

January 22, 2020

Ms. Tahni Madden CHI Franciscan Health 1149 Market Street, MS-10-06 Tacoma, Washington 98402-3515

RE: Vapor Mitigation System Air Sampling Results – November 2019

Franciscan Medical Clinic 4550 Fauntleroy Way SW Seattle, Washington 98126-3471 AEG Project No. 18-172

Dear Ms. Madden:

Associated Environmental Group, LLC (AEG) is pleased to present this memorandum summarizing the recent sampling performed by AEG and NOW Environmental Services, Inc. (NOW) at the CHI Franciscan clinic, located at the above-referenced address in Seattle (Site).

SUB-SLAB VAPOR SAMPLING - AEG

On November 5, 2019, sub-slab vapor samples were collected by AEG from the three independent sub-slab depressurization (SSD) systems installed in exam room #3, the employee break room, and the storage room near the lower exit (see the attached Figure 1, *Sub-Slab Depressurization Point Locations*). Samples were collected using 1-liter Summa canisters to provide a quantitative value for the reduction of volatile organic compounds (VOCs) removed from beneath the concrete floor. The samples were collected using a 10-minute sampling duration, and were delivered to Libby Environmental, Inc. (Libby) laboratory in Olympia, Washington for VOC analysis of petroleum fractionation of aliphatic hydrocarbons in the air-phase (APH) and VOCs by EPA Method TO-15-APH.

The APH vapor sampling method is used to quantify individual fractions of gaseous phase volatile aliphatic and aromatic hydrocarbons based on the number of carbon atoms included in the constituent compounds. The method quantified aliphatic hydrocarbons within two specific ranges: C5 through C8, and C9 through C12. Additionally, aromatic hydrocarbons are quantified within the C9 through C10 range. These ranges are illustrated on the diagram in Figure 4, *Petroleum Fractions by Carbon Range*.

The laboratory results indicated the SSD points in all three locations were removing high APH VOCs in the gasoline-range that would have the potential of entering the working space in the

Technical Memorandum – Vapor Mitigation System Air Sampling Results November 2019
Franciscan Medical Clinic, Seattle, WA
AEG Project No. 18-172
January 22, 2020

lower floor of the building. Gasoline-range organics (GRO) are generally detected between carbon ranges C4 and C12 (see attached Figure 4). Concentrations of C9 to C12 carbon were detected in the storage room and the employee breakroom SSDs at 3,750 micrograms per cubic meter ($\mu g/m^3$) and 3,700 $\mu g/m^3$, respectively. Detected constituents with corresponding MTCA Method B subslab screening levels are summarized in Table 1, *Summary of Sub-Slab Vapor Analytical Results from Sub-Slab Depressurization Points*, and the laboratory sampling reports are attached. The GRO vapors detected in the samples were directed outside of the building to the exhaust stack on the roof of the clinic via the SSD systems.

The SSD systems were installed to provide a reduced pressure (vacuum) beneath the lower office floor slab, creating a pressure barrier to the interior air space. The volatile vapors collected by the SSD points enter the piping through the three collection points and are then discharged by the fan to the outside atmosphere. The airflow rate is approximately 90 cubic feet per minute (CFM) total from all three SSD locations to the exhaust point. The total concentrations of APH results (as GRO) would calculate to about 28.67 pounds per year (lbs/yr) operating 24 hours per day (see Table 2, *Estimated Hydrocarbons Removal Rate*). This would be equivalent to 4.59 gallons of fuel removed in vapor phase from beneath the basement office concrete floor. As a comparison, the active remediation system at the adjacent and upgradient former BP Facility No. WA-11060 (BP) was removing approximately 719.9 lbs/yr or 1.9 pounds per day (lbs/day) at the source of the spill as reported in the 2018 Annual Site Status Report to Ecology. The correlation is the downgradient SSD system is currently removing an equivalent mass of 4% of total hydrocarbons removed from the spill area in 2018 from beneath the concrete floor of the building.

INDOOR AIR SAMPLING - NOW ENVIRONMENTAL

On November 5 and 6, 2019, concurrent with AEG's Site activities, NOW performed a follow-up round of indoor air testing. This NOW sampling effort was more extensive than prior events, and included sampling the indoor air samples from previous and new locations within the basement office areas using Summa canisters with 8- and 24-hour sampling durations. Analytical results of identified constituents in indoor air were compared to the Model Toxics Control Act (MTCA) Method B indoor air cleanup levels and Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs). Figure 3, West Seattle Medical Clinic Proposed Sampling Locations Map, from the December 2019 NOW report shows the locations of the Summa canister placement.

Analytical results of the samples indicated the presence of APHs and VOCs at concentrations exceeding their respective MTCA Method B indoor air cleanup levels. However, concentrations were well below the PELs established by OSHA for an 8-hour work day. A summary of indoor air analytical results is presented in Table 3A, Table 3B, and Table 3C, *Comparison of Indoor Air Samples*.

Technical Memorandum – Vapor Mitigation System Air Sampling Results November 2019
Franciscan Medical Clinic, Seattle, WA
AEG Project No. 18-172
January 22, 2020

CLOSING

The Site work was completed to assess the effectiveness of the SSD system installed by AEG to address health concerns and try to redirect petroleum vapors detected within the lower floor of the building to outside air. The vapor data collected by AEG shows the SSD system is pulling vapors from beneath the slab and redirecting them to the outside air as designed. However, the latest indoor air sampling, which included areas not previously sampled, showed GRO and selected VOCs above their respective MTCA Method B indoor air cleanup levels, though well below the PELs established by OSHA for an 8-hour work day.

The HVAC is now operating in heating mode, which typically recycles air from around the building along with a percentage of "outside fresh air" for energy efficiency. This may account for the indoor air detections during this sampling event.

Additional mitigation options could include either of the following:

- 1. Expand the SSD network with additional points and a second vacuum fan. AEG would need to examine the condition of the drop ceiling on the south end of the lower offices and to see how to route the conveyance piping to the roof prior to proposing new SSD locations.
- 2. Add several new SSD points and change the fan to a larger vacuum blower capable of higher vacuum and increased air flow rates. This would have to be sized based on the available power on the roof, the roof load bearing capability, and possibly a small sound enclosure placed on the ground for easier access for maintenance.

AEG had intended to operate the SSD system until such time that BP finishes their investigation of the petroleum impact to Site subsurface associated with the adjacent Shell site to the west. Figure 2, *Groundwater Elevation Contour Map with Analytical Results August 27, 2019*, from BP's consultant (ARCADIS) shows the GRO concentrations in monitoring well GMW-1 to be 2,750 micrograms per liter (μ g/L), which exceeds the MTCA Method A Groundwater Cleanup Level of 800 μ g/L. According to ARCADIS, the inferred groundwater gradient is to the east of the property (AEG added the redline and text to the attached figure). The SSD system installed by AEG was intended to be temporary and was not designed as a remediation system to clean up the GRO that may have migrated from the BP site to the clinic property.

The soil vapor extraction (SVE) system in operation on the BP site needs to be increased to encompass the clinic property; at a minimum the west side of the clinic building. This would likely address the GRO under the concrete floor of the basement office spaces. At this time, AEG has not received any indications that BP/ARCADIS is going to expand the remediation system to increase the recovery radius of their SVE system.

Technical Memorandum – Vapor Mitigation System Air Sampling Results November 2019

Franciscan Medical Clinic, Seattle, WA
AEG Project No. 18-172
January 22, 2020

AEG would recommend continued seasonal indoor air and SSD vapor sampling to confirm any seasonal changes to the VOC levels, and to ensure continued monitoring of the potential risk levels for employees.

Sincerely,

Associated Environmental Group, LLC

Charles S. Swift, R.S.A.

