-Nitroaniline	ND	0.011	0.20
Dimethyl phthalate	ND	0.012	0.20
Acenaphthylene	ND	0.0026	0.040
2,6-Dinitrotoluene	ND	0.014	0.20
3-Nitroaniline	ND ND		0.20
Acenaphthene	ND Page	0.0012	0.050
2,4-Dinitrophenol	ND	0.057	2.5
4-Nitrophenol	ND	0.16	0.99
Dibenzofuran	ND	0.0097	0.20
	ND	0.012	0.20
2,4-Dinitrotoluene	ND	0.0092	0.20
Diethyl phthalate	ND	0.012	0.20
4-Chiorophenyl phenyl ether	ND	0.0042	0.030
Fluorene	ND	0.018	0.30
4-Nitroaniline	ND	0.052	2.0
4,6-Dinitro-2-methylphenol	NU	0.002	-: Y

Page 54 of 1182

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070124

Lab Sample ID:

580-6583-24

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP04995.D

Dilution: Date Analyzed: 1.0

Prep Batch: 580-20828

Initial Weight/Volume: Final Weight/Volume:

1010 mL 1 mL

Date Prepared:

07/22/2007 2048 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	ND	TW	0.013	0.20
4-Bromophenyl phenyl ether	ND	·	0.0099	0.20
Hexachlorobenzene	ND		0.0081	0.20
Pentachlorophenol	ND		0.013	0.35
Phenanthrene	ND		0.0024	0.040
Anthracene	ND		0.0019	0.020 🐓
Di-n-butyl phthalate	0.11	J	0.0087	0.20
Fluoranthene	ND		0.0027	0.025 🗸
Pyrene	ND		0.0020	0.030 🕖
Butyl benzyl phthalate	0.17	J	0.024	0.30
3,3'-Dichlorobenzidine	ND		0.16	0.99
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND .	, p	0.0045	0.020
Bis(2-ethylhexyl) phthalate	2.8 U 3	Air	0.032	1.5
Di-n-octyl phthalate	ND "		0.018	0.20 🕖
Benzofluoranthene	ND		0.0054	0.040
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0050	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0059	0.030
Carbazole	ND		0.0089	0.20
1-Methylnaphthalene	ND		0.0051	0.030
Surrogate	%Rec		Acceptar	nce Limits
2-Fluorophenol	33	annullistan for a delica hich descent management average for the present of a responsible for the second of the	10 - 120	
Phenol-d5	24		10 - 10	2
Nitrobenzene-d5	71		34 - 140	6
2-Fluorobiphenyl	82		35 - 143	3
2,4,6-Tribromophenol	79		29 - 15°	1
1 7				

106

35 - 166

Terphenyl-d14

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070125

Lab Sample ID:

580-6583-25

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

instrument iD:

SEA023 HP04996.D

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID: Initial Weight/Volume:

1020 mL

Dilution:

1.0

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

STL Seattle

07/22/2007 2115 07/20/2007 0946

Injection Volume:

	Result (ug/L)	Qualifier	MDL	RL ()
Analyte The presentation of the control of the con	ND	ongawasing a conference and a conference of a	0.0073	0.29
Phenol	ND		0.018	0.20 🌱 🧡
Bis(2-chloroethyl)ether	ND		0.022	0.20
2-Chlorophenol	ND		0.011	0.20
1,3-Dichlorobenzene	ND		0.012	0.20
1,4-Dichlorobenzene	ND ND		0.013	0.20
Benzyl alcohol			0.011	0.20
1,2-Dichlorobenzene	ND		0.037	0.20
2-Methylphenol	ND		0.0086	0.20
Bis(2-chloroisopropyl) ether	ND		0.017	0.39
3 & 4 Methylphenol	ND		0.020	0.20
N-Nitrosodi-n-propylamine	ND ND		0.013	0.29
Hexachloroethane	ND NB		0.0074	0.20
Nitrobenzene	ND		0.011	0.20
Isophorone	ND		0.021	0.20
2-Nitrophenol	ND		0.021	0.98
2,4-Dimethylphenol	ND		0.021	0.98
Benzoic acid	ND		0.0093	0.20
Bis(2-chloroethoxy)methane	ND		0.0093	0.20
2,4-Dichlarophenol	ND		0.0098	0.20
1,2,4-Trichlorobenzene	ND		0.0098	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND			0.29
Hexachlorobutadiene	ND		0.016	0.20
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0054	0.98
Hexachlorocyclopentadiene	ND		0.012	0.29
2,4,6-Trichlorophenol	ND		0.0098	0.29
2.4.5-Trichlorophenol	ND		0.0083	0.029
2-Chloronaphthalene	ND		0.0029	0.029
2-Nitroaniline	ND		0.011	
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0025	0.039
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND	*	0.055	0.20
Acenaphthene	ND		0.0012	0.049
2,4-Dinitrophenol	ND		0.057	2.5
	ND		0.16	0.98
4-Nitrophenol	ND		0.0096	0.20
Dibenzofuran	ND		0.012	0.20
2,4-Dinitrotoluene	ND		0.0091	0.20
Diethyl phthalate	ND		0.012	0.20
4-Chlorophenyl phenyl ether	ND		0.0041	0.029
Fluorene	ND		0.018	0.29
4-Nitroaniline	ND		0.052	2.0
4,6-Dinitro-2-methylphenol		4400		'te of fame"

Page 56 of 1182

Client: Environmental Quality Mgt., Inc. Job Number: 580-6583-1

Client Sample ID:

07070125

Lab Sample ID:

580-6583-25

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:

8270C 3510C Analysis Batch: 580-21040

Instrument ID:

SEA023

Prep Batch: 580-20828

Lab File ID:

HP04996.D

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1020 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 2115 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL .
N-Nitrosodiphenylamine	<u>ND</u>	*	0.013	0.20
4-Bromophenyl phenyl ether	ND		0.0098	0.20
Hexachlorobenzene	ND		0.0080	0.20
Pentachiorophenol	11		0.013	0.34
Phenanthrene	· ND		0.0024	0.039 🗸)՝
Anthracene	ND		0.0019	0.020
Di-n-butyl phthalate	ND		0.0086	0.20
Fluoranthene	ND		0.0026	0.025
Pyrene	ND		0.0020	0.029 🗸 🗸
Butyl benzyl phthalate	0.069	J	0.024	0.29
3,3'-Dichlorobenzidine	ND		0.16	0.98 <i>(/ 🔾</i>)
Benzo[a]anthracene	ND		0.0032	0.029
Chrysene	ND		0.0044	0.020 🎷
Bis(2-ethylhexyl) phthalate	2.2		0.031	1.5
Di-n-octyl phthalate	ND		0.018	0.20 (/)
Benzofluoranthene	ND		0.0054	0.039
Benzo[a]pyrene	ND		0.0026	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0050	0.029
Dibenz(a,h)anthracene	ND		0.0045	0.029
Benzo[g,h,i]perylene	ND		0.0059	0.029
Carbazole	ND		0.0088	0.20 //
1-Methylnaphthalene	ND		0.0051	0.029
Surrogate	%Rec		Accepta	nce Limits
2-Fluorophenol	O CONTRACTOR DESIGNATION OF THE PROPERTY OF TH	I X	10 - 12	20
Phenol-d5	4	l X	10 - 10)2
Nitrobenzene-d5	0	١x	34 - 14	l 6
2-Fluorobiphenyl	33	١x	35 - 14	13
transfer and				

83

111

29 - 151

35 - 166

2,4,6-Tribromophenol

Terphenyl-d14

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070126

Lab Sample ID:

580-6583-26

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

instrument ID:

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

HP04997.D

Dilution:

1.0

Initial Weight/Volume:

1050 mL

Date Analyzed: Date Prepared:

STL Seattle

07/22/2007 2143

Final Weight/Volume: Injection Volume:

1 mL

07/20/2007 0946

Analyte	Result (ug/L)	Qualifier	MDL	RL /
Phenol	ND		0.0070	0.29 🗸)
Bis(2-chloroethyl)ether	ND		0.017	0.19
2-Chlorophenol	ND		0.021	0.19
1,3-Dichlorobenzene	ND		0.010	0.19
1,4-Dichlorobenzene	ND		0.011	0.19
Benzyl alcohol	ND		0.012	0.19
1,2-Dichlorobenzene	ND		0.010	0.19
2-Methylphenol	ND		0.036	0.19
Bis(2-chloroisopropyl) ether	ND		0.0084	0.19
3 & 4 Methylphenol	ND		0.016	0.38
N-Nitrosodi-n-propylamine	ND		0.019	0.19
Hexachloroethane	ND		0.012	0.29
Nitrobenzene .	ND		0.007 1	0.19
Isophorone	ND		0.010	0.19
2-Nitrophenol	ND		0.020	0.19
2,4-Dimethylphenol	ND		0.017	0.95
Benzoic acid	ND		0.020	0.95
Bis(2-chloroethoxy)methane	ND		0.0090	0.19
2,4-Dichlorophenol	ND		0.012	0.19
1,2,4-Trichlorobenzene	ND		0.0095	0.19
Naphthalene	ND		0.0013	0.19
4-Chloroaniline	ND		0.018	0.19
Hexachlorobutadiene	ND		0.015	0.29
4-Chloro-3-methylphenol	ND		0.013	0.19
2-Methylnaphthalene	ND		0.0052	0.095
Hexachlorocyclopentadiene	ND		0.011	0.95
2,4,6-Trichlorophenol	ND		0.0095	0.29
2,4,5-Trichlorophenol	ND		0.0081	0.19
2-Chloronaphthalene	ND		0.0029	0.029
2-Nitroaniline	ND		0.010	0.19
Dimethyl phthalate	ND		0.011	0.19
Acenaphthylene	ND		0.0025	0.038
2,6-Dinitrotoluene	ND		0.013	0.19
3-Nitroaniline	ND	*	0.053	0.19
Acenaphthene	ND		0.0011	0.048
2,4-Dinitrophenol	ND		0.055	2.4
4-Nitrophenol	ND		0.15	0.95 V
Dibenzofuran	0.051	J	0.0093	0.19
2,4-Dinitrotoluene	ND		0.011	0.19 [/2]
Diethyl phthalate	ND		0.0089	0.19
4-Chlorophenyl phenyl ether	ND		0.011	0.19 ❤️ ❤️
Fluorene	0.032		0.0040	0.029
4-Nitroaniline	ND		0.017	0.29 VJ
4,6-Dinitro-2-methylphenol	ND		0.050	1.9

Page 58 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070126

Lab Sample ID:

580-6583-26

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

Preparation:

3510C

Lab File ID:

HP04997.D

Dilution:

Prep Batch: 580-20828

1.0

Initial Weight/Volume: Final Weight/Volume:

1050 mL

Date Analyzed: Date Prepared: 07/22/2007 2143 07/20/2007 0946

Injection Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL ,	
N-Nitrosodiphenylamine	ND	*	0.012	0.19	
4-Bromophenyl phenyl ether	0.063	J	0.0095	0.19	
Hexachiorobenzene	0.088	J	0.0078	0.19	
Pentachiorophenol	ND		0.012	0.33	
Phenanthrene	0.039		0.0023	0.038	
Anthracene	0.043		0.0018	0.019	
Di-n-butyl phthalate	ND		0.0084	0.19 レゾ	
Fluoranthene	ND		0.0026	0.024	
Pyrene	ND		0.0019	0.029	
Butyl benzyl phthalate	0.072	J	0.023	0.29	
3,3'-Dichlorobenzidine	ND		0.15	0.95	
Benzo[a]anthracene	ND		0.0031	0.029	
Chrysene	ND		0.0043	0.019	
Bis(2-ethylhexyl) phthalate	0.97	J	0.030	1.4	
Di-n-octyl phthalate	0.028	J	0.017	0.19	
Benzofluoranthene	ND	•	0.0052	0.038 🏹	
Benzo[a]pyrene	ND		0.0026	0.019	
Indeno[1,2,3-cd]pyrene	ND		0.0049	0.029	
Dibenz(a,h)anthracene	ND		0.0044	0.029	
Benzo[g,h,i]perylene	ND		0.0057	0.029	
Carbazole	ND		0.0086	0.19	
1-Methylnaphthalene	ND		0.0050	0.029	
Surrogate	%Rec		Acceptance Limits		
2-Fluorophenol	9	١X	10 - 120	(4000,000,000,000,000,000,000,000,000,00	
Phenol-d5	12		10 - 102		
Nitrobenzene-d5	25	١X	34 - 146		
2-Fluorobiphenyl	5 7		35 - 143		
2,4,6-Tribromophenol	94		29 - 151		
Terphenyl-d14	116		35 - 166		

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070127

Lab Sample ID:

580-6583-27

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analysis Batch: 580-21040

instrument iD:

SEA023 HP04998.D

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

1030 mL

Dilution: Date Analyzed:

1.0

Initial Weight/Volume:

1 mL

Date Prepared:

07/22/2007 2210 07/20/2007 0946

Final Weight/Volume:

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
Phenol	ND	Tablika desiri () d. Sirika Sesikan sesika (basesa a basesa a	0.0072	0.29 V. V
Bis(2-chloroethyl)ether	ND		0.017	0.19
2-Chlorophenol	ND		0.021	0.19
1,3-Dichlorobenzene	ND		0.011	0.19
1,4-Dichlorobenzene	ND		0.012	0.19
Benzyl alcohol	ND		0.013	0.19
1,2-Dichlorobenzene	ND		0.011	0.19
2-Methylphenol	ND		0.037	0.19
Bis(2-chloroisopropyl) ether	ND	•	0.0085	0.19
3 & 4 Methylphenol	ND		0.017	0.39
N-Nitrosodi-n-propylamine	ND		0.019	0.19
Hexachloroethane	ND		0.013	0.29
Nitrobenzene	ND		0.0073	0.19
Isophorone	ND		0.011	0.19
2-Nitrophenol	ND		0.020	0.19
2,4-Dimethylphenol	ND		0.017	0.97
Benzoic acid	ND		0.020	0.97
Bis(2-chloroethoxy)methane	ND		0.0092	0.19
2,4-Dichlorophenol	ND		0.013	0.19
1,2,4-Trichiorobenzene	ND		0.0097	0.19
Naphthalene	ND		0.0014	0.19
4-Chloroaniline	ND		0.018	0.19
Hexachiorobutadiene	ND		0.016	0.29
4-Chloro-3-methylphenol	ND		0.014	0.19
2-Methylnaphthalene	ND		0.0053	0.097
Hexachlorocyclopentadiene	ND		0.012	0.97
2,4,6-Trichlorophenol	ND		0.0097	0.29
2,4,5-Trichiorophenol	0.047	J	0.0083	لايا 19.0
2-Chioronaphthalene	ND		0.0029	0.029 🗸 🕽
2-Nitroaniline	ND		0.011	0.19
Dimethyl phthalate	ND		0.012	0.19
Acenaphthylene	ND		0.0025	0.039
2,6-Dinitrotoluene	ND		0.014	0.19
3-Nitroaniline	ND	*	0.054	0.19
Acenaphthene	ND		0.0012	0.049
2,4-Dinitrophenol	ND		0.056	2.4
4-Nitrophenol	ND		0.16	0.97
Dibenzofuran	ND		0.0095	0.19
2,4-Dinitrotoluene	ND		0.012	0.19
Diethyl phthalate	ND		0.0090	0.19
4-Chlorophenyl phenyl ether	ND		0.012	0.19
Fluorene	ND		0.0041	0.029
4-Nitroaniline	ND		0.017	0.29
4,6-Dinitro-2-methylphenol	ND		0.051	1.9

Page 60 of 1182

STL Seattle

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070127

Lab Sample ID:

580-6583-27

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument iD:

SEA023

HP04998.D

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

1030 mL

Dilution:

Date Prepared:

1.0

Initial Weight/Volume:

07/22/2007 2210 Date Analyzed:

07/20/2007 0946

Final Weight/Volume: Injection Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL 11
N-Nitrosodiphenylamine	NDD .	**************************************	0.013	0.19 🕔
4-Bromophenyl phenyl ether	ND		0.0097	0.19
Hexachiorobenzene	ND		0.0080	0.19
Pentachlorophenol	72		0.013	0.34
Phenanthrene	0.086		0.0023	0.039
Anthracene	ND		0.0018	0.019 ()
Di-n-butyl phthalate	0.076	J	0.0085	0.19
Fluoranthene	0.070		0.0026	0.024
Pyrene	0.061		0.0019	0.029
Butyl benzyl phthalate	0.11	J	0.023	0.29
3,3'-Dichlorobenzidine	ND		0.16	0.97
Benzo[a]anthracene	ND		0.0032	0.029
Chrysene	ND		0.0044	0.019 🚺
Bis(2-ethylhexyl) phthalate	1.5		0.031	1.5 ້ຶ້
Di-n-octyl phthalate	0.054	J	0.017	0.19
Benzofluoranthene	ND		0.0053	0.039
Benzo[a]pyrene	ND		0.0026	0.019
Indeno[1,2,3-cd]pyrene	ND ND		0.0050	0.029
Dibenz(a,h)anthracene	ND		0.0045	0.029
Benzo[g,h,i]perylene	ND		0.0058	0.029
Carbazole	ND		0.0087	0.19 //
1-Methylnaphthalene	ND		0.0050	0.029
Surrogate	%Rec	•	Accepta	ance Limits

Surrogate	%Rec	North Commence of the Commence	Acceptance
2-Fluorophenol	0	IX	10 - 120
Phenol-d5	0	1 X	10 - 102
Nitrobenzene-d5	6	١X	34 - 146
2-Fluorobiphenyl	20	1 X	35 - 143
2,4,6-Tribromophenol	58		29 - 151
Terphenyl-d14	84	٠	35 - 166
, -			

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070128

Lab Sample ID:

580-6583-28

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

\$EA023

Preparation:

3510C

Lab File ID:

HP04999.D

Prep Batch: 580-20828

Dilution:

1030 mL

1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared: 07/22/2007 2238 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Phenol	ND		0.0072	0.29
Bis(2-chloroethyl)ether	ND		0.017	0.19
2-Chlorophenol	ND		0.021	0.19
1,3-Dichlorobenzene	ND		0.011	0.19
1,4-Dichlorobenzene	ND		0.012	0.19
Benzyl alcohol	ND		0.013	0.19
1,2-Dichlorobenzene	ND		0.011	0.19
2-Methylphenol	ND		0.037	0.19
Bis(2-chloroisopropyl) ether	ND		0.0085	0.19
3 & 4 Methylphenol	ND		0.017	0.39
N-Nitrosodi-n-propylamine	ND		0.019	0.19
Hexachioroethane	ND		0.013	0.29
Nitrobenzene	ND		0.0073	0.19
Isophorone	ND		0.011	0.19
2-Nitrophenol	ND		0.020	0.19
2,4-Dimethylphenol	ND		0.017	0.97
Benzoic acid	ND		0.020	0.97
Bis(2-chloroethoxy)methane	ND		0.0092	0.19
2,4-Dichlorophenol	ND		0.013	0.19
1,2,4-Trichlorobenzene	ND		0.0097	0.19
Naphthalene	ND		0.0014	0.19
4-Chloroaniline	ND		0.018	0:19
Hexachlorobutadiene	ND		0.016	0.29
4-Chloro-3-methylphenol	ND		0.014	0.19
2-Methylnaphthalene	ND		0.0053	0.097
Hexachlorocyclopentadiene	ND		0.012	0.97
2,4,6-Trichlorophenol	ND		0.0097	0.29
2,4,5-Trichlorophenol	ND		0.0083	0.19
2-Chloronaphthalene	ND		0.0029	0.029
2-Nitroaniline	ND		0.011	0.19
Dimethyl phthalate	ND		0.012	0.19
Acenaphthylene	ND		0.0025	0.039
2,6-Dinitrotoluene	ND		0.014	0.19
3-Nitroaniline	ND	-1/1/	0.054	0.19
Acenaphthene	ND	•	0.0012	0.049
2,4-Dinitrophenol	ND		0.056	2.4
4-Nitrophenol	ND		0.16	0.97
Dibenzofuran	ND		0.0095	0.19
2,4-Dinitrotoluene	ND		0.012	0.19
Diethyl phthalate	ND		0.0090	0.19
4-Chlorophenyl phenyl ether	ND		0.012	0.19
Fluorene	ND		0.0041	0.029
4-Nitroaniline	ND		0.017	0.29
4,6-Dinitro-2-methylphenol	ND		0.051	1.9
4,0-Dilliu0-Z-Methylphenol	110			

Page 62 of 1182

Job Number: 580-6583-1 Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070128

Lab Sample ID:

580-6583-28

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:

82**7**0C 3510C

Analysis Batch: 580-21040

Instrument ID: Lab File ID:

SEA023 HP04999.D

Prep Batch: 580-20828

Initial Weight/Volume:

1030 mL 1 mL

Dilution:

1.0

07/22/2007 2238

Date Analyzed: Date Prepared:

07/20/2007 0946

Final Weight/Volume: Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL /
N-Nitrosodiphenylamine	ND	Ma	0.013	0.19
4-Bromophenyl phenyl ether	ND	•	0.0097	0.19
Hexachiorobenzene	ND		0.0080	0.19
Pentachlorophenol	0.89		0.013	0.34
Phenanthrene	ND		0.0023	0.039 🔰
Anthracene	ND		0.0018	0.019
Di-n-butyl phthalate	ND		0.0085	0.19
Fluoranthene	ND		0.0026	0.024
Pyrene	ND		0.0019	0.029
Butyl benzyl phthalate	0.12	J	0.023	0.29
3,3'-Dichlorobenzidine	ND		0.16	0.97
Benzo[a]anthracene	ND		0.0032	0.029
Chrysene	ND ,,		0.0044	0.019
Bis(2-ethylhexy!) phthalate	1.6 🌽		0.031	1.5
Di-n-octyl phthalate	ND		0.017	0.19 ()
Benzofluoranthene	ND		0.0053	0.039 🥤
Benzo[a]pyrene	ND		0.0026	0.019
Indeno[1,2,3-cd]pyrene	ND		0.0050	0.029
Dibenz(a,h)anthracene	ND	•	0.0045	0.029
Benzo[g,h,i]perylene	ND		0.0058	0.029
Carbazole	ND	•	0.008 7	0.19
1-Methylnaphthalene	ND		0.0050	0.029
Surrogate	%Rec		Acceptan	ce Limits
2-Fluorophenol	14	Profes Transported Street Stre	10 - 120)
Phenol-d5	15		10 - 102	2
Nitrobenzene-d5	45		34 - 146	
2-Fluorobiphenyl	69		35 - 143	3
2,4,6-Tribromophenol	77		29 - 151	
Terphenyl-d14	102		35 - 166	5

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070129

Lab Sample ID:

580-6583-29

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

HP05000.D 1000 mL

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared: 07/22/2007 2305 07/20/2007 0946

Injection Volume:

RL MDL Result (ug/L) Qualifier Analyte 0.30 0.0074 ND Phenol 0.20 0.018 ND Bis(2-chloroethyl)ether 0.20 0.022 ND 2-Chlorophenol 0.011 0.20 ND 1,3-Dichlorobenzene 0.20 ND 0.012 1,4-Dichlorobenzene 0.20 0.013 ND Benzyl alcohol 0.20 0.011 ND 1,2-Dichlorobenzene 0.20 0.038 ND 2-Methylphenol 0.0088 0.20 ND Bis(2-chloroisopropyl) ether 0.40 ND 0.017 3 & 4 Methylphenol 0.20 ND 0.020 N-Nitrosodi-n-propylamine 0.30 0.013 ND Hexachloroethane 0.20 0.0075 ND Nitrobenzene 0.20 0.011 ND Isophorone 0,20 0.021 ND 2-Nitrophenol 1.0 0.018 ND 2.4-Dimethylphenol 1.0 0.021 ND Benzoic acid 0.20 0.0095 ND Bis(2-chloroethoxy)methane 0.013 0.20 ND 2.4-Dichlorophenol 0.20 0.010 ND 1.2.4-Trichlorobenzene 0.20 0.0014 ND Naphthalene 0.20 0.019 ND 4-Chloroaniline 0.30 0.016 ND Hexachlorobutadiene 0.014 0.20 ND 4-Chìoro-3-methylphenol 0.0055 0.10 ND 2-Methylnaphthalene 1.0 0.012 ND Hexachlorocyclopentadiene 0.30 0.010 ND 2,4,6-Trichlorophenol 0.0085 0.20 ND 2,4,5-Trichlorophenoi 0.0030 0.030 ND 2-Chioronaphthaiene 0.20 0.011 ND 2-Nitroaniline 0.20 0.012 ND Dimethyl phthalate 0.040 0.0026 ND Acenaphthylene 0.20 0.014 ND 2,6-Dinitrotoluene 0.056 0.20 ND 3-Nitroaniline 0.050 0.0012 ND Acenaphthene 2.5 0.058 ND 2,4-Dinitrophenol 1.0 0.16 ND 4-Nitrophenol 0.20 0.0098 ND Dibenzofuran 0.012 0.20 ND 2,4-Dinitrotoluene 0.20 0.0093 ND Diethyl phthalate 0.20 0.012 ND 4-Chlorophenyl phenyl ether 0.0042 0.030 ND Fluorene 0.018 0.30 ND 4-Nitroaniline 0.053 ND 4,6-Dinitro-2-methylphenol

Page 64 of 1182

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070129

Lab Sample ID:

580-6583-29

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

instrument ID:

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

HP05000.D

Dilution:

1.0

Initial Weight/Volume:

1000 mL 1 mL

Date Analyzed: Date Prepared:

07/22/2007 2305 07/20/2007 0946

Final Weight/Volume:

nio	ction	Volume:	
mje	CHOH	Volume:	

Analyte	Result (ug/L)	Qualifier	MDL	RL 11
N-Nitrosodiphenylamine	ND	*	0.013	0.20 V J
4-Bromophenyl phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0082	0.20 🗸 🗸 🗸
Pentachlorophenol	14		0.013	0.35
Phenanthrene	ND		0.0024	0.040 🏑 🔿
Anthracene	ND		0.0019	0.020
Di-n-butyl phthalate	0.22		8800.0	0.20
Fluoranthene	ND		0.0027	0.025
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	0.61		0.024	0.30
3,3'-Dichlorobenzidine	ND		0.16	1.0
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND		0.0045	0.020
Bis(2-ethylhexyl) phthalate	3.7		0.032	1.5
Di-n-octyl phthalate	ND		0.018	0.20 (人
Benzofiuoranthene	ND		0.0055	0.040
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0051	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0060	0.030
Carbazole	ND:		0.0090	0.20
1-Methylnaphthalene	ND		0.0052	0.030
Surrogate	%Rec		Accepta	nce Limits

Surrogate	%Rec		Acceptance
2-Fluorophenol	0	ΙX	10 - 120
Phenol-d5	0	ΙX	10 - 102
Nitrobenzene-d5	0	١X	34 - 146
2-Fluorobiphenyl	20	١X	35 - 143
2,4,6-Tribromophenol	85		29 - 151
Terphenyl-d14	104		35 - 166

Job Number: 580-6583-1 Client: Environmental Quality Mgt., Inc.

07070130 Client Sample ID:

Lab Sample ID: 580-6583-30

Client Matrix: Water Date Sampled:

07/18/2007 0000

Date Received: 07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-21040

Instrument ID:

SEA023 HP05001.D

Preparation:

Prep Batch: 580-20828

Lab File ID:

Dilution: Date Analyzed: 1.0

Initial Weight/Volume: Final Weight/Volume:

1020 mL 1 mL

Date Prepared:

07/22/2007 2332 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	
Phonol		PLOYS SECRET NO. RESOLUTION MAINTENANT OF SECRET SE	0.0073	22472070428427449

Phenol	**************************************	0.0073	0.29 / /
Bis(2-chloroethyl)ether	ND	0.018	0.20 4 4
2-Chlorophenol	ND	0.022	0.20
1,3-Dichlorobenzene	ND	0.011	0.20
1,4-Dichlorobenzene	ND	0.012	0.20
Benzyl alcohol	ND	0.013	0.20
1,2-Dichlorobenzene	ND	0.011	0.20
2-Methylphenol	ND	0.03 7	0.20
Bis(2-chloroisopropyl) ether	ND	0.0086	0.20
3 & 4 Methylphenol	ND	0.017	0.39
N-Nitrosodi-n-propylamine	ND	0.020	0.20
Hexachloroethane	ND	0,013	0.29
Nitrobenzene	ND	0.0074	0.20
Isophorone	ND	0.011	0.20
2-Nitrophenol	ND	0.021	0.20
2,4-Dimethylphenol	ND	0.018	0.98
Benzoic acid	ND	0.021	0.98
Bis(2-chloroethoxy)methane	ND	0.0093	0.20
2,4-Dichlorophenol	ND	0.013	0.20
1,2,4-Trichlorobenzene	ND	0.0098	0.20
Naphthalene	ND ·	0.0014	0.20
4-Chloroaniline	ND	0.019	0.20
Hexachlorobutadiene	ND	0.016	0.29
4-Chioro-3-methylphenol	ND	0.014	0.20
2-Methylnaphthalene	ND	0.0054	0.098
Hexachlorocyclopentadiene	ND	0.012	0.98
2,4,6-Trichlorophenol	ND	0.0098	0.29
2,4,5-Trichlorophenol	ND	0.0083	0.20
2-Chloronaphthalene	ND	0.0029	0.029
2-Nitroaniline	ND	0.011	0.20
Dimethyl phthalate	ND	0.012	0.20
Acenaphthylene	ND	0.0025	0.039
2,6-Dinitrotoluene	ND	0.014	0.20
3-Nitroaniline	ND *	0.055	0.20
Acenaphthene	ND	0.0012	0.049
2,4-Dinitrophenol	ND	0.057	2.5
4-Nitrophenol	ND	0.16	0.98
Dibenzofuran	ND	0.0096	0.20
2,4-Dinitrotoluene	ND	0.012	0.20
Diethyl phthalate	ND	0.0091	0.20
4-Chlorophenyl phenyl ether	ND	0.012	0.20
Fluorene	ND	0.0041	0.029
4-Nitroaniline	ND	0.018	0.29
4,6-Dinitro-2-methylphenol	ND	0.052	2.0

Page 66 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070130

Lab Sample ID:

580-6583-30

Client Matrix:

Water

07/18/2007 0000

Date Sampled: Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP05001.D

Dilution:

Prep Batch: 580-20828

Date Analyzed:

1.0

Initial Weight/Volume: Final Weight/Volume:

1020 mL 1 mL

Date Prepared:

07/22/2007 2332 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	ND	**************************************	0.013	0.20 ()\)
4-Bromophenyi phenyi ether	ND		0.0098	0.20
Hexachiorobenzene	ND		0.0080	0.20
Pentachiorophenol	ND		0.013	0.34
Phenanthrene	ND		0.0024	0.039
Anthracene	ND		0.0019	0.020
Di-n-butyl phthalate	ND		0.0086	0.20
Fluoranthene	ND		0.0026	0.025
Pyrene	ND		0.0020	0.029 🎶
Butyl benzył phthalate	0.090	J	0.024	0.29
3,3'-Dichlorobenzidine	ND		0.16	0.98
Benzolalanthracene	ND		0.0032	0.029
Chrysene	ND		0.0044	0.020
Bis(2-ethylhexyl) phthalate	2.4		0.031	1.5
Di-n-octyl phthalate	ND		0.018	0.20 🔰
Benzofluoranthene	ND		0.0054	0.039
Benzo[a]pyrene	ND		0.0026	0.020
indeno[1,2,3-cd]pyrene	ND		0.0050	0.029
Dibenz(a,h)anthracene	ND		0.0045	0.029
Benzo[g,h,i]perylene	ND		0.0059	0.029
Carbazole	ND		0.0088	0.20
1-Methylnaphthalene	ND		0.0051	0.029 W V
Surrogate	%Rec		Acceptar	nce Limits
2-Fluorophenol	0	ΙX	10 - 120)
Phenol-d5	0	IX	10 - 102	2
Nitrobenzene-d5	0	IX	34 - 140	6
2-Fluorobiphenyl	14	١X	35 - 143	3
2,4,6-Tribromophenol	80		29 - 15	
Terphenyl-d14	98		35 - 16	6

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070131

Lab Sample ID: Client Matrix:

580-6583-31

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

\$EA023

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

HP05002.D

Dilution:

Date Analyzed:

1.0

Initial Weight/Volume: Final Weight/Volume:

1020 mL 1 mL

Date Prepared:

07/23/2007 0000 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL]
Phenol	ND		0.0073	0.29
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.037	0.20
Bis(2-chloroisopropyl) ether	ND		0.0086	0.20
3 & 4 Methylphenol	ND		0.017	0.39
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND .		0.013	0.29
Nitrobenzene	ND		0.00 7 4	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	0.98
Benzoic acid	ND .		0.021	0.98
Bis(2-chloroethoxy)methane	ND		0.0093	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.0098	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND		0.019	0.20
Hexachlorobutadiene	ND		0.016	0.29
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0054	0.098
Hexachlorocyclopentadiene	ND		0.012	0.98
2,4,6-Trichlorophenol	ND		0.0098	0.29
2,4,5-Trichiorophenoi	ND		0.0083	0.20
2-Chioronaphthalene	ND		0.0029	0.029
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0025	0.039
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND	*	0.055	0.20
Acenaphthene	ND		0.0012	0.049
2,4-Dinitrophenol	ND		0.057	2.5
4-Nitrophenoi	ND		0.16	0.98
Dibenzofuran	ND		0.0096	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0091	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	ND		0.0041	0.029
4-Nitroaniline	ND		0.018	0.29
4,6-Dinitro-2-methylphenol	ND		0.052	2.0

Page 68 of 1182

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070131

Lab Sample ID:

580-6583-31

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

Preparation:

3510C

Lab File ID:

HP05002.D

Dilution:

1.0

Prep Batch: 580-20828

Initial Weight/Volume: Final Weight/Volume:

1020 mL 1 mL

Date Analyzed: Date Prepared:

07/23/2007 0000 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
N-Nitrosodiphenylamine	ND	*	0.013	0.20
4-Bromophenyl phenyl ether	ND		0.0098	0.20
Hexachlorobenzene	ND		0.0080	0.20
Pentachlorophenol	ND		0.013	0.34
Phenanthrene	ND		0.0024	0.039
Anthracene	ND		0.0019	0.020
Di-n-butyl phthalate	0.050	J	0.0086	0.20
Fluoranthene	ND		0.0026	0.025
Pyrene	ND		0.0020	0.029
Butyl benzyl phthalate	0.046	J	0.024	0.29
3,3'-Dichlorobenzidine	ND		0.16	0.98
Benzo[a]anthracene	ND		0.0032	0.029
Chrysene	ND		0.0044	0.020 V
Bis(2-ethylhexyl) phthalate	1.6		0.031	1.5
Di-n-octyl phthalate	ND		0.018	0.20 🗸 🕽
Benzofluoranthene	ND		0.0054	0.039
Benzo[a]pyrene	ND		0.0026	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0050	0.029
Dibenz(a,h)anthracene	ND		0.0045	0.029
Benzo[g,h,i]perylene	ND		0.0059	0.029
Carbazole	ND		0.0088	0.20
1-Methylnaphthalene	ND		0.0051	0.029 🌓 📞
Surrogate	%Rec		Accepta	nce Limits

Surrogate	%Rec		Acceptance
2-Fluorophenol	0	ΙX	10 - 120
Phenol-d5	0	łX	10 - 102
Nitrobenzene-d5	0	١X	34 - 146
2-Fluorobiphenyl	2	١X	35 - 143
2,4,6-Tribromophenol	7 2		29 - 151
Terphenyl-d14	121		35 - 166

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070132

Lab Sample ID:

580-6583-32

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

8270C Method:

3510C

Analysis Batch: 580-21040

Instrument ID:

Preparation:

Prep Batch: 580-20828

Lab File ID:

HP05003.D

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1010 mL

Date Analyzed:

07/23/2007 0027

Injection Volume:

1 mL

Date Prepared:

07/20/2007 0946

Analyte	Result (ug/L)	Qualifier	MDL	RL , ,
Phenol	ND	Annual 2017 (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977)	0.0073	0.30
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20 J
1.3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND -		0.0087	0.20
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.0074	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	0.99
Benzoic acid	ND		0.021	0.99
Bis(2-chloroethoxy)methane	ND		0.0094	0.20
2.4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.0099	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND		0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0054	0.099
Hexachlorocyclopentadiene	ND		0.012	0.99
2,4,6-Trichlorophenol	ND		0.0099	0.30
2,4,5-Trichlorophenol	ND		0.0084	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND		0.014	0.20
3-Nitroaniline	ND	/ Mm	0.055	0.20
Acenaphthene	ND	•	0.0012	0.050
2,4-Dinitrophenol	ND		0.05 7	2.5
4-Nitrophenol	ND		0.16	0.99
Dibenzofuran	0.19	J	0.0097	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0092	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20 🕻
Fluorene	0.33		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30
4,6-Dinitro-2-methylphenol	ND		0.052	2.0 🗸
130 Dilling 2 Thomyspirone.				- *

Page 70 of 1182

STL Seattle

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070132

Lab Sample ID:

580-6583-32

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

Dilution: Date Analyzed:

Date Prepared:

3510C

Prep Batch: 580-20828

Lab File ID:

HP05003.D

1.0

Initial Weight/Volume:

1010 mL

07/23/2007 0027

Final Weight/Volume:

1 mL

07/20/2007 0946 Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	ND		0.013	0.20 V
4-Bromophenyl phenyl ether	ND		0.0099	0.20
Hexachiorobenzene	ND		0.0081	0.20
Pentachlorophenol	67		0.013	0.35
Phenanthrene	ND		0.0024	0.040 🗸
Anthracene	ND		0.0019	0.020
Di-n-butyl phthalate	ND		0.0087	0.20
Fluoranthene	ND		0.0027	0.025
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	0.052	J	0.024	0.30
3,3'-Dichlorobenzidine	ND		0.16	0.99
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND		0.0045	0.020
Bis(2-ethylhexyl) phthalate	2.2		0.032	1.5 😁 🔭
Di-ก-octyl phthalate	ND		0.018	0.20 ل
Benzofluoranthene	ND		0.0054	0.040
Benzo[a]pyrene	ND		0,0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0050	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0059	0.030
Carbazole	ND		0.0089	0.20
1-Methylnaphthalene	ND		0.0051	0.030 🖤
Surrogate	%Rec		Acceptance	e Limits
2-Fluorophenol	9	ΙΧ	10 - 120	CVCDP (Median compressor promotes and not blood as a biomission of the professor and
Phenol-d5	0	ΙX	10 - 102	
Nitrobenzene-d5	96		34 - 146	
2-Fluorobiphenyi	97		35 - 143	•
2.4.6-Tribromophenol	27	IX	29 - 151	
Terphenyl-d14	111		35 - 166	

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070133

Lab Sample ID:

580-6583-33

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

HP05004.D

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

MW 9607

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume: 1010 mL 1 mL

Date Analyzed: Date Prepared: 07/23/2007 0054 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,
Phenol	ND	ville hir habitumusen valeti e hirakulusut e X Vehiti ii hir hirakulusubsi viili ii	0.0073	0.30 VJ
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.038	0.20
Bis(2-chloroisopropyl) ether	ND		0.0087	0.20 Tru
3 & 4 Methylphenol	ND		0.017	0.40
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.30
Nitrobenzene	ND		0.00 7 4	0.20
Isophorone	ND		0.011	0.20
2-Nitrophenol	ND		0.021	0.20
2,4-Dimethylphenol	ND		0.018	0.99
Benzoic acid	ND		0.021	0.99
Bis(2-chloroethoxy)methane	ND		0.0094	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.0099	0.20
Naphthalene	2.0		0.0014	0.20
4-Chioroaniline	0.69		0.019	0.20
Hexachlorobutadiene	ND		0.016	0.30 //
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0054	0.099
Hexachlorocyclopentadiene	ND		0.012	0.99
2,4,6-Trichlorophenol	ND		0.0099	0.30
2,4,5-Trichlorophenol	ND		0.0084	0.20
2-Chloronaphthalene	ND		0.0030	0.030
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0026	0.040
2,6-Dinitrotoluene	ND	/	0.014	0.20
3-Nitroaniline	ND	mu	0.055	0.20
Acenaphthene	0.77		0.0012	0.050
2,4-Dinitrophenol	ND		0,05 7	2.5
4-Nitrophenol	ND		0.16	0.99
Dibenzofuran	1.5		0.0097	0.20
2,4-Dinitrotoluene	ND		0.012	0.20 📿
Diethyl phthalate	ND		0.0092	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	2.8		0.0042	0.030
4-Nitroaniline	ND		0.018	0.30 V
4,6-Dinitro-2-methylphenol	ND		0.052	2.0 //
• ,			_	\sim \sim

Page 72 of 1182

STL Seattle

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070133

Lab Sample ID:

580-6583-33

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:

8270C 3510C

07/20/2007 0946

Analysis Batch: 580-21040

Instrument ID:

SEA023

Dilution:

Date Prepared:

Prep Batch: 580-20828

Lab File ID:

HP05004.D

1.0

Initial Weight/Volume:

1010 mL

Date Analyzed: 07/23/2007 0054 Final Weight/Volume:

1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	ND	14 Non	0.013	0.20 🗸
4-Bromophenyl phenyl ether	ND		0.0099	0.20
Hexachlorobenzene	ND		0.0081	0.20
Phenanthrene	ND		0.0024	0.040
Anthracene	ND		0.0019	0.020
Di-n-butyl phthalate	ND		0.0087	0.20
Fluoranthene	ND		0.0027	0.025
Pyrene	ND		0.0020	0.030
Butyl benzyl phthalate	ND		0.024	0.30 \
3,3'-Dichlorobenzidine	ND		0.16	0.99
Benzo[a]anthracene	ND		0.0033	0.030 \
Chrysene	ND		0.0045	0.020 🌓 /
Bis(2-ethylhexyl) phthalate	1.4	J	0.032	1.5
Di-n-octyl phthalate	ND		0.018	0.20 🗸
Benzofluoranthene	ND		0.0054	0.040
Benzo[a]pyrene	ND		0.0027	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0050	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0059	0.030 🗸
Carbazole	2.7		0.0089	0.20 🖑
1-Methylnaphthalene	4.8		0.0051	0.030
Surrogate	%Rec		Accepta	nce Limits
2-Fluorophenol	18	Philips 1223 122/printers and secure and transcenses and secure	10 - 12	0
Phenol-d5	4	IX	10 - 10	2
Nitrobenzene-d5	90		34 - 14	6
2-Fluorobiphenyl	71		35 - 14	.3
2,4,6-Tribromophenol	63		29 - 15	1
Terphenyl-d14	104		35 - 16	6

Job Number: 580-6583-1

Client Sample ID:

07070133

Lab Sample ID:

580-6583-33

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Client: Environmental Quality Mgt., Inc.

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

Prep Batch: 580-20828

HP05056.D

Dilution:

1000

Initial Weight/Volume:

1010 mL

Date Analyzed:

07/25/2007 1319

Final Weight/Volume: Injection Volume:

1 mL

Date Prepared:

07/20/2007 0946

Qualifier

MDL

RL

Analyte Pentachlorophenol

2400

Result (ug/L)

13

350

MW

Job Number: 580-6583-1 Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070134

Lab Sample ID:

580-6583-34

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023 HP05005.D

Preparation: Dilution:

3510C

Prep Batch: 580-20828

Lab File ID:

980 mL

1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/23/2007 0122 07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL ,)
Phenol	ND	a politica de se esta se endre como se sonas esta e nomença en segrituit por superior	0.0076	0.31 (/)
Bis(2-chloroethyl)ether	ND		0.018	0.20
2-Chlorophenol	ND		0.022	0.20 5
1,3-Dichlorobenzene	ND		0.011	0.20
1,4-Dichlorobenzene	ND		0.012	0.20
Benzyl alcohol	ND		0.013	0.20
1,2-Dichlorobenzene	ND		0.011	0.20
2-Methylphenol	ND		0.039	0.20
Bis(2-chloroisopropyl) ether	ND		0.0090	n 2n 📗
3 & 4 Methylphenol	ND		0.017	0.41
N-Nitrosodi-n-propylamine	ND		0.020	0.20
Hexachloroethane	ND		0.013	0.31
Nitrobenzene	ND		0.0077	0.20 🖖
Isophorone	0.42		0.011	0.20
2-Nitrophenol	ND		0.021	0.20 🗸 🏒
2,4-Dimethylphenol	ND		0.018	1.0
Benzoic acid	ND		0.021	1.0
Bis(2-chloroethoxy)methane	ND		0.0097	0.20
2,4-Dichlorophenol	ND		0.013	0.20
1,2,4-Trichlorobenzene	ND		0.010	0.20
Naphthalene	ND		0.0014	0.20
4-Chloroaniline	ND		0.019	0.20
Hexachlorobutadiene	ND		0.016	0.31
4-Chloro-3-methylphenol	ND		0.014	0.20
2-Methylnaphthalene	ND		0.0056	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.31
2,4,5-Trichlorophenol	ND		0.0087	0.20
2-Chloronaphthaiene	ND		0.0031	0.031
2-Nitroaniline	ND		0.011	0.20
Dimethyl phthalate	ND		0.012	0.20
Acenaphthylene	ND		0.0027	0.041
2,6-Dinitrotoluene	ND	1	0.014	0.20
3-Nitroaniline	ND	MU	0.057	0.20
Acenaphthene	ND		0.0012	0.051
2,4-Dinitrophenol	ND		0.059	2.6
4-Nitrophenol	ND		0.16	1.0
Dibenzofuran	· ND		0.010	0.20
2,4-Dinitrotoluene	ND		0.012	0.20
Diethyl phthalate	ND		0.0095	0.20
4-Chlorophenyl phenyl ether	ND		0.012	0.20
Fluorene	0.90		0.0043	0.031
4-Nitroaniline	ND		0.018	0.31
4,6-Dinitro-2-methylphenol	ND		0.054	2.0 UJ

Page 75 of 1182

STL Seattle

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070134

Lab Sample ID:

580-6583-34

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP05005.D

Dilution:

Prep Batch: 580-20828

1.0

Initial Weight/Volume: Final Weight/Volume:

980 mL

Date Analyzed: Date Prepared:

07/23/2007 0122 07/20/2007 0946

1 mL

	Injection	Volume:
--	-----------	---------

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	ND	*Mu	0.013	0.20 🗸
4-Bromophenyi phenyl ether	ND		0.010	0.20
Hexachlorobenzene	ND		0.0084	0.20
Phenanthrene	ND		0.0024	0.041
Anthracene	ND		0.0019	0.020
Di-n-butyl phthalate	ND		0.0090	0.20
Fluoranthene	ND		0.0028	0.026
Pyrene	ND		0.0020	0.031
Butyl benzyl phthalate	0.049	J	0.024	0.31
3,3'-Dichlorobenzidine	ND		0.16	1.0 🗸
Benzo[a]anthracene	ND		0.0034	0.031 /,
Chrysene	ND		0.0046	0.020
Bis(2-ethylhexyl) phthalate	2.3		0.033	1.5
Di-n-octyl phthalate	ND		0.018	0.20
Benzofluoranthene	ND		0.0056	0.041
Benzo[a]pyrene	ND		0.0028	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0052	0.031
Dibenz(a,h)anthracene	ND		0.0047	0.031
Benzo[g,h,i]perylene	ND		0.0061	0.031
Carbazole	0.74		0.0092	0.20
1-Methylnaphthalene	ND		0.0053	0.031
Surrogate	%Rec		Acceptance	Limits
2-Fluorophenol	15	Zan i en enzi e a 17.19 (27 e en antion en en antion en	10 - 120	SECTION TO SECURE AND AND AND AND ADDRESS OF THE SECURITY AND ADDRESS OF THE SECURITY AND ADDRESS AND ADDRESS OF THE SECURITY ADDRESS OF THE SECURITY AND ADDRESS OF THE SECURITY ADDR
Phenol-d5	3	١x	10 - 102	
Nitrobenzene-d5	94		34 - 146	
2-Fluorobiphenyl	76		35 - 143	
2,4,6-Tribromophenol	61		29 - 151	
Terphenyl-d14	101		35 - 166	

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070134

Lab Sample ID:

580-6583-34

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

07/25/2007 1346

07/20/2007 0946

Analysis Batch: 580-21040

Instrument ID:

HP05057.D

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

Dilution: Date Analyzed:

Date Prepared:

1000

Initial Weight/Volume:

Final Weight/Volume:

980 mL 1 mL

Injection Volume:

Analyte

Resuit (ug/L)

Qualifier

MDL

RL

Pentachlorophenol

1100

13

360

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070135

Lab Sample ID:

580-6583-35

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP05006.D

Prep Batch: 580-20828

Initial Weight/Volume:

970 mL

Dilution:

1.0

07/23/2007 0149

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL 1
Phenol	ND .		0.0076	0.31 🔘
Bis(2-chloroethyl)ether	ND		0.019	0.21
2-Chlorophenol	ND		0.023	0.21
1,3-Dichlorobenzene	ND		0.011	0.21
1,4-Dichlorobenzene	ND		0.012	0.21
Benzyl alcohol	ND		0.013	0.21
1,2-Dichlorobenzene	ND		0.011	0.21
2-Methylphenol	ND		0.039	0.21
Bis(2-chloroisopropyl) ether	ND		0.0091	0.21
3 & 4 Methylphenol	0.045	J	0.018	0.41
N-Nitrosodi-n-propylamine	ND		0.021	0.21 🔾
Hexachloroethane	ND		0.013	0.31
Nitrobenzene	ND		0.0077	0.21
Isophorone	1.8		0.011	0.21
2-Nitrophenol	ND		0.022	0.21
2,4-Dimethylphenol	ND		0.019	1.0 🔾
Benzoic acid	ND		0.022	1.0
Bis(2-chloroethoxy)methane	ND		0.0098	0.21
2,4-Dichlorophenol	ND		0.013	0.21
1,2,4-Trichlorobenzene	ND		0.010	0.21
4-Chloroaniline	ND		0.020	0.21
Hexachlorobutadiene	ND		0.016	0.31
4-Chloro-3-methylphenol	ND		0.014	0.21
2-Methylnaphthalene	ND		0.0057	0.10
Hexachlorocyclopentadiene	ND		0.012	1.0
2,4,6-Trichlorophenol	ND		0.010	0.31
2,4,5-Trichiorophenoi	ND		0.0088	0.21
2-Chloronaphthalene	ND		0.0031	0.031
2-Ontoronaphinatene 2-Nitroaniline	ND		0.011	0.21
	ND		0.012	0.21
Dimethyl phthalate	ND		0.0027	0.041
Acenaphthylene	ND		0.014	0.21
2,6-Dinitrotoluene	ND	/w	0.058	0.21
3-Nitroaniline	4.6	2 100	0.0012	0.052
Acenaphthene	ND		0.060	2.6 U
2,4-Dinitrophenol	ND ND		0.16	1.0 Ü
4-Nitrophenol	3.4		0.010	0.21
Dibenzofuran	ND		0.012	0.21 🔰
2,4-Dinitrotoluene	ND ND		0.0096	0.21
Diethyl phthalate	ND ND		0.012	0.21
4-Chlorophenyl phenyl ether			0.012	0.31
4-Nitroaniline	ND		0.015	2.1
4,6-Dinitro-2-methylphenol	ND ND	Vien N	0.033	0.21
N-Nitrosodiphenylamine	ND	AAIO	0.013	0.21
4-Bromophenyl phenyl ether	ND			
	Doma 79 of 1	100	MAN	MLLX.

Page 78 of 1182

STL Seattle

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070135

Lab Sample ID:

580-6583-35

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: 8270C 3510C Analysis Batch: 580-21040

Instrument ID:

SEA023

Lab File ID:

HP05006.D

Dilution:

1.0

Prep Batch: 580-20828

Date Analyzed:

Initial Weight/Volume: Final Weight/Volume:

970 mL 1 mL

07/23/2007 0149

Date Prepared:

07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Hexachlorobenzene	ND	And the second s	0.0085	0.21
Anthracene	ND		0.0020	0.021
Dì-n-butyl phthalate	ND		0.0091	0.21
Fluoranthene	ND		0.0028	0.026
Pyrene	0.10	•	0.0021	0.031 🤻
Butyl benzyl phthalate	0.098	J	0.025	0.31
3,3'-Dichlorobenzidine	ND		0.16	1.0 🗸
Benzo[a]anthracene	ND		0.0034	0.031
Chrysene	ND		0.0046	0.021
Bis(2-ethylhexyl) phthalate	4-3	Jan	0.033	1.5 🗸
Di-n-octyl phthalate	ND	•	0.019	0.21 🕖
Benzofluoranthene	ND		0.0057	0.041
Benzo[a]pyrene	ND		0.0028	0.021
indeno[1,2,3-cd]pyrene	ND		0.0053	0.031
Dibenz(a,h)anthracene	ND		0.0047	0.031
Benzo[g,h,i]perylene	ND		0.0062	0.031
Carbazole	2.9		0.0093	0.21
Surrogate	%Rec		Accepta	nce Limits

Surrogate	%Rec	Acceptance
2-Fluorophenol	37	10 - 120
Phenol-d5	25	10 - 102
Nitrobenzene-d5	87	34 - 146
2-Fluorobiphenyl	65	35 - 143
2,4,6-Tribromophenol	84	29 - 151
Terphenyl-d14	105	35 - 166

Job Number: 580-6583-1 Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070135

Lab Sample ID:

580-6583-35

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP05018.D

20

Prep Batch: 580-20828

Dilution:

initia! Weight/Volume:

970 mL

Date Analyzed:

07/23/2007 2001

Final Weight/Volume:

1 mL

Date Prepared:

07/20/2007 0946

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Naphthalene	8.0		0.029	4.1	
Fluorene	9.1		0.087	0.62	
Phenanthrene	5.8		0.049	0.82	•
1-Methylnaphthalene	72		0.11	0.62	

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070135

Lab Sample ID:

580-6583-35

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3510C Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

Lab File ID:

Dilution:

HP05017.D

Prep Batch: 580-20828

970 mL

200

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/23/2007 1934 07/20/2007 0946

Injection Volume:

Analyte

Result (ug/L)

Qualifier

MDL

2.7

RL72

Pentachlorophenol

1000

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070136

Lab Sample ID:

580-6583-36

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP05007.D

Prep Batch: 580-20828

Initial Weight/Volume:

990 mL

Dilution:

1.0

07/23/2007 0217

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

07/20/2007 0946

Injection Volume:

	Qualifier	MDL	RL
0.28	J	0.0075	0.30
ND			0.20 🕖
ND			0.20
ND		0.020	0.20
ND		0.013	0.30
ND		0.0076	0.20 🏏
4.2			0.20
ND		0.021	0.20 ()
ND		0.018	1.0
ND		0.021	1.0
ND		0.0096	0.20
ND			0.20
ND		0.010	0.20
ND		0.019	0.20
ND		0.016	0.30
ND		0.014	0.20
ND		0.012	1.0
ND		0.010	0.30
ND		0.0086	0.20
ND		0.0030	0.030
ND		0.011	0.20 🚪
ND		0.012	0.20
ND		0.0026	0.040
ND			0.20
ND	Company or		0.20
ND	***		2.5
ND		0.16	1.0
ND		0.0099	0.20
ND		0.012	0.20
ND		0.0094	0.20
ND		0.012	0.20
ND		0.018	0.30
ND	4 5 1	0.054	2.0
ND	LAIN	0.013	0.20
ND	· -	0.010	0.20
ND		0.0083	0.20
ND		0.0024	0.040
ND		0.0019	0.020
	N N N N N N N N N N N N N N N N N N N		ND

STL Seattle

Page 82 of 1182

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070136

Lab Sample ID:

580-6583-36

07/23/2007 0217

07/20/2007 0946

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:

Date Analyzed:

Date Prepared:

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Dilution:

8270C 3510C

1.0

Analysis Batch: 580-21040

Instrument ID:

SEA023

Prep Batch: 580-20828

Lab File ID:

HP05007.D

Initial Weight/Volume: Final Weight/Volume:

990 mL 1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Di-n-butyl phthalate	ND	AND DESCRIPTION OF PERSONS ASSESSMENT OF STREET ASSESSMENT OF STREET ASSESSMENT OF STREET ASSESSMENT OF STREET	0.0089	0.20 🕖
Fluoranthene	ND		0.0027	0.025
Pyrene	0.34		0.0020	0.030
Butyl benzyl phthalate	, ND		0.024	0.30 🕻
3,3'-Dichlorobenzidine	ND		0.16	1.0
Benzo[a]anthracene	ND		0.0033	0.030
Chrysene	ND		0.0045	0.020
Di-n-octyl phthalate	ND		0.018	0.20
Benzofluoranthene	ND		0.0056	0.040
Benzo[a]pyrene	ND	•	0.002 7	0.020
Indeno[1,2,3-cd]pyrene	ND		0.0052	0.030
Dibenz(a,h)anthracene	ND		0.0046	0.030
Benzo[g,h,i]perylene	ND		0.0061	0.030
Carbazole	ND		0.0091	0.20
Surrogate	%Rec		Acceptance Limits	
2-Fluorophenol	39	And the first way to the supplier of the suppl	10 - 12	20
Phenol-d5	30		10 - 10	02

83

68

97

85

34 - 146

35 - 143

29 - 151

35 - 166

Job Number: 580-6583-1 Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070136

Lab Sample ID:

580-6583-36

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP05020.D

Dilution:

Prep Batch: 580-20828

Initial Weight/Volume:

20

990 mL

Date Analyzed: Date Prepared: 07/23/2007 2056 07/20/2007 0946 Final Weight/Volume: Injection Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
3 & 4 Methylphenol	3.8	J	0.34	8.1	
Naphthalene	19		0.028	4.0	
2-Methylnaphthalene	80		0.11	2.0	
Acenaphthene	8.1		0.024	1.0	
Fluorene	7.0		0.085	0.61	
Bis(2-ethylhexyl) phthalate	21	J	0.65	30	

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070136

Lab Sample ID:

580-6583-36

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Prep Batch: 580-20828

Lab File ID:

HP05019.D

Dilution:

200

Initial Weight/Volume:

990 mL

Date Analyzed: Date Prepared:

07/23/2007 2028 07/20/2007 0946 Final Weight/Volume:

1 mL

Injection Volume:

Analyte

Result (ug/L)

Qualifier

MDL

RL

1-Methylnaphthalene

110

1.1

6.1

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070136

Lab Sample ID:

580-6583-36

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analyte

8270C

Analysis Batch: 580-21040

Instrument ID:

SEA023

Preparation:

3510C

Lab File ID:

HP05058.D

Dilution:

Prep Batch: 580-20828

2000

Initial Weight/Volume:

990 mL

Date Analyzed:

07/25/2007 1413

07/20/2007 0946

Final Weight/Volume: Injection Volume:

1 mL

Date Prepared:

Result (ug/L)

Qualifier

MDL

RL

Pentachlorophenol

3800

26

710

ecology and environment, inc.

International Specialists in the Environment

720 Third Avenue, Suite 1700, Seattle, WA 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

MEMORANDUM

DATE:

August 6, 2007

TO:

Steve Hall, START-3 Project Manager, E & E, Seattle, WA

FROM:

Mark Woodke, START-3 Chemist, E & E, Seattle, Washington

SUBJ:

Organic Data Quality Assurance Review, Colville Post and Pole Removal

Assessment Site, Colville, Washington

REF:

TDD: 05-12-0003

PAN: 002233.0003.01SF

The data quality assurance review of 36 water samples collected from the Colville Post and Pole Removal Assessment site in Colville, Washington, has been completed. Analysis for Extended Diesel Range Total Petroleum Hydrocarbons (Ecology Method NWTPH-Dx) was performed by STL-Seattle,

Tacoma, Washington. The samples were numbered: 07070101 07070102 07070103

,	07070100	07070102	07070104	07070105
07070101	07070102	07070103		•
07070106	07070107	07070108	07070109	07070110
07070111	07070112	07070113	07070114	07070115
07070116	07070117	07070118	07070119	07070120
07070121	07070122	07070123	07070124	07070125
07070121	07070127	07070128	07070129	07070130
07070120	07070132	07070133	07070134	07070135
	0/0/0152	07070133	•	
07070136				

Data Qualifications:

1. Sample Holding Times: Acceptable.

The samples were maintained and received within the QC limits of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$. The samples were collected between July 17 or 18, 2007, were extracted by July 23, 2007, and were analyzed by July 26, 2007 for NWTPH-Dx, therefore meeting holding time criteria of less than 7 days between collection and extraction and less than 40 days between extraction and analysis.

2. Initial Calibration: Acceptable.

Calculations were verified as correct and relative standard deviations were less than 20%.

3. Continuing Calibration: Acceptable.

Calculations were verified as correct. All NWTPH-Dx percent differences (%Ds) were \leq the laboratory control limits of 15%.

4. Error Determination: Not Performed.

Samples necessary for bias and precision determination were not provided to the laboratory. All samples were flagged RND (Recovery Not Determined) and PND (Precision Not Determined), although

the flags are not found on the Form I's.

5. Blanks: Acceptable.

A method blank was analyzed for each extraction batch for each matrix and analysis system. Diesel- and motor oil-range TPHs were not detected in any blank.

6. System Monitoring Compounds (SMC): Acceptable.

All NWTPH-Dx recoveries of the SMCs were greater than 10% and within QC criteria.

7. Performance Evaluation Samples: Not Provided.

Performance evaluation samples were not provided to the laboratory.

8. Matrix Spikes (MS) and Blank Spikes (BS): Satisfactory.

MS and BS results were within QC limits except the diesel and motor oil low recoveries associated with sample 07070114. Positive results and sample quantitation limits in sample 07070114 were qualified as estimated quantities (J or UJ).

9. Duplicates: Acceptable.

Spike duplicate results were acceptable.

10. Quantitation and Quantitation Limits: Acceptable.

Sample concentrations were correctly calculated.

11. Laboratory Contact: Not Required.

No laboratory contact was required.

12. Overall Assessment of Data for Use

The overall usefulness of the data is based on the criteria outlined in the OSWER Directive "Quality Assurance/Quality Control Guidance for Removal Activities, Data Validation Procedures" (EPA/540/G-90/004) and the analytical method. Based upon the information provided, the data are acceptable for use with the above stated data qualifications.

Data Qualifiers and Definitions

- J The associated numerical value is an estimated quantity because the reported concentrations were less than the sample quantitation limits or because quality control criteria limits were not met.
- U The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit.
- UJ The material was analyzed for but was not detected. The associated numerical value is the estimated sample quantitation limit.

Job Number: 580-6583-1

Client Sample ID:

Client: Environmental Quality Mgt., inc.

07070101

Lab Sample ID: Client Matrix:

580-6583-1 Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

NWTPH-Dx

07/24/2007 1424

07/23/2007 1116

3510C

1.0

Analysis Batch: 580-20966 Prep Batch: 580-20896

Instrument ID:

SEAD13

Lab File ID:

FA30189.D

initial Weight/Volume:

1050 mL 5 mL

Final Weight/Volume:

Injection Volume:

Column ID:

PRIMARY

Analyte

Result (mg/L)

Qualifier

MDL

RL

Motor Oil (>C24-C36)

0.10

0.057

0.24

Surrogate o-Terphenyl

Method:

07/25/2007 0950

07/23/2007 1116

%Rec 95

Acceptance Limits 50 - 150

NWTPH-Dx

Analysis Batch: 580-20966

Instrument ID:

SEA013

Preparation: Dilution:

Date Analyzed:

Date Prepared:

3510C 1.0

Prep Batch: 580-20896

Lab File ID:

FA30215.D

Initial Weight/Volume:

1050 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24) Result (mg/L) ND

Qualifier

MDL

RL,

0.030 0.12

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070102

Lab Sample ID:

580-6583-2

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

07/24/2007 1444

07/23/2007 1116

Analysis Batch: 580-20966

instrument iD:

SEA013

3510C

Prep Batch: 580-20896

Preparation:

Lab File ID:

FA30190.D

Dilution:

Date Analyzed:

Date Prepared:

1.0

Initial Weight/Volume: 1040 mL Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte

Result (mg/L)

Qualifier

MDL

RL

Motor Oil (>C24-C36)

ND

0.058

0.24

Surrogate o-Terphenyl

07/25/2007 1010

67/23/2007 1116

%Rec 93

50 - 150

Acceptance Limits

Method: Preparation:

Date Analyzed:

Date Prepared:

#2 Diesel (C10-C24)

Dilution:

NWTPH-Dx

Analysis Batch: 580-20966

Prep Batch: 580-20896

Instrument ID:

SEA013

Lab File ID:

FA30216,D

Initial Weight/Volume: Final Weight/Volume:

1040 mL 5 mL

injection Volume:

Column ID:

PRIMARY

Analyte

3510C

1.0

Result (mg/L)

ND

Qualifier

MDL 0.031

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070103

Lab Sample ID: Client Matrix:

580-6583-3

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation:

Dilution:

NWTPH-Dx

07/24/2007 1505

07/23/2007 1116

3510C

1.0

Analysis Batch: 580-20966 Prep Batch: 580-20896

Instrument ID:

SEA013

Lab File ID:

FA30191.D

Initial Weight/Volume:

1040 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column iD:

PRIMARY

Analyte

Date Analyzed:

Date Prepared:

Result (mg/L)

Qualifier

MDL

Motor Oil (>C24-C36)

ND

0.058

0.24

Surrogate o-Terphenyl

07/25/2007 1030

07/23/2007 1116

%Rec 93

Acceptance Limits

50 ~ 150

Method: Preparation:

Dilution:

NWTPH-Dx

Analysis Batch: 580-20966

Instrument ID:

SEA013

3510C

Prep Batch: 580-20896

FA30217.D

1.0

Lab File ID: Initial Weight/Volume:

1040 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24)

Date Analyzed:

Date Prepared:

Result (mg/L) ND

Qualifier

MDL D.D31 RL 0.12

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070104

Lab Sample ID:

580-6583-4

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation: NWTPH-Dx

3510C -

1.0

Dilution: Date Analyzed: Date Prepared:

07/24/2007 1525

NWTPH-Dx

07/25/2007 1050

07/23/2007 1116

3510C

1.0

07/23/2007 1116

Analysis Batch: 580-20966

Prep Batch: 580-20896

Instrument ID: Lab File ID:

SEA013

FA30192.D

Initial Weight/Volume: Final WeightVolume: 1030 mL 5 mL

injection Volume:

Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36)

o-Terphenyl

Preparation:

Date Analyzed:

Date Prepared:

Method:

Dilution:

Result (mg/L)

Qualifier

MDL 0.058 RL 0.24

%Rec Surrogate

76

Analysis Batch: 580-20966

ND

Prep Batch: 580-20896

instrument ID:

SEA013

50 - 150

Acceptance Limits

Lab File ID:

FA30218.D Initial Weight/Volume: 1030 mL

Final Weight/Volume: Injection Volume:

5 mL

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24) Result (mg/L) ND

Qualifier

MDL 0.031 RL 0.12

· MM

Job Number: 580-6583-1.

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070105

Lab Sample ID:

580-6583-5

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

1.0

NWTPH-Dx 3510C

07/24/2007 1546

07/23/2007 1116

Analysis Batch: 580-20966 Prep Batch: 580-20896

instrument ID:

SEA013

Lab File ID:

FA30193.D

Initial Weight/Volume: Final Weight/Volume:

1000 mL 5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36) Result (mg/L)

Qualifier

MDL 0.060 0.25 (2

Surrogate

ND %Rec

Acceptance Limits

o-Terphenyl

Method:

NWTPH-Dx

Analysis Batch: 580-20966

Instrument ID:

Column ID:

50 - 150

94

3510C

SEA013

Preparation:

1.0

Prep Batch: 580-20896

Lab File ID:

FA30219.D

Dilution: Date Analyzed:

Date Prepared:

07/25/2007 1110 07/23/2007 1116

initial Weight/Volume:

1000 mL 5 mL

Final Weight/Volume: injection Volume:

PRIMARY

Analyte

#2 Diesel (C10-C24)

Result (mg/L) ND

Qualifier

MDL 0.032 RL 0.13

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070106

Lab Sample ID:

580-6583-6

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Analysis Batch: 580-20966

Prep Batch: 580-20896

Method: Preparation:

Dilution:

NWTPH-Dx

3510C

Date Analyzed: Date Prepared: 1.0

07/24/2007 1606

07/23/2007 1116

SEA013 instrument ID:

FA30194.D Lab File ID:

Initial Weight/Volume:

1040 mL 5 mL

Final Weight/Volume:

Injection Volume:

Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36)

Result (mg/L)

Qualifier

MDL

RL

ND %Rec 89

0.058

0.24

Surrogate o-Terphenyl

Method:

Preparation:

Date Prepared:

NWTPH-Dx

3510C

Dilution: Date Analyzed:

#2 Diesel (C10-C24)

1.0

07/25/2007 1206 07/23/2007 1116 Analysis Batch: 580-20966

Prep Batch: 580-20896

Instrument ID: Lab File ID:

Column ID:

SEA013 FA30220,D

Acceptance Limits

50 - 150

Initial Weight/Volume:

1040 mL

5 mL

Final Weight/Volume: injection Volume:

PRIMARY

Analyte

Result (mg/L) 0.042

Qualifier

MDL 0.031 RL 0,12

Client: Environmental Quality Mgt., Inc. Job Number: 580-6583-1

Client Sample ID: 07070107

Lab Sample ID:

580-6583-7

Client Matrix:

Water

Date Sampled: 07/17/2007 0000

07/19/2007 1510 Date Received:

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-20966

instrument ID: SEA013

Preparation:

3510C

Lab File ID:

FA30195.D

Dilution:

Prep Batch: 580-20896

910 mL

Date Analyzed:

1.0

Initial Weight/Volume: Final Weight/Volume:

5 mL

Date Prepared:

07/24/2007 1627 07/23/2007 1116

Injection Volume:

Column ID:

Analyte

Result (mg/L)

MDL

Motor Oil (>C24-C36)

ND

Qualifier

0.066

Surrogate

%Rec 80

50 - 150

Acceptance Limits

o-Terphenyl

NWTPH-Dx

07/25/2007 1239

07/23/2007 1116

Analysis Batch: 580-20966

Instrument ID:

SEA013

Method: Preparation:

3510C

Lab File ID:

FA30221.D

Dilution: Date Analyzed:

Date Prepared:

1.0

Prep Batch: 580-20896

Initial Weight/Volume:

910 mL

Final Weight/Volume: Injection Volume:

Column ID: PRIMARY

MDL

5 mL

Analyte #2 Diesel (C10-C24) Result (mg/L) ND

Qualifier

0.035

RL 0.14

MW

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070108

Lab Sample ID:

Date Analyzed:

Date Prepared:

580-6583-6

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation: Dilution:

NWTPH-Dx

3510C

07/24/2007 1647

07/23/2007 1116

1.0

Analysis Batch: 580-20966 Prep Batch: 580-20896

Instrument ID:

SEA013

FA30196.D Lab File ID:

Initial Weight/Volume: 1040 mL 5 mL

Final Weight/Volume: Injection Volume:

Column ID:

PRIMARY

Analyte

Result (mg/L) ND

Qualifier

MDL 0.058

Motor Oil (>C24-C36)

Surrogate

Method: Preparation:

Date Prepared:

o-Terphenyl

Dilution:

NWTPH-Dx

3510C

1.0

07/25/2007 1259 Date Analyzed:

07/23/2007 1116

%Rec 92

Analysis Batch: 580-20966

Prep Batch: 580-20896

SEA013 Instrument ID:

50 - 150

Lab File ID:

FA30222.D

Acceptance Limits

Initial Weight/Volume:

1040 mL 5 mL

Final Weight/Volume: Injection Volume:

Column iD:

PRIMARY

Analyte #2 Diesel (C10-C24) Result (mg/L) ND

Qualifier

MDL 0.031

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070109

Lab Sample ID:

580-6583-9

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

NWTPH-Dx

07/24/2007 1707

07/23/2007 1116

3510C

1.0

Analysis Batch: 580-20966 Prep Batch: 560-20896

Instrument iD:

SEA013

Lab File ID:

FA30197.D

initial Weight/Volume: Final Weight/Volume:

1040 mL 5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36) Result (mg/L) ND

Qualifier

MDL

0.058

RL 0.24

Surrogate

Acceptance Limits 50 - 150

o-Terphenyl

Preparation:

Method:

NWTPH-Dx

3510C

Dilution: Date Analyzed: Date Prepared:

1.0

07/25/2007 1319 07/23/2007 1116

%Rec 91

Analysis Batch: 580-20966

Prep Batch: 580-20896

Instrument ID: Lab File ID:

SEA013 FA30223.D

Initial Weight/Volume:

1040 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24) Result (mg/L) ND

Qualifier

MDL 0.031

RL 0.12

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070110

Lab Sample ID:

580-6583-10

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-20966

Instrument ID:

SEA013

Preparation:

3510C

Lab File ID:

FA3019B.D

Dilution:

Prep Batch: 580-20896

initial Weight/Volume:

1070 mL

Date Analyzed:

1.0

Final Weight/Volume:

5 mL

Date Prepared:

07/24/2007 1727 07/23/2007 1116

injection Volume: Column ID:

PRIMARY

Anaiyte

Result (mg/L) ND

Qualifier

MDL 0.056

Motor Oii (>C24-C36)

%Rec

0.23 ()

Surrogate o-Terphenyl

86

Acceptance Limits 50 - 150

Method:

NWTPH-Dx

Analysis Batch: 580-20966

instrument ID:

SEA013

Preparation:

3510C

07/25/2007 1340

07/23/2007 1116

Lab File ID:

FA30224.D

Dilution: Date Analyzed:

Date Prepared:

1.0

Prep Batch: 580-20896

initial Weight/Volume:

1070 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte

#2 Diesel (C10-C24)

Result (mg/L) ND

Qualifier

MDL 0.030 RL

Client: Environmental Quality Mgt., Inc.

Job Number: 580-6583-1

Client Sample ID:

07070111

Lab Sample ID:

580-6583-11

Cilent Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NVVTPH-Dx

Analysis Batch: 580-20966

Instrument ID:

SEA013

Preparation:

3510C

Prep Batch: 580-20896

Lab File ID:

FA30199.D

Dilution: Date Analyzed:

Date Prepared:

1.0 07/24/2007 1748

Initial Weight/Volume:

1040 mL

Final Weight/Volume: Injection Volume:

5 mL

Column ID:

PRIMARY

Analyte

Result (mg/L)

Qualifier

MDL

Motor Oil (>C24-C36)

ND

0.058

Surrogate o-Terphenyl

07/25/2007 1400

07/23/2007 1116

07/23/2007 1116

%Rec

Acceptance Limits

Method: Preparation:

Date Analyzed:

Date Prepared:

Dilution:

NWTPH-Dx 3510C

1.0

88

50 - 150

Analysis Batch: 580-20966 Prep Batch: 580-20896

Instrument ID: Lab File ID:

SEA013 FA30225.D

Initial Weight/Volume:

1040 mL

Final Weight/Volume:

5 mL

injection Volume:

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24) Result (mg/L) ND

Qualifier

MDL 0.031

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070112

Lab Sample ID:

580-6583-12

07/24/2007 1854

07/23/2007 1116

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation: Dilution:

NWTPH-Dx 3510C

1.0

Analysis Batch: 580-20966 Prep Batch: 580-20896

Instrument ID:

SEA013

Lab File ID:

FA30202.D

Initial WeightVolume: Final Weight/Volume:

1040 mL 5 mL

injection Volume:

Column ID:

PRIMARY

Anaiyte

Date Analyzed:

Date Prepared:

Result (mg/L)

Qualifier

MDL

Motor Oil (>C24-C36)

ND %Rec

0.058

0.24

Surrogate o-Terphenyl

07/25/2007 1511

07/23/2007 1116

94

Acceptance Limits 50 - 150

Method: Preparation:

Dilution:

NWTPH-Dx

3510C

1.0

Analysis Batch: 580-20966 Prep Batch: 580-20896

Instrument ID:

SEA013

FA30228.D

Lab File ID: Initial Weight/Volume:

1040 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24)

Date Analyzed:

Date Prepared:

Result (mg/L)

CN

Qualifier

MDL 0.031

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070113

Lab Sample ID:

580-8583-13

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-20966

instrument ID:

Column ID:

SEA013

Preparation:

3510C

Prep Batch: 580-20896

Lab File ID:

FA30203.D

Dilution:

1.0

Initial Weight/Volume:

1050 mL

Date Analyzed: Date Prepared: 07/24/2007 1920 07/23/2007 1116 Final Weight/Volume:

5 mL

Injection Volume:

PRIMARY

Analyte

Result (mg/L) ND

Qualifier

MDL 0,057 RL

Motor Oil (>C24-C36)

Acceptance Limits

0.24

Surrogate o-Terphenyl

Dilution:

Date Analyzed:

Date Prepared:

07/25/2007 1531

07/23/2007 1116

%Rec 92

Prep Batch: 580-20896

50 - 150

Method: Preparation:

NWTPH-Dx 3510C

1.0

Analysis Batch: 580-20966

instrument ID:

SEA013

Lab File ID:

FA30229.D

initial Weight/Volume: Final Weight/Volume:

1050 mL 5 mL

injection Volume:

Column ID:

PRIMARY

Analyte

Result (mg/L)

Qualifier

MDL

RL

#2⁻Diesel (C10-C24)

0,036

0.030

0,12

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070114

Lab Sample ID:

580-6583-14

Client Matrix:

Water

Date Sampled: 07/17/2007 0000

Date Received: 07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

SEA013

Preparation:

3510C

Lab File ID:

FA30242.D

Prep Batch: 580-20904

Dilution:

0.1

initial Weight/Volume: Final Weight/Volume:

1050 mL 5 mL

Date Analyzed: Date Prepared: 07/26/2007 1042 07/23/2007 1227

Injection Volume: Column ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL ,
Motor Oil (>C24-C35) #2 Diesel (C10-C24)	ND 0.037	J	0,057 0,030	0.24 U J 0.12
Surrogate	%Rec			ance Limits
o-Terphenyl	95		50 - 1	50

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070115

Lab Sample ID:

580-6583-15

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

NWTPH-Dx

1.0

3510C

07/24/2007 1940

07/23/2007 1116

Analysis Batch: 580-20966

Instrument ID:

SEA013

Prep Batch: 580-20896

Lab File ID:

FA30204.D

initial Weight/Volume:

1020 mL 5 mL

Final Weight/Volume:

Column ID: -

Injection Volume:

PRIMARY

Analyte

Result (mg/L)

Qualifier

MDL

Motor Oil (>C24-C36)

ND

0.059

Surrogate

%Rec 88

Acceptance Limits *5*0 - 150

o-Terphenyl Method:

Preparation:

Date Analyzed:

Date Prepared:

Dilution:

NWTPH-Dx 3510C

07/25/2007 1551

07/23/2007 1116

1.0

Instrument ID:

SEA013

Analysis Batch: 580-20966

Prep Batch: 580-20896

FA30230.D

Lab File ID: Initial Weight/Volume;

1020 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24) Result (mg/L) ND

Qualifier

MDL 0.031

RL 0.12

Job Number: 580-6583-1

Client Sample ID:

07070116

Lab Sample ID:

580-6583-16

Client Matrix:

Water.

Client: Environmental Quality MgL, Inc.

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

Method: Preparation: Dilution:

NWTPH-Dx

07/24/2007 2001

07/23/2007 1116

3510C

1.0

Analysis Batch: 580-20966

instrument ID:

SEA013

Prep Batch: 580-20896

Lab File iD: initial Weight/Volume:

FA30205,D 1020 mL

Final WeightVolume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36)

Date Analyzed:

Date Prepared:

Result (mg/L)

Qualifier

MDL

ND

0.059

Surrogate o-Terphenyl %Rec

92

50 - 150

Method: Preparation:

Date Analyzed:

Date Prepared:

Dilution:

NWTPH-Dx 3510C

07/25/2007 1612

07/23/2007 1116

1.0

Analysis Batch: 580-20966

Instrument ID:

SEA013

Acceptance Limits

Prep Batch: 580-20896

Lab File ID:

FA30231.D 1020 mL

Initial Weight/Volume: Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24) Result (mg/L) 0.071

Qualifier

MDL 0.031

RL. 0.12

Job Number: 580-6583-1

Client Sample ID:

Client: Environmental Quality Mgt., Inc.

07070117

Lab Sample ID:

580-6583-17

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation:

Dilution:

NWTPH-Dx

07/24/2007 2021

07/23/2007 1116

3510C

đ,t

Analysis Batch: 580-20966 Prep Batch: 580-20896

Instrument ID:

SEA013

Lab File ID:

FA30206,D

Initial Weight/Volume:

1030 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

PRIMARY

Analyte

Date Analyzed:

Date Prepared:

Result (mg/L)

Qualifier

Motor Oil (>C24-C36)

ND

0.058

0.24

Surrogate o-Terphenyl

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared:

#2 Diesel (C10-C24)

NWTPH-Dx

3510C

83

Analysis Batch: 580-20966

Instrument ID:

SEA013

Acceptance Limits

50 - 150

%Rec

Prep Batch: 580-20896

FA30232.D

Lab File ID: initial Weight/Volume:

1030 mL 5 mL

Final Weight/Volume:

Injection Volume: Column ID:

PRIMARY

Analyte

07/25/2007 1632 07/23/2007 1116

> Result (mg/L) 0.045

Qualifier

MDL 0.031 RL 0.12

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070118

Lab Sample ID:

580-6583-18

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation: Dilution:

NWTPH-Dx

3510C

1.0

Date Analyzed:

Date Prepared:

07/24/2007 2042 07/23/2007 1116

Analysis Batch: 580-20966

Prep Batch: 580-20896

SEA013 instrument ID:

Lab File ID:

FA30207.D

Initial Weight/Volume: Final Weight/Volume:

990 mL 5 mL

Injection Volume:

Column ID:

PRIMARY

Anaivte Motor Oil (>C24-C36) Result (mg/L) ND

Qualifier

MDL

RL

%Rec

Analysis Batch: 580-20966

0.061

0.25

Surrogate o-Terphenyl

Preparation:

Method:

Dilution:

#2 Diesel

07/25/2007 1652

07/23/2007 1116

NWTPH-Dx

3510C

1.0

90

Prep Batch: 580-20896

Acceptance Limits 50 - 150

Instrument ID: SEA013

FA30233.D Lab File ID:

Initial Weight/Volume:

990 mL 5 mL

Final WeightVolume: Injection Volume:

Column ID:

PRIMARY

Analyte

Date Analyzed:

Date Prepared:

Result (mg/L)

Qualifier

MDL

RL

(C10-C24)

0.044

0.032

0.13

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070119

Lab Sample ID: Client Matrix:

580-65B3-19 Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-20966

Instrument ID:

SEA013

Preparation:

3510C

Lab File ID:

FA30208.D

Dilution:

1.0

Prep Batch: 580-20896

1020 mL

Date Analyzed: Date Prepared:

initial Weight/Volume: Final Weight/Volume:

5 mL

07/24/2007 2102 07/23/2007 1116

Injection Volume: Column ID:

PRIMARY

Analyte

Result (mg/L)

Qualifier

MDL 0.059 RL 0.25

Motor Oil (>C24-C36)

ND %Rec

Surrogate o-Terphenyi

NWTPH-Dx

Acceptance Limits 50 - 150

Method:

instrument ID:

SEA013

Preparation:

3510C

Analysis Batch: 580-20966

Prep Batch: 580-20896

Lab File ID:

FA30234.D

Dilution: Date Analyzed:

Date Prepared:

1.0 07/25/2007 1712

07/23/2007 1116

Initial Weight/Volume:

1020 mL

Final Weight/Volume: Injection Volume:

5 mL

Column ID:

PRIMARY

Analyte #2 Diesel (C10-C24) Result (mg/L) 0.26

Qualifier

MDL. 0.031 RL 0.12

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070120

Lab Sample ID:

580-6583-20

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation: Dilution:

NWTPH-Dx 3510C

1.0

Analysis Batch: 580-19918

Prep Batch: 580-20904

Instrument ID: Lab File ID:

SEA013

FA30245.D

Initial Weight/Volume: Final Weight/Volume:

990 mL 5 mL

Injection Volume:

Date Prepared:

Date Analyzed:

07/26/2007 1153 07/23/2007 1227

Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36) #2 Diesel (C10-C24) Result (mg/L) ND 0.069

Qualifier J

0.061 0.032

MDL

0.25 (0.13

RL

Surrogate o-Terphenyl %Rec 91

Acceptance Limits

50 - 150

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070121

Lab Sample ID:

580-6583-21

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch; 580-19918

Instrument ID:

SEA013 FA30246.D

Preparation:

3510C

Lab File ID:

Dilution:

Prep Batch: 580-20904

initial Weight/Volume:

1030 mL

1.0

Final Weight/Volume:

Date Analyzed:

07/26/2007 1214

Injection Volume:

5 mL

Date Prepared:

07/23/2007 1227

Column ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL ,	
Motor Oil (>C24-C36)	ND		0.058	0.24	
#2 Diesel (C10-C24)	0.062	J	0.031	0.12	
Surrogate	%Rec		Accept	ance Limits	
a-Ternhenvi	92		50 - 1		

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070122

Lab Sample ID:

580-6583-22

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received: 07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

3510C

Lab File ID:

07/26/2007 1234

07/23/2007 1227

1.0

Prep Batch: 580-20904

FA30247.D

Initial Weight/Volume:

980 mL 5 mL

Final Weight/Volume: Injection Volume:

Column ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL	
Motor Oil (>C24-C36)	0.13	J	0.061	0.26	
#2 Diesei (C10-C24)	0.083	J	0.033	0.13	
Surrogate	%Rec		Accept	ance Limits	
n-Tembeny!	95		50 - 1	50	

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070123

Lab Sample ID:

580-6583-23

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

SEA013

Preparation:

3510C

Lab File ID:

FA30248.D

Prep Batch: 580-20904

1030 mL

Dilution:

Initial Weight/Volume:

1.0

Qualifier

J

Final Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 07/26/2007 1254 07/23/2007 1227

Injection Volume: Column ID:

PRIMARY .

Result (mg/L) ND

MDL 0.058 RL 0.24

Analyte Motor Oil (>C24-C36) #2 Diesel (C10-C24)

0.077

0.031

0.12

Surrogate o-Terphenyl %Rec 96

Acceptance Limits 50 - 150

Job Number: 580-6583-1

07/17/2007 0000

07/19/2007 1510

Client: Environmental Quality Mgt., Inc.

07070124

Client Sample ID: Lab Sample ID:

580-6583-24

Client Matrix:

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared:

Water

NWTPH-Dx

07/26/2007 1314

07/23/2007 1227

3510C

1.0

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Analysis Batch: 580-19918 Prep Batch: 580-20904

Instrument ID:

SEA013

Lab File ID: Initial Weight/Volume:

Date Sampled:

Date Received:

FA30249.D 1030 mL

5 mL Final Weight/Volume:

injection Volume:

Column ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL
Motor Oil (>C24-C36) #2 Diesel (C10-C24)	0.10 0.069	J .	0.058 0.031	0.24 0.12
Surrogate	%Rec		Accepta	ance Limits
p-Terphenyl	89		50 - 1	50

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070125

Lab Sample ID:

580-6583-25

Client Matrix:

Water

Date Sampled:

07/17/2007 0000

Date.Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

NWTPH-Dx

1.0

3510C

07/26/2007 1334

07/23/2007 1227

Analysis Batch: 580-19918 Prep Batch: 580-20904

Instrument ID:

SEA013

Lab File ID:

FA30250.D

Initial Weight/Volume:

1030 mL 5 mL

Final Weight/Volume:

Injection Volume:

Calumn ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL # A
Motor Oil (>C24-C36) #2 Diesel (C10-C24)	ND 0.074	J	0.058 0.031	0.24 <i>U</i> 0.12
Surrogate	%Rec	·		ance Limits
o-Terphenyl	91		-50 - 1	.50

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070126

Lab Sample ID:

580-6583-26

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

SEA013

Preparation:

3510C

Prep Balch: 580-20904

Lab File ID:

FA30251.D

Dilution: Date Analyzed: 1.0 07/26/2007 1355

Initial Weight/Volume: Final Weight/Volume: 1050 mL 5 mL

Date Prepared:

07/23/2007 1227

Injection Volume:

PRIMARY

Column ID:

MDL

RL

Analyte Motor Oli (>C24-C36) #2 Diesel (C10-C24)

0.081 0.087

Result (mg/L)

0.057 0.030

Qualifier

j

0.12

0.24

Surrogate o-Terphenyl %Rec 89

Acceptance Limits 50 - 150

Job Number: 580-6583-1 Client: Environmental Quality Mgt., Inc.

Client Sample ID: 07070127

580-6583-27 Lab Sample ID:

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation: Dilution:

Date Analyzed:

Date Prepared:

NWTPH-Dx 3510C

07/26/2007 1415

07/23/2007 1227

1.0

Analysis Batch: 580-19918

Instrument ID:

SEA013

Prep Batch: 580-20904

Lab File ID:

FA30252.D

initial Weight/Volume: Final Weight/Volume:

1020 mL 5 mL

Injection Volume:

Column ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL	
Motor Oil (>C24-C36)	0,16	J	0.059	0,25	
#2 Diesel (C10-C24)	1.2		0.D31	0.12	
Surrogate	%Rec		Accept	ance Limits	
o-Terphenyl	96		50 - 1	50	

Job Number: 580-6583-1

Client: Environmental Quality Mgf., Inc.

Client Sample ID:

07070128

Lab Sample ID:

580-6583-28

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

SEA013

Preparation:

3510C

Prep Batch: 580-20904

Lab File ID:

FA30253.D

Dilution:

1.0

Initial Weight/Volume:

1050 mL

Final Weight/Volume: Injection Volume:

5 mL

Date Analyzed: Date Prepared: 07/26/2007 1435 07/23/2007 1227

Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36) #2 Diesel (C10-C24) Result (mg/L) ND 0.095

0.057 0.030

Qualifier

J

MDL

RL 0.24 0.12

Acceptance Limits

Surrogate o-Terpheny %Rec 98

50 - 150

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070129

Lab Sample ID:

580-6583-29

Client Matrix:

Water

Date Sampled: 07/18/2007 0000

Date Received: 07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

SEA013

Preparation:

3510C

Lab File ID:

Prep Batch: 580-20904

FA30254.D

Dilution:

Initial Weight/Volume:

1020 mL

Date Analyzed: Date Prepared:

07/26/2007 1455 07/23/2007 1227 Final WeightVolume:

5 mL

injection Volume:

Column ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL ,	
Motor Oil (>C24-C36) #2 Diesel (C10-C24)	ND 0.069	. .	0.059 0.031	0.25 <i>()</i> 0.12	
Surrogate	%Rec			ance Limits	·····
o-Tembery!	97		50 - 1	50	

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070130

Lab Sample ID:

580-6583-30

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

SEA013

Preparation:

3510C

Lab File ID:

FA30255.D

1.0

Prep Batch: 580-20904

Final Weight/Volume:

Dilution:

initial Weight/Volume:

1030 mL 5 mL

Date Analyzed:

07/26/2007 1516

Injection Volume:

PRIMARY

Date Prepared:

07/23/2007 1227

Column ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL
Motor Oli (>C24-C36)	ND		0.058	0.24 U
#2 Diesel (C10-C24)	0.046	J .	0.031	0.12
Surrogate	%Rec			ance Limits
o-Terphenyl	94		50 - 1	50

Job Number: 580-6583-1

Client: Environmental Quality Mgt., inc.

Client Sample ID:

07070131

Lab Sample ID:

58D-6583-31

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument iD:

SEA013

Preparation:

351DC

Lab File ID:

FA30256.D

Prep Batch: 580-20904

1020 mL

Dilution:

1.D

Initial Weight/Volume: Final Weight/Volume:

5 mL

Date Analyzed:

07/26/2007 1536

Injection Volume:

Date Prepared:

07/23/2007 1227

Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36) #2 Diesel (C10-C24) Result (mg/L) ND 0.042

Qualifier J

MDL 0.059 0.031

0.25 0.12

Acceptance Limits

Surrogate o-Terphenyl %Rec 96

50 - 150

Job Number: 580-6583-1

07/18/2007 0000

07/19/2007 1510

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070132

Lab Sample ID:

07/26/2007 1556

07/23/2007 1227

Client Matrix:

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared:

Water

1.0

580-6583-32

NWTPH-Dx Semi-Voiatile Petroleum Products by NWTPH-Dx

NWTPH-Dx 3510C

Analysis Batch: 580-19918 Prep Batch: 580-20904

Instrument ID:

SEA013

Lab File ID:

FA30257.D

Initial Weight/Volume: 1020 mL Final Weight/Volume: 5 mL

Injection Volume:

Date Sampled:

Date Received:

Column ID:

Analyte	Result (mg/L)	Qualifier	MDL	RL , ,
Motor Oil (>C24-C36)	ND		0.059	0.25 🗸
#2 Diesel (C10-C24)	0.38		0.031	0,12
Surrogate	%Rec		Accepta	ance Limits
o-Terphenyl	94		50 - 1	50

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070133

Lab Sample ID:

580-6583-33

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID: SEA013

Preparation:

3510C

Prep Batch: 580-20904

Lab File ID:

FA30258.D

Initial Weight/Volume:

910 mL

Dilution:

Surrogate

o-Terphenyl

1.0

Final Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 07/26/2007 1616 07/23/2007 1227

Injection Volume: Column ID:

PRIMARY

Analyte Motor Oil (>C24-C36) Result (mg/L) ND 1,9

MDL Qualifier 0.066 0.035

0.27 0.14

#2 Diesei (C10-C24)

%Rec

Acceptance Limits

93

50 - 150

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070134

Lab Sample ID:

580-6583-34

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received:

Final Weight/Volume:

MDL

0.059 0.031 07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

SEA013

Preparation:

3510C

Lab File ID:

Prep Batch: 580-20904

FA30259.D

Dilution:

1.0

Initial Weight/Volume:

1020 mL

Date Analyzed:

07/26/2007 1636

Injection Volume:

5 mL

RL 0.25

0.12

Date Prepared:

07/23/2007 1227

Column ID:

PRIMARY

Analyte	Result (mg/L)	Qualifier	
Motor Oil (>C24-C36)	0.069	J	
#2 Diesel (C10-C24)	1.0		

Acceptance Limits

Surrogate o-Terphenyl %Rec 101

50 - 150

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

07070135

Client Sample ID: Lab Sample ID:

580-6583-35

07/26/2007 1656

07/23/2007 1227

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received: 07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method:

NWTPH-Dx

Analysis Batch: 580-19918

Instrument ID:

SEA013

Preparation: Dilution:

Date Analyzed:

Date Prepared:

3510C 1.0

Prep Batch: 580-20904

Lab File ID:

FA30260.D

initial Weight/Volume:

1020 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

Analyte	Result (mg/ L)	Qualifier	MDL	RL	
Motor Oil (>C24-C36)	0.24	J	0.059	0.25	
#2 Diesel (C10-C24)	3.1		0.031	0.12	
Surrogate	%Rec			ance Limits	
o-Terphenyl	97		50 - 1	50	

Job Number: 580-6583-1

Client: Environmental Quality Mgt., Inc.

Client Sample ID:

07070136

Lab Sample ID:

580-6583-36

07/26/2007 1716

07/23/2007 1227

Client Matrix:

Water

Date Sampled:

07/18/2007 0000

Date Received: 07/19/2007 1510

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: Preparation:

Date Analyzed:

Date Prepared:

o-Terphenyl

Dilution:

NWTPH-Dx 3510C

1.0

Analysis Batch: 580-19918 Prep Batch: 580-20904

Instrument ID:

SEAD13

Lab File iD:

FA30261.D

initial Weight/Volume:

1020 mL

Final Weight/Volume:

5 mL

Injection Volume:

Column ID:

Amahato	Result (mg/L)	Qualifier	MDL	RL	
Analyte Motor Oil (>C24-C36)	0.23	J	0.059	0.25	
#2 Diesel (C10-C24)	3.0		0.031	0.12	
Commence	%Rec		Acceptance Limits		
Surrogate	97	· · · · · · · · · · · · · · · · · · ·	50 - 150		

APPENDIX B

Pre-RI Assessment Data

Table B-1

Summary of Interim Action Field Activities

Colville Post and Poles Stevens County, Washington

Date	Time On-site	Contractors/Consultants On-site	Equipment On-site	Summary of Daily Activities
September 21, 2015	1000-1700	BCI, NRC, GeoEngineers	CAT 312E excavator, 10- yard dump truck, Ford F450 truck	Conducted a site safety meeting followed by a site walk to orient workers to key features of the property and tasks to be completed. Staged three laydown areas with 10-mil plastic sheeting for temporary stockpiles. Began removing debris from Wetland Debris Area 1 (see Figure 3-3) using excavator and manual labor. Removed debris was loaded into the 10-yard dump truck and transported to the Temporary Stockpile Area.
September 22, 2015	0700-1700	NRC, GeoEngineers	CAT 312E excavator, CAT 320D extended-arm excavator, 10-yard dump truck, Ford F450 truck	Removed debris from Wetland Debris Area 1 and surrounding upland areas using CAT 312E excavator. Removed debris was loaded into the 10-yard dump truck and transported to the Temporary Stockpile Area. CAT 320D excavator delivered to replace CAT 312E. Debris along fence line and in Former Treated Wood Storage Area is removed by hand and transported by F450 to the Temporary Stockpile Area. A fourth laydown area was constructed with 10-mil-thick plastic sheeting for temporary stockpile. NRC uses excavator to overturn concrete pads south of Temporary Stockpile Area. Ecology Representatives visit site.
September 23, 2015	0650-1700	NRC, GeoEngineers	CAT 320D extended-arm excavator, 10-yard dump truck	NRC lined two more laydown areas for temporary stockpiles with 20-mil-thick plastic sheeting. NRC removed debris from Wetland Debris Area 2 and surrounding upland areas (see Figure 3-3). Workers manually removed debris from Wetland A areas inaccessible to the excavator and stockpiled the debris in upland areas for the excavator to pick up. Removed debris was loaded into the 10-yard dump truck and transported to the Temporary Stockpile Area. By the end of the day, Wetland A generally was clear of debris.
September 24, 2015	0700-1715	NRC, GeoEngineers	CAT 320D extended-arm excavator, 10-yard dump truck	NRC lined two more laydown areas for temporary stockpiles with 20-mil-thick plastic sheeting. NRC removed debris from the South Stockpile Area and upland areas on the east and west portions of the site (see Figure 3-3). Removed debris was loaded into the 10-yard dump truck and transported to the Temporary Stockpile Area. Ecology and additional GeoEngineers representatives visited the site. NRC used the excavator to remove small concrete pads from the South Stockpile Area. NRC removed 5-gallon containers of used oil from the west boundary of the site and drums, and labeled the waste material containers.

Table B-2

Summary of Soil Chemical Analytical Results - SVOCs¹

Colville Post and Poles Stevens County, Washington

Sample ID Date Collected Sample Depth	MTCA Method B	DP-1 (12-13) 5/11/2015 12-13 ft	DP-2a (1-2) 3/16/2015 1-2 ft	DP-2a (15-16) 3/16/2015 15-16 ft	DP-2 (12-12.5) 5/11/2015 12-12.5 ft	DP-2 (12.5-13.5) 5/11/2015 12.5-13.5 ft	DP-3 (12-13) 5/11/2015 12-13 ft	DP-3 (13-14) 5/11/2015 13-14 ft	DP-4 (16-16.5) 5/11/2015 16-16.5 ft	DP-4 (16.5-17.5) 5/11/2015 16.5-17.5 ft	DP-5 (16-16.5) 5/11/2015 16-16.5 ft
Semi-volatile Organic Compounds ² (µg/kg)											
1,2,4-Trichlorobenzene	34,500	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	7,200,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
1,2-Diphenylhydrazine	1,250	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	185,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
2,2'-Oxybis[1-chloropropane]	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
2,4,5-Trichlorophenol	8,000,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
2,4,6-Trichlorophenol	90,900	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
2,4-Dichlorophenol	240,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
2,4-Dimethylphenol	1,600,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
2,4-Dinitrophenol	160,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
2,4-Dinitrotoluene	3,230	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
2,6-Dinitrotoluene	667	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
2-Chloronaphthalene	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
2-Chlorophenol	400,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
2-Nitroaniline	800,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
2-Nitrophenol	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
3 & 4 Methylphenol	NE	843 U	895 U	789 U	738 U	940 U	722 U	961 U	742 UJ	1040 U	942 U
3,3'-Dichlorobenzidine	2,220	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
3-Nitroaniline	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
4,6-Dinitro-2-Methylphenol	NE	2,170 U	2,300 U	2,030 U	1,900 U	2,420 U	1,860 U	2,470 U	1,910 UJ	2,670 U	2,430 U
4-Bromophenyl phenyl ether	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
4-Chloro-3-Methylphenol	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
4-Chloroaniline	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
4-Chlorophenyl-Phenylether	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
4-Nitroaniline	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
4-Nitrophenol (p-Nitrophenol)	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
Bis(2-Chloroethoxy)Methane	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Bis(2-Chloroethyl)Ether	909	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Bis(2-Ethylhexyl) Phthalate	71,400	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Butyl benzyl Phthalate	526,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Carbazole	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Dibenzofuran	80,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Dibutyl Phthalate	8,000,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Diethyl Phthalate	64,000,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U

Sample II	D	DP-1 (12-13)	DP-2a (1-2)	DP-2a (15-16)	DP-2 (12-12.5)	DP-2 (12.5-13.5)	DP-3 (12-13)	DP-3 (13-14)	DP-4 (16-16.5)	DP-4 (16.5-17.5)	DP-5 (16-16.5)
Date Collecte	d MTCA Method B	5/11/2015	3/16/2015	3/16/2015	5/11/2015	5/11/2015	5/11/2015	5/11/2015	5/11/2015	5/11/2015	5/11/2015
Sample Dept	h CUL (μg/kg)	12-1 3 ft	1-2 ft	15-16 ft	12-12.5 ft	12.5-13.5 ft	12-13 ft	13-14 ft	16-16.5 ft	16.5-17.5 ft	16-16.5 ft
Dimethyl Phthalate	NE	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Di-N-Octyl Phthalate	800,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Hexachlorobenzene	625	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Hexachlorobutadiene	12,800	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Hexachloroethane	25,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Isophorone	1,050,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
Nitrobenzene	160,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
N-Nitrosodimethylamine	19.6 ³	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
N-Nitrosodi-n-propylamine	143 ³	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
N-Nitrosodiphenylamine (as diphenylamine)	204,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 UJ	471 U
o-Cresol (2-methylphenol)	4,000,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U
Phenol	24,000,000	422 U	447 U	394 U	369 U	470 U	361 U	480 U	371 UJ	518 U	471 U

Sample Depth	MTCA Method B	DP-5 (16.5-17) 5/11/2015 16.5-17 ft	DP-6 (12-13) 5/11/2015 12-13 ft	DP-6 (13-14) 5/12/2015 13-14 ft	DP-7 (12.5-13.5) 5/12/2015 12.5-13.5 ft	DP-7 (13.5-14.5) 5/12/2015 13.5-14.5 ft	DP-8 (20-20.5) 5/12/2015 20-20.5 ft	DP-8 (20.5-21) 5/12/2015 20.5-21 ft	DP-9 (12.5-13.5) 5/14/2015 12.5-13.5 ft	DP-9 (13.5-14.5) 5/14/2015 13.5-14.5 ft	DP-10 (12-12.5) 5/14/2015 12-12.5 ft	DP-10 (12.5-13) 5/14/2015 12.5-13 ft
Semi-volatile Organic Compounds ² (µg/kg)	34,500	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
1,2,4-Trichlorobenzene												
1,2-Dichlorobenzene (o-Dichlorobenzene)	7,200,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U 353 U	442 U	455 UJ	517 U
1,2-Diphenylhydrazine	1,250	499 U	481 U	457 U		452 U	418 U	447 U		442 U	455 UJ	517 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE 105.000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	185,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
2,2'-Oxybis[1-chloropropane]	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
2,4,5-Trichlorophenol	8,000,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
2,4,6-Trichlorophenol	90,900	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
2,4-Dichlorophenol	240,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
2,4-Dimethylphenol	1,600,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
2,4-Dinitrophenol	160,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
2,4-Dinitrotoluene	3,230	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
2,6-Dinitrotoluene	667	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
2-Chloronaphthalene	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
2-Chlorophenol	400,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
2-Nitroaniline	800,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
2-Nitrophenol	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
3 & 4 Methylphenol	NE	998 U	963 U	915 U	741 U	904 U	835 U	895 U	705 U	884 U	909 U	1030 U
3,3'-Dichlorobenzidine	2,220	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
3-Nitroaniline	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
4,6-Dinitro-2-Methylphenol	NE	2,570 U	2,480 U	2,360 U	1,910 U	2,330 U	2,150 U	2,300 U	1,820 U	2,280 U	2,340 U	2,660 U
4-Bromophenyl phenyl ether	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
4-Chloro-3-Methylphenol	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
4-Chloroaniline	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
4-Chlorophenyl-Phenylether	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
4-Nitroaniline	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
4-Nitrophenol (p-Nitrophenol)	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
Bis(2-Chloroethoxy)Methane	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Bis(2-Chloroethyl)Ether	909	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Bis(2-Ethylhexyl) Phthalate	71,400	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Butyl benzyl Phthalate	526,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Carbazole	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Dibenzofuran	80,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Dibutyl Phthalate	8,000,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Diethyl Phthalate	64,000,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U

Sampl	e ID	DP-5 (16.5-17)	DP-6 (12-13)	DP-6 (13-14)	DP-7 (12.5-13.5)	DP-7 (13.5-14.5)	DP-8 (20-20.5)	DP-8 (20.5-21)	DP-9 (12.5-13.5)	DP-9 (13.5-14.5)	DP-10 (12-12.5)	DP-10 (12.5-13)
Date Collec Sample De	eted MTCA Method B epth CUL (µg/kg)	5/11/2015 16.5-17 ft	5/11/2015 12-13 ft	5/12/2015 13-14 ft	5/12/2015 12.5-13.5 ft	5/12/2015 13.5-14.5 ft	5/12/2015 20-20.5 ft	5/12/2015 20.5-21 ft	5/14/2015 12.5-13.5 ft	5/14/2015 13.5-14.5 ft	5/14/2015 12-12.5 ft	5/14/2015 12.5-13 ft
Dimethyl Phthalate	NE	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Di-N-Octyl Phthalate	800,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Hexachlorobenzene	625	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Hexachlorobutadiene	12,800	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Hexachloroethane	25,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Isophorone	1,050,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
Nitrobenzene	160,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
N-Nitrosodimethylamine	19.6 ³	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
N-Nitrosodi-n-propylamine	143 ³	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
N-Nitrosodiphenylamine (as diphenylamine)	204,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 UJ	517 U
o-Cresol (2-methylphenol)	4,000,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U
Phenol	24,000,000	499 U	481 U	457 U	370 U	452 U	418 U	447 U	353 U	442 U	455 U	517 U

Sample ID	MTCA Method B	DP-11 (12.5-13.5) 5/12/2015	DP-11 (13.5-14.5) 5/12/2015	DP-12 (12-12.5) 5/14/2015	DP-12 (16-17) 5/14/2015	DP-13 (12-13) 5/12/2015	DP-13 (13-14) 5/12/2015	DP-15 (12-13) 5/13/2015	DP-15 (13-14) 5/13/2015	DP-17 (16-16.5) 5/12/2015	DP-17 (16.5-17.5) 5/12/2015	DP-18 (16-17) 5/14/2015
Sample Depth		12.5-13.5 ft	13.5-14.5 ft	5/14/2015 12-12.5 ft	5/14/2015 16-17 ft	5/12/2015 12-13 ft	5/12/2015 13-14 ft	5/13/2015 12-13 ft	5/13/2015 13-14 ft	16-16.5 ft	16.5-17.5 ft	5/14/2015 16-17 ft
Semi-volatile Organic Compounds ² (µg/kg)	(1-8/1-8/	12.0-10.0 10	10.0 14.0 10	12 12.0 10	10-17 10	12 10 10	20-24 10	12 10 10	2024 10	10 10.0 10	10.0-17.0 10	10-17 10
1,2,4-Trichlorobenzene	34,500	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	7,200,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
1,2-Diphenylhydrazine	1,250	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	185,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
2,2'-Oxybis[1-chloropropane]	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
2,4,5-Trichlorophenol	8,000,000	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
2,4,6-Trichlorophenol	90,900	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
2,4-Dichlorophenol	240,000	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
2,4-Dimethylphenol	1,600,000	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
2,4-Dinitrophenol	160,000	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
2,4-Dinitrotoluene	3,230	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
2,6-Dinitrotoluene	667	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
2-Chloronaphthalene	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
2-Chlorophenol	400,000	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
2-Nitroaniline	800,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
2-Nitrophenol	NE	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
3 & 4 Methylphenol	NE	709 U	1090 U	745 U	905 U	726 U	980 UJ	728 U	972 UJ	997 U	798 U	710 U
3,3'-Dichlorobenzidine	2,220	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
3-Nitroaniline	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
4,6-Dinitro-2-Methylphenol	NE	1,830 U	2,810 U	1,920 U	2,330 U	1,870 U	2,520 UJ	1,880 U	2,500 UJ	2,570 U	2,050 U	1,830 U
4-Bromophenyl phenyl ether	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
4-Chloro-3-Methylphenol	NE	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
4-Chloroaniline	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
4-Chlorophenyl-Phenylether	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
4-Nitroaniline	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
4-Nitrophenol (p-Nitrophenol)	NE	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
Bis(2-Chloroethoxy)Methane	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Bis(2-Chloroethyl)Ether	909	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Bis(2-Ethylhexyl) Phthalate	71,400	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Butyl benzyl Phthalate	526,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Carbazole	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Dibenzofuran	80,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Dibutyl Phthalate	8,000,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Diethyl Phthalate	64,000,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U

Sample ID		DP-11 (12.5-13.5)	DP-11 (13.5-14.5)	DP-12 (12-12.5)	DP-12 (16-17)	DP-13 (12-13)	DP-13 (13-14)	DP-15 (12-13)	DP-15 (13-14)	DP-17 (16-16.5)	DP-17 (16.5-17.5)	DP-18 (16-17)
Date Collected	MTCA Method B	5/12/2015	5/12/2015	5/14/2015	5/14/2015	5/12/2015	5/12/2015	5/13/2015	5/13/2015	5/12/2015	5/12/2015	5/14/2015
Sample Depth	CUL (µg/kg)	12.5-13.5 ft	13.5-14.5 ft	12-12.5 ft	16-17 ft	12-1 3 ft	13-14 ft	12-1 3 ft	13-14 ft	16-16.5 ft	16.5-17.5 ft	16-17 ft
Dimethyl Phthalate	NE	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Di-N-Octyl Phthalate	800,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Hexachlorobenzene	625	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Hexachlorobutadiene	12,800	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Hexachloroethane	25,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Isophorone	1,050,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
Nitrobenzene	160,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
N-Nitrosodimethylamine	19.6 ³	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
N-Nitrosodi-n-propylamine	143 ³	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
N-Nitrosodiphenylamine (as diphenylamine)	204,000	355 U	546 U	373 U	453 UJ	363 U	490 UJ	364 U	486 UJ	499 U	399 UJ	355 U
o-Cresol (2-methylphenol)	4,000,000	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U
Phenol	24,000,000	355 U	546 U	373 U	453 U	363 U	490 UJ	364 U	486 UJ	499 U	399 U	355 U

Sample ID Date Collected Sample Depth		DP-18 (17-17.5) 5/14/2015 17-17.5 ft	DP-19 (24-24.5) 5/15/2015 24-24.5 ft	DP-19 (24.5-25) 5/15/2015 24.5-25 ft	DP-20 (24-24.5) 5/13/2015 24-24.5 ft	DP-20 (24.5-25.5) 5/13/2015 24.5-25.5 ft	DP-21 (13-14) 5/15/2015 13-14 ft	DP-21 (14-15) 5/15/2015 14-15 ft	DP-22 (20-20.5) 5/15/2015 20-20.5 ft	DP-22 (24-25) 5/15/2015 24-25 ft	DP-23 (16-16.5) 5/15/2015 16-16.5 ft
Semi-volatile Organic Compounds ² (µg/kg)											
1,2,4-Trichlorobenzene	34,500	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	7,200,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
1,2-Diphenylhydrazine	1,250	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	185,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
2,2'-Oxybis[1-chloropropane]	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
2,4,5-Trichlorophenol	8,000,000	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
2,4,6-Trichlorophenol	90,900	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
2,4-Dichlorophenol	240,000	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
2,4-Dimethylphenol	1,600,000	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
2,4-Dinitrophenol	160,000	481 U	376 UJ	484 UJ	483 U	492 U	353 UJ	447 UJ	363 UJ	473 UJ	373 UJ
2,4-Dinitrotoluene	3,230	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
2,6-Dinitrotoluene	667	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
2-Chloronaphthalene	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
2-Chlorophenol	400,000	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
2-Nitroaniline	800,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
2-Nitrophenol	NE	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
3 & 4 Methylphenol	NE	962 U	753 UJ	969 UJ	966 U	984 U	706 U	894 UJ	727 U	946 U	745 U
3,3'-Dichlorobenzidine	2,220	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
3-Nitroaniline	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
4,6-Dinitro-2-Methylphenol	NE	2,480 U	1,940 UJ	2,500 UJ	2,490 U	2,540 U	1,820 UJ	2,300 UJ	1,870 UJ	2,440 UJ	1,920 UJ
4-Bromophenyl phenyl ether	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
4-Chloro-3-Methylphenol	NE	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
4-Chloroaniline	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
4-Chlorophenyl-Phenylether	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
4-Nitroaniline	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
4-Nitrophenol (p-Nitrophenol)	NE	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
Bis(2-Chloroethoxy)Methane	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Bis(2-Chloroethyl)Ether	909	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Bis(2-Ethylhexyl) Phthalate	71,400	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Butyl benzyl Phthalate	526,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Carbazole	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Dibenzofuran	80,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Dibutyl Phthalate	8,000,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Diethyl Phthalate	64,000,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U

Sample I	D	DP-18 (17-17.5)	DP-19 (24-24.5)	DP-19 (24.5-25)	DP-20 (24-24.5)	DP-20 (24.5-25.5)	DP-21 (13-14)	DP-21 (14-15)	DP-22 (20-20.5)	DP-22 (24-25)	DP-23 (16-16.5)
Date Collecte	d MTCA Method B	5/14/2015	5/15/2015	5/15/2015	5/13/2015	5/13/2015	5/15/2015	5/15/2015	5/15/2015	5/15/2015	5/15/2015
Sample Dept	h CUL (µg/kg)	17-17.5 ft	24-24.5 ft	24.5-25 ft	24-24.5 ft	24.5-25.5 ft	13-14 ft	14-15 ft	20-20.5 ft	24-25 ft	16-16.5 ft
Dimethyl Phthalate	NE	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Di-N-Octyl Phthalate	800,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Hexachlorobenzene	625	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Hexachlorobutadiene	12,800	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Hexachloroethane	25,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 UJ	447 UJ	363 UJ	473 UJ	373 UJ
Isophorone	1,050,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
Nitrobenzene	160,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
N-Nitrosodimethylamine	19.6 ³	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
N-Nitrosodi-n-propylamine	143 ³	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
N-Nitrosodiphenylamine (as diphenylamine)	204,000	481 UJ	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 UJ	373 U
o-Cresol (2-methylphenol)	4,000,000	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U
Phenol	24,000,000	481 U	376 UJ	484 UJ	483 U	492 U	353 U	447 UJ	363 U	473 U	373 U

Sample ID Date Collected Sample Depth	MTCA Method B	DP-23 (20-20.5) 5/15/2015 20-20.5 ft	DP-24 (16-16.5) 5/13/2015 16-16.5 ft	DP-24 (16.5-17.5) 5/13/2015 16.5-17.5 ft	DP-25 (12-12.5) 5/15/2015 12-12.5 ft	DP-25 (12.5-13.5) 5/15/2015 12.5-13.5 ft	DP-26 (16-17) 5/13/2015 16-17 ft	DP-26 (17-18) 5/13/2015 17-18 ft	DP-27 (16-17) 5/13/2015 16-17 ft	DP-27 (24-24.5) 5/13/2015 24-24.5 ft	DP-28 (20.5-21.5) 5/14/2015 20.5-21.5 ft
Semi-volatile Organic Compounds ² (μg/kg)											
1,2,4-Trichlorobenzene	34,500	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
1,2-Dichlorobenzene (o-Dichlorobenzene)	7,200,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
1,2-Diphenylhydrazine	1,250	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
1,4-Dichlorobenzene (p-Dichlorobenzene)	185,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2,2'-Oxybis[1-chloropropane]	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2,4,5-Trichlorophenol	8,000,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2,4,6-Trichlorophenol	90,900	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2,4-Dichlorophenol	240,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2,4-Dimethylphenol	1,600,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2,4-Dinitrophenol	160,000	459 UJ	479 U	515 U	353 UJ	510 UJ	392 U	503 U	387 U	378 U	478 UJ
2,4-Dinitrotoluene	3,230	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2,6-Dinitrotoluene	667	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2-Chloronaphthalene	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2-Chlorophenol	400,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2-Nitroaniline	800,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
2-Nitrophenol	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
3 & 4 Methylphenol	NE	918 U	959 U	1030 U	706 U	1020 U	784 U	1010 U	775 U	756 U	957 UJ
3,3'-Dichlorobenzidine	2,220	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
3-Nitroaniline	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
4,6-Dinitro-2-Methylphenol	NE	2,370 UJ	2,470 U	2,650 U	1,820 UJ	2,630 UJ	2,020 U	2,590 U	2,000 U	1,950 U	2,460 UJ
4-Bromophenyl phenyl ether	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
4-Chloro-3-Methylphenol	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
4-Chloroaniline	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
4-Chlorophenyl-Phenylether	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
4-Nitroaniline	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
4-Nitrophenol (p-Nitrophenol)	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Bis(2-Chloroethoxy)Methane	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Bis(2-Chloroethyl)Ether	909	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Bis(2-Ethylhexyl) Phthalate	71,400	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Butyl benzyl Phthalate	526,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Carbazole	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Dibenzofuran	80,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Dibutyl Phthalate	8,000,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Diethyl Phthalate	64,000,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ

Sampl	e ID	DP-23 (20-20.5)	DP-24 (16-16.5)	DP-24 (16.5-17.5)	DP-25 (12-12.5)	DP-25 (12.5-13.5)	DP-26 (16-17)	DP-26 (17-18)	DP-27 (16-17)	DP-27 (24-24.5)	DP-28 (20.5-21.5)
Date Colle	cted MTCA Method B	5/15/2015	5/13/2015	5/13/2015	5/15/2015	5/15/2015	5/13/2015	5/13/2015	5/13/2015	5/13/2015	5/14/2015
Sample Do	epth CUL (µg/kg)	20-20.5 ft	16-16.5 ft	16.5-17.5 ft	12-12.5 ft	12.5-13.5 ft	16-17 ft	17-18 ft	16-17 ft	24-24.5 ft	20.5-21.5 ft
Dimethyl Phthalate	NE	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Di-N-Octyl Phthalate	800,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Hexachlorobenzene	625	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Hexachlorobutadiene	12,800	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Hexachloroethane	25,000	459 UJ	479 U	515 U	353 UJ	510 UJ	392 U	503 U	387 U	378 U	478 UJ
Isophorone	1,050,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Nitrobenzene	160,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
N-Nitrosodimethylamine	19.6 ³	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
N-Nitrosodi-n-propylamine	143 ³	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
N-Nitrosodiphenylamine (as diphenylamine)	204,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
o-Cresol (2-methylphenol)	4,000,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ
Phenol	24,000,000	459 U	479 U	515 U	353 U	510 U	392 U	503 U	387 U	378 U	478 UJ

Sample ID Date Collected Sample Depth	MTCA Method B	DP-28 (21.5-22.5) 5/14/2015 21.5-22.5 ft	DP-29 (24-24.5) 5/14/2015 24-24.5 ft	DP-29 (24.5-25.5) 5/14/2015 24.5-25.5 ft	DP-30 (12-12.5) 5/14/2015 12-12.5 ft	DP-30 (16-17) 5/14/2015 16-17.5 ft	DP-35 (8-9) 5/15/2015 8-9 ft	DP-36 (8-9) 5/15/2015 8-9 ft
Semi-volatile Organic Compounds ² (µg/kg)	σου (μ _β / κ _β /	21.5-22.5 IL	24-24.5 11	24.5-25.5 It	12-12.5 10	16-17.5 10	6-9 II	6-9 II
1,2,4-Trichlorobenzene	34,500	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	7,200,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
1,2-Diphenylhydrazine	1,250	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	185,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2,2'-Oxybis[1-chloropropane]	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2,4,5-Trichlorophenol	8,000,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2,4,6-Trichlorophenol	90,900	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2,4-Dichlorophenol	240,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2,4-Dimethylphenol	1,600,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2,4-Dinitrophenol	160,000	481 UJ	387 UJ	528 U	385 U	499 U	377 UJ	360 UJ
2,4-Dinitrotoluene	3,230	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2,6-Dinitrotoluene	667	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2-Chloronaphthalene	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2-Chlorophenol	400,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2-Nitroaniline	800,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
2-Nitrophenol	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
3 & 4 Methylphenol	NE	961 UJ	775 UJ	1060 U	770 U	998 U	754 U	720 U
3,3'-Dichlorobenzidine	2,220	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
3-Nitroaniline	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
4,6-Dinitro-2-Methylphenol	NE	2,480 UJ	2,000 UJ	2,720 U	1,980 U	2,570 U	1,940 UJ	1,860 UJ
4-Bromophenyl phenyl ether	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
4-Chloro-3-Methylphenol	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
4-Chloroaniline	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
4-Chlorophenyl-Phenylether	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
4-Nitroaniline	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
4-Nitrophenol (p-Nitrophenol)	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Bis(2-Chloroethoxy)Methane	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Bis(2-Chloroethyl)Ether	909	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Bis(2-Ethylhexyl) Phthalate	71,400	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Butyl benzyl Phthalate	526,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Carbazole	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Dibenzofuran	80,000	481 UJ	387 UJ	528 U	385 U	499 U	206 J	360 U
Dibutyl Phthalate	8,000,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Diethyl Phthalate	64,000,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U

Sample ID		DP-28 (21.5-22.5)	DP-29 (24-24.5)	DP-29 (24.5-25.5)	DP-30 (12-12.5)	DP-30 (16-17)	DP-35 (8-9)	DP-36 (8-9)
Date Collected	MTCA Method B	5/14/2015	5/14/2015	5/14/2015	5/14/2015	5/14/2015	5/15/2015	5/15/2015
Sample Depth	CUL (µg/kg)	21.5-22.5 ft	24-24.5 ft	24.5-25.5 ft	12-12.5 ft	16-17.5 ft	8-9 ft	8-9 ft
Dimethyl Phthalate	NE	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Di-N-Octyl Phthalate	800,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Hexachlorobenzene	625	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Hexachlorobutadiene	12,800	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Hexachloroethane	25,000	481 UJ	387 UJ	528 U	385 U	499 U	377 UJ	360 UJ
Isophorone	1,050,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Nitrobenzene	160,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
N-Nitrosodimethylamine	19.6 ³	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
N-Nitrosodi-n-propylamine	143 ³	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
N-Nitrosodiphenylamine (as diphenylamine)	204,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
o-Cresol (2-methylphenol)	4,000,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U
Phenol	24,000,000	481 UJ	387 UJ	528 U	385 U	499 U	377 U	360 U

Notes:

 $^{^{1}}$ Chemical analyses were conducted by Pace Analytical Services, Inc. located in Minneapolis, Minnesota.

 $^{^2}$ Semi-volatile organic compounds (SVOCs) were analyzed using Environmental Protection Agency (EPA) Method SW8270D.

³Laboratory reporting limits and method detection limits were greater than MTCA Method B cleanup levels.

CUL = cleanup level; NE = not established; µg/kg = micrograms per kilogram

J = estimated result.

U = result not detected above the reporting limit

Table B-3

Summary of Soil Chemical Analytical Results - TPH, PAHs and PCP¹

Colville Post & Pole

Stevens	County,	Washington
---------	---------	------------

Sample ID Date Collected Sample Depth	Method A	MTCA Method B CUL	DP-1 (12-13) 5/11/2015 12-13 ft	DP-2a (1-2) 3/16/2015 1-2 ft	DP-2a (15-16) 3/16/2015 15-16 ft	DP-2 (12-12.5) 5/11/2015 12-12.5 ft	DP-2 (12.5-13.5) 5/11/2015 12.5-13.5 ft	DP-3 (12-13) 5/11/2015 12-13 ft	DP-3 (13-14) 5/11/2015 13-14 ft	DP-4 (16-16.5) 5/11/2015 16-16.5 ft	DP-4 (16.5-17.5) 5/11/2015 16.5-17.5 ft	DP-5 (16-16.5) 5/11/2015 16-16.5 ft	DP-5 (16.5-17) 5/11/2015 16.5-17 ft	DP-6 (12-13) 5/12/2015 12-13 ft	DP-6 (13-14) 5/12/2015 13-14 ft
Petroleum Hydrocarbons (mg/kg))2														
Gasoline-range Hydrocarbons ³	100/30	NE	-	-				-	-	-	-	-			-
Diesel-range Hydrocarbons	2,000	NE	19.0 U	20.1 U	17.9 U	16.7 U	21.4 U	16.5 U	21.6 U	16.5 UJ	23.5 U	21.4 U	22.5 U	21.9 U	20.9 U
Oil-range Hydrocarbons	2,000	NE	2.9 J	13.4 U	11.9 U	2.2 J	2.6 J	2.6 J	3.9 J	11.0 UJ	15.7 U	4.0 J	5.1 J	14.6 U	13.9 U
Non-carcinogenic PAHs (µg/kg) ⁴															
Naphthalene ⁵		1,600,000	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
1-Methylnaphthalene ⁵	5,000 ⁵	34,500	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
2-Methylnaphthalene ⁵		320,000	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
2-Chloronaphthalene	NE	NE	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 UJ	13.9 UJ
Acenaphthene	NE	4,800,000	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Acenaphthylene	NE	NE	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Anthracene	NE	24,000,000	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Benzo(ghi)perylene	NE	NE	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Fluoranthene	NE	3,200,000	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Fluorene	NE	3,200,000	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Phenanthrene	NE	NE	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	0.60 J	0.49 J	0.51 J	14.5 U	13.9 U
Pyrene	NE	2,400,000	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	0.54 J	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Carcinogenic PAHs (µg/kg) ⁴	•	•													
Benzo(a)anthracene	NE	1,370	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Benzo(a)pyrene	100	137	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Benzo(b)fluoranthene	NE	1,370	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Benzo(k)fluoranthene	NE	13,700	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Chrysene	NE	137,000	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	0.40 J	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Dibenzo(a,h)anthracene	NE	137	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Indeno(1,2,3-cd)pyrene	NE	1,370	12.8 U	13.6 U	12.0 U	11.3 U	14.2 U	11.0 U	14.6 U	11.2 UJ	15.6 U	14.3 U	15.2 U	14.5 U	13.9 U
Total cPAH TEQ ⁷	100	-	9.664 U	10.268 U	9.06 U	8.5315 U	10.721 U	8.305 U	11.023 U	8.404	11.778 U	10.7965 U	11.476 U	10.9475 U	10.4945 U
SVOCs (µg/kg) ⁶	•												•		
Pentachlorophenol ⁸	NE	2,500	211 U	224 U	197 U	185 U	235 U	180 U	240 U	185 UJ	259 U	235 U	249 U	241 U	229 U

Sample ID	MTCA	MTCA	DP-7 (12.5-13.5)	DP-7 (13.5-14.5)	DP-8 (20-20.5)	DP-8 (20.5-21)	1 '	DP-9 (13.5-14.5) 5/14/2015	DP-10 (12-12.5)	DP-10 (12.5-13)	DP-11 (12.5-13.5)	DP-11 (13.5-14.5)	DP-12 (12-12.5)	DP-12 (16-17)
Date Collected Sample Depth	Method A CUL	Method B CUL	5/12/2015 12.5-13.5 ft	5/12/2015 13.5-14.5 ft	5/12/2015 20-20.5 ft	5/12/2015 20.5-21 ft	5/14/2015 12.5-13.5 ft	13.5-14.5 ft	5/14/2015 12-12.5 ft	5/14/2015 12.5-13 ft	5/12/2015 12.5-13.5 ft	5/12/2015 13.5-14.5 ft	5/14/2015 12-12.5 ft	5/14/2015 16-17 ft
Petroleum Hydrocarbons (mg/kg) ²				<u> </u>			I	I						
Gasoline-range Hydrocarbons ³	100/30	NE		-	_	-	-	-	-	-	_	-		-
Diesel-range Hydrocarbons	2,000	NE	16.8 U	20.3 U	19.0 U	20.3 U	16.0 U	20.1 U	20.5 U	23.5 U	16.0 U	24.9 U	17.0 U	20.6 U
Oil-range Hydrocarbons	2,000	NE	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.6 U	15.7 U	10.7 U	16.6 U	11.3 U	13.8 U
Non-carcinogenic PAHs (µg/kg) ⁴														
Naphthalene ⁵		1,600,000	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
1-Methylnaphthalene ⁵	5,000 ⁵	34,500	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
2-Methylnaphthalene ⁵		320,000	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
2-Chloronaphthalene	NE	NE	11.2 UJ	13.6 UJ	12.7 UJ	13.6 UJ	10.7 UJ	13.4 UJ	13.8 UJ	15.7 UJ	10.8 UJ	16.5 UJ	11.3 UJ	13.8 UJ
Acenaphthene	NE	4,800,000	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Acenaphthylene	NE	NE	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Anthracene	NE	24,000,000	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Benzo(ghi)perylene	NE	NE	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Fluoranthene	NE	3,200,000	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Fluorene	NE	3,200,000	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Phenanthrene	NE	NE	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Pyrene	NE	2,400,000	11.2 U	0.87 J	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	0.90 J	11.3 U	13.8 U
Carcinogenic PAHs (µg/kg) ⁴														
Benzo(a)anthracene	NE	1,370	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Benzo(a)pyrene	100	137	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Benzo(b)fluoranthene	NE	1,370	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Benzo(k)fluoranthene	NE	13,700	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Chrysene	NE	137,000	11.2 U	0.63 J	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Dibenzo(a,h)anthracene	NE	137	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Indeno(1,2,3-cd)pyrene	NE	1,370	11.2 U	13.6 U	12.7 U	13.6 U	10.7 U	13.4 U	13.8 U	15.7 U	10.8 U	16.5 U	11.3 U	13.8 U
Total cPAH TEQ ⁷	100	-	8.456 U	10.2063	9.5885 U	10.268 U	8.0785 U	10.117 U	10.419 U	11.8535 U	8.154 U	12.4575 U	8.5315 U	10.419 U
SVOCs (µg/kg) ⁶														
Pentachlorophenol	NE	2,500	185 U	226 U	209 U	224 U	176 U	221 U	227 U	259 U	177 U	273 U	186 U	226 U

Sample ID Date Collected Sample Depth	I IIII OA	MTCA Method B CUL	DP-13 (12-13) 5/12/2015 12-13 ft	DP-13 (13-14) 5/12/2015 13-14 ft	DP-15 (12-13) 5/13/2015 12-13 ft	DP-15 (13-14) 5/13/2015 13-14 ft	DP-17 (16-16.5) 5/12/2015 16-16.5 ft	DP-17 (16.5-17.5) 5/12/2015 16.5-17.5 ft	DP-18 (16-17) 5/14/2015 16-17 ft	DP-18 (17-17.5) 5/14/2015 17-17.5 ft	DP-19 (24-24.5) 5/15/2015 24-24.5 ft	DP-19 (24.5-25) 5/15/2015 24.5-25 ft	DP-20 (24-24.5) 5/13/2015 24-24.5 ft	DP-20 (24.5-25.5) 5/13/2015 24.5-25.5 ft
Petroleum Hydrocarbons (mg/kg)	2					•	•	<u> </u>		•				
Gasoline-range Hydrocarbons ³	100/30	NE	-		-				-					
Diesel-range Hydrocarbons	2,000	NE	16.5 U	22.0 U	16.6 U	22.0 U	22.4 U	18.2 U	16.1 U	21.9 U	16.9 U	21.9 U	22.0 U	22.2 U
Oil-range Hydrocarbons	2,000	NE	11.0 U	14.7 U	11.1 U	14.7 U	15.0 U	12.2 U	10.8 U	14.6 U	2.2 J	4.3 J	14.6 U	14.8 U
Non-carcinogenic PAHs (µg/kg) ⁴														
Naphthalene ⁵		1,600,000	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
1-Methylnaphthalene ⁵	5,000 ⁵	34,500	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
2-Methylnaphthalene ⁵		320,000	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
2-Chloronaphthalene	NE	NE	11.0 UJ	14.8 UJ	11.1 U	14.8 U	15.1 UJ	12.1 UJ	10.8 UJ	14.6 UJ	11.4 UJ	14.7 UJ	14.6 U	14.9 U
Acenaphthene	NE	4,800,000	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Acenaphthylene	NE	NE	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Anthracene	NE	24,000,000	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Benzo(ghi)perylene	NE	NE	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Fluoranthene	NE	3,200,000	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Fluorene	NE	3,200,000	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Phenanthrene	NE	NE	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Pyrene	NE	2,400,000	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	0.95 J	14.7 U	14.6 U	14.9 U
Carcinogenic PAHs (µg/kg) ⁴														
Benzo(a)anthracene	NE	1,370	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Benzo(a)pyrene	100	137	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Benzo(b)fluoranthene	NE	1,370	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Benzo(k)fluoranthene	NE	13,700	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Chrysene	NE	137,000	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Dibenzo(a,h)anthracene	NE	137	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Indeno(1,2,3-cd)pyrene	NE	1,370	11.0 U	14.8 U	11.1 U	14.8 U	15.1 U	12.1 U	10.8 U	14.6 U	11.4 U	14.7 U	14.6 U	14.9 U
Total cPAH TEQ ⁷	100	-	8.305 U	11.174 U	8.3805 U	11.174 U	11.4005 U	9.1355 U	8.154 U	11.023 U	8.607 U	11.0985 U	11.023 U	11.2495 U
SVOCs (µg/kg) ⁶														
Pentachlorophenol	NE	2,500	181 U	245 UJ	182 U	243 UJ	249 U	199 U	178 U	241 U	188 UJ	242 UJ	242 U	246 U

Sample ID Date Collected Sample Depth	MTCA Method A CUL	MTCA Method B CUL	DP-21 (13-14) 5/15/2015 13-14 ft	DP-21 (14-15) 5/15/2015 14-15 ft	DP-22 (20-20.5) 5/15/2015 20-20.5 ft	DP-22 (24-25) 5/15/2015 24-25 ft	DP-23 (16-16.5) 5/15/2015 16-16.5 ft	DP-23 (20-20.5) 5/15/2015 20-20.5 ft	DP-24 (16-16.5) 5/13/2015 16-16.5 ft	DP-24 (16.5-17.5) 5/13/2015 16.5-17.5 ft	DP-25 (12-12.5) 5/15/2015 12-12.5 ft	DP-25 (12.5-13.5) 5/15/2015 12.5-13.5 ft	DP-26 (16-17) 5/13/2015 16-17 ft
Petroleum Hydrocarbons (mg/kg)	2												,
Gasoline-range Hydrocarbons ³	100/30	NE	-	-	_	-	-	-	7.2 UJ	7.5 UJ			-
Diesel-range Hydrocarbons	2,000	NE	16.0 U	20.3 U	16.5 U	21.3 U	16.9 U	20.9 U	21.8 U	23.4 U	15.9 U	23.3 U	17.6 U
Oil-range Hydrocarbons	2,000	NE	10.7 U	13.5 U	11.0 U	14.2 U	11.3 U	14.0 U	14.5 U	15.6 U	10.6 U	15.5 U	11.8 U
Non-carcinogenic PAHs (µg/kg) ⁴													
Naphthalene ⁵		1,600,000	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
1-Methylnaphthalene ⁵	5,000 ⁵	34,500	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	0.63 J	11.9 U
2-Methylnaphthalene ⁵		320,000	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
2-Chloronaphthalene	NE	NE	10.7 UJ	13.5 UJ	11.0 UJ	14.3 UJ	11.3 UJ	14.0 UJ	14.5 U	15.6 U	10.7 UJ	15.5 UJ	11.9 U
Acenaphthene	NE	4,800,000	10.7 U	13.5 U	11.0 U	14.3 U	1.0 J	0.53 J	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Acenaphthylene	NE	NE	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Anthracene	NE	24,000,000	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Benzo(ghi)perylene	NE	NE	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Fluoranthene	NE	3,200,000	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Fluorene	NE	3,200,000	10.7 U	13.5 U	1.3 J	14.3 U	2.2 J	0.94 J	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Phenanthrene	NE	NE	10.7 U	13.5 U	11.0 U	14.3 U	6.2 J	2.4 J	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Pyrene	NE	2,400,000	10.7 U	13.5 U	11.0 U	14.3 U	1.4 J	0.70 J	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Carcinogenic PAHs (µg/kg) ⁴													
Benzo(a)anthracene	NE	1,370	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Benzo(a)pyrene	100	137	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Benzo(b)fluoranthene	NE	1,370	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Benzo(k)fluoranthene	NE	13,700	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Chrysene	NE	137,000	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Dibenzo(a,h)anthracene	NE	137	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Indeno(1,2,3-cd)pyrene	NE	1,370	10.7 U	13.5 U	11.0 U	14.3 U	11.3 U	14.0 U	14.5 U	15.6 U	10.7 U	15.5 U	11.9 U
Total cPAH TEQ ⁷	100	-	8.0785 U	10.1925 U	8.305 U	10.7965 U	8.5315 U	10.57 U	10.9475 U	11.778 U	8.0785 U	11.7025 U	8.9845 U
SVOCs (µg/kg) ⁶							-						
Pentachlorophenol	NE	2,500	177 U	223 UJ	182 U	237 U	186 U	230 U	240 U	258 U	177 U	255 U	196 U

Sample ID Date Collected Sample Depth	MTCA Method A CUL	MTCA Method B CUL	DP-26 (17-18) 5/13/2015 17-18 ft	DP-27 (16-17) 5/13/2015 16-17 ft	DP-27 (24-24.5) 5/13/2015 24-24.5 ft	DP-28 (20.5-21.5) 5/14/2015 20.5-21.5 ft	DP-28 (21.5-22.5) 5/14/2015 21.5-22.5 ft	DP-29 (24-24.5) 5/14/2015 24-24.5 ft	DP-29 (24.5-25.5) 5/14/2015 24.5-25.5 ft	DP-30 (12-12.5) 5/14/2015 12-12.5 ft	DP-30 (16-17) 5/14/2015 16-17.5 ft	DP-35 (8-9) 5/15/2015 8-9 ft	DP-36 (8-9) 5/15/2015 8-9 ft
Petroleum Hydrocarbons (mg/kg)	2												
Gasoline-range Hydrocarbons ³	100/30	NE		-		-			-			11.5	5.5 U
Diesel-range Hydrocarbons	2,000	NE	22.8 U	17.5 U	17.2 U	21.3 U	21.8 U	17.5 U	24.0 U	17.4 U	22.5 U	972	26.3
Oil-range Hydrocarbons	2,000	NE	15.2 U	11.7 U	61.6	14.2 U	14.6 U	11.7 U	16.0 U	11.6 U	15.0 U	74.9	5.0 J
Non-carcinogenic PAHs (µg/kg) ⁴													
Naphthalene ⁵		1,600,000	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	59.2	10.9 U
1-Methylnaphthalene ⁵	5,000 ⁵	34,500	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	1,200	10.9 U
2-Methylnaphthalene ⁵		320,000	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	11.4 U	10.9 U
2-Chloronaphthalene	NE	NE	15.2 U	11.7 U	11.5 U	14.5 UJ	14.5 UJ	11.8 UJ	16.0 UJ	11.6 UJ	15.1 UJ	73.3 J	10.9 UJ
Acenaphthene	NE	4,800,000	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	310	0.68 J
Acenaphthylene	NE	NE	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	78.1	10.9 U
Anthracene	NE	24,000,000	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	221	10.9 U
Benzo(ghi)perylene	NE	NE	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	3.5 J	10.9 U
Fluoranthene	NE	3,200,000	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	124	10.9 U
Fluorene	NE	3,200,000	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	1,020	1.3 J
Phenanthrene	NE	NE	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	2,910	4.3 J
Pyrene	NE	2,400,000	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	290	0.98 J
Carcinogenic PAHs (µg/kg) ⁴													
Benzo(a)anthracene	NE	1,370	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	23.5	10.9 U
Benzo(a)pyrene	100	137	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	8.5 J	10.9 U
Benzo(b)fluoranthene	NE	1,370	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	6.0 J	10.9 U
Benzo(k)fluoranthene	NE	13,700	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	11.4 U	10.9 U
Chrysene	NE	137,000	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	78.3	10.9 U
Dibenzo(a,h)anthracene	NE	137	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	11.4 U	10.9 U
Indeno(1,2,3-cd)pyrene	NE	1,370	15.2 U	11.7 U	11.5 U	14.5 U	14.5 U	11.8 U	16.0 U	11.6 U	15.1 U	11.4 U	10.9 U
Total cPAH TEQ ⁷	100	-	11.476 U	8.8335 U	8.6825 U	10.9475 U	10.9475 U	8.909 U	12.08 U	8.758 U	11.4005 U	27.443	8.2295 U
SVOCs (µg/kg) ⁶		· · · · · · · · · · · · · · · · · · ·											
Pentachlorophenol	NE	2,500	251 U	194 U	189 U	239 UJ	240 UJ	194 UJ	264 U	192 U	250 U	891	180 U

Notes

CUL = cleanup level; NE = not established

¹Chemical analyses were conducted by Pace Analytical Services, Inc. located in Minneapolis, Minnesota.

²Gasoline-range petroleum hydrocarbons were analyzed using NWTPH-Gx. Diesel-range and oil-range petroleum hydrocarbons were analyzed using NWTPH-Dx.

For Samples DP-2a (1-2), DP-2a (15-16) and DP-4 (16-16.5), the reported diesel-range and oil-range petroleum hydrocarbons were analyzed using NWTPH-Dx with an acid silica gel cleanup.

 $^{^3}$ The cleanup level for gasoline-range petroleum hydrocarbons is 100 mg/kg when benzene is not detected and 30 mg/kg when benzene is present.

⁴PAHs were analyzed using EPA Method SW8270D-SIM

 $^{^5}$ The MTCA Method A cleanup level for total naphthalenes (naphthalene, 1-methylnaphthalene, and 2-methylnaphthlene) is 5,000 μ g/kg.

 $^{^6 \}text{SVOCs}$ were analyzed using EPA Method SW8270D-SIM

⁷Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxic equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation WAC 173-340-708.

One-half the reporting limit was used to calculate the TEQ.

⁸The non-detected results for pentachlorophenol are reported at the laboratory method detection limit.

J = estimated result. U = result not detected above the reporting limit.

µg/kg = micrograms per kilogram; mg/kg = milligrams per kilogram; PAHs = Polycyclic Aromatic Hydrocarbons; SVOCs = Semi-Volatile Organic Compounds; PCP = Pentachlorophenol; TPH = Total Petroleum Hydrocarbons;

^{-- =} not analyzed; NE = not established; **Bold** indicates analyte was detected above the reporting limit.

Table B-4

Summary of Groundwater Chemical Analytical Results - SVOCs¹ Colville Post & Poles Stevens County, Washington

Sample ID	Method B	DP-1:GW:051115	DP-4:GW:051115	DP-7:GW:051215	DP-13:GW:051215	DP-15:GW:051315	DP-17:GW:051215	DP-20:GW:051315	DP-24:GW:051315		DP-26:GW:051315
Date Collected	CUL (µg/L)	5/11/2015	5/11/2015	5/12/2015	5/11/2015 0:00	5/13/2015	5/12/2015	5/13/2015	5/13/2015	5/13/2015	5/13/2015
SVOCs ² (µg/L)				T	•	T		T		T	1
1,2,4-Trichlorobenzene	1.51 4	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	720	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
1,2-Diphenylhydrazine	0.1094	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	8.1 ⁵	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
1-Methylnaphthalene	1.51 4	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2,4,5-Trichlorophenol	800	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2,4,6-Trichlorophenol	3.98 ⁵	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2,4-Dichlorophenol	24.0	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2,4-Dimethylphenol	160	52.1 U	53.2 U	51.8 U	54.3 U	54.3 U	53.2 U	54.3 U	55.6 U	53.8 U	53.2 U
2,4-Dinitrophenol	32.0	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2,4-Dinitrotoluene	0.282 4	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2,6-Dinitrotoluene	0.0583 4	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2-Chloronaphthalene	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2-Chlorophenol	40.0	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2-Methylnaphthalene	32	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2-Nitroaniline	160	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
2-Nitrophenol	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
3 & 4 Methylphenol	NE	20.8 U	21.3 U	20.7 U	21.7 U	21.7 U	21.3 U	21.7 U	22.2 U	21.5 U	21.3 U
3,3'-Dichlorobenzidine	0.194 4	52.1 U	53.2 U	51.8 U	54.3 U	54.3 U	53.2 U	54.3 U	55.6 U	53.8 U	53.2 U
3-Nitroaniline	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
4,6-Dinitro-2-Methylphenol	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
4-Bromophenyl phenyl ether	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
4-Chloro-3-Methylphenol	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
4-Chloroaniline	0.219 4	52.1 U	53.2 U	51.8 U	54.3 U	54.3 U	53.2 U	54.3 U	55.6 U	53.8 U	53.2 U
4-Chlorophenyl-Phenylether	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
4-Nitroaniline	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
4-Nitrophenol (p-Nitrophenol)	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Bis(2-Chloroethoxy)Methane	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Bis(2-Chloroethyl)Ether	0.0398 4	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
bis(2-chloroisopropyl) ether	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Bis(2-Ethylhexyl) Phthalate	6.25 ⁵	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Butyl benzyl Phthalate	46.1	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Carbazole	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Dibenzofuran	16	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Diethyl Phthalate	12,800	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Dimethyl Phthalate	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U

Sample ID	MTCA Method B	DP-1:GW:051115	DP-4:GW:051115	DP-7:GW:051215	DP-13:GW:051215	DP-15:GW:051315	DP-17:GW:051215	DP-20:GW:051315	DP-24:GW:051315	DP-DUPLICATE:GW:051315 ³	DP-26:GW:051315
Date Collected	CUL (µg/L)	5/11/2015	5/11/2015	5/12/2015	5/11/2015 0:00	5/13/2015	5/12/2015	5/13/2015	5/13/2015	5/13/2015	5/13/2015
Di-N-Butyl Phthalate	NE	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Di-N-Octyl Phthalate	160	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Hexachlorobenzene	0.0547 4	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Hexachlorobutadiene	0.5614	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Hexachloroethane	1.09 4	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Isophorone	46.1	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Nitrobenzene	16	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
N-Nitrosodimethylamine	0.000858	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
N-Nitrosodiphenylamine (as diphenylamine)	17.9	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
o-Cresol (2-methylphenol)	400	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U
Phenol	2400	10.4 U	10.6 U	10.4 U	10.9 U	10.9 U	10.6 U	10.9 U	11.1 U	10.8 U	10.6 U

Notes:

SVOCs = Semi-volatile organic compounds

 μ g/L = micrograms per liter

U = result not detected above the reporting limit

CUL = cleanup level; NE = Not established

¹Chemical analyses conducted by Pace Analytical Services, Inc. located in Minneapolis, Minnesota.

