

May 1, 2019

Ms. Tahni Madden CHI Franciscan Health 1149 Market Street, MS-10-06 Tacoma, Washington 98402-3515

RE: Vapor Mitigation System & Indoor Air Sampling Results *Franciscan Medical Clinic* 4550 Fauntleroy Way SW Seattle, Washington 98126-3471 AEG Project No. 18-172

Dear Ms. Madden:

Associated Environmental Group, LLC (AEG) completed the installation of a remote telemetry monitoring system and collected sub-slab vapor samples from the operating vapor mitigation system at the Franciscan Medical Clinic, located at the above-referenced address in Seattle, Washington (Site). To monitor the operation of the sub-slab depressurization (SSD) fan (currently mounted on the roof of the clinic), AEG installed a telemetry unit to provide a means to access the system remotely (24/7 access). The monitoring unit will notify AEG and anyone designated of changes to the system operations, including vacuum drops and power failures. The system monitors if vacuum is present, and will go into alarm if that condition changes. This will help improve the continuous operation of the SSD, and provide for quick response time for repairs.

During installation of the telemetry system on April 4, 2019, AEG also collected sub-slab vapor samples from the three independent SSD locations (exam room #3, employee break room, and the storage room). Samples were collected using 1-liter Summa canisters to provide a quantitative value for the reduction of volatile organic compounds (VOCs) removed from beneath the concrete floor. The samples were collected using a 10-minute sampling duration, and were delivered to Friedman & Bruya, Inc. laboratory in Seattle, Washington for VOC analysis by EPA Method TO-15.

The laboratory results indicated the SSD points in all three locations were removing VOCs that have the potential to be entering the working space in the lower floor of the building. Detected constituents with corresponding screening levels are summarized in Table 1, *Summary of Sub-Slab Vapor Analytical Results from Sub-Slab Depressurization Points*, and the laboratory sampling reports are attached.

One chemical of interest that was detected at all three sample locations was ethanol. This is a compound that is common in gasoline and does not have a MTCA cleanup level. However, ethanol has an Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) and an American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 1,000 micrograms per cubic meter (μ g/m³). The sample from Exam Room #3 reported an ethanol concentration of 1,100 μ g/m³.

Concurrent with AEG's Site activities, NOW Environmental Services, Inc. (NOW) performed a follow-up round of indoor air testing on April 4 and 5, 2019. Indoor air samples were collected within Exam Room #3 and the Storage Room using Summa canisters, 8- and 24-hour sampling durations, and were analyzed for VOCs. Analytical results indicated all constituents in indoor air were either non-detect or below MTCA Method B indoor air cleanup levels and OSHA PELs. Selected pages of NOW's report presenting the analytical results are attached.

CLOSING

The Site work was completed to assess the effectiveness of the SSD system installed by AEG. The SSD system was to address health concerns and redirect the petroleum vapors detected within the lower floor of the building to outside air. AEG had intended to operate the SSD system until such time that BP West Coast Products, LLC (BP) finishes their investigation of the petroleum impact to Site subsurface associated with the adjacent Shell site to the west. Based on the most recent NOW sampling results, the indoor air quality is still below the risk levels for the employees working at the clinic. AEG would recommend continued seasonal indoor air and SSD vapor sampling to confirm any seasonal changes to the VOC levels, and to ensure continued monitoring of the potential risk levels for employees.

Sincerely,

Associated Environmental Group, LLC

ClS. S.L

Charles S. Swift, R.S.A. Project Manager

C.S. D.

Scott Rose, L.H.G. Senior Hydrogeologist

Attachments:

Table 1 – Summary of Sub-Slab Vapor Analytical Results from Sub-Slab Depressurization Points NOW Environmental Services Indoor Air Results Friedman & Bruya, Inc. Laboratory Report, dated April 23, 2019

Table 1 Summary of Sub-Slab Vapor Analytical Results from Sub-Slab Depressurization Points Franciscan Medical Clinic, West Seattle