Cls. Sep

Project Manager

Scott Rose, L.H.G. *Senior Hydrogeologist*

Attachments:

Figure 1 – Sub-Slab Depressurization Point Locations

Figure 2 – Groundwater Elevation Contour Map with Analytical Results August 27, 2019 (from the Former BP Facility No. WA-11060 (NW2463) – 2019 Groundwater Monitoring Report by Arcadis, dated November 14, 2019)

Figure 3 – West Seattle Medical Clinic Proposed Sampling Locations Map – NOW December 2019

Figure 4 – *Petroleum Fractions by Carbon Range*

Table 1 – Summary of Sub-Slab Vapor Analytical Results from Sub-Slab Depressurization Points

Table 2 – Estimated Hydrocarbons Removal Rate

Table 3A – Comparison of Indoor Air Samples

Table 3B – Comparison of Indoor Air Samples

Table 3C – Comparison of Indoor Air Samples

Libby Environmental, Inc. Laboratory Report, dated November 21, 2019

WEST SEATTLE MEDICAL CLINIC

FIGURE 3

FIGURE 4

Petroleum Fractions by Carbon Range

Number of Carbons

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Table 1
Summary of Sub-Slab Vapor Analytical Results from Sub-Slab Depressurization Points
Franciscan Medical Clinic, West Seattle

Samp	ple Number	Exam Ro (SSI	om No. 3 D-1)	Employee B (SSE			e Room D-3)	Method B Sub-Slab	Method B Indoor Air	OSHA PEL	ACGIH TLVs
Date	e Collected	4/5/2019	11/5/2019	4/5/2019	11/5/2019	4/5/2019	11/5/2019	Screening Level ¹	Cleanup Level ²	(8-Hour TWA)	(8-Hour TWA)
				Gasolin	e-Related Cor	nstituents					
APH - Air-Phase	EC5-8 Aliphatics	210	378	110	676	330	903	90,000	2,700	NL	NL
Hvdrocarbons	EC9-12 Aliphatics	120	467	91	3,700	180	3,750	4,700	140	NL	NL
Trydrocuroons	EC9-10 Aromatics	<40	<31.4	<40	<31.4	<37	<31.4	6,000	180	NL	NL
Gasoline-I	Range Organics ³	330	845	201	4,376	510	4,653	NL	140	NL	NL
				Detected Vo	latile Organio	Compounds	;				
	Hexane	< 5.6	<1.41	< 5.6	<4.41	7.9	<1.41	10,700	320	500,000	50,000
	Benzene	< 0.51	0.439	< 0.51	0.722	0.82 fb	0.395	10.7*	0.321*	1,000	500
Volatile Organic	Toluene	6.8	<1.51	3.1	2.58	17	2.11	76,200	2,290	200,000	20,000
Compounds	Ethylbenzene	0.89	<1.74	0.97	<1.74	4.4	<1.74	15,200	457	100,000	20,000
Compounds	m,p-Xylene	2.3	<3.47	2.5	<4.47	9.4	<3.47	1,520	45.7	100,000	100,000
	o,p-Xylene	1.0	<1.74	0.99	<1.71	4.0	<1.74	1,520	45.7	100,000	100,000
	Naphthalene	< 0.42	1.2	< 0.42	5.05	< 0.39	1.6	2.45*	0.0735*	10,000	10,000
				Other Detected	Volatile Orga	anic Compou	nds				
	Dichlorodifluoromethane	2.4	2.58	2.4	2.56	< 0.13	2.59	1,520	45.7	1,000	1,000
	Chloroform	2.2	4.7	0.38	< 0.977	0.25	< 0.977	3.62*	0.1	50	10
	1,2-Dichloroethane (EDC)	0.097	< 0.809	0.078	< 0.810	0.77	< 0.809	3.21*	0.096	100	100
	1,2,4-Trimethylbenzene	<1.2	<1.47	<1.2	<1.47	<3.7	2.73	106.6	3.2	NL	25,000
Selected Volatile	1,3-Dichlorobenzene	< 0.96	7.38	< 0.96	8.09	< 0.9	11.8	NL	NL	301,000	150,000
Organic Compounds	Isopropol Alcohol	420 ve	60.8	95	54.8	55	51.9	NL	NL	980,000	200,000
	Trichloroethylene (TCE)	4.1	< 0.349	13	< 0.349	< 0.4	< 0.349	12.3*	0.37	100	50
	Tetrachloroethylene (PCE)	<11	4.89	43	<1.36	<10	<1.36	321*	9.60	100	25
	Styrene	<1.4	<1.7	<1.4	<1.70	6.2	<1.7	15,200	457	100	50
	Acetone	52	23.9	37	43.7	55	13.5	NL	NL	2,400,000	250,000

Notes:

All values presented in micrograms per cubic meter (µg/m³)

- < = Not detected above laboratory reporting limits
- fb = The analyte was detected in the method blank.
- ve = The analyte response exceeded the valid instrument calibration range. The reported value is an estimate.

Red Bold indicates the detected concentration exceeds one or more regulatory levels

Bold indicates the detected concentration is below all regulatory levels

OSHA PEL = U.S. Department of Labor, Occupational Safety and Health Administration Permissible Exposure Limit. Federal regulatory standard.

TWA = Time-Weighted Average.

NL = Not Listed; no values have been established for these constituents.

^{*} Cancer screening level (all other constituents listed do not have cancer values)

An exceedance of Ecology's Method B sub-slab screening level indicates the constituent is present at a concentration in sub-slab vapor that has the potential to migrate into indoor air.

²An exceedance of Ecology's Method B cleanup level for indoor air indicates that, for the Site to receive a determination of No Further Action, mitigation is required via either removal of the source or redirection of vapors from the breathing zone.

³Gasoline-Range Organics were estimated using the sum of the results for APH EC5-8, APH EC9-12, and APH EC9-10

TABLE 2

Estimated Hydrocarbons Removal Rate Franciscan Health Clinic - Seattle, Washington

Date	Sample ID	Contaminant	Laboratory Sample	Molecular Weight	Flowrate Measured	Potential To Emit	Potential To Emit
			Results	(1)	(2)	Actual Flow Rate	Actual Flow Rate
			parts per	grams per -	cubic feet per	estimated	(3) estimated
			million volume (ppmv)	mole (g/mole)	minute (cfm)	pounds per day (lb/day)	pounds per year (lb/year)
11/5/2019	SSDs Combined	Benzene	0.0006	78.11	90.00	0.0000159	0.0058
		Toluene	0.0013	92.13	90.00	0.0000398	0.0145
		Ethylbenzene	0.0000	106.2	90.00	0.0000000	0.0000
	10-inches W.C.	Xylenes	0.0000	106.2	90.00	0.0000000	0.0000
	Total System Vacuum	Gasoline	2.2569	105	90.00	0.0785475	28.6699

BTEX Daily 0.0001
TPH-G Daily 0.0785
BTEX Totals Yearly 0.0203
TPH-G Totals Yearly 28.6699

Notes:

CFM = Flow rate of gas (standard cubic feet per minute)

1 Pound = 453.6 grams

1 Liter = 0.03531 cubic feet

1 Mole of gas = 24.46 Liters volume at STP (77"F and 29.92 "w.c.)

ft/min = feet per minute

inches W.C. = Inches Water Column Vacuum

System restarted on 12/14/2018

Conversion from ug/m^3 to PPMV

	ug/m3	Mol Wt.	PPMV
TPH-Gx	9,874	105	2.257
Benzene	2	78.11	0.001
Toluene	5	92.13	0.001
Ethylbenzene	0	106.2	0.000
Xylenes	0	106.2	0.000

TO CALCULATE TOTAL POUNDS REMOVED:

TOTAL LBS	= MW g x	1 lb x	$1 \text{ mole} x \qquad 1$	L x	SCFM std cu ft	x CONC ppmv
REMOVED	1 mole	453.6 g	24.46 std L 0.035	31 cu ft	min	1x10^6 /ppmv

- (1) = Taken from the National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards.
- (2) = Velocity estimated from blower flow curves based on 40.0 inches W.C. vacuum at the system inlet.
- (3) = Potential emission rate as indicated by no treatment or no Best Available Control Technology (BACT) Method on 24-hours of operation per day.
- (4) = System restarted on 12/14/2019 with ART Well #5 operating (compressor hours = 5,190 hours)