²SVOCs analyzed using EPA Method SW8270D-SIM.

³Sample DP-Duplicate:GW:051315 is a duplicate sample of DP-24.

⁴Laboratory reporting limits and method detection limits were greater than the corresponding MTCA Method B groundwater cleanup levels.

⁵Analyte was not detected. The reporting limit was greater than the MTCA Method B groundwater CUL; however the compound was not detected greater than the method detection limit which is less than the MTCA Method B groundwater CUL.

Table B-5

Summary of Groundwater Chemical Analytical Results - PAHs, PCP and TPH¹

Colville Post & Poles
Stevens County, Washington

Sample ID	MTCA Method A Unrestricted Land	MTCA Method B	DP-1:GW:051115	DP-4:GW:051115	DP-7:GW:051215	DP-13:GW:051215	DP-15:GW:051315	DP-17:GW:051215	DP-20:GW:051315	DP-24:GW:051315 ²	DP-DUPLICATE:GW:051315	DP-26:GW:051315
Date Collected	Use CUL	CUL	05/11/2015	05/11/2015	05/12/2015	05/12/2015	05/13/2015	05/12/2015	05/13/2015	05/13/2015	05/13/2015	05/13/2015
Carcinogenic Polycyclic Aromat	ic Hydrocarbons ³ (cPA	Hs) (µg/L)										
Benzo(a)anthracene	NE	0.120	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.043 U	0.044 U	0.043 U
Benzo(a)pyrene	0.1	0.0120	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.043 U	0.044 U	0.043 U
Benzo(b)fluoranthene	NE	0.120	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.043 U	0.044 U	0.043 U
Benzo(k)fluoranthene	NE	1.20	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.043 U	0.044 U	0.043 U
Chrysene	NE	1.20	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.043 U	0.044 U	0.043 U
Dibenzo(a,h)anthracene	NE	0.0120	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.043 U	0.044 U	0.043 U
Indeno(1,2,3-cd)pyrene	NE	0.120	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.043 U	0.044 U	0.043 U
cPAH TEQ ⁴	0.1	-	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Polycyclic Aromatic Hydrocarbo	ns ³ (PAHs) (µg/L)											
Acenaphthene	NE	960	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.36 J	0.26 J	0.043 U
Acenaphthylene	NE	NE	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.15 J	0.081 J	0.043 U
Anthracene	NE	4800	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.40	0.25 J	0.11 J	0.043 U
Benzo(ghi)perylene	NE	NE	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.043 U	0.044 U	0.043 U
Fluoranthene	NE	640	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.054	0.044 U	0.043 U
Fluorene	NE	640	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.79 J	0.43 J	0.043 U
Naphthalene	160	160	0.041 U	0.042 U	0.043 U	0.043 U	0.10	0.042 U	0.092	0.055	0.054	0.043 U
Phenanthrene	NE	NE	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.087	1.7 J	0.62 J	0.043 U
Pyrene	NE	480	0.041 U	0.042 U	0.043 U	0.043 U	0.042 U	0.042 U	0.044 U	0.17 J	0.070 J	0.043 U
Semi-volatile Organic Compoun	d ⁵ (µg/L)											_
Pentachlorophenol (PCP)	NE	0.219	0.33 ⁶ UJ	17.6 J	0.34 ⁶ UJ	0.33 ⁶ UJ	123	1.3 J	107	38.0	40.5	0.32 ⁶ U
Total Petroleum Hydrocarbons (TPH) ⁷ (mg/L)	-										
Diesel-range	0.5	NE	0.11 U	0.17	0.11 U	0.11 U	0.62	0.14	0.51	0.65 J	0.41 J	0.11 U
Oil-range	0.5	NE	0.11 U	0.11 U	0.11 U	0.11 U	0.13	0.10 U	0.11 U	0.11 U	0.11 U	0.11 U

Notes:

CUL = cleanup level; NE = not established

J = estimated result.

U = result not detected above the reporting limit

µg/L = micrograms per liter; mg/L = milligrams per liter; PAHs = Polycyclic Aromatic Hydrocarbons; PCP = Pentachlorophenol; TPH = Total Petroleum Hydrocarbons; SVOCs = Semi-volatile organic compounds

Bold indicates analyte was detected above the reporting limit

Red outline indicates analyte concentration exceeds referenced regulatory level.

¹Chemical analyses were conducted by Pace Analytical Services, Inc. located in Minneapolis, Minnesota.

²BTEX analysis was run on sample DP-24:GW:051315. Results were all non-detect and are therefore not being represented on this table. Results can be found in the chemical analytical report provided in Appendix C.

³PAHs and cPAHs were analyzed using EPA Method SW8270D-SIM.

⁴Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation Washington Administrative Code 173-340-708. One half the reporting limit was used to calculate the TEQ.

⁵SVOCs analyzed using EPA Method SW8270D.

⁶PCP was not detected. The reporting limit was greater than the MTCA Method B groundwater CUL; however PCP was not detected at concentrations greater than the method detection limit which is less than the MTCA Method B groundwater CUL.

 $^{^7 \}mbox{Total}$ petroleum hydrocarbons were analyzed using NWTPH-Dx.

APPENDIX CField Procedures

APPENDIX C FIELD PROCEDURES

General

Shallow soil and sediment samples were collected from the site, adjacent right-of-way and regional background locations. Soil and sediment samples were collected using hand equipment (augers, shovels, etc.) to depths of about 18 inches below ground surface (bgs). Samples collected deeper than 18 inches bgs were obtained using a backhoe.

Field methods generally were performed in compliance with the project Sampling and Analysis Plan (SAP). Groundwater sampling procedures are included in the site groundwater monitoring reports.

Soil Sample Collection

Soil was placed in laboratory-supplied sample bottles and filled to minimize headspace. Soil samples were stored in a chilled cooler until delivery to the analytical laboratory. Soil samples were collected using clean nitrile gloves to obtain soil from the sampling instrument or directly from the exploration. Hand sampling instruments were decontaminated between each sample location using distilled water and Liquinox. Soil and sediment sample locations were recorded using GPS enabled devices.

Field Screening of Soil Samples

GeoEngineers' field representative performed field-screening tests on soil samples obtained from the borings. Field screening results were used as a general guideline to assess areas of possible petroleum-related contamination. The field screening methods used include: (1) visual screening; (2) water-sheen screening; and (3) headspace-vapor screening using a MiniRAE photoionization detector (PID) calibrated to isobutylene on the day of testing.

Visual screening consisted of observing soil for stains indicative of metal- or petroleum-related contamination. Water-sheen screening involved placing soil in a pan of water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheens observed are classified as follows:

No Sheen (NS)	No visible sheen on the water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.
Moderate Sheen (MS)	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag and the bag was shaken to expose the soil to the air trapped in the bag. Headspace vapor screening targeted volatile petroleum hydrocarbon compounds. In this application, the PID measured concentration

of organic vapors ionizable by a 10.6 electron volt (ev) lamp in the range between 1.0 and 2,000 parts per million (ppm), with a resolution of \pm 2 ppm.

Field screening results can be site specific. The effectiveness of field screening can vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of contaminants.

APPENDIX DTerrestrial Ecological Evaluation

APPENDIX D TERRESTRIAL ECOLOGICAL EVALUATION

D1.0 TERRESTRIAL ECOLOGICAL EVALUATION

A terrestrial ecological evaluation (TEE) was conducted for the Colville Post and Poles facility (site) consistent with the Model Toxics Control Act (MTCA¹). The purpose of the TEE is to evaluate whether hazardous substances detected in soil at a site pose a threat to terrestrial receptors (plants, soil biota and wildlife). The steps followed are described in the following sections.

D1.1 TEE Exclusions

MTCA² outlines four criteria for determining that no further evaluation is required. A TEE is not required if a site meets any of these criteria:

- "All soil contaminated with hazardous substances, is, or will be, located below the point of compliance."
 The standard point of compliance is 15 feet and the conditional point of compliance is 6 feet. The site does not meet this criterion because contaminants have been detected in soil within the upper 6 and 15 feet.
- 2. "All soil contaminated with hazardous substances is, or will be, covered by buildings, paved roads, pavement, or other physical barriers that will prevent plants or wildlife from being exposed to the soil contamination." The site is not covered; there are no barriers preventing terrestrial receptors from contacting contaminated soil. The site does not meet this criterion.
- 3. "There is less than 0.25 acres of contiguous undeveloped land on the site or within 500 feet of any area of the site." The 0.25 acres criterion is applicable to sites where dioxins/furans have been detected such as the Colville Post and Poles facility. The site does not meet this criterion because the site includes approximately 23 acres of undeveloped land.
- 4. "Concentrations of hazardous substances in soil do not exceed natural background levels." The site does not meet this criterion as dioxin and furans are detected in soil at concentrations greater than natural background levels and pentachlorophenol and petroleum hydrocarbons, which do not have natural background levels, were also detected in soil.

The site does not qualify for a TEE exclusion based on all four criteria. Therefore, further evaluation is required and is provided below.

² WAC 173-340-7491(1)

¹ WAC 173-340-7490

D2.1 Simplified or Site-Specific TEE Determination

Further evaluation can be based on a simplified or site-specific TEE for sites that do not qualify for a TEE exclusion. A site-specific TEE is required if a site meets any of the four criteria outlined in MTCA³:

- 1. "The site is located on, or directly adjacent to, an area where management or land use plans will maintain or restore native or semi-native vegetation." The site meets this criterion due to the presence of protected wetlands (see Section 2.4 of RI/FS). In 2015, GeoEngineers identified, delineated and assessed two onsite wetlands: (1) a 4.9-acre palustrine emergent/scrub-shrub/forested Category II wetland and (2) a 0.1-acre palustrine emergent Category III wetland. In Stevens County, this type of wetland requires a 150-foot buffer as a protective measure (Stevens County Code 13.30.020(6) 2003). The wetlands are also listed in Washington Department of Fish and Wildlife's (WDFW's) Priority Habitats and Species (PHS) database.
- 2. "The site is used by a threatened or endangered species, wildlife species classified as priority species or species of concern, or plants classified as endangered, threatened, or sensitive." The site meets this criterion. Several species have been identified in WDFW's PHS and/or US Fish and Wildlife Services threatened and endangered species databases as occurring or potentially occurring at or near the site.
- "The site is located on a property that contains at least ten acres of native vegetation within 500 feet of the site, not including vegetation beyond the property boundaries." The site does not meet this criterion.
- 4. "The department determines that the site may present a risk to significant wildlife populations." Ecology has not determined that the site may present a risk to significant wildlife populations.

The site does not qualify for a simplified TEE because two of the four criteria above were met. Therefore, a site-specific TEE is required and is provided in the following sections.

D2.2 Site-Specific TEE

MTCA⁴ outlines the process for completing a site-specific TEE. The first step involves completing a problem formulation that identifies the chemicals of concern based on comparison of characteristic site data to ecological screening levels, exposure pathways, receptors of concern and potential adverse effects associated with exposure.

D2.2.1 Problem Formulation

D2.2.1.1 Chemicals of Ecological Concern

Chemicals of concern (COCs) for ecological receptors include dioxins and furans (expressed as the toxicity equivalent [TEQ] of 2,3,7,8-tetrachloro-dibenzo-p-dioxin), pentachlorophenol and diesel-range petroleum hydrocarbons based on exceedances of the ecological indicator concentrations in MTCA Table 749-3.

⁴ WAC 173-340-7493

³ WAC 173-340-7491(2)

D2.2.1.2 Exposure Pathways

The habitat available at the site is a mix of disturbed upland, emergent wetland and riparian habitats. The disturbed upland habitat is poor quality, while the wetland and riparian habitat provide a variety of ecological functions. Plants growing in site soil may take up dissolved contaminants through their roots and soil invertebrates (e.g., worms), reptiles, small mammals and birds could directly contact site soil as part of their foraging or hunting behavior. Some animals (including reptiles and amphibians) could also burrow into site soil to den or seek refuge from predators or weather. Few ecological receptors, except for worms, deliberately ingest soil as part of their diet. Small mammal or birds preying on worms will ingest soil as part of their food. Other mammals and birds may accidently ingest soil during foraging, feeding or grooming.

Aquatic (those living in the water column) or benthic (those living on or in sediment) invertebrates may directly ingest or burrow in sediment within the wetland and associated drainage channels. Animals preying on aquatic or benthic invertebrates may incidentally ingest sediment either on their prey or in their prey's gut.

No ecological receptors would be exposed to groundwater; however, groundwater may migrate through soil to surface water, particularly the Colville River. The river provides drinking water for animals; ponded water in the wetlands may provide water seasonally but tend to dry out in the summer. Amphibians that potentially occur in the area may use the wetland habitats for breeding and rearing of larvae when water is present. Surface water samples and seep samples collected near the river would suggest that the river does not represent an exposure pathway.

D2.2.1.3 Terrestrial Ecological Receptors of Concern

The site occurs along the Colville River and includes wetland and riparian habitat. The wetland and riparian habitats contain mature cottonwood, willow, pine and other trees and shrubs. No record of plant presence, animal or bird use was made during the 2016-2018 field efforts. However, many plant and wildlife species would be expected to occur in portions of the former facility based on the type of habitats present. Species occurrence likely ranges from insects to birds to large mammals such as moose and bear; however, only insects, small mammals and birds are likely to use the habitats for breeding and rearing. Several species that may use the site are classified as threatened under state or federal regulations.

GeoEngineers reviewed the U.S. Fish and Wildlife Service (USFWS) Planning and Conservation (IPaC) webpage⁵ to determine if any species protected under the Endangered Species Act (ESA) may be present. The IPaC database identified the grizzly bear (*Ursus arctos* spp.), wolverine (*Gulo gulo*), yellow-billed cuckoo (*Coccyzus americanus*), and bull trout (*Salvelinus confluentus*) as Threatened species that may occur in the area. The grizzly bear and wolverine have very large home ranges, typically in less disturbed, higher elevation areas where there is significant winter snow pack making it unlikely that the site is used by these species. The cuckoo relies on riparian habitat for foraging and nesting and may occur in this area. Bull trout are noted as historically migrating along this reach of the Colville River, but summer temperatures are too warm for this area to be spawning habitat.

Washington State considers the wolverine a sensitive species that may occur in this area, along with the golden eagle (*Aquila chrysaetos*), Northwest white-tailed deer (*Odocoileus virginianus*), rainbow trout (steelhead; *Oncorhynchus mykiss*), and Townsend's big-eared bat (*Corynorhinus townsendii*). Except for

⁵ U.S. FWS Information for Planning and Conservation accessed on 25 April 2018. https://ecos.fws.gov/ipac/

June 21, 2018 | Page D-3

the wolverine, these state sensitive species could forage or hunt at the site, although it would only represent a small portion of their overall range.

A number of bird species that may occur in the area are protected by the Bald and Golden Eagle Protection Act (1940) and the Migratory Bird Treaty Act (1918), including burrowing oil, ferruginous hawk, greater sage grouse, and long-billed curlew.

Table D-1 provides a list of protected species that are known to occur in wetland or riparian habitats in the vicinity of the site; the list also includes those species that are state special concern⁶ and are known to occur in this area of Stevens County.

D2.2.1.4 Potential Ecological Effects

Exposure of plants and animals to contaminants can have a wide variety of effects at any life stage ranging from death, reduced growth to impaired reproduction (either by reduced production or increased mortality of offspring) in plants and animals and additional effects to animals such as immune system suppression or altered behavior affecting ability to survive or reproduce. Most populations of a given species experience stressors of many types that cause loss of individuals but can survive as a species over time through modification of behaviors (e.g., increased fecundity, change in food source) or migration. However, some species already experience a wide range of stressors on a scale that is difficult to adapt to such that loss of a small number of individuals has a greater impact on survival of the population. These species are often identified through the ESA process or similar state programs. COCs identified at the CPPI site have the potential to affect survival, growth and reproduction of a variety of ecological receptors. A brief description of potential effects from exposure to the site COCs is provided in the following sections.

Effects from potential ecological exposure to site contaminants were assessed by comparing COC concentrations to soil screening levels protective of plants, invertebrates, fish and wildlife; the groundwater exposure pathway is minor or incomplete for ecological receptors. Tables 5-1 and 5-2 of the Remedial Investigation Report present the screening levels selected for the site; results of the comparisons of soil concentrations to screening levels are provided in RI Tables 6-1 and 6-2.

Dioxin/furans. Dioxins and furans are a group of persistent, toxic chemicals that form during the manufacture, use or destruction of other chemicals. They are widely distributed in all environmental media, with air emissions from combustion of wood, coal and other organic materials being the predominant transport mechanism. They do not readily dissolve in water but bind tightly to solid matrices (e.g., soil or sediment). Incidental ingestion of soil or sediment by an animal can result in uptake into organs and tissues. Dioxins and furans can be transferred through the food chain via ingestion of contaminated food/prey. When an animal is exposed to contaminated food over time, chronic effects can include suppressed immune system function, impaired reproduction or development, and endocrine/hormonal disruption. Individual dioxins and furans may also be carcinogenic. Acute toxicity is rarely observed.

Pentachlorophenol (**PCP**). PCP is a highly toxic compound historically used as a biocide (e.g., wood preservation). PCP can either bind to a solid matrix or dissolve in water, depending on environmental conditions and method of release. Both bacteria and sunlight can degrade PCP, making it less persistent in shallow soil and surface water. Biodegradation of PCP in groundwater is also possible due to the

⁶ Washington Department of Fish and Wildlife Priority Habitats and Sensitive Species. Accessed 25 April 2018. https://wdfw.wa.gov/mapping/phs/

-

presence of soil bacteria and other microbes. Exposure to PCP in water can harm the liver and kidney function and impair cardiovascular, immune and central nervous systems in many organisms. PCP is acutely toxic to soil and aquatic invertebrates.

Diesel petroleum. Diesel is a petroleum distillate that contains many different chemicals, including polycyclic aromatic hydrocarbons (PAHs), naphthalene, benzene, and toluene. The individual constituents have different effects ranging from death of an organism (plant or animal) to cancer (in mammals). In general, exposure to diesel via drinking water can damage the liver, kidneys, heart, lungs and central nervous system. Exposure can also impair immune and reproductive system function and fetal survival.

TABLE D-1. POTENTIAL SPECIES OCCURRENCE--CPPI SITE

Species Name	Scientific Name	Status	Potential Use of Site
Grizzly bear	Ursus arctos spp.	Federal Threatened	Low
Wolverine	Gulo gulo luscus	Federal Proposed Threatened; State Sensitive	Low
Northwest white- tailed deer	Odocoileus virginianus	State sensitive	Highforaging/refuge
Townsend big-eared bat	Corynorhinus townsendii	State sensitive	Moderateforaging
Yellow-billed cuckoo	Coccyzus americanus	Federal Threatened	High—nesting/foraging
Bald eagle	Haliaeetus leucocephalus	USFWS BCC	Moderate—foraging
Golden eagle	Aquila chrysaetos	State sensitive; also protected under BGEPA and MBTA	Moderate-foraging
Cassin's finch	Carpodacus cassinii	USFWS BCC	Moderate— nesting/foraging
Rufous hummingbird	Selasphorus rufus	USFWS BCC	High—nesting/foraging
Lesser Yellowlegs	Tringa flavipes	Protected under BGEPA and MBTA	Low
Bull trout	Salvelinus confluentus	Federal Threatened	Lowmigration
Rainbow trout (steelhead)	Oncorhynchus mykiss	State sensitive	Lowmigration

Notes:

BGEPA = Bald and Golden Eagle Protection Act

MBTA = Migratory Bird Treaty Act

USFWS BCC = US Fish and Wildlife Service Bird of Conservation Concern

APPENDIX E

Laboratory Results and Data Validation

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125

www.geoengineers.com

Project: Colville Post and Pole

November and December 2016; March, May, and October 2017 Soil Samples and December 2016; January, March, April, May, June, August, and November 2017

Groundwater Samples

GEI File No: 00504-098-01 **Date:** February 15, 2018

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the November and December 2016; and the January, March, April, May, June, August, October, and November 2017 sampling events, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the former Colville Post and Poles, Inc. (CPPI) Site located at 396 Highway 395 North near Colville in Stevens County, Washington.

Note the data were originally validated on February 15,2018. The November 2016 (SDG 590-5009-1), December 2016 (SDG 590-5185-1), and May 2017 (SDG 590-6217-1) pentachlorophenol soil data were re-validated on May 11, 2018 because the data were revised by the laboratory to be reported down to the method detection limit at the request of GeoEngineers.

Objective and Quality Control Elements

GeoEngineers completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA 2016a), Inorganic Superfund Data Review (EPA 2016b), and Chlorinated Dioxin/Furan Data Review (EPA 2011) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with Quality Assurance Project Plan (Appendix C of the Final Remedial Investigation/ Feasibility Study Work Plan; GeoEngineers 2016), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate/Labelled Compounds (Dioxins and Furans) Recoveries
- Method Blanks

- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory/Field Duplicates
- Reporting Limits
- Miscellaneous

Validated Sample Delivery Groups

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory CDO	
Laboratory SDG	Samples Validated
590-5009-1	MW-28-1 (1), MW28-2 (18.5), MW27-2 (12-13), MW27-3 (16-17), MW26-5 (25.5-26), MW25-1 (5.5-6.5), MW25-2 (9.5-10), MW24-2 (6.5-7), MW24-3 (11.5-12), MW20-1 (2-3), MW20-3 (13-14), MW26-6 (8-9), MW21-2 (7-8), MW21-3 (16-17), MW22-1 (6.5-7), MW22-2 (15.5-16), MW23-1 (2-3), MW23-3 (12.5-13), MW29-3 (13-13.5), MW29-5 (4-5)
590-5184-1	MW-20:120816, MW-21:120816, MW-22:120816, MW-23:120816, MW-24:120816, MW-25:120816, MW-26:120816, MW-27:120816, MW-Dup:120816, MW-28:120816, MW-29:120816
590-5185-1	HA-4 (0-6"), HA-3 (0-6"), HA-2 (0-6"), HA-1 (0-6"), HA-36 (0-6"), HA-37 (0-6"), HA-14 (0-6"), HA-13 (0-6"), HA-32 (0-6"), HA-8 (0-6"), HA-6 (0-6"), HA-5 (0-6"), HA-7 (0-6"), HA-9 (0-6"), HA-15 (0-6"), HA-16 (0-6"), HA-17 (0-6"), HA-35 (0-6"), HA-24 (0-6"), HA-25 (0-6"), HA-12 (0-6"), HA-38 (0-6"), HA-11 (0-6"), HA-22 (0-6"), HA-20 (0-6"), HA-18 (0-6"), HA-10 (0-6"), HA-19 (0-6"), HA-21 (0-6"), HA-23 (0-6"), HA-26 (0-6"), Seep-1:GW:120716, Seep-2:GW:120716, HA-27 (0-6"), HA-28 (0-6"), HA-30 (0-6"), HA-29 (0-6"), Seep-1 (6-12"), Seep-2 (6-12")
590-5187-1	BG-1 (0-6"), BG-2 (0-6"), BG-3 (0-6"), BG-4 (0-6"), BG-5 (0-6"), BG-6 (0-6"), BG-7 (0-6"), BG-8 (0-6"), BG-9 (0-6"), BG-10 (0-6")
590-5370-1	MW-28:011317
590-5614-1	MW-20:030217, MW-21:030217, MW-22:030217, MW-23:030317, MW-24:030217, MW-25:030217, MW-26:030217, MW-27:030217, Dup:030217, MW-28:030217, MW-29:030317
590-5615-1	HA-3A (6-12), HA-4A (6-12), HA-6A (6-12), HA-11A (6-12), HA-13A (6-12), HA-17A (6-12), HA-20A (6-12), HA-25A (6-12), HA-39 (0-6), HA-40 (0-6), HA-41 (0-6), HA-42 (0-6), HA-43 (0-6), HA-44 (0-6), HA-45 (0-6), HA-46 (0-6), HA-47 (0-6), HA-48 (0-6), HA-49 (0-6), HA-50 (0-6), HA-51 (0-6), HA-52 (0-6), HA-53 (0-6), HA-54 (0-6), HA-55 (0-6), HA-56 (0-6), HA-57 (0-6), HA-58 (0-6), HA-59 (0-6)
590-5615-3	HA-3A (12-18), HA-4A (12-18), HA-6A (12-18), HA-13A (12-18), HA-20A (12-18), HA-40 (12-18), HA-41 (12-18), HA-42 (12-18), HA-43 (12-18), HA-44 (12-18), HA-46 (12-18), HA-47 (12-18), HA-49 (12-18), HA-51 (12-18), HA-53 (12-18)
590-5863-1	MW-30:040617, MW-31:040617, MW-32:040617
590-6107-1	MW-20:050917, MW-21:050917, MW-22:050917, MW-23:050917, MW-24:050917, MW-25:050917, MW-26:050917, MW-27:050917, DUP:050917, MW-28:050917, MW-29:050917, MW-30:050917, MW-31:050917, MW-32:050917
590-6217-1	MW-33 (5.0-5.5), MW-33 (16.5-17.0), MW-34 (2.0-2.5), MW-34 (15.5-16.0), MW-35 (1.5-2.0), MW-35 (14.5-15.0)
590-6410-1	MW-33:062117, MW-34:062117, MW-35:062117

Laboratory SDG	Samples Validated
590-6963-1	MW-20:083017, MW-21:083017, MW-22:083017, MW-23:083017, MW-24:083117, MW-25:083017, MW-26:083117, MW-27:083117, DUP:083117, MW-28:083117, MW-29:083017, MW-30:083117, MW-31:083117, MW-32:083017, MW-33:083017, MW-34:083117, MW-35:083117
590-7320-1	SS-1-1(0-6"), SS-2-1(0-6"), SS-3-1(0-6"), SS-4-1(0-6"), SS-5-1(0-6"), SS-6-1(0-6"), SS-7-1(0-6"), Row-1-1(0-6"), Row-2-1(0-6"), Row-3-1(0-6"), Row-4-1(0-6")
590-7490-1	MW-20:110717, MW-21:110717, MW-22:110717, MW-23:110717, MW-24:110817, MW-25:110717, MW-26:110817, MW-27:110817, DUP:110817, MW-28:110817, MW-29:110717, MW-30:110817, MW-31:110817, MW-32:110717, MW-33:110717, MW-34:110817, MW-35:110817, TP-3 (1.5'-2.0'), TP-4 (1.5'-2.0'), TP-6 (1.5'-2.0'), TP-20 (1.5'-2.0'), TP-25 (1.5'-2.0'), TP-40 (1.5'-2.0'), TP-41 (1.5'-2.0'), TP-42 (1.5'-2.0'), TP-46 (1.5'-2.0'), TP-53 (1.5'-2.0')
590-7493-1	SS-1-2 (6-12"), SS-3-2 (6-12"), SS-5-2 (6-12"), SS-4-2 (6-12"), SS-6-2 (6-12"), ROW-3-3 (12-18"), ROW-4-3 (12-18")

Chemical Analysis Performed

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil and groundwater samples using one or more of the following methods:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Pentachlorophenol (SVOCs) by Method SW8270D-SIM;
- Total Metals by Methods EPA6010C/EPA7471A; and
- Dioxins and Furans by Method SW8290A

Data Validation Summary

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical report. The COCs were accurate and complete when submitted to the laboratory, with the following exceptions:

SDG 590-5184-1: The laboratory noted that the COC listed the matrix of the samples as solid; however, the samples were water.

SDG 590-5185-1: The laboratory noted that Samples Seep-1:GW:120716 and Seep-2:GW:120716 were received at the laboratory; however, these samples were not listed on the COC. The samples were logged for SVOCs and NWTPH-Dx analyses.

The laboratory noted that the analyses for total metals as requested on the COC were cancelled by GeoEngineers on 12/12/2016 for Samples HA-15 (0-6"), HA-16 (0-6"), HA-17 (0-6"), Seep-1 (6-12"), and Seep-2 (6-12").

The laboratory noted that the analysis of NWTPH-Dx, which was not listed on the COC, was requested by GeoEngineers on 12/12/2016 for Samples HA-15 (0-6"), HA-16 (0-6"), and HA-17 (0-6").

SDG 590-5187-1: The laboratory noted that the sample collection date and time listed on the COC for Samples BG-1 (0-6"), BG-4 (0-6"), BG-5 (0-6"), BG-6 (0-6"), BG-7 (0-6"), BG-8 (0-6"), and BG-9 (0-6") were after the date and time the samples were received at the laboratory. The sample collection date and time were logged according to the revised COC received from GeoEngineers on 12/12/2016.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the requested analyses. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exceptions noted below.

SDGs 590-5184-1 and 590-5185-1: One sample cooler temperature recorded at the laboratory was 1.8 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

SDGs 590-5614-1, 590-5615-1, and 590-5615-3: Two sample cooler temperatures recorded at the laboratory were 1.3 and 1.7 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, these temperatures should not affect the sample analytical results.

SDG 590-7320-1: One sample cooler temperature recorded at the laboratory was 1.2 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

SDG 590-7490-1: Five sample cooler temperatures recorded at the laboratory were -3.2, -2.2, -0.9, -0.9, and -0.1 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, these temperatures should not affect the sample analytical results.

Surrogate/Labelled Compounds (Dioxins and Furans) Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. The surrogate percent recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 590-5009-1: (NWTPH-Dx) The percent recovery for surrogate o-Terphenyl was greater than the control limits in Sample MW27-2 (12-13). The positive results for diesel- and lube oil-range hydrocarbons were qualified as estimated (J) in this sample.

SDG 590-5614-1: (SVOCs) The percent recovery for surrogate 2,4,6-Tribromophenol was outside the control limits in Sample MW-24:030217, because of sample dilution (100X). The surrogates are added

to the sample when it is extracted. If the sample is diluted 10X or more, recovery of the surrogates is often not possible because it is also diluted below the linear calibration range of the instrument. No action was required for this outlier.

The percent recoveries for surrogate 2,4,6-Tribromophenol were less than the control limits in Samples MW-27:030217, Dup:030217, and MW-29:030317. The positive results and reporting limits for pentachlorophenol were qualified as estimated (J and UJ, accordingly) in these samples.

SDG 590-6217-1: (NWTPH-Dx) The percent recoveries for surrogates o-Terphenyl and n-Triacontane-d62 were greater than the control limits in Sample MW-35 (14.5-15.0). There were no positive results for diesel- and lube oil-range hydrocarbons in this sample; therefore, no qualifications were required for these outliers.

SDG 590-6410-1: (NWTPH-Dx) The percent recovery for surrogate o-Terphenyl was less than the control limits in Sample MW-35:062117. The reporting limits for diesel- and lube oil-range hydrocarbons were qualified as estimated (UJ) in this sample.

SDG 590-7490-1: (Dioxins and Furans) The percent recoveries for labelled compound 13C-1,2,3,4,6,7,8-HpCDF were less than the control limits in Samples TP-3 (1.5'-2.0') and TP-53 (1.5'-2.0'). The positive result and reporting limit for 1,2,3,4,6,7,8-HpCDF were qualified as estimated (J and UJ, respectively) in these samples.

The percent recovery for labelled compound 13C-OCDD was less than the control limits in Sample TP-6 (1.5'-2.0'). The positive result for OCDD was qualified as estimated (J) in this sample.

The percent recoveries for labelled compounds 13C-1,2,3,4,6,7,8-HpCDD and 13C-1,2,3,4,6,7,8-HpCDF were less than the control limits in Sample TP-46 (1.5'-2.0'). The positive result and reporting limit for 1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8-HpCDF, respectively, were qualified as estimated (J and UJ) in this sample.

SDG 590-7493-1: (Dioxins and Furans) The percent recovery for labelled compound 13C-OCDD was less than the control limits in Sample ROW-3-3 (12-18"). The positive result for OCDD was qualified as estimated (J) in this sample.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the following exceptions:

SDG 590-5009-1: (SVOCs) There was a positive result for pentachlorophenol detected above the method detection limit, but below the reporting limit in the method blank extracted on 11/21/2016. The positive results for pentachlorophenol were qualified as non-detected (U) in Samples MW20-1 (2-3), MW20-3 (13-14), MW21-2 (7-8), MW21-3 (16-17), MW24-3 (11.5-12), MW25-1 (5.5-6.5), MW25-2 (9.5-10), MW26-5 (25.5-26), MW27-3 (16-17), MW-28-1 (1), MW28-2 (18.5), and MW29-5 (4-5). There were no positive results for pentachlorophenol in Samples MW22-1 (6.5-7), MW22-2 (15.5-16), MW23-1 (2-3), MW23-3 (12.5-13), MW24-2 (6.5-7), MW26-6 (8-9), and MW29-3 (13-13.5); and the positive result for pentachlorophenol was detected above the reporting limit greater than 5X the concentration in the method blank in Sample MW27-2 (12-13); therefore, no qualifications were required.

SDG 590-5614-1: (SVOCs) There was a positive result for pentachlorophenol detected above the reporting limit in the method blank extracted on 3/9/2017. The reported results for this target analyte were greater than 5X the concentration in the method blank in the associated field samples; therefore, no qualifications were required.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analytical batch and the percent recovery and RPD values were within the proper control limits, with the following exceptions:

SDG 590-5185-1: (SVOCs) The laboratory performed an MS/MSD sample set on Sample HA-37 (0-6"). The percent recovery for pentachlorophenol was greater than the control limits in the MS extracted on 12/15/2016; however, the percent recovery for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

SDG 590-5615-1: (SVOCs) The laboratory performed an MS/MSD sample set on Sample HA-54 (0-6). The RPD for pentachlorophenol was greater than the control limit in the MS/MSD sample set extracted on 3/14/2017. The positive result for this target analyte was qualified as estimated (J) in Sample HA-54 (0-6).

Additionally, in the same MS/MSD sample set, the percent recovery for pentachlorophenol was greater than the control limits in the MS; however, the percent recovery for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analytical batch and the percent recovery and RPD values were within the proper control limits, with the following exception:

SDG 590-7490-1: (Dioxins and Furans) The percent recovery for OCDD was less than the control limits in the LCS extracted on 11/14/2017; however, the percent recovery for this target analyte was within the control limits in the corresponding LCSD. No action was required for this outlier.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exception:

SDG 590-5009-1: (NWTPH-Dx) The laboratory performed a laboratory duplicate sample set on Sample MW21-3 (16-17). The RPD for lube oil-range hydrocarbons was greater than the control limit in the laboratory duplicate sample set extracted on 11/21/2016. There were no positive results for this target analyte in Sample MW21-3 (16-17); therefore, no qualification was required.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration greater than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control for water is 20 percent.

SDG 590-5184-1: One field duplicate sample pair, MW-27:120816 and MW-Dup:120816, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair, with the exception of pentachlorophenol. The positive results for this target analyte were qualified as estimated (J) in this sample pair.

SDG 590-5614-1: One field duplicate sample pair, MW-27:030217 and Dup:030217, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair.

SDG 590-6107-1: One field duplicate sample pair, MW-27:050917 and DUP:050917, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair.

SDG 590-6963-1: One field duplicate sample pair, MW-27:083117 and DUP:083117, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair, with the exception of OCDD. The positive results for this target analyte were qualified as estimated (J) in this sample pair.

SDG 590-7490-1: One field duplicate sample pair, MW-27:110817 and DUP:110817, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair, with the exception of OCDD. The positive results for this target analyte were qualified as estimated (J) in this sample pair.

Reporting Limits

The contract required quantitation limits (CRQL) were met by the laboratory for the target analytes throughout this sampling event, with exceptions where the CRQL was elevated due to correction for dry weight in the soil samples and required dilution in water samples.

Miscellaneous

SDG 590-5185-1: (NWTPH-Dx) The positive results for diesel-range and lube oil-range hydrocarbons in Samples HA-1 (0-6"), HA-17 (0-6"), HA-36 (0-6"), and HA-37 (0-6") and the positive result for lube oil-range hydrocarbons in Sample HA-15 (0-6") may be due to biogenic interference. For this reason, the positive results for diesel-range and lube oil-range hydrocarbons were qualified as estimated (J) in these samples, accordingly.

(Dioxins and Furans) The positive result for OCDD exceeded the instrument calibration range in Samples HA-2 (0-6"), HA-11 (0-6"), HA-21 (0-6), and HA-32 (0-6"). For this reason, the positive results for this target analyte were qualified as estimated (J) in these samples.

SDG 590-5615-1: (Dioxins and Furans) The positive result for OCDD exceeded the instrument calibration range in Samples HA-25A (6-12) and HA-49 (0-6). For this reason, the positive results for this target analyte were qualified as estimated (J) in these samples.

SDG 590-7320-1: (Dioxins and Furans) The positive result for OCDD exceeded the instrument calibration range in Samples SS-3-1(0-6"), SS-4-1(0-6"), SS-5-1(0-6"), SS-6-1(0-6"), and Row-4-1(0-6"). For this reason, the positive results for this target analyte were qualified as estimated (J) in these samples.

The positive results for 1,2,3,6,7,8-HxCDF, total HxCDF, and total TCDD in Sample SS-3-1(0-6") were noted by the laboratory to represent the Estimated Maximum Possible Concentration for these compounds. This is typically due to the compound exhibiting ion abundance ratios that are outside of the allowable control limits set forth in the EPA method and the National Functional Guidelines. The results for these target analytes were qualified as estimated (J) in this sample.

SDG 590-7493-1: (Dioxins/Furans) The positive result for total HxCDD in Sample ROW-3-3 (12-18") was noted by the laboratory to represent the Estimated Maximum Possible Concentration for this compound. This is typically due to the compound exhibiting ion abundance ratios that are outside of the allowable control limits set forth in the EPA method and the National Functional Guidelines. The result for this target analyte was qualified as estimated (J) in this sample.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LSCD, and MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
HA-1 (0-6")	Diesel-range Hydrocarbons	J	See Miscellaneous
TIN I (0 0)	Lube oil-range Hydrocarbons	J	See Miscellaneous
HA-2 (0-6")	OCDD	J	See Miscellaneous
HA-11 (0-6")	OCDD	J	See Miscellaneous
HA-15 (0-6")	Lube oil-range Hydrocarbons	J	See Miscellaneous
UA 17 (O 6")	Diesel-range Hydrocarbons	J	See Miscellaneous
HA-17 (0-6")	Lube oil-range Hydrocarbons	J	See Miscellaneous

Sample ID	Analyte	Qualifier	Reason		
HA-21 (0-6)	OCDD	J	See Miscellaneous		
HA-25A (6-12)	OCDD	J	See Miscellaneous		
HA-32 (0-6")	OCDD	J	See Miscellaneous		
IIA 26 (0 6")	Diesel-range Hydrocarbons	J	See Miscellaneous		
HA-36 (0-6")	Lube oil-range Hydrocarbons	J	See Miscellaneous		
HA-37 (0-6")	Diesel-range Hydrocarbons	J	See Miscellaneous		
	Lube oil-range Hydrocarbons	J	See Miscellaneous		
HA-49 (0-6)	OCDD	J	See Miscellaneous		
HA-54 (0-6)	Pentachlorophenol	J	MS/MSD RPD		
MW20-1 (2-3)	Pentachlorophenol	U	Method Blank Contamination		
MW20-3 (13-14)	Pentachlorophenol	U	Method Blank Contamination		
MW21-2 (7-8)	Pentachlorophenol	U	Method Blank Contamination		
MW21-3 (16-17)	Pentachlorophenol	U	Method Blank Contamination		
MW24-3 (11.5-12)	Pentachlorophenol	U	Method Blank Contamination		
MW25-1 (5.5-6.5)	Pentachlorophenol	U	Method Blank Contamination		
MW25-2 (9.5-10)	Pentachlorophenol	U	Method Blank Contamination		
MW26-5 (25.5-26)	Pentachlorophenol	U	Method Blank Contamination Surrogate Recovery Surrogate Recovery		
MW27-2 (12-13)	Diesel-range Hydrocarbons Lube oil-range Hydrocarbons	J J			
MW27-3 (16-17)	Pentachlorophenol	U	Method Blank Contamination		
MW-27:120816	Pentachlorophenol	J	Field Duplicate RPD		
MW-Dup:120816	Pentachlorophenol	J	Field Duplicate RPD		
MW-27:030217	Pentachlorophenol	J	Surrogate Recovery		
Dup:030217	Pentachlorophenol	J	Surrogate Recovery		
MW-27:083117	OCDD	J	Field Duplicate RPD		
DUP:083117	OCDD	J	Field Duplicate RPD		
MW-27:110817	OCDD	J	Field Duplicate RPD		
DUP:110817	OCDD	J	Field Duplicate RPD		
MW-28-1 (1)	Pentachlorophenol	U	Method Blank Contamination		
MW28-2 (18.5)	Pentachlorophenol	U	Method Blank Contamination		
MW29-5 (4-5)	Pentachlorophenol	U	Method Blank Contamination		
MW-29:030317	Pentachlorophenol	UJ	Surrogate Recovery		
MW-35:062117	Diesel-range Hydrocarbons Lube oil-range Hydrocarbons	UJ UJ	Surrogate Recovery Surrogate Recovery		
ROW-3-3 (12-18")	OCDD Total HxCDD	J	Labelled Compound Recovery See Miscellaneous		
Row-4-1(0-6")	OCDD	J	See Miscellaneous		

Sample ID	Analyte	Qualifier	Reason
	1,2,3,6,7,8-HxCDF	J	See Miscellaneous
SS-3-1(0-6")	OCDD	J	See Miscellaneous
33-3-1(0-0)	Total HxCDF	J	See Miscellaneous
	Total TCDD	J	See Miscellaneous
SS-4-1(0-6")	OCDD	J	See Miscellaneous
SS-5-1(0-6")	OCDD	J	See Miscellaneous
SS-6-1(0-6")	OCDD	J	See Miscellaneous
TP-3 (1.5'-2.0')	1,2,3,4,6,7,8-HpCDF	J	Labelled Compound Recovery
TP-6 (1.5'-2.0')	OCDD	J	Labelled Compound Recovery
TD 46 (4 ELO OI)	1,2,3,4,6,7,8-HpCDD	J	Labelled Compound Recovery
TP-46 (1.5'-2.0')	1,2,3,4,6,7,8-HpCDF	UJ	Labelled Compound Recovery
TP-53 (1.5'-2.0')	1,2,3,4,6,7,8-HpCDF	UJ	Labelled Compound Recovery

REFERENCES

GeoEngineers, Inc., "Final Remedial Investigation/Feasibility Study Work Plan", prepared for Washington State Department of Ecology, GEI File No. 0504-098-01. November 3, 2016.

- U.S. Environmental Protection Agency (EPA). 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (EPA), 2016a. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-2016-002. September 2016.
- U.S. Environmental Protection Agency (EPA), 2016b. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-2016-001. September 2016.
- U.S. Environmental Protection Agency (EPA). "Contract Laboratory Program National Functional Guidelines for Chlorinated Dioxin/Furan Data Review," EPA-540-R-11-016. September 2011.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-5009-1

Client Project/Site: Colville Post and Pole/0504-098-01

Revision: 1

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

Langue trington

Authorized for release by: 5/9/2018 1:09:38 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	5
Client Sample Results	6
QC Sample Results	15
Chronicle	19
Certification Summary	27
Method Summary	28
Chain of Custody	29
Receipt Checklists	33

Case Narrative

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5009-1

Job ID: 590-5009-1

Laboratory: TestAmerica Spokane

Narrative

Revision

The 8270D data was re-evaluated down to the MDL per the clients request.

Receipt

The samples were received on 11/14/2016 3:15 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.9° C.

GC/MS Semi VOA

Method 8270D SIM: The method blank for preparation batch 590-9701 and analytical batch 590-9738 contained Pentachlorophenol above the method detection limit. This target analyte concentration was about 1/2 the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: Surrogate recovery for the following sample was outside control limits: MW27-2 (12-13) (590-5009-4). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5009-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-5009-1	MW-28-1 (1)	Solid	11/07/16 12:35 1	1/14/16 15:15
590-5009-2	MW28-2 (18.5)	Solid	11/07/16 12:50 1	1/14/16 15:15
590-5009-4	MW27-2 (12-13)	Solid	11/07/16 14:45 1	1/14/16 15:15
590-5009-5	MW27-3 (16-17)	Solid	11/07/16 14:55 1	1/14/16 15:15
590-5009-11	MW26-5 (25.5-26)	Solid	11/08/16 08:40 1	1/14/16 15:15
590-5009-12	MW25-1 (5.5-6.5)	Solid	11/08/16 09:55 1	1/14/16 15:15
590-5009-13	MW25-2 (9.5-10)	Solid	11/08/16 10:05 1	1/14/16 15:15
590-5009-15	MW24-2 (6.5-7)	Solid	11/08/16 12:25 1	1/14/16 15:15
590-5009-16	MW24-3 (11.5-12)	Solid	11/08/16 12:35 1	1/14/16 15:15
590-5009-17	MW20-1 (2-3)	Solid	11/08/16 13:50 1	1/14/16 15:15
590-5009-19	MW20-3 (13-14)	Solid	11/08/16 14:00 1	1/14/16 15:15
590-5009-21	MW26-6 (8-9)	Solid	11/08/16 09:20 1	1/14/16 15:15
590-5009-23	MW21-2 (7-8)	Solid	11/09/16 07:55 1	1/14/16 15:15
590-5009-24	MW21-3 (16-17)	Solid	11/09/16 08:00 1	1/14/16 15:15
590-5009-27	MW22-1 (6.5-7)	Solid	11/09/16 09:10 1	1/14/16 15:15
590-5009-28	MW22-2 (15.5-16)	Solid	11/09/16 09:30 1	1/14/16 15:15
590-5009-31	MW23-1 (2-3)	Solid	11/09/16 12:30 1	1/14/16 15:15
590-5009-33	MW23-3 (12.5-13)	Solid	11/09/16 12:40 1	1/14/16 15:15
590-5009-37	MW29-3 (13-13.5)	Solid	11/09/16 13:55 1	1/14/16 15:15
590-5009-39	MW29-5 (4-5)	Solid	11/09/16 14:35 1	1/14/16 15:15

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5009-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the
	absolute difference is less than the RL.
X	Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.			
Eisted under the "D" column to designate that the result is reported on a dry weight basis				
%R	Percent Recovery			
CFL	Contains Free Liquid			
CNF	Contains No Free Liquid			
DER	Duplicate Error Ratio (normalized absolute difference)			
Dil Fac	Dilution Factor			
DL	Detection Limit (DoD/DOE)			
DL. RA. RE. IN	Indicates a Dilution. Re-analysis. Re-extraction. or additional Initial metals/anion analysis of the sample			

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Spokane

_

6

10

11

12

n-Triacontane-d62

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-28-1 (1)

Date Collected: 11/07/16 12:35

Lab Sample ID: 590-5009-1

11/17/16 11:11 11/17/16 14:18

TestAmerica Job ID: 590-5009-1

Matrix: Solid

Percent Solids: 75.9

Date Received: 11/14/16 15:15	
Mathod: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Pentachlorophenol	31	JB	64	10	ug/Kg	<u></u>	11/21/16 09:48	11/23/16 18:57	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl (Surr)	59		38 - 123				11/21/16 09:48	11/23/16 18:57	1	
Nitrobon=ono dE	50		22 420				11/01/16 00:10	11/00/16 10:57	1	

2-Fluorobiphenyl (Surr)	59	38 - 123	11/21/16 09:48 11/23/16 18:57
Nitrobenzene-d5	58	23 - 120	11/21/16 09:48 11/23/16 18:57
p-Terphenyl-d14	84	68 - 136	11/21/16 09:48 11/23/16 18:57

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

90

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	13	mg/Kg	<u>∓</u>	11/17/16 11:11	11/17/16 14:18	1
Residual Range Organics (RRO) (C25-C36)	ND	32	mg/Kg	☼	11/17/16 11:11	11/17/16 14:18	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	91	50 - 150			11/17/16 11:11	11/17/16 14:18	1

Client Sample ID: MW28-2 (18.5)

Lab Sample ID: 590-5009-2

50 - 150

Date Collected: 11/07/16 12:50 Matrix: Solid
Date Received: 11/14/16 15:15 Percent Solids: 89.7

Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	20	JB	54	8.7	ug/Kg	<u> </u>	11/21/16 09:48	11/23/16 19:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		38 - 123				11/21/16 09:48	11/23/16 19:23	1
Nitrobenzene-d5	64		23 - 120				11/21/16 09:48	11/23/16 19:23	1
p-Terphenyl-d14	88		68 - 136				11/21/16 09:48	11/23/16 19:23	1

Method: NWTPH-Dx -	Northweet - 9	Sami-Volatila	Patroloum	Producte (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg	₽	11/17/16 11:11	11/17/16 14:36	1
Residual Range Organics (RRO) (C25-C36)	ND		26		mg/Kg	₩	11/17/16 11:11	11/17/16 14:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	96	50 - 150	11/17/16 11:11	11/17/16 14:36	1
n-Triacontane-d62	98	50 ₋ 150	11/17/16 11:11	11/17/16 14:36	1

Client Sample ID: MW27-2 (12-13)

Lab Sample ID: 590-5009-4

Date Collected: 11/07/16 14:45

Date Received: 11/14/16 15:15

Matrix: Solid
Percent Solids: 77.6

Method: 8270D	CIM	Comivolatile	Organic	Compounds	(CC/MS SIM)
- Wethon: 82/UD	SIIVI -	Semivolatile	Organic	Compounds	(GC/IVIS SIIVI)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	14000	В	640	110	ug/Kg	₩	11/21/16 09:48	11/23/16 19:50	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	122		38 - 123				11/21/16 09:48	11/23/16 19:50	10

TestAmerica Job ID: 590-5009-1

Client Sample ID: MW27-2 (12-13)

Date Collected: 11/07/16 14:45 Date Received: 11/14/16 15:15 Lab Sample ID: 590-5009-4 **Matrix: Solid**

Percent Solids: 77.6

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Nitrobenzene-d5	91		23 - 120	11/21/16 09:48	11/23/16 19:50	10
Į	p-Terphenyl-d14	89		68 - 136	11/21/16 09:48	11/23/16 19:50	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	20000		170		mg/Kg	\	11/17/16 11:11	11/17/16 14:53	1
Residual Range Organics (RRO) (C25-C36)	900		420		mg/Kg	≎	11/17/16 11:11	11/17/16 14:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	310	X	50 - 150				11/17/16 11:11	11/17/16 14:53	1
n-Triacontane-d62	94		50 - 150				11/17/16 11:11	11/17/16 14:53	1

Client Sample ID: MW27-3 (16-17)

Lab Sample ID: 590-5009-5 Date Collected: 11/07/16 14:55 **Matrix: Solid** Date Received: 11/14/16 15:15 Percent Solids: 87.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	26	JB	54	8.8	ug/Kg	\	11/21/16 09:48	11/23/16 20:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	76		38 - 123				11/21/16 09:48	11/23/16 20:16	1
Nitrobenzene-d5	67		23 - 120				11/21/16 09:48	11/23/16 20:16	1
			68 - 136					11/23/16 20:16	

Method: NWTPH-Dx - Northy				•	•	_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg	- -	11/17/16 11:11	11/17/16 15:11	1
Residual Range Organics (RRO) (C25-C36)	ND		28		mg/Kg	≎	11/17/16 11:11	11/17/16 15:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				11/17/16 11:11	11/17/16 15:11	1
n-Triacontane-d62	94		50 - 150				11/17/16 11:11	11/17/16 15:11	1

Client Sample ID: MW26-5 (25.5-26) Lab Sample ID: 590-5009-11

Date Collected: 11/08/16 08:40 **Matrix: Solid** Date Received: 11/14/16 15:15 Percent Solids: 87.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	41	JB	56	9.1	ug/Kg		11/21/16 09:48	11/23/16 20:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	77		38 - 123				11/21/16 09:48	11/23/16 20:42	1
Nitrobenzene-d5	71		23 - 120				11/21/16 09:48	11/23/16 20:42	1
p-Terphenyl-d14	87		68 - 136				11/21/16 09:48	11/23/16 20:42	1

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5009-11

Client Sample ID: MW26-5 (25.5-26) Date Collected: 11/08/16 08:40

Matrix: Solid

TestAmerica Job ID: 590-5009-1

Date Received: 11/14/16 15:15

Percent Solids: 87.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg		11/17/16 11:11	11/17/16 15:29	1
Residual Range Organics (RRO) (C25-C36)	ND		28		mg/Kg	☼	11/17/16 11:11	11/17/16 15:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	90		50 - 150				11/17/16 11:11	11/17/16 15:29	1
n-Triacontane-d62	92		50 - 150				11/17/16 11:11	11/17/16 15:29	1

Client Sample ID: MW25-1 (5.5-6.5)

Lab Sample ID: 590-5009-12

Date Collected: 11/08/16 09:55

Date Received: 11/14/16 15:15

Matrix: Solid
Percent Solids: 87.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	45	JB	56	9.2	ug/Kg	\	11/21/16 09:48	11/23/16 21:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	68		38 - 123				11/21/16 09:48	11/23/16 21:09	1
Nitrobenzene-d5	56		23 - 120				11/21/16 09:48	11/23/16 21:09	1
p-Terphenyl-d14	88		68 - 136				11/21/16 00:40	11/23/16 21:09	1

Method: NWTPH-Dx - Northw	vest - Semi-Vo	latile Petr	oleum Prodi	ucts (G	C)				
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg		11/17/16 11:11	11/17/16 15:47	1
Residual Range Organics (RRO) (C25-C36)	ND		27		mg/Kg	₽	11/17/16 11:11	11/17/16 15:47	1
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		50 - 150				11/17/16 11:11	11/17/16 15:47	1
n-Triacontane-d62	96		50 - 150				11/17/16 11:11	11/17/16 15:47	1

Client Sample ID: MW25-2 (9.5-10)

Date Collected: 11/08/16 10:05

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-13

Matrix: Solid

Percent Solids: 89.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	25	JB	53	8.7	ug/Kg	\	11/21/16 09:48	11/23/16 21:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	84		38 - 123				11/21/16 09:48	11/23/16 21:35	1
Nitrobenzene-d5	74		23 - 120				11/21/16 09:48	11/23/16 21:35	1
p-Terphenyl-d14	94		68 - 136				11/21/16 09:48	11/23/16 21:35	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Diesel Range Organics (DRO) (C10-C25)	ND	11		mg/Kg	<u> </u>	11/17/16 11:11	11/17/16 16:05	1		
Residual Range Organics (RRO) (C25-C36)	ND	27		mg/Kg	₩	11/17/16 11:11	11/17/16 16:05	1		

TestAmerica Job ID: 590-5009-1

Client Sample ID: MW25-2 (9.5-10)

Date Collected: 11/08/16 10:05 Date Received: 11/14/16 15:15 Lab Sample ID: 590-5009-13

Matrix: Solid Percent Solids: 89.4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150	11/17/16 11:11	11/17/16 16:05	1
n-Triacontane-d62	91		50 - 150	11/17/16 11:11	11/17/16 16:05	1

Client Sample ID: MW24-2 (6.5-7)

Date Collected: 11/08/16 12:25 Date Received: 11/14/16 15:15 Lab Sample ID: 590-5009-15

Matrix: Solid Percent Solids: 92.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		51	8.3	ug/Kg	<u> </u>	11/21/16 09:48	11/23/16 22:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		38 - 123				11/21/16 09:48	11/23/16 22:01	1
Nitrobenzene-d5	52		23 - 120				11/21/16 09:48	11/23/16 22:01	1
p-Terphenyl-d14	83		68 - 136				11/21/16 09:48	11/23/16 22:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg	₩	11/17/16 11:11	11/17/16 16:23	1
Residual Range Organics (RRO) (C25-C36)	ND		26		mg/Kg	☼	11/17/16 11:11	11/17/16 16:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				11/17/16 11:11	11/17/16 16:23	1
n-Triacontane-d62	105		50 ₋ 150				11/17/16 11:11	11/17/16 16:23	1

Client Sample ID: MW24-3 (11.5-12)

Date Collected: 11/08/16 12:35

Lab Sample ID: 590-5009-16

Matrix: Solid

Date Received: 11/14/16 15:15 Watrix: Solid

Percent Solids: 89.4

Method: 8270D SIM - Ser	nivolatile Organi	c Compou	inds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	23	JB	54	8.7	ug/Kg		11/21/16 09:48	11/23/16 22:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	70		38 - 123				11/21/16 09:48	11/23/16 22:27	1
Nitrobenzene-d5	61		23 - 120				11/21/16 09:48	11/23/16 22:27	1

Method: NWTPH-Dx - Northy Analyte	west - Semi-Vola Result Qı		oleum Prodi RL	•	•	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND -		11		mg/Kg	\	11/17/16 11:11	11/17/16 16:41	1
Residual Range Organics (RRO) (C25-C36)	ND		27		mg/Kg	₩	11/17/16 11:11	11/17/16 16:41	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				11/17/16 11:11	11/17/16 16:41	1
n-Triacontane-d62	93		50 - 150				11/17/16 11:11	11/17/16 16:41	1

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5009-17

Matrix: Solid

TestAmerica Job ID: 590-5009-1

Percent Solids: 74.7

Client Sample ID: MW20-1 (2-3)

Date Collected: 11/08/16 13:50 Date Received: 11/14/16 15:15

Method: 8270D SIM - Sem	ivolatile Organi	c Compou	inds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	28	JB	64	10	ug/Kg		11/21/16 09:48	11/23/16 22:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	81		38 - 123				11/21/16 09:48	11/23/16 22:54	1
Nitrobenzene-d5	73		23 - 120				11/21/16 09:48	11/23/16 22:54	1
	7.5		20 - 120				1 17 2 17 1 0 00. 10	1 17 207 10 22.01	•

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		13		mg/Kg	\	11/17/16 11:11	11/18/16 10:18	1
Residual Range Organics (RRO) (C25-C36)	ND		33		mg/Kg	☼	11/17/16 11:11	11/18/16 10:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		50 - 150				11/17/16 11:11	11/18/16 10:18	1
n-Triacontane-d62	93		50 ₋ 150				11/17/16 11:11	11/18/16 10:18	1

Client Sample ID: MW20-3 (13-14) Lab Sample ID: 590-5009-19 Date Collected: 11/08/16 14:00 **Matrix: Solid** Date Received: 11/14/16 15:15 Percent Solids: 84.8

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac Pentachlorophenol 23 JB 55 9.0 ug/Kg

Surrogate	%Recovery Q	ualifier Lin	nits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	70	38.	. 123	11/21/16 09:48	11/23/16 23:20	1
Nitrobenzene-d5	61	23.	. 120	11/21/16 09:48	11/23/16 23:20	1
p-Terphenyl-d14	91	68 -	- 136	11/21/16 09:48	11/23/16 23:20	1

Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		12		mg/Kg	\	11/17/16 11:11	11/17/16 17:34	1
Residual Range Organics (RRO) (C25-C36)	ND		29		mg/Kg	₩	11/17/16 11:11	11/17/16 17:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				11/17/16 11:11	11/17/16 17:34	1
n-Triacontane-d62	101		50 150				11/17/16 11:11	11/17/16 17:34	1

o-Terphenyl	100	50 - 150	11/17/16 11:11 11/17/16 17:34 1
n-Triacontane-d62	101	50 - 150	11/17/16 11:11 11/17/16 17:34 1

Client Sample ID: MW26-6 (8-9) Lab Sample ID: 590-5009-21 Date Collected: 11/08/16 09:20 **Matrix: Solid** Date Received: 11/14/16 15:15 Percent Solids: 80.9

Analyte	•	Qualifier	nds (GC/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		61	10	ug/Kg	<u> </u>	11/21/16 09:48	11/23/16 23:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	69		38 - 123				11/21/16 09:48	11/23/16 23:46	1
Nitrobenzene-d5	61		23 - 120				11/21/16 09:48	11/23/16 23:46	1

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5009-21

Matrix: Solid

TestAmerica Job ID: 590-5009-1

Percent Solids: 80.9

Client Sample ID: MW26-6 (8-9)

Date Collected: 11/08/16 09:20 Date Received: 11/14/16 15:15

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	84	68 - 136	11/21/16 09:48	11/23/16 23:46	1

Method: NWTPH-Dx - Northwest	 Semi-Volatile Petroleum 	ı Produc	ts (GC)
Analyta	Popult Qualifier	DI	MDI II

Method. NWTPH-DX - NOTHW	rest - Seilli-Volatile Pet	roleulli Prou	ucis (GC	-)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	12		mg/Kg		11/17/16 11:11	11/17/16 17:51	1
Residual Range Organics (RRO) (C25-C36)	ND	30		mg/Kg	₩	11/17/16 11:11	11/17/16 17:51	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Anaiyzea	DII Fac
o-Terphenyl	94	50 - 150	11/17/16 11:11	11/17/16 17:51	1
n-Triacontane-d62	98	50 - 150	11/17/16 11:11	11/17/16 17:51	1

Client Sample ID: MW21-2 (7-8)

Date Collected: 11/09/16 07:55

Lab Sample ID: 590-5009-23 **Matrix: Solid**

Date Received: 11/14/16 15:15 Percent Solids: 84.0

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

				•,					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	25	JB	58	9.5	ug/Kg	₩	11/21/16 09:48	11/24/16 00:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		38 - 123				11/21/16 09:48	11/24/16 00:12	1
Nitrobenzene-d5	61		23 - 120				11/21/16 09:48	11/24/16 00:12	1
p-Terphenyl-d14	87		68 - 136				11/21/16 09:48	11/24/16 00:12	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

97

	Analyte		Qualifier	RL	MDL	,	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (DRO) C10-C25)	ND		11		mg/Kg		11/17/16 11:11	11/17/16 18:09	1
	Residual Range Organics (RRO) C25-C36)	ND		28		mg/Kg	₿	11/17/16 11:11	11/17/16 18:09	1
5	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
0	p-Terphenyl	98		50 - 150				11/17/16 11:11	11/17/16 18:09	1

50 - 150

Client Sample ID: MW21-3 (16-17)

Date Collected: 11/09/16 08:00 Date Received: 11/14/16 15:15

n-Triacontane-d62

Lab Sample ID: 590-5009-24

11/17/16 11:11 11/17/16 18:09

Percent Solids: 91.4

Matrix: Solid

Method: 8270D SIM - Semivo Analyte	•	Qualifier	` RL	•	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	26	JB	53	8.6	ug/Kg	<u> </u>	11/21/16 09:48	11/24/16 00:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	73		38 - 123				11/21/16 09:48	11/24/16 00:39	1
Nitrobenzene-d5	66		23 - 120				11/21/16 09:48	11/24/16 00:39	1
p-Terphenyl-d14	88		68 - 136				11/21/16 09:48	11/24/16 00:39	1

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW21-3 (16-17) Lab Sample ID: 590-5009-24 Date Collected: 11/09/16 08:00

Client Sample Results

Matrix: Solid

Date Received: 11/14/16 15:15 Percent Solids: 91.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg	<u>∓</u>	11/21/16 08:35	11/21/16 12:26	1
Residual Range Organics (RRO) (C25-C36)	ND		27		mg/Kg	₩	11/21/16 08:35	11/21/16 12:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				11/21/16 08:35	11/21/16 12:26	1
n-Triacontane-d62	86		50 - 150				11/21/16 08:35	11/21/16 12:26	1

Lab Sample ID: 590-5009-27 **Client Sample ID: MW22-1 (6.5-7)**

Date Collected: 11/09/16 09:10 **Matrix: Solid** Date Received: 11/14/16 15:15 Percent Solids: 90.5

Method: 8270D SIM - Sei	mivolatile Organic	Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		53	8.6	ug/Kg	\	11/21/16 09:48	11/24/16 01:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac
	701 CCCC CT y	Quanner	Lillits					,u., _ c u	
2-Fluorobiphenyl (Surr)	74		38 - 123					11/24/16 01:05	1
	<u></u>	Quanter					11/21/16 09:48		1

Method: NWTPH-Dx - North		olatile Pet Qualifier	roleum Prod	•	C) Unit	D	Prepared	Analyzed	Dil Fac
Allalyte		Qualifier		IVIDE					Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg	₽	11/21/16 08:35	11/21/16 13:02	1
Residual Range Organics (RRO) (C25-C36)	ND		27		mg/Kg	☼	11/21/16 08:35	11/21/16 13:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150				11/21/16 08:35	11/21/16 13:02	1
n-Triacontane-d62	99		50 - 150				11/21/16 08:35	11/21/16 13:02	1

Client Sample ID: MW22-2 (15.5-16) Lab Sample ID: 590-5009-28 Date Collected: 11/09/16 09:30 **Matrix: Solid** Date Received: 11/14/16 15:15 Percent Solids: 84.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		57	9.2	ug/Kg	\	11/21/16 09:48	11/24/16 01:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	84		38 - 123				11/21/16 09:48	11/24/16 01:31	1
Nitrobenzene-d5	77		23 - 120				11/21/16 09:48	11/24/16 01:31	1
p-Terphenyl-d14	98		68 - 136				44/04/40 00:40	11/24/16 01:31	4

Method: NWTPH-Dx - Northwe	st - Semi-V	olatile Pet	roleum Pro	ducts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		12		mg/Kg	 ‡	11/21/16 08:35	11/21/16 13:20	1
Residual Range Organics (RRO) (C25-C36)	ND		29		mg/Kg	☼	11/21/16 08:35	11/21/16 13:20	1

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5009-28

Client Sample ID: MW22-2 (15.5-16) Date Collected: 11/09/16 09:30

Matrix: Solid

Date Received: 11/14/16 15:15

Percent Solids: 84.8

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150	11/21/16 08:35	11/21/16 13:20	1
n-Triacontane-d62	106		50 - 150	11/21/16 08:35	11/21/16 13:20	1

Lab Sample ID: 590-5009-31

Client Sample ID: MW23-1 (2-3) Date Collected: 11/09/16 12:30 Date Received: 11/14/16 15:15

Matrix: Solid Percent Solids: 84.0

Method: 8270D SIM - Semiv	_	•	nds (GC/MS	•				
Analyte Pentachlorophenol	Result ND	Qualifier		9.3 Unit	D <u>∓</u>	Prepared 11/21/16 09:48	Analyzed	Dil Fac
rentachiorophenoi	ND		37	9.5 ug/Ng	π	11/21/10 09.40	11/24/10 01:57	'
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	81		38 - 123			11/21/16 09:48	11/24/16 01:57	1
Nitrobenzene-d5	69		23 - 120			11/21/16 09:48	11/24/16 01:57	1
p-Terphenyl-d14	88		68 - 136			11/21/16 09:48	11/24/16 01:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		12		mg/Kg	₩	11/21/16 08:35	11/21/16 13:38	1
Residual Range Organics (RRO) (C25-C36)	ND		30		mg/Kg	☼	11/21/16 08:35	11/21/16 13:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				11/21/16 08:35	11/21/16 13:38	1
n-Triacontane-d62	95		50 ₋ 150				11/21/16 08:35	11/21/16 13:38	1

Client Sample ID: MW23-3 (12.5-13) Lab Sample ID: 590-5009-33 Date Collected: 11/09/16 12:40 **Matrix: Solid**

Date Received: 11/14/16 15:15 Percent Solids: 88.1

Method	l: 8270D SIM - Semi	∕olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlo	prophenol	ND		55	8.9	ug/Kg	\	11/21/16 09:48	11/24/16 02:24	1
Surrogat	e	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorob	iphenyl (Surr)	87		38 - 123				11/21/16 09:48	11/24/16 02:24	1
Nitrobenz	ene-d5	78		23 - 120				11/21/16 09:48	11/24/16 02:24	1
p-Terphei	nyl-d14	86		68 - 136				11/21/16 09:48	11/24/16 02:24	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg	\	11/21/16 08:35	11/21/16 13:52	1
Residual Range Organics (RRO) (C25-C36)	ND		28		mg/Kg	₩	11/21/16 08:35	11/21/16 13:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				11/21/16 08:35	11/21/16 13:52	1
n-Triacontane-d62	90		50 ₋ 150				11/21/16 08:35	11/21/16 13:52	1

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5009-37

Client Sample ID: MW29-3 (13-13.5)

Date Collected: 11/09/16 13:55

Matrix: Solid

TestAmerica Job ID: 590-5009-1

Date Received: 11/14/16 15:15 Percent Solids: 90.9

Method: 8270D SIM - Semivo	latile Organic Com	pounds (GC/MS SIN)			
Analyte	Result Qualifi	er RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND	55	8.9 ug/Kg	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	11/24/16 02:50	1
Surrogate	%Recovery Qualifi	er Limits		Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	71	38 - 123		11/21/16 09:48	11/24/16 02:50	1
2-Fluorobiphenyl (Surr) Nitrobenzene-d5	71 67	38 - 123 23 - 120			11/24/16 02:50 11/24/16 02:50	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		10		mg/Kg	<u>∓</u>	11/21/16 08:35	11/21/16 14:09	1
Residual Range Organics (RRO) (C25-C36)	ND		26		mg/Kg	≎	11/21/16 08:35	11/21/16 14:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150				11/21/16 08:35	11/21/16 14:09	1
n-Triacontane-d62	91		50 ₋ 150				11/21/16 08:35	11/21/16 14:09	1

Client Sample ID: MW29-5 (4-5) Lab Sample ID: 590-5009-39 Date Collected: 11/09/16 14:35 **Matrix: Solid** Date Received: 11/14/16 15:15 Percent Solids: 81.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	23	JB	61	9.9	ug/Kg		11/21/16 09:48	11/24/16 03:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	60		38 - 123				11/21/16 09:48	11/24/16 03:16	1
Nitrobenzene-d5	48		23 - 120				11/21/16 09:48	11/24/16 03:16	1
p-Terphenyl-d14	88		68 - 136				11/21/16 00:49	11/24/16 03:16	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		12		mg/Kg	\	11/21/16 08:35	11/21/16 14:23	1
Residual Range Organics (RRO) (C25-C36)	ND		29		mg/Kg	₩	11/21/16 08:35	11/21/16 14:23	1
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				11/21/16 08:35	11/21/16 14:23	1
n-Triacontane-d62	93		50 - 150				11/21/16 08:35	11/21/16 14:23	1

Project/Site: Colville Post and Pole/0504-098-01

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-9701/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 9738** Prep Batch: 9701 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 50 8.2 ug/Kg <u>11/21/16 09:48</u> <u>11/23/16 17:12</u> Pentachlorophenol 25.1 J

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl (Surr) 75 38 - 123 11/21/16 09:48 11/23/16 17:12 Nitrobenzene-d5 69 23 - 120 11/21/16 09:48 11/23/16 17:12 p-Terphenyl-d14 107 68 - 136 11/21/16 09:48 11/23/16 17:12

Lab Sample ID: LCS 590-9701/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Prep Batch: 9701 **Analysis Batch: 9738** Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit Limits %Rec Pentachlorophenol 533 580 ug/Kg 109 50 - 150

LCS LCS Qualifier Limits Surrogate %Recovery 2-Fluorobiphenyl (Surr) 38 - 123 69 Nitrobenzene-d5 66 23 - 120 p-Terphenyl-d14 84 68 - 136

Lab Sample ID: 590-5009-1 MS Client Sample ID: MW-28-1 (1) **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 9738** Prep Batch: 9701

Sample Sample Spike MS MS %Rec.

Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Pentachlorophenol 31 JB 699 111 50 - 150 808 ug/Kg

MS MS %Recovery Qualifier Limits Surrogate 38 - 123 2-Fluorobiphenyl (Surr) 53 55 23 - 120 Nitrobenzene-d5 p-Terphenyl-d14 78 68 - 136

Lab Sample ID: 590-5009-1 MSD Client Sample ID: MW-28-1 (1) Prep Type: Total/NA

Matrix: Solid Analysis Batch: 9738 Prep Batch: 9701

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Analyte ug/Kg 31 JB 660 784 114 50 - 150 Pentachlorophenol 3

MSD MSD Surrogate %Recovery Qualifier Limits 59 38 - 123 2-Fluorobiphenyl (Surr) Nitrobenzene-d5 61 23 - 120 p-Terphenyl-d14 85 68 - 136

TestAmerica Job ID: 590-5009-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-9652/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 9653** Prep Batch: 9652

	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	10	mg/K	g	11/17/16 09:21	11/17/16 10:43	1
Residual Range Organics (RRO) (C25-C36)	ND	25	mg/K	g	11/17/16 09:21	11/17/16 10:43	1

	MB M	1B				
Surrogate	%Recovery Q	ualifier Lii	mits	Prepared	Analyzed	Dil Fac
o-Terphenyl	98	50) <u>- 150</u>	11/17/16 09:21	11/17/16 10:43	1
n-Triacontane-d62	88	50) - 150	11/17/16 09:21	11/17/16 10:43	1

Lab Sample ID: MB 590-9652/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Prep Batch: 9652

Analysis Batch: 9653

	MB	MR							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		10		mg/Kg		11/17/16 09:21	11/17/16 18:43	1
Residual Range Organics (RRO) (C25-C36)	ND		25		mg/Kg		11/17/16 09:21	11/17/16 18:43	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	103		50 - 150	11/17/16 09:21	11/17/16 18:43	1
n-Triacontane-d62	101		50 - 150	11/17/16 09:21	11/17/16 18:43	1

Lab Sample ID: LCS 590-9652/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 9653 Prep Batch: 9652 Spike LCS LCS %Rec.

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Diesel Range Organics (DRO)	67.1	62.6		mg/Kg		93	50 - 150
(C10-C25)							
Residual Range Organics (RRO)	66.8	64.4		mg/Kg		96	50 ₋ 150
(C25-C36)							

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
o-Terphenyl	92	50 - 150
n-Triacontane-d62	98	50 - 150

99

o-Terphenyl

Lab Sample ID: LCS 590-9 Matrix: Solid Analysis Batch: 9670	9652/2-A				Clier	nt Sai	mple ID	: Lab Contro Prep Type: Prep Ba	
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO) (C10-C25)		67.1	64.5		mg/Kg		96	50 - 150	
Residual Range Organics (RRO) (C25-C36)		66.8	66.6		mg/Kg		100	50 - 150	
	LCS LCS								
Surrogate	%Recovery Qualifier	Limits							

TestAmerica Spokane

50 - 150

Project/Site: Colville Post and Pole/0504-098-01

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-9652/2-A

Matrix: Solid

Surrogate

Analysis Batch: 9670

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 9652

LCS LCS

%Recovery Qualifier Limits 50 - 150 105

> **Client Sample ID: Method Blank** Prep Type: Total/NA

Prep Batch: 9695

Lab Sample ID: MB 590-9695/1-A

Matrix: Solid

n-Triacontane-d62

Analysis Batch: 9698

	MB MB						
Analyte	Result Qualif	ier RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND	10	mg	g/Kg	11/21/16 08:35	11/21/16 10:05	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND	25	mç	g/Kg	11/21/16 08:35	11/21/16 10:05	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150	11/21/16 08:35	11/21/16 10:05	1
n-Triacontane-d62	93		50 - 150	11/21/16 08:35	11/21/16 10:05	1

Lab Sample ID: LCS 590-9695/2-A

Matrix: Solid

Analysis Batch: 9698

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 9695

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 67.8 67.1 101 50 - 150 Diesel Range Organics (DRO) mg/Kg (C10-C25) Residual Range Organics (RRO) 66.8 68.0 mg/Kg 102 50 - 150 (C25-C36)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	104		50 - 150
n-Triacontane-d62	104		50 ₋ 150

Lab Sample ID: LCSD 590-9695/3-A

Matrix: Solid

Analysis Batch: 9698

Client Sample ID	: Lab	Contr	ol San	nple	Dup
		Prep 7	Type:	Tota	I/NA

Prep Batch: 9695

,									
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	67.1	63.2		mg/Kg		94	50 - 150	7	25
(C10-C25)									
Residual Range Organics (RRO)	66.8	64.3		mg/Kg		96	50 ₋ 150	6	25
(C25-C36)									

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
o-Terphenyl	100	50 - 150
n-Triacontane-d62	97	50 ₋ 150

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5009-1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab	Sam	ıple	ID:	590	-500	9-24	DU
			_				

Matrix: Solid

n-Triacontane-d62

Analysis Batch: 9698

Client Samp	le ID:	MW21-3	3 (16-17)
	Prep	Type: 1	otal/NA

Prep Batch: 9695

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Diesel Range Organics (DRO) (C10-C25)	ND		ND ND		mg/Kg			40
Residual Range Organics (RRO) (C25-C36)	ND		ND	F5	mg/Kg	₩	68	40

50 - 150

7

	DU	DU	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	91	-	50 - 150

98

•

10

11

15

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-28-1 (1) Lab Sample ID: 590-5009-1

Date Collected: 11/07/16 12:35 Matrix: Solid

Date Received: 11/14/16 15:15

Batch Batch Dil Initial Batch Final Prepared Method Amount **Prep Type** Type Run **Factor Amount** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 9637 11/16/16 11:00 NMI TAL SPK

Client Sample ID: MW-28-1 (1) Lab Sample ID: 590-5009-1

Date Collected: 11/07/16 12:35

Matrix: Solid Date Received: 11/14/16 15:15 Percent Solids: 75.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.43 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/23/16 18:57	NMI	TAL SPK
Total/NA	Prep	3550C			15.40 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 14:18	NMI	TAL SPK

Client Sample ID: MW28-2 (18.5) Lab Sample ID: 590-5009-2

Date Collected: 11/07/16 12:50

Date Received: 11/14/16 15:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	-		9637	11/16/16 11:00	NMI	TAL SPK

Client Sample ID: MW28-2 (18.5) Lab Sample ID: 590-5009-2

Date Collected: 11/07/16 12:50

Date Received: 11/14/16 15:15 Percent Solids: 89.7

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3550C 8270D SIM	Run	Dil Factor	Initial Amount 15.60 g	Final Amount 2 mL	Batch Number 9701 9738	Prepared or Analyzed 11/21/16 09:48 11/23/16 19:23		Lab TAL SPK TAL SPK
Total/NA	Prep	3550C			15.85 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 14:36	NMI	TAL SPK

Client Sample ID: MW27-2 (12-13) Lab Sample ID: 590-5009-4

Date Collected: 11/07/16 14:45 Date Received: 11/14/16 15:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9637	11/16/16 11:00	NMI	TAL SPK

Client Sample ID: MW27-2 (12-13) Lab Sample ID: 590-5009-4

Date Collected: 11/07/16 14:45

Matrix: Solid Date Received: 11/14/16 15:15 Percent Solids: 77.6

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			14.99 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK

TestAmerica Spokane

Matrix: Solid

Matrix: Solid

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW27-2 (12-13)

Lab Sample ID: 590-5009-4 Date Collected: 11/07/16 14:45 **Matrix: Solid** Date Received: 11/14/16 15:15

Percent Solids: 77.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8270D SIM		10			9738	11/23/16 19:50	NMI	TAL SPK
Total/NA	Prep	3550C			1.15 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 14:53	NMI	TAL SPK

Client Sample ID: MW27-3 (16-17)

Date Collected: 11/07/16 14:55

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9637	11/16/16 11:00	NMI	TAL SPK

Client Sample ID: MW27-3 (16-17)

Date Collected: 11/07/16 14:55

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-5 **Matrix: Solid**

Percent Solids: 87.8

Prep Type Total/NA	Batch Type Prep	Batch Method 3550C	Run	Dil Factor	Initial Amount 15.88 g	Final Amount 2 mL	Batch Number 9701	Prepared or Analyzed 11/21/16 09:48	Analyst	Lab TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/23/16 20:16	NMI	TAL SPK
Total/NA Total/NA	Prep Analysis	3550C NWTPH-Dx		1	15.09 g	5 mL	9652 9653	11/17/16 11:11 11/17/16 15:11	EAF NMI	TAL SPK TAL SPK

Client Sample ID: MW26-5 (25.5-26)

Date Collected: 11/08/16 08:40

Date Received: 11/14/16 15:15

Lab Sample	ID: 590-5009-11
	Matrix: Solid

Dil Batch Batch Initial Final Batch Prepared **Prep Type** Type Method **Factor Amount** Amount Number or Analyzed Analyst Run Lab Total/NA 9637 11/16/16 11:00 NMI TAL SPK Analysis Moisture

Client Sample ID: MW26-5 (25.5-26)

Date Collected: 11/08/16 08:40

Date Received: 11/14/16 15:15

Lab Sample	ID:	590-5009-11

Matrix: Solid

Percent Solids: 87.1

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.47 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/23/16 20:42	NMI	TAL SPK
Total/NA	Prep	3550C			15.14 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 15:29	NMI	TAL SPK

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW25-1 (5.5-6.5)

Date Collected: 11/08/16 09:55

Lab Sample ID: 590-5009-12 **Matrix: Solid** Date Received: 11/14/16 15:15

Batch Dil Initial Batch Batch Final Prepared **Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed **Analyst** Total/NA Analysis Moisture 9637 11/16/16 11:00 NMI TAL SPK

Client Sample ID: MW25-1 (5.5-6.5) Lab Sample ID: 590-5009-12

Date Collected: 11/08/16 09:55 Matrix: Solid Date Received: 11/14/16 15:15 Percent Solids: 87.5

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA Total/NA	Prep Analysis	3550C 8270D SIM		1	15.17 g	2 mL	9701 9738	11/21/16 09:48 11/23/16 21:09		TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	3550C NWTPH-Dx		1	15.68 g	5 mL	9652 9653	11/17/16 11:11 11/17/16 15:47	EAF NMI	TAL SPK TAL SPK

Client Sample ID: MW25-2 (9.5-10) Lab Sample ID: 590-5009-13

Date Collected: 11/08/16 10:05 Date Received: 11/14/16 15:15

Batch Batch Dil Initial Final **Batch Prepared** Method Amount Number **Prep Type Factor Amount** or Analyzed Type Run Analyst Lab Total/NA Analysis 9637 11/16/16 11:00 NMI TAL SPK Moisture

Client Sample ID: MW25-2 (9.5-10) Lab Sample ID: 590-5009-13

Date Collected: 11/08/16 10:05 Matrix: Solid Date Received: 11/14/16 15:15 Percent Solids: 89.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.74 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/23/16 21:35	NMI	TAL SPK
Total/NA	Prep	3550C			15.78 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 16:05	NMI	TAL SPK

Lab Sample ID: 590-5009-15 Client Sample ID: MW24-2 (6.5-7)

Date Collected: 11/08/16 12:25 Date Received: 11/14/16 15:15

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method Amount Number or Analyzed Type Run **Factor Amount Analyst** Lab Total/NA Analysis Moisture 9637 11/16/16 11:00 NMI TAL SPK

Client Sample ID: MW24-2 (6.5-7) Lab Sample ID: 590-5009-15

Date Collected: 11/08/16 12:25 Matrix: Solid Date Received: 11/14/16 15:15 Percent Solids: 92.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.85 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK

TestAmerica Spokane

Matrix: Solid

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW24-2 (6.5-7)

Date Collected: 11/08/16 12:25 Date Received: 11/14/16 15:15 Lab Sample ID: 590-5009-15

Matrix: Solid Percent Solids: 92.5

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8270D SIM		1			9738	11/23/16 22:01	NMI	TAL SPK
Total/NA	Prep	3550C			15.34 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 16:23	NMI	TAL SPK

Client Sample ID: MW24-3 (11.5-12) Lab Sample ID: 590-5009-16 **Matrix: Solid**

Date Collected: 11/08/16 12:35

Date Received: 11/14/16 15:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9637	11/16/16 11:00	NMI	TAL SPK

Client Sample ID: MW24-3 (11.5-12) Lab Sample ID: 590-5009-16 **Matrix: Solid**

Date Collected: 11/08/16 12:35

Date Received: 11/14/16 15:15 Percent Solids: 89.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.66 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/23/16 22:27	NMI	TAL SPK
Total/NA	Prep	3550C			15.44 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 16:41	NMI	TAL SPK

Client Sample ID: MW20-1 (2-3) Lab Sample ID: 590-5009-17

Date Collected: 11/08/16 13:50 Date Received: 11/14/16 15:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture					9637	11/16/16 11:00	NMI	TAL SPK	

Client Sample ID: MW20-1 (2-3) Lab Sample ID: 590-5009-17

Date Collected: 11/08/16 13:50

Matrix: Solid Date Received: 11/14/16 15:15 Percent Solids: 74.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.79 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/23/16 22:54	NMI	TAL SPK
Total/NA	Prep	3550C			15.12 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9670	11/18/16 10:18	NMI	TAL SPK

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW20-3 (13-14)

Date Collected: 11/08/16 14:00 Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-19

Matrix: Solid

Batch Dil Initial Batch Batch Final **Prepared Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed **Analyst** Total/NA Analysis Moisture 9637 11/16/16 11:00 NMI TAL SPK

Client Sample ID: MW20-3 (13-14) Lab Sample ID: 590-5009-19

Date Collected: 11/08/16 14:00 Date Received: 11/14/16 15:15

Matrix: Solid Percent Solids: 84.8

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3550C 8270D SIM	Run	Dil Factor	Initial Amount 15.95 g	Final Amount 2 mL	Batch Number 9701 9738			Lab TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	3550C NWTPH-Dx		1	15.17 g	5 mL	9652 9653	11/17/16 11:11 11/17/16 17:34	EAF NMI	TAL SPK TAL SPK

Client Sample ID: MW26-6 (8-9) Lab Sample ID: 590-5009-21

Date Collected: 11/08/16 09:20 Date Received: 11/14/16 15:15

Batch Batch Dil Initial Final **Batch Prepared** Method Amount Number **Prep Type Factor Amount** or Analyzed Type Run Analyst Lab Total/NA Analysis 9637 11/16/16 11:00 NMI TAL SPK Moisture

Client Sample ID: MW26-6 (8-9) Lab Sample ID: 590-5009-21

Date Collected: 11/08/16 09:20

Matrix: Solid

Matrix: Solid

Date Received: 11/14/16 15:15 Percent Solids: 80.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.14 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/23/16 23:46	NMI	TAL SPK
Total/NA	Prep	3550C			15.30 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 17:51	NMI	TAL SPK

Lab Sample ID: 590-5009-23 Client Sample ID: MW21-2 (7-8)

Date Collected: 11/09/16 07:55 Date Received: 11/14/16 15:15

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method Amount Number or Analyzed Type Run **Factor Amount Analyst** Lab Total/NA Analysis Moisture 9637 11/16/16 11:00 NMI TAL SPK

Client Sample ID: MW21-2 (7-8) Lab Sample ID: 590-5009-23

Date Collected: 11/09/16 07:55

Matrix: Solid

Date Received: 11/14/16 15:15 Percent Solids: 84.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.39 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK

TestAmerica Spokane

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW21-2 (7-8)

Date Collected: 11/09/16 07:55 Date Received: 11/14/16 15:15 Lab Sample ID: 590-5009-23

Matrix: Solid Percent Solids: 84.0

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8270D SIM		1			9738	11/24/16 00:12	NMI	TAL SPK
Total/NA	Prep	3550C			15.91 g	5 mL	9652	11/17/16 11:11	EAF	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9653	11/17/16 18:09	NMI	TAL SPK

Client Sample ID: MW21-3 (16-17)

Lab Sample ID: 590-5009-24

Date Collected: 11/09/16 08:00

Date Received: 11/14/16 15:15

Batch Prepared

Dil Batch **Batch** Initial Final Method Туре Factor Amount Amount Number or Analyzed **Prep Type** Run Analyst Lab 9637 11/16/16 11:00 NMI Total/NA Analysis Moisture TAL SPK

Client Sample ID: MW21-3 (16-17)

Date Collected: 11/09/16 08:00

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-24

Matrix: Solid

Percent Solids: 91.4

Prep Type Total/NA	Batch Type Prep	Batch Method 3550C	Run	Dil Factor	Initial Amount 15.57 g	Final Amount 2 mL	Batch Number 9701	Prepared or Analyzed 11/21/16 09:48	Analyst NMI	Lab TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/24/16 00:39	NMI	TAL SPK
Total/NA Total/NA	Prep Analysis	3550C NWTPH-Dx		1	15.42 g	5 mL	9695 9698	11/21/16 08:35 11/21/16 12:26		TAL SPK TAL SPK

Client Sample ID: MW22-1 (6.5-7)

Date Collected: 11/09/16 09:10

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-27

Matrix: Solid

_											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture					9637	11/16/16 11:00	NMI	TAL SPK	-

Client Sample ID: MW22-1 (6.5-7)

Date Collected: 11/09/16 09:10

Date Received: 11/14/16 15:15

Lab Sa	ample	ID:	590-5	009-27

Matrix: Solid Percent Solids: 90.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.77 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/24/16 01:05	NMI	TAL SPK

 Total/NA
 Analysis
 8270D SIM
 1
 9738
 11/24/16 01:05
 NMI
 TAL SPK

 Total/NA
 Prep
 3550C
 15.21 g
 5 mL
 9695
 11/21/16 08:35
 NMI
 TAL SPK

 Total/NA
 Analysis
 NWTPH-Dx
 1
 9698
 11/21/16 13:02
 NMI
 TAL SPK

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW22-2 (15.5-16)

Date Collected: 11/09/16 09:30 Date Received: 11/14/16 15:15 Lab Sample ID: 590-5009-28

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9637	11/16/16 11:00	NMI	TAL SPK

Client Sample ID: MW22-2 (15.5-16)

Date Collected: 11/09/16 09:30

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-28

Matrix: Solid Percent Solids: 84.8

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3550C 8270D SIM	Run	Dil Factor	Initial Amount 15.61 g	Final Amount 2 mL	Batch Number 9701 9738	Prepared or Analyzed 11/21/16 09:48 11/24/16 01:31	Analyst NMI NMI	Lab TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	3550C NWTPH-Dx		1	15.08 g	5 mL	9695 9698	11/21/16 08:35 11/21/16 13:20		TAL SPK TAL SPK

Client Sample ID: MW23-1 (2-3)

Date Collected: 11/09/16 12:30

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-31

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9637	11/16/16 11:00	NMI	TAL SPK

Client Sample ID: MW23-1 (2-3)

Date Collected: 11/09/16 12:30

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-31

Matrix: Solid Percent Solids: 84.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C		-	15.59 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/24/16 01:57	NMI	TAL SPK
Total/NA	Prep	3550C			15.01 g	5 mL	9695	11/21/16 08:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9698	11/21/16 13:38	NMI	TAL SPK

Client Sample ID: MW23-3 (12.5-13)

Date Collected: 11/09/16 12:40

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-33

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9637	11/16/16 11:00	NMI	TAL SPK

Client Sample ID: MW23-3 (12.5-13)

Date Collected: 11/09/16 12:40

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-33

Matrix: Solid

Percent Solids: 88.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.60 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK

TestAmerica Spokane

4

5

Ω

9

11

12

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW23-3 (12.5-13)

Date Collected: 11/09/16 12:40

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-33

Matrix: Solid
Percent Solids: 88.1

Prep Type Total/NA	Batch Type Analysis	Batch Method 8270D SIM	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 9738	Prepared or Analyzed 11/24/16 02:24	Analyst NMI	Lab TAL SPK
Total/NA Total/NA	Prep Analysis	3550C NWTPH-Dx		1	15.40 g	5 mL	9695 9698	11/21/16 08:35 11/21/16 13:52		TAL SPK TAL SPK

Client Sample ID: MW29-3 (13-13.5)

Date Collected: 11/09/16 13:55

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-37
Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9637	11/16/16 11:00	NMI	TAL SPK

Client Sample ID: MW29-3 (13-13.5)

Date Collected: 11/09/16 13:55

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-37

Matrix: Solid

Percent Solids: 90.9

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550C		 -	15.13 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/24/16 02:50	NMI	TAL SPK
Total/NA	Prep	3550C			15.92 g	5 mL	9695	11/21/16 08:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9698	11/21/16 14:09	NMI	TAL SPK

Client Sample ID: MW29-5 (4-5)

Date Collected: 11/09/16 14:35

Date Received: 11/14/16 15:15

_											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1			9637	11/16/16 11:00	NMI	TAL SPK	

Client Sample ID: MW29-5 (4-5)

Date Collected: 11/09/16 14:35

Date Received: 11/14/16 15:15

Lab Sample ID: 590-5009-39

Matrix: Solid

Percent Solids: 81.8

Lab Sample ID: 590-5009-39

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.03 g	2 mL	9701	11/21/16 09:48	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			9738	11/24/16 03:16	NMI	TAL SPK
Total/NA	Prep	3550C			15.83 g	5 mL	9695	11/21/16 08:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9698	11/21/16 14:23	NMI	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5009-1

Laboratory: TestAmerica Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date	
Washington	State Prog	gram	10	C569	01-06-19	
The following englytes	:	-t - loog to a source of the theory t				
,	•			ered by the governing author	ority:	
Analysis Method	Prep Method	rt, but accreditation/o	certification is not offe Analyte	, ,	ority:	
,	•		Analyt	, ,	ority: 	

-

4

5

6

8

9

10

12

Method Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5009-1

Method	Method Description	Protocol	Laboratory
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

5

6

8

4.0

CHAIN OF CUSTODY RECORD

GeoEngineers 523 EAST SECOND AVE. SPOKANE, WASHINGTON 99202 (509) 363-3125

DATE		
PAGE	1	OF V
LAB		
LAR NO		

PROJE	ECT NAME/LOCATION	Colville	Post a	nd Pole	es (CPPI)				ANALYS	IS RE	QUIRE	0		NOTES/COMMENTS
	PROJECT NUMBER	0504-	098-0	/<	, , ,	_								(Preserved, filtered, etc.)
	PROJECT MANAGER	SCAH	Hala	ren		7								
	SAMPLED BY					士	0		1 1					
SAME	PLE IDENTIFICATION	SAMPI	LE COLLE	CTION	# OF	NWTPH	13							
LAB	GEOENGINEERS	DATE	TIME	MATRIX	JARS	3	0				4			
	MWZ8-1(1)	11/07/16	12:35	5	1	X	X							Location: CPPI
	MWZ8-Z(185)	1	12:50	1	1	X	X							
	MWZ7-1 (Z-Z5)		14:35											
	MW27-2(9-10)		14:45			X	X							(12-13)
	MW27-3(16-17)		14:55			×	X							
	MW27-4(8,5=9)		15:10											
	MW26-1(3-4)	11/8/16	7:35											
	MW26-2(125-13)		8100											
	MW26-3(16-17)		8:05											
	MWZ6-4(20-21)		8:15		1									
	()													
	UISHEDBY	FIRM THE	Engine	RELINGL	JISHED BY			FIRM				SHED BY		FIRM
SIGNAT	URE from Sc	ocual		SIGNATU						-	IGNATU			
DATE	DNAME Juson Be	TIME 5		PRINTED	NAME	TIM	F				RINTED I	NAME		TIME
RECEIV	ALC: N	FIRM TA		RECEIVE	D BY	- 11111		FIRM			ECEIVE	BY		FIRM
	URE Shelles			SIGNATU	JRE					s	IGNATU	RE		
		rate		PRINTED	NAME	-					RINTED	NAME		
	11/14/10	TIME	Decc	DATE		TIM	E			10	ATE			TIME
ADDIT	TIONAL COMMENTS:		- 10											
						-		-		-				
-		-	1975			-								
-										-		590-5009 C	hain of Custo	Juy

Page 30 of 33

CHAIN OF CUSTODY RECORD

GeoEngineers 523 EAST SECOND AVE. SPOKANE, WASHINGTON 99202 (509) 363-3125

- 4

ROJE	CT NAME/LOCATION	Colville	Post and	Poles (CPPI)			Al	NALYSIS	REQU	JIRED			NOTES/COMMENTS
	PROJECT NUMBER	0504	098-1	DI)									(Preserved, filtered, etc.)
	PROJECT MANAGER	Scott	Lath	en		-DX		1 1			1			
	SAMPLED BY						_	1 1						
AMP	LE IDENTIFICATION	SAMPI	E COLLE	CTION	# OF	MATWN	PCP							
AB	GEOENGINEERS	DATE	TIME	MATRIX	JARS	N N	A							
	MW26-5(25.5-26)	11/08/16	8:40	5	1	X	X						1	catron: CPPI
	MWZS-1(5.5-6.5)	1	9:55		1	X	X							
	MW 25-2(9.5-10)		10:05			X	X							
	MW24-1/2-2.5		12:20											
	MWZ4-Z(6,5-7)		12:25			X	X							
- 1	MW24-3(115-12)		12:35			X	X							
	MW20-1(2-3)		1350			X	X							
	MWZO-2 (6.5-7.5)		13.55											
	MW20-3(13-14)		1400			X	X							
	MW20-4(5-6)		14:35	1										
	UISHED BY RAMAN	FIRM SOI	Engineers	RELINQUIS				FIRM		_	NQUISHE	D BY		FIRM
	D NAME BOSON BER	le mada	1200	SIGNATUR PRINTED N						-	TED NAM	(F	-	
	1/14/16	TIME	15	DATE	U IIII L	TIM	E			DATI			TIM	E
-		FIRMTA	Spok	RECEIVED	BY			FIRM		REC	EIVED BY			FIRM
	URE Mulas	mad		SIGNATUR						-	IATURE			
	DNAME Shella K	TIME 1	515	PRINTED N	NAME	TIM	E			DATI	TED NAM	1E	TIM	<u> </u>
	IONAL COMMENTS:		CIECO			1114				DAI			TilVi	<u> </u>
ווע	IONAL COMMENTS.	2.7	THU	25		7	-					-		
					-									

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT

Work Order #: CLIENT: INVOICE TO: TURNAROUND REQUEST in Business Days * REPORT TO: ADDRESS: Organic & Inorganic Analyses PHONE: P.O. NUMBER: PROJECT NAME: Colville Post and Poles (CPPI) PRESERVATIVE 2 PROJECT NUMBER: 0504-098-0 REQUESTED ANALYSES SAMPLED BY: Turnaround Requests less than standard may incur Rush Charges TO TO CLIENT SAMPLE SAMPLING #OF LOCATION/ MATRIX IDENTIFICATION DATE/TIME CONT. COMMENTS WOID (W. S. O) 33 GPPI ō 31 Page X X X X RECEIVED BY TIME. PRINT NAME RELEASED BY DATE: RECEIVED BY: PRINT NAME FIRM: TIME PRINT NAME ADDITIONAL REMARKS TEMP:

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #: CLIENT: INVOICE TO: TURNAROUND REQUEST in Business Days * REPORT TO: ADDRESS: Organic & Inorganic Analyses PHONE: P.O. NUMBER: Petroleum Hydrocarbon Analyses PROJECT NAME: Colville Post and Poles (CPPI) PRESERVATIVE PROJECT NUMBER: 0504-098-01 REQUESTED ANALYSES SAMPLED BY: DJB Turnaround Requests less than standard may incur Rush Charges. YO-CLIENT SAMPLE SAMPLING #OF LOCATION/ MATRIX IDENTIFICATION COMMENTS DATE/TIME (W, S, O) CONT. WOID 33 GPPT MW22-41 ₹ Page 32 X MW23-1 Z:30 12:37 12:40 110916 13:15 13:50 0.5-1.5 10916 13:55 13:55 14:10 5-7 14:35 DATE: 11/14/16 RECEIVED BY 15:15 PRINT NAME TIME PRINT NAME FIRM: RELEASED BY DATE RECEIVED BY: PRINT NAME FIRM: PRINT NAME FIRM: ADDITIONAL REMARKS TEMP:

Job Number: 590-5009-1

Login Number: 5009 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

Creator. Matz, Oriena J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-5185-1

Client Project/Site: Colville Post and Pole/0504-098-01

Revision: 1

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

dancue trington

Authorized for release by: 5/9/2018 1:15:01 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	
Chronicle	42
Certification Summary	56
Method Summary	58
Chain of Custody	59
Receipt Checklists	77
Isotope Dilution Summary	80

Case Narrative

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Job ID: 590-5185-1

Laboratory: TestAmerica Spokane

Narrative

Revision

The 8270D data was re-evaluated down to the MDL per the clients request.

Receipt

The samples were received on 12/9/2016 12:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 5 coolers at receipt time were 1.8° C, 2.2° C, 2.3° C, 3.0° C and 4.6° C.

Receipt Exceptions

The following sample was submitted for analysis: however, it was not listed on the Chain-of-Custody (COC): Seep-1:GW:120716 (590-5185-94) and Seep-2:GW:120716 (590-5185-95)

The following samples were canceled for 6010C Cadmium and 7471A Mercury by the client on 12/12/2016: HA-15 (0-6") (590-5185-43), HA-16 (0-6") (590-5185-46) and HA-17 (0-6") (590-5185-49).

The following samples were activated for NWTPH-Dx analysis by the client on 12/12/2016: HA-15 (0-6") (590-5185-43), HA-16 (0-6") (590-5185-46) and HA-17 (0-6") (590-5185-49). This analysis was not originally requested on the chain-of-custody (COC).

The following sample was canceled for 6010C Cadmium and 7471A Mercury by the client on 12/12/2016: Seep-1 (6-12") (590-5185-108) and Seep-2 (6-12"') (590-5185-109).

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: Detected hydrocarbons appear to be due to oil as well as biogenic interference in the following samples: HA-1 (0-6") (590-5185-10), HA-36 (0-6") (590-5185-13), HA-37 (0-6") (590-5185-16), HA-15 (0-6") (590-5185-43) and HA-17 (0-6") (590-5185-49).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Dioxin

Method 8290A: The concentration of OCDD associated with the following samples exceeded the instrument calibration range: HA-32 (0-6") (590-5185-25), HA-2 (0-6") (590-5185-7), HA-21 (0-6") (590-5185-85) and HA-11 (0-6") (590-5185-67). These analytes have been qualified; however, the peak did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

Sample Summary

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-5185-1	HA-4 (0-6')	Solid	12/06/16 11:40	12/09/16 12:10
590-5185-4	HA-3 (0-6")	Solid	12/06/16 12:05	12/09/16 12:10
590-5185-7	HA-2 (0-6")	Solid	12/06/16 12:25	12/09/16 12:10
590-5185-10	HA-1 (0-6")	Solid	12/06/16 12:45	12/09/16 12:10
590-5185-13	HA-36 (0-6")	Solid	12/06/16 13:05	12/09/16 12:10
590-5185-16	HA-37 (0-6")	Solid	12/06/16 13:25	12/09/16 12:10
590-5185-19	HA-14 (0-6")	Solid	12/06/16 14:00	12/09/16 12:10
590-5185-22	HA-13 (0-6")	Solid	12/06/16 14:35	12/09/16 12:10
590-5185-25	HA-32 (0-6")	Solid	12/06/16 15:00	12/09/16 12:10
590-5185-28	HA-8 (0-6")	Solid	12/06/16 15:30	12/09/16 12:10
590-5185-31	HA-6 (0-6")	Solid	12/06/16 15:45	12/09/16 12:10
590-5185-34	HA-5 (0-6")	Solid	12/06/16 16:05	12/09/16 12:10
590-5185-37	HA-7 (0-6")	Solid	12/06/16 16:20	12/09/16 12:10
590-5185-40	HA-9 (0-6")	Solid	12/07/16 08:30	12/09/16 12:10
590-5185-43	HA-15 (0-6")	Solid	12/07/16 09:10	12/09/16 12:10
590-5185-46	HA-16 (0-6")	Solid	12/07/16 09:30	12/09/16 12:10
590-5185-49	HA-17 (0-6")	Solid	12/07/16 09:50	12/09/16 12:10
590-5185-52	HA-35 (0-6")	Solid	12/07/16 10:10	12/09/16 12:10
590-5185-55	HA-24 (0-6")	Solid	12/07/16 10:35	12/09/16 12:10
590-5185-58	HA-25 (0-6")	Solid	12/07/16 10:50	12/09/16 12:10
590-5185-61	HA-12 (0-6")	Solid	12/07/16 11:55	12/09/16 12:10
590-5185-64	HA-38 (0-6")	Solid	12/07/16 12:10	12/09/16 12:10
590-5185-67	HA-11 (0-6")	Solid	12/07/16 12:35	12/09/16 12:10
590-5185-70	HA-22 (0-6")	Solid	12/07/16 13:35	12/09/16 12:10
590-5185-73	HA-20 (0-6")	Solid	12/07/16 13:50	12/09/16 12:10
590-5185-76	HA-18 (0-6")	Solid	12/07/16 14:20	12/09/16 12:10
590-5185-79	HA-10 (0-6")	Solid	12/07/16 14:05	12/09/16 12:10
590-5185-82	HA-19 (0-6")	Solid	12/07/16 14:45	12/09/16 12:10
590-5185-85	HA-21 (0-6")	Solid	12/07/16 15:05	12/09/16 12:10
590-5185-88	HA-23 (0-6")	Solid	12/07/16 15:30	12/09/16 12:10
590-5185-91	HA-26 (0-6")	Solid	12/07/16 11:05	12/09/16 12:10
590-5185-94	Seep-1:GW:120716	Water	12/07/16 14:06	12/09/16 12:10
590-5185-95	Seep-2:GW:120716	Water	12/07/16 14:57	
590-5185-96	HA-27 (0-6")	Solid	12/07/16 15:45	12/09/16 12:10
590-5185-99	HA-28 (0-6")	Solid	12/07/16 16:00	12/09/16 12:10
590-5185-102	HA-30 (0-6")	Solid	12/07/16 16:20	12/09/16 12:10
590-5185-105	HA-29 (0-6")	Solid	12/07/16 16:35	
590-5185-108	Seep-1 (6-12")	Solid	12/07/16 12:00	
590-5185-109	Seep-2 (6-12"')	Solid	12/07/16 12:05	

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Qualifier Description

TestAmerica Job ID: 590-5185-1

Qualifiers

GC/MS Semi VOA

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

F1 MS and/or MSD Recovery is outside acceptance limits.

Dioxin

Qualifier

E Result exceeded calibration range.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
0/ 5	B 4B

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

A

4

E

8

9

4 4

12

1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Client Sample ID: HA-4 (0-6') Lab Sample ID: 590-5185-1

Date Collected: 12/06/16 11:40 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 75.7

Analyte	Result (Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND		130		pg/g	<u> </u>	12/15/16 06:24	12/23/16 23:26	1
2,3,7,8-TCDF	ND		130		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
1,2,3,7,8-PeCDD	ND		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
1,2,3,7,8-PeCDF	ND		660		pg/g	₽	12/15/16 06:24	12/23/16 23:26	1
2,3,4,7,8-PeCDF	ND		660		pg/g	☼	12/15/16 06:24	12/23/16 23:26	1
1,2,3,4,7,8-HxCDD	ND		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
1,2,3,6,7,8-HxCDD	780		660		pg/g		12/15/16 06:24	12/23/16 23:26	1
1,2,3,7,8,9-HxCDD	ND		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
1,2,3,4,7,8-HxCDF	ND		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
1,2,3,6,7,8-HxCDF	ND		660		pg/g	₩.	12/15/16 06:24	12/23/16 23:26	1
1,2,3,7,8,9-HxCDF	ND		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
2,3,4,6,7,8-HxCDF	ND		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
1,2,3,4,6,7,8-HpCDD	24000		660		pg/g		12/15/16 06:24	12/23/16 23:26	1
1,2,3,4,6,7,8-HpCDF	5500		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
1,2,3,4,7,8,9-HpCDF	ND		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
OCDD	220000		1300		pg/g		12/15/16 06:24	12/23/16 23:26	1
OCDF	18000		1300		pg/g	☼	12/15/16 06:24	12/23/16 23:26	1
Total TCDD	ND		130		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
Total TCDF	ND		130		pg/g		12/15/16 06:24	12/23/16 23:26	1
Total PeCDD	ND		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
Total PeCDF	ND		660		pg/g	☼	12/15/16 06:24	12/23/16 23:26	1
Total HxCDD	3300		660		pg/g		12/15/16 06:24	12/23/16 23:26	1
Total HxCDF	3300		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
Total HpCDD	40000		660		pg/g	₩	12/15/16 06:24	12/23/16 23:26	1
Total HpCDF	16000		660		pg/g	₽	12/15/16 06:24	12/23/16 23:26	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	102		40 - 135				12/15/16 06:24	12/23/16 23:26	1
13C-2,3,7,8-TCDF	89		40 - 135				12/15/16 06:24	12/23/16 23:26	1
13C-1,2,3,7,8-PeCDD	102		40 - 135				12/15/16 06:24	12/23/16 23:26	1
13C-1,2,3,7,8-PeCDF	93		40 - 135				12/15/16 06:24	12/23/16 23:26	1
13C-1,2,3,6,7,8-HxCDD	102		40 - 135				12/15/16 06:24	12/23/16 23:26	1
13C-1,2,3,4,7,8-HxCDF	95		40 - 135				12/15/16 06:24	12/23/16 23:26	1

Lab Sample ID: 590-5185-4 Client Sample ID: HA-3 (0-6") Date Collected: 12/06/16 12:05 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 71.7

40 - 135

40 - 135

40 - 135

119

103

128

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	280		pg/g	\	12/15/16 06:24	12/24/16 00:12	1
2,3,7,8-TCDF	ND	280		pg/g	₽	12/15/16 06:24	12/24/16 00:12	1
1,2,3,7,8-PeCDD	ND	1400		pg/g	≎	12/15/16 06:24	12/24/16 00:12	1
1,2,3,7,8-PeCDF	ND	1400		pg/g	₩.	12/15/16 06:24	12/24/16 00:12	1
2,3,4,7,8-PeCDF	ND	1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
1,2,3,4,7,8-HxCDD	ND	1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
1,2,3,6,7,8-HxCDD	2900	1400		pg/g		12/15/16 06:24	12/24/16 00:12	1

TestAmerica Spokane

Page 6 of 81

12/15/16 06:24 12/23/16 23:26

12/15/16 06:24 12/23/16 23:26

12/15/16 06:24 12/23/16 23:26

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Lab Sample ID: 590-5185-4

12/15/16 06:24 12/24/16 00:12

12/15/16 06:24 12/24/16 00:12

12/15/16 06:24 12/24/16 00:12

12/15/16 06:24 12/24/16 00:12

12/15/16 06:24 12/24/16 00:12

TestAmerica Job ID: 590-5185-1

Client Sample ID: HA-3 (0-6")

Date Collected: 12/06/16 12:05 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 71.7

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND		1400		pg/g	<u> </u>	12/15/16 06:24	12/24/16 00:12	1
1,2,3,4,7,8-HxCDF	ND		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
1,2,3,6,7,8-HxCDF	ND		1400		pg/g	₩.	12/15/16 06:24	12/24/16 00:12	1
1,2,3,7,8,9-HxCDF	ND		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
2,3,4,6,7,8-HxCDF	ND		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
1,2,3,4,6,7,8-HpCDD	73000		1400		pg/g		12/15/16 06:24	12/24/16 00:12	1
1,2,3,4,6,7,8-HpCDF	5400		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
1,2,3,4,7,8,9-HpCDF	ND		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
OCDD	650000		2800		pg/g	φ.	12/15/16 06:24	12/24/16 00:12	1
OCDF	15000		2800		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
Total TCDD	ND		280		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
Total TCDF	ND		280		pg/g		12/15/16 06:24	12/24/16 00:12	1
Total PeCDD	ND		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
Total PeCDF	ND		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
Total HxCDD	9200		1400		pg/g	₽	12/15/16 06:24	12/24/16 00:12	1
Total HxCDF	6200		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
Total HpCDD	130000		1400		pg/g	₩	12/15/16 06:24	12/24/16 00:12	1
Total HpCDF	20000		1400		pg/g	\$	12/15/16 06:24	12/24/16 00:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	100		40 - 135				12/15/16 06:24	12/24/16 00:12	1
13C-2,3,7,8-TCDF	86		40 - 135				12/15/16 06:24	12/24/16 00:12	1
13C-1,2,3,7,8-PeCDD	101		40 - 135				12/15/16 06:24	12/24/16 00:12	1
13C-1,2,3,7,8-PeCDF	93		40 - 135				12/15/16 06:24	12/24/16 00:12	1

Client Sample ID: HA-2 (0-6") Lab Sample ID: 590-5185-7 Date Collected: 12/06/16 12:25 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 88.7

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

101

94

118

100

126

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	4.7	pg/g	₩	12/15/16 08:58	12/23/16 07:10	1
2,3,7,8-TCDF	ND	4.7	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,7,8-PeCDD	ND	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,7,8-PeCDF	ND	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
2,3,4,7,8-PeCDF	ND	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,4,7,8-HxCDD	ND	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,6,7,8-HxCDD	97	23	pg/g	≎	12/15/16 08:58	12/23/16 07:10	1
1,2,3,7,8,9-HxCDD	49	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,4,7,8-HxCDF	ND	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,6,7,8-HxCDF	ND	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,7,8,9-HxCDF	ND	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
2,3,4,6,7,8-HxCDF	ND	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,4,6,7,8-HpCDD	2400	23	pg/g	₽	12/15/16 08:58	12/23/16 07:10	1
1,2,3,4,6,7,8-HpCDF	230	23	pg/g	☼	12/15/16 08:58	12/23/16 07:10	1

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-2 (0-6")

Date Collected: 12/06/16 12:25

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-7

Matrix: Solid

Percent Solids: 88.7

Method: 8290A - Dioxins Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		23	 pg/g	₩	12/15/16 08:58	12/23/16 07:10	1
OCDD	21000	E	47	pg/g	φ.	12/15/16 08:58	12/23/16 07:10	1
OCDF	670		47	pg/g	☼	12/15/16 08:58	12/23/16 07:10	1
Total TCDD	ND		4.7	pg/g	☼	12/15/16 08:58	12/23/16 07:10	1
Total TCDF	ND		4.7	pg/g	\$	12/15/16 08:58	12/23/16 07:10	1
Total PeCDD	ND		23	pg/g	☼	12/15/16 08:58	12/23/16 07:10	1
Total PeCDF	ND		23	pg/g	☼	12/15/16 08:58	12/23/16 07:10	1
Total HxCDD	400		23	pg/g		12/15/16 08:58	12/23/16 07:10	1
Total HxCDF	220		23	pg/g	☼	12/15/16 08:58	12/23/16 07:10	1
Total HpCDD	4300		23	pg/g	≎	12/15/16 08:58	12/23/16 07:10	1
Total HpCDF	720		23	pg/g	₩	12/15/16 08:58	12/23/16 07:10	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	82		40 - 135			12/15/16 08:58	12/23/16 07:10	1
13C-2,3,7,8-TCDF	70		40 - 135			12/15/16 08:58	12/23/16 07:10	1
13C-1,2,3,7,8-PeCDD	64		40 - 135			12/15/16 08:58	12/23/16 07:10	1
13C-1,2,3,7,8-PeCDF	70		40 - 135			12/15/16 08:58	12/23/16 07:10	1
13C-1,2,3,6,7,8-HxCDD	80		40 - 135			12/15/16 08:58	12/23/16 07:10	1
13C-1,2,3,4,7,8-HxCDF	80		40 - 135			12/15/16 08:58	12/23/16 07:10	1
13C-1,2,3,4,6,7,8-HpCDD	92		40 - 135			12/15/16 08:58	12/23/16 07:10	1
13C-1,2,3,4,6,7,8-HpCDF	90		40 - 135			12/15/16 08:58	12/23/16 07:10	1
13C-OCDD	103		40 - 135			12/15/16 08:58	12/23/16 07:10	1

Client Sample ID: HA-1 (0-6")

Date Collected: 12/06/16 12:45 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-10

Matrix: Solid Percent Solids: 61.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	680		80	13	ug/Kg	<u></u>	12/15/16 09:22	12/15/16 15:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	75		38 - 123				12/15/16 09:22	12/15/16 15:09	1
Nitrobenzene-d5	63		23 - 120				12/15/16 09:22	12/15/16 15:09	1
p-Terphenyl-d14	92		68 - 136				12/15/16 09:22	12/15/16 15:09	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	72		16		mg/Kg		12/13/16 10:05	12/13/16 11:01	1
Residual Range Organics (RRO) (C25-C36)	270		39		mg/Kg	\$	12/13/16 10:05	12/13/16 11:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98		50 - 150				12/13/16 10:05	12/13/16 11:01	1
n-Triacontane-d62	95		50 - 150				12/13/16 10:05	12/13/16 11:01	1

Method: 8290A - Dioxins and Furans (HRGC/HRMS)									
	Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac	
	2,3,7,8-TCDD	ND ND	41	pg/g	\	12/15/16 06:24	12/24/16 00:59	1	
	2,3,7,8-TCDF	ND	41	pg/g	₩	12/15/16 06:24	12/24/16 00:59	1	
	1,2,3,7,8-PeCDD	ND	200	pg/g	☼	12/15/16 06:24	12/24/16 00:59	1	

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-1 (0-6")

Date Collected: 12/06/16 12:45 Date Received: 12/09/16 12:10 Lab Sample ID: 590-5185-10

Matrix: Solid

Percent Solids: 61.1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8-PeCDF	ND		200		pg/g	<u> </u>	12/15/16 06:24	12/24/16 00:59	1
2,3,4,7,8-PeCDF	ND		200		pg/g		12/15/16 06:24	12/24/16 00:59	1
1,2,3,4,7,8-HxCDD	ND		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
1,2,3,6,7,8-HxCDD	390		200		pg/g	₽	12/15/16 06:24	12/24/16 00:59	1
1,2,3,7,8,9-HxCDD	ND		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
1,2,3,4,7,8-HxCDF	ND		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
1,2,3,6,7,8-HxCDF	ND		200		pg/g		12/15/16 06:24	12/24/16 00:59	1
1,2,3,7,8,9-HxCDF	ND		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
2,3,4,6,7,8-HxCDF	ND		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
1,2,3,4,6,7,8-HpCDD	9900		200		pg/g	₽	12/15/16 06:24	12/24/16 00:59	1
1,2,3,4,6,7,8-HpCDF	950		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
1,2,3,4,7,8,9-HpCDF	ND		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
OCDD	87000		410		pg/g		12/15/16 06:24	12/24/16 00:59	1
OCDF	3500		410		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
Total TCDD	ND		41		pg/g	☼	12/15/16 06:24	12/24/16 00:59	1
Total TCDF	ND		41		pg/g	₩.	12/15/16 06:24	12/24/16 00:59	1
Total PeCDD	ND		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
Total PeCDF	ND		200		pg/g	₩	12/15/16 06:24	12/24/16 00:59	1
Total HxCDD	1400		200		pg/g		12/15/16 06:24	12/24/16 00:59	1
Total HxCDF	930		200		pg/g	☼	12/15/16 06:24	12/24/16 00:59	1
Total HpCDD	17000		200		pg/g	☼	12/15/16 06:24	12/24/16 00:59	1
Total HpCDF	3300		200		pg/g	₩.	12/15/16 06:24	12/24/16 00:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	96		40 - 135				12/15/16 06:24	12/24/16 00:59	1
13C-2,3,7,8-TCDF	85		40 - 135				12/15/16 06:24	12/24/16 00:59	1
13C-1,2,3,7,8-PeCDD	96		40 - 135				12/15/16 06:24	12/24/16 00:59	1
13C-1,2,3,7,8-PeCDF	90		40 - 135				12/15/16 06:24	12/24/16 00:59	1
13C-1,2,3,6,7,8-HxCDD	99		40 - 135				12/15/16 06:24	12/24/16 00:59	1
13C-1,2,3,4,7,8-HxCDF	86		40 - 135				12/15/16 06:24	12/24/16 00:59	1
13C-1,2,3,4,6,7,8-HpCDD	117		40 - 135				12/15/16 06:24	12/24/16 00:59	1
13C-1,2,3,4,6,7,8-HpCDF	101		40 - 135				12/15/16 06:24	12/24/16 00:59	1
							404540000	40/04/40 00 ==	

Client Sample ID: HA-36 (0-6")

Date Collected: 12/06/16 13:05

13C-OCDD

Date Received: 12/09/16 12:10

125

Lab Sample ID: 590-5185-13
Matrix: Solid

12/15/16 06:24 12/24/16 00:59

Percent Solids: 45.9

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac 100 Pentachlorophenol 310 17 ug/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl (Surr) 78 38 - 123 12/15/16 09:22 12/15/16 15:35 Nitrobenzene-d5 70 23 - 120 12/15/16 09:22 12/15/16 15:35 p-Terphenyl-d14 96 68 - 136 12/15/16 09:22 12/15/16 15:35

40 - 135

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (DRO) (C10-C25)	59	21		mg/Kg	₩	12/13/16 10:05	12/13/16 11:18	1

6

TestAmerica Job ID: 590-5185-1

Client Sample ID: HA-36 (0-6")

Date Collected: 12/06/16 13:05 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-13

Matrix: Solid Percent Solids: 45.9

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 斑 52 <u>12/13/16 10:05</u> <u>12/13/16 11:18</u> **Residual Range Organics (RRO)** 230 mg/Kg

(C25-C36)

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 97 50 - 150 12/13/16 10:05 12/13/16 11:18 n-Triacontane-d62 101 50 - 150 12/13/16 10:05 12/13/16 11:18

Client Sample ID: HA-37 (0-6") Lab Sample ID: 590-5185-16

Date Collected: 12/06/16 13:25 Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 85.3

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac 9.3 ug/Kg 12/15/16 09:22 12/15/16 16:53 Pentachlorophenol 120 F1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 38 - 123 <u>12/15/16 09:22</u> <u>12/15/16 16:53</u> 2-Fluorobiphenyl (Surr) 76 63 Nitrobenzene-d5 23 - 120 12/15/16 09:22 12/15/16 16:53 96 68 - 136 12/15/16 09:22 12/15/16 16:53 p-Terphenyl-d14

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

ND

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 11 25 mg/Kg <u>12/13/16 10:05</u> <u>12/13/16 11:53</u> **Diesel Range Organics (DRO)** (C10-C25)29 mg/Kg 12/13/16 10:05 12/13/16 11:53 **Residual Range Organics (RRO)** 97

(C25-C36)

1,2,3,4,7,8,9-HpCDF

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 50 - 150 12/13/16 10:05 12/13/16 11:53 101 12/13/16 10:05 12/13/16 11:53 n-Triacontane-d62 103 50 - 150

Client Sample ID: HA-14 (0-6")

Lab Sample ID: 590-5185-19 Date Collected: 12/06/16 14:00 Matrix: Solid

Date Received: 12/09/16 12:10 Percent Solids: 85.5

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD		13	pg/g	-	12/15/16 06:24	12/24/16 01:45	1
2,3,7,8-TCDF	ND	13	pg/g	₽	12/15/16 06:24	12/24/16 01:45	1
1,2,3,7,8-PeCDD	ND	65	pg/g	₽	12/15/16 06:24	12/24/16 01:45	1
1,2,3,7,8-PeCDF	ND	65	pg/g	Φ	12/15/16 06:24	12/24/16 01:45	1
2,3,4,7,8-PeCDF	ND	65	pg/g	₽	12/15/16 06:24	12/24/16 01:45	1
1,2,3,4,7,8-HxCDD	ND	65	pg/g	₽	12/15/16 06:24	12/24/16 01:45	1
1,2,3,6,7,8-HxCDD	210	65	pg/g	Φ.	12/15/16 06:24	12/24/16 01:45	1
1,2,3,7,8,9-HxCDD	150	65	pg/g	₽	12/15/16 06:24	12/24/16 01:45	1
1,2,3,4,7,8-HxCDF	ND	65	pg/g	₽	12/15/16 06:24	12/24/16 01:45	1
1,2,3,6,7,8-HxCDF	ND	65	pg/g	Φ.	12/15/16 06:24	12/24/16 01:45	1
1,2,3,7,8,9-HxCDF	ND	65	pg/g	₽	12/15/16 06:24	12/24/16 01:45	1
2,3,4,6,7,8-HxCDF	ND	65	pg/g	≎	12/15/16 06:24	12/24/16 01:45	1
1,2,3,4,6,7,8-HpCDD	5300	65	pg/g	Φ	12/15/16 06:24	12/24/16 01:45	1
1,2,3,4,6,7,8-HpCDF	1000	65	pg/g	₽	12/15/16 06:24	12/24/16 01:45	1

TestAmerica Spokane

12/15/16 06:24 12/24/16 01:45

65

pg/g

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-14 (0-6")

Client: GeoEngineers Inc

Lab Sample ID: 590-5185-19 Date Collected: 12/06/16 14:00

Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 85.5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDD	51000		130		pg/g	<u> </u>	12/15/16 06:24	12/24/16 01:45	1
OCDF	3000		130		pg/g	φ.	12/15/16 06:24	12/24/16 01:45	1
Total TCDD	ND		13		pg/g	₩	12/15/16 06:24	12/24/16 01:45	1
Total TCDF	ND		13		pg/g		12/15/16 06:24	12/24/16 01:45	1
Total PeCDD	ND		65		pg/g	☼	12/15/16 06:24	12/24/16 01:45	1
Total PeCDF	ND		65		pg/g	₩	12/15/16 06:24	12/24/16 01:45	1
Total HxCDD	980		65		pg/g		12/15/16 06:24	12/24/16 01:45	1
Total HxCDF	960		65		pg/g	☼	12/15/16 06:24	12/24/16 01:45	1
Total HpCDD	9000		65		pg/g	☼	12/15/16 06:24	12/24/16 01:45	1
Total HpCDF	3100		65		pg/g	₽	12/15/16 06:24	12/24/16 01:45	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	121		40 - 135				12/15/16 06:24	12/24/16 01:45	1
13C-2,3,7,8-TCDF	63		40 - 135				12/15/16 06:24	12/24/16 01:45	1
13C-1,2,3,7,8-PeCDD	73		40 - 135				12/15/16 06:24	12/24/16 01:45	1
13C-1,2,3,7,8-PeCDF	66		40 - 135				12/15/16 06:24	12/24/16 01:45	1
13C-1,2,3,6,7,8-HxCDD	79		40 - 135				12/15/16 06:24	12/24/16 01:45	1
13C-1,2,3,4,7,8-HxCDF	62		40 - 135				12/15/16 06:24	12/24/16 01:45	1
13C-1,2,3,4,6,7,8-HpCDD	101		40 - 135				12/15/16 06:24	12/24/16 01:45	1
13C-1,2,3,4,6,7,8-HpCDF	83		40 - 135				12/15/16 06:24	12/24/16 01:45	1
	114		40 - 135					12/24/16 01:45	

Client Sample ID: HA-13 (0-6") Lab Sample ID: 590-5185-22 Date Collected: 12/06/16 14:35 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 82.1

Analyte	Result Q	ualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	170		pg/g		12/15/16 06:24	12/24/16 02:31	1
2,3,7,8-TCDF	ND	170		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
1,2,3,7,8-PeCDD	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
1,2,3,7,8-PeCDF	ND	870		pg/g	φ.	12/15/16 06:24	12/24/16 02:31	1
2,3,4,7,8-PeCDF	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
1,2,3,4,7,8-HxCDD	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
1,2,3,6,7,8-HxCDD	970	870		pg/g	φ.	12/15/16 06:24	12/24/16 02:31	1
1,2,3,7,8,9-HxCDD	990	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
1,2,3,4,7,8-HxCDF	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
1,2,3,6,7,8-HxCDF	ND	870		pg/g	ф.	12/15/16 06:24	12/24/16 02:31	1
1,2,3,7,8,9-HxCDF	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
2,3,4,6,7,8-HxCDF	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
1,2,3,4,6,7,8-HpCDD	37000	870		pg/g	₩.	12/15/16 06:24	12/24/16 02:31	1
1,2,3,4,6,7,8-HpCDF	8600	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
1,2,3,4,7,8,9-HpCDF	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
OCDD	330000	1700		pg/g	₩.	12/15/16 06:24	12/24/16 02:31	1
OCDF	36000	1700		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
Total TCDD	ND	170		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
Total TCDF	ND	170		pg/g		12/15/16 06:24	12/24/16 02:31	1
Total PeCDD	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
Total PeCDF	ND	870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
Total HxCDD	4900	870		pg/g		12/15/16 06:24	12/24/16 02:31	1

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5185-22

Matrix: Solid

TestAmerica Job ID: 590-5185-1

Percent Solids: 82.1

Client Sample ID: HA-13 (0-6")

Date Collected: 12/06/16 14:35 Date Received: 12/09/16 12:10

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDF	4500		870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
Total HpCDD	57000		870		pg/g	☼	12/15/16 06:24	12/24/16 02:31	1
Total HpCDF	25000		870		pg/g	₩	12/15/16 06:24	12/24/16 02:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	91		40 - 135				12/15/16 06:24	12/24/16 02:31	1
13C-2,3,7,8-TCDF	82		40 - 135				12/15/16 06:24	12/24/16 02:31	1
13C-1,2,3,7,8-PeCDD	98		40 - 135				12/15/16 06:24	12/24/16 02:31	1
13C-1,2,3,7,8-PeCDF	89		40 - 135				12/15/16 06:24	12/24/16 02:31	1
13C-1,2,3,6,7,8-HxCDD	95		40 - 135				12/15/16 06:24	12/24/16 02:31	1
13C-1,2,3,4,7,8-HxCDF	79		40 - 135				12/15/16 06:24	12/24/16 02:31	1
13C-1,2,3,4,6,7,8-HpCDD	111		40 - 135				12/15/16 06:24	12/24/16 02:31	1
13C-1,2,3,4,6,7,8-HpCDF	96		40 - 135				12/15/16 06:24	12/24/16 02:31	1
13C-OCDD	122		40 - 135				12/15/16 06:24	12/24/16 02:31	1

Client Sample ID: HA-32 (0-6")

Date Collected: 12/06/16 15:00

Date Received: 12/09/16 12:10

13C-1,2,3,7,8-PeCDD

Lab Sample ID: 590-5185-25 **Matrix: Solid**

Percent Solids: 91.4

Jale Received. 12/05/16	12.10							Percent Sond	5. 31.4
Method: 8290A - Dioxins Analyte	•	GC/HRMS) Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	<u> </u>	3.6		pg/g		12/15/16 06:24		1
2,3,7,8-TCDF	ND		3.6		pg/g	≎	12/15/16 06:24	12/24/16 03:17	1
1,2,3,7,8-PeCDD	ND		18		pg/g	≎	12/15/16 06:24	12/24/16 03:17	1
1,2,3,7,8-PeCDF	ND		18		pg/g		12/15/16 06:24	12/24/16 03:17	1
2,3,4,7,8-PeCDF	ND		18		pg/g	₩	12/15/16 06:24	12/24/16 03:17	1
1,2,3,4,7,8-HxCDD	ND		18		pg/g	☼	12/15/16 06:24	12/24/16 03:17	1
1,2,3,6,7,8-HxCDD	82		18		pg/g		12/15/16 06:24	12/24/16 03:17	1
1,2,3,7,8,9-HxCDD	44		18		pg/g	₩	12/15/16 06:24	12/24/16 03:17	1
1,2,3,4,7,8-HxCDF	ND		18		pg/g	₩	12/15/16 06:24	12/24/16 03:17	1
1,2,3,6,7,8-HxCDF	ND		18		pg/g		12/15/16 06:24	12/24/16 03:17	1
1,2,3,7,8,9-HxCDF	ND		18		pg/g	₽	12/15/16 06:24	12/24/16 03:17	1
2,3,4,6,7,8-HxCDF	ND		18		pg/g	≎	12/15/16 06:24	12/24/16 03:17	1
1,2,3,4,6,7,8-HpCDD	1900		18		pg/g	₩	12/15/16 06:24	12/24/16 03:17	1
1,2,3,4,6,7,8-HpCDF	250		18		pg/g	≎	12/15/16 06:24	12/24/16 03:17	1
1,2,3,4,7,8,9-HpCDF	ND		18		pg/g	☼	12/15/16 06:24	12/24/16 03:17	1
OCDD	15000	E	36		pg/g	☆	12/15/16 06:24	12/24/16 03:17	1
OCDF	670		36		pg/g	☼	12/15/16 06:24	12/24/16 03:17	1
Total TCDD	ND		3.6		pg/g	≎	12/15/16 06:24	12/24/16 03:17	1
Total TCDF	ND		3.6		pg/g	☼	12/15/16 06:24	12/24/16 03:17	1
Total PeCDD	ND		18		pg/g	≎	12/15/16 06:24	12/24/16 03:17	1
Total PeCDF	ND		18		pg/g	☼	12/15/16 06:24	12/24/16 03:17	1
Total HxCDD	380		18		pg/g	☼	12/15/16 06:24	12/24/16 03:17	1
Total HxCDF	240		18		pg/g	≎	12/15/16 06:24	12/24/16 03:17	1
Total HpCDD	3300		18		pg/g	☼	12/15/16 06:24	12/24/16 03:17	1
Total HpCDF	770		18		pg/g	☼	12/15/16 06:24	12/24/16 03:17	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	83		40 - 135				12/15/16 06:24	12/24/16 03:17	1
13C-2,3,7,8-TCDF	63		40 - 135				12/15/16 06:24	12/24/16 03:17	1

TestAmerica Spokane

12/15/16 06:24 12/24/16 03:17

40 - 135

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-32 (0-6")

Date Collected: 12/06/16 15:00

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-25

Matrix: Solid

Percent Solids: 91.4

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDF	66	40 - 135	12/15/16 06:24	12/24/16 03:17	1
13C-1,2,3,6,7,8-HxCDD	78	40 - 135	12/15/16 06:24	12/24/16 03:17	1
13C-1,2,3,4,7,8-HxCDF	61	40 - 135	12/15/16 06:24	12/24/16 03:17	1
13C-1,2,3,4,6,7,8-HpCDD	89	40 - 135	12/15/16 06:24	12/24/16 03:17	1
13C-1,2,3,4,6,7,8-HpCDF	74	40 - 135	12/15/16 06:24	12/24/16 03:17	1
13C-OCDD	102	40 - 135	12/15/16 06:24	12/24/16 03:17	1

Client Sample ID: HA-8 (0-6")

Date Collected: 12/06/16 15:30

Date Received: 12/09/16 12:10

OCDF

Total TCDD

Total TCDF

Total PeCDD

Total PeCDF

Total HxCDD

Total HxCDF

Total HpCDD

Total HpCDF

Lab Sample ID: 590-5185-28 Matrix: Solid

12/15/16 06:24 12/23/16 23:28

12/15/16 06:24 12/23/16 23:28

12/15/16 06:24 12/23/16 23:28

12/15/16 06:24 12/23/16 23:28

12/15/16 06:24 12/23/16 23:28

12/15/16 06:24 12/23/16 23:28

12/15/16 06:24 12/23/16 23:28

12/15/16 06:24 12/23/16 23:28

12/15/16 06:24 12/23/16 23:28

Percent Solids: 85.9

Method: 8290A - Dioxins and Furans (HRGC/HRMS) Analyte Result Qualifier RL **EDL** Unit D Prepared Analyzed Dil Fac 2,3,7,8-TCDD ND 15 pg/g 12/15/16 06:24 12/23/16 23:28 2,3,7,8-TCDF ND 15 12/15/16 06:24 12/23/16 23:28 pg/g 1 1,2,3,7,8-PeCDD ND 73 pg/g 12/15/16 06:24 12/23/16 23:28 1 1,2,3,7,8-PeCDF ND 73 12/15/16 06:24 12/23/16 23:28 pg/g ND 73 12/15/16 06:24 12/23/16 23:28 2,3,4,7,8-PeCDF pg/g ND 73 12/15/16 06:24 12/23/16 23:28 1,2,3,4,7,8-HxCDD pg/g 73 12/15/16 06:24 12/23/16 23:28 1,2,3,6,7,8-HxCDD 120 pg/g 1,2,3,7,8,9-HxCDD 73 12/15/16 06:24 12/23/16 23:28 ND pg/g ND 73 12/15/16 06:24 12/23/16 23:28 1,2,3,4,7,8-HxCDF pg/g 1,2,3,6,7,8-HxCDF ND 73 pg/g 12/15/16 06:24 12/23/16 23:28 1,2,3,7,8,9-HxCDF ND 73 12/15/16 06:24 12/23/16 23:28 pg/g 2,3,4,6,7,8-HxCDF ND 73 12/15/16 06:24 12/23/16 23:28 pg/g 3400 73 12/15/16 06:24 12/23/16 23:28 1,2,3,4,6,7,8-HpCDD pg/g 73 1,2,3,4,6,7,8-HpCDF **530** 12/15/16 06:24 12/23/16 23:28 pg/g 1,2,3,4,7,8,9-HpCDF ND 73 12/15/16 06:24 12/23/16 23:28 pg/g 12/15/16 06:24 12/23/16 23:28 OCDD 150 36000 pg/g

150

15

15

73

73

73

73

73

73

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

2100

ND

ND

ND

ND

410

400

5800

1800

•					
Isotope Dilution	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	81	40 - 135	12/15/16 06:24	12/23/16 23:28	1
13C-2,3,7,8-TCDF	62	40 - 135	12/15/16 06:24	12/23/16 23:28	1
13C-1,2,3,7,8-PeCDD	76	40 - 135	12/15/16 06:24	12/23/16 23:28	1
13C-1,2,3,7,8-PeCDF	70	40 - 135	12/15/16 06:24	12/23/16 23:28	1
13C-1,2,3,6,7,8-HxCDD	74	40 - 135	12/15/16 06:24	12/23/16 23:28	1
13C-1,2,3,4,7,8-HxCDF	67	40 - 135	12/15/16 06:24	12/23/16 23:28	1
13C-1,2,3,4,6,7,8-HpCDD	83	40 - 135	12/15/16 06:24	12/23/16 23:28	1
13C-1,2,3,4,6,7,8-HpCDF	79	40 - 135	12/15/16 06:24	12/23/16 23:28	1
13C-OCDD	86	40 - 135	12/15/16 06:24	12/23/16 23:28	1

TestAmerica Spokane

1

Project/Site: Colville Post and Pole/0504-098-01

Client: GeoEngineers Inc

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Client Sample ID: HA-6 (0-6") Lab Sample ID: 590-5185-31

Date Collected: 12/06/16 15:45 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 87.4

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		110		pg/g	<u> </u>	12/15/16 06:24	12/24/16 00:14	1
2,3,7,8-TCDF	ND		110		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
1,2,3,7,8-PeCDD	ND		570		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
1,2,3,7,8-PeCDF	ND		570		pg/g	☼	12/15/16 06:24	12/24/16 00:14	1
2,3,4,7,8-PeCDF	ND		570		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
1,2,3,4,7,8-HxCDD	ND		570		pg/g	☼	12/15/16 06:24	12/24/16 00:14	1
1,2,3,6,7,8-HxCDD	1200		570		pg/g	☼	12/15/16 06:24	12/24/16 00:14	1
1,2,3,7,8,9-HxCDD	ND		570		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
1,2,3,4,7,8-HxCDF	ND		570		pg/g	☼	12/15/16 06:24	12/24/16 00:14	1
1,2,3,6,7,8-HxCDF	ND		570		pg/g	₽	12/15/16 06:24	12/24/16 00:14	1
1,2,3,7,8,9-HxCDF	ND		570		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
2,3,4,6,7,8-HxCDF	ND		570		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
1,2,3,4,6,7,8-HpCDD	33000		570		pg/g	₽	12/15/16 06:24	12/24/16 00:14	1
1,2,3,4,6,7,8-HpCDF	3300		570		pg/g	☼	12/15/16 06:24	12/24/16 00:14	1
1,2,3,4,7,8,9-HpCDF	ND		570		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
OCDD	310000		1100		pg/g	₽	12/15/16 06:24	12/24/16 00:14	1
OCDF	11000		1100		pg/g	☼	12/15/16 06:24	12/24/16 00:14	1
Total TCDD	ND		110		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
Total TCDF	ND		110		pg/g	₽	12/15/16 06:24	12/24/16 00:14	1
Total PeCDD	ND		570		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
Total PeCDF	ND		570		pg/g	☼	12/15/16 06:24	12/24/16 00:14	1
Total HxCDD	4100		570		pg/g	₽	12/15/16 06:24	12/24/16 00:14	1
Total HxCDF	2900		570		pg/g	₩	12/15/16 06:24	12/24/16 00:14	1
Total HpCDD	57000		570		pg/g	☼	12/15/16 06:24	12/24/16 00:14	1
Total HpCDF	11000		570		pg/g	₽	12/15/16 06:24	12/24/16 00:14	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	97		40 - 135				12/15/16 06:24	12/24/16 00:14	1
13C-2,3,7,8-TCDF	92		40 - 135				12/15/16 06:24	12/24/16 00:14	1
13C-1,2,3,7,8-PeCDD	111		40 - 135				12/15/16 06:24	12/24/16 00:14	1
13C-1,2,3,7,8-PeCDF	98		40 - 135				12/15/16 06:24	12/24/16 00:14	1
13C-1,2,3,6,7,8-HxCDD	101		40 - 135				12/15/16 06:24	12/24/16 00:14	1
13C-1,2,3,4,7,8-HxCDF	101		40 - 135				12/15/16 06:24	12/24/16 00:14	1
13C-1,2,3,4,6,7,8-HpCDD	107		40 - 135				12/15/16 06:24	12/24/16 00:14	

Client Sample ID: HA-5 (0-6") Lab Sample ID: 590-5185-34 Date Collected: 12/06/16 16:05 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 85.6

40 - 135

40 - 135

108

115

Method: 8290A - Dioxins	and Furans (HRGC/HRMS)							
Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	19		pg/g	₩	12/15/16 06:24	12/24/16 01:00	1
2,3,7,8-TCDF	ND	19		pg/g	≎	12/15/16 06:24	12/24/16 01:00	1
1,2,3,7,8-PeCDD	ND	97		pg/g	₽	12/15/16 06:24	12/24/16 01:00	1
1,2,3,7,8-PeCDF	ND	97		pg/g	\$	12/15/16 06:24	12/24/16 01:00	1
2,3,4,7,8-PeCDF	ND	97		pg/g	≎	12/15/16 06:24	12/24/16 01:00	1
1,2,3,4,7,8-HxCDD	ND	97		pg/g	₩	12/15/16 06:24	12/24/16 01:00	1
1,2,3,6,7,8-HxCDD	280	97		pg/g	≎	12/15/16 06:24	12/24/16 01:00	1

TestAmerica Spokane

12/15/16 06:24 12/24/16 00:14

12/15/16 06:24 12/24/16 00:14

Page 14 of 81

5/9/2018 (Rev. 1)

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-5 (0-6")

Date Collected: 12/06/16 16:05 Date Received: 12/09/16 12:10

Client: GeoEngineers Inc

13C-OCDD

Lab Sample ID: 590-5185-34 **Matrix: Solid**

Percent Solids: 85.6

6

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued) **EDL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed 97 12/15/16 06:24 12/24/16 01:00 1,2,3,7,8,9-HxCDD 150 pg/g 1,2,3,4,7,8-HxCDF ND 97 12/15/16 06:24 12/24/16 01:00 1 pg/g à 1,2,3,6,7,8-HxCDF ND 97 pg/g 12/15/16 06:24 12/24/16 01:00 1,2,3,7,8,9-HxCDF ND 97 12/15/16 06:24 12/24/16 01:00 pg/g ND 12/15/16 06:24 12/24/16 01:00 2,3,4,6,7,8-HxCDF 97 pg/g 1 7000 97 12/15/16 06:24 12/24/16 01:00 1,2,3,4,6,7,8-HpCDD pg/g 1,2,3,4,6,7,8-HpCDF 880 97 12/15/16 06:24 12/24/16 01:00 pg/g 1,2,3,4,7,8,9-HpCDF ND 97 12/15/16 06:24 12/24/16 01:00 pg/g OCDD 190 12/15/16 06:24 12/24/16 01:00 64000 pg/g **OCDF** 190 12/15/16 06:24 12/24/16 01:00 2800 pg/g Total TCDD ND 19 12/15/16 06:24 12/24/16 01:00 pg/g **Total TCDF** ND 19 12/15/16 06:24 12/24/16 01:00 pg/g Total PeCDD ND 97 12/15/16 06:24 12/24/16 01:00 pg/g **Total PeCDF** ND 97 pg/g 12/15/16 06:24 12/24/16 01:00 97 12/15/16 06:24 12/24/16 01:00 1200 **Total HxCDD** pg/g **Total HxCDF** 830 97 12/15/16 06:24 12/24/16 01:00 pg/g 12000 97 12/15/16 06:24 12/24/16 01:00 **Total HpCDD** pg/g **Total HpCDF** 2800 97 12/15/16 06:24 12/24/16 01:00 pg/g Isotope Dilution Qualifier Dil Fac %Recovery Limits Prepared Analyzed 13C-2,3,7,8-TCDD 81 40 - 135 12/15/16 06:24 12/24/16 01:00 13C-2,3,7,8-TCDF 58 40 - 135 12/15/16 06:24 12/24/16 01:00 65 13C-1,2,3,7,8-PeCDD 40 - 135 12/15/16 06:24 12/24/16 01:00 60 13C-1,2,3,7,8-PeCDF 40 - 135 12/15/16 06:24 12/24/16 01:00 13C-1,2,3,6,7,8-HxCDD 62 40 - 135 12/15/16 06:24 12/24/16 01:00 13C-1,2,3,4,7,8-HxCDF 62 40 - 135 12/15/16 06:24 12/24/16 01:00 74 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 12/15/16 06:24 12/24/16 01:00 13C-1,2,3,4,6,7,8-HpCDF 67 40 - 135 12/15/16 06:24 12/24/16 01:00

Client Sample ID: HA-7 (0-6") Lab Sample ID: 590-5185-37 Date Collected: 12/06/16 16:20 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 76.1

40 - 135

75

Analyte	Result Qualific	er RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	26	pg/g	<u> </u>	12/15/16 06:24	12/24/16 01:46	1
2,3,7,8-TCDF	ND	26	pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
1,2,3,7,8-PeCDD	ND	130	pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
1,2,3,7,8-PeCDF	ND	130	pg/g	φ.	12/15/16 06:24	12/24/16 01:46	1
2,3,4,7,8-PeCDF	ND	130	pg/g	☼	12/15/16 06:24	12/24/16 01:46	1
1,2,3,4,7,8-HxCDD	ND	130	pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
1,2,3,6,7,8-HxCDD	220	130	pg/g	φ.	12/15/16 06:24	12/24/16 01:46	1
1,2,3,7,8,9-HxCDD	ND	130	pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
1,2,3,4,7,8-HxCDF	ND	130	pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
1,2,3,6,7,8-HxCDF	ND	130	pg/g		12/15/16 06:24	12/24/16 01:46	1
1,2,3,7,8,9-HxCDF	ND	130	pg/g	☼	12/15/16 06:24	12/24/16 01:46	1
2,3,4,6,7,8-HxCDF	ND	130	pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
1,2,3,4,6,7,8-HpCDD	6300	130	pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
1,2,3,4,6,7,8-HpCDF	710	130	pg/g	≎	12/15/16 06:24	12/24/16 01:46	1