Sample Number		Storage Room	Exam Room No. 3	Employee Break Room	Method B Sub-Slab	Method B Indoor Air	OSHA PEL	ACGIH TLVs
Date C	Date Collected		4/5/2019	4/5/2019	Screening Level ¹ Cleanup Level ²		(8-Hour TWA)	(8-Hour TWA)
			Gasoline-l	Related Constit	tuents			
APH - Air-Phase	EC5-8 Aliphatics	330	210	110	90,000	2,700	NL	NL
Hydrocarbons	EC9-12 Aliphatics	180	120	91	4,700	140	NL	NL
Trydrocarbons	EC9-10 Aromatics	<37	<40	<40	6,000	180	NL	NL
Gasoline-Ra	Gasoline-Range Organics ³		330	201	NL	140	NL	NL
	Hexane	7.9	<5.6	<5.6	7.8	320	500,000	50,000
	Benzene	0.82 fb	< 0.51	< 0.51	10.7*	0.321*	10,000	500
	Toluene	17	6.8	3.1	76,200	2,290	200,000	20,000
Volatile Organic	Ethylbenzene	4.4	0.89	0.97	15,200	457	100,000	20,000
Compounds	m,p-Xylene	9.4	2.3	2.5	1,520.0	45.7	100,000	100,000
	o,p-Xylene	4.0	1.0	0.99	1,520.0	45.7	100,000	100,000
	Naphthalene	< 0.39	< 0.42	< 0.42	2.45*	0.0735*	10,000	10,000
	Ethanol	190 ve	1,100 ve	180 ve	NL	NL	1,000	1,000

Notes:

All values presented in micrograms per cubic meter ($\mu g/m^3$)

< = Not detected above laboratory reporting limits

fb = The analyte was detected in the method blank.

ve = The analyte response exceeded the valid instrument calibration range. The reported value is an estimate.

* Cancer screening level (all other constituents listed do not have cancer values)

¹An exceedance of Ecology's Method B sub-slab screening level indicates the constituent is present at a concentration in sub-slab vapor that has the potential to migrate into indoor air.

²An exceedance of Ecology's Method B cleanup level for indoor air indicates that, for the Site to receive a determination of No Further Action, mitigation is required via either removal of the source or redirection of vapors from the breathing zone.

³Gasoline-Range Organics were estimated using the sum of the results for APH EC5-8, APH EC9-12, and APH EC9-10

Red Bold indicates the detected concentration exceeds one or more regulatory levels

Bold indicates the detected concentration is below all regulatory levels

OSHA PEL = U.S. Department of Labor, Occupational Safety and Health Administration Permissible Exposure Limit. Federal regulatory standard.

TWA = Time-Weighted Average.

NL = Not Listed; no values have been established for these constituents.

ACGIH TLVs = American Conference of Governmental Industrial Hygienists Threshold Limit Values. ACGIH® is a private, not-for-profit, nongovernmental corporation. It is not a standards setting body. ACGIH® is a scientific association that develops recommendations or guidelines to assist in the control of occupational health hazards. TLVs® are health-based values and are not intended to be used as legal standards. Threshold Limit Values (TLVs®) refer to airborne concentrations of chemical substances and represent conditions under which it is believed that nearly all workers may be repeatedly exposed, day after day, over a working lifetime, without adverse effects.

3. Air Assessment and Analytical Procedures

The following data has been collected over the past half a year. The sampling carried out on April 4th and 5th were taken after the vapor scrubber added to the building to divert gasoline vapors was modified.

3.1 Vapor Intrusion Volatile Organic Compounds

EXAM ROOM 3

Compound	5/3/18 ug/m3 8 hour sample	5/23/18 ug/m3 8 hour sample	9/7/18 ug/m3 8 hour sample	9/20/18 ug/m3 24 hour sample	1/18/19 ug/m3 8 hour sample	1/18/19 ug/m3 24 hour sample	4/4/19 ug/m3 24 hour sample	4/4/19 ug/m3 8 hour sample	Ecology Indoor Air Cleanup Levels ug/m3	OSHA Permissable Exposure Limit per 8 hr day ug/m3
Benzene	0.282	0.196	0.114	0.305	0.543	0.637	ND	ND	0.320	1,000
Ethyl benzene	0.997	ND	ND	ND	ND	ND	ND	ND	457	100,000
Gasoline Range Organics	6,430	268	22.9	6.16	41.5	42.9	73.2	60.3	140	300,000 (Proposed no current limit)
Heptane	143	3.03	ND	0.402	ND	ND	ND	ND	320	500,000
Xylene (o,m,p)	4.59	ND	ND	ND	ND	ND	ND	ND	45.7	100,000
Toluene	2.47	0.834	ND	1.13	4.54	1.95	1.75	1.79	2,290	200,000