Table 3A

Comparison of Indoor Air Samples

Franciscan Medical Clinic, West Seattle

Sam	ple Number				Exam Ro	oom No. 3							
Dat	e Collected	5/3/2018 (before SSD system online)	5/23/2018 (before SSD system online)	1/18/2019 (before SSD system online)	1/18/2019 (before SSD system online)	4/4/2019 (after SSD system online)	4/4/2019 (after SSD system online)	11/5/2019 (after SSD system online)	11/5/2019 (after SSD system online)	Method B Sub-Slab Screening Level ¹	Method B Indoor Air Cleanup Level ²	OSHA PEL (8-Hour TWA)	ACGIH TLVs (8-Hour TWA)
Sam	ple Duration	8 Hours	8 Hours	8 Hours	24 Hours	8 Hours	24 Hours	8 Hours	24 Hours				
					Gasoli	ne-Related Const	ituents						
Gasoline-	-Range Organics ³	26,300	1,100	41.5	42.0	16.4	73.2	62.4	295	NL	140	NL	NL
	Hexane	223	10.7	<1.41	<1.41	<1.41	<1.41	<1.41	<1.41	10,700	320	500,000	50,000
	Benzene	0.902	0.628	0.543	0.637	< 0.286	< 0.286	0.667	0.585	10.7*	0.321*	1,000	500
	Toluene	9.32	3.14	4.54	4.54	1.64	1.75	47	1.97	76,200	2,290	200,000	20,000
Volatile Organic	Ethylbenzene	4.24	<1.74	<1.74	<1.74	<1.74	<1.74	<1.74	<1.74	15,200	457	100,000	20,000
Compounds	m,p-Xylene	15.1	<3.47	<3.47	<3.47	<3.47	<3.47	<3.47	<3.47	1,520	45.7	100,000	100,000
	o,p-Xylene	4.86	<1.74	<1.74	<1.74	<1.74	<1.74	<1.74	<1.74	1,520	45.7	100,000	100,000
	1,2,4-trimethylbenzene	4.31	<1.47	<1.47	<1.47	<1.47	<1.47	<1.47	<1.47	107	3.20	NL	NL
	Naphthalene	< 0.524	< 0.524	< 0.524	< 0.524	< 0.524	< 0.524	<.524	< 0.524	2.45*	0.0735*	10,000	10,000
					Other Detecte	d Volatile Organ	ic Compounds						
	Dichlorodifluoromethane	3.24	<1.98	2.55	2.59	2.78	2.77	2.54	2.77	1,520	45.7	1,000	1,000
Selected Volatile	Carbon tetrachloride	0.712	< 0.413	0.419	0.431	0.482	0.480	0.423	0.421	1,520*	45.7*	10	5
Organic Compounds	Methyl ethyl ketone	5.80	924	< 2.95	<2.95	<2.95	<2.95	<2.95	<2.95	76,200	2,290	200	200
Organic Compounds	Trichloroethylene (TCE)	< 0.349	< 0.349	< 0.349	< 0.349	< 0.349	0.612	< 0.349	< 0.349	12.3*	0.37*	100	50
	Tetrachloroethylene (PCE)	<1.36	<1.36	1.62	<1.36	<1.36	<1.36	<1.36	<1.36	321*	9.6*	100	25

Notes:

All values presented in micrograms per cubic meter ($\mu g/m^3$)

< = Not detected above laboratory reporting limits

fb = The analyte was detected in the method blank.

ve = The analyte response exceeded the valid instrument calibration range. The reported value is an estimate.

Red Bold indicates the detected concentration exceeds one or more regulatory levels

Bold indicates the detected concentration is below all regulatory levels

SSD = Sub-Slab Depressurization

OSHA PEL = U.S. Department of Labor, Occupational Safety and Health Administration Permissible Exposure Limit. Federal regulatory standard.

TWA = Time-Weighted Average.

NL = Not Listed; no values have been established for these constituents.

^{*} Cancer screening level (all other constituents listed do not have cancer values)

An exceedance of Ecology's Method B sub-slab screening level indicates the constituent is present at a concentration in sub-slab vapor that has the potential to migrate into indoor air.

²An exceedance of Ecology's Method B cleanup level for indoor air indicates that, for the Site to receive a determination of No Further Action, mitigation is required via either removal of the source or redirection of vapors from the breathing zone.

³Gasoline-Range Organics were estimated using the sum of the results for APH EC5-8, APH EC9-12, and APH EC9-10

Table 3B

Comparison of Indoor Air Samples

Franciscan Medical Clinic, West Seattle

Sam	ple Number			Storage	e Room						
	e Collected	5/3/2018 (before SSD system online)	1/18/2019 (before SSD system online)	4/4/2019 (after SSD system online)	4/4/2019 (after SSD system online)	11/5/2019 (after SSD system online)	11/5/2019 (after SSD system online)	Method B Sub-Slab Screening Level ¹	Method B Indoor Air Cleanup Level ²	OSHA PEL (8-Hour TWA)	ACGIH TLVs (8-Hour TWA)
Samp	ole Duration	8 Hours	24 Hours	8 Hours	24 Hours	8 Hours	24 Hours				
				Gasoli	ne-Related Const	ituents					
Gasoline-	Range Organics ³	32,400	74.4	60.3	70.7	159	106	NL	140	NL	NL
	Hexane	466	<1.41	<1.41	<1.41	<1.41	<1.41	10,700	320	500,000	50,000
	Benzene	0.974	0.458	< 0.286	< 0.286	1.58	0.722	10.7*	0.321*	1,000	500
	Toluene	19.8	<1.51	1.79	1.96	3.75	1.91	76,200	2,290	200,000	20,000
Volatile Organic	Ethylbenzene	8.98	<1.74	<1.74	<1.74	<1.74	<1.74	15,200	457	100,000	20,000
Compounds	m,p-Xylene	36.6	<3.47	<3.47	<3.47	<3.47	<3.47	1,520	45.7	100,000	100,000
	o,p-Xylene	16.5	<1.74	<1.74	<1.74	1.9	<1.74	1,520	45.7	100,000	100,000
	1,2,4-trimethylbenzene	6.67	<1.47	<1.47	<1.47	<2.23	<1.47	107	3.20	NL	NL
	Naphthalene	< 0.524	< 0.524	< 0.524	< 0.52	0.694	< 0.524	2.45*	0.0735*	10,000	10,000
				Other Detecte	d Volatile Organ	ic Compounds					
	Dichlorodifluoromethane	2.73	2.67	2.67	2.79	2.66	2.52	1,520	45.7	1,000	1,000
0.1 4.137.141	Carbon tetrachloride	0.572	0.468	0.477	0.484	0.414	0.435	1,520*	45.7*	10	5
Selected Volatile Organic Compounds	Methyl ethyl ketone	7.94	<2.95	<2.95	<2.95	<2.95	<2.95	76,200	2,290	200	200
Organic Compounds	Trichloroethylene (TCE)	< 0.349	< 0.349	< 0.349	< 0.349	< 0.349	< 0.349	12.3*	0.37*	100	50
	Tetrachloroethylene (PCE)	<1.36	<1.36	<1.36	<1.36	<1.36	<1.36	321*	9.6*	100	25

Notes:

All values presented in micrograms per cubic meter (µg/m³)

<= Not detected above laboratory reporting limits

fb = The analyte was detected in the method blank.

ve = The analyte response exceeded the valid instrument calibration range. The reported value is an estimate.

Red Bold indicates the detected concentration exceeds one or more regulatory levels

Bold indicates the detected concentration is below all regulatory levels

SSD = Sub-Slab Depressurization

OSHA PEL = U.S. Department of Labor, Occupational Safety and Health Administration Permissible Exposure Limit. Federal regulatory standard.

TWA = Time-Weighted Average.

NL = Not Listed; no values have been established for these constituents.