TestAmerica Spokane

12/15/16 06:24 12/24/16 01:00

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-7 (0-6")

Lab Sample ID: 590-5185-37 Date Collected: 12/06/16 16:20 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 76.1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		130		pg/g	<u> </u>	12/15/16 06:24	12/24/16 01:46	1
OCDD	61000		260		pg/g		12/15/16 06:24	12/24/16 01:46	1
OCDF	2600		260		pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
Total TCDD	ND		26		pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
Total TCDF	ND		26		pg/g		12/15/16 06:24	12/24/16 01:46	1
Total PeCDD	ND		130		pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
Total PeCDF	ND		130		pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
Total HxCDD	790		130		pg/g	₽	12/15/16 06:24	12/24/16 01:46	1
Total HxCDF	580		130		pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
Total HpCDD	11000		130		pg/g	₩	12/15/16 06:24	12/24/16 01:46	1
Total HpCDF	2400		130		pg/g	₽	12/15/16 06:24	12/24/16 01:46	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	93		40 - 135				12/15/16 06:24	12/24/16 01:46	1
13C-2,3,7,8-TCDF	90		40 - 135				12/15/16 06:24	12/24/16 01:46	1
13C-1,2,3,7,8-PeCDD	102		40 - 135				12/15/16 06:24	12/24/16 01:46	1
13C-1,2,3,7,8-PeCDF	96		40 - 135				12/15/16 06:24	12/24/16 01:46	1
13C-1,2,3,6,7,8-HxCDD	99		40 - 135				12/15/16 06:24	12/24/16 01:46	1
13C-1,2,3,4,7,8-HxCDF	99		40 - 135				12/15/16 06:24	12/24/16 01:46	1
13C-1,2,3,4,6,7,8-HpCDD	103		40 - 135				12/15/16 06:24	12/24/16 01:46	1
13C-1,2,3,4,6,7,8-HpCDF	104		40 - 135				12/15/16 06:24	12/24/16 01:46	1
13C-OCDD	110		40 - 135				12/15/16 06:24	12/24/16 01:46	1

Client Sample ID: HA-9 (0-6") Lab Sample ID: 590-5185-40 Date Collected: 12/07/16 08:30 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 83.6

	· · · ·					. 0.00	
Method: 8290A - Dioxins a	and Furans (HRGC/HRMS) Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	30	pg/g		12/15/16 06:24	12/24/16 02:32	1
2,3,7,8-TCDF	ND	30	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
1,2,3,7,8-PeCDD	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
1,2,3,7,8-PeCDF	ND	150	pg/g	ф.	12/15/16 06:24	12/24/16 02:32	1
2,3,4,7,8-PeCDF	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
1,2,3,4,7,8-HxCDD	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
1,2,3,6,7,8-HxCDD	390	150	pg/g		12/15/16 06:24	12/24/16 02:32	1
1,2,3,7,8,9-HxCDD	180	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
1,2,3,4,7,8-HxCDF	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
1,2,3,6,7,8-HxCDF	ND	150	pg/g		12/15/16 06:24	12/24/16 02:32	1
1,2,3,7,8,9-HxCDF	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
2,3,4,6,7,8-HxCDF	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
1,2,3,4,6,7,8-HpCDD	10000	150	pg/g	ф.	12/15/16 06:24	12/24/16 02:32	1
1,2,3,4,6,7,8-HpCDF	1100	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
1,2,3,4,7,8,9-HpCDF	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
OCDD	91000	300	pg/g	ф.	12/15/16 06:24	12/24/16 02:32	1
OCDF	3500	300	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
Total TCDD	ND	30	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
Total TCDF	ND	30	pg/g	ф.	12/15/16 06:24	12/24/16 02:32	1
Total PeCDD	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
Total PeCDF	ND	150	pg/g	₽	12/15/16 06:24	12/24/16 02:32	1
			100				

Client Sample ID: HA-9 (0-6")

Lab Sample ID: 590-5185-40 **Matrix: Solid**

TestAmerica Job ID: 590-5185-1

Date Collected: 12/07/16 08:30 Date Received: 12/09/16 12:10

Percent Solids: 83.6

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	1500		150		pg/g	<u> </u>	12/15/16 06:24	12/24/16 02:32	1
Total HxCDF	940		150		pg/g		12/15/16 06:24	12/24/16 02:32	1
Total HpCDD	18000		150		pg/g	₩	12/15/16 06:24	12/24/16 02:32	1
Total HpCDF	3600		150		pg/g	Φ.	12/15/16 06:24	12/24/16 02:32	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	96		40 - 135				12/15/16 06:24	12/24/16 02:32	1
13C-2,3,7,8-TCDF	95		40 - 135				12/15/16 06:24	12/24/16 02:32	1
13C-1,2,3,7,8-PeCDD	108		40 - 135				12/15/16 06:24	12/24/16 02:32	1
13C-1,2,3,7,8-PeCDF	100		40 - 135				12/15/16 06:24	12/24/16 02:32	1
13C-1,2,3,6,7,8-HxCDD	105		40 - 135				12/15/16 06:24	12/24/16 02:32	1
13C-1,2,3,4,7,8-HxCDF	105		40 - 135				12/15/16 06:24	12/24/16 02:32	1
13C-1,2,3,4,6,7,8-HpCDD	113		40 - 135				12/15/16 06:24	12/24/16 02:32	1
13C-1,2,3,4,6,7,8-HpCDF	113		40 - 135				12/15/16 06:24	12/24/16 02:32	1
13C-OCDD	123		40 - 135				12/15/16 06:24	12/24/16 02:32	1

Client Sample ID: HA-15 (0-6")

Lab Sample ID: 590-5185-43

Date Collected: 12/07/16 09:10 Date Received: 12/09/16 12:10

Percent Solids: 70.9

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		14		mg/Kg	- -	12/13/16 10:05	12/13/16 12:10	1
Residual Range Organics (RRO) (C25-C36)	66		35		mg/Kg	₩	12/13/16 10:05	12/13/16 12:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150				12/13/16 10:05	12/13/16 12:10	1
n-Triacontane-d62	103		50 ₋ 150				12/13/16 10:05	12/13/16 12:10	1

Client Sample ID: HA-16 (0-6")

Lab Sample ID: 590-5185-46

Date Collected: 12/07/16 09:30 Date Received: 12/09/16 12:10

Matrix: Solid Percent Solids: 77.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		13		mg/Kg	-	12/13/16 10:05	12/13/16 12:28	1
Residual Range Organics (RRO) (C25-C36)	ND		32		mg/Kg	₽	12/13/16 10:05	12/13/16 12:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				12/13/16 10:05	12/13/16 12:28	1
n-Triacontane-d62	98		50 ₋ 150				12/13/16 10:05	12/13/16 12:28	1

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Client Sample ID: HA-17 (0-6")

Lab Sample ID: 590-5185-49

Date Collected: 12/07/16 09:50

Date Received: 12/09/16 12:10

Matrix: Solid
Percent Solids: 70.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	51		14		mg/Kg		12/13/16 10:05	12/13/16 12:45	1
Residual Range Organics (RRO) (C25-C36)	330		35		mg/Kg	₩	12/13/16 10:05	12/13/16 12:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				12/13/16 10:05	12/13/16 12:45	1
n-Triacontane-d62	97		50 - 150				12/13/16 10:05	12/13/16 12:45	1

Method: 8290A - Dioxins Analyte	Result Qu		EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	47		pg/g	<u> </u>	12/15/16 06:24	12/24/16 03:18	1
2,3,7,8-TCDF	ND	47		pg/g	☼	12/15/16 06:24	12/24/16 03:18	1
1,2,3,7,8-PeCDD	ND	230		pg/g	₩	12/15/16 06:24	12/24/16 03:18	1
1,2,3,7,8-PeCDF	ND	230		pg/g	₩.	12/15/16 06:24	12/24/16 03:18	1
2,3,4,7,8-PeCDF	ND	230		pg/g	₽	12/15/16 06:24	12/24/16 03:18	1
1,2,3,4,7,8-HxCDD	ND	230		pg/g	☼	12/15/16 06:24	12/24/16 03:18	1
1,2,3,6,7,8-HxCDD	850	230		pg/g	ф.	12/15/16 06:24	12/24/16 03:18	1
1,2,3,7,8,9-HxCDD	510	230		pg/g	☼	12/15/16 06:24	12/24/16 03:18	1
1,2,3,4,7,8-HxCDF	ND	230		pg/g	₩	12/15/16 06:24	12/24/16 03:18	1
1,2,3,6,7,8-HxCDF	ND	230		pg/g	ф.	12/15/16 06:24	12/24/16 03:18	1
1,2,3,7,8,9-HxCDF	ND	230		pg/g	☼	12/15/16 06:24	12/24/16 03:18	1
2,3,4,6,7,8-HxCDF	ND	230		pg/g	₩	12/15/16 06:24	12/24/16 03:18	1
1,2,3,4,6,7,8-HpCDD	21000	230		pg/g		12/15/16 06:24	12/24/16 03:18	1
1,2,3,4,6,7,8-HpCDF	2300	230		pg/g	₩	12/15/16 06:24	12/24/16 03:18	1
1,2,3,4,7,8,9-HpCDF	ND	230		pg/g	₽	12/15/16 06:24	12/24/16 03:18	1
OCDD	160000	470		pg/g	₽	12/15/16 06:24	12/24/16 03:18	1
OCDF	5800	470		pg/g	₽	12/15/16 06:24	12/24/16 03:18	1
Total TCDD	ND	47		pg/g	☼	12/15/16 06:24	12/24/16 03:18	1
Total TCDF	ND	47		pg/g	₩.	12/15/16 06:24	12/24/16 03:18	1
Total PeCDD	ND	230		pg/g	₩	12/15/16 06:24	12/24/16 03:18	1
Total PeCDF	ND	230		pg/g	☼	12/15/16 06:24	12/24/16 03:18	1
Total HxCDD	3600	230		pg/g	φ.	12/15/16 06:24	12/24/16 03:18	1
Total HxCDF	2300	230		pg/g	₩	12/15/16 06:24	12/24/16 03:18	1
Total HpCDD	35000	230		pg/g	₩	12/15/16 06:24	12/24/16 03:18	1
Total HpCDF	6500	230		pg/g	Φ.	12/15/16 06:24	12/24/16 03:18	1
Isotope Dilution	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	94	40 - 135	12/15/16 06:24	12/24/16 03:18	1
13C-2,3,7,8-TCDF	92	40 - 135	12/15/16 06:24	12/24/16 03:18	1
13C-1,2,3,7,8-PeCDD	104	40 - 135	12/15/16 06:24	12/24/16 03:18	1
13C-1,2,3,7,8-PeCDF	95	40 - 135	12/15/16 06:24	12/24/16 03:18	1
13C-1,2,3,6,7,8-HxCDD	100	40 - 135	12/15/16 06:24	12/24/16 03:18	1
13C-1,2,3,4,7,8-HxCDF	99	40 - 135	12/15/16 06:24	12/24/16 03:18	1
13C-1,2,3,4,6,7,8-HpCDD	106	40 - 135	12/15/16 06:24	12/24/16 03:18	1
13C-1,2,3,4,6,7,8-HpCDF	105	40 - 135	12/15/16 06:24	12/24/16 03:18	1
13C-OCDD	115	40 - 135	12/15/16 06:24	12/24/16 03:18	1

TestAmerica Spokane

4

6

8

10

12

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-35 (0-6")

Date Collected: 12/07/16 10:10 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-52

Matrix: Solid

Percent Solids: 46.9

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	480		150	24	ug/Kg	\	12/15/16 09:22	12/15/16 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		38 - 123				12/15/16 09:22	12/15/16 17:19	1
Nitrobenzene-d5	63		23 - 120				12/15/16 09:22	12/15/16 17:19	1
p-Terphenyl-d14	101		68 - 136				12/15/16 09:22	12/15/16 17:19	1

Client Sample ID: HA-24 (0-6")

Date Collected: 12/07/16 10:35

Lab Sample ID: 590-5185-55 **Matrix: Solid**

Date Received: 12/09/16 12:10 Percent Solids: 72.8

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	3700		65	11	ug/Kg	<u> </u>	12/15/16 09:22	12/15/16 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	66	-	38 - 123				12/15/16 09:22	12/15/16 17:46	1
Nitrobenzene-d5	55		23 - 120				12/15/16 09:22	12/15/16 17:46	1
p-Terphenyl-d14	88		68 - 136				12/15/16 09:22	12/15/16 17:46	1

Client Sample ID: HA-25 (0-6")

Date Collected: 12/07/16 10:50 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-58 **Matrix: Solid**

Percent Solids: 87.5

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	2000		56	9.1	ug/Kg	\	12/15/16 09:22	12/15/16 18:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	57		38 - 123				12/15/16 09:22	12/15/16 18:12	1
Nitrobenzene-d5	39		23 - 120				12/15/16 09:22	12/15/16 18:12	1
p-Terphenyl-d14	86		68 - 136				12/15/16 09:22	12/15/16 18:12	1

Method: 8290A - Dioxins and Furans	(HRGC/HRMS)
------------------------------------	-------------

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	57	pg/g	<u> </u>	12/15/16 06:24	12/24/16 04:04	1
2,3,7,8-TCDF	ND	57	pg/g	☼	12/15/16 06:24	12/24/16 04:04	1
1,2,3,7,8-PeCDD	ND	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
1,2,3,7,8-PeCDF	ND	280	pg/g		12/15/16 06:24	12/24/16 04:04	1
2,3,4,7,8-PeCDF	ND	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
1,2,3,4,7,8-HxCDD	ND	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
1,2,3,6,7,8-HxCDD	490	280	pg/g	\$	12/15/16 06:24	12/24/16 04:04	1
1,2,3,7,8,9-HxCDD	320	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
1,2,3,4,7,8-HxCDF	ND	280	pg/g	₩	12/15/16 06:24	12/24/16 04:04	1
1,2,3,6,7,8-HxCDF	ND	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
1,2,3,7,8,9-HxCDF	ND	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
2,3,4,6,7,8-HxCDF	ND	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
1,2,3,4,6,7,8-HpCDD	17000	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
1,2,3,4,6,7,8-HpCDF	2700	280	pg/g	₩	12/15/16 06:24	12/24/16 04:04	1
1,2,3,4,7,8,9-HpCDF	ND	280	pg/g	₽	12/15/16 06:24	12/24/16 04:04	1
OCDD	180000	570	pg/g	ф.	12/15/16 06:24	12/24/16 04:04	1

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-25 (0-6")

Date Collected: 12/07/16 10:50

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-58

Matrix: Solid

Percent Solids: 87.5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDF	13000		570		pg/g	<u> </u>	12/15/16 06:24	12/24/16 04:04	1
Total TCDD	ND		57		pg/g	₩	12/15/16 06:24	12/24/16 04:04	1
Total TCDF	ND		57		pg/g	₩.	12/15/16 06:24	12/24/16 04:04	1
Total PeCDD	ND		280		pg/g	₩	12/15/16 06:24	12/24/16 04:04	1
Total PeCDF	ND		280		pg/g	₩	12/15/16 06:24	12/24/16 04:04	1
Total HxCDD	2200		280		pg/g		12/15/16 06:24	12/24/16 04:04	1
Total HxCDF	1500		280		pg/g	₩	12/15/16 06:24	12/24/16 04:04	1
Total HpCDD	28000		280		pg/g	₩	12/15/16 06:24	12/24/16 04:04	1
Total HpCDF	8800		280		pg/g	Φ.	12/15/16 06:24	12/24/16 04:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	94		40 - 135				12/15/16 06:24	12/24/16 04:04	1
13C-2,3,7,8-TCDF	92		40 - 135				12/15/16 06:24	12/24/16 04:04	1
13C-1,2,3,7,8-PeCDD	104		40 - 135				12/15/16 06:24	12/24/16 04:04	1
13C-1,2,3,7,8-PeCDF	97		40 - 135				12/15/16 06:24	12/24/16 04:04	1
13C-1,2,3,6,7,8-HxCDD	105		40 - 135				12/15/16 06:24	12/24/16 04:04	1
13C-1,2,3,4,7,8-HxCDF	104		40 - 135				12/15/16 06:24	12/24/16 04:04	1
13C-1,2,3,4,6,7,8-HpCDD	107		40 - 135				12/15/16 06:24	12/24/16 04:04	1
13C-1,2,3,4,6,7,8-HpCDF	109		40 - 135				12/15/16 06:24	12/24/16 04:04	1
13C-OCDD	117		40 - 135					12/24/16 04:04	1

Client Sample ID: HA-12 (0-6")

Date Collected: 12/07/16 11:55

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-61

Matrix: Solid

Percent Solids: 24.5

Analyte	and Furans (HRGC/HRMS) Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	4.5	pg/g		12/15/16 06:24	12/24/16 04:50	1
2,3,7,8-TCDF	ND	4.5	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
1,2,3,7,8-PeCDD	ND	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
1,2,3,7,8-PeCDF	ND	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
2,3,4,7,8-PeCDF	ND	23	pg/g	☼	12/15/16 06:24	12/24/16 04:50	1
1,2,3,4,7,8-HxCDD	ND	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
1,2,3,6,7,8-HxCDD	89	23	pg/g	₽	12/15/16 06:24	12/24/16 04:50	1
1,2,3,7,8,9-HxCDD	46	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
1,2,3,4,7,8-HxCDF	ND	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
1,2,3,6,7,8-HxCDF	ND	23	pg/g	\$	12/15/16 06:24	12/24/16 04:50	1
1,2,3,7,8,9-HxCDF	ND	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
2,3,4,6,7,8-HxCDF	ND	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
1,2,3,4,6,7,8-HpCDD	2200	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
1,2,3,4,6,7,8-HpCDF	320	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
1,2,3,4,7,8,9-HpCDF	ND	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
OCDD	17000	45	pg/g	\$	12/15/16 06:24	12/24/16 04:50	1
OCDF	1000	45	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
Total TCDD	ND	4.5	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
Total TCDF	ND	4.5	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
Total PeCDD	ND	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
Total PeCDF	23	23	pg/g	₩	12/15/16 06:24	12/24/16 04:50	1
Total HxCDD	450	23	pg/g	\$	12/15/16 06:24	12/24/16 04:50	1
Total HxCDF	270	23	pg/g	☼	12/15/16 06:24	12/24/16 04:50	1

TestAmerica Spokane

3

4

6

8

9

11

12

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5185-61

Client Sample ID: HA-12 (0-6") Date Collected: 12/07/16 11:55

Matrix: Solid

Percent Solids: 24.5

TestAmerica Job ID: 590-5185-1

Date Received: 12/09/16 12:10

Method: 8290A - Dioxins a Analyte	•	GC/HRMS Qualifier) (Continued) RL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDD	3700			 pg/g	— -	12/15/16 06:24		1
Total HpCDF	920		23	pg/g	.	12/15/16 06:24	12/24/16 04:50	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78		40 - 135			12/15/16 06:24	12/24/16 04:50	1
13C-2,3,7,8-TCDF	75		40 - 135			12/15/16 06:24	12/24/16 04:50	1
13C-1,2,3,7,8-PeCDD	82		40 - 135			12/15/16 06:24	12/24/16 04:50	1
13C-1,2,3,7,8-PeCDF	76		40 - 135			12/15/16 06:24	12/24/16 04:50	1
13C-1,2,3,6,7,8-HxCDD	83		40 - 135			12/15/16 06:24	12/24/16 04:50	1
13C-1,2,3,4,7,8-HxCDF	87		40 - 135			12/15/16 06:24	12/24/16 04:50	1
13C-1,2,3,4,6,7,8-HpCDD	91		40 - 135			12/15/16 06:24	12/24/16 04:50	1
13C-1,2,3,4,6,7,8-HpCDF	93		40 - 135			12/15/16 06:24	12/24/16 04:50	1
13C-OCDD	96		40 - 135			12/15/16 06:24	12/24/16 04:50	1

Client Sample ID: HA-38 (0-6")

Lab Sample ID: 590-5185-64 Date Collected: 12/07/16 12:10 **Matrix: Solid**

Date Received: 12/09/16	12:10							Percent Solid	s: 22.5
Method: 8290A - Dioxins Analyte		C/HRMS) Qualifier) RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		4.4		pg/g	\	•	12/24/16 05:36	1
2,3,7,8-TCDF	ND		4.4		pg/g	₩	12/15/16 06:24	12/24/16 05:36	1
1,2,3,7,8-PeCDD	ND		22		pg/g	₽	12/15/16 06:24	12/24/16 05:36	1
1,2,3,7,8-PeCDF	ND		22		pg/g	ф	12/15/16 06:24	12/24/16 05:36	1
2,3,4,7,8-PeCDF	ND		22		pg/g	≎	12/15/16 06:24	12/24/16 05:36	1
1,2,3,4,7,8-HxCDD	ND		22		pg/g	≎	12/15/16 06:24	12/24/16 05:36	1
1,2,3,6,7,8-HxCDD	64		22		pg/g	ф	12/15/16 06:24	12/24/16 05:36	1
1,2,3,7,8,9-HxCDD	44		22		pg/g	☼	12/15/16 06:24	12/24/16 05:36	1
1,2,3,4,7,8-HxCDF	ND		22		pg/g	≎	12/15/16 06:24	12/24/16 05:36	1
1,2,3,6,7,8-HxCDF	ND		22		pg/g		12/15/16 06:24	12/24/16 05:36	1
1,2,3,7,8,9-HxCDF	ND		22		pg/g	₩	12/15/16 06:24	12/24/16 05:36	1
2,3,4,6,7,8-HxCDF	ND		22		pg/g	≎	12/15/16 06:24	12/24/16 05:36	1
1,2,3,4,6,7,8-HpCDD	1700		22		pg/g		12/15/16 06:24	12/24/16 05:36	1
1,2,3,4,6,7,8-HpCDF	500		22		pg/g	≎	12/15/16 06:24	12/24/16 05:36	1
1,2,3,4,7,8,9-HpCDF	ND		22		pg/g	≎	12/15/16 06:24	12/24/16 05:36	1
OCDD	13000		44		pg/g		12/15/16 06:24	12/24/16 05:36	1
OCDF	1800		44		pg/g	₩	12/15/16 06:24	12/24/16 05:36	1
Total TCDD	ND		4.4		pg/g	₩	12/15/16 06:24	12/24/16 05:36	1
Total TCDF	ND		4.4		pg/g		12/15/16 06:24	12/24/16 05:36	1
Total PeCDD	ND		22		pg/g	₩	12/15/16 06:24	12/24/16 05:36	1
Total PeCDF	23		22		pg/g	☼	12/15/16 06:24	12/24/16 05:36	1
Total HxCDD	380		22		pg/g	₩.	12/15/16 06:24	12/24/16 05:36	1
Total HxCDF	290		22		pg/g	₩	12/15/16 06:24	12/24/16 05:36	1
Total HpCDD	3100		22		pg/g	₩	12/15/16 06:24	12/24/16 05:36	1
Total HpCDF	1300		22		pg/g	₩.	12/15/16 06:24	12/24/16 05:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	54		40 - 135				12/15/16 06:24	12/24/16 05:36	1
13C-2,3,7,8-TCDF	51		40 - 135				12/15/16 06:24	12/24/16 05:36	1
13C-1,2,3,7,8-PeCDD	58		40 - 135				12/15/16 06:24	12/24/16 05:36	1
13C-1,2,3,7,8-PeCDF	57		40 - 135				12/15/16 06:24	12/24/16 05:36	1

Client Sample ID: HA-38 (0-6")

Lab Sample ID: 590-5185-64

TestAmerica Job ID: 590-5185-1

Matrix: Solid Percent Solids: 22.5

Date Received: 12/09/16 12:10	Date Collected: 12/07/16 12:10	
	Date Received: 12/09/16 12:10	

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,6,7,8-HxCDD	59	40 - 135	12/15/16 06:24	12/24/16 05:36	1
13C-1,2,3,4,7,8-HxCDF	59	40 - 135	12/15/16 06:24	12/24/16 05:36	1
13C-1,2,3,4,6,7,8-HpCDD	66	40 - 135	12/15/16 06:24	12/24/16 05:36	1
13C-1,2,3,4,6,7,8-HpCDF	66	40 - 135	12/15/16 06:24	12/24/16 05:36	1
13C-OCDD	70	40 - 135	12/15/16 06:24	12/24/16 05:36	1

Client Sample ID: HA-11 (0-6") Lab Sample ID: 590-5185-67 Date Collected: 12/07/16 12:35 **Matrix: Solid**

Date Received: 12/09/16 12:10 Percent Solids: 36.2

Method: 8290A - Dioxins Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		9.1		pg/g	<u> </u>	12/15/16 06:24	12/24/16 09:57	1
2,3,7,8-TCDF	ND		9.1		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
1,2,3,7,8-PeCDD	ND		46		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
1,2,3,7,8-PeCDF	ND		46		pg/g		12/15/16 06:24	12/24/16 09:57	1
2,3,4,7,8-PeCDF	ND		46		pg/g	☼	12/15/16 06:24	12/24/16 09:57	1
1,2,3,4,7,8-HxCDD	ND		46		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
1,2,3,6,7,8-HxCDD	150		46		pg/g		12/15/16 06:24	12/24/16 09:57	1
1,2,3,7,8,9-HxCDD	90		46		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
1,2,3,4,7,8-HxCDF	ND		46		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
1,2,3,6,7,8-HxCDF	ND		46		pg/g	Φ.	12/15/16 06:24	12/24/16 09:57	1
1,2,3,7,8,9-HxCDF	ND		46		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
2,3,4,6,7,8-HxCDF	ND		46		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
1,2,3,4,6,7,8-HpCDD	4200		46		pg/g	\$	12/15/16 06:24	12/24/16 09:57	1
1,2,3,4,6,7,8-HpCDF	830		46		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
1,2,3,4,7,8,9-HpCDF	ND		46		pg/g	☼	12/15/16 06:24	12/24/16 09:57	1
OCDD	38000	E	91		pg/g		12/15/16 06:24	12/24/16 09:57	1
OCDF	2800		91		pg/g	☼	12/15/16 06:24	12/24/16 09:57	1
Total TCDD	ND		9.1		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
Total TCDF	ND		9.1		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
Total PeCDD	ND		46		pg/g	☼	12/15/16 06:24	12/24/16 09:57	1
Total PeCDF	54		46		pg/g	₽	12/15/16 06:24	12/24/16 09:57	1
Total HxCDD	970		46		pg/g		12/15/16 06:24	12/24/16 09:57	1
Total HxCDF	630		46		pg/g	₩	12/15/16 06:24	12/24/16 09:57	1
Total HpCDD	7700		46		pg/g	₩	12/15/16 06:24	12/24/16 09:57	1
Total HpCDF	2200		46		pg/g	₩	12/15/16 06:24	12/24/16 09:57	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
400 0 0 7 0 TODD			10 105				10/15/10 00 01	10/01/10 00 57	

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	59		40 - 135	12/15/16 06:24	12/24/16 09:57	
13C-2,3,7,8-TCDF	53		40 - 135	12/15/16 06:24	12/24/16 09:57	1
13C-1,2,3,7,8-PeCDD	57		40 - 135	12/15/16 06:24	12/24/16 09:57	1
13C-1,2,3,7,8-PeCDF	55		40 - 135	12/15/16 06:24	12/24/16 09:57	1
13C-1,2,3,6,7,8-HxCDD	63		40 - 135	12/15/16 06:24	12/24/16 09:57	1
13C-1,2,3,4,7,8-HxCDF	62		40 - 135	12/15/16 06:24	12/24/16 09:57	1
13C-1,2,3,4,6,7,8-HpCDD	70		40 - 135	12/15/16 06:24	12/24/16 09:57	1
13C-1,2,3,4,6,7,8-HpCDF	72		40 - 135	12/15/16 06:24	12/24/16 09:57	1
13C-OCDD	74		40 - 135	12/15/16 06:24	12/24/16 09:57	1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-22 (0-6")

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-70 Date Collected: 12/07/16 13:35 **Matrix: Solid**

Percent Solids: 86.8

Method: 8290A - Dioxins Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.4		pg/g	<u> </u>	12/15/16 06:24	12/24/16 10:43	1
2,3,7,8-TCDF	ND		1.4		pg/g	₩	12/15/16 06:24	12/24/16 10:43	1
1,2,3,7,8-PeCDD	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
1,2,3,7,8-PeCDF	ND		7.1		pg/g	φ.	12/15/16 06:24	12/24/16 10:43	1
2,3,4,7,8-PeCDF	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
1,2,3,4,7,8-HxCDD	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
1,2,3,6,7,8-HxCDD	14		7.1		pg/g	φ.	12/15/16 06:24	12/24/16 10:43	1
1,2,3,7,8,9-HxCDD	9.1		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
1,2,3,4,7,8-HxCDF	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
1,2,3,6,7,8-HxCDF	ND		7.1		pg/g		12/15/16 06:24	12/24/16 10:43	1
1,2,3,7,8,9-HxCDF	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
2,3,4,6,7,8-HxCDF	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
1,2,3,4,6,7,8-HpCDD	400		7.1		pg/g	\$	12/15/16 06:24	12/24/16 10:43	1
1,2,3,4,6,7,8-HpCDF	57		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
1,2,3,4,7,8,9-HpCDF	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
OCDD	3600		14		pg/g		12/15/16 06:24	12/24/16 10:43	1
OCDF	240		14		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
Total TCDD	ND		1.4		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
Total TCDF	ND		1.4		pg/g	φ.	12/15/16 06:24	12/24/16 10:43	1
Total PeCDD	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
Total PeCDF	ND		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
Total HxCDD	62		7.1		pg/g		12/15/16 06:24	12/24/16 10:43	1
Total HxCDF	39		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
Total HpCDD	680		7.1		pg/g	☼	12/15/16 06:24	12/24/16 10:43	1
Total HpCDF	180		7.1		pg/g	₽	12/15/16 06:24	12/24/16 10:43	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Isotope Dilution	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD		40 - 135	12/15/16 06:24	12/24/16 10:43	1
13C-2,3,7,8-TCDF	82	40 - 135	12/15/16 06:24	12/24/16 10:43	1
13C-1,2,3,7,8-PeCDD	92	40 - 135	12/15/16 06:24	12/24/16 10:43	1
13C-1,2,3,7,8-PeCDF	88	40 - 135	12/15/16 06:24	12/24/16 10:43	1
13C-1,2,3,6,7,8-HxCDD	90	40 - 135	12/15/16 06:24	12/24/16 10:43	1
13C-1,2,3,4,7,8-HxCDF	89	40 - 135	12/15/16 06:24	12/24/16 10:43	1
13C-1,2,3,4,6,7,8-HpCDD	96	40 - 135	12/15/16 06:24	12/24/16 10:43	1
13C-1,2,3,4,6,7,8-HpCDF	100	40 - 135	12/15/16 06:24	12/24/16 10:43	1
13C-OCDD	102	40 - 135	12/15/16 06:24	12/24/16 10:43	1

Client Sample ID: HA-20 (0-6")

Date Collected: 12/07/16 13:50

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-73

Matrix: Solid Percent Solids: 47.8

Method: 8290A - Dioxins	and Furans (HRGC/HRMS)
A I 4 .	D 16 . O 1161

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	30		pg/g	<u> </u>	12/15/16 06:24	12/24/16 11:29	1
2,3,7,8-TCDF	ND	30		pg/g	₽	12/15/16 06:24	12/24/16 11:29	1
1,2,3,7,8-PeCDD	ND	150		pg/g	₽	12/15/16 06:24	12/24/16 11:29	1
1,2,3,7,8-PeCDF	ND	150		pg/g		12/15/16 06:24	12/24/16 11:29	1
2,3,4,7,8-PeCDF	ND	150		pg/g	₽	12/15/16 06:24	12/24/16 11:29	1
1,2,3,4,7,8-HxCDD	ND	150		pg/g	₽	12/15/16 06:24	12/24/16 11:29	1
1,2,3,6,7,8-HxCDD	490	150		pg/g		12/15/16 06:24	12/24/16 11:29	1

TestAmerica Spokane

Page 23 of 81

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-20 (0-6")

Date Collected: 12/07/16 13:50 Date Received: 12/09/16 12:10 Lab Sample ID: 590-5185-73

Matrix: Solid

Percent Solids: 47.8

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	200		150		pg/g	<u> </u>	12/15/16 06:24	12/24/16 11:29	1
1,2,3,4,7,8-HxCDF	ND		150		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
1,2,3,6,7,8-HxCDF	ND		150		pg/g		12/15/16 06:24	12/24/16 11:29	1
1,2,3,7,8,9-HxCDF	ND		150		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
2,3,4,6,7,8-HxCDF	ND		150		pg/g	☼	12/15/16 06:24	12/24/16 11:29	1
1,2,3,4,6,7,8-HpCDD	11000		150		pg/g	₽	12/15/16 06:24	12/24/16 11:29	1
1,2,3,4,6,7,8-HpCDF	1300		150		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
1,2,3,4,7,8,9-HpCDF	ND		150		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
OCDD	90000		300		pg/g		12/15/16 06:24	12/24/16 11:29	1
OCDF	4800		300		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
Total TCDD	ND		30		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
Total TCDF	ND		30		pg/g	ф.	12/15/16 06:24	12/24/16 11:29	1
Total PeCDD	ND		150		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
Total PeCDF	ND		150		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
Total HxCDD	1700		150		pg/g		12/15/16 06:24	12/24/16 11:29	1
Total HxCDF	1200		150		pg/g	₩	12/15/16 06:24	12/24/16 11:29	1
Total HpCDD	18000		150		pg/g	☼	12/15/16 06:24	12/24/16 11:29	1
Total HpCDF	4600		150		pg/g	₩.	12/15/16 06:24	12/24/16 11:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	85		40 - 135				12/15/16 06:24	12/24/16 11:29	1
13C-2,3,7,8-TCDF	70		40 - 135				12/15/16 06:24	12/24/16 11:29	1
13C-1,2,3,7,8-PeCDD	72		40 - 135				12/15/16 06:24	12/24/16 11:29	1
13C-1,2,3,7,8-PeCDF	70		40 - 135				12/15/16 06:24	12/24/16 11:29	1
13C-1,2,3,6,7,8-HxCDD	71		40 - 135				12/15/16 06:24	12/24/16 11:29	1
13C-1,2,3,4,7,8-HxCDF	74		40 - 135				12/15/16 06:24	12/24/16 11:29	1
13C-1,2,3,4,6,7,8-HpCDD	91		40 - 135				12/15/16 06:24	12/24/16 11:29	1
13C-1,2,3,4,6,7,8-HpCDF	90		40 - 135				12/15/16 06:24	12/24/16 11:29	1
13C-OCDD	93		40 - 135				12/15/16 06:24	12/24/16 11:29	1

Client Sample ID: HA-18 (0-6")

Date Collected: 12/07/16 14:20

Matrix: Solid

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-76

Matrix: Solid

Percent Solids: 69.3

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND —	1.4	pg/g	\	12/15/16 06:24	12/24/16 12:15	1
2,3,7,8-TCDF	ND	1.4	pg/g	₩	12/15/16 06:24	12/24/16 12:15	1
1,2,3,7,8-PeCDD	ND	7.2	pg/g	☼	12/15/16 06:24	12/24/16 12:15	1
1,2,3,7,8-PeCDF	ND	7.2	pg/g	ф.	12/15/16 06:24	12/24/16 12:15	1
2,3,4,7,8-PeCDF	ND	7.2	pg/g	☼	12/15/16 06:24	12/24/16 12:15	1
1,2,3,4,7,8-HxCDD	ND	7.2	pg/g	₽	12/15/16 06:24	12/24/16 12:15	1
1,2,3,6,7,8-HxCDD	22	7.2	pg/g		12/15/16 06:24	12/24/16 12:15	1
1,2,3,7,8,9-HxCDD	7.7	7.2	pg/g	₽	12/15/16 06:24	12/24/16 12:15	1
1,2,3,4,7,8-HxCDF	ND	7.2	pg/g	₽	12/15/16 06:24	12/24/16 12:15	1
1,2,3,6,7,8-HxCDF	ND	7.2	pg/g		12/15/16 06:24	12/24/16 12:15	1
1,2,3,7,8,9-HxCDF	ND	7.2	pg/g	☼	12/15/16 06:24	12/24/16 12:15	1
2,3,4,6,7,8-HxCDF	ND	7.2	pg/g	₽	12/15/16 06:24	12/24/16 12:15	1
1,2,3,4,6,7,8-HpCDD	440	7.2	pg/g	\$	12/15/16 06:24	12/24/16 12:15	1
1,2,3,4,6,7,8-HpCDF	35	7.2	pg/g	₩	12/15/16 06:24	12/24/16 12:15	1

TestAmerica Spokane

2

4

6

8

10

11

13

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-18 (0-6")

Lab Sample ID: 590-5185-76 Date Collected: 12/07/16 14:20

Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 69.3

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND ND		7.2		pg/g	<u> </u>	12/15/16 06:24	12/24/16 12:15	1
OCDD	3000		14		pg/g		12/15/16 06:24	12/24/16 12:15	1
OCDF	74		14		pg/g	₩	12/15/16 06:24	12/24/16 12:15	1
Total TCDD	ND		1.4		pg/g	₩	12/15/16 06:24	12/24/16 12:15	1
Total TCDF	ND		1.4		pg/g		12/15/16 06:24	12/24/16 12:15	1
Total PeCDD	ND		7.2		pg/g	₩	12/15/16 06:24	12/24/16 12:15	1
Total PeCDF	ND		7.2		pg/g	₩	12/15/16 06:24	12/24/16 12:15	1
Total HxCDD	130		7.2		pg/g		12/15/16 06:24	12/24/16 12:15	1
Total HxCDF	35		7.2		pg/g	₩	12/15/16 06:24	12/24/16 12:15	1
Total HpCDD	770		7.2		pg/g	₩	12/15/16 06:24	12/24/16 12:15	1
Total HpCDF	100		7.2		pg/g	₩	12/15/16 06:24	12/24/16 12:15	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	83		40 - 135				12/15/16 06:24	12/24/16 12:15	1
13C-2,3,7,8-TCDF	83		40 - 135				12/15/16 06:24	12/24/16 12:15	1
13C-1,2,3,7,8-PeCDD	89		40 - 135				12/15/16 06:24	12/24/16 12:15	1
13C-1,2,3,7,8-PeCDF	83		40 - 135				12/15/16 06:24	12/24/16 12:15	1
13C-1,2,3,6,7,8-HxCDD	95		40 - 135				12/15/16 06:24	12/24/16 12:15	1
13C-1,2,3,4,7,8-HxCDF	95		40 - 135				12/15/16 06:24	12/24/16 12:15	1
13C-1,2,3,4,6,7,8-HpCDD	113		40 - 135				12/15/16 06:24	12/24/16 12:15	1
13C-1,2,3,4,6,7,8-HpCDF	113		40 - 135				12/15/16 06:24	12/24/16 12:15	1
13C-OCDD	119		40 - 135				12/15/16 06:24	12/24/16 12:15	1

Client Sample ID: HA-10 (0-6") Lab Sample ID: 590-5185-79 Date Collected: 12/07/16 14:05 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 77.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	25	J	62	10	ug/Kg	<u></u>	12/15/16 09:22	12/15/16 18:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	88		38 - 123				12/15/16 09:22	12/15/16 18:38	1
Nitrobenzene-d5	78		23 - 120				12/15/16 09:22	12/15/16 18:38	1
THE ODOMEONE GO									

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.3		pg/g	<u> </u>	12/15/16 06:24	12/24/16 13:01	1
2,3,7,8-TCDF	ND	1.3		pg/g	₩	12/15/16 06:24	12/24/16 13:01	1
1,2,3,7,8-PeCDD	ND	6.4		pg/g	₩	12/15/16 06:24	12/24/16 13:01	1
1,2,3,7,8-PeCDF	ND	6.4		pg/g		12/15/16 06:24	12/24/16 13:01	1
2,3,4,7,8-PeCDF	ND	6.4		pg/g	₩	12/15/16 06:24	12/24/16 13:01	1
1,2,3,4,7,8-HxCDD	ND	6.4		pg/g	₩	12/15/16 06:24	12/24/16 13:01	1
1,2,3,6,7,8-HxCDD	ND	6.4		pg/g		12/15/16 06:24	12/24/16 13:01	1
1,2,3,7,8,9-HxCDD	ND	6.4		pg/g	₩	12/15/16 06:24	12/24/16 13:01	1
1,2,3,4,7,8-HxCDF	ND	6.4		pg/g	₩	12/15/16 06:24	12/24/16 13:01	1
1,2,3,6,7,8-HxCDF	ND	6.4		pg/g		12/15/16 06:24	12/24/16 13:01	1
1,2,3,7,8,9-HxCDF	ND	6.4		pg/g	₩	12/15/16 06:24	12/24/16 13:01	1
2,3,4,6,7,8-HxCDF	ND	6.4		pg/g	₩	12/15/16 06:24	12/24/16 13:01	1
1,2,3,4,6,7,8-HpCDD	130	6.4		pg/g	₩.	12/15/16 06:24	12/24/16 13:01	1

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-10 (0-6")

Date Collected: 12/07/16 14:05

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-79

Matrix: Solid

Percent Solids: 77.5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDF	22		6.4		pg/g	<u> </u>	12/15/16 06:24	12/24/16 13:01	1
1,2,3,4,7,8,9-HpCDF	ND		6.4		pg/g	₽	12/15/16 06:24	12/24/16 13:01	1
OCDD	1000		13		pg/g	\$	12/15/16 06:24	12/24/16 13:01	1
OCDF	67		13		pg/g	☼	12/15/16 06:24	12/24/16 13:01	1
Total TCDD	ND		1.3		pg/g	☼	12/15/16 06:24	12/24/16 13:01	1
Total TCDF	ND		1.3		pg/g		12/15/16 06:24	12/24/16 13:01	1
Total PeCDD	ND		6.4		pg/g	☼	12/15/16 06:24	12/24/16 13:01	1
Total PeCDF	ND		6.4		pg/g	☼	12/15/16 06:24	12/24/16 13:01	1
Total HxCDD	39		6.4		pg/g		12/15/16 06:24	12/24/16 13:01	1
Total HxCDF	ND		6.4		pg/g	☼	12/15/16 06:24	12/24/16 13:01	1
Total HpCDD	260		6.4		pg/g	☼	12/15/16 06:24	12/24/16 13:01	1
Total HpCDF	55		6.4		pg/g	.	12/15/16 06:24	12/24/16 13:01	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	79		40 - 135				12/15/16 06:24	12/24/16 13:01	1
13C-2,3,7,8-TCDF	76		40 - 135				12/15/16 06:24	12/24/16 13:01	1
13C-1,2,3,7,8-PeCDD	80		40 - 135				12/15/16 06:24	12/24/16 13:01	1
13C-1,2,3,7,8-PeCDF	79		40 - 135				12/15/16 06:24	12/24/16 13:01	1
13C-1,2,3,6,7,8-HxCDD	82		40 - 135				12/15/16 06:24	12/24/16 13:01	1
13C-1,2,3,4,7,8-HxCDF	81		40 - 135				12/15/16 06:24	12/24/16 13:01	1
13C-1,2,3,4,6,7,8-HpCDD	93		40 - 135				12/15/16 06:24	12/24/16 13:01	1
13C-1,2,3,4,6,7,8-HpCDF	97		40 - 135				12/15/16 06:24	12/24/16 13:01	1
13C-OCDD	97		40 - 135				12/15/16 06:24	12/24/16 13:01	1

Client Sample ID: HA-19 (0-6")

Date Collected: 12/07/16 14:45

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-82

Matrix: Solid Percent Solids: 76.0

Method: 8290A - Dioxins a Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.3		pg/g	\	12/15/16 08:39	12/22/16 16:46	1
2,3,7,8-TCDF	ND		1.3		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
1,2,3,7,8-PeCDD	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
1,2,3,7,8-PeCDF	ND		6.5		pg/g	₩.	12/15/16 08:39	12/22/16 16:46	1
2,3,4,7,8-PeCDF	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
1,2,3,4,7,8-HxCDD	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
1,2,3,6,7,8-HxCDD	ND		6.5		pg/g	₩.	12/15/16 08:39	12/22/16 16:46	1
1,2,3,7,8,9-HxCDD	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
1,2,3,4,7,8-HxCDF	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
1,2,3,6,7,8-HxCDF	ND		6.5		pg/g		12/15/16 08:39	12/22/16 16:46	1
1,2,3,7,8,9-HxCDF	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
2,3,4,6,7,8-HxCDF	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
1,2,3,4,6,7,8-HpCDD	24		6.5		pg/g	ф.	12/15/16 08:39	12/22/16 16:46	1
1,2,3,4,6,7,8-HpCDF	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
1,2,3,4,7,8,9-HpCDF	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
OCDD	190		13		pg/g		12/15/16 08:39	12/22/16 16:46	1
OCDF	13		13		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
Total TCDD	ND		1.3		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1
Total TCDF	ND		1.3		pg/g	₽	12/15/16 08:39	12/22/16 16:46	1
Total PeCDD	ND		6.5		pg/g	₩	12/15/16 08:39	12/22/16 16:46	1

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Client Sample ID: HA-19 (0-6")

Lab Sample ID: 590-5185-82

Date Collected: 12/07/16 14:45

Date Received: 12/09/16 12:10

Matrix: Solid
Percent Solids: 76.0

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total PeCDF	ND		6.5		pg/g	<u> </u>	12/15/16 08:39	12/22/16 16:46	1
Total HxCDD	ND		6.5		pg/g		12/15/16 08:39	12/22/16 16:46	1
Total HxCDF	ND		6.5		pg/g	₽	12/15/16 08:39	12/22/16 16:46	1
Total HpCDD	48		6.5		pg/g	₽	12/15/16 08:39	12/22/16 16:46	1
Total HpCDF	6.6		6.5		pg/g		12/15/16 08:39	12/22/16 16:46	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	67		40 - 135				12/15/16 08:39	12/22/16 16:46	1
13C-2,3,7,8-TCDF	71		40 - 135				12/15/16 08:39	12/22/16 16:46	1
13C-1,2,3,7,8-PeCDD	58		40 - 135				12/15/16 08:39	12/22/16 16:46	1
13C-1,2,3,7,8-PeCDF	65		40 - 135				12/15/16 08:39	12/22/16 16:46	1
13C-1,2,3,6,7,8-HxCDD	75		40 - 135				12/15/16 08:39	12/22/16 16:46	1
13C-1,2,3,4,7,8-HxCDF	74		40 - 135				12/15/16 08:39	12/22/16 16:46	1
13C-1,2,3,4,6,7,8-HpCDD	73		40 - 135				12/15/16 08:39	12/22/16 16:46	1
13C-1,2,3,4,6,7,8-HpCDF	76		40 - 135				12/15/16 08:39	12/22/16 16:46	1
13C-OCDD	72		40 - 135				12/15/16 08:39	12/22/16 16:46	1

 Client Sample ID: HA-21 (0-6")

 Date Collected: 12/07/16 15:05
 Matrix: Solid

 Date Received: 12/09/16 12:10
 Percent Solids: 71.2

Method: 8290A - Dioxins Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.4		pg/g	\	12/15/16 08:39		1
2,3,7,8-TCDF	ND		1.4		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
1,2,3,7,8-PeCDD	ND		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
1,2,3,7,8-PeCDF	ND		7.0		pg/g	.	12/15/16 08:39	12/22/16 17:32	1
2,3,4,7,8-PeCDF	ND		7.0		pg/g	☼	12/15/16 08:39	12/22/16 17:32	1
1,2,3,4,7,8-HxCDD	ND		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
1,2,3,6,7,8-HxCDD	46		7.0		pg/g		12/15/16 08:39	12/22/16 17:32	1
1,2,3,7,8,9-HxCDD	14		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
1,2,3,4,7,8-HxCDF	ND		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
1,2,3,6,7,8-HxCDF	ND		7.0		pg/g		12/15/16 08:39	12/22/16 17:32	1
1,2,3,7,8,9-HxCDF	ND		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
2,3,4,6,7,8-HxCDF	ND		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
1,2,3,4,6,7,8-HpCDD	1000		7.0		pg/g		12/15/16 08:39	12/22/16 17:32	1
1,2,3,4,6,7,8-HpCDF	93		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
1,2,3,4,7,8,9-HpCDF	ND		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	•
OCDD	6900	E	14		pg/g	₽	12/15/16 08:39	12/22/16 17:32	•
OCDF	350		14		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
Total TCDD	ND		1.4		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
Total TCDF	ND		1.4		pg/g		12/15/16 08:39	12/22/16 17:32	1
Total PeCDD	ND		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
Total PeCDF	ND		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
Total HxCDD	140		7.0		pg/g		12/15/16 08:39	12/22/16 17:32	1
Total HxCDF	93		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
Total HpCDD	1600		7.0		pg/g	₩	12/15/16 08:39	12/22/16 17:32	1
Total HpCDF	340		7.0		pg/g	Φ.	12/15/16 08:39	12/22/16 17:32	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	55		40 - 135				12/15/16 08:39	12/22/16 17:32	

TestAmerica Spokane

Page 27 of 81

5/9/2018 (Rev. 1)

3

4

6

9

10

11

12

15

Percent Solids: 71.2

Client Sample ID: HA-21 (0-6")

Date Collected: 12/07/16 15:05 Date Received: 12/09/16 12:10

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	60	40 - 135	12/15/16 08:39	12/22/16 17:32	1
13C-1,2,3,7,8-PeCDD	49	40 - 135	12/15/16 08:39	12/22/16 17:32	1
13C-1,2,3,7,8-PeCDF	55	40 - 135	12/15/16 08:39	12/22/16 17:32	1
13C-1,2,3,6,7,8-HxCDD	58	40 - 135	12/15/16 08:39	12/22/16 17:32	1
13C-1,2,3,4,7,8-HxCDF	57	40 - 135	12/15/16 08:39	12/22/16 17:32	1
13C-1,2,3,4,6,7,8-HpCDD	60	40 - 135	12/15/16 08:39	12/22/16 17:32	1
13C-1,2,3,4,6,7,8-HpCDF	60	40 - 135	12/15/16 08:39	12/22/16 17:32	1
13C-OCDD	64	40 - 135	12/15/16 08:39	12/22/16 17:32	1

Client Sample ID: HA-23 (0-6")

Date Collected: 12/07/16 15:30 Date Received: 12/09/16 12:10 Lab Sample ID: 590-5185-88 Matrix: Solid

Percent Solids: 64.5

Analyte	Result	Qualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	52		pg/g	<u> </u>	12/15/16 08:39	12/22/16 18:18	1
2,3,7,8-TCDF	ND	52		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
1,2,3,7,8-PeCDD	ND	260		pg/g	₽	12/15/16 08:39	12/22/16 18:18	1
1,2,3,7,8-PeCDF	ND	260		pg/g	ф.	12/15/16 08:39	12/22/16 18:18	1
2,3,4,7,8-PeCDF	ND	260		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
1,2,3,4,7,8-HxCDD	ND	260		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
1,2,3,6,7,8-HxCDD	620	260		pg/g	₽	12/15/16 08:39	12/22/16 18:18	1
1,2,3,7,8,9-HxCDD	270	260		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
1,2,3,4,7,8-HxCDF	ND	260		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
1,2,3,6,7,8-HxCDF	ND	260		pg/g	₩	12/15/16 08:39	12/22/16 18:18	1
1,2,3,7,8,9-HxCDF	ND	260		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
2,3,4,6,7,8-HxCDF	ND	260		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
1,2,3,4,6,7,8-HpCDD	15000	260		pg/g	₩	12/15/16 08:39	12/22/16 18:18	1
1,2,3,4,6,7,8-HpCDF	1200	260		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
1,2,3,4,7,8,9-HpCDF	ND	260		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
OCDD	140000	520		pg/g		12/15/16 08:39	12/22/16 18:18	1
OCDF	7400	520		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
Total TCDD	ND	52		pg/g	≎	12/15/16 08:39	12/22/16 18:18	1
Total TCDF	ND	52		pg/g	φ.	12/15/16 08:39	12/22/16 18:18	1
Total PeCDD	ND	260		pg/g	₽	12/15/16 08:39	12/22/16 18:18	1
Total PeCDF	ND	260		pg/g	₽	12/15/16 08:39	12/22/16 18:18	1
Total HxCDD	2200	260		pg/g	₩	12/15/16 08:39	12/22/16 18:18	1
Total HxCDF	1100	260		pg/g	☼	12/15/16 08:39	12/22/16 18:18	1
Total HpCDD	26000	260		pg/g	₽	12/15/16 08:39	12/22/16 18:18	1
Total HpCDF	5000	260		pg/g	₽	12/15/16 08:39	12/22/16 18:18	1
Landana Biladian	2/5						A	

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	98	40 - 135	12/15/16 08:39	12/22/16 18:18	1
13C-2,3,7,8-TCDF	104	40 - 135	12/15/16 08:39	12/22/16 18:18	1
13C-1,2,3,7,8-PeCDD	97	40 - 135	12/15/16 08:39	12/22/16 18:18	1
13C-1,2,3,7,8-PeCDF	101	40 - 135	12/15/16 08:39	12/22/16 18:18	1
13C-1,2,3,6,7,8-HxCDD	116	40 - 135	12/15/16 08:39	12/22/16 18:18	1
13C-1,2,3,4,7,8-HxCDF	117	40 - 135	12/15/16 08:39	12/22/16 18:18	1
13C-1,2,3,4,6,7,8-HpCDD	113	40 - 135	12/15/16 08:39	12/22/16 18:18	1
13C-1,2,3,4,6,7,8-HpCDF	115	40 - 135	12/15/16 08:39	12/22/16 18:18	1

TestAmerica Job ID: 590-5185-1

Client Sample ID: HA-23 (0-6")

Date Collected: 12/07/16 15:30 Date Received: 12/09/16 12:10 Lab Sample ID: 590-5185-88

Matrix: Solid

Percent Solids: 64.5

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

 Isotope Dilution
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 13C-OCDD
 128
 40 - 135
 12/15/16 08:39
 12/22/16 18:18
 1

Client Sample ID: HA-26 (0-6") Lab Sample ID: 590-5185-91

Date Collected: 12/07/16 11:05

Matrix: Solid

Date Received: 12/09/16 12:10

Percent Solids: 77.8

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	3700		62	10	ug/Kg	<u> </u>	12/15/16 09:22	12/15/16 19:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	91	-	38 - 123				12/15/16 09:22	12/15/16 19:04	1
Nitrobenzene-d5	71		23 - 120				12/15/16 09:22	12/15/16 19:04	1
p-Terphenyl-d14	103		68 - 136				12/15/16 09:22	12/15/16 19:04	1

Client Sample ID: Seep-1:GW:120716 Lab Sample ID: 590-5185-94

Date Collected: 12/07/16 14:06 Matrix: Water

Date Received: 12/09/16 12:10

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Pentachlorophenol	ND		0.078		ug/L		12/13/16 17:46	12/17/16 23:26	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2.4.6-Tribromophenol	97		44 - 125				12/13/16 17:46	12/17/16 23:26	1	

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Method. NWTPH-DX - Northw	vest - Seiiii-v	Diatile Pet	roleulli Frou	iucis (Gi	-)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.14		mg/L		12/14/16 14:24	12/15/16 02:02	1
Residual Range Organics (RRO) (C25-C36)	ND		0.23		mg/L		12/14/16 14:24	12/15/16 02:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Ternhenyl	90		50 150				12/14/16 14:24	12/15/16 02:02	

 o-Terphenyl
 90
 50 - 150
 12/14/16 14:24
 12/15/16 02:02
 1

 n-Triacontane-d62
 90
 50 - 150
 12/14/16 14:24
 12/15/16 02:02
 1

Client Sample ID: Seep-2:GW:120716

Date Collected: 12/07/16 14:57

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-95

Matrix: Water

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte Pentachlorophenol	Result ND	Qualifier	RL 0.083	MDL	Unit ug/L	<u>D</u>	Prepared 12/13/16 17:46	Analyzed 12/17/16 23:48	Dil Fac
Surrogate 2,4,6-Tribromophenol	%Recovery	Qualifier	Limits 44 - 125				Prepared 12/13/16 17:46	Analyzed 12/17/16 23:48	Dil Fac

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)										
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
	Diesel Range Organics (DRO)	ND —	0.13	mg/L		12/14/16 14:24	12/15/16 02:18	1		

(C10-C25)

Lab Sample ID: 590-5185-95

Client Sample ID: Seep-2:GW:120716

Date Collected: 12/07/16 14:57 Date Received: 12/09/16 12:10

Matrix: Water

TestAmerica Job ID: 590-5185-1

Dil Fac

Method: NWTPH-Dx - Northwe						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed
Residual Range Organics (RRO)	ND	0.22	mg/L		12/14/16 14:24	12/15/16 02:18

ND 0.22 mg/L Residual Range Organics (RRO) (C25-C36)

(020 000)						
Surrogate	%Recovery Qua	alifier Lin	nits	Prepared	Analyzed	Dil Fac
o-Terphenyl	87	50	<u>- 150</u>	12/14/16 14:24	12/15/16 02:18	1
n-Triacontane-d62	86	50	- 150	12/14/16 14:24	12/15/16 02:18	1

Client Sample ID: HA-27 (0-6") Lab Sample ID: 590-5185-96

Date Collected: 12/07/16 15:45 Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 74.0

Method: 6010C - Metals (ICP)										
Analyte	Result (Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Cadmium	ND		0.56		mg/Kg	\	12	2/12/16 13:58	12/13/16 14:17	1

Method: 7471B - Mercury (CVAA	()								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		38		ug/Kg		12/20/16 09:43	12/21/16 15:36	1

Client Sample ID: HA-28 (0-6") Lab Sample ID: 590-5185-99 Date Collected: 12/07/16 16:00 **Matrix: Solid**

Percent Solids: 66.7 Date Received: 12/09/16 12:10 Mothod: 6010C Motals (ICB)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.61		mg/Kg	₩	12/12/16 13:58	12/13/16 14:21	1
Method: 7471B - Mercury (CVAA)									

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	42	33	ug/Kg	\\	12/20/16 09:43	12/21/16 15:45	1

Client Sample ID: HA-30 (0-6") Lab Sample ID: 590-5185-102 Date Collected: 12/07/16 16:20 **Matrix: Solid**

Date Received: 12/09/16 12:	10						Percent Solid	s: 81.4
Method: 8270D SIM - Semi	volatile Organic Compound	ds (GC/MS	SIM)					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol		59	9.6	ua/Ka	\	12/15/16 09:22	12/15/16 19:30	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	84	38 - 123	12/15/16 09:22	12/15/16 19:30	1
Nitrobenzene-d5	71	23 - 120	12/15/16 09:22	12/15/16 19:30	1
p-Terphenyl-d14	96	68 - 136	12/15/16 09:22	12/15/16 19:30	1

						. =	•
Method: 8290A - Dioxins	and Furans (HRGC/HRM	S)					
Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	1.2	pg/g	\	12/15/16 08:39	12/22/16 19:04	1
2,3,7,8-TCDF	ND	1.2	pg/g	☼	12/15/16 08:39	12/22/16 19:04	1
1,2,3,7,8-PeCDD	ND	6.1	pg/g	☼	12/15/16 08:39	12/22/16 19:04	1
4 0 0 7 0 D ODE	N/D			_. .	40/45/40 00:00	10/00/10 10:01	

1,2,3,7,8-PeCDF 12/15/16 08:39 12/22/16 19:04 ND 6.1 pg/g 2,3,4,7,8-PeCDF ND 6.1 pg/g 12/15/16 08:39 12/22/16 19:04 1,2,3,4,7,8-HxCDD ND 6.1 12/15/16 08:39 12/22/16 19:04 pg/g

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-30 (0-6")

Date Collected: 12/07/16 16:20 Date Received: 12/09/16 12:10 Lab Sample ID: 590-5185-102

Matrix: Solid

Percent Solids: 81.4

Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,6,7,8-HxCDD	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
1,2,3,7,8,9-HxCDD	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
1,2,3,4,7,8-HxCDF	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
1,2,3,6,7,8-HxCDF	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
1,2,3,7,8,9-HxCDF	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
2,3,4,6,7,8-HxCDF	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
1,2,3,4,6,7,8-HpCDD	44		6.1		pg/g		12/15/16 08:39	12/22/16 19:04	1
1,2,3,4,6,7,8-HpCDF	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
1,2,3,4,7,8,9-HpCDF	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
OCDD	560		12		pg/g	₽	12/15/16 08:39	12/22/16 19:04	1
OCDF	27		12		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
Total TCDD	ND		1.2		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
Total TCDF	ND		1.2		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
Total PeCDD	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
Total PeCDF	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
Total HxCDD	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
Total HxCDF	ND		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
Total HpCDD	78		6.1		pg/g	₩	12/15/16 08:39	12/22/16 19:04	1
Total HpCDF	14		6.1		pg/g	.	12/15/16 08:39	12/22/16 19:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	82		40 - 135				12/15/16 08:39	12/22/16 19:04	1
13C-2,3,7,8-TCDF	84		40 - 135				12/15/16 08:39	12/22/16 19:04	1
13C-1,2,3,7,8-PeCDD	75		40 - 135				12/15/16 08:39	12/22/16 19:04	1
13C-1,2,3,7,8-PeCDF	81		40 - 135				12/15/16 08:39	12/22/16 19:04	1
13C-1,2,3,6,7,8-HxCDD	89		40 - 135				12/15/16 08:39	12/22/16 19:04	1
13C-1,2,3,4,7,8-HxCDF	90		40 - 135				12/15/16 08:39	12/22/16 19:04	1
13C-1,2,3,4,6,7,8-HpCDD	89		40 - 135				12/15/16 08:39	12/22/16 19:04	1
13C-1,2,3,4,6,7,8-HpCDF	93		40 - 135				12/15/16 08:39	12/22/16 19:04	1
13C-OCDD	94		40 - 135				12/15/16 08:39	12/22/16 19:04	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.52		mg/Kg		12/12/16 13:58	12/13/16 14:24	1
Method: 7471B - Mercury (CV)	AA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
								12/21/16 15:47	

Client Sample ID: HA-29 (0-6")

Date Collected: 12/07/16 16:35

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-105

Matrix: Solid

Percent Solids: 73.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	15000		660	110	ug/Kg	<u> </u>	12/15/16 09:22	12/16/16 09:44	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	89		38 - 123				12/15/16 09:22	12/16/16 09:44	10
	77		23 - 120				12/15/16 00:22	12/16/16 09:44	10
Nitrobenzene-d5	//		23 - 120				12/13/10 09.22	12/10/10 09.44	10

Lab Sample ID: 590-5185-108

Matrix: Solid

TestAmerica Job ID: 590-5185-1

Percent Solids: 72.6

Client Samp	le ID: S	Seep-1 ((6-12'')
-------------	----------	----------	----------

Date Collected: 12/07/16 12:00 Date Received: 12/09/16 12:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	51	J	65	11	ug/Kg	\	12/15/16 09:22	12/15/16 20:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	77		38 - 123				12/15/16 09:22	12/15/16 20:22	1
Nitrobenzene-d5	62		23 - 120				12/15/16 09:22	12/15/16 20:22	1
p-Terphenyl-d14	95		68 - 136				12/15/16 09:22	12/15/16 20:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		14		mg/Kg	\	12/13/16 10:05	12/13/16 13:02	1
Residual Range Organics (RRO) (C25-C36)	ND		34		mg/Kg	≎	12/13/16 10:05	12/13/16 13:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 - 150				12/13/16 10:05	12/13/16 13:02	1
n-Triacontane-d62	109		50 ₋ 150				12/13/16 10:05	12/13/16 13:02	1

Client Sample ID: Seep-2 (6-12"")	Lab Sample ID: 590-5185-109
Date Collected: 12/07/16 12:05	Matrix: Solid
Date Received: 12/09/16 12:10	Percent Solids: 63.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	38	J	77	12	ug/Kg	<u>∓</u>	12/15/16 09:22	12/15/16 20:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		38 - 123				12/15/16 09:22	12/15/16 20:48	1
Nitrobenzene-d5	60		23 - 120				12/15/16 09:22	12/15/16 20:48	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		15		mg/Kg	\	12/13/16 10:05	12/13/16 13:19	1
Residual Range Organics (RRO) (C25-C36)	ND		37		mg/Kg	☼	12/13/16 10:05	12/13/16 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150				12/13/16 10:05	12/13/16 13:19	1
n-Triacontane-d62	100		50 - 150				12/13/16 10:05	12/13/16 13:19	1

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-10041/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 10044	Prep Batch: 10041
MB MB	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND	50	8.2 ug/Kg		12/15/16 09:22	12/15/16 14:16	1
	MB MB						

1		MB	MB				
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl (Surr)	89		38 - 123	12/15/16 09:22	12/15/16 14:16	1
	Nitrobenzene-d5	73		23 - 120	12/15/16 09:22	12/15/16 14:16	1
	p-Terphenyl-d14	121		68 - 136	12/15/16 09:22	12/15/16 14:16	1

Lab Sample ID: LCS 590-10041/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid **Prep Type: Total/NA** Prep Batch: 10041 **Analysis Batch: 10044**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Pentachlorophenol	533	591		ug/Kg	_	111	50 - 150	

	LCS LCS	
Surrogate	%Recovery Qualifie	er Limits
2-Fluorobiphenyl (Surr)	77	38 - 123
Nitrobenzene-d5	60	23 - 120
p-Terphenyl-d14	101	68 - 136

Lab Sample ID: 590-5185-16 MS Client Sample ID: HA-37 (0-6") Matrix: Solid Prep Type: Total/NA

Analysis Batch: 10044 Prep Batch: 10041 Sample Sample Spike MS MS %Rec.

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Pentachlorophenol	120	F1	613	1090	F1	ug/Kg	\	158	50 - 150	
	MS	MS								

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	64		38 - 123
Nitrobenzene-d5	43		23 - 120
p-Terphenyl-d14	97		68 - 136

Lab Sample ID: 590-5185-16 MSD Client Sample ID: HA-37 (0-6")

Matrix: Solid Prep Type: Total/NA Prep Batch: 10041 **Analysis Batch: 10044**

7 mining 010 = military 100 11											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Pentachlorophenol	120	F1	601	990		ua/Ka	\	145	50 - 150	10	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	76		38 - 123
Nitrobenzene-d5	58		23 - 120
p-Terphenyl-d14	93		68 - 136

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 580-234444/1-A

Matrix: Water

Analysis Batch: 234802

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 234444

Prep Type: Total/NA Prep Batch: 234444

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.080 <u>12/13/16 17:46</u> <u>12/17/16 17:58</u> Pentachlorophenol $\overline{\mathsf{ND}}$ ug/L

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2,4,6-Tribromophenol 73 44 - 125 12/13/16 17:46 12/17/16 17:58

Spike

Added

Limits

44 - 125

Spike

Added

4.00

4.00

LCS LCS

LCSD LCSD

2.51

Result Qualifier

MDL Unit

mg/L

mg/L

2.90

Result Qualifier

Unit

ug/L

Unit

ug/L

Lab Sample ID: LCS 580-234444/2-A

Matrix: Water

Analysis Batch: 234802

Analyte Pentachlorophenol

Lab Sample ID: LCSD 580-234444/3-A

LCS LCS

%Recovery Qualifier 95

%Rec

Prepared

%Rec

73

Matrix: Water

Surrogate

Surrogate

2,4,6-Tribromophenol

Analysis Batch: 234802

Pentachlorophenol

2,4,6-Tribromophenol 96 Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

%Rec.

Limits

20 - 134

Prep Type: Total/NA

Prep Batch: 234444 **RPD**

%Rec.

Limits RPD Limit 20 - 134

LCSD LCSD

%Recovery Qualifier Limits 44 - 125

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-10031/1-A

Matrix: Water

(C25-C36)

Analysis Batch: 10020

Client Sample ID: Method Blank

12/14/16 14:24 12/14/16 21:55

Prep Batch: 10031

MB MB

Analyte Result Qualifier ND

Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO)

MB MB

ND

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 95 50 - 150 12/14/16 14:24 12/14/16 21:55 n-Triacontane-d62 95 50 - 150 12/14/16 14:24 12/14/16 21:55

RL

0.12

0.20

TestAmerica Spokane

5/9/2018 (Rev. 1)

Prep Type: Total/NA

Project/Site: Colville Post and Pole/0504-098-01

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-10031/2-A

Lab Sample ID: LCSD 590-10031/3-A

Matrix: Water

Analysis Batch: 10020

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 10031

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1.61 1.42 mg/L 88 50 - 150 Diesel Range Organics (DRO) (C10-C25) 1.60 1.57 98 Residual Range Organics (RRO) mg/L 50 - 150

(C25-C36)

LCS LCS

Surrogate	%Recovery Qualifier	Limits
o-Terphenyl	85	50 - 150
n-Triacontane-d62	89	50 - 150

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 10020

Prep Type: Total/NA

Prep Batch: 10031

LCSD LCSD RPD Spike %Rec. Added Analyte Result Qualifier Limits RPD Limit Unit D %Rec 1.61 1.34 83 50 - 150 25 Diesel Range Organics (DRO) mg/L (C10-C25) 1.60 1.52 mg/L 95 50 - 150 3 25 Residual Range Organics (RRO)

(C25-C36)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	82		50 - 150
n-Triacontane-d62	87		50 - 150

Lab Sample ID: MB 590-9993/1-A

Matrix: Solid

Analysis Batch: 9994

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 9993

	MR MR						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND ND	10	mg/Kg		12/13/16 07:00	12/13/16 07:45	1
Residual Range Organics (RRO)	ND	25	mg/Kg		12/13/16 07:00	12/13/16 07:45	1

(C25-C36)

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150	12/13/16 07:00	12/13/16 07:45	1
n-Triacontane-d62	94		50 ₋ 150	12/13/16 07:00	12/13/16 07:45	1

Lab Sample ID: LCS 590-9993/2-A

Matrix: Solid

Analysis Batch: 9994

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 9993

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO)	67.1	62.4		mg/Kg		93	50 - 150	
(C10-C25)								
Residual Range Organics (RRO)	66.8	64.7		mg/Kg		97	50 - 150	

(C25-C36)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	97		50 - 150

TestAmerica Spokane

QC Sample Results

DU DU

25.1

87.2

Result Qualifier

EDL Unit

pg/g

RL

1.0

1.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

10

10

1.0

1.0

5.0

5.0

5.0

5.0

5.0

5.0

Unit

mg/Kg

mg/Kg

D

77

ά

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Client Sample ID: HA-37 (0-6")

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-9993/2-A

Matrix: Solid

Analysis Batch: 9994

LCS LCS

Surrogate %Recovery Qualifier Limits n-Triacontane-d62 50 - 150 98

Lab Sample ID: 590-5185-16 DU

Matrix: Solid

Analysis Batch: 9994

Sample Sample Result Qualifier

Analyte 25 Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) 97

(C25-C36)

DU DU

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 96 99 50 - 150 n-Triacontane-d62

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-142254/1-A

Matrix: Solid

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

1,2,3,7,8,9-HxCDD

1,2,3,4,6,7,8-HpCDF

Total HpCDF

Analysis Batch: 143787

MB MB

ND

ND

ND

ND

ND

Result Qualifier Analyte 2,3,7,8-TCDD $\overline{\mathsf{ND}}$

2,3,7,8-TCDF ND 1,2,3,7,8-PeCDD ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND

1,2,3,4,7,8-HxCDF ND 1,2,3,6,7,8-HxCDF ND 1,2,3,7,8,9-HxCDF ND NΠ 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD ND

1,2,3,4,7,8,9-HpCDF ND OCDD ND **OCDF** ND Total TCDD ND ND Total TCDF Total PeCDD ND

Total PeCDF ND Total HxCDD ND Total HxCDF ND Total HpCDD ND

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 9993

RPD

0.8

10

Prep Batch: 9993

Client Sample ID: Lab Control Sample

RPD

Limit

40

40

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 142254

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08

12/15/16 06:24 12/23/16 21:08 12/15/16 06:24 12/23/16 21:08

Prepared Analyzed Dil Fac

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

MB	MB
IVID	IVID

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	82	40 - 135	12/15/16 06:24	12/23/16 21:08	1
13C-2,3,7,8-TCDF	71	40 - 135	12/15/16 06:24	12/23/16 21:08	1
13C-1,2,3,7,8-PeCDD	84	40 - 135	12/15/16 06:24	12/23/16 21:08	1
13C-1,2,3,7,8-PeCDF	74	40 - 135	12/15/16 06:24	12/23/16 21:08	1
13C-1,2,3,6,7,8-HxCDD	88	40 - 135	12/15/16 06:24	12/23/16 21:08	1
13C-1,2,3,4,7,8-HxCDF	75	40 - 135	12/15/16 06:24	12/23/16 21:08	1
13C-1,2,3,4,6,7,8-HpCDD	88	40 - 135	12/15/16 06:24	12/23/16 21:08	1
13C-1,2,3,4,6,7,8-HpCDF	80	40 - 135	12/15/16 06:24	12/23/16 21:08	1
13C-OCDD	87	40 - 135	12/15/16 06:24	12/23/16 21:08	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 142254

Lab Sample ID: LCS 320-142254/2-A **Matrix: Solid**

Analysis Batch: 143787

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	20.0	18.7		pg/g		93	77 - 130	
2,3,7,8-TCDF	20.0	20.2		pg/g		101	79 - 137	
1,2,3,7,8-PeCDD	100	112		pg/g		112	79 - 134	
1,2,3,7,8-PeCDF	100	105		pg/g		105	81 - 134	
2,3,4,7,8-PeCDF	100	108		pg/g		108	76 - 132	
1,2,3,4,7,8-HxCDD	100	95.8		pg/g		96	65 - 144	
1,2,3,6,7,8-HxCDD	100	111		pg/g		111	73 - 147	
1,2,3,7,8,9-HxCDD	100	102		pg/g		102	80 - 143	
1,2,3,4,7,8-HxCDF	100	102		pg/g		102	72 - 140	
1,2,3,6,7,8-HxCDF	100	109		pg/g		109	63 - 152	
1,2,3,7,8,9-HxCDF	100	104		pg/g		104	72 - 152	
2,3,4,6,7,8-HxCDF	100	107		pg/g		107	72 - 151	
1,2,3,4,6,7,8-HpCDD	100	108		pg/g		108	86 - 134	
1,2,3,4,6,7,8-HpCDF	100	109		pg/g		109	81 - 137	
1,2,3,4,7,8,9-HpCDF	100	104		pg/g		104	79 - 139	
OCDD	200	214		pg/g		107	80 - 137	
OCDF	200	203		pg/g		102	75 - 141	

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	91		40 - 135
13C-2,3,7,8-TCDF	78		40 - 135
13C-1,2,3,7,8-PeCDD	94		40 - 135
13C-1,2,3,7,8-PeCDF	86		40 - 135
13C-1,2,3,6,7,8-HxCDD	94		40 - 135
13C-1,2,3,4,7,8-HxCDF	81		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	96		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	88		40 - 135
13C-OCDD	97		40 - 135

Lab Sample ID: LCSD 320-142254/3-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 142254

Analysis Batch: 143787						Prep Batch: 142254			
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	20.0	18.0		pg/g		90	77 - 130	4	20
2,3,7,8-TCDF	20.0	20.2		pg/g		101	79 - 137	0	20
1,2,3,7,8-PeCDD	100	113		pg/g		113	79 - 134	1	20
1,2,3,7,8-PeCDF	100	106		pg/g		106	81 - 134	1	20
2,3,4,7,8-PeCDF	100	110		pg/g		110	76 - 132	2	20

TestAmerica Spokane

Page 37 of 81

5/9/2018 (Rev. 1)

TestAmerica Job ID: 590-5185-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-142254/3-A

Matrix: Solid

Analysis Batch: 143787

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 142254

ec. nits RPD	RPD
nits RPD	
	Limit
. 144 3	20
. 147 3	20
. 143 4	20
140 3	20
. 152 2	20
152 9	20
. 151 3	20
. 134 2	20
137 0	20
. 139 7	20
137 14	20
. 141 2	20
5 - 3 3 3 3 3 3 3 3 3 3 3 - 3	3-144 3 3-147 3 3-143 4 2-140 3 3-152 2 2-152 9 2-151 3 3-134 2 1-137 0 3-139 7 3-137 14

LCSD LCSD

MR MR

	LUJD	LUJD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	61		40 - 135
13C-2,3,7,8-TCDF	51		40 - 135
13C-1,2,3,7,8-PeCDD	59		40 - 135
13C-1,2,3,7,8-PeCDF	55		40 - 135
13C-1,2,3,6,7,8-HxCDD	62		40 - 135
13C-1,2,3,4,7,8-HxCDF	54		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	64		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	55		40 - 135
13C-OCDD	65		40 - 135

Lab Sample ID: MB 320-142262/1-A

Matrix: Solid

Analysis Batch: 143636

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 142262

	MB	S MB								
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac	
2,3,7,8-TCDD	ND		1.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
2,3,7,8-TCDF	ND		1.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,7,8-PeCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,7,8-PeCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
2,3,4,7,8-PeCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,4,7,8-HxCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,6,7,8-HxCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,7,8,9-HxCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,4,7,8-HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,6,7,8-HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,7,8,9-HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
2,3,4,6,7,8-HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,4,6,7,8-HpCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,4,6,7,8-HpCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
1,2,3,4,7,8,9-HpCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
OCDD	ND		10		pg/g		12/15/16 08:39	12/22/16 14:28	1	
OCDF	ND		10		pg/g		12/15/16 08:39	12/22/16 14:28	1	
Total TCDD	ND		1.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
Total TCDF	ND		1.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	

TestAmerica Spokane

Page 38 of 81

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-142262/1-A

Matrix: Solid

Analysis Batch: 143636

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 142262

	MB	MR								
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total PeCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
Total PeCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
Total HxCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
Total HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
Total HpCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
Total HpCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1	
	MB	MR								

	IVID	IVID				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	59		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-2,3,7,8-TCDF	61		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,7,8-PeCDD	56		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,7,8-PeCDF	60		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,6,7,8-HxCDD	66		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,4,7,8-HxCDF	64		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,4,6,7,8-HpCDD	68		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,4,6,7,8-HpCDF	67		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-OCDD	70		40 - 135	12/15/16 08:39	12/22/16 14:28	1

Lab Sample ID: LCS 320-142262/2-A

Matrix: Solid

Analysis Batch: 143636

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 142262

Analysis Batch. 143030	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
2,3,7,8-TCDD	20.0	22.2	pg/g		77 - 130
2,3,7,8-TCDF	20.0	21.3	pg/g	106	79 - 137
1,2,3,7,8-PeCDD	100	116	pg/g	116	79 - 134
1,2,3,7,8-PeCDF	100	115	pg/g	115	81 - 134
2,3,4,7,8-PeCDF	100	115	pg/g	115	76 - 132
1,2,3,4,7,8-HxCDD	100	109	pg/g	109	65 - 144
1,2,3,6,7,8-HxCDD	100	115	pg/g	115	73 - 147
1,2,3,7,8,9-HxCDD	100	101	pg/g	101	80 - 143
1,2,3,4,7,8-HxCDF	100	109	pg/g	109	72 - 140
1,2,3,6,7,8-HxCDF	100	111	pg/g	111	63 - 152
1,2,3,7,8,9-HxCDF	100	102	pg/g	102	72 - 152
2,3,4,6,7,8-HxCDF	100	111	pg/g	111	72 - 151
1,2,3,4,6,7,8-HpCDD	100	113	pg/g	113	86 - 134
1,2,3,4,6,7,8-HpCDF	100	112	pg/g	112	81 - 137
1,2,3,4,7,8,9-HpCDF	100	107	pg/g	107	79 - 139
OCDD	200	223	pg/g	111	80 - 137
OCDF	200	220	pg/g	110	75 - 141
1.00	1.00				

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	82		40 - 135
13C-2,3,7,8-TCDF	85		40 - 135
13C-1,2,3,7,8-PeCDD	78		40 - 135
13C-1,2,3,7,8-PeCDF	84		40 - 135
13C-1,2,3,6,7,8-HxCDD	94		40 - 135
13C-1,2,3,4,7,8-HxCDF	94		40 - 135

TestAmerica Spokane

Page 39 of 81

<u>J</u>

5

7

10

12

TestAmerica Job ID: 590-5185-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-142262/2-A

Matrix: Solid

Analysis Batch: 143636

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 142262

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-1,2,3,4,6,7,8-HpCDD	91		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	94		40 - 135
13C-OCDD	95		40 - 135

Lab Sample ID: LCSD 320-142262/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 143636

Prep Type: Total/NA

Prep Batch: 142262

Alialysis Batch. 143030	Spike		LCSD				%Rec.	atem. 1	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	20.0	20.7		pg/g		104	77 - 130	7	20
2,3,7,8-TCDF	20.0	20.1		pg/g		100	79 - 137	6	20
1,2,3,7,8-PeCDD	100	111		pg/g		111	79 - 134	4	20
1,2,3,7,8-PeCDF	100	110		pg/g		110	81 - 134	4	20
2,3,4,7,8-PeCDF	100	110		pg/g		110	76 - 132	4	20
1,2,3,4,7,8-HxCDD	100	101		pg/g		101	65 - 144	7	20
1,2,3,6,7,8-HxCDD	100	109		pg/g		109	73 - 147	5	20
1,2,3,7,8,9-HxCDD	100	97.1		pg/g		97	80 - 143	4	20
1,2,3,4,7,8-HxCDF	100	107		pg/g		107	72 - 140	2	20
1,2,3,6,7,8-HxCDF	100	109		pg/g		109	63 - 152	2	20
1,2,3,7,8,9-HxCDF	100	101		pg/g		101	72 - 152	1	20
2,3,4,6,7,8-HxCDF	100	108		pg/g		108	72 - 151	3	20
1,2,3,4,6,7,8-HpCDD	100	107		pg/g		107	86 - 134	5	20
1,2,3,4,6,7,8-HpCDF	100	107		pg/g		107	81 - 137	5	20
1,2,3,4,7,8,9-HpCDF	100	101		pg/g		101	79 - 139	7	20
OCDD	200	209		pg/g		104	80 - 137	6	20
OCDF	200	204		pg/g		102	75 ₋ 141	8	20

LCSD LCSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	57		40 - 135
13C-2,3,7,8-TCDF	60		40 - 135
13C-1,2,3,7,8-PeCDD	55		40 - 135
13C-1,2,3,7,8-PeCDF	58		40 - 135
13C-1,2,3,6,7,8-HxCDD	68		40 - 135
13C-1,2,3,4,7,8-HxCDF	67		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	66		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	68		40 - 135
13C-OCDD	69		40 - 135

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-9988/2-A

Matrix: Solid

Analysis Batch: 10012

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 9988

MB MB Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac Cadmium ND 0.63 mg/Kg <u>12/12/16 13:58</u> <u>12/13/16 14:10</u>

TestAmerica Spokane

Page 40 of 81

5/9/2018 (Rev. 1)

TestAmerica Job ID: 590-5185-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: LCS 590-9988/1-A				Cli	ient Sa	mple ID	: Lab Control Sam	ple
Matrix: Solid							Prep Type: Total/	NΑ
Analysis Batch: 10012							Prep Batch: 99	886
•	Spike	LCS	LCS				%Rec.	
Amalysia	Added	Decult	O. olifian	1144		0/ Daa	Limita	

Analyte Added Result Qualifier Unit %Rec Limits 50.0 49.5 99 80 - 120 Cadmium mg/Kg

Method: 7471B - Mercury (CVAA)

Hg

Lab Sample ID: MB 590-10106/9-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 10106 **Analysis Batch: 10139** MB MB

MDL Unit RL Analyte Result Qualifier Prepared Analyzed Dil Fac 50 Hg $\overline{\mathsf{ND}}$ ug/Kg 12/20/16 09:43 12/21/16 15:33

Lab Sample ID: LCS 590-10106/8-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 10139** Prep Batch: 10106 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Hg 200 199 100 80 - 120 ug/Kg

Lab Sample ID: 590-5185-96 MS Client Sample ID: HA-27 (0-6") **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 10139** Prep Batch: 10106 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits

218

222

ND

ND

Lab Sample ID: 590-5185-96 MSD Client Sample ID: HA-27 (0-6") **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 10139** Prep Batch: 10106 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit

240

245

ug/Kg

99

100

80 - 120

80 - 120 Hg ug/Kg Lab Sample ID: 590-5185-96 DU Client Sample ID: HA-27 (0-6") **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 10139** Prep Batch: 10106 Sample Sample DU DU **RPD**

Limit Result Qualifier Result Qualifier D RPD Analyte Unit ₩ ND ND NC Hg ug/Kg 20

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5185-1

Matrix: Solid

Date Collected: 12/06/16 11:40 Date Received: 12/09/16 12:10

Client Sample ID: HA-4 (0-6')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

Lab Sample ID: 590-5185-1 Client Sample ID: HA-4 (0-6')

Date Collected: 12/06/16 11:40 Date Received: 12/09/16 12:10

Matrix: Solid

Percent Solids: 75.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.02 g	2000 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143787	12/23/16 23:26	KSS	TAL SAC

Client Sample ID: HA-3 (0-6")

Lab Sample ID: 590-5185-4 Date Collected: 12/06/16 12:05

Matrix: Solid

Date Received: 12/09/16 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

Client Sample ID: HA-3 (0-6") Lab Sample ID: 590-5185-4

Date Collected: 12/06/16 12:05 Date Received: 12/09/16 12:10

Matrix: Solid Percent Solids: 71.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.05 g	4000 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143787	12/24/16 00:12	KSS	TAL SAC

Client Sample ID: HA-2 (0-6") Lab Sample ID: 590-5185-7

Date Collected: 12/06/16 12:25 Matrix: Solid Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			143223	12/21/16 07:04	EP1	TAL SAC

Client Sample ID: HA-2 (0-6") Lab Sample ID: 590-5185-7

Date Collected: 12/06/16 12:25 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 88.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.01 g	83.3 uL	142262	12/15/16 08:58	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143637	12/23/16 07:10	SMA	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-1 (0-6")

Lab Sample ID: 590-5185-10

Date Collected: 12/06/16 12:45

Matrix: Solid

Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Туре Run **Factor Amount Amount** Number or Analyzed Analyst TAL SPK Total/NA Analysis Moisture 9990 12/12/16 15:10 NMI

Client Sample ID: HA-1 (0-6") Lab Sample ID: 590-5185-10

 Date Collected: 12/06/16 12:45
 Matrix: Solid

 Date Received: 12/09/16 12:10
 Percent Solids: 61.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.29 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 15:09	NMI	TAL SPK
Total/NA	Prep	3550C			15.69 g	5 mL	9993	12/13/16 10:05	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9994	12/13/16 11:01	NMI	TAL SPK
Total/NA	Prep	8290			9.99 g	500 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143787	12/24/16 00:59	KSS	TAL SAC

Client Sample ID: HA-36 (0-6") Lab Sample ID: 590-5185-13

Date Collected: 12/06/16 13:05 Matrix: Solid

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture					9990	12/12/16 15:10	NMI	TAL SPK	

Client Sample ID: HA-36 (0-6") Lab Sample ID: 590-5185-13

Date Collected: 12/06/16 13:05

Date Received: 12/09/16 12:10

Matrix: Solid
Percent Solids: 45.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.77 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 15:35	NMI	TAL SPK
Total/NA	Prep	3550C			15.75 g	5 mL	9993	12/13/16 10:05	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9994	12/13/16 11:18	NMI	TAL SPK

Client Sample ID: HA-37 (0-6")

Lab Sample ID: 590-5185-16

Date Collected: 12/06/16 13:25

Date Received: 12/09/16 12:10

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1			9990	12/12/16 15:10	NMI	TAL SPK	

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-37 (0-6")

Date Collected: 12/06/16 13:25 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-16

Lab Sample ID: 590-5185-19

12/24/16 01:45 KSS

143787

Matrix: Solid

TAL SAC

Matrix: Solid

Matrix: Solid Percent Solids: 85.3

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.40 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 16:53	NMI	TAL SPK
Total/NA	Prep	3550C			15.30 g	5 mL	9993	12/13/16 10:05	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9994	12/13/16 11:53	NMI	TAL SPK

Client Sample ID: HA-14 (0-6") Lab Sample ID: 590-5185-19 **Matrix: Solid**

Date Collected: 12/06/16 14:00

Date Received: 12/09/16 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

Client Sample ID: HA-14 (0-6")

Analysis

8290A

Date Collected: 12/06/16 14:00

Date Received	l: 12/09/16 <i>1</i>	12:10						P	ercent S	olids: 85.5
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.05 g	222.2 uL	142254	12/15/16 06:24	GLB	TAL SAC

Client Sample ID: HA-13 (0-6") Lab Sample ID: 590-5185-22

1

Date Collected: 12/06/16 14:35

Total/NA

Date Received: 12/09/16 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

Client Sample ID: HA-13 (0-6") Lab Sample ID: 590-5185-22

Date Collected: 12/06/16 14:35 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 82.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.04 g	2857 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143787	12/24/16 02:31	KSS	TAL SAC

Client Sample ID: HA-32 (0-6") Lab Sample ID: 590-5185-25

Date Collected: 12/06/16 15:00

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

TestAmerica Spokane

Matrix: Solid

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5185-25 Client Sample ID: HA-32 (0-6") Date Collected: 12/06/16 15:00 **Matrix: Solid**

Date Received: 12/09/16 12:10 Percent Solids: 91.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.08 g	66.7 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143787	12/24/16 03:17	KSS	TAL SAC

Client Sample ID: HA-8 (0-6") Lab Sample ID: 590-5185-28

Date Collected: 12/06/16 15:30 **Matrix: Solid**

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142219	12/14/16 15:56	CFR	TAL SAC

Client Sample ID: HA-8 (0-6") Lab Sample ID: 590-5185-28

Date Collected: 12/06/16 15:30 **Matrix: Solid**

Date Received: 12/09/16 12:10 Percent Solids: 85.9

_	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.00 g	250 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143785	12/23/16 23:28	KSS	TAL SAC

Client Sample ID: HA-6 (0-6") Lab Sample ID: 590-5185-31 **Matrix: Solid**

Date Collected: 12/06/16 15:45 Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216					142219	12/14/16 15:56	CFR	TAL SAC	

Client Sample ID: HA-6 (0-6") Lab Sample ID: 590-5185-31

Date Collected: 12/06/16 15:45

Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 87.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.03 g	2000 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143785	12/24/16 00:14	KSS	TAL SAC

Client Sample ID: HA-5 (0-6") Lab Sample ID: 590-5185-34

Date Collected: 12/06/16 16:05 Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142219	12/14/16 15:56	CFR	TAL SAC

Matrix: Solid

TestAmerica Job ID: 590-5185-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-5 (0-6") Lab Sample ID: 590-5185-34 Date Collected: 12/06/16 16:05 **Matrix: Solid**

Date Received: 12/09/16 12:10 Percent Solids: 85.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.05 g	333.3 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143785	12/24/16 01:00	KSS	TAL SAC

Client Sample ID: HA-7 (0-6") Lab Sample ID: 590-5185-37

Date Collected: 12/06/16 16:20 **Matrix: Solid** Date Received: 12/09/16 12:10

Dil Batch Batch Initial Final **Batch** Prepared **Prep Type** Type Method Run Factor **Amount Amount** Number or Analyzed **Analyst** Lab Total/NA Analysis D 2216 142219 12/14/16 15:56 CFR TAL SAC

Client Sample ID: HA-7 (0-6") Lab Sample ID: 590-5185-37

Date Collected: 12/06/16 16:20 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 76.1

Batch Batch Dil Initial Final **Batch Prepared** Method Factor **Amount** Number or Analyzed **Prep Type** Type Run Amount Analyst Lab Total/NA 8290 142254 12/15/16 06:24 TAL SAC Prep 10.00 g 400 uL GLB Total/NA 12/24/16 01:46 KSS TAL SAC Analysis 8290A 1 143785

Lab Sample ID: 590-5185-40 Client Sample ID: HA-9 (0-6") **Matrix: Solid**

Date Collected: 12/07/16 08:30 Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final Batch Prepared Туре **Prep Type** Method **Factor Amount** Amount Number or Analyzed Run Analyst Lab D 2216 142219 12/14/16 15:56 CFR TAL SAC Total/NA Analysis

Client Sample ID: HA-9 (0-6") Lab Sample ID: 590-5185-40

Date Collected: 12/07/16 08:30 Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 83.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.00 g	500 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143785	12/24/16 02:32	KSS	TAL SAC

Client Sample ID: HA-15 (0-6") Lab Sample ID: 590-5185-43

Date Collected: 12/07/16 09:10 **Matrix: Solid** Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method Number or Analyzed Type Run **Factor Amount Amount Analyst** Lab Total/NA 9990 12/12/16 15:10 NMI TAL SPK Analysis Moisture

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-15 (0-6")

Date Collected: 12/07/16 09:10

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-43

Matrix: Solid Percent Solids: 70.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.21 g	5 mL	9993	12/13/16 10:05	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9994	12/13/16 12:10	NMI	TAL SPK

Client Sample ID: HA-16 (0-6")

Date Collected: 12/07/16 09:30

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-46

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9990	12/12/16 15:10	NMI	TAL SPK

Client Sample ID: HA-16 (0-6")

Date Collected: 12/07/16 09:30

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-46 **Matrix: Solid**

Percent Solids: 77.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.22 g	5 mL	9993	12/13/16 10:05	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9994	12/13/16 12:28	NMI	TAL SPK

Client Sample ID: HA-17 (0-6")

Date Collected: 12/07/16 09:50

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-49

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9990	12/12/16 15:10	NMI	TAL SPK

Client Sample ID: HA-17 (0-6")

Date Collected: 12/07/16 09:50

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-49 **Matrix: Solid**

Percent Solids: 70.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.10 g	5 mL	9993	12/13/16 10:05	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9994	12/13/16 12:45	NMI	TAL SPK
Total/NA	Prep	8290			10.08 g	666.7 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143785	12/24/16 03:18	KSS	TAL SAC

Client Sample ID: HA-35 (0-6")

Date Collected: 12/07/16 10:10

Date Received: 12/09/16 12:10

Lab Sample	ID: 590-5185-52
	Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9990	12/12/16 15:10	NMI	TAL SPK

TestAmerica Spokane

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-35 (0-6")

Date Collected: 12/07/16 10:10

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-52

Matrix: Solid Percent Solids: 46.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			10.89 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 17:19	NMI	TAL SPK

Client Sample ID: HA-24 (0-6")

Date Collected: 12/07/16 10:35

Date Received: 12/09/16 12:10

Lab Sample	ID: 590-5185-55
	Matrix: Solid

Batch Prepared

Dil Batch Batch Initial Final **Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA Analysis Moisture 9990 12/12/16 15:10 NMI TAL SPK

Client Sample ID: HA-24 (0-6")

Date Collected: 12/07/16 10:35

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-55

Matrix: Solid Percent Solids: 72.8

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.79 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 17:46	NMI	TAL SPK

Client Sample ID: HA-25 (0-6")

Date Collected: 12/07/16 10:50 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-58

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1			9990	12/12/16 15:10	NMI	TAL SPK	

Client Sample ID: HA-25 (0-6")

Date Collected: 12/07/16 10:50

Date Received: 12/09/16 12:10

Lab Sample ID:	590-5185-58
	Matrix: Solid

Percent Solids: 87.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.44 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 18:12	NMI	TAL SPK
Total/NA	Prep	8290			10.05 g	1000 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143785	12/24/16 04:04	KSS	TAL SAC

Client Sample ID: HA-12 (0-6")

Date Collected: 12/07/16 11:55

Date Received: 12/09/16 12:10

Matrix: Solid

	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	D 2216		1			142219	12/14/16 15:56	CFR	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-12 (0-6") Date Collected: 12/07/16 11:55

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-61

TestAmerica Job ID: 590-5185-1

Matrix: Solid

Percent Solids: 24.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.05 g	22.2 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143785	12/24/16 04:50	KSS	TAL SAC

Lab Sample ID: 590-5185-64 Client Sample ID: HA-38 (0-6")

Date Collected: 12/07/16 12:10 **Matrix: Solid**

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142219	12/14/16 15:56	CFR	TAL SAC

Client Sample ID: HA-38 (0-6") Lab Sample ID: 590-5185-64 Date Collected: 12/07/16 12:10 **Matrix: Solid**

Date Received: 12/09/16 12:10 Percent Solids: 22.5

Bran Tuna	Batch	Batch Method	Dun	Dil	Initial	Final	Batch Number	Prepared	Analyst	Lab
Prep Type Total/NA	Type Prep	8290	Run	Factor	10.01 g	Amount 20 uL	142254	or Analyzed 12/15/16 06:24		TAL SAC
Total/NA	Analysis	8290A		1	, and the second		143785	12/24/16 05:36	KSS	TAL SAC

Client Sample ID: HA-11 (0-6") Lab Sample ID: 590-5185-67 **Matrix: Solid**

Date Collected: 12/07/16 12:35 Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216		1			142219	12/14/16 15:56	CFR	TAL SAC	

Client Sample ID: HA-11 (0-6") Lab Sample ID: 590-5185-67

Date Collected: 12/07/16 12:35 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 36.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.06 g	66.7 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143786	12/24/16 09:57	KSS	TAL SAC

Client Sample ID: HA-22 (0-6") Lab Sample ID: 590-5185-70

Date Collected: 12/07/16 13:35 **Matrix: Solid**

Date Received: 12/09/16 12:10

_											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216					142219	12/14/16 15:56	CFR	TAL SAC	

TestAmerica Spokane

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-22 (0-6") Lab Sample ID: 590-5185-70 Date Collected: 12/07/16 13:35

Matrix: Solid Percent Solids: 86.8

TestAmerica Job ID: 590-5185-1

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.08 g	25 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143786	12/24/16 10:43	KSS	TAL SAC

Lab Sample ID: 590-5185-73 Client Sample ID: HA-20 (0-6")

Date Collected: 12/07/16 13:50 **Matrix: Solid**

Date Received: 12/09/16 12:10

Dil Batch Batch Initial Final **Batch** Prepared **Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed **Analyst** Lab Total/NA Analysis D 2216 142219 12/14/16 15:56 CFR TAL SAC

Lab Sample ID: 590-5185-73 Client Sample ID: HA-20 (0-6")

Date Collected: 12/07/16 13:50 **Matrix: Solid**

Date Received: 12/09/16 12:10 Percent Solids: 47.8

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.03 g	285.7 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143786	12/24/16 11:29	KSS	TAL SAC

Client Sample ID: HA-18 (0-6") Lab Sample ID: 590-5185-76 **Matrix: Solid**

Date Collected: 12/07/16 14:20 Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method **Factor Amount** Amount Number or Analyzed Analyst Run Lab D 2216 Total/NA Analysis 142219 12/14/16 15:56 CFR TAL SAC

Client Sample ID: HA-18 (0-6") Lab Sample ID: 590-5185-76

Date Collected: 12/07/16 14:20

Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 69.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.00 g	20 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143786	12/24/16 12:15	KSS	TAL SAC

Client Sample ID: HA-10 (0-6") Lab Sample ID: 590-5185-79

Date Collected: 12/07/16 14:05 Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method **Amount** Number or Analyzed Type Run **Factor Amount Analyst** Lab Total/NA 9990 12/12/16 15:10 NMI TAL SPK Analysis Moisture

Matrix: Solid

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-10 (0-6")

Date Collected: 12/07/16 14:05 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-79

Matrix: Solid Percent Solids: 77.5

Percent Solids: 76.0

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.64 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 18:38	NMI	TAL SPK
Total/NA	Prep	8290			10.05 g	20 uL	142254	12/15/16 06:24	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143786	12/24/16 13:01	KSS	TAL SAC

Client Sample ID: HA-19 (0-6") Lab Sample ID: 590-5185-82 **Matrix: Solid**

Date Collected: 12/07/16 14:45 Date Received: 12/09/16 12:10

Dil Batch Batch Initial Final Batch Prepared **Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA Analysis D 2216 142219 12/14/16 15:56 CFR TAL SAC

Client Sample ID: HA-19 (0-6") Lab Sample ID: 590-5185-82 Date Collected: 12/07/16 14:45 **Matrix: Solid**

Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final **Batch Prepared** Method Amount Amount Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab Total/NA Prep 8290 20 uL 142262 GLB 10.05 g 12/15/16 08:39 TAL SAC Total/NA Analysis 8290A 1 143636 12/22/16 16:46 SMA TAL SAC

Client Sample ID: HA-21 (0-6") Lab Sample ID: 590-5185-85

Date Collected: 12/07/16 15:05

Date Received: 12/09/16 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142219	12/14/16 15:56	CFR	TAL SAC

Client Sample ID: HA-21 (0-6") Lab Sample ID: 590-5185-85

Date Collected: 12/07/16 15:05 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 71.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.00 g	20 uL	142262	12/15/16 08:39	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143636	12/22/16 17:32	SMA	TAL SAC

Client Sample ID: HA-23 (0-6") Lab Sample ID: 590-5185-88

Date Collected: 12/07/16 15:30 Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142219	12/14/16 15:56	CFR	TAL SAC

TestAmerica Spokane

Matrix: Solid

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-23 (0-6")

Date Collected: 12/07/16 15:30 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-88

Matrix: Solid	
Percent Solids: 64.5	

١		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	8290			10.02 g	666.6 uL	142262	12/15/16 08:39	GLB	TAL SAC
	Total/NA	Analysis	8290A		1			143636	12/22/16 18:18	SMA	TAL SAC

Client Sample ID: HA-26 (0-6")

Date Collected: 12/07/16 11:05

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-91

Matrix: Solid

ĺ	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	Moisture		1			9990	12/12/16 15:10	NMI	TAL SPK

Client Sample ID: HA-26 (0-6")

Date Collected: 12/07/16 11:05

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-91 **Matrix: Solid**

Percent Solids: 77.8

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.66 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 19:04	NMI	TAL SPK

Client Sample ID: Seep-1:GW:120716

Date Collected: 12/07/16 14:06

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185	-94
-------------------------	-----

Lab Sample ID: 590-5185-95

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1026 mL	2 mL	234444	12/13/16 17:46	JCV	TAL SEA
Total/NA	Analysis	8270D SIM		1			234802	12/17/16 23:26	D1R	TAL SEA
Total/NA	Prep	3510C			218.8 mL	2 mL	10031	12/14/16 14:24	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			10020	12/15/16 02:02	NMI	TAL SPK

Client Sample ID: Seep-2:GW:120716

Date Collected: 12/07/16 14:57

Date Received: 12/09/16 12:10

Prep Type Total/NA	Batch Type Prep	Batch Method 3520C	Run	Dil Factor	Initial Amount 961.1 mL	Final Amount 2 mL	Batch Number 234444	Prepared or Analyzed 12/13/16 17:46		Lab TAL SEA
Total/NA Total/NA	Analysis Prep	8270D SIM 3510C		1	227.6 mL	2 mL	234802 10031	12/17/16 23:48 12/14/16 14:24		TAL SEA TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	227.01112	2 1112	10020	12/15/16 02:18	NMI	TAL SPK

TestAmerica Spokane

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-27 (0-6")

Lab Sample ID: 590-5185-96 Date Collected: 12/07/16 15:45

Matrix: Solid

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			9989	12/12/16 14:45	JSP	TAL SPK

Client Sample ID: HA-27 (0-6") Lab Sample ID: 590-5185-96

Date Collected: 12/07/16 15:45 Date Received: 12/09/16 12:10

Matrix: Solid

Percent Solids: 74.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.52 g	50 mL	9988	12/12/16 13:58	JSP	TAL SPK
Total/NA	Analysis	6010C		1			10012	12/13/16 14:17	JSP	TAL SPK
Total/NA	Prep	7471B			0.89 g	50 mL	10106	12/20/16 09:43	JSP	TAL SPK
Total/NA	Analysis	7471B		1			10139	12/21/16 15:36	JSP	TAL SPK

Client Sample ID: HA-28 (0-6") Lab Sample ID: 590-5185-99

Date Collected: 12/07/16 16:00 Matrix: Solid

Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final **Batch Prepared** Method Amount Number **Prep Type Factor Amount** or Analyzed Type Run Analyst Lab 9989 Total/NA Analysis 12/12/16 14:45 JSP TAL SPK Moisture

Client Sample ID: HA-28 (0-6") Lab Sample ID: 590-5185-99

Date Collected: 12/07/16 16:00

Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 66.7

Dil Batch Batch Initial Final **Batch Prepared** Method Amount Amount Number or Analyzed Prep Type Type Run **Factor** Analyst Lab Total/NA Prep 3050B 1.53 g 50 mL 9988 12/12/16 13:58 JSP TAL SPK Total/NA Analysis 6010C 1 10012 12/13/16 14:21 JSP TAL SPK Total/NA 7471B 50 mL 10106 12/20/16 09:43 JSP TAL SPK Prep 1.14 g

Client Sample ID: HA-30 (0-6") Lab Sample ID: 590-5185-102

10139

12/21/16 15:45 JSP

1

Date Collected: 12/07/16 16:20 Date Received: 12/09/16 12:10

Analysis

Total/NA

Dil Batch Batch Initial Final Batch Prepared **Prep Type** Method Amount Number or Analyzed Type Run Factor **Amount** Analyst Lab Total/NA 9989 12/12/16 14:45 JSP TAL SPK Analysis Moisture

Client Sample ID: HA-30 (0-6") Lab Sample ID: 590-5185-102

Date Collected: 12/07/16 16:20

7471B

Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 81.4

Batch Batch Dil Initial Final Batch **Prepared** Method **Factor Amount** Amount Number or Analyzed **Prep Type** Type Run Analyst Lab Total/NA 3550C 10041 12/15/16 09:22 NMI TAL SPK Prep 15.57 q 2 mL

TestAmerica Spokane

TAL SPK

Matrix: Solid

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-30 (0-6")

Date Collected: 12/07/16 16:20 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-102

Matrix: Solid Percent Solids: 81.4

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 19:30	NMI	TAL SPK
Total/NA Total/NA	Prep Analysis	8290 8290A		1	10.04 g	20 uL	142262 143636	12/15/16 08:39 12/22/16 19:04		TAL SAC TAL SAC
Total/NA Total/NA	Prep Analysis	3050B 6010C		1	1.47 g	50 mL	9988 10012	12/12/16 13:58 12/13/16 14:24		TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	7471B 7471B		1	1.21 g	50 mL	10106 10139	12/20/16 09:43 12/21/16 15:47	JSP JSP	TAL SPK TAL SPK

Client Sample ID: HA-29 (0-6")

Date Collected: 12/07/16 16:35

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-105

Matrix: Solid

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	Moisture		1			9990	12/12/16 15:10	NMI	TAL SPK

Client Sample ID: HA-29 (0-6")

Date Collected: 12/07/16 16:35

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-105 **Matrix: Solid** Percent Solids: 73.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.50 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		10			10051	12/16/16 09:44	NMI	TAL SPK

Client Sample ID: Seep-1 (6-12")

Date Collected: 12/07/16 12:00

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1		_	9989	12/12/16 14:45	JSP	TAL SPK

Client Sample ID: Seep-1 (6-12")

Date Collected: 12/07/16 12:00

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5185-108 Matrix: Solid

Lab Sample ID: 590-5185-108

Matrix: Solid

Percent Solids: 72.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.82 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 20:22	NMI	TAL SPK
Total/NA	Prep	3550C			15.29 g	5 mL	9993	12/13/16 10:05	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9994	12/13/16 13:02	NMI	TAL SPK

TestAmerica Spokane

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Client Sample ID: Seep-2 (6-12"')

Lab Sample ID: 590-5185-109

Date Collected: 12/07/16 12:05 Matrix: Solid

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1		-	9989	12/12/16 14:45	JSP	TAL SPK

Client Sample ID: Seep-2 (6-12"')

Lab Sample ID: 590-5185-109

Date Collected: 12/07/16 12:05

Date Received: 12/09/16 12:10

Matrix: Solid
Percent Solids: 63.9

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.31 g	2 mL	10041	12/15/16 09:22	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			10044	12/15/16 20:48	NMI	TAL SPK
Total/NA	Prep	3550C			15.75 g	5 mL	9993	12/13/16 10:05	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			9994	12/13/16 13:19	NMI	TAL SPK

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

Λ

5

6

8

9

11

Accreditation/Certification Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Laboratory: TestAmerica Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Washington		Program State Program		Identification Number C569	Expiration Date 01-06-19			
The following analytes	s are included in this repo	ort, but accreditation/ce	rtification is not offe	ered by the governing auth	nority:			
Analysis Method	Prep Method	Matrix	Analyt	е				
Moisture		Solid	Percer	Percent Moisture				
Moisture		Solid	Doroca	nt Solids				

Laboratory: TestAmerica Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-020	01-20-21
Arizona	State Program	9	AZ0708	08-11-18
Arkansas DEQ	State Program	6	88-0691	06-17-19
California	State Program	9	2897	01-31-19
Colorado	State Program	8	CA00044	08-31-18
Connecticut	State Program	1	PH-0691	06-30-19
Florida	NELAP	4	E87570	06-30-18
Georgia	State Program	4	N/A	01-28-19
Hawaii	State Program	9	N/A	01-29-19
Illinois	NELAP	5	200060	03-17-19
Kansas	NELAP	7	E-10375	10-31-18
L-A-B	DoD ELAP		L2468	01-20-21
Louisiana	NELAP	6	30612	06-30-18
Maine	State Program	1	CA0004	04-14-20
Michigan	State Program	5	9947	01-31-20
Nevada	State Program	9	CA00044	07-31-18
New Hampshire	NELAP	1	2997	04-18-19
New Jersey	NELAP	2	CA005	06-30-18
New York	NELAP	2	11666	03-31-19
Oregon	NELAP	10	4040	01-29-19
Pennsylvania	NELAP	3	68-01272	03-31-19
Texas	NELAP	6	T104704399	05-31-19
US Fish & Wildlife	Federal		LE148388-0	07-31-18
USDA	Federal		P330-11-00436	01-17-21
USEPA UCMR	Federal	1	CA00044	11-06-18
Utah	NELAP	8	CA00044	02-28-19
Vermont	State Program	1	VT-4040	04-30-19
Virginia	NELAP	3	460278	03-14-19
Washington	State Program	10	C581	05-05-18
West Virginia (DW)	State Program	3	9930C	12-31-18
Wyoming	State Program	8	8TMS-L	01-28-19
.,	0.0.0 0	•	- · · · · • -	- · - · · · ·

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-19
ANAB	DoD ELAP		L2236	01-19-19
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	11-05-18

TestAmerica Spokane

5

_

10

12

Accreditation/Certification Summary

Client: GeoEngineers Inc TestAmerica Job ID: 590-5185-1

Project/Site: Colville Post and Pole/0504-098-01

Laboratory: TestAmerica Seattle (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-05-18
US Fish & Wildlife	Federal		LE058448-0	10-31-18
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-19

3

4

0

9

10

Method Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Method	Method Description	Protocol	Laboratory
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SEA
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
6010C	Metals (ICP)	SW846	TAL SPK
7471B	Mercury (CVAA)	SW846	TAL SPK
D 2216	Percent Moisture	ASTM	TAL SAC
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL SPK
3520C	Liquid-Liquid Extraction (Continuous)	SW846	TAL SEA
3550C	Ultrasonic Extraction	SW846	TAL SPK
7471B	Preparation, Mercury	SW846	TAL SPK
8290	Soxhlet Extraction of Dioxins and Furans	SW846	TAL SAC

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

2

3

4

5

7

10

44

12

SAMPLING

DATE/TIME

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

PROJECT NUMBER: 0506-078-01

SAMPLED BY: JMC /CMD

CLIENT SAMPLE

IDENTIFICATION

CLIENT:

REPORT TO:

RELEASED BY

PRINT NAME ADDITIONAL REMARKS:

11922 E. First Ave., Spokane WA 99206-5302 105 SW Nimbus Ave., Beaverton, OR 97008-7145 Airport Rd Ste A10, Anchorage, AK 99502-1119

503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

TAL-1000 (0714)

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses P.O. NUMBER: PRESERVATIVE REQUESTED ANALYSES Turnaround Requests less than standard may incur Rush Charges MATRIX #OF LOCATION/ (W, S, O) CONT COMMENTS WOID 2 Page 59 of DATE 12/9/16 RECEIVED BY PRINT NAME DATE RECEIVED BY TEMP: 2,36, 1.86, 4.60, 3.00, 2,2° IPCC3

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210

907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT

Work Order #:

REPORT TO: Shathand geologists .com				INVOIC	E TO:							in l	ROUND REQUES' Business Days * Inorganic Analyses	г
723 6: 30000 700											7	5	4 3 2	<1
PHONE: 501-365-3125 FAX: 509-363 -3126	,			P.O. NU	MBER:						STD.	Petroleum	Hydrocarbon Analyses	
PROJECT NAME: CPPI					PR	ESERVAT	IVE				X	4	3 2 1 <	1
PROJECT NUMBER: 0504 - 098-01											STL	0.		
-M1 /4 44					REQUE	STED AN	ALYSES						Specify	
SAMPLED BY: TML/CML	*	15		20							* Turnaround	Requests less	than standard may incur	Rush Charges
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME	DRPH	Diasny	2	Col H							MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
HA-1(6-12) 12/6/2016 1250											5	2		
2HA-1 (12-18") 1 1255											1	2		
,HA-36(0-6°) / 1305	X		X									Z		
.HA-36(6-12") /310												2		
sI-A-36 (12-18°). 1315												2		
.HA-37 (0-6°) 1325	X		X									2		
, HA-37 (6-12°) 1330												2		
·HA-37 (12-12') 1335												2		
.HA-14(0-6) 1400		X										1		
10 HA-14 (6-12) V 1465								- 1		1	J.V	1		- 101
PRINT NAME CALLED DESCRIPTION FIRMS	G 21			DATE	12/9/16		RECEIVED BY PRINT NAME:	She	she la	Has	THE FIRM	TAG	JOCK TIME	19:10
RELEASED BY: PRINT NAME FIRM:	(DATE			RECEIVED BY				FIRM		DATE	
ADDITIONAL REMARKS				e and E			- ANTI PAME	-		_	FIRM		TEMP:	- 1
							2.3	3, 1.8	, 4.6	3.0), 0.	20	PAGE	Z _{OF} (0714)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

geographers. com

502-367-5126

1435

1440

1500

1516 1530 1535

540

FIRM:

69

SAMPLING

DATE/TIME

DRPH

CLIENT:

REPORT TO:

PROJECT NAME:

SAMPLED BY:

PRINT NAME

RELEASED BY

PRINT NAME

ADDITIONAL REMARKS

PROJECT NUMBER: 0504-098 -01

CLIENT SAMPLE

IDENTIFICATION

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses P.O. NUMBER: PRESERVATIVE REQUESTED ANALYSES Turnaround Requests less than standard may incur Rush Charges MATRIX LOCATION/ TA (W, S, O) CONT COMMENTS WOID 8 ₹ Page 61 RECEIVED BY PRINT NAME DATE RECEIVED BY TIME PRINT NAME TIME TEMP:

TAL-1000 (0714)

SAMPLING

DATE/TIME

1545

1550

1555

FIRM:

12/6/2016

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ADDRESS:

PRINT NAME

RELEASED BY

PRINT NAME

ADDITIONAL REMARKS

PROJECT NUMBER:

CLIENT SAMPLE

IDENTIFICATION

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 509-924-9200 FAX 924-9290 503-906-9200

907-563-9200

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses P.O. NUMBER: PRESERVATIVE REQUESTED ANALYSES * Turnaround Requests less than standard may incur Rush Charges MATRIX # OF LOCATION/ (W. S. O) CONT COMMENTS WOID 8 ō 62 Page X X 2/9/16 RECEIVED BY FIRM: UE PRINT NAME RECEIVED BY: PRINT NAME TIME

TEMP:

TAL-1000 (0714)

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #: CLIENT: 581 INVOICE TO: TURNAROUND REQUEST in Business Days * REPORT TO: ADDRESS: slathere geologineers - Com Organic & Inorganic Analyses PHONE: Spokare, WA FAX: P.O. NUMBER: PROJECT NAME: CPP.I PRESERVATIVE PROJECT NUMBER: 0504-098-01 REQUESTED ANALYSES SAMPLED BY: JML/CMD * Turnaround Requests less than standard muy incur Rush Charges DRPH P.C.P. CLIENT SAMPLE SAMPLING MATRIX LOCATION/ IDENTIFICATION DATE/TIME (W, S, O) CONT COMMENTS WOID 8 835 Page 63 of 840 0920 1219/16 DATE RECEIVED BY: TIME: PRINT NAME: RELEASED BY DATE: RECEIVED BY: PRINT NAME FIRM: TIME: PRINT NAME TIME ADDITIONAL REMARKS: TEMP:

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145

509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

CLIENT: GET REPORT TO: Scott Lethon ADDRESS: Slather Gloeng invers.com 573 E- 200 yel PHONE: Spokene WA FAX: 99702 PROJECT NAME: CPP I PROJECT NUMBER: 0504-098-01 SAMPLED BY: JMM /CMD CLIENT SAMPLE SAMPLING DATE/TIME 1 HA-17(12-18") 12/7/2016 /000 2 HA-35(0-6") 1010	Funer	P.O. NUM					in Organic & 5 Petroleum	ROUND REQUEST Business Days * Inorganic Analyses 4 3 2 1 Hydrocarbon Analyses	
PROJECT NUMBER: 0504-098-01 SAMPLED BY: JML /CMD CLIENT SAMPLE IDENTIFICATION AMPLING DATE/TIME 1/A-17(12-18*) 12/7/2016 /000 2/A-35(0-6**) 1010	Fums		PRESER					Hydrocarbon Analyses	<1
PROJECT NUMBER: 6504-098-01 SAMPLED BY: JML /CMD CLIENT SAMPLE SAMPLING DATE/TIME 1 HA-17(12-18') 12/7/2016 /000 2 HA-35(0-6") 1010	Fuma		PRESER						-
PROJECT NUMBER: 6504-098-01 SAMPLED BY: JML /CMD CLIENT SAMPLE SAMPLING DATE/TIME 1 HA-17(12-18") 12/7/2016 /000 2 HA-35(0-6") 1010	Fumer	-50	REQUESTED	ANATVEE		571		3 2 1 <1	1
CLIENT SAMPLE SAMPLING DATE/TIME 1 HA-17(12-18") 12/7/2016 /000 2 HA-35(0-6") 1010	Furns	-50	KEQUESTED				THER		
CLIENT SAMPLE SAMPLING DATE/TIME 1. HA-17(12-18") 12/7/2016 /000 2. HA-35(0-6") 1010	CAR	-60	14/2	UINCLOES				Specify: s than standard may incur R	Rush Charges
HA-17(12-18°) 12/7/2016 1000 244-35(0-6°) 1010	1-1-	S. F.				MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
.11						5	Z		
.11	X					1	1		
144-35(6-12-) / 1015							1		
.HA-35(12-18°) 1020									
HA-24 (0-6°) 1035	X								
HA-24 (6-12") 1040									
14A-24(12·18°) 1045							V		
HA-25 (0-6°) 1050 X	X						2		
HA-25 (6-12=) 1055							7		
10 HA-Z5 (12-18°) 1600					11 11	V	2		101
PRINT NAME CALLON DF 5 (0) FIRM: (6)			12/9/16	PRINT NAME:	therea th	COTT FIRM	THO	LOCK TIME	9:11
RELEASED BY: PRINT NAME: FIRM:		DATE:		RECEIVED BY: PRINT NAME:	,	FIRM		DATE	
ADDITIONAL REMARKS:		7,000			3,1.8,4.6			TEMP:	世,

Page 65 of 81

CHAIN OF CUSTODY RECORD

GeoEngineers 523 EAST SECOND AVE. SPOKANE, WASHINGTON 99202 (509) 363-3125

PAGE 1 7 OF //
LAB Test America
LAB NO. Spoker Lafler, NA

PROJECT NAME/LOCATION	V CPPI							ANA	LYSIS	SREQ	UIRED			NOTES/COMMENTS
PROJECT NUMBER	9 0504	-098	-01											(Preserved, filtered, etc.)
PROJECT MANAGER		- Lather				Fillers								
SAMPLED BY		1 cmD				-	1 1						1 1	
SAMPLE IDENTIFICATION	70	LE COLLE	CTION	# OF	大	S	a	5						
LAB GEOENGINEERS	DATE	TIME	MATRIX	JARS	JRPH	Diexity,	2	3						
HA-12(0-6)	12/7/16	1155	5	1		X								
HA-12 (6-12)	12/2/11	1200	S	1	1	1								
HA-12 (12-18)	12/7/6	1205	5	i						1				
HA-38 10-6	12/7/16	1210	5	1		×							1	
144-38 (1-12)	12/7/11	1215	5	1		-								
HA-30/17-10	17/7/16	1220	5											
HA - 11 (0-6)	17/2/1/	1235	Ŝ			X								
HA-11 16-12	12/7/6	1240	S	1		-								
HA-11 10-18	12/7/6	1245	S	1										
HA-22 (0-6)	17/7/16	1335	S	1		X							1	
HA-22 (6-1)	12/7/16	1340	S	1										
RELINQUISHED BY	FIRM	Ve	RELINQUIS	SHED BY			FIRM		-	REI	INQUISH	ED BY		FIRM
SIGNATURE alex	Here	e	SIGNATUR							SIG	NATURE			
PRINTED NAME Callon DI	iscoll.		PRINTED N	NAME							NTED NA	ME		
DATE 12/9/16		216	DATE	DV	TIMI	E	Fina			DA		,	TI	ME
SIGNATURE DE OG	FIRM	Spoil	RECEIVED SIGNATUR				FIRM				NATURE	Y		FIRM
PRINTED NAME Should	Klost	7	PRINTED N		-					_	NTED NAI	ME		
DATE 12 9 110	TIME 1	2110	DATE		TIM	E				DA	-		TI	ME
ADDITIONAL COMMENTS:	2,3.	1.83 -	41.6.3	.C. D.	20	IR	00	3						
	1	1												

CHAIN OF CUSTODY RECORD

GeoEngineers 523 EAST SECOND AVE. SPOKANE, WASHINGTON 99202 (509) 363-3125 PAGE 8 OF 11

LAB Test Arrene

LAB NO. Spoker Valley, WA PROJECT NAME/LOCATION ANALYSIS REQUIRED NOTES/COMMENTS PROJECT NUMBER 0504-098-0 (Preserved, filtered, etc.) PROJECT MANAGER Scoff Lathen SAMPLED BY JULION SAMPLE IDENTIFICATION SAMPLE COLLECTION # OF **GEOENGINEERS** DATE TIME **JARS** MATRIX HA-22 (12-18) 12/7/10 1345 1 X H4-20/0-6 5 对 1405 XX 12/7/16 X RELINQUISHED BY RELINQUISHED BY FIRM RELINQUISHED BY FIRM SIGNATURE (SIGNATURE SIGNATURE PRINTED NAME Collan PRINTED NAME PRINTED NAME DATE 12/9/11 TIME (210) DATE TIME DATE TIME RECEIVED BY RECEIVED BY FIRM RECEIVED BY FIRM SIGNATURE SIGNATURE SIGNATURE PRINTED NAME PRINTED NAME PRINTED NAME Palli DATE TIME DATE TIME J. 2 CIPORES ADDITIONAL COMMENTS:

Page 66 of 81

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

IF I FARER IN CARRESTANTIAN ACCURATE

Client Information	Sampler JML/	Phone: JOL - 779 7710 E-Ma			ndee E		Carrier Tracking No(s):	COC No: 590-2097-753.2		
Client Contact Scott Lathen	Phone: 406-239-				ton@testamerica	inc.com			Page: 9	A 11	
ompany. SeoEngineers Inc							equested		Job#		
Address:	Due Date Requested:	011		2 800	TIT	larysis i	- I	T Au	Preservation Codes:		
523 East Second Ave City.	TAT Requested (days):	Stol.		8						Hexane	
Spokane	TAT Requested (days).	Stol.		1					C - Zn Acetate O - /	None AsNaO2	
State, Zip: WA, 99202		0(011		189					E - NaHSO4 Q - I	Na2O4S Na2SO3	
Phone	PO#:									Na2S2O3 H2SO4	
509-251-5239(Tel) Email:	Purchase Order not requir wo#:	Purchase Order not required								TSP Dodecahydrate Acetone	
slathen@geoengineers.com		W.S. #.						25	J - DI Water V - I	MCAA pH 4-5	
Project Name: Kinthas Ocumy Shop	Project#:	Project #: 0504 - 099 - 01						containers	L-EDA Z-G	other (specify)	
Site: / DOT	SSOW#	SSOW#									
913		1		d Sample (Yes	E E	5		erof			
	1 1	Cumpic	Matrix (w=water,	Field Filtered Sample (Yes or Perform MS/MSD (Yes or No)	- ZA .			Total Number			
	Sample	Type (C=comp,	Sesolid,	If F	3823			Tag N			
Sample Identification	Sample Date Time	G=grab) at-		P P				P	Special Instru	ctions/Note:	
11.5	12:41:17.0	Preservatio		AX.				I I			
HA-19 (6-12)	12/7/16 1450	9	Solid					1			
HA-19 (12-18)	12/7/16 14.85		Solid					1			
HA-21(0-6)	12/7/16 1505		1		X			1			
111 -21 (1-13)	17/7/16 1510							1			
1-1/-21 (12-18)	12/7/16 15/5		1	H				1			
14 22 (12/8)	1 1111111111111111111111111111111111111		1	HH	1/	H		1			
-H-25 (0-6)	1530		-	H	X			1			
HA-23(6-12)	1535							1			
HA-Z3(12-18")	1540			10				1			
HA-26 10-69	1105				X			1			
HA - 26 (6-12)	1110				1			1	d .		
7117	1/ 1/15	1	1/	H				1			
Possible Hazard Identification	1 1/1/3		V	Sam	nle Disnosal / /	fee may h	na assassad if samn	les are retain	ed longer than 1 mor	nth)	
Non-Hazard Flammable Skin Irritar	nt Poison B Unknown	Radiological			Return To Clie		Disposal By Lab			Months	
Deliverable Requested: I, II, III, IV, Other (specify)	" Tolson D Omnown	radiological		Spec	cial Instructions/C			7.00			
Empty Kit Relinquished by:	Date:			Time:			Method of Ship	ment.			
Religguished by	Drisco 12/9/16 121		mpany	F	Received by	1.5	Jan Da	e/Time	1000 19	poany / no	
Relinquished by:	Driscol 12/9/16 121	O Go	mpany	F	Received by	e la		2/9///serfime./		mpany /	
Relinquished by:	Date/Time:	Co	mpany	F	Received by:		Date/Time:		Cor	mpany	
		Sompany									
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No				C	Cooler Temperature(s) °C and Othe	Pr Remarks	4.1.	.3.0.2.2	MATO	

TestAmerica Spokane

Chain of Custody Record

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290 Chain of Custody Record										TestAmerica THE LEADER IN ENVIRONMENTAL TESTING COC NO: 590-2097-753.2 Page: Page April 10 of 1						
Client Information	Sampler: mL/	Sampler: TML //MD		Lab PM: Arrington, Randee E						Carrier Tracking No(s):				CGC No: 590-2097-753.2		
Client Contact Scott Lathen	Phone: 406-	JML/CMD Phone: 406-239-78/D		E-Mail: randee.arrington@testamericainc.com					n	7				Page Page 10 of 1		
GeoEngineers Inc	100	-511	010	Tanaco.a.	mgton	<u></u>				uested			_	lob#	1	
Address: 523 East Second Ave	Due Date Request	Due Date Requested:								Jucotou				Preservation Codes:		
Spokane State, Zip: WA, 99202	TAT Requested (d	TAT Requested (days):											1	A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O45 E - NaHSO4 Q - Na2SO3		
Phone: 509-251-5239(Tel)		Purchase Order not required											F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydr I - Ice U - Acetone		te	
Email; slathen@geoengineers.com		WO#												I - Ice U - Acetone J - DI Water V - MCAA K - EDTA W - pH 4-5		
Project Name: Million Soundy Shop CPP	Project #: 50001116	9500 HG 1504 - 098-01												L - EDA Z - other (specify)		
Site: CPPI	SSOW#	Sample (Yes	MISD (Y	the	-						0	Other:				
		Sample	Type (w=	trix safer, olid, stefall, se, A-Air)	Perform MS/MSD (Yes or No)	CP	1×/C						Total Number			
Sample Identification	Sample Date	Time	G=grab) aT=Tiss		Per S	Q	+	3	4				Tota	Special Instructions/Note:	2	
Seep- (6-12") "	17/7/16	1200	, ,	olid I	X	X	X						1		68 of	
Seep-2(6-12)	17/7/16	1205	1	olid	X	X	X						1		Page 6	
HA -27 (0-6)		1545	1				X								Pa	
4A-27 (6-17)	- 5	1450														
HA-27 (12-189)		1555														
11A-28(0-6)		1606					X									
HA-28 (6-17)		1605										1 1 2				
174-28 (12-188		1610														
HA-30 (0-6)		1620				XX	X	W					2	Aldresse	1	
HA-30 (b-12),		1625											2			
144-30 (1)-188		1630											2			
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify)	Poisan B Unkn	nown 🗆	Radiological		\square_R	eturn To Instruction	Clien	nt		Disposal E	if sample By Lab	es are ret	Archiv	d longer than 1 month) ve For Months	-	
Empty Kit Relinquished by:		Date:		Tim	ie:		-			Meti	nod of Shipm	ient /	1			
Relinquished by Relinquished by:	Date/Time: U-/G/16 Date/Time:	4/9/16 12/0		any Received b			reila Wath Date/Time				lu.	O DIO PANANA				
Relinquished by:	Date/Time				Received by: Date/Tim					1						
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					Cool	er Temper	ature(s) °C and	d Other R	emarks	30	P. 2	1, 1.	1, 3.0. 2, 2 ⁱ I P(X)	3	

5/9/2018 (Rev. 1)

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

Phone (509) 924-9200 Fax (509) 924-9290									THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler: JM	LICA	M	Lab PM: Arringto	on, F	Randee E	Carrier Tracking No(s):		CGC No: 590-2097-753.2
Client Contact: Scott Lathen	Phone: 406	-239-	7810	E-Mail: randee	arri	ngton@testamericainc.com			Page 2002 11 of 11
Company: GeoEngineers Inc.						Analysis F	Requested		Job#:
Address: 523 East Second Ave	Due Date Requeste	ed: (itel.	9	85				Preservation Codes:
Spokane State, Zip NA, 99202	TAT Requested (da	sys):			STATE OF THE PARTY				A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S E - NaFISO4 Q - Na2SO3
Phone: 509-251-5239(Tel)	PO#: Purchase Order	not require	d	0					F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
mail slathen@geoengineers.com	WO#	not require		or No	(0)			100	H - Ascorbic Acid
Project Name: CPPI	Project #: 5900+446/ C	0504-0	98-01	le (Yes	esor			container	K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Site: CPPI	SSOW#			Samp	SD CY	12		of co	Other:
Sample Identification	Sample Date	Sample Time	Type (C=comp, c G=grab) sr=1		Perform MS/MSD (Yes or No)	PCP CA/#3		Total Number of	Special Instructions/Note:
11	1)/=///	X	Preservation		∇			X	
HA-29 (0-G)	12/7/16	1635	9	Solid	-	X		1	
144-27 (6-12)	- 5	1640		Solid					
4A-29 (12-18")		1645			+			1	
	-				+				
					1	+++++			
L					T			T V	
100									
					1			8	
					1			Щ.	
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B Unkn	own \square_{F}	Radiological			Return To Client	Disposal By Lab		nive For Months
Deliverable Requested: I, II, III, IV, Other (specify)					pt	pecial Instructions/QC Require	ments:		
Empty Kit Relinquished by:	O Date/Time:	Date:	Icor		ime:		Method of Shipment:	1	Company
Relinquished by Collan	Date/Time:	116 6	1	δΣ (npany		Received by:	had Date/Time:	1/1	Co DIO TANDOCCOMPANY
Relinquished by:	Date/Time		Cor	npany		Received by:	Date/Time		Company
Custody Seals Intact Δ Yes Δ No						Cooler Temperature(s) °C and Oth	er Remarks:	41.1	1,30,2,2°IROL3

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210 L

CHAIN OF CUSTODY REPORT

500	£3.503	80	6 8	20.00	POTA'S	24
6.4	or	100	22	8.613	BCE.	87

CLIENT:					INVOIC	ETO:									TURNAL	ROUND REQUE	ST
REPORT TO: S CON LOVE ADDRESS: SINGLESS 503 E SAL	Lin														in	Business Days *	
ADDRESS: STRIKE A P. S.	esta l'injuncier s	1600													Organic &	Inorganic Analyses	
503 E 244	AUL DRIVER													10 7	- L	4 3 2	1 <1
PHONE: Sparkard with	FAX:				P.O. NUI	MBER:					and the second second	# 100 mm m.		STD.		Hydrocarbon Analyse	8
PROJECT NAME: C. P.Z.					 		PRESEI	RVATIVE	-					5	4	3 2 1	< 1
PROJECT NUMBER: 3504-	097-01													STD			
					,	RE	QUESTE	D ANALYSI	ES		THE STATE OF THE S			-0"	THER	Specify:	
SAMPLED BY: JML/CMD.					500									* Turnaround	Requests les:	s than standard may inc	ur Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMP DATE		多											MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
, HA-9 (6-12)	12/7/16	835												1			
2 HA-9 (12-18)	12/7/16	840															
. 1/A-15/0-21	1	3010	X		Un									and the second			
4														į			
5 14/2		-315-7															
6 4 1/4 - 1/4	1	777	X		72												
7		5.75															
8															V.		
9		DET.	X	X	2												
10	- 0											4	1	1	1		
PRINT NAME:	1 mg/2	FIRM:	(DATE:	1273 17		1000	IVED BY:	200	3/1	18	2016	Saly FIRM	77%	DATE:	
RELEASED BY:					DATE		-	RECE	IVED BY:		1					DATE	
PRINT NAME:		FIRM:			TIME:			PRINT	NAME:					FIRM	;	TIME	
ADDITIONAL RE************************************						-		رگر	3,16	1 24		3,0		56	ac	and a	AGE OF
										3	1		2			TAI	1000 (0714

590-5185-02 Chain of Custody

Revised Coc. Phalie

Page 70 of 81

11922 East 1st Ave Spokane, WA 99206 **Chain of Custody Record**

<u>TestAmerica</u>

Phone (509) 924-9200 Fax (509) 924-9290	I			- 10-	- 014		_			To	¥	N-7-V		100 State State 100 State	ENVIRONMENTAL TESTING
Client Information (Sub Contract Lab)	Sampler:			71420	o PM: rington	Ran	dee	E			arrier Track	ing No(s)		590-2360.1	
Client Contact: Shipping/Receiving	Phone:			1000	Mail:	rringt	000	estam	ericainc.com		tate of Orig			Page: Page 1 of 3	
Company:	_			To.	_		_	_	See note):	- IV	vasimgio	, i		Job#:	
TestAmerica Laboratories, Inc.					Stat	te Pro	gran	ı - Was	shington					590-5185-1	
Address: 880 Riverside Parkway,	Due Date Requeste 12/21/2016	ed:							Analysis	Requ	ested			Preservation C	odes: M - Hexane
City: West Sacramento	TAT Requested (da	ıys);												B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip. CA, 95605														D - Nitric Acid E - NaHSO4 F - MeOH	P - Na2O4S Q - Na2SO3 R - Na2S2O3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO#.				No)		Z. Totale			1				G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecanydrate
Email:	WO#					No	× 2						و	J - Ice J - DI Water	U - Acetone V - MCAA
Project Name Colville Post and Pole/0504-098-01	Project #: 59001108				le (Yes	ISD (Yes or No)	leomore						contained	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site	SSOW#				Sampl	200	17 00					1	of cor	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (wewater, 5=solid, O=waste/oil BT=Tissue, A=	eld Filtered	Perform MS/ML	moisture						Total Number o	Special	Instructions/Note:
	\sim	><	Preserva	tion Code		X									
HA-4 (0-6') (590-5185-1)	12/6/16	11:40 Pacific		Solid)	x >						1		and Pole manufacturing site - please isolate glassware and
HA-3 (0-6") (590-5185-4)	12/6/16	12:05 Pacific		Solid	11	3	x >						1	, Former Post a	and Pole manufacturing site - please isolate glassware and
HA-1 (0-6") (590-5185-10)	12/6/16	12:45 Pacific		Solid	1		,	(1	Former Post ar	nd Pole manufacturing site - please isolate glassware and
HA-14 (0-6") (590-5185-19)	12/6/16	14:00 Pacific		Solid		3	x 3	(1	, Former Post a	and Pole manufacturing site - please isolate glassware and
HA-13 (0-6") (590-5185-22)	12/6/16	14:35 Pacific		Solid	Ħ	3	x 3	<					1	, Former Post a	and Pole manufacturing site - please isolate glassware and
HA-32 (0-6") (590-5185-25)	12/6/16	15:00 Pacific		Solid		3	x 3	<					1	, Former Post a	and Pole manufacturing site - please isolate glassware and
HA-8 (0-6") (590-5185-28)	12/6/16	15:30 Pacific		Solid	П	1	x :	<					1		and Pole manufacturing site - please isolate glassware and
HA-6 (0-6") (590-5185-31)	12/6/16	15:45 Pacific		Solid			x :	<					1		and Pole manufacturing site - please isolate glassware and
HA-5 (0-6") (590-5185-34)	12/6/16	16:05 Pacific		Solid			x :	<					1		and Pole manufacturing site - please isolate glassware and
Note: Since laboratory accreditations are subject to change, TestAmerica currently maintain accreditation in the State of Origin listed above for anal- Laboratories, Inc. attention immediately. If all requested accreditations are	ysis/tests/matrix being analyz	ed, the sample	es must be ship	pped back to	the Test	tAmeric	ca lab	oratory o	r other instruction	ns will be					
Possible Hazard Identification Unconfirmed						Samp	1	i <mark>spos</mark> a ırn To						ed longer than	1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		-	Speci	_		ns/QC Requi		sposal By s:	Lau	Arci	live For	Months
Empty Kit Relinquished by:		Date:	-		Tim	ne:		-		_	Metho	d of Shipmer	nt:		
Relinguished by Male That	Date/Time:	16 1	1000)	Company	10	R	eceive	d by	7.61	_		Date T	13/16	1005	Company
Relinquished by:	Date/J/me:			Company	,	7) R	eceive	d by:	1			Date/Ti	me:		Company
Relinquished by:	Date/Time:			Company		R	eceive	d by				Date/Ti	me;	· ·	Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						С	ooler '	Tempera	iture(s) °C and C	ther Ren	narks: 3	9			

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

- D A	
TestAm	onec
10317 (11	
The same of the sa	- DIELECTE - I

Phone (509) 924-9200 Fax (509) 924-9290																E-MANAGEMENT - MANAGEMENT - MAN	TRONMENTAL TESTING
Client Information (Sub Contract Lab)	Sampler				PM: ington,	Rand	ee E				Carn	er Tracki	ng No(s):			COC No. 590-2360.2	
Client Contact Shipping/Receiving	Phone:			E-M ran	dee.arr				ricainc.c	om		of Origin shington				Page Page 2 of 3	
Company: TestAmerica Laboratories, Inc.									ee note): nington							Job #: 590-5185-1	
Address: 880 Riverside Parkway,	Due Date Requeste 12/21/2016	d:							Analy	eie Da	allos	tod				Preservation Code	s:
City West Sacramento	TAT Requested (da	ys):					Γ		Analy	313 110	ques	leu	Т	T			M - Hexane N - None O - AsNaO2
State, Zip					18											D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
CA, 95605 Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO#:					Н	tals	1		i k	1					G - Amchlor	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate
Email.	W0 #.				or No		's & Totals								90	I - Ice J - DI Water	U - Acetone V - MCAA
Project Name Colville Post and Pole/0504-098-01	Project # 59001108				le (Yes or		Isomers								containers		W - pH 4-5 Z - other (specify)
Site	SSOW#				Sample (Sox 17						1	1	of cor	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time		Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=A	Filtered S		8290A/8290_P_S								Total Number	Special Ins	tructions/Note:
		16:20	Preserva	ation Code:	X	4	-				3 100		138		X	Former Post and I	Pole manufacturing site
HA-7 (0-6") (590-5185-37)	12/6/16	Pacific		Solid	11	X	X	\sqcup						4	1	could be high, pleas	se isolate glassware and
HA-9 (0-6") (590-5185-40)	12/7/16	08:30 Pacific		Solid		X	X								1		Pole manufacturing site se isolate glassware and
HA-17 (0-6") (590-5185-49)	12/7/16	09:50 Pacific		Solid			X								1		ole manufacturing site - se isolate glassware and
HA-25 (0-6") (590-5185-58)	12/7/16	10:50 Pacific		Solid	Π		×								1	Former Post and P	ole manufacturing site - se isolate glassware and
HA-12 (0-6") (590-5185-61)	12/7/16	11:55 Pacific		Solid	11	×	×								1	, Former Post and I	Pole manufacturing site se isolate glassware and
HA-38 (0-6") (590-5185-64)	12/7/16	12:10 Pacific		Solid		×	×								1	, Former Post and I	Pole manufacturing site se isolate glassware and
HA-11 (0-6") (590-5185-67)	12/7/16	12:35 Pacific		Solid	11	X	×								1		Pole manufacturing site se isolate glassware and
HA-22 (0-6") (590-5185-70)	12/7/16	13:35 Pacific		Solid		×	X								1	, Former Post and	Pole manufacturing site se isolate glassware and
HA-20 (0-6") (590-5185-73)	12/7/16	13:50 Pacific		Solid		×	X								1	, Former Post and	Pole manufacturing site se isolate glassware and
Note: Since laboratory accreditations are subject to change. TestAmeric	a Laboratories, Inc. places the	ownership of r	method, analyl	te & accredita	tion comp	liance	upon	out subc	contract lat	oratories	This s	ample sh	ipment is	forwarded	unde	er chain-of-custody. I	
Possible Hazard Identification Unconfirmed					S	Part of the last o		posal n To C		may be	7	ssed if				ed longer than 1 i	month) Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank:	2		S				s/QC R	equirem							
Empty Kit Relinquished by:	//	Date:			Time	9;				/		Method	of Shipm				
Relinguished by Relinguished by	Date/Time	16d	(X)	Company Company	bok	1	eived	~	7. %	1			Date/		حا	1005	Company F/A+1/55 Company
Relinquished by:	Date/Time			Company			beived							Time:			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Cod	oler Te	emperati	ure(s) °C a	nd Other	Remark	3.	9				

11922 East 1st Ave Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

TestAmerica

Client Information (Sub Contract Lab)	Sampler.	Arri					ee E			Carrier T	racking No(s	s):		COC No: 590-2360.3	
Client Contact Shipping/Receiving	Phone:			E-M		rinato	n@tes	stamericair	oc com	State of 0				Page: Page 3 of 3	
Company				ran	1000000			ired (See not	ACIA POST TOTAL CONTRACT OF THE PARTY OF THE	vvasim	igion		_	Job#	
TestAmerica Laboratories, Inc.								Washingto						590-5185-1	
Address 880 Riverside Parkway,	Due Date Requeste 12/21/2016	d:						An	alvsis R	equeste	d			Preservation Code	
City: West Sacramento State, Zip: CA, 95605	TAT Requested (da	ys):												A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax) Email:	PO#				No)		Totals							G - Amchlor H - Ascorbic Acid I - Ice	S - H2SO4 T - TSP Dodecahydrate U - Acetone
Email:	WO#,				10 3		e5			1 1	1 1		90	J - DI Water	V - MCAA
Project Name Colville Post and Pole/0504-098-01	Project #: 59001108				ole (Yes	in an in an in	7 Isomers			11			containers	K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site	SSOW#				Samp	2	Sox 17			1 1				Other:	
		Sample	Sample Type (C=comp,	Matrix (w=water, 5*solid, 0=waste/oil,	Field Filtered	Moisture	90 P						Total Number of		
Sample Identification - Client ID (Lab ID)	Sample Date	Time		BT=Tissue, A=Ai	1	ž	82	-		++	-	-	E	Special Ins	structions/Note:
114 40 (0 0) VEO 5405 70		14:20	Freserva	OF BUILDING	W	1			AD - 25 (X	Former Post and	Pole manufacturing site
HA-18 (0-6") (590-5185-76)	12/7/16	Pacific		Solid	Ш	X	X						1	could be high, plea	se isolate glassware an
HA-10 (0-6") (590-5185-79)	12/7/16	14:05 Pacific		Solid			X						1		ole manufacturing site - se isolate glassware an
HA-19 (0-6") (590-5185-82)	12/7/16	14:45 Pacific		Solid	П	X	X						1		Pole manufacturing site se isolate glassware an
HA-21 (0-6") (590-5185-85)	12/7/16	15:05 Pacific		Solid	T	×	×						1	, Former Post and	Pole manufacturing site se isolate glassware an
HA-23 (0-6") (590-5185-88)	12/7/16	15:30 Pacific		Solid	T	×	x						1	, Former Post and	Pole manufacturing site se isolate glassware an
HA-30 (0-6") (590-5185-102)	12/7/16	16:20 Pacific		Solid			×						1	Former Post and P	ole manufacturing site - se isolate glassware an
					+	+	-								
					\coprod										
Note: Since laboratory accreditations are subject to change, TestAmeric	a Laboratories, Inc. places the	ownership of	method, analyte	& accreditat	ion comp	liance	upon o	ut subcontrar	t laboratorie	s. This samp	ole shipment	is forwarded	1 und	er chain-of-custody. I	
Possible Hazard Identification		-			S	-			_					ned longer than 1	month)
Unconfirmed							-	To Client		Disposa	By Lab		Arch	hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank:	2		S	pecia	Instr	uctions/Q0	Requirer	nents:					
Empty Kit Relinquished by:	1	Date:			Time	e:				M	ethod of Ship				
Relinquished by Relinquished by	Date/Time/	6 10	00	Company Company	PO	14	ceived I	21.2	1		Da Da	te/Time: 12/3/ te/Time	ھا	1005	Company Company
Relinquished by:	Date/Time			Company		Re	ceived I	ру			Da	ite/Time:			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No							oler Ter	nperature(s)	°C and Othe	r Remarks:	3.9				

11922 East 1st Ave

Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

Client Information (Sub Contract Lab)						Rande	ee E			Carrie	r Tracking	No(s):		COC No: 590-2362.1	
Client Contact: Shipping/Receiving	Phone:			E-M ran		nator	@testa	mericainc.	com		of Origin: hington	H-1702		Page Page 1 of 1	
Company					Accred	itations	Require	d (See note)		1	in gren			Job #	
TestAmerica Laboratories, Inc. Address:	Due Date Requeste	od:			State	Prog	ram - W	/ashington						590-5185-1	3.5.
880 Riverside Parkway,	12/21/2016	u.						Anal	ysis R	eques	ted			Preservation Co	M - Hexane
City West Sacramento State, Zip CA, 95605	TAT Requested (da	iys):			Con leave									B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4	N - None O - AsNaO2 P - Na2O4S Q - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO#				9		Totals							F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate
Email:	WO#.				No)		95 l						2	I - ice J - DI Water	U - Acetone V - MCAA
Project Name: Colville Post and Pole/0504-098-01 Site:	Project #: 59001108 SSOW#				Sample (Yes or ISD (Yes or No)		17 Isomers						containe	K - EDTA L - EDA Other:	W - pH 4-5 Z - other (specify)
Site.	SSOVW				Sam ISD (Sox 1						o Jo		
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=waste/oil,	Field Filtered Perform MS/W	Moisture	8290A/8290_P						Total Number		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	BT=Tissue, A=Ai	·) []	ž	82						1	Special I	nstructions/Note:
		12:25	Fieserva		W	-							1	Former Post an	d Pole manufacturing site
HA-2 (0-6") (590-5185-7)	12/6/16	Pacific		Solid	11	X	X		\perp				1		ease isolate glassware and
					TT										
					++	+	+	++	++	-		\vdash			
					44	_			\perp						
													1		
					П										
					++	+	++	++	+	-				10	
			-		++	-	-		++	-					
					П										
Note. Since laboratory accreditations are subject to change, TestAmerica currently maintain accreditation in the State of Origin listed above for anal Laboratories, Inc. attention immediately. If all requested accreditations are	lysis/tests/matrix being analyz	ed, the sampl	es must be ship	ped back to t	he TestAr	merica	laborator	y or other ins	tructions						
Possible Hazard Identification			_		Sa	ampl	e Dispo	sal (A fee	may b	e asses	sed if sa	amples ar	e retai	ned longer than	1 month)
Unconfirmed								To Client	L-		sal By La	b	- Arc	hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		Sp	pecial	Instruc	tions/QC F	Require	ments:					
Empty Kit Relinquished by:	1	Date:			Time	:					Method of	Shipment			
Relinquished by Relinquished by	Date/Time: 3	6 /3	340.	Company	pok	Rec	eived by eived by	Ju-	(year)	Tuy	on	Date/Tyne Date/Time		wir	Company S
Relinquished by	Date/Time:			Company			eived by:					Date/Time	Ċ.		Company
						-									
Custody Seal No.: Δ Yes Δ No						Coo	oler Temp	erature(s) °C	and Othe	er Remark	7	200C		gel ree	

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

hone (509) 924-9200 Fax (509) 924-9290																			THE LEAGER IN E	NVIRONMEN	MAE TESTING
Client Information (Sub Contract Lab)	Sampler:			Lab Pi Arrin	M: gton, l	Rande	ee E					Carri	er Tra	cking	No(s)):			COC No: 590-2357.1		
lient Contact hipping/Receiving	Phone:	~~~~	***************************************	E-Mail rande		ington	@tes	stamer	icaino	c.com			of Or shing						Page: Page 1 of 1		
ompany: estAmerica Laboratories, Inc.								ired (Se Wash			·····								Job #: 590-5185-1		
ddress:	Due Date Request	ted:				-												_	Preservation Co	des:	
755 8th Street East.	12/21/2016								Ana	lysis	Rec	ques	ted						A - HCL	M - Hexan	e
ty: acoma	TAT Requested (d	lays):																	B - NaOH C - Zn Acetate	N - None O - AsNaC	
ate, Zip. A, 98424																			D - Nitric Acid E - NaHSO4	P - Na2O4 Q - Na2SC	3
one: i3-922-2310(Tel) 253-922-5047(Fax)	PO#:					rophenot													F - MeOH G - Amchlar H - Ascorbic Acid	R - Na2S2 S - H2SO4 T - TSP Da	
ail.	WO#				es or No	hlorop													I - Ice J - Di Water	U - Aceton	
oject Name.	Project#:				8 T	Pentachlo													K - EDTA	W - pH 4-5	
olville Post and Pole	59001108				SI 1	P.			1	İ								ā	L - EDA	Z - other (s	(pecify)
е	SSOW#:		······································			יי רע												of con	Other:		
		Sample	Type (w	atrix =water, solid, aste/oil,	eld Filtered	8270D_SIM/3520C_LVI			- Andrews									Total Number			
ample identification - Client ID (Lab ID)	Sample Date	Time		sue, A=Air)	ĒĮĒ,	82	TRANSPORTER OF	GOLDAZKA SIAN	Own Commit	SA FOLK OFFICE OF	Sur RESOURTED	12/11/23 15/27	-2.525	100000000000000000000000000000000000000	o Decoversor	-34/05/2003		٤	Special In	structions	s/Note:
		<u> </u>	Preservation (Code:	X X												Sā	XI.	Service de la companya de la company	00000000	3.19 (St. St. St. St. St.
ep-1 (6-12) (590-5185-94)	12/7/16	12:00 Pacific	W	ater	┸	X												1			****
ep-2 (6-12) (590-5185-95)	12/7/16	12:05 Pacific	W	ater		×												1			
									-	_											
					\perp				\perp	\perp											
·																					
					\perp		Ì				<u>.</u>										
								_											······································		***************************************
						ļ					ļ										
ite: Since laboratory accreditations are subject to change, TestAmerica Laborati rrently maintain accreditation in the State of Origin listed above for analysis/test boratories, Inc. attention immediately. If all requested accreditations are curren	s/matrix being analyz	ed, the sample	s must be shipped ba	ick to the 1	restAm	erica la	borato	bry or ott	her inst	truction											
ssible Hazard Identification					Sai	mple	Disp	osal (A fee	may						s are	\neg		d longer than 1		
nconfirmed	ps							To Cli				ispos	al By	y Lab)	<u></u>	A	rchiv	e For	Months	
eliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank: 2			Spe	ecial li	nstru	ctions/	QC R	Requir	emen	its:									
npty Kit Relinquished by:	1	Date:	12.		Time:	D-11			. ,				Metho	od of S							
inquished by: hula Trady	Date/Time/ Date/Time.	0 /	5/5 Compa	1	OK.	Repen	(DU	<u>M</u>	lo	0	MU	at	t		21	0	16	1125	Company	-Sea
inquished by:	Uate/Time.		Compa	any 🖍		Receiv	red by								Date/	Timle:	ť			Company	
inquished by:	Date/Time:		Compa	iny		Receiv	ed by	:		***************************************	***************************************	***************************************			Date/	Time:				Company	
	L					1															
Custody Seals Intact: Custody Seal No.: ∆ Yes ∆ No				ne 75		Į.	Temp	perature	(s) °C a	and Oth	her Re	marks									2018 (F

Phone (509) 924-9200 Fax (509) 924-9290

Spokane, WA 99206

<u>TestAmerica</u>

ain of Custody Record	

Client Information (Sub Contract Lab)	Arrington, Randee E								590-2354.1											
lient Contact:	Phone.			E-N									of Orio		*********			Page:		
Shipping/Receiving ompany:	1			rar	ndee.ai				See no		n	vvas	hingt	on				Page 1 of 1		
estAmerica Laboratories, Inc.									shingt								- 1	Job #: 590-5185-1		
ddress: 755 8th Street East,	Due Date Request 12/21/2016	led:							An	alysi	s Red	ques	ted					Preservation C		
ity: acoma	TAT Requested (d	ays):								·····								A - HCŁ B - NaOH	N - N	exane one sNaO2
tate, Zip:						9	_											C - Zn Acetate D - Nitric Acid	P - N	2045
VA, 98424	PO#	· · · · · · · · · · · · · · · · · · ·			41	E												E - NaHSO4 F - MeOH	R-N	a2\$03 a2\$203
53-922-2310(Tel) 253-922-5047(Fax)					اول	Nasa.	1						ı	ļ				G - Amohlor H - Ascorbic Acid		SP Dodecahydrate
nail:	WO#:				8	CATING SATING	Š											I - Ice J - DI Water	U - Ad V - M	cetone CAA
oject Name.	Project#:				العُ	N K	7											K - EDTA L - EDA	W - p Z - otl	H 4-5 ner (specify)
olville Post and Pole	59001108 SSOW#				႕ᆲ	3	=										Outa	Other:		,,
						1	7										8			
ample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Туре	Matrix (w=water, S=solid,)=waste/oil, Tissue, A=Ai	Field Filtered Sample (Yes or No		~∤						***************************************		71777		Total Number	Special	Instruc	ions/Note:
		> <	Preservation	Deliver of the Advantage of the Control of the Cont	W	₹T							alea l		29.4		X			
ep-1 (6-12) (590-5185-94)	12/7/16	12:00 Pacific		Water		X											1			
ep-2 (6-12) (590-5185-95)	12/7/16	12:05 Pacific		Water		X	7										1			
					TT	\top									+					
					++	+	╁┈			\dashv	+		_	+		 				
					++-	+	╂	-		-			\dashv	+	-	 				
					++	_	\bot				_					<u> </u>				
					11															······
					П															***************************************
					TT		1	t		\top	1				1				**********	
te: Since laboratory accreditations are subject to change, TestAmerica Laborat rently maintain accreditation in the State of Origin listed above for analysis/test poratories, Inc. attention immediately. If all requested accreditations are curren	s/matrix being analyze	ed, the sample	s must be shipped	back to th	e TestA	merica	labora	atory or	other in	structio	ories. T ns will t	his sar ie provi	nple shided. A	ipment Iny cha	is forwi	arded c	under ditation	chain-of-custody. 1 status should be	If the labo brought to	ratory does not TestAmerica
ssible Hazard Identification					S	ample	e Dis	posal	(Afe	e maj	/ be a	ssess	ed if	samp				l longer than	1 month)
confirmed	Daiman Delinin	bla Daelo S				□ _F					\Box_{D}		al By	Lab		A.	rchiv	e For	Mo	nths
liverable Requested: I, II, III. IV. Other (specify)	Primary Delivera	ibie Kank: 2			S	pecial	ınstr	uction	is/QC	Requi	remen									
pty Kit Relinquished by:		Date:			Time							٨	Method	of Ship	ment:					
nguished by:	Date Time QQLO	1449	5 Tes	ipany Tm	ΔÌÇO	Rec	eived t	oy: B	_92	L				ļį	te/Time L 1	0.1	له	1125		A TH
nguisned by:	Date/Time:		Corr	pany		Rec	eived t	by:						Dat	te/Time	:			Compa	any
nquished by:	Date/Time:		Corr	pany		Reci	eived t	oy:						Dat	e/Time	:			Compa	iny
Custody Seals Intact: Custody Seal No.:				****			ler Ter	nperati	ire(s) °(and O	ther Rei	narks:	5-c-1				1 2	3 (
Δ Yes Δ No			P;	age 7	6 of 8	81				····			7 15	22	ر,	/ يا.	<u>人</u> ,	<u> </u>	<u>F</u>	5/9/2018 (F

Client: GeoEngineers Inc Job Number: 590-5185-1

Login Number: 5185 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

Creator. Kratz, Silella J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-5185-1

Login Number: 5185 List Number: 2 List Source: TestAmerica Sacramento List Creation: 12/14/16 11:10 AM

Creator: Edman, Connor M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	217510
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: GeoEngineers Inc Job Number: 590-5185-1

Login Number: 5185
List Source: TestAmerica Sacramento
List Number: 3
List Creation: 12/14/16 05:21 PM

Creator: Edman, Connor M

Creator: Edman, Connor M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey T meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	Γrue	217612
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	Γrue	
Cooler Temperature is acceptable.	Γrue	
Cooler Temperature is recorded.	Γrue	
COC is present.	Γrue	
COC is filled out in ink and legible.	Γrue	
COC is filled out with all pertinent information.	Γrue	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	Γrue	
Samples are received within Holding Time (excluding tests with immediate THTs)	True	
Sample containers have legible labels.	Γrue	
Containers are not broken or leaking.	Γrue	
Sample collection date/times are provided.	Γrue	
Appropriate sample containers are used.	Γrue	
Sample bottles are completely filled.	Γrue	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested T MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	Γrue	
Multiphasic samples are not present.	Γrue	
Samples do not require splitting or compositing.	Γrue	
Residual Chlorine Checked.	N/A	

TestAmerica Spokane

TestAmerica Job ID: 590-5185-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

_		Percent Isotope Dilution Recovery (Acceptance Limits)								
		TCDD	TCDF	PeCDD	PeCDF	HxDD	HxCDF	HpCDD	HpCDF	
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	
590-5185-1	HA-4 (0-6')	102	89	102	93	102	95	119	103	
590-5185-4	HA-3 (0-6")	100	86	101	93	101	94	118	100	
590-5185-7	HA-2 (0-6")	82	70	64	70	80	80	92	90	
590-5185-10	HA-1 (0-6")	96	85	96	90	99	86	117	101	
590-5185-19	HA-14 (0-6")	121	63	73	66	79	62	101	83	
590-5185-22	HA-13 (0-6")	91	82	98	89	95	79	111	96	
590-5185-25	HA-32 (0-6")	83	63	72	66	78	61	89	74	
590-5185-28	HA-8 (0-6")	81	62	76	70	74	67	83	79	
590-5185-31	HA-6 (0-6")	97	92	111	98	101	101	107	108	
590-5185-34	HA-5 (0-6")	81	58	65	60	62	62	74	67	
590-5185-37	HA-7 (0-6")	93	90	102	96	99	99	103	104	
590-5185-40	HA-9 (0-6")	96	95	108	100	105	105	113	113	
590-5185-49	HA-17 (0-6")	94	92	104	95	100	99	106	105	
590-5185-58	HA-25 (0-6")	94	92	104	97	105	104	107	109	
590-5185-61	HA-12 (0-6")	78	75	82	76	83	87	91	93	
590-5185-64	HA-38 (0-6")	54	51	58	57	59	59	66	66	
590-5185-67	HA-11 (0-6")	59	53	57	55	63	62	70	72	
590-5185-70	HA-22 (0-6")	83	82	92	88	90	89	96	100	
590-5185-73	HA-20 (0-6")	85	70	72	70	71	74	91	90	
590-5185-76	HA-18 (0-6")	83	83	89	83	95	95	113	113	
590-5185-79	HA-10 (0-6")	79	76	80	79	82	81	93	97	
590-5185-82	HA-19 (0-6")	67	71	58	65	75	74	73	76	
590-5185-85	HA-21 (0-6")	55	60	49	55	58	57	60	60	
590-5185-88	HA-23 (0-6")	98	104	97	101	116	117	113	115	
590-5185-102	HA-30 (0-6")	82	84	75	81	89	90	89	93	
LCS 320-142254/2-A	Lab Control Sample	91	78	94	86	94	81	96	88	
LCS 320-142262/2-A	Lab Control Sample	82	85	78	84	94	94	91	94	
LCSD 320-142254/3-A	Lab Control Sample Dup	61	51	59	55	62	54	64	55	
LCSD 320-142262/3-A	Lab Control Sample Dup	57	60	55	58	68	67	66	68	
MB 320-142254/1-A	Method Blank	82	71	84	74	88	75	88	80	
MB 320-142262/1-A	Method Blank	59	61	56	60	66	64	68	67	

Percent Isotope Dilution Recovery (Acceptance Limits)

		OCDD
Lab Sample ID	Client Sample ID	(40-135)
590-5185-1	HA-4 (0-6')	128
590-5185-4	HA-3 (0-6")	126
590-5185-7	HA-2 (0-6")	103
590-5185-10	HA-1 (0-6")	125
590-5185-19	HA-14 (0-6")	114
590-5185-22	HA-13 (0-6")	122
590-5185-25	HA-32 (0-6")	102
590-5185-28	HA-8 (0-6")	86
590-5185-31	HA-6 (0-6")	115
590-5185-34	HA-5 (0-6")	75
590-5185-37	HA-7 (0-6")	110
590-5185-40	HA-9 (0-6")	123
590-5185-49	HA-17 (0-6")	115
590-5185-58	HA-25 (0-6")	117
590-5185-61	HA-12 (0-6")	96

Page 80 of 81

Isotope Dilution Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5185-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Solid Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)
		OCDD	
Lab Sample ID	Client Sample ID	(40-135)	
590-5185-64	HA-38 (0-6")	70	
590-5185-67	HA-11 (0-6")	74	
590-5185-70	HA-22 (0-6")	102	
590-5185-73	HA-20 (0-6")	93	
590-5185-76	HA-18 (0-6")	119	
590-5185-79	HA-10 (0-6")	97	
590-5185-82	HA-19 (0-6")	72	
590-5185-85	HA-21 (0-6")	64	
590-5185-88	HA-23 (0-6")	128	
590-5185-102	HA-30 (0-6")	94	
LCS 320-142254/2-A	Lab Control Sample	97	
LCS 320-142262/2-A	Lab Control Sample	95	
LCSD 320-142254/3-A	Lab Control Sample Dup	65	
LCSD 320-142262/3-A	Lab Control Sample Dup	69	
MB 320-142254/1-A	Method Blank	87	
MB 320-142262/1-A	Method Blank	70	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF = 13C-1,2,3,7,8-PeCDF

HxDD = 13C-1,2,3,6,7,8-HxCDD

HxCDF = 13C-1,2,3,4,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF = 13C-1,2,3,4,6,7,8-HpCDF

OCDD = 13C-OCDD

TestAmerica Spokane

2

3

6

8

10

11

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-5187-1

Client Project/Site: Colville Post and Pole/0504-098-01

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

dance trington

Authorized for release by: 12/29/2016 4:26:59 PM

Randee Arrington, Project Manager II (509)924-9200 randee.arrington@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	15
Chronicle	18
Certification Summary	22
Method Summary	23
Chain of Custody	24
Receipt Checklists	28
Isotope Dilution Summary	30

4

9

10

12

Case Narrative

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Job ID: 590-5187-1

Laboratory: TestAmerica Spokane

Narrative

Receipt

The samples were received on 12/9/2016 12:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

Receipt Exceptions

The collection time listed on the COC for samples BG-1 (0-6") (590-5187-1), BG-4 (0-6") (590-5187-4), BG-5 (0-6") (590-5187-5), BG-6 (0-6") (590-5187-6), BG-7 (0-6") (590-5187-7), BG-8 (0-6") (590-5187-8) and BG-9 (0-6") (590-5187-9) was chronologically later than the laboratory receipt time for the samples. The client was notified and sample collection dates were logged in according to the revised CoC received from the client on 12/12/2016.