Compound	5/3/18 ug/m3 8 hour sample	5/23/18 ug/m3 8 hour sample	9/7/18 ug/m3 8 hour sample	9/20/18 ug/m3 24 hour sample	1/18/19 ug/m3 8 hour sample	1/18/19 ug/m3 24 hour sample	4/4/19 ug/m3 24 hour sample	4/4/19 ug/m3 8 hour sample	Ecology Indoor Air Cleanup Levels ug/m3	OSHA Permissable Exposure Limit per 8 hr day ug/m3
Benzene	0.305	-	0.110	0.165	0.458	0.820	ND	ND	0.320	1,000
Ethyl benzene	2.07	-	ND	ND	ND	ND	ND	ND	457	100,000
Gasoline Range Organics	7,902	-	28.0	18.1	74.4	55.9	73.2	60.3	140	300,000 (Proposed no current limit)
Heptane	234	-	ND	0.433	ND	ND	ND	ND	320	500,000
Xylene (o,m,p)	11.22	-	ND	1.232	ND .	ND	ND	ND	45.7	100,000
Toluene	5.25	-	0.678	0.613	ND	1.97	1.75	1.79	2,290	200,000

STORAGE

Samples were collected in the pressurized mode, which air is drawn through the inlet and sampling system with a pump. The air is pumped into an initially evacuated SUMMA[®] passivated canister by the sample, which regulates the rate and duration of sampling. At the end of the sampling the period the canisters were pressurized to about 1 atmospheres absolute. Sampling duration for this assessment was for 8 hours or 24 hours, as noted, for 64 various compounds.

The samples were analyzed using gas chromatography/mass spectrometry (GC/MS) under an established QA/quality control (QC) program. Laboratory analytical procedures have been developed based on the concepts contain in both TO-15 and 8260B.

The TO-15 method is an EPA-recognized sampling concept for VOC sampling and speciation. This method of sampling was chosen because a relatively large sample volume can be collected, and multiple dilutions and re-analyses can occur to ensure identification and quantification of target VOCs within the working range of the method. The quantitation limits were set at 5 parts per billion or less.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 23, 2019

Charlie Swift, Project Manager AEG 605 11th Ave SE Suite 201 Tacoma, WA 98501

Dear Mr. Swift:

Included are the results from the testing of material submitted on April 5, 2019 from the Franciscan West Seattle, F&BI 904131 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures AEG0423R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 5, 2019 by Friedman & Bruya, Inc. from the AEG Franciscan West Seattle, F&BI 904131 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
904131 -01	\mathbf{SR}
904131 -02	E3
904131 -03	BR

Methylene chloride in the TO-15 laboratory control sample failed the acceptance criteria. In addition, benzene was detected in the TO-15 method blank at a level greater than one tenth the concentration detected in sample SR. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SR 04/05/19 04/05/19 04/19/19 Air ug/m3	Client Projec Lab II Data H Instru Opera	t:): File: ment:	AEG Franciscan West Seattle, F&BI 904131 904131-01 1/1.5 041826.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz	% Recovery: zene 107	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 180			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	E3 04/05/19 04/05/19 04/19/19 Air ug/m3	Client: Project Lab ID Data F Instru Operat	::): 'ile: ment:	AEG Franciscan West Seattle, F&BI 904131 904131-02 1/1.6 041827.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz	% Recovery: zene 101	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 120			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	BR 04/05/19 04/05/19 04/19/19 Air ug/m3	Client: Project Lab II Data F Instru Operat	t:): File: ment:	AEG Franciscan West Seattle, F&BI 904131 904131-03 1/1.6 041828.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz	% Recovery: zene 107	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 91			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 04/18/19 Air ug/m3	Client: Project Lab ID Data F Instru: Operat	::):)ile: ment:	AEG Franciscan West Seattle, F&BI 904131 09-0784 mb 041820.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz	% Recovery: zene 111	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <35			