^{*} Cancer screening level (all other constituents listed do not have cancer values)

An exceedance of Ecology's Method B sub-slab screening level indicates the constituent is present at a concentration in sub-slab vapor that has the potential to migrate into indoor air.

²An exceedance of Ecology's Method B cleanup level for indoor air indicates that, for the Site to receive a determination of No Further Action, mitigation is required via either removal of the source or redirection of vapors from the ³Gasoline-Range Organics were estimated using the sum of the results for APH EC5-8, APH EC9-12, and APH EC9-10

Table 3C *Comparison of Indoor Air Samples*Franciscan Medical Clinic, West Seattle

Sam	ple Number	Back Office Pod	Front Office Pod	Employee 1	Break Room	Hall Across Fr	om Main Desk	Dr. Koang's (Office Rm #14	Method B	Method B		
Dat	e Collected	5/23/2018	1/18/2019	11/5/2019 (SSD system	11/5/2019 (SSD system	11/5/2019	11/5/2019 (SSD system	11/5/2019	11/5/2019	Sub-Slab	Indoor Air	OSHA PEL	ACGIH TLVs (8-Hour TWA)
Dat	e Collected	(before SSD system online)	(before SSD system online)	online)	(SSD system online)	(SSD system online)	(SSD system online)	(SSD system online)	(SSD system online)	Screening Level ¹	Cleanup Level ²	(0 11041 1 11/11)	(0 110ur 1 W11)
Sam	ple Duration	8 Hours	8 Hours	8 Hours	24 Hours	8 Hours	24 Hours	8 Hours	24 Hours	1			
					Gasoli	ne-Related Const	ituents						
Gasoline-	-Range Organics ³	1,020	55.9	62.4	295	131	126	100	81.7	NL	140	NL	NL
	Hexane	11.0	<1.41	<1.41	<1.41	<1.41	<1.41	<1.41	<1.41	10,700	320	500,000	50,000
	Benzene	0.516	0.820	0.667	0.716	1.25	0.643	0.768	0.621	10.7*	0.321*	1,000	500
	Toluene	1.59	1.97	1.90	4.07	47	1.69	2.10	1.69	76,200	2,290	200,000	20,000
Volatile Organic	Ethylbenzene	<1.74	<1.74	<1.74	<1.74	0.567	0.567	<1.74	<1.74	15,200	457	100,000	20,000
Compounds	m,p-Xylene	<3.47	<3.47	<3.47	<3.47	7.24	<3.47	<3.47	<3.47	1,520	45.7	100,000	100,000
	o,p-Xylene	<1.74	<1.74	<1.74	<1.74	2.24	<1.74	<1.74	<1.74	1,520	45.7	100,000	100,000
	1,2,4-trimethylbenzene	<1.47	<1.47	<1.47	<1.47	<1.47	1.55	<1.47	<1.47	107	3.20	NL	NL
	Naphthalene	< 0.524	< 0.524	< 0.524	< 0.524	< 0.524	2.92	0.614	< 0.524	2.45*	0.0735*	10,000	10,000
					Other Detecte	d Volatile Organ	ic Compounds						
	Dichlorodifluoromethane	2.73	2.56	2.58	2.53	2.55	2.58	2.50	2.59	1,520	45.7	1,000	1,000
Selected Volatile	Carbon tetrachloride	0.572	0.454	< 0.413	0.423	< 0.413	0.434	0.414	< 0.413	1,520*	45.7*	10	5
Organic Compounds	Methyl ethyl ketone	7.94	< 2.95	< 2.95	9.89	< 2.95	<2.95	< 2.95	< 2.95	76,200	2,290	200	200
organic compounds	Trichloroethylene (TCE)	< 0.349	< 0.349	< 0.349	0.87	1.14	1.3	< 0.349	< 0.349	12.3*	0.37*	100	50
	Tetrachloroethylene (PCE)	<1.36	<1.36	<1.36	33.4	2.24	17.8	<1.36	<1.36	321*	9.6*	100	25

Notes:

All values presented in micrograms per cubic meter $(\mu g/m^3)$

< = Not detected above laboratory reporting limits

fb = The analyte was detected in the method blank.

ve = The analyte response exceeded the valid instrument calibration range. The reported value is an estimate.

Red Bold indicates the detected concentration exceeds one or more regulatory levels

Bold indicates the detected concentration is below all regulatory levels

SSD = Sub-Slab Depressurization

OSHA PEL = U.S. Department of Labor, Occupational Safety and Health Administration Permissible Exposure Limit. Federal regulatory standard.

TWA = Time-Weighted Average.

NL = Not Listed; no values have been established for these constituents.

^{*} Cancer screening level (all other constituents listed do not have cancer values)

An exceedance of Ecology's Method B sub-slab screening level indicates the constituent is present at a concentration in sub-slab vapor that has the potential to migrate into indoor air.

²An exceedance of Ecology's Method B cleanup level for indoor air indicates that, for the Site to receive a determination of No Further Action, mitigation is required via either removal of the source or redirection of vapors from the breathing zone.

³Gasoline-Range Organics were estimated using the sum of the results for APH EC5-8, APH EC9-12, and APH EC9-10

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957

November 21, 2019

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Franciscan West Seattle Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: Franciscan West Seattle Work Order Number: 1911061

November 21, 2019

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 3 sample(s) on 11/5/2019 for the analyses presented in the following report.

Petroleum Fractionation by EPA Method TO-15 Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Libby Environmental Work Order Sample Summary

Project: Franciscan West Seattle

Work Order: 1911061

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1911061-001	SSD-BR	11/05/2019 10:51 AM	11/05/2019 3:25 PM
1911061-002	SSD-SR	11/05/2019 10:26 AM	11/05/2019 3:25 PM
1911061-003	SSD-E3	11/05/2019 11:22 AM	11/05/2019 3:25 PM

Case Narrative

WO#: **1911061**Date: **11/21/2019**

CLIENT: Libby Environmental

Project: Franciscan West Seattle

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

11/21/19: Revision 1 includes APH data.

Qualifiers & Acronyms

WO#: 1911061

Date Reported: 11/21/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Revision v1

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-BR
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-001A
 Date Received:
 11/5/2019

Analyte	Concen	entration Reporting Limit		Qual	Method	Date/Analyst		
Petroleum Fractionation by EPA	Method TO-15							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC5-8)	178	676	75.0	285		EPA-TO-15	11/21/2019	AD
Aliphatic Hydrocarbon (EC9-12)	629	3,700	75.0	442		EPA-TO-15	11/21/2019	AD
Aromatic Hydrocarbon (EC9-10)	<6.25	<31.4	6.25	31.4		EPA-TO-15	11/19/2019	AD
Surr: 4-Bromofluorobenzene	103 %Rec		70-130			EPA-TO-15	11/19/2019	AD
Volatile Organic Compounds by	EPA Method TC) <u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	< 0.400	<2.18	0.400	2.18		EPA-TO-15	11/09/2019	AD
1,1,2,2-Tetrachloroethane	< 0.300	<2.06	0.300	2.06		EPA-TO-15	11/09/2019	AD
CFC-113	<0.400	<3.07	0.400	3.07		EPA-TO-15	11/09/2019	AD
1,1,2-Trichloroethane (TCA)	<0.500	<2.73	0.500	2.73		EPA-TO-15	11/09/2019	AD
1,1-Dichloroethane	<0.200	<0.810	0.200	0.810		EPA-TO-15	11/09/2019	AD
1,1-Dichloroethene (DCE)	< 0.400	<1.59	0.400	1.59		EPA-TO-15	11/09/2019	AD
1,2,4-Trichlorobenzene	< 0.300	<2.23	0.300	2.23		EPA-TO-15	11/09/2019	AD
1,2,4-Trimethylbenzene	0.505	2.48	0.300	1.47		EPA-TO-15	11/09/2019	AD
1,2-Dibromoethane (EDB)	<0.200	<1.54	0.200	1.54		EPA-TO-15	11/09/2019	AD
1,2-Dichlorobenzene	<0.400	<2.40	0.400	2.40		EPA-TO-15	11/09/2019	AD
1,2-Dichloroethane	<0.200	<0.809	0.200	0.809		EPA-TO-15	11/09/2019	AD
1,2-Dichloropropane	<0.500	<2.31	0.500	2.31		EPA-TO-15	11/09/2019	AD
1,3,5-Trimethylbenzene	<0.300	<1.47	0.300	1.47		EPA-TO-15	11/09/2019	AD
1,3-Butadiene	<0.500	<1.11	0.500	1.11		EPA-TO-15	11/09/2019	AD
1,3-Dichlorobenzene	1.35	8.09	0.300	1.80		EPA-TO-15	11/09/2019	AD
1,4-Dichlorobenzene	<0.300	<1.80	0.300	1.80		EPA-TO-15	11/09/2019	AD
1,4-Dioxane	<0.400	<1.44	0.400	1.44		EPA-TO-15	11/09/2019	AD
(MEK) 2-Butanone	<1.00	<2.95	1.00	2.95		EPA-TO-15	11/09/2019	AD
2-Hexanone	<1.00	<4.10	1.00	4.10		EPA-TO-15	11/09/2019	AD
Isopropyl Alcohol	22.3	54.8	1.00	2.46		EPA-TO-15	11/09/2019	AD
4-Methyl-2-pentanone (MIBK)	<1.00	<4.10	1.00	4.10		EPA-TO-15	11/09/2019	AD
Acetone	18.4	43.7	1.00	2.38		EPA-TO-15	11/09/2019	AD
Acrolein	<0.500	<1.15	0.500	1.15		EPA-TO-15	11/09/2019	AD
Benzene	0.226	0.722	0.0895	0.286		EPA-TO-15	11/09/2019	AD