Dioxin

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-5187-1	BG-1 (0-6")	Solid	12/08/16 15:20	12/09/16 12:10
590-5187-2	BG-2 (0-6")	Solid	12/09/16 08:50	12/09/16 12:10
590-5187-3	BG-3 (0-6")	Solid	12/09/16 09:10	12/09/16 12:10
590-5187-4	BG-4 (0-6")	Solid	12/08/16 14:45	12/09/16 12:10
590-5187-5	BG-5 (0-6")	Solid	12/08/16 15:35	12/09/16 12:10
590-5187-6	BG-6 (0-6")	Solid	12/08/16 14:25	12/09/16 12:10
590-5187-7	BG-7 (0-6")	Solid	12/08/16 15:05	12/09/16 12:10
590-5187-8	BG-8 (0-6")	Solid	12/08/16 14:05	12/09/16 12:10
590-5187-9	BG-9 (0-6")	Solid	12/08/16 15:45	12/09/16 12:10
590-5187-10	BG-10 (0-6")	Solid	12/09/16 09:25	12/09/16 12:10

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 590-5187-1

Glossary

TEQ

These commonly used abbreviations may or may not be present in this report.
Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains Free Liquid
Contains no Free Liquid
Duplicate error ratio (normalized absolute difference)
Dilution Factor
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Decision level concentration
Minimum detectable activity
Estimated Detection Limit
Minimum detectable concentration
Method Detection Limit
Minimum Level (Dioxin)
Not Calculated
Not detected at the reporting limit (or MDL or EDL if shown)
Practical Quantitation Limit
Quality Control
Relative error ratio
Reporting Limit or Requested Limit (Radiochemistry)
Relative Percent Difference, a measure of the relative difference between two points
Toxicity Equivalent Factor (Dioxin)

TestAmerica Job ID: 590-5187-1

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-1 (0-6")

Lab Sample ID: 590-5187-1

Date Collected: 12/08/16 15:20 Matrix: Solid
Date Received: 12/09/16 12:10 Percent Solids: 68.6

Method: 8290A - Dioxins a					_			
Analyte		Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.5	pg/g	₩	12/15/16 08:39		1
2,3,7,8-TCDF	ND		1.5	pg/g	.		12/22/16 19:50	1
1,2,3,7,8-PeCDD	ND		7.3	pg/g	₩		12/22/16 19:50	1
1,2,3,7,8-PeCDF	ND		7.3	pg/g	☼	12/15/16 08:39	12/22/16 19:50	1
2,3,4,7,8-PeCDF	ND		7.3	pg/g	₽	12/15/16 08:39	12/22/16 19:50	1
1,2,3,4,7,8-HxCDD	ND		7.3	pg/g	₽	12/15/16 08:39	12/22/16 19:50	1
1,2,3,6,7,8-HxCDD	16		7.3	pg/g	₽	12/15/16 08:39	12/22/16 19:50	1
1,2,3,7,8,9-HxCDD	10		7.3	pg/g	₩	12/15/16 08:39	12/22/16 19:50	1
1,2,3,4,7,8-HxCDF	ND		7.3	pg/g	₩	12/15/16 08:39	12/22/16 19:50	1
1,2,3,6,7,8-HxCDF	ND		7.3	pg/g	₽	12/15/16 08:39	12/22/16 19:50	1
1,2,3,7,8,9-HxCDF	ND		7.3	pg/g	₩	12/15/16 08:39	12/22/16 19:50	1
2,3,4,6,7,8-HxCDF	ND		7.3	pg/g	₩	12/15/16 08:39	12/22/16 19:50	1
1,2,3,4,6,7,8-HpCDD	530		7.3	pg/g		12/15/16 08:39	12/22/16 19:50	1
1,2,3,4,6,7,8-HpCDF	93		7.3	pg/g	☼	12/15/16 08:39	12/22/16 19:50	1
1,2,3,4,7,8,9-HpCDF	ND		7.3	pg/g	☼	12/15/16 08:39	12/22/16 19:50	1
OCDD	4600		15	pg/g		12/15/16 08:39	12/22/16 19:50	1
OCDF	520		15	pg/g	☼	12/15/16 08:39	12/22/16 19:50	1
Total TCDD	ND		1.5	pg/g	₩	12/15/16 08:39	12/22/16 19:50	1
Total TCDF	ND		1.5	pg/g		12/15/16 08:39	12/22/16 19:50	1
Total PeCDD	ND		7.3	pg/g	☼	12/15/16 08:39	12/22/16 19:50	1
Total PeCDF	ND		7.3	pg/g	₩	12/15/16 08:39	12/22/16 19:50	1
Total HxCDD	77		7.3	pg/g		12/15/16 08:39	12/22/16 19:50	1
Total HxCDF	40		7.3	pg/g	☼	12/15/16 08:39	12/22/16 19:50	1
Total HpCDD	870		7.3	pg/g	₩	12/15/16 08:39	12/22/16 19:50	1
Total HpCDF	320		7.3	pg/g	₽	12/15/16 08:39	12/22/16 19:50	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78		40 - 135			12/15/16 08:39	12/22/16 19:50	1
13C-2,3,7,8-TCDF	80		40 - 135			12/15/16 08:39	12/22/16 19:50	1
13C-1,2,3,7,8-PeCDD	72		40 - 135			12/15/16 08:39	12/22/16 19:50	1
13C-1,2,3,7,8-PeCDF	80		40 - 135			12/15/16 08:39	12/22/16 19:50	1
13C-1,2,3,6,7,8-HxCDD	90		40 - 135			12/15/16 08:39	12/22/16 19:50	1
13C-1,2,3,4,7,8-HxCDF	89		40 - 135			12/15/16 08:39	12/22/16 19:50	1
13C-1,2,3,4,6,7,8-HpCDD	94		40 - 135				12/22/16 19:50	1

Client Sample ID: BG-2 (0-6")

Date Collected: 12/09/16 08:50

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5187-2

Matrix: Solid

Percent Solids: 82.7

40 - 135

40 - 135

97

102

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Method: 8290A - Dioxins and Furans (HRGC/HRMS)								
Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.2		pg/g	<u> </u>	12/15/16 08:39	12/22/16 20:36	1
2,3,7,8-TCDF	ND	1.2		pg/g	≎	12/15/16 08:39	12/22/16 20:36	1
1,2,3,7,8-PeCDD	ND	6.0		pg/g	≎	12/15/16 08:39	12/22/16 20:36	1
1,2,3,7,8-PeCDF	ND	6.0		pg/g	₩.	12/15/16 08:39	12/22/16 20:36	1
2,3,4,7,8-PeCDF	ND	6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
1,2,3,4,7,8-HxCDD	ND	6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
1,2,3,6,7,8-HxCDD	ND	6.0		pg/g		12/15/16 08:39	12/22/16 20:36	1

TestAmerica Spokane

12/29/2016

12/15/16 08:39 12/22/16 19:50

12/15/16 08:39 12/22/16 19:50

Page 6 of 30

2

3

5

7

9

10

12

Client: GeoEngineers Inc

13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-2 (0-6")

Date Collected: 12/09/16 08:50

12/15/16 08:39 12/22/16 20:36

12/15/16 08:39 12/22/16 20:36

12/15/16 08:39 12/22/16 20:36

Lab Sample ID: 590-5187-2

TestAmerica Job ID: 590-5187-1

Matrix: Solid Percent Solids: 82.7

Date Received: 12/09/16 12:10

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND		6.0		pg/g	<u> </u>	12/15/16 08:39	12/22/16 20:36	1
1,2,3,4,7,8-HxCDF	ND		6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
1,2,3,6,7,8-HxCDF	ND		6.0		pg/g		12/15/16 08:39	12/22/16 20:36	1
1,2,3,7,8,9-HxCDF	ND		6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
2,3,4,6,7,8-HxCDF	ND		6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
1,2,3,4,6,7,8-HpCDD	19		6.0		pg/g		12/15/16 08:39	12/22/16 20:36	1
1,2,3,4,6,7,8-HpCDF	ND		6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
1,2,3,4,7,8,9-HpCDF	ND		6.0		pg/g	☼	12/15/16 08:39	12/22/16 20:36	1
OCDD	200		12		pg/g	φ.	12/15/16 08:39	12/22/16 20:36	1
OCDF	13		12		pg/g	☼	12/15/16 08:39	12/22/16 20:36	1
Total TCDD	ND		1.2		pg/g	☼	12/15/16 08:39	12/22/16 20:36	1
Total TCDF	ND		1.2		pg/g	ф.	12/15/16 08:39	12/22/16 20:36	1
Total PeCDD	ND		6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
Total PeCDF	ND		6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
Total HxCDD	ND		6.0		pg/g	₽	12/15/16 08:39	12/22/16 20:36	1
Total HxCDF	ND		6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
Total HpCDD	33		6.0		pg/g	₩	12/15/16 08:39	12/22/16 20:36	1
Total HpCDF	7.5		6.0		pg/g	\$	12/15/16 08:39	12/22/16 20:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	66		40 - 135				12/15/16 08:39	12/22/16 20:36	1
13C-2,3,7,8-TCDF	68		40 - 135				12/15/16 08:39	12/22/16 20:36	1
13C-1,2,3,7,8-PeCDD	62		40 - 135				12/15/16 08:39	12/22/16 20:36	1
13C-1,2,3,7,8-PeCDF	67		40 - 135				12/15/16 08:39	12/22/16 20:36	1
13C-1,2,3,6,7,8-HxCDD	73		40 - 135				12/15/16 08:39	12/22/16 20:36	1
13C-1,2,3,4,7,8-HxCDF	73		40 - 135				12/15/16 08:39	12/22/16 20:36	1

Client Sample ID: BG-3 (0-6") Lab Sample ID: 590-5187-3 Date Collected: 12/09/16 09:10 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 68.2

40 - 135

40 - 135

40 - 135

74

76

79

Analyte	Result Qualifier	RL	EDL Uni	t 1	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.5	pg/g)	\	12/15/16 08:39	12/23/16 01:01	1
2,3,7,8-TCDF	ND	1.5	pg/g	,	☼	12/15/16 08:39	12/23/16 01:01	1
1,2,3,7,8-PeCDD	ND	7.3	pg/g	,	Ċ.	12/15/16 08:39	12/23/16 01:01	1
1,2,3,7,8-PeCDF	ND	7.3	pg/g)	\$	12/15/16 08:39	12/23/16 01:01	1
2,3,4,7,8-PeCDF	ND	7.3	pg/g	,	Ċ.	12/15/16 08:39	12/23/16 01:01	1
1,2,3,4,7,8-HxCDD	ND	7.3	pg/g	,	₽	12/15/16 08:39	12/23/16 01:01	1
1,2,3,6,7,8-HxCDD	ND	7.3	pg/g)	φ.	12/15/16 08:39	12/23/16 01:01	1
1,2,3,7,8,9-HxCDD	ND	7.3	pg/g	,	Ċ.	12/15/16 08:39	12/23/16 01:01	1
1,2,3,4,7,8-HxCDF	ND	7.3	pg/g	,	Ċ.	12/15/16 08:39	12/23/16 01:01	1
1,2,3,6,7,8-HxCDF	ND	7.3	pg/g)	Þ.	12/15/16 08:39	12/23/16 01:01	1
1,2,3,7,8,9-HxCDF	ND	7.3	pg/g	,	Ċ.	12/15/16 08:39	12/23/16 01:01	1
2,3,4,6,7,8-HxCDF	ND	7.3	pg/g	,	Ċ.	12/15/16 08:39	12/23/16 01:01	1
1,2,3,4,6,7,8-HpCDD	40	7.3	pg/g)	\$	12/15/16 08:39	12/23/16 01:01	1
1,2,3,4,6,7,8-HpCDF	ND	7.3	pg/g	1	₽	12/15/16 08:39	12/23/16 01:01	1

TestAmerica Spokane

Page 7 of 30

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5187-3

TestAmerica Job ID: 590-5187-1

Matrix: Solid Percent Solids: 68.2

Client Sample ID: BG-3 (0-6") Date Collected: 12/09/16 09:10 Date Received: 12/09/16 12:10

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		7.3		pg/g	<u> </u>	12/15/16 08:39	12/23/16 01:01	1
OCDD	350		15		pg/g		12/15/16 08:39	12/23/16 01:01	1
OCDF	17		15		pg/g	₩	12/15/16 08:39	12/23/16 01:01	1
Total TCDD	ND		1.5		pg/g	₩	12/15/16 08:39	12/23/16 01:01	1
Total TCDF	ND		1.5		pg/g		12/15/16 08:39	12/23/16 01:01	1
Total PeCDD	ND		7.3		pg/g	☼	12/15/16 08:39	12/23/16 01:01	1
Total PeCDF	ND		7.3		pg/g	☼	12/15/16 08:39	12/23/16 01:01	1
Total HxCDD	ND		7.3		pg/g		12/15/16 08:39	12/23/16 01:01	1
Total HxCDF	ND		7.3		pg/g	☼	12/15/16 08:39	12/23/16 01:01	1
Total HpCDD	66		7.3		pg/g	₽	12/15/16 08:39	12/23/16 01:01	1
Total HpCDF	11		7.3		pg/g	\$	12/15/16 08:39	12/23/16 01:01	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	68		40 - 135				12/15/16 08:39	12/23/16 01:01	1
13C-2,3,7,8-TCDF	65		40 - 135				12/15/16 08:39	12/23/16 01:01	1
13C-1,2,3,7,8-PeCDD	63		40 - 135				12/15/16 08:39	12/23/16 01:01	1
13C-1,2,3,7,8-PeCDF	67		40 - 135				12/15/16 08:39	12/23/16 01:01	1
13C-1,2,3,6,7,8-HxCDD	79		40 - 135				12/15/16 08:39	12/23/16 01:01	1
13C-1,2,3,4,7,8-HxCDF	77		40 - 135				12/15/16 08:39	12/23/16 01:01	1
13C-1,2,3,4,6,7,8-HpCDD	77		40 - 135				12/15/16 08:39	12/23/16 01:01	1
13C-1,2,3,4,6,7,8-HpCDF	81		40 - 135				12/15/16 08:39	12/23/16 01:01	1
13C-OCDD	78		40 - 135				12/15/16 08:39	12/23/16 01:01	1

Client Sample ID: BG-4 (0-6") Lab Sample ID: 590-5187-4 Date Collected: 12/08/16 14:45 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 82.9

Analyte	Result Q	Qualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.2		pg/g	<u> </u>	12/15/16 08:39	12/23/16 01:47	1
2,3,7,8-TCDF	ND	1.2		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
1,2,3,7,8-PeCDD	ND	6.0		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
1,2,3,7,8-PeCDF	ND	6.0		pg/g		12/15/16 08:39	12/23/16 01:47	1
2,3,4,7,8-PeCDF	ND	6.0		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
1,2,3,4,7,8-HxCDD	ND	6.0		pg/g	₽	12/15/16 08:39	12/23/16 01:47	1
1,2,3,6,7,8-HxCDD	ND	6.0		pg/g	₽	12/15/16 08:39	12/23/16 01:47	1
1,2,3,7,8,9-HxCDD	ND	6.0		pg/g	₽	12/15/16 08:39	12/23/16 01:47	1
1,2,3,4,7,8-HxCDF	ND	6.0		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
1,2,3,6,7,8-HxCDF	ND	6.0		pg/g	₽	12/15/16 08:39	12/23/16 01:47	1
1,2,3,7,8,9-HxCDF	ND	6.0		pg/g	☼	12/15/16 08:39	12/23/16 01:47	1
2,3,4,6,7,8-HxCDF	ND	6.0		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
1,2,3,4,6,7,8-HpCDD	22	6.0		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
1,2,3,4,6,7,8-HpCDF	ND	6.0		pg/g	☼	12/15/16 08:39	12/23/16 01:47	1
1,2,3,4,7,8,9-HpCDF	ND	6.0		pg/g	₽	12/15/16 08:39	12/23/16 01:47	1
OCDD	210	12		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
OCDF	ND	12		pg/g	₽	12/15/16 08:39	12/23/16 01:47	1
Total TCDD	ND	1.2		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
Total TCDF	ND	1.2		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1
Total PeCDD	ND	6.0		pg/g	₽	12/15/16 08:39	12/23/16 01:47	1
Total PeCDF	ND	6.0		pg/g	≎	12/15/16 08:39	12/23/16 01:47	1

TestAmerica Spokane

Page 8 of 30

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-4 (0-6")

Lab Sample ID: 590-5187-4

TestAmerica Job ID: 590-5187-1

Matrix: Solid Percent Solids: 82.9

Date Collected: 12/08/16 14:45 Date Received: 12/09/16 12:10

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	ND		6.0		pg/g	<u> </u>	12/15/16 08:39	12/23/16 01:47	1
Total HxCDF	ND		6.0		pg/g	\$	12/15/16 08:39	12/23/16 01:47	1
Total HpCDD	37		6.0		pg/g	₽	12/15/16 08:39	12/23/16 01:47	1
Total HpCDF	6.4		6.0		pg/g		12/15/16 08:39	12/23/16 01:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	58		40 - 135				12/15/16 08:39	12/23/16 01:47	1
13C-2,3,7,8-TCDF	56		40 - 135				12/15/16 08:39	12/23/16 01:47	1
13C-1,2,3,7,8-PeCDD	55		40 - 135				12/15/16 08:39	12/23/16 01:47	1
13C-1,2,3,7,8-PeCDF	56		40 - 135				12/15/16 08:39	12/23/16 01:47	1
13C-1,2,3,6,7,8-HxCDD	64		40 - 135				12/15/16 08:39	12/23/16 01:47	1
13C-1,2,3,4,7,8-HxCDF	60		40 - 135				12/15/16 08:39	12/23/16 01:47	1
13C-1,2,3,4,6,7,8-HpCDD	61		40 - 135				12/15/16 08:39	12/23/16 01:47	1
13C-1,2,3,4,6,7,8-HpCDF	64		40 - 135				12/15/16 08:39	12/23/16 01:47	1
13C-OCDD	64		40 - 135				12/15/16 08:39	12/23/16 01:47	1

Client Sample ID: BG-5 (0-6") Lab Sample ID: 590-5187-5 Date Collected: 12/08/16 15:35 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 69.9

-								Percent Solid	
Method: 8290A - Dioxins Analyte		GC/HRMS) Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.4		pg/g	\	12/15/16 08:39	12/23/16 02:33	1
2,3,7,8-TCDF	ND		1.4		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
1,2,3,7,8-PeCDD	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
1,2,3,7,8-PeCDF	ND		7.1		pg/g	₩.	12/15/16 08:39	12/23/16 02:33	1
2,3,4,7,8-PeCDF	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
1,2,3,4,7,8-HxCDD	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
1,2,3,6,7,8-HxCDD	ND		7.1		pg/g	₩.	12/15/16 08:39	12/23/16 02:33	1
1,2,3,7,8,9-HxCDD	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
1,2,3,4,7,8-HxCDF	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
1,2,3,6,7,8-HxCDF	ND		7.1		pg/g	₩.	12/15/16 08:39	12/23/16 02:33	1
1,2,3,7,8,9-HxCDF	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
2,3,4,6,7,8-HxCDF	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
1,2,3,4,6,7,8-HpCDD	73		7.1		pg/g	φ.	12/15/16 08:39	12/23/16 02:33	1
1,2,3,4,6,7,8-HpCDF	11		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
1,2,3,4,7,8,9-HpCDF	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
OCDD	580		14		pg/g		12/15/16 08:39	12/23/16 02:33	1
OCDF	18		14		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
Total TCDD	ND		1.4		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
Total TCDF	ND		1.4		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
Total PeCDD	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
Total PeCDF	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
Total HxCDD	7.7		7.1		pg/g	₩.	12/15/16 08:39	12/23/16 02:33	1
Total HxCDF	ND		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
Total HpCDD	130		7.1		pg/g	₩	12/15/16 08:39	12/23/16 02:33	1
Total HpCDF	24		7.1		pg/g		12/15/16 08:39	12/23/16 02:33	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	61		40 - 135				12/15/16 08:39	12/23/16 02:33	1
13C-2,3,7,8-TCDF	60		40 - 135				12/15/16 08:39	12/23/16 02:33	1

TestAmerica Spokane

Page 9 of 30

Client: GeoEngineers Inc

Analyte

OCDF

Total TCDD

Total TCDF

Total PeCDD

Total PeCDF

Total HxCDD

Total HxCDF

Total HpCDD

2,3,7,8-TCDD

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Client Sample ID: BG-5 (0-6")

Date Collected: 12/08/16 15:35 Date Received: 12/09/16 12:10 Lab Sample ID: 590-5187-5

Analyzed

<u>12/15/16 08:39</u> <u>12/23/16 03:20</u>

12/15/16 08:39 12/23/16 03:20

12/15/16 08:39 12/23/16 03:20

12/15/16 08:39 12/23/16 03:20

12/15/16 08:39 12/23/16 03:20

12/15/16 08:39 12/23/16 03:20

12/15/16 08:39 12/23/16 03:20

12/15/16 08:39 12/23/16 03:20

12/15/16 08:39 12/23/16 03:20

Matrix: Solid Percent Solids: 69.9

l .				
Method: 8290A	- Dioxins and	Furans (H	RGC/HRMS)	(Continued)

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Result Qualifier

 $\overline{\mathsf{ND}}$

ND

ND

ND

ND

ND

ND

ND

26

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	57	40 - 135	12/15/16 08:39	12/23/16 02:33	1
13C-1,2,3,7,8-PeCDF	60	40 - 135	12/15/16 08:39	12/23/16 02:33	1
13C-1,2,3,6,7,8-HxCDD	66	40 - 135	12/15/16 08:39	12/23/16 02:33	1
13C-1,2,3,4,7,8-HxCDF	66	40 - 135	12/15/16 08:39	12/23/16 02:33	1
13C-1,2,3,4,6,7,8-HpCDD	67	40 - 135	12/15/16 08:39	12/23/16 02:33	1
13C-1,2,3,4,6,7,8-HpCDF	71	40 - 135	12/15/16 08:39	12/23/16 02:33	1
13C-OCDD	69	40 - 135	12/15/16 08:39	12/23/16 02:33	1

Client Sample ID: BG-6 (0-6")

Lab Sample ID: 590-5187-6

RL

1.3

EDL Unit

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

D

₩

Prepared

Date Collected: 12/08/16 14:25
Date Received: 12/09/16 12:10
Matrix: Solid
Percent Solids: 79.5

2,3,7,8-TCDF	ND	1.3	pg/g	₩	12/15/16 08:39	12/23/16 03:20	1
1,2,3,7,8-PeCDD	ND	6.3	pg/g	₽	12/15/16 08:39	12/23/16 03:20	1
1,2,3,7,8-PeCDF	ND	6.3	pg/g	₽	12/15/16 08:39	12/23/16 03:20	1
2,3,4,7,8-PeCDF	ND	6.3	pg/g	₩	12/15/16 08:39	12/23/16 03:20	1
1,2,3,4,7,8-HxCDD	ND	6.3	pg/g	☼	12/15/16 08:39	12/23/16 03:20	1
1,2,3,6,7,8-HxCDD	ND	6.3	pg/g	₽	12/15/16 08:39	12/23/16 03:20	1
1,2,3,7,8,9-HxCDD	ND	6.3	pg/g	☼	12/15/16 08:39	12/23/16 03:20	1
1,2,3,4,7,8-HxCDF	ND	6.3	pg/g	₩	12/15/16 08:39	12/23/16 03:20	1
1,2,3,6,7,8-HxCDF	ND	6.3	pg/g	ф.	12/15/16 08:39	12/23/16 03:20	1
1,2,3,7,8,9-HxCDF	ND	6.3	pg/g	₩	12/15/16 08:39	12/23/16 03:20	1
2,3,4,6,7,8-HxCDF	ND	6.3	pg/g	₽	12/15/16 08:39	12/23/16 03:20	1
1,2,3,4,6,7,8-HpCDD	15	6.3	pg/g	\$	12/15/16 08:39	12/23/16 03:20	1
1,2,3,4,6,7,8-HpCDF	ND	6.3	pg/g	₩	12/15/16 08:39	12/23/16 03:20	1
1,2,3,4,7,8,9-HpCDF	ND	6.3	pg/g	₽	12/15/16 08:39	12/23/16 03:20	1
OCDD	110	13	pg/g	\$	12/15/16 08:39	12/23/16 03:20	1

13

1.3

1.3

6.3

6.3

6.3

6.3

6.3

ND	6.3	pg/g	‡ 12/15/16 08:39	12/23/16 03:20	1
%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
81	40 - 135		12/15/16 08:39	12/23/16 03:20	1
80	40 - 135		12/15/16 08:39	12/23/16 03:20	1
78	40 - 135		12/15/16 08:39	12/23/16 03:20	1
82	40 - 135		12/15/16 08:39	12/23/16 03:20	1
91	40 - 135		12/15/16 08:39	12/23/16 03:20	1
89	40 - 135		12/15/16 08:39	12/23/16 03:20	1
90	40 - 135		12/15/16 08:39	12/23/16 03:20	1
96	40 - 135		12/15/16 08:39	12/23/16 03:20	1
95	40 - 135		12/15/16 08:39	12/23/16 03:20	1
	%Recovery Qualifier 81 80 78 82 91 89 90 96	%Recovery Qualifier Limits 81 40 - 135 80 40 - 135 78 40 - 135 82 40 - 135 91 40 - 135 89 40 - 135 90 40 - 135 96 40 - 135	%Recovery Qualifier Limits 80 40 - 135 78 40 - 135 82 40 - 135 91 40 - 135 89 40 - 135 90 40 - 135 96 40 - 135	%Recovery Qualifier Limits Prepared 81 40 - 135 12/15/16 08:39 80 40 - 135 12/15/16 08:39 78 40 - 135 12/15/16 08:39 82 40 - 135 12/15/16 08:39 91 40 - 135 12/15/16 08:39 89 40 - 135 12/15/16 08:39 90 40 - 135 12/15/16 08:39 96 40 - 135 12/15/16 08:39	%Recovery Qualifier Limits Prepared Analyzed 81 40 - 135 12/15/16 08:39 12/23/16 03:20 80 40 - 135 12/15/16 08:39 12/23/16 03:20 78 40 - 135 12/15/16 08:39 12/23/16 03:20 82 40 - 135 12/15/16 08:39 12/23/16 03:20 91 40 - 135 12/15/16 08:39 12/23/16 03:20 89 40 - 135 12/15/16 08:39 12/23/16 03:20 90 40 - 135 12/15/16 08:39 12/23/16 03:20 96 40 - 135 12/15/16 08:39 12/23/16 03:20

TestAmerica Spokane

Page 10 of 30

2

3

5

7

8

10

12

Dil Fac

1

12/29/2016

13C-1,2,3,7,8-PeCDF

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-7 (0-6")

Date Collected: 12/08/16 15:05

Date Received: 12/09/16 12:10

Lab Sample ID: 590-5187-7

Matrix: Solid

Percent Solids: 80.2

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2		pg/g	<u> </u>	12/15/16 08:39	12/23/16 04:06	1
2,3,7,8-TCDF	ND		1.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,7,8-PeCDD	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,7,8-PeCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
2,3,4,7,8-PeCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,4,7,8-HxCDD	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,6,7,8-HxCDD	ND		6.2		pg/g	\$	12/15/16 08:39	12/23/16 04:06	1
1,2,3,7,8,9-HxCDD	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,4,7,8-HxCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,6,7,8-HxCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,7,8,9-HxCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
2,3,4,6,7,8-HxCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,4,6,7,8-HpCDD	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,4,6,7,8-HpCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
1,2,3,4,7,8,9-HpCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
OCDD	18		12		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
OCDF	ND		12		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
Total TCDD	ND		1.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
Total TCDF	ND		1.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
Total PeCDD	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
Total PeCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
Total HxCDD	ND		6.2		pg/g	\$	12/15/16 08:39	12/23/16 04:06	1
Total HxCDF	ND		6.2		pg/g	☼	12/15/16 08:39	12/23/16 04:06	1
Total HpCDD	ND		6.2		pg/g	☼	12/15/16 08:39	12/23/16 04:06	1
Total HpCDF	ND		6.2		pg/g	₽	12/15/16 08:39	12/23/16 04:06	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78		40 - 135				12/15/16 08:39	12/23/16 04:06	1
13C-2,3,7,8-TCDF	74		40 - 135				12/15/16 08:39	12/23/16 04:06	1
13C-1,2,3,7,8-PeCDD	72		40 - 135				12/15/16 08:39	12/23/16 04:06	1

13C-OCDD 89 40 - 135 12/15/16 08:39 12/23/16 04:06 Client Sample ID: BG-8 (0-6") Lab Sample ID: 590-5187-8 Date Collected: 12/08/16 14:05 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 83.3

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

76

84

84

85

90

Method: 8290A - Dioxins	and Furans (HRGC/HRMS)							
Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.2		pg/g	<u> </u>	12/15/16 08:39	12/23/16 04:52	1
2,3,7,8-TCDF	ND	1.2		pg/g	₩	12/15/16 08:39	12/23/16 04:52	1
1,2,3,7,8-PeCDD	ND	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	1
1,2,3,7,8-PeCDF	ND	6.0		pg/g	₩.	12/15/16 08:39	12/23/16 04:52	1
2,3,4,7,8-PeCDF	ND	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	1
1,2,3,4,7,8-HxCDD	ND	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	1
1,2,3,6,7,8-HxCDD	ND	6.0		pg/g		12/15/16 08:39	12/23/16 04:52	1

TestAmerica Spokane

12/15/16 08:39 12/23/16 04:06

12/15/16 08:39 12/23/16 04:06

12/15/16 08:39 12/23/16 04:06

12/15/16 08:39 12/23/16 04:06

12/15/16 08:39 12/23/16 04:06

Page 11 of 30

TestAmerica Job ID: 590-5187-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-8 (0-6")

Date Collected: 12/08/16 14:05

Lab Sample ID: 590-5187-8

Matrix: Solid Percent Solids: 83.3

Date Received: 12/09/16 12:10 Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Analyte	Result Q	ualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND	6.0		pg/g	<u> </u>	12/15/16 08:39	12/23/16 04:52	
1,2,3,4,7,8-HxCDF	ND	6.0		pg/g	☼	12/15/16 08:39	12/23/16 04:52	•
1,2,3,6,7,8-HxCDF	ND	6.0		pg/g		12/15/16 08:39	12/23/16 04:52	
1,2,3,7,8,9-HxCDF	ND	6.0		pg/g	☼	12/15/16 08:39	12/23/16 04:52	•
2,3,4,6,7,8-HxCDF	ND	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	•
1,2,3,4,6,7,8-HpCDD	150	6.0		pg/g		12/15/16 08:39	12/23/16 04:52	
1,2,3,4,6,7,8-HpCDF	28	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	•
1,2,3,4,7,8,9-HpCDF	ND	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	•
OCDD	2100	12		pg/g	φ.	12/15/16 08:39	12/23/16 04:52	
OCDF	210	12		pg/g	☼	12/15/16 08:39	12/23/16 04:52	•
Total TCDD	ND	1.2		pg/g	₩	12/15/16 08:39	12/23/16 04:52	•
Total TCDF	ND	1.2		pg/g	φ.	12/15/16 08:39	12/23/16 04:52	• • • • • • • •
Total PeCDD	ND	6.0		pg/g	☼	12/15/16 08:39	12/23/16 04:52	•
Total PeCDF	ND	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	•
Total HxCDD	ND	6.0		pg/g		12/15/16 08:39	12/23/16 04:52	• • • • • • • •
Total HxCDF	9.1	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	•
Total HpCDD	240	6.0		pg/g	₩	12/15/16 08:39	12/23/16 04:52	•
Total HpCDF	120	6.0		pg/g	\$	12/15/16 08:39	12/23/16 04:52	· · · · · · · · ·
lootone Dilution	% Booksons O	ualifiar Limita				Droporod	Analyzad	Dil Eo

I					
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	85	40 - 135	12/15/16 08:39	12/23/16 04:52	1
13C-2,3,7,8-TCDF	79	40 - 135	12/15/16 08:39	12/23/16 04:52	1
13C-1,2,3,7,8-PeCDD	79	40 - 135	12/15/16 08:39	12/23/16 04:52	1
13C-1,2,3,7,8-PeCDF	82	40 - 135	12/15/16 08:39	12/23/16 04:52	1
13C-1,2,3,6,7,8-HxCDD	98	40 - 135	12/15/16 08:39	12/23/16 04:52	1
13C-1,2,3,4,7,8-HxCDF	100	40 - 135	12/15/16 08:39	12/23/16 04:52	1
13C-1,2,3,4,6,7,8-HpCDD	102	40 - 135	12/15/16 08:39	12/23/16 04:52	1
13C-1,2,3,4,6,7,8-HpCDF	109	40 - 135	12/15/16 08:39	12/23/16 04:52	1
13C-OCDD	111	40 - 135	12/15/16 08:39	12/23/16 04:52	1

Client Sample ID: BG-9 (0-6")

Date Collected: 12/08/16 15:45 Date Received: 12/09/16 12:10

Lab Sample ID: 590-5187-9

Matrix: Solid Percent Solids: 77.7

Analyte	Result Qualifier	RL	EDL Ur	nit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	1.3	pg	g/g	<u> </u>	12/15/16 08:39	12/23/16 05:38	1
2,3,7,8-TCDF	ND	1.3	pg	g/g	₽	12/15/16 08:39	12/23/16 05:38	1
1,2,3,7,8-PeCDD	ND	6.4	pg	g/g	☼	12/15/16 08:39	12/23/16 05:38	1
1,2,3,7,8-PeCDF	ND	6.4	pg	g/g		12/15/16 08:39	12/23/16 05:38	1
2,3,4,7,8-PeCDF	ND	6.4	pg	g/g	☼	12/15/16 08:39	12/23/16 05:38	1
1,2,3,4,7,8-HxCDD	ND	6.4	pg	g/g	☼	12/15/16 08:39	12/23/16 05:38	1
1,2,3,6,7,8-HxCDD	ND	6.4	pg	g/g		12/15/16 08:39	12/23/16 05:38	1
1,2,3,7,8,9-HxCDD	ND	6.4	pg	g/g	☼	12/15/16 08:39	12/23/16 05:38	1
1,2,3,4,7,8-HxCDF	ND	6.4	pg	g/g	☼	12/15/16 08:39	12/23/16 05:38	1
1,2,3,6,7,8-HxCDF	ND	6.4	pg	g/g	\$	12/15/16 08:39	12/23/16 05:38	1
1,2,3,7,8,9-HxCDF	ND	6.4	pg	g/g	☼	12/15/16 08:39	12/23/16 05:38	1
2,3,4,6,7,8-HxCDF	ND	6.4	pg	g/g	☼	12/15/16 08:39	12/23/16 05:38	1
1,2,3,4,6,7,8-HpCDD	8.0	6.4	pg	g/g	\$	12/15/16 08:39	12/23/16 05:38	1
1,2,3,4,6,7,8-HpCDF	ND	6.4	pg	g/g	₩	12/15/16 08:39	12/23/16 05:38	1

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Client Sample ID: BG-9 (0-6") Lab Sample ID: 590-5187-9

Date Collected: 12/08/16 15:45

Date Received: 12/09/16 12:10

Matrix: Solid
Percent Solids: 77.7

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND ND	6.4	pg/g	<u> </u>	12/15/16 08:39	12/23/16 05:38	1
OCDD	66	13	pg/g		12/15/16 08:39	12/23/16 05:38	1
OCDF	ND	13	pg/g	₽	12/15/16 08:39	12/23/16 05:38	1
Total TCDD	ND	1.3	pg/g	₽	12/15/16 08:39	12/23/16 05:38	1
Total TCDF	ND	1.3	pg/g		12/15/16 08:39	12/23/16 05:38	1
Total PeCDD	ND	6.4	pg/g	☼	12/15/16 08:39	12/23/16 05:38	1
Total PeCDF	ND	6.4	pg/g	☼	12/15/16 08:39	12/23/16 05:38	1
Total HxCDD	ND	6.4	pg/g		12/15/16 08:39	12/23/16 05:38	1
Total HxCDF	ND	6.4	pg/g	☼	12/15/16 08:39	12/23/16 05:38	1
Total HpCDD	8.0	6.4	pg/g	☼	12/15/16 08:39	12/23/16 05:38	1
Total HpCDF	ND	6.4	pg/g		12/15/16 08:39	12/23/16 05:38	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	73	40 - 135			12/15/16 08:39	12/23/16 05:38	1
13C-2,3,7,8-TCDF	70	40 - 135			12/15/16 08:39	12/23/16 05:38	1
13C-1,2,3,7,8-PeCDD	70	40 - 135			12/15/16 08:39	12/23/16 05:38	1
13C-1,2,3,7,8-PeCDF	74	40 - 135			12/15/16 08:39	12/23/16 05:38	1
13C-1,2,3,6,7,8-HxCDD	89	40 - 135			12/15/16 08:39	12/23/16 05:38	1
13C-1,2,3,4,7,8-HxCDF	86	40 - 135			12/15/16 08:39	12/23/16 05:38	1
13C-1,2,3,4,6,7,8-HpCDD	89	40 - 135			12/15/16 08:39	12/23/16 05:38	1
13C-1,2,3,4,6,7,8-HpCDF	94	40 - 135			12/15/16 08:39	12/23/16 05:38	1
13C-OCDD	94	40 - 135			12/15/16 08:39	12/23/16 05:38	1

 Client Sample ID: BG-10 (0-6")

 Date Collected: 12/09/16 09:25
 Lab Sample ID: 590-5187-10

 Date Received: 12/09/16 12:10
 Matrix: Solid

 Percent Solids: 77.3

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.3		pg/g	<u> </u>	12/15/16 08:39	12/23/16 06:24	1
2,3,7,8-TCDF	ND	1.3		pg/g	₩	12/15/16 08:39	12/23/16 06:24	1
1,2,3,7,8-PeCDD	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
1,2,3,7,8-PeCDF	ND	6.5		pg/g		12/15/16 08:39	12/23/16 06:24	1
2,3,4,7,8-PeCDF	ND	6.5		pg/g	₽	12/15/16 08:39	12/23/16 06:24	1
1,2,3,4,7,8-HxCDD	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
1,2,3,6,7,8-HxCDD	ND	6.5		pg/g	₽	12/15/16 08:39	12/23/16 06:24	1
1,2,3,7,8,9-HxCDD	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
1,2,3,4,7,8-HxCDF	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
1,2,3,6,7,8-HxCDF	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
1,2,3,7,8,9-HxCDF	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
2,3,4,6,7,8-HxCDF	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
1,2,3,4,6,7,8-HpCDD	ND	6.5		pg/g	☆	12/15/16 08:39	12/23/16 06:24	1
1,2,3,4,6,7,8-HpCDF	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
1,2,3,4,7,8,9-HpCDF	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
OCDD	29	13		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
OCDF	ND	13		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
Total TCDD	ND	1.3		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
Total TCDF	ND	1.3		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1
Total PeCDD	ND	6.5		pg/g	₽	12/15/16 08:39	12/23/16 06:24	1
Total PeCDF	ND	6.5		pg/g	≎	12/15/16 08:39	12/23/16 06:24	1

TestAmerica Spokane

Page 13 of 30

2

3

5

7

4.0

11

Client: GeoEngineers Inc TestAmerica Job ID: 590-5187-1

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-10 (0-6")

Lab Sample ID: 590-5187-10 Date Collected: 12/09/16 09:25

Matrix: Solid

Date Received: 12/09/16 12:10 Percent Solids: 77.3

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	ND		6.5		pg/g	<u> </u>	12/15/16 08:39	12/23/16 06:24	1
Total HxCDF	ND		6.5		pg/g		12/15/16 08:39	12/23/16 06:24	1
Total HpCDD	ND		6.5		pg/g	☼	12/15/16 08:39	12/23/16 06:24	1
Total HpCDF	ND		6.5		pg/g		12/15/16 08:39	12/23/16 06:24	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	81		40 - 135				12/15/16 08:39	12/23/16 06:24	1
13C-2,3,7,8-TCDF	78		40 - 135				12/15/16 08:39	12/23/16 06:24	1
13C-1,2,3,7,8-PeCDD	77		40 - 135				12/15/16 08:39	12/23/16 06:24	1
13C-1,2,3,7,8-PeCDF	81		40 - 135				12/15/16 08:39	12/23/16 06:24	1
13C-1,2,3,6,7,8-HxCDD	94		40 - 135				12/15/16 08:39	12/23/16 06:24	1
13C-1,2,3,4,7,8-HxCDF	95		40 - 135				12/15/16 08:39	12/23/16 06:24	1
13C-1,2,3,4,6,7,8-HpCDD	96		40 - 135				12/15/16 08:39	12/23/16 06:24	1
13C-1,2,3,4,6,7,8-HpCDF	104		40 - 135				12/15/16 08:39	12/23/16 06:24	1
13C-OCDD	97		40 - 135				12/15/16 08:39	12/23/16 06:24	1

TestAmerica Job ID: 590-5187-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-142262/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 143636 **Prep Batch: 142262**

-	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
2,3,7,8-TCDF	ND		1.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,7,8-PeCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,7,8-PeCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
2,3,4,7,8-PeCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,4,7,8-HxCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,6,7,8-HxCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,7,8,9-HxCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,4,7,8-HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,6,7,8-HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,7,8,9-HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
2,3,4,6,7,8-HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,4,6,7,8-HpCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,4,6,7,8-HpCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
1,2,3,4,7,8,9-HpCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
OCDD	ND		10		pg/g		12/15/16 08:39	12/22/16 14:28	1
OCDF	ND		10		pg/g		12/15/16 08:39	12/22/16 14:28	1
Total TCDD	ND		1.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
Total TCDF	ND		1.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
Total PeCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
Total PeCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
Total HxCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
Total HxCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
Total HpCDD	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
Total HpCDF	ND		5.0		pg/g		12/15/16 08:39	12/22/16 14:28	1
	MD	MD							

	MB	MR				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	59		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-2,3,7,8-TCDF	61		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,7,8-PeCDD	56		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,7,8-PeCDF	60		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,6,7,8-HxCDD	66		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,4,7,8-HxCDF	64		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,4,6,7,8-HpCDD	68		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-1,2,3,4,6,7,8-HpCDF	67		40 - 135	12/15/16 08:39	12/22/16 14:28	1
13C-OCDD	70		40 - 135	12/15/16 08:39	12/22/16 14:28	1
_						

Lab Sample ID: LCS 320-142262/2-A

2,3,4,7,8-PeCDF

1,2,3,4,7,8-HxCDD

Matrix: Solid Analysis Batch: 143636		Spike LCS LCS					Prep Type: Total/NA Prep Batch: 142262		
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
2,3,7,8-TCDD	20.0	22.2		pg/g		111	77 - 130		
2,3,7,8-TCDF	20.0	21.3		pg/g		106	79 - 137		
1,2,3,7,8-PeCDD	100	116		pg/g		116	79 - 134		
1,2,3,7,8-PeCDF	100	115		pg/g		115	81 ₋ 134		

115

109

pg/g

pg/g

TestAmerica Spokane

Page 15 of 30

100

100

Client Sample ID: Lab Control Sample

76 - 132

65 - 144

115

TestAmerica Job ID: 590-5187-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-142262/2-A

Matrix: Solid

Analysis Batch: 143636

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 142262 %Rec

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
100	115		pg/g		115	73 - 147
100	101		pg/g		101	80 - 143
100	109		pg/g		109	72 - 140
100	111		pg/g		111	63 - 152
100	102		pg/g		102	72 - 152
100	111		pg/g		111	72 - 151
100	113		pg/g		113	86 - 134
100	112		pg/g		112	81 - 137
100	107		pg/g		107	79 - 139
200	223		pg/g		111	80 - 137
200	220		pg/g		110	75 - 141
	Added 100 100 100 100 100 100 100 100 100 10	Added Result 100 115 100 101 100 109 100 111 100 102 100 111 100 113 100 112 100 107 200 223	Added Result Qualifier 100 115 100 101 100 109 100 111 100 102 100 111 100 113 100 112 100 107 200 223	Added Result Qualifier Unit 100 115 pg/g 100 101 pg/g 100 109 pg/g 100 111 pg/g 100 102 pg/g 100 111 pg/g 100 113 pg/g 100 112 pg/g 100 107 pg/g 200 223 pg/g	Added Result Qualifier Unit D 100 115 pg/g pg/g 100 101 pg/g 100 109 pg/g 100 111 pg/g 100 102 pg/g 100 111 pg/g 100 113 pg/g 100 112 pg/g 100 107 pg/g 200 223 pg/g	Added Result 100 Qualifier 100 Unit pg/g D matrix 115 %Rec pg/g 115 100 101 pg/g 101 100 109 pg/g 109 100 111 pg/g 111 100 102 pg/g 102 100 111 pg/g 111 100 113 pg/g 113 100 112 pg/g 112 100 107 pg/g 107 200 223 pg/g 111

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	82		40 - 135
13C-2,3,7,8-TCDF	85		40 - 135
13C-1,2,3,7,8-PeCDD	78		40 - 135
13C-1,2,3,7,8-PeCDF	84		40 - 135
13C-1,2,3,6,7,8-HxCDD	94		40 - 135
13C-1,2,3,4,7,8-HxCDF	94		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	91		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	94		40 - 135
13C-OCDD	95		40 - 135

Lab Sample ID: LCSD 320-142262/3-A

Matrix: Solid

OCDF

Client Sample ID: Lab Control Sample Dup

102

75 - 141

Prep Type: Total/NA Prep Batch: 142262

Analysis Batch: 143636 LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Unit %Rec Limits RPD Analyte Limit 2,3,7,8-TCDD 20.0 20.7 104 77 - 130 20 pg/g 2,3,7,8-TCDF 20.0 20.1 pg/g 100 79 - 137 6 20 1,2,3,7,8-PeCDD 100 111 111 79 - 134 20 pg/g 1,2,3,7,8-PeCDF 100 110 110 81 - 134 20 pg/g 2,3,4,7,8-PeCDF 100 110 110 76 - 132 20 pg/g 1,2,3,4,7,8-HxCDD 100 101 pg/g 101 65 - 14420 1,2,3,6,7,8-HxCDD 100 109 109 73 - 147 5 20 pg/g 20 100 97.1 97 80 - 143 1,2,3,7,8,9-HxCDD pg/g 107 72 - 140 20 1,2,3,4,7,8-HxCDF 100 107 pg/g 100 1,2,3,6,7,8-HxCDF 109 109 63 - 152 20 pg/g 1,2,3,7,8,9-HxCDF 100 101 101 72 - 152 20 pg/g 20 100 108 108 3 2,3,4,6,7,8-HxCDF pg/g 72 - 1511,2,3,4,6,7,8-HpCDD 100 107 pg/g 107 86 - 134 20 100 107 107 81 - 137 20 1,2,3,4,6,7,8-HpCDF 5 pg/g 1,2,3,4,7,8,9-HpCDF 100 101 101 79 - 139 7 20 pg/g OCDD 200 209 104 80 - 137 6 20 pg/g

> LCSD LCSD **%Recovery Qualifier** Limits

Isotope Dilution 13C-2,3,7,8-TCDD 40 - 135 57

TestAmerica Spokane

12/29/2016

20

Page 16 of 30

204

pg/g

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-142262/3-A Matrix: Solid

Analysis Batch: 143636

Client Sample ID: Lab	Control San	iple Dup
	Prep Type:	Total/NA
	Dron Ratch	- 1/2262

LCSD	LCSD	
%Recovery	Qualifier	Limits
60		40 - 135
55		40 - 135
58		40 - 135
68		40 - 135
67		40 - 135
66		40 - 135
68		40 - 135
69		40 - 135
	%Recovery 60 55 58 68 67 66 68	55 58 68 67 66 68

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-1 (0-6") Lab Sample ID: 590-5187-1 Date Collected: 12/08/16 15:20

Matrix: Solid

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

Client Sample ID: BG-1 (0-6") Lab Sample ID: 590-5187-1

Date Collected: 12/08/16 15:20 **Matrix: Solid**

Date Received: 12/09/16 12:10 Percent Solids: 68.6

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.00 g	20 uL	142262	12/15/16 08:39	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143636	12/22/16 19:50	SMA	TAL SAC

Client Sample ID: BG-2 (0-6")

Lab Sample ID: 590-5187-2 Date Collected: 12/09/16 08:50 **Matrix: Solid**

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

Client Sample ID: BG-2 (0-6") Lab Sample ID: 590-5187-2 Date Collected: 12/09/16 08:50

Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 82.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.04 g	20 uL	142262	12/15/16 08:39	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143636	12/22/16 20:36	SMA	TAL SAC

Client Sample ID: BG-3 (0-6") Lab Sample ID: 590-5187-3

Date Collected: 12/09/16 09:10 Matrix: Solid

Date Received: 12/09/16 12:10

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

Client Sample ID: BG-3 (0-6") Lab Sample ID: 590-5187-3

Date Collected: 12/09/16 09:10 **Matrix: Solid** Date Received: 12/09/16 12:10 Percent Solids: 68.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.02 g	20 uL	142262	12/15/16 08:39	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143637	12/23/16 01:01	SMA	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-4 (0-6") Lab Sample ID: 590-5187-4 Date Collected: 12/08/16 14:45

Matrix: Solid

Date Received: 12/09/16 12:10

Batch Dil Batch Initial Final Batch **Prepared Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed **Analyst** Lab Total/NA Analysis D 2216 142206 12/14/16 15:28 CFR TAL SAC

Client Sample ID: BG-4 (0-6") Lab Sample ID: 590-5187-4

Date Collected: 12/08/16 14:45 Date Received: 12/09/16 12:10

Matrix: Solid Percent Solids: 82.9

Dil Batch **Batch** Initial Final **Batch Prepared Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab 142262 8290 TAL SAC Total/NA Prep 10.04 g 20 uL 12/15/16 08:39 GLB Total/NA Analysis 8290A 1 143637 12/23/16 01:47 SMA TAL SAC

Lab Sample ID: 590-5187-5 Client Sample ID: BG-5 (0-6")

Date Collected: 12/08/16 15:35

Matrix: Solid

Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final **Batch** Prepared Method Run Factor Amount Number or Analyzed **Prep Type** Type **Amount Analyst** Lab 142206 CFR Total/NA Analysis D 2216 12/14/16 15:28 TAL SAC

Client Sample ID: BG-5 (0-6") Lab Sample ID: 590-5187-5

Date Collected: 12/08/16 15:35 Date Received: 12/09/16 12:10

Matrix: Solid Percent Solids: 69.9

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed **Analyst** Lab Prep Total/NA 8290 10.07 g 20 uL 142262 12/15/16 08:39 GLB TAL SAC 8290A 12/23/16 02:33 SMA TAL SAC Total/NA Analysis 1 143637

Client Sample ID: BG-6 (0-6") Lab Sample ID: 590-5187-6

Date Collected: 12/08/16 14:25

Matrix: Solid

Date Received: 12/09/16 12:10

Dil Initial Final Batch **Batch** Batch **Prepared** Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab 12/14/16 15:28 CFR Total/NA Analysis D 2216 142206 TAL SAC

Client Sample ID: BG-6 (0-6") Lab Sample ID: 590-5187-6

Date Collected: 12/08/16 14:25

Matrix: Solid

Date Received: 12/09/16 12:10 Percent Solids: 79.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.00 g	20 uL	142262	12/15/16 08:39	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143637	12/23/16 03:20	SMA	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: BG-7 (0-6")

Lab Sample ID: 590-5187-7 Date Collected: 12/08/16 15:05 **Matrix: Solid**

Date Received: 12/09/16 12:10

Batch Dil Initial Final Batch Batch **Prepared Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 142206 12/14/16 15:28 CFR TAL SAC

Client Sample ID: BG-7 (0-6") Lab Sample ID: 590-5187-7

Date Collected: 12/08/16 15:05

Matrix: Solid Date Received: 12/09/16 12:10 Percent Solids: 80.2

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.05 g	20 uL	142262	12/15/16 08:39	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143637	12/23/16 04:06	SMA	TAL SAC

Client Sample ID: BG-8 (0-6") Lab Sample ID: 590-5187-8 **Matrix: Solid**

Date Collected: 12/08/16 14:05 Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final Batch Prepared Method Run Factor Amount Amount Number or Analyzed **Prep Type** Type **Analyst** Lab 142206 12/14/16 15:28 CFR Total/NA Analysis D 2216 TAL SAC

Client Sample ID: BG-8 (0-6") Lab Sample ID: 590-5187-8

Date Collected: 12/08/16 14:05 Date Received: 12/09/16 12:10

Percent Solids: 83.3 Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Prep 8290 10.03 g 20 uL 142262 12/15/16 08:39 GLB TAL SAC

Client Sample ID: BG-9 (0-6") Lab Sample ID: 590-5187-9

1

Date Collected: 12/08/16 15:45

Analysis

8290A

Total/NA

Date Received: 12/09/16 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			142206	12/14/16 15:28	CFR	TAL SAC

Client Sample ID: BG-9 (0-6") Lab Sample ID: 590-5187-9

Date Collected: 12/08/16 15:45

Date Received: 12/09/16 12:10 Percent Solids: 77.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.05 g	20 uL	142262	12/15/16 08:39	GLB	TAL SAC
Total/NA	Analysis	8290A		1			143637	12/23/16 05:38	SMA	TAL SAC

12/29/2016

Matrix: Solid

TAL SAC

Matrix: Solid

Matrix: Solid

12/23/16 04:52 SMA

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Client Sample ID: BG-10 (0-6")

Lab Sample ID: 590-5187-10

Date Collected: 12/09/16 09:25 Matrix: Solid

Date Received: 12/09/16 12:10

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed Analyst Total/NA Analysis D 2216 142206 12/14/16 15:28 CFR TAL SAC

Client Sample ID: BG-10 (0-6")

Lab Sample ID: 590-5187-10

Date Collected: 12/09/16 09:25 Matrix: Solid
Date Received: 12/09/16 12:10 Percent Solids: 77.3

Batch Dil Initial **Batch** Final **Batch** Prepared Method **Prep Type** Type Run **Factor Amount Amount** Number or Analyzed Analyst Lab 8290 TAL SAC Total/NA Prep 10.01 g 20 uL 142262 12/15/16 08:39 GLB Total/NA Analysis 8290A 143637 12/23/16 06:24 SMA TAL SAC

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

C

9

10

12

Certification Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Laboratory: TestAmerica Spokane

The certifications listed below are applicable to this report.

Washington State Program 10 C569 01-06-17	Authority	Program	EPA Region	Certification ID	Expiration Date
	Washington	State Program	10	C569	01-06-17

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	DoD ELAP		2928-01	01-31-17
Alaska (UST)	State Program	10	UST-055	12-18-17
Arizona	State Program	9	AZ0708	08-11-17
Arkansas DEQ	State Program	6	88-0691	06-17-17
California	State Program	9	2897	01-31-18
Colorado	State Program	8	CA00044	08-31-17
Connecticut	State Program	1	PH-0691	06-30-17
Florida	NELAP	4	E87570	06-30-17
Hawaii	State Program	9	N/A	01-31-17
Illinois	NELAP	5	200060	03-17-17
Kansas	NELAP	7	E-10375	10-31-17
Louisiana	NELAP	6	30612	06-30-17
Maine	State Program	1	CA0004	04-18-18
Michigan	State Program	5	9947	01-31-18
Nevada	State Program	9	CA00044	07-31-17
New Jersey	NELAP	2	CA005	06-30-17
New York	NELAP	2	11666	04-01-17
Oregon	NELAP	10	4040	01-29-17
Pennsylvania	NELAP	3	68-01272	03-31-17
Texas	NELAP	6	T104704399	07-31-17
US Fish & Wildlife	Federal		LE148388-0	10-31-17
USDA	Federal		P330-11-00436	12-30-17
USEPA UCMR	Federal	1	CA00044	11-06-18
Utah	NELAP	8	CA00044	02-28-17
Virginia	NELAP	3	460278	03-14-17
Washington	State Program	10	C581	05-05-17
West Virginia (DW)	State Program	3	9930C	12-31-16 *
Wyoming	State Program	8	8TMS-L	01-29-17

12/29/2016

TestAmerica Spokane

Page 22 of 30

3

4

_

9

4 4

12

L

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Method	Method Description	Protocol	Laboratory
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC

Protocol References:

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

2

3

4

5

U

8

9

TU

Page 24 of 30

12/29/2016

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 F 503-906-9200 F 907-563-9200 F

FAX 924-9290 FAX 906-9210

2000 w Illiemational Airport Rd Ste A10, Anchorage, AK 99502-1119

CHAIN OF CUSTODY REPORT Work Order #: CLIENT: INVOICE TO: TURNAROUND REQUEST Scott Lather slather Egeoensinessum in Business Days * ADDRESS: Organic & Inorganic Analyses P.O. NUMBER: PHONE: PROJECT NAME: PRESERVATIVE 2 1 <1 PROJECT NUMBER: 0504-098-01 REQUESTED ANALYSES SAMPLED BY: 3mL/cmo Droxing CLIENT SAMPLE SAMPLING MATRIX LOCATION/ IDENTIFICATION DATE/TIME (W.S.O) CONT COMMENTS WOID 1520 0850 0910 X 1505 1405 1545 DATE 12/9/16 RECEIVED BY 641 FIRM: PRINT NAME RELEASED BY DATE: RECEIVED BY: PRINT NAME FIRM: TIME PRINT NAME ADDITIONAL REMARKS

Page 25 of 30

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 503-906-9200 FAX 924-9290 FAX 906-9210 FAX 563-9210

			CHAIN O	F CUSTOR	Y REPOR	RT		Work (rder#:		
REPORT TO: 573 & 77 ALL Scott Latter ADDRESS: 11 Latter 4900 Stather Cycles incl				0:		10	TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses 10 7 5 4 3 2 1 <1				
PHONE:	FAX:		P.O. NUMBE	R:				STD.		Hydrocarbon Analyses	
PROJECT NAME: TRAT			PRESERV	ATIVE				4	3 2 1 <	(I)	
PROJECT NUMBER: U50 4-			REQUESTED						7.71		
SAMPLED BY: 5ML/CMC)	3			* Turnaround Requests less than standard may incur Rush Charges.						
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	Dies						MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
BG-110-6)	12/8/16 1520	X						<	1		
2 6 6-2(0-6)	14/4/16 0850	X						1	1		
, B6-3/0-6)	12/9/16 0910	X									
* BG-4(0-6")	12/8/16 1445	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							1		
· B6-510-6")	12/8/16 1535	X							1/1		
· B 6-6(0-6")	12/8/16 1425	X									
, BG-7/0-6")	12/8/16 1505	X							1		
· B6-8/0-6")	12/8/11/1405	X									
· [4-9/0-6")	12/8/16 1545	X						1 4 =			
10 [G-1010-6")	1219/16 0925	X				1		9 1			
PRINT NAME:	scall FIRM: 5	<1	DATE: []	19/16	RECEIVED BY:		Ma Kar	FIRM	TICK-	DATE:	
RELEASED BY:			DATE:	10	RECEIVED BY:	- 3111	1101 711	al IC	TIME	DATE	12/11
PRINT NAME:	FIRM:		TIME:		PRINT NAME:			FIRM	b	TIME	
ADDITIONAL REMARKS:										TEMP:	oF

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

<u>TestAmerico</u>

THE LEADER IN ENVIRONMENTAL TESTING

Client Information (Sub Contract Lab)	Sampler:					ab PM: Carr Arrington, Randee E					king No(s):		COC No: 590-2360.1		
Client Contact	Phone:			E-M	ail:				200000	State of Orig			Page:		
Shipping/Receiving				ran		_	-	ed (See note)	com	Washingt	on		Page 1 of 2 Job#		
Company: TestAmerica Laboratories, Inc.								Nashington					590-5187-1		
Address	Due Date Requeste	d:											Preservation Cod	es:	
880 Riverside Parkway,	12/21/2016 TAT Requested (da	· · · ·			-			Anal	ysis Re	quested			A-HCL	M - Hexane	
West Sacramento	TAT Requested (da	ys).											B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zip. CA, 95605													D - Nitric Acid E - NaHSO4 F - MeOH	P - Na2O4S Q - Na2SO3 R - Na2S2O3	
Phone 916-373-5600(Tel) 916-372-1059(Fax)	PO#				3		Totals	1		111	11		G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate	
Email:	WO#				or No		95						I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name:	Project #.				or les		Isomers			1 1 1		containers	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)	
Colville Post and Pole/0504-098-01	59001108 SSOW#						17 Isc			1 1 1	111	onta	Other:	2 00.00 (00.00)/	
	000****				Sam		Sox					9	out.		
			Sample Type	Matrix (wwwater, Sesolid,	Field Filtered	ture	8290A/8290 P					Total Number			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, G=grab)	O=waste/oil,	Field	Moisture	3290					Cota	Special In	structions/Note:	
		><		tion Code:	XX				ma.		EK KULIG	X	Special III	ou doublion to the	
BG-1 (0-6") (590-5187-1)	12/9/16	15:20 Pacific		Solid	T	×	х					1		Pole manufacturing site ase isolate glassware and	
BG-2 (0-6") (590-5187-2)	12/9/16	08:50		Solid	T	X	X			\Box		1	, Former Post and	Pole manufacturing site	
BG-3 (0-6") (590-5187-3)	12/9/16	Pacific 09:10		Solid	++	×	x		++			1	could be high, please isolate glassware ar , Former Post and Pole manufacturing site		
BG-4 (0-6") (590-5187-4)	12/9/16	Pacific 14:45		Solid	++	×	x	++	++	1	-	1	could be high, please isolate glassware a , Former Post and Pole manufacturing sit		
A CONTRACTOR OF THE CONTRACTOR		Pacific 15:35	-	Solid	+	X		++	++					ase isolate glassware and Pole manufacturing site	
BG-5 (0-6") (590-5187-5)	12/9/16	Pacific 14:25	-		+	-	X	++	-	+++		- 1		ase isolate glassware and Pole manufacturing site	
BG-6 (0-6") (590-5187-6)	12/9/16	Pacific		Solid	11	X	X	\perp	1	\Box	++	1	could be high, ple	ase isolate glassware and	
BG-7 (0-6") (590-5187-7)	12/9/16	15:05 Pacific		Solid		X	Х					1	could be high, ple	Pole manufacturing site ase isolate glassware and	
BG-8 (0-6") (590-5187-8)	12/9/16	14:05 Pacific		Solid		X	X					1		Pole manufacturing site ase isolate glassware and	
BG-9 (0-6") (590-5187-9)	12/9/16	15:45 Pacific		Solid		X	Х					1	, Former Post and	Pole manufacturing site ase isolate glassware an	
Note: Since laboratory accreditations are subject to change. TestAmeric currently maintain accreditation in the State of Origin listed above for an Laboratories, inc. attention immediately. If all requested accreditations	alysis/tests/matrix being analyzi	ownership of ed, the sample	es must be ship	ped back to t	he TestAr	merica	laborate	ory or other ins	tructions wi				er chain-of-custody. It	the laboratory does not	
Possible Hazard Identification					Sa	ample	e Disp	osal (A fee	may be	assessed i	if samples a	re retain	ed longer than 1	month)	
Unconfirmed						\Box_F	Return	To Client		Disposal By	y Lab	L Arch	hive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank:	2		Sp	pecial	Instru	ctions/QC F	Requireme	ents:					
Empty Kit Relinquished by	/	Date:			Time	r.				Metho	od of Shipment				
Relinquished by: Relinquished by:	Date/Time	10/6	50 -	Company	DK	(eived by	c 1. W			Date/Tim	13/16	1005	Company Company	
Relinquished by	Date/Time:		_==	Company	-	Received by			Date/Tim	Date/Time:		Company			
Custody Seals Intact: Custody Seal No.:					-	CT	los T-	apratur-/-\ Co	and Other	Jamarka.					
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						C00	iei iem	perature(s) °C	and Other	Temanks 3	.9				

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Client Information (Sub Contract Lab)	Sampler:						PM: rington, Randee E					Carrier Tracking No(s):			COC No: 590-2360.2				
Client Contact:	Phone:			E	-Mail:					240	State of Origin			_	Page	e			
Shipping/Receiving				ra	20 M. C.	ALTERNATION OF	F			Service Committee	m	Washi	ngton				ge 2 of 2		
Company: TestAmerica Laboratories, Inc.								Require am - W								Job 4	#.)-5187-1		
Address	Due Date Requeste	d:			\top	Caropo III											servation C	odes:	
880 Riverside Parkway,	12/21/2016				4	Analysis F					is Re	queste	d				HCL	M - Hexan	е
City: West Sacramento	TAT Requested (da	ys):														C -	NaOH Zn Acetate	N - None O - AsNaC	
State, Zip CA, 95605		PO#:											1	1		E-	Nitric Acid NaHSO4	P - Na2O4 Q - Na2S0	03
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO#.					Totals					1 1			G-	F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4 H - Assorbic Acid T - TSP Dodesahva	4			
Email:	Wo#.					(0)		පරි								1 - 10	- Ascorbic Acid		ne
Project Name	Project #:					(SD (Yes or No)		Isomers							containers		EDTA EDA	W - pH 4-1 Z - other (5
Colville Post and Pole/0504-098-01	SSOW#	59001108 SSCYN/#				(Yes		17 18							ont	Othe	er.		
Self Marie	55577#				Sampl	CISIN		Sox							10	5			
		Sample	Sample Type (C=comp,	Matrix (W=wate 3=solid O=waste/o	eld Filte	Perform MS/II	Moisture	8290A/8290_P_Sox 17							Total Number	Dan Manino			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) Preserva			(N	82							F	-	Special	Instruction	s/Note:
		09:25	Fleseiva		-	\wedge		0.00					n is			Fo	rmer Post a	nd Pole man	ufacturing site
BG-10 (0-6") (590-5187-10)	12/9/16	Pacific		Solid			X	X							1				glassware and
					\top							+							
					-	-			+	-	-	++	-						
																6			
															17	1			
			-	_	-	-			+	+	-	++	++	-					
					_								\rightarrow						
																1			
						<u></u>				L			لبل						
Note: Since laboratory accreditations are subject to change, TestAmerica	a Laboratories, Inc. places the	ownership of	method, analyte	8 accredi	tation co	mplia	ince u	pon out	subcont	ract labo	ratories.	This same	ple shipm	ent is forwa	arded und	der cha	iin-of-custody	1	
						I.a.													
Possible Hazard Identification														T T			onger than	100	
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	ahla Rank	2		-			eturn 7				-	l By Lat)	Arc	hive I	-or	Month	is
Deliverable Requested. 1, II, III, IV, Other (specify)	Timary Deliver	able Hallin.	2			Spe	sciai	manuc	MONSIC	20 Nei	quireim								
Empty Kit Relinquished by:	/ /	Date:				me:				,	/	N	ethod of S						
Relinguished by May	Date/Time	, lla	00 7	Company	m	K	Rece	eived by	27	· w	1			Date/Time	3/16	0 1	1055	Company 7	IWS
Relinquished by Date Time Company					Rece	eived by:						Date/Time				Company			
Relinquished by:	Date/Time:			Company				eived by:						Date/Time				Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No							Cool	er Temp	erature(s) °C an	d Other	Remarks:	39						
1 103 A 110													0.						

Page 27 of 30

Client: GeoEngineers Inc Job Number: 590-5187-1

Login Number: 5187 List Source: TestAmerica Spokane
List Number: 1

Creator: Kratz, Sheila J

Creator: Kratz, Snella J							
Question	Answer	Comment					
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.					
The cooler's custody seal, if present, is intact.	N/A						
Sample custody seals, if present, are intact.	N/A						
The cooler or samples do not appear to have been compromised or tampered with.	True						
Samples were received on ice.	True						
Cooler Temperature is acceptable.	True						
Cooler Temperature is recorded.	True						
COC is present.	True						
COC is filled out in ink and legible.	True						
COC is filled out with all pertinent information.	True						
Is the Field Sampler's name present on COC?	True						
There are no discrepancies between the containers received and the COC.	True						
Samples are received within Holding Time (excluding tests with immediate HTs)	True						
Sample containers have legible labels.	True						
Containers are not broken or leaking.	True						
Sample collection date/times are provided.	True						
Appropriate sample containers are used.	True						
Sample bottles are completely filled.	True						
Sample Preservation Verified.	True						
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True						
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True						
Multiphasic samples are not present.	True						
Samples do not require splitting or compositing.	True						
Residual Chlorine Checked.	N/A						

Client: GeoEngineers Inc Job Number: 590-5187-1

Login Number: 5187
List Source: TestAmerica Sacramento
List Number: 2
List Creation: 12/14/16 11:10 AM

Creator: Edman, Connor M

Creator. Edinari, Comilor M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	217510
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5187-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

_		Percent Isotope Dilution Recovery (Acceptance Limits)											
		TCDD	TCDF	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF1				
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)				
590-5187-1	BG-1 (0-6")	78	80	72	80	90	89	94	97				
590-5187-2	BG-2 (0-6")	66	68	62	67	73	73	74	76				
590-5187-3	BG-3 (0-6")	68	65	63	67	79	77	77	81				
590-5187-4	BG-4 (0-6")	58	56	55	56	64	60	61	64				
590-5187-5	BG-5 (0-6")	61	60	57	60	66	66	67	71				
590-5187-6	BG-6 (0-6")	81	80	78	82	91	89	90	96				
590-5187-7	BG-7 (0-6")	78	74	72	76	84	84	85	90				
590-5187-8	BG-8 (0-6")	85	79	79	82	98	100	102	109				
590-5187-9	BG-9 (0-6")	73	70	70	74	89	86	89	94				
590-5187-10	BG-10 (0-6")	81	78	77	81	94	95	96	104				
LCS 320-142262/2-A	Lab Control Sample	82	85	78	84	94	94	91	94				
LCSD 320-142262/3-A	Lab Control Sample Dup	57	60	55	58	68	67	66	68				
MB 320-142262/1-A	Method Blank	59	61	56	60	66	64	68	67				

Percent Isotope Dilution Recovery (Acceptance Limits)

		OCDD
Lab Sample ID	Client Sample ID	(40-135)
590-5187-1	BG-1 (0-6")	102
590-5187-2	BG-2 (0-6")	79
590-5187-3	BG-3 (0-6")	78
590-5187-4	BG-4 (0-6")	64
590-5187-5	BG-5 (0-6")	69
590-5187-6	BG-6 (0-6")	95
590-5187-7	BG-7 (0-6")	89
590-5187-8	BG-8 (0-6")	111
590-5187-9	BG-9 (0-6")	94
590-5187-10	BG-10 (0-6")	97
LCS 320-142262/2-A	Lab Control Sample	95
LCSD 320-142262/3-A	Lab Control Sample Dup	69
MB 320-142262/1-A	Method Blank	70

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

OCDD = 13C-OCDD

1

11

TestAmerica Spokane

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-5615-1

Client Project/Site: Colville Post and Pole/0504-098-01

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

Landue trington

Authorized for release by: 3/29/2017 10:51:49 AM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	27
Chronicle	33
Certification Summary	43
Method Summary	44
Chain of Custody	45
Receipt Checklists	56
Isotope Dilution Summary	58

4

O

8

9

10

12

13

Case Narrative

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Job ID: 590-5615-1

Laboratory: TestAmerica Spokane

Narrative

Receipt

The samples were received on 3/3/2017 4:15 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.3° C and 1.7° C.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method 8290A: The following samples exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): HA-25A (6-12) (590-5615-17), HA-41 (0-6) (590-5615-25), HA-46 (0-6) (590-5615-40), HA-48 (0-6) (590-5615-46), HA-49 (0-6) (590-5615-49) and HA-52 (0-6) (590-5615-58). The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 8290A: The concentration of analyte OCDD associated with the following samples exceeded the instrument calibration range: HA-25A (6-12) (590-5615-17) and HA-49 (0-6) (590-5615-49). The analyte has been qualified; however, the peak did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

Sample Summary

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Lab Sample ID	Client Sample ID	Matrix	Collected Re	Received	
590-5615-2	HA-3A (6-12)	Solid	03/01/17 10:30 03/03	/17 16:15	
590-5615-5	HA-4A (6-12)	Solid	03/01/17 09:55 03/03	/17 16:15	
590-5615-7	HA-6A (6-12)	Solid	03/01/17 11:40 03/03	/17 16:15	
590-5615-9	HA-11A (6-12)	Solid	03/01/17 14:45 03/03	/17 16:15	
590-5615-11	HA-13A (6-12)	Solid	03/01/17 12:55 03/03	/17 16:15	
590-5615-13	HA-17A (6-12)	Solid	03/01/17 12:10 03/03	/17 16:15	
590-5615-15	HA-20A (6-12)	Solid	03/01/17 15:00 03/03	/17 16:15	
590-5615-17	HA-25A (6-12)	Solid	03/01/17 16:05 03/03	/17 16:15	
590-5615-19	HA-39 (0-6)	Solid	03/01/17 13:30 03/03	/17 16:15	
590-5615-22	HA-40 (0-6)	Solid	03/01/17 14:10 03/03	/17 16:15	
590-5615-25	HA-41 (0-6)	Solid	03/01/17 14:25 03/03	/17 16:15	
590-5615-28	HA-42 (0-6)	Solid	03/01/17 12:30 03/03	/17 16:15	
590-5615-31	HA-43 (0-6)	Solid	03/01/17 09:30 03/03	/17 16:15	
590-5615-34	HA-44 (0-6)	Solid	03/01/17 09:50 03/03	/17 16:15	
590-5615-37	HA-45 (0-6)	Solid	03/01/17 10:25 03/03	/17 16:15	
590-5615-40	HA-46 (0-6)	Solid	03/01/17 11:00 03/03	/17 16:15	
590-5615-43	HA-47 (0-6)	Solid	03/01/17 11:00 03/03	/17 16:15	
590-5615-46	HA-48 (0-6)	Solid	03/01/17 11:20 03/03	/17 16:15	
590-5615-49	HA-49 (0-6)	Solid	03/01/17 11:30 03/03	/17 16:15	
590-5615-52	HA-50 (0-6)	Solid	03/01/17 11:55 03/03	/17 16:15	
590-5615-55	HA-51 (0-6)	Solid	03/01/17 14:50 03/03	/17 16:15	
590-5615-58	HA-52 (0-6)	Solid	03/01/17 15:15 03/03	/17 16:15	
590-5615-61	HA-53 (0-6)	Solid	03/01/17 15:20 03/03	/17 16:15	
590-5615-64	HA-54 (0-6)	Solid	03/01/17 15:40 03/03	/17 16:15	
590-5615-67	HA-55 (0-6)	Solid	03/01/17 16:00 03/03	/17 16:15	
590-5615-70	HA-56 (0-6)	Solid	03/01/17 15:35 03/03	/17 16:15	
590-5615-73	HA-57 (0-6)	Solid	03/01/17 13:30 03/03	/17 16:15	
590-5615-76	HA-58 (0-6)	Solid	03/01/17 13:50 03/03	/17 16:15	
590-5615-79	HA-59 (0-6)	Solid	03/01/17 13:45 03/03	/17 16:15	

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.

F2 MS/MSD RPD exceeds control limits

Dioxin

Qualifier Qualifier Description

G The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference

E Result exceeded calibration range.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight bas

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration

MDA Minimum detectable activity

EDL Estimated Detection Limit

MDC Minimum detectable concentration

wide willimidit detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Spokane

Client: GeoEngineers Inc

13C-1,2,3,7,8-PeCDD

13C-1,2,3,7,8-PeCDF

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-3A (6-12)

Date Collected: 03/01/17 10:30

Date Received: 03/03/17 16:15

TestAmerica Job ID: 590-5615-1

Lab Sample ID: 590-5615-2

Matrix: Solid Percent Solids: 56.5

Method: 8290A - Dioxins Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1800		pg/g	<u> </u>	03/09/17 16:55	03/18/17 12:54	1
2,3,7,8-TCDF	ND		1800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,7,8-PeCDD	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,7,8-PeCDF	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
2,3,4,7,8-PeCDF	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,4,7,8-HxCDD	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,6,7,8-HxCDD	ND		8800		pg/g		03/09/17 16:55	03/18/17 12:54	1
1,2,3,7,8,9-HxCDD	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,4,7,8-HxCDF	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,6,7,8-HxCDF	ND		8800		pg/g	\$	03/09/17 16:55	03/18/17 12:54	1
1,2,3,7,8,9-HxCDF	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
2,3,4,6,7,8-HxCDF	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,4,6,7,8-HpCDD	190000		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,4,6,7,8-HpCDF	10000		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
1,2,3,4,7,8,9-HpCDF	ND		8800		pg/g	₩	03/09/17 16:55	03/18/17 12:54	1
OCDD	1600000		18000		pg/g	≎	03/09/17 16:55	03/18/17 12:54	1
OCDF	28000		18000		pg/g	≎	03/09/17 16:55	03/18/17 12:54	1
Total TCDD	ND		1800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
Total TCDF	ND		1800		pg/g	≎	03/09/17 16:55	03/18/17 12:54	1
Total PeCDD	ND		8800		pg/g	₩	03/09/17 16:55	03/18/17 12:54	1
Total PeCDF	ND		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
Total HxCDD	9400		8800		pg/g		03/09/17 16:55	03/18/17 12:54	1
Total HxCDF	9400		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
Total HpCDD	320000		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
Total HpCDF	38000		8800		pg/g	₽	03/09/17 16:55	03/18/17 12:54	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	89		40 - 135				03/09/17 16:55	03/18/17 12:54	1
13C-2,3,7,8-TCDF	89		40 - 135				03/09/17 16:55	03/18/17 12:54	1

Client Sample ID: HA-4A (6-12) Lab Sample ID: 590-5615-5 Date Collected: 03/01/17 09:55 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 83.8

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

95

95

97

100

106

109

109

Method: 8290A - Dioxins	and Furans (HRGC/HRMS)							
Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	44		pg/g	\	03/09/17 16:55	03/18/17 13:40	1
2,3,7,8-TCDF	ND	44		pg/g	₩	03/09/17 16:55	03/18/17 13:40	1
1,2,3,7,8-PeCDD	ND	220		pg/g	₩	03/09/17 16:55	03/18/17 13:40	1
1,2,3,7,8-PeCDF	ND	220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
2,3,4,7,8-PeCDF	ND	220		pg/g	₩	03/09/17 16:55	03/18/17 13:40	1
1,2,3,4,7,8-HxCDD	ND	220		pg/g	₩	03/09/17 16:55	03/18/17 13:40	1
1,2,3,6,7,8-HxCDD	ND	220		pg/g	φ.	03/09/17 16:55	03/18/17 13:40	1

TestAmerica Spokane

03/09/17 16:55 03/18/17 12:54

03/09/17 16:55 03/18/17 12:54

03/09/17 16:55 03/18/17 12:54

03/09/17 16:55 03/18/17 12:54

03/09/17 16:55 03/18/17 12:54

03/09/17 16:55 03/18/17 12:54

03/09/17 16:55 03/18/17 12:54

Page 6 of 59

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-5

TestAmerica Job ID: 590-5615-1

Matrix: Solid

Percent Solids: 83.8

Client Sample ID: HA-4A (6-12)

Date Collected: 03/01/17 09:55 Date Received: 03/03/17 16:15

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND		220		pg/g	<u> </u>	03/09/17 16:55	03/18/17 13:40	1
1,2,3,4,7,8-HxCDF	ND		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
1,2,3,6,7,8-HxCDF	ND		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
1,2,3,7,8,9-HxCDF	ND		220		pg/g	≎	03/09/17 16:55	03/18/17 13:40	1
2,3,4,6,7,8-HxCDF	ND		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
1,2,3,4,6,7,8-HpCDD	7700		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
1,2,3,4,6,7,8-HpCDF	1600		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
1,2,3,4,7,8,9-HpCDF	ND		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
OCDD	70000		440		pg/g	\$	03/09/17 16:55	03/18/17 13:40	1
OCDF	3900		440		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
Total TCDD	ND		44		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
Total TCDF	ND		44		pg/g		03/09/17 16:55	03/18/17 13:40	1
Total PeCDD	ND		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
Total PeCDF	ND		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
Total HxCDD	780		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
Total HxCDF	950		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
Total HpCDD	13000		220		pg/g	₽	03/09/17 16:55	03/18/17 13:40	1
Total HpCDF	4100		220		pg/g	≎	03/09/17 16:55	03/18/17 13:40	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	89		40 - 135				03/09/17 16:55	03/18/17 13:40	1
13C-2,3,7,8-TCDF	91		40 - 135				03/09/17 16:55	03/18/17 13:40	1
13C-1,2,3,7,8-PeCDD	96		40 - 135				03/09/17 16:55	03/18/17 13:40	1
13C-1,2,3,7,8-PeCDF	91		40 - 135				03/09/17 16:55	03/18/17 13:40	1
13C-1,2,3,6,7,8-HxCDD	101		40 - 135				03/09/17 16:55	03/18/17 13:40	1
13C-1,2,3,4,7,8-HxCDF	99		40 - 135				03/09/17 16:55	03/18/17 13:40	1
13C-1,2,3,4,6,7,8-HpCDD	107		40 - 135				03/09/17 16:55	03/18/17 13:40	1
13C-1,2,3,4,6,7,8-HpCDF	108		40 - 135				03/09/17 16:55	03/18/17 13:40	1
13C-OCDD	112		40 - 135				03/09/17 16:55	03/18/17 13:40	1

Client Sample ID: HA-6A (6-12)

Date Collected: 03/01/17 11:40 Date Received: 03/03/17 16:15

Lab Sample ID: 590-5615-7	
Matrix: Solid	
Percent Solids: 91.1	

Analyte	Result Qualifier	RL	EDL (Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	17		pg/g	<u> </u>	03/09/17 16:55	03/18/17 14:26	1
2,3,7,8-TCDF	ND	17	ı	pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
1,2,3,7,8-PeCDD	ND	83	ı	pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
1,2,3,7,8-PeCDF	ND	83	· · · · · · · · · · · · · · · · · · ·	pg/g		03/09/17 16:55	03/18/17 14:26	1
2,3,4,7,8-PeCDF	ND	83	ı	pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
1,2,3,4,7,8-HxCDD	ND	83	ı	pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
1,2,3,6,7,8-HxCDD	240	83	· · · · · · · · · · · · · · · · · · ·	pg/g		03/09/17 16:55	03/18/17 14:26	1
1,2,3,7,8,9-HxCDD	120	83	ı	pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
1,2,3,4,7,8-HxCDF	ND	83	ı	pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
1,2,3,6,7,8-HxCDF	ND	83		pg/g		03/09/17 16:55	03/18/17 14:26	1
1,2,3,7,8,9-HxCDF	ND	83	ı	pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
2,3,4,6,7,8-HxCDF	ND	83	ı	pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
1,2,3,4,6,7,8-HpCDD	5900	83	· · · · · · · · · · · · · · · · · · ·	pg/g		03/09/17 16:55	03/18/17 14:26	1
1,2,3,4,6,7,8-HpCDF	690	83		pg/g	☼	03/09/17 16:55	03/18/17 14:26	1

TestAmerica Spokane

Page 7 of 59

3/29/2017

3

<u>:</u>

7

9

10

19

13

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-7

TestAmerica Job ID: 590-5615-1

Client Sample ID: HA-6A (6-12)

Date Collected: 03/01/17 11:40

Matrix: Solid

Date Received: 03/03/17 16:15

Percent Solids: 91.1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		83		pg/g	<u> </u>	03/09/17 16:55	03/18/17 14:26	1
OCDD	62000		170		pg/g	φ.	03/09/17 16:55	03/18/17 14:26	1
OCDF	2000		170		pg/g	₩	03/09/17 16:55	03/18/17 14:26	1
Total TCDD	ND		17		pg/g	₩	03/09/17 16:55	03/18/17 14:26	1
Total TCDF	ND		17		pg/g		03/09/17 16:55	03/18/17 14:26	1
Total PeCDD	ND		83		pg/g	₩	03/09/17 16:55	03/18/17 14:26	1
Total PeCDF	ND		83		pg/g	₩	03/09/17 16:55	03/18/17 14:26	1
Total HxCDD	990		83		pg/g	₩.	03/09/17 16:55	03/18/17 14:26	1
Total HxCDF	830		83		pg/g	₩	03/09/17 16:55	03/18/17 14:26	1
Total HpCDD	10000		83		pg/g	₩	03/09/17 16:55	03/18/17 14:26	1
Total HpCDF	2300		83		pg/g	☼	03/09/17 16:55	03/18/17 14:26	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	61		40 - 135				03/09/17 16:55	03/18/17 14:26	1
13C-2,3,7,8-TCDF	50		40 - 135				03/09/17 16:55	03/18/17 14:26	1
13C-1,2,3,7,8-PeCDD	51		40 - 135				03/09/17 16:55	03/18/17 14:26	1
13C-1,2,3,7,8-PeCDF	51		40 - 135				03/09/17 16:55	03/18/17 14:26	1
13C-1,2,3,6,7,8-HxCDD	55		40 - 135				03/09/17 16:55	03/18/17 14:26	1
13C-1,2,3,4,7,8-HxCDF	57		40 - 135				03/09/17 16:55	03/18/17 14:26	1
13C-1,2,3,4,6,7,8-HpCDD	71		40 - 135				03/09/17 16:55	03/18/17 14:26	1
13C-1,2,3,4,6,7,8-HpCDF	60		40 - 135				03/09/17 16:55	03/18/17 14:26	1
13C-OCDD	63		40 - 135				03/09/17 16:55	03/18/17 14:26	1

 Client Sample ID: HA-11A (6-12)

 Date Collected: 03/01/17 14:45
 Matrix: Solid

 Date Received: 03/03/17 16:15
 Percent Solids: 73.5

Analyte	Result Qua	lifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	5.4		pg/g	<u> </u>	03/09/17 16:55	03/18/17 15:12	1
2,3,7,8-TCDF	ND	5.4		pg/g	₩	03/09/17 16:55	03/18/17 15:12	1
1,2,3,7,8-PeCDD	ND	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
1,2,3,7,8-PeCDF	ND	27		pg/g	ф.	03/09/17 16:55	03/18/17 15:12	1
2,3,4,7,8-PeCDF	ND	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
1,2,3,4,7,8-HxCDD	ND	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
1,2,3,6,7,8-HxCDD	52	27		pg/g		03/09/17 16:55	03/18/17 15:12	1
1,2,3,7,8,9-HxCDD	ND	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
1,2,3,4,7,8-HxCDF	ND	27		pg/g	☼	03/09/17 16:55	03/18/17 15:12	1
1,2,3,6,7,8-HxCDF	ND	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
1,2,3,7,8,9-HxCDF	ND	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
2,3,4,6,7,8-HxCDF	ND	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
1,2,3,4,6,7,8-HpCDD	1900	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
1,2,3,4,6,7,8-HpCDF	230	27		pg/g	₩	03/09/17 16:55	03/18/17 15:12	1
1,2,3,4,7,8,9-HpCDF	ND	27		pg/g	☼	03/09/17 16:55	03/18/17 15:12	1
OCDD	19000	54		pg/g	≎	03/09/17 16:55	03/18/17 15:12	1
OCDF	1500	54		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
Total TCDD	ND	5.4		pg/g	☼	03/09/17 16:55	03/18/17 15:12	1
Total TCDF	ND	5.4		pg/g	φ.	03/09/17 16:55	03/18/17 15:12	1
Total PeCDD	ND	27		pg/g	₽	03/09/17 16:55	03/18/17 15:12	1
Total PeCDF	ND	27		pg/g	₩	03/09/17 16:55	03/18/17 15:12	1

TestAmerica Spokane

Page 8 of 59

2

3

5

0

10

11 12

13

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-9

TestAmerica Job ID: 590-5615-1

Client Sample ID: HA-11A (6-12)

Date Received: 03/03/17 16:15

Date Collected: 03/01/17 14:45

Matrix: Solid Percent Solids: 73.5

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued) **Analyte** Result Qualifier **EDL** Unit D Prepared Analyzed Dil Fac 27 **Total HxCDD** 03/09/17 16:55 03/18/17 15:12 110 pg/g 27 **Total HxCDF** 03/09/17 16:55 03/18/17 15:12 190 pg/g **Total HpCDD** 3200 27 pg/g 03/09/17 16:55 03/18/17 15:12 **Total HpCDF** 1200 27 03/09/17 16:55 03/18/17 15:12 pg/g Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 40 - 135 13C-2,3,7,8-TCDD 51 03/09/17 16:55 03/18/17 15:12 03/09/17 16:55 03/18/17 15:12 13C-2,3,7,8-TCDF 49 40 - 135 03/09/17 16:55 03/18/17 15:12 13C-1,2,3,7,8-PeCDD 46 40 - 135 13C-1,2,3,7,8-PeCDF 47 03/09/17 16:55 03/18/17 15:12 40 - 135 13C-1,2,3,6,7,8-HxCDD 52 40 - 135 03/09/17 16:55 03/18/17 15:12 54 40 - 135 13C-1,2,3,4,7,8-HxCDF 03/09/17 16:55 03/18/17 15:12 59 40 - 135 03/09/17 16:55 03/18/17 15:12 13C-1,2,3,4,6,7,8-HpCDD 58 13C-1,2,3,4,6,7,8-HpCDF 40 - 135 03/09/17 16:55 03/18/17 15:12 13C-OCDD 63 40 - 135 03/09/17 16:55 03/18/17 15:12

Client Sample ID: HA-13A (6-12) Lab Sample ID: 590-5615-11

Date Collected: 03/01/17 12:55 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 84.6

Date Received: 03/03/17 1 -						Percent Solic	13. 04.0
Method: 8290A - Dioxins Analyte	s and Furans (HRGC/HRMS Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	2.0	pg/g	\	03/09/17 16:55	03/18/17 15:58	1
2,3,7,8-TCDF	ND	2.0	pg/g	₩	03/09/17 16:55	03/18/17 15:58	1
1,2,3,7,8-PeCDD	ND	9.8	pg/g	₩	03/09/17 16:55	03/18/17 15:58	1
1,2,3,7,8-PeCDF	ND	9.8	pg/g	₩.	03/09/17 16:55	03/18/17 15:58	1
2,3,4,7,8-PeCDF	ND	9.8	pg/g	₽	03/09/17 16:55	03/18/17 15:58	1
1,2,3,4,7,8-HxCDD	ND	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
1,2,3,6,7,8-HxCDD	21	9.8	pg/g	₽	03/09/17 16:55	03/18/17 15:58	1
1,2,3,7,8,9-HxCDD	15	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
1,2,3,4,7,8-HxCDF	ND	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
1,2,3,6,7,8-HxCDF	ND	9.8	pg/g	₽	03/09/17 16:55	03/18/17 15:58	1
1,2,3,7,8,9-HxCDF	ND	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
2,3,4,6,7,8-HxCDF	ND	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
1,2,3,4,6,7,8-HpCDD	700	9.8	pg/g		03/09/17 16:55	03/18/17 15:58	1
1,2,3,4,6,7,8-HpCDF	130	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
1,2,3,4,7,8,9-HpCDF	ND	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
OCDD	6600	20	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
OCDF	410	20	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
Total TCDD	ND	2.0	pg/g	₩	03/09/17 16:55	03/18/17 15:58	1
Total TCDF	ND	2.0	pg/g	₽	03/09/17 16:55	03/18/17 15:58	1
Total PeCDD	ND	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
Total PeCDF	ND	9.8	pg/g	₩	03/09/17 16:55	03/18/17 15:58	1
Total HxCDD	110	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
Total HxCDF	110	9.8	pg/g	₩	03/09/17 16:55	03/18/17 15:58	1
Total HpCDD	1200	9.8	pg/g	≎	03/09/17 16:55	03/18/17 15:58	1
Total HpCDF	390	9.8	pg/g	₽	03/09/17 16:55	03/18/17 15:58	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	56	40 - 135			03/09/17 16:55	03/18/17 15:58	1
13C-2,3,7,8-TCDF	57	40 - 135			03/09/17 16:55	03/18/17 15:58	1

TestAmerica Spokane

Page 9 of 59

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Client Sample ID: HA-13A (6-12)

Lab Sample ID: 590-5615-11

Date Collected: 03/01/17 12:55 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 84.6

Isotope Dilution	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	56		40 - 135	03/09/17 16:55	03/18/17 15:58	1
13C-1,2,3,7,8-PeCDF	56		40 - 135	03/09/17 16:55	03/18/17 15:58	1
13C-1,2,3,6,7,8-HxCDD	62		40 - 135	03/09/17 16:55	03/18/17 15:58	1
13C-1,2,3,4,7,8-HxCDF	60		40 - 135	03/09/17 16:55	03/18/17 15:58	1
13C-1,2,3,4,6,7,8-HpCDD	71		40 - 135	03/09/17 16:55	03/18/17 15:58	1
13C-1,2,3,4,6,7,8-HpCDF	68		40 - 135	03/09/17 16:55	03/18/17 15:58	1
13C-OCDD	78		40 - 135	03/09/17 16:55	03/18/17 15:58	1

Client Sample ID: HA-17A (6-12) Lab Sample ID: 590-5615-13

Date Collected: 03/01/17 12:10 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 67.7

Pate Received. 03/03/17	10.15							Percent Sona	5. 01.1
Method: 8290A - Dioxins Analyte	· · · · · · · · · · · · · · · · · · ·	GC/HRMS) Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.4		pg/g	<u> </u>	03/09/17 16:55	03/18/17 16:44	1
2,3,7,8-TCDF	ND		1.4		pg/g	₽	03/09/17 16:55	03/18/17 16:44	1
1,2,3,7,8-PeCDD	ND		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
1,2,3,7,8-PeCDF	ND		7.1		pg/g		03/09/17 16:55	03/18/17 16:44	1
2,3,4,7,8-PeCDF	ND		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
1,2,3,4,7,8-HxCDD	ND		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
1,2,3,6,7,8-HxCDD	10		7.1		pg/g	\$	03/09/17 16:55	03/18/17 16:44	1
1,2,3,7,8,9-HxCDD	7.3		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
1,2,3,4,7,8-HxCDF	ND		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
1,2,3,6,7,8-HxCDF	ND		7.1		pg/g	φ.	03/09/17 16:55	03/18/17 16:44	1
1,2,3,7,8,9-HxCDF	ND		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
2,3,4,6,7,8-HxCDF	ND		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
1,2,3,4,6,7,8-HpCDD	290		7.1		pg/g	\$	03/09/17 16:55	03/18/17 16:44	1
1,2,3,4,6,7,8-HpCDF	37		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
1,2,3,4,7,8,9-HpCDF	ND		7.1		pg/g	₩	03/09/17 16:55	03/18/17 16:44	1
OCDD	2100		14		pg/g	\$	03/09/17 16:55	03/18/17 16:44	1
OCDF	100		14		pg/g	₩	03/09/17 16:55	03/18/17 16:44	1
Total TCDD	ND		1.4		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
Total TCDF	ND		1.4		pg/g	\$	03/09/17 16:55	03/18/17 16:44	1
Total PeCDD	ND		7.1		pg/g	₩	03/09/17 16:55	03/18/17 16:44	1
Total PeCDF	ND		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
Total HxCDD	64		7.1		pg/g	φ.	03/09/17 16:55	03/18/17 16:44	1
Total HxCDF	31		7.1		pg/g	☼	03/09/17 16:55	03/18/17 16:44	1
Total HpCDD	510		7.1		pg/g	₩	03/09/17 16:55	03/18/17 16:44	1
Total HpCDF	100		7.1		pg/g		03/09/17 16:55	03/18/17 16:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	50		40 - 135				03/09/17 16:55	03/18/17 16:44	1
13C-2,3,7,8-TCDF	51		40 - 135				03/09/17 16:55	03/18/17 16:44	1
13C-1,2,3,7,8-PeCDD	54		40 - 135				03/09/17 16:55	03/18/17 16:44	1
13C-1,2,3,7,8-PeCDF	53		40 - 135				03/09/17 16:55	03/18/17 16:44	1
13C-1 2 3 6 7 8-HxCDD	62		40 - 135				03/09/17 16:55	03/18/17 16:44	1

13C-1,2,3,6,7,8-HxCDD 62 40 - 135 03/09/17 16:55 03/18/17 16:44 57 40 - 135 13C-1,2,3,4,7,8-HxCDF 03/09/17 16:55 03/18/17 16:44 13C-1,2,3,4,6,7,8-HpCDD 68 40 - 135 03/09/17 16:55 03/18/17 16:44 13C-1,2,3,4,6,7,8-HpCDF 67 40 - 135 03/09/17 16:55 03/18/17 16:44 13C-OCDD 69 40 - 135 03/09/17 16:55 03/18/17 16:44

TestAmerica Spokane

Page 10 of 59

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-20A (6-12) Lab Sample ID: 590-5615-15 Date Collected: 03/01/17 15:00 **Matrix: Solid**

Date Received: 03/03/17 16:15 Percent Solids: 66.6

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		5.5		pg/g	<u> </u>	03/09/17 16:55	03/18/17 21:05	1
2,3,7,8-TCDF	ND		5.5		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
1,2,3,7,8-PeCDD	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
1,2,3,7,8-PeCDF	ND		27		pg/g	₽	03/09/17 16:55	03/18/17 21:05	1
2,3,4,7,8-PeCDF	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
1,2,3,4,7,8-HxCDD	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
1,2,3,6,7,8-HxCDD	53		27		pg/g		03/09/17 16:55	03/18/17 21:05	1
1,2,3,7,8,9-HxCDD	30		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
1,2,3,4,7,8-HxCDF	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
1,2,3,6,7,8-HxCDF	ND		27		pg/g		03/09/17 16:55	03/18/17 21:05	1
1,2,3,7,8,9-HxCDF	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
2,3,4,6,7,8-HxCDF	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
1,2,3,4,6,7,8-HpCDD	2000		27		pg/g		03/09/17 16:55	03/18/17 21:05	1
1,2,3,4,6,7,8-HpCDF	330		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
1,2,3,4,7,8,9-HpCDF	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
OCDD	17000		55		pg/g		03/09/17 16:55	03/18/17 21:05	1
OCDF	2000		55		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
Total TCDD	ND		5.5		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
Total TCDF	ND		5.5		pg/g		03/09/17 16:55	03/18/17 21:05	1
Total PeCDD	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
Total PeCDF	ND		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
Total HxCDD	230		27		pg/g	₩.	03/09/17 16:55	03/18/17 21:05	1
Total HxCDF	240		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
Total HpCDD	3200		27		pg/g	₩	03/09/17 16:55	03/18/17 21:05	1
Total HpCDF	1400		27		pg/g	\$	03/09/17 16:55	03/18/17 21:05	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	61		40 - 135				03/09/17 16:55	03/18/17 21:05	1
13C-2,3,7,8-TCDF	60		40 - 135				03/09/17 16:55	03/18/17 21:05	1
13C-1,2,3,7,8-PeCDD	57		40 - 135				03/09/17 16:55	03/18/17 21:05	1
12C 1 2 2 7 9 PaCDE			40 425				02/00/17 16:55	02/10/17 21:05	

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	61	40 - 135	03/09/17 16:55	03/18/17 21:05	1
13C-2,3,7,8-TCDF	60	40 - 135	03/09/17 16:55	03/18/17 21:05	1
13C-1,2,3,7,8-PeCDD	57	40 - 135	03/09/17 16:55	03/18/17 21:05	1
13C-1,2,3,7,8-PeCDF	57	40 - 135	03/09/17 16:55	03/18/17 21:05	1
13C-1,2,3,6,7,8-HxCDD	67	40 - 135	03/09/17 16:55	03/18/17 21:05	1
13C-1,2,3,4,7,8-HxCDF	63	40 - 135	03/09/17 16:55	03/18/17 21:05	1
13C-1,2,3,4,6,7,8-HpCDD	75	40 - 135	03/09/17 16:55	03/18/17 21:05	1
13C-1,2,3,4,6,7,8-HpCDF	73	40 - 135	03/09/17 16:55	03/18/17 21:05	1
13C-OCDD	76	40 - 135	03/09/17 16:55	03/18/17 21:05	1

Client Sample ID: HA-25A (6-12)

Date Collected: 03/01/17 16:05 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 83.3

Method: 8290A - Dioxins	and Furans (HRGC/HRMS))					
Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	4.6	pg/g	<u></u>	03/09/17 16:55	03/18/17 21:51	1
2,3,7,8-TCDF	ND	4.6	pg/g	₩	03/09/17 16:55	03/18/17 21:51	1
1,2,3,7,8-PeCDD	ND	23	pg/g	₩	03/09/17 16:55	03/18/17 21:51	1
1,2,3,7,8-PeCDF	ND	23	pg/g	\$	03/09/17 16:55	03/18/17 21:51	1
2,3,4,7,8-PeCDF	ND	23	pg/g	₩	03/09/17 16:55	03/18/17 21:51	1
1,2,3,4,7,8-HxCDD	ND	23	pg/g	₩	03/09/17 16:55	03/18/17 21:51	1
1,2,3,6,7,8-HxCDD	51	23	pg/g	☼	03/09/17 16:55	03/18/17 21:51	1

TestAmerica Spokane

Page 11 of 59

Lab Sample ID: 590-5615-17

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-25A (6-12)

Client: GeoEngineers Inc

Lab Sample ID: 590-5615-17 Date Collected: 03/01/17 16:05 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 83.3

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued) Dil Fac Analyte Result Qualifier **EDL** Unit D Prepared Analyzed 1,2,3,7,8,9-HxCDD $\overline{\mathsf{ND}}$ 23 03/09/17 16:55 03/18/17 21:51 pg/g 1,2,3,4,7,8-HxCDF ND 23 03/09/17 16:55 03/18/17 21:51 1 pg/g 23 1,2,3,6,7,8-HxCDF ND pg/g 03/09/17 16:55 03/18/17 21:51 1,2,3,7,8,9-HxCDF ND 23 03/09/17 16:55 03/18/17 21:51 pg/g ND 23 2,3,4,6,7,8-HxCDF pg/g 03/09/17 16:55 03/18/17 21:51 1 25 1800 G 03/09/17 16:55 03/18/17 21:51 1,2,3,4,6,7,8-HpCDD pg/g 1,2,3,4,6,7,8-HpCDF 210 23 pg/g 03/09/17 16:55 03/18/17 21:51 1,2,3,4,7,8,9-HpCDF ND 23 pg/g 03/09/17 16:55 03/18/17 21:51 46 OCDD 03/09/17 16:55 03/18/17 21:51 21000 pg/g **OCDF** 46 03/09/17 16:55 03/18/17 21:51 940 pg/g Total TCDD ND 4.6 03/09/17 16:55 03/18/17 21:51 pg/g **Total TCDF** ND 4.6 03/09/17 16:55 03/18/17 21:51 pg/g Total PeCDD 03/09/17 16:55 03/18/17 21:51 ND 23 pg/g **Total PeCDF** ND 23 pg/g 03/09/17 16:55 03/18/17 21:51 23 03/09/17 16:55 03/18/17 21:51 150 **Total HxCDD** pg/g **Total HxCDF** 190 23 03/09/17 16:55 03/18/17 21:51 pg/g 3000 25 03/09/17 16:55 03/18/17 21:51 **Total HpCDD** pg/g **Total HpCDF** 800 23 03/09/17 16:55 03/18/17 21:51 pg/g Isotope Dilution Qualifier Dil Fac %Recovery Limits Prepared Analyzed 13C-2,3,7,8-TCDD 50 40 - 135 03/09/17 16:55 03/18/17 21:51 13C-2,3,7,8-TCDF 49 40 - 135 03/09/17 16:55 03/18/17 21:51 46 13C-1,2,3,7,8-PeCDD 40 - 135 03/09/17 16:55 03/18/17 21:51 48 13C-1,2,3,7,8-PeCDF 40 - 135 03/09/17 16:55 03/18/17 21:51 13C-1,2,3,6,7,8-HxCDD 54 40 - 135 03/09/17 16:55 03/18/17 21:51 13C-1,2,3,4,7,8-HxCDF 51 40 - 135 03/09/17 16:55 03/18/17 21:51 63 40 - 135 03/09/17 16:55 03/18/17 21:51 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 58 40 - 135 03/09/17 16:55 03/18/17 21:51 13C-OCDD 67 40 - 135 03/09/17 16:55 03/18/17 21:51

Client Sample ID: HA-39 (0-6) Lab Sample ID: 590-5615-19 Date Collected: 03/01/17 13:30 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 80.3

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	1.6	pg/g	<u> </u>	03/09/17 16:55	03/18/17 22:37	1
2,3,7,8-TCDF	ND	1.6	pg/g	☼	03/09/17 16:55	03/18/17 22:37	1
1,2,3,7,8-PeCDD	ND	8.2	pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
1,2,3,7,8-PeCDF	ND	8.2	pg/g	φ.	03/09/17 16:55	03/18/17 22:37	1
2,3,4,7,8-PeCDF	ND	8.2	pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
1,2,3,4,7,8-HxCDD	ND	8.2	pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
1,2,3,6,7,8-HxCDD	13	8.2	pg/g		03/09/17 16:55	03/18/17 22:37	1
1,2,3,7,8,9-HxCDD	9.4	8.2	pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
1,2,3,4,7,8-HxCDF	ND	8.2	pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
1,2,3,6,7,8-HxCDF	ND	8.2	pg/g		03/09/17 16:55	03/18/17 22:37	1
1,2,3,7,8,9-HxCDF	ND	8.2	pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
2,3,4,6,7,8-HxCDF	ND	8.2	pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
1,2,3,4,6,7,8-HpCDD	440	8.2	pg/g		03/09/17 16:55	03/18/17 22:37	1
1,2,3,4,6,7,8-HpCDF	43	8.2	pg/g	☼	03/09/17 16:55	03/18/17 22:37	1

TestAmerica Spokane

Page 12 of 59

6

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Client Sample ID: HA-39 (0-6)

Lab Sample ID: 590-5615-19

Date Collected: 03/01/17 13:30 Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 80.3

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		8.2		pg/g	<u> </u>	03/09/17 16:55	03/18/17 22:37	1
OCDD	3300		16		pg/g	φ.	03/09/17 16:55	03/18/17 22:37	1
OCDF	190		16		pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
Total TCDD	ND		1.6		pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
Total TCDF	ND		1.6		pg/g	₩.	03/09/17 16:55	03/18/17 22:37	1
Total PeCDD	ND		8.2		pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
Total PeCDF	ND		8.2		pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
Total HxCDD	110		8.2		pg/g	₩.	03/09/17 16:55	03/18/17 22:37	1
Total HxCDF	33		8.2		pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
Total HpCDD	900		8.2		pg/g	₩	03/09/17 16:55	03/18/17 22:37	1
Total HpCDF	150		8.2		pg/g		03/09/17 16:55	03/18/17 22:37	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	55		40 - 135				03/09/17 16:55	03/18/17 22:37	1
13C-2,3,7,8-TCDF	57		40 - 135				03/09/17 16:55	03/18/17 22:37	1
13C-1,2,3,7,8-PeCDD	59		40 - 135				03/09/17 16:55	03/18/17 22:37	1
13C-1,2,3,7,8-PeCDF	58		40 - 135				03/09/17 16:55	03/18/17 22:37	1
13C-1,2,3,6,7,8-HxCDD	69		40 - 135				03/09/17 16:55	03/18/17 22:37	1
13C-1,2,3,4,7,8-HxCDF	66		40 - 135				03/09/17 16:55	03/18/17 22:37	1
13C-1,2,3,4,6,7,8-HpCDD	74		40 - 135				03/09/17 16:55	03/18/17 22:37	1
13C-1,2,3,4,6,7,8-HpCDF	75		40 - 135				03/09/17 16:55	03/18/17 22:37	1
13C-OCDD	78		40 - 135				03/09/17 16:55	03/18/17 22:37	1

 Client Sample ID: HA-40 (0-6)
 Lab Sample ID: 590-5615-22

 Date Collected: 03/01/17 14:10
 Matrix: Solid

 Date Received: 03/03/17 16:15
 Percent Solids: 67.9

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	21		pg/g	<u> </u>	03/09/17 16:55	03/18/17 23:23	1
2,3,7,8-TCDF	ND	21		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,7,8-PeCDD	ND	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,7,8-PeCDF	ND	100		pg/g		03/09/17 16:55	03/18/17 23:23	1
2,3,4,7,8-PeCDF	ND	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,4,7,8-HxCDD	ND	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,6,7,8-HxCDD	310	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,7,8,9-HxCDD	140	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,4,7,8-HxCDF	ND	100		pg/g	☼	03/09/17 16:55	03/18/17 23:23	1
1,2,3,6,7,8-HxCDF	ND	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,7,8,9-HxCDF	ND	100		pg/g	₩	03/09/17 16:55	03/18/17 23:23	1
2,3,4,6,7,8-HxCDF	ND	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,4,6,7,8-HpCDD	7600	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
1,2,3,4,6,7,8-HpCDF	1100	100		pg/g	₩	03/09/17 16:55	03/18/17 23:23	1
1,2,3,4,7,8,9-HpCDF	ND	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
OCDD	66000	210		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
OCDF	2000	210		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
Total TCDD	ND	21		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
Total TCDF	ND	21		pg/g	ф.	03/09/17 16:55	03/18/17 23:23	1
Total PeCDD	ND	100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
Total PeCDF	ND	100		pg/g	₩	03/09/17 16:55	03/18/17 23:23	1

TestAmerica Spokane

Page 13 of 59

3/29/2017

3

_

6

8

10

11

12

Н

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-22

Lab Sample ID: 590-5615-22

Matrix: Solid

TestAmerica Job ID: 590-5615-1

Percent Solids: 67.9

Client Sample ID: HA-40 (0-6)
Date Collected: 03/01/17 14:10

Date Received: 03/03/17 16:15

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	1400		100		pg/g	<u> </u>	03/09/17 16:55	03/18/17 23:23	1
Total HxCDF	1300		100		pg/g		03/09/17 16:55	03/18/17 23:23	1
Total HpCDD	13000		100		pg/g	₽	03/09/17 16:55	03/18/17 23:23	1
Total HpCDF	3100		100		pg/g		03/09/17 16:55	03/18/17 23:23	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	62		40 - 135				03/09/17 16:55	03/18/17 23:23	1
13C-2,3,7,8-TCDF	49		40 - 135				03/09/17 16:55	03/18/17 23:23	1
13C-1,2,3,7,8-PeCDD	48		40 - 135				03/09/17 16:55	03/18/17 23:23	1
13C-1,2,3,7,8-PeCDF	51		40 - 135				03/09/17 16:55	03/18/17 23:23	1
13C-1,2,3,6,7,8-HxCDD	51		40 - 135				03/09/17 16:55	03/18/17 23:23	1
13C-1,2,3,4,7,8-HxCDF	55		40 - 135				03/09/17 16:55	03/18/17 23:23	1
13C-1,2,3,4,6,7,8-HpCDD	72		40 - 135				03/09/17 16:55	03/18/17 23:23	1
13C-1,2,3,4,6,7,8-HpCDF	62		40 - 135				03/09/17 16:55	03/18/17 23:23	1
13C-OCDD	71		40 - 135				03/09/17 16:55	03/18/17 23:23	1

Client Sample ID: HA-41 (0-6)

Date Collected: 03/01/17 14:25

Lab Sample ID: 590-5615-25

Matrix: Solid

Date Received: 03/03/17 16:15 Percent Solids: 87.8

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		8.5		pg/g	<u> </u>	03/09/17 16:55	03/19/17 00:09	1
2,3,7,8-TCDF	ND		8.5		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
1,2,3,7,8-PeCDD	ND		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
1,2,3,7,8-PeCDF	ND		42		pg/g	₽	03/09/17 16:55	03/19/17 00:09	1
2,3,4,7,8-PeCDF	ND		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
1,2,3,4,7,8-HxCDD	ND		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
1,2,3,6,7,8-HxCDD	140		42		pg/g	₽	03/09/17 16:55	03/19/17 00:09	1
1,2,3,7,8,9-HxCDD	83		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
1,2,3,4,7,8-HxCDF	68		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
1,2,3,6,7,8-HxCDF	ND		42		pg/g	₽	03/09/17 16:55	03/19/17 00:09	1
1,2,3,7,8,9-HxCDF	ND		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
2,3,4,6,7,8-HxCDF	ND		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
1,2,3,4,6,7,8-HpCDD	3900	G	52		pg/g		03/09/17 16:55	03/19/17 00:09	1
1,2,3,4,6,7,8-HpCDF	550		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
1,2,3,4,7,8,9-HpCDF	ND		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
OCDD	33000		85		pg/g		03/09/17 16:55	03/19/17 00:09	1
OCDF	980		85		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
Total TCDD	ND		8.5		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
Total TCDF	ND		8.5		pg/g	₽	03/09/17 16:55	03/19/17 00:09	1
Total PeCDD	ND		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
Total PeCDF	90		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
Total HxCDD	660		42		pg/g	₽	03/09/17 16:55	03/19/17 00:09	1
Total HxCDF	800		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
Total HpCDD	6600	G	52		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
Total HpCDF	1600		42		pg/g	₩	03/09/17 16:55	03/19/17 00:09	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	61		40 - 135				03/09/17 16:55	03/19/17 00:09	1
13C-2,3,7,8-TCDF	52		40 - 135				03/09/17 16:55	03/19/17 00:09	1

TestAmerica Spokane

8

10

111

4

L

Client: GeoEngineers Inc

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-41 (0-6) Lab Sample ID: 590-5615-25

Date Collected: 03/01/17 14:25 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 87.8

Isotope Dilution	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	52	40 - 135	03/09/17 16:55	03/19/17 00:09	1
13C-1,2,3,7,8-PeCDF	51	40 - 135	03/09/17 16:55	03/19/17 00:09	1
13C-1,2,3,6,7,8-HxCDD	58	40 - 135	03/09/17 16:55	03/19/17 00:09	1
13C-1,2,3,4,7,8-HxCDF	55	40 - 135	03/09/17 16:55	03/19/17 00:09	1
13C-1,2,3,4,6,7,8-HpCDD	75	40 - 135	03/09/17 16:55	03/19/17 00:09	1
13C-1,2,3,4,6,7,8-HpCDF	66	40 - 135	03/09/17 16:55	03/19/17 00:09	1
13C-OCDD	74	40 - 135	03/09/17 16:55	03/19/17 00:09	1

Client Sample ID: HA-42 (0-6) Lab Sample ID: 590-5615-28

Date Collected: 03/01/17 12:30 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 84.4

Date Received: 03/03/17 16:15								Percent Solid	ls: 84.4
Method: 8290A - Dioxins Analyte		GC/HRMS) Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		30		pg/g	<u> </u>	03/09/17 16:55	03/19/17 00:55	1
2,3,7,8-TCDF	ND		30		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
1,2,3,7,8-PeCDD	ND		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
1,2,3,7,8-PeCDF	ND		150		pg/g		03/09/17 16:55	03/19/17 00:55	1
2,3,4,7,8-PeCDF	ND		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
1,2,3,4,7,8-HxCDD	ND		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
1,2,3,6,7,8-HxCDD	270		150		pg/g		03/09/17 16:55	03/19/17 00:55	1
1,2,3,7,8,9-HxCDD	220		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
1,2,3,4,7,8-HxCDF	ND		150		pg/g	☼	03/09/17 16:55	03/19/17 00:55	1
1,2,3,6,7,8-HxCDF	ND		150		pg/g	φ.	03/09/17 16:55	03/19/17 00:55	1
1,2,3,7,8,9-HxCDF	ND		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
2,3,4,6,7,8-HxCDF	ND		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
1,2,3,4,6,7,8-HpCDD	8000		150		pg/g		03/09/17 16:55	03/19/17 00:55	1
1,2,3,4,6,7,8-HpCDF	1500		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
1,2,3,4,7,8,9-HpCDF	ND		150		pg/g	☼	03/09/17 16:55	03/19/17 00:55	1
OCDD	64000		300		pg/g		03/09/17 16:55	03/19/17 00:55	1
OCDF	8200		300		pg/g	☼	03/09/17 16:55	03/19/17 00:55	1
Total TCDD	ND		30		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
Total TCDF	ND		30		pg/g		03/09/17 16:55	03/19/17 00:55	1
Total PeCDD	ND		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
Total PeCDF	ND		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
Total HxCDD	1200		150		pg/g		03/09/17 16:55	03/19/17 00:55	1
Total HxCDF	1200		150		pg/g	₩	03/09/17 16:55	03/19/17 00:55	1
Total HpCDD	13000		150		pg/g	☼	03/09/17 16:55	03/19/17 00:55	1
Total HpCDF	5500		150		pg/g	φ.	03/09/17 16:55	03/19/17 00:55	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	88		40 - 135				03/09/17 16:55	03/19/17 00:55	1
13C-2,3,7,8-TCDF	91		40 - 135				03/09/17 16:55	03/19/17 00:55	1
13C-1,2,3,7,8-PeCDD	92		40 - 135				03/09/17 16:55	03/19/17 00:55	1
13C-1,2,3,7,8-PeCDF	89		40 - 135				03/09/17 16:55	03/19/17 00:55	1
13C-1,2,3,6,7,8-HxCDD	97		40 - 135				03/09/17 16:55	03/19/17 00:55	1
13C-1,2,3,4,7,8-HxCDF	98		40 - 135				03/09/17 16:55	03/19/17 00:55	1

Page 15 of 59

40 - 135

40 - 135

40 - 135

113

113

122

TestAmerica Job ID: 590-5615-1

03/09/17 16:55 03/19/17 00:55 03/09/17 16:55 03/19/17 00:55 03/09/17 16:55 03/19/17 00:55 03/09/17 16:55 03/19/17 00:55 TestAmerica Spokane Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-43 (0-6)

Client: GeoEngineers Inc

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

Date Received: 03/03/17 16:15

Lab Sample ID: 590-5615-31 Date Collected: 03/01/17 09:30 **Matrix: Solid** Date Received: 03/03/17 16:15

Percent Solids: 91.0

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		36		pg/g	<u> </u>	03/09/17 16:55	03/19/17 01:41	1
2,3,7,8-TCDF	ND		36		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
1,2,3,7,8-PeCDD	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
1,2,3,7,8-PeCDF	ND		180		pg/g	\$	03/09/17 16:55	03/19/17 01:41	1
2,3,4,7,8-PeCDF	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
1,2,3,4,7,8-HxCDD	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
1,2,3,6,7,8-HxCDD	230		180		pg/g	≎	03/09/17 16:55	03/19/17 01:41	1
1,2,3,7,8,9-HxCDD	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
1,2,3,4,7,8-HxCDF	ND		180		pg/g	≎	03/09/17 16:55	03/19/17 01:41	1
1,2,3,6,7,8-HxCDF	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
1,2,3,7,8,9-HxCDF	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
2,3,4,6,7,8-HxCDF	ND		180		pg/g	₩	03/09/17 16:55	03/19/17 01:41	1
1,2,3,4,6,7,8-HpCDD	8600		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
1,2,3,4,6,7,8-HpCDF	1700		180		pg/g	≎	03/09/17 16:55	03/19/17 01:41	1
1,2,3,4,7,8,9-HpCDF	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
OCDD	92000		360		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
OCDF	8700		360		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
Total TCDD	ND		36		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
Total TCDF	ND		36		pg/g	\$	03/09/17 16:55	03/19/17 01:41	1
Total PeCDD	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
Total PeCDF	ND		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
Total HxCDD	840		180		pg/g	\$	03/09/17 16:55	03/19/17 01:41	1
Total HxCDF	1100		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
Total HpCDD	14000		180		pg/g	₽	03/09/17 16:55	03/19/17 01:41	1
Total HpCDF	6100		180		pg/g	\$	03/09/17 16:55	03/19/17 01:41	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	87		40 - 135				03/09/17 16:55	03/19/17 01:41	
13C-2,3,7,8-TCDF	89		40 - 135				03/09/17 16:55	03/19/17 01:41	1
13C-1,2,3,7,8-PeCDD	90		40 - 135				03/09/17 16:55	03/19/17 01:41	1
13C-1,2,3,7,8-PeCDF	89		40 - 135				03/09/17 16:55	03/19/17 01:41	1
13C-1,2,3,6,7,8-HxCDD	100		40 - 135				03/09/17 16:55	03/19/17 01:41	1

13C-1,2,3,4,6,7,8-HpCDF 116 40 - 135 03/09/17 16:55 03/19/17 01:41 13C-OCDD 40 - 135 03/09/17 16:55 03/19/17 01:41 124 Client Sample ID: HA-44 (0-6) Lab Sample ID: 590-5615-34 Date Collected: 03/01/17 09:50 **Matrix: Solid**

40 - 135

40 - 135

98

119

Method: 8290A - Dioxins and Furans (HRGC/HRMS)								
Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	80		pg/g	*	03/09/17 16:55	03/19/17 02:28	1
2,3,7,8-TCDF	ND	80		pg/g	≎	03/09/17 16:55	03/19/17 02:28	1
1,2,3,7,8-PeCDD	ND	400		pg/g	≎	03/09/17 16:55	03/19/17 02:28	1
1,2,3,7,8-PeCDF	ND	400		pg/g	≎	03/09/17 16:55	03/19/17 02:28	1
2,3,4,7,8-PeCDF	ND	400		pg/g	₩	03/09/17 16:55	03/19/17 02:28	1
1,2,3,4,7,8-HxCDD	ND	400		pg/g	≎	03/09/17 16:55	03/19/17 02:28	1
1,2,3,6,7,8-HxCDD	840	400		pg/g	₽	03/09/17 16:55	03/19/17 02:28	1

TestAmerica Spokane

Percent Solids: 64.9

03/09/17 16:55 03/19/17 01:41

03/09/17 16:55 03/19/17 01:41

Page 16 of 59

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-44 (0-6)

Date Collected: 03/01/17 09:50 Date Received: 03/03/17 16:15

Lab Sample ID: 590-5615-34

Matrix: Solid

Percent Solids: 64.9

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	440		400		pg/g	<u> </u>	03/09/17 16:55	03/19/17 02:28	1
1,2,3,4,7,8-HxCDF	ND		400		pg/g	☼	03/09/17 16:55	03/19/17 02:28	1
1,2,3,6,7,8-HxCDF	ND		400		pg/g	₽	03/09/17 16:55	03/19/17 02:28	1
1,2,3,7,8,9-HxCDF	ND		400		pg/g	₩	03/09/17 16:55	03/19/17 02:28	1
2,3,4,6,7,8-HxCDF	ND		400		pg/g	☼	03/09/17 16:55	03/19/17 02:28	1
1,2,3,4,6,7,8-HpCDD	23000		400		pg/g	₩.	03/09/17 16:55	03/19/17 02:28	1
1,2,3,4,6,7,8-HpCDF	2600		400		pg/g	₩	03/09/17 16:55	03/19/17 02:28	1
1,2,3,4,7,8,9-HpCDF	ND		400		pg/g	₩	03/09/17 16:55	03/19/17 02:28	1
OCDD	170000		800		pg/g		03/09/17 16:55	03/19/17 02:28	1
OCDF	5800		800		pg/g	☼	03/09/17 16:55	03/19/17 02:28	1
Total TCDD	ND		80		pg/g	₩	03/09/17 16:55	03/19/17 02:28	1
Total TCDF	ND		80		pg/g	ф.	03/09/17 16:55	03/19/17 02:28	1
Total PeCDD	ND		400		pg/g	☼	03/09/17 16:55	03/19/17 02:28	1
Total PeCDF	ND		400		pg/g	₩	03/09/17 16:55	03/19/17 02:28	1
Total HxCDD	3700		400		pg/g	₩.	03/09/17 16:55	03/19/17 02:28	1
Total HxCDF	2700		400		pg/g	₩	03/09/17 16:55	03/19/17 02:28	1
Total HpCDD	39000		400		pg/g	₩	03/09/17 16:55	03/19/17 02:28	1
Total HpCDF	8000		400		pg/g	₩.	03/09/17 16:55	03/19/17 02:28	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	92		40 - 135				03/09/17 16:55	03/19/17 02:28	1
13C-2,3,7,8-TCDF	94		40 - 135				03/09/17 16:55	03/19/17 02:28	1
13C-1,2,3,7,8-PeCDD	96		40 - 135				03/09/17 16:55	03/19/17 02:28	1
13C-1,2,3,7,8-PeCDF	93		40 - 135				03/09/17 16:55	03/19/17 02:28	1
13C-1,2,3,6,7,8-HxCDD	106		40 - 135				03/09/17 16:55	03/19/17 02:28	1
13C-1,2,3,4,7,8-HxCDF	100		40 - 135				03/09/17 16:55	03/19/17 02:28	1
13C-1,2,3,4,6,7,8-HpCDD	123		40 - 135				03/09/17 16:55	03/19/17 02:28	1
13C-1,2,3,4,6,7,8-HpCDF	118		40 - 135				03/09/17 16:55	03/19/17 02:28	1
13C-OCDD	125		40 - 135				02/00/17 16:55	03/19/17 02:28	1

Client Sample ID: HA-45 (0-6) Lab Sample ID: 590-5615-37 Date Collected: 03/01/17 10:25 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 79.8

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	47	pg/g	<u> </u>	03/09/17 16:55	03/19/17 03:14	1
2,3,7,8-TCDF	ND	47	pg/g	≎	03/09/17 16:55	03/19/17 03:14	1
1,2,3,7,8-PeCDD	ND	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
1,2,3,7,8-PeCDF	ND	230	pg/g	\$	03/09/17 16:55	03/19/17 03:14	1
2,3,4,7,8-PeCDF	ND	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
1,2,3,4,7,8-HxCDD	ND	230	pg/g	≎	03/09/17 16:55	03/19/17 03:14	1
1,2,3,6,7,8-HxCDD	240	230	pg/g	☼	03/09/17 16:55	03/19/17 03:14	1
1,2,3,7,8,9-HxCDD	ND	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
1,2,3,4,7,8-HxCDF	ND	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
1,2,3,6,7,8-HxCDF	ND	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
1,2,3,7,8,9-HxCDF	ND	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
2,3,4,6,7,8-HxCDF	ND	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
1,2,3,4,6,7,8-HpCDD	7200	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
1,2,3,4,6,7,8-HpCDF	500	230	pg/g	₩	03/09/17 16:55	03/19/17 03:14	1

TestAmerica Spokane

Page 17 of 59

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Client Sample ID: HA-45 (0-6) Lab Sample ID: 590-5615-37 Date Collected: 03/01/17 10:25

Matrix: Solid Percent Solids: 79.8

Date Received: 03/03/17 16:15 Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Analyte	Result Q	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND ND		230		pg/g	<u> </u>	03/09/17 16:55	03/19/17 03:14	1
OCDD	75000		470		pg/g	φ.	03/09/17 16:55	03/19/17 03:14	1
OCDF	2300		470		pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
Total TCDD	ND		47		pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
Total TCDF	ND		47		pg/g	₩.	03/09/17 16:55	03/19/17 03:14	1
Total PeCDD	ND		230		pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
Total PeCDF	ND		230		pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
Total HxCDD	540		230		pg/g	₩.	03/09/17 16:55	03/19/17 03:14	1
Total HxCDF	410		230		pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
Total HpCDD	12000		230		pg/g	₩	03/09/17 16:55	03/19/17 03:14	1
Total HpCDF	2200		230		pg/g		03/09/17 16:55	03/19/17 03:14	1
Isotope Dilution	%Recovery Q	Qualifier Limi	ts				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	88	40 -	135				03/09/17 16:55	03/19/17 03:14	1
	2.4							00//0//7 00 //	

13C-2,3,7,8-TCDF	91	40 - 135	03/09/17 16:55 03/19/17 03:14	1
13C-1,2,3,7,8-PeCDD	94	40 - 135	03/09/17 16:55 03/19/17 03:14	1
13C-1,2,3,7,8-PeCDF	91	40 - 135	03/09/17 16:55 03/19/17 03:14	1
13C-1,2,3,6,7,8-HxCDD	102	40 - 135	03/09/17 16:55 03/19/17 03:14	1
13C-1,2,3,4,7,8-HxCDF	98	40 - 135	03/09/17 16:55 03/19/17 03:14	1
13C-1,2,3,4,6,7,8-HpCDD	117	40 - 135	03/09/17 16:55 03/19/17 03:14	1
13C-1,2,3,4,6,7,8-HpCDF	114	40 - 135	03/09/17 16:55 03/19/17 03:14	1
13C-OCDD	118	40 - 135	03/09/17 16:55 03/19/17 03:14	1