ENVIRONMENTAL CHEMISTS

Client Sample ID:SRDate Received:04/05/19Date Collected:04/05/19Date Analyzed:04/19/19Matrix:AirUnits:ug/m3		Clien Proje Lab J Data Instr Oper	ect: ID: File: ument:	AEG Franciscan West Seat 904131-01 1/1.5 041826.D GCMS7 bat/MS	tle, F&BI 90,	4131
	%	Lower	Upper			
Surrogates: H	Recovery:	Limit:	Limit:			
4-Bromofluorobenzene	101	70	130			
	Concen	tuation			Compose	itration
Compounds:	ug/m3	ppbv	Compo	unde:	ug/m3	ppbv
Compounds.	ug/III0	pppv	Compe	unus.	ug/III0	pppv
Propene	<1	<0.6	1,2-Die	chloropropane	< 0.35	< 0.075
Dichlorodifluoromethane	2.1	0.43	1,4-Die	oxane	< 0.54	< 0.15
Chloromethane	<3.1	< 1.5	2,2,4-1	rimethylpentane	<7	<1.5
F-114	<1	< 0.15	Methy	l methacrylate	< 6.1	<1.5
Vinyl chloride	< 0.38	< 0.15	Heptar	ne	<6.1	<1.5
1,3-Butadiene	< 0.033	< 0.015	Bromo	dichloromethane	< 0.1	< 0.015
Butane	9.4	4.0	Trichle	oroethene	< 0.4	< 0.075
Bromomethane	<2.3	<0.6	cis-1,3	-Dichloropropene	< 0.68	< 0.15
Chloroethane	<4	< 1.5	4-Meth	nyl-2-pentanone	< 6.1	<1.5
Vinyl bromide	< 0.66	< 0.15	trans-	1,3-Dichloropropene	< 0.68	< 0.15
Ethanol	190 ve	100 ve	Toluer	ie	17	4.5
Acrolein	<1.4	<0.6	1,1,2-1	richloroethane	< 0.16	< 0.03
Pentane	9.2	3.1	2-Hexa	anone	<6.1	<1.5
Trichlorofluoromethane	<3.4	<0.6	Tetrac	hloroethene	<10	<1.5
Acetone	60	25	Dibron	nochloromethane	< 0.13	< 0.015
2-Propanol	55	22	1,2-Dil	promoethane (EDB)	< 0.12	< 0.015
1,1-Dichloroethene	< 0.59	< 0.15	Chloro	benzene	< 0.69	< 0.15
trans-1,2-Dichloroethene	< 0.59	< 0.15	Ethylb	enzene	4.4	1.0
Methylene chloride	<130 jl	<37 jl	1, 1, 2, 2	-Tetrachloroethane	< 0.21	< 0.03
t-Butyl alcohol (TBA)	<18	<6	Nonan	e	<7.9	<1.5
3-Chloropropene	<1.9	<0.6	Isoproj	pylbenzene	<3.7	< 0.75
CFC-113	<1.1	< 0.15	2-Chlo	rotoluene	<7.8	<1.5
Carbon disulfide	<9.3	<3	Propyl	benzene	<3.7	< 0.75
Methyl t-butyl ether (MTBE)	<2.7	< 0.75	•	ltoluene	<3.7	< 0.75
Vinyl acetate	<11	<3	m,p-Xy		9.4	2.2
1,1-Dichloroethane	< 0.61	< 0.15	o-Xyle:		4.0	0.91
cis-1,2-Dichloroethene	< 0.59	< 0.15	Styren		6.2	1.4
Hexane	7.9	2.2	Bromo		<3.1	< 0.3
Chloroform	0.25	0.051	-	chloride	< 0.078	< 0.015
Ethyl acetate	<11	<3		rimethylbenzene	<3.7	< 0.75
Tetrahydrofuran	29	9.7	, ,	rimethylbenzene	<3.7	< 0.75
2-Butanone (MEK)	6.5	2.2		chlorobenzene	< 0.9	< 0.15
1,2-Dichloroethane (EDC)	0.77	0.19		chlorobenzene	< 0.36	< 0.06
1,1,1-Trichloroethane	< 0.82	< 0.15		chlorobenzene	<0.9	< 0.15
Carbon tetrachloride	< 0.94	< 0.15		richlorobenzene	<1.1	< 0.15
Benzene	$0.82~{\rm fb}$	$0.26~{\rm fb}$	Napht		< 0.39	< 0.075
Cyclohexane	39	11	Hexac	hlorobutadiene	< 0.32	< 0.03