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-BR
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-001A
 Date Received:
 11/5/2019

Volatile Organic Compounds by EPA Method TO-15 (ppbv) (ug/m³) (ppbv) (ug/m³) Benzyl chloride <0.500 <2.59 0.500 2.59 Dichlorobromomethane <0.300 <2.01 0.300 2.01 Bromoform <0.200 <2.07 0.200 2.07 Bromomethane <0.500 <1.94 0.500 1.94 Carbon disulfide 3.81 11.9 1.50 4.67 Carbon tetrachloride <0.0657 <0.413 0.0657 0.413 Chlorobenzene <0.200 <0.921 0.200 0.921 Dibromochloromethane <0.500 <4.26 0.500 4.26 Chloroform <0.200 <0.977 0.200 0.977 Chloromethane <0.500 <1.03 0.500 1.03 cis-1,2-Dichloroethene <0.200 <0.793 0.200 0.793 cis-1,3-dichloropropene <0.400 <1.82 0.400 1.38 Dichlorodiffluoromethane (CFC-12) 0.518 2.	EPA-TO-15 EPA-TO-15		
Benzyl chloride <0.500			
Dichlorobromomethane <0.300			
Bromoform <0.200 <2.07 0.200 2.07 Bromomethane <0.500	FPA-TO-15	11/09/2019	AD
Bromomethane <0.500 <1.94 0.500 1.94 Carbon disulfide 3.81 11.9 1.50 4.67 Carbon tetrachloride <0.0657	21711010	11/09/2019	AD
Carbon disulfide 3.81 11.9 1.50 4.67 Carbon tetrachloride <0.0657	EPA-TO-15	11/09/2019	AD
Carbon tetrachloride <0.0657 <0.413 0.0657 0.413 Chlorobenzene <0.200	EPA-TO-15	11/09/2019	AD
Chlorobenzene <0.200	EPA-TO-15	11/09/2019	AD
Dibromochloromethane <0.500	EPA-TO-15	11/09/2019	AD
Chloroethane <0.400	EPA-TO-15	11/09/2019	AD
Chloroform <0.200 <0.977 0.200 0.977 Chloromethane <0.500	EPA-TO-15	11/09/2019	AD
Chloromethane <0.500 <1.03 0.500 1.03 cis-1,2-Dichloroethene <0.200	EPA-TO-15	11/09/2019	AD
cis-1,2-Dichloroethene <0.200	EPA-TO-15	11/09/2019	AD
cis-1,3-dichloropropene <0.400	EPA-TO-15	11/09/2019	AD
Cyclohexane <0.400 <1.38 0.400 1.38	EPA-TO-15	11/09/2019	AD
•	EPA-TO-15	11/09/2019	AD
Dichlorodifluoromethane (CFC-12) 0.518 2.56 0.400 1.98	EPA-TO-15	11/09/2019	AD
	EPA-TO-15	11/09/2019	AD
Dichlorotetrafluoroethane (CFC-114) <0.400 <2.80 0.400 2.80	EPA-TO-15	11/09/2019	AD
Ethyl acetate <1.00 <3.60 1.00 3.60	EPA-TO-15	11/09/2019	AD
Ethylbenzene <0.400 <1.74 0.400 1.74	EPA-TO-15	11/09/2019	AD
Heptane <0.400 <1.61 0.400 1.61	EPA-TO-15	11/09/2019	AD
Hexachlorobutadiene <1.00 <10.7 1.00 10.7	EPA-TO-15	11/09/2019	AD
m,p-Xylene <0.800 <3.47 0.800 3.47	EPA-TO-15	11/09/2019	AD
Methyl methacrylate <0.400 <1.64 0.400 1.64	EPA-TO-15	11/09/2019	AD
Methylene chloride <2.00 <6.95 2.00 6.95	EPA-TO-15	11/09/2019	AD
Naphthalene 0.963 5.05 0.100 0.524	EPA-TO-15	11/09/2019	AD
n-Hexane <0.400 <1.41 0.400 1.41	EPA-TO-15	11/09/2019	AD
o-Xylene <0.400 <1.74 0.400 1.74	EPA-TO-15	11/09/2019	AD
4-Ethyltoluene <0.400 <1.97 0.400 1.97	EPA-TO-15	11/09/2019	AD
Propylene 1.59 2.74 0.400 0.688	EPA-TO-15	11/09/2019	AD
Styrene <0.400 <1.70 0.400 1.70	EPA-TO-15	11/09/2019	AD
Methyl tert-butyl ether (MTBE) <0.400 <1.44 0.400 1.44	EPA-TO-15	11/09/2019	AD

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-BR
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-001A
 Date Received:
 11/5/2019

Analyte	Concen	oncentration Reporting Limit		Qual	Method	Date/Analy	st	
Volatile Organic Compounds by	EPA Method TO) <u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Tetrachloroethene (PCE)	<0.200	<1.36	0.200	1.36		EPA-TO-15	11/09/2019	AD
Tetrahydrofuran	< 0.400	<1.18	0.400	1.18		EPA-TO-15	11/09/2019	AD
Toluene	0.686	2.58	0.400	1.51		EPA-TO-15	11/09/2019	AD
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	11/09/2019	AD
trans-1,3-dichloropropene	<0.500	<2.27	0.500	2.27		EPA-TO-15	11/09/2019	AD
Trichloroethene (TCE)	< 0.0649	< 0.349	0.0649	0.349		EPA-TO-15	11/09/2019	AD
Trichlorofluoromethane (CFC-11)	< 0.400	<2.25	0.400	2.25		EPA-TO-15	11/09/2019	AD
Vinyl acetate	<1.00	<3.52	1.00	3.52		EPA-TO-15	11/09/2019	AD
Vinyl chloride	<0.107	<0.274	0.107	0.274		EPA-TO-15	11/09/2019	AD
Surr: 4-Bromofluorobenzene	107 %Rec		70-130			EPA-TO-15	11/09/2019	AD

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-SR
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-002A
 Date Received:
 11/5/2019