Client Sample ID: HA-46 (0-6)

Date Collected: 03/01/17 11:00

Lab Sample ID: 590-5615-40 **Matrix: Solid**

Date Received: 03/03/17 16:15 Percent Solids: 72.9

Method: 8290A - Dioxins a Analyte	Ind Furans (HRGC/HRMS) Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	1.4	pg/g	<u></u>	03/09/17 16:55	03/19/17 07:34	1
2,3,7,8-TCDF	ND	1.4	pg/g	₩	03/09/17 16:55	03/19/17 07:34	1
1,2,3,7,8-PeCDD	ND	6.8	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1
1,2,3,7,8-PeCDF	ND	6.8	pg/g	ф	03/09/17 16:55	03/19/17 07:34	1
2,3,4,7,8-PeCDF	ND	6.8	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1
1,2,3,4,7,8-HxCDD	ND	6.8	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1
1,2,3,6,7,8-HxCDD	18	6.8	pg/g		03/09/17 16:55	03/19/17 07:34	1
1,2,3,7,8,9-HxCDD	8.8	6.8	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1
1,2,3,4,7,8-HxCDF	ND	6.8	pg/g	≎	03/09/17 16:55	03/19/17 07:34	1
1,2,3,6,7,8-HxCDF	ND	6.8	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1
1,2,3,7,8,9-HxCDF	ND	6.8	pg/g	≎	03/09/17 16:55	03/19/17 07:34	1
2,3,4,6,7,8-HxCDF	ND	6.8	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1
1,2,3,4,6,7,8-HpCDD	590 G	8.3	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1
1,2,3,4,6,7,8-HpCDF	54	6.8	pg/g	≎	03/09/17 16:55	03/19/17 07:34	1
1,2,3,4,7,8,9-HpCDF	ND	6.8	pg/g	≎	03/09/17 16:55	03/19/17 07:34	1
OCDD	4800	14	pg/g		03/09/17 16:55	03/19/17 07:34	1
OCDF	180	14	pg/g	≎	03/09/17 16:55	03/19/17 07:34	1
Total TCDD	ND	1.4	pg/g	≎	03/09/17 16:55	03/19/17 07:34	1
Total TCDF	ND	1.4	pg/g		03/09/17 16:55	03/19/17 07:34	1
Total PeCDD	ND	6.8	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1
Total PeCDF	ND	6.8	pg/g	₽	03/09/17 16:55	03/19/17 07:34	1

TestAmerica Spokane

Page 18 of 59

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Client Sample ID: HA-46 (0-6)

Lab Sample ID: 590-5615-40 Date Collected: 03/01/17 11:00 **Matrix: Solid**

Date Received: 03/03/17 16:15 Percent Solids: 72.9

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	90		6.8		pg/g	<u> </u>	03/09/17 16:55	03/19/17 07:34	1
Total HxCDF	61		6.8		pg/g		03/09/17 16:55	03/19/17 07:34	1
Total HpCDD	1100	G	8.3		pg/g	☼	03/09/17 16:55	03/19/17 07:34	1
Total HpCDF	180		6.8		pg/g		03/09/17 16:55	03/19/17 07:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	56		40 - 135				03/09/17 16:55	03/19/17 07:34	1
13C-2,3,7,8-TCDF	56		40 - 135				03/09/17 16:55	03/19/17 07:34	1
13C-1,2,3,7,8-PeCDD	61		40 - 135				03/09/17 16:55	03/19/17 07:34	1
13C-1,2,3,7,8-PeCDF	59		40 - 135				03/09/17 16:55	03/19/17 07:34	1
13C-1,2,3,6,7,8-HxCDD	71		40 - 135				03/09/17 16:55	03/19/17 07:34	1
13C-1,2,3,4,7,8-HxCDF	65		40 - 135				03/09/17 16:55	03/19/17 07:34	1
13C-1,2,3,4,6,7,8-HpCDD	74		40 - 135				03/09/17 16:55	03/19/17 07:34	1
13C-1,2,3,4,6,7,8-HpCDF	75		40 - 135				03/09/17 16:55	03/19/17 07:34	1
13C-OCDD	80		40 - 135				03/09/17 16:55	03/19/17 07:34	1

Client Sample ID: HA-47 (0-6) Lab Sample ID: 590-5615-43 Date Collected: 03/01/17 11:00 **Matrix: Solid**

Date Received: 03/03/17 16:15 Percent Solids: 70.3

Method: 8290A - Dioxin	•		,	EDI	l lm:4		Dramarad	Amalumad	Dil Foo
Analyte	ND Result	Qualifier		EDL	Unit	D <u>∓</u>	Prepared	Analyzed 03/19/17 08:20	Dil Fac
2,3,7,8-TCDD					pg/g				1
2,3,7,8-TCDF	ND		1.4		pg/g	₩		03/19/17 08:20	1
1,2,3,7,8-PeCDD	ND		7.0		pg/g			03/19/17 08:20	1 . · · · · · · ·
1,2,3,7,8-PeCDF	ND		7.0		pg/g	☆		03/19/17 08:20	1
2,3,4,7,8-PeCDF	ND		7.0		pg/g	₩		03/19/17 08:20	1
1,2,3,4,7,8-HxCDD	ND		7.0		pg/g	<u>.</u>		03/19/17 08:20	
1,2,3,6,7,8-HxCDD	8.9		7.0		pg/g	;Q:		03/19/17 08:20	1
1,2,3,7,8,9-HxCDD	ND		7.0		pg/g	.		03/19/17 08:20	1
1,2,3,4,7,8-HxCDF	ND		7.0		pg/g	₩		03/19/17 08:20	1
1,2,3,6,7,8-HxCDF	ND		7.0		pg/g	☼	03/09/17 16:55	03/19/17 08:20	1
1,2,3,7,8,9-HxCDF	ND		7.0		pg/g	₽	03/09/17 16:55	03/19/17 08:20	1
2,3,4,6,7,8-HxCDF	ND		7.0		pg/g	₩		03/19/17 08:20	1
1,2,3,4,6,7,8-HpCDD	330		7.0		pg/g	₩	03/09/17 16:55	03/19/17 08:20	1
1,2,3,4,6,7,8-HpCDF	45		7.0		pg/g	₩	03/09/17 16:55	03/19/17 08:20	1
1,2,3,4,7,8,9-HpCDF	ND		7.0		pg/g	₽	03/09/17 16:55	03/19/17 08:20	1
OCDD	3400		14		pg/g	φ.	03/09/17 16:55	03/19/17 08:20	1
OCDF	210		14		pg/g	₩	03/09/17 16:55	03/19/17 08:20	1
Total TCDD	ND		1.4		pg/g	₩	03/09/17 16:55	03/19/17 08:20	1
Total TCDF	ND		1.4		pg/g		03/09/17 16:55	03/19/17 08:20	1
Total PeCDD	ND		7.0		pg/g	☼	03/09/17 16:55	03/19/17 08:20	1
Total PeCDF	ND		7.0		pg/g	☼	03/09/17 16:55	03/19/17 08:20	1
Total HxCDD	47		7.0		pg/g		03/09/17 16:55	03/19/17 08:20	1
Total HxCDF	30		7.0		pg/g	₩	03/09/17 16:55	03/19/17 08:20	1
Total HpCDD	590		7.0		pg/g	₩	03/09/17 16:55	03/19/17 08:20	1
Total HpCDF	160		7.0		pg/g		03/09/17 16:55	03/19/17 08:20	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	62		40 - 135				03/09/17 16:55	03/19/17 08:20	1
13C-2,3,7,8-TCDF	61		40 - 135				03/09/17 16:55	03/19/17 08:20	1

TestAmerica Spokane

Client: GeoEngineers Inc

Date Received: 03/03/17 16:15

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-43

ab Sample ID: 590-5615-43
Matrix: Solid

TestAmerica Job ID: 590-5615-1

Percent Solids: 70.3

Client Sample ID: HA-47 (0-6)
Date Collected: 03/01/17 11:00

Method: 8290A - Dioxins a	and Furans (HRGC/	HRMS) (Continued)			
Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	66	40 - 135	03/09/17 16:55	03/19/17 08:20	1
13C-1,2,3,7,8-PeCDF	65	40 - 135	03/09/17 16:55	03/19/17 08:20	1
13C-1,2,3,6,7,8-HxCDD	75	40 - 135	03/09/17 16:55	03/19/17 08:20	1
13C-1,2,3,4,7,8-HxCDF	75	40 - 135	03/09/17 16:55	03/19/17 08:20	1
13C-1,2,3,4,6,7,8-HpCDD	84	40 - 135	03/09/17 16:55	03/19/17 08:20	1
13C-1,2,3,4,6,7,8-HpCDF	84	40 - 135	03/09/17 16:55	03/19/17 08:20	1
13C-OCDD	88	40 - 135	03/09/17 16:55	03/19/17 08:20	1

Client Sample ID: HA-48 (0-6)

Lab Sample ID: 590-5615-46

Date Collected: 03/01/17 11:20 Matrix: Solid
Date Received: 03/03/17 16:15 Percent Solids: 68.5

Method: 8290A - Dioxins	s and Furans (HR	GC/HRMS))						
Analyte	Result	Qualifier	RL	EDL (Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.5	p	og/g	<u> </u>	03/09/17 16:55	03/19/17 09:07	1
2,3,7,8-TCDF	ND		1.5	p	og/g	≎	03/09/17 16:55	03/19/17 09:07	1
1,2,3,7,8-PeCDD	ND		7.6	p	og/g	≎	03/09/17 16:55	03/19/17 09:07	1
1,2,3,7,8-PeCDF	ND		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
2,3,4,7,8-PeCDF	ND		7.6	p	og/g	≎	03/09/17 16:55	03/19/17 09:07	1
1,2,3,4,7,8-HxCDD	ND		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
1,2,3,6,7,8-HxCDD	34		7.6	p	og/g		03/09/17 16:55	03/19/17 09:07	1
1,2,3,7,8,9-HxCDD	13		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
1,2,3,4,7,8-HxCDF	ND		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
1,2,3,6,7,8-HxCDF	ND		7.6	p	og/g		03/09/17 16:55	03/19/17 09:07	1
1,2,3,7,8,9-HxCDF	ND		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
2,3,4,6,7,8-HxCDF	ND		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
1,2,3,4,6,7,8-HpCDD	660	G	9.2	p	og/g		03/09/17 16:55	03/19/17 09:07	1
1,2,3,4,6,7,8-HpCDF	53		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
1,2,3,4,7,8,9-HpCDF	ND		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
OCDD	3800		15	p	og/g		03/09/17 16:55	03/19/17 09:07	1
OCDF	81		15	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
Total TCDD	ND		1.5	p	og/g	☼	03/09/17 16:55	03/19/17 09:07	1
Total TCDF	ND		1.5	p	og/g		03/09/17 16:55	03/19/17 09:07	1
Total PeCDD	ND		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
Total PeCDF	ND		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
Total HxCDD	130		7.6	p	og/g	₩.	03/09/17 16:55	03/19/17 09:07	1
Total HxCDF	100		7.6	p	og/g	₩	03/09/17 16:55	03/19/17 09:07	1
Total HpCDD	1100	G	9.2	p	og/g	☼	03/09/17 16:55	03/19/17 09:07	1
Total HpCDF	160		7.6	p	og/g	φ.	03/09/17 16:55	03/19/17 09:07	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	46		40 - 135				03/09/17 16:55	03/19/17 09:07	1
13C-2,3,7,8-TCDF	46		40 - 135				03/09/17 16:55	03/19/17 09:07	1
13C-1.2.3.7.8-PeCDD	47		40 - 135				03/09/17 16:55	03/19/17 09:07	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
13C-2,3,7,8-TCDD	46	40 - 135	03/09/17 16:55 03/19/17 09:07	1
13C-2,3,7,8-TCDF	46	40 - 135	03/09/17 16:55 03/19/17 09:07	1
13C-1,2,3,7,8-PeCDD	47	40 - 135	03/09/17 16:55 03/19/17 09:07	1
13C-1,2,3,7,8-PeCDF	46	40 - 135	03/09/17 16:55 03/19/17 09:07	1
13C-1,2,3,6,7,8-HxCDD	54	40 - 135	03/09/17 16:55 03/19/17 09:07	1
13C-1,2,3,4,7,8-HxCDF	53	40 - 135	03/09/17 16:55 03/19/17 09:07	1
13C-1,2,3,4,6,7,8-HpCDD	61	40 - 135	03/09/17 16:55 03/19/17 09:07	1
13C-1,2,3,4,6,7,8-HpCDF	60	40 - 135	03/09/17 16:55 03/19/17 09:07	1
13C-OCDD	65	40 - 135	03/09/17 16:55 03/19/17 09:07	1

TestAmerica Spokane

Page 20 of 59

2

3

5

ŏ

10

12

10

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-49 (0-6)

Date Collected: 03/01/17 11:30 Date Received: 03/03/17 16:15 Lab Sample ID: 590-5615-49

Matrix: Solid Percent Solids: 92.2

6

Method: 8290A - Dioxins and Furans (HRGC/HRMS) RL Dil Fac Analyte Result Qualifier **EDL Unit** D Prepared Analyzed 2,3,7,8-TCDD $\overline{\mathsf{ND}}$ 12 03/09/17 16:55 03/19/17 09:53 pg/g 2,3,7,8-TCDF ND 12 03/09/17 16:55 03/19/17 09:53 1 pg/g 1,2,3,7,8-PeCDD ND 61 pg/g 03/09/17 16:55 03/19/17 09:53 1 1,2,3,7,8-PeCDF ND 61 03/09/17 16:55 03/19/17 09:53 pg/g 2,3,4,7,8-PeCDF ND 61 03/09/17 16:55 03/19/17 09:53 pg/g 1 1,2,3,4,7,8-HxCDD ND 61 03/09/17 16:55 03/19/17 09:53 pg/g 1,2,3,6,7,8-HxCDD 210 61 pg/g 03/09/17 16:55 03/19/17 09:53 1,2,3,7,8,9-HxCDD 89 61 03/09/17 16:55 03/19/17 09:53 pg/g 61 **77** 03/09/17 16:55 03/19/17 09:53 1,2,3,4,7,8-HxCDF pg/g 1,2,3,6,7,8-HxCDF ND 61 03/09/17 16:55 03/19/17 09:53 pg/g 1,2,3,7,8,9-HxCDF ND 61 03/09/17 16:55 03/19/17 09:53 pg/g 2,3,4,6,7,8-HxCDF ND 61 03/09/17 16:55 03/19/17 09:53 pg/g 83 5500 G 03/09/17 16:55 03/19/17 09:53 1 1,2,3,4,6,7,8-HpCDD pg/g 1,2,3,4,6,7,8-HpCDF 820 61 pg/g 03/09/17 16:55 03/19/17 09:53 1,2,3,4,7,8,9-HpCDF 61 03/09/17 16:55 03/19/17 09:53 ND pg/g OCDD 49000 120 03/09/17 16:55 03/19/17 09:53 pg/g **OCDF** 1500 120 03/09/17 16:55 03/19/17 09:53 pg/g Total TCDD ND 12 03/09/17 16:55 03/19/17 09:53 pg/g **Total TCDF** ND 12 03/09/17 16:55 03/19/17 09:53 pg/g Total PeCDD ND 61 03/09/17 16:55 03/19/17 09:53 pg/g **Total PeCDF** ND 61 pg/g 03/09/17 16:55 03/19/17 09:53 61 **Total HxCDD** 870 03/09/17 16:55 03/19/17 09:53 pg/g 61 03/09/17 16:55 03/19/17 09:53 **Total HxCDF** 1100 pg/g 83 **Total HpCDD** 9400 G pg/g 03/09/17 16:55 03/19/17 09:53 **Total HpCDF** 2800 61 pg/g 03/09/17 16:55 03/19/17 09:53

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	63	40 - 135	03/09/17 16:55	03/19/17 09:53	1
13C-2,3,7,8-TCDF	48	40 - 135	03/09/17 16:55	03/19/17 09:53	1
13C-1,2,3,7,8-PeCDD	49	40 - 135	03/09/17 16:55	03/19/17 09:53	1
13C-1,2,3,7,8-PeCDF	50	40 - 135	03/09/17 16:55	03/19/17 09:53	1
13C-1,2,3,6,7,8-HxCDD	56	40 - 135	03/09/17 16:55	03/19/17 09:53	1
13C-1,2,3,4,7,8-HxCDF	56	40 - 135	03/09/17 16:55	03/19/17 09:53	1
13C-1,2,3,4,6,7,8-HpCDD	68	40 - 135	03/09/17 16:55	03/19/17 09:53	1
13C-1,2,3,4,6,7,8-HpCDF	61	40 - 135	03/09/17 16:55	03/19/17 09:53	1
13C-OCDD	71	40 - 135	03/09/17 16:55	03/19/17 09:53	1

Client Sample ID: HA-50 (0-6)

Date Collected: 03/01/17 11:55 Date Received: 03/03/17 16:15 Lab Sample ID: 590-5615-52

Matrix: Solid

Percent Solids: 92.7

Method: 8290A - Dioxins	and Furans (HRGC/HRMS)							
Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND -	1.1		pg/g	<u> </u>	03/09/17 16:55	03/19/17 10:39	1
2,3,7,8-TCDF	ND	1.1		pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
1,2,3,7,8-PeCDD	ND	5.5		pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
1,2,3,7,8-PeCDF	ND	5.5		pg/g	Φ.	03/09/17 16:55	03/19/17 10:39	1
2,3,4,7,8-PeCDF	ND	5.5		pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
1,2,3,4,7,8-HxCDD	ND	5.5		pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
1,2,3,6,7,8-HxCDD	8.1	5.5		pg/g	ф	03/09/17 16:55	03/19/17 10:39	1

TestAmerica Spokane

Page 21 of 59

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-50 (0-6) Lab Sample ID: 590-5615-52 Date Collected: 03/01/17 11:55

Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 92.7

Analyte	Result Qua	lifier RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND ND	5.5	pg/g	<u> </u>	03/09/17 16:55	03/19/17 10:39	1
1,2,3,4,7,8-HxCDF	ND	5.5	pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
1,2,3,6,7,8-HxCDF	ND	5.5	pg/g	₽	03/09/17 16:55	03/19/17 10:39	1
1,2,3,7,8,9-HxCDF	ND	5.5	pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
2,3,4,6,7,8-HxCDF	ND	5.5	pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
1,2,3,4,6,7,8-HpCDD	230	5.5	pg/g	₽	03/09/17 16:55	03/19/17 10:39	1
1,2,3,4,6,7,8-HpCDF	27	5.5	pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
1,2,3,4,7,8,9-HpCDF	ND	5.5	pg/g	₩	03/09/17 16:55	03/19/17 10:39	1
OCDD	1900	11	pg/g	≎	03/09/17 16:55	03/19/17 10:39	1
OCDF	64	11	pg/g	₽	03/09/17 16:55	03/19/17 10:39	1
Total TCDD	ND	1.1	pg/g	₽	03/09/17 16:55	03/19/17 10:39	1
Total TCDF	ND	1.1	pg/g		03/09/17 16:55	03/19/17 10:39	1
Total PeCDD	ND	5.5	pg/g	₽	03/09/17 16:55	03/19/17 10:39	1
Total PeCDF	ND	5.5	pg/g	₩	03/09/17 16:55	03/19/17 10:39	1
Total HxCDD	39	5.5	pg/g	₽	03/09/17 16:55	03/19/17 10:39	1
Total HxCDF	28	5.5	pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
Total HpCDD	430	5.5	pg/g	☼	03/09/17 16:55	03/19/17 10:39	1
Total HpCDF	84	5.5	pg/g	₩	03/09/17 16:55	03/19/17 10:39	1
Isotope Dilution	%Recovery Qua	lifier Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	50	40 - 135			03/09/17 16:55	03/19/17 10:39	1
13C-2,3,7,8-TCDF	52	40 - 135			03/09/17 16:55	03/19/17 10:39	1
13C-1,2,3,7,8-PeCDD	55	40 - 135			03/09/17 16:55	03/19/17 10:39	1
13C-1,2,3,7,8-PeCDF	55	40 - 135			03/09/17 16:55	03/19/17 10:39	1
13C-1,2,3,6,7,8-HxCDD	61	40 - 135			03/09/17 16:55	03/19/17 10:39	1
13C-1,2,3,4,7,8-HxCDF	57	40 - 135			03/09/17 16:55	03/19/17 10:39	1
13C-1,2,3,4,6,7,8-HpCDD	65	40 - 135			03/09/17 16:55	03/19/17 10:39	1
13C-1,2,3,4,6,7,8-HpCDF	65	40 - 135			03/09/17 16:55	03/19/17 10:39	1
13C-OCDD	67	40 - 135			03/09/17 16:55		

Client Sample ID: HA-51 (0-6) Lab Sample ID: 590-5615-55 Date Collected: 03/01/17 14:50 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 57.3

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	25	pg/g	\	03/11/17 10:19	03/23/17 14:13	1
2,3,7,8-TCDF	ND	25	pg/g	☆	03/11/17 10:19	03/23/17 14:13	1
1,2,3,7,8-PeCDD	ND	120	pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
1,2,3,7,8-PeCDF	ND	120	pg/g	φ.	03/11/17 10:19	03/23/17 14:13	1
2,3,4,7,8-PeCDF	ND	120	pg/g	≎	03/11/17 10:19	03/23/17 14:13	1
1,2,3,4,7,8-HxCDD	ND	120	pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
1,2,3,6,7,8-HxCDD	250	120	pg/g	φ.	03/11/17 10:19	03/23/17 14:13	1
1,2,3,7,8,9-HxCDD	ND	120	pg/g	₽	03/11/17 10:19	03/23/17 14:13	1
1,2,3,4,7,8-HxCDF	ND	120	pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
1,2,3,6,7,8-HxCDF	ND	120	pg/g	\$	03/11/17 10:19	03/23/17 14:13	1
1,2,3,7,8,9-HxCDF	ND	120	pg/g	≎	03/11/17 10:19	03/23/17 14:13	1
2,3,4,6,7,8-HxCDF	ND	120	pg/g	₽	03/11/17 10:19	03/23/17 14:13	1
1,2,3,4,6,7,8-HpCDD	5900	120	pg/g	\$	03/11/17 10:19	03/23/17 14:13	1
1,2,3,4,6,7,8-HpCDF	740	120	pg/g	₩	03/11/17 10:19	03/23/17 14:13	1

TestAmerica Spokane

Page 22 of 59

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Client Sample ID: HA-51 (0-6)

Lab Sample ID: 590-5615-55

Date Collected: 03/01/17 14:50 Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 57.3

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		120		pg/g	<u> </u>	03/11/17 10:19	03/23/17 14:13	1
OCDD	65000		250		pg/g	φ.	03/11/17 10:19	03/23/17 14:13	1
OCDF	3800		250		pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
Total TCDD	ND		25		pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
Total TCDF	ND		25		pg/g	₩.	03/11/17 10:19	03/23/17 14:13	1
Total PeCDD	ND		120		pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
Total PeCDF	ND		120		pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
Total HxCDD	530		120		pg/g	₩.	03/11/17 10:19	03/23/17 14:13	1
Total HxCDF	740		120		pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
Total HpCDD	10000		120		pg/g	₩	03/11/17 10:19	03/23/17 14:13	1
Total HpCDF	3400		120		pg/g	Φ.	03/11/17 10:19	03/23/17 14:13	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	80		40 - 135				03/11/17 10:19	03/23/17 14:13	1
13C-2,3,7,8-TCDF	65		40 - 135				03/11/17 10:19	03/23/17 14:13	1
13C-1,2,3,7,8-PeCDD	67		40 - 135				03/11/17 10:19	03/23/17 14:13	1
13C-1,2,3,7,8-PeCDF	67		40 - 135				03/11/17 10:19	03/23/17 14:13	1
13C-1,2,3,6,7,8-HxCDD	74		40 - 135				03/11/17 10:19	03/23/17 14:13	1
13C-1,2,3,4,7,8-HxCDF	73		40 - 135				03/11/17 10:19	03/23/17 14:13	1
13C-1,2,3,4,6,7,8-HpCDD	96		40 - 135				03/11/17 10:19	03/23/17 14:13	1
13C-1,2,3,4,6,7,8-HpCDF	85		40 - 135				03/11/17 10:19	03/23/17 14:13	1
13C-OCDD	100		40 - 135				03/11/17 10:19	03/23/17 14:13	1

Client Sample ID: HA-52 (0-6) Lab Sample ID: 590-5615-58 Date Collected: 03/01/17 15:15 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 60.0

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND -	5.4	pg/g	₩	03/11/17 10:19	03/23/17 14:59	1
2,3,7,8-TCDF	ND	5.4	pg/g	₽	03/11/17 10:19	03/23/17 14:59	1
1,2,3,7,8-PeCDD	ND	27	pg/g	₽	03/11/17 10:19	03/23/17 14:59	1
1,2,3,7,8-PeCDF	ND	27	pg/g	ф.	03/11/17 10:19	03/23/17 14:59	1
2,3,4,7,8-PeCDF	ND	27	pg/g	☼	03/11/17 10:19	03/23/17 14:59	1
1,2,3,4,7,8-HxCDD	ND	27	pg/g	☼	03/11/17 10:19	03/23/17 14:59	1
1,2,3,6,7,8-HxCDD	99	27	pg/g		03/11/17 10:19	03/23/17 14:59	1
1,2,3,7,8,9-HxCDD	45	27	pg/g	☼	03/11/17 10:19	03/23/17 14:59	1
1,2,3,4,7,8-HxCDF	56	27	pg/g	☼	03/11/17 10:19	03/23/17 14:59	1
1,2,3,6,7,8-HxCDF	ND	27	pg/g	₩.	03/11/17 10:19	03/23/17 14:59	1
1,2,3,7,8,9-HxCDF	ND	27	pg/g	☼	03/11/17 10:19	03/23/17 14:59	1
2,3,4,6,7,8-HxCDF	ND	27	pg/g	≎	03/11/17 10:19	03/23/17 14:59	1
1,2,3,4,6,7,8-HpCDD	2300 G	28	pg/g		03/11/17 10:19	03/23/17 14:59	1
1,2,3,4,6,7,8-HpCDF	350	27	pg/g	☼	03/11/17 10:19	03/23/17 14:59	1
1,2,3,4,7,8,9-HpCDF	ND	27	pg/g	≎	03/11/17 10:19	03/23/17 14:59	1
OCDD	15000	54	pg/g		03/11/17 10:19	03/23/17 14:59	1
OCDF	500	54	pg/g	₽	03/11/17 10:19	03/23/17 14:59	1
Total TCDD	ND	5.4	pg/g	≎	03/11/17 10:19	03/23/17 14:59	1
Total TCDF	ND	5.4	pg/g		03/11/17 10:19	03/23/17 14:59	1
Total PeCDD	ND	27	pg/g	₽	03/11/17 10:19	03/23/17 14:59	1
Total PeCDF	33	27	pg/g	☼	03/11/17 10:19	03/23/17 14:59	1

TestAmerica Spokane

3/29/2017

Page 23 of 59

Client Sample ID: HA-52 (0-6)

Lab Sample ID: 590-5615-58 Date Collected: 03/01/17 15:15 **Matrix: Solid**

Date Received: 03/03/17 16:15 Percent Solids: 60.0

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	380		27		pg/g	<u> </u>	03/11/17 10:19	03/23/17 14:59	1
Total HxCDF	600		27		pg/g	₽	03/11/17 10:19	03/23/17 14:59	1
Total HpCDD	3600	G	28		pg/g	₩	03/11/17 10:19	03/23/17 14:59	1
Total HpCDF	1100		27		pg/g		03/11/17 10:19	03/23/17 14:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	64		40 - 135				03/11/17 10:19	03/23/17 14:59	1
13C-2,3,7,8-TCDF	60		40 - 135				03/11/17 10:19	03/23/17 14:59	1
13C-1,2,3,7,8-PeCDD	61		40 - 135				03/11/17 10:19	03/23/17 14:59	1
13C-1,2,3,7,8-PeCDF	61		40 - 135				03/11/17 10:19	03/23/17 14:59	1
13C-1,2,3,6,7,8-HxCDD	71		40 - 135				03/11/17 10:19	03/23/17 14:59	1
13C-1,2,3,4,7,8-HxCDF	68		40 - 135				03/11/17 10:19	03/23/17 14:59	1
13C-1,2,3,4,6,7,8-HpCDD	83		40 - 135				03/11/17 10:19	03/23/17 14:59	1
13C-1,2,3,4,6,7,8-HpCDF	75		40 - 135				03/11/17 10:19	03/23/17 14:59	1
13C-OCDD	91		40 - 135				03/11/17 10:19	03/23/17 14:59	1

Client Sample ID: HA-53 (0-6) Lab Sample ID: 590-5615-61 Date Collected: 03/01/17 15:20 **Matrix: Solid**

Data Pacaiyad: 03/03/17 16:15 Parcent Solids: 56 5

Method: 8290A - Dioxins Analyte		GC/HRMS) Qualifier) RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		25		pg/g	\	•	03/23/17 15:45	1
2,3,7,8-TCDF	ND		25		pg/g	☼	03/11/17 10:19	03/23/17 15:45	1
1,2,3,7,8-PeCDD	ND		130		pg/g	₩	03/11/17 10:19	03/23/17 15:45	1
1,2,3,7,8-PeCDF	ND		130		pg/g	ф.	03/11/17 10:19	03/23/17 15:45	1
2,3,4,7,8-PeCDF	ND		130		pg/g	₽	03/11/17 10:19	03/23/17 15:45	1
1,2,3,4,7,8-HxCDD	ND		130		pg/g	₽	03/11/17 10:19	03/23/17 15:45	1
1,2,3,6,7,8-HxCDD	320		130		pg/g		03/11/17 10:19	03/23/17 15:45	1
1,2,3,7,8,9-HxCDD	130		130		pg/g	☼	03/11/17 10:19	03/23/17 15:45	1
1,2,3,4,7,8-HxCDF	ND		130		pg/g	☼	03/11/17 10:19	03/23/17 15:45	1
1,2,3,6,7,8-HxCDF	ND		130		pg/g		03/11/17 10:19	03/23/17 15:45	1
1,2,3,7,8,9-HxCDF	ND		130		pg/g	₩	03/11/17 10:19	03/23/17 15:45	1
2,3,4,6,7,8-HxCDF	ND		130		pg/g	₩	03/11/17 10:19	03/23/17 15:45	1
1,2,3,4,6,7,8-HpCDD	7400		130		pg/g	φ.	03/11/17 10:19	03/23/17 15:45	1
1,2,3,4,6,7,8-HpCDF	600		130		pg/g	₩	03/11/17 10:19	03/23/17 15:45	1
1,2,3,4,7,8,9-HpCDF	ND		130		pg/g	₩	03/11/17 10:19	03/23/17 15:45	1
OCDD	66000		250		pg/g	φ.	03/11/17 10:19	03/23/17 15:45	1
OCDF	2300		250		pg/g	₩	03/11/17 10:19	03/23/17 15:45	1
Total TCDD	ND		25		pg/g	₩	03/11/17 10:19	03/23/17 15:45	1
Total TCDF	ND		25		pg/g	₽	03/11/17 10:19	03/23/17 15:45	1
Total PeCDD	ND		130		pg/g	₩	03/11/17 10:19	03/23/17 15:45	1
Total PeCDF	ND		130		pg/g	☼	03/11/17 10:19	03/23/17 15:45	1
Total HxCDD	1400		130		pg/g	₽	03/11/17 10:19	03/23/17 15:45	1
Total HxCDF	650		130		pg/g	☼	03/11/17 10:19	03/23/17 15:45	1
Total HpCDD	13000		130		pg/g	☼	03/11/17 10:19	03/23/17 15:45	1
Total HpCDF	2300		130		pg/g	☼	03/11/17 10:19	03/23/17 15:45	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	79		40 - 135				03/11/17 10:19	03/23/17 15:45	1
13C-2,3,7,8-TCDF	62		40 - 135				03/11/17 10:19	03/23/17 15:45	1

TestAmerica Spokane

Lab Sample ID: EQU EG1E G1

TestAmerica Job ID: 590-5615-1

Client Sample ID: HA-53 (0-6)

Date Collected: 03/01/17 15:20

Lab Sample ID: 590-5615-61

Matrix: Solid

Percent Solids: 56.5

Date Received: 03/03/17 16:15

Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	67	40 - 135	03/11/17 10:19	03/23/17 15:45	1
13C-1,2,3,7,8-PeCDF	62	40 - 135	03/11/17 10:19	03/23/17 15:45	1
13C-1,2,3,6,7,8-HxCDD	74	40 - 135	03/11/17 10:19	03/23/17 15:45	1
13C-1,2,3,4,7,8-HxCDF	69	40 - 135	03/11/17 10:19	03/23/17 15:45	1
13C-1,2,3,4,6,7,8-HpCDD	92	40 - 135	03/11/17 10:19	03/23/17 15:45	1
13C-1,2,3,4,6,7,8-HpCDF	77	40 - 135	03/11/17 10:19	03/23/17 15:45	1
13C-OCDD	92	40 - 135	03/11/17 10:19	03/23/17 15:45	1

Client Sample ID: HA-54 (0-6)

Lab Sample ID: 590-5615-64

Date Collected: 03/01/17 15:40 Matrix: Solid
Date Received: 03/03/17 16:15 Percent Solids: 62.8

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Analyte Result Qualifier **MDL** Unit Prepared Analyzed RL Dil Fac □ 03/14/17 10:09 □ 03/14/17 15:27 Pentachlorophenol 1100 F2 F1 77 ug/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl (Surr) 72 38 - 123 03/14/17 10:09 03/14/17 15:27 Nitrobenzene-d5 54 23 - 120 03/14/17 10:09 03/14/17 15:27 107 68 - 136 03/14/17 10:09 03/14/17 15:27 p-Terphenyl-d14

Client Sample ID: HA-55 (0-6)

Date Collected: 03/01/17 16:00

Lab Sample ID: 590-5615-67

Matrix: Solid

Date Received: 03/03/17 16:15 Percent Solids: 72.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	2100		65		ug/Kg	<u> </u>	03/14/17 10:09	03/14/17 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		38 - 123				03/14/17 10:09	03/14/17 15:54	1
Nitrobenzene-d5	62		23 - 120				03/14/17 10:09	03/14/17 15:54	1
p-Terphenyl-d14	109		68 - 136				03/14/17 10:09	03/14/17 15:54	1

Client Sample ID: HA-56 (0-6)

Date Collected: 03/01/17 15:35

Date Received: 03/03/17 16:15

Lab Sample ID: 590-5615-70

Matrix: Solid

Percent Solids: 76.3

Method: 8270D SIM - Ser	mivolatile Organi	c Compou	inds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	350		62		ug/Kg	<u>∓</u>	03/14/17 10:09	03/14/17 16:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	73		38 - 123				03/14/17 10:09	03/14/17 16:20	1
Nitrobenzene-d5	66		23 - 120				03/14/17 10:09	03/14/17 16:20	1

Client Sample ID: HA-57 (0-6)

Date Collected: 03/01/17 13:30 Date Received: 03/03/17 16:15 Lab Sample ID: 590-5615-73

Matrix: Solid

Percent Solids: 79.1

Method: 8270D SIM - Sen	nivolatile Organic	Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	14000		600		ug/Kg		03/14/17 10:09	03/15/17 09:37	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	73		38 - 123				03/14/17 10:09	03/15/17 09:37	10
Nitrobenzene-d5	60		23 - 120				03/14/17 10:09	03/15/17 09:37	10
p-Terphenyl-d14	106		68 - 136				00/44/47 40:00	03/15/17 09:37	10

Client Sample ID: HA-58 (0-6)

Date Collected: 03/01/17 13:50

Date Received: 03/03/17 16:15

Lab Sample ID: 590-5615-76

Matrix: Solid

Percent Solids: 84.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	97000		5900		ug/Kg		03/14/17 10:09	03/15/17 10:03	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	82		38 - 123				03/14/17 10:09	03/15/17 10:03	100
Nitrobenzene-d5	82		23 - 120				03/14/17 10:09	03/15/17 10:03	100
p-Terphenyl-d14	118		68 - 136				03/14/17 10:09	03/15/17 10:03	100

Client Sample ID: HA-59 (0-6)

Date Collected: 03/01/17 13:45 Date Received: 03/03/17 16:15 Lab Sample ID: 590-5615-79 **Matrix: Solid**

Percent Solids: 77.8

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	4700		630		ug/Kg	₩	03/14/17 10:09	03/15/17 10:30	10
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	67		38 - 123				03/14/17 10:09	03/15/17 10:30	10
Nitrobenzene-d5	62		23 - 120				03/14/17 10:09	03/15/17 10:30	10
p-Terphenyl-d14	99		68 - 136				03/14/17 10:09	03/15/17 10:30	10

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-11067/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 11062	Prep Batch: 11067
MB MB	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		50		ug/Kg		03/14/17 10:09	03/14/17 13:42	1
	MP	МВ							
	IVID	IVID							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	84		38 - 123	03/14/17 10:09	03/14/17 13:42	1
Nitrobenzene-d5	67		23 - 120	03/14/17 10:09	03/14/17 13:42	1
p-Terphenyl-d14	133		68 - 136	03/14/17 10:09	03/14/17 13:42	1

Lab Sample ID: LCS 590-11067/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA **Analysis Batch: 11062** Prep Batch: 11067

	Spike	LUS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Pentachlorophenol	533	537		ug/Kg		101	50 - 150	

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	80	38 - 123
Nitrobenzene-d5	54	23 - 120
p-Terphenyl-d14	124	68 - 136

Lab Sample ID: 590-5615-64 MS Client Sample ID: HA-54 (0-6) Matrix: Solid Prep Type: Total/NA **Analysis Batch: 11062** Prep Batch: 11067

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Pentachlorophenol	1100	F2 F1	817	3310	F1	ug/Kg	₩	268	50 - 150	

	MS MS	
Surrogate	%Recovery Quali	fier Limits
2-Fluorobiphenyl (Surr)	71	38 - 123
Nitrobenzene-d5	60	23 - 120
p-Terphenyl-d14	112	68 - 136

Lab Sample ID: 590-5615-64 MSD Client Sample ID: HA-54 (0-6) **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 11062 Sample Sample Spike MSD MSD %Rec. Added Analyte **Result Qualifier** Result Qualifier Unit D %Rec Limits RPD Limit 818 1890 F2 Pentachlorophenol 1100 F2 F1 ug/Kg 93

	-					0 0	., ., ., ., ., ., ., ., ., ., ., ., ., .	3 3
		MSD	MSD					
5	Surrogate	%Recovery	Qualifier	Limits				
2	2-Fluorobiphenyl (Surr)	63		38 - 123				
1	Nitrobenzene-d5	66		23 - 120				
p	o-Terphenyl-d14	105		68 - 136				

3/29/2017

Prep Batch: 11067 **RPD**

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-154207/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA** Analysis Batch: 155581 **Prep Batch: 154207**

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
2,3,7,8-TCDF	ND		1.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,7,8-PeCDD	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,7,8-PeCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
2,3,4,7,8-PeCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,4,7,8-HxCDD	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,6,7,8-HxCDD	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,7,8,9-HxCDD	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,4,7,8-HxCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,6,7,8-HxCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,7,8,9-HxCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
2,3,4,6,7,8-HxCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,4,6,7,8-HpCDD	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,4,6,7,8-HpCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
1,2,3,4,7,8,9-HpCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
OCDD	ND		10		pg/g		03/09/17 16:55	03/18/17 10:35	1
OCDF	ND		10		pg/g		03/09/17 16:55	03/18/17 10:35	1
Total TCDD	ND		1.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
Total TCDF	ND		1.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
Total PeCDD	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
Total PeCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
Total HxCDD	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
Total HxCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
Total HpCDD	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
Total HpCDF	ND		5.0		pg/g		03/09/17 16:55	03/18/17 10:35	1
	MB	MB							

•						
	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	68		40 - 135	03/09/17 16:55	03/18/17 10:35	1
13C-2,3,7,8-TCDF	66		40 - 135	03/09/17 16:55	03/18/17 10:35	1
13C-1,2,3,7,8-PeCDD	73		40 - 135	03/09/17 16:55	03/18/17 10:35	1
13C-1,2,3,7,8-PeCDF	70		40 - 135	03/09/17 16:55	03/18/17 10:35	1
13C-1,2,3,6,7,8-HxCDD	80		40 - 135	03/09/17 16:55	03/18/17 10:35	1
13C-1,2,3,4,7,8-HxCDF	78		40 - 135	03/09/17 16:55	03/18/17 10:35	1
13C-1,2,3,4,6,7,8-HpCDD	83		40 - 135	03/09/17 16:55	03/18/17 10:35	1
13C-1,2,3,4,6,7,8-HpCDF	87		40 - 135	03/09/17 16:55	03/18/17 10:35	1
13C-OCDD	82		40 - 135	03/09/17 16:55	03/18/17 10:35	1

Lab Sample ID: LCS 320-154207/2-A

Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA **Analysis Batch: 155581** Prep Batch: 154207 Spike LCS LCS %Rec.

nalyte	Added	Result	Qualifier Unit	t D %Re	c Limits	
3,7,8-TCDD	20.0	21.2	pg/g	100	77 - 130	
3,7,8-TCDF	20.0	21.0	pg/g	10	5 79 ₋ 137	
2,3,7,8-PeCDD	100	107	pg/g	10	7 79 - 134	
2,3,7,8-PeCDF	100	109	pg/g	109	9 81 - 134	
3,4,7,8-PeCDF	100	112	pg/g	g 11:	2 76 - 132	
2,3,4,7,8-HxCDD	100	104	pg/g	g 104	4 65 - 144	

Page 28 of 59

TestAmerica Spokane

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-154207/2-A

Matrix: Solid

Analysis Batch: 155581

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 154207 %Rec.

7 maryolo Batom 100001	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,3,6,7,8-HxCDD	100	105		pg/g		105	73 - 147
1,2,3,7,8,9-HxCDD	100	98.1		pg/g		98	80 - 143
1,2,3,4,7,8-HxCDF	100	110		pg/g		110	72 - 140
1,2,3,6,7,8-HxCDF	100	106		pg/g		106	63 - 152
1,2,3,7,8,9-HxCDF	100	108		pg/g		108	72 - 152
2,3,4,6,7,8-HxCDF	100	113		pg/g		113	72 - 151
1,2,3,4,6,7,8-HpCDD	100	113		pg/g		113	86 - 134
1,2,3,4,6,7,8-HpCDF	100	105		pg/g		105	81 - 137
1,2,3,4,7,8,9-HpCDF	100	106		pg/g		106	79 - 139
OCDD	200	211		pg/g		105	80 - 137
OCDF	200	203		pg/g		101	75 - 141

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	67		40 - 135
13C-2,3,7,8-TCDF	68		40 - 135
13C-1,2,3,7,8-PeCDD	75		40 - 135
13C-1,2,3,7,8-PeCDF	69		40 - 135
13C-1,2,3,6,7,8-HxCDD	84		40 - 135
13C-1,2,3,4,7,8-HxCDF	81		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	89		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	92		40 - 135
13C-OCDD	92		40 - 135

Lab Sample ID: LCSD 320-154207/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 155581 Prep Batch: 154207 Spike LCSD LCSD %Rec.

	•								
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	20.0	21.1		pg/g		106	77 - 130	0	20
2,3,7,8-TCDF	20.0	20.4		pg/g		102	79 - 137	3	20
1,2,3,7,8-PeCDD	100	105		pg/g		105	79 - 134	2	20
1,2,3,7,8-PeCDF	100	104		pg/g		104	81 - 134	5	20
2,3,4,7,8-PeCDF	100	104		pg/g		104	76 - 132	7	20
1,2,3,4,7,8-HxCDD	100	102		pg/g		102	65 - 144	2	20
1,2,3,6,7,8-HxCDD	100	102		pg/g		102	73 - 147	3	20
1,2,3,7,8,9-HxCDD	100	92.5		pg/g		92	80 - 143	6	20
1,2,3,4,7,8-HxCDF	100	109		pg/g		109	72 - 140	1	20
1,2,3,6,7,8-HxCDF	100	105		pg/g		105	63 - 152	1	20
1,2,3,7,8,9-HxCDF	100	103		pg/g		103	72 - 152	5	20
2,3,4,6,7,8-HxCDF	100	110		pg/g		110	72 - 151	3	20
1,2,3,4,6,7,8-HpCDD	100	114		pg/g		114	86 - 134	1	20
1,2,3,4,6,7,8-HpCDF	100	106		pg/g		106	81 - 137	1	20
1,2,3,4,7,8,9-HpCDF	100	107		pg/g		107	79 - 139	2	20
OCDD	200	208		pg/g		104	80 - 137	1	20
OCDF	200	203		pg/g		102	75 - 141	0	20

LCSD LCSD Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 64 40 - 135

Page 29 of 59

TestAmerica Spokane

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-154207/3-A

Matrix: Solid

Analysis Batch: 155581

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 154207

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDF	64		40 - 135
13C-1,2,3,7,8-PeCDD	68		40 - 135
13C-1,2,3,7,8-PeCDF	68		40 - 135
13C-1,2,3,6,7,8-HxCDD	77		40 - 135
13C-1,2,3,4,7,8-HxCDF	73		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	77		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	80		40 - 135
13C-OCDD	80		40 - 135

Lab Sample ID: MB 320-154485/1-A **Client Sample ID: Method Blank**

Matrix: Solid							Prep Type: T	otal/NA
Analysis Batch: 156296							Prep Batch:	154485
•	MB	MB					•	
Analyte	Result	Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
2,3,7,8-TCDF	ND		1.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,7,8-PeCDD	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,7,8-PeCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
2,3,4,7,8-PeCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,4,7,8-HxCDD	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,6,7,8-HxCDD	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,7,8,9-HxCDD	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,4,7,8-HxCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,6,7,8-HxCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,7,8,9-HxCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
2,3,4,6,7,8-HxCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,4,6,7,8-HpCDD	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,4,6,7,8-HpCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
1,2,3,4,7,8,9-HpCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
OCDD	ND		10		pg/g		03/11/17 10:19	03/22/17 23:45	1
OCDF	ND		10		pg/g		03/11/17 10:19	03/22/17 23:45	1
Total TCDD	ND		1.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
Total TCDF	ND		1.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
Total PeCDD	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
Total PeCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
Total HxCDD	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
Total HxCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
Total HpCDD	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
Total HpCDF	ND		5.0		pg/g		03/11/17 10:19	03/22/17 23:45	1
	140	440							

				F 3 · 3			-
	MB	MB					
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	80		40 - 135		03/11/17 10:19	03/22/17 23:45	1
13C-2,3,7,8-TCDF	76		40 - 135		03/11/17 10:19	03/22/17 23:45	1
13C-1,2,3,7,8-PeCDD	84	•	40 - 135		03/11/17 10:19	03/22/17 23:45	1
13C-1,2,3,7,8-PeCDF	78		40 - 135		03/11/17 10:19	03/22/17 23:45	1
13C-1,2,3,6,7,8-HxCDD	87		40 - 135		03/11/17 10:19	03/22/17 23:45	1
13C-1,2,3,4,7,8-HxCDF	83		40 - 135		03/11/17 10:19	03/22/17 23:45	1
13C-1 2 3 4 6 7 8-HnCDD	94		40 135		03/11/17 10:19	03/22/17 23:45	

TestAmerica Spokane

Page 30 of 59

3/29/2017

TestAmerica Job ID: 590-5615-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

MB MB

Lab Sample ID: MB 320-154485/1-A

Matrix: Solid

Isotope Dilution

13C-OCDD

Analyte

2,3,7,8-TCDD

2,3,7,8-TCDF

1,2,3,7,8-PeCDD

1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

1,2,3,7,8,9-HxCDD

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF

2,3,4,6,7,8-HxCDF

1,2,3,4,6,7,8-HpCDD

1,2,3,4,6,7,8-HpCDF

Analysis Batch: 156296

13C-1,2,3,4,6,7,8-HpCDF

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 154485

Analyzed Dil Fac

%Recovery Qualifier Limits Prepared 92 40 - 135 03/11/17 10:19 03/22/17 23:45 89 40 - 135 03/11/17 10:19 03/22/17 23:45

Unit

pg/g

LCS LCS

19.3

18.9

98.4

98.7

98.2

96.3

97.6

90.5

101

98.8

98.9

Result Qualifier

Lab Sample ID: LCS 320-154485/2-A

Matrix: Solid

Analysis Batch: 156296

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 154485

%Rec. %Rec Limits 77 - 130 97 94 79 - 137 79 - 134

pg/g 98 pg/g pg/g 99 81 - 134 pg/g 98 76 - 132 96 65 - 144pg/g

D

98 73 - 147 pg/g 91 80 - 143 pg/g 101 72 - 140 pg/g 99 63 - 152 pg/g

99

81 - 137

96.9 pg/g 97 72 - 152 101 101 72 - 151pg/g 98.8 86 - 134 pg/g 99

pg/g

1,2,3,4,7,8,9-HpCDF 100 99.9 pg/g 100 79 - 139 OCDD 200 199 100 80 - 137 pg/g 200 189 95 75 - 141 pg/g

Spike

Added

20.0

20.0

100

100

100

100

100

100

100

100

100

100

100

100

OCDF

LCS LCS

Isotope Dilution	%Recovery Qualifier	Limits
13C-2,3,7,8-TCDD	78	40 - 135
13C-2,3,7,8-TCDF	74	40 - 135
13C-1,2,3,7,8-PeCDD	83	40 - 135
13C-1,2,3,7,8-PeCDF	79	40 - 135
13C-1,2,3,6,7,8-HxCDD	89	40 - 135
13C-1,2,3,4,7,8-HxCDF	83	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	95	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	91	40 - 135
13C-OCDD	90	40 - 135

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 156296

Lab Sample ID: LCSD 320-154485/3-A

Prep Type: Total/NA **Prep Batch: 154485**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	20.0	19.3		pg/g		97	77 - 130	0	20
2,3,7,8-TCDF	20.0	19.1		pg/g		95	79 - 137	1	20
1,2,3,7,8-PeCDD	100	99.4		pg/g		99	79 - 134	1	20
1,2,3,7,8-PeCDF	100	96.3		pg/g		96	81 - 134	2	20
2,3,4,7,8-PeCDF	100	96.5		pg/g		97	76 - 132	2	20
1,2,3,4,7,8-HxCDD	100	95.1		pg/g		95	65 - 144	1	20
1,2,3,6,7,8-HxCDD	100	96.9		pg/g		97	73 - 147	1	20

TestAmerica Spokane

Page 31 of 59

3/29/2017

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-154485/3-A

Matrix: Solid

Analysis Batch: 156296

Client Sample ID: Lab Control Sample Dup

Prep Type	: Total/NA
Prep Bato	h: 15448
%Rec	RPI

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3,7,8,9-HxCDD	100	90.2		pg/g		90	80 - 143	0	20
1,2,3,4,7,8-HxCDF	100	101		pg/g		101	72 - 140	0	20
1,2,3,6,7,8-HxCDF	100	98.3		pg/g		98	63 - 152	0	20
1,2,3,7,8,9-HxCDF	100	97.1		pg/g		97	72 - 152	0	20
2,3,4,6,7,8-HxCDF	100	99.8		pg/g		100	72 - 151	1	20
1,2,3,4,6,7,8-HpCDD	100	100		pg/g		100	86 - 134	1	20
1,2,3,4,6,7,8-HpCDF	100	101		pg/g		101	81 - 137	2	20
1,2,3,4,7,8,9-HpCDF	100	101		pg/g		101	79 - 139	1	20
OCDD	200	199		pg/g		100	80 - 137	0	20
OCDF	200	190		pg/g		95	75 - 141	0	20

1	CSD	LCSD	

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	82		40 - 135
13C-2,3,7,8-TCDF	78		40 - 135
13C-1,2,3,7,8-PeCDD	85		40 - 135
13C-1,2,3,7,8-PeCDF	83		40 - 135
13C-1,2,3,6,7,8-HxCDD	94		40 - 135
13C-1,2,3,4,7,8-HxCDF	87		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	99		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	96		40 - 135
13C-OCDD	96		40 - 135

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-2

Matrix: Solid

Date Collected: 03/01/17 10:30 Date Received: 03/03/17 16:15

Client Sample ID: HA-3A (6-12)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Lab Sample ID: 590-5615-2 Client Sample ID: HA-3A (6-12)

Date Collected: 03/01/17 10:30 Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 56.5

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	8290			10.04 g	20000 uL	154207	03/09/17 16:55	ERW	TAL SAC
l	Total/NA	Analysis	8290A		1			155581	03/18/17 12:54	SMA	TAL SAC

Client Sample ID: HA-4A (6-12)

Lab Sample ID: 590-5615-5 Date Collected: 03/01/17 09:55 **Matrix: Solid**

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-4A (6-12) Lab Sample ID: 590-5615-5

Date Collected: 03/01/17 09:55 Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 83.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.94 g	741 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155581	03/18/17 13:40	SMA	TAL SAC

Client Sample ID: HA-6A (6-12) Lab Sample ID: 590-5615-7

Date Collected: 03/01/17 11:40

Matrix: Solid Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC	

Client Sample ID: HA-6A (6-12) Lab Sample ID: 590-5615-7

Date Collected: 03/01/17 11:40 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 91.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.19 g	310 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155581	03/18/17 14:26	SMA	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-11A (6-12)

Date Collected: 03/01/17 14:45 Date Received: 03/03/17 16:15 Lab Sample ID: 590-5615-9

Matrix: Solid

Batch Dil Initial Batch Batch Final **Prepared** Number **Prep Type** Type Method Run **Factor Amount Amount** or Analyzed **Analyst** Lab Total/NA Analysis D 2216 154871 03/14/17 14:00 JCB TAL SAC

Client Sample ID: HA-11A (6-12)

Lab Sample ID: 590-5615-9

Date Collected: 03/01/17 14:45 Date Received: 03/03/17 16:15 Matrix: Solid
Percent Solids: 73.5

Dil Initial Batch **Batch** Final **Batch Prepared** Prep Type Type Method Run **Factor** Amount Amount Number or Analyzed Lab Analyst 8290 154207 TAL SAC Total/NA Prep 10.05 g 80 uL 03/09/17 16:55 FRW Total/NA Analysis 8290A 1 155581 03/18/17 15:12 SMA TAL SAC

Client Sample ID: HA-13A (6-12)

Lab Sample ID: 590-5615-11

Date Collected: 03/01/17 12:55

Matrix: Solid

Date Received: 03/03/17 16:15

Batch Batch Dil Initial Final **Batch** Prepared Method Run Factor Amount Amount Number or Analyzed **Prep Type** Type **Analyst** Lab 154871 03/14/17 14:00 JCB Total/NA Analysis D 2216 TAL SAC

Client Sample ID: HA-13A (6-12)

Lab Sample ID: 590-5615-11

Date Collected: 03/01/17 12:55 Date Received: 03/03/17 16:15 Matrix: Solid
Percent Solids: 84.6

TAL SAC

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed Analyst Lab Prep Total/NA 8290 10.04 g 33.3 uL 154207 03/09/17 16:55 **ERW** TAL SAC

Client Sample ID: HA-17A (6-12)

Lab Sample ID: 590-5615-13

1

Date Collected: 03/01/17 12:10

Analysis

Total/NA

8290A

Matrix: Solid

03/18/17 15:58 SMA

155581

Date Received: 03/03/17 16:15

Dil Initial Final Batch Batch Batch **Prepared** Prep Type Method Amount Amount Number or Analyzed Type Run **Factor** Analyst Lab Total/NA Analysis D 2216 154871 03/14/17 14:00 JCB TAL SAC

Client Sample ID: HA-17A (6-12)

Lab Sample ID: 590-5615-13

Date Collected: 03/01/17 12:10

Matrix: Solid

Date Received: 03/03/17 16:15 Percent Solids: 67.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	8290			10.35 g	20 uL	154207	03/09/17 16:55	ERW	TAL SAC	
Total/NA	Analysis	8290A		1			155581	03/18/17 16:44	SMA	TAL SAC	

TestAmerica Job ID: 590-5615-1

Lab Sample ID: 590-5615-15

Client Sample ID: HA-20A (6-12)

Date Collected: 03/01/17 15:00

Matrix: Solid

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-20A (6-12)

Lab Sample ID: 590-5615-15

Date Collected: 03/01/17 15:00 Date Received: 03/03/17 16:15 במט סמוווףופ וט. סשט-סטוס-וס Matrix: Solid

Percent Solids: 66.6

Batch Dil Initial Final Batch Batch Prepared Method Number **Prep Type** Type Run **Factor** Amount **Amount** or Analyzed Lab Analyst Prep 8290 Total/NA 10.12 g 154207 03/09/17 16:55 ERW TAL SAC 74 uL Total/NA Analysis 8290A 155582 03/18/17 21:05 SMA TAL SAC

Client Sample ID: HA-25A (6-12)

Lab Sample ID: 590-5615-17

Date Collected: 03/01/17 16:05

Matrix: Solid

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-25A (6-12)

Lab Sample ID: 590-5615-17

Date Collected: 03/01/17 16:05

Matrix: Solid

Date Received: 03/03/17 16:15

Percent Solids: 83.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.68 g	74 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155582	03/18/17 21:51	SMA	TAL SAC

Client Sample ID: HA-39 (0-6) Lab Sample ID: 590-5615-19

Date Collected: 03/01/17 13:30

Matrix: Solid

Date Received: 03/03/17 16:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-39 (0-6) Lab Sample ID: 590-5615-19

Date Collected: 03/01/17 13:30
Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 80.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.82 g	26 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	82904		1			155582	03/18/17 22:37	SMA	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-40 (0-6) Lab Sample ID: 590-5615-22

Date Collected: 03/01/17 14:10 **Matrix: Solid**

Date Received: 03/03/17 16:15

Batch Dil Initial Final Batch Batch Prepared Prep Type Type Method Run **Factor Amount** Amount Number or Analyzed Analyst Total/NA Analysis D 2216 154871 03/14/17 14:00 JCB TAL SAC

Client Sample ID: HA-40 (0-6) Lab Sample ID: 590-5615-22

Date Collected: 03/01/17 14:10

Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 67.9

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.09 g	286 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155582	03/18/17 23:23	SMA	TAL SAC

Client Sample ID: HA-41 (0-6) Lab Sample ID: 590-5615-25 **Matrix: Solid**

Date Collected: 03/01/17 14:25

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-41 (0-6) Lab Sample ID: 590-5615-25

Date Collected: 03/01/17 14:25 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 87.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.34 g	154 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155582	03/19/17 00:09	SMA	TAL SAC

Client Sample ID: HA-42 (0-6) Lab Sample ID: 590-5615-28

Date Collected: 03/01/17 12:30

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-42 (0-6) Lab Sample ID: 590-5615-28

Date Collected: 03/01/17 12:30

Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 84.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.00 g	500 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155582	03/19/17 00:55	SMA	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-43 (0-6) Lab Sample ID: 590-5615-31 Date Collected: 03/01/17 09:30

Matrix: Solid

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216					154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-43 (0-6) Lab Sample ID: 590-5615-31

Date Collected: 03/01/17 09:30

Matrix: Solid

Date Received: 03/03/17 16:15 Percent Solids: 91.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.08 g	667 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155582	03/19/17 01:41	SMA	TAL SAC

Client Sample ID: HA-44 (0-6) Lab Sample ID: 590-5615-34

Date Collected: 03/01/17 09:50

Matrix: Solid

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-44 (0-6) Lab Sample ID: 590-5615-34

Date Collected: 03/01/17 09:50 Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 64.9

Dil Batch Batch Initial Final Batch Prepared **Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Prep 8290 9.63 g 1000 uL 154207 03/09/17 16:55 ERW TAL SAC Total/NA 8290A 155582 03/19/17 02:28 SMA TAL SAC Analysis 1

Client Sample ID: HA-45 (0-6) Lab Sample ID: 590-5615-37

Date Collected: 03/01/17 10:25

Matrix: Solid

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154871	03/14/17 14:00	JCB	TAL SAC

Client Sample ID: HA-45 (0-6) Lab Sample ID: 590-5615-37

Date Collected: 03/01/17 10:25 Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 79.8

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Type Method **Amount Amount** Number Run **Factor** or Analyzed Analyst Lab Total/NA Prep 8290 9.90 g 741 uL 154207 03/09/17 16:55 ERW TAL SAC Total/NA Analysis 8290A 155582 03/19/17 03:14 SMA TAL SAC 1

TestAmerica Spokane

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-46 (0-6) Lab Sample ID: 590-5615-40 Date Collected: 03/01/17 11:00

Matrix: Solid

Date Received: 03/03/17 16:15

Batch Dil Initial Final Batch Batch **Prepared Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed **Analyst** Total/NA Analysis D 2216 154871 03/14/17 14:00 JCB TAL SAC

Client Sample ID: HA-46 (0-6) Lab Sample ID: 590-5615-40

Date Collected: 03/01/17 11:00 Matrix: Solid

Date Received: 03/03/17 16:15 Percent Solids: 72.9

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.14 g	20 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155583	03/19/17 07:34	SMA	TAL SAC

Client Sample ID: HA-47 (0-6) Lab Sample ID: 590-5615-43

Date Collected: 03/01/17 11:00 Matrix: Solid

Date Received: 03/03/17 16:15

Batch Batch Dil Initial Final **Batch** Prepared Method Run Factor Amount Number or Analyzed **Prep Type** Type Amount **Analyst** Lab 03/14/17 14:00 154871 JCB Total/NA Analysis D 2216 TAL SAC

Client Sample ID: HA-47 (0-6) Lab Sample ID: 590-5615-43

Date Collected: 03/01/17 11:00 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 70.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.10 g	20 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155583	03/19/17 08:20	SMA	TAL SAC

Client Sample ID: HA-48 (0-6) Lab Sample ID: 590-5615-46

Date Collected: 03/01/17 11:20 Matrix: Solid Date Received: 03/03/17 16:15

Dil Initial Final Batch Batch **Batch Prepared** Prep Type Method Amount Amount Number or Analyzed Type Run **Factor** Analyst Lab 03/14/17 14:00 JCB Total/NA Analysis D 2216 154871 TAL SAC

Client Sample ID: HA-48 (0-6) Lab Sample ID: 590-5615-46

Date Collected: 03/01/17 11:20 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 68.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.62 g	20 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155583	03/19/17 09:07	SMA	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-49 (0-6) Lab Sample ID: 590-5615-49

Matrix: Solid

Date Collected: 03/01/17 11:30 Date Received: 03/03/17 16:15

Batch Dil Initial Final Batch Batch **Prepared** Number **Prep Type** Type Method Run **Factor Amount Amount** or Analyzed **Analyst** Lab Total/NA Analysis D 2216 154871 03/14/17 14:00 JCB TAL SAC

Client Sample ID: HA-49 (0-6) Lab Sample ID: 590-5615-49

Date Collected: 03/01/17 11:30 Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 92.2

_	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.79 g	222 uL	154207	03/09/17 16:55	ERW	TAL SAC
Total/NA	Analysis	8290A		1			155583	03/19/17 09:53	SMA	TAL SAC

Client Sample ID: HA-50 (0-6) Lab Sample ID: 590-5615-52 **Matrix: Solid**

Date Collected: 03/01/17 11:55 Date Received: 03/03/17 16:15

Batch Batch Dil Initial Final **Batch** Prepared Method Run Factor Amount Number or Analyzed **Prep Type** Type Amount **Analyst** Lab 154874 03/14/17 14:16 JCB Total/NA Analysis D 2216 TAL SAC

Client Sample ID: HA-50 (0-6) Lab Sample ID: 590-5615-52 Date Collected: 03/01/17 11:55 **Matrix: Solid** Percent Solids: 92.7

Date Received: 03/03/17 16:15

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Prep 8290 9.85 g 20 uL 154207 03/09/17 16:55 ERW TAL SAC Total/NA 8290A 155583 03/19/17 10:39 SMA TAL SAC Analysis 1

Client Sample ID: HA-51 (0-6) Lab Sample ID: 590-5615-55

Date Collected: 03/01/17 14:50 Date Received: 03/03/17 16:15

Dil Initial Final **Batch** Batch Batch **Prepared** Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab

Total/NA Analysis D 2216 154874 03/14/17 14:16 JCB TAL SAC

Client Sample ID: HA-51 (0-6) Lab Sample ID: 590-5615-55 Date Collected: 03/01/17 14:50 **Matrix: Solid**

Date Received: 03/03/17 16:15 Percent Solids: 57.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.03 g	286 uL	154485	03/11/17 10:19	ERW	TAL SAC
Total/NA	Analysis	8290A		1			156300	03/23/17 14:13	ALM	TAL SAC

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-52 (0-6)

Date Collected: 03/01/17 15:15 Date Received: 03/03/17 16:15

Lab Sample ID: 590-5615-58

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Type Method Run **Factor Amount Amount** Number or Analyzed Analyst Total/NA Analysis D 2216 154874 03/14/17 14:16 JCB TAL SAC

Client Sample ID: HA-52 (0-6) Lab Sample ID: 590-5615-58

Date Received: 03/03/17 16:15

Date Collected: 03/01/17 15:15 Matrix: Solid Percent Solids: 60.0

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.25 g	66.7 uL	154485	03/11/17 10:19	ERW	TAL SAC
Total/NA	Analysis	8290A		1			156300	03/23/17 14:59	ALM	TAL SAC

Client Sample ID: HA-53 (0-6) Lab Sample ID: 590-5615-61 **Matrix: Solid**

Date Collected: 03/01/17 15:20

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			154874	03/14/17 14:16	JCB	TAL SAC

Client Sample ID: HA-53 (0-6) Lab Sample ID: 590-5615-61 Date Collected: 03/01/17 15:20 **Matrix: Solid**

Date Received: 03/03/17 16:15 Percent Solids: 56.5

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.06 g	286 uL	154485	03/11/17 10:19	ERW	TAL SAC
Total/NA	Analysis	82904		1			156300	03/23/17 15:45	AI M	TAL SAC

Client Sample ID: HA-54 (0-6) Lab Sample ID: 590-5615-64

Date Collected: 03/01/17 15:40

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			11006	03/08/17 14:14	NMI	TAL SPK

Client Sample ID: HA-54 (0-6) Lab Sample ID: 590-5615-64

Date Collected: 03/01/17 15:40 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 62.8

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Type Method **Amount Amount** Number Run **Factor** or Analyzed Analyst Lab Total/NA Prep 3550C 15.60 g 2 mL 11067 03/14/17 10:09 NMI TAL SPK Total/NA Analysis 8270D SIM 11062 03/14/17 15:27 NMI TAL SPK

1

Lab Sample ID: 590-5615-67

TestAmerica Job ID: 590-5615-1

Matrix: Solid

Date Collected: 03/01/17 16:00 Date Received: 03/03/17 16:15

Client Sample ID: HA-55 (0-6)

	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
l	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
ı	Total/NA	Analysis	Moisture		1			11006	03/08/17 14:14	NMI	TAL SPK

Client Sample ID: HA-55 (0-6) Lab Sample ID: 590-5615-67

Date Collected: 03/01/17 16:00 Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 72.4

Draw Turns	Batch	Batch	Dun	Dil	Initial	Final	Batch	Prepared	Amalust	Lab
Prep Type Total/NA	Type Prep	Method 3550C	Run	Factor	15.84 g	Amount 2 mL	Number 11067	or Analyzed 03/14/17 10:09	Analyst NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			11062	03/14/17 15:54	NMI	TAL SPK

Client Sample ID: HA-56 (0-6) Lab Sample ID: 590-5615-70 Date Collected: 03/01/17 15:35 **Matrix: Solid**

Date Received: 03/03/17 16:15

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method Run Factor Amount Number or Analyzed Type Amount **Analyst** Lab 11006 03/08/17 14:14 NMI Total/NA Analysis TAL SPK Moisture

Client Sample ID: HA-56 (0-6) Lab Sample ID: 590-5615-70 Date Collected: 03/01/17 15:35 **Matrix: Solid**

Date Received: 03/03/17 16:15 Percent Solids: 76.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.92 g	2 mL	11067	03/14/17 10:09	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			11062	03/14/17 16:20	NMI	TAL SPK

Client Sample ID: HA-57 (0-6) Lab Sample ID: 590-5615-73

Date Collected: 03/01/17 13:30 Date Received: 03/03/17 16:15

Dil Initial Final Batch Batch Batch **Prepared** Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab

03/08/17 14:14 NMI Total/NA Analysis Moisture 11006 TAL SPK

Client Sample ID: HA-57 (0-6) Lab Sample ID: 590-5615-73

Date Collected: 03/01/17 13:30 Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 79.1

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method **Amount Amount** Number Type Run **Factor** or Analyzed Analyst Lab Total/NA 3550C 15.76 g 2 mL 11067 03/14/17 10:09 NMI TAL SPK Prep Total/NA Analysis 8270D SIM 10 11076 03/15/17 09:37 NMI TAL SPK

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Lab Sample ID: 590-5615-76

Matrix: Solid

Matrix: Solid

Date Collected: 03/01/17 13:50 Date Received: 03/03/17 16:15

Client Sample ID: HA-58 (0-6)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			11006	03/08/17 14:14	NMI	TAL SPK

Client Sample ID: HA-58 (0-6) Lab Sample ID: 590-5615-76

Date Collected: 03/01/17 13:50

Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 84.9

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.04 g	2 mL	11067	03/14/17 10:09	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		100			11076	03/15/17 10:03	NMI	TAL SPK

Client Sample ID: HA-59 (0-6) Lab Sample ID: 590-5615-79

Date Collected: 03/01/17 13:45

Date Received: 03/03/17 16:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			11006	03/08/17 14:14	NMI	TAL SPK

Client Sample ID: HA-59 (0-6) Lab Sample ID: 590-5615-79

Date Collected: 03/01/17 13:45 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 77.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.25 g	2 mL	11067	03/14/17 10:09	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		10			11076	03/15/17 10:30	NMI	TAL SPK

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Spokane

Certification Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Laboratory: TestAmerica Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
Washington	State Pro	gram	10	C569	01-06-18
cu · · · · ·					
The following analyte	s are included in this repo	rt. but certification is i	not offered by the ac	overning authority:	
Analysis Method	es are included in this repo Prep Method	rt, but certification is i Matrix	not offered by the go Analyt	,	
• ,	•		Analyt	,	

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-055	12-18-17
Arizona	State Program	9	AZ0708	08-11-17
Arkansas DEQ	State Program	6	88-0691	06-17-17
California	State Program	9	2897	01-31-18
Colorado	State Program	8	CA00044	08-31-17
Connecticut	State Program	1	PH-0691	06-30-17
Florida	NELAP	4	E87570	06-30-17
Hawaii	State Program	9	N/A	01-29-18
Illinois	NELAP	5	200060	03-17-18
Kansas	NELAP	7	E-10375	10-31-17
L-A-B	DoD ELAP		L2468	01-20-18
Louisiana	NELAP	6	30612	06-30-17
Maine	State Program	1	CA0004	04-18-18
Michigan	State Program	5	9947	01-31-18
Nevada	State Program	9	CA00044	07-31-17
New Jersey	NELAP	2	CA005	06-30-17
New York	NELAP	2	11666	04-01-17 *
Oregon	NELAP	10	4040	01-28-18
Pennsylvania	NELAP	3	68-01272	03-31-17 *
Texas	NELAP	6	T104704399	07-31-17
US Fish & Wildlife	Federal		LE148388-0	10-31-17
USDA	Federal		P330-11-00436	12-30-17
USEPA UCMR	Federal	1	CA00044	11-06-18
Utah	NELAP	8	CA00044	02-28-18
Virginia	NELAP	3	460278	03-14-18
Washington	State Program	10	C581	05-05-17
West Virginia (DW)	State Program	3	9930C	12-31-17
Wyoming	State Program	8	8TMS-L	01-29-17 *

4

9

11

12

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Method	Method Description	Protocol	Laboratory
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC
Moisture	Percent Moisture	EPA	TAL SPK

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

5

6

7

8

9

10

11

13

TestAmerica Spokane

11922 East 1st Ave	
--------------------	--

Spokane, WA 99206 Phone (509) 924-9200 Fav (509) 924-9290

Chain of Custody

	 ***************************************	HIII III HIII IIII
IIIII	MAMMA	
111111		
		This him man
IIIIII	I THE PERSON SERVICE	A - day

THE LEADER IN ENVIRONMENTAL TESTING

Client Information	Sampler AJP	15W	R	LA			No		COC No. 590-2353-810.1
Client Contact Scott Lathen	Phone: 425-2	293.4	560	E	00.56	15 Chain of Custody			Page: Page 1 of 10
Company:	10.0	1-1-	300	1,0	190-50		_		Job #:
GeoEngineers Inc	Due Date Request	ed:	_		1	Analysis	Requested		Preservation Codes:
523 East Second Ave	TAT Demonstrated (d.	SID)		100	4		1 1 100	A - HCL M - Hexane
Spokane	TAT Requested (da	CTN	Need	enough	+1	8290A M			B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: WA, 99202	1	215	time to	o run	100	88 4			D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone: 509-251-5239(Tel)	PO#: Purchase Order	not require	1000	1	11	EPA SI			F - MeOH R - Na2S2O3 G - Arrichlor S - H2SO4
Email	WO#:	not require	·u		- 8				H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone
slathen@geoengineers.com Project Name:	Project #:				es or	827		S S	J - DI Water V - MCAA K - EDTA W - pH 4-5
Colville Post and Pole/0504-098-01	59001108				e (Y	8		containers	L - EDA Z - other (specify)
Site	SSOW#				amp	Forans EPA B		of cor	Other:
Sample Identification	Sample Date	Sample Time		Matrix (Wewater, Seaolid, O-wasteroll, BT=Tissue, A-Ali	Field Filtered Sample (Yes or	Dioxins /		Total Number	Special Instructions/Note:
1/1 - 1 - 12	><	><	Preserva	tion Code:	X			IX	
HA-3A (O-6)	3-1-17	1025	6	Solid	11				- Run selected
HA-3A(6-12)	1	1030	1	Solid		X			Sayles for thecked
4A-3A(12-18)		1035		Solid					analysis hold
HA-4A (0-6)		0950		Solid					remander for
HA-4A (6-12)		0955		Solid		X			possible follow-up
HA-4A(12-18)		1000		Solid					analysis
HA-6A(6-12)		1140		Solid		X			- Std TAts - although
4A-6A(12-18)		1142		Solid					need regults in time
HA-114(6-12)		1445		Solid	T	X			to make decision on
HA-11A-(12-18)		1447		Solid	11				follow up - without
11A-13A (6-12)	4	1255	11	Solid	11	X			exceeding held time
Possible Hazard Identification	-	110000	- 7V		S	ample Disposal (A fee may	be assessed if sam	ples are retaine	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant Pois	son B Unkn	own -	Radiological			Return To Client	Disposal By Lab		ive For Months
Deliverable Requested: I, II, IV, Other (specify)					S	pecial Instructions/QC Requi	rements:		
Empty Kit Relinquished by:		Date:			Time	a!	Method of Sh	ipment.	
Relinquished by:	Date/Time:	711	15-	Company		Received to	20/	3 3/17	1615 TA SIX
Relinquished by:	Date/Time:	1 (4		Company		Received by:		ater Time	Company
Relinquished by	Date/Time:			Company		Received by:	0	ate/Time.	Company
Custody Seals Intact: Custody Seal No.:						Cooler Temperature(s) *C and O	Other Remarks	1	

- 0 m 4 m 0 r m 0 5 t 5 6

TestAmerica Spokane

11922 East 1st Ave

Chain of Custody Record

Spokane, WA 99206
Phone (509) 924-9200 Fax (509) 924-9290

Client Information	Sampler Mo	15WF	3	Arrin	M: igton, R	ande	e E		Car	rier Tracking No(s):		COC No: 590-2353-8	10.2
Client Contact Scott Lathen	Phone: 425	293-9	560	E-Ma		ngton	@testame	ricainc.com				Page: Page 2 of 1	0
Company: GeoEngineers Inc	10-0	0-10-1						Analysis	Pomus	otod		Job #	
Address:	Due Date Request	ted: /+N			100		T	Allalysis	Reque	Steu	TT	Preservatio	n Codes:
523 East Second Ave	TAT Requested (d		1 15-1			1						A - HCL B - NaOH	M - Hexane N - None
Spokane State, Zip.	-STD-N	eld en	in time			82904	5					C - Zn Acetat D - Nitric Acid	P - Na2O4S
WA, 99202 Phone:	PO#	run do	la up			38	SIM					E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
509-251-5239(Tel)	Purchase Orde	r not require	d V		(0)	X	04.2					G - Amehlor H - Ascorbic	
Email: slathen@geoengineers.com	WO #:				No.	EPA	28			1111	9	J - Ice J - DI Water	U - Acetone V - MCAA
Project Name: Colville Post and Pole/0504-098-01	Project #: 59001108				(Yes	5		111			guitainos	K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#		_		ample D (Ye	Furans	EPA						
Sample Identification	Sample Date	Sample Time	Type (w	atrix wwater, resolld, raste/oil,	Field Filtered Sample (Yes or Perform MS/MSD (Yes or No)	Didring F.					o reducing		ial Instructions/Note:
		>	Preservation (XX				SIT				
HA-13A (12-18)	3-1-17	1300	G 8	olid									
HA-17A (6-12)	1	1210	1 8	iolid		X							
HA-17A(12-18)		1212	S	olid									
HA-20A (6-12)		1500	S	iolid		X							
HA-20A (12-18)		1505	S	olid									
HA-25A (6-12)		1605	S	Solid		X							
HA-25AC12-18)		160	S	Solid									
HA-39(0-6)		1330	S	olid		×							
44-39(6-12)		1335	S	Solid									
44-39 (12-18)		1340	S	Solid									
HA40(0-6)	V	1410	8	Solid		X							
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Planting	oison B Unkr	nown 🗀	Radiological		1	\square_R	Return To C	(A fee may lient s/QC Requi	Disp	essed if samples posal By Lab		ned longer to chive For	nan 1 month) Months
Empty Kit Relinquished by:		Date:			Time:				,	Method of Shipme	int		
Relinquished by:	3-3-/7	1615	_ Comp	any		Rece	X Day	ench	nto	Date/T	me: /14	- Most	5 JA April
Relinquished by:	Date/Time:	(6)	Comp	any		Rece	eived by	4		Date/T	inte	100	Company
Relinquished by:	Date/Time		Comp	any		Rece	sived by:			Date/T	ime:		Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Cool	er Temperati	ire(s) °C and C	ther Rema	rks: 1.3°	1.7	IROC	4

Page 47 of 59

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Phone (509) 924-9200 Fax (509) 924-9290									NVIRONMENTAL TESTIN
Client Information	Sampler: MJF	MITO Arring			Randee E	Carrier Tracking No(d:	COC No: 590-2353-810.3	
Scott Lathen	Phone: 425-2	93-9560	E-M ran		ngton@testamericainc.co	m		Page 3 of 10	
ompany SeoEngineers Inc					Analys	is Requested		Job#	
ddress: 23 East Second Ave	Due Date Requested	CTN		100		TITI		Preservation Cod	les:
ity;	TAT Requested (day)	s): 1 .	A	- 100				A - HCL B - NaOH	M - Hexane N - None
pokane tate, Zip:	STD-Need		e te		4			C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
/A, 99202	run			1	8190,			E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
none: 09-251-5239(Tel)	Po#: Purchase Order r	4			9			G - Amchlor	S-H2SO4
mail	WO#:	or required		- S	823 823			H - Ascorbic Acid I - Ice	T - TSP Dodecahydrat U - Acetone
athen@geoengineers.com roject Name:	Project#:			le (Yes or No	ш 69		lers lers	J - DI Water K - EDTA	V - MCAA W - pH 4-5
olville Post and Pole/0504-098-01	59001108			le (Y	EPA		containers	L-EDA	Z - other (specify)
ite:	SSOW#.			amp SD (V	Formar		ofco	Other:	
Sample Identification	Sample Date		Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=A tion Code:	Field Filtered Sample (Yes or Perform MS/MSD (Yes or No)	Proxim A		Total Number of		structions/Note:
111 1/2 (1 12)	31.0			XX			HY		
HA-40(6-12)		415 6	Solid	11					
HA-40 (12-18)		420 1	Solid						
44-41 (0-6)		1425	Solid		X				
4A-41 (6-12)		430	Solid						
44-41(12-18)		1435	Solid						
44-42(0-6)		1230	Solid		X				
44-42 (6-12)		1232	Solid						
4A-42 (12-18)		1234	Solid						
44-43(0-6)		0930	Solid		X				
4A-43(6-12)		0935	Solid						
ILA-43(12-18)		940	Solid						
Possible Hazard Identification				Sa	mple Disposal (A fee n	ay be assessed if samp	les are retair	ned longer than 1	month)
Non-Hazard Flammable Skin Irrita	ent Poison B Unknow	vn Radiological			Return To Client	Disposal By Lab	Arc	hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)				Sp	ecial Instructions/QC Rec	quirements;			
mpty Kit Relinquished by:		Date:		Time:		Method of Ship	ment /		
refinquished by	Date/Time: 3-3-7	1615	Company		Sheela	Horte Da	16/Time: 17	165	Company Am
Relinquished by:	Date/Time:	1612	Company		Received by:	Da	fe/Time:	140	Company
Relinquished by	Date/Time		Company	-	Received by:	Da	te/Time:	_	Company
Custody Seals Intact: Custody Seal No.:					Cooler Temperature(s) °C an				

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Phone (509) 924-9200 Fax (509) 924-9290	Canalar II	-	0	Date	776.6				Canal	- Transition Materia			IVIRONNENTAL TESTIS
Client Information	Sampler M5	MON Arringto			ington, F	Rande	ee E		Carrie	er Tracking No(s):		COC No: 590-2353-810.4	
Client Contact Scott Lathen	Phone: 4) E-	293-9	7/0	E-M		naton	Ataciam	ericainc.com				Page:	
Company:	1230	2131	000	ran	Jee.am	nyton	@lesian					Page 4 of 10 Job #	
GeoEngineers Inc					_	_		Analysis	Reques	ted			
Address 523 East Second Ave	Due Date Request	STD										Preservation Cod	
City	TAT Requested (d	iys):	1 1.	1	1 10	14						A - HCL B - NaOH	M - Hexane N - None
Spokane State, Zip:	STD-Nee	2 ence	g- tin	re to	100	8290A						C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
NA, 99202	run	- Jellon	5-40			22	SP					E - NaHSQ4	Q - Na2SO3
Phone: 509-251-5239(Tel)	PO#:		V		11		-					F - MeOH G - Amphior	R - Na2S2O3 S - H2SO4
mail:	Purchase Order	not require	a	_	- ON	EPA	824					H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acetone
slathen@geoengineers.com					S of	1	00				1 2	J - DI Water K - EDTA	V - MCAA W - pH 4-5
Project Name: Colville Post and Pole/0504-098-01	Project #: 59001108				(Ye	-	-				1 2	L-EDA	Z - other (specify)
Site:	SSOW#				-lale	3	EPA				Statistics	Other:	
					Sar	2	W				100		
			Sample	Matrix	Field Filtered Sample (Yes or Perform MS/MSD (Yes or No)	8					Total Mimber		
		Sample	Type (C=comp,	(W=water, S=solid,	d Fill	Dibxing	3		1 1 3		2		
Sample Identification	Sample Date	Time	G=grab)	O=waste/oil, BT=Tissue, A=Ai	Ped Fiel	B	DC				Tot	Special In	structions/Note:
		><	Preserva	tion Code:	XX		19/24						
HA-44 (0-6)	3-1-17	0950	6	Solid		X							
HA-44(6-12)		0955	1	Solid	1								
HA-44(12-18)		1000		Solid	11								
HA-45 (0-6)		1025		Solid		X							
HA-45(6-12)		1027		Solid		Ť		BIR					
4A-45(12-18)		1030	T E	Solid									
HA-46 (0-6)		1100		Solid		X							
HA-46 (6-12)		1105		Solid									
HA-46 (12-18)		1110		Solid									
44-47(0-6)		1100		Solid		X							
44-47 (6-12)	4	1102	1	Solid									
Possible Hazard Identification		1100	4		Si	ample	Disposi	al (A fee may	be asses	sed if sample	es are retai	ned longer than 1	month)
Non-Hazard Flammable Skin Irrita	ant Poison B Unkn	own -	Radiological				Return To			sal By Lab		hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Sr	pecial	Instruction	ns/QC Requir					
Empty Kit Relinquished by:		Date:			Time				, ,	Method of Shipm	nent:		
Relinquished by	Date/Time:	- 11	1	Company		Reci	gived by	10	ta	Date	The:	11 10	Company door
Colomistad for	3-3-/	1 16	1)	Componi		-		ula 1	year	1 3	11/1	165	Company
Relinquished by:	Date/Time:			Company		Reci	eived by	/	V	Date	THING.		Cumpany
Relinquished by:	Date/Time:			Company		Rec	eived by:			Date	/Time:		Company
Custody Seals Intact: Custody Seal No.:						Coo	ler Tempera	ture(s) °C and Ot	her Remark	S: 1 2C	1 7	CIROO4	V
Δ Yes Δ No										1.0	1. T	LEUM	

Page 49 of 59

TestAmerica Spokane

11922 East 1st Ave

Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TERRIFIE

Client Information	Sampler M5	PIJA	OR	Lab I Arrii	PM: ngton, F	Rande	e E		Carrier Track	ing No(s)		COC No: 590-2353-810.5	
Dient Contact Scott Lathen	Phone 425-2	93-95	60	E-Ma		ngton	@testamericair	ic.com				Page 5 of 10	
ompany. GeoEngineers Inc	., 0.0	-10 (0						No. To leave	equested			Job#	
address: 523 East Second Ave	Due Date Request	ed:CTN			166			T T	1 1	TIT		Preservation Cod	es:
City:	TAT Requested (d.	J(J)	1 1	1.	1 10	1		411	111	411		A - HCL B - NaOH	M - Hexane N - None
Spokane State, Zip:	STD-Nee	2 energy	gh time	e to	100	82504		44	111	111		C - Zn Acetale D - Nitric Acid	O - AsNaO2 P - Na2O4S
NA, 99202 Prone:	PO#	della	-40		-	100						E - NaHSO4 F - MeOH G - Amchlor	Q - Na2SO3 R - Na2S2O3 S - H2SO4
509-251-5239(Tel)	Purchase Order	not require	d ¹		No)	EPA	\$					H - Ascorbic Acid	T - TSP Dodecahydrate U - Acetone
slathen@geoengineers.com					Yes or or No)	-	Sim				510	J - DI Water K - EDTA	V - MCAA W - pH 4-5
Project Name: Colville Post and Pole/0504-098-01	Project #. 59001108				e (Ye	~	8270		111		containers	L - EDA	Z - other (specify)
Sile:	SSOW#:				Sample SD (Y	25	83			111	of cor	Other:	
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=waste/oli,	Field Filtered Sample (Perform MS/MSD (Yes	Phoring P	PCR				Total Number		
Sample Identification	Sample Date	Time		ation Code:	X	11-		1843			×	Special In	structions/Note:
HA-47(12-18)	3-1-17	1104	6	Solid	П								
HA-49(0-6)	1	1120	1	Solid		X							
HA-48(6-12)		1122		Solid							11/10		
4A-48(12-18)		1124		Solid									
HA-49(0-6)		1130		Solid		V							
HA-49(6-12)		1/35		Solid									
HA-49(12-18)		1140		Solid									
HA-50(0-6)		1155		Solid		X							
HA-50 Whi (6-12)		1200		Solid									
44-50(12-18)		1205		Solid									
HA-51/0-6)	4	1450	1	Solid		X							
Possible Hazard Identification			1 47		Sa	mple	Disposal (A f	ee may b	assessed i	f samples are		ed longer than 1	month)
Non-Hazard Flammable Skin Irritant Policy Po	oison B Unkn	own H	Radiologica		Sr		Return To Client Instructions/QC		Disposal By	Lab L	Arch	nive For	Months
Empty Kit Relinquished by:		Date:			Time		mon denombrace	rtequiler		d of Shipment			
Relinquished by:	Date/Time:			Company	i iiile.		aived by:		21	1	1	1	Company /
Relinquished by:	5-3-/	716	15	Company		Rece	Sived by.	ela	may	Date/Time	17	Ras	Company Company
Relinquished by	Date/Time:			Company		Rece	eived by:			Date/Time			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Cool	er Temperature(s)	°C and Other	Remarks:	3°, 1.	7	CIRCOY	1

59

ō

20

Page

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

ı	es	12	7	1		11	.1
*	99	4.5	*1		10		~
ш	-	200000					9000

Carrier Tracking No(s): Client Information Arrington, Randee E 590-2353-810.6 Client Contact: Page: Scott Lathen randee.arrington@testamericainc.com Page 6 of 10 Company GeoEngineers Inc. **Analysis Requested** Due Date Requested: 570 Address Preservation Codes: 523 East Second Ave A-HCL M - Hexane TAT Requested (days): 82904 B - NaOH N - None Spokane C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na204S State, Zip. E - NaHSO4 Q - Na2SO3 WA, 99202 R - Na2S2O3 F - MeOH CPA A G - Amchlor 5 - H2SO4 509-251-5239(Tel) Purchase Order not required T - TSP Dodecahydrate H - Ascorbic Acid U - Acetone J - DI Water V-MCAA Perform MS/MSD (Yes or No) slathen@geoengineers.com W-pH 4-5 K-EDTA Project # L-EDA Z - other (specify) Colville Post and Pole/0504-098-01 59001108 Other: SSOW# 0 Dioxin Number Matrix Sample (wewater, Type Sasolid, Total Sample (C=comp, O=waste/oil, Sample Identification Sample Date Time G=grab) BT=Tissue, A=Air Special Instructions/Note: Preservation Code: Solid Solid 1500 Solid Solid 1525 Solid Solid 1520 1522 Solid 1524 Solid 1540 Solid Solid Solid Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin Irritant Poison B Unknown Archive For Return To Client Disposal By Lab Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements Empty Kit Relinquished by Time: Date: Company Relinquished by Company Relinquished by: Date/Time: Received by: Date/Time Company Custody Seals Intact: Custody Seal No.: Cooler Temperature(s) "C and Other Remarks. A Yes A No

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206 **Chain of Custody Record**

TestAr	no	Driv	~/
100124	116	711	1
The state of the s	-		

Phone (509) 924-9200 Fax (509) 924-9290

Client Information	Sampler: MJF	15h	OR	Arri	PM: ington, i	Rand	ee E		Carrier Tracking	No(s):		COC No: 590-2353-810.7
Client Contact Scott Lathen	Phone: 425 -		7560	E-M		ingtor	@testa	mericainc.com				Page. Page 7 of 10
Company:	100	(0)	1000	1.50	1	- Igu	.6.001		naunated.			Job#:
GeoEngineers Inc	Due Date Requeste	d:/:m	_			I	II	Analysis R	equested		-	Preservation Codes:
523 East Second Ave	TAT Requested (da	510	0		- 100	8750A						A - HCL M - Hexane
Spokane	STD-Nee	d enough	ah time	te	1 83	376		1111				B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip; NA, 99202		Solla) 1		1 10			1111			- 1	D - Nitric Acid P - Na2O4S E - NaHSO4 O - Na2SO3
Phone:	PO#:		110		18	EPA	1					F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
509-251-5239(Tel)	Purchase Order Wo #:	not require	d		or No)							H - Ascorbic Acid T - TSP Dodecahydrate L - Ice U - Acetone
slathen@geoengineers.com Project Name:	Droinet #				Yes or	1	2				siers	J - DI Water V - MCAA K - EDTA W - pH 4-5
Colville Post and Pole/0504-098-01	Project #: 59001108				le (Y	1	82	1 1 1 1			nta	L - EDA Z - other (specify)
Site	ssow#				Samp ISD (Y	U	-				of co	Other:
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=waste/oil,	Field Filtered Sample (Dioxide	PCPs				Total Number	
Sample Identification	Sample Date	Time	G=grab) a		(c) 17 g	11-	1		100		£	Special Instructions/Note:
HA-55 (O-6)	3-1-17	1600	1	Solid	m	-					\triangle	
111 50/10	3-1-11		6	Solid	+	+	X		+++			
HA-55(6-12)		1602	1		+	+	-		-			
HA-55 (12-18)		1604		Solid	1	-						
HA-56(0-6)		1535		Solid			X					
HA-56(6-12)		1540		Solid								
144-56/12-18)		1545		Solid								
HA-5710-6)		1330		Solid			X					
HA-57 (6-12)		/335		Solid								
44-57(1)-18)		1340		Solid								
114-58(0-1)		1350		Solid	11	1	V					
114-58/4-12)		1355		Solid	11	+	1					
Possible Hazard Identification	48		cir	-	Si	ampl	e Dispo	sal (A fee may b	e assessed if sa	amples are reta	aine	ed longer than 1 month)
	Poison B Unkn	own \square_F	Radiological					To Client	Disposal By La	nb \square_A		ive For Months
Deliverable Requested: I, II, III, IV, Other (specify)					S	pecia	Instruc	tions/QC Requirer	nents:			
Empty Kit Relinquished by:		Date:			Time	1			/ Method of	Shipment.		
Relinquished by	3-3-/	7 16	15	Company		Rec	selved by:	bulad	note	Date/Time	1	11015 Company
Relinquished by:	Date/Time:	1 16		Сотрапу		Rec	eived by:	aun /		Date/Tune:		Company
Relinquished by:	Date/Time:			Company		Rec	eived by:		7	Date/Time:		Company
Custody Seals Intact: Custody Seal No.:						10-	das Tem-	produce/c) 9C and City	Demarke	0		
Δ Yes Δ No						000	er remp	erature(s) °C and Othe	3 /.	7C II	20	04

Page 52 of 59

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Spokane

11922 East 1st Ave

Spokane, WA 99206

Chain of Custody Record

Type (C=comp. of G=grab) BT	0		EPA 8290A		Analysis		uested			Page: Page 8 of 10 Job #: Preservation Coo	les:
Due Date Requested: Sac Engineers Inc Address: Date Date Requested: TAT Requested (days): Size E. Zip. NA, 99202 Pone: Doy-251-5239(Tel) Email: Slathen@geoengineers.com Project Name: Colville Post and Pole/0504-098-01 Site: Sample Date Sample Type (C=comp, or G=grab) error Preservation HA-58 (12-18) TAT Requested (days): SID-New error Fun folian- A Project A Purchase Order not required Wo #: Sample Type (C=comp, or G=grab) error Preservation Address: Sample Date Type (C=comp, or G=grab) error Preservation Address: Sample Date Type (Address: Sample Date Type (C=comp, or G=grab) error Preservation	0	No)	\$250A		7.5 M.J. U		uested			Job#: Preservation Cod	les:
Due Date Requested: STD TAT Requested (days): Spokane State, Zip. NA, 99202 Phone: 509-251-5239(Tel) Email: Slathen@geoengineers.com Project Name. Coliville Post and Pole/0504-098-01 Sample Identification Sample Date Sample Type (C=comp, or G=grab) streen Type Type Type Type Type Type Type Type		s or No) No)								Action of the second second	les:
TAT Requested (days): Spokane State, Zip: NA, 99202 Phone: 509-251-5239(Tel) Email: Slathen@geoengineers.com Project Name: Colville Post and Pole/0504-098-01 Site: Sample Identification Sample Date Time Gegrab) BT- Preservation HA-58 (12-18) 13-1-17 1400 G 1345		s or No) No)							100	A MOS	
Pone		s or No) No)			11	1 1		1 1 1		A - HCL B - NaOH	M - Hexane N - None
Pone		s or No) No)	EPA	11		1 1				C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
Purchase Order not required Purchase Order not required Wo #:		s or No) No)	W							E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
Sample S		S or No				11		1 1 1		G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Project Name: Colville Post and Pole/0504-098-01 Sample Sample Type G=grab Br= Preservation HA-58(12-18) 3-1-17 1400 G HA-59(0-6) 1345 1		10	y	214				1 1		I - Ice J - Di Water	U - Acetone V - MCAA
Sample Sample Sample Type (C=comp, or G=grab) BT		Ye or	3	9					siner	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Type (C=comp. of G=grab) BT		(Yes	Svoury	£7.8				+111	containe	Other:	
Type (C=comp. of G=grab) BT		MSD							o.		
HA-58(12-18) 3-1-17 1400 G		Field Filtered Sample (Perform MS/MSD (Yes	Dioxins	rcrs					Total Number	Special Ir	nstructions/Note:
HA-59(0-6) 1 1345 1		\times					1 500		\perp X		
HA-59(0-6) 1345 1	Solid										
	Solid										
HA-59 (au 6-12) 1347	Solid										
HA-59 (au 6-12) 1347 HA-59 (12-18) 1350 +	Solid										
	Solid										
	Solid										
	Solid					11	11		- 19		
	Solid			11	+++	11	\pm				
	Solid										
	Solid			++		+	++				
	Solid	+		++			++				
Possible Hazard Identification	-	Sa	nple E	isposal (A fee ma	y be as	sessed if	samples are	retain	ed longer than 1	month)
Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological		1	Rel	um To Cli	ent	D	sposal By	Lab [\beth_{Archi}	ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)		Sp	ecial In	structions	/QC Requ	iremen	is:				
Empty Kit Relinquished by: Date:		Time:				1	Method	of Shipment:	1		
Relinquished by Max Peterston 3-3 17 1615 Con	ompany		Receive	1 by	000	X	The	Date/Time:	114	1615	THE HOLE
	ompany		Receiv	ed by:	u,	7"	9	Date I imp			Company
Relinquished by: Date/Time: Co	ompany										
Custody Seals Intact: Custody Seal No.:			Receiv	d by:	_			Date/Time;			Company

TestAmerica Spokane

11922 East 1st Ave

Spokane, WA 99206

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Phone (509) 924-9200 Fax (509) 924-9290														THE LEADER IN ENVIR	UNMENTAL TESTING
Client Information (Sub Contract Lab)	Sampler,			Lab P Arrin	M igton, R	Rande	e E			Carrier Tra	cking No(s):			COC No: 590-2515.1	
Client Contact Shipping/Receiving	Phone:			E-Ma rand	ee.arrir			americainc.c	om	State of Or Washing				Page Page 1 of 3	
Company TestAmerica Laboratories, Inc.								d (See note): Vashington						Job # 590-5615-1	
Address	Due Date Requeste	d:						A					7	Preservation Codes:	
880 Riverside Parkway, ,	3/16/2017 TAT Requested (da	vel:						Analy	SIS Re	quested			\dashv		- Hexane
West Sacramento State, Zip.	TAT Requested (da	y=).												C - Zn Acetate O -	- None - AsNaO2 - Na2O4S
CA, 95605					100									E - NaHSO4 Q -	- Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO#					Н	tals							G - Amchlor S -	- Na2S2O3 - H2SO4 - TSP Dodecahydrate
Email:	WO#				Sample (Yes or No)		s & Totals							1 - Ice U - J - DI Water V -	- Acetone - MCAA
Project Name	Project #:				Yes		Isomers						containers		- pH 4-5 other (specify)
Colville Post and Pole/0504-098-01	59001108				Yes (H	7 Iso	1 1					nta		Tana (appany)
Site	SSOW#				am		Sox 17			1 1				Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	G=grab) BT		Field Filtered S Perform MS/MS	Moisture	8290A/8290_P_S						Total Number of	Special Instru	uctions/Note:
	=><	><	Preservatio	n Code:	$\boxtimes \times$		42						X		
HA-3A (6-12) (590-5615-2)	3/1/17	10:30		Solid	П	X	x						1	. Former Post and Po	
		Pacific 09:55			H	-		++-		-	-			could be high, please Former Post and Pol	le manufacturing site
HA-4A (6-12) (590-5615-5)	3/1/17	Pacific		Solid		X	X						1	could be high, please	isolate glassware and
HA-6A (6-12) (590-5615-7)	3/1/17	11:40 Pacific		Solid		X	X						1	, Former Post and Pol could be high, please	
HA-11A (6-12) (590-5615-9)	3/1/17	14:45 Pacific		Solid		X	х						1		le manufacturing site
HA-13A (6-12) (590-5615-11)	3/1/17	12:55 Pacific		Solid		X	x						1	, Former Post and Pol could be high, please	le manufacturing site
HA-17A (6-12) (590-5615-13)	3/1/17	12:10 Pacific		Solid		X	х						1		le manufacturing site
HA-20A (6-12) (590-5615-15)	3/1/17	15:00 Pacific		Solid		X	х						1		le manufacturing site
HA-25A (6-12) (590-5615-17)	3/1/17	16:05 Pacific		Solid		X	x						1		le manufacturing site
HA-39 (0-6) (590-5615-19)	3/1/17	13:30 Pacific		Solid		x	X						1		le manufacturing site
Note: Since laboratory accreditations are subject to change. TestAmerical currently maintain accreditation in the State of Origin listed above for ana Laboratories, Inc. attention immediately. If all requested accreditations a	lysis/tests/matrix being analyz	ownership of a	es must be shippe	d back to the	e TestAm	nerica l	aborator	ry or other instr	uctions will					r chain-of-custody. If the	laboratory does not
Possible Hazard Identification					Sa	mple	Dispo	sal (A fee	may be	assessed	if sample	es are reta	ine	ed longer than 1 mo	onth)
Unconfirmed					1	\square_R	etum 1	To Client		Disposal L	By Lab	□ Ar	rchi	ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		Sp	ecial	Instruc	ctions/QC Re							
Empty Kit Relinquished by:	1 1	Date:			Time:		-			Met	nod of Shipm	nent:			
Relinquished by:	Date/Time	- 14	NOI	mpany 13	pok		eived by (eived by	On,	14			Time)	105	ompany ompany
Relinquished by	Date/Time:	312	Co	mpany		Rece	sived by	7			Date	/Time:	_	C	ompany
Custody Saala Intest. Custody Saal No.						Carl	or Town	erature(s) °C a	nd Other C	lomade			_		
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						C001	er remp	erature(s) C a	na Other h	emarks.		3	L	1	

3/29/2017

11922 East 1st Ave Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

<u>TestAmerico</u>

THE LEADER IN ENVIRONMENTAL TESTING

Client Information (Sub Contract Lab)	Sampler			Lab PM: Arrington, Randee E					Carner Tracking No(s):			COC No: 590-2515 2	
Client Contact	Phone			E-M	ail					State of Origin			Page
Shipping/Receiving Company:				ran		_		americaino		Washington	n		Page 2 of 3
TestAmerica Laboratories, Inc.								ed (See note) Vashingtor					Job#: 590-5615-1
Address:	Due Date Requeste	ed;			1							\neg	Preservation Codes:
880 Riverside Parkway,	3/16/2017				-	_		Ana	lysis R	equested			A - HCL M - Hexane
West Sacramento	TAT Requested (da	ays):				1				1 1 1			B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: CA, 95605													D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO#					1	100						F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
Email	WO#				or No		& Totals		1 1				H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone
Project Name	Project #.				L Se		Sers	1	1			878	J - DI Water V - MCAA K - EDTA W - pH 4-5
Colville Post and Pole/0504-098-01	59001108				6 (7 es o		Isomers		1 1			tain	L - EDA Z - other (specify)
Site:	ssow#:				Sample (Yes or		Sox 17		11			of con	Other:
			Sample	Matrix	red 8		a.						
			Туре	(W=water,	THE THE	2	8290A/8290					Number	
		Sample	(C=comp,	S≈solid, O=waste/oil,	Field Fill	Moisture	90A		1	1 1 1	1 1 1	Total	
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) B) []	ž	82	-	-			LE)	Special Instructions/Note:
DATE OF THE PROPERTY OF THE PR		14:10	Preservati	on Code:	W	1						X	
HA-40 (0-6) (590-5615-22)	3/1/17	Pacific		Solid		X	X					1	Former Post and Pole manufacturing site could be high, please isolate glassware and
HA-41 (0-6) (590-5615-25)	3/1/17	14:25 Pacific		Solid		X	×					1	, Former Post and Pole manufacturing site - could be high, please isolate glassware and
HA-42 (0-6) (590-5615-28)	3/1/17	12:30 Pacific		Solid		×	×		TT			1	, Former Post and Pole manufacturing site -
HA-43 (0-6) (590-5615-31)	3/1/17	09:30		Solid	Ħ	×	X		11			1	could be high, please isolate glassware and , Former Post and Pole manufacturing site -
HA-44 (0-6) (590-5615-34)	3/1/17	Pacific 09:50		Solid	+	×	X		+			1	could be high, please isolate glassware and , Former Post and Pole manufacturing site -
HA-45 (0-6) (590-5615-37)	3/1/17	Pacific 10:25		Solid	+	×	X	+++	+++		-	1	could be high, please isolate glassware and , Former Post and Pole manufacturing site -
		Pacific 11:00	-		╁┼				+++			-	could be high, please isolate glassware and Former Post and Pole manufacturing site -
HA-46 (0-6) (590-5615-40)	3/1/17	Pacific		Solid	11	X	X					1	could be high, please isolate glassware and
HA-47 (0-6_ (590-5615-43)	3/1/17	11:00 Pacific		Solid		X	×					1	Former Post and Pole manufacturing site - could be high, please isolate glassware and
HA-48 (0-6) (590-5615-46)	3/1/17	11:20 Pacific		Solid		x	X					1	, Former Post and Pole manufacturing site - could be high, please isolate glassware and
Note: Since laboratory accreditations are subject to change, TestAmeric	a Laboratories, Inc. places the	ownership of	method, analyte i	& accreditation	on compli	iance L	upon out	subcontract (aboratorie	s. This sample sh	ipment is forwarde	d under	r chain-of-custody. I
Possible Hazard Identification					Sa	ample	e Disp	osal (A fe	e may b	e assessed if	samples are re	etaine	ed longer than 1 month)
Unconfirmed						\square_F	Return	To Client		Disposal By I	Lab 🗀	Archi	ive For Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		Sp	pecial	Instru	ctions/QC I	Requirer	nents:			
Empty Kit Relinquished by:	1	Date:			Time					Method	of Shipment		
Relinquished by Dou Da Dou	Date/Time	17 1	4-10	Company	hmi	Rece	elved by	13	111	th.	Date/Time:	7-1	105 Company
Relinquished by	Date/Tinle			ompany	400	Rec	eived by		11/	14	Date/Time:		Company
Relinquished by:	Date/Time.		C	Company		Rec	eived by				Date/Time:		Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	- Baragaran					Coo	ler Temp	erature(s) °C	and Othe	r Remarks:		3	

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

1 Hone (009) 924-3200 1 BX (009) 924-9200															
Client Information (Sub Contract Lab)	Sampler;			Lab Arr	PM: ington	. Rar	ndee	E			Carrier	Fracking No(s	5):		COC No: 590-2515.3
Client Contact	Phone			E-M	lail						State of			1	Page:
Shipping/Receiving				ran				_	nericaino		Washi	ngton			Page 3 of 3
Company TestAmerica Laboratories, Inc.									(See note) ashingtor						Job# 590-5615-1
Address 880 Riverside Parkway,	Due Date Requeste 3/16/2017	ed:							Ana	lysis R	equeste	ed		\Box	Preservation Codes:
City West Sacramento	TAT Requested (da	iys):						T		ÍΠ					A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: CA, 95605							\			1					D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone 916-373-5600(Tel) 916-372-1059(Fax)	PO#:				9		Total a	2007							F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email:	WO#				o s	No)		5			11			90	I - Ice U - Acetone J - DI Water V - MCAA
Project Name Colville Post and Pole/0504-098-01	Project # 59001108				اڅ	ö	a de mora						1 1 1	aine	K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Site	SSOW#				ample	SD (Yes	Cox 47 le							of cont	Other:
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=wastefoil,	tered	MS/W	Moisture	4						Number	
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	ST=Tissue, A=A	r) 🖺	Pos	Moi 828	043						Total	Special Instructions/Note:
	\rightarrow	> <	Preservat	ion Code:	X	\times								X	
HA-49 (0-6) (590-5615-49)	3/1/17	11:30 Pacific		Solid			x >	<						1	, Former Post and Pole manufacturing site - could be high, please isolate glassware and
HA-50 (0-6) (590-5615-52)	3/1/17	11:55 Pacific		Solid	П		x >	K						1	Former Post and Pole manufacturing site - could be high, please isolate glasswara and
HA-51 (0-6) (590-5615-55)	3/1/17	14:50 Pacific		Solid			x >	<						1	, Former Post and Pole manufacturing site - could be high, please isolate glassware and
HA-52 (0-6) (590-5615-58)	3/1/17	15:15 Pacific		Solid			x >	<						1	, Former Post and Pole manufacturing site - could be high, please isolate glassware and
HA-53 (0-6) (590-5615-61)	3/1/17	15:20 Pacific		Solid	П		x)	<						1	, Former Post and Pole manufacturing site - could be high, please isolate glassware and
					+	-	+	+	++	1 1	\perp				
		_			+	+	+	+			++	++	++		
					+	+	+	+		++	+				
Note: Since laboratory accreditations are subject to change, TestAmerica	Laboratories, inc. places the	ownership of	method, analyte	& accreditati	ion com	plianc	e upor	out su	ubcontract I	aboratorie	s. This sam	ple shipment	is forwarded u	ınder	chain-of-custody I
Possible Hazard Identification					T	Samı	ple D	ispos	al (A fe	e may b	e assesse	ed if samp	les are reta	aine	ed longer than 1 month)
Unconfirmed					[7		Client		Disposa				ve For Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank:	2		1	Spec	ial Ins	structi	ons/QC I	Requiren					
Empty Kit Relinquished by:	1 1	Date:			Tim	ne:					М	ethod of Ship			
Relinquished by Relinquished by	Date/Time:	7 1	140	Company Company	100	O/C	eceive	/	211	K			te/Time:	·('	Company Company
Relinquished by:	Date/Time			Company		R	eceive	d by:		/			e/Time	_	Company
Custody Seals Intact: Custody Seal No.:						0	noler 1	Semps:	rature(s) °C	and Other	Damarka				
Δ Yes Δ No							Joier	emper	aure(s) C	and Other	Remarks		3	-1	

Page 55 of 59

Client: GeoEngineers Inc Job Number: 590-5615-1

Login Number: 5615 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

Creator: Kratz, Snella J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-5615-1

Login Number: 5615 List Source: TestAmerica Sacramento List Number: 2

List Creation: 03/08/17 01:18 PM

Creator: Hytrek, Cheryl

Creator. Hytrek, Cheryi		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Job ID: 590-5615-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

590-5615-37

590-5615-40

590-5615-43

HA-45 (0-6)

HA-46 (0-6)

HA-47 (0-6)

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

				•		ecovery (Ac	•	•	
		TCDD	TCDF	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135
590-5615-2	HA-3A (6-12)	89	89	95	95	97	100	106	109
590-5615-5	HA-4A (6-12)	89	91	96	91	101	99	107	108
590-5615-7	HA-6A (6-12)	61	50	51	51	55	57	71	60
590-5615-9	HA-11A (6-12)	51	49	46	47	52	54	59	58
590-5615-11	HA-13A (6-12)	56	57	56	56	62	60	71	68
590-5615-13	HA-17A (6-12)	50	51	54	53	62	57	68	67
590-5615-15	HA-20A (6-12)	61	60	57	57	67	63	75	73
590-5615-17	HA-25A (6-12)	50	49	46	48	54	51	63	58
590-5615-19	HA-39 (0-6)	55	57	59	58	69	66	74	75
590-5615-22	HA-40 (0-6)	62	49	48	51	51	55	72	62
590-5615-25	HA-41 (0-6)	61	52	52	51	58	55	75	66
590-5615-28	HA-42 (0-6)	88	91	92	89	97	98	113	113
590-5615-31	HA-43 (0-6)	87	89	90	89	100	98	119	116
590-5615-34	HA-44 (0-6)	92	94	96	93	106	100	123	118
590-5615-37	HA-45 (0-6)	88	91	94	91	102	98	117	114
590-5615-40	HA-46 (0-6)	56	56	61	59	71	65	74	75
590-5615-43	HA-47 (0-6)	62	61	66	65	75	75	84	84
590-5615-46	HA-48 (0-6)	46	46	47	46	54	53	61	60
590-5615-49	HA-49 (0-6)	63	48	49	50	56	56	68	61
590-5615-52	HA-50 (0-6)	50	52	55	55	61	57	65	65
590-5615-55	HA-51 (0-6)	80	65	67	67	74	73	96	85
590-5615-58	HA-52 (0-6)	64	60	61	61	71	68	83	75
590-5615-61	HA-53 (0-6)	79	62	67	62	74	69	92	77
_CS 320-154207/2-A	Lab Control Sample	67	68	75	69	84	81	89	92
LCS 320-154485/2-A	Lab Control Sample	78	74	83	79	89	83	95	91
LCSD 320-154207/3-A	Lab Control Sample Dup	64	64	68	68	77	73	77	80
LCSD 320-154485/3-A	Lab Control Sample Dup	82	78	85	83	94	87	99	96
MB 320-154207/1-A	Method Blank	68	66	73	70	80	78	83	87
MB 320-154485/1-A	Method Blank	80	76	84	78	87	83	94	92
			Perc	ent Isotone	Dilution Re	ecovery (Ac	centance I	imits)	
		OCDD	1 010	ont isotopo	Dilution it	covery (Ac	ocpianoc L		
Lab Sample ID	Client Sample ID	(40-135)							
590-5615-2	HA-3A (6-12)	109							
590-5615-5	HA-4A (6-12)	112							
590-5615-7	HA-6A (6-12)	63							
590-5615-9	HA-11A (6-12)	63							
590-5615-11	HA-13A (6-12)	78							
590-5615-13	HA-17A (6-12)	69							
590-5615-15									
	HA-20A (6-12)	76 67							
590-5615-17	HA-25A (6-12)	67 79							
590-5615-19	HA-39 (0-6)	78							
590-5615-22	HA-40 (0-6)	71							
590-5615-25	HA-41 (0-6)	74							
590-5615-28	HA-42 (0-6)	122							
590-5615-31	HA-43 (0-6)	124							
590-5615-34	HA-44 (0-6)	125							
00 5045 07									

TestAmerica Spokane

Page 58 of 59

118

80

88

2

2

7

9

4 4

12

1:

morroa oponamo

Isotope Dilution Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Solid Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)
		OCDD	
Lab Sample ID	Client Sample ID	(40-135)	
590-5615-46	HA-48 (0-6)	65	
590-5615-49	HA-49 (0-6)	71	
590-5615-52	HA-50 (0-6)	67	
590-5615-55	HA-51 (0-6)	100	
590-5615-58	HA-52 (0-6)	91	
590-5615-61	HA-53 (0-6)	92	
LCS 320-154207/2-A	Lab Control Sample	92	
LCS 320-154485/2-A	Lab Control Sample	90	
LCSD 320-154207/3-A	Lab Control Sample Dup	80	
LCSD 320-154485/3-A	Lab Control Sample Dup	96	
MB 320-154207/1-A	Method Blank	82	
MB 320-154485/1-A	Method Blank	89	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

OCDD = 13C-OCDD

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-5615-3

Client Project/Site: Colville Post and Pole/0504-098-01

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

Landue trington

Authorized for release by: 4/21/2017 10:23:43 AM

Randee Arrington, Project Manager II (509)924-9200 randee.arrington@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents	
Cover Page	1
	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	19
Chronicle	22
Certification Summary	27
Method Summary	28
Chain of Custody	29
Receipt Checklists	47
Isotope Dilution Summary	50

Case Narrative

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-3

Job ID: 590-5615-3

Laboratory: TestAmerica Spokane

Narrative

Receipt

The samples were received on 3/3/2017 4:15 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.3° C and 1.7° C.

Receipt Exceptions

The following samples were activated for 8290A analysis by the client on 03/30/2017: HA-3A (12-18) (590-5615-3), HA-4A (12-18) (590-5615-6), HA-6A (12-18) (590-5615-8), HA-13A (12-18) (590-5615-12), HA-20A (12-18) (590-5615-16), HA-40 (12-18) (590-5615-24), HA-41 (12-18) (590-5615-27), HA-42 (12-18) (590-5615-30), HA-43 (12-18) (590-5615-33), HA-44 (12-18) (590-5615-36), HA-46 (12-18) (590-5615-42), HA-47 (12-18) (590-5615-45), HA-49 (12-18) (590-5615-51), HA-51 (12-18) (590-5615-57) and HA-53 (12-18) (590-5615-63).

Dioxin

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

7

10

11

12

11

Sample Summary

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-3

Lab Sample ID	Client Sample ID	Matrix	Collected Received
590-5615-3	HA-3A (12-18)	Solid	03/01/17 10:35 03/03/17 16:1
590-5615-6	HA-4A (12-18)	Solid	03/01/17 10:00 03/03/17 16:1
590-5615-8	HA-6A (12-18)	Solid	03/01/17 11:42 03/03/17 16:1
590-5615-12	HA-13A (12-18)	Solid	03/01/17 13:00 03/03/17 16:1
590-5615-16	HA-20A (12-18)	Solid	03/01/17 15:05 03/03/17 16:1
590-5615-24	HA-40 (12-18)	Solid	03/01/17 14:20 03/03/17 16:1
590-5615-27	HA-41 (12-18)	Solid	03/01/17 14:35 03/03/17 16:1
590-5615-30	HA-42 (12-18)	Solid	03/01/17 12:34 03/03/17 16:1
590-5615-33	HA-43 (12-18)	Solid	03/01/17 09:40 03/03/17 16:1
590-5615-36	HA-44 (12-18)	Solid	03/01/17 10:00 03/03/17 16:1
590-5615-42	HA-46 (12-18)	Solid	03/01/17 11:10 03/03/17 16:1
590-5615-45	HA-47 (12-18)	Solid	03/01/17 11:04 03/03/17 16:1
590-5615-51	HA-49 (12-18)	Solid	03/01/17 11:40 03/03/17 16:1
590-5615-57	HA-51 (12-18)	Solid	03/01/17 15:00 03/03/17 16:1
590-5615-63	HA-53 (12-18)	Solid	03/01/17 15:24 03/03/17 16:1

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 590-5615-3

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Spokane

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-3A (12-18)

Lab Sample ID: 590-5615-3 Date Collected: 03/01/17 10:35 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 67.5

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	290	pg/g	<u> </u>	03/31/17 10:38	04/17/17 17:25	1
2,3,7,8-TCDF	ND	290	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,7,8-PeCDD	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,7,8-PeCDF	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
2,3,4,7,8-PeCDF	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,4,7,8-HxCDD	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,6,7,8-HxCDD	1700	1400	pg/g	\$	03/31/17 10:38	04/17/17 17:25	1
1,2,3,7,8,9-HxCDD	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,4,7,8-HxCDF	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,6,7,8-HxCDF	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,7,8,9-HxCDF	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
2,3,4,6,7,8-HxCDF	ND	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,4,6,7,8-HpCDD	45000	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,4,6,7,8-HpCDF	2800	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
1,2,3,4,7,8,9-HpCDF	ND	1400	pg/g	≎	03/31/17 10:38	04/17/17 17:25	1
OCDD	380000	2900	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
OCDF	7900	2900	pg/g	≎	03/31/17 10:38	04/17/17 17:25	1
Total TCDD	ND	290	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
Total TCDF	ND	290	pg/g	≎	03/31/17 10:38	04/17/17 17:25	1
Total PeCDD	ND	1400	pg/g	≎	03/31/17 10:38	04/17/17 17:25	1
Total PeCDF	ND	1400	pg/g	≎	03/31/17 10:38	04/17/17 17:25	1
Total HxCDD	4300	1400	pg/g	≎	03/31/17 10:38	04/17/17 17:25	1
Total HxCDF	2500	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
Total HpCDD	77000	1400	pg/g	≎	03/31/17 10:38	04/17/17 17:25	1
Total HpCDF	10000	1400	pg/g	₽	03/31/17 10:38	04/17/17 17:25	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	107	40 - 135			03/31/17 10:38	04/17/17 17:25	1
13C-2,3,7,8-TCDF	107	40 - 135			03/31/17 10:38	04/17/17 17:25	1
13C-1,2,3,7,8-PeCDD	113	40 - 135			03/31/17 10:38	04/17/17 17:25	1

lootopo Bilation	fortooorony quantito		. ropurou	7u.y 2 0 u	2
13C-2,3,7,8-TCDD	107	40 - 135	03/31/17 10:38	04/17/17 17:25	1
13C-2,3,7,8-TCDF	107	40 - 135	03/31/17 10:38	04/17/17 17:25	1
13C-1,2,3,7,8-PeCDD	113	40 - 135	03/31/17 10:38	04/17/17 17:25	1
13C-1,2,3,7,8-PeCDF	112	40 - 135	03/31/17 10:38	04/17/17 17:25	1
13C-1,2,3,6,7,8-HxCDD	105	40 - 135	03/31/17 10:38	04/17/17 17:25	1
13C-1,2,3,4,7,8-HxCDF	108	40 - 135	03/31/17 10:38	04/17/17 17:25	1
13C-1,2,3,4,6,7,8-HpCDD	104	40 - 135	03/31/17 10:38	04/17/17 17:25	1
13C-1,2,3,4,6,7,8-HpCDF	106	40 - 135	03/31/17 10:38	04/17/17 17:25	1
13C-OCDD	123	40 - 135	03/31/17 10:38	04/17/17 17:25	1
<u></u>					

Client Sample ID: HA-4A (12-18)

Lab Sample ID: 590-5615-6 Date Collected: 03/01/17 10:00 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 79.2

Method: 8290A - Dioxins and Furans (HRGC/HRMS)							
Analyte	Result Qualifier	RL	EDL Uni	t C	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	98	pg/g) \	03/31/17 10:38	04/17/17 18:11	1
2,3,7,8-TCDF	ND	98	pg/g	;	03/31/17 10:38	04/17/17 18:11	1
1,2,3,7,8-PeCDD	ND	490	pg/g	;	03/31/17 10:38	04/17/17 18:11	1
1,2,3,7,8-PeCDF	ND	490	pg/g) ÷	03/31/17 10:38	04/17/17 18:11	1
2,3,4,7,8-PeCDF	ND	490	pg/g	;	03/31/17 10:38	04/17/17 18:11	1
1,2,3,4,7,8-HxCDD	ND	490	pg/g	j ÷	03/31/17 10:38	04/17/17 18:11	1
1,2,3,6,7,8-HxCDD	ND	490	pg/g	j È	03/31/17 10:38	04/17/17 18:11	1

TestAmerica Spokane

4/21/2017

Page 6 of 51

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-6

TestAmerica Job ID: 590-5615-3

Matrix: Solid Percent Solids: 79.2

Client Sample ID: HA-4A (12-18)

Date Collected: 03/01/17 10:00 Date Received: 03/03/17 16:15

Analyte	Result Q	Qualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND ND	490		pg/g	<u> </u>	03/31/17 10:38	04/17/17 18:11	1
1,2,3,4,7,8-HxCDF	ND	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
1,2,3,6,7,8-HxCDF	ND	490		pg/g	₽	03/31/17 10:38	04/17/17 18:11	1
1,2,3,7,8,9-HxCDF	ND	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
2,3,4,6,7,8-HxCDF	ND	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
1,2,3,4,6,7,8-HpCDD	13000	490		pg/g	☆	03/31/17 10:38	04/17/17 18:11	1
1,2,3,4,6,7,8-HpCDF	3000	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
1,2,3,4,7,8,9-HpCDF	ND	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
OCDD	110000	980		pg/g	☆	03/31/17 10:38	04/17/17 18:11	1
OCDF	7400	980		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
Total TCDD	ND	98		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
Total TCDF	ND	98		pg/g		03/31/17 10:38	04/17/17 18:11	1
Total PeCDD	ND	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
Total PeCDF	ND	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
Total HxCDD	1600	490		pg/g	₽	03/31/17 10:38	04/17/17 18:11	1
Total HxCDF	1900	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
Total HpCDD	22000	490		pg/g	≎	03/31/17 10:38	04/17/17 18:11	1
Total HpCDF	7200	490		pg/g	☆	03/31/17 10:38	04/17/17 18:11	1
Isotope Dilution	%Recovery Q	Qualifier Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	106	40 - 135				03/31/17 10:38	04/17/17 18:11	1
13C-2,3,7,8-TCDF	105	40 - 135				03/31/17 10:38	04/17/17 18:11	1
13C-1,2,3,7,8-PeCDD	108	40 - 135				03/31/17 10:38	04/17/17 18:11	1
13C-1,2,3,7,8-PeCDF	111	40 - 135				03/31/17 10:38	04/17/17 18:11	1
13C-1,2,3,6,7,8-HxCDD	104	40 - 135				03/31/17 10:38	04/17/17 18:11	1

40 - 135

40 - 135

40 - 135

40 - 135

Client Sample ID: HA-6A (12-18)

107

102

105

121

Date Collected: 03/01/17 11:42 Date Received: 03/03/17 16:15

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Lab Sample ID: 590-5615-8 **Matrix: Solid** Percent Solids: 84.9

03/31/17 10:38 04/17/17 18:11

03/31/17 10:38 04/17/17 18:11

03/31/17 10:38 04/17/17 18:11

03/31/17 10:38 04/17/17 18:11

Analyte	Result Qualifier	RL	EDL Uni	t	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	33	pg/g	9	<u>∓</u>	03/31/17 10:38	04/17/17 18:57	1
2,3,7,8-TCDF	ND	33	pg/g	9	☼	03/31/17 10:38	04/17/17 18:57	1
1,2,3,7,8-PeCDD	ND	160	pg/g	9	≎	03/31/17 10:38	04/17/17 18:57	1
1,2,3,7,8-PeCDF	ND	160	pg/g	9	₽	03/31/17 10:38	04/17/17 18:57	1
2,3,4,7,8-PeCDF	ND	160	pg/g	9	≎	03/31/17 10:38	04/17/17 18:57	1
1,2,3,4,7,8-HxCDD	ND	160	pg/g	9	≎	03/31/17 10:38	04/17/17 18:57	1
1,2,3,6,7,8-HxCDD	340	160	pg/g	3		03/31/17 10:38	04/17/17 18:57	1
1,2,3,7,8,9-HxCDD	ND	160	pg/g	9	≎	03/31/17 10:38	04/17/17 18:57	1
1,2,3,4,7,8-HxCDF	ND	160	pg/g	9	≎	03/31/17 10:38	04/17/17 18:57	1
1,2,3,6,7,8-HxCDF	ND	160	pg/g	9	₩	03/31/17 10:38	04/17/17 18:57	1
1,2,3,7,8,9-HxCDF	ND	160	pg/g	9	≎	03/31/17 10:38	04/17/17 18:57	1
2,3,4,6,7,8-HxCDF	ND	160	pg/g	9	≎	03/31/17 10:38	04/17/17 18:57	1
1,2,3,4,6,7,8-HpCDD	6800	160	pg/g	9	⊅	03/31/17 10:38	04/17/17 18:57	1
1,2,3,4,6,7,8-HpCDF	620	160	pg/g	q	☼	03/31/17 10:38	04/17/17 18:57	1

TestAmerica Spokane

Page 7 of 51

4/21/2017

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-8

Matrix: Solid

TestAmerica Job ID: 590-5615-3

Percent Solids: 84.9

Client Sample ID: HA-6A (12-18)

Date Collected: 03/01/17 11:42 Date Received: 03/03/17 16:15

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		160		pg/g	<u> </u>	03/31/17 10:38	04/17/17 18:57	1
OCDD	50000		330		pg/g	φ.	03/31/17 10:38	04/17/17 18:57	1
OCDF	1100		330		pg/g	₩	03/31/17 10:38	04/17/17 18:57	1
Total TCDD	ND		33		pg/g	₩	03/31/17 10:38	04/17/17 18:57	1
Total TCDF	ND		33		pg/g		03/31/17 10:38	04/17/17 18:57	1
Total PeCDD	ND		160		pg/g	₩	03/31/17 10:38	04/17/17 18:57	1
Total PeCDF	ND		160		pg/g	₩	03/31/17 10:38	04/17/17 18:57	1
Total HxCDD	1100		160		pg/g	₽	03/31/17 10:38	04/17/17 18:57	1
Total HxCDF	890		160		pg/g	₩	03/31/17 10:38	04/17/17 18:57	1
Total HpCDD	11000		160		pg/g	₩	03/31/17 10:38	04/17/17 18:57	1
Total HpCDF	1900		160		pg/g	₽	03/31/17 10:38	04/17/17 18:57	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	111		40 - 135				03/31/17 10:38	04/17/17 18:57	1
13C-2,3,7,8-TCDF	110		40 - 135				03/31/17 10:38	04/17/17 18:57	1
13C-1,2,3,7,8-PeCDD	110		40 - 135				03/31/17 10:38	04/17/17 18:57	1
13C-1,2,3,7,8-PeCDF	115		40 - 135				03/31/17 10:38	04/17/17 18:57	1
13C-1,2,3,6,7,8-HxCDD	107		40 - 135				03/31/17 10:38	04/17/17 18:57	1
13C-1,2,3,4,7,8-HxCDF	112		40 - 135				03/31/17 10:38	04/17/17 18:57	1
13C-1,2,3,4,6,7,8-HpCDD	106		40 - 135				03/31/17 10:38	04/17/17 18:57	1
13C-1,2,3,4,6,7,8-HpCDF	110		40 - 135				03/31/17 10:38	04/17/17 18:57	1
13C-OCDD	127		40 - 135				03/31/17 10:38	04/17/17 18:57	1

Client Sample ID: HA-13A (12-18) Lab Sample ID: 590-5615-12

Date Collected: 03/01/17 13:00 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 82.2

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.2	pg/g	<u> </u>	03/31/17 10:38	04/17/17 19:43	1
2,3,7,8-TCDF	ND	1.2	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,7,8-PeCDD	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,7,8-PeCDF	ND	5.8	pg/g	\$	03/31/17 10:38	04/17/17 19:43	1
2,3,4,7,8-PeCDF	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,4,7,8-HxCDD	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,6,7,8-HxCDD	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,7,8,9-HxCDD	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,4,7,8-HxCDF	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,6,7,8-HxCDF	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,7,8,9-HxCDF	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
2,3,4,6,7,8-HxCDF	ND	5.8	pg/g	☼	03/31/17 10:38	04/17/17 19:43	1
1,2,3,4,6,7,8-HpCDD	19	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,4,6,7,8-HpCDF	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
1,2,3,4,7,8,9-HpCDF	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
OCDD	200	12	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
OCDF	12	12	pg/g	☼	03/31/17 10:38	04/17/17 19:43	1
Total TCDD	ND	1.2	pg/g	☼	03/31/17 10:38	04/17/17 19:43	1
Total TCDF	ND	1.2	pg/g	\$	03/31/17 10:38	04/17/17 19:43	1
Total PeCDD	ND	5.8	pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
Total PeCDF	ND	5.8	pg/g	☼	03/31/17 10:38	04/17/17 19:43	1

TestAmerica Spokane

Page 8 of 51

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-13A (12-18)

Lab Sample ID: 590-5615-12 **Matrix: Solid**

TestAmerica Job ID: 590-5615-3

Date Collected: 03/01/17 13:00 Date Received: 03/03/17 16:15

Percent Solids: 82.2

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	ND		5.8		pg/g	<u> </u>	03/31/17 10:38	04/17/17 19:43	1
Total HxCDF	ND		5.8		pg/g		03/31/17 10:38	04/17/17 19:43	1
Total HpCDD	32		5.8		pg/g	₽	03/31/17 10:38	04/17/17 19:43	1
Total HpCDF	6.6		5.8		pg/g		03/31/17 10:38	04/17/17 19:43	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	101		40 - 135				03/31/17 10:38	04/17/17 19:43	1
13C-2,3,7,8-TCDF	99		40 - 135				03/31/17 10:38	04/17/17 19:43	1
13C-1,2,3,7,8-PeCDD	100		40 - 135				03/31/17 10:38	04/17/17 19:43	1
13C-1,2,3,7,8-PeCDF	105		40 - 135				03/31/17 10:38	04/17/17 19:43	1
13C-1,2,3,6,7,8-HxCDD	98		40 - 135				03/31/17 10:38	04/17/17 19:43	1
13C-1,2,3,4,7,8-HxCDF	101		40 - 135				03/31/17 10:38	04/17/17 19:43	1
13C-1,2,3,4,6,7,8-HpCDD	99		40 - 135				03/31/17 10:38	04/17/17 19:43	1
13C-1,2,3,4,6,7,8-HpCDF	103		40 - 135				03/31/17 10:38	04/17/17 19:43	1
13C-OCDD	118		40 - 135				03/31/17 10:38	04/17/17 19:43	1

Lab Sample ID: 590-5615-16 Client Sample ID: HA-20A (12-18)

Date Collected: 03/01/17 15:05 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 71.8

Analyte	s and Furans (HR) Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		6.0		pg/g		03/31/17 10:38	04/18/17 00:08	1
2,3,7,8-TCDF	ND		6.0		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
1,2,3,7,8-PeCDD	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
1,2,3,7,8-PeCDF	ND		30		pg/g		03/31/17 10:38	04/18/17 00:08	1
2,3,4,7,8-PeCDF	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
1,2,3,4,7,8-HxCDD	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
1,2,3,6,7,8-HxCDD	35		30		pg/g		03/31/17 10:38	04/18/17 00:08	1
1,2,3,7,8,9-HxCDD	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
1,2,3,4,7,8-HxCDF	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
1,2,3,6,7,8-HxCDF	ND		30		pg/g		03/31/17 10:38	04/18/17 00:08	1
1,2,3,7,8,9-HxCDF	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
2,3,4,6,7,8-HxCDF	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
1,2,3,4,6,7,8-HpCDD	1100		30		pg/g	₽	03/31/17 10:38	04/18/17 00:08	1
1,2,3,4,6,7,8-HpCDF	190		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
1,2,3,4,7,8,9-HpCDF	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
OCDD	9600		60		pg/g	₽	03/31/17 10:38	04/18/17 00:08	1
OCDF	1200		60		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
Total TCDD	ND		6.0		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
Total TCDF	ND		6.0		pg/g	₽	03/31/17 10:38	04/18/17 00:08	1
Total PeCDD	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
Total PeCDF	ND		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
Total HxCDD	94		30		pg/g	₽	03/31/17 10:38	04/18/17 00:08	1
Total HxCDF	140		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
Total HpCDD	1700		30		pg/g	₩	03/31/17 10:38	04/18/17 00:08	1
Total HpCDF	820		30		pg/g	₽	03/31/17 10:38	04/18/17 00:08	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	95		40 - 135				03/31/17 10:38	04/18/17 00:08	1
13C-2,3,7,8-TCDF	99		40 - 135				03/31/17 10:38	04/18/17 00:08	1

TestAmerica Spokane

Page 9 of 51

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-16

TestAmerica Job ID: 590-5615-3

Client Sample ID: HA-20A (12-18)

Date Collected: 03/01/17 15:05 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 71.8

Isotope Dilution	%Recovery Qเ	ualifier Li	imits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	95	40	0 - 135	03/31/17 10:38	04/18/17 00:08	1
13C-1,2,3,7,8-PeCDF	98	40	0 - 135	03/31/17 10:38	04/18/17 00:08	1
13C-1,2,3,6,7,8-HxCDD	96	40	0 - 135	03/31/17 10:38	04/18/17 00:08	1
13C-1,2,3,4,7,8-HxCDF	102	40	0 - 135	03/31/17 10:38	04/18/17 00:08	1
13C-1,2,3,4,6,7,8-HpCDD	105	40	0 - 135	03/31/17 10:38	04/18/17 00:08	1
13C-1,2,3,4,6,7,8-HpCDF	105	40	0 - 135	03/31/17 10:38	04/18/17 00:08	1
13C-OCDD	127	40	0 - 135	03/31/17 10:38	04/18/17 00:08	1

Client Sample ID: HA-40 (12-18) Lab Sample ID: 590-5615-24

Date Collected: 03/01/17 14:20 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 84.3

Method: 8290A - Dioxins Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		6.9		pg/g	₩	03/31/17 10:38	04/18/17 00:55	1
2,3,7,8-TCDF	ND		6.9		pg/g	₩	03/31/17 10:38	04/18/17 00:55	1
1,2,3,7,8-PeCDD	ND		35		pg/g	☼	03/31/17 10:38	04/18/17 00:55	1
1,2,3,7,8-PeCDF	ND		35		pg/g	₽	03/31/17 10:38	04/18/17 00:55	1
2,3,4,7,8-PeCDF	ND		35		pg/g	☼	03/31/17 10:38	04/18/17 00:55	1
1,2,3,4,7,8-HxCDD	ND		35		pg/g	₩	03/31/17 10:38	04/18/17 00:55	1
1,2,3,6,7,8-HxCDD	61		35		pg/g		03/31/17 10:38	04/18/17 00:55	1
1,2,3,7,8,9-HxCDD	ND		35		pg/g	₩	03/31/17 10:38	04/18/17 00:55	1
1,2,3,4,7,8-HxCDF	ND		35		pg/g	₩	03/31/17 10:38	04/18/17 00:55	1
1,2,3,6,7,8-HxCDF	ND		35		pg/g		03/31/17 10:38	04/18/17 00:55	1
1,2,3,7,8,9-HxCDF	ND		35		pg/g	₽	03/31/17 10:38	04/18/17 00:55	1
2,3,4,6,7,8-HxCDF	ND		35		pg/g	₩	03/31/17 10:38	04/18/17 00:55	1
1,2,3,4,6,7,8-HpCDD	1400		35		pg/g	\$	03/31/17 10:38	04/18/17 00:55	1
1,2,3,4,6,7,8-HpCDF	130		35		pg/g	₩	03/31/17 10:38	04/18/17 00:55	1
1,2,3,4,7,8,9-HpCDF	ND		35		pg/g	☼	03/31/17 10:38	04/18/17 00:55	1
OCDD	11000		69		pg/g	₽	03/31/17 10:38	04/18/17 00:55	1
OCDF	310		69		pg/g	☼	03/31/17 10:38	04/18/17 00:55	1
Total TCDD	ND		6.9		pg/g	₽	03/31/17 10:38	04/18/17 00:55	1
Total TCDF	ND		6.9		pg/g	₩	03/31/17 10:38	04/18/17 00:55	1
Total PeCDD	ND		35		pg/g	☼	03/31/17 10:38	04/18/17 00:55	1
Total PeCDF	ND		35		pg/g	₽	03/31/17 10:38	04/18/17 00:55	1
Total HxCDD	190		35		pg/g		03/31/17 10:38	04/18/17 00:55	1
Total HxCDF	160		35		pg/g	₽	03/31/17 10:38	04/18/17 00:55	1
Total HpCDD	2300		35		pg/g	₽	03/31/17 10:38	04/18/17 00:55	1
Total HpCDF	410		35		pg/g	φ.	03/31/17 10:38	04/18/17 00:55	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	111		40 - 135				03/31/17 10:38	04/18/17 00:55	1
13C-2,3,7,8-TCDF	99		40 - 135				03/31/17 10:38	04/18/17 00:55	1
13C-1,2,3,7,8-PeCDD	95		40 - 135				03/31/17 10:38	04/18/17 00:55	1

isotope Dilution	76Recovery Qualifier	LIIIIII	rrepareu	Allalyzeu	DII Fac
13C-2,3,7,8-TCDD	111	40 - 135	03/31/17 10:38	04/18/17 00:55	1
13C-2,3,7,8-TCDF	99	40 - 135	03/31/17 10:38	04/18/17 00:55	1
13C-1,2,3,7,8-PeCDD	95	40 - 135	03/31/17 10:38	04/18/17 00:55	1
13C-1,2,3,7,8-PeCDF	96	40 - 135	03/31/17 10:38	04/18/17 00:55	1
13C-1,2,3,6,7,8-HxCDD	95	40 - 135	03/31/17 10:38	04/18/17 00:55	1
13C-1,2,3,4,7,8-HxCDF	97	40 - 135	03/31/17 10:38	04/18/17 00:55	1
13C-1,2,3,4,6,7,8-HpCDD	101	40 - 135	03/31/17 10:38	04/18/17 00:55	1
13C-1,2,3,4,6,7,8-HpCDF	102	40 - 135	03/31/17 10:38	04/18/17 00:55	1
13C-OCDD	119	40 - 135	03/31/17 10:38	04/18/17 00:55	1

TestAmerica Spokane

Page 10 of 51

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-41 (12-18)

Client: GeoEngineers Inc

Lab Sample ID: 590-5615-27 Date Collected: 03/01/17 14:35 **Matrix: Solid** Date Received: 03/03/17 16:15

Percent Solids: 83.7

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		8.9		pg/g	<u>∓</u>	03/31/17 10:38	04/18/17 01:41	1
2,3,7,8-TCDF	ND		8.9		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
1,2,3,7,8-PeCDD	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
1,2,3,7,8-PeCDF	ND		44		pg/g		03/31/17 10:38	04/18/17 01:41	1
2,3,4,7,8-PeCDF	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
1,2,3,4,7,8-HxCDD	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
1,2,3,6,7,8-HxCDD	71		44		pg/g		03/31/17 10:38	04/18/17 01:41	1
1,2,3,7,8,9-HxCDD	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
1,2,3,4,7,8-HxCDF	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
1,2,3,6,7,8-HxCDF	ND		44		pg/g	₩.	03/31/17 10:38	04/18/17 01:41	1
1,2,3,7,8,9-HxCDF	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
2,3,4,6,7,8-HxCDF	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
1,2,3,4,6,7,8-HpCDD	1700		44		pg/g	₽	03/31/17 10:38	04/18/17 01:41	1
1,2,3,4,6,7,8-HpCDF	220		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
1,2,3,4,7,8,9-HpCDF	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
OCDD	14000		89		pg/g	φ.	03/31/17 10:38	04/18/17 01:41	1
OCDF	410		89		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
Total TCDD	ND		8.9		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
Total TCDF	ND		8.9		pg/g		03/31/17 10:38	04/18/17 01:41	1
Total PeCDD	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
Total PeCDF	ND		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
Total HxCDD	270		44		pg/g		03/31/17 10:38	04/18/17 01:41	1
Total HxCDF	250		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
Total HpCDD	2700		44		pg/g	₩	03/31/17 10:38	04/18/17 01:41	1
Total HpCDF	630		44		pg/g	\$	03/31/17 10:38	04/18/17 01:41	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	98		40 - 135				03/31/17 10:38	04/18/17 01:41	1
13C-2,3,7,8-TCDF	95		40 - 135				03/31/17 10:38	04/18/17 01:41	1
13C-1,2,3,7,8-PeCDD	97		40 - 135				03/31/17 10:38	04/18/17 01:41	1
400 4 0 0 7 0 D ODE			40 405				00/04/47 40 00	04/40/47 04:44	

Isotope Dilution	%Recovery Qualifier	Limits	Prepared Analyzed Dil	Fac
13C-2,3,7,8-TCDD	98	40 - 135	03/31/17 10:38 04/18/17 01:41	1
13C-2,3,7,8-TCDF	95	40 - 135	03/31/17 10:38 04/18/17 01:41	1
13C-1,2,3,7,8-PeCDD	97	40 - 135	03/31/17 10:38 04/18/17 01:41	1
13C-1,2,3,7,8-PeCDF	94	40 - 135	03/31/17 10:38 04/18/17 01:41	1
13C-1,2,3,6,7,8-HxCDD	90	40 - 135	03/31/17 10:38 04/18/17 01:41	1
13C-1,2,3,4,7,8-HxCDF	97	40 - 135	03/31/17 10:38 04/18/17 01:41	1
13C-1,2,3,4,6,7,8-HpCDD	101	40 - 135	03/31/17 10:38 04/18/17 01:41	1
13C-1,2,3,4,6,7,8-HpCDF	95	40 - 135	03/31/17 10:38 04/18/17 01:41	1
13C-OCDD	117	40 - 135	03/31/17 10:38 04/18/17 01:41	1

Client Sample ID: HA-42 (12-18)

Lab Sample ID: 590-5615-30 Matrix: Solid Date Collected: 03/01/17 12:34 Date Received: 03/03/17 16:15 Percent Solids: 90.2

Method: 8290A - Dioxins	and Furans (HRGC/HRMS)							
Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	220		pg/g	<u> </u>	03/31/17 10:38	04/18/17 02:27	1
2,3,7,8-TCDF	ND	220		pg/g	₩	03/31/17 10:38	04/18/17 02:27	1
1,2,3,7,8-PeCDD	ND	1100		pg/g	☼	03/31/17 10:38	04/18/17 02:27	1
1,2,3,7,8-PeCDF	ND	1100		pg/g		03/31/17 10:38	04/18/17 02:27	1
2,3,4,7,8-PeCDF	ND	1100		pg/g	☼	03/31/17 10:38	04/18/17 02:27	1
1,2,3,4,7,8-HxCDD	ND	1100		pg/g	☼	03/31/17 10:38	04/18/17 02:27	1
1,2,3,6,7,8-HxCDD	2800	1100		pg/g	ф.	03/31/17 10:38	04/18/17 02:27	1

TestAmerica Spokane

Page 11 of 51

03/31/17 10:38 04/18/17 02:27 03/31/17 10:38 04/18/17 02:27

03/31/17 10:38 04/18/17 02:27

03/31/17 10:38 04/18/17 02:27

03/31/17 10:38 04/18/17 02:27

03/31/17 10:38 04/18/17 02:27

Client: GeoEngineers Inc

13C-1,2,3,7,8-PeCDF

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-42 (12-18)

Lab Sample ID: 590-5615-30 Date Collected: 03/01/17 12:34 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 90.2

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued) Dil Fac Analyte Result Qualifier RL **EDL** Unit D Prepared Analyzed 1800 1100 03/31/17 10:38 04/18/17 02:27 1,2,3,7,8,9-HxCDD pg/g 1,2,3,4,7,8-HxCDF ND 1100 03/31/17 10:38 04/18/17 02:27 1 pg/g 1,2,3,6,7,8-HxCDF ND 1100 pg/g 03/31/17 10:38 04/18/17 02:27 1,2,3,7,8,9-HxCDF ND 1100 03/31/17 10:38 04/18/17 02:27 pg/g ND 03/31/17 10:38 04/18/17 02:27 2,3,4,6,7,8-HxCDF 1100 pg/g 1 55000 1100 03/31/17 10:38 04/18/17 02:27 1,2,3,4,6,7,8-HpCDD pg/g 1,2,3,4,6,7,8-HpCDF 5700 1100 03/31/17 10:38 04/18/17 02:27 pg/g 1,2,3,4,7,8,9-HpCDF ND 1100 pg/g 03/31/17 10:38 04/18/17 02:27 OCDD 2200 03/31/17 10:38 04/18/17 02:27 330000 pg/g **OCDF** 2200 03/31/17 10:38 04/18/17 02:27 18000 pg/g **Total TCDD** 220 03/31/17 10:38 04/18/17 02:27 ND pg/g Total TCDF ND 220 03/31/17 10:38 04/18/17 02:27 pg/g Total PeCDD ND 03/31/17 10:38 04/18/17 02:27 1100 pg/g Total PeCDF ND 1100 pg/g 03/31/17 10:38 04/18/17 02:27 1100 03/31/17 10:38 04/18/17 02:27 12000 **Total HxCDD** pg/g **Total HxCDF** 7900 1100 03/31/17 10:38 04/18/17 02:27 pg/g 90000 1100 03/31/17 10:38 04/18/17 02:27 **Total HpCDD** pg/g **Total HpCDF** 18000 1100 03/31/17 10:38 04/18/17 02:27 pg/g Isotope Dilution Qualifier Dil Fac %Recovery Limits Prepared Analyzed 13C-2,3,7,8-TCDD 104 40 - 135 03/31/17 10:38 04/18/17 02:27 13C-2,3,7,8-TCDF 107 40 - 135 03/31/17 10:38 04/18/17 02:27 13C-1,2,3,7,8-PeCDD 109 40 - 135 03/31/17 10:38 04/18/17 02:27