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	E3 04/05/19 04/05/19 04/19/19 Air ug/m3	Inst	iect:	AEG Franciscan West Sea 904131-02 1/1.6 041827.D GCMS7 bat/MS	uttle, F&BI 90	4131
	%	Lower	Upper			
Surrogates: 4-Bromofluorobenz	Recovery: 2014 Sene 95	Limit: 70	Limit: 130			
	Compose	tration			Compose	tuation
Compounds:	ug/m3	ntration ppbv	Compo	unds	ug/m3	ntration ppbv
Compounds.	ug/mo	pppv	Compo	unus.	ug/iii0	ppov
Propene	<1.1	< 0.64	1,2-Dic	hloropropane	< 0.37	< 0.08
Dichlorodifluorome	ethane 2.4	0.48	1,4-Dio		< 0.58	< 0.16
Chloromethane	<3.3	<1.6	2,2,4 - T	rimethylpentane	<7.5	<1.6
F-114	<1.1	< 0.16	Methyl	methacrylate	<6.6	<1.6
Vinyl chloride	< 0.41	< 0.16	Heptar	ne	<6.6	<1.6
1,3-Butadiene	< 0.035	< 0.016	Bromo	dichloromethane	< 0.11	< 0.016
Butane	<3.8	<1.6	Trichlo	roethene	4.1	0.76
Bromomethane	<2.5	< 0.64	cis-1,3-	Dichloropropene	< 0.73	< 0.16
Chloroethane	<4.2	<1.6	4-Meth	yl-2-pentanone	<6.6	<1.6
Vinyl bromide	< 0.7	< 0.16	trans-1	,3-Dichloropropene	< 0.73	< 0.16
Ethanol	1,100 ve	610 ve	Toluen		6.8	1.8
Acrolein	<1.5	< 0.64		richloroethane	< 0.17	< 0.032
Pentane	<4.7	<1.6	2-Hexa		<6.6	<1.6
Trichlorofluoromet		< 0.64		nloroethene	<11	<1.6
Acetone	52	22		nochloromethane	< 0.14	< 0.016
2-Propanol	420 ve	170 ve		promoethane (EDB)	< 0.12	< 0.016
1,1-Dichloroethene		0.22		benzene	< 0.74	< 0.16
trans-1,2-Dichloroe		< 0.16	Ethylb		0.89	0.20
Methylene chloride		<40 jl		Tetrachloroethane	< 0.22	< 0.032
t-Butyl alcohol (TB		< 6.4	Nonan		<8.4	<1.6
3-Chloropropene	<2	< 0.64		oylbenzene	<3.9	< 0.8
CFC-113	1.4	0.18		rotoluene	<8.3	<1.6
Carbon disulfide	<10	<3.2		benzene	<3.9	< 0.8
Methyl t-butyl ethe		< 0.8		ltoluene	<3.9	< 0.8
Vinyl acetate	<11	<3.2	m,p-Xy		2.3	0.54
1,1-Dichloroethane		< 0.16	o-Xyler		1.0	0.24
cis-1,2-Dichloroeth		< 0.16	Styren		<1.4	< 0.32
Hexane	<5.6	<1.6	Bromo		<3.3	< 0.32
Chloroform	2.2	0.46		chloride	< 0.083	< 0.016
Ethyl acetate	<12	<3.2		rimethylbenzene	<3.9	< 0.8
Tetrahydrofuran	1.9	0.65		rimethylbenzene	<3.9	< 0.8
2-Butanone (MEK)		2.4		hlorobenzene	< 0.96	< 0.16
1,2-Dichloroethane	, ,	0.024		hlorobenzene	< 0.38	< 0.064
1,1,1-Trichloroetha		<0.16	,	hlorobenzene	< 0.96	<0.16
Carbon tetrachlori		<0.16		richlorobenzene	<1.2	< 0.16
Benzene	< 0.51	< 0.16	Naphth		< 0.42	< 0.08
Cyclohexane	<11	<3.2	Hexach	lorobutadiene	< 0.34	< 0.032