Analyte	Concen	tration	Reporting Limit		Qual	Method	Date/Analys	
Petroleum Fractionation by EPA	Method TO-15							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC5-8)	237	903	75.0	285		EPA-TO-15	11/21/2019	ΑI
Aliphatic Hydrocarbon (EC9-12)	637	3,750	75.0	442		EPA-TO-15	11/21/2019	Al
Aromatic Hydrocarbon (EC9-10)	<6.25	<31.4	6.25	31.4		EPA-TO-15	11/19/2019	ΑI
Surr: 4-Bromofluorobenzene	101 %Rec		70-130			EPA-TO-15	11/19/2019	Al
Volatile Organic Compounds by	EPA Method TO	<u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	<0.400	<2.18	0.400	2.18		EPA-TO-15	11/09/2019	A
1,1,2,2-Tetrachloroethane	<0.300	<2.06	0.300	2.06		EPA-TO-15	11/09/2019	A
CFC-113	< 0.400	<3.07	0.400	3.07		EPA-TO-15	11/09/2019	Α
1,1,2-Trichloroethane (TCA)	<0.500	<2.73	0.500	2.73		EPA-TO-15	11/09/2019	Α
1,1-Dichloroethane	<0.200	<0.810	0.200	0.810		EPA-TO-15	11/09/2019	Α
1,1-Dichloroethene (DCE)	<0.400	<1.59	0.400	1.59		EPA-TO-15	11/09/2019	Α
1,2,4-Trichlorobenzene	<0.300	<2.23	0.300	2.23		EPA-TO-15	11/09/2019	A
1,2,4-Trimethylbenzene	0.556	2.73	0.300	1.47		EPA-TO-15	11/09/2019	A
1,2-Dibromoethane (EDB)	<0.200	<1.54	0.200	1.54		EPA-TO-15	11/09/2019	Α
1,2-Dichlorobenzene	< 0.400	<2.40	0.400	2.40		EPA-TO-15	11/09/2019	ΑI
1,2-Dichloroethane	<0.200	<0.809	0.200	0.809		EPA-TO-15	11/09/2019	A
1,2-Dichloropropane	<0.500	<2.31	0.500	2.31		EPA-TO-15	11/09/2019	Al
1,3,5-Trimethylbenzene	<0.300	<1.47	0.300	1.47		EPA-TO-15	11/09/2019	A
1,3-Butadiene	<0.500	<1.11	0.500	1.11		EPA-TO-15	11/09/2019	Al
1,3-Dichlorobenzene	1.95	11.8	0.300	1.80		EPA-TO-15	11/09/2019	Al
1,4-Dichlorobenzene	<0.300	<1.80	0.300	1.80		EPA-TO-15	11/09/2019	Al
1,4-Dioxane	<0.400	<1.44	0.400	1.44		EPA-TO-15	11/09/2019	A
(MEK) 2-Butanone	<1.00	<2.95	1.00	2.95		EPA-TO-15	11/09/2019	A
2-Hexanone	<1.00	<4.10	1.00	4.10		EPA-TO-15	11/09/2019	Α
sopropyl Alcohol	21.1	51.9	1.00	2.46	E	EPA-TO-15	11/09/2019	Α
4-Methyl-2-pentanone (MIBK)	<1.00	<4.10	1.00	4.10		EPA-TO-15	11/09/2019	Α
Acetone	5.69	13.5	1.00	2.38		EPA-TO-15	11/09/2019	Α
Acrolein	<0.500	<1.15	0.500	1.15		EPA-TO-15	11/09/2019	Α
Benzene	0.124	0.395	0.0895	0.286		EPA-TO-15	11/09/2019	Α

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-SR
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-002A
 Date Received:
 11/5/2019

Analyte	Concer	ntration	Reporti	eporting Limit	Qual	Method	Date/Analy	st
Volatile Organic Compounds by Ef	PA Method TO) <u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzyl chloride	< 0.500	<2.59	0.500	2.59		EPA-TO-15	11/09/2019	AD
Dichlorobromomethane	< 0.300	<2.01	0.300	2.01		EPA-TO-15	11/09/2019	AD
Bromoform	<0.200	<2.07	0.200	2.07		EPA-TO-15	11/09/2019	AD
Bromomethane	< 0.500	<1.94	0.500	1.94		EPA-TO-15	11/09/2019	AD
Carbon disulfide	<1.50	<4.67	1.50	4.67		EPA-TO-15	11/09/2019	AD
Carbon tetrachloride	< 0.0657	<0.413	0.0657	0.413		EPA-TO-15	11/09/2019	AD
Chlorobenzene	<0.200	<0.921	0.200	0.921		EPA-TO-15	11/09/2019	AD
Dibromochloromethane	< 0.500	<4.26	0.500	4.26		EPA-TO-15	11/09/2019	AD
Chloroethane	< 0.400	<1.06	0.400	1.06		EPA-TO-15	11/09/2019	AD
Chloroform	<0.200	<0.977	0.200	0.977		EPA-TO-15	11/09/2019	AD
Chloromethane	< 0.500	<1.03	0.500	1.03		EPA-TO-15	11/09/2019	AD
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	11/09/2019	AD
cis-1,3-dichloropropene	< 0.400	<1.82	0.400	1.82		EPA-TO-15	11/09/2019	AD
Cyclohexane	< 0.400	<1.38	0.400	1.38		EPA-TO-15	11/09/2019	AD
Dichlorodifluoromethane (CFC-12)	0.523	2.59	0.400	1.98		EPA-TO-15	11/09/2019	AD
Dichlorotetrafluoroethane (CFC-114)	< 0.400	<2.80	0.400	2.80		EPA-TO-15	11/09/2019	AD
Ethyl acetate	<1.00	<3.60	1.00	3.60		EPA-TO-15	11/09/2019	AD
Ethylbenzene	< 0.400	<1.74	0.400	1.74		EPA-TO-15	11/09/2019	AD
Heptane	< 0.400	<1.61	0.400	1.61		EPA-TO-15	11/09/2019	AD
Hexachlorobutadiene	<1.00	<10.7	1.00	10.7		EPA-TO-15	11/09/2019	AD
m,p-Xylene	<0.800	<3.47	0.800	3.47		EPA-TO-15	11/09/2019	AD
Methyl methacrylate	< 0.400	<1.64	0.400	1.64		EPA-TO-15	11/09/2019	AD
Methylene chloride	<2.00	<6.95	2.00	6.95		EPA-TO-15	11/09/2019	AD
Naphthalene	0.306	1.60	0.100	0.524		EPA-TO-15	11/09/2019	AD
n-Hexane	< 0.400	<1.41	0.400	1.41		EPA-TO-15	11/09/2019	AD
o-Xylene	< 0.400	<1.74	0.400	1.74		EPA-TO-15	11/09/2019	AD
4-Ethyltoluene	< 0.400	<1.97	0.400	1.97		EPA-TO-15	11/09/2019	AD
Propylene	1.00	1.72	0.400	0.688	EPA-TO-1		11/09/2019	AD
Styrene	< 0.400	<1.70	0.400	1.70		EPA-TO-15	11/09/2019	AD
Methyl tert-butyl ether (MTBE)	< 0.400	<1.44	0.400	1.44		EPA-TO-15	11/09/2019	AD

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-SR
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-002A
 Date Received:
 11/5/2019

Sample Type: Summa Canister

Analyte	Concen	tration	Reportii	ng Limit	Qual	Method	Date/Analy	st
Volatile Organic Compounds by	EPA Method TO	<u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Tetrachloroethene (PCE)	<0.200	<1.36	0.200	1.36		EPA-TO-15	11/09/2019	AD
Tetrahydrofuran	<0.400	<1.18	0.400	1.18		EPA-TO-15	11/09/2019	AD
Toluene	0.560	2.11	0.400	1.51		EPA-TO-15	11/09/2019	AD
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	11/09/2019	AD
trans-1,3-dichloropropene	< 0.500	<2.27	0.500	2.27		EPA-TO-15	11/09/2019	AD
Trichloroethene (TCE)	< 0.0649	<0.349	0.0649	0.349		EPA-TO-15	11/09/2019	AD
Trichlorofluoromethane (CFC-11)	< 0.400	<2.25	0.400	2.25		EPA-TO-15	11/09/2019	AD
Vinyl acetate	<1.00	<3.52	1.00	3.52		EPA-TO-15	11/09/2019	AD
Vinyl chloride	<0.107	<0.274	0.107	0.274		EPA-TO-15	11/09/2019	AD
Surr: 4-Bromofluorobenzene	104 %Rec		70-130			EPA-TO-15	11/09/2019	AD
NOTES								