Client Sample ID: HA-43 (12-18) Lab Sample ID: 590-5615-33 Date Collected: 03/01/17 09:40 Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 80.5

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

108

104

110

104

107

121

Analyte	Result Q	Qualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	310		pg/g	<u> </u>	03/31/17 10:38	04/18/17 03:13	1
2,3,7,8-TCDF	ND	310		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
1,2,3,7,8-PeCDD	ND	1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
1,2,3,7,8-PeCDF	ND	1600		pg/g	φ.	03/31/17 10:38	04/18/17 03:13	1
2,3,4,7,8-PeCDF	ND	1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
1,2,3,4,7,8-HxCDD	ND	1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
1,2,3,6,7,8-HxCDD	ND	1600		pg/g		03/31/17 10:38	04/18/17 03:13	1
1,2,3,7,8,9-HxCDD	ND	1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
1,2,3,4,7,8-HxCDF	ND	1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
1,2,3,6,7,8-HxCDF	ND	1600		pg/g	₽	03/31/17 10:38	04/18/17 03:13	1
1,2,3,7,8,9-HxCDF	ND	1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
2,3,4,6,7,8-HxCDF	ND	1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
1,2,3,4,6,7,8-HpCDD	17000	1600		pg/g	₽	03/31/17 10:38	04/18/17 03:13	1
1,2,3,4,6,7,8-HpCDF	3100	1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1

TestAmerica Spokane

Page 12 of 51

4/21/2017

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-33

TestAmerica Job ID: 590-5615-3

Client Sample ID: HA-43 (12-18)

Date Collected: 03/01/17 09:40 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 80.5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		1600		pg/g	<u> </u>	03/31/17 10:38	04/18/17 03:13	1
OCDD	230000		3100		pg/g	φ.	03/31/17 10:38	04/18/17 03:13	1
OCDF	20000		3100		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
Total TCDD	ND		310		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
Total TCDF	ND		310		pg/g		03/31/17 10:38	04/18/17 03:13	1
Total PeCDD	ND		1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
Total PeCDF	ND		1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
Total HxCDD	ND		1600		pg/g	₽	03/31/17 10:38	04/18/17 03:13	1
Total HxCDF	ND		1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
Total HpCDD	26000		1600		pg/g	₩	03/31/17 10:38	04/18/17 03:13	1
Total HpCDF	13000		1600		pg/g	₽	03/31/17 10:38	04/18/17 03:13	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	107		40 - 135				03/31/17 10:38	04/18/17 03:13	1
13C-2,3,7,8-TCDF	108		40 - 135				03/31/17 10:38	04/18/17 03:13	1
13C-1,2,3,7,8-PeCDD	112		40 - 135				03/31/17 10:38	04/18/17 03:13	1
13C-1,2,3,7,8-PeCDF	109		40 - 135				03/31/17 10:38	04/18/17 03:13	1
13C-1,2,3,6,7,8-HxCDD	103		40 - 135				03/31/17 10:38	04/18/17 03:13	1
13C-1,2,3,4,7,8-HxCDF	109		40 - 135				03/31/17 10:38	04/18/17 03:13	1
13C-1,2,3,4,6,7,8-HpCDD	105		40 - 135				03/31/17 10:38	04/18/17 03:13	1
13C-1,2,3,4,6,7,8-HpCDF	109		40 - 135				03/31/17 10:38	04/18/17 03:13	1
13C-OCDD	124		40 - 135				03/31/17 10:38	04/18/17 03:13	1

Client Sample ID: HA-44 (12-18) Lab Sample ID: 590-5615-36 Date Collected: 03/01/17 10:00 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 71.8

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	69		pg/g	<u> </u>	03/31/17 10:38	04/18/17 03:59	1
2,3,7,8-TCDF	ND	69		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,7,8-PeCDD	ND	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,7,8-PeCDF	ND	350		pg/g		03/31/17 10:38	04/18/17 03:59	1
2,3,4,7,8-PeCDF	ND	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,4,7,8-HxCDD	ND	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,6,7,8-HxCDD	370	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,7,8,9-HxCDD	ND	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,4,7,8-HxCDF	ND	350		pg/g	₩	03/31/17 10:38	04/18/17 03:59	1
1,2,3,6,7,8-HxCDF	ND	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,7,8,9-HxCDF	ND	350		pg/g	₩	03/31/17 10:38	04/18/17 03:59	1
2,3,4,6,7,8-HxCDF	ND	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,4,6,7,8-HpCDD	8600	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
1,2,3,4,6,7,8-HpCDF	950	350		pg/g	₩	03/31/17 10:38	04/18/17 03:59	1
1,2,3,4,7,8,9-HpCDF	ND	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
OCDD	62000	690		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
OCDF	2300	690		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
Total TCDD	ND	69		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
Total TCDF	ND	69		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
Total PeCDD	ND	350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
Total PeCDF	ND	350		pg/g	₩	03/31/17 10:38	04/18/17 03:59	1

Page 13 of 51

4/21/2017

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-5615-36

Client Sample ID: HA-44 (12-18)
Date Collected: 03/01/17 10:00

במט Sample וט. 590-56 וס-56. Matrix: Solid

TestAmerica Job ID: 590-5615-3

Date Received: 03/03/17 16:15

Percent Solids: 71.8

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	1400		350		pg/g	<u> </u>	03/31/17 10:38	04/18/17 03:59	1
Total HxCDF	1100		350		pg/g		03/31/17 10:38	04/18/17 03:59	1
Total HpCDD	14000		350		pg/g	₽	03/31/17 10:38	04/18/17 03:59	1
Total HpCDF	2900		350		pg/g		03/31/17 10:38	04/18/17 03:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	107		40 - 135				03/31/17 10:38	04/18/17 03:59	1
13C-2,3,7,8-TCDF	106		40 - 135				03/31/17 10:38	04/18/17 03:59	1
13C-1,2,3,7,8-PeCDD	113		40 - 135				03/31/17 10:38	04/18/17 03:59	1
13C-1,2,3,7,8-PeCDF	113		40 - 135				03/31/17 10:38	04/18/17 03:59	1
13C-1,2,3,6,7,8-HxCDD	107		40 - 135				03/31/17 10:38	04/18/17 03:59	1
13C-1,2,3,4,7,8-HxCDF	115		40 - 135				03/31/17 10:38	04/18/17 03:59	1
13C-1,2,3,4,6,7,8-HpCDD	108		40 - 135				03/31/17 10:38	04/18/17 03:59	1
13C-1,2,3,4,6,7,8-HpCDF	113		40 - 135				03/31/17 10:38	04/18/17 03:59	1
13C-OCDD	124		40 - 135				03/31/17 10:38	04/18/17 03:59	1

Lab Sample ID: 590-5615-42

Date Collected: 03/01/17 11:10 Date Received: 03/03/17 16:15

Client Sample ID: HA-46 (12-18)

Matrix: Solid Percent Solids: 71.6

Date Received: 03/03/17	10.13							Percent Sona	3. <i>1</i> 1.0
Method: 8290A - Dioxin: Analyte		GC/HRMS) Qualifier) RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	<u> </u>	1.3		pg/g		03/31/17 10:38	04/18/17 04:45	1
2,3,7,8-TCDF	ND		1.3		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
1,2,3,7,8-PeCDD	ND		6.7		pg/g	₽	03/31/17 10:38	04/18/17 04:45	1
1,2,3,7,8-PeCDF	ND		6.7		pg/g		03/31/17 10:38	04/18/17 04:45	1
2,3,4,7,8-PeCDF	ND		6.7		pg/g	☼	03/31/17 10:38	04/18/17 04:45	1
1,2,3,4,7,8-HxCDD	ND		6.7		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
1,2,3,6,7,8-HxCDD	ND		6.7		pg/g	₩.	03/31/17 10:38	04/18/17 04:45	1
1,2,3,7,8,9-HxCDD	ND		6.7		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
1,2,3,4,7,8-HxCDF	ND		6.7		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
1,2,3,6,7,8-HxCDF	ND		6.7		pg/g		03/31/17 10:38	04/18/17 04:45	1
1,2,3,7,8,9-HxCDF	ND		6.7		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
2,3,4,6,7,8-HxCDF	ND		6.7		pg/g	₽	03/31/17 10:38	04/18/17 04:45	1
1,2,3,4,6,7,8-HpCDD	42		6.7		pg/g	₽	03/31/17 10:38	04/18/17 04:45	1
1,2,3,4,6,7,8-HpCDF	ND		6.7		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
1,2,3,4,7,8,9-HpCDF	ND		6.7		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
OCDD	390		13		pg/g	₽	03/31/17 10:38	04/18/17 04:45	1
OCDF	15		13		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
Total TCDD	ND		1.3		pg/g	☼	03/31/17 10:38	04/18/17 04:45	1
Total TCDF	ND		1.3		pg/g	₽	03/31/17 10:38	04/18/17 04:45	1
Total PeCDD	ND		6.7		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
Total PeCDF	ND		6.7		pg/g	☼	03/31/17 10:38	04/18/17 04:45	1
Total HxCDD	ND		6.7		pg/g	₽	03/31/17 10:38	04/18/17 04:45	1
Total HxCDF	ND		6.7		pg/g	☼	03/31/17 10:38	04/18/17 04:45	1
Total HpCDD	74		6.7		pg/g	₩		04/18/17 04:45	1
Total HpCDF	8.4		6.7		pg/g	₩	03/31/17 10:38	04/18/17 04:45	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	102		40 - 135				03/31/17 10:38	04/18/17 04:45	1
13C-2,3,7,8-TCDF	102		40 - 135				03/31/17 10:38	04/18/17 04:45	1

TestAmerica Spokane

Page 14 of 51

4/21/2017

3

5

7

9

10

12

1,

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-3

Client Sample ID: HA-46 (12-18)

Lab Sample ID: 590-5615-42

Matrix: Solid

Date Collected: 03/01/17 11:10 Date Received: 03/03/17 16:15

Matrix.	Julia
Percent Solids:	71.6

Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	103	40 - 135	03/31/17 10:38	04/18/17 04:45	1
13C-1,2,3,7,8-PeCDF	108	40 - 135	03/31/17 10:38	04/18/17 04:45	1
13C-1,2,3,6,7,8-HxCDD	100	<i>40 - 135</i>	03/31/17 10:38	04/18/17 04:45	1
13C-1,2,3,4,7,8-HxCDF	106	40 ₋ 135	03/31/17 10:38	04/18/17 04:45	1
13C-1,2,3,4,6,7,8-HpCDD	101	40 ₋ 135	03/31/17 10:38	04/18/17 04:45	1
13C-1,2,3,4,6,7,8-HpCDF	107	40 ₋ 135	03/31/17 10:38	04/18/17 04:45	1
13C-OCDD	120	40 - 135	03/31/17 10:38	04/18/17 04:45	1

Client Sample ID: HA-47 (12-18)

Lab Sample ID: 590-5615-45

Date Collected: 03/01/17 11:04

Date Received: 03/03/17 16:15

Matrix: Solid
Percent Solids: 71.1

Method: 8290A - Dioxins Analyte		GC/HRMS) Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		2.5		pg/g		03/31/17 10:38		1
2,3,7,8-TCDF	ND		2.5		pg/g	₽	03/31/17 10:38	04/18/17 05:31	1
1,2,3,7,8-PeCDD	ND		13		pg/g	≎	03/31/17 10:38	04/18/17 05:31	1
1,2,3,7,8-PeCDF	ND		13		pg/g	ф.	03/31/17 10:38	04/18/17 05:31	1
2,3,4,7,8-PeCDF	ND		13		pg/g	≎	03/31/17 10:38	04/18/17 05:31	1
1,2,3,4,7,8-HxCDD	ND		13		pg/g	₽	03/31/17 10:38	04/18/17 05:31	1
1,2,3,6,7,8-HxCDD	ND		13		pg/g		03/31/17 10:38	04/18/17 05:31	1
1,2,3,7,8,9-HxCDD	ND		13		pg/g	₽	03/31/17 10:38	04/18/17 05:31	1
1,2,3,4,7,8-HxCDF	ND		13		pg/g	₽	03/31/17 10:38	04/18/17 05:31	1
1,2,3,6,7,8-HxCDF	ND		13		pg/g		03/31/17 10:38	04/18/17 05:31	1
1,2,3,7,8,9-HxCDF	ND		13		pg/g	₽	03/31/17 10:38	04/18/17 05:31	1
2,3,4,6,7,8-HxCDF	ND		13		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
1,2,3,4,6,7,8-HpCDD	280		13		pg/g	\$	03/31/17 10:38	04/18/17 05:31	1
1,2,3,4,6,7,8-HpCDF	33		13		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
1,2,3,4,7,8,9-HpCDF	ND		13		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
OCDD	2900		25		pg/g		03/31/17 10:38	04/18/17 05:31	1
OCDF	160		25		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
Total TCDD	ND		2.5		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
Total TCDF	ND		2.5		pg/g	ф.	03/31/17 10:38	04/18/17 05:31	1
Total PeCDD	ND		13		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
Total PeCDF	ND		13		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
Total HxCDD	16		13		pg/g	φ.	03/31/17 10:38	04/18/17 05:31	1
Total HxCDF	15		13		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
Total HpCDD	470		13		pg/g	☼	03/31/17 10:38	04/18/17 05:31	1
Total HpCDF	120		13		pg/g	ф.	03/31/17 10:38	04/18/17 05:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	92		40 - 135				03/31/17 10:38	04/18/17 05:31	1
13C-2,3,7,8-TCDF	95		40 - 135				03/31/17 10:38	04/18/17 05:31	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared A	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	92	40 - 135	03/31/17 10:38 04/	18/17 05:31	1
13C-2,3,7,8-TCDF	95	40 - 135	03/31/17 10:38 04/	18/17 05:31	1
13C-1,2,3,7,8-PeCDD	100	40 - 135	03/31/17 10:38 04/	18/17 05:31	1
13C-1,2,3,7,8-PeCDF	103	40 - 135	03/31/17 10:38 04/	18/17 05:31	1
13C-1,2,3,6,7,8-HxCDD	95	40 - 135	03/31/17 10:38 04/	18/17 05:31	1
13C-1,2,3,4,7,8-HxCDF	100	40 - 135	03/31/17 10:38 04/	18/17 05:31	1
13C-1,2,3,4,6,7,8-HpCDD	99	40 - 135	03/31/17 10:38 04/	18/17 05:31	1
13C-1,2,3,4,6,7,8-HpCDF	102	40 - 135	03/31/17 10:38 04/	18/17 05:31	1
13C-OCDD	122	40 - 135	03/31/17 10:38 04/	18/17 05:31	1

TestAmerica Spokane

Page 15 of 51

4/21/2017

3

4

6

8

9

1 4

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-49 (12-18)

Lab Sample ID: 590-5615-51 Date Collected: 03/01/17 11:40 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 81.6

Analyte	Result Qu	alifier RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	7.2	pg/g		03/31/17 10:38	04/18/17 06:18	1
2,3,7,8-TCDF	ND	7.2	pg/g	₽	03/31/17 10:38	04/18/17 06:18	1
1,2,3,7,8-PeCDD	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
1,2,3,7,8-PeCDF	ND	36	pg/g	ф.	03/31/17 10:38	04/18/17 06:18	1
2,3,4,7,8-PeCDF	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
1,2,3,4,7,8-HxCDD	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
1,2,3,6,7,8-HxCDD	39	36	pg/g		03/31/17 10:38	04/18/17 06:18	1
1,2,3,7,8,9-HxCDD	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
1,2,3,4,7,8-HxCDF	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
1,2,3,6,7,8-HxCDF	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
1,2,3,7,8,9-HxCDF	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
2,3,4,6,7,8-HxCDF	ND	36	pg/g	₽	03/31/17 10:38	04/18/17 06:18	1
1,2,3,4,6,7,8-HpCDD	990	36	pg/g	₩.	03/31/17 10:38	04/18/17 06:18	1
1,2,3,4,6,7,8-HpCDF	160	36	pg/g	₽	03/31/17 10:38	04/18/17 06:18	1
1,2,3,4,7,8,9-HpCDF	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
OCDD	8400	72	pg/g		03/31/17 10:38	04/18/17 06:18	1
OCDF	500	72	pg/g	≎	03/31/17 10:38	04/18/17 06:18	1
Total TCDD	ND	7.2	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
Total TCDF	ND	7.2	pg/g	ф.	03/31/17 10:38	04/18/17 06:18	1
Total PeCDD	ND	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
Total PeCDF	ND	36	pg/g	₽	03/31/17 10:38	04/18/17 06:18	1
Total HxCDD	98	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
Total HxCDF	170	36	pg/g	₩	03/31/17 10:38	04/18/17 06:18	1
Total HpCDD	1600	36	pg/g	≎	03/31/17 10:38	04/18/17 06:18	1
Total HpCDF	570	36	pg/g	₽	03/31/17 10:38	04/18/17 06:18	1
Isotope Dilution	%Recovery Qu	alifier Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	112	40 - 135			03/31/17 10:38	04/18/17 06:18	1
13C-2,3,7,8-TCDF	100	40 - 135			03/31/17 10:38	04/18/17 06:18	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	112	40 - 135	03/31/17 10:38	04/18/17 06:18	1
13C-2,3,7,8-TCDF	100	40 - 135	03/31/17 10:38	04/18/17 06:18	1
13C-1,2,3,7,8-PeCDD	96	40 - 135	03/31/17 10:38	04/18/17 06:18	1
13C-1,2,3,7,8-PeCDF	101	40 - 135	03/31/17 10:38	04/18/17 06:18	1
13C-1,2,3,6,7,8-HxCDD	100	40 - 135	03/31/17 10:38	04/18/17 06:18	1
13C-1,2,3,4,7,8-HxCDF	102	40 - 135	03/31/17 10:38	04/18/17 06:18	1
13C-1,2,3,4,6,7,8-HpCDD	107	40 - 135	03/31/17 10:38	04/18/17 06:18	1
13C-1,2,3,4,6,7,8-HpCDF	107	40 - 135	03/31/17 10:38	04/18/17 06:18	1
13C-OCDD	129	40 - 135	03/31/17 10:38	04/18/17 06:18	1

Client Sample ID: HA-51 (12-18)

Matrix: Solid Date Collected: 03/01/17 15:00 Date Received: 03/03/17 16:15 Percent Solids: 71.2

Method: 8290A - Dioxins	and Furans (HRGC/HRMS)						
Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	14	pg/g	₩	03/31/17 10:38	04/18/17 16:01	1
2,3,7,8-TCDF	ND	14	pg/g	₽	03/31/17 10:38	04/18/17 16:01	1
1,2,3,7,8-PeCDD	ND	72	pg/g	₽	03/31/17 10:38	04/18/17 16:01	1
1,2,3,7,8-PeCDF	ND	72	pg/g	\$	03/31/17 10:38	04/18/17 16:01	1
2,3,4,7,8-PeCDF	ND	72	pg/g	₽	03/31/17 10:38	04/18/17 16:01	1
1,2,3,4,7,8-HxCDD	ND	72	pg/g	₽	03/31/17 10:38	04/18/17 16:01	1
1,2,3,6,7,8-HxCDD	ND	72	pg/g		03/31/17 10:38	04/18/17 16:01	1

TestAmerica Spokane

Lab Sample ID: 590-5615-57

Page 16 of 51

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-51 (12-18)

Lab Sample ID: 590-5615-57 Date Collected: 03/01/17 15:00 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 71.2

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued) Dil Fac Analyte Result Qualifier **EDL** Unit D Prepared Analyzed 72 1,2,3,7,8,9-HxCDD ND 03/31/17 10:38 04/18/17 16:01 pg/g 1,2,3,4,7,8-HxCDF ND 72 03/31/17 10:38 04/18/17 16:01 1 pg/g 72 1,2,3,6,7,8-HxCDF ND pg/g 03/31/17 10:38 04/18/17 16:01 1,2,3,7,8,9-HxCDF ND 72 03/31/17 10:38 04/18/17 16:01 pg/g 2,3,4,6,7,8-HxCDF ND 72 © 03/31/17 10:38 04/18/17 16:01 1 pg/g 72 1700 03/31/17 10:38 04/18/17 16:01 1,2,3,4,6,7,8-HpCDD pg/g 1,2,3,4,6,7,8-HpCDF 170 72 pg/g 03/31/17 10:38 04/18/17 16:01 1,2,3,4,7,8,9-HpCDF ND 72 03/31/17 10:38 04/18/17 16:01 pg/g 140 OCDD 03/31/17 10:38 04/18/17 16:01 16000 pg/g **OCDF** 140 03/31/17 10:38 04/18/17 16:01 1100 pg/g **Total TCDD** ND 14 03/31/17 10:38 04/18/17 16:01 pg/g **Total TCDF** ND 14 03/31/17 10:38 04/18/17 16:01 pg/g Total PeCDD 72 ND 03/31/17 10:38 04/18/17 16:01 pg/g Total PeCDF ND 72 pg/g 03/31/17 10:38 04/18/17 16:01 Total HxCDD ND 72 03/31/17 10:38 04/18/17 16:01 pg/g 72 **Total HxCDF** 130 03/31/17 10:38 04/18/17 16:01 pg/g 2700 72 03/31/17 10:38 04/18/17 16:01 **Total HpCDD** pg/g © 03/31/17 10:38 04/18/17 16:01 **Total HpCDF** 840 72 pg/g

Isotope Dilution	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	110	40 - 135	03/31/17 10:38	04/18/17 16:01	1
13C-2,3,7,8-TCDF	90	40 - 135	03/31/17 10:38	04/18/17 16:01	1
13C-1,2,3,7,8-PeCDD	88	40 - 135	03/31/17 10:38	04/18/17 16:01	1
13C-1,2,3,7,8-PeCDF	89	40 - 135	03/31/17 10:38	04/18/17 16:01	1
13C-1,2,3,6,7,8-HxCDD	90	40 - 135	03/31/17 10:38	04/18/17 16:01	1
13C-1,2,3,4,7,8-HxCDF	91	40 - 135	03/31/17 10:38	04/18/17 16:01	1
13C-1,2,3,4,6,7,8-HpCDD	93	40 - 135	03/31/17 10:38	04/18/17 16:01	1
13C-1,2,3,4,6,7,8-HpCDF	93	40 - 135	03/31/17 10:38	04/18/17 16:01	1
13C-OCDD	109	40 - 135	03/31/17 10:38	04/18/17 16:01	1

Client Sample ID: HA-53 (12-18) Lab Sample ID: 590-5615-63 Date Collected: 03/01/17 15:24 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 64.4

Analyte	Result Q	ualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	88		pg/g	<u> </u>	03/31/17 10:38	04/18/17 16:47	1
2,3,7,8-TCDF	ND	88		pg/g	≎	03/31/17 10:38	04/18/17 16:47	1
1,2,3,7,8-PeCDD	ND	440		pg/g	≎	03/31/17 10:38	04/18/17 16:47	1
1,2,3,7,8-PeCDF	ND	440		pg/g	☆	03/31/17 10:38	04/18/17 16:47	1
2,3,4,7,8-PeCDF	ND	440		pg/g	₽	03/31/17 10:38	04/18/17 16:47	1
1,2,3,4,7,8-HxCDD	ND	440		pg/g	≎	03/31/17 10:38	04/18/17 16:47	1
1,2,3,6,7,8-HxCDD	ND	440		pg/g	☆	03/31/17 10:38	04/18/17 16:47	1
1,2,3,7,8,9-HxCDD	ND	440		pg/g	≎	03/31/17 10:38	04/18/17 16:47	1
1,2,3,4,7,8-HxCDF	ND	440		pg/g	≎	03/31/17 10:38	04/18/17 16:47	1
1,2,3,6,7,8-HxCDF	ND	440		pg/g	₽	03/31/17 10:38	04/18/17 16:47	1
1,2,3,7,8,9-HxCDF	ND	440		pg/g	≎	03/31/17 10:38	04/18/17 16:47	1
2,3,4,6,7,8-HxCDF	ND	440		pg/g	≎	03/31/17 10:38	04/18/17 16:47	1
1,2,3,4,6,7,8-HpCDD	4400	440		pg/g	₩	03/31/17 10:38	04/18/17 16:47	1
1,2,3,4,6,7,8-HpCDF	ND	440		pg/g	☼	03/31/17 10:38	04/18/17 16:47	1

TestAmerica Spokane

Page 17 of 51

4/21/2017

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-53 (12-18)

Lab Sample ID: 590-5615-63

Date Collected: 03/01/17 15:24

Matrix: Solid

Date Received: 03/03/17 16:15

Percent Solids: 64.4

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		440		pg/g	<u> </u>	03/31/17 10:38	04/18/17 16:47	1
OCDD	38000		880		pg/g		03/31/17 10:38	04/18/17 16:47	1
OCDF	1600		880		pg/g	₽	03/31/17 10:38	04/18/17 16:47	1
Total TCDD	ND		88		pg/g	₽	03/31/17 10:38	04/18/17 16:47	1
Total TCDF	ND		88		pg/g	\$	03/31/17 10:38	04/18/17 16:47	1
Total PeCDD	ND		440		pg/g	₽	03/31/17 10:38	04/18/17 16:47	1
Total PeCDF	ND		440		pg/g	₽	03/31/17 10:38	04/18/17 16:47	1
Total HxCDD	ND		440		pg/g	\$	03/31/17 10:38	04/18/17 16:47	1
Total HxCDF	ND		440		pg/g	₽	03/31/17 10:38	04/18/17 16:47	1
Total HpCDD	8000		440		pg/g	☼	03/31/17 10:38	04/18/17 16:47	1
Total HpCDF	880		440		pg/g	☼	03/31/17 10:38	04/18/17 16:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	105		40 - 135				03/31/17 10:38	04/18/17 16:47	1
13C-2,3,7,8-TCDF	106		40 - 135				03/31/17 10:38	04/18/17 16:47	1
13C-1,2,3,7,8-PeCDD	109		40 - 135				03/31/17 10:38	04/18/17 16:47	1
13C-1,2,3,7,8-PeCDF	109		40 - 135				03/31/17 10:38	04/18/17 16:47	1
13C-1,2,3,6,7,8-HxCDD	105		40 - 135				03/31/17 10:38	04/18/17 16:47	1
13C-1,2,3,4,7,8-HxCDF	112		40 - 135				03/31/17 10:38	04/18/17 16:47	1
13C-1,2,3,4,6,7,8-HpCDD	107		40 - 135				03/31/17 10:38	04/18/17 16:47	1
13C-1,2,3,4,6,7,8-HpCDF	112		40 - 135				03/31/17 10:38	04/18/17 16:47	1
13C-OCDD	125		40 - 135				03/31/17 10:38	04/18/17 16:47	1

TestAmerica Job ID: 590-5615-3

0

10

11

TestAmerica Job ID: 590-5615-3

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-157505/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 160062 Prep Batch: 157505**

	MB I	MB					
Analyte	Result (Qualifier RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	1.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
2,3,7,8-TCDF	ND	1.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,7,8-PeCDD	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,7,8-PeCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
2,3,4,7,8-PeCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,4,7,8-HxCDD	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,6,7,8-HxCDD	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,7,8,9-HxCDD	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,4,7,8-HxCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,6,7,8-HxCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,7,8,9-HxCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
2,3,4,6,7,8-HxCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,4,6,7,8-HpCDD	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,4,6,7,8-HpCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
1,2,3,4,7,8,9-HpCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
OCDD	ND	10	pg/g		03/31/17 10:38	04/17/17 14:20	1
OCDF	ND	10	pg/g		03/31/17 10:38	04/17/17 14:20	1
Total TCDD	ND	1.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
Total TCDF	ND	1.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
Total PeCDD	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
Total PeCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
Total HxCDD	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
Total HxCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
Total HpCDD	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
Total HpCDF	ND	5.0	pg/g		03/31/17 10:38	04/17/17 14:20	1
	MB I	МВ					

	MB MB	:			
Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	97	40 - 135	03/31/17 10:38	04/17/17 14:20	1
13C-2,3,7,8-TCDF	101	40 - 135	03/31/17 10:38	04/17/17 14:20	1
13C-1,2,3,7,8-PeCDD	105	40 - 135	03/31/17 10:38	04/17/17 14:20	1
13C-1,2,3,7,8-PeCDF	102	40 - 135	03/31/17 10:38	04/17/17 14:20	1
13C-1,2,3,6,7,8-HxCDD	102	40 - 135	03/31/17 10:38	04/17/17 14:20	1
13C-1,2,3,4,7,8-HxCDF	100	40 - 135	03/31/17 10:38	04/17/17 14:20	1
13C-1,2,3,4,6,7,8-HpCDD	95	40 - 135	03/31/17 10:38	04/17/17 14:20	1
13C-1,2,3,4,6,7,8-HpCDF	100	40 - 135	03/31/17 10:38	04/17/17 14:20	1
13C-OCDD	110	40 - 135	03/31/17 10:38	04/17/17 14:20	1

Lab Sample ID: LCS 320-157505/2-A

1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

1,2,3,4,7,8-HxCDD

Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 160062 Prep Batch: 157505 Spike LCS LCS %Rec. Added Result Qualifier Unit Analyte Limits D %Rec 2,3,7,8-TCDD 20.0 20.8 104 77 - 130 pg/g 20.0 2,3,7,8-TCDF 21.7 109 79 - 137 pg/g 1,2,3,7,8-PeCDD 100 104 104 79 - 134 pg/g

108

112

102

pg/g

pg/g

pg/g

TestAmerica Spokane

108

112

102

81 - 134

76 - 132

65 - 144

Page 19 of 51

100

100

TestAmerica Job ID: 590-5615-3

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-157505/2-A

Matrix: Solid

Analysis Batch: 160062

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 157505**

%Rec.

	Opino						/01 CO .	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,6,7,8-HxCDD	100	109		pg/g		109	73 - 147	
1,2,3,7,8,9-HxCDD	100	104		pg/g		104	80 - 143	
1,2,3,4,7,8-HxCDF	100	111		pg/g		111	72 - 140	
1,2,3,6,7,8-HxCDF	100	116		pg/g		116	63 - 152	
1,2,3,7,8,9-HxCDF	100	120		pg/g		120	72 - 152	
2,3,4,6,7,8-HxCDF	100	117		pg/g		117	72 - 151	
1,2,3,4,6,7,8-HpCDD	100	107		pg/g		107	86 - 134	
1,2,3,4,6,7,8-HpCDF	100	104		pg/g		104	81 - 137	
1,2,3,4,7,8,9-HpCDF	100	117		pg/g		117	79 - 139	
OCDD	200	202		pg/g		101	80 - 137	
OCDF	200	211		pg/g		106	75 - 141	

LCS LCS

Snike

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	93		40 - 135
13C-2,3,7,8-TCDF	94		40 - 135
13C-1,2,3,7,8-PeCDD	101		40 - 135
13C-1,2,3,7,8-PeCDF	97		40 - 135
13C-1,2,3,6,7,8-HxCDD	97		40 - 135
13C-1,2,3,4,7,8-HxCDF	97		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	93		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	94		40 - 135
13C-OCDD	109		40 - 135

Lab Sample ID: LCSD 320-157505/3-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 157505**

Analysis Batch: 160062 LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Unit %Rec Limits RPD Limit Analyte 2,3,7,8-TCDD 20.0 20.4 102 77 - 130 2 20 pg/g 2,3,7,8-TCDF 20.0 21.7 pg/g 108 79 - 137 0 20 1,2,3,7,8-PeCDD 100 103 103 79 - 134 20 pg/g 1,2,3,7,8-PeCDF 100 108 108 81 - 134 20 pg/g 2,3,4,7,8-PeCDF 100 107 107 76 - 132 20 pg/g 1,2,3,4,7,8-HxCDD 100 105 pg/g 105 65 - 14420 1,2,3,6,7,8-HxCDD 100 110 110 73 - 147 0 20 pg/g 100 20 107 107 80 - 143 2 1,2,3,7,8,9-HxCDD pg/g 20 1,2,3,4,7,8-HxCDF 100 111 pg/g 111 72 - 140 63 - 152 1,2,3,6,7,8-HxCDF 100 116 116 20 pg/g 1,2,3,7,8,9-HxCDF 100 119 119 72 - 152 20 pg/g 20 100 O 2,3,4,6,7,8-HxCDF 117 pg/g 117 72 - 1511,2,3,4,6,7,8-HpCDD 100 107 pg/g 107 86 - 134 20 100 102 102 81 - 137 20 1,2,3,4,6,7,8-HpCDF pg/g 1,2,3,4,7,8,9-HpCDF 100 117 117 79 - 139 0 20 pg/g OCDD 200 201 101 80 - 137 0 20 pg/g **OCDF** 200 209 105 75 - 141 20 pg/g

LCSD LCSD

Isotope Dilution **%Recovery Qualifier** Limits 13C-2,3,7,8-TCDD 99 40 - 135

TestAmerica Spokane

Page 20 of 51

4/21/2017

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-3

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 157505

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID:	LCSD	320-157	505/3-A
Matrix: Solid			

Analysis Batch: 160062

	LCSD	LCSD
	%Recovery	Qualifie
-		

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDF	97		40 - 135
13C-1,2,3,7,8-PeCDD	105		40 - 135
13C-1,2,3,7,8-PeCDF	102		40 - 135
13C-1,2,3,6,7,8-HxCDD	100		40 - 135
13C-1,2,3,4,7,8-HxCDF	101		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	99		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	101		40 - 135
13C-OCDD	116		40 - 135

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

·

Client Sample ID: HA-3A (12-18)

Lab Sample ID: 590-5615-3

Matrix: Solid

Date Collected: 03/01/17 10:35 Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			158060	04/04/17 17:03	CFR	TAL SAC

Client Sample ID: HA-3A (12-18)

Lab Sample ID: 590-5615-3

Date Collected: 03/01/17 10:35

Matrix: Solid

Date Received: 03/03/17 16:15

Batch Batch Dil Initial Final Batch Prepared

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.33 g	4000 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160062	04/17/17 17:25	SMA	TAL SAC

Client Sample ID: HA-4A (12-18)

Lab Sample ID: 590-5615-6

Date Collected: 03/01/17 10:00 Matrix: Solid

Date Received: 03/03/17 16:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			158060	04/04/17 17:03	CFR	TAL SAC

Client Sample ID: HA-4A (12-18)

Lab Sample ID: 590-5615-6

Date Collected: 03/01/17 10:00 Matrix: Solid
Date Received: 03/03/17 16:15 Percent Solids: 79.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.94 g	1538 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160062	04/17/17 18:11	SMA	TAL SAC

Client Sample ID: HA-6A (12-18)

Lab Sample ID: 590-5615-8

Date Collected: 03/01/17 11:42 Matrix: Solid

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216		1		-	158064	04/04/17 17:34	CFR	TAL SAC	

Client Sample ID: HA-6A (12-18)

Lab Sample ID: 590-5615-8

Date Collected: 03/01/17 11:42

Matrix: Solid

Date Received: 03/03/17 16:15

Percent Solids: 84.9

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.32 g	571 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160062	04/17/17 18:57	SMA	TAL SAC

TestAmerica Job ID: 590-5615-3

Matrix: Solid

Matrix: Solid

Matrix: Solid

TAL SAC

Matrix: Solid

04/18/17 00:08 SMA

160064

Percent Solids: 82.2

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-13A (12-18) Lab Sample ID: 590-5615-12 **Matrix: Solid**

Date Collected: 03/01/17 13:00 Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			158064	04/04/17 17:34	CFR	TAL SAC

Lab Sample ID: 590-5615-12 Client Sample ID: HA-13A (12-18)

Date Collected: 03/01/17 13:00 Date Received: 03/03/17 16:15

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.42 g	20 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160062	04/17/17 19:43	SMA	TAL SAC

Client Sample ID: HA-20A (12-18) Lab Sample ID: 590-5615-16

Date Collected: 03/01/17 15:05

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			158064	04/04/17 17:34	CFR	TAL SAC

Client Sample ID: HA-20A (12-18) Lab Sample ID: 590-5615-16

Date Collected: 03/01/17 15:05 Date Received: 03/03/17 16:15

Percent Solids: 71.8 Dil Batch Batch Initial Final Batch Prepared Prep Type Type Method **Factor** Amount Amount Number or Analyzed Analyst Lab 03/31/17 10:38 DXD Total/NA Prep 8290 10.05 g 87 uL 157505 TAL SAC

Client Sample ID: HA-40 (12-18) Lab Sample ID: 590-5615-24

1

Date Collected: 03/01/17 14:20 Date Received: 03/03/17 16:15

Analysis

8290A

Total/NA

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			158064	04/04/17 17:34	CFR	TAL SAC

Client Sample ID: HA-40 (12-18) Lab Sample ID: 590-5615-24

Date Collected: 03/01/17 14:20 **Matrix: Solid** Date Received: 03/03/17 16:15 Percent Solids: 84.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.07 g	118 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160064	04/18/17 00:55	SMA	TAL SAC

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-41 (12-18)

Date Collected: 03/01/17 14:35 Date Received: 03/03/17 16:15

Lab Sample ID: 590-5615-27

Matrix: Solid

Batch Dil Initial Final Batch Batch **Prepared Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed **Analyst** Lab Total/NA Analysis D 2216 158064 04/04/17 17:34 CFR TAL SAC

Client Sample ID: HA-41 (12-18) Lab Sample ID: 590-5615-27

Date Collected: 03/01/17 14:35 Date Received: 03/03/17 16:15

Analysis

8290A

Matrix: Solid Percent Solids: 83.7

04/18/17 01:41 SMA

160064

Dil Initial Batch **Batch** Final **Batch Prepared** Method Prep Type Type Run **Factor** Amount Amount Number or Analyzed Lab Analyst TAL SAC 8290 157505 03/31/17 10:38 Total/NA Prep 10.34 g 154 uL DXD

1

Client Sample ID: HA-42 (12-18) Lab Sample ID: 590-5615-30

Date Collected: 03/01/17 12:34 Date Received: 03/03/17 16:15

Total/NA

Matrix: Solid

TAL SAC

Batch Batch Dil Initial Final **Batch** Prepared Method Run Factor Amount Amount Number or Analyzed **Prep Type** Type **Analyst** Lab 04/04/17 17:34 158064 CFR TAL SAC Total/NA Analysis D 2216

Client Sample ID: HA-42 (12-18) Lab Sample ID: 590-5615-30

Date Collected: 03/01/17 12:34 Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 90.2

Batch Batch Dil Initial Final Batch Prepared Prep Type Type Method Run Factor **Amount** Amount Number or Analyzed **Analyst** Lab Total/NA Prep 8290 10.10 g 4000 uL 157505 03/31/17 10:38 DXD TAL SAC Total/NA 8290A 160064 04/18/17 02:27 SMA TAL SAC Analysis 1

Client Sample ID: HA-43 (12-18) Lab Sample ID: 590-5615-33

Date Received: 03/03/17 16:15

Date Collected: 03/01/17 09:40 **Matrix: Solid**

Dil Initial Final Batch Batch Batch **Prepared** Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab 04/04/17 17:34 CFR Total/NA Analysis D 2216 158064 TAL SAC

Client Sample ID: HA-43 (12-18) Lab Sample ID: 590-5615-33

Date Collected: 03/01/17 09:40 Matrix: Solid Date Received: 03/03/17 16:15 Percent Solids: 80.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.94 g	5000 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160064	04/18/17 03:13	SMA	TAL SAC

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-44 (12-18)

Lab Sample ID: 590-5615-36 Date Collected: 03/01/17 10:00 **Matrix: Solid**

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			158064	04/04/17 17:34	CFR	TAL SAC

Client Sample ID: HA-44 (12-18) Lab Sample ID: 590-5615-36

Date Collected: 03/01/17 10:00

Matrix: Solid

Date Received: 03/03/17 16:15 Percent Solids: 71.8

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.06 g	1000 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160064	04/18/17 03:59	SMA	TAL SAC

Client Sample ID: HA-46 (12-18) Lab Sample ID: 590-5615-42

Date Collected: 03/01/17 11:10

Matrix: Solid

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1		-	158064	04/04/17 17:34	CFR	TAL SAC

Client Sample ID: HA-46 (12-18) Lab Sample ID: 590-5615-42

Date Collected: 03/01/17 11:10 Date Received: 03/03/17 16:15

Matrix: Solid Percent Solids: 71.6

Dil Initial Batch Batch Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab 03/31/17 10:38 DXD Total/NA Prep 8290 10.42 g 20 uL 157505 TAL SAC 04/18/17 04:45 SMA TAL SAC Total/NA Analysis 8290A 160064 1

Client Sample ID: HA-47 (12-18) Lab Sample ID: 590-5615-45

Date Collected: 03/01/17 11:04

Matrix: Solid

Date Received: 03/03/17 16:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			158064	04/04/17 17:34	CFR	TAL SAC

Client Sample ID: HA-47 (12-18) Lab Sample ID: 590-5615-45

Date Collected: 03/01/17 11:04

Matrix: Solid

Date Received: 03/03/17 16:15 Percent Solids: 71.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.99 g	36 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160064	04/18/17 05:31	SMA	TAL SAC

Lab Sample ID: 590-5615-51

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: HA-49 (12-18)

Date Collected: 03/01/17 11:40

Matrix: Solid

Date Received: 03/03/17 16:15

Batch Dil Initial Final Batch Batch **Prepared Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed **Analyst** Lab Total/NA Analysis D 2216 158064 04/04/17 17:34 CFR TAL SAC

Client Sample ID: HA-49 (12-18) Lab Sample ID: 590-5615-51

Date Collected: 03/01/17 11:40 Date Received: 03/03/17 16:15 Matrix: Solid

Percent Solids: 81.6

Dil Initial Final Batch **Batch Batch Prepared** Method **Prep Type** Type Run **Factor** Amount Amount Number or Analyzed Analyst Lab TAL SAC 8290 157505 Total/NA Prep 10.07 g 118 uL 03/31/17 10:38 DXD Total/NA Analysis 8290A 1 160064 04/18/17 06:18 SMA TAL SAC

Client Sample ID: HA-51 (12-18) Lab Sample ID: 590-5615-57

Date Collected: 03/01/17 15:00

Matrix: Solid

Date Received: 03/03/17 16:15

Batch Batch Dil Initial Final Batch Prepared Method Run Factor Amount Amount Number or Analyzed **Prep Type** Type **Analyst** Lab 158064 04/04/17 17:34 CFR Total/NA Analysis D 2216 TAL SAC

Client Sample ID: HA-51 (12-18) Lab Sample ID: 590-5615-57

Date Collected: 03/01/17 15:00

Matrix: Solid

Date Received: 03/03/17 16:15 Percent Solids: 71.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.82 g	200 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160066	04/18/17 16:01	ALM	TAL SAC

Client Sample ID: HA-53 (12-18) Lab Sample ID: 590-5615-63

Date Collected: 03/01/17 15:24

Matrix: Solid

Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216					158064	04/04/17 17:34	CFR	TAL SAC

Client Sample ID: HA-53 (12-18) Lab Sample ID: 590-5615-63

Date Collected: 03/01/17 15:24 **Matrix: Solid**

Percent Solids: 64.4 Date Received: 03/03/17 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.78 g	1111 uL	157505	03/31/17 10:38	DXD	TAL SAC
Total/NA	Analysis	8290A		1			160066	04/18/17 16:47	ALM	TAL SAC

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-3

Laboratory: TestAmerica Spokane

The accreditations/certifications listed below are applicable to this report.

ſ	Authority	Program	EPA Region	Identification Number	Expiration Date
	Washington	State Program	10	C569	01-06-18

Laboratory: TestAmerica Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-055	12-18-17
Arizona	State Program	9	AZ0708	08-11-17
Arkansas DEQ	State Program	6	88-0691	06-17-17
California	State Program	9	2897	01-31-18
Colorado	State Program	8	CA00044	08-31-17
Connecticut	State Program	1	PH-0691	06-30-17
Florida	NELAP	4	E87570	06-30-17
Hawaii	State Program	9	N/A	01-29-18
Illinois	NELAP	5	200060	03-17-18
Kansas	NELAP	7	E-10375	10-31-17
L-A-B	DoD ELAP		L2468	01-20-18
Louisiana	NELAP	6	30612	06-30-17
Maine	State Program	1	CA0004	04-18-18
Michigan	State Program	5	9947	01-31-18
Nevada	State Program	9	CA00044	07-31-17
New Hampshire	NELAP	1	2997	04-18-18
New Jersey	NELAP	2	CA005	06-30-17
New York	NELAP	2	11666	04-01-18
Oregon	NELAP	10	4040	01-28-18
Pennsylvania	NELAP	3	68-01272	03-31-18
Texas	NELAP	6	T104704399	07-31-17
US Fish & Wildlife	Federal		LE148388-0	10-31-17
USDA	Federal		P330-11-00436	12-30-17
USEPA UCMR	Federal	1	CA00044	11-06-18
Utah	NELAP	8	CA00044	02-28-18
Virginia	NELAP	3	460278	03-14-18
Washington	State Program	10	C581	05-05-17
West Virginia (DW)	State Program	3	9930C	12-31-17
Wyoming	State Program	8	8TMS-L	01-29-17 *

•

4

5

6

8

10

11

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Spokane

Method Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-5615-3

Method	Method Description	Protocol	Laboratory
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC

Protocol References:

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

2

4

5

6

7

8

4.6

10

11

- 0 0 4 5 0 L 8 6 5 E 5 E

TestAmerica Spokane

11922 Eas	st 1st Ave
Spokane,	WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain	of	Cu	sto	dy
-------	----	----	-----	----

	<u>TestAmerica</u>
	THE LEADER IN ENVIRONMENTAL TESTING
No(s):	GOC No:

Client Information	Sampler:	JP/JW	R	A		s Chain of Custody	No(s):		GOC No: 590-2353-810.1	
Client Contact: Scott Lathen	Phone: 42	5-293-9	560	E	20-561	5 Chain of Custody			Page: Page 1 of 10	
Company: GeoEngineers Inc						Analysis R	Requested		Job#:	
Address: 523 East Second Ave	Due Date Req	uested: <'T	\		100	Allulysis I	- I I I		Preservation Code	es:
City: Spokane State, Zip: WA, 99202	TAT Requeste	ed (days):	+ Need time to	enough s run		81404 M			A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3
Phone: 509-251-5239(Tel)	PO#:	order not require	+600	5-47		4 2			F - MeOH G - Amchior	R - Na2S2O3 S - H2SO4
Email slathen@geoengineers.com	Wo#:	roci noi require			or No			ça	H - Ascorbic Acid I - Ice J - DI Water	T - TSP Dodecahydrate U - Acetone V - MCAA
Project Name: Colville Post and Pole/0504-098-01 Site:	Project #: 59001108 SSOW#:				Sample (Yes	Furans PA 8		of container	K - EDTA L - EDA Other:	W - pH 4-5 Z - other (specify)
Sample Identification	Sample D	Sample ate Time	Sample Type (C=comp, G=grab)	Matrix (Wewater, Senolid, Oewaste/oil, BT=Tisaue, A=Air)	eld Filtered	Diaxins/ PCP E		Total Number	Special Ins	structions/Note:
				tion Code:	XX					
HA-3A (0-6)	3-1-1	7 1025	6	Solid					- Run	selected
HA-3A(6-12)	1	1030	1	Solid		X			Sayles	for checked
4A-3A(12-18)		1035		Solid						s, hold
HA-4A (0-6)		0950		Solid					remand	
HA-4A (6-12)		0955		Solid		X				Gollow-up
HA-4A(12-18)		1000		Solid					analysis	
HA-6A(6-12)		1140		Solid		X				ts - although
HA-6A(12-18)		1142		Solid						sult in time
44-114(6-12)		1445		Solid		X				Jecisian on
HA-11A-(12-18)		1447		Solid	T					o - without
HA-13A (6-12)	4	1255	1	Solid		X				
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B		Radiological		Sa	mple Disposal (A fee may b	ne assessed if samples Disposal By Lab	are retaine	ed longer than 1 ve For	month) Months
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	ecial Instructions/QC Require	ments:			
Empty Kit Relinquished by:		Date:			Time:	1	/ Method of Shipme	. 1		
Relinquished by.	Date/Time	3-17/6	15	Company		Theela M	al Date 7		1615	TA SOX
Relinquished by:	Date/Time:	-		Company		Received by:	Date	ime		Company
Relinquished by:	Date/Time:			Company		Received by:	Date/T	ime.		Company
Custody Seals Intact: Custody Seal No.:						Cooler Temperature(s) "C and Other	er Ramarks			

TestAmerica Spokane

11922 East 1st Ave

Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

Client Information	Sampler Hof	/5W	3	Lab F Arrir		Randee E		Carrier Tracking	No(s):		OC No: 590-2353-810.2	
Client Information Client Contact Scott Lathen	Phone: 425	293-9	560	E-Ma	ii.	ngton@testam	ericainc com			P	Page: Page 2 of 10	
Scott Lathen Company: Configuration	1 1000	200	000	rans		rigion (g.conain		Desurated		_	lob#	
GeoEngineers Inc Address:	Due Date Request	ed: /+N					Analysis	Requested	ПП	P	Preservation Code	es:
523 East Second Ave	TAT Requested (d	S(U	1 1								A - HCL B - NaOH	M - Hexane N - None
City Spokane	STD + No	eld en	expl ti	me		40				1	C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
State, Zip: WA, 99202	to	()	las u	0		8290A				E	E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
Phone: 509-251-5239(Tel)	PO# Purchase Order					100			1111	9	G - Amehlor	S - H2SO4 T - TSP Dodecahydrate
Email:	WO#	Tiot require	u .		N C	EPA 2730				10	H - Ascorbic Acid I - Ice J - DI Water	U - Acetone V - MCAA
slathen@geoengineers.com Project Name:	Project #:	_			es o	00				ners	K-EDTA	W - pH 4-5
Colville Post and Pole/0504-098-01	59001108				Ves (3 4				nta	L-EDA	Z - other (specify)
Site:	ssow#				Samp SD (EPA				of cc	Other:	
		Sample	Sample Type (C=comp,	Matrix (Wewater, Senolid, O=waste/oil,	Field Filtered Sample (Yes or Perform MS/MSD (Yes or No)	Dibrins Pep				Total Number		
Sample Identification	Sample Date	Time	G=grab)	BT=Tissue, A=Air	12 9	AC				P	Special In	structions/Note:
111 12 1 (12 10)	2 1 10	12	/ /	tion Code:	XX					X		
HA-13A (12-18)	3-1-17	1300	6	Solid	H							
HA-17A (6-12)	1	1210	1	Solid		X						
HA-17A(12-18)		1212		Solid								
HA-20A(6-12)		1500		Solid		X						
HA-20A(1)-18)		1505		Solid								
HA-25A (6-12)		1605		Solid		X						
HA-25A(12-18)		160		Solid	T			13 1 11				
HA-39(O-6)		1330		Solid	†	×						
111-39(1-10)		1335		Solid	†	1						
114-39(12-18)		1340		Solid	+							
11/142/2-()	2	1410		Solid	H	X						
Possible Hazard Identification	Ø	ITIO	A	199000	Sa		al (A fee may	be assessed if s	amples are ret	taine	d longer than 1	month)
	Poison B Unkr	own 🗆	Radiological			Return To	Contract of the second of the	Disposal By L				Months
Deliverable Requested: I, II, III, IV, Other (specify)					S	pecial Instruction						
Empty Kit Relinquished by:		Date:			Time	6	-	/ Method o	of Shipment:			
Relinquished by:	Date/Time:	1615	-	Company	_	Received by	note	al.	Date/Time:	7	11015	Company Apok
Relinquished by:	3-3-/7 Date/Time:	161)		Company		Received by	Ju-141	usy	Dayle/Time:		100	Company
Relinquished by:	Date/Time		-	Company		Received by:			Date/Time:			Company
Custody Scale latests Control Scal No.						Cooler Town	tura(a) 90 2 00	has Damas				
Custody Seals Intact: Custody Seal No.:						Cooler Tempera	ature(s) °C and Ot	ner Kernarks:	1C, 17	6-	IROO4	

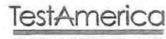
Page 31 of 51

TestAmerica Spokane

11922 East 1st Ave

Chain of Custody Record

Spokane, WA 99206 THE LEADER IN ENVIRONMENTAL TESTING Phone (509) 924-9200 Fax (509) 924-9290


Client Information	Sampler: MJ	P/JU	OR	Lab F Arrir	PM: ngton, F	Rande	e E		Carrier Trackir	g No(s):		COC No: 590-2353-810.3	
Client Contact: Scott Lathen	Phone 425-	792-0	cla	E-Ma	ait	100		dadaa saa				Page.	
Company:	7,25	4101	360	rand	iee.arrir	ngton	@testame	ricainc.com			-	Page 3 of 10 Job#	
GeoEngineers Inc								Analysis R	Requested				
Address: 523 East Second Ave	Due Date Request	ed: (T)	\		100							Preservation Cod	
City: Spokane	TAT Requested (d STD-Nee	ays):	wh tim	e te		+						A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip: WA, 99202	run	Idlan	-up			82904	Siv					D - Nitric Acid E - NaHSO4 F - MeOH	P - Na2O4S Q - Na2SO3 R - Na2S2O3
Phone: 509-251-5239(Tel)	Po #: Purchase Orde	r not require	d		2		2	111				G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Email: slathen@geoengineers.com	WO#:				No)	EPA	8230				2	I - Ice J - DI Water K - EDTA	U - Acetone V - MCAA W - pH 4-5
Project Name Colville Post and Pole/0504-098-01	Project #: 59001108				S or	_	4				aine	L-EDA	Z - other (specify)
Site:	SSOW#.				ample SD (Yes	Furan	EPA				of containe	Other:	
		Sample	Sample Type (C=comp,	Matrix (wewater, Seaolid, Oswaste/oil,	Field Filtered Sample (Yes or Perform MS/MSD (Yes or No)	Diaxing LA	PCP,				Total Number		
Sample Identification	Sample Date	Time		ST=Tissue, A=Air) II B	P	(2-				2	Special In	structions/Note:
7(1 -4 - 7/ 10)		<u> </u>	Preserva	tion Code:	XX	-					X		
HA-40(6-12)	3-1-17	1415	6	Solid									
HA-40 (12-18)		1420	1	Solid									
HA-41 (0-6)		1425		Solid		X							
HA-41 (6-12)		1430		Solid									
HA-41(12-18)		1435		Solid									
HA-42(0-6)		1230		Solid		X					100		
144-42 (6-12)		1232		Solid									
14A-42(12-18)		1234		Solid									
HA-43(0-6)		0930		Solid		X					H		
HA-43 (6-12)		0935		Solid									
14A-43(12-18)	1	0940	4	Solid									
Possible Hazard Identification								(A fee may b	e assessed if	samples are i		ed longer than 1	month)
Non-Hazard Flammable Skin Irritant	Poison B Unkr	nown -	Radiological			\square_R	eturn To C	Client	Disposal By	.ab	Arch	ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	ecial	Instruction	s/QC Require	ments:				
Empty Kit Relinquished by:		Date:			Time:			-	Method	of Shipment	1		
Relinquished by:	3-3-/	7/61	5	Company		Rece	The street	ela F	nati	Date/Time:	17	165	TA Sex
Relinquished by:	Date/Time;	, , —		Company		Rece	lived by:	/		Date/Time:			Company
Relinquished by:	Date/Time			Company		Rece	rived by:			Date/Time:			Company
Custody Seals Intact: Custody Seal No.:						Cool	er Temperati	ure(s) °C and Othe	r Remarks	707	P/	204	

Page 32 of 51

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Phone (509) 924-9200 Fax (509) 924-9290												THE LEADER IN ENVIRONMENT	the traines
Client Information	Sampler MJ	15h	R		ngton, F	Rande	ee E		Carrier T	racking No(s):		COC No: 590-2353-810.4	
Client Contact Scott Lathen	Phone: 425-	293-9	560	E-Ma		ngton	@testame	ericainc.com				Page: Page 4 of 10	
Company: GeoEngineers Inc								Analysis I	Requeste	d		Job #:	
Address	Due Date Requeste	d: STN			100							Preservation Codes:	
523 East Second Ave	TAT Requested (da				- 100						4 10	A - HCL M - Hexane	3
Spokane	STA Alea	I eva	ed tin	e to	188	8290A						B - NaOH N - None C - Zn Acetate O - AsNaO2	2
State, Zip:	STD-Nee	P.11	0		100	67	5					D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3	
WA, 99202 Phone:	PO#:	TOHOU	900	_	- 1	00	SPA					F - MeOH R - Na2S2C	O3
509-251-5239(Tel)	Purchase Order	not require	ď		6	4	8						decahydrate
Email: slathen@geoengineers.com	WO #:				io o	EPA	824					I - Ice U - Acetone J - DI Water V - MCAA	2
Project Name:	Project#:	-		_	er se	100					containers	K - EDTA W - pH 4-5 L - EDA Z - other (sp	
Colville Post and Pole/0504-098-01	59001108				le C	1	t				ntai	L - EDA Z - other (sp	becity).
Site:	SSOW#				Samp SD ()	100	EPA				oj o		
			Sample	Matrix	Field Filtered Sample (Yes or Perform MS/MSD (Yes or No)	8					Total Number		
		Sample	Type (C=comp,	(W=water, S=solid,	d Fil	×	3				N Z	A	
Sample Identification	Sample Date	Time	G=grab)	O=waste/oil, BT=Tissue, A=Ai	Per Fiel	Dibxing	PC				Tot	Special Instructions	s/Note:
		><	Preservat	tion Code:	XX		25/21						
HA-44 (0-6)	3-1-17	0950	6	Solid		X							
HA-44 (6-12)		0955	1	Solid									
HA-44(12-18)		1000		Solid									
HA-45 (0-6)		1025		Solid		X							
HA-45(6-12)		1027		Solid							1 8		
HA-45(12-18)		1030		Solid									
HA-46 (0-6)		1100		Solid		X							
HA-46 (6-12)		1105		Solid									
HA-46 (12-18)		1110		Solid									
HA-47 (0-6)		1100		Solid		X							
HA-47 (6-12)	•	1102	4	Solid									
Possible Hazard Identification		1100	A		Si	ample	Disposa	I (A fee may	be assesse	d if samples a	are retair	ned longer than 1 month)	
Non-Hazard Flammable Skin Irrita	ant Poison B Unkno	own -F	Radiological			\Box_{F}	Return To	Client	Disposal	By Lab	Arc:	hive For Months	S
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	pecial	Instructio	ns/QC Require	ements:				
Empty Kit Relinquished by:		Date:			Time				Me	thod of Shipment	,		
Relinquished by	Date/Time:	7 11	15	Company		Reci	alved by	ula?	hote	Date/Th	3/17	11als Company	Stock
Relinquished by:	Date/Time:	16		Company		-	eived by	mer /	The same of	Date/Tin	le:	Company	AL.
Relinquished by:	Date/Time:			Company		Reci	eived by:			Date/Tim	ne:	Company	
Custody Seals Intact: Custody Seal No.:		_			-	Con	ler Tempera	ture(s) ⁶ C and Oth	ner Remarks:	1 -0	- 1	2 - 2 - 11	
Δ Yes Δ No							-			1.3%	.7	IROO4	

51

οţ

Page 33 (

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

Phone (509) 924-9200 Fax (509) 924-9290 Carrier Tracking No(s): 590-2353-810.5 Client Information Arrington, Randee E Client Contact Page: Scott Lathen randee.arrington@testamericainc.com Page 5 of 10 Company Job# GeoEngineers Inc **Analysis Requested** Address: Due Date Requested: Preservation Codes: 523 East Second Ave. B - NaOH N - None EPA 82504 Spokane STD-Need energy time to C - Zn Acetale O - AsNaO2 P - Na204S D - Nitric Acid State, Zip: E-NaHSO4 Q - Na2SQ3 WA, 99202 F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4 509-251-5239(Tel) Purchase Order not required T - TSP Dodecahydrate H - Ascorbic Acid I-lce U - Acetone Perform MS/MSD (Yes or No) V - MCAA J - DI Water slathen@geoengineers.com K-EDTA W - pH 4-5 Project # Z - other (specify) L-EDA Colville Post and Pole/0504-098-01 59001108 SSOW# Other: Number Matrix Phoring Sample (Wawater, Type PCR Sesolid. Total Sample (C=comp. O=waste/oil, Sample Identification Sample Date Time G=grab) BT=Tissue, A=Air) Special Instructions/Note: Preservation Code: 1120 Solid 1122 Solid 1124 Solid 1130 Solid Solid 1135 1140 Solid Solid Solid 1200 Solid 1205 Solid Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Disposal By Lab Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Archive For Return To Client Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements Empty Kit Relinquished by Time: Company Company Relinquished by Date/Time: Company Received by: Custody Seals Intact: Custody Seal No.: Cooler Temperature(s) °C and Other Remarks: A Yes A No

51

ō

34

Page

TestAmerica Spokane

11922 East 1st Ave

A Yes A No

Chain of Custody Record

Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290 Carrier Tracking No(s): Client Information Arrington, Randee E 590-2353-810.6 Client Contact: Page: Scott Lathen randee.arrington@testamericainc.com Page 6 of 10 Company **Analysis Requested** GeoEngineers Inc. Due Date Requested: 570 Address: Preservation Codes: 523 East Second Ave A-HCL M - Hexane TAT Requested (days): B - NaOH N - None 82504 Spokane C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na204S State, Zip. E - NaHSO4 Q - Na2SO3 WA, 99202 R - Na2S2O3 F - MeOH EPA G - Amchlor 5 - H2SO4 509-251-5239(Tel) Purchase Order not required T - TSP Dodecahydrate H - Ascorbic Acid U - Acetone J - DI Water V-MCAA Perform MS/MSD (Yes or No) slathen@geoengineers.com W-pH 4-5 K-EDTA Project # L-EDA Z - other (specify) Colville Post and Pole/0504-098-01 59001108 Other: SSOW# 0 Dioxin Number Matrix Sample (wewater, Type Sasolid, Total Sample (C=comp, O=waste/oil, Sample Identification Sample Date Time G=grab) BT=Tissue, A=Air Special Instructions/Note: Preservation Code: 1455 Solid Solid 1500 Solid Solid 1525 Solid Solid 1520 1522 Solid 1524 Solid 1540 Solid Solid Solid Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin Irritant Poison B Unknown Disposal By Lab Archive For Return To Client Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements Empty Kit Relinquished by Time: Date: Company Relinquished by Company Relinquished by: Date/Time: Received by: Company Custody Seal No.: Custody Seals Intact: Cooler Temperature(s) "C and Other Remarks.

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206 **Chain of Custody Record**

TestAr	merica
1001/1	110110

THE LEADER IN ENVIRONMENTAL TENTING

Phone (509) 924-9200 Fax (509) 924-9290												DER IN ENVIRONMENTAL T	(First) toda
Client Information	Sampler MJF	150	OR		ngton, l	Randee	Ε		Carrier Tracking No(s).	COC No: 590-235	3-810.7	
Client Contact Scott Lathen		293-		E-Ma		ington@	testamericainc.	com			Page Page 7 c	if 10	
Company: GeoEngineers Inc							Anal	ysis Re	quested		Job#:		
Address: 523 East Second Ave	Due Date Requeste	d:CTN				14					Preserva	tion Codes:	
City	TAT Requested (da) []	1 .	_	- 10	82904				1 1 1	A - HCL B - NaOH	M - Hexane N - None	
Spokane	STD-Nee	d enoug	1 time	te	1 100	28					C - Zn Ace	etate O - AsNaO2	
State, Zip: VVA, 99202		Solla) -		1 18	1			1111	111	D - Nitric / E - NaHS	04 Q - Na2SO3	
Phone: 509-251-5239(Tel)	Po# Purchase Order		10		1 18	EPA	SIM			111	F - MeOH G - Amchi	or S - H2SO4	7.4.5
Email:	WO#:	not require	1		2						H - Ascort	U - Acetone	hydrate
slathen@geoengineers.com					No)	7	2		1 1 1 1		J-DI Wal	er V - MCAA W - pH 4-5	
Project Name: Colville Post and Pole/0504-098-01	Project #: 59001108				e (Yes		28		1111		L-EDIA Cother:	Z - other (specifi	y)
Site	ssow#				Field Filtered Sample (Yes	Fire					Other:		
				Matrix	ed S	Dioxins	ě l		x + x = x				
			Sample Type	(W=water,	Field Filtered	, X	PC				orai numper		
		Sample	(C=comp,	S=solid, D=waste/oil,	eld l	18			$I \cup I \cup I$		D.C.		in the second
Sample Identification	Sample Date	Time	G=grab) s) III G	1				1	SI	pecial Instructions/No	ite:
HA-55 (0-6)	3-1-17	1600	1	Solid	T			++		111			
11/20/10	21-11		6	Solid	+	+	X	+			+		
HA-55(6-12)		1602	1	500	+	++							
HA-55 (12-18)		1604		Solid	11								
HA-56(0-6)		1535		Solid			X						
HA-56 (6-12)		1540		Solid									
HA-56(12-18)		1545		Solid									
HA-57(0-6)		1330		Solid			X						
HA-57 (6-12)		/335		Solid	11								
UA-57(12-18)		1340		Solid							8		
HA-58(0-C)		1350		Solid	11		X				W		
114-5814-12)		1355	1	Solid	11		1				15		
Possible Hazard Identification		1/33	10		Si	ample	Disposal (A fee	may be	assessed if samp	oles are reta	ined longe	r than 1 month)	
Non-Hazard Flammable Skin Imit	ant Poison B Unkn	own -	Radiological				eturn To Client		Disposal By Lab		chive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)					S	pecial li	nstructions/QC F	Requirem	ents:				
Empty Kit Relinquished by:		Date:			Time	31			/ Method of Shi	pment			
Relinquished by	Date/Time:	7 16	15	Company		Receiv	theela	de	not Di	3/3/14	llos	5 Company	rik
Relinquished by:	3-3-/ Date/Time:	1 16		Company		Recei	ved by:	-11		afe/Turie:	1101	Company	
Relinquished by:	Date/Time:			Company		Recei	ved by:		Di	ate/Time:	_	Company	
								1.001					
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coole	r Temperature(s) °C	and Other	3 1.7	CIR	204		

Page 36 of 51

TestAmerica Spokane

11922 East 1st Ave

Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Client Information	Phone: 425-	P/51	SR	Lab Arri	PM: ngton, i	Rande	e E		Carrier Track	ing No(s)		COC No: 590-2353-810.8	
Client Contact Scott Lathen	Phone: 425-	293-	9560	E-Ma	ail:		@testamericainc	com				Page: Page 8 of 10	
Company. GeoEngineers Inc			1000	(sat)	T	rigion		lysis Req	unatad			Jeb#:	
Address:	Due Date Request	ed:			100	1 4	Anai	lysis Req	uested	111		Preservation Codes:	
523 East Second Ave					1 10	8290A					100	A - HCL M - Hexane	
Spokane	TAT Requested (d STD-Need	ays):	time .	to	100	28						B - NaOH N - None C - Zn Acetate O - AsNaO2	
State, Zip.	- DID-Mass	0.110	_		1.1			1 1 1				D - Nitric Acid P - Na2O45 E - NaHSO4 Q - Na2SO3	
WA, 99202 Phone:	PO#	tollow	-42		41	EPA		111				F - MeOH R - Na2S2O3	
509-251-5239(Tel)	Purchase Orde	r not require	d Y		9							G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dode	cahydrate
Email: slathen@geoengineers.com	WO#:				or No	1 4	218				y)	I - Ice U - Acetone J - DI Water V - MCAA	
Project Name:	Project #				(Yes or		8	1		1111	sine	K - EDTA W - pH 4-5 L - EDA Z - other (spec	cify)
Colville Post and Pole/0504-098-01 Site:	59001108 SSOW#:				Field Filtered Sample (10.7	128				containers	Other:	300
				- Par City	d Sa	2 Mily C				111	er of		
			Sample Type	Matrix (Wewater,	Filtere rm MS	ğ	~				Total Number		
	2	Sample	(C=comp,	5=solid, O=wasteloil,	Field F	P	255				tal 1	Contract to the second	
Sample Identification	Sample Date	Time	G=grab) e Preservati		1) 1	1	1-				100	Special Instructions/N	lote:
HA-58(12-18)	2 1 17	1100	. 1	Solid	H	+			F 4 50		-		
	3-1-17	1400	6		+	+		+-					
HA-59(0-6)		1345		Solid	11		X				100		
HA-59(au6-12)		1347		Solid									
HA-59(12-18)	4	1350	1	Solid									
				Solid									
				Solid	11			N. W.					
				Solid	11						1 10		
				Solid	11								
				Solid	+								
				Solid	11								
	V			Solid	11								
Possible Hazard Identification					S	ample	Disposal (A fee	e may be a	ssessed i	f samples ar	e retain	ed longer than 1 month)	
Non-Hazard Flammable Skin Irritant Poi	son B Unkr	nown	Radiological				eturn To Client		Disposal By			ive For Months	
Deliverable Requested: I, II, III, IV, Other (specify)					S	pecial l	Instructions/QC I	Requiremen	nts:				
Empty Kit Relinquished by:		Date:			Time	1)		,	Metho	d of Shipment:	1		
Relinquished by Man Fellerthon	3-3-/	5 11	15	Company		Recei	lved by	do	at	Date/Time	114	165 TAC	my
Relinquished by:	Date/Time:	1/9	0/3	Company		1	ived by:	1/1	y	Date Time		Company	
Relinquished by:	Date/Time:			Company		Rece	ived by			Date/Time		Company	
Custody Seals Intact: Custody Seal No.:					-	Cople	er Temperature(s) ^d C	and Other Re	emarks:	.7°7	-000	24/	
Δ Yes Δ No								1	1 1	. 7 4	LUC	7	

Custody Seals Intact
A Yes A No

Custody Seal No.

TestAmerica Spokane 1:977 East to Aug Spokane - WA 502(6) Phone (509) 924-9200 Fax (509) 924-9290	С	hain o	f Cust	tody						TestAr	merico
Client Information	Smile 4JP	Jul)					-		590-2353-810 I	
Clorit Contact Scott Labren Company	425-2	93-95	60	590	-5615	5 Chain of C	ustody			Page Page 1 of 10 Jacra	
GeoEngineers Inc.							Analysis Reques	steci		Jon a	
Artico. 533 Cast Second Avv	Due Date Requester	STO				4				Preservation Code	d Hace
Scakarus Scakarus	TAT Requirated (day		theed	erecula o round uno		824c/4				B - NoGel G - Zia Abdoka	H-Rone O-Arraut P-Na-948
VVA 95202			Telle	1-10		1				E - NOHSO4	G - N52503 R - N52505
Provid 559-251-5239(Te)u	Parchasa Order /	at required		1	(0)	75 S				Constitute) His microsom Ford	SHEEDS F. 134 Geography and
ensi satirani), generijiniesis, com	7/Q=				No.	1 1			15	A - EDAY T - EDAY	V-ACDA Wight 6.5
Project Name Colvide Post and Pale(0504-098-01 5.5c	Fragest # 59001 108 \$50008				(Yes or	Furans			container	L-EDA Other	Z-etha (specify)
		Т			MS/MSD	EP.			43		
			Sample Type (C=comp,	S-Lotte	dorm dorm	Diakis			Total Number		
Sample Identification	Sample Date	Time		tion Code:	XX	61-			X	Special In	structions/Note:
HA-3A (0-6)	3-1-171	1025	6	Solid						- Run	selected
HA-3A(6-12)		1030	ì	Solid		X					for thecral
4A-3A (12-18)		1035		Solid		(X)					s hold
HA-4A (0-6)		0950		Solid						remand	
HA-4A (6-12)		0955		Solia		X				possible	Collow-up
HA-4A (12-18)		1000		Solid		(X)			1	analysis	
11A-6A(6-12)		140		Solid		X				- 544 TA	ty - although
HA-6A(12-18)		1142		Solid	1	$\langle \chi \rangle$				near) (a)	sult in time
HA-114(6-12)	1	1445		Solid		X				to make	Jecusias on
HA-11A-(12-18)		1447		Solid						follow up	o - without
HA-13A (6-12)		1.255	-1	Splid		X	I (A fee may be asse			exceed)	my held tim
Possible Hazard Identification Non-Hazard Plansmable Soan and	our Daniel Contra	un III p	vholenost		Sal	Return To	I (A fee may be asso	osal By Lab	retair	ned longer than 1 have For	month)
Deliverable Requested 1 1 (ii 1V, Other (specify)	TARREST STORMS	53	. maring co				ns/GC Requirements	William Commence	1330		
Empty Kit Relinquished by		Date			Time.			Method of Shipment	,		
Reinquished by	3-3-1	7/6/	5	Company		The	la Thay	Date True	17	1615	TA Sport
S APPLICATES	Date of the			(Company		Pastences		Careffirm			Company
						1		-			

TestAmerica Spokane

1527 Cast 1st Avc Spokana - WA 69208 Phone (509) 924-9290 Fax (509) 924-9290

an also contract, where the

Chain of Custody Record

and the contract of the contract of the

Client Information	12 H26	15W6	2		ed ngton,	Randee E		Carrent morning feature		666 Na 590-2353-610 2
Grent Cartist: Scott Latheri	Photo 425-	293-9	500	180 180		ngtor@testar	mencains.com			Page 2 of 10
Carean GeoEngliebra Inc					T		Analysis Re	rouested		and #
Angela 523 Bast Second Ave	Due Dute Requesti	on (-1)			T				1	Preservation Codes:
Ca; Suakane	YET Deminstrated (d)	110.1	July Liv	V1.9		4				A WCL M prints 11 Thorn H to tive 1 Zydroisto C. Asthrox
Sun En VeA 99292	-STD - Ve		70)		8290A			Ì	Di-Tambi Acid Phinad D45 8 Franklin Onto 2507
Forms SGR-2519523mTcl	Parchase Ordan		4			1				F MySel
e atheri@gecengineers.com	2/6#				or No	67A	1111		196	Julian Superior States
Project Name Calville Post and Print/5504-098-01	Project # 69001108			-	ple (Yest or Yes or Ne)	2 4			taine	= ECTA
3/2	SSC//(#								of con	Ottier.
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (Weader, topical Constant,	Field Filtered San Perform MS/MSD	Dibras Eva			Total Number	Special Instructions/Note:
1200		><	Preservati	on Code	X				\rightarrow	
HA-13A (12-18)	3-1-17	Boc	6	Salid	11	X				
HA-17A (6-12)		1210	i	Solid		X				
14A-17A (12-18)		1212		Solid						
HA-20A(6-12)		1500		Solid		X				
HA-20A (12-18)		1505		Solid	11	8				
HA-25A (6-12)		1605		Sold		X				
HA-25A(12-18)		1610		Sold						
HA-39(0-6)		1330		Solid		X				
144-39(6-12)		1335		Solid						
44-39 (12-19)		1340		Solid						
4440(0-6)	V	1410	1	Solid		X				
Possible Bazard Identification Non-Hozard Flammable Skin Initial:	own n Co		Dark unara		5	ample Dispo	sal (A fee may b	c assessed if samples are \mathbb{D}_{D} spasal \mathbb{B}_{ℓ} that	retail	ned longer than 1 month) have For Months
Deliverable Requested 1, II, III, IV, Other (specify)	THE CHILD		- TAKENING PROCESS		2		nons/DC Requires	nents	-	
Empty Kit Relinquished by		Date			7 m			/ Method of Zerpmand	_	
Restrained to Med Peterson	3.3-17	1615	-	Tempan;		Sh	ula The	24 3/3/	17	1615 Th Spok
Reard, street by	Date/1-my			Simpan)		Reswied by	1) See tode		Company
relibautika b.	Sate Cone			German,		Received by		Date Tare.		Cstopany
Custody Seals Intact Custody Seal No			J			Disclay Trainp	Hatireto, Cacil Othe	1.3C,1	7	CIROOY

the property and a

and the contract of the contract of

TastAmerica Spokane Snokane IVA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

Client Information	San ofer W/ J	PIJACR	Arrit	o opton, Randeo E	Carrier Tracking Michil	500-2353-510-3
live Council Cool Lather	425-	293-956C	E tra	c lee arrington@lestamer.cainc.i	com	Page 3 of 10
areany Book noments Inc.				1	sis Requested	205 #
SHREE	One Date Raquest	ed CTA	· · · · · · · · · · · · · · · · · · ·		I I I I I I I	Preservation Codes:
21 East Securit A73 Spokane July 20 St A0202	TAT Requested (d STD - Nove	e emile +	ane te	\$190v		A - CL T - F result E - NoRM N Norm E - Standard O - ANNOY D - Norm And I - NoRMONT E - NoRMON O - Houses
775 (254-257) 105-251-5239(Te))	Porchase Orde	6.		10 No.		P - At-OH R - HallSCOX G - Amelyon S - (1250-4 II - Ascalar a As-All II - 15 in Disellating drafts II - Ascalar a U - Assating
Lather@geocrationers.com				CO (11) 25 2		
Coville Final and Fote/0504-096-01	5900 1108 5500 4			Tryle (Yes or		t - E(A
Sample Identification	Sample Date	Sample (C=cc Time G=gri	g (Armeira	Field Filtered Sai Perform MS/MSS Dro King For		Special Instructions/Note:
zenija ivenimanen	Sample bate	And the second second second	ervation Code			Operior manuel monarce
HA-40(6-12)	3-1-17	1415 G	Satin			
HA-40 (12-18)		1420 1	Solid	(x)		
HA-41(0-6)		1425	Solid	(%)		
44-41 (6-12)		1430	Solia			
144-41(12-18)		14.35	Solid			
HA-42(0-6)		1230	Solid	T X		
HA-12 (6-12)		1232 1	Salia			
4A-42(12-18)		1234	Solid	(8)		
HA-43 (0-6)		0930	Solid			
4A-43(6-12)		0.935	Solid			
11A-43(12-18)	177	340 =	Solid			
Possible Hazard Identification			7/03/	Sample Disposal / A fee	Discosof By Lab	is are retained longer than 1 month) Archere For Months
Empty Kit Relinquished by		Date		Time	Method of Shipm	1 1
Reinguistica by Mark Farther	- Batelfune 3-3-7	7/615	Company	Schella	That Both	13/17 /LOLS THE SINK
Life principals	Date Feb.		Commany	Received by	1 2	fire Contra
Custody Seals Innet: Custody Seal No.				Capter Temperatures : 10	uns construenting 1.7	CIRCON

- a compressional fraction of a

TestAmerica Spokane 11922 Edet let Ave Spokane, WA 99295

Chain of Custody Record

Time	mark it	1 species	Or	man
10	515	ti i	01	CO
	Part Carlot			
Mill of	ATT A ST	Thereis	1115-5	- C. S. Ball

and the second second second

Client Information	Sampler AJ	MITHALLER			ngton: Randeë E				Gamer Tra	sking Nasaj		COC No 590-2353-810-4		
Tent Contact Scott Lather	Friorie 4/25-	1 more 425-293-9560				ital ndee amogton@testamenza.nc.com						Page 4 of 10		
encertages has								Analysis	s Requested			7cm ±		
Des. 23 East Second Ave	Due Gate Requesi	STD			1			TIT			T	Preservation Ondes		
pokane	TAT Requested (d		at time	Le.	11	40						6 HCL Minimals 8 NaGH 1) NaGH 0 Zhiocetata C-AshaQD		
uh 25 VA, 59202	SITO-New	Sellen	- 40			92904	Sim					5 - 115% Aug. 7 - 1142048 6 - 114155 4 - 44 - 1142512		
on 19-251-5239(Tel)	Purchase Orde		4		5	1 3	- 4					F - MeOH B - CarpSZON G - Amorika G - Alex SA Transport and F - SA Contanty and F		
ni alben@geoengmaurs.com	Vertor ti				or Me	ENA	N23		1111		10	J - So V - Aprilias J - Di Water V - NGAA		
contribute olysie Past and Pole/0504/986-01	Partia 59001108										ainers	K - EDTA V7 - p814-5 1 - 696 Z - pro-t (specify)		
Sir.	RNORR				ampie (Yes or	100	EPA				of conta	Other.		
		Sample	Sample Type (C=comp.	Matrix (women brank) Overstroit	Field Filtered Sami Perform MS/MSD (Dibking A.	Pi				Yomber			
ample identification	Sample Date	Time	G=grab1 s	effesse Ask	1 2	E	of .				Total	Special Instructions/Note:		
UA-44 (0-6)	3-1-17	13150		Solid		X					\rightarrow			
4A-44(6-12)		0955	7	Solid	+	1								
HA-44(12-18)		1000	1/1	Solid	11	K			111					
4A-45 (0-6)		1025		Sold		X								
44-45(6-12)		1027		Solid										
44-45(12-18)		1030		Solid										
1A-46 (0-6)		1100		Solid		X								
HA-46 (6-12)		1105		Sola	11	-								
HA-46 (12-18)		1110		Solid	\perp	X								
HA-47(0-6)		1100		Solid	1	X								
HA-47 (6-12)		1102	6	Sold		15								
Possible Hazard Identification	nt Deison B Dunk	noesi 🗀	Fautoionical		S	ample 	e Disposa Return To	l (A fee mi Glient	Disposal	l if samples are By Lab	retain J _{Arci}	ed longer than 1 month) use For Months		
Deliverable Requested 1, II, III, IV, Other (specify)								rs/QQ Req						
Empty Kit Relinquished by		Date			Time	9			1 /10:	nod of Shipmont	1			
Many teleproper	3-3-1	7 16.	15	ingan,		Rec	The	ula	mate	3/3/	17	11ds THOLOR		
Reinspuried by	DateCirco			(in Elba)		Rec	protein try		15	Difeli de		Company		
Prenditured by	Spraff end			or barry		Res	essed the			Detter interior		Company		
Custody Seals Infact Custody Seal No					-	100	sia Tempera	timets. To and	Other Romarks	1.3° /.	- /	2 IRCO4		

Chain of Custody Record

Te	ST	40	ner	ica
-	4-1-4	1500		-

Client Information	Phore 12 12 200 CO				ett nngto	n Randse E		Carner Tracking Note:		COC 146 59C-2353-610 5		
Crom Cantiet Scott Lathen					dan ndee i	arrington@testa	americabic com			Page 5 of 10		
ботрану Свибиципеоть тер					T		Analysis R	enuncted	-	July 2		
405 ca. 523 Last Second Ave	Due Date Request	ou STA			1		Allalysis K	eduested		Preservation Codes:		
EI,	TAT Requested (d	ays)	1		-	1			þ.	A HGE 17 Heads SI Noon A force		
Speranc Sterrap	- STO Wee			· tea		8240-4				C - 27 Accord		
VVA 09209 Prosi	F125	. Judler	(14)							E harristat 5 (10220). 17 Valuet 5 (10230)		
\$69-361-52-30(Te)) Enain	Purchase Grae	rivat require	FU		10	t d				G - Artistign S - 600-04 Fr - Artistic Acid T - 750 Digestary during		
siathen (digeoendineers com	(227) 11				or N	10 No.			100	1 Apr 11 Addition 12 DE VENER		
Preparations Coralis Post and Pole 0504/185-01	Froject # 59501108			*	(Yes	I to I and			others	E EDTA CU-1945 L EDA C Joseph		
See	S50/A#				- Justin	Furans			1,60	Other.		
		1	T	Matrix	od Sp	SIMIS			io Ja			
	į.		Sample Type	Matrix (wester	Filtered	Perform MSMSD PERM FLOOR PERS			Number			
Sample Identification	Sample Date	Sample Time	(C=comp. G=grab)	Shaker etc.		PCTO			Total	Special Instructions/Note:		
				ton Code	X	X			X	special instructions/Note:		
HA-47(12-18)	13-1-17	1104	6	Solid		100						
44-48(0-6)		11.20	1	Solid		X						
HA-4816-12)		1122		Solid								
4A-48/12-18)		1124		Solid					+			
44-4910-6)		1130		Sola	+	l v	1111	11111	+			
44-49(6-12)		1/35		Solid	+	X	11-1-1		+			
44-49(12-18)		1140		Solid	+	8		+++++	+	 		
44-50(0-1)	++	1155	++	Solid	+	1			-			
HA-50 (My (6-12)		1200	+-	Solid	+	1			+			
4A-50(12-18)		-	-	Solid	+		-		-			
117 21/2-13		1205	1	Solid	+				-			
Possible Hazard Identification		1450	1-1:	2010		Sample Disne	wall 6 fee may b	e assessed if samples are	Policin	parl lawage than 1 wenth)		
Mon-Hazard Flammable Stan Indant :	Poison B L J Unkn	ovn 🗀	Radiological			Return	Ta Giret	Disposal By Lab	Arch	live For		
Deliverable Requested T. II, III, IV, Other (specify)							ліопыОС Редынел	nents				
Empty Kit Relinquished by		Date			Ti	mie		Method of Simprison	7			
Relinquished by	04te/fime 5-3-/	7 11	15	Company		Received by	1hans	that patertine	12	Unis toman		
Resignation of the Control of the Co	Dat/Lear	4-16	12	Contrary		Stecephen by	1 WILL	William Delant	7	Company Company		
Receipt your	Date-Table			Kinnbary	- 7	Acces to		Date:Time	-	Chickery		
Custody Seas Intact Custody Seat No												
a Yes a No						Coverter 6	enturaro Caro Otte	Remarks 1.36, 1.	7	CIRCOH		

Page 41 of 51

TestAmerica Spokane

11927 East 1st Ave

Spokane. WA 992/3 Phone (509) 924-9200 Fa+ (509) 924-9290

Chain of Custody Record

Client Information	ation Simpler MSP/JWR.		Lie PM Amington, Randele E			Carrer Tracking No.	5)	COC No 590-2353-810 6			
itent Contact Scott Lathen	Whom 425-	293-	9560	E-Mi		ngton@t	estamencaino com			Page 6 of 10	
omner, SenEuguneers my							Analysis	Requested		Jot ≠.	
othes/ 23 East Second Ave	Date Requests	1 57B			IT				THE	Préservation Co	
90 Spokane 1916 - 242 VA. 99202	STD - Nec	me all	17(0)	+40		82904.				HGL P - NoOH C - Zh Accide C - None Acid E - NeHSOR F - McCh	M Francis N Nove C ASMAGE IN MATCAS TO MATCAS M NAVES COT
1992 09:251-5339(Tet)	Por Purchase Order				100	VA D	1		1 1 1	G. Amphisi In Ascorp : Note	F - FTCGH F - TSP Distribution
mg). Vathen@geaceganeers.com	120,11	Control of the Contro		NAME OF TAXABLE PARTY.	10 (S)		0		9	J - Ico J - Di Arater K - EDTA	u - Fastona F - MCAir
rsjoct Name Forville Post and Pole/0504-038-91	9-00-04 59501108 5957/6				(Yes or No)	8	0120		containe		Weighter Zugen (george
					MSD WSD	回			10		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (Denser Insold, Constitution, Annie	Field Fillered Sam Perform MSIMSD	Dioxing	1454		Total Number	Special h	nstructions/Nate:
3				ion Code:	XX						
144-51(6-12)	3-1-17	1455	6	Salid		4					
44-51 (12-18)		1500	1	Solid		(x)					
HA-52(0-6)		1515		Solid		X					
HA-52(6-12)		1520		Salid	11						
44-52 (12-18)		1525		Solic							
HA-53(0-6)		1520		Solid		X					
4A-53(6-12)		1522		Solid							
44-53(12-13)		1524		Solid		X					
HA-54 (0-6)		1540		Solid		1	X				
HA-54(6-12)		1542		Solid			1 1				
HA-54(D-18)	· ·	1545		Solid							
Possible Hazard Identification [Mon-Fiazard Flammable Shin Initial Deliverable Requested 1 if III, IV, Other (specify)	1 =orson B						Disposal (A fee may turn To Caroti Structions/OC Regul	be assessed if san Disposal By Lub temorits	nples are retai	ned longer than three For	1 month) Months
Empty Kit Relinquished by		Date:			Time			Method of 5	1 1		
Reinaushed in Allerson	3-3-1	7/6	515	Company Company		Rocern	allelen		3/3//	7 1615	Corneum)
Re-Proudleto)	12/de/7 mat			Company	Recover 57		eq.5)		SaterTime.		Compan
Custody Seal's Intact Custody Seal No						Soper	"propertion set . "C and C	in or Kensirety 3	1.7	IRON	/

are progressive as as a

Chain of Custody Record

Pro	N in	non	of your promise
lest.	17	101	100
MATERIAL TO		100	A 212.

Client Information	Survible MIT	152	OR	tas i Arni	eta ngton F	Randed	e E		Carner Tracking &	(c(s)	590-23	853-810 7
Boot Contract Scott Lathen	Press 425 -	293-	7560	E-1,1		ngton®	glestamencair c	om			Page 7	of 10
SeoEngineers Inc		124						sis Requ	insted		Jeh v	
odiesa	Our Date Requests	10-TN			h	H	7. I I	Jia Iteeli	I I	TTT	Preser	vation Codes:
23 East Second Ave	TAT Requested (d.) []	1		1	20528					A - HGI B - NaC	
pokane	_ 57D-Nee	I enough	al lin	2 1/2		53					C - 2n/	Acetate 0 - Annuary
late 2p VA 99202	STD-Vae	Selle	J-11		11	d					E - Not	ISON GIAMOSOD
rione 00-251-5239(Tel)	1				11	50	200				F - Met	abler 5 - HUSOM
that	Purchase Order	not require	a .		No.	0					1 - 100	orbit Acrd T - TSP Dodecohydrat U - Acetory
lathen@gecengincers.com					10 SU	1	,2				W K-EDI	TA W-SH-E
olville Post and Pole/0504-096-01	5900.1108				The CYe		27				SE L. LL	V Z-etim (specify
GD CD	SSOW				SD (Y	2					Other.	
			Sample	Matrix	Field Filtered Sam	Dioxin	25				Total Number	
	1		Type	(Vimenar,	E	Xo	PCR	1 1 1	111		Nu	
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab)	G-wastried BT-Tiesus, A-A/s	Pick	18		111			Total	Special Instructions/Note:
		><		tion Code	XX	1					X	
HA-55 (0-6)	3-1-17	1600	1/4	Solid	T		X					
HA-55(6-12)		1602	1	Solid								
4A-55(12-18)		1604	11	Solid								
HA-56(0-6)		1535		Solid			X					
HA-56 (6-12)		1540		Solid								
44-56(12-18)		1545		Solid								
HA-57(0-6)		1330		Solid			X					
HA-57 (6-12)		1335		Solid								
HA-57(12-18)		1340		Solid								
HA-58(0-6)		1350		Solid			X					
44-58(6-12)	•	1355	d	Solid								
Possible Hazard Identification Non-Flazard Flagraphie Skin imtant	1	1-3			Si	ample	Disposal (A fee	may be a	ssessed il su	imples are re	tained Ion Archive Fo	ger than 1 month)
Non-Flazard Flagmoble Skin lintant Deliverable Requested T, II, III, IV, Other (specify)	Paison B Unkt	מעם	Radiologica	1			eturn To Client Instructions/QC R		nsposal By La	b	Archive Fo.	r Wonths
Empty Kit Relinquished by		Date			Time				/ Method of	Shament ,		
Rolinguished by 11. 11. 11.	3-3-1	7 11	15	Company		Reso	- 1-	de	at	3/3/1-	1 //-	5 The Int
Bullinguinnes by	S-3-/	1 10	15	Conpany		Reso	sileua	-7/1	ay.	Ostertime	110	Gorspany
Full nourse at by	DateTitue			Company		Restr	e and by		J	Datefilme		Company
Custody Seals Intact Custody Seal No				J		Cont	er Tamanaratura in 19	and On as P.	emarks	- 0		
A Yes A No						000	er Temperature(s) 'C	1.	3. 1. 3	7-C I	2004	

Page 43 of 51

Chain of Custody Record

rand A w	000000
16214	merica
CATALOGUE AND RESIDENT	The second section of the contract of the cont
THE A PROPERTY OF	ACM AND REAL PROPERTY.

Phone (509) 924-9200 Fax (509) 924-9290									**************************************	April Inc.
Client Information	Sarrafer MJP	15WR 93-9560			Randee	E	Carner Tracking Nors		590-2353-810.5	
Scott Lathen	Prone 425-2	93-9560	rander	e arm	ngton@	testamericaino com	0		Page 8 of 10	
Servery Geologine at Inc						Analysis	Requested		Jen #	
Address 523 East Second Ave	Due Date Requested,	STO		1.5	1				Preservation Codes:	
ar, Spokline	TAT Requested idays	moved time to			\$250A				A - MCL & Nezana B - NaCel N - None C - Ze Apotas G - AsthbO2	
Sche, Zu NA, 89202	run f	wough time to			EPA				E- Matto4 P - Na2045 E- Matto4 D - Ma2502 F - Ma0H P - Na25203	
Place 509-251-5239(Tel)	Purchase Order no	1/		0	(1)				G - Acetalor S - H7SO4 H - Asserbed Acro T - TSP Dodes	Salrydrało
Emut stathon@geoengisteers.com	WO's			No)	1	5			1 - Icc U - Acetene J - Di Water V - MCAA K - SD1A W - pH + 5	
Project Name Octyville Post and Pole/0504-098-01	Figure 27 59001108			es or	3	240		Lister	L - EDA 2 - ativer (times	p(y)
ide	SSOV#			Semp	14	59		la de la constante de la const		
Sample Identification	Sample Date	Туре	Fisher AsAd)	Field Filtered Sample (Ye Perform NS/MSD (Yes or	Dankmi	PCP5		Total Number	Special Instructions/N	lote:
HA-58(12-18)	3-1-17	400 6	Solid	7				H		
HA-58(12-18) HA-59(0-6) HA-59(006-12) HA-59(12-18)		315 1	Solid		11	X				
11A-59 (ON 6-12)		347	Solid							
HA-59(12-18)		350 +	Solid							
			Solid							
			Solid							
			Solid							
			Solid							
			Solid		11					
			Solid	-					1	
S. 70 II. 70 II.			Solid				حارادانا		11 11 11 11 11 11	
Possible Hazard Identification Non-Hazard Flammable Skin Initiant Deliverable Requested I. II. III. IV. Other (specify)	Poison B Unknow	m Madiological			\square_{Re}	Disposal (A fee mi furn To Client hstructions/QC Regi	Degosal By Lab	Art	ned longer than 1 month) thive For Months	
Empty Kit Relinquished by	16	Date		Time		randonaria co regi	Method of Ship	ment		
Reinquished by A / 11 h)	Date/Limit		трапу	rine	Receiv	efort a	Short 100		Company	donil
Relegionated by Filler Land	Data Time	7 /6/5	erpany		Resen	neila	may 1	13/17	1615 TAC	
Paint quality (in)	Opto Taxe	- Ist	many		Resen	red by	53	eTimo:	Company.	
Custody Seals Intact Custody Seal No.					Cuples	r Temperature(s) 10 und	1.3° 1.7	CIRO	04	

and the second section is

Page 44 of 51

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206 **Chain of Custody Record**

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Client Information (Sub Contract Lab)	Sampler:			Lab Arri	PM: ngton, i	Rand	lee E			Carrier Track	king No(s):		COC No: 590-2573.1	
Client Contact Shipping/Receiving	Phone:			E-Mi	12 Warmer - 100	ingtor	n@tes	tamericainc.c	om	State of Orig Washingto			Page: Page 1 of 2	
Company TestAmerica Laboratories, Inc.								red (See note). Washington					Job #: 590-5615-3	
Address 880 Riverside Parkway	Due Date Requests 4/17/2017	ed:						Analy	sis R	equested		_	Preservation Codes:	
City West Sacramento State, Zip: CA, 95605 Phone	TAT Requested (di	ays):			No.								A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4	
916-373-5600(Tel) 916-372-1059(Fax) Email:	W0 #.				s or No)		& Totals						1 - Ice	
Project Name: Colville Post and Pole/0504-098-01	Project # 59001108				e (Yes		Isomers					tainers	K - EDTA W - pH 4-5 L - EDA Z - other (specify)	
Site:	SSOW#				Sampl SD (Y		Sox 17					of con	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=Air	id Filtered	oisture	90 P					Total Number o	Special Instructions/Note:	
	\sim	><		ation Code:	XX				78			X		
HA-3A (12-18) (590-5615-3)	3/1/17	10:35 Pacific		Solid		X	X					1	, Former Post and Pole manufacturing site could be high, please isolate glassware an	
HA-4A (12-18) (590-5615-6)	3/1/17	10:00 Pacific		Solid		X	X					1	, Former Post and Pole manufacturing site could be high, please isolate glassware an	
HA-6A (12-18) (590-5615-8)	3/1/17	11:42 Pacific		Solid		X	х					1	, Former Post and Pole manufacturing site	
HA-13A (12-18) (590-5615-12)	3/1/17	13:00		Solid	11	X	x		\vdash			1	could be high, please isolate glassware an Former Post and Pole manufacturing site	
HA-20A (12-18) (590-5615-16)	3/1/17	Pacific 15:05 Pacific		Solid	††	x	X					1	could be high, please isolate glassware an Former Post and Pole manufacturing site	
HA-40 (12-18) (590-5615-24)	3/1/17	14:20 Pacific		Solid	11	×	×					1	could be high, please isolate glassware an , Former Post and Pole manufacturing site	
HA-41 (12-18) (590-5615-27)	3/1/17	14:35 Pacific		Solid	Ħ	X	x					1	could be high, please isolate glassware an Former Post and Pole manufacturing site	
HA-42 (12-18) (590-5615-30)	3/1/17	12:34 Pacific		Solid	T	×	×					1	could be high, please isolate glassware an , Former Post and Pole manufacturing site could be high, please isolate glassware an	
HA-43 (12-18) (590-5615-33)	3/1/17	09:40 Pacific		Solid	Ħ	X	x					1	, Former Post and Pole manufacturing site could be high, please isolate glassware an	
Note: Since laboratory accreditations are subject to change, TestAmeric currently maintain accreditation in the State of Origin listed above for and Laboratories, Inc. attention immediately. If all requested accreditations a	aiysis/tests/matrix being analyz	ownership of ed, the sample	es must be shi	pped back to th	e TestAr	merica	labora	ory or other instr	uctions v	s. This sample s will be provided.	hipment is forwarded Any changes to accre	unde	r chain of custody. If the laboratory does not	
Possible Hazard Identification					Sa	ample	e Disp	osal (A fee	may b	e assessed in	f samples are ret	taine	ed longer than 1 month)	
Unconfirmed	2 2 2	17 2 7			-	_		To Client	L	Disposal By	Lab Lab	Archi	ive For Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver		2		Sp	pecial	Instri	ictions/QC Re	equirer	nents:				
Empty Kit Relinquished by:	1	Date:			Time					Metho	d of Shipment			
Relinquished by Reula Kraly	Date/Time	1 15	35	Company	pok.		eived t	mille	ele	S	Date/Time:	7	8/5 Company	
Relinquished by:	Date/Time:			Company		Rec	eived b	у.			Date/Time:	_	Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coo	ler Ten	perature(s) °C a	nd Othe	r Remarks:		1	2D°C	

Page 45 of 51

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Client Information (Sub Contract Lab)	Sampler			Lab I Arri		M: gton, Randee E				Carrier Tracking No(s):			COC No: 590-2573.2	
Client Contact	Phone			E-Ma	ili:					State of On		-	Page:	
Shipping/Receiving				rand		_		americain ed (See not		Washing	ton		Page 2 of 2	
Company: TestAmerica Laboratories, Inc.								Washingto					590-5615-3	
Address	Due Date Requeste	d:						A	duele D			Preservation Codes:		
880 Riverside Parkway, City: West Sacramento	4/17/2017 TAT Requested (da	ys):				Γ		Ana	alysis R	equested	П		A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2	N - None O - AsNaO2
State, Zip: CA, 95605										11			D - Nitric Acid E - NaHSO4 F - MeOH	P - Na2O4S O - Na2SO3 R - Na2S2O3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO#.				(ON		Totals	11					G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Email	WO #:					ı	95					90	I - Ice J - DI Water	U - Acetone V - MCAA
Project Name Colville Post and Pole/0504-098-01	Project #: 59001108				le (Yes or		Isomers		11			container	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site	SSOW#				Sample (Sox 17					of cor	Other:	
		Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, O=waste/oil,	id Filtered form MS/N		8290A/8290_P					Total Number		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)		是意	ž	828					P	Special In	structions/Note:
	_	10:00	Preservat		W.	-				2 20 2		X	Former Poet and	Pole manufacturing site -
HA-44 (12-18) (590-5615-36)	3/1/17	Pacific		Solid		X	X					1		ase isolate glassware and
HA-46 (12-18) (590-5615-42)	3/1/17	11:10 Pacific		Solid		×	X					1		Pole manufacturing site - ase isolate glassware and
HA-47 (12-18) (590-5615-45)	3/1/17	11:04 Pacific		Solid		×	Х					1		Pole manufacturing site - ase isolate glassware and
HA-49 (12-18) (590-5615-51)	3/1/17	11:40 Pacific		Solid		×	X					1		Pole manufacturing site - ase isolate glassware and
HA-51 (12-18) (590-5615-57)	3/1/17	15:00 Pacific		Solid		×	X					1	, Former Post and	Pole manufacturing site - ase isolate glassware and
HA-53 (12-18) (590-5615-63)	3/1/17	15:24 Pacific		Solid		X	X					1	, Former Post and	Pole manufacturing site - ase isolate glassware and
			-		+	+		+	+	++-				
					1									
Note: Since laboratory accreditations are subject to change, TestAmerica	Laboratories, Inc. places the	ownership of	method, analyte	& accreditati	on compli	iance t	upon ou	t subcontrac	t laboratorie	s. This sample	shipment is forw	arded und	er chain-of-custody. I	
Possible Hazard Identification				-	Sa	mple	e Disp	osal (A f	ee may b	e assessed	if samples a	re retain	ned longer than 1	month)
Unconfirmed						_		To Client		Disposal E	By Lab	Arch	nive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		Sp	ecial	Instru	ictions/QC	Requirer	nents:				
Empty Kit Relinquished by	1 1	Date:			Time	-				Meth	od of Shipment			
Relinquished by heeld 2006	3/30//	7 15		Company	ac		eived by	,			Date/Time			Company
Relinquished by:	Date/Time:			Company *			eived	nm	Nel	nun	Date/Time		7 8/5	Company
Relinquished by	Date/Time:			Company		Rec	eived b	, 0			Date/fime	2:		Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coo	oler Tem	perature(s)	'C and Other	r Remarks				

Login Sample Receipt Checklist

Client: GeoEngineers Inc Job Number: 590-5615-3

Login Number: 5615 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

tion	Answer	0
		Comment
activity wasn't checked or is = background as measured by a surve .</td <td>y N/A</td> <td>Lab does not accept radioactive samples.</td>	y N/A	Lab does not accept radioactive samples.
poler's custody seal, if present, is intact.	N/A	
le custody seals, if present, are intact.	N/A	
poler or samples do not appear to have been compromised or ered with.	True	
les were received on ice.	True	
r Temperature is acceptable.	True	
r Temperature is recorded.	True	
s present.	True	
s filled out in ink and legible.	True	
s filled out with all pertinent information.	True	
Field Sampler's name present on COC?	True	
are no discrepancies between the containers received and the COC.	True	
les are received within Holding Time (excluding tests with immediate	True	
le containers have legible labels.	True	
iners are not broken or leaking.	True	
le collection date/times are provided.	True	
priate sample containers are used.	True	
le bottles are completely filled.	True	
le Preservation Verified.	True	
is sufficient vol. for all requested analyses, incl. any requested SDs	True	
iners requiring zero headspace have no headspace or bubble is (1/4").	True	
hasic samples are not present.	True	
les do not require splitting or compositing.	True	
ual Chlorine Checked.	N/A	

Client: GeoEngineers Inc Job Number: 590-5615-3

Login Number: 5615
List Source: TestAmerica Sacramento
List Number: 2
List Creation: 03/08/17 01:18 PM

Creator: Hytrek, Cheryl

oroator: Trytron, onory:		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Spokane

Login Sample Receipt Checklist

Client: GeoEngineers Inc Job Number: 590-5615-3

Login Number: 5615
List Source: TestAmerica Sacramento
List Number: 3
List Creation: 03/31/17 08:25 AM

Creator: Nelson, Kym D

Creator. Neison, Kyni D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4/21/2017

TestAmerica Spokane

TestAmerica Job ID: 590-5615-3

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

	Percent Isotope Dilution Recovery (Acceptance Limits)										
		TCDD	TCDF	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF1		
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)		
590-5615-3	HA-3A (12-18)	107	107	113	112	105	108	104	106		
590-5615-6	HA-4A (12-18)	106	105	108	111	104	107	102	105		
590-5615-8	HA-6A (12-18)	111	110	110	115	107	112	106	110		
590-5615-12	HA-13A (12-18)	101	99	100	105	98	101	99	103		
590-5615-16	HA-20A (12-18)	95	99	95	98	96	102	105	105		
590-5615-24	HA-40 (12-18)	111	99	95	96	95	97	101	102		
590-5615-27	HA-41 (12-18)	98	95	97	94	90	97	101	95		
590-5615-30	HA-42 (12-18)	104	107	109	108	104	110	104	107		
590-5615-33	HA-43 (12-18)	107	108	112	109	103	109	105	109		
590-5615-36	HA-44 (12-18)	107	106	113	113	107	115	108	113		
590-5615-42	HA-46 (12-18)	102	102	103	108	100	106	101	107		
590-5615-45	HA-47 (12-18)	92	95	100	103	95	100	99	102		
590-5615-51	HA-49 (12-18)	112	100	96	101	100	102	107	107		
590-5615-57	HA-51 (12-18)	110	90	88	89	90	91	93	93		
590-5615-63	HA-53 (12-18)	105	106	109	109	105	112	107	112		
LCS 320-157505/2-A	Lab Control Sample	93	94	101	97	97	97	93	94		
LCSD 320-157505/3-A	Lab Control Sample Dup	99	97	105	102	100	101	99	101		
MB 320-157505/1-A	Method Blank	97	101	105	102	102	100	95	100		

Percent Isotope Dilution Recovery (Acceptance Limits)

		OCDD	
Lab Sample ID	Client Sample ID	(40-135)	
590-5615-3	HA-3A (12-18)	123	
590-5615-6	HA-4A (12-18)	121	
590-5615-8	HA-6A (12-18)	127	
590-5615-12	HA-13A (12-18)	118	
590-5615-16	HA-20A (12-18)	127	
590-5615-24	HA-40 (12-18)	119	
590-5615-27	HA-41 (12-18)	117	
590-5615-30	HA-42 (12-18)	121	
590-5615-33	HA-43 (12-18)	124	
590-5615-36	HA-44 (12-18)	124	
590-5615-42	HA-46 (12-18)	120	
590-5615-45	HA-47 (12-18)	122	
590-5615-51	HA-49 (12-18)	129	
590-5615-57	HA-51 (12-18)	109	
590-5615-63	HA-53 (12-18)	125	
LCS 320-157505/2-A	Lab Control Sample	109	
LCSD 320-157505/3-A	Lab Control Sample Dup	116	
MB 320-157505/1-A	Method Blank	110	
0			

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

Page 50 of 51

Isotope Dilution Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

OCDD = 13C-OCDD

TestAmerica Job ID: 590-5615-3

2

3

4

10

11

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-6217-1

Client Project/Site: Colville Post and Pole/0504-098-01

Revision: 1

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

Landua trington

Authorized for release by: 5/9/2018 1:18:50 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Tierica Job ID: 590-6217-1

C

C. I
~ /

Cover Page	1
Table of Contents	
Case Narrative	
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	9
Chronicle	11
Certification Summary	14
Method Summary	15
Chain of Custody	16
Receipt Checklists	17

Case Narrative

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-6217-1

Job ID: 590-6217-1

Laboratory: TestAmerica Spokane

Narrative

Revision

The 8270D data was re-evaluated down to the MDL per the clients request.

Receipt

The samples were received on 5/26/2017 9:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.1° C.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: Surrogate recovery for the following sample was outside the upper control limit: MW-35 (14.5-15.0) (590-6217-6). This sample did not contain any target analytes; therefore, re-extraction and re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-6217-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-6217-1	MW-33 (5.0-5.5)	Solid	05/25/17 10:35	05/26/17 09:25
590-6217-2	MW-33 (16.5-17.0)	Solid	05/25/17 10:55	05/26/17 09:25
590-6217-3	MW-34 (2.0-2.5)	Solid	05/25/17 12:20	05/26/17 09:25
590-6217-4	MW-34 (15.5-16.0)	Solid	05/25/17 12:30	05/26/17 09:25
590-6217-5	MW-35 (1.5-2.0)	Solid	05/25/17 08:55	05/26/17 09:25
590-6217-6	MW-35 (14.5-15.0)	Solid	05/25/17 09:15	05/26/17 09:25

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-6217-1

Qualifiers

GC/MS Semi VOA

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier **Qualifier Description**

X Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-6217-1

Client Sample ID: MW-33 (5.0-5.5)

Date Collected: 05/25/17 10:35 Date Received: 05/26/17 09:25 Lab Sample ID: 590-6217-1

Matrix: Solid Percent Solids: 81.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	21	J	59	9.7	ug/Kg		05/31/17 13:31	06/07/17 20:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	93		38 - 123				05/31/17 13:31	06/07/17 20:38	1
Nitrobenzene-d5	105		23 - 120				05/31/17 13:31	06/07/17 20:38	1
p-Terphenyl-d14	114		68 - 136				05/31/17 13:31	06/07/17 20:38	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND ND	12		mg/Kg	<u> </u>	06/05/17 10:41	06/05/17 14:16	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND	29		mg/Kg	₩	06/05/17 10:41	06/05/17 14:16	1
Surrogate	%Recovery Qual	lifier Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101	50 - 150				06/05/17 10:41	06/05/17 14:16	1
n-Triacontane-d62	101	50 ₋ 150				06/05/17 10:41	06/05/17 14:16	1

Client Sample ID: MW-33 (16.5-17.0)

Date Collected: 05/25/17 10:55 Date Received: 05/26/17 09:25 Lab Sample ID: 590-6217-2

Matrix: Solid

Percent Solids: 94.5

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result (•	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND ND		53	8.6	ug/Kg	<u> </u>	05/31/17 13:31	06/07/17 21:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	91		38 - 123				05/31/17 13:31	06/07/17 21:04	1
Nitrobenzene-d5	98		23 - 120				05/31/17 13:31	06/07/17 21:04	1
p-Terphenyl-d14	99		68 - 136				05/31/17 13:31	06/07/17 21:04	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Michiga, MATTI HEDA - MOLLIN	west - delill-volatile	c i culoiculli i lo	uucis (GC	')				
Analyte	Result Qualifi	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	10		mg/Kg	₩	06/05/17 10:41	06/05/17 14:34	1
Residual Range Organics (RRO) (C25-C36)	ND	26		mg/Kg	₩	06/05/17 10:41	06/05/17 14:34	1
Surrogate	%Recovery Qualif	fier Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	103	50 - 150				06/05/17 10:41	06/05/17 14:34	1
n-Triacontane-d62	100	50 - 150				06/05/17 10:41	06/05/17 14:34	1

Client Sample ID: MW-34 (2.0-2.5)

Date Collected: 05/25/17 12:20 Matrix: Solid
Date Received: 05/26/17 09:25 Percent Solids: 79.1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte Pentachlorophenol	•	Qualifier	RL 63	MDL	Unit ug/Kg	— D	Prepared 05/31/17 13:31	Analyzed 06/07/17 21:31	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	90		38 - 123				05/31/17 13:31	06/07/17 21:31	1

TestAmerica Spokane

Lab Sample ID: 590-6217-3

TestAmerica Job ID: 590-6217-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-34 (2.0-2.5) Lab Sample ID: 590-6217-3

Date Collected: 05/25/17 12:20 **Matrix: Solid** Date Received: 05/26/17 09:25 Percent Solids: 79.1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	93		23 - 120	05/31/17 13:31	06/07/17 21:31	1
p-Terphenyl-d14	112		68 - 136	05/31/17 13:31	06/07/17 21:31	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		12		mg/Kg		06/05/17 10:41	06/05/17 14:53	1
Residual Range Organics (RRO) (C25-C36)	ND		30		mg/Kg	≎	06/05/17 10:41	06/05/17 14:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	110		50 - 150				06/05/17 10:41	06/05/17 14:53	1
n-Triacontane-d62	106		50 - 150				06/05/17 10:41	06/05/17 14:53	1

Client Sample ID: MW-34 (15.5-16.0)

Lab Sample ID: 590-6217-4 Date Collected: 05/25/17 12:30 **Matrix: Solid** Date Received: 05/26/17 09:25 Percent Solids: 86.8

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte Pentachlorophenol	Result (•		MDL	Unit ug/Kg	— D	Prepared 05/31/17 13:31	Analyzed 06/07/17 21:57	Dil Fac
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	96		38 - 123				05/31/17 13:31	06/07/17 21:57	1
Nitrobenzene-d5	100		23 - 120				05/31/17 13:31	06/07/17 21:57	1
p-Terphenyl-d14	121		68 - 136				05/31/17 13:31	06/07/17 21:57	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

modifical fett in Bx Horain	ot committed of	Olouill I louud	(00)				
Analyte	Result Qualifier	RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	11	mg	g/Kg	06/05/17 10:41	06/05/17 15:11	1
Residual Range Organics (RRO) (C25-C36)	ND	28	mg	g/Kg ☆	06/05/17 10:41	06/05/17 15:11	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	111	50 - 150			06/05/17 10:41	06/05/17 15:11	1
n-Triacontane-d62	105	50 150			06/05/17 10:41	06/05/17 15:11	1

Client Sample ID: MW-35 (1.5-2.0)

Lab Sample ID: 590-6217-5 Date Collected: 05/25/17 08:55 **Matrix: Solid** Date Received: 05/26/17 09:25 Percent Solids: 93.0

Method: 8270D SIM -	Semivolatile (Organic Co	omnounds (GC/MS SIM)
Method. 027 0D Shirt -	Jeilliv Olatile '	Organic Ot	onibounius i	CONTROL CHAIL

Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Pentachlorophenol	20	J	52	8.6	ug/Kg	<u> </u>	05/31/17 13:31	06/07/17 22:50	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl (Surr)	103		38 - 123				05/31/17 13:31	06/07/17 22:50	1	
Nitrobenzene-d5	102		23 - 120				05/31/17 13:31	06/07/17 22:50	1	
p-Terphenyl-d14	125		68 - 136				05/31/17 13:31	06/07/17 22:50	1	

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-6217-1

Client Sample ID: MW-35 (1.5-2.0)

Date Collected: 05/25/17 08:55

Date Received: 05/26/17 09:25

Lab Sample ID: 590-6217-5

Matrix: Solid

Percent Solids: 93.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	20		11		mg/Kg	- \$	06/05/17 10:41	06/05/17 15:29	1
Residual Range Organics (RRO) (C25-C36)	110		27		mg/Kg	☼	06/05/17 10:41	06/05/17 15:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				06/05/17 10:41	06/05/17 15:29	1
n-Triacontane-d62	103		50 - 150				06/05/17 10:41	06/05/17 15:29	1

Client Sample ID: MW-35 (14.5-15.0)

Date Collected: 05/25/17 09:15

n-Triacontane-d62

Date Received: 05/26/17 09:25

Lab Sample ID: 590-6217-6

06/05/17 10:41 06/05/17 15:47

Matrix: Solid

Percent Solids: 94.4

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Pentachlorophenol	ND		51	8.4	ug/Kg	\	05/31/17 13:31	06/07/17 22:24	1
	Surrogato	% Posovory	Qualifier	Limite				Propared	Analyzad	Dil Ess

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	99		38 - 123	05/31/17 13:31	06/07/17 22:24	1
Nitrobenzene-d5	101		23 - 120	05/31/17 13:31	06/07/17 22:24	1
p-Terphenyl-d14	117		68 - 136	05/31/17 13:31	06/07/17 22:24	1

Method: NWTPH-Dx - North	west - Semi-Volatile P	etroleum Pro	ducts (GC)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	11	mg/Kg	₩	06/05/17 10:41	06/05/17 15:47	1
Residual Range Organics (RRO) (C25-C36)	ND	26	mg/Kg	☼	06/05/17 10:41	06/05/17 15:47	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	152 X	50 - 150			06/05/17 10:41	06/05/17 15:47	1

50 - 150

154 X

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

MB MB

Lab Sample ID: MB 590-12310/1-A **Matrix: Solid**

Analysis Batch: 12400

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 12310

Client Sample ID: Lab Control Sample

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 50 05/31/17 13:31 06/07/17 18:01 Pentachlorophenol $\overline{\mathsf{ND}}$ 8.2 ug/Kg

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl (Surr) 92 38 - 123 05/31/17 13:31 06/07/17 18:01 Nitrobenzene-d5 93 23 - 120 05/31/17 13:31 06/07/17 18:01 p-Terphenyl-d14 115 68 - 136 05/31/17 13:31 06/07/17 18:01

Lab Sample ID: LCS 590-12310/2-A

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 12400** Prep Batch: 12310 Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec ug/Ka Pentachlorophenol 533 614 115 50 - 150

LCS LCS %Recovery Qualifier I imits Surrogate 2-Fluorobiphenyl (Surr) 98 38 - 123 Nitrobenzene-d5 98 23 - 120 p-Terphenyl-d14 110 68 - 136

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-12360/1-A

Matrix: Solid

Analyte

(C10-C25)

Analysis Batch: 12365

Diesel Range Organics (DRO)

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 12360

Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 10 06/05/17 10:41 06/05/17 13:22 $\overline{\mathsf{ND}}$ mg/Kg

mg/Kg

Residual Range Organics (RRO) (C25-C36)

MB MB

ND

MB MB

%Recovery Qualifier Limits Surrogate Dil Fac Prepared Analyzed o-Terphenyl 111 50 - 150 06/05/17 10:41 06/05/17 13:22 n-Triacontane-d62 111 50 - 150 06/05/17 10:41 06/05/17 13:22

25

Lab Sample ID: LCS 590-12360/2-A

Matrix: Solid

Analysis Batch: 12365

Client Sample ID: Lab Control Sample Prep Type: Total/NA

06/05/17 10:41 06/05/17 13:22

Prep Batch: 12360

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Analyte 66.7 68.4 103 50 - 150 Diesel Range Organics (DRO) mg/Kg (C10-C25) 66.7 mg/Kg 794 119 50 - 150 Residual Range Organics (RRO)

(C25-C36)

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 102 50 - 150

TestAmerica Spokane

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-6217-1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-12360/2-A

Lab Sample ID: 590-6217-1 DU

Matrix: Solid

Matrix: Solid

(C25-C36)

Analysis Batch: 12365

Analysis Batch: 12365

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 12360

LCS LCS

%Recovery Qualifier Surrogate Limits n-Triacontane-d62 50 - 150 105

Client Sample ID: MW-33 (5.0-5.5)

Prep Type: Total/NA

Prep Batch: 12360

RPD RPD Limit

Sample Sample DU DU Analyte Result Qualifier Result Qualifier D Unit ₩ Diesel Range Organics (DRO) ND ND mg/Kg 25 40 (C10-C25) ND ND mg/Kg ά 25 40 Residual Range Organics (RRO)

DU DU

%Recovery Qualifier Surrogate Limits o-Terphenyl 50 - 150 101 n-Triacontane-d62 100 50 - 150

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-33 (5.0-5.5)

Date Collected: 05/25/17 10:35

Lab Sample ID: 590-6217-1

Matrix: Solid

Date Received: 05/26/17 09:25 Dil Batch Batch Batch Initial Final Prepared

Method **Prep Type** Type Run **Factor Amount Amount** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 12267 05/26/17 12:36 NMI TAL SPK

Client Sample ID: MW-33 (5.0-5.5) Lab Sample ID: 590-6217-1

Date Collected: 05/25/17 10:35

Date Received: 05/26/17 09:25

Matrix: Solid

Percent Solids: 81.2

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab 3550C 12310 TAL SPK Total/NA Prep 05/31/17 13:31 NMI 15.58 g 2 mL Total/NA 8270D SIM 12400 TAL SPK Analysis 1 06/07/17 20:38 NMI Total/NA 3550C 12360 06/05/17 10:41 NMI TAL SPK Prep 15.76 g 5 mL TAL SPK Total/NA Analysis **NWTPH-Dx** 1 12365 06/05/17 14:16 NMI

Client Sample ID: MW-33 (16.5-17.0) Lab Sample ID: 590-6217-2

Date Collected: 05/25/17 10:55

Date Received: 05/26/17 09:25

Matrix: Solid

Dil Batch **Batch** Initial Final **Batch** Prepared Method Prep Type Type Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Moisture 12267 05/26/17 12:36 NMI TAL SPK Total/NA Analysis

Client Sample ID: MW-33 (16.5-17.0) Lab Sample ID: 590-6217-2

Date Collected: 05/25/17 10:55

Date Received: 05/26/17 09:25

Matrix: Solid Percent Solids: 94.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.02 g	2 mL	12310	05/31/17 13:31	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			12400	06/07/17 21:04	NMI	TAL SPK
Total/NA	Prep	3550C			15.16 g	5 mL	12360	06/05/17 10:41	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			12365	06/05/17 14:34	NMI	TAL SPK

Lab Sample ID: 590-6217-3 Client Sample ID: MW-34 (2.0-2.5)

Date Collected: 05/25/17 12:20

Date Received: 05/26/17 09:25 Dil Batch Batch Initial Final **Batch** Prepared

Prep Type Method Amount Amount Number or Analyzed Type Run **Factor** Analyst Lab Total/NA Analysis Moisture 12267 05/26/17 12:36 NMI TAL SPK

Client Sample ID: MW-34 (2.0-2.5) Lab Sample ID: 590-6217-3

Date Collected: 05/25/17 12:20 Matrix: Solid Date Received: 05/26/17 09:25 Percent Solids: 79.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.06 g	2 mL	12310	05/31/17 13:31	NMI	TAL SPK

TestAmerica Spokane

Matrix: Solid

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-34 (2.0-2.5)

Date Collected: 05/25/17 12:20

Date Received: 05/26/17 09:25

Lab Sample ID: 590-6217-3

Matrix: Solid
Percent Solids: 79.1

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8270D SIM		1			12400	06/07/17 21:31	NMI	TAL SPK
Total/NA	Prep	3550C			15.61 g	5 mL	12360	06/05/17 10:41	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			12365	06/05/17 14:53	NMI	TAL SPK

Client Sample ID: MW-34 (15.5-16.0)

Date Collected: 05/25/17 12:30

Date Received: 05/26/17 09:25

Lab Sample ID: 590-6217-4
Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			12267	05/26/17 12:36	NMI	TAL SPK

Client Sample ID: MW-34 (15.5-16.0)

Date Collected: 05/25/17 12:30

Date Received: 05/26/17 09:25

Lab Sample ID: 590-6217-4
Matrix: Solid

Lab Sample ID: 590-6217-5

Percent Solids: 86.8

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.25 g	2 mL	12310	05/31/17 13:31	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			12400	06/07/17 21:57	NMI	TAL SPK
Total/NA	Prep	3550C			15.57 g	5 mL	12360	06/05/17 10:41	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			12365	06/05/17 15:11	NMI	TAL SPK

Client Sample ID: MW-35 (1.5-2.0)

Date Collected: 05/25/17 08:55

Date Received: 05/26/17 09:25

_											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1			12267	05/26/17 12:36	NMI	TAL SPK	

Client Sample ID: MW-35 (1.5-2.0)

Date Collected: 05/25/17 08:55

Date Received: 05/26/17 09:25

Lab Sample ID: 590-6217-5
Matrix: Solid
Percent Solids: 93.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3550C			15.37 g	2 mL	12310	05/31/17 13:31	NMI	TAL SPK	
Total/NA	Analysis	8270D SIM		1			12400	06/07/17 22:50	NMI	TAL SPK	
Total/NA	Prep	3550C			15.16 g	5 mL	12360	06/05/17 10:41	NMI	TAL SPK	
Total/NA	Analysis	NWTPH-Dx		1			12365	06/05/17 15:29	NMI	TAL SPK	

TestAmerica Spokane

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-35 (14.5-15.0)

TestAmerica Job ID: 590-6217-1

Lab Sample ID: 590-6217-6

Date Collected: 05/25/17 09:15 **Matrix: Solid**

Date Received: 05/26/17 09:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			12267	05/26/17 12:36	NMI	TAL SPK

Client Sample ID: MW-35 (14.5-15.0) Lab Sample ID: 590-6217-6

Date Collected: 05/25/17 09:15

Matrix: Solid Date Received: 05/26/17 09:25 Percent Solids: 94.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.48 g	2 mL	12310	05/31/17 13:31	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			12400	06/07/17 22:24	NMI	TAL SPK
Total/NA	Prep	3550C			15.08 g	5 mL	12360	06/05/17 10:41	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			12365	06/05/17 15:47	NMI	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc TestAmerica Job ID: 590-6217-1

Project/Site: Colville Post and Pole/0504-098-01

Laboratory: TestAmerica Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Pro		Program EPA		Identification Number	Expiration Date	
Washington	shington State Program		10	C569	01-06-19	
The following analyte	are included in this repo	rt, but accreditation/	certification is not offe	ered by the governing author	ority:	
	·					
Analysis Method	Prep Method	Matrix	Analyt	е	•	
Analysis Method Moisture	Prep Method	Matrix Solid		e nt Moisture		

Method Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-6217-1

Method	Method Description	Protocol	Laboratory
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

6

7

8

3

10

11

10

- 0 m 4 m 0 L m 0 5 E 5

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206 **Chain of Custody Record**

Toot	100	201	in	
Test/	41		10	,(
				-

THE LEADER IN ENVIRONMENTAL TESTING

Client Information	Sampler	Zica	٤		PM rington, R	РМ ngton, Randee E		Carrier Tracking No(s)		COC No. 590-2645-921.2	
Client Contact. Scott Lathen	Ch	Phone E-Mail				aton@tes	stamericainc.com			Page Page 2 of 2	
ompany: GeoEngineers Inc	1 101					5	Analysis R	equested		Job# 0504-098-01	
ddress 23 East Second Ave	Due Date Requeste	ed:								Preservation Codes:	
pokane	TAT Requested (da	ays):			100					A - HCL M - Hexane B - NaOH N - None	
pokane tate, Zip	Sto	1			140		1111			C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S	
/A, 99202	00.4				-100					E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3	
none 09-251-5239(Tel)	Po# Purchase Order	not require	ed		6					G - Amchior S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydral	
nail athen@geoengineers.com	WO#				or No			11 1 1 1 1 1	ω	J - Ice U - Acetone J - DI Water V - MCAA	
oject Name	Project #				Type (Yes or (Yes or No)				containers	K - EDTA W - pH 4-5 L - EDA Z - other (specify)	
olville Post and Pole/0504-098-01 te	59001108 SSOW#				- Marie	ž P			contr	Other:	
					I San	WTP			6		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)		-	8270D_SIM, NWTPH_Dx			Total Number	Special Instructions/Note:	
		><	-	tion Code:	XX	N			1 X		
MW-33 (50-55)	5/25/17	1035	(7	Solid	-	r					
MW-33 (16-5-17.0)		1055		Solid		*					
MW -34 (2-0-2-5)		1220		Solid		7					
MW-34 (15.5-160)		1230		Solid		Y					
MID-34 (15-7-0)		0855		Solid	158	x					
MW-35 (1.5-2-0) MW-35 (14.5-15.0)		0915	1	Solid		V					
~~)) ((+) 1)(+)		011		Solid	+	-					
				Solid	++						
			-		++						
				Solid	++-						
					11				0 6217 Ch	in of Custody	
						W/L				ain of Custody	
Possible Hazard Identification	П				Sa					ned longer than 1 month)	
Non-Hazard Flammable Skin Irritant Deliverable Requested I, II, III, IV, Other (specify)	Poison B Unkn	own	Radiological		Sr		To Client uctions/QC Requirer	Disposal By Lab	Arci	hive For Months	
Empty Kit Relinquished by		Date:			Time		-10	Method of Shipm	nen!		
Relinquished by				Company		Received	ov /	Date	/	Company /	
1 hogh	5/26/1=	7 9	20	GE	7	1	necla A	at s	120/1	4925 TA Spo	
Relinquished by	Date/Time:			Company ~		Received b	<i>I</i>	Date	Time 2	Company	
Relinquished by	Date/Time:			Company		Received t		Date	/Time:	Company	

Client: GeoEngineers Inc Job Number: 590-6217-1

Login Number: 6217 List Source: TestAmerica Spokane

List Number: 1 Creator: Kratz, Sheila J

Creator. Kratz, Stiella J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-7490-1

Client Project/Site: Colville Post and Pole/0504-098-01

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

Langue trington

Authorized for release by: 12/11/2017 9:45:18 AM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	23
Chronicle	30
Certification Summary	38
Method Summary	40
Chain of Custody	41
Receipt Checklists	55
Field Data Sheets	60
Isotope Dilution Summary	62

6

8

9

11

16

1

Case Narrative

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7490-1

Job ID: 590-7490-1

Laboratory: TestAmerica Spokane

Narrative

Receipt

The samples were received on 11/10/2017 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 5 coolers at receipt time were -3.2° C, -2.2° C, -0.9° C, -0.9° C and -0.1° C.

GC/MS Semi VOA

Method 8270D SIM: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-27:110817 (590-7490-8) and DUP:110817 (590-7490-17). Elevated reporting limits (RLs) are provided.

Method 8270D SIM: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-21:110717 (590-7490-2), MW-22:110717 (590-7490-3), MW-24:110817 (590-7490-5), MW-25:110717 (590-7490-6), MW-26:110817 (590-7490-7) and MW-30:110817 (590-7490-11) at 50.0, 5.0, 20.0, 10.0, 20.0 and 50.0. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method 8290A: The following samples exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): TP-3 (1.5'-2.0') (590-7490-18), TP-25 (1.5'-2.0') (590-7490-34), TP-41 (1.5'-2.0') (590-7490-42) and TP-46 (1.5'-2.0') (590-7490-50). The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 8290A: The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: TP-3 (1.5'-2.0') (590-7490-18), TP-6 (1.5'-2.0') (590-7490-26TP-46 (1.5'-2.0') (590-7490-50) and TP-53 (1.5'-2.0') (590-7490-53). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s). All detection limits are below the lower calibration.