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	BR 04/05/19 04/05/19 04/19/19 Air ug/m3		Clien Projec Lab I Data Instru Opera	et: D: File: ument:	AEG Franciscan West Seat 904131-03 1/1.6 041828.D GCMS7 bat/MS	tle, F&BI 90	4131
		%	Lower	Upper			
Surrogates:		ecovery:	Limit:	Limit:			
4-Bromofluorobenz	ene	101	70	130			
		Concen	tration			Concer	ntration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
р		1.0	0.50	100	11	<0.9 7	-0.00
Propene Dichland diffuserer	thoma	1.2	0.70		chloropropane	<0.37	<0.08
Dichlorodifluorome Chloromethane	etnane	2.4	0.48	1,4-Di		<0.58	< 0.16
F-114		<3.3 <1.1	<1.6 <0.16		Frimethylpentane	<7.5 <6.6	<1.6 <1.6
F-114 Vinyl chloride		<0.41	<0.16 <0.16	Hepta	l methacrylate	<6.6 <6.6	<1.6 <1.6
1,3-Butadiene		< 0.41	<0.16		odichloromethane	<0.0	<0.016
Butane		<0.055 <3.8	<0.016		oroethene	<0.11 13	<0.016 2.5
Bromomethane		<3.8 <2.5	<0.64		-Dichloropropene	<0.73	<0.16
Chloroethane		<2.3 <4.2	<0.04 <1.6		hyl-2-pentanone	<0.73 <6.6	<0.10 <1.6
Vinyl bromide		<4.2 <0.7	<0.16		1,3-Dichloropropene	<0.0	<0.16
Ethanol		<0.7 180 ve	<0.10 96 ve	Toluer		<0.73 3.1	0.81
Acrolein		<1.5	<0.64		Frichloroethane	< 0.17	< 0.032
Pentane		<1.5 <4.7	<0.04 <1.6	1,1,2- 2-Hex		<6.6	<0.032
Trichlorofluoromet	hano	<4.7 <3.6	< 0.64		chloroethene	<0.0 43	<1.0 6.4
Acetone	liane	$\frac{5.0}{37}$	<0.04 16		nochloromethane	<0.14	< 0.016
2-Propanol		95	10 39		bromoethane (EDB)	<0.14 <0.12	<0.010 <0.016
1,1-Dichloroethene		3.6	0.90		bioindetnane (EDB) benzene	<0.12 <0.74	<0.010
trans-1,2-Dichloroe		<0.63	< 0.16		Denzene	0.97	0.22
Methylene chloride		<140 jl	<40.10		2-Tetrachloroethane	< 0.22	< 0.032
t-Butyl alcohol (TB		<140 J1	<6.4	Nonar		<8.4	<1.6
3-Chloropropene	11)	<2	<0.64		pylbenzene	<3.9	< 0.8
CFC-113		5.5	0.71		pyibelizene	<8.3	<1.6
Carbon disulfide		<10	<3.2		lbenzene	<3.9	< 0.8
Methyl t-butyl ethe	er (MTBE)	<2.9	< 0.8		vltoluene	<3.9	< 0.8
Vinyl acetate	,1 (111111)	<11	<3.2	m,p-X		2.5	0.58
1,1-Dichloroethane		0.78	0.19	o-Xyle		0.99	0.23
cis-1,2-Dichloroeth		< 0.63	< 0.16	Styrer		<1.4	< 0.32
Hexane		<5.6	<1.6	Brome		<3.3	< 0.32
Chloroform		0.38	0.078		l chloride	< 0.083	< 0.016
Ethyl acetate		<12	<3.2		Frimethylbenzene	<3.9	< 0.8
Tetrahydrofuran		2.9	0.97		Frimethylbenzene	<3.9	< 0.8
2-Butanone (MEK)		15	5.0		chlorobenzene	< 0.96	< 0.16
1,2-Dichloroethane		0.078	0.019		chlorobenzene	< 0.38	< 0.064
1,1,1-Trichloroetha		3.4	0.62		chlorobenzene	< 0.96	< 0.16
Carbon tetrachlorie		<1	< 0.16		Frichlorobenzene	<1.2	< 0.16
Benzene		< 0.51	< 0.16		halene	< 0.42	< 0.08
Cyclohexane		<11	<3.2		hlorobutadiene	< 0.34	< 0.032