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-E3
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-003A
 Date Received:
 11/5/2019

Petroleum Fractionation by EPA Aliphatic Hydrocarbon (EC5-8)	(ppbv)						-	
Aliphatic Hydrocarbon (EC5-8)								
Aliphatic Hydrocarbon (EC5-8)		(ug/m³)	(ppbv)	(ug/m³)				
/ IIIpriatio (1) arocarbon (200 0)	99.4	378	75.0	285		EPA-TO-15	11/21/2019	AD
Aliphatic Hydrocarbon (EC9-12)	79.2	467	75.0	442		EPA-TO-15	11/21/2019	AD
Aromatic Hydrocarbon (EC9-10)	<6.25	<31.4	6.25	31.4		EPA-TO-15	11/20/2019	AD
Surr: 4-Bromofluorobenzene	98.0 %Rec		70-130			EPA-TO-15	11/20/2019	AD
Volatile Organic Compounds by I	EPA Method TO	<u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	< 0.400	<2.18	0.400	2.18		EPA-TO-15	11/09/2019	AD
1,1,2,2-Tetrachloroethane	< 0.300	<2.06	0.300	2.06		EPA-TO-15	11/09/2019	AD
CFC-113	< 0.400	<3.07	0.400	3.07		EPA-TO-15	11/09/2019	AD
1,1,2-Trichloroethane (TCA)	<0.500	<2.73	0.500	2.73		EPA-TO-15	11/09/2019	AD
1,1-Dichloroethane	<0.200	<0.810	0.200	0.810		EPA-TO-15	11/09/2019	AD
1,1-Dichloroethene (DCE)	<0.400	<1.59	0.400	1.59		EPA-TO-15	11/09/2019	AD
1,2,4-Trichlorobenzene	< 0.300	<2.23	0.300	2.23		EPA-TO-15	11/09/2019	AD
1,2,4-Trimethylbenzene	<0.300	<1.47	0.300	1.47		EPA-TO-15	11/09/2019	AD
1,2-Dibromoethane (EDB)	<0.200	<1.54	0.200	1.54		EPA-TO-15	11/09/2019	AD
1,2-Dichlorobenzene	<0.400	<2.40	0.400	2.40		EPA-TO-15	11/09/2019	AD
1,2-Dichloroethane	<0.200	<0.809	0.200	0.809		EPA-TO-15	11/09/2019	AD
1,2-Dichloropropane	<0.500	<2.31	0.500	2.31		EPA-TO-15	11/09/2019	AD
1,3,5-Trimethylbenzene	<0.300	<1.47	0.300	1.47		EPA-TO-15	11/09/2019	AD
1,3-Butadiene	<0.500	<1.11	0.500	1.11		EPA-TO-15	11/09/2019	AD
1,3-Dichlorobenzene	1.23	7.38	0.300	1.80		EPA-TO-15	11/09/2019	AD
1,4-Dichlorobenzene	<0.300	<1.80	0.300	1.80		EPA-TO-15	11/09/2019	AD
1,4-Dioxane	<0.400	<1.44	0.400	1.44		EPA-TO-15	11/09/2019	AD
(MEK) 2-Butanone	<1.00	<2.95	1.00	2.95		EPA-TO-15	11/09/2019	AD
2-Hexanone	<1.00	<4.10	1.00	4.10		EPA-TO-15	11/09/2019	AD
Isopropyl Alcohol	24.7	60.8	1.00	2.46	Е	EPA-TO-15	11/09/2019	AD
4-Methyl-2-pentanone (MIBK)				EPA-TO-15	11/09/2019	AD		
Acetone	10.1 23.9 1.00 2.38		2.38		EPA-TO-15	11/09/2019	AD	
Acrolein	<0.500	<1.15	0.500	1.15		EPA-TO-15	11/09/2019	AD
Benzene	0.137	0.439	0.0895	0.286		EPA-TO-15	11/09/2019	AD

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-E3
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-003A
 Date Received:
 11/5/2019

Analyte	Concer	ntration	Reporti	ng Limit	Qual	Method	Date/Analy	st
Volatile Organic Compounds by EF	PA Method TC	<u>)-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzyl chloride	<0.500	<2.59	0.500	2.59		EPA-TO-15	11/09/2019	AD
Dichlorobromomethane	< 0.300	<2.01	0.300	2.01		EPA-TO-15	11/09/2019	AD
Bromoform	<0.200	<2.07	0.200	2.07		EPA-TO-15	11/09/2019	AD
Bromomethane	<0.500	<1.94	0.500	1.94		EPA-TO-15	11/09/2019	AD
Carbon disulfide	<1.50	<4.67	1.50	4.67		EPA-TO-15	11/09/2019	AD
Carbon tetrachloride	<0.0657	<0.413	0.0657	0.413		EPA-TO-15	11/09/2019	AD
Chlorobenzene	<0.200	<0.921	0.200	0.921		EPA-TO-15	11/09/2019	AD
Dibromochloromethane	<0.500	<4.26	0.500	4.26		EPA-TO-15	11/09/2019	AD
Chloroethane	< 0.400	<1.06	0.400	1.06		EPA-TO-15	11/09/2019	AD
Chloroform	0.961	4.69	0.200	0.977		EPA-TO-15	11/09/2019	AD
Chloromethane	<0.500	<1.03	0.500	1.03		EPA-TO-15	11/09/2019	AD
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	11/09/2019	AD
cis-1,3-dichloropropene	<0.400	<1.82	0.400	1.82		EPA-TO-15	11/09/2019	AD
Cyclohexane	<0.400	<1.38	0.400	1.38		EPA-TO-15	11/09/2019	AD
Dichlorodifluoromethane (CFC-12)	0.522	2.58	0.400	1.98		EPA-TO-15	11/09/2019	AD
Dichlorotetrafluoroethane (CFC-114)	<0.400	<2.80	0.400	2.80		EPA-TO-15	11/09/2019	AD
Ethyl acetate	<1.00	<3.60	1.00	3.60		EPA-TO-15	11/09/2019	AD
Ethylbenzene	<0.400	<1.74	0.400	1.74		EPA-TO-15	11/09/2019	AD
Heptane	< 0.400	<1.61	0.400	1.61		EPA-TO-15	11/09/2019	AD
Hexachlorobutadiene	<1.00	<10.7	1.00	10.7		EPA-TO-15	11/09/2019	AD
m,p-Xylene	<0.800	<3.47	0.800	3.47		EPA-TO-15	11/09/2019	AD
Methyl methacrylate	< 0.400	<1.64	0.400	1.64		EPA-TO-15	11/09/2019	AD
Methylene chloride	13.0	45.0	2.00	6.95		EPA-TO-15	11/09/2019	AD
Naphthalene	0.228	1.20	0.100	0.524		EPA-TO-15	11/09/2019	AD
n-Hexane	<0.400	<1.41	0.400	1.41		EPA-TO-15	11/09/2019	AD
o-Xylene	<0.400	<1.74	0.400	1.74		EPA-TO-15	11/09/2019	AD
4-Ethyltoluene	< 0.400	<1.97	0.400	1.97		EPA-TO-15	11/09/2019	AD
Propylene	0.962	1.66	0.400	0.688		EPA-TO-15	11/09/2019	AD
Styrene	<0.400	<1.70	0.400	1.70		EPA-TO-15	11/09/2019	AD
Methyl tert-butyl ether (MTBE)	<0.400	<1.44	0.400	1.44		EPA-TO-15	11/09/2019	AD