Method 8290A: The laboratory control sample (LCS) for 320-194570 recovered low outside acceptance limits for OCDD. There was insufficient sample to perform a re-extraction or re-analysis; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7490-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-7490-1	MW-20:110717	Water	11/07/17 09:48	11/10/17 09:40
590-7490-2	MW-21:110717	Water	11/07/17 10:25	11/10/17 09:40
590-7490-3	MW-22:110717	Water	11/07/17 11:01	11/10/17 09:40
590-7490-4	MW-23:110717	Water	11/07/17 11:49	11/10/17 09:40
590-7490-5	MW-24:110817	Water	11/08/17 09:24	11/10/17 09:40
590-7490-6	MW-25:110717	Water	11/07/17 13:42	11/10/17 09:40
590-7490-7	MW-26:110817	Water	11/08/17 10:58	11/10/17 09:40
590-7490-8	MW-27:110817	Water	11/08/17 15:36	11/10/17 09:40
590-7490-9	MW-28:110817	Water	11/08/17 11:55	11/10/17 09:40
590-7490-10	MW-29:110717	Water	11/07/17 12:47	11/10/17 09:40
590-7490-11	MW-30:110817	Water	11/08/17 14:52	11/10/17 09:40
590-7490-12	MW-31:110817	Water	11/08/17 10:11	11/10/17 09:40
590-7490-13	MW-32:110717	Water	11/07/17 15:58	11/10/17 09:40
590-7490-14	MW-33:110717	Water	11/07/17 14:31	11/10/17 09:40
590-7490-15	MW-34:110817	Water	11/08/17 13:13	11/10/17 09:40
590-7490-16	MW-35:110817	Water	11/08/17 14:05	11/10/17 09:40
590-7490-17	DUP:110817	Water	11/08/17 12:00	11/10/17 09:40
590-7490-18	TP-3 (1.5'-2.0')	Solid	11/09/17 10:05	11/10/17 09:40
590-7490-23	TP-4 (1.5'-2.0')	Solid	11/09/17 10:40	11/10/17 09:40
590-7490-26	TP-6 (1.5'-2.0')	Solid	11/09/17 11:05	11/10/17 09:40
590-7490-31	TP-20 (1.5'-2.0')	Solid	11/09/17 13:45	11/10/17 09:40
590-7490-34	TP-25 (1.5'-2.0')	Solid	11/09/17 13:00	11/10/17 09:40
590-7490-37	TP-40 (1.5'-2.0')	Solid	11/09/17 12:30	11/10/17 09:40
590-7490-42	TP-41 (1.5'-2.0')	Solid	11/09/17 12:05	11/10/17 09:40
590-7490-45	TP-42 (1.5'-2.0')	Solid	11/09/17 11:35	11/10/17 09:40
590-7490-50	TP-46 (1.5'-2.0')	Solid	11/09/17 09:35	11/10/17 09:40
590-7490-53	TP-53 (1.5'-2.0')	Solid	11/09/17 13:20	11/10/17 09:40

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 590-7490-1

Qualifiers

Dioxin

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
*	Isotope Dilution analyte is outside acceptance limits.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference

Glossary

RLRPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
<u>n</u>	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-20:110717

Lab Sample ID: 590-7490-1

Matrix: Water

Date Collected: 11/07/17 09:48 Date Received: 11/10/17 09:40

Method: 8270D SIM - Semivolatile	Organic Compounds	(GC/MS	SIM)
Amalista	Deault Ouglities	DI.	MDI

Analyte	Result	Qualifier	KL	MDL	Unit	ט	Prepared	Anaiyzea	DII Fac	
Pentachlorophenol	1.4		0.96		ug/L		11/13/17 14:45	11/15/17 16:16	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

2,4,6-Tribromophenol 43 - 122 <u>11/13/17 14:45</u> <u>11/15/17 16:16</u>

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Diesel Range Organics (DRO)	ND		0.25		mg/L		11/14/17 09:48	11/14/17 12:13	1	
(C10-C25)										
Residual Range Organics (RRO)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 12:13	1	
(C25-C36)										
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o-Terphenyl	99		50 - 150				11/14/17 09:48	11/14/17 12:13	1	
n Triocontono de?	75		EO 1EO				11/11/17 00:19	11/11/17 10:10	1	

n-Triacontane-d62 50 - 150 11/14/17 09:48 11/14/17 12:13

Client Sample ID: MW-21:110717

Lab Sample ID: 590-7490-2 Date Collected: 11/07/17 10:25 **Matrix: Water**

Date Received: 11/10/17 09:40

Method: 82/UD SIM - Semivol	atile Organi	c Compour	105 (GC/N/5	SIIVI)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	80		48		ug/L		11/13/17 14:45	11/16/17 11:55	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	75		43 - 122				11/13/17 14:45	11/16/17 11:55	50

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result Qualific	er RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND	0.24	mg	/L	11/14/17 09:48	11/14/17 12:30	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND	0.41	mg	/L	11/14/17 09:48	11/14/17 12:30	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	97	50 - 150	11/14/17 09:48	11/14/17 12:30	1
n-Triacontane-d62	74	50 - 150	11/14/17 09:48	11/14/17 12:30	1

Client Sample ID: MW-22:110717

Lab Sample ID: 590-7490-3 Date Collected: 11/07/17 11:01 **Matrix: Water**

Date Received: 11/10/17 09:40

Method: 8270D SIM - Semivolatile	Organic Compounds (GC/MS SIM)
----------------------------------	-------------------------------

Analyte	Result Qualifier	` RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Pentachlorophenol	7.5	4.9	ug/L	11/13/17 14:45	11/16/17 13:48	5
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
2.4.6-Tribromonhenol		13 122		11/13/17 11:15	11/16/17 12:48	- 5

Method: NWTDH-Dy - Northwest - Semi-Volatile Petroleum Pro	- dt- (CC)

moundar min in DA moralmod					,				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.24	i	mg/L		11/14/17 09:48	11/14/17 12:47	1

(C10-C25)

TestAmerica Spokane

12/11/2017

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-22:110717

Date Collected: 11/07/17 11:01 Date Received: 11/10/17 09:40 Lab Sample ID: 590-7490-3

Matrix: Water

Method: NWTPH-Dx - Northwest	 Semi-Volatile Petroleum 	Product	ts (GC) (Contin	ued)
Analyto	Pocult Qualifier	DI	MDI Unit	n

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO) (C25-C36)	ND ND		0.41		mg/L		11/14/17 09:48	11/14/17 12:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98		50 - 150				11/14/17 09:48	11/14/17 12:47	1
n-Triacontane-d62	75		50 - 150				11/14/17 09:48	11/11/17 10:17	1

Client Sample ID: MW-23:110717

Date Collected: 11/07/17 11:49 Date Received: 11/10/17 09:40

Lab Sample ID: 590-7490-4

Matrix: Water

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Qualifier	RL	MDL Un	it [Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND ND	0.97	ug	L -	11/13/17 14:45	11/15/17 17:29	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	81	43 - 122			11/13/17 14:45	11/15/17 17:29	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	vest - Semi-vo Result C		RL	MDL	,	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND ND		0.24		mg/L			11/14/17 13:05	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 13:05	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				11/14/17 09:48	11/14/17 13:05	1
n-Triacontane-d62	7.3		50 - 150				11/14/17 09:48	11/14/17 13:05	1

Client Sample ID: MW-24:110817

Date Collected: 11/08/17 09:24 Date Received: 11/10/17 09:40

Lab Sample ID: 590-7490-5

Matrix: Water

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

motification of the common	amo organio compou	mas (Some	U ,				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	38	19	ug/L		11/13/17 14:45	11/16/17 12:20	20
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	84	43 - 122			11/13/17 14:45	11/16/17 12:20	20

Method: NWTPH-Dx -	Northweet -	Somi-Volatile	Potroloum	Producte (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.25		mg/L		11/14/17 09:48	11/14/17 13:22	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 13:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				11/14/17 09:48	11/14/17 13:22	1
n-Triacontane-d62	71		50 ₋ 150				11/14/17 09:48	11/14/17 13:22	1

TestAmerica Spokane

12/11/2017

Client Sample ID: MW-25:110717

Date Collected: 11/07/17 13:42 Date Received: 11/10/17 09:40 Lab Sample ID: 590-7490-6

TestAmerica Job ID: 590-7490-1

Matrix: Water

Matrix: Water

Method: 8270D SIM - Se	mivolatile Organi	c Compou	inds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	31		9.8		ug/L		11/13/17 14:45	11/16/17 10:42	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	93		43 - 122				11/13/17 14:45	11/16/17 10:42	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.25		mg/L		11/14/17 09:48	11/14/17 13:39	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 13:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				11/14/17 09:48	11/14/17 13:39	1
n-Triacontane-d62	72		50 - 150				11/14/17 09:48	11/14/17 13:39	1

Lab Sample ID: 590-7490-7 Client Sample ID: MW-26:110817

Date Collected: 11/08/17 10:58 Date Received: 11/10/17 09:40

Method: 8270D SIM - Sen	nivolatile Organic Compou	inds (GC/MS	SIM)					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	69	19		ug/L		11/13/17 14:45	11/16/17 12:44	20
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2.4.6-Tribromophenol	79	43 - 122				11/13/17 14:45	11/16/17 12:44	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.38		0.25		mg/L		11/14/17 09:48	11/14/17 14:14	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 14:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				11/14/17 09:48	11/14/17 14:14	1
n-Triacontane-d62	74		50 ₋ 150				11/14/17 09:48	11/14/17 14:14	1

Client Sample ID: MW-27:110817 Lab Sample ID: 590-7490-8 Date Collected: 11/08/17 15:36 **Matrix: Water**

Date Received: 11/10/17 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	16		4.9		ug/L		11/13/17 14:45	11/15/17 19:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	69		43 - 122				11/13/17 14:45	11/15/17 19:07	

Result Qualifier MDL Unit Prepared Analyzed RL Dil Fac 0.25 mg/L 11/14/17 09:48 11/14/17 14:31 **Diesel Range Organics (DRO)** 0.87 (C10-C25)

TestAmerica Spokane

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7490-1

Client Sample ID: MW-27:110817

Lab Sample ID: 590-7490-8 Date Collected: 11/08/17 15:36

Matrix: Water

Date Received: 11/10/17 09:40 Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Analyte	Result Qualifier	RL	MDL Únit	ď	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND ND	0.41	mg/L		11/14/17 09:48	11/14/17 14:31	1
(C25-C36)							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	105		50 - 150	11/14/17 09:48	11/14/17 14:31	1
n-Triacontane-d62	77		50 - 150	11/14/17 09:48	11/14/17 14:31	1

Analyte	Result Qualifier	RL	EDL Unit	D Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	9.9	pg/L	11/14/17 11:39	11/21/17 08:47	1
2,3,7,8-TCDF	ND	9.9	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,7,8-PeCDD	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,7,8-PeCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
2,3,4,7,8-PeCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,4,7,8-HxCDD	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,6,7,8-HxCDD	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,7,8,9-HxCDD	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,4,7,8-HxCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,6,7,8-HxCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,7,8,9-HxCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
2,3,4,6,7,8-HxCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,4,6,7,8-HpCDD	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,4,6,7,8-HpCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
1,2,3,4,7,8,9-HpCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
OCDD	370 *	99	pg/L	11/14/17 11:39	11/21/17 08:47	1
OCDF	ND	99	pg/L	11/14/17 11:39	11/21/17 08:47	1
Total TCDD	ND	9.9	pg/L	11/14/17 11:39	11/21/17 08:47	1
Total TCDF	ND	9.9	pg/L	11/14/17 11:39	11/21/17 08:47	1
Total PeCDD	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
Total PeCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
Total HxCDD	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
Total HxCDF	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
Total HpCDD	ND	49	pg/L	11/14/17 11:39	11/21/17 08:47	1
Total HpCDF	ND	49	pg/L	11/14/17 11:30	11/21/17 08:47	1

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	88		40 - 135	11/14/17 11:39	11/21/17 08:47	1
13C-2,3,7,8-TCDF	87		40 - 135	11/14/17 11:39	11/21/17 08:47	1
13C-1,2,3,7,8-PeCDD	86		40 - 135	11/14/17 11:39	11/21/17 08:47	1
13C-1,2,3,7,8-PeCDF	87		40 - 135	11/14/17 11:39	11/21/17 08:47	1
13C-1,2,3,6,7,8-HxCDD	65		40 - 135	11/14/17 11:39	11/21/17 08:47	1
13C-1,2,3,4,7,8-HxCDF	58		40 - 135	11/14/17 11:39	11/21/17 08:47	1
13C-1,2,3,4,6,7,8-HpCDD	96		40 - 135	11/14/17 11:39	11/21/17 08:47	1
13C-1,2,3,4,6,7,8-HpCDF	74		40 - 135	11/14/17 11:39	11/21/17 08:47	1
13C-OCDD	95		40 135	11/14/17 11:30	11/21/17 08:47	1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-28:110817

Date Collected: 11/08/17 11:55 Date Received: 11/10/17 09:40 Lab Sample ID: 590-7490-9

. Matrix: Water

Method: 8270D SIM - Sen	nivolatile Organic Compo	unds (GC/MS	SIM)			
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND ND	0.98	ug/L	11/13/17 14:45	11/15/17 19:32	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	87	43 - 122		11/13/17 14:45	11/15/17 19:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.25		mg/L		11/14/17 09:48	11/14/17 14:49	1
(C10-C25) Residual Range Organics (RRO)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 14:49	1
(C25-C36)					3				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				11/14/17 09:48	11/14/17 14:49	1
n-Triacontane-d62	75		50 - 150				11/14/17 09:48	11/14/17 14:49	1

Client Sample ID: MW-29:110717 Lab Sample ID: 590-7490-10

Date Collected: 11/07/17 12:47 Matrix: Water

Date Received: 11/10/17 09:40

Method: 8270D SIM - Semivol	atile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		0.98		ug/L		11/13/17 14:45	11/15/17 19:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	84		43 - 122				11/13/17 14:45	11/15/17 19:56	1

Method: NWTPH-Dx - Northy Analyte	west - Semi-Vo Result (roleum Prodi RL	ucts (GC MDL	•	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.25		mg/L		11/14/17 09:48	11/14/17 15:06	1
(C10-C25)					_				_
Residual Range Organics (RRO)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 15:06	1
(C25-C36)									
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98		50 - 150				11/14/17 09:48	11/14/17 15:06	1
n-Triacontane-d62	74		50 - 150				11/14/17 09:48	11/14/17 15:06	1

Date Collected: 11/08/17 14:52 Date Received: 11/10/17 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	120		49		ug/L		11/13/17 14:45	11/16/17 13:08	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	61		43 - 122				11/13/17 14:45	11/16/17 13:08	50

 Analyte
 Result Diesel Range Organics (DRO)
 ND
 Qualifier Output
 RL Diesel Range Organics (DRO)
 MDL Diesel Range Organics (DRO)
 Unit MDL Diesel Range Organics (DRO)
 D Prepared Diesel Range Organics (DRO)
 Analyzed Dil Factoria

 (C10-C25)
 0.25
 mg/L
 11/14/17 09:48
 11/14/17 15:24
 1

TestAmerica Spokane

Matrix: Water

TestAmerica Job ID: 590-7490-1

Client Sample ID: MW-30:110817

Date Collected: 11/08/17 14:52 Date Received: 11/10/17 09:40 Lab Sample ID: 590-7490-11

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO) (C25-C36)	ND	0.41	mg/L		11/14/17 09:48	11/14/17 15:24	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate o-Terphenyl		Limits 50 - 150				Analyzed 11/14/17 15:24	Dil Fac

Lab Sample ID: 590-7490-12 Client Sample ID: MW-31:110817

Date Collected: 11/08/17 10:11 Date Received: 11/10/17 09:40

Matrix: Water

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	lorophenol	•	Qualifier	RL 0.98	MDL	Unit ug/L	D	Prepared 11/13/17 14:45	Analyzed 11/15/17 20:45	Dil Fac
Surroga 2,4,6-Trii	te bromophenol	%Recovery	Qualifier	Limits 43 - 122				Prepared 11/13/17 14:45	Analyzed 11/15/17 20:45	Dil Fac

Analyte	est - Semi-Vo Result (roleum Prodi RL	MDL	,	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.25		mg/L		11/14/17 09:48	11/14/17 15:41	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 15:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		50 - 150				11/14/17 09:48	11/14/17 15:41	1
n-Triacontane-d62	67		50 - 150				11/14/17 09:48	11/14/17 15:41	1

Client Sample ID: MW-32:110717

Date Collected: 11/07/17 15:58 Date Received: 11/10/17 09:40

Lab Sample ID: 590-7490-13 **Matrix: Water**

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

			•,					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Pentachlorophenol	ND	0.97	ug/L		11/13/17 14:45	11/15/17 21:10	1	
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac	
2,4,6-Tribromophenol	78	43 - 122			11/13/17 14:45	11/15/17 21:10	1	

Method: NWTPH-Dx .	Movthuroot	Cami Valatila	Detrolous	Draduata (CC)
MEINON' NVVIPALIX.	. Warinwesi -	Semi-voisine	Permeilli	Promiers nata

Method: NW I PH-Dx - Northy Analyte	vest - Semi-Vol Result Q		oleum Prodi RL	•	زز) Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.25		mg/L		11/14/17 09:48	11/14/17 15:58	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 15:58	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				11/14/17 09:48	11/14/17 15:58	1
n-Triacontane-d62	71		50 - 150				11/14/17 09:48	11/14/17 15:58	1

Client Sample ID: MW-33:110717

Date Collected: 11/07/17 14:31 Date Received: 11/10/17 09:40 Lab Sample ID: 590-7490-14

TestAmerica Job ID: 590-7490-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		0.98		ug/L		11/13/17 14:45	11/15/17 21:34	1
·					Ü				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 2.4.6-Tribromophenol	%Recovery	Qualifier	Limits 43 - 122					Analyzed 11/15/17 21:34	Dil Fac

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result Qualifier	RL	MDL Únit	D Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	0.25	mg/L	11/14/17 09:48	11/14/17 16:16	1
Residual Range Organics (RRO) (C25-C36)	ND	0.41	mg/L	11/14/17 09:48	11/14/17 16:16	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
o-Terphenyl	96	50 - 150		11/14/17 09:48	11/14/17 16:16	1
n-Triacontane-d62	69	50 - 150		11/14/17 09:48	11/14/17 16:16	1

Client Sample ID: MW-34:110817

Date Collected: 11/08/17 13:13 Date Received: 11/10/17 09:40

Lab Sample ID: 590-7490-15

Lab Sample ID: 590-7490-16

Matrix: Water

Method: 8270D SIM - Sem	iivolatile Organic Compou	nds (GC/MS	SIM)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND ND	0.97	ug/L		11/13/17 14:45	11/15/17 21:59	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	67	43 - 122			11/13/17 14:45	11/15/17 21:59	1

Method: NWTPH-Dx	- Northweet -	Somi-Volatile	Petroleum	Products (GC)
Melliou, MW FR-DX	- Northwest -	· Seiiii-voiaille	retroleum	Products (GC)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	0.25		mg/L		11/14/17 09:48	11/14/17 16:33	1
Residual Range Organics (RRO) (C25-C36)	ND	0.41		mg/L		11/14/17 09:48	11/14/17 16:33	1
Surrogate	%Recovery Qualifier	l imits				Prenared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
o-Terphenyl	93		50 - 150	11/14/17 09:48 11/14/17 16:33	1
n-Triacontane-d62	68		50 - 150	11/14/17 09:48 11/14/17 16:33	1

Client Sample ID: MW-35:110817

Date Collected: 11/08/17 14:05 Date Received: 11/10/17 09:40

Method: 8270D	CIM	Comprehentile (Ormania (Samma unda	ICC/MC CIM	١.
wetnoa: 82/UD	JUN -	Semivolatile (Jrdanic (Jompounds	(GC/NS SIN)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Pentachlorophenol	ND		0.97		ug/L		11/13/17 14:45	11/15/17 22:23	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2.4.6-Tribromonhenol	82		43_122				11/13/17 14:45	11/15/17 22:23		

Mothod: NWTDH Dv	Northweet	Somi Volatile	Dotroloum	Products (CC)	

monious itti ii Ba itorumoot	0011111	idenio i oti	olouiii i lo	aaoto (Ot	•)				
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.25		mg/L		11/14/17 09:48	11/14/17 16:50	1
(C10-C25)									

TestAmerica Spokane

Matrix: Water

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-35:110817

Lab Sample ID: 590-7490-16

Matrix: Water

TestAmerica Job ID: 590-7490-1

Date Collected: 11/08/17 14:05 Date Received: 11/10/17 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		11/14/17 09:48	11/14/17 16:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	99		50 - 150				11/14/17 09:48	11/14/17 16:50	1
n-Triacontane-d62	72		50 - 150				11/14/17 09:48	11/14/17 16:50	1

Lab Sample ID: 590-7490-17 Client Sample ID: DUP:110817

Date Collected: 11/08/17 12:00 **Matrix: Water**

Date Received: 11/10/17 09:40

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	16		4.9		ug/L		11/13/17 14:45	11/15/17 22:47	5
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	70		43 - 122				11/13/17 14:45	11/15/17 22:47	5

Method: NWTPH-Dx - Northy Analyte	vest - Semi-Volatile Result Qualifi		•	•	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.92	0.25		mg/L		11/14/17 09:48	11/14/17 17:25	1
Residual Range Organics (RRO) (C25-C36)	ND	0.41		mg/L		11/14/17 09:48	11/14/17 17:25	1
Surrogate	%Recovery Qualifi	er Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	109	50 - 150				11/14/17 09:48	11/14/17 17:25	1
n-Triacontane-d62	79	50 - 150				11/14/17 09:48	11/14/17 17:25	1

-	7.5	30 - 130			11/17/11 03.70	11/17/11 11.20	,
Method: 8290A - Dioxins	•	•					
Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	19	pg/L		11/14/17 11:39	11/21/17 09:36	1
2,3,7,8-TCDF	ND	19	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,7,8-PeCDD	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,7,8-PeCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
2,3,4,7,8-PeCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,4,7,8-HxCDD	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,6,7,8-HxCDD	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,7,8,9-HxCDD	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,4,7,8-HxCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,6,7,8-HxCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,7,8,9-HxCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
2,3,4,6,7,8-HxCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,4,6,7,8-HpCDD	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,4,6,7,8-HpCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
1,2,3,4,7,8,9-HpCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
OCDD	500 *	190	pg/L		11/14/17 11:39	11/21/17 09:36	1
OCDF	ND	190	pg/L		11/14/17 11:39	11/21/17 09:36	1
Total TCDD	ND	19	pg/L		11/14/17 11:39	11/21/17 09:36	1
Total TCDF	ND	19	pg/L		11/14/17 11:39	11/21/17 09:36	1
Total PeCDD	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1
Total PeCDF	ND	97	pg/L		11/14/17 11:39	11/21/17 09:36	1

TestAmerica Spokane

Page 13 of 63

Client: GeoEngineers Inc

13C-2,3,7,8-TCDF

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-7490-17

TestAmerica Job ID: 590-7490-1

Matrix: Water

Client Sample ID: DUP:110817

Date Collected: 11/08/17 12:00 Date Received: 11/10/17 09:40

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	ND		97		pg/L		11/14/17 11:39	11/21/17 09:36	1
Total HxCDF	ND		97		pg/L		11/14/17 11:39	11/21/17 09:36	1
Total HpCDD	ND		97		pg/L		11/14/17 11:39	11/21/17 09:36	1
Total HpCDF	ND		97		pg/L		11/14/17 11:39	11/21/17 09:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	86		40 - 135				11/14/17 11:39	11/21/17 09:36	1
13C-2,3,7,8-TCDF	84		40 - 135				11/14/17 11:39	11/21/17 09:36	1
13C-1,2,3,7,8-PeCDD	83		40 - 135				11/14/17 11:39	11/21/17 09:36	1
13C-1,2,3,7,8-PeCDF	84		40 - 135				11/14/17 11:39	11/21/17 09:36	1
13C-1,2,3,6,7,8-HxCDD	83		40 - 135				11/14/17 11:39	11/21/17 09:36	1
13C-1,2,3,4,7,8-HxCDF	83		40 - 135				11/14/17 11:39	11/21/17 09:36	1
13C-1,2,3,4,6,7,8-HpCDD	101		40 - 135				11/14/17 11:39	11/21/17 09:36	1
13C-1,2,3,4,6,7,8-HpCDF	80		40 - 135				11/14/17 11:39	11/21/17 09:36	1
13C-OCDD	93		40 - 135				11/14/17 11:39	11/21/17 09:36	1

Client Sample ID: TP-3 (1.5'-2.0')

Lab Sample ID: 590-7490-18

Date Collected: 11/09/17 10:05

Matrix: Solid
Date Received: 11/10/17 09:40

Percent Solids: 72.6

Pale Received: 11/10/1/	J9:40						Percent Sono	15: 72.0
Method: 8290A - Dioxins		GC/HRMS) RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	<u> </u>	2.5	pg/g		11/28/17 08:53	12/06/17 14:56	
2,3,7,8-TCDF	ND		2.5	pg/g	₩	11/28/17 08:53	12/06/17 14:56	1
1,2,3,7,8-PeCDD	ND		13	pg/g	₽	11/28/17 08:53	12/06/17 14:56	1
1,2,3,7,8-PeCDF	ND		13	pg/g	ф.	11/28/17 08:53	12/06/17 14:56	1
2,3,4,7,8-PeCDF	ND		13	pg/g	☼	11/28/17 08:53	12/06/17 14:56	1
1,2,3,4,7,8-HxCDD	ND		13	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
1,2,3,6,7,8-HxCDD	20		13	pg/g		11/28/17 08:53	12/06/17 14:56	1
1,2,3,7,8,9-HxCDD	ND		13	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
1,2,3,4,7,8-HxCDF	ND		13	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
1,2,3,6,7,8-HxCDF	ND		13	pg/g		11/28/17 08:53	12/06/17 14:56	1
1,2,3,7,8,9-HxCDF	ND		13	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
2,3,4,6,7,8-HxCDF	ND		13	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
1,2,3,4,6,7,8-HpCDD	580		13	pg/g		11/28/17 08:53	12/06/17 14:56	1
1,2,3,4,6,7,8-HpCDF	86		13	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
1,2,3,4,7,8,9-HpCDF	ND		13	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
OCDD	5300		25	pg/g		11/28/17 08:53	12/06/17 14:56	1
OCDF	300		25	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
Total TCDD	ND		2.5	pg/g	☼	11/28/17 08:53	12/06/17 14:56	1
Total TCDF	ND	G	7.6	pg/g	☼	11/28/17 08:53	12/06/17 14:56	1
Total PeCDD	ND		13	pg/g	☼	11/28/17 08:53	12/06/17 14:56	1
Total PeCDF	ND	G	47	pg/g	₩	11/28/17 08:53	12/06/17 14:56	1
Total HxCDD	84		13	pg/g		11/28/17 08:53	12/06/17 14:56	1
Total HxCDF	77		13	pg/g	☼	11/28/17 08:53	12/06/17 14:56	1
Total HpCDD	980		13	pg/g	≎	11/28/17 08:53	12/06/17 14:56	1
Total HpCDF	420		13	pg/g		11/28/17 08:53	12/06/17 14:56	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	66		40 - 135			11/28/17 08:53	12/06/17 14:56	

TestAmerica Spokane

11/28/17 08:53 12/06/17 14:56

Page 14 of 63

40 - 135

2

3

5

7

a

10

12

13

14

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: TP-3 (1.5'-2.0') Lab Sample ID: 590-7490-18

Date Collected: 11/09/17 10:05 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 72.6

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	59		40 - 135	11/28/17 08:53	12/06/17 14:56	1
13C-1,2,3,7,8-PeCDF	59		40 - 135	11/28/17 08:53	12/06/17 14:56	1
13C-1,2,3,6,7,8-HxCDD	66		40 - 135	11/28/17 08:53	12/06/17 14:56	1
13C-1,2,3,4,7,8-HxCDF	80		40 - 135	11/28/17 08:53	12/06/17 14:56	1
13C-1,2,3,4,6,7,8-HpCDD	52		40 - 135	11/28/17 08:53	12/06/17 14:56	1
13C-1,2,3,4,6,7,8-HpCDF	38	*	40 - 135	11/28/17 08:53	12/06/17 14:56	1
13C-OCDD	52		40 - 135	11/28/17 08:53	12/06/17 14:56	1

Client Sample ID: TP-4 (1.5'-2.0') Lab Sample ID: 590-7490-23

Date Collected: 11/09/17 10:40 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 69.7

Method: 8290A - Dioxins Analyte	s and Furans (HRG0 Result Q		EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.4	pg/g	<u> </u>	11/28/17 08:53		1
2,3,7,8-TCDF	ND	1.4	pg/g	₩	11/28/17 08:53	12/06/17 15:39	1
1,2,3,7,8-PeCDD	ND	7.2	pg/g	₽	11/28/17 08:53	12/06/17 15:39	1
1,2,3,7,8-PeCDF	ND	7.2	pg/g		11/28/17 08:53	12/06/17 15:39	1
2,3,4,7,8-PeCDF	ND	7.2	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
1,2,3,4,7,8-HxCDD	ND	7.2	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
1,2,3,6,7,8-HxCDD	ND	7.2	pg/g		11/28/17 08:53	12/06/17 15:39	1
1,2,3,7,8,9-HxCDD	ND	7.2	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
1,2,3,4,7,8-HxCDF	ND	7.2	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
1,2,3,6,7,8-HxCDF	ND	7.2	pg/g	φ.	11/28/17 08:53	12/06/17 15:39	1
1,2,3,7,8,9-HxCDF	ND	7.2	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
2,3,4,6,7,8-HxCDF	ND	7.2	pg/g	☆	11/28/17 08:53	12/06/17 15:39	1
1,2,3,4,6,7,8-HpCDD	83	7.2	pg/g		11/28/17 08:53	12/06/17 15:39	1
1,2,3,4,6,7,8-HpCDF	8.0	7.2	pg/g	☆	11/28/17 08:53	12/06/17 15:39	1
1,2,3,4,7,8,9-HpCDF	ND	7.2	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
OCDD	1000	14	pg/g	\$	11/28/17 08:53	12/06/17 15:39	1
OCDF	32	14	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
Total TCDD	ND	1.4	pg/g	☆	11/28/17 08:53	12/06/17 15:39	1
Total TCDF	ND	1.4	pg/g	\$	11/28/17 08:53	12/06/17 15:39	1
Total PeCDD	ND	7.2	pg/g	₽	11/28/17 08:53	12/06/17 15:39	1
Total PeCDF	ND	7.2	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
Total HxCDD	ND	7.2	pg/g		11/28/17 08:53	12/06/17 15:39	1
Total HxCDF	ND	7.2	pg/g	☆	11/28/17 08:53	12/06/17 15:39	1
Total HpCDD	150	7.2	pg/g	☼	11/28/17 08:53	12/06/17 15:39	1
Total HpCDF	31	7.2	pg/g	φ.	11/28/17 08:53	12/06/17 15:39	1
Isotope Dilution	%Recovery Q	Qualifier Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	67	40 - 135			11/28/17 08:53	12/06/17 15:39	1
13C-2,3,7,8-TCDF	76	40 - 135			11/28/17 08:53	12/06/17 15:39	1
13C-1,2,3,7,8-PeCDD	60	40 - 135			11/28/17 08:53	12/06/17 15:39	1
400 400 000 000		<u> </u>					

13C-1,2,3,7,8-PeCDF 60 11/28/17 08:53 12/06/17 15:39 40 - 135 13C-1,2,3,6,7,8-HxCDD 66 40 - 135 11/28/17 08:53 12/06/17 15:39 13C-1,2,3,4,7,8-HxCDF 82 40 - 135 11/28/17 08:53 12/06/17 15:39 13C-1,2,3,4,6,7,8-HpCDD 57 40 - 135 11/28/17 08:53 12/06/17 15:39 13C-1,2,3,4,6,7,8-HpCDF 40 - 135 11/28/17 08:53 12/06/17 15:39 58 13C-OCDD 61 40 - 135 11/28/17 08:53 12/06/17 15:39

Page 15 of 63

TestAmerica Job ID: 590-7490-1

Client Sample ID: TP-6 (1.5'-2.0')

Date Collected: 11/09/17 11:05 Date Received: 11/10/17 09:40

Lab Sample ID: 590-7490-26

Matrix: Solid

Percent Solids: 88.3

Analyte	nd Furans (HR) Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.1		pg/g	<u>₩</u>	11/28/17 08:53	12/06/17 16:21	1
2,3,7,8-TCDF	ND		1.1		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
1,2,3,7,8-PeCDD	ND		5.6		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
1,2,3,7,8-PeCDF	ND		5.6		pg/g	φ.	11/28/17 08:53	12/06/17 16:21	1
2,3,4,7,8-PeCDF	ND		5.6		pg/g	₩	11/28/17 08:53	12/06/17 16:21	1
1,2,3,4,7,8-HxCDD	ND		5.6		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
1,2,3,6,7,8-HxCDD	ND		5.6		pg/g	φ.	11/28/17 08:53	12/06/17 16:21	1
1,2,3,7,8,9-HxCDD	ND		5.6		pg/g	₩	11/28/17 08:53	12/06/17 16:21	1
1,2,3,4,7,8-HxCDF	ND		5.6		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
1,2,3,6,7,8-HxCDF	ND		5.6		pg/g		11/28/17 08:53	12/06/17 16:21	1
1,2,3,7,8,9-HxCDF	ND		5.6		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
2,3,4,6,7,8-HxCDF	ND		5.6		pg/g	₩	11/28/17 08:53	12/06/17 16:21	1
1,2,3,4,6,7,8-HpCDD	ND		5.6		pg/g	₩.	11/28/17 08:53	12/06/17 16:21	1
1,2,3,4,6,7,8-HpCDF	ND		5.6		pg/g	₩	11/28/17 08:53	12/06/17 16:21	1
1,2,3,4,7,8,9-HpCDF	ND		5.6		pg/g	₩	11/28/17 08:53	12/06/17 16:21	1
OCDD	37		11		pg/g		11/28/17 08:53	12/06/17 16:21	1
OCDF	ND		11		pg/g	₩	11/28/17 08:53	12/06/17 16:21	1
Total TCDD	ND		1.1		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
Total TCDF	ND		1.1		pg/g	φ.	11/28/17 08:53	12/06/17 16:21	1
Total PeCDD	ND		5.6		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
Total PeCDF	ND		5.6		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
Total HxCDD	ND		5.6		pg/g		11/28/17 08:53	12/06/17 16:21	1
Total HxCDF	ND		5.6		pg/g	☼	11/28/17 08:53	12/06/17 16:21	1
Total HpCDD	ND		5.6		pg/g	₩	11/28/17 08:53	12/06/17 16:21	1
Total HpCDF	ND		5.6		pg/g	₽	11/28/17 08:53	12/06/17 16:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

•					
Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	60	40 - 135	11/28/17 08:53	12/06/17 16:21	1
13C-2,3,7,8-TCDF	70	40 - 135	11/28/17 08:53	12/06/17 16:21	1
13C-1,2,3,7,8-PeCDD	51	40 - 135	11/28/17 08:53	12/06/17 16:21	1
13C-1,2,3,7,8-PeCDF	54	40 - 135	11/28/17 08:53	12/06/17 16:21	1
13C-1,2,3,6,7,8-HxCDD	60	40 - 135	11/28/17 08:53	12/06/17 16:21	1
13C-1,2,3,4,7,8-HxCDF	71	40 - 135	11/28/17 08:53	12/06/17 16:21	1
13C-1,2,3,4,6,7,8-HpCDD	45	40 - 135	11/28/17 08:53	12/06/17 16:21	1
13C-1,2,3,4,6,7,8-HpCDF	43	40 - 135	11/28/17 08:53	12/06/17 16:21	1
13C-OCDD	39 *	40 - 135	11/28/17 08:53	12/06/17 16:21	1

Client Sample ID: TP-20 (1.5'-2.0')

Date Collected: 11/09/17 13:45 Date Received: 11/10/17 09:40

Lab Sample ID: 590-7490-31 Matrix: Solid

Percent Solids: 75.4

Method: 8290A - Dioxins	and Furans (HRGC/HRMS)							
Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.3		pg/g	<u> </u>	11/28/17 08:53	12/06/17 17:04	1
2,3,7,8-TCDF	ND	1.3		pg/g	☼	11/28/17 08:53	12/06/17 17:04	1
1,2,3,7,8-PeCDD	ND	6.6		pg/g	☼	11/28/17 08:53	12/06/17 17:04	1
1,2,3,7,8-PeCDF	ND	6.6		pg/g		11/28/17 08:53	12/06/17 17:04	1
2,3,4,7,8-PeCDF	ND	6.6		pg/g	☼	11/28/17 08:53	12/06/17 17:04	1
1,2,3,4,7,8-HxCDD	ND	6.6		pg/g	☼	11/28/17 08:53	12/06/17 17:04	1
1,2,3,6,7,8-HxCDD	ND	6.6		pg/g		11/28/17 08:53	12/06/17 17:04	1

Page 16 of 63

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: TP-20 (1.5'-2.0') Lab Sample ID: 590-7490-31

Date Collected: 11/09/17 13:45 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 75.4

Analyte	Result C	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND ND		6.6		pg/g	<u> </u>	11/28/17 08:53	12/06/17 17:04	1
1,2,3,4,7,8-HxCDF	ND		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
1,2,3,6,7,8-HxCDF	ND		6.6		pg/g		11/28/17 08:53	12/06/17 17:04	1
1,2,3,7,8,9-HxCDF	ND		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
2,3,4,6,7,8-HxCDF	ND		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
1,2,3,4,6,7,8-HpCDD	34		6.6		pg/g		11/28/17 08:53	12/06/17 17:04	1
1,2,3,4,6,7,8-HpCDF	ND		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
1,2,3,4,7,8,9-HpCDF	ND		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
OCDD	210		13		pg/g	φ.	11/28/17 08:53	12/06/17 17:04	1
OCDF	14		13		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
Total TCDD	ND		1.3		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
Total TCDF	ND		1.3		pg/g	φ.	11/28/17 08:53	12/06/17 17:04	1
Total PeCDD	ND		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
Total PeCDF	ND		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
Total HxCDD	ND		6.6		pg/g		11/28/17 08:53	12/06/17 17:04	1
Total HxCDF	ND		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
Total HpCDD	79		6.6		pg/g	₩	11/28/17 08:53	12/06/17 17:04	1
Total HpCDF	9.5		6.6		pg/g	₽	11/28/17 08:53	12/06/17 17:04	1
Isotope Dilution	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	67		40 - 135				11/28/17 08:53	12/06/17 17:04	1
13C-2,3,7,8-TCDF	81		40 - 135				11/28/17 08:53	12/06/17 17:04	1
13C-1,2,3,7,8-PeCDD	61		40 - 135				11/28/17 08:53	12/06/17 17:04	1
13C-1,2,3,7,8-PeCDF	63		40 - 135				11/28/17 08:53	12/06/17 17:04	1
13C-1,2,3,6,7,8-HxCDD	66		40 - 135				11/28/17 08:53	12/06/17 17:04	1
13C-1,2,3,4,7,8-HxCDF	80		40 - 135				11/28/17 08:53	12/06/17 17:04	1
13C-1,2,3,4,6,7,8-HpCDD	52		40 - 135				11/28/17 08:53	12/06/17 17:04	1
13C-1,2,3,4,6,7,8-HpCDF	47		40 - 135				11/28/17 08:53	12/06/17 17:04	1
13C-OCDD	48		40 - 135				11/28/17 08:53	12/06/17 17:04	1

Client Sample ID: TP-25 (1.5'-2.0')

Lab Sample ID: 590-7490-34 Date Collected: 11/09/17 13:00 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 80.5

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND —	1.2		pg/g	<u> </u>	11/28/17 08:53	12/06/17 17:47	1
2,3,7,8-TCDF	ND	1.2		pg/g	☼	11/28/17 08:53	12/06/17 17:47	1
1,2,3,7,8-PeCDD	ND	6.1		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1
1,2,3,7,8-PeCDF	ND	6.1		pg/g	₽	11/28/17 08:53	12/06/17 17:47	1
2,3,4,7,8-PeCDF	ND	6.1		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1
1,2,3,4,7,8-HxCDD	ND	6.1		pg/g	☼	11/28/17 08:53	12/06/17 17:47	1
1,2,3,6,7,8-HxCDD	ND	6.1		pg/g	ф.	11/28/17 08:53	12/06/17 17:47	1
1,2,3,7,8,9-HxCDD	ND	6.1		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1
1,2,3,4,7,8-HxCDF	ND	6.1		pg/g	☼	11/28/17 08:53	12/06/17 17:47	1
1,2,3,6,7,8-HxCDF	ND	6.1		pg/g	₽	11/28/17 08:53	12/06/17 17:47	1
1,2,3,7,8,9-HxCDF	ND	6.1		pg/g	☼	11/28/17 08:53	12/06/17 17:47	1
2,3,4,6,7,8-HxCDF	ND	6.1		pg/g	☼	11/28/17 08:53	12/06/17 17:47	1
1,2,3,4,6,7,8-HpCDD	87	6.1		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1
1,2,3,4,6,7,8-HpCDF	17	6.1		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1

Page 17 of 63

TestAmerica Job ID: 590-7490-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: TP-25 (1.5'-2.0') Lab Sample ID: 590-7490-34

Date Collected: 11/09/17 13:00 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 80.5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		6.1		pg/g	<u> </u>	11/28/17 08:53	12/06/17 17:47	1
OCDD	1300		12		pg/g	ф.	11/28/17 08:53	12/06/17 17:47	1
OCDF	110		12		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1
Total TCDD	ND		1.2		pg/g	☼	11/28/17 08:53	12/06/17 17:47	1
Total TCDF	ND	G	3.2		pg/g		11/28/17 08:53	12/06/17 17:47	1
Total PeCDD	ND		6.1		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1
Total PeCDF	ND	G	24		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1
Total HxCDD	ND		6.1		pg/g	₩.	11/28/17 08:53	12/06/17 17:47	1
Total HxCDF	9.2		6.1		pg/g	₩	11/28/17 08:53	12/06/17 17:47	1
Total HpCDD	160		6.1		pg/g	☼	11/28/17 08:53	12/06/17 17:47	1
Total HpCDF	98		6.1		pg/g		11/28/17 08:53	12/06/17 17:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	60		40 - 135				11/28/17 08:53	12/06/17 17:47	1
13C-2,3,7,8-TCDF	71		40 - 135				11/28/17 08:53	12/06/17 17:47	1
13C-1,2,3,7,8-PeCDD	50		40 - 135				11/28/17 08:53	12/06/17 17:47	1
13C-1,2,3,7,8-PeCDF	54		40 - 135				11/28/17 08:53	12/06/17 17:47	1
13C-1,2,3,6,7,8-HxCDD	61		40 - 135				11/28/17 08:53	12/06/17 17:47	1
13C-1,2,3,4,7,8-HxCDF	74		40 - 135				11/28/17 08:53	12/06/17 17:47	1
13C-1,2,3,4,6,7,8-HpCDD	49		40 - 135				11/28/17 08:53	12/06/17 17:47	1
13C-1,2,3,4,6,7,8-HpCDF	41		40 - 135				11/28/17 08:53	12/06/17 17:47	1
13C-OCDD	45		40 - 135				11/28/17 08:53	12/06/17 17:47	1

Client Sample ID: TP-40 (1.5'-2.0') Lab Sample ID: 590-7490-37 Date Collected: 11/09/17 12:30 **Matrix: Solid**

Percent Solids: 89.1 Date Received: 11/10/17 09:40

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.1		pg/g	<u> </u>	11/28/17 08:53	12/06/17 18:30	1
2,3,7,8-TCDF	ND		1.1		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1
1,2,3,7,8-PeCDD	ND		5.5		pg/g	₽	11/28/17 08:53	12/06/17 18:30	1
1,2,3,7,8-PeCDF	ND		5.5		pg/g	φ.	11/28/17 08:53	12/06/17 18:30	1
2,3,4,7,8-PeCDF	ND		5.5		pg/g	₽	11/28/17 08:53	12/06/17 18:30	1
1,2,3,4,7,8-HxCDD	ND		5.5		pg/g	₽	11/28/17 08:53	12/06/17 18:30	1
1,2,3,6,7,8-HxCDD	ND		5.5		pg/g	₩.	11/28/17 08:53	12/06/17 18:30	1
1,2,3,7,8,9-HxCDD	ND		5.5		pg/g	₽	11/28/17 08:53	12/06/17 18:30	1
1,2,3,4,7,8-HxCDF	ND		5.5		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1
1,2,3,6,7,8-HxCDF	ND		5.5		pg/g	\$	11/28/17 08:53	12/06/17 18:30	1
1,2,3,7,8,9-HxCDF	ND		5.5		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1
2,3,4,6,7,8-HxCDF	ND		5.5		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1
1,2,3,4,6,7,8-HpCDD	11		5.5		pg/g	₽	11/28/17 08:53	12/06/17 18:30	1
1,2,3,4,6,7,8-HpCDF	ND		5.5		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1
1,2,3,4,7,8,9-HpCDF	ND		5.5		pg/g	₽	11/28/17 08:53	12/06/17 18:30	1
OCDD	120		11		pg/g		11/28/17 08:53	12/06/17 18:30	1
OCDF	ND		11		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1
Total TCDD	ND		1.1		pg/g	₽	11/28/17 08:53	12/06/17 18:30	1
Total TCDF	ND		1.1		pg/g	ф.	11/28/17 08:53	12/06/17 18:30	1
Total PeCDD	ND		5.5		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1
Total PeCDF	ND		5.5		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1

Page 18 of 63

TestAmerica Job ID: 590-7490-1

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-7490-37

Client Sample ID: TP-40 (1.5'-2.0') Date Collected: 11/09/17 12:30 **Matrix: Solid**

Date Received: 11/10/17 09:40 Percent Solids: 89.1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	ND		5.5		pg/g	<u> </u>	11/28/17 08:53	12/06/17 18:30	1
Total HxCDF	ND		5.5		pg/g	.	11/28/17 08:53	12/06/17 18:30	1
Total HpCDD	19		5.5		pg/g	₩	11/28/17 08:53	12/06/17 18:30	1
Total HpCDF	ND		5.5		pg/g		11/28/17 08:53	12/06/17 18:30	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	62		40 - 135				11/28/17 08:53	12/06/17 18:30	1
13C-2,3,7,8-TCDF	73		40 - 135				11/28/17 08:53	12/06/17 18:30	1
13C-1,2,3,7,8-PeCDD	55		40 - 135				11/28/17 08:53	12/06/17 18:30	1
13C-1,2,3,7,8-PeCDF	58		40 - 135				11/28/17 08:53	12/06/17 18:30	1
13C-1,2,3,6,7,8-HxCDD	67		40 - 135				11/28/17 08:53	12/06/17 18:30	1
13C-1,2,3,4,7,8-HxCDF	82		40 - 135				11/28/17 08:53	12/06/17 18:30	1
13C-1,2,3,4,6,7,8-HpCDD	50		40 - 135				11/28/17 08:53	12/06/17 18:30	1
13C-1,2,3,4,6,7,8-HpCDF	50		40 - 135				11/28/17 08:53	12/06/17 18:30	1
13C-OCDD	47		40 - 135				11/28/17 08:53	12/06/17 18:30	1

Client Sample ID: TP-41 (1.5'-2.0') Lab Sample ID: 590-7490-42

Date Collected: 11/09/17 12:05 **Matrix: Solid** roomt Caliday 90 7

		00"							
Method: 8290A - Dioxin Analyte		GC/HRMS Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2		pg/g		11/28/17 08:53	12/06/17 19:13	1
2,3,7,8-TCDF	ND		1.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
1,2,3,7,8-PeCDD	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
1,2,3,7,8-PeCDF	ND		6.2		pg/g	₩.	11/28/17 08:53	12/06/17 19:13	1
2,3,4,7,8-PeCDF	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
1,2,3,4,7,8-HxCDD	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
1,2,3,6,7,8-HxCDD	ND		6.2		pg/g	₩.	11/28/17 08:53	12/06/17 19:13	1
1,2,3,7,8,9-HxCDD	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
1,2,3,4,7,8-HxCDF	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
1,2,3,6,7,8-HxCDF	ND		6.2		pg/g		11/28/17 08:53	12/06/17 19:13	1
1,2,3,7,8,9-HxCDF	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
2,3,4,6,7,8-HxCDF	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
1,2,3,4,6,7,8-HpCDD	46		6.2		pg/g		11/28/17 08:53	12/06/17 19:13	1
1,2,3,4,6,7,8-HpCDF	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
1,2,3,4,7,8,9-HpCDF	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
OCDD	460		12		pg/g	φ.	11/28/17 08:53	12/06/17 19:13	1
OCDF	18		12		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
Total TCDD	ND		1.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
Total TCDF	ND		1.2		pg/g	₩.	11/28/17 08:53	12/06/17 19:13	1
Total PeCDD	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
Total PeCDF	ND		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
Total HxCDD	ND		6.2		pg/g	₩.	11/28/17 08:53	12/06/17 19:13	1
Total HxCDF	ND	G	9.7		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
Total HpCDD	74		6.2		pg/g	₩	11/28/17 08:53	12/06/17 19:13	1
Total HpCDF	13		6.2		pg/g	φ.	11/28/17 08:53	12/06/17 19:13	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	61		40 - 135				11/28/17 08:53	12/06/17 19:13	1
13C-2,3,7,8-TCDF	72		40 - 135				11/28/17 08:53	12/06/17 19:13	1

TestAmerica Spokane

Page 19 of 63

TestAmerica Job ID: 590-7490-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: TP-41 (1.5'-2.0') Lab Sample ID: 590-7490-42

Date Collected: 11/09/17 12:05 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 80.7

Isotope Dilution	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	53	40 - 135	11/28/17 08:53	12/06/17 19:13	1
13C-1,2,3,7,8-PeCDF	54	40 - 135	11/28/17 08:53	12/06/17 19:13	1
13C-1,2,3,6,7,8-HxCDD	57	40 - 135	11/28/17 08:53	12/06/17 19:13	1
13C-1,2,3,4,7,8-HxCDF	75	40 - 135	11/28/17 08:53	12/06/17 19:13	1
13C-1,2,3,4,6,7,8-HpCDD	44	40 - 135	11/28/17 08:53	12/06/17 19:13	1
13C-1,2,3,4,6,7,8-HpCDF	42	40 - 135	11/28/17 08:53	12/06/17 19:13	1
13C-OCDD	41	40 - 135	11/28/17 08:53	12/06/17 19:13	1

Client Sample ID: TP-42 (1.5'-2.0') Lab Sample ID: 590-7490-45

Date Collected: 11/09/17 11:35 **Matrix: Solid** Percent Solids: 95.2 Date Received: 11/10/17 09:40

Analyte	Result	Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0	pg/g	\	11/28/17 08:53	12/07/17 04:43	1
2,3,7,8-TCDF	ND		1.0	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
1,2,3,7,8-PeCDD	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
1,2,3,7,8-PeCDF	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
2,3,4,7,8-PeCDF	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
1,2,3,4,7,8-HxCDD	ND		5.1	pg/g	₩	11/28/17 08:53	12/07/17 04:43	1
1,2,3,6,7,8-HxCDD	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
1,2,3,7,8,9-HxCDD	ND		5.1	pg/g	₩	11/28/17 08:53	12/07/17 04:43	1
1,2,3,4,7,8-HxCDF	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
1,2,3,6,7,8-HxCDF	ND		5.1	pg/g	ф.	11/28/17 08:53	12/07/17 04:43	1
1,2,3,7,8,9-HxCDF	ND		5.1	pg/g	₩	11/28/17 08:53	12/07/17 04:43	1
2,3,4,6,7,8-HxCDF	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
1,2,3,4,6,7,8-HpCDD	41		5.1	pg/g	\$	11/28/17 08:53	12/07/17 04:43	1
1,2,3,4,6,7,8-HpCDF	ND		5.1	pg/g	₩	11/28/17 08:53	12/07/17 04:43	1
1,2,3,4,7,8,9-HpCDF	ND		5.1	pg/g	₩	11/28/17 08:53	12/07/17 04:43	1
OCDD	440		10	pg/g	\$	11/28/17 08:53	12/07/17 04:43	1
OCDF	16		10	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
Total TCDD	ND		1.0	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
Total TCDF	ND		1.0	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
Total PeCDD	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
Total PeCDF	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
Total HxCDD	ND		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
Total HxCDF	ND		5.1	pg/g	☼	11/28/17 08:53	12/07/17 04:43	1
Total HpCDD	71		5.1	pg/g	₽	11/28/17 08:53	12/07/17 04:43	1
Total HpCDF	13		5.1	pg/g		11/28/17 08:53	12/07/17 04:43	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	64		40 - 135			11/28/17 08:53	12/07/17 04:43	1
13C-2,3,7,8-TCDF	74		40 - 135			11/28/17 08:53	12/07/17 04:43	1

isotope Dilution	%Recovery G	Qualifier Limits	Prepared	Anaiyzea	DII Fac
13C-2,3,7,8-TCDD	64	40 - 135	11/28/17 08:53	12/07/17 04:43	1
13C-2,3,7,8-TCDF	74	40 - 135	11/28/17 08:53	12/07/17 04:43	1
13C-1,2,3,7,8-PeCDD	77	40 - 135	11/28/17 08:53	12/07/17 04:43	1
13C-1,2,3,7,8-PeCDF	65	40 - 135	11/28/17 08:53	12/07/17 04:43	1
13C-1,2,3,6,7,8-HxCDD	72	40 - 135	11/28/17 08:53	12/07/17 04:43	1
13C-1,2,3,4,7,8-HxCDF	83	40 - 135	11/28/17 08:53	12/07/17 04:43	1
13C-1,2,3,4,6,7,8-HpCDD	43	40 - 135	11/28/17 08:53	12/07/17 04:43	1
13C-1,2,3,4,6,7,8-HpCDF	43	40 - 135	11/28/17 08:53	12/07/17 04:43	1
13C-OCDD	51	40 - 135	11/28/17 08:53	12/07/17 04:43	1

Page 20 of 63

TestAmerica Job ID: 590-7490-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: TP-46 (1.5'-2.0')

Lab Sample ID: 590-7490-50 Date Collected: 11/09/17 09:35 **Matrix: Solid**

Date Received: 11/10/17 09:40 Percent Solids: 69.4

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.4		pg/g	<u> </u>	11/28/17 08:53	12/07/17 05:26	1
2,3,7,8-TCDF	ND		1.4		pg/g	₩	11/28/17 08:53	12/07/17 05:26	1
1,2,3,7,8-PeCDD	ND		7.2		pg/g	₽	11/28/17 08:53	12/07/17 05:26	1
1,2,3,7,8-PeCDF	ND		7.2		pg/g	φ.	11/28/17 08:53	12/07/17 05:26	1
2,3,4,7,8-PeCDF	ND		7.2		pg/g	₽	11/28/17 08:53	12/07/17 05:26	1
1,2,3,4,7,8-HxCDD	ND		7.2		pg/g	₩	11/28/17 08:53	12/07/17 05:26	1
1,2,3,6,7,8-HxCDD	ND		7.2		pg/g	φ.	11/28/17 08:53	12/07/17 05:26	1
1,2,3,7,8,9-HxCDD	ND		7.2		pg/g	₩	11/28/17 08:53	12/07/17 05:26	1
1,2,3,4,7,8-HxCDF	ND		7.2		pg/g	₽	11/28/17 08:53	12/07/17 05:26	1
1,2,3,6,7,8-HxCDF	ND		7.2		pg/g		11/28/17 08:53	12/07/17 05:26	1
1,2,3,7,8,9-HxCDF	ND		7.2		pg/g	₩	11/28/17 08:53	12/07/17 05:26	1
2,3,4,6,7,8-HxCDF	ND		7.2		pg/g	₽	11/28/17 08:53	12/07/17 05:26	1
1,2,3,4,6,7,8-HpCDD	48		7.2		pg/g	₩.	11/28/17 08:53	12/07/17 05:26	1
1,2,3,4,6,7,8-HpCDF	ND		7.2		pg/g	₩	11/28/17 08:53	12/07/17 05:26	1
1,2,3,4,7,8,9-HpCDF	ND		7.2		pg/g	☼	11/28/17 08:53	12/07/17 05:26	1
OCDD	430		14		pg/g	₩.	11/28/17 08:53	12/07/17 05:26	1
OCDF	ND		14		pg/g	☼	11/28/17 08:53	12/07/17 05:26	1
Total TCDD	ND		1.4		pg/g	☼	11/28/17 08:53	12/07/17 05:26	1
Total TCDF	ND	G	4.0		pg/g	φ.	11/28/17 08:53	12/07/17 05:26	1
Total PeCDD	ND		7.2		pg/g	☼	11/28/17 08:53	12/07/17 05:26	1
Total PeCDF	ND	G	9.1		pg/g	☼	11/28/17 08:53	12/07/17 05:26	1
Total HxCDD	ND		7.2		pg/g		11/28/17 08:53	12/07/17 05:26	1
Total HxCDF	ND	G	12		pg/g	₩	11/28/17 08:53	12/07/17 05:26	1
Total HpCDD	85		7.2		pg/g	☼	11/28/17 08:53	12/07/17 05:26	1
Total HpCDF	11		7.2		pg/g	₩.	11/28/17 08:53	12/07/17 05:26	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	65		40 - 135				11/28/17 08:53	12/07/17 05:26	1
13C-2,3,7,8-TCDF	79		40 - 135				11/28/17 08:53	12/07/17 05:26	1
13C-1,2,3,7,8-PeCDD	79		40 - 135				11/28/17 08:53	12/07/17 05:26	1
13C-1,2,3,7,8-PeCDF	69		40 - 135				11/28/17 08:53	12/07/17 05:26	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	65	40 - 135	11/28/17 08:53	12/07/17 05:26	1
13C-2,3,7,8-TCDF	79	40 - 135	11/28/17 08:53	12/07/17 05:26	1
13C-1,2,3,7,8-PeCDD	79	40 - 135	11/28/17 08:53	12/07/17 05:26	1
13C-1,2,3,7,8-PeCDF	69	40 - 135	11/28/17 08:53	12/07/17 05:26	1
13C-1,2,3,6,7,8-HxCDD	68	40 - 135	11/28/17 08:53	12/07/17 05:26	1
13C-1,2,3,4,7,8-HxCDF	77	40 - 135	11/28/17 08:53	12/07/17 05:26	1
13C-1,2,3,4,6,7,8-HpCDD	38 *	40 - 135	11/28/17 08:53	12/07/17 05:26	1
13C-1,2,3,4,6,7,8-HpCDF	35 *	40 - 135	11/28/17 08:53	12/07/17 05:26	1
13C-OCDD	46	40 - 135	11/28/17 08:53	12/07/17 05:26	1

Client Sample ID: TP-53 (1.5'-2.0')

Lab Sample ID: 590-7490-53 Matrix: Solid Date Collected: 11/09/17 13:20 Date Received: 11/10/17 09:40 Percent Solids: 84.2

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	1.2		pg/g	<u> </u>	11/28/17 08:53	12/07/17 06:09	1
2,3,7,8-TCDF	ND	1.2		pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
1,2,3,7,8-PeCDD	ND	5.9		pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
1,2,3,7,8-PeCDF	ND	5.9		pg/g	₩.	11/28/17 08:53	12/07/17 06:09	1
2,3,4,7,8-PeCDF	ND	5.9		pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
1,2,3,4,7,8-HxCDD	ND	5.9		pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
1,2,3,6,7,8-HxCDD	ND	5.9		pg/g		11/28/17 08:53	12/07/17 06:09	1

Page 21 of 63

TestAmerica Spokane

Client: GeoEngineers Inc TestAmerica Job ID: 590-7490-1

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: TP-53 (1.5'-2.0')

Lab Sample ID: 590-7490-53 Date Collected: 11/09/17 13:20 **Matrix: Solid**

Date Received: 11/10/17 09:40 Percent Solids: 84.2

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND ND	5.9	pg/g	<u> </u>	11/28/17 08:53	12/07/17 06:09	1
1,2,3,4,7,8-HxCDF	ND	5.9	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
1,2,3,6,7,8-HxCDF	ND	5.9	pg/g	₩.	11/28/17 08:53	12/07/17 06:09	1
1,2,3,7,8,9-HxCDF	ND	5.9	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
2,3,4,6,7,8-HxCDF	ND	5.9	pg/g	☼	11/28/17 08:53	12/07/17 06:09	1
1,2,3,4,6,7,8-HpCDD	ND	5.9	pg/g		11/28/17 08:53	12/07/17 06:09	1
1,2,3,4,6,7,8-HpCDF	ND	5.9	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
1,2,3,4,7,8,9-HpCDF	ND	5.9	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
OCDD	46	12	pg/g		11/28/17 08:53	12/07/17 06:09	1
OCDF	ND	12	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
Total TCDD	ND	1.2	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
Total TCDF	ND	1.2	pg/g		11/28/17 08:53	12/07/17 06:09	1
Total PeCDD	ND	5.9	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
Total PeCDF	ND	5.9	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
Total HxCDD	ND	5.9	pg/g	₽	11/28/17 08:53	12/07/17 06:09	1
Total HxCDF	ND	5.9	pg/g	₩	11/28/17 08:53	12/07/17 06:09	1
Total HpCDD	ND	5.9	pg/g	☼	11/28/17 08:53	12/07/17 06:09	1
Total HpCDF	ND	5.9	pg/g	☼	11/28/17 08:53	12/07/17 06:09	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	61	40 - 135			11/28/17 08:53	12/07/17 06:09	1
13C-2,3,7,8-TCDF	72	40 - 135			11/28/17 08:53	12/07/17 06:09	1
13C-1,2,3,7,8-PeCDD	72	40 - 135			11/28/17 08:53	12/07/17 06:09	1
13C-1,2,3,7,8-PeCDF	63	40 - 135			11/28/17 08:53	12/07/17 06:09	1
13C-1,2,3,6,7,8-HxCDD	62	40 - 135			11/28/17 08:53	12/07/17 06:09	1
13C-1,2,3,4,7,8-HxCDF	73	40 - 135			11/28/17 08:53	12/07/17 06:09	1
13C-1,2,3,4,6,7,8-HpCDD	40	40 - 135			11/28/17 08:53	12/07/17 06:09	1
13C-1,2,3,4,6,7,8-HpCDF	38 *	40 - 135			11/28/17 08:53	12/07/17 06:09	1
13C-OCDD	44	40 - 135			11/28/17 08:53	12/07/17 06:09	1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7490-1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-261256/1-A

Matrix: Water

Analysis Batch: 261379

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 261256

Prep Type: Total/NA

Prep Batch: 261256

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 <u>11/13/17 14:45</u> <u>11/15/17 15:52</u> Pentachlorophenol $\overline{\mathsf{ND}}$ ug/L

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2,4,6-Tribromophenol 65 43 - 122 11/13/17 14:45 11/15/17 15:52

Spike

Added

4.00

Spike

Added

4.00

LCS LCS

LCSD LCSD

2.48

Result Qualifier

2.34

Result Qualifier

Unit

ug/L

Unit

ug/L

mg/L

Lab Sample ID: LCS 580-261256/2-A

Matrix: Water

Analysis Batch: 261379

Analyte

Pentachlorophenol

LCS LCS %Recovery Qualifier

Limits 43 - 122

Client Sample ID: Lab Control Sample

%Rec.

Limits 49 - 120

Matrix: Water

Surrogate

Pentachlorophenol

2,4,6-Tribromophenol

Analysis Batch: 261379

Lab Sample ID: LCSD 580-261256/3-A

LCSD LCSD Surrogate %Recovery Qualifier Limits Client Sample ID: Lab Control Sample Dup

%Rec

62

%Rec

58

Prep Type: Total/NA Prep Batch: 261256

%Rec. RPD Limits RPD Limit 49 - 120 6

2,4,6-Tribromophenol 89 43 - 122

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

ND

Lab Sample ID: MB 590-14731/1-A

Matrix: Water

Analysis Batch: 14726

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 14731

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed ND 0.24 mg/L 11/14/17 09:48 11/14/17 11:03 Diesel Range Organics (DRO)

0.40

(C10-C25)

Residual Range Organics (RRO) (C25-C36)

MB MB

Surrogate %Recovery Qualifier Limits o-Terphenyl 106 50 - 150 n-Triacontane-d62 72 50 - 150

Prepared Analyzed Dil Fac 11/14/17 09:48 11/14/17 11:03 11/14/17 09:48 11/14/17 11:03

11/14/17 09:48 11/14/17 11:03

TestAmerica Spokane

TestAmerica Job ID: 590-7490-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

La	ıb	S	am	ple	ID:	LCS	590 -	147	31/	2-A
	- 2									

Matrix: Water

Analysis Batch: 14726

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 14731

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO)	 1.60	1.29		mg/L		80	50 - 150	
(C10-C25)								
Residual Range Organics (RRO)	1.60	1.27		mg/L		79	50 - 150	
(C25-C36)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
o-Terphenyl	104	50 - 150
n-Triacontane-d62	93	50 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCSD 590-14731/3-A

ı	Analysis Batch: 14726							Prep E	3atch: 1	4731
	-	Spike	LCSD	LCSD				%Rec.		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Diesel Range Organics (DRO)	 1.60	1.17		mg/L		73	50 - 150	10	25
	(C10-C25)									
	Residual Range Organics (RRO)	1.60	1.25		mg/L		78	50 ₋ 150	2	25

(C25-C36)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	103		50 - 150
n-Triacontane-d62	91		50 - 150

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-194570/1-A

Matrix: Water

Analysis Ratch: 195951

Client Sample ID: Method Blank
Prep Type: Total/NA
D D. (.) 404570

Pron Ratch: 194570

Analysis batch: 195951								Prep Batch:	1945/0
	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10		pg/L		11/14/17 11:39	11/21/17 06:21	1
2,3,7,8-TCDF	ND		10		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,7,8-PeCDD	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,7,8-PeCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
2,3,4,7,8-PeCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,4,7,8-HxCDD	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,6,7,8-HxCDD	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,7,8,9-HxCDD	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,4,7,8-HxCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,6,7,8-HxCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,7,8,9-HxCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
2,3,4,6,7,8-HxCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,4,6,7,8-HpCDD	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,4,6,7,8-HpCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
1,2,3,4,7,8,9-HpCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
OCDD	ND		100		pg/L		11/14/17 11:39	11/21/17 06:21	1
OCDF	ND		100		pg/L		11/14/17 11:39	11/21/17 06:21	1
Total TCDD	ND		10		pg/L		11/14/17 11:39	11/21/17 06:21	1

TestAmerica Spokane

Page 24 of 63

TestAmerica Job ID: 590-7490-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-194570/1-A **Client Sample ID: Method Blank** Matrix: Water **Prep Type: Total/NA**

Analysis Batch: 195951 Prep Batch: 194570

	TCDF ND PeCDD ND PeCDF ND HxCDD ND HxCDF ND HpCDD ND								
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TCDF	ND		10		pg/L		11/14/17 11:39	11/21/17 06:21	1
Total PeCDD	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
Total PeCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
Total HxCDD	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
Total HxCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
Total HpCDD	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
Total HpCDF	ND		50		pg/L		11/14/17 11:39	11/21/17 06:21	1
	MB	MB							

Isotope Dilution	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	87	40 - 135	11/14/17 11:39	11/21/17 06:21	1
13C-2,3,7,8-TCDF	82	40 - 135	11/14/17 11:39	11/21/17 06:21	1
13C-1,2,3,7,8-PeCDD	83	40 - 135	11/14/17 11:39	11/21/17 06:21	1
13C-1,2,3,7,8-PeCDF	82	40 - 135	11/14/17 11:39	11/21/17 06:21	1
13C-1,2,3,6,7,8-HxCDD	79	40 - 135	11/14/17 11:39	11/21/17 06:21	1
13C-1,2,3,4,7,8-HxCDF	77	40 - 135	11/14/17 11:39	11/21/17 06:21	1
13C-1,2,3,4,6,7,8-HpCDD	86	40 - 135	11/14/17 11:39	11/21/17 06:21	1
13C-1,2,3,4,6,7,8-HpCDF	71	40 - 135	11/14/17 11:39	11/21/17 06:21	1
13C-OCDD	77	40 - 135	11/14/17 11:39	11/21/17 06:21	1

Lab Sample ID: LCS 320-194570/2-A

Matrix: Water Analysis Batch: 195951

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 194570

Analysis Batch. 199991	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,3,7,8-TCDD	200	179		pg/L		90	64 - 142
2,3,7,8-TCDF	200	174		pg/L		87	71 - 142
1,2,3,7,8-PeCDD	1000	907		pg/L		91	71 - 140
1,2,3,7,8-PeCDF	1000	906		pg/L		91	76 - 135
2,3,4,7,8-PeCDF	1000	918		pg/L		92	74 - 137
1,2,3,4,7,8-HxCDD	1000	887		pg/L		89	56 - 146
1,2,3,6,7,8-HxCDD	1000	892		pg/L		89	73 - 144
1,2,3,7,8,9-HxCDD	1000	949		pg/L		95	71 - 151
1,2,3,4,7,8-HxCDF	1000	890		pg/L		89	75 - 131
1,2,3,6,7,8-HxCDF	1000	874		pg/L		87	76 - 133
1,2,3,7,8,9-HxCDF	1000	897		pg/L		90	77 - 142
2,3,4,6,7,8-HxCDF	1000	908		pg/L		91	80 - 137
1,2,3,4,6,7,8-HpCDD	1000	803		pg/L		80	78 - 139
1,2,3,4,6,7,8-HpCDF	1000	889		pg/L		89	79 - 133
1,2,3,4,7,8,9-HpCDF	1000	962		pg/L		96	83 - 130
OCDD	2000	1560	*	pg/L		78	80 - 132
OCDF	2000	1490		pg/L		74	72 - 140
1.00	1.00						

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	83		40 - 135
13C-2,3,7,8-TCDF	82		40 - 135
13C-1,2,3,7,8-PeCDD	82		40 - 135
13C-1,2,3,7,8-PeCDF	81		40 - 135
13C-1,2,3,6,7,8-HxCDD	75		40 - 135

Page 25 of 63

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-194570/2-A

Lab Sample ID: LCSD 320-194570/3-A

Matrix: Water

Analysis Batch: 195951

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 194570

LCS LCS

Isotope Dilution	%Recovery Qualifier	Limits
13C-1,2,3,4,7,8-HxCDF	77	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	88	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	66	40 - 135
13C-OCDD	82	40 - 135

Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 195951							Prep Ba	itch: 19		
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
2,3,7,8-TCDD	200	187		pg/L		94	64 - 142	4	20	
2,3,7,8-TCDF	200	186		pg/L		93	71 - 142	7	20	
1,2,3,7,8-PeCDD	1000	934		pg/L		93	71 - 140	3	20	
1,2,3,7,8-PeCDF	1000	893		pg/L		89	76 - 135	1	20	
2,3,4,7,8-PeCDF	1000	913		pg/L		91	74 - 137	1	20	
1,2,3,4,7,8-HxCDD	1000	928		pg/L		93	56 - 146	4	20	
1,2,3,6,7,8-HxCDD	1000	928		pg/L		93	73 - 144	4	20	
1,2,3,7,8,9-HxCDD	1000	1000		pg/L		100	71 - 151	5	20	
1,2,3,4,7,8-HxCDF	1000	942		pg/L		94	75 - 131	6	20	
1,2,3,6,7,8-HxCDF	1000	926		pg/L		93	76 - 133	6	20	
1,2,3,7,8,9-HxCDF	1000	1020		pg/L		102	77 - 142	13	20	
2,3,4,6,7,8-HxCDF	1000	987		pg/L		99	80 - 137	8	20	
1,2,3,4,6,7,8-HpCDD	1000	895		pg/L		90	78 - 139	11	20	
1,2,3,4,6,7,8-HpCDF	1000	883		pg/L		88	79 - 133	1	20	
1,2,3,4,7,8,9-HpCDF	1000	936		pg/L		94	83 - 130	3	20	
OCDD	2000	1680		pg/L		84	80 - 132	7	20	
OCDF	2000	1730		pg/L		86	72 - 140	15	20	

LCSD LCSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	87		40 - 135
13C-2,3,7,8-TCDF	87		40 - 135
13C-1,2,3,7,8-PeCDD	88		40 - 135
13C-1,2,3,7,8-PeCDF	90		40 - 135
13C-1,2,3,6,7,8-HxCDD	83		40 - 135
13C-1,2,3,4,7,8-HxCDF	81		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	99		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	97		40 - 135
13C-OCDD	96		40 - 135

Lab Sample ID: MB 320-196903/1-A

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid Analysis Batch: 198600 Prep Batch: 196903 MB MB

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0		pg/g		11/28/17 08:53	12/06/17 12:47	1
2,3,7,8-TCDF	ND		1.0		pg/g		11/28/17 08:53	12/06/17 12:47	1
1,2,3,7,8-PeCDD	ND		5.0		pg/g		11/28/17 08:53	12/06/17 12:47	1
1,2,3,7,8-PeCDF	ND		5.0		pg/g		11/28/17 08:53	12/06/17 12:47	1
2,3,4,7,8-PeCDF	ND		5.0		pg/g		11/28/17 08:53	12/06/17 12:47	1

TestAmerica Spokane

12/11/2017

Page 26 of 63

TestAmerica Job ID: 590-7490-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-196903/1-A

Matrix: Solid

Analysis Batch: 198600

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 196903

	MB I	MR									
Analyte	Result (Qualifier RI	. EDL	Unit	D	Prepared	Analyzed	Dil Fac			
1,2,3,4,7,8-HxCDD	ND	5.0	<u> </u>	pg/g		11/28/17 08:53	12/06/17 12:47	1			
1,2,3,6,7,8-HxCDD	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
1,2,3,7,8,9-HxCDD	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
1,2,3,4,7,8-HxCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
1,2,3,6,7,8-HxCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
1,2,3,7,8,9-HxCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
2,3,4,6,7,8-HxCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
1,2,3,4,6,7,8-HpCDD	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
1,2,3,4,6,7,8-HpCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
1,2,3,4,7,8,9-HpCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
OCDD	ND	10)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
OCDF	ND	10)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
Total TCDD	ND	1.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
Total TCDF	ND	1.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
Total PeCDD	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
Total PeCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
Total HxCDD	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
Total HxCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
Total HpCDD	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			
Total HpCDF	ND	5.0)	pg/g		11/28/17 08:53	12/06/17 12:47	1			

MB MB

Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	73	40 - 135	11/28/17 08:53	12/06/17 12:47	1
13C-2,3,7,8-TCDF	84	40 - 135	11/28/17 08:53	12/06/17 12:47	1
13C-1,2,3,7,8-PeCDD	74	40 - 135	11/28/17 08:53	12/06/17 12:47	1
13C-1,2,3,7,8-PeCDF	71	40 - 135	11/28/17 08:53	12/06/17 12:47	1
13C-1,2,3,6,7,8-HxCDD	81	40 - 135	11/28/17 08:53	12/06/17 12:47	1
13C-1,2,3,4,7,8-HxCDF	101	40 - 135	11/28/17 08:53	12/06/17 12:47	1
13C-1,2,3,4,6,7,8-HpCDD	69	40 - 135	11/28/17 08:53	12/06/17 12:47	1
13C-1,2,3,4,6,7,8-HpCDF	71	40 - 135	11/28/17 08:53	12/06/17 12:47	1
13C-OCDD	71	40 - 135	11/28/17 08:53	12/06/17 12:47	1

Lab Sample ID: LCS 320-196903/2-A

Matrix: Solid

Analysis Batch: 198600

Client Sample ID: Lab	Control Sample
Prep	Type: Total/NA
Prep	Batch: 196903

Analysis Baton. 100000	0						O/Par
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,3,7,8-TCDD	20.0	21.7		pg/g		109	77 - 130
2,3,7,8-TCDF	20.0	19.6		pg/g		98	79 - 137
1,2,3,7,8-PeCDD	100	94.7		pg/g		95	79 - 134
1,2,3,7,8-PeCDF	100	116		pg/g		116	81 - 134
2,3,4,7,8-PeCDF	100	119		pg/g		119	76 - 132
1,2,3,4,7,8-HxCDD	100	115		pg/g		115	65 - 144
1,2,3,6,7,8-HxCDD	100	106		pg/g		106	73 - 147
1,2,3,7,8,9-HxCDD	100	101		pg/g		101	80 - 143
1,2,3,4,7,8-HxCDF	100	101		pg/g		101	72 - 140
1,2,3,6,7,8-HxCDF	100	94.6		pg/g		95	63 - 152
1,2,3,7,8,9-HxCDF	100	95.0		pg/g		95	72 ₋ 152

TestAmerica Spokane

Page 27 of 63

TestAmerica Job ID: 590-7490-1

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-196903/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Prep Batch: 196903 Analysis Batch: 198600**

, ,	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,3,4,6,7,8-HxCDF	100	100		pg/g		100	72 - 151
1,2,3,4,6,7,8-HpCDD	100	96.3		pg/g		96	86 - 134
1,2,3,4,6,7,8-HpCDF	100	101		pg/g		101	81 - 137
1,2,3,4,7,8,9-HpCDF	100	101		pg/g		101	79 - 139
OCDD	200	187		pg/g		94	80 - 137
OCDF	200	172		pg/g		86	75 - 141

LCS LCS Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 71 40 - 135 13C-2,3,7,8-TCDF 40 - 135 84 13C-1,2,3,7,8-PeCDD 70 40 - 135 13C-1,2,3,7,8-PeCDF 70 40 - 135 13C-1,2,3,6,7,8-HxCDD 78 40 - 135 40 - 135 13C-1,2,3,4,7,8-HxCDF 93 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-1,2,3,4,6,7,8-HpCDF 40 - 135 61 13C-OCDD 40 - 135

Lab Sample ID: LCSD 320-196903/3-A

Matrix: Solid

Analysis Batch: 198600							Prep Ba	atch: 19	96903
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	20.0	20.3		pg/g		102	77 - 130	7	20
2,3,7,8-TCDF	20.0	18.7		pg/g		93	79 - 137	5	20
1,2,3,7,8-PeCDD	100	92.4		pg/g		92	79 - 134	2	20
1,2,3,7,8-PeCDF	100	118		pg/g		118	81 - 134	1	20
2,3,4,7,8-PeCDF	100	120		pg/g		120	76 - 132	1	20
1,2,3,4,7,8-HxCDD	100	115		pg/g		115	65 - 144	0	20
1,2,3,6,7,8-HxCDD	100	106		pg/g		106	73 - 147	0	20
1,2,3,7,8,9-HxCDD	100	101		pg/g		101	80 - 143	1	20
1,2,3,4,7,8-HxCDF	100	101		pg/g		101	72 - 140	0	20
1,2,3,6,7,8-HxCDF	100	93.4		pg/g		93	63 - 152	1	20
1,2,3,7,8,9-HxCDF	100	93.8		pg/g		94	72 - 152	1	20
2,3,4,6,7,8-HxCDF	100	99.9		pg/g		100	72 - 151	0	20
1,2,3,4,6,7,8-HpCDD	100	95.2		pg/g		95	86 - 134	1	20
1,2,3,4,6,7,8-HpCDF	100	104		pg/g		104	81 - 137	3	20
1,2,3,4,7,8,9-HpCDF	100	96.5		pg/g		96	79 - 139	5	20
OCDD	200	192		pg/g		96	80 - 137	3	20
OCDF	200	187		pg/g		93	75 - 141	9	20

	LOOD	LUUD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	70		40 - 135
13C-2,3,7,8-TCDF	79		40 - 135
13C-1,2,3,7,8-PeCDD	63		40 - 135
13C-1,2,3,7,8-PeCDF	64		40 - 135
13C-1,2,3,6,7,8-HxCDD	77		40 - 135
13C-1,2,3,4,7,8-HxCDF	94		40 - 135

LCSD LCSD

QC Sample Results

Limits

40 - 135

40 - 135 40 - 135

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7490-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

LCSD LCSD

%Recovery Qualifier

63

65

62

Lab Sample ID: LCSD 320-196903/3-A

Matrix: Solid

Isotope Dilution

13C-OCDD

Analysis Batch: 198600

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 196903

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-20:110717

Date Collected: 11/07/17 09:48 Date Received: 11/10/17 09:40 Lab Sample ID: 590-7490-1

Lab Sample ID: 590-7490-3

Lab Sample ID: 590-7490-4

Lab Sample ID: 590-7490-5

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1036.9 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 16:16	TL1	TAL SEA
Total/NA	Prep	3510C			242.2 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 12:13	NMI	TAL SPK

Date Collected: 11/07/17 10:25 Date Received: 11/10/17 09:40

Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method **Amount** Amount Number or Analyzed Analyst Run **Factor** Lab Total/NA Prep 3520C 1031.4 mL 2 mL 261256 11/13/17 14:45 REY TAL SEA Total/NA Analysis 8270D SIM 50 261469 11/16/17 11:55 ERZ TAL SEA Total/NA Prep 3510C 245.6 mL 2 mL 14731 11/14/17 09:48 NMI TAL SPK Total/NA Analysis NWTPH-Dx 14726 11/14/17 12:30 NMI TAL SPK 1

Client Sample ID: MW-22:110717

Date Collected: 11/07/17 11:01

Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1028.3 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		5			261469	11/16/17 13:48	ERZ	TAL SEA
Total/NA	Prep	3510C			246.5 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 12:47	NMI	TAL SPK

Client Sample ID: MW-23:110717

Date Collected: 11/07/17 11:49

Date Received: 11/10/17 09:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1026.4 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 17:29	TL1	TAL SEA
Total/NA	Prep	3510C			245.6 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 13:05	NMI	TAL SPK

Client Sample ID: MW-24:110817

Date Collected: 11/08/17 09:24

Date Received: 11/10/17 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1027.9 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		20			261469	11/16/17 12:20	ERZ	TAL SEA
Total/NA	Prep	3510C			241.1 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK

TestAmerica Spokane

Page 30 of 63

12/11/2017

5

7

0

10

11

13

14

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-24:110817 Lab Sample ID: 590-7490-5

Date Collected: 11/08/17 09:24 **Matrix: Water**

Date Received: 11/10/17 09:40

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed Analyst Lab Total/NA NWTPH-Dx Analysis 14726 11/14/17 13:22 NMI TAL SPK

Client Sample ID: MW-25:110717 Lab Sample ID: 590-7490-6

Date Collected: 11/07/17 13:42 **Matrix: Water**

Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1024.7 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		10			261469	11/16/17 10:42	ERZ	TAL SEA
Total/NA	Prep	3510C			243.2 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 13:39	NMI	TAL SPK

Lab Sample ID: 590-7490-7 Client Sample ID: MW-26:110817 Date Collected: 11/08/17 10:58 **Matrix: Water**

Date Received: 11/10/17 09:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA Total/NA	Prep Analysis	3520C 8270D SIM		20	1026.8 mL	2 mL	261256 261469	11/13/17 14:45	REY	TAL SEA
Total/NA Total/NA	Prep Analysis	3510C NWTPH-Dx		1	242.4 mL	2 mL	14731 14726	11/14/17 09:48 11/14/17 14:14		TAL SPK TAL SPK

Client Sample ID: MW-27:110817 Lab Sample ID: 590-7490-8

Date Collected: 11/08/17 15:36 Date Received: 11/10/17 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1017.3 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		5			261379	11/15/17 19:07	TL1	TAL SEA
Total/NA	Prep	3510C			244.8 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 14:31	NMI	TAL SPK
Total/NA	Prep	8290			1011.5 mL	20.0 uL	194570	11/14/17 11:39	DXD	TAL SAC
Total/NA	Analysis	8290A		1			195951	11/21/17 08:47	AS	TAL SAC

Client Sample ID: MW-28:110817 Lab Sample ID: 590-7490-9

Date Collected: 11/08/17 11:55 Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1021.5 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 19:32	TL1	TAL SEA
Total/NA	Prep	3510C			242.2 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 14:49	NMI	TAL SPK

TestAmerica Spokane

Page 31 of 63

TestAmerica Job ID: 590-7490-1

Matrix: Water

Matrix: Water

Lab Sample ID: 590-7490-12

Lab Sample ID: 590-7490-13

Client Sample ID: MW-29:110717

Lab Sample ID: 590-7490-10 Date Collected: 11/07/17 12:47 **Matrix: Water**

Date Received: 11/10/17 09:40

Client: GeoEngineers Inc

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1020.2 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 19:56	TL1	TAL SEA
Total/NA	Prep	3510C			242.5 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 15:06	NMI	TAL SPK

Client Sample ID: MW-30:110817 Lab Sample ID: 590-7490-11

Date Collected: 11/08/17 14:52

Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1021.7 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		50			261469	11/16/17 13:08	ERZ	TAL SEA
Total/NA	Prep	3510C			242.9 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 15:24	NMI	TAL SPK

Client Sample ID: MW-31:110817

Date Collected: 11/08/17 10:11

Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1022.2 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 20:45	TL1	TAL SEA
Total/NA	Prep	3510C			242.3 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SP
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 15:41	NMI	TAL SPK

Client Sample ID: MW-32:110717

Date Collected: 11/07/17 15:58

Date Received: 11/10/17 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1032.2 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 21:10	TL1	TAL SEA
Total/NA	Prep	3510C			243.6 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 15:58	NMI	TAL SPK

Client Sample ID: MW-33:110717

Date Collected: 11/07/17 14:31

Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1020.2 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 21:34	TL1	TAL SEA
Total/NA	Prep	3510C			243.9 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK

TestAmerica Spokane

Page 32 of 63

Matrix: Water

Matrix: Water

Lab Sample ID: 590-7490-14 **Matrix: Water**

Matrix: Water

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: MW-33:110717 Lab Sample ID: 590-7490-14

Date Collected: 11/07/17 14:31 **Matrix: Water**

Date Received: 11/10/17 09:40

Batch Batch Dil Initial Final Batch Prepared Amount Method **Prep Type** Type Run **Factor Amount** Number or Analyzed Analyst Lab Total/NA Analysis NWTPH-Dx 14726 11/14/17 16:16 NMI TAL SPK

Client Sample ID: MW-34:110817 Lab Sample ID: 590-7490-15

Date Collected: 11/08/17 13:13 **Matrix: Water**

Date Received: 11/10/17 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1029.3 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 21:59	TL1	TAL SEA
Total/NA	Prep	3510C			242.9 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 16:33	NMI	TAL SPK

Lab Sample ID: 590-7490-16 Client Sample ID: MW-35:110817

Date Collected: 11/08/17 14:05 **Matrix: Water**

Date Received: 11/10/17 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1027.1 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		1			261379	11/15/17 22:23	TL1	TAL SEA
Total/NA	Prep	3510C			242.5 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 16:50	NMI	TAL SPK

Client Sample ID: DUP:110817 Lab Sample ID: 590-7490-17

Date Collected: 11/08/17 12:00 Date Received: 11/10/17 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			1012.3 mL	2 mL	261256	11/13/17 14:45	REY	TAL SEA
Total/NA	Analysis	8270D SIM		5			261379	11/15/17 22:47	TL1	TAL SEA
Total/NA	Prep	3510C			241.8 mL	2 mL	14731	11/14/17 09:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			14726	11/14/17 17:25	NMI	TAL SPK
Total/NA	Prep	8290			1025.9 mL	40.0 uL	194570	11/14/17 11:39	DXD	TAL SAC
Total/NA	Analysis	8290A		1			195951	11/21/17 09:36	AS	TAL SAC

Client Sample ID: TP-3 (1.5'-2.0') Lab Sample ID: 590-7490-18

Date Collected: 11/09/17 10:05 Date Received: 11/10/17 09:40

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216					194385	11/13/17 14:54	CFR	TAL SAC

TestAmerica Spokane

TestAmerica Job ID: 590-7490-1

Matrix: Water

Matrix: Solid

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: TP-3 (1.5'-2.0')

Lab Sample ID: 590-7490-18 Date Collected: 11/09/17 10:05

Matrix: Solid Percent Solids: 72.6

Batch Dil Initial Final Batch Batch **Prepared Prep Type** Type Method Run Factor Amount **Amount** Number or Analyzed **Analyst** Lab Total/NA Prep 8290 9.95 g 36.4 uL 196903 11/28/17 08:53 ADN TAL SAC Total/NA Analysis 8290A 198600 12/06/17 14:56 AS TAL SAC 1

Lab Sample ID: 590-7490-23 Client Sample ID: TP-4 (1.5'-2.0')

Date Collected: 11/09/17 10:40 **Matrix: Solid**

Date Received: 11/10/17 09:40

Date Received: 11/10/17 09:40

Dil Batch Batch Initial Final **Batch** Prepared **Prep Type** Type Method Run Factor **Amount Amount** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 194385 11/13/17 14:54 CFR TAL SAC

Client Sample ID: TP-4 (1.5'-2.0') Lab Sample ID: 590-7490-23

Date Collected: 11/09/17 10:40 **Matrix: Solid**

Date Received: 11/10/17 09:40 Percent Solids: 69.7

Batch Batch Dil Initial Final **Batch** Prepared Type Method Run Factor Amount Amount Number or Analyzed Analyst **Prep Type** Lab Total/NA Prep 8290 196903 11/28/17 08:53 ADN TAL SAC 9.96 g 20.0 uL Total/NA 8290A 198600 12/06/17 15:39 TAL SAC Analysis 1

Lab Sample ID: 590-7490-26 Client Sample ID: TP-6 (1.5'-2.0')

Date Collected: 11/09/17 11:05 Date Received: 11/10/17 09:40

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method **Factor** Amount Amount Number or Analyzed Analyst Run I ab D 2216 194385 Analysis 11/13/17 14:54 CFR TAL SAC Total/NA

Client Sample ID: TP-6 (1.5'-2.0') Lab Sample ID: 590-7490-26

Date Collected: 11/09/17 11:05

Matrix: Solid Date Received: 11/10/17 09:40 Percent Solids: 88.3

Dil Initial Final Batch **Batch** Batch **Prepared** Prep Type Method **Factor** Amount Amount Number or Analyzed Type Run Analyst Lab Total/NA Prep 8290 10.17 g 20.0 uL 196903 11/28/17 08:53 ADN TAL SAC 8290A Total/NA Analysis 1 198600 12/06/17 16:21 AS TAL SAC

Client Sample ID: TP-20 (1.5'-2.0') Lab Sample ID: 590-7490-31

Date Collected: 11/09/17 13:45 Date Received: 11/10/17 09:40

Batch Batch Dil Initial **Batch** Final Prepared

Prep Type Method Run Amount Number or Analyzed Type Factor Amount Analyst Lab Total/NA D 2216 194385 11/13/17 14:54 CFR TAL SAC Analysis

TestAmerica Spokane

Matrix: Solid

Matrix: Solid

TestAmerica Job ID: 590-7490-1

Client Sample ID: TP-20 (1.5'-2.0')

Date Collected: 11/09/17 13:45 Date Received: 11/10/17 09:40

Lab Sample ID: 590-7490-31 **Matrix: Solid**

Percent Solids: 75.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.03 g	20.0 uL	196903	11/28/17 08:53	ADN	TAL SAC
Total/NA	Analysis	8290A		1			198600	12/06/17 17:04	AS	TAL SAC

Client Sample ID: TP-25 (1.5'-2.0')

Lab Sample ID: 590-7490-34

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 11/09/17 13:00 Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			194385	11/13/17 14:54	CFR	TAL SAC

Client Sample ID: TP-25 (1.5'-2.0') Lab Sample ID: 590-7490-34 Date Collected: 11/09/17 13:00

Matrix: Solid Date Received: 11/10/17 09:40 Percent Solids: 80.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.16 g	20.0 uL	196903	11/28/17 08:53	ADN	TAL SAC
Total/NA	Analysis	8290A		1			198600	12/06/17 17:47	AS	TAL SAC

Client Sample ID: TP-40 (1.5'-2.0') Lab Sample ID: 590-7490-37

Date Collected: 11/09/17 12:30 Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216		1	_		194385	11/13/17 14:54	CFR	TAL SAC	

Lab Sample ID: 590-7490-37 Client Sample ID: TP-40 (1.5'-2.0')

Date Collected: 11/09/17 12:30

Matrix: Solid Date Received: 11/10/17 09:40 Percent Solids: 89.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.12 g	20.0 uL	196903	11/28/17 08:53	ADN	TAL SAC
Total/NA	Analysis	8290A		1			198600	12/06/17 18:30	AS	TAL SAC

Client Sample ID: TP-41 (1.5'-2.0') Lab Sample ID: 590-7490-42

Date Collected: 11/09/17 12:05 Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216					194385	11/13/17 14:54	CFR	TAL SAC	•

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-7490-42

TestAmerica Job ID: 590-7490-1

Client Sample ID: TP-41 (1.5'-2.0') Date Collected: 11/09/17 12:05 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 80.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.06 g	20.0 uL	196903	11/28/17 08:53	ADN	TAL SAC
Total/NA	Analysis	8290A		1			198600	12/06/17 19:13	AS	TAL SAC

Lab Sample ID: 590-7490-45 Client Sample ID: TP-42 (1.5'-2.0')

Date Collected: 11/09/17 11:35 **Matrix: Solid**

Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			194643	11/14/17 15:44	CFR	TAL SAC

Client Sample ID: TP-42 (1.5'-2.0') Lab Sample ID: 590-7490-45

Date Collected: 11/09/17 11:35 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 95.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.36 g	20.0 uL	196903	11/28/17 08:53	ADN	TAL SAC
Total/NA	Analysis	8290A		1			198851	12/07/17 04:43	AS	TAL SAC

Client Sample ID: TP-46 (1.5'-2.0') Lab Sample ID: 590-7490-50

Date Collected: 11/09/17 09:35 Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216		1			194385	11/13/17 14:54	CFR	TAL SAC	

Lab Sample ID: 590-7490-50 Client Sample ID: TP-46 (1.5'-2.0')

Date Collected: 11/09/17 09:35 **Matrix: Solid** Date Received: 11/10/17 09:40 Percent Solids: 69.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.03 g	20.0 uL	196903	11/28/17 08:53	ADN	TAL SAC
Total/NA	Analysis	8290A		1			198851	12/07/17 05:26	AS	TAL SAC

Client Sample ID: TP-53 (1.5'-2.0') Lab Sample ID: 590-7490-53

Date Collected: 11/09/17 13:20 Date Received: 11/10/17 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216					194385	11/13/17 14:54	CFR	TAL SAC	

12/11/2017

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: TP-53 (1.5'-2.0')

TestAmerica Job ID: 590-7490-1

Lab Sample ID: 590-7490-53

Matrix: Solid

Date Collected: 11/09/17 13:20 Date Received: 11/10/17 09:40 Percent Solids: 84.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.01 g	20.0 uL	196903	11/28/17 08:53	ADN	TAL SAC
Total/NA	Analysis	8290A		1			198851	12/07/17 06:09	AS	TAL SAC

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7490-1

Laboratory: TestAmerica Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Washington	Program State Prog	gram	EPA Region 10	Identification Number	Expiration Date 01-06-18
Analysis Method	Prep Method	Matrix	Analyt	e	

Laboratory: TestAmerica Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-055	12-18-17
Arizona	State Program	9	AZ0708	08-11-18
Arkansas DEQ	State Program	6	88-0691	06-17-18
California	State Program	9	2897	01-31-18
Colorado	State Program	8	CA00044	08-31-18
Connecticut	State Program	1	PH-0691	06-30-19
Florida	NELAP	4	E87570	06-30-18
Georgia	State Program	4	N/A	01-28-19
Hawaii	State Program	9	N/A	01-29-18
Illinois	NELAP	5	200060	03-17-18
Kansas	NELAP	7	E-10375	12-31-17
L-A-B	DoD ELAP		L2468	01-20-18
Louisiana	NELAP	6	30612	06-30-18
Maine	State Program	1	CA0004	04-18-18
Michigan	State Program	5	9947	01-31-18
Nevada	State Program	9	CA00044	07-31-18
New Hampshire	NELAP	1	2997	04-18-18
New Jersey	NELAP	2	CA005	06-30-18
Oregon	NELAP	10	4040	01-28-18
Pennsylvania	NELAP	3	68-01272	03-31-18
Texas	NELAP	6	T104704399	05-31-18
US Fish & Wildlife	Federal		LE148388-0	07-31-18
USDA	Federal		P330-11-00436	12-30-17
USEPA UCMR	Federal	1	CA00044	11-06-18
Utah	NELAP	8	CA00044	02-28-18
Virginia	NELAP	3	460278	03-14-18
Washington	State Program	10	C581	05-05-18
West Virginia (DW)	State Program	3	9930C	12-31-17
Wyoming	State Program	8	8TMS-L	01-28-19

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-18
ANAB	DoD ELAP		L2236	01-19-19
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	01-31-18
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-05-18
US Fish & Wildlife	Federal		LE058448-0	10-31-18

TestAmerica Spokane

2

3

6

8

10

12

13

Accreditation/Certification Summary

Client: GeoEngineers Inc TestAmerica Job ID: 590-7490-1

Project/Site: Colville Post and Pole/0504-098-01

Laboratory: TestAmerica Seattle (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-18

Method Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7490-1

Method	Method Description	Protocol	Laboratory
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SEA
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC

Protocol References:

ASTM = ASTM International

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

Δ

Ī

6

7

8

3

10

13

112

TestAmerica Spokane

11922 East 1st Ave

Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

Client Information	Sampler / P	forton		Lab PM: Arrington	n, Rande	ee E	1	590-7490	Chain of C	ustody		_J4-1	054.1
Client Contact: Scott Lathen	Phone: 42.5-	293-9	560	E-Mail:	arrington	n@tes		ours com	1			Page: Page 1 of 7	
Company:	1 1000	10 1		Transcere	armigion	i with		5.00		250		Job#	
GeoEngineers Inc Address:	Due Date Requesti	a.d:		-	NAME OF TAXABLE PARTY.		P	Analysis	Requeste	ed		P	0.4
523 East Second Ave	Due Date Request	eu.		101								Preservation	
City	TAT Requested (da											A - HCL B - NaOH	M - Hexane N - None
Spokane State, Zip	Stan	dard		100								C - Zn Acetate D - Nitric Acid	0 - AsNaO2 P - Na2O4S
NA, 99202												E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
Phone: 509-251-5239(TeI)	PO# Purchase Order	not require	ed			1						G - Amchlor H - Ascorbic A	S - H2SO4
Email	WO #	1101100		2	& Totals	_				1 1		1 - Ice	U - Acetone
slathen@geoengineers.com Project Name:	Project #			(Yes or	E 14	neno						J - DI Water K - EDTA	V - MCAA W - pH 4-5
Colville Post and Pole/0504-098-01	59001108			5	Pleat of Isomers	ropi	and RRO					L-EDA Other:	Z - other (specify)
Site:	SSOW#			ampl	17 Iso	Pentachlorophenol	O and					Other:	
		Sample	Sample Mai	vater, olid, sta/oli,	Parlorm MSTM 8290A - Dioxins	8270D_SIM - Pen	NWTPH_Dx - DRO					rtal Number	
Sample Identification	Sample Date	Time	G=grab) BT=Tissu Preservation Co	ode: X		Contract of the	Ž A		CONTRACTOR OF		000	Speci	al Instructions/Note:
MW-20:110717	11-7-17	0948	6 45				×						
MW-21:110717	1	1025	1 86				1						
MW-22:110717		1/01	50	and,									
NW-23: 110717		1/49		id.								15	
MW-24:110817	1/8-17	0924	186										
MW-25:110717	1/-7-17	1342	89	liet.									
1100 003:110 117	1/-8-17	1058		Hel									
Mr. 22: 1/08/17	11-0-11	1536	86		V		+		++	++-			
MW-29:110817		1155	/66	-	^		1						
MW-29:110717	11-7-17	1247	86			1		+					
M/1 20: 110017	11-8-17	1452	V-S0				1	++++	++				
Possible Hazard Identification	11-8-11	1932	4		Sample	Dien	0521/1	fee may	200000	d if sample	e are reta	nined longer the	an 1 month)
	Poison B Unkn	own 🗆	Radiological				To Clie	nt [Disposa	I Ry I ah		rchive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	T GIGGIT B		rabiological					C Require		r by Lub		ichive r or	WORKIS
mpty Kit Relinquished by:		Date:		Tim	ne:				M	ethod of Shipm	ent		
Relinquished by	Date/Time:	7 29	Compar GE	T T	Recei	ived by	フィ	72	- 7	Date	Time: 10	117 919	Company
Relinquished by			Compan	ry	Recei	yed by		100	00/	Date	-34	770	Comment I was
1/12	11-10-	17 0		E+		5/5	ell	9	1665	11	110/	1 44	VASPOR
Relinquished by	Date/Time:		Compar	ly	Rece	ived by	6	/)	Date	Time:		Company
Custody Seals Intact: Custody Seal No.:					Coole	r Temp	perature(s	C and Othe	r Remarks:	- 6	2 0	60	C IROC1/2/11/2
Δ Yes Δ No			Page	41 of	63 -	2	.2,	-0.	1, -(). /,	2.2	1-0.7	1/2/11/2

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

Phone (509) 924-9200 Fax (509) 924-9290															NVIRONMENTAL TESTING
Client Information	Sampler M.	eters	n	Lab Arri	PM: ington, F	Rande	ee E			Carrie	r Tracking	No(s):		COC No 590-3204-1054.0	6
Client Contact Scott Lathen	Phone: 425-	293-9	560	E-Ma		ngton	@te:	stamerio	ainc.com					Page: Page 6 of 7	
Company: GeoEngineers Inc								-	nalysis	Request	ted			Job#	
Address:	Due Date Request	ed:								i				Preservation Cod	les:
523 East Second Ave	TAT Requested (da	ays):			18									A - HCL B - NaOH	M - Hexane N - None
Spokane					1 100								18	C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
State Zip: NA, 99202	Stand	ord			1 88							111		E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
Phone: 509-251-5239(Tel)	Po# Purchase Order	not require	d											G - Amchior	S - H2SQ4
Email	WO#	not require	.u		8	otals								H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acetone
slathen@geoengineers.com Project Name:	Project #				es or	& Totals	oner					1 1	2	J - DI Water K - EDTA	V - MCAA W - pH 4-5
Colville Post and Pole/0504-098-01	59001108				la (Yes	Isomers	oropi	and RRO				11	ntain	L - EDA	Z - other (specify)
Site	SSOW#				amp O O		tachi	O and					of cor	Other	
				Matrix	8 bg	8290A - Dioxins 17	- Pen	- DRO		11			100,410		
			Sample Type	(W=water,	Titter	- Dio	SIM	ă					Number		
	10000	Sample	(C=comp, G=grab)	S=solid, O=waste/oil,	ple of	90A	MIS_DOTES	NWTPH_Dx		- 1 1			Total	2.7-7-65	
Sample Identification	Sample Date	Time		ion Code:	XX		_	A					5	Special In	structions/Note:
MW-31:1108M	11-8-17	1-11	,	Water	m	14	14	^					n		
	11-8-11	1011	6		+	-	×	X			-				
MW-32:110717	11-1-11	1558		Water	1		1	1		\perp		\rightarrow			
MD-33:110717	4	1431		Water									54		
MW-34:1/0817	11-8-17	1313		Water									5		
14,2-35-110917	1	1405		Water			. ,	1/							
D.D. Hagin	11-8-17	1200	_	Water	1	V	Y	7			-				
Dur. 110011	11-0-11	law	6	Attention	++	\triangle	*	4		\rightarrow	-	-			
				Water	+				+++		-	-	52		
	4			Water	1										
				Water											
				Water									(-)		
				Water									10		
Possible Hazard Identification		_	-		Sai	mple	Disp	oosal (A	fee may	be assess	ed if sa	mples are	retain	ed longer than 1	month)
Non-Hazard Flammable Skin Irritant Po	ison B Unkn	lown -	Radiological		L			To Clie			al By La	,	Arch	ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Spe	ecial	Instru	uctions/(2C Require	ments:					
Empty Kit Relinquished by:		Date:			Time:					1	Aethod of S	hipment:			
Relinquished by:	Date/Time:	-170	910	Company		Recei	ved by	/	2	-2		Date/Time:	011	7	Company
Relinquished by	Date/Time			Company		Recei	yed)		1 1	2		Date/Time	1-	D. 15.	Company 14 04
Palipunch of the	Date/Time	-17	940	CTE	- (Z	12	reel	any	rey		Date Time:	117	940-	Company Jook
Relinquished by	Date/ Lifte:			Company		Kecei	ived by	y	/)		Gaterrime:			Company
Custody Seal No.:						Coole	r Tem	perature(c) C and Othe	er Remarks:	^	2 2		- A C-	posil

Ver: 08/04/20102/11/2017

Page 42 of 63

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

TootAn	0000	
TestAn	nenc	
10017 (1)	10110	•

THE LEADER IN ENVIRONMENTAL TESTING

Client Information	Sampler	eterso	~	Lab PM: Arringto	n, Rand	dee E			Carner Tracking I	No(5):	590-3204-1054.2		
Cott Lathen	Phone: 425-	293-9	1560	E-Mail	arringto	n@tes	stamericain	oc com				Page: Page 2 of 7	
ompany	100)	0-10		Tandee.	migio	- Geres						iob#	
SeoEngineers Inc	Book San Control				_	,	Ana	alysis Re	equested				
ddress: 23 East Second Ave	Due Date Request	ea:										Preservation Codes:	
ity:	TAT Requested (d						11					A - HCL M - Hexane B - NaOH N - None	
Spokane tate, Zip:	Stane	Lard		101		1 1	11					C - Zn Acetate	
VA, 99202				- 8	88	1	- 1 1		1 1 1 1			E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3	
hone 09-251-5239(Tel)	PO#: Purchase Orde	not require	ed.									G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydra	
mail:	WO#	not require		2	(o) Totals	-			1111			I - Ice U - Acetone	
lathen@geoengineers.com roject Name:	Desired #			98 OF	& To	lenol			1111		5	J - DI Water V - MCAA K - EDTA W - pH 4-5	
colville Post and Pole/0504-098-01	Project #: 59001108			2	mers	proph	and RRO	1.1			3	L - EDA Z - other (specify)	
te	SSOW#			Ide	7 Iso	achlo	and	1.1	1111			Other:	
				S P	a t	Pent	DRO				arot		
			- Contribute	trix 2	Dioxins	SIM.	ŏ	11			Numb		
		Sample	Type (W=son (C=comp, 0=war	olid.			NWTPH_DX				N N		
ample Identification	Sample Date	Time	G=grab) aT=Tissu	a, A=Air)	B290A	8270D		44			Total	Special Instructions/Note:	
		><	Preservation Co	ode: X	XN	N	A			46 BY BB	X.		
TP-3(1.5'-20')	11-9-17	1005	G So	lid								call SAL	
TP-3(20-2.5')	1	1007	So	lid								to analysis	
TP-3(2,5-30)		1010	So	lid									
TP-3 (3.5'-4.0') TP-3 (4.5'-5.0')		1012	So	lid									
TP-3/45'-50')		1015	So	lid									
TP-4(1.5'-2.0')		1040	So	lid									
TP-4(2.0'-2.5')		1042	So	lid									
TP-4(2.5'-3.0')		1045	So	lid									
TP-6 (1.5-2.0')		1105	So	lid									
P-6 (20-25)		1107	So	lid									
TP-6 (25-3.0)		1110	So	lid									
Possible Hazard Identification					Sample	e Disp	osal (A fe	e may be	assessed if sar	nples are reta	ained	longer than 1 month)	
	nt Poison B Unkr	own -	Radiological			COLUMN TWO	To Client		Disposal By Lat	\Box_A	rchiv	re For Months	
eliverable Requested: I, II, III, IV, Other (specify)					Special	Instru	ictions/QC	Requirem	ents:				
mpty Kit Relinquished by:		Date:		Tim	ie:	_			Method of S	hipment:			
elinquished by	Date/Time		Compar	ny:	Rec	erved by	19-	7		Date/Time		OIS Company	
elinquished by	Date/Time	-170	Compar	nv .	Des	erved by	1	-	1,	Date/Time	1	918 (7FT	
elinquished by	(1-10-	17		ET	C	17	2010	a X	26	11/10//	7	940 TA 300	
elinquished by	Date/Time		Compar		Rec	eived by		7)	Date/Time:		Company	
Custody Seals Intact: Custody Seal No.:					Con	ler Terr	perature/s) ^o C	and Other I	Remarks		_		
Δ Yes Δ No					000	2	perature(s) °C	173	-09	C C.	-1	0.90 IROOY	

9

12

15

Chain of Custody Record

- 1 4	•
TestAn	nanca
10317 41	CICU

Spokane. WA 99206 THE LEADER IN ENVIRONMENTAL TESTING Phone (509) 924-9200 Fax (509) 924-9290 Carrier Tracking No(s): Arrington, Randee E 590-3204-1054.3 Client Information randee.arrington@testamericainc.com Scott Lathen Page 3 of 7 Job#. Company GeoEngineers Inc **Analysis Requested** Due Date Requested: Preservation Codes: 523 East Second Ave A - HCL City TAT Requested (days): B - NaOH N - None Spokane C - Zn Acetate O - AsNaO2 State, Zip D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3 WA, 99202 F - MeOH R - Na2S2O3 Phone. G - Amchior S-H2SO4 Purchase Order not required 509-251-5239(Tel) T - TSP Dodecahydrate H - Ascorbic Acid U - Acetone J - DI Water V - MCAA slathen@geoengineers.com K-EDTA W - pH 4-5 L-EDA Z - other (specify) Colville Post and Pole/0504-098-01 59001108 Other: SSOW# 8290A - Dioxins 17 Iso Matrix Sample SIM NWTPH DX (Wewater, Type 8270D Sample (C=comp. Sample Identification Sample Date Time G=grab) BT=Tissue, A=Air Special Instructions/Note: XXIN IN A Preservation Code: Solid Solid for analysis 1345 Solid Solid Solid 1300 Solid 1302 Solid Solid 1230 Solid Solid 1235 Solid Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Disposal By Lab Archive For Return To Client Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Time: Empty Kit Relinquished by Company Relinquished by Company GET 11-10-17 Relinquished by Custody Seal No. Custody Seals Intact Δ Yes Δ No

2

3

6

9

12

16

11922 East 1st Ave

Chain of Custody Record

Spokane, WA 99206 THE LEADER IN ENVIRONMENTAL TESTING Phone (509) 924-9200 Fax (509) 924-9290 Carner Tracking No(s) 590-3204-1054.4 Arrington, Randee E Client Information Client Contact Scott Lathen randee.arrington@testamericainc.com Page 4 of 7 Company Job # **Analysis Requested** GeoEngineers Inc Address: Due Date Requested: Preservation Codes: 523 East Second Ave A-HCL M - Hexane TAT Requested (days): B - NaOH N - None Spokane C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na204S State, Zip E - NaHSO4 Q - Na2SO3 WA, 99202 R - Na2S2O3 F - MeOH Phone: S - H2SO4 G - Amchior 509-251-5239(Tel) Purchase Order not required H - Ascorbic Acid T - TSP Dodecahydrate U - Acetone WO# 1-Ice J - DI Water V-MCAA slathen@geoengineers.com 8270D_SIM - Pentachlorophenol of containers W - pH 4-5 K - EDTA Project Name Project # NWTPH_Dx - DRO and RRO L-EDA Z - other (specify) Colville Post and Pole/0504-098-01 59001108 SSOW# Other: Total Number Matrix Sample (W=water, Type Smaolid, Sample (C=comp, Sample Identification Sample Date G=grab) ST=Tissue, A=Air Special Instructions/Note: XXN N Preservation Code: 1237 Solid Call SIAL For 1240 Solid ceraly sis 1205 Solid 1207 Solid 1210 Solid 1/35 Solid Solid 1140 Solid 1142 Solid Solid Solid Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Disposal By Lab Archive For Return To Client Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by Time: Relinquished by Company Relinquished by 11-16-17 0940 Date/Time Relinquished by Custody Seal No. Custody Seals Intact: Δ Yes Δ No

3 4 5

8

10

12

13

Page 45 of 63

Ver: 08/04/2019/11/2017

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

Second Se		COC No:	9 1
Page 4 of 7 Job#: Preservation Codes: A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2SO3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetane J - DI Water V - MCAA K - EDTA W - pH 4-5 L - EDA Z - other (specify) Other: Special Instructions/Note:			4
Preservation Codes: A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone J - DI Water V - MCAA K - EDTA W - pH 4-5 L - EDA Z - other (specify) Other: Special Instructions/Note:			
A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4 H - Ascorbic Acid U - Acetane J - Di Water V - MCAA K - EDTA W - pH 4-5 L - EDA Z - other (specify) Other: Special Instructions/Note:	7	Job#:	
B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nitric Acid P - NaZO4S E - NaHSO4 Q - NaZSO3 F - MeOH R - NaSSO3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetane J - Di Water V - MCAA K - EDTA W - pH 4-5 L - EDA Z - other (specify) Other: Special Instructions/Note:	10	Preservation Co.	des:
C - Zn Acetate D - Nitric Acid D - NaZO4S E - NaHSO4 E - NaHSO4 F - MeOH R - NaZSO3 F			
B - Nath Sold P - Naz O48 E - NaH SO4 Q - Naz SO3 F - MeOH R - Naz SO3 F		B - NaOH	N - None
F - NaHSO4 Q - Na2SO3 F - MeOH R - Na2SO3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone J - Di Water V - MCAA K - EDTA W - pH 4-5 L - EDA Z - other (specify) Other: Special Instructions/Note:		D - Nitric Acid	P - Na204S
G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate I - Ice J - DI Water V - MCAA K - EDTA W - pH 4-5 L - EDA Z - other (specify) Other: Special Instructions/Note:		E - NaHSO4	
H - Ascorbic Acid I - Ice U - Acetone J - Di Water V - MCAA K - EDTA L - EDA Z - other (specify) Other: Special Instructions/Note:		F - MeOH	a linna.
Special Instructions/Note:		H - Ascorbic Acid	T - TSP Dodecahydrate
Special Instructions/Note: Special Instructions/Note:		1 - Ice	
-call SHC For analysis	90	J - DI Water	V-MCAA
-call SHC For analysis	191	K-EDTA	
-call SHC For analysis	Ē	L-EUM	Z - biller (specify)
-call SHC For analysis	200	Other:	
-call SHC For analysis	0		
-call SHC For analysis	Pe		
-call SHC For analysis	-		
-call SHC For analysis	5		
-call SHC For analysis	Nu		
For analysis	otal Nur	0	G - IN-1
For analysis	Total Nur	Special Ir	nstructions/Note:
For analysis	X Total Nur	Special Ir	nstructions/Note:
	X Total Nur	Water -	
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	Total Nur	- Cocl)	SHC
	X Total Nur	- Cocl)	SHC
	Total Nur	- Cocl)	SHC
ned longer than 1 month)	X Total Nur	- Cocl)	SHC
thive For Months	×	-(all 60-	anelysis

Client Information	Sampler: M	Peter	Son	Lab P	M: gton, Ran	dee E			Carrier Tracking No(s):		COC No: 590-3204-1054.4
Rent Contact: Scott Lathen	Phone: 425	-293	9540	E-Mail		n@tes	tamericainc.co	om			Page: Page 4 of 7
ompany:	100	0-10	1300	Tario	ee.arringte	on twice a					Job#:
GeoEngineers Inc	Due Date Requeste	ed:			100		Analys	sis Req	uested		Preservation Codes:
523 East Second Ave											A - HCL M - Hexans
city. Spokane	TAT Requested (da		1		2 88						B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip:	Sta	ndar	7			1				1 10	D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
NA, 99202 Phone:	PO#:					1 1				1 18	F - MeOH R - Na2S2O3 G - Amchior S - H2SO4
09-251-5239(Tel)	Purchase Order	r not require	ed		6 8						H - Ascorbic Acid T - TSP Dodecahydrate
mail: slathen@geoengineers.com	WO #:				Sample (Yes or No ISD (Yes or No) 17 Isomers & Totals	To			1 6 4 1		J - Ice U - Acetone J - DI Water V - MCAA
roject Name:	Project #:				Yes 07 8	pher	02			confainers	K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Colville Post and Pole/0504-098-01	59001108 ssow#:				ple	hloro	ad R			ont	Other:
					Sam ISD	antac	RO B			10	
Sample Identification	Sample Date	Sample Time	Type (Natrix Newater, Sesolid, waste/oil, naus, A=Air)	Field Fittered Sample (Yes or No Perform MS (ASO (Yes or No) 8290A - Dioxins 17 Isomers & Totals	8270D_SIM - Pentachiorophenol	NWTPH_Dx - DRO and RRO			Total Number	Special Instructions/Note:
		> <	Preservation		XXN	N A		75 13		X	
MB-46 (1.5-2.0')	11-9-17	0935	6	Solid							- Coill SHC
160-46 (2.0'-2.5')		5938	1	Solid							For analysis
10-46 (2,5'-3,0')		0940		Solid							
MAD-53(15-70)		1320		Solid						100	
MA)-53/20:25)		1322		Solid							
10-53/ 12.5-3.0)		1325		Solid		11					
TD 52 (25-40')		1327		Solid		1					
TP-53/45-56)		1330		Solid		1					
11-53[7.3-3.0]	4	1230	9	Solid		+					
		-		Solid		++					
	-			Solid	++	++	-	-	++++		
Possible Hazard Identification				dolla	Sampl	la Dien	osal / A foo n	nav he as	second if camples	are retain	ned longer than 1 month)
	Poison B Unkn	nown 🗆	Radiological				To Client	permanage	isposal By Lab		hive For Months
deliverable Requested: I, II, III, IV, Other (specify)	, Sidon D Oliki		, waterogram				ctions/QC Re			7.17.07	3,000
mpty Kit Relinquished by:		Date:		-	Time:	-			Method of Shipme	nt:	
elinquished by MA II D	Date/Time:		Com	pany		ceived by	7		Date/T	yme: ,	Company
Mark Totalsun	11-10-	17 0	918	0.2011	D	1	12	-		19/17	918 GED
Relinquished by:	Date/Time:	.17	9440 Com	pany +	Red	ceived by	20100	90	and Date/T	10/1-	1940 TH SONG
elinquished by:	Date/Time:		Com		Rec	ceived by		1	Date	ime:/	Company
Custody Seals Intact: Custody Seal No.:		_			Cor	oler Temp	perature(s) °C and	d Other Ren	narks:		0 - 1
Δ Yes Δ No					-	-D.	erature(s) °C and	0.1,	-0.9 -	3.2	-0.9 TROVY
			Pa	ge 46	01 63		/	,	,	/	Ver: 08/04/2012/11/2

Page 47 of 63

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Tool A	
TestAm	nenco
	101100

Client Information	Sampler:	plan.			PM:		_			Carrier Trac	oking No(s)			ENVIRONMENTAL TESTIN
Client Contact: Scott Lathen	Phone: 47C	eterso	2-1-	Arr E-M	rington,	Rand	lee E		_	Santer Hac	mily (vo(s).		COC No: 590-3204-105	4.2
Company:	925-	-293-9	1560			ringto	n@tes	stamericainc.c	com	A			Page:	
GeoEngineers Inc Address:													Page 2 of 7	
523 East Second Ave	Due Date Reques	ted:			1			Analy	sis Req	uested			3.5	
city: Spokane	TAT Requested (d	favs):			1	1							Preservation C	
State, Zip:	Stan												A - HCL B - NaOH	M - Hexane N - None
WA, 99202 Phone:	Marie	3000									11		C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
509-251-5239(Tel)	PO#:				-								E - NaHSO4 F - MeOH	Q - Ne2SO3 R - Na2S2O3
Email:	Purchase Orde	r not require	ed		(0)	25							G - Amchlor H - Ascorbic Acid	S - H2SO4
slathen@geoengineers.com Project Name:					or N	Tota	To						1-lce	U - Acetone
Colville Post and Pole/0504-098-01	Project #: 59001108				Se.2	25 SP	phen	2					J - DI Water K - EDTA	V - MCAA W - pH 4-5
Site;	SSOW#:				mpla	Isomers	8270D_SIM - Pentachlorophenol	and RRO					K - EDTA L - EDA Other:	Z - other (specify)
			Sample	Matrix	ed Sa	8290A - Dioxins 17	Penta	NWTPH_Dx - DRO				1 15	0	
		See.	Туре	(W=water,	-ilter	- Dio	SIM	ŏ					Special I	
Sample Identification	Sample Date	Sample Time	(C=comp,		Fleid F	90A	70D	HALL				1	2	
7		Time -		BT=Tissue, A=Air)	XX		_			\rightarrow			Special I	nstructions/Note:
TP-3(1.5'-20') TP-3(20-2.5') TP-3(2.5-30')	11-9-17	1000	1	Solid	~	N	N A	1	200					
TP-3(20-75)	11.11	1005	6		1	X	-							
TD 2/2013		1007		Solid					10		THE WE			
- 17-J(a.5-30)		1010		Solid								1		
TP-3(3.5'-4.0')		1012		Solid	\vdash				+	-	-	1 17		
TP-3(4,5'-5,0')		1015		Solid	+	\vdash				++		-		
TP-4(1.5-2.0')				V	+		-							
TP-4(2.0'-2.5')		1040		Solid	1	X					1,6-10	1 8	4	
TP-4(2.5-3.0')		1042		Solid										
	7 (1)	1045		Solid						1	++			
TP-6 (15-20)		1105		Solid		X		1		++	++	+	4	
TP-6 (2.0-25)		1107		Solid		4	-	+++		++		-		
TP-6 (25-3.0)				1100	+	-	-	-						
Possible Hazard Identification	15	1110	3	Solid	4						134			
Non-Hazard Flammable Skin Irritar	nt Poison B Unkno	Poison B Unknown Radiological					Dispo	sal (A fee m	ay be ass	essed if	samples a	are retair	ned longer than 1	month)
Deliverable Requested: I, II, III, IV, Other (specify)		Poison B Unknown Radiological					eturn i	To Client tions/QC Req	Dis	nosal Ry	Lab	Arc.	hive For	Months
mpty Kit Relinquished by:		Date			Time:		ISU ac.	HOHS/QC Req	ulrements					
efinquished by:	Date/Time:	Date:								Method	of Shipment:			
elinquished by:		Company					red by:				Date/Time	e:		Company
	Date/Time:	Date/Time: Company					red by:				Date/Time	0.		
elinquished by:	Date/Time:										54.67	Б.		Company
Custody Seals Intact: Custody Seal No.:				Jonipany		Receive	ed by:				Date/Time	e:		Company
ongroup degle littact. Iongroup degl IND.														The second secon

Page 48 of 63

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

TestAmeri	ca
THE LEADER IN ENVIRONMENTAL	TERTIMO

Client Information	Sampler: M	Peters	0 -		PM:	Dane					Carr	er Trac	king No	(s):		C	OC No:	ENVIRONMENTAL TESTIF
Client Contact: Scott Lathen	Phone: 42 C	202	0-1-	E-M	ington, ail:	Kano	iee E				-						90-3204-1054.	.3
Company:	925-	-293-	7560	ran	dee.an	ingto	n@te	stame	ricainc.	com							age: Page 3 of 7	
GeoEngineers Inc									Analy	reie D		44					ob #:	
Address: 523 East Second Ave	Due Date Request	ed:					Т		Allaly	SISK	eques	sted				P	reservation Cod	4
City:	TAT Requested (d	avel.			-1000	W.											- HCL	
Spokane State, Zip:		2.74				1										В	- NaOH	M - Hexane N - None
WA, 99202 Phone:		dard			NE.											D	2 - Zn Acetate 2 - Nitric Acid 3 - NaHSO4	O - AsNaO2 P - Na2O4S
509-251-5239(Tel)	PO #: Purchase Orde				100											F	- MeOH	Q - Na2SO3 R - Na2S2O3
Email: slathen@geoengineers.com	Wo#:	not require	ed		or No)	Totals										H	6 - Amchlor 1 - Ascorbic Acid - Ice	S - H2SO4 T - TSP Dodecahydrate U - Acetone
Project Name:	Project #:				- 8	ిర	oner									E J	- DI Water	V - MCAA
Colville Post and Pole/0504-098-01 Site:	59001108				A) e	Isomers	roph	RRO									- EDIA	W - pH 4-5 Z - other (specify)
	SSOW#:				Sampl	- Dioxins 17 Isor	tachlo	O and RRO								-	ther:	
Sample Identification	Preservation Co						8270D_SIM - Pentachforophenol	NWTPH_Dx - DRO								Total Number of		
		Sample Date Time G=grab) BT=TISSUE, A=AIT) Preservation Code:						A	-					-		٩	Special In	structions/Note:
TR-6(3.5'-4.0')	11-9-17	1117	6	Solid	m	N.	N	A						-	1	X_		
TP-6 (4.5'-5,6)	1, 1, 1	115	5	Solid	+		H	+	+	+	-	+	+	-		-		
TP-20(1.5-20)		1345		Solid	H	1	H		+			-	+		-	-		
TP-20 (20-25)		1347		Solid	H	×		+	+	-	+	+	+	-		-		
TP-20(2.5-3.0')		1350		Solid	†			-				-	+	+	-	+		
TP-25 (1.5'-2.0')		1300	- /	Solid	H	V		+	+	+	+	+	+	+		+		
TP-25 (20-25)		1302		Solid	+	1		+	+	+		+	+	\vdash	- 1	-		
TP-25(2.5'-3.8')		1305		Solid	†			+	+	+	+	+	+	+		-		
TP-40 (1.5-20)		1230		Solid	†	V		+	+	+	+	+	-	+		-		
TP-40 (2.0-2.5')		1232		Solid	\dagger	1					+	+	+		-			
TP-40 (2.5-3.0')	4	1235	+	Solid	T			1		1		+				-		
Possible Hazard Identification	-				Sa	mple	Disp	osal (A fee n	nay be	asses	sed if	samn	les an	e rotal	ned	longer than 1	mandh)
Non-Hazard Flammable Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unkn	own	Radiological			\neg R	etum	To Cli	ient	-	Dispos	sal By	Lab		Arc	chive	For	Months
Empty Kit Relinquished by:					Sp	edal	ınstru	ctions	/QC Re	quirem	ents:							
Relinquished by:		Date:			Time:							Method	of Ship	ment				
	Date/Time:			Company		Rece	ived by	r.					Dat	e/Time:				Company
Relinquished by:	Date/Time:			Company		Rece	ived by	r.		-	-	-	Dat	e/Time:				Company
Relinquished by:	Date/Time:			Company	_	Rece	ived by	,		_		_	Dat	e/Time:				Company
Custody Seals Intact: Custody Seal No.:			- 1															Company
Δ Yes Δ No					Cooler Temperature(s) °C and Other Re													

Page 49 of 63

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206
Phone (509) 924-9200 Fey (509) 924-9200

Test	AF	mai	ico
1621	24		100

Client Information	Sampler:	eters	Ø.s.	Lab		e.arrington@testamericainc.com Analysis Request						No(s):		COC No: 590-3204-1054.4	VIRONMENTAL TESTING
Client Contact: Scott Lathen	Phone: 475	293-	756a	E-M	all:			ctamari	icaine com					Page:	
Company: GeoEngineers Inc		0	1085-04())	, can	T	ringto	i i@te			_				Page 4 of 7	
Address:	Due Date Requeste	ed:		-	-		_		Analysis I	Reques	ted	1 1 1		Preservation Cod	
523 East Second Ave City:	TAT Requested (da				1 1									A - HCL	M - Hexane
Spokane		1 1												B - NaOH C - Zn Acetate	N - None
State, Zip: WA, 99202 Phone;	Stan	lard												D - Nitric Acid E - NaHSO4	O - AsNaO2 P - Na2O4S Q - Na2SO3
509-251-5239(Tel)	PO#: Purchase Order	not require	d		108	1								F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
Emall: slathen@geoengineers.com	WO#:	not require	<u> </u>		or No	Totals	10							H - Ascorbic Acid I - Ice J - DI Water	T - TSP Dodecahydrate U - Acetons V - MCAA
Project Name: Colville Post and Pole/0504-098-01	Project #:				S S	- S	phen	0					100	K - EDTA L - EDA	W - pH 4-5
Site:	59001108 SSOW#:				mple (Isome	chlaro	and RF					containe	Other:	Z - other (specify)
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solid,	Filtared Se	A - Dioxins 1	D_SIM - Pent	PH_Dx - DRO					Number of		
Sample Identification	Sample Date	Time	G=grab)	O=waste/oil, BT=Tissue, A=Ai) E	8290	8270	NWT					Total	Special In	structions/Note:
TO 112 /3 -1 1)	_>	$\geq \leq$	Preserva	tion Code:	D	N	N	A					X		a a da do non roto;
TP-40(3.5'-4.0')	11-9-17	1237	6	Solid											
TP-40(4.5-5.0)	1	1240		Solid	П										
71-41 (1.5-2.0)		1205		Solid	11	V	1		TI DE LE			(C2 L5			
TV-41 (20-25)		1207		Solid	П	1									
TP-41 (2.5-3.0')		1210		Solid	Ħ	1				7					
TP-427(5-20)		1/35		Solid	T	1									
TP-42(2.0-2.5')		1137		Solid	$\dagger \dagger$	1									
TP-42 (2.5-3.0')		1140		Solid	\dagger							H			
TP-42 (3.5-4.6)		1142		Solid	$\dagger \dagger$	+							- 8		
TP-42 (45-5-61)		1145	15	Solid	T	1									
				Solid	H										
Possible Hazard Identification					S	ampi	e Dis	posal (A fee may	be asses	sed if s	amples an	e retain	ed longer than 1	month)
Non-Hazard Flammable Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unkn	own 🖳	Radiological			\Box_{l}	Return	To Cli	ient L	Dispo	sal By L	ab [nive For	Months
A STATE OF THE STA					S	pecia	I Instr	uctions	/QC Require	ements:	4.				
Empty Kit Relinquished by: Relinquished by:		Date: Tim									Method o	Shipment			
	Date/Time:			Company		Rec	eived b	y:				Date/Time:			Company
Relinquished by:	Date/Time:			Company		Rec	eived b	y:				Date/Time:			Company
Relinquished by:	Date/Time:			Company		Rec	eived b	y:				Date/Time:			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coo	er Ten	nperature	e(s) °C and Othe	er Remarks	t)		_		
2 .00 4 10															

Page 50 of 63

11922 East 1st Ave

Spokane, WA 99206

TestAmerica Spokane

Task		0	
TestA	ne	nc	\mathbb{C}

Client Information Client Contact:	Sampler:	Veter	Son	Lab	РМ: ngton, R	Rande	e E			Carrier Tracki	ng No(s):	COC No:	
Scott Lathen	Phone: 425	-293	Son -956	3 E-M	ail:			americain	c.com			590-3204-1054 Page: Page 4 of 7	1.4
GeoEngineers Inc										equested		Job#:	
Address: 523 East Second Ave	Due Date Request	ed:						Alle	alysis Ke	questea	1 1 1 1	Preservation C	ndags
City:	TAT Requested (d.	ave).							11 1			A - HCL	M - Hexane
Spokane State, Zip:			1		8						1 + 1 + 1	B - NaOH	N - None
VA, 99202	Dita	indar	9									C - Zn Acetate D - Nitric Acid E - NaHSO4	O - AsNaO2 P - Na2O4S
Phone: 509-251-5239(Tel)	Po#: Purchase Orde	r not recule										F - MeOH G - Amchlor	Q - Na2SO3 R - Na2S2O3
mail: slathen@geoengineers.com	Wo#:	not require	ea		No	als		1.1	11		1111	H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydra
roject Name:	Project#:				200	& Tot	lous	11				J - DI Water	U - Acetone V - MCAA
olville Post and Pole/0504-098-01	59001108				8	Siers	ophe	&				K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
ite:	SSOW#:				ample	7 Ison	achlor	and				Other:	
			Sample	Matrix	arad S	8290A - Dioxins 17	8270D_SIM - Pentachlorophenol	NWTPH_DX - DRO and RRO				K-EDTA L-EDA Other:	
		Sample	Туре	(W=water, S=solid,	Field Filts	4-Di	SIIV	<u> </u>				Enz	
Sample Identification	Sample Date	Time	(C=comp, G=grab)	O=waste/oil, BT=Tissue, A=Air	Figure	3290/	3270	TWI I				<u> </u>	
1860 111 (1)	\sim	><		tion Code:	K 2K 2	-	N A			100		Special	nstructions/Note:
146 (15-2.0)	11-9-17	0935	6	Solid		V			15/11				
146 (2.0'-2.5')		0938	1	Solid	H	٨		\top				+	
13-46 (2.5'-3.0)		0940		Solid	H		+	++	+-	1			
180-53(15-70)		1320	++-	Solid	H		+	+					
1812-53/20125)					H	X	-	++					
MBD-53(12.5'-3.0')		1322		Solid	H								
TO 52 (22'1/1)		1325		Solid									
TP-53 (3.5-4.0')		1327		Solid									
TP-53 (4.5-5.6)	4	1330	1	Solid					ð Till				
				Solid									
				Solid			H						
				Solid			\neg						
Possible Hazard Identification		72			San	nple	Dispo	sal (A fe	e may be	assessed if s	amples are reta	ned longer than	1 month)
Non-Hazard Flammable Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unkn	own -	Radiologica			\Box_{Re}	eturn 7	o Client		Disposal By L	ab Ar	chive For	Months
specify)							nstruc	tions/QC	Requireme	ents:			
mpty Kit Relinquished by: elinquished by:		Date:							-	Method o	f Shipment:		
	Date/Time:	Date/Time: Company				Receiv	ved by:				Date/Time:		Company
elinquished by:	Date/Time:	Date/Time: Company				Receiv	ved by:				Date/Time:		Company
elinquished by:	Date/Time:			Company		Receiv	ved by:						
		Company					and of				Date/Time:		Company

11922 East 1st Ave Spokane, WA 99206 **Chain of Custody Record**

Client Information (Sub Contract Lab)	Sampler	Ar E-H						E			Carrier	Tracking	No(s)		COC No: 590-3185.1	
Client Contact:	Phone:			E-M				Monto	marinalna.		State of				Page:	
Shipping/Receiving Company:				ian		- 0	_		mericainc. d (See note)	com	vvasn	ington		-	Page 1 of 2 Job#:	
TestAmerica Laboratories, Inc.									Vashington						590-7490-1	
Address: 880 Riverside Parkway,	Due Date Requeste 11/22/2017	ed:							Anal	vsis R	equest	ed			Preservation Cod	
City:	TAT Requested (da	ıys):					Т	1	T					TEST	A - HCL B - NaOH	M - Hexane N - None
West Sacramento State, Zip:					5.0	10									C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
CA, 95605					11.0	8	1	1		1 1	1 1				E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO#.					1 3	iotals	<u>ss</u>							G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Email:	WO #:				or No	S .	8	s & Totals							1 - Ice J - DI Water	U - Acetone V - MCAA
Project Name Colville Post and Pole/0504-098-01	Project #: 59001108				(Yes	is or h	Somers	Isomers						tainer	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site	SSOW#				Jdwie	: اع) d	Sox 17						1100	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=Ai	eld Filtered		1	90	Moisture					Total Number of	Special In	structions/Note:
		><	Preserva	tion Code	X	X								X	MAN THE RESERVE	
MW-27:110817 (590-7490-8)	11/8/17	15:36 Pacific		Water	П	1	X							2		Pole manufacturing site - ase isolate glassware and
DUP:110817 (590-7490-17)	11/8/17	12:00 Pacific		Water	T		x							2	Former Post and P	Pole manufacturing site -
TP-3 (1.5'-2.0') (590-7490-18)	11/9/17	10:05		Solid	Ħ		1	x	×					1	Former Post and P	ase isolate glassware and Pole manufacturing site -
TP-4 (1.5'-2.0') (590-7490-23)	11/9/17	Pacific 10:40		Solid	$\dagger\dagger$		1	x	x		1	_		1	Former Post and P	ase isolate glassware and Pole manufacturing site -
TP-6 (1.5'-2.0') (590-7490-26)	11/9/17	Pacific 11:05 Pacific		Solid	Ħ	T		X	x	H				1	Former Post and P	ase isolate glassware and Pole manufacturing site - ase isolate glassware and
TP-20 (1.5'-2.0') (590-7490-31)	11/9/17	13:45 Pacific		Solid	11	1		x	x	\Box				1	Former Post and P	Pole manufacturing site - ase isolate glassware and
TP-25 (1.5'-2.0') (590-7490-34)	11/9/17	13:00 Pacific		Solid	Ħ		T	x	x					1	Former Post and P	Pole manufacturing site - ase isolate glassware and
TP-40 (1.5'-2.0') (590-7490-37)	11/9/17	12:30 Pacific		Solid	H		T	X	x					1	Former Post and F	Pole manufacturing site - ase isolate glassware and
TP-41 (1.5'-2.0') (590-7490-42)	11/9/17	12:05 Pacific		Solid	Ħ		T	X	x					1	Former Post and F	Pole manufacturing site - ase isolate glassware and
Note: Since laboratory accreditations are subject to change, TestAmeric currently maintain accreditation in the State of Origin listed above for an Laboratories, Inc. attention immediately. If all requested accreditations	alysis/tests/matrix being analy.	ownership of red, the samp	les must be ship	pped back to t	ne Test	Ameri	ca lat	borator	y or other ins	tructions					r chain-of-custody. If	the laboratory does not
Possible Hazard Identification					1	Sam	7			may b					ed longer than 1	month)
Unconfirmed								P. Commission	To Client	L.	Dispos	al By La	ab L	Arch	nive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	Primary Deliverable Rank: 2					iai ir	nstruc	ctions/QC F	kequire	ments:					
Empty Kit Relinquished by:	1	Date				ne:				. /	- 1	Method of	Shipment.			
Relinguished W. British Mad	Date/Tinde	Date/Time Company Company Company Company				2	eceiv	ed by	Duf.	fe	_		Date/Time	1-	915	Company
Relinquished by:	Daig line.	Date Time Company														Company
Relinquished by:	Date/Time			Company		R	eceiv	ed by:					Date/Time			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						C	ooler	Temp	erature(s) °C	and Othe	r Remarks:		0	ک		+

Ver: 09/20/2016

Page 51 of 63

11922 East 1st Ave Spokane, WA 99206

Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

Client Information (Sub Contract Lab)	Sampler	Phone: Due Date Requested: 11/22/2017 TAT Requested (days): PO #: WO #: Project #: 59001108 SSOW#: Sample Type March Ma						E			Carr	ier Trackin	g No(s):			OC No. 590-3185.2	-	
Client Contact Shipping/Receiving	Phone:			E-M		rring	ton@	testam	ericain	c.com	13.70	e of Origin ishington				Page Page 2 of 2		
Company:				iai		-	_		See note		1440	isi iir igturi			_	ob #:		\dashv
TestAmerica Laboratories, Inc.					Stat	te Pr	ograr	n - Wa	shingto	n						590-7490-1		
Address 880 Riverside Parkway		d:							Ana	lysis l	Reaue	sted			- 1	Preservation Codes		
City West Sacramento State, Zip	The state of the s	ys):													E	B - NaOH I C - Zn Acetate (M - Hexane N - None O - AsNaO2 P - Na2O4S	
CA, 95605					Л										1	E - NaHSO4	Q - Na2SO3 R - Na2S2O3	
Phone 916-373-5600(Tel) 916-372-1059(Fax)	PO#				2		Totals	9							1	G - Amchlor 5	S - H2SO4 T - TSP Dodecahydra	ate
Email:	WO #:				or Nc	No)	S & To	5							,	I - Ice I J - DI Water I	U - Acetone V - MCAA	1000
Project Name Colville Post and Pole/0504-098-01					(Yes	Sorn	Isomers &							ledie			W - pH 4-5 Z - other (specify)	
Site:	The section of the se	SSOW#:												a de la constante de la consta		Other:		
		Sample		Matrix (wewater, Sesolid, Oewaste/oil,	Id Filtered S		8290A/8290 P Sep 17							Total	341			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	BT=Tissue, A=A	r) 🖺	Per	829	Moi						3		Special Inst	tructions/Note:	
		><	Preservat	ion Code:	X	X		100	100			100			1			
TP-42 (1.5'-2.0') (590-7490-45)	11/9/17	Pacific		Solid			- 3	x x								Former Post and Po could be high, please		
TP-46 (1.5'-2.0') (590-7490-50)	11/9/17	Pacific 99:35 Solid						x x								Former Post and Po could be high, please		
TP-53 (1.5'-2.0') (590-7490-53)	11/9/17	11/9/17 11:35 Pacific Pacific Pacific 11/9/17 Pacific Pacific 13:20						x x							1 F	Former Post and Po could be high, pleas	le manufacturing s	site -
					Ш		4						11		M			
					Ш							11						
					Ш		_	4										
					Ш		1	1										
					Н		+	4										
					Ш													
Note: Since laboratory accreditations are subject to change, TestAmerica Li	aboratories, Inc. places the	ownership of r	method, analyte	& accreditat	ion com	pliano	e upo	out sub	ocontract	laboratori	es. This	sample ship	oment is for	warded und	der d	chain-of-custody I		
Possible Hazard Identification						Sam	1			ee may	_					d longer than 1 n	201701-000000	
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank	2		\dashv	Spec			Client ons/QC	Require		osal By I	Lab	An	chi	ve For	Months	-
Empty Kit Relinquished by:		Tin							Method	of Shipmen		_						
Relinquispediby.	Date/Time	1100	F	Receip	Cu p	1	1		1	Date/Tir		_	915	Company 1	-			
Relinquisted by Relinquisted by	Date/lime	K	F	Receive	ed by:	11	~			Date/Tir	me:	_	473	Company	-			
Relinquished by:	Date/Time	_		Company		F	Receive	id by					Date/Tir	ne	_		Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						C	Cooler	Tempera	ature(s) °	C and Oth	er Remar	ks:	0	.6				

Page 52 of 63

Ver: 09/20/2016

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Phone (509) 924-9200 Fax (509) 924-9290																			THE LEADER IN I	NVIROHMI	"NIA: YEST	966	
Client Information (Sub Contract Lab)	Sampler:			Ari		on, R	ande	ee E					Carr	ier Tra	icking	No(s))I			COC No: 590-3183.1			
Client Contact: Shipping/Receiving	Phone:			tat E-V	ndee			@test						e of Or shing	-					Page: Page 1 of 2			
Company: TestAmerica Laboratories, Inc.								Requir ram - \												Job #: 590-7490-1			
Address: 5755 8th Street East, ,	Due Date Request 11/27/2017	ed:								Ana	lysis	Red	ues	sted						Preservation Co			-
City: Tacoma	TAT Requested (da	ıys):																		A - HCL B - NaOH C - Zn Acetate	M - Hexa N - None O - AsNa	ı	
State, Zip: WA, 98424																				D - Nitric Acid E - NaHSO4	P - Na20 Q - Na29	O3	
Phone: 253-922-2310(Tel) 253-922-5047(Fax)	PO#:						-													F - MeOH G - Amchlor H - Ascorbic Acid	R - Na29 S - H2S0 T - TSP I		ate
Email:	WO#:				Ž	2	oneydo												, ,	I - Ice J - Di Water	U - Aceto V - MCA/	one A	-
Project Name: Colville Post and Pole/0504-098-01	Project #: 59001108				e (Yes	3	lachlos												tainers	K - EDTA L - EDA	W - pH 4 Z - other		
Site:	SSOW#				Jampi		C Pen												otcon	Other:			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Field Filtered	# # F # S	8270D_SIM/3520C												Total Number	Special Ir	nstructio	ns/Note:			
	\sim	$\geq \leq$	Preserva	tion Code:	\mathbb{Z}	\boxtimes										8.00			\mathbb{X}				
MW-20:110717 (590-7490-1)	11/7/17	09:48 Pacific		Water	Ш		х												2				
MW-21:110717 (590-7490-2)	11/7/17	10:25 Pacific		Water	Ш		х												2				
MW-22:110717 (590-7490-3)	11/7/17	11:01 Pacific		Water			X												2				
MW-23:110717 (590-7490-4)	11/7/17	11:49 Pacific		Water			х												2				
MW-24:110817 (590-7490-5)	11/8/17	09:24 Pacific		Water			х												2				
MW-25:110717 (590-7490-6)	11/7/17	13:42 Pacific		Water			x												2				
MW-26:110817 (590-7490-7)	11/8/17	10:58 Pacific		Water			х												2				
MW-27:110817 (590-7490-8)	11/8/17	15:36 Pacific		Water			x												2				\neg
MW-28:110817 (590-7490-9)	11/8/17	11:55 Pacific		Water			х											0.100	2				
Note: Since laboratory accreditations are subject to change. TestAmerica Laborato currently maintain accreditation in the State of Origin listed above for analysis/tests Laboratories, Inc. attention immediately. If all requested accreditations are current	/matrix being analyze	d, the samples	s must be ship:	ped back to th	ie Tes	:tAmeri	ca la	boraton	or oth	er inst	ructions	ieš. Th swill b	nis sar e prov	mple s ided.	hipme Any c	ent is f hange	forwari es to a	ded ur ccredi	nder o	chain-of-custody. If in status should be b	he laborato ought to Te	ry does not stAmerica	
Possible Hazard Identification						Sam					may	be as	ses	sed i	f sar	nple	s are	~~~~		ed longer than 1	month)		
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2							turn T			eguire	D.	spos	sal By	/ Lat)		A	rchiv	ive For	Monti	75	\dashv
Empty Kit Relinquished by:		Tim	ne:								Metho	d of S	hipme	ent:						-			
Relianuished by San Mark	Date/Time:	<u> </u>	R	eceiv	<u>/</u> \$)). ₂	2	سعر	ec				Date/1	ime:	17	<u> </u>	/1002	Company	TPA				
Relinquished by:	Date/Time.				ed by:								Date/I					Company		_			
	oo mo			Company												Date/T					Company		
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						C	ooler	Tempe	rature(s)°Ca	nd Oth	er Ren	42	ء, ح	٥,	3/	1-0) ;	A	}z = −0.	4/0:	}	

Page 53 of 63

AZ = -0.7/00; AZ = -0.7/0.012) 12/0.5.

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL RESTING

Phone (509) 924-9200 Fax (509) 924-9290																		THE LEADER IN EN	VIRONMEN	NTAL TES	ITING		
Client Information (Sub Contract Lab)	Sampler:				ab PM: vrringto	on, R	ande	ee E					Carr	ier Tra	icking	No(s):				COC No: 590-3183.2			
Client Contact: Shipping/Receiving	Phone:				-Mail: andee	arrin	igton	@tes	tamei	icain	ic.com			e of Or shing	_					Page: Page 2 of 2			
Company: TestAmerica Laboratories, Inc.									red (Se Wash										- 1	Job #: 590-7490-1			
Address: 5755 8th Street East.	Due Date Requeste 11/27/2017	ed:								Ana	alysis	Re	que	sted						Preservation Code	es: M - Hexan	16	
City: Tacoma State Zip. WA, 98424	TAT Requested (da	iys):							***************************************									**************************************		B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4	N - None O - AsNaC P - Na2O4 Q - Na2SC	D2 \$S	
Phone: 253-922-2310(Tel) 253-922-5047(Fax)	PO#:						joi				***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1 Park to major common to		F - MeOH G - Amchlar H - Ascorbic Acid	R - Na2S24 S - H2SO4 T - TSP Do	4 odecahyd	Irate
Email:	WO #:				s or No	2	ropher											768 (Sense serve		I - Ice J - DI Water K - EDTA	U - Aceton V - MCAA W - pH 4-5		
Project Name: Colville Post and Pole/0504-098-01 Site:	Project #: 59001108 SSOW#				- Superior	5 3	Pentachtorophenol				ļ.							# Control of the Cont		L - EDA Other:	Z - other (s		
ore.	00000		8	SIM/3520C P.											142	٦L							
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Type Sample (C=Comp, G=grab) BT=Tissue, A=Air) Preservation Code: Matrix (W=water, S=volid, O=waste/oil, BT=Tissue, A=Air)																	Total Number	Special Ins	truction	s/Note:	
	\mathcal{M}	$\geq \leq$	Preserva	ition Code		\mathbb{X}													X				
MW-29:110717 (590-7490-10)	11/7/17	12:47 Pacific		Water			х				_		ļ					150	2			H alistanana (1	
MW-30:110817 (590-7490-11)	11/8/17	14:52 Pacific		Water			×											en de la companya de	2			***************************************	
MW-31:110817 (590-7490-12)	11/8/17	10:11 Pacific		Water			×										\perp	1603105py	2				
MW-32:110717 (590-7490-13)	11/7/17	15:58 Pacific		Water			х											N. College	2				
MW-33:110717 (590-7490-14)	11/7/17	14:31 Pacific		Water			Х											Attiv Gessay	2				
MW-34:110817 (590-7490-15)	11/8/17	13:13 Pacific		Water			х											Al Zilatigae	2				
MW-35:110817 (590-7490-16)	11/8/17	14:05 Pacific		Water			х											SSESSION	2				
DUP:110817 (590-7490-17)	11/8/17	12:00 Pacific		Water			X											AND	2	***************************************			
													<u></u>					No.				_,_,	
Note: Since laboratory accreditations are subject to change. TestAmerica Laborato	ries, Inc. places the o	ownership of m	ethod, analyte	& accredita	tian cor	mplian	се про	on out	subcor	tract la	aborato	ries. T	This sa	imple s	shipme	ent is f	orward	ied un	nder c	chain-of-custody. 1			
Possible Hazard Identification						Sam	ple i	Dispo	osal (A fe	e may						s are	reta	inec	l longer than 1 r	nonth)		
Unconfirmed									To Cli				Dispo	sal B	y Lat	5	L.	[⊥] Ar	rchiv	re For	Months	s	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera		Spec	cial ir	nstruc	ctions	/QC I	Requir	eme	nts:													
Empty Kit Relinquished by:		Date:			Tir	ne:								Metho		hipme							
Rejumplished by	Date/Time/ Date/Time:	ste/Time/							پو	\ \-	ب	_				Date/T	ime:	1/-	7	1600	Company Sen Company	772	
Relinquished by				Company *				ved by:															
Relinquished by:	Date/Time:			Company				red by:								Date/T	ime:				Company		
Custody Seals Intact: Custody Seal No.:						C	Cooler	Temp	erature	(s) °C	and Otl	ner Re	marks	:						•	49		

Page 54 of 63

Ver: 09/20/20162/11/2017

Login Sample Receipt Checklist

Client: GeoEngineers Inc Job Number: 590-7490-1

Login Number: 7490 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

-

5

6

8

10

13

Login Number: 7490
List Source: TestAmerica Sacramento
List Number: 2
List Creation: 11/11/17 01:56 PM

Creator: Aguayo, Alonso

Creator. Aguayo, Alonso		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	128362
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.6
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Spokane

Login Number: 7490
List Source: TestAmerica Sacramento
List Number: 4
List Creation: 12/08/17 10:28 AM

Creator: Her, David A

Creator: Her, David A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	128384
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	False	NO COC
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Number: 7490
List Source: TestAmerica Sacramento
List Number: 5
List Creation: 12/08/17 04:04 PM

Creator: Turpen, Troy

Creator: Turpen, Troy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Seattle
List Number: 3
List Creation: 11/11/17 02:02 PM

Creator: Gall, Brandon A

Greator. Gail, Brandon A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	A2=0.3°/1.0°, A2=-0.4°/0.3°, A2=-0.7°/0.0°, & A2=-0.7°/0.0°
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Sam

Sacramento

Jo 590-7490 Field Sheet

Tracking # 4(31 6790 8488

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations. File in the job folder with the COC.

Notes:	Therm. ID: (AK-2 / AK-3 / HACCP /Othe								
-	Ice Wet Dry Other								
	Cooler Custody Seal: 128367								
	Sample Custody Seal:								
2, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	Sample Custody Seal.								
	Cooler ID:								
	Temp: Observed 6-68								
	Corrected:								
	From: Temp Blank 🛍 Sample 🗅								
	NCM Filed: Yes □ No □								
	Ye	s No	NA						
	Perchlorate has headspace?	-	1						
	CoC is complete w/o discrepancies?								
	Samples received within holding time? 4								
	Sample preservatives verified?		1						
	Cooler compromised/tampered with?	四							
	Samples compromised/tampered with?	B							
	COC and Samples w/o discrepancies?	0							
	Sample containers have legible labels?								
	Containers are not broken or leaking?								
	Sample date/times are provided.								
	Appropriate containers are used?								
	Sample bottles are completely filled?								
	Zero headspace?*		K						
	Multiphasic samples are not present?								
	Initials: Date: // *Containers requiring zero headspace have no headspace, or but	(7 m (1/4")						

W21C

Carramento

Sa

Tracking # 4131 6790 9521 P.O.

	Therm, ID: AK-2 / AK-3/1 HACCP /Other_	
tes:		
	Ice X Wet X Dry Other	
	Cooler Custody Seal: 128364	
1		
	Sample Custody Seal:	
<u> </u>	Cooler ID:	(
11	- 6 201	
	Temp: Observed 6.3	
	Corrected:	
	From: Temp Blank 🕅 Sample 🗅	
000	NCM Filed: Yes D No D	
1000	Yes	No NA
1 /	Perchlorate has headspage?	D 185
1 6	CoC is complete w/o discrepancies?	0 0
	Samples received within holding time?	0 0
	- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	_ A
	Cooler compromised/tampered with?	D .
	Samples compromised/tampered with?	ء مر
	COC and Samples w/o discrepancies?	0 0
	Sample containers have legible labels?	0 0
	Containers are not broken or leaking?	םם
	Sample date/times are provided.	0 0
	Appropriate containers are used?	0 0
	Sample bottles are completely filled?	
	Zero headspace?* :	口 夕
	Multiphasic samples are not present?	0 0
	Initials: 12/07/1	•

Waß

TestAmerica Job ID: 590-7490-1

Project/Site: Colville Post and Pole/0504-098-01

Client: GeoEngineers Inc

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

=		Percent Isotope Dilution Recovery (Acceptance Limits)								
		TCDD	TCDF	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF1	
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	
590-7490-18	TP-3 (1.5'-2.0')	66	79	59	59	66	80	52	38 *	
590-7490-23	TP-4 (1.5'-2.0')	67	76	60	60	66	82	57	58	
590-7490-26	TP-6 (1.5'-2.0')	60	70	51	54	60	71	45	43	
590-7490-31	TP-20 (1.5'-2.0')	67	81	61	63	66	80	52	47	
590-7490-34	TP-25 (1.5'-2.0')	60	71	50	54	61	74	49	41	
590-7490-37	TP-40 (1.5'-2.0')	62	73	55	58	67	82	50	50	
590-7490-42	TP-41 (1.5'-2.0')	61	72	53	54	57	75	44	42	
590-7490-45	TP-42 (1.5'-2.0')	64	74	77	65	72	83	43	43	
590-7490-50	TP-46 (1.5'-2.0')	65	79	79	69	68	77	38 *	35 *	
590-7490-53	TP-53 (1.5'-2.0')	61	72	72	63	62	73	40	38 *	
LCS 320-196903/2-A	Lab Control Sample	71	84	70	70	78	93	65	61	
LCSD 320-196903/3-A	Lab Control Sample Dup	70	79	63	64	77	94	63	65	
MB 320-196903/1-A	Method Blank	73	84	74	71	81	101	69	71	

Percent Isotope Dilution Recovery (Acceptance Limits)

		OCDD	
Lab Sample ID	Client Sample ID	(40-135)	
590-7490-18	TP-3 (1.5'-2.0')	52	
590-7490-23	TP-4 (1.5'-2.0')	61	
590-7490-26	TP-6 (1.5'-2.0')	39 *	
590-7490-31	TP-20 (1.5'-2.0')	48	
590-7490-34	TP-25 (1.5'-2.0')	45	
590-7490-37	TP-40 (1.5'-2.0')	47	
590-7490-42	TP-41 (1.5'-2.0')	41	
590-7490-45	TP-42 (1.5'-2.0')	51	
590-7490-50	TP-46 (1.5'-2.0')	46	
590-7490-53	TP-53 (1.5'-2.0')	44	
LCS 320-196903/2-A	Lab Control Sample	66	
LCSD 320-196903/3-A	Lab Control Sample Dup	62	
MB 320-196903/1-A	Method Blank	71	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

OCDD = 13C-OCDD

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		TCDD	TCDF	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF1
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)
590-7490-8	MW-27:110817	88	87	86	87	65	58	96	74
590-7490-17	DUP:110817	86	84	83	84	83	83	101	80

TestAmerica Spokane

Page 62 of 63 12/11/2017

2

3

5

7

9

11

14

4 A

Isotope Dilution Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7490-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	TCDD (40-135)	TCDF (40-135)	PeCDD (40-135)	PeCDF1 (40-135)	HxCDD2 (40-135)	HxCDF1 (40-135)	HpCDD (40-135)	HpCDF1 (40-135)
LCS 320-194570/2-A	Lab Control Sample	83	82	82	81	75	77	88	66
LCSD 320-194570/3-A	Lab Control Sample Dup	87	87	88	90	83	81	99	97
MB 320-194570/1-A	Method Blank	87	82	83	82	79	77	86	71
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
Lab Sample ID	Client Sample ID	OCDD (40-135)							
590-7490-8	MW-27:110817	95							
590-7490-17	DUP:110817	93							
LCS 320-194570/2-A	Lab Control Sample	82							
LCSD 320-194570/3-A	Lab Control Sample Dup	96							
MB 320-194570/1-A	Method Blank	77							

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

OCDD = 13C-OCDD

TestAmerica Spokane

12/11/2017

9

11

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-7493-1

Client Project/Site: Colville Post and Pole/0504-098-01

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

tarque tirrington

Authorized for release by: 12/1/2017 12:16:27 PM

Randee Arrington, Project Manager II (509)924-9200 randee.arrington@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	12
Chronicle	15
Certification Summary	18
Method Summary	19
Chain of Custody	20
Receipt Checklists	22
Field Data Sheets	24
Isotope Dilution Summary	25

10

12

Case Narrative

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Job ID: 590-7493-1

Laboratory: TestAmerica Spokane

Narrative

Receipt

The samples were received on 11/10/2017 3:25 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.4° C.

Receipt Exceptions

The following samples were activated by the client on 10/13/2017: SS-1-2 (6-12") (590-7493-2), SS-3-2 (6-12") (590-7493-4), SS-5-2 (6-12") (590-7493-5), SS-4-2 (6-12") (590-7493-8), SS-6-2 (6-12") (590-7493-10), ROW-3-3 (12-18") (590-7493-13) and ROW-4-3 (12-18") (590-7493-16).