ENVIRONMENTAL CHEMISTS

Date Received:DateDate Collected:DateDate Analyzed:DateMatrix:A	Method Blank Not Applicable Not Applicable)4/18/19 Air 1g/m3	Clien Proje Lab I Data Instr Oper	ect: ID: File: ument:	AEG Franciscan West Sea 09-0784 mb 041820.D GCMS7 bat/MS	ttle, F&BI 904	4131
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenzen	ie 105	70	130			
	Concent	tration			Concen	tration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
	C		-		C	
Propene	< 0.69	< 0.4		chloropropane	< 0.23	< 0.05
Dichlorodifluorometh		< 0.1	1,4-Dio		< 0.36	< 0.1
Chloromethane	<2.1	<1		rimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1		l methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptar		<4.1	<1
1,3-Butadiene	< 0.022	< 0.01		dichloromethane	< 0.067	< 0.01
Butane	<2.4	<1		proethene	< 0.27	< 0.05
Bromomethane	<1.6	< 0.4		-Dichloropropene	< 0.45	< 0.1
Chloroethane	<2.6	<1		nyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5	<4	Toluen		< 0.38	< 0.1
Acrolein	< 0.92	< 0.4		richloroethane	< 0.11	< 0.02
Pentane	<3	<1	2-Hexa		<4.1	<1
Trichlorofluorometha		< 0.4		hloroethene	<6.8	<1
Acetone	<4.8	<2		nochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	<3.5		promoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1		benzene	< 0.46	< 0.1
trans-1,2-Dichloroeth		< 0.1		enzene	< 0.43	< 0.1
Methylene chloride	<87 jl	<25 jl		-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)		<4	Nonan		<5.2	<1
3-Chloropropene	<1.3	< 0.4		pylbenzene	<2.5	< 0.5
CFC-113	< 0.77	< 0.1		rotoluene	<5.2	<1
Carbon disulfide	< 6.2	<2		benzene	<2.5	< 0.5
Methyl t-butyl ether		< 0.5		ltoluene	<2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xy		< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylei		< 0.43	< 0.1
cis-1,2-Dichloroethen		< 0.1	Styren		< 0.85	< 0.2
Hexane	<3.5	<1	Bromo		<2.1	< 0.2
Chloroform	< 0.049	< 0.01		chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2		rimethylbenzene	<2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1		rimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)	<2.9	<1		chlorobenzene	<0.6	< 0.1
1,2-Dichloroethane (H		< 0.01		chlorobenzene	< 0.24	< 0.04
1,1,1-Trichloroethane		< 0.1	,	chlorobenzene	<0.6	< 0.1
Carbon tetrachloride	< 0.63	< 0.1		richlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Napht		< 0.26	< 0.05
Cyclohexane	<6.9	<2	Hexac	hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/05/19 Project: Franciscan West Seattle, F&BI 904131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 904133-03 1/1.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	140	140	0
APH EC9-12 aliphatics	ug/m3	190	190	0
APH EC9-10 aromatics	ug/m3	<40	<40	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	45	83	70-130
APH EC9-12 aliphatics	ug/m3	45	104	70-130
APH EC9-10 aromatics	ug/m3	45	83	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/05/19 Project: Franciscan West Seattle, F&BI 904131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	Descritions	0.1.	Percent	A t
Analyta	Reporting Units	Spike Level	Recovery LCS	Acceptance
Analyte December 2		5	110	Criteria 70-130
Propene Disklams differencementheme	ppbv			
Dichlorodifluoromethane Chloromethane	ppbv	5	106	70-130
	ppbv	5	112	70-130
F-114	ppbv	5	108	70-130
Vinyl chloride	ppbv	5	110	70-130
1,3-Butadiene	ppbv	5	107	70-130
Butane	ppbv	5	106	70-130
Bromomethane	ppbv	5	93	70-130
Chloroethane	ppbv	5	107	70-130
Ethanol	ppbv	5	95	70-130
Acrolein	ppbv	5	93	70-130
Pentane	ppbv	5	106	70-130
Trichlorofluoromethane	ppbv	5	105	70-130
Acetone	ppbv	5	96	70-130
2-Propanol	ppbv	5	101	70-130
1,1-Dichloroethene	ppbv	5	106	70-130
trans-1,2-Dichloroethene	ppbv	5	106	70-130
Methylene chloride	ppbv	5	65 vo	70 - 130
t-Butyl alcohol (TBA)	ppbv	5	107	70 - 130
3-Chloropropene	ppbv	5	104	70 - 130
CFC-113	ppbv	5	107	70 - 130
Carbon disulfide	ppbv	5	104	70 - 130
Methyl t-butyl ether (MTBE)	ppbv	5	100	70 - 130
Vinyl acetate	ppbv	5	102	70 - 130
1,1-Dichloroethane	ppbv	5	106	70 - 130
cis-1,2-Dichloroethene	ppbv	5	105	70-130
Hexane	ppbv	5	101	70 - 130
Chloroform	ppbv	5	106	70-130
Ethyl acetate	ppbv	5	99	70-130
Tetrahydrofuran	ppbv	5	100	70-130
2-Butanone (MEK)	ppbv	5	104	70-130
1,2-Dichloroethane (EDC)	ppbv	5	107	70-130
1,1,1-Trichloroethane	ppbv	5	108	70-130
Carbon tetrachloride	ppbv	5	106	70-130
Benzene	ppbv	5	99	70-130
Cyclohexane	ppbv	5	104	70-130
1,2-Dichloropropane	ppbv	5	106	70-130
1,4-Dioxane	ppbv	$\overline{5}$	97	70-130
2,2,4-Trimethylpentane	ppbv	$\overline{5}$	101	70-130
Methyl methacrylate	ppbv	$\ddot{5}$	106	70-130
Heptane	ppbv	$\ddot{5}$	105	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/05/19 Project: Franciscan West Seattle, F&BI 904131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Analyte	Reporting	C		
Analyte		Spike	Recovery	Acceptance
	Units	Level	LCS	Criteria
Bromodichloromethane	ppbv	5	106	70-130
Trichloroethene	ppbv	5	102	70-130
cis-1,3-Dichloropropene	ppbv	5	102	70-130
4-Methyl-2-pentanone	ppbv	5	103	70-130
trans-1,3-Dichloropropene	ppbv	5	102	70-130
Toluene	ppbv	5	105	70-130
1,1,2-Trichloroethane	ppbv	5	109	70-130
2-Hexanone	ppbv	5	103	70-130
Tetrachloroethene	ppbv	5	105	70-130
Dibromochloromethane	ppbv	5	107	70-130
1,2-Dibromoethane (EDB)	ppbv	5	106	70-130
Chlorobenzene	ppbv	5	105	70-130
Ethylbenzene	ppbv	5	100	70-130
1,1,2,2-Tetrachloroethane	ppbv	5	99	70-130
Nonane	ppbv	5	89	70-130
Isopropylbenzene	ppbv	5	100	70-130
2-Chlorotoluene	ppbv	5	102	70-130
Propylbenzene	ppbv	5	99	70-130
4-Ethyltoluene	ppbv	5	102	70-130
m,p-Xylene	ppbv	10	99	70-130
o-Xylene	ppbv	5	99	70-130
Styrene	ppbv	5	102	70-130
Bromoform	ppbv	5	103	70-130
Benzyl chloride	ppbv	5	104	70-130
1,3,5-Trimethylbenzene	ppbv	5	101	70-130
1,2,4-Trimethylbenzene	ppbv	5	101	70-130
1,3-Dichlorobenzene	ppbv	5	101	70-130
1,4-Dichlorobenzene	ppbv	5	99	70-130
1,2-Dichlorobenzene	ppbv	5	102	70-130
1,2,4-Trichlorobenzene	ppbv	5	103	70-130
Naphthalene	ppbv	5	91	70-130
Hexachlorobutadiene	ppbv	5	105	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