WorkOrder: 1911061

Project: Franciscan West Seattle

 Client Sample ID:
 SSD-E3
 Date Sampled:
 11/5/2019

 Lab ID:
 1911061-003A
 Date Received:
 11/5/2019

Sample Type: Summa Canister

Analyte	Concen	tration	Reportii	ng Limit	Qual	Method	Date/Analy	st
Volatile Organic Compounds by	EPA Method TO	<u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Tetrachloroethene (PCE)	0.721	4.89	0.200	1.36		EPA-TO-15	11/09/2019	AD
Tetrahydrofuran	<0.400	<1.18	0.400	1.18		EPA-TO-15	11/09/2019	AD
Toluene	<0.400	<1.51	0.400	1.51		EPA-TO-15	11/09/2019	AD
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	11/09/2019	AD
trans-1,3-dichloropropene	<0.500	<2.27	0.500	2.27		EPA-TO-15	11/09/2019	AD
Trichloroethene (TCE)	< 0.0649	<0.349	0.0649	0.349		EPA-TO-15	11/09/2019	AD
Trichlorofluoromethane (CFC-11)	<0.400	<2.25	0.400	2.25		EPA-TO-15	11/09/2019	AD
Vinyl acetate	<1.00	<3.52	1.00	3.52		EPA-TO-15	11/09/2019	AD
Vinyl chloride	<0.107	<0.274	0.107	0.274		EPA-TO-15	11/09/2019	AD
Surr: 4-Bromofluorobenzene	99.2 %Rec		70-130			EPA-TO-15	11/09/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: Franciscan	West Seattle					Pet	troleum	Fractionati	on by EPA	Method	TO-1
Sample ID: LCS-R55481	SampType: LCS			Units: ppbv		Prep Dat	te: 11/19/2	019	RunNo: 554	181	
Client ID: LCSW	Batch ID: R55481					Analysis Dat	te: 11/19/2	019	SeqNo: 110	3996	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (EC9-10) Surr: 4-Bromofluorobenzene	9.39 4.14	6.25	10.00 4.000	0	93.9 103	70 70	130 130				
Sample ID: MB-R55481	SampType: MBLK			Units: ppbv		Prep Dat	te: 11/19/2	019	RunNo: 554	l81	
Client ID: MBLKW	Batch ID: R55481					Analysis Dat	te: 11/19/2	019	SeqNo: 110	3997	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (EC9-10) Surr: 4-Bromofluorobenzene	ND 3.64	6.25	4.000		91.1	70	130				
Sample ID: 1911061-003AREP	SampType: REP			Units: ppbv		Prep Dat	te: 11/20/2	019	RunNo: 554	I81	
Client ID: SSD-E3	Batch ID: R55481					Analysis Dat	te: 11/20/2	019	SeqNo: 110)4001	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (EC9-10) Surr: 4-Bromofluorobenzene	ND 3.72	6.25	4.000		93.1	70	130	0	0	30	
Sample ID: LCS-R55482	SampType: LCS			Units: ppbv		Prep Dat	te: 11/21/2	019	RunNo: 554	182	
Client ID: LCSW	Batch ID: R55482					Analysis Dat	te: 11/21/2	019	SeqNo: 110	04013	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	12.0	7.50	12.00	0	100	70	130				
Aliphatic Hydrocarbon (EC9-12) Surr: 4-Bromofluorobenzene	12.7 3.98	7.50	12.00 4.000	0	106 99.4	70 70	130 130				

Page 14 of 25 Revision v1

Date: 11/21/2019

Work Order: 1911061

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Franciscan West Seattle

Petroleum Fractionation by EPA Method TO-15

Sample ID: 1911061-003AREP	SampType: REP			Units: ppbv		Prep Dat	e: 11/21/2	019	RunNo: 554	182	
Client ID: SSD-E3	Batch ID: R55482					Analysis Da	e: 11/21/2	019	SeqNo: 110	04017	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	79.1	75.0						99.40	22.8	30	
Aliphatic Hydrocarbon (EC9-12)	59.8	75.0						79.24	28.0	30	
Surr: 4-Bromofluorobenzene	35.1		40.00		87.8	70	130		0		

Sample ID: MB-R55482	SampType: MBLK			Units: ppbv		Prep Dat	e: 11/21/2	019	RunNo: 55 4	182	
Client ID: MBLKW	Batch ID: R55482					Analysis Dat	e: 11/21/2	019	SeqNo: 110	4018	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	ND	1.88									
Aliphatic Hydrocarbon (EC9-12)	ND	1.88									1
Surr: 4-Bromofluorobenzene	0.966		1.000		96.6	70	130				

NOTES:

Revision v1 Page 15 of 25

I - Indicates an analyte with an internal standard that does not meet established acceptance criteria. Biased high.

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Franciscan West Seattle

Volatile Organic Compounds by EPA Method TO-15

Sample ID: LCS-R55202	SampType: L	cs		Units: ppb	v	Prep Da	te: 11/9/2 0	19	RunNo: 55 2	202	
Client ID: LCSW	Batch ID: F	R55202				Analysis Da	te: 11/9/2 0	119	SeqNo: 109	97203	
Analyte	Res	sult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics	69	9.2 1.00	72.00	0	96.1	70	130				
Propylene	1.	67 0.400	2.000	0	83.5	70	130				
Dichlorodifluoromethane (CFC-12)	1.	93 0.400	2.000	0	96.7	70	130				
Chloromethane	2.	0.500	2.000	0	101	70	130				
Dichlorotetrafluoroethane (CFC-114)	1.	93 0.400	2.000	0	96.4	70	130				
Vinyl chloride	1.	68 0.107	2.000	0	83.8	70	130				
1,3-Butadiene	1.	49 0.500	2.000	0	74.3	70	130				
Bromomethane	1.	.85 0.500	2.000	0	92.3	70	130				
Trichlorofluoromethane (CFC-11)	1.	96 0.400	2.000	0	97.8	70	130				
Chloroethane	1.	74 0.400	2.000	0	86.9	70	130				
Acrolein	1.	49 0.500	2.000	0	74.4	70	130				
1,1-Dichloroethene (DCE)	1.	71 0.400	2.000	0	85.7	70	130				
Acetone	1.	99 1.00	2.000	0	99.3	70	130				
Isopropyl Alcohol	1.	53 1.00	2.000	0	76.7	70	130				
Methylene chloride	2.	10 2.00	2.000	0	105	70	130				
Carbon disulfide	1.	91 1.50	2.000	0	95.5	70	130				
trans-1,2-Dichloroethene	1.	70 0.200	2.000	0	84.8	70	130				
Methyl tert-butyl ether (MTBE)	1.	51 0.400	2.000	0	75.3	70	130				
n-Hexane		41 0.400	2.000	0	70.6	70	130				
1,1-Dichloroethane	1.	73 0.200	2.000	0	86.3	70	130				
Vinyl acetate	1.	64 1.00	2.000	0	81.8	70	130				
cis-1,2-Dichloroethene	1.	61 0.200		0	80.5	70	130				
(MEK) 2-Butanone		46 1.00		0	72.9	70	130				
Ethyl acetate	1.	45 1.00	2.000	0	72.7	70	130				
Chloroform	1.	.86 0.200		0	93.0	70	130				
Tetrahydrofuran	1.	52 0.400	2.000	0	76.1	70	130				
1,1,1-Trichloroethane		67 0.400		0	83.4	70	130				
Carbon tetrachloride		76 0.0657		0	88.2	70	130				
1,2-Dichloroethane		73 0.200		0	86.7	70	130				
Benzene		71 0.0895		0	85.7	70	130				
Cyclohexane		45 0.400		0	72.3	70	130				

Revision v1 Page 16 of 25

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Franciscan West Seattle

Volatile Organic Compounds by EPA Method TO-15

Sample ID: LCS-R55202	SampType: LCS			Units: ppbv		Prep Da	te: 11/9/20	19	RunNo: 552	202	
Client ID: LCSW	Batch ID: R5520	02				Analysis Da