Dioxin

Method 8290A: The following samples exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): SS-3-2 (6-12") (590-7493-4), SS-4-2 (6-12") (590-7493-8), SS-6-2 (6-12") (590-7493-10), ROW-3-3 (12-18") (590-7493-13) and ROW-4-3 (12-18") (590-7493-16). The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 8290A: The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: ROW-3-3 (12-18") (590-7493-13). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

7

0

10

12

13

Sample Summary

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-7493-2	SS-1-2 (6-12")	Solid	10/16/17 11:00	11/10/17 15:25
590-7493-4	SS-3-2 (6-12")	Solid	10/16/17 11:18	11/10/17 15:25
590-7493-5	SS-5-2 (6-12")	Solid	10/16/17 11:32	11/10/17 15:25
590-7493-8	SS-4-2 (6-12")	Solid	10/16/17 11:45	11/10/17 15:25
590-7493-10	SS-6-2 (6-12")	Solid	10/16/17 12:05	11/10/17 15:25
590-7493-13	ROW-3-3 (12-18")	Solid	10/16/17 13:30	11/10/17 15:25
590-7493-16	ROW-4-3 (12-18")	Solid	10/16/17 13:50	11/10/17 15:25

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Qualifiers

Dioxin

Qualifier	Qualifier Description
*	Isotope Dilution analyte is outside acceptance limits.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

Glossary

QC

RER

RPD

TEF

TEQ

RL

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

Lab Sample ID: 590-7493-2

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: SS-1-2 (6-12")

Client: GeoEngineers Inc

Date Collected: 10/16/17 11:00 **Matrix: Solid** Date Received: 11/10/17 15:25 Percent Solids: 95.1

Analyte	Result C	Qualifier RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	1.1	pg/g	\	11/14/17 11:28	11/29/17 04:24	1
2,3,7,8-TCDF	ND	1.1	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
1,2,3,7,8-PeCDD	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
1,2,3,7,8-PeCDF	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
2,3,4,7,8-PeCDF	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
1,2,3,4,7,8-HxCDD	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
1,2,3,6,7,8-HxCDD	ND	5.4	pg/g		11/14/17 11:28	11/29/17 04:24	1
1,2,3,7,8,9-HxCDD	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
1,2,3,4,7,8-HxCDF	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
1,2,3,6,7,8-HxCDF	ND	5.4	pg/g	\$	11/14/17 11:28	11/29/17 04:24	1
1,2,3,7,8,9-HxCDF	ND	5.4	pg/g	₩	11/14/17 11:28	11/29/17 04:24	1
2,3,4,6,7,8-HxCDF	ND	5.4	pg/g	₩	11/14/17 11:28	11/29/17 04:24	1
1,2,3,4,6,7,8-HpCDD	7.9	5.4	pg/g	\$	11/14/17 11:28	11/29/17 04:24	1
1,2,3,4,6,7,8-HpCDF	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
1,2,3,4,7,8,9-HpCDF	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
OCDD	80	11	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
OCDF	ND	11	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
Total TCDD	ND	1.1	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
Total TCDF	ND	1.1	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
Total PeCDD	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
Total PeCDF	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
Total HxCDD	ND	5.4	pg/g		11/14/17 11:28	11/29/17 04:24	1
Total HxCDF	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
Total HpCDD	15	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
Total HpCDF	ND	5.4	pg/g	₽	11/14/17 11:28	11/29/17 04:24	1
Isotope Dilution	%Recovery G	Qualifier Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	73	40 - 135			11/14/17 11:28	11/29/17 04:24	1
13C-2,3,7,8-TCDF	69	40 - 135			11/14/17 11:28	11/29/17 04:24	1
13C-1,2,3,7,8-PeCDD	70	40 - 135			11/14/17 11:28	11/29/17 04:24	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	DII Fac
13C-2,3,7,8-TCDD	73	40 - 135	11/14/17 11:28	11/29/17 04:24	1
13C-2,3,7,8-TCDF	69	40 - 135	11/14/17 11:28	11/29/17 04:24	1
13C-1,2,3,7,8-PeCDD	70	40 - 135	11/14/17 11:28	11/29/17 04:24	1
13C-1,2,3,7,8-PeCDF	67	40 - 135	11/14/17 11:28	11/29/17 04:24	1
13C-1,2,3,6,7,8-HxCDD	73	40 - 135	11/14/17 11:28	11/29/17 04:24	1
13C-1,2,3,4,7,8-HxCDF	69	40 - 135	11/14/17 11:28	11/29/17 04:24	1
13C-1,2,3,4,6,7,8-HpCDD	87	40 - 135	11/14/17 11:28	11/29/17 04:24	1
13C-1,2,3,4,6,7,8-HpCDF	74	40 - 135	11/14/17 11:28	11/29/17 04:24	1
13C-OCDD	74	40 - 135	11/14/17 11:28	11/29/17 04:24	1

Client Sample ID: SS-3-2 (6-12")

Lab Sample ID: 590-7493-4 Date Collected: 10/16/17 11:18 **Matrix: Solid** Date Received: 11/10/17 15:25 Percent Solids: 55.4

Method: 8290A - Dioxins	Method: 8290A - Dioxins and Furans (HRGC/HRMS)									
Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac			
2,3,7,8-TCDD	ND -	1.8	pg/g	\	11/14/17 11:28	11/29/17 05:13	1			
2,3,7,8-TCDF	ND	1.8	pg/g	₩	11/14/17 11:28	11/29/17 05:13	1			
1,2,3,7,8-PeCDD	ND	9.2	pg/g	₩	11/14/17 11:28	11/29/17 05:13	1			
1,2,3,7,8-PeCDF	ND	9.2	pg/g	₩	11/14/17 11:28	11/29/17 05:13	1			
2,3,4,7,8-PeCDF	ND	9.2	pg/g	₩	11/14/17 11:28	11/29/17 05:13	1			
1,2,3,4,7,8-HxCDD	ND	9.2	pg/g	₩	11/14/17 11:28	11/29/17 05:13	1			
1,2,3,6,7,8-HxCDD	ND	9.2	pg/g		11/14/17 11:28	11/29/17 05:13	1			

TestAmerica Spokane

Page 6 of 25 12/1/2017

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Client Sample ID: SS-3-2 (6-12")

Lab Sample ID: 590-7493-4

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND		9.2		pg/g	<u> </u>	11/14/17 11:28	11/29/17 05:13	1
1,2,3,4,7,8-HxCDF	ND		9.2		pg/g	≎	11/14/17 11:28	11/29/17 05:13	1
1,2,3,6,7,8-HxCDF	ND		9.2		pg/g	₽	11/14/17 11:28	11/29/17 05:13	1
1,2,3,7,8,9-HxCDF	ND		9.2		pg/g	≎	11/14/17 11:28	11/29/17 05:13	1
2,3,4,6,7,8-HxCDF	ND		9.2		pg/g	≎	11/14/17 11:28	11/29/17 05:13	1
1,2,3,4,6,7,8-HpCDD	86		9.2		pg/g	₩.	11/14/17 11:28	11/29/17 05:13	1
1,2,3,4,6,7,8-HpCDF	13		9.2		pg/g	≎	11/14/17 11:28	11/29/17 05:13	1
1,2,3,4,7,8,9-HpCDF	ND		9.2		pg/g	₩	11/14/17 11:28	11/29/17 05:13	1
OCDD	870		18		pg/g		11/14/17 11:28	11/29/17 05:13	1
OCDF	40		18		pg/g	₩	11/14/17 11:28	11/29/17 05:13	1
Total TCDD	ND		1.8		pg/g	₩	11/14/17 11:28	11/29/17 05:13	1
Total TCDF	ND		1.8		pg/g		11/14/17 11:28	11/29/17 05:13	1
Total PeCDD	ND		9.2		pg/g	₩	11/14/17 11:28	11/29/17 05:13	1
Total PeCDF	ND	G	12		pg/g	₩	11/14/17 11:28	11/29/17 05:13	1
Total HxCDD	ND		9.2		pg/g		11/14/17 11:28	11/29/17 05:13	1
Total HxCDF	9.3		9.2		pg/g	₩	11/14/17 11:28	11/29/17 05:13	1
Total HpCDD	150		9.2		pg/g	₽	11/14/17 11:28	11/29/17 05:13	1
Total HpCDF	61		9.2		pg/g		11/14/17 11:28	11/29/17 05:13	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	70		40 - 135				11/14/17 11:28	11/29/17 05:13	1
13C-2,3,7,8-TCDF	67		40 - 135				11/14/17 11:28	11/29/17 05:13	1
13C-1,2,3,7,8-PeCDD	71		40 - 135				11/14/17 11:28	11/29/17 05:13	1
13C-1,2,3,7,8-PeCDF	66		40 - 135				11/14/17 11:28	11/29/17 05:13	1
13C-1,2,3,6,7,8-HxCDD	64		40 - 135				11/14/17 11:28	11/29/17 05:13	1
13C-1,2,3,4,7,8-HxCDF	62		40 - 135				11/14/17 11:28	11/29/17 05:13	1
13C-1,2,3,4,6,7,8-HpCDD	74		40 - 135				11/14/17 11:28	11/29/17 05:13	1
13C-1,2,3,4,6,7,8-HpCDF	44		40 - 135				11/14/17 11:28	11/29/17 05:13	1
13C-OCDD	66		40 - 135				11/14/17 11:28	11/29/17 05:13	1

Client Sample ID: SS-5-2 (6-12")

Date Collected: 10/16/17 11:32

Matrix: Solid

Date Received: 11/10/17 15:25

Lab Sample ID: 590-7493-5

Matrix: Solid

Percent Solids: 15.0

Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	27	pg/g	\	11/14/17 11:28	11/29/17 06:01	1
2,3,7,8-TCDF	ND	27	pg/g	₩	11/14/17 11:28	11/29/17 06:01	1
1,2,3,7,8-PeCDD	ND	140	pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
1,2,3,7,8-PeCDF	ND	140	pg/g	\$	11/14/17 11:28	11/29/17 06:01	1
2,3,4,7,8-PeCDF	ND	140	pg/g	☼	11/14/17 11:28	11/29/17 06:01	1
1,2,3,4,7,8-HxCDD	ND	140	pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
1,2,3,6,7,8-HxCDD	150	140	pg/g		11/14/17 11:28	11/29/17 06:01	1
1,2,3,7,8,9-HxCDD	ND	140	pg/g	☼	11/14/17 11:28	11/29/17 06:01	1
1,2,3,4,7,8-HxCDF	140	140	pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
1,2,3,6,7,8-HxCDF	ND	140	pg/g	₩	11/14/17 11:28	11/29/17 06:01	1
1,2,3,7,8,9-HxCDF	ND	140	pg/g	☼	11/14/17 11:28	11/29/17 06:01	1
2,3,4,6,7,8-HxCDF	ND	140	pg/g	₽	11/14/17 11:28	11/29/17 06:01	1
1,2,3,4,6,7,8-HpCDD	4100	140	pg/g	₽	11/14/17 11:28	11/29/17 06:01	1
1,2,3,4,6,7,8-HpCDF	770	140	pg/g	₩	11/14/17 11:28	11/29/17 06:01	1

TestAmerica Spokane

Page 7 of 25 12/1/2017

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Lab Sample ID: 590-7493-5

Matrix: Solid

TestAmerica Job ID: 590-7493-1

Percent Solids: 15.0

Client Sample ID: SS-5-2 (6-12")

Date Collected: 10/16/17 11:32 Date Received: 11/10/17 15:25

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8,9-HpCDF	ND		140		pg/g	<u> </u>	11/14/17 11:28	11/29/17 06:01	1
OCDD	53000		270		pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
OCDF	580		270		pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
Total TCDD	ND		27		pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
Total TCDF	ND		27		pg/g	₽	11/14/17 11:28	11/29/17 06:01	1
Total PeCDD	ND		140		pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
Total PeCDF	ND		140		pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
Total HxCDD	390		140		pg/g	₽	11/14/17 11:28	11/29/17 06:01	1
Total HxCDF	1400		140		pg/g	≎	11/14/17 11:28	11/29/17 06:01	1
Total HpCDD	7800		140		pg/g	₽	11/14/17 11:28	11/29/17 06:01	1
Total HpCDF	2700		140		pg/g	₽	11/14/17 11:28	11/29/17 06:01	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	69		40 - 135				11/14/17 11:28	11/29/17 06:01	1
13C-2,3,7,8-TCDF	55		40 - 135				11/14/17 11:28	11/29/17 06:01	1
13C-1,2,3,7,8-PeCDD	56		40 - 135				11/14/17 11:28	11/29/17 06:01	1
13C-1,2,3,7,8-PeCDF	56		40 - 135				11/14/17 11:28	11/29/17 06:01	1
13C-1,2,3,6,7,8-HxCDD	63		40 - 135				11/14/17 11:28	11/29/17 06:01	1
13C-1,2,3,4,7,8-HxCDF	54		40 - 135				11/14/17 11:28	11/29/17 06:01	1
13C-1,2,3,4,6,7,8-HpCDD	76		40 - 135				11/14/17 11:28	11/29/17 06:01	1
13C-1,2,3,4,6,7,8-HpCDF	52		40 - 135				11/14/17 11:28	11/29/17 06:01	1
13C-OCDD	78		40 - 135				11/14/17 11:28	11/29/17 06:01	1

Client Sample ID: SS-4-2 (6-12")

Date Collected: 10/16/17 11:45 Date Received: 11/10/17 15:25 Lab Sample ID: 590-7493-8 Matrix: Solid Percent Solids: 53.6

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	1.9		pg/g	<u> </u>	11/14/17 11:28	11/29/17 12:50	1
2,3,7,8-TCDF	ND	1.9		pg/g	₩	11/14/17 11:28	11/29/17 12:50	1
1,2,3,7,8-PeCDD	ND	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
1,2,3,7,8-PeCDF	ND	9.5		pg/g	φ.	11/14/17 11:28	11/29/17 12:50	1
2,3,4,7,8-PeCDF	ND	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
1,2,3,4,7,8-HxCDD	ND	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
1,2,3,6,7,8-HxCDD	ND	9.5		pg/g	\$	11/14/17 11:28	11/29/17 12:50	1
1,2,3,7,8,9-HxCDD	ND	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
1,2,3,4,7,8-HxCDF	ND	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
1,2,3,6,7,8-HxCDF	ND	9.5		pg/g	\$	11/14/17 11:28	11/29/17 12:50	1
1,2,3,7,8,9-HxCDF	ND	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
2,3,4,6,7,8-HxCDF	ND	9.5		pg/g	₩	11/14/17 11:28	11/29/17 12:50	1
1,2,3,4,6,7,8-HpCDD	95	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
1,2,3,4,6,7,8-HpCDF	15	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
1,2,3,4,7,8,9-HpCDF	ND	9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
OCDD	1000	19		pg/g		11/14/17 11:28	11/29/17 12:50	1
OCDF	58	19		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
Total TCDD	ND	1.9		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
Total TCDF	ND G	11		pg/g		11/14/17 11:28	11/29/17 12:50	1
Total PeCDD	ND	9.5		pg/g	☼	11/14/17 11:28	11/29/17 12:50	1
Total PeCDF	ND G	17		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1

TestAmerica Spokane

12/1/2017

Page 8 of 25

2

3

6

8

10

11

13

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: SS-4-2 (6-12")

Lab Sample ID: 590-7493-8

Date Collected: 10/16/17 11:45

Matrix: Solid

Date Received: 11/10/17 15:25

Percent Solids: 53.6

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	ND		9.5		pg/g	<u> </u>	11/14/17 11:28	11/29/17 12:50	1
Total HxCDF	ND	G	29		pg/g		11/14/17 11:28	11/29/17 12:50	1
Total HpCDD	170		9.5		pg/g	₩	11/14/17 11:28	11/29/17 12:50	1
Total HpCDF	63		9.5		pg/g	₽	11/14/17 11:28	11/29/17 12:50	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	50		40 - 135				11/14/17 11:28	11/29/17 12:50	1
13C-2,3,7,8-TCDF	47		40 - 135				11/14/17 11:28	11/29/17 12:50	1
13C-1,2,3,7,8-PeCDD	51		40 - 135				11/14/17 11:28	11/29/17 12:50	1
13C-1,2,3,7,8-PeCDF	48		40 - 135				11/14/17 11:28	11/29/17 12:50	1
13C-1,2,3,6,7,8-HxCDD	50		40 - 135				11/14/17 11:28	11/29/17 12:50	1
13C-1,2,3,4,7,8-HxCDF	47		40 - 135				11/14/17 11:28	11/29/17 12:50	1
13C-1,2,3,4,6,7,8-HpCDD	59		40 - 135				11/14/17 11:28	11/29/17 12:50	1
13C-1,2,3,4,6,7,8-HpCDF	40		40 - 135				11/14/17 11:28	11/29/17 12:50	1
13C-OCDD	53		40 - 135				11/14/17 11:28	11/29/17 12:50	1

Client Sample ID: SS-6-2 (6-12")

Date Collected: 10/16/17 12:05

Lab Sample ID: 590-7493-10

Matrix: Solid

Date Received: 11/10/17 15:25 Percent Solids: 18.2

Method: 8290A - Dioxins Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		11000		pg/g		11/14/17 11:28	11/29/17 13:38	1
2,3,7,8-TCDF	ND		11000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
1,2,3,7,8-PeCDD	ND		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
1,2,3,7,8-PeCDF	ND		56000		pg/g		11/14/17 11:28	11/29/17 13:38	1
2,3,4,7,8-PeCDF	ND		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
1,2,3,4,7,8-HxCDD	ND		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
1,2,3,6,7,8-HxCDD	ND		56000		pg/g	₽	11/14/17 11:28	11/29/17 13:38	1
1,2,3,7,8,9-HxCDD	ND		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
1,2,3,4,7,8-HxCDF	ND		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
1,2,3,6,7,8-HxCDF	ND		56000		pg/g	₽	11/14/17 11:28	11/29/17 13:38	1
1,2,3,7,8,9-HxCDF	ND		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
2,3,4,6,7,8-HxCDF	ND		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
1,2,3,4,6,7,8-HpCDD	590000		56000		pg/g	☼	11/14/17 11:28	11/29/17 13:38	1
1,2,3,4,6,7,8-HpCDF	61000		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
1,2,3,4,7,8,9-HpCDF	ND		56000		pg/g	☼	11/14/17 11:28	11/29/17 13:38	1
OCDD	5000000		110000		pg/g	☼	11/14/17 11:28	11/29/17 13:38	1
OCDF	140000		110000		pg/g	☼	11/14/17 11:28	11/29/17 13:38	1
Total TCDD	ND		11000		pg/g	☼	11/14/17 11:28	11/29/17 13:38	1
Total TCDF	ND		11000		pg/g	☼	11/14/17 11:28	11/29/17 13:38	1
Total PeCDD	ND		56000		pg/g	☼	11/14/17 11:28	11/29/17 13:38	1
Total PeCDF	ND		56000		pg/g	☼	11/14/17 11:28	11/29/17 13:38	1
Total HxCDD	ND		56000		pg/g	₽	11/14/17 11:28	11/29/17 13:38	1
Total HxCDF	59000		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
Total HpCDD	990000		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
Total HpCDF	200000		56000		pg/g	₩	11/14/17 11:28	11/29/17 13:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	101		40 - 135				11/14/17 11:28	11/29/17 13:38	1
13C-2,3,7,8-TCDF	95		40 - 135				11/14/17 11:28	11/29/17 13:38	1

TestAmerica Spokane

Page 9 of 25 12/1/2017

2

TestAmerica Job ID: 590-7493-1

3

5

6

8

10

11

12

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: SS-6-2 (6-12")

Lab Sample ID: 590-7493-10

Date Collected: 10/16/17 12:05 Matrix: Solid
Date Received: 11/10/17 15:25 Percent Solids: 18.2

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	104	40 - 135	11/14/17 11:28	11/29/17 13:38	1
13C-1,2,3,7,8-PeCDF	99	40 - 135	11/14/17 11:28	11/29/17 13:38	1
13C-1,2,3,6,7,8-HxCDD	99	40 - 135	11/14/17 11:28	11/29/17 13:38	1
13C-1,2,3,4,7,8-HxCDF	90	40 - 135	11/14/17 11:28	11/29/17 13:38	1
13C-1,2,3,4,6,7,8-HpCDD	116	40 - 135	11/14/17 11:28	11/29/17 13:38	1
13C-1,2,3,4,6,7,8-HpCDF	100	40 - 135	11/14/17 11:28	11/29/17 13:38	1
13C-OCDD	121	40 - 135	11/14/17 11:28	11/29/17 13:38	1

Client Sample ID: ROW-3-3 (12-18")

Lab Sample ID: 590-7493-13

 Date Collected: 10/16/17 13:30
 Matrix: Solid

 Date Received: 11/10/17 15:25
 Percent Solids: 97.1

	10.20							ordonic donic	0. 07.11
Method: 8290A - Dioxins Analyte		GC/HRMS) RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		2.6		pg/g		11/14/17 11:28		1
2,3,7,8-TCDF	ND	G	2.9		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
1,2,3,7,8-PeCDD	ND		13		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
1,2,3,7,8-PeCDF	ND		13		pg/g	.	11/14/17 11:28	11/29/17 15:15	1
2,3,4,7,8-PeCDF	ND		13		pg/g	₽	11/14/17 11:28	11/29/17 15:15	1
1,2,3,4,7,8-HxCDD	ND		13		pg/g	₽	11/14/17 11:28	11/29/17 15:15	1
1,2,3,6,7,8-HxCDD	ND		13		pg/g		11/14/17 11:28	11/29/17 15:15	1
1,2,3,7,8,9-HxCDD	ND		13		pg/g	₽	11/14/17 11:28	11/29/17 15:15	1
1,2,3,4,7,8-HxCDF	ND		13		pg/g	☼	11/14/17 11:28	11/29/17 15:15	1
1,2,3,6,7,8-HxCDF	ND		13		pg/g		11/14/17 11:28	11/29/17 15:15	1
1,2,3,7,8,9-HxCDF	ND		13		pg/g	☼	11/14/17 11:28	11/29/17 15:15	1
2,3,4,6,7,8-HxCDF	ND		13		pg/g	☼	11/14/17 11:28	11/29/17 15:15	1
1,2,3,4,6,7,8-HpCDD	330		13		pg/g		11/14/17 11:28	11/29/17 15:15	1
1,2,3,4,6,7,8-HpCDF	53		13		pg/g	☼	11/14/17 11:28	11/29/17 15:15	1
1,2,3,4,7,8,9-HpCDF	ND		13		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
OCDD	2800		26		pg/g	₩.	11/14/17 11:28	11/29/17 15:15	1
OCDF	130		26		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
Total TCDD	ND		2.6		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
Total TCDF	ND	G	5.0		pg/g		11/14/17 11:28	11/29/17 15:15	1
Total PeCDD	ND		13		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
Total PeCDF	ND	G	32		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
Total HxCDD	52	q	13		pg/g		11/14/17 11:28	11/29/17 15:15	1
Total HxCDF	ND	G	42		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
Total HpCDD	640		13		pg/g	₩	11/14/17 11:28	11/29/17 15:15	1
Total HpCDF	130		13		pg/g		11/14/17 11:28	11/29/17 15:15	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	70		40 - 135				11/14/17 11:28	11/29/17 15:15	1
13C-2,3,7,8-TCDF	59		40 - 135				11/14/17 11:28	11/29/17 15:15	1

isotope Dilution	%Recovery Qualifier	Limits	Prepared	Anaiyzea	DII Fac
13C-2,3,7,8-TCDD	70	40 - 135	11/14/17 11:28	11/29/17 15:15	1
13C-2,3,7,8-TCDF	59	40 - 135	11/14/17 11:28	11/29/17 15:15	1
13C-1,2,3,7,8-PeCDD	53	40 - 135	11/14/17 11:28	11/29/17 15:15	1
13C-1,2,3,7,8-PeCDF	47	40 - 135	11/14/17 11:28	11/29/17 15:15	1
13C-1,2,3,6,7,8-HxCDD	73	40 - 135	11/14/17 11:28	11/29/17 15:15	1
13C-1,2,3,4,7,8-HxCDF	59	40 - 135	11/14/17 11:28	11/29/17 15:15	1
13C-1,2,3,4,6,7,8-HpCDD	75	40 - 135	11/14/17 11:28	11/29/17 15:15	1
13C-1,2,3,4,6,7,8-HpCDF	83	40 - 135	11/14/17 11:28	11/29/17 15:15	1
13C-OCDD	33 *	40 - 135	11/14/17 11:28	11/29/17 15:15	1

TestAmerica Spokane

Page 10 of 25 12/1/2017

2

TestAmerica Job ID: 590-7493-1

3

6

8

10

11

Client: GeoEngineers Inc TestAmerica Job ID: 590-7493-1

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: ROW-4-3 (12-18") Lab Sample ID: 590-7493-16

Date Collected: 10/16/17 13:50 **Matrix: Solid** Date Received: 11/10/17 15:25 Percent Solids: 97.6

Analyte	Result	Qualifier	RL	EDL U	Jnit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		4.2	p	g/g	<u> </u>	11/14/17 11:28	11/29/17 16:04	1
2,3,7,8-TCDF	ND		4.2	p	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
1,2,3,7,8-PeCDD	ND		21	p	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
1,2,3,7,8-PeCDF	ND		21	p	g/g	₽	11/14/17 11:28	11/29/17 16:04	1
2,3,4,7,8-PeCDF	ND		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
1,2,3,4,7,8-HxCDD	ND		21	p	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
1,2,3,6,7,8-HxCDD	28		21	p	g/g	₽	11/14/17 11:28	11/29/17 16:04	1
1,2,3,7,8,9-HxCDD	28		21	p	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
1,2,3,4,7,8-HxCDF	ND		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
1,2,3,6,7,8-HxCDF	34		21	p	g/g	₽	11/14/17 11:28	11/29/17 16:04	1
1,2,3,7,8,9-HxCDF	ND		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
2,3,4,6,7,8-HxCDF	ND		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
1,2,3,4,6,7,8-HpCDD	770		21	p	g/g	₽	11/14/17 11:28	11/29/17 16:04	1
1,2,3,4,6,7,8-HpCDF	290		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
1,2,3,4,7,8,9-HpCDF	ND		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
OCDD	7400		42	p	g/g	☼	11/14/17 11:28	11/29/17 16:04	1
OCDF	740		42	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
Total TCDD	ND		4.2	p	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
Total TCDF	ND	G	7.0	p	g/g	₽	11/14/17 11:28	11/29/17 16:04	1
Total PeCDD	ND		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
Total PeCDF	52		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
Total HxCDD	190		21	p	g/g	₽	11/14/17 11:28	11/29/17 16:04	1
Total HxCDF	270		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
Total HpCDD	1400		21	pg	g/g	₩	11/14/17 11:28	11/29/17 16:04	1
Total HpCDF	660		21	p	g/g	₽	11/14/17 11:28	11/29/17 16:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	73		40 - 135				11/14/17 11:28	11/29/17 16:04	1
13C-2,3,7,8-TCDF	59		40 - 135				11/14/17 11:28	11/29/17 16:04	1
13C-1,2,3,7,8-PeCDD	66		40 - 135				11/14/17 11:28	11/29/17 16:04	1
13C-1,2,3,7,8-PeCDF	63		40 - 135				11/14/17 11:28	11/29/17 16:04	1
13C-1,2,3,6,7,8-HxCDD	66		40 - 135				11/14/17 11:28	11/29/17 16:04	1
13C-1,2,3,4,7,8-HxCDF	63		40 - 135				11/14/17 11:28	11/29/17 16:04	1
13C-1,2,3,4,6,7,8-HpCDD	85		40 - 135				11/14/17 11:28	11/29/17 16:04	1
13C-1,2,3,4,6,7,8-HpCDF	75		40 - 135				11/14/17 11:28	11/29/17 16:04	1
13C-OCDD	84		40 - 135				11/14/17 11:28	11/29/17 16:04	1

TestAmerica Job ID: 590-7493-1

Client: GeoEngineers Inc Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-194569/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA** Prep Batch: 194569 **Analysis Batch: 197125**

_	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
2,3,7,8-TCDF	ND		1.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,7,8-PeCDD	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,7,8-PeCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
2,3,4,7,8-PeCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,4,7,8-HxCDD	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,6,7,8-HxCDD	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,7,8,9-HxCDD	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,4,7,8-HxCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,6,7,8-HxCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,7,8,9-HxCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
2,3,4,6,7,8-HxCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,4,6,7,8-HpCDD	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,4,6,7,8-HpCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
1,2,3,4,7,8,9-HpCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
OCDD	ND		10		pg/g		11/14/17 11:28	11/29/17 10:24	1
OCDF	ND		10		pg/g		11/14/17 11:28	11/29/17 10:24	1
Total TCDD	ND		1.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
Total TCDF	ND		1.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
Total PeCDD	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
Total PeCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
Total HxCDD	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
Total HxCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
Total HpCDD	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
Total HpCDF	ND		5.0		pg/g		11/14/17 11:28	11/29/17 10:24	1
	MB	MB							

				1.0.0			
	MB	MB					
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	68		40 - 135		11/14/17 11:28	11/29/17 10:24	1
13C-2,3,7,8-TCDF	64		40 - 135		11/14/17 11:28	11/29/17 10:24	1
13C-1,2,3,7,8-PeCDD	71		40 - 135		11/14/17 11:28	11/29/17 10:24	1
13C-1,2,3,7,8-PeCDF	69		40 - 135		11/14/17 11:28	11/29/17 10:24	1
13C-1,2,3,6,7,8-HxCDD	71		40 - 135		11/14/17 11:28	11/29/17 10:24	1
13C-1,2,3,4,7,8-HxCDF	67		40 - 135		11/14/17 11:28	11/29/17 10:24	1
13C-1,2,3,4,6,7,8-HpCDD	84		40 - 135		11/14/17 11:28	11/29/17 10:24	1
13C-1,2,3,4,6,7,8-HpCDF	80		40 - 135		11/14/17 11:28	11/29/17 10:24	1
13C-OCDD	78		40 - 135		11/14/17 11:28	11/29/17 10:24	1

Lab Sample ID: LCS 320-194569/2-A

Matrix: Solid

Spike	LCS	LCS				p Batch: 194569 c.
Added	Result	Qualifier	Unit	D %Re	c Limi	ts
20.0	17.2		pg/g		36 77 - 1	130
20.0	18.6		pg/g	9	3 79 - 1	137
100	92.0		pg/g	9	2 79 - 1	134
100	91.0		pg/g	g	91 81 - 1	134
100	93.1		pg/g	9	3 76 - 1	132
100	94.0		pg/g	9	94 65 - 1	144
	Added 20.0 20.0 100 100 100	Added Result 20.0 17.2 20.0 18.6 100 92.0 100 91.0 100 93.1	Added Result Qualifier 20.0 17.2 20.0 18.6 100 92.0 100 91.0 100 93.1	Added Result Qualifier Unit 20.0 17.2 pg/g 20.0 18.6 pg/g 100 92.0 pg/g 100 91.0 pg/g 100 93.1 pg/g	Added Result Qualifier Unit D %Result 20.0 17.2 pg/g 8 20.0 18.6 pg/g 9 100 92.0 pg/g 9 100 91.0 pg/g 9 100 93.1 pg/g 9	Spike LCS LCS %Re Added Result Qualifier Unit D %Rec Limit 20.0 17.2 pg/g 86 77 - 1 20.0 18.6 pg/g 93 79 - 1 100 92.0 pg/g 92 79 - 1 100 91.0 pg/g 91 81 - 1 100 93.1 pg/g 93 76 - 1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 12 of 25

TestAmerica Spokane

TestAmerica Job ID: 590-7493-1

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-194569/2-A

Matrix: Solid

Analysis Batch: 197125

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 194569**

%Rec.

1	- P						,	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,6,7,8-HxCDD	100	102		pg/g		102	73 - 147	
1,2,3,7,8,9-HxCDD	100	100		pg/g		100	80 - 143	
1,2,3,4,7,8-HxCDF	100	99.0		pg/g		99	72 - 140	
1,2,3,6,7,8-HxCDF	100	107		pg/g		107	63 - 152	
1,2,3,7,8,9-HxCDF	100	100		pg/g		100	72 - 152	
2,3,4,6,7,8-HxCDF	100	104		pg/g		104	72 - 151	
1,2,3,4,6,7,8-HpCDD	100	91.9		pg/g		92	86 - 134	
1,2,3,4,6,7,8-HpCDF	100	98.0		pg/g		98	81 - 137	
1,2,3,4,7,8,9-HpCDF	100	101		pg/g		101	79 - 139	
OCDD	200	198		pg/g		99	80 - 137	
OCDF	200	184		pg/g		92	75 - 141	
1								

Spike

LCS LCS

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	64		40 - 135
13C-2,3,7,8-TCDF	58		40 - 135
13C-1,2,3,7,8-PeCDD	67		40 - 135
13C-1,2,3,7,8-PeCDF	64		40 - 135
13C-1,2,3,6,7,8-HxCDD	63		40 - 135
13C-1,2,3,4,7,8-HxCDF	61		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	81		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	73		40 - 135
13C-OCDD	79		40 - 135

Lab Sample ID: LCSD 320-194569/3-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 194569

Analysis Batch: 197125 LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Unit %Rec Limits RPD Limit Analyte 2,3,7,8-TCDD 20.0 17.7 88 77 - 130 3 20 pg/g 2,3,7,8-TCDF 20.0 18.1 pg/g 91 79 - 137 3 20 1,2,3,7,8-PeCDD 100 95.8 96 79 - 134 20 pg/g 1,2,3,7,8-PeCDF 100 91.5 91 81 - 134 20 pg/g 2,3,4,7,8-PeCDF 100 93.2 93 76 - 132 0 20 pg/g 1,2,3,4,7,8-HxCDD 100 84.6 pg/g 85 65 - 14411 20 1,2,3,6,7,8-HxCDD 100 99.9 100 73 - 147 2 20 pg/g 100 20 93.2 93 80 - 143 7 1,2,3,7,8,9-HxCDD pg/g 97 72 - 140 20 1,2,3,4,7,8-HxCDF 100 97.3 pg/g 1,2,3,6,7,8-HxCDF 100 102 102 63 - 152 20 pg/g 1,2,3,7,8,9-HxCDF 100 97.7 98 72 - 152 20 pg/g 20 100 99.4 99 72 - 151 2,3,4,6,7,8-HxCDF pg/g 1,2,3,4,6,7,8-HpCDD 100 93.4 pg/g 93 86 - 134 20 100 98.1 98 81 - 137 n 20 1,2,3,4,6,7,8-HpCDF pg/g 1,2,3,4,7,8,9-HpCDF 100 95.4 95 79 - 139 6 20 pg/g OCDD 200 197 98 80 - 137 20 pg/g **OCDF** 200 174 87 75 - 141 5 20 pg/g

LCSD LCSD %Recovery Qualifier Isotope Dilution Limits 13C-2,3,7,8-TCDD 40 - 135 70

TestAmerica Spokane

Page 13 of 25

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-194569/3-A	Client Sample ID: Lab Control Sample Dup
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 197125	Prep Batch: 194569

runanyono Datom non 120			
	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDF	67		40 - 135
13C-1,2,3,7,8-PeCDD	74		40 - 135
13C-1,2,3,7,8-PeCDF	73		40 - 135
13C-1,2,3,6,7,8-HxCDD	75		40 - 135
13C-1,2,3,4,7,8-HxCDF	70		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	87		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	81		40 - 135
13C-OCDD	82		40 - 135

J

4

5

7

Ō

10

12

13

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

Client Sample ID: SS-1-2 (6-12")

Date Collected: 10/16/17 11:00 Date Received: 11/10/17 15:25

Lab Sample ID: 590-7493-2

Matrix: Solid

Batch Dil Initial Batch Batch Final Prepared Method Amount or Analyzed **Prep Type** Type Run **Factor Amount** Number **Analyst** Lab Total/NA Analysis D 2216 195983 11/21/17 10:19 XIB TAL SAC

Client Sample ID: SS-1-2 (6-12") Lab Sample ID: 590-7493-2

Date Collected: 10/16/17 11:00 Date Received: 11/10/17 15:25

Matrix: Solid

Percent Solids: 95.1

Dil Batch Batch Initial Final Batch **Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 8290 194569 11/14/17 11:28 SXS TAL SAC Prep 9.75 g 20.0 uL Total/NA Analysis 8290A 197123 11/29/17 04:24 AS TAL SAC 1

Client Sample ID: SS-3-2 (6-12")

Lab Sample ID: 590-7493-4 Date Collected: 10/16/17 11:18

Matrix: Solid

Date Received: 11/10/17 15:25

Batch Dil **Batch** Initial Final **Batch** Prepared **Prep Type** Type Method Factor Amount Amount Number or Analyzed Run Analyst Lab D 2216 195983 11/21/17 10:19 XIB TAL SAC Total/NA Analysis

Client Sample ID: SS-3-2 (6-12") Lab Sample ID: 590-7493-4

Date Collected: 10/16/17 11:18 Date Received: 11/10/17 15:25

Matrix: Solid Percent Solids: 55.4

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.76 g	20.0 uL	194569	11/14/17 11:28	SXS	TAL SAC
Total/NA	Analysis	8290A		1			197123	11/29/17 05:13	AS	TAL SAC

Client Sample ID: SS-5-2 (6-12") Lab Sample ID: 590-7493-5

Date Collected: 10/16/17 11:32

Matrix: Solid Date Received: 11/10/17 15:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			195983	11/21/17 10:19	XIB	TAL SAC

Lab Sample ID: 590-7493-5 Client Sample ID: SS-5-2 (6-12")

Date Collected: 10/16/17 11:32 Matrix: Solid Date Received: 11/10/17 15:25 Percent Solids: 15.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.82 g	80.0 uL	194569	11/14/17 11:28	SXS	TAL SAC
Total/NA	Analysis	8290A		1			197123	11/29/17 06:01	AS	TAL SAC

12/1/2017

TestAmerica Job ID: 590-7493-1

Client Sample ID: SS-4-2 (6-12")

Date Collected: 10/16/17 11:45 Date Received: 11/10/17 15:25 Lab Sample ID: 590-7493-8

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Type Method Run **Factor Amount Amount** Number or Analyzed Analyst Total/NA Analysis D 2216 195983 11/21/17 10:19 XIB TAL SAC

Client Sample ID: SS-4-2 (6-12")

Lab Sample ID: 590-7493-8

Date Collected: 10/16/17 11:45 Date Received: 11/10/17 15:25 Matrix: Solid

Percent Solids: 53.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.84 g	20.0 uL	194569	11/14/17 11:28	SXS	TAL SAC
Total/NA	Analysis	8290A		1			197125	11/29/17 12:50	ALM	TAL SAC

Client Sample ID: SS-6-2 (6-12")

Lab Sample ID: 590-7493-10

Date Collected: 10/16/17 12:05 Date Received: 11/10/17 15:25 Matrix: Solid

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method Run Factor Amount Amount Number or Analyzed Analyst Type Lab D 2216 195983 11/21/17 10:19 XIB Total/NA Analysis TAL SAC

Client Sample ID: SS-6-2 (6-12") Lab Sample ID: 590-7493-10

Date Collected: 10/16/17 12:05 Date Received: 11/10/17 15:25 Matrix: Solid
Percent Solids: 18.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.75 g	40000 uL	194569	11/14/17 11:28	SXS	TAL SAC
Total/NA	Analysis	8290A		1			197125	11/29/17 13:38	ALM	TAL SAC

Client Sample ID: ROW-3-3 (12-18") Lab Sample ID: 590-7493-13

Date Collected: 10/16/17 13:30 Date Received: 11/10/17 15:25 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			195983	11/21/17 10:19	XIB	TAL SAC

Client Sample ID: ROW-3-3 (12-18") Lab Sample ID: 590-7493-13

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			9.95 g	50.0 uL	194569	11/14/17 11:28	SXS	TAL SAC
Total/NA	Analysis	8290A		1			197125	11/29/17 15:15	ALM	TAL SAC

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Client Sample ID: ROW-4-3 (12-18") Lab Sample ID: 590-7493-16

Date Collected: 10/16/17 13:50 **Matrix: Solid**

Date Received: 11/10/17 15:25

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run **Factor Amount Amount** Number or Analyzed **Analyst** Total/NA Analysis D 2216 195983 11/21/17 10:19 XIB TAL SAC

Client Sample ID: ROW-4-3 (12-18") Lab Sample ID: 590-7493-16

Date Collected: 10/16/17 13:50 Matrix: Solid Date Received: 11/10/17 15:25 Percent Solids: 97.6

Batch Batch Dil Initial Final **Batch** Prepared Method **Prep Type** Type Run **Factor** Amount **Amount** Number or Analyzed Lab Analyst 8290 9.83 g TAL SAC Total/NA Prep 80.0 uL 194569 11/14/17 11:28 SXS Total/NA Analysis 8290A 197125 11/29/17 16:04 ALM TAL SAC

Page 17 of 25

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Laboratory: TestAmerica Spokane

The accreditations/certifications listed below are applicable to this report.

ſ	Authority	Program	EPA Region	Identification Number	Expiration Date
	Washington	State Program	10	C569	01-06-18

Laboratory: TestAmerica Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-055	12-18-17
Arizona	State Program	9	AZ0708	08-11-18
Arkansas DEQ	State Program	6	88-0691	06-17-18
California	State Program	9	2897	01-31-18
Colorado	State Program	8	CA00044	08-31-18
Connecticut	State Program	1	PH-0691	06-30-19
Florida	NELAP	4	E87570	06-30-18
Georgia	State Program	4	N/A	01-28-19
Hawaii	State Program	9	N/A	01-29-18
Illinois	NELAP	5	200060	03-17-18
Kansas	NELAP	7	E-10375	12-31-17
L-A-B	DoD ELAP		L2468	01-20-18
Louisiana	NELAP	6	30612	06-30-18
Maine	State Program	1	CA0004	04-18-18
Michigan	State Program	5	9947	01-31-18
Nevada	State Program	9	CA00044	07-31-18
New Hampshire	NELAP	1	2997	04-18-18
New Jersey	NELAP	2	CA005	06-30-18
New York	NELAP	2	11666	04-01-18
Oregon	NELAP	10	4040	01-28-18
Pennsylvania	NELAP	3	68-01272	03-31-18
Texas	NELAP	6	T104704399	05-31-18
US Fish & Wildlife	Federal		LE148388-0	07-31-18
USDA	Federal		P330-11-00436	12-30-17
USEPA UCMR	Federal	1	CA00044	11-06-18
Utah	NELAP	8	CA00044	02-28-18
Virginia	NELAP	3	460278	03-14-18
Washington	State Program	10	C581	05-05-18
West Virginia (DW)	State Program	3	9930C	12-31-17
Wyoming	State Program	8	8TMS-L	01-28-19

TestAmerica Spokane

3

4

6

0

9

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Method	Method Description	Protocol	Laboratory
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC

Protocol References:

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

4

5

6

9

10

12

13

TestAmerica Spokane

11922 East 1st Ave

Chain of Custody Record Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Client Information	Sampler.	P		Arr	PM: ington,	Rande	e E								COC No: 590-3204-1054.5	0
Client Contact: Scott Lathen	Phone:			E-M		rington	@tes	stameri	cainc.com	m					Page: Page 5 of 7	
Company:				1,5	T	in grou	(G) (C)			_					Job#:	
GeoEngineers Inc	Due Date Requeste	d.	_		-			-	Analys	is Req	uested			Face	Preservation Code	
523 East Second Ave	Due Date Requeste	u.				1								100	A-HCL	M - Hexane
City:	TAT Requested (da	ys):			100	2									B - NaOH	N - None
Spokane State, Zip:					1	8								-	C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
WA, 99202					12.00	8			1 1		+				E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
Phone: 509-251-5239(Tel)	Po#: Purchase Order	not require	4			8								100	G - Amchlor	S - H2SO4
Email:	WO#	not required			- 2	tals									H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acetone
slathen@geoengineers.com					SOF	& Totals	loua		1 1					2	J - DI Water K - EDTA	V - MCAA W - pH 4-5
Project Name: Colville Post and Pole/0504-098-01	Project #: 59001108	Project #: 59001108			Nes	ers o	oph	880						taine	L-EDA	Z - other (specify)
Site:	SSOW#:				Sample	17 Isomers	Pentachlorophenol	and RRO						of conf	Other:	
			Sample	Matrix	Spa	Dioxins 1		DRO.		4.8						
	1		Type	(W=water,	110		SIM	NWTPH Dx	1 1					Number		
		Sample	(C=Comp,	S=solid, O=waste/oil,	ple	8290A	8270D	MA						Total		
Sample Identification	Sample Date	Time	G=grab)	tion Code:						-	and the	W0000	1000 1000	1	Special In	structions/Note:
RDW-4-7 (6-12")	1.11.17	1348	G	Solid	H	N	N	A						1	-	
16 1 - 2 (1 - 12")	10-16-17	1100	G	Solid	++	+		+	++	-				97		
5)-1-2(6-12)	1/	-	1		++	-			-		-		-		9	
ROW-1-2 (6-12)	11	1303		Solid	+		-	\Box	-						-	
55-3-2 (6-12)	11	1118		Solid	11	-			1							
G5-5-2 (6-12)	11	1132		Solid											M	
ROW-2-2 (6-12)	11	1312		Solid										N. S.		
RDW-2-3(12-18)	11	1315		Water										1 12	1	
55-4-2(6-12)	11	1145		Water												Ш
ROUI-1-3/12-18)	11	1305		Water												
55-6-2 (6-12)	11	1205		Water								50				III
66-7-2 (6-12)	1,	1212	V	Water									00 1400	Criain	of Custody	
Possible Hazard Identification					1	Sampl	e Dis	posal	(A fee n	nay be a	ssessed	l if sai	mples a		ned longer than 1	month)
	Poison B Unkr	nown	Radiologica	il			Retur	n To C	lient		Disposal	By Lai	ь	☐ Are	chive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					18	Specia	Inst	ruction	s/QC Re							
Empty Kit Relinquished by:		Date:			Tim	ie:			1		Met	had of S	Shipment:	1	1	
Relinquished by	Date/Time;	1715	25	Company	1	Rec	bevie	ho	180	9/	nd		Date/Time	nl	7 1525	Company And
Relinquished by.	Date/Time:	1.0		Company		Rec	eived	by:	-	1	1		Date/Fime	1	1,000	Company
Relinquished by	Date/Time:			Company	_	Red	eived	by:					Date/Time	2		Company
Custody Seals Intact: Custody Seal No.:					_	Cor	Ner Te	mperatu	re(s) °C an	d Other R	marks:		-			
Δ Yes Δ No						000	10	ipureitu	S(a) Call	- Outer At	ATTIMITION OF	3.4	100	RC	204	

Page 21 of 25

TestAmerica Spokane

11922 East 1st Ave Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

TestAmeri			A		9
1000 111011	CC	en	an	est/	- 1
Designation of the second	~	1011	44.4	0017	-

THE LEADER IN ENVIRONMENTAL TESTING

Client Information	Sampler,			Arrin	M: gton, f	Rande	еE				Carrier	Tracking	No(s):		COC No: 590-3204-1054.	5
Dient Contact Scott Lathen	Phone:			E-Mail		ngton(@tes	tameric	cainc.co	m					Page: Page 5 of 7	
Company GeoEngineers Inc									Analys		quest	ed			Job#:	
Address	Due Date Requeste	d:				П	T	T		10 110				- 18	Preservation Con	des:
523 East Second Ave	TAT Requested (da	ys):		_										1	A - HCL B - NaOH	M - Hexane N - None
Spokane State, Zip:									1 1		1 1	100		- 15	C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
VA, 99202					88				1.1					- 13	E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
Phone: 509-251-5239(Tel)	Po#: Purchase Order	not require	d	300.0					11					18	G - Amchler H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrat
mail:	WO#:				or No	Totals	-		11		1.1			- 18	I - Ice	U - Acetone V - MCAA
lathen@geoengineers.com roject Name:	Project #.				100	0.5	heno	0	11					3	J - DI Water K - EDTA	W - pH 4-5
Colville Post and Pole/0504-098-01	59001108	59001108			le (Ye:	Isomers	orop	and RRO	1 1					and of the same	L-EDA	Z - other (specify)
site:	SSOW#:				Samp	4	Pentachlorophenol	SO and								
		Sample	Туре	latrix V=water, i=solid, wastefoll,	Field Filtered	8290A - Dioxins	8270D_SIM - Per	NWTPH_Dx - DRO						Total Mississippe		
Sample Identification	Sample Date	Time	G=grab) BT=T Preservation							200			100	-	Special I	nstructions/Note:
65-2 1 (11)	10/1	1000		Solid	P	N	N	A	000-00		1			1	-	
20 7-6 (6-16)	10/14/17	1053	0		+	\vdash		-	+	+	++	+		- 6	9	
120W-3-3(12-18)	1	1330		Solid	H				+		\vdash		-	1	1	
55-7-3(12-18)		1215		Solid												
now-3-2 (6-12)		1328		Solid												
55-2-2 (6-12) ROW-3-3(12-18) 55-7-3(12-18) ROW-3-2 (6-12) ROW-4-3 (12-18)	1	1350	1	Solid										8		
			6	Solid											3	
			8	Neter	11											
				Water	++	+		1	+	1		+				
				Nate	+	+		-	+	-		+	++			
			1	-	+	-	-	-	-	-	+	-	-			
				Water	+	-		-	-		-					
				Water	11											
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unkr	nown 🗀	Radiological	1		\Box_R	Return	n To CI			Dispo:	sed if s sal By L			ined longer than chive For	1 month)Months
Empty Kit Relinquished by		Date:			Time							Method o	f Shipment:			
Relinquished by	Date/Time:		Con	pany		Rece	eived t	1	10	*		/	Date/Time	-	7 100	Company
Relinquished by	Date/Time	0-17	1525	pany		Rece	lived t	200	la	1/1	ay		Date/Time	11/	1 1000	Company
Relinquished by:	Date/Time:		Cor	npany		Rece	eived t	by:				-	Date/Time	r;		Company
Custody Seals Intact: Custody Seal No.:						Cool	er Ter	mperatur	e(s) °C an	nd Other	Remarks					1
Δ Yes Δ No						1500			, J	- Giller		3.	4 5	BRE	204	

Login Sample Receipt Checklist

Client: GeoEngineers Inc Job Number: 590-7493-1

Login Number: 7493 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

oreator. Matz, oriena o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

_

A

5

_ _

q

10

12

14

Client: GeoEngineers Inc Job Number: 590-7493-1

Login Number: 7493
List Source: TestAmerica Sacramento
List Number: 2
List Creation: 11/11/17 02:45 PM

Creator: Hytrek, Cheryl

Creator: Hytrek, Cheryl		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.6
COC is present.	False	Refer to Job Narrative for details.
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Spokane

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

otes:		Ice Wet Dry Other			
		_			
k.		Cooler Custody Seal: 12 83 6 2			
		Sample Custody Seal:			
* 1	•	Sample Custody Seal.	-		
		Cooler ID:			
	<u> </u>	Temp: Observed 6.6%			
		Corrected:			
	<u> </u>	From: Temp Blank 5 Sample	D		
		NCM Filed: Yes □ No			
			Yes	No	NA
		Perchlorate has headspace?			\$
	<i>i</i>	CoC is complete w/o discrepancies?	Ó		
		Samples received within holding time?	ৰ্প্ৰ		
		Sample preservatives verified?	ο.		0
		Cooler compromised/tampered with?		四	
		Samples compromised/tampered with?		E	
		COC and Samples w/o discrepancies?	10		
		Sample containers have legible labels?	阿		
		Containers are not broken or leaking?	0		
		Sample date/times are provided.	西南		
		Appropriate containers are used?	DE		
		Sample bottles are completely filled?	10		
		Zero headspace?*			Ø
		Multiphasic samples are not present?	E	D	
		Initials: Date: 10	1/11	11-	7

W21C

218

Isotope Dilution Summary

Client: GeoEngineers Inc

Project/Site: Colville Post and Pole/0504-098-01

TestAmerica Job ID: 590-7493-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

_			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		TCDD	TCDF	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF1
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)
590-7493-2	SS-1-2 (6-12")	73	69	70	67	73	69	87	74
590-7493-4	SS-3-2 (6-12")	70	67	71	66	64	62	74	44
590-7493-5	SS-5-2 (6-12")	69	55	56	56	63	54	76	52
590-7493-8	SS-4-2 (6-12")	50	47	51	48	50	47	59	40
590-7493-10	SS-6-2 (6-12")	101	95	104	99	99	90	116	100
590-7493-13	ROW-3-3 (12-18")	70	59	53	47	73	59	75	83
590-7493-16	ROW-4-3 (12-18")	73	59	66	63	66	63	85	75
LCS 320-194569/2-A	Lab Control Sample	64	58	67	64	63	61	81	73
LCSD 320-194569/3-A	Lab Control Sample Dup	70	67	74	73	75	70	87	81
MB 320-194569/1-A	Method Blank	68	64	71	69	71	67	84	80

Percent Isotope Dilution Recovery (Acceptance Limits)

		OCDD	
Lab Sample ID	Client Sample ID	(40-135)	
590-7493-2	SS-1-2 (6-12")	74	
590-7493-4	SS-3-2 (6-12")	66	
590-7493-5	SS-5-2 (6-12")	78	
590-7493-8	SS-4-2 (6-12")	53	
590-7493-10	SS-6-2 (6-12")	121	
590-7493-13	ROW-3-3 (12-18")	33 *	
590-7493-16	ROW-4-3 (12-18")	84	
LCS 320-194569/2-A	Lab Control Sample	79	
LCSD 320-194569/3-A	Lab Control Sample Dup	82	
MB 320-194569/1-A	Method Blank	78	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

OCDD = 13C-OCDD

Page 25 of 25

APPENDIX F

FS Supporting Documentation and Cost Estimate Calculations

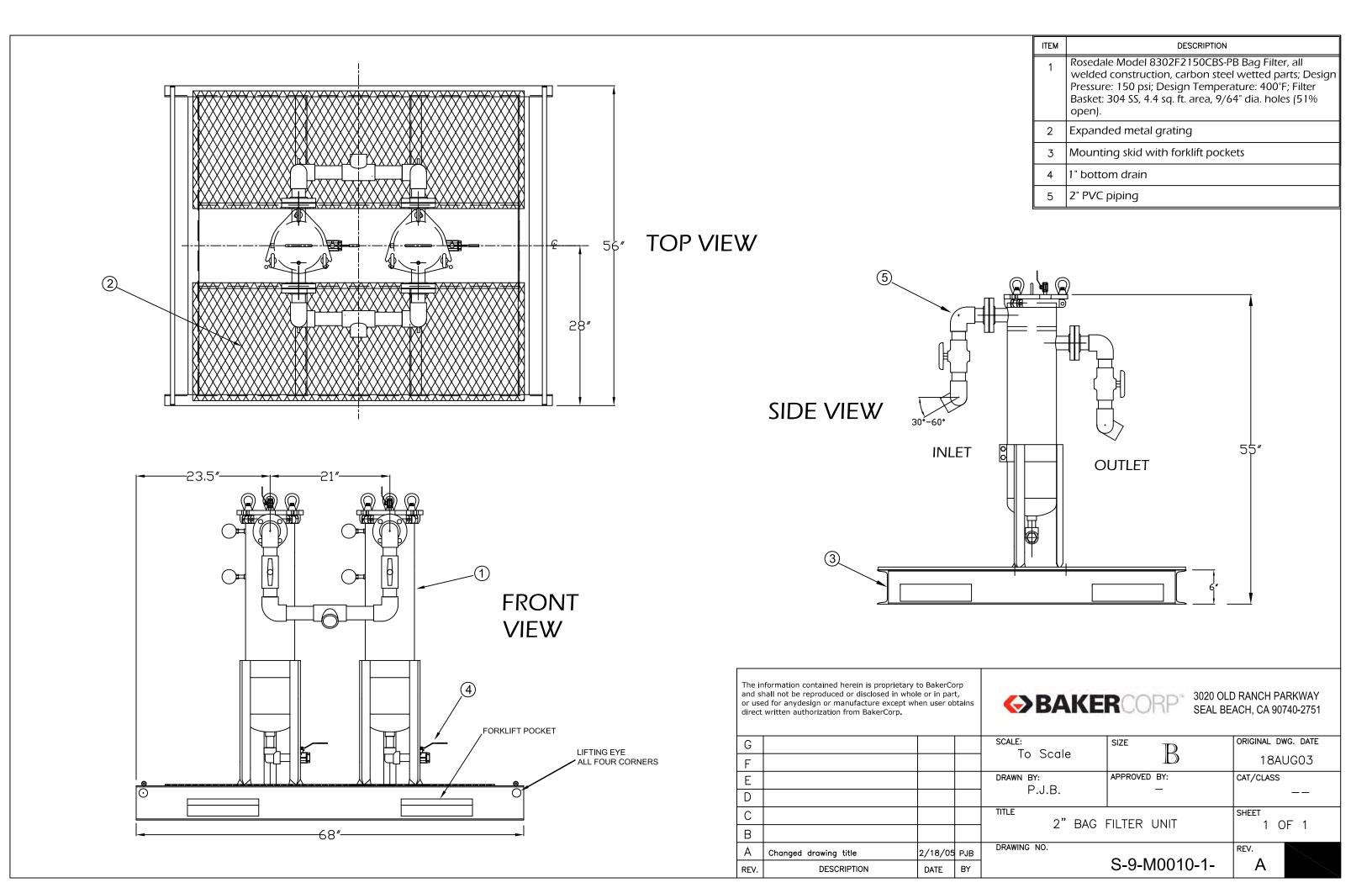
PRODUCT DATA SHEET January, 2007

2" DUPLEX BAG FILTER SYSTEM

GENERAL INFORMATION

Two independent filter housings are skid-mounted and piped such that one filter unit is active while the other is out of service. Inlet and outlet connections are provided on each end of the skid. Use for filtering a wide range of industrial and commercial process fluids, groundwater discharge from construction sites, stormwater or urban runoff.

WEIGHTS AND MEASURES


» Capacity:		50 - 110 gpm per filter when clean (depends on filter media micron rating)
» Design Pressure:	ļ[150 psi
» Design Temp:] [140°F max.*
» Height:][4'-9" (overall)
» Width :		4'-8"
» Length:		5'-8"
» Weight:		550 lbs. (approx.)
SKID DESIGN		
» Outer Frame:	ļ[6 x 8.2 A36 carbon steel channel
» Inter. Frame:		2"x2 "x3/16" A36 carbon steel angle
» Inter. Frame:» Filter Housing Pad:][][2"x2 "x3/16" A36 carbon steel angle 15 x 33.9 A36 carbon steel channel
» Filter Housing][][][, 3
» Filter Housing Pad:][][][15 x 33.9 A36 carbon steel channel

^{*}Practical limit for the PVC header piping. Unit could be used up to 225°F if carbon steel piping is used instead.

FILTER DESIGN						
» Filter Housing][Rosedale model 8-30-2F-2-150-C-B-S-PB				
» Top Cover:][Three eyenuts; hinged for easy access				
» Piping:]	2" schedule 80 PVC (inlet and outlet headers)				
» Inlet & Outlet:][2" 150# ANSI flanges				
» Cover Seal:][Buna N (Nitrile) o-ring				
» Housing Material:][Carbon Steel				
» Filter Basket:]	30" deep, 6.7" diameter, 4.4 sq. ft. surface area, 1000 cu. in. volume, 9/64" dia holes (51% open)				
» Filter Media:][Filter bags, size #2. Wide range of micron ratings is available, down to 1.0.				
» Vent Valves:][1/4" ball valve on top cover				
» Drain Valves:		1" ball valve on the bottom of each housing				
SURFACE DETAILS						
» Exterior High gloss polyurethane Coating:						
TESTS / CERTIFICA	TIONS	5				
» Test Performed:][Scheduled OMS inspections				

To the best of our knowledge the technical data contained herein are true and accurate at the date of issuance and are subject to change without prior notice. No guarantee of accuracy is given or implied because variations can and do exist. NO WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY BAKERCORP, EITHER EXPRESSED OR IMPLIED.

06/11/2018 10:33

18044 GeoEngineers Post and Poles PAZ

*** Mark McCullough BID TOTALS

<u>Biditem</u>	<u>Description</u>	<u>Quantity</u>	<u>Units Unit Price</u> <u>Bid Total</u>
10 40	Mobilization Mix Sand & ZVI	1.000 1,400.000	LS 67,697.26 67,697.26 BCY 98.44 137,816.00
50	Install ZVI Wall (.004 iron/soil by weight)	1,400.000	CY 101.89 142,646.00
60 80	Regrade site Demobilization	200.000 1.000	CY 57.79 11,558.00 LS 41,299.86 41,299.86

Bid Total =====> \$401,017.12

project <u>CPP</u> FS project no. <u>504-098-01</u>
by <u>J. Sugalski</u> date <u>5/3/18</u> sheet <u>L</u> of <u>L</u> checked by <u>JML</u>

ORC Injections

Assume solveled some at = 3-184. = 7 15 Rect Human Assume we will test the same one must 200 x 400 = 30,000 = < ascumul injection area. 2 18 St OC - from undor Assime operate of 5163/ 15 ft = (800 locations) (800 locators) (75 185) = (60,000 165 of ORC needed) 250 30 20/000,000 treatments the (130,000/ps of ope 120,000 12 @ 6.15/16 = \$738,000 ORC prohose cost Assume 1600 locations à 20 locations/day (two rigs) = 80 days to conduct two trutments = 7 assume two treatmes, each w/ 800 injections, 40 days

Oxygen Release Compound, ORC®

Remediation of Pentachlorophenol (PCP)

Pentachlorophenol (PCP) is a biocide used widely in the wood preservation industry. Laboratory results have successfully demonstrated bioremediation in soils and groundwater contaminated with pentachlorophenol. In fact, bioremediation has been recommended for implementation at numerous abandoned wood treatment sites (Dasappa, S.M. and R.C. Loehr, 1991). Oxygen Release Compound (ORC®) has been demonstrated to stimulate the rate of pentachlorophenol degradation and offers a unique alternative for PCP remediation.

Biodegradation of Pentachlorophenol

PCP degradation proceeds via a complex series of biochemical reactions beginning with an aerobic step that results in the formation of tetrachlorobenzoquinone (Spain, 1997). Subsequent dechlorination steps yield intermediate compounds susceptible to aerobic ring cleavage. The oxidative sequence ultimately ends in the formation of carbon dioxide.

Laboratory results indicate that PCP degradation occurs rapidly under aerobic conditions with half lives (T_{1/2}) less than 48 hours. (Maritinson et.al., 1984). Furthermore, field demonstrations in certain contaminated soils show half lives less than 15 days (Crawford and Hohn, 1985).

Pentachlorophenol Treatment with ORC

ORC provides a slow, steady supply of oxygen that can stimulate the aerobic degradation of pentachlorophenol. Results from a field study at a Region 9 USEPA wood treatment site show that soils amended with ORC achieved a PCP biodegradation half life (T1/2) of 37 days compared to the aerobic control (contaminated soils not treated with ORC but exposed to air) which showed a PCP degradation half life of 210 days (Vernalia, et.al., 1997).

A pilot study in which ORC filter socks are being used to enhance the remediation of PCP-contaminated groundwater has produced promising results. The following data were collected after 2.5 months of treatment with ORC.

Well No.	Distance Downgradient	Initial Concentration (ppb)	Concentration after 2.5 Months (ppb)
1	30	400	7
2	5	7 .	0.3
3	30	54	1.7
4	30	16	1.2

Full scale implementation of enhanced in situ bioremediation with ORC is currently under consideration at several wood treatment facilities with PCP contaminated soils and groundwater. ORC presents a passive, cost effective approach to the remediation of PCP, without the costs associated with highly engineered systems.

102224 Fage 2 or 2

ORC Installation Design Parameters

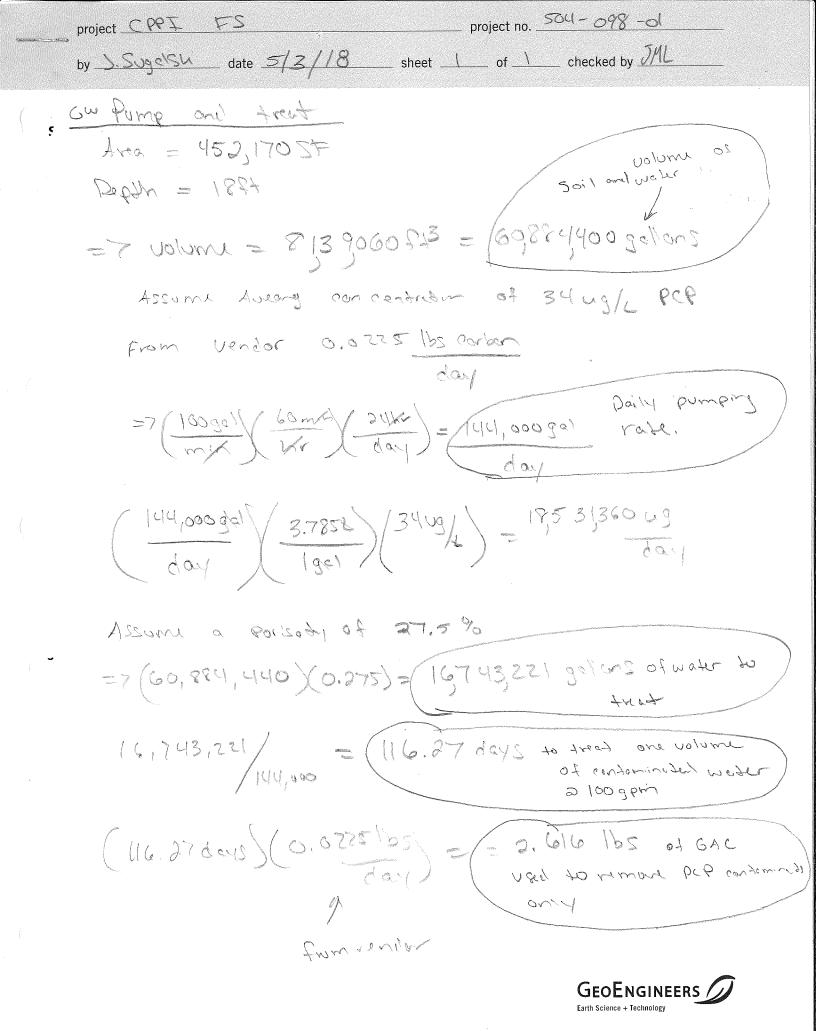
The theoretical mass ratio of oxygen to PCP required for the aerobic degradation of the contaminant is 0.54 to 1.0. Thus, 0.54 pounds of oxygen are required to degrade one pound of PCP.

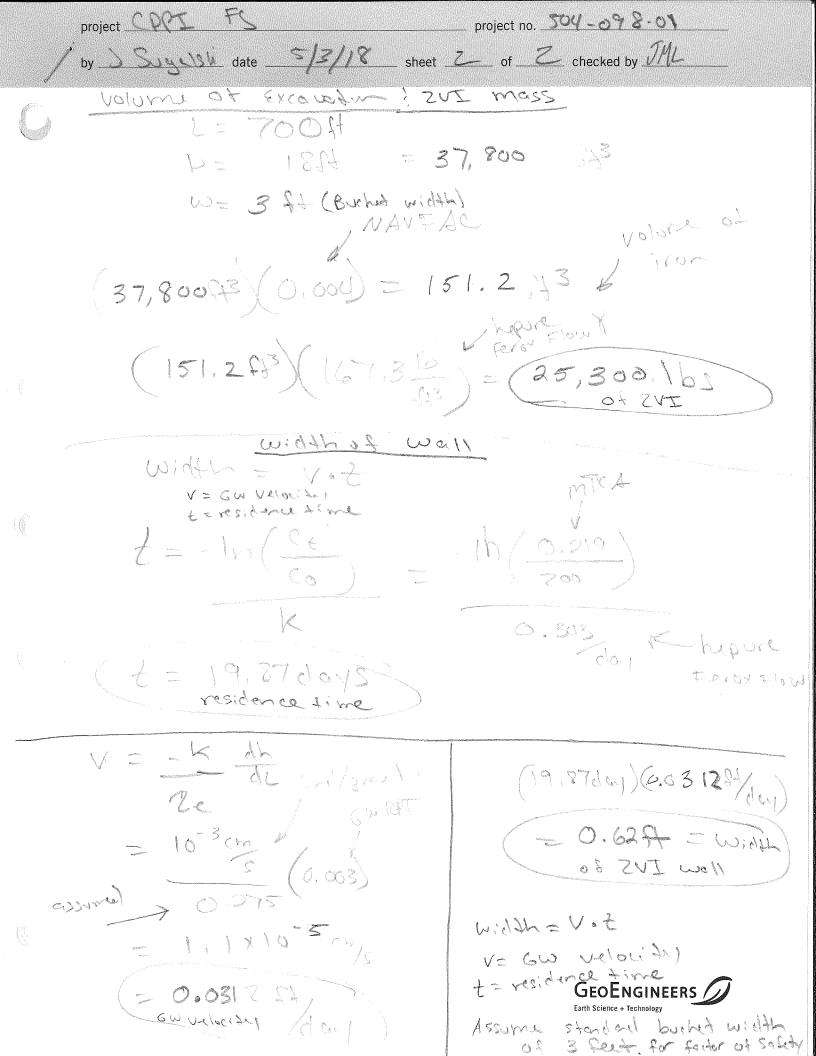
The sorption coefficient (K_{oc}) for pentachlorophenol is 5.30E+4 ml/g, suggesting that the compound has a stronger tendency to sorb to the aquifer matrix relative to petroleum hydrocarbons (e.g., benzene $K_{oc} = 8.30E+01$ ml/g). Therefore, when designing groundwater treatment systems employing ORC it is recommended that the aquifer matrix is sampled for PCP concentration. Such considerations will allow for more accurate indications of the oxygen demand imparted by the sorbed fraction of contamination.

References

Crawford, R.L., W.W.Mohn. 1985. Microbial removal of pentachlorophenol from soil using Flavobacterium. Enzyme Microbiol. 45;1122-1125.

Dasappa, S.M. and R.C. Loehr. 1991. Toxicity reduction in contaminated soil bioremediation processes. Water Res. 25:1121-1130.


Martinson, M.M., J.G. Steiert, D.L. Saber, and R.L.Crawford. 1984. Microbiological decontamination of pentachlorophenol in natural waters. In: Biodeterioration Society: Proceedings of the Sixth International Symposium. Ed.: E.E. O'Rear, Commonwealth Agricultural Bureau.


Spain, J. 1997. Synthetic Chemicals with Potential for Natural Attenuation. Bioremediation Journal 1:1-9.

Vernalia, J.L., L.T. LaPat-Polasko, S. Koenigsberg. 1997. Bioremediation of PCP in soil under anaerobic and aerobic conditions. In Situ and On-site Bioremediation 4:469. Eds: Alleman and Lesson. Battelle Press, Columbus, Ohio.

Technical Bulletin Index||Regenesis Home Page

project <u>CPP+</u> FS by <u>J Sugulai</u> date <u>S</u>		_ sheet		checked by JML	
Poduckiem	Rill	90	50:1	Meshry	
From EcoSPEAT	2				
rote -> 10 tens/h					
Assume 10hr	,		Car		
20 some 25			~ = A.	eril-November =	- 8 m
(8 month)					
=7 (100 ten	1)(240	donys)= 21	1,000 tor/year	
95,773 don 24,000 ton 4e0		4ye		a long	
a 24/40/da/ = 24	to tens		er en	era karan eta 1990 di Silat Sonni Baritha a renna kiranno alama arabian arabia karanta kiran asan 3.2 a bunda krontany	ann an t-Aire an Aire a
(240 to) (240	odays) -		7,600	70/16/	
95,773 hor 57,600 hory		Yeur	50	GEOENGINEERS Earth Science + Technology	

ct CPPI FS project no. 564-098-01 by 2 System date 5/3/18 sheet 1 of 2 checked by ZUI Well Dimanusions Assume 12 19th (= 700 ft) Depth = cross section A.A. 1484 (North) (D) 18ft (South) Assome 1844 (5) Abo.W V= LKdh Z- V. L ne di VE GOD VOLOR: 101 = 10-3 cm 0.0030 t= KS one Time 0.275 Z=In (C+) (10-10) = 0.00011 cm = 0.31254 day

FINAL

Technical Protocol for Enhanced Anaerobic Bioremediation Using Permeable Mulch Biowalls and Bioreactors

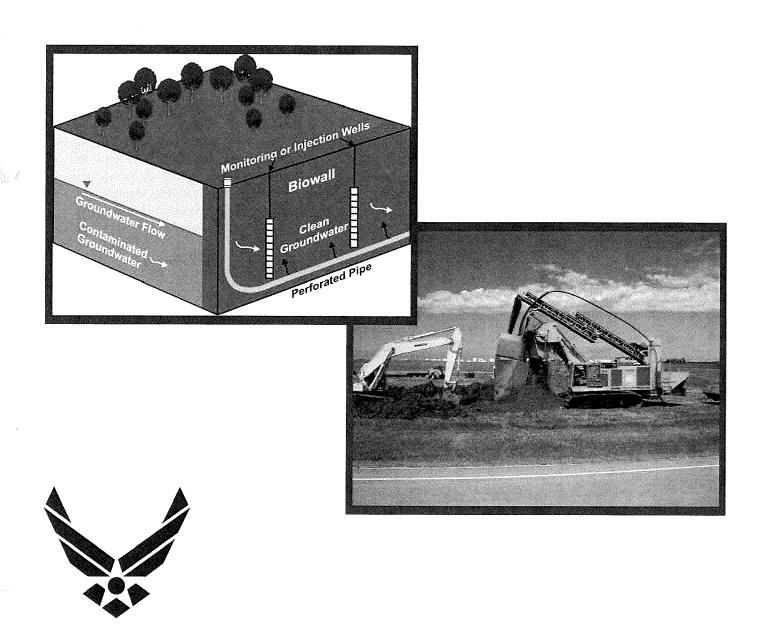


Table 3.1
Literature Values for First-Order Degradation Rates in the Presence of Mulch Substrates

Type of Study	Contaminant	First-Order	Reference
		Rate	
		Coefficient (k)	
Column Studies			
Column study using mulch mixture for	TCE	0.22 to 0.53	Shen and Wilson,
SS-17 biowall at Altus AFB, Oklahoma		per day	2007
Column study for RDX with 70% tree	RDX	0.20 to 0.27	Ahmad et al., 2007a
mulch to 30% pea gravel by volume		per hour	
Field Sites			
B301 Pilot Biowall, Offutt AFB,	TCE	0.114	Ahmad et al., 2007b
Nebraska		per day	using data from GSI,
			2001.
B301 Full-Scale Biowall, Offutt AFB,	TCE	0.185	Ahmad et al., 2007b
Nebraska		per day	using data from GSI,
			2004.
OU-1 Biowall, Altus AFB, Oklahoma	TCE	0.230	Ahmad et al., 2007b
		per day	using data from Henry
			et al., 2003.

For TCE, it appears that a range of k of 0.1 to 0.2 per day is a suitable approximation of the degradation rate that may be achieved in a biowall of approximately 1.5 to 2.0 feet in thickness. However, dechlorination of TCE to DCE to VC to ethene must also be accounted for if sequential biotic anaerobic reductive dechlorination is the primary degradation process. For such target contaminants experiencing reactions-in-series that yield toxic intermediates, the k value for each reaction can be estimated by utilizing the BIOCHLOR screening model to model the thickness of the biowall (Ahmad $et\ al.$, 2007b).

3.5.2 Residence Time

The residence time required to meet remedial objectives can simply be estimated from a reasonable first order rate constant(s) and the maximum contaminant concentration(s) that are present at a site. The solution to the first-order decay rate is:

$$C_t = C_o e^{-(kt)} \tag{3-1}$$

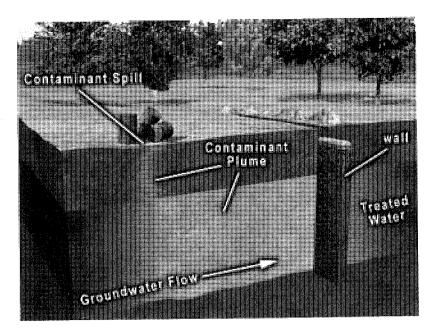
where

 C_t is the concentration (mass per unit volume or μ g/L) at time t (days)

 C_o is the initial concentration (µg/L)

k is the first order degradation coefficient (per day)

Equation 3-1 can be rearranged to yield the time (t) to meet a target concentration as:


$$t = -\ln\left(C_t/C_o\right)/k \tag{3-2}$$

ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370

FINAL TECHNICAL REPORT TR-NAVFAC-ESC-EV-1207

PERMEABLE REACTIVE BARRIER COST AND PERFORMANCE REPORT

Courtesy of Battelle

by
Battelle Memorial Institute
March 2012

The primary lessons learned from the PRB application at these three Navy sites are as follows:

- A ZVI design iron-to-soil mass ratio of 0.004 proved adequate to produce sufficient reducing conditions (e.g., ORP less than -150 mV) to degrade chlorinated compounds at the ZVI injection site.
- Monitoring remains key to evaluating system performance. The monitoring plan should include a monitoring network with wells located upgradient, cross-gradient, downgradient, and within the plume. Advanced field tools, including biaxial tiltmeter monitoring and down-hole pressure transducers, should be used to monitor injection of reactive material when fracturing and injecting.
- When fracturing and injecting at shallow depths, be aware of the risks of increasing soil vapor concentrations. Also note that pressurized injection may lead to "daylighting," when reactive media reaches the surface.
- The use of ZVI material may increase dissolved metal concentrations. This impact on secondary water quality should be carefully monitored and mitigated when necessary.
- Using recycled materials and minimizing the quantity and distance materials are transported make a large impact on reducing the carbon footprint and energy usage at a site.
- Rejuvenation of biowalls can be performed sustainably and cost-effectively to provide sufficient bioavailable carbon for perchlorate treatment. Key parameters include monitoring perchlorate, TOC, ORP, nitrate, and methane. For the majority of the wells, no carbon supplementation has yet been needed. The rejuvenation, when needed, may start as early as four to five years after biowall installation. However, the vegetable oil may be rapidly consumed, requiring subsequent additions of supplemental carbon as frequently as annually.

Review Paper

http://dx.doi.org/10.4491/eer.2011.16.4.187 pISSN 1226-1025 eISSN 2005-968X

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review

Buddhika Gunawardana¹, Naresh Singhal^{1†}, Peter Swedlund²

¹Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, Auckland, New Zealand

Abstract

Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.

Keywords: Chlorophenols, Bimetals, Dechlorination, Iron oxides, Passivation, Sorption, Zero valent iron

1. Introduction

Chlorinated phenols (CPs) are industrial chemicals with wide applications, such as pesticides, herbicides, disinfectants, biocides and wood preservatives [1, 2]. The group of CPs comprise of 19 different chlorinated phenolic compounds, including pentachlorophenol (PCP), 3 tetrachlorophenols (TeCP), 6 trichlorophenols (TCP), 6 dichlorophenols (DCP), and 3 monochlorophenols (MCP) [3]. CPs are industrially produced by direct chlorination of phenol with chlorine gas, as well as other reactions, such as hydrolysis and hydrodechlorination, or by chlorination of less chlorinated phenols in the presence of aluminium or iron trichloride [4, 5]. CPs are also by products of industrial processes, such as the bleaching of pulp using chlorine or chlorine dioxide [6] and during the production of higher chlorinated phenols [3]. CPs have been detected in groundwater, surface water, waste water, air and soils as a result of their improper disposal, leaching from landfills and the incineration of chlorinated

CPs have been identified as priority toxic pollutants by the

U.S. Environmental Protection Agency under the Clean Water Act [4, 7-9] due to their environmental persistence, low biodegradability and potential health hazard. The toxicity of CPs increases with the degree of chlorination, but decreases with the degree of their dissociation [4]. As a result, at low pH, where the non-dissociated form of CP is dominant, their toxicity is greater. While PCP has been identified as the most toxic chlorophenol [10], many CPs are of environmental concern due to their acute toxicity and resistance to degradation [1, 2]. In addition to PCP, which has a maximum contaminant level in drinking water of 1 ppb, 2, 4, 6-TCP and 2, 4-DCP are also in the list of drinking water contaminants [11]. CPs have been identified by the International Agency for Research on Cancer as possible carcinogens [3] and some studies involving the exposure to PCP via inhalation and dermal contact have shown the development of specific cancers, such as non-Hodgkin's lymphoma, multiple myeloma, soft tissue sarcoma and liver cancer [12]. A case study of sawmill workers in New Zealand exposed to PCP reported neuropsychological effects and respiratory diseases in some cases [13]. PCP is also acutely toxic to aquatic microorganisms and fish [10]. Even

Received September 10, 2011 Accepted November 20, 2011

†Corresponding Author E-mail: n.singhal@auckland.ac.nz Tel: +64-9-373-7599 (Ext, 84512) Fax: +64-9-373-7462

²Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

[©] This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

CALL US 866-727-4776

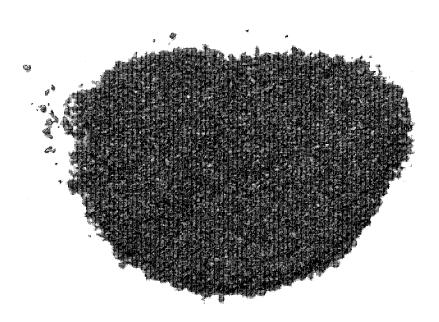
hepure

All
Zero Valent Iron
Emulsified ZVI
Chemical Oxidants
Emulsified Vegetable Oil
Site-Ready Solutions

Additional Remediation Chemicals

FEROX FLOW

sized for optimum treatment of contaminant plumes


Ferox Zero Valent Iron Powders Ferox PRB Ferox Flow Ferox Target

Ferox Flow is a highly reactive, remediation grade zero valent iron (ZVI) powder proven to

CALL US 866-727-4776

contaminant source areas.

Ferox Flow Zero Valent Iron Powder

Ferox Flow is Hepure's most versatile ZVI product, capable of treating numerous contaminant types (CVOCs, Metals, and PCBs) in a variety of geological settings (i.e. unsaturated/saturated zone, silt, clay, and bedrock). The particle size is ideal for providing high reactivity and long treatment life.

Ferox Flow reacts abiotically with contaminants, bypassing the more harmful daughter products (i.e. DCE and vinyl chloride). The reactivity is driven by surface area and is an important element in design of ZVI treatment projects. Ferox Flow is 95% pure ZVI containing no residual oils. The patented manufacturing process produces a consistent product from cast iron stock with over 90% of the particles in the 100 to 150 micron size range.

CASE STUDIES

GET PRODUCT INFORMATION

SAFETY DATA SHEET

Contaminants Treated	Grain Size	Reactivity	Bulk Density	Packaging
Halogenated aliphatics (PCE, TCE, TCA) Halogenated Aromatics PCBs	Mesh: -100/+325	Rate Constant – 0.343/day	2.68 g/cm3	2.68 g/cm3
Nitroaromatics Metals Halogenated herbicides	Micron: 100 150	Surface Area – 4.81 m2/g	167 lb/ft3	Super Sacks – 500 – 1000 kg

Treatment:

Ferox Flow is a direct replacement for many dechlorination amendments providing a long term treatment solution when high contaminate concentrations may lead to formation of DCE and VC in excess of the amendments capacity. Ferox Flow is commonly mixed with emulsified vegetable oil and sodium lactate to make an eZVI solution, **Ferox Plus**. The long term biological dechlorination process utilizing EVO/Lactate is a proven compliment to the abiotic dechlorination of ZVI. Ferox Flow can also be combined with Ferox Target to provide additional reactivity and longevity for high concentrations or source area DNAPL.

Product Performance:

Ferox Flow's uniform particle size provides exceptional cost-effective performance. The substantial number of catalytic sites on the powder surface ensures superior reactivity and supports lower ZVI loading requirements in comparison to other ZVI materials. Figure 1 shows a comparison of ZVI iron powder ability to degrade Trichloroethylene (TCE).

project CPPT FS project no. 554-098-01 by 1. Sugaish date 5/3/18 sheet 1 of 1 checked by JML on 3:00 consolidations for thermal tred mod FOOT Print = 6,000 yd2 = Google Parth = 56, 803 × 13.15ac 218" + (150'x 225'x 20') deep some en 6,400 = 8.9 yds = 27 Alech high reosonable treatment cell size 31,823 CY (= 13,15ac 218" dup 6,400 SY = 5 Vc) = 15 ft high 25,000 C' (= 150' x 225' x 70' deces source crea. and I some to offer piet 6.400 SY Colville concrete - concrete = \$1/01.60 \$1110.40. Rel MASteredies. =7 (6,400 SY) (0,5 ST) = 1066:7CY (1066.70 + (\$110.40/) - (\$117,760 - concrub alone not including rebor; kebir

project CPP FS project no. 304 - 048 - 01 by J. Sugalski date 5/3/18 sheet 1 of 1 checked by JML Volume of thin lift's for wetlands wedlen = 5.36 ac = 27, 249 yd2 $= 7 \left(27,249 \text{ yd}^2 \right) \left(\frac{1}{3} \right) = 9,083 \text{ yd}^3$ $12'' \circ 2 = 9,100 \text{ yd}^3$ Croque From Google Eath Volume of dibri P.U. For Google Forth Are 1600 St for NW PIL => (16002) (6 plus) (2 ft high) = 19,200273 assumed (= 711 CY 22000.8 # 6.15 = 170,000 H 10-12A OC 75/05/point 440 points/ac the parks 68,95/16

JR Sugalski

From: Platts, Scott <Scott.Platts@avistacorp.com>

Sent: Thursday, May 24, 2018 3:33 PM

To: JR Sugalski **Subject:** Avista

Hi JR,

Depending on load and location, we can supply up to 1500 kVA 480 volt 3-phase service for around \$50,000. I am waiting for answers from our transmission department as to the feasibility of tapping into our 115 kV line. Can you provide more information as to what you anticipate for this project:

Duration of project?

Type of equipment (horsepower, kVA, etc.)?

Will the load be steady or intermittent?

If tapping off of the transmission line to a primary meter, will you provide the substation or do we need to build one? Other information?

Thanks, Scott

Scott Platts

Project Coordinator

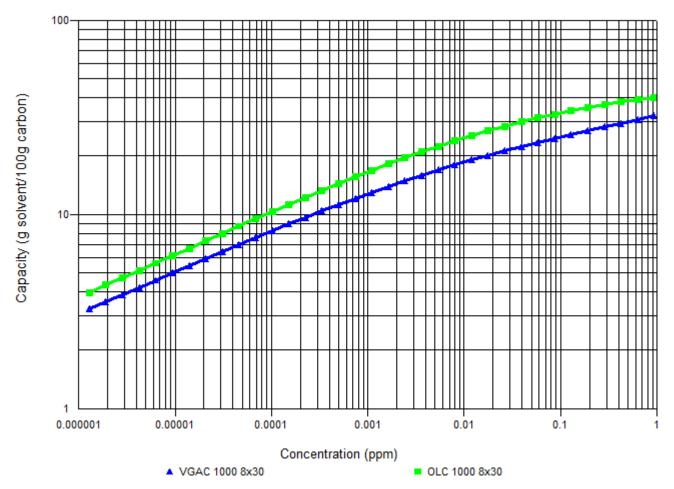
Corp

Office 509-685-6416 **Fax** 509-777-5770 **Cell** 509-690-2087

scott.platts@avistacorp.com

CONFIDENTIALITY NOTICE: The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or an agent of the intended recipient, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments.

JR Sugalski


From: Tim Ferris <TFerris@bakercorp.com>
Sent: Thursday, May 10, 2018 1:11 PM

To: JR Sugalski

Subject: RE: Activated Carbon Isotherms Request: Colville Post and Poles Feasibility Study

Assuming Pentachlorophenol is the only organic in the stream, it is estimated that 0.02 to 0.025 lbs carbon will be exhausted per day at 100 GPM and 25°C. I have attached a single component isotherm for Pentachlorophenol. This assumes minimal concentrations of any VOC's. If we know the total volume you'll be treating we can tell you the total burn rate. The total gpm, work shifts hours combined with the flowrate of 100gpm will give us the final total

Liquid Phase Isotherm for Pentachlorophenol at 25 C and 1 atm

Tim Ferris Sr.Sales Representative 9715 24th Place West Everett, WA 98204 p. 425-347-8811 f. 425-347-0369 m. 206-793-6136

1

CONFIDENTIALITY NOTICE: This e-mail and any attachments contain information from BakerCorp and are intended solely for use by the intended recipients. Any dissemination of this e-mail by anyone other than an intended recipient is strictly prohibited.

From: JR Sugalski [mailto:jsugalski@geoengineers.com]

Sent: Tuesday, May 08, 2018 2:43 PM **To:** Tim Ferris < TFerris@bakercorp.com>

Subject: Activated Carbon Isotherms Request: Colville Post and Poles Feasibility Study

Thanks for speaking with me this afternoon!

Attached is our groundwater data for the site. I would appreciate it if you could provide the following information:

- Adsorption isotherm (theoretical or actual)
- GAC canister dimensions
- GAC bulk density
- Any additional information like design hydraulic loading, empty bed contact time or other information is appreciated.

Our site is about 13 acres and the contaminated groundwater is limited to about about half the site. After source removal, I would hope our PCP concentration in groundwater would be reduced to less than 100 ug/L (ideally around 30 ug/L) and that is what we would be sending to the GAC units. I would expect we would be pumping and reinjecting or discharging groundwater for quite a while at this site.

Please let me know if you need additional information,

JR Sugalski, PE

Environmental Engineer 2 | GeoEngineers, Inc.

Telephone: 509.209.2830

Fax: 509.747.2250 **Mobile:** 509.991.4471

Email: jsugalski@geoengineers.com

523 East Second Avenue Spokane, WA 99202 www.geoengineers.com

LinkedIn Profile

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Confidentiality: This message is confidential and intended solely for use of the individual or entity to whom it is addressed. If you are not the person for whom this message is intended, please delete it and notify me immediately, and please do not copy or send this message to anyone else.

OT RGGB01

S&E JOB NO : 182011

ONTRACT NO : 009258

: SR 395 : US 395

182011

: SPOKANE

: HSIP-0395 (109)

DEER PARK CORRIDOR -

INTERSECTION IMPROVEMENTS

ERSION NO : 3

TITLE

ROJECT

OUNTY (S)

REVISION NO :

WORK ORDER# : XL5422

REGION NO

Misc Cost Estimates

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION * * * BID CHECK REPORT * * *

DATE: 04/16/2018 TIME: 13:21

_querage = 12k

BIDS OPENED ON : Apr 25 2018

AWARDED ON : May 2 2018

2ND BIDDER LOW BIDDER

CPM DEVELOPMENT CORPORATION SHAMROCK PAVING, INC. 5111 E BROADWAY AVE 110 N HAYFORD RD

SPOKANE VALLEY WA 99212-0928 SPOKANE, WA 99224-9555 SPOKANE WA 992203366 SPOKANE WA 992199263

CONTRACTOR NUMBER : 406000 CONTRACTOR NUMBER :

ENGR'S. EST.

TEM	ITEM DESCRIPTION	UNIT	PRICE PER UNIT/	PRICE PER UNIT/	% DIFF./	PRICE PER UNIT/	% DIFF./
NO.	EST. QUANTITY	MEAS	TOTAL AMOUNT	TOTAL AMOUNT	AMT.DIFF.	TOTAL AMOUNT	AMT.DIFF.

	PREPARATION							
1	MOBILIZATION							
		L.S.			23.66%		45.05 %	
			206,828.00	255,761.36	48,933.36	300,000.00	93,172.00	
2	CLEARING AND GRUBBING							
	4.2500	ACRE	5,000.0000	12,000.0000	140.00%	5,000.0000	0.00%	
			21,250.00	51,000.00	29,750.00	21,250.00	0.00	
3	REMOVING ASPHALT CONC.	PAVEMENT						
	950.0000	S.Y.	3.5000	10.0000	185.71 %	29.0000	728.57 %	
			3,325.00	9,500.00	6,175.00	27,550.00	24,225.00	
4	REMOVING GUARDRAIL							
	220.0000	L.F.	7.0000	9.0000	28.57%	9.0000	28.57 %	
			1,540.00	1,980.00	440.00	1,980.00	440.00	
5	REMOVING GUARDRAIL AND	HOR						
	3.0000	EACH	250.0000	350.0000	40.00%	400.0000	60.00%	
			750.00	1,050.00	300.00	1,200.00	450.00	
6	REMOVING GUIDE POST							
	69.0000	EACH	10.0000	10.0000	0.00%	10.0000	0.00%	
			690.00	690.00	0.00	690.00	0.00	
7	REMOVING PAINT LINE							
	300.0000	L.F.	2.0000	5.0000	150.00%	5.0000	150.00 %	
	Germany were structure		600.00	1,500.00	900.00	1,500.00	900,00	
8	REMOVING WIRE FENCE							
	760.0000	L.F.	5.0000	6.0000	20.00%	5.0000	0.00 %	
			3,800.00	4,560.00	760.00	3,800.00	0.00	
- 2	GRADING							
9	SOIL DECOMPACTION		10.00					
	6392.0000	S.Y.	5.0000	0.7500	-85.00%	15.0000	200.00 %	
0.4	conditional to a majority from the		31,960.00	4,794.00	-27,166.00	95,880.00	63,920.00	
10	ROADWAY EXCAVATION INC	Service and the service and th						
	13440.0000	C.Y.	20.0000	13.2500	-33.75 %	22.0000	10.00%	
			268,800.00	178,080.00	-90,720.00	295,680.00	26,880.00	

36E JOB NO: 182011

ONTRACT NO: 009258

: SR 395

: US 395

18Z011

: SPOKANE

: HSIP-0395(109)

DEER PARK CORRIDOR -

INTERSECTION IMPROVEMENTS

ERSION NO :3

WY

ITLE

ROJECT

OUNTY (S)

REVISION NO :

REGION NO : 6

WORK ORDER# : XL5422

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION * * * BID CHECK REPORT * * *

DATE: 04/16/2018

TIME: 13:21

BIDS OPENED ON : Apr 25 2018

AWARDED ON : May 2 2018

----- LOW BIDDER ----- 2ND BIDDER -----

CPM DEVELOPMENT CORPORATION SHAMROCK PAVING, INC. 5111 E BROADWAY AVE 110 N HAYFORD RD

5111 E BROADWAY AVE 110 N HAYFORD RD SPOKANE VALLEY WA 99212-0928 SPOKANE, WA 99224-9555

SPOKANE WA 992203366 SPOKANE WA 99224-9555 SPOKANE WA 992203366 SPOKANE WA 992199263

CONTRACTOR NUMBER : 406000 CONTRACTOR NUMBER : 553750

ENGR'S, EST.

TEM NO.	ITEM DESCRIPTION EST. QUANTITY	UNIT MEAS	PRICE PER UNIT/ TOTAL AMOUNT	PRICE PER UNIT/ TOTAL AMOUNT	% DIFF./ AMT.DIFF.	PRICE PER UNIT/ TOTAL AMOUNT	% DIFF./	
	entrales comete done	235360 a w2 10 mm						
	EROSION CONTROL AND R	m						
35	SEEDING, FERTILIZING,							
	4.5700	ACRE	1,200.0000	5,112.0000	326.00%	5,500.0000	358.33 %	
	Datasa Const.		5,484.00	23,361.84	17,877.84	25,135.00	19,651.00	
36	TOPSOIL TYPE A							Die
	617.0000	S.Y.	10.0000	11.0000	10.00%	20.0000	100.00%	-
22	WIND THE PROPERTY		6,170.00	6,787.00	617.00	12,340.00	6,170.00	
37	WEED AND PEST CONTROL							
		EST.	4 410 41	1.0110000	0.00%		0.00 %	
38	SOIL AMENDMENT		3,000.00	3,000.00		3,000.00		
50	1.5600	ACRE	15 000 0000	2 252 5555	10.000	2 2000000	42.44	
	1.5000	ACKE	15,000.0000	8,360.0000	-44.27%	8,000.0000	-46.67 %	
39	HIGH VISIBILITY SILT	PENCE	23,400.00	13,041.60	-10,358.40	12,480.00	-10,920.00	
-	3070.0000	L.F.	5.0000	6.0000		7 0000	** ***	
	5070.000	4.2.	15,350.00	18.420.00	20.00 % 3,070.00	7.0000	40.00 %	
			13,330.00	18,420.00	3,070.00	21,490.00	6,140.00	
	TRAFFIC							
40	ROUNDABOUT SPLITTER I	SLAND NOSING CURB						
	12.0000	EACH	150.0000	385.0000	156.67%	400.0000	166.67 %	
			1,800.00	4,620.00	2,820.00	4,800.00	3,000.00	
41	ROUNDABOUT CEMENT CON	CRETE CURB AND GUTTE	ER			2000		
	2682.0000	L.F.	20.0000	20.0000	0.00%	20.0000	0.00 %	
20			53,640.00	53,640.00	0.00	53,640.00	0.00	
42	ROUNDABOUT CENTRAL IS	manufacture of the second seco	CURB					
	396.0000	L.F.	25.0000	97.0000	288.00%	95.0000	280.00 %	
			9,900.00	38,412.00	28,512.00	37,620.00	27,720.00	
43	ROUNDABOUT TRUCK APROI	N CEM. CONC. CURB AN						
	900.0000	L.F.	20.0000	28.0000	40.00%	30.0000	50.00 %	
			18,000.00	25,200.00	7,200.00	27,000.00	9,000.00	
44	BEAM GUARDRAIL TYPE 3:							
	25.0000	L.F.	22.0000	32.5000	47.73%	33.0000	50.00 %	
			550.00	812.50	262.50	825.00	275.00	

OT RGGB01

TITLE

ROJECT

NO.

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION * * * BID CHECK REPORT * * *

DATE: 04/16/2018

TIME: 13:21

BIDS OPENED ON : Apr 25 2018

AWARDED ON : May 2 2018

REGION NO : 6 WORK ORDER# : XL5422

REVISION NO :

----- LOW BIDDER ----- 2ND BIDDER -----

CPM DEVELOPMENT CORPORATION

SHAMROCK PAVING, INC.

5111 E BROADWAY AVE

110 N HAYFORD RD

SPOKANE WA 992203366

SPOKANE VALLEY WA 99212-0928 SPOKANE, WA 99224-9555 SPOKANE WA 992199263

CONTRACTOR NUMBER : 406000 CONTRACTOR NUMBER : 553750

OUNTY (S) : SPOKANE

S&E JOB NO : 182011

ONTRACT NO: 009258 ERSION NO :3

: SR 395

: US 395

18Z011

: HSIP-0395 (109)

EST. QUANTITY

DEER PARK CORRIDOR -

INTERSECTION IMPROVEMENTS

ENGR'S. EST.

PRICE PER UNIT/ % DIFF./

PRICE PER UNIT/

% DIFF./

PRICE PER UNIT/ ITEM DESCRIPTION UNIT TEM

MEAS

TOTAL AMOUNT

TOTAL AMOUNT

AMT.DIFF.

TOTAL AMOUNT

AMT.DIFF.

			Dese	Expauctor	-			
66	OTHER ITEMS STRUCTURE EXCAVATION C	TACO D THOSE HAITE	- Veck	51.00				
00	230.0000	C.Y.	15.0000	17.7500	18.33 %	13.5000	-10.00 %	
	250.000		3,450.00	4,082.50	632.50	3,105.00	-345.00	
67	SHORING OR EXTRA EXCAV	ATION CLASS B						
7.5	860.0000	S.F.	1.0000	19.2000	1,820.00%	5.4000	440.00 %	
			860.00	16,512.00	15,652.00	4,644.00	3,784.00	
68	PLUGGING EXISTING PIPE			1 23 524		21.52 (\$2.00)	200 200	
	1.0000	EACH	300.0000	500.0000	66.67 %	750.0000	150.00%	
			300.00	500.00	200.00	750.00	450.00	
69	CEMENT CONC. SIDEWALK		Andrewood	20,000		55.0000	-35.29 %	
	196.0000	S.Y.	85.0000	51.0000	-40.00%	A 1,7 P.16 P.16 P.		
			16,660.00	9,996.00	-6,664.00	10,780.00	-5,880.00	
70	CEMENT CONC. CURB RAMP		77 0000	75.0000	0.00%	100.0000	33.33 %	
	18.0000	S.Y.	75.0000 1,350.00	1,350.00	0.00	1,800.00	450.00	
	ANTONIO ANTO MINISTER T	OT AND	1,350.00	1,350.00	0.00	2,000.00	-9,5,5,5	
71	CEMENT CONC. TRAFFIC I 773.0000	SLAND S.Y.	65.0000	41,0000	-36.92%	44.0000	-32.31 %	
	773.0000	3.1.	50,245.00	31,693.00	-18,552.00	34,012.00	-16,233.00	
72	HMA RAMP		24622200	22(523,68	200000000000000000000000000000000000000			
	4.0000	EACH	250.0000	935.0000	274.00%	1,800.0000	620.00 %	
	. 517575		1,000.00	3,740.00	2,740.00	7,200.00	6,200.00	
73	CHAIN LINK FENCE TYPE	3						
1.00	67.0000	L.F.	70.0000	60.0000	-14.29%	65.0000	-7.14 %	
			4,690.00	4,020.00	-670.00	4,355.00	-335.00	
74	END, GATE, CORNER, AND	PULL POST FOR CHAIN	INK FENCE			W. C	Of the second	
	2.0000	EACH	225.0000	325.0000	44.44 %	400.0000	77.78 %	
			450.00	650.00	200.00	800.00	350.00	
75	WIRE FENCE TYPE 2			Co. USTA	24.000	22 2222	322.22 %	
	210,0000	L.F.	9.0000	37.0000	311.11 %	38.0000		
			1,890.00	7,770.00	5,880.00	7,980.00	6,090.00	
76	REMOVE AND RESET GATE	554.0	227,227		260.00%	2,000.0000	300.00 %	
- 3	1.0000	EACH	500.0000	1,800.0000	1,300.00	2,000.000	1,500.00	
			500.00	1,800.00	1,300.00	2,000.00	1,500.00	
*								

Quote number 1899 Date: 5/14/2018

JR Sugalski Geoengineers 523 East 2nd Ave Spokane, WA, 99202

Exhibit A - Confidential

Regarding: Cost Estimate: Colville Post and Pole (F032 waste) meeting Pre Existing ODEQ Variance Conditions

Dear JR,

Thank you for considering Waste Management (WM) for your Industrial and Hazardous Waste needs. We appreciate your business and look forward to providing you with the best waste services in the industry. The attached quotation is based on our discussions regarding your service needs as summarized below.

Scope of Service

- WM will provide Transportation and Disposal of Waste Materials from Site.
- · See Special Conditions.

This quotation is made subject to: (1) the terms and conditions of Waste Management's standard Industrial Waste Service Agreement, which shall be executed by the parties in connection with performing the services described above, (2) the proper submittal of an acceptable Generator Waste Profile Sheet(s), which must be submitted to and approved by an authorized Waste Management facility, including any analytical data requested by Waste Management regarding the waste stream.

Waste Management is a recognized leader in the waste disposal business with the ability to manage the quoted services at or through our permitted and licensed facilities. To accept this proposal and initiate project start, please sign the acknowledgement block below and return this document to my

I look forward to assisting you with your environmental needs. If you have any questions or need further assistance, you may reach me at the contact information listed below.

Sincerely,

Fred Downs

Fred Downs
Senior Industrial Account Manager
509 309 6850 fdowns1@wm.com

PRICE SCHEDULE			
Disposal Pricing Code / Description	Price	Unit	Facility
LF04 Hazardous Waste for Subtitle C Disposal (meets LDR's)	\$182.50	Ton	Chem Waste Manag
STAB07 Macro encapsulation (must be 50% or greater debris)	\$318.00	Yd	Chem Waste Manag
Transportation Pricing			
Code / Description	Price	Unit	Minimum
NA002 Transportation pricing is included in quoted disposal rates	;	Per each	\$5,475.00
NA002 Transportation pricing is included in quoted disposal rates		Per each	\$6,360.00
Assessorial	Duine	l lmi4	
SUP001 Liners, dump truck	Price \$60.00	Unit Each	

Fees and Taxes

- \$75 profile fee charged to each profile submitted.
- Taxes are included in the disposal price quoted above.

General Conditions

- 1. Pricing is contingent upon waste profile acceptance as proposed.
- 2. Truck transportation pricing is based on same day unload at the proposed WM facility.
- 3. Railroad schedules are dictated by the corresponding Railroad. WM will not be liable for any charges resulting in delays caused by the Railroad.
- 4. Pricing in this proposal is valid for a term of 30 days from the date listed above. Upon acceptance, pricing will be valid for one calendar year.
- 5. Generator is responsible for waste classification.
- 6. Material with a density < 75 pounds/cubic foot will be billed by the cubic yard
- 7. Unless otherwise noted, applicable state, local and federal taxes are not included in the enclosed rates and will be assessed during invoicing.
- 8. Waste removal scheduling is dependent upon available equipment at the time of project startup.
- 9. Nonconforming waste is subject to additional charges and fees.
- 10. A 10 ton/yard minimum will apply to all bulk solid disposal rates.
- 11. Demurrage charges of \$125/hr will be assessed on delays exceeding ½ hour load and unload time.
- 12. Rinsate from tanker washout will be invoiced at quoted disposal rates.
- 13. Transportation quoted by weight or volume will be subject to a minimum charge.
- 14. Certificates of disposal (other than TSCA waste) will be charged at \$35/cert if noted at the time of profile generation and \$400/cert if requested after the waste is received.
- 15. Standard profile approval time is 2-5 days. 1 day expedited approval available for an additional fee of \$500.

- 16. Transportation ordered, but not used will be invoiced at cost plus 15%.
- 17. Unless noted above, a variable fuel and environmental fee currently at 17.5% will apply to this projet.
- 18. Excluding certain contracted rates, pricing will be increased annually based on consumer product index, customarily ranging between 2%-8%.

Special Conditions

- 1. ODEQ Tax \$2.50/ton included for Remedial Wastes (non-Characteristic) over 25,000 tons.
- 2. Liner charge if liners required.

Acknowledgement

Your signature below indicates your acceptance of the pricing and terms detailed in the quote above Thank you for the opportunity.

Signature	Date
Printed Name	

Waste Category Definitions

LF04	Must pass paint filter test, meet LDR's, no asbestos
STAB07	>=50% debris (pieces bigger than 60mm). No free liquids, no asbestos, maximum size 2ft tx 4ft (larger size case by case)

GeoEngineers, Inc.

Colville Post and Poles Site Colville, Washington

Preliminary Site Evaluation Budgetary Proposal

May 30, 2018

About Cascade Thermal

- A U.S. based company offering all major methods of subsurface heating:
 - In Situ Thermal Desorption (ISTD) via Thermal Conductive Heating (TCH)
 - Steam Enhanced Extraction (SEE)
 - Electrical Resistance Heating (ERH)
- Completed 80 thermal projects worldwide either directly or through a Licensee
- Meets treatment goals 100% of the time
- Cascade Thermal Experience Modification Rating (EMR) history:
 - 0 2017: 0.74
 - o 2016: 0.70
 - o 2015: 0.69
 - 0 2014: 0.91
 - o 2013: 0.89
 - o 2012: 0.90

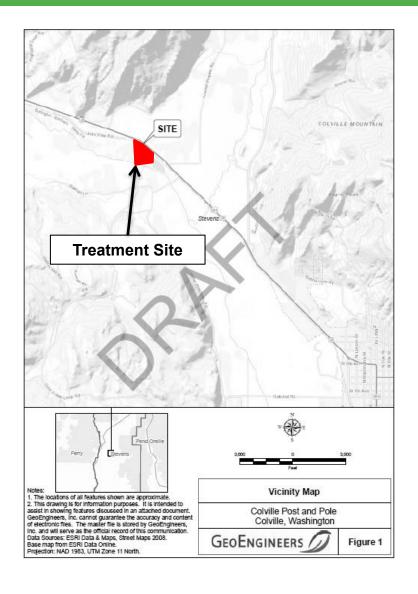
Site Background

Site Name: Colville Post and Poles Site

Site Location: Colville, Washington

Site/Environmental Consultant: GeoEngineers, Inc.

Objective: Obtain a conceptual cost to implement thermal remediation at the site


Contaminants of Concern: PCP, Diesel, Dioxin Congeners and Furan Congeners

Site Location Map

Geology and Hydrogeology

Geology:

- 0.0 to 5.0 ft bgs: Fill-Clay, Silt, Sand, Gravel, Cobbles, Wood Chips
- 5.0 to 9.0 ft bgs: Silt
- 9.0 to 15.0 ft bgs: Sand With Variable Fines Content
- 15.0 to 24.0 ft bgs: Gravel With Variable Sand and Fines Contents
- Beyond 24.0 ft bgs: Clay

Hydrogeology: Water surface elevation varies between 5 to 9 ft bgs.

Hydrogeology:

A hydraulic conductivity value of 2.8 ft/day (1.0x10⁻³ cm/sec) was provided.

Hydraulic gradient: A hydraulic gradient of 0.003 ft/ft was provided.

Since the site remedy is an ex situ application, the hydrogeological parameters do not have a significant affect on the evaluation

Treatment Areas

Treatment Piles

For this preliminary approach, a two phase pile approach was considered. In the next phase of the project it should be evaluated how many treatment phases is the most cost effective for the project.

Total estimated volume is 57,000 cy of contaminated soils.

	ment Area d ²)	Pile Area (ft²)	Pile Treatment Height (ft)	Pile Treatment Volume (CY)		
Treatment Pile Phase 1	7,200 (L: 476 ft – W: 136 ft)	65,000	12	28,800		
Treatment Pile Phase 2	7,200 (L: 476 ft – W: 136 ft)	65,000	12	28,800		

Contaminants of Concern, Mass Estimate, and Remediation Goals

Contaminants of Concern: PCP, Diesel, Dioxin Congeners and Furan Congeners.

Mass Estimate: Mass was not provided. An average concentration (total chemicals) of 50 mg/kg was assumed,

providing a total mass of around 1,500 lbs/pile..

Remediation Goals:

	Groundwa	ater (µg/L)	Soil			
Chemical Name	Max Level Detected	Target Level	Max Level Detected	Target Level		
Pentachlorophenol	190	0.219	97,000 µg/Kg	2,500 μg/Kg		
Dioxin/furan				5.2 pg/kg		
Diesel	1.3	0.5	20,000 μg/Kg	2,000 μg/Kg		

Please note that we recently reached dioxin concentrations below 1 pg/kg in a similar IPTD application.

Conceptual Treatment Approach/Methodology

Conceptual Treatment Approach:

Treatment Pile 1 and 2

- In Pile Thermal Desorption (IPTD)
- Thermal Conduction Heating (TCH) using horizontal heaters (2 horizontal layers) with a spacing of 8 feet to target the treatment temperatures required. Soil vapor and steam extraction from horizontal extraction wells installed in the pile used to extract the vaporized contaminants and steam, and to maintain pneumatic control.
- Heater cans and vapor screens are placed in the pile as the layers are placed no drilling is needed.

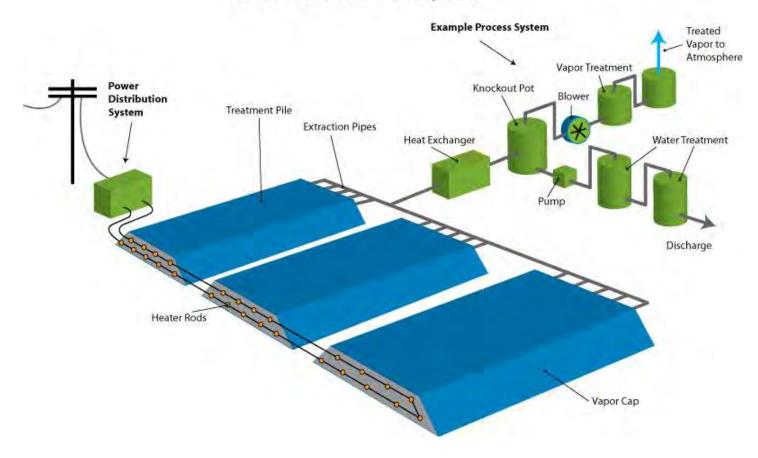
Vapor and Liquid Treatment Approach:

Extracted vapors and liquid (condensate) treated using Granular Activated Carbon (GAC).

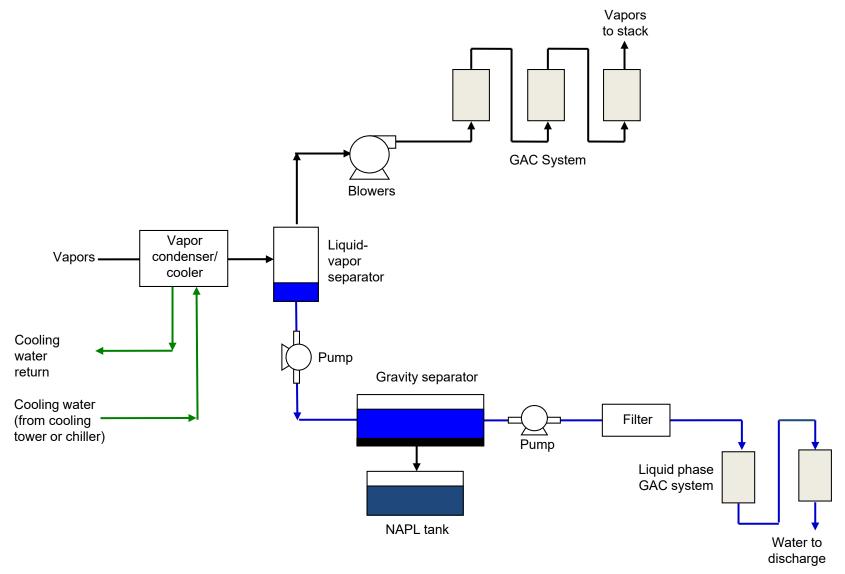
Monitoring:

- Temperature and pressure monitoring to track subsurface heating, pneumatic, and hydraulic control.
- · Vapor and liquid treatment system monitoring for mass removal and discharge compliance.

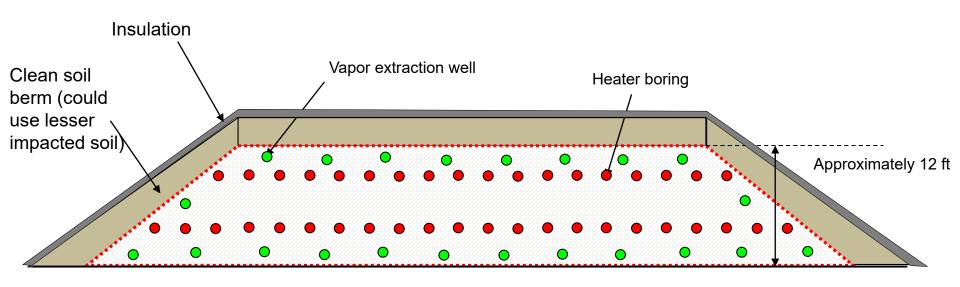
Technology Description


In-Pile Thermal Desorption (IPTD®) is proposed for on-site treatment of the contaminated soils. The IPTD® process utilizes conductive heating and vapor recovery to remediate soil and sediment contaminated with VOCs, SVOCs, and non-volatile organic contaminants. Heat and vacuum are applied simultaneously to the soil with an array of horizontal thermal conduction heater wells and horizontal vapor collectors, all within an insulated, covered treatment pile. Each heater well contains an electrically powered heating element with an operating temperature of approximately 750 to 800°C (1400 to 1500°F), modulated by Silicon Controlled Rectifier (SCRs).

As the soil is heated during IPTD®, organic contaminants are vaporized and/or destroyed by a number of mechanisms including: (1) evaporation; (2) boiling of water and attendant steam distillation; (3) volatilization of the contaminants; (4) oxidation; and (5) pyrolysis (chemical decomposition in the absence of oxygen) (Stegemeier and Vinegar 2001; Baker and Kuhlman 2002). The vaporized water and contaminants are drawn into the vapor extraction wells. Contaminant vapors are then removed from the produced vapor stream at the surface with an air quality control (AQC) system. Only after all the water has been boiled off is the soil temperature able to rise above the boiling point of water (100 C) to attain the target treatment temperature of 335 °C for treatment of dioxins and furans.

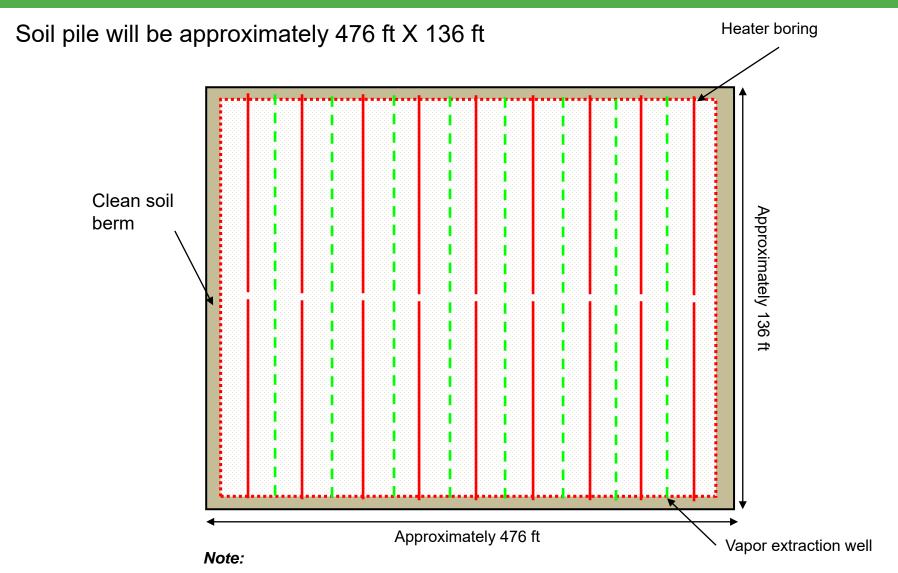

Schematic of IPTD®

IPTDSM In-Pile Thermal Desorption



Conceptual Process Flow Diagram Vapor and Liquid Treatment System

IPTD® Conceptual Cross-Section – Treatment Piles 1 and 2


Not to scale

Note:

- Soil pile constructed by GeoEngineers, Inc.
- Clean soil (or the less impacted soil) used to support the pile structure
- Pile constructed in layers
- Heater cans and vapor screens are placed in the pile as the layers are placed no drilling needed
- Cascade Thermal will install heater elements in the heater cans and connect the treatment system when pile construction is complete

IPTD® Conceptual Plan – Treatment Piles 1 and 2

• Soil pile constructed by GeoEngineers, Inc.

Not to scale

Treatment Pile Preliminary design numbers for each pile

Conceptual Design Parameters/Treatment Outputs

Colville Post and Poles Site GeoEngine				
Volume and heat capacity	Treatment Pile 1 and 2	Unit		
Treatment area, estimated pile	64,736	ft ²		
Upper depth of treatment	-	ft bgs		
Pile height	12	ft bgs		
Volume, treated soils	28,772	yd ³		
Solids volume	17,263	yd ³		
Porosity	0.40	-		
Porosity volume	11,509	yd ³		
Initial saturation	50	percent		
Soil weight	77,084,321	lbs soil		
Water weight	9,709,587	lbs water		
Soil heat capacity	19,271,080	BTU/F		
Water heat capacity	9,709,587	BTU/F		
Total heat capacity, whole TTZ	28,980,667	BTU/F		

Conceptual Design Parameters/Treatment Outputs (Continued)

Colville Post and Poles Site GeoEngine				
Energy balance	Treatment Pile 1 and 2	Unit		
TCH power input rate	4,011	kW		
Average extracted water temperature	190	F		
Percent of injected emergy extracted as steam	30	%		
Steam extracted, average	4,228	lbs/hr		
Energy flux into treatment volume	13,683,901	BTU/hr		
Energy flux in extracted steam	4,105,170	BTU/hr		
Net energy flux into treatment volume	9,578,731	BTU/hr		
Heating per day	7.9	F/day		
Start temperature	50	F		
Target temperature	635	F		
Estimated heat loss, worst case	37	%		
Operating time				
Shake-down	5	days		
Heating to boiling point	28	days		
Boiling and drying	76	days		
Heating to target temperature	34	days		
Sampling/analysis phase	5	days		
Post treatment vapor extraction	28	days		
Total operating time	176	days		

Note:

A conservative heat loss of 37% was assumed. The better the pile is insulated, the less energy is required to treat the soil.

Conceptual Design Parameters/Treatment Outputs (Continued)

Colville Post and Poles Site					
Numbers of wells	Treatment Pile 1 and 2				
Heater borings in pile	215				
Horizontal SVE wells	107				
Temperature monitoring holes	10				

Colville Post and Poles Site	GeoEngineers, Inc.	
Process equipment	Value	Unit
ISTD power supply	4,010	kW
Treatment system power supply	370	kW
Total power need to site	5,480	kW
Estimated total electric load	6,900	kVA
Vapor extraction rate, total	3,330	scfm
Non-condensable vapor	1,820	scfm
Estimated steam extraction	1,510	scfm
Liquid extraction rate	0.0	gpm
Condensed liquid rate	8.5	gpm
Water treatment rate	8.5	gpm
Vapor treatment type	GAC w/ gas	
Dominant contaminant of concern	conditioning Dioxins & Furans	-
Estimated COC mass	1,433	lbs
Estimated COC mass treated by vapor system	717	lbs
Estimated COC mass treated by water system	29	lbs
Estimated COC mass generated as NAPL	29	lbs
Estimated COC mass destructed in-situ	659	lbs
Estimated max mass removal rate, vapor system	10	lbs/day

Conceptual Utility Requirements and Costs

Colville Post and Poles Site GeoEngineers, Inc.		
Utility estimates	Value	Unit
Power usage, in pile	13,892,000	kWh
Power usage, treatment system	1,551,000	kWh
Power usage, total	15,443,000	kWh

Note:

• Power usage in the pile is estimated to be 530 kWh/cy. This is a typical power usage needed to properly heat and treat the soil at 325 degrees C.

Task	Pile 1	Pile 2	Total
Design and preparation	578,000	388,900	966,900
Site activities pre operation	5,444,000	2,275,000	7,719,000
Operation	1,539,000	1,539,000	3,078,000
Demob and other	580,000	442,700	1,022,700
Utilities, paid by client	1,390,000	1,390,000	2,780,000
Total	9,531,000	6,035,600	15,566,600

Note:

- Pricing above corresponds to a unit treatment cost of approximately \$270/CY including power.
- It is assumed that GeoEngineers, Inc. will construct the pile as soil is excavated. Cascade Thermal has included the cost of pile insulation.

Notes/Assumptions

Assumptions:

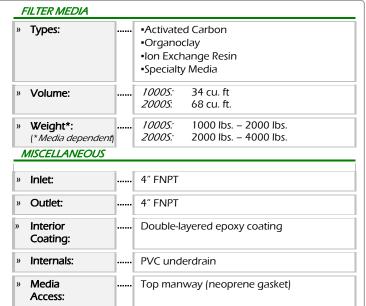
- · Price:
 - +/- 30% price accuracy based on current understanding of preliminary Conceptual Site Model (CSM) as stated in this treatment concept
 - Power cost is included at 0.09 \$/kWh.
 - · Evaluation assumes full access to site during construction and operation
- Turn-Key services:
 - Design/procurement/permitting (permitting managed by GeoEngineers, Inc., Cascade Thermal supports the process)
 - · Construction of heating and treatment system
 - · Operations (site and office support)
 - Demobilization
 - Reporting
- Construction:
 - · No drilling needed
 - · Electrical and mechanical connections above grade
- Operations
 - Standard:
 - · Field Crew (2 persons on average) housed within 30 minute drive to the site for each Treatment Pile
 - · Office support: Project Management and Engineering
- Demobilization
 - Bringing site back to as near to starting conditions as possible:
 - o Removal of all equipment

9715 24th Place West Seattle, WA 98204 Contractors license # 993194 DIR #1000007343

	FOR INTERNAL USE ONLY								
	✓ QUOTE ☐ ORDER								
	CONTRACT RATES APPLY								
	Sales Rep #: Tim Ferris								
4	Territory #: 105								
	MS Code:								
	SFDC Opportunity#:								
	Location ID # 301								
	Time								
	Colville Post & Pole								
_		_							

Date	May 14, 2018	Ship Date	Time
Contact	JR Sugalski	Ship To	Colville Post & Pole
Company	GeoEngineers	Address	
Customer #		City, State ZIP	Colville, WA
Phys. Location		Site Contact	
City, State Zip	Spokane, WA	Site Phone	
Phone	509-991-4471	Purchase Order#	
Fax		Product	
Email		Temperature	
Sales Rep	Tim Ferris Cell: 206-793-6136	рН	
JOB DETAILS:		Quote #	

RENTAL	ITEMS:											
Qty	Equipment Description	Type of Billing 3 or 28		ily Rate er Unit	We	eekly Rate Per Unit		thly Rate er Unit		st Rental Term Months)		tal Rental Cost ased on Rental Term
1	2" Duplex Bag Filter	3.0	\$	75.00	\$	225.00	\$	675.00		1	\$	675.00
2	KW 2000 GAC Vessels (rated at Maximum of 100gpm)	3.0	\$	50.00	\$	150.00	\$	450.00		1	\$	900.00
1	Tsurumi LB800 115v /1ph Electric sub pump	3.0	\$	35.00	\$	105.00	\$	315.00		1	\$	315.00
4	2"X20' camlock suction hose	3.0	\$	10.00	\$	30.00	\$	90.00		1	\$	360.00
2	2"X50' Camlock discharge hose	3.0	\$	10.00	\$	30.00	\$	90.00		1	\$	180.00
1	2" McCrometer flowmeter	3.0	\$	25.00	\$	75.00	\$	225.00		1	\$	225.00
					\$	-	\$	-			\$	-
					\$	-	\$	-			\$	-
					\$	-	\$	-			\$	-
					\$	-	\$	-			\$	-
							Subt	otal Rental	Items	s (Page 1)	\$	2,655.00
							Subt	otal Rental	Items	s (Page 2)	\$	-
						Subt	total F	ental Item	s (Pa	ages 1&2)	\$	2,655.00
SALE ANI	D LABOR ITEMS:											
	Description							Qty.	U	nit Cost		Total Cost
Purchase	of 4,000# of Liquid Phase 8X30 Carbon media							4000	\$	1.49	\$	5,960.00
Carbon se	rvice (vac out 4,000# of spend media, replace with 4k of same a	nd disposal	of 4,0	00# (no-h	az c	only)		1	\$	6,850.00	\$	6,850.00
									\$	-	\$	-
									\$	-	\$	-
Contracto	or required for all heavy equipment work including offloading	ı, staging p	umps	s, pulling	pip	e, reloading, e	tc.					
								Sub-To	tal S	Sale Items	\$	12,810.00
ESTIMATI	ED FREIGHT:											
	Description		De	liveries		Pickups		Total		Rate		Total
Delivery &	pick-up of all above items			13		13		26	\$	125.00	\$	3,250.00
Overnight	per-diem			1		1		2	\$	250.00	\$	500.00
								0	\$	-	\$	-
Onsite del	ays will be billed at \$85/hour cost determined at time of service	e if necessa	ry					Su	ıbtot	al Freight	\$	3,750.00
Environme	ental Recovery Fee									1.50%	\$	39.83
		1	OTAI	PROJE	CT (COST ESTIMAT	TE BA	SED ON R	ENT	AL TERM	\$	19,215.00
							,			/	Ť	10,210.00
Quote Ac	cepted By:Prin	t Name:						Date:_				
quotations	g provided above is for customer's internal use only. We ask tha are subject to credit approval and are valid for 28 days. All price ation based on inventory availability out of the Branch noted abov	s quoted ar	e in U	S Dollars	. Se	ee attached Te	rms a	nd Conditi	ons,	, which are	oart of	this quote.


personnel at Customer's expense. Price may change if job scope changes. Customer will be billed actual rental days and equipment used (may be more or less than quoted). Release # must be obtained when equipment is called off rent. If no release # is provided, please call to obtain one.

PRODUCT DATA SHEET

KLEEN.WATER 1000S & 2000S

January, 2007 GENERAL INFORMATION These units are designed for the efficient purification of contaminated water or liquid streams. These filters have the ability to remove contaminants to non-detectable levels. The vessels are constructed of heavy-duty mild steel and are lined with a doublelayer epoxy coating. WEIGHTS AND MEASURES 1000S: 80 gpm Max. Flowrate: 2000S: 100 gpm Max. Pressure: 15 psi Max. Temp: 150°F 1000S: Height: 66" 92" 2000S: Diameter: 46 1000S: 1900 lbs. - 2900 lbs. Shipping Wt*: 2000S: 3050 lbs. - 5050 lbs. (drum + media) (* Media dependent) Internal underdrain 48' Downflow operation is recommended **KLEEN.WATER 1000S KLEEN.WATER 2000S** Height

PRESSURE DROP DATA

NOTES:

Wet activated carbon preferentially removes oxygen from air. In closed or partially closed containers and vessels, oxygen depletion may reach hazardous levels. If workers are to enter a vessel containing carbon, appropriate procedures for potentially low oxygen spaces must be followed, including all federal and state requirements.

To the best of our knowledge the technical data contained herein are true and accurate at the date of issuance and are subject to change without prior notice. No guarantee of accuracy is given or implied because variations can and do exist. NO WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY BAKERCORP, EITHER EXPRESSED OR IMPLIED.

PROPOSAL TO REMEDIATE DIOXINS FROM SOILS EXCAVATED FROM THE "COLVILLE SITE" LOCATED NORTH OF SPOKANE, WASHINGTON, USA

April 23, 2018

GeoEngineers, Mr. Scott Lathen, P.E. 523 East Second Avenue Spokane, Washington 99202

Mr. Lathen:

ecoSPEARS, Inc., is pleased to present this proposed scope of work and cost estimate to GeoEngineers, Inc., to apply a portion of the "E-n-D" System known as RIDS technology, in a phased manner, to meet the remedial goals as they pertain to dioxins via the following scope:

- a) Treatability Lab Study;
- b) 1000-Ton Pilot Study; and
- c) Treatment Phase, at the "Colville" site located north of Spokane, Washington.

This proposal has been prepared following your request during our conference call on March 19, 2018, and includes a provision regarding "\$0 RESIDUAL LIABILITY". The concept of "\$0 residual liability" is based on the implementation of the NASA developed technology, which eliminates your client's ongoing legal exposure to dioxin material stored in an approved landfill by virtue of the destruction of the extracted dioxins.

OVERVIEW

WHEREAS, ecoSPEARS has the expertise in Transformative NASA Technology to remove PCBs (Polychlorinated Biphenyls), Dioxins, and other toxins from waterways via an In-situ Extraction & Destruction Solution for Soil and Sediments, commonly known as "E-n-D System"; and

WHEREAS, the "E-n-D System" utilizes the SPEARS and RIDS (Reductive Integrated Destruction System) technologies to extract and destroy the PCBs and other applicable toxins such as Dioxins onsite without the need for transportation and long-term storage of dredged toxic soil off-site; and

WHEREAS, on March 19, 2018, GeoEngineers and ecoSPEARS conducted a needs analysis call to discuss GeoEngineers' dioxin-contaminated sediment site generally located 90 minutes north of Spokane, Washington, United States, also known as the "Colville Site"; and

WHEREAS, during the aforementioned needs analysis call, GeoEngineers identified the following contamination and project parameters:

- 1) Dioxins at 18"-24" range;
- 2) Small area encompassing location of plant operations encountered diesel and PCB contamination in the soil at about 10'-12' down:

- 3) Existence of an extensive groundwater plume of PCB contamination with diesel;
- 4) Groundwater plume and PCBs are two main issues;
- 5) In Pre-Feasibility Phase, looking at feasibility study, cost structure and analysis to see what can be recommended to the Department of Ecology; and

WHEREAS, GeoEngineers also elaborated during the needs analysis call, the issue of how much volume of soil they were looking to treat. GeoEngineers stated that in the early stages of the Feasibility Study, they have not defined the lateral extent completely, but believed the project to be somewhere in the magnitude of 8-10 acres at depths of 18"-24", or about 36,000 tons of material to be treated; and

WHEREAS, GeoEngineers further elaborated during the needs analysis call that it was the goal of the project to go from 2,500 ppt (parts per trillion) to 5 ppt (parts per trillion); and

WHEREAS, in consideration of the aforementioned factors, this proposal is strictly structured to remediate only the dioxins via the ecoSPEARS "RIDS" system on the aforementioned site, and ecoSPEARS will make every effort to the fullest extent possible, not to add toxins to the soil upon completion of said process; and

WHEREAS, ecoSPEARS is willing to provide services to GeoEngineers based on this Pre-Feasibility Study background and GeoEngineers desire to have services provided by ecoSPEARS.

ecoSPEARS has developed the proposed scope of work presented herein so as to further advance the technology that was originally developed by scientists at the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC). GeoEngineers, Inc., has expressed interest in supporting the further development of this technology and further quantifying its performance/applicability under differing site conditions and contaminant levels, including the following:

- Environmentally friendly solution that is protective of the natural habitat and surrounding communities;
- 2) Demonstrated effectiveness that remediates dioxins with much less disposal volume compared to other methods:
- 3) Onsite adaptability and destruction of dioxins is immediate with "\$0 Residual Liability";

SCOPE OF SERVICES

TASK 1 – TREATABILITY LAB STUDY

ecoSPEARS will analyze the soil samples sent by the client for composition and develop the baselines for further testing and assessment. The treatability study will determine the feasibility of the solvent extraction and RIDS processes to meet remedial goals as they apply to this soil matrix. Additionally, this study will be used to determine starting process parameters for the subsequent Pilot Study.

Task 2 – Pilot study

Following completion of the Treatability Lab Study, and subsequent deployment of the test equipment, ecoSPEARS will conduct a 1000-ton Pilot Study. The Pilot Study will be used to determine the ability of the extraction process, previously established in the Treatability Lab Study, to meet remedial goals for soil dioxin contamination levels at a project-relevant scale. The Pilot Study will also be used to determine optimal operating parameters to be used in the subsequent Treatment Phase.

TASK 3 - TREATMENT PHASE

At the end of the Pilot Study, ecoSPEARS will commence with treatment of the balance of the 36,000 tons. Processes optimized in the Pilot Study will be applied to the remainder of the contaminated soil in a manner that results in soil dioxin levels below site remedial goals.

PROJECT TEAM

For this project, the Principal Scientist or designated representative in our Orlando, Florida office, will serve as the project manager. ecoSPEARS has additional engineers and analytical capabilities on staff for project support.

OVERALL PROJECT SCHEDULE

ecoSPEARS will coordinate with GeoEngineers to perform the scope of work in accordance with a mutually acceptable schedule. However, please note that some lead time will likely be required for deployment/mobilization of staff and necessary equipment for the Pilot Study and the RIDS Treatment Phase.

COST ESTIMATES

Task Order	Cost/Ton (USD)	I Cost (USD)		
Task 1 – RIDS Treatability Lab Study	-	\$30,000	4-6 Weeks	
Task 2 – RIDS 1,000 Ton Pilot Study	\$700	\$700,000	3 Months	
Task 3 – RIDS Treatment Phase (which includes "\$0 Residual Liability")	\$350	\$12,250,000 (based on 35,000 tons of additional of soil to be cleaned)	TBD	
Totals:		\$12,980,000		

Based on the scope of work, and the per task summary presented above, ecoSPEARS proposes to conduct the proposed scope of work on a lump sum basis, for an estimated total cost of \$12,980,000 plus the Additional Provisions outlined below. If this proposal is acceptable, please issue a purchase order or work authorization indicating your formal approval to proceed with performance of the services presented in this proposal.

ADDITIONAL PROVISIONS

- **1. EXPENSE REIMBURSEMENT.** ecoSPEARS shall be entitled to reimbursement from GeoEngineers for all "out-of-pocket" expenses associated with change orders.
- **2. SUPPORT SERVICES.** GeoEngineers will provide the following support services/items for the benefit of ecoSPEARS so as to allow ecoSPEARS to carry out its responsibilities under this agreement:
 - Current survey of property including topography above and below waterline and any riparian rights & easements; location of utility lines, pipes, infrastructure and other appurtenances, maritime and otherwise, including abandoned pilings, docks & cars, location of protected or endangered species or fauna; Indian and Tribal areas & any other federally, state or locally protected or historical areas;
 - ii. Legal description of property and owners consent;
 - iii. Any and all federal, state and local permits required to perform the services as outlined in this agreement;
 - iv. Signed and sealed calculations by a professional engineer in the State where work is to be done attesting to the parameters of the clean-up (i.e. cubic yards to be removed, tonnage, volumetric calculations, degree of contamination etc. & other information deemed necessary by ecoSPEARS and its scientists & engineers;
 - v. Any studies or documents that will aid ecoSPEARS, in providing services outlined in this agreement;
 - vi. Soil samples as required by ecoSPEARS scientists & engineers, to be shipped to ecoSPEARS Florida offices at GeoEngineers expense;

- vii. GeoEngineers shall also be responsible for paying all application, permitting and processing fees for said project to federal, state and local agencies associated with carrying out this project, in addition to any bonding or surety requirements that may be required.
- **3. TERM/TERMINATION.** This Agreement may be terminated by either party upon 90 days' written notice to the other party.
- **4. RELATIONSHIP OF PARTIES.** It is understood by the parties that ecoSPEARS is an independent contractor with respect to GeoEngineers, and not an employee of GeoEngineers. GeoEngineers will not provide fringe benefits, including health insurance benefits, paid vacation, or any other employee benefit, for the benefit of ecoSPEARS.
- **5. DISCLOSURE**. ecoSPEARS is required to disclose any outside activities or interests, including ownership or participation in the development of prior inventions or intellectual property, that conflict or may conflict with the best interests of GeoEngineers. Prompt disclosure is also required under this paragraph by both parties, if any activity or interest is related, directly or indirectly.
- **6. EMPLOYEES.** ecoSPEARS employees or consultants, if any, who perform services for GeoEngineers under this Agreement shall also be bound by the provisions of this Agreement.
- **7. INJURIES AND INSURANCE.** ecoSPEARS acknowledges ecoSPEARS obligation to obtain appropriate insurance coverage for the benefit of ecoSPEARS (and ecoSPEARS employees, if any). ecoSPEARS waives any rights to recovery from GeoEngineers for any injuries that ecoSPEARS (and/or ecoSPEARS employees) may sustain while performing services under this Agreement and that are a result of the negligence of ecoSPEARS or ecoSPEARS's employees.
- **8. INDEMNIFICATION.** ecoSPEARS agrees to indemnify and hold harmless GeoEngineers from all claims, losses, expenses, fees including attorney fees, costs, and judgments that may be asserted against GeoEngineers that result from the acts or omissions of ecoSPEARS, its employees, if any, and its agents. GeoEngineers agrees to indemnify and hold harmless ecoSPEARS from all claims, losses, expenses, fees including attorney fees, costs, and judgments that may be asserted against ecoSPEARS that result from the acts or omissions of GeoEngineers, its employees, if any, and its agents.

Any and all liability created as a result of the contamination on site by the responsible parties or other entities shall not transfer to ecoSPEARS. Furthermore, ecoSPEARS shall not be held liable for any existing conditions on the site.

9. INTELLECTUAL PROPERTY. The following provisions shall apply with respect to copyrightable works, ideas, discoveries, trademarks, service marks, inventions, applications for patents, and patents (collectively, "Intellectual Property"):

Consultant's Intellectual Property. ecoSPEARS holds interest in Intellectual Property that is utilized in its technology outlined in this agreement. As a result, GeoEngineers and its agents and subcontractors shall enter into a non-disclosure agreement with ecoSPEARS.

- **10. OWNERSHIP OF SOCIAL MEDIA CONTACTS.** Any social media contacts, including "followers" or "friends," that are acquired through accounts (including, but not limited to email addresses, blogs, Twitter, Facebook, Youtube, or other social media networks) used or created on behalf of ecoSPEARS are the property of ecoSPEARS.
- **11. CONFIDENTIALITY.** Either party to this agreement will not at any time or in any manner, either directly or indirectly, use any Information for their own benefit, or divulge, disclose, or communicate in any manner any Information to any third party without the prior written consent of each party. Both parties to this agreement will protect information and treat it as strictly confidential. A violation of this paragraph shall be a material violation of this Agreement.

- **12. CONFIDENTIALITY AFTER TERMINATION.** The confidentiality provisions of this Agreement shall remain in full force and effect after the termination of this Agreement.
- **13. RETURN OF RECORDS.** Upon termination of this Agreement, both parties shall deliver all records, notes, data, memoranda, models, and equipment of any nature that are in either 's possession or and that are either's property or relate to either's business.
- **14. NOTICES.** All notices required or permitted under this Agreement shall be in writing and shall be deemed delivered when delivered in person or deposited in the United States mail, postage prepaid, addressed as follows:

IF for GeoEngineers:

GeoEngineers, Mr. Scott Lathen, P.E. 523 East Second Avenue Spokane, Washington 99202

IF for ecoSPEARS:

ecoSPEARS, Inc. Serg Albino, President & CEO 309 Cranes Roost Blvd. Ste. 2000 Altamonte Springs, Florida 32701

Such address may be changed from time to time by either party by providing written notice to the other in the manner set forth above.

- **15. ENTIRE AGREEMENT.** This Agreement contains the entire agreement of the parties and there are no other promises or conditions in any other agreement whether oral or written. This Agreement supersedes any prior written or oral agreements between the parties.
- **16. AMENDMENT.** This Agreement may be modified or amended if the amendment is made in writing and is signed by both parties.
- **17. SEVERABILITY.** If any provision of this Agreement shall be held to be invalid or unenforceable for any reason, the remaining provisions shall continue to be valid and enforceable. If a court finds that any provision of this Agreement is invalid or unenforceable, but that by limiting such provision it would become valid and enforceable, then such provision shall be deemed to be written, construed, and enforced as so limited.
- **18. WAIVER OF CONTRACTUAL RIGHT.** The failure of either party to enforce any provision of this Agreement shall not be construed as a waiver or limitation of that party's right to subsequently enforce and compel strict compliance with every provision of this Agreement.
- 19. APPLICABLE LAW. This Agreement shall be governed by the laws of the State of Florida.
- **20. INTERRUPTION OF SERVICE.** Either party shall be excused from any delay or failure in performance required hereunder if caused by reason of any occurrence or contingency beyond its reasonable control, including, but not limited to, acts of God, acts of war, fire, insurrection, laws proclamations, edits, ordinances or regulations, strikes, lock-outs or other serious labor disputes, riots, earthquakes, floods, explosions or other acts of nature. The obligations and rights of the party so excused shall be extended on a day-to-day basis for the time period equal to the period of such excusable interruption. When such events have abated, the parties' respective obligations hereunder shall resume. In the event the interruption of the excused

party's obligations continues for a period in excess of thirty (30) days, either party shall have the right to terminate this Agreement upon ten (10) days' prior written notice to the other party.

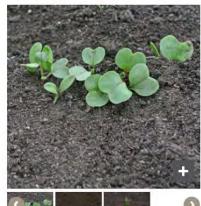
- **21. ASSIGNMENT.** Both parties agree that it will not assign, sell, transfer, delegate or otherwise dispose of any rights or obligations under this Agreement without the prior written consent of either party.
- **22. SIGNATORIES.** This Agreement shall be signed on behalf of GeoEngineers by Scott Lathen, Environmental Engineer and on behalf of ecoSPEARS by Serg Albino, CEO and effective as of the date first above written.

Party receiving services:
GeoEngineers
By: Scott Lathen, P.E.
Party providing services:
ecoSPEARS, Inc.
By: Serg Albino, President & CEO
ecoSPEARS appreciates the opportunity to assist GeoEngineers with this project. Please contact us with any questions regarding this proposal.
Sincerely,
Serg Albino ecoSPEARS, Inc., President and CEO

 project
 CPPT
 FS
 Sheet
 of
 Checked by SH

Living banklobed i copie who my good

espolz ebis 1:8/w NOSUDA 01/4.08 = 469,5 5= 72 111,26 = (06)(021)(288) = 26, 111 CY (hidos sot poster 1) 986() = 285000'h18 = Ett000/HIB = (051 H00) + (051)(00)) + (SEC)(00H) <= . 6000 Lax ell the sure of the subsect of the subsect of the 400 SF Per Side of excession (00)(0h)C/ = 499 = Y



PREMIUM GARDEN SOILTM

BACK »

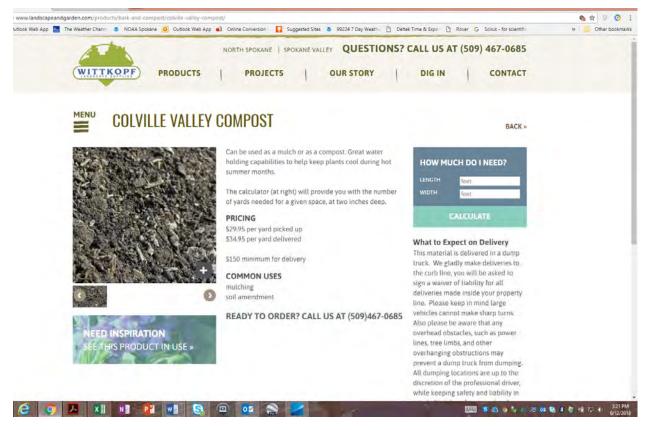
For Vegetable and Flower Gardening -- Our special blend of black peat soil, organic compost and sand produces the best fertile soil for heavy feeders like perennials, vegetables and annuals. Our patented Premium Garden Soil is specially blended to retain moisture while providing the perfect drainage and the optimum amounts of organic matter for healthy plants. Your roses will grow healthy and strong, your flowers will be lush and colorful and your vegetables will yield a bountiful harvest when you start with Premium Garden Soil

The calculator (at right) will provide you with the number of cubic yards you need, for your given space, at two inches

PRICING

\$24.95 per yard picked up \$29.95 per yard delivered \$150 minimum for dump truck delivery

COMMON USES


Vegetable Gardens Flower Gardens

I DO I NEED?
feet
feet

What to Expect on Delivery

This material is delivered in a dump truck. We gladly make deliveries to the curbline. Upon delivery should you request the dump truck to dump inside your property line, you will be asked to sign a waiver of liablilty. Please be aware that large vehicles cannot make sharp turns. Also please be aware that any over hanging branches, power lines, or other overhead obstructions might prevent a dump truck from lifting its box in the air to dump. All delivery locations are determined by the descretion of the professional driver, and safety and property damage precautions. Click here for more information on deliveries.

General Fill

Wetland Soil

VCC 8x30 Virgin Coconut Shell Carbon

BakerCorp's VCC 8x30 mesh virgin carbon made from select grades of coconut shell. These activated carbon granules are a uniform adsorbent with well developed pore structure, allowing for a wide range of adsorbate retention. This carbon is ideal for purification of potable water, industrial wastewater treatment and groundwater treatment. This product is also suitable for refinement of organic liquids requiring purification and color reduction, such as amine and glycol solutions and will remove MTBE from groundwater.

PHYSICAL PROPERTIES:

Carbon Tetrachloride Activity:

Apparent Density (lbs./cu.ft.):

Total Ash Content:

Hardness (Ball Abrasion):

Iodine Number:

Moisture (as packed):

Mesh Size:

60% minimum

29 average
3% maximum

98% minimum

1,000 minimum

5% maximum

8x30

Standard Packaging: 1000 lb. super sacks. Other packaging available upon request.

These specifications represent general parameters and are subject to change. Please consult with BakerCorp before processing with your applications.

4306 W. 190th Street, Torrance, California 90504 Phone: 310.303.3700 ♦ Fax: 310.406.3001

AVISTA CORPORATION dba Avista Utilities

SCHEDULE 25 EXTRA LARGE GENERAL SERVICE - WASHINGTON (Three phase, available voltage)

AVAILABLE:

To Customers in the State of Washington where Company has electric service available.

APPLICABLE:

To general service supplied for all power requirements when all such service taken on the premises is supplied through one meter installation for a demand of not less than 3,000 kVa. The average of the Customer's demand for the most recent twelve-month period be at least 3,000 kVa for service under this Schedule. If the Customer has less than twelve months of billing history, the Customer must have a minimum of six consecutive billing months of demand of at least 3,000 kVa in order to receive service under this Schedule. New Customers must meet the above criteria or otherwise provide the Company with reasonable assurance that their peak demand will average at least 3,000 kVa. Customer shall provide and maintain all transformers and other necessary equipment on his side of the point of delivery and enter into a written contract for five (5) years or longer. The written contract will specify a limit on both firm energy and demand.

MONTHLY RATE:

The sum of the following demand and energy charges:

Energy Charge:

First 500,000 kWh 5.505¢ per kWh Next 5,500,000 kWh 4.953¢ per kWh All Over 6,000,000 kWh 4.235¢ per kWh

Demand Charge:

\$24,000.00 for the first 3,000 kVa of demand or less.

\$6.50 per kVa for each additional kVa of demand.

Primary Voltage Discount:

If Customer takes service at:

1) 11 kV (wye grounded) or higher, he will be allowed a primary voltage discount of \$0.20 per kVa of demand per month.

(I)

(I)

- 2) 60 kV (wye grounded) or higher, he will be allowed a primary voltage discount of \$1.10 per kVa of demand per month.
- 3) 115 kV (wye grounded) or higher, he will be allowed a primary voltage discount of \$1.40 per kVa of demand per month.

Minimum:

The demand charge unless a higher minimum is required under contract to cover special conditions.

Issued April 27, 2018 Effective May 1, 2018

Issued by Avista Corporation

AVISTA CORPORATION dba Avista Utilities

SCHEDULE 25A EXTRA LARGE GENERAL SERVICE – WASHINGTON

ANNUAL MINIMUM: \$829.950

(R)

Any annual minimum deficiency will be determined during the April billing cycle for the previous 12-month period. For a customer who has taken service on this schedule for less than 12 months, the annual minimum will be prorated based on the actual months of service.

DEMAND:

The average kVa supplied during the 30-minute period of maximum use during the current month as measured by Company's metering equipment.

(T)

(T)

SPECIAL TERMS AND CONDITIONS:

Existing Customers who install demand-side management measures, which cause their demand to fall below 3,000 kVa, will continue to qualify for service under this Schedule. The Company will estimate the Customer's demand reduction created by those demand-side management measures in order to determine qualification for service under this Schedule. If a Customer installs demand-side management measures without assistance from the Company, it is the Customer's responsibility to inform the Company regarding the installation of such measures.

Service under this schedule is subject to the Rules and Regulations contained in this tariff.

The above Monthly Rate is subject to the provisions of Tax Adjustment Schedule 58, Demand Side Management Schedule 91, Low Income Rate Assistance Schedule 92, Temporary Power Cost Surcharge Schedule 93 and Renewable Energy Credit Revenue Mechanism Schedule 98.

Issued January 7, 2016 Effective January 11, 2016

www.geoengineers.com