904131	,	SAMPL	SAMPLE CHAIN OF C	CUSTODY	ME 04/05/	
Report To ALG	AURT	SATELINE SATELINE	Elle (sendure)	1		Page # of
Company ALS Address LOS 114	NUE (+ #20,		PARKISCAN WE	ST CAME	PO#	© RUSH Rush charges authorized by:
City, State, ZIP MUNP	PLA IN 985	SOI NOTES:			INVOICE TO	SAMPLE DISPOSAL, DArchive Samples
Phone 203527835 Email Dort SARDENCE AREN	nail Dontoned Luc	CARLAN LONA		- - -	Alac	□ Other
SAMPLE INFORMATION	CONTE AND COMP	(SMN: CON			ANALYSIS REQUESTED	QUESTED
				×.	an N	
					Full Sc. 5 BTEX 5 cVOC	APH Ielium
, ·	Lab Canister Cont.	IA=	Date Vac.		TO15 TO18	He
20 SC	0/ 3750		45,19 70			X Sign we have a state of the second
5	108 22 20		45,19 27	1231		
BRI	8152 ED	IA / SG	H.5/19/28 /	050 3 /t	26 X - 12	* 11 2
	2435	IA / SG				*TPH GX
		IA / SG		A		· · · · · · · · · · · · · · · · · · ·
		IA / SG		• · · ·		
		IA / SG			Samples	ples received at 20eC
		IA / SG	÷			
Friedman & Bruya, Inc.	SIGMATURE	UBE	PRINT	L NAME	COMPANY	VY DATE TIME
3012 16th Avenue West	Berling wind by HA	HT L	YANING LONARDOC	ENDOWS	AB.	H
Seattle, WA 98119-2029 Ph. (206) 285-8282	Received by:	Mart C	VIN H		FBI	4/5/19 11:50
Fax (206) 283-5044	Received by:					
FORMS\COC\COCTO-15.DOC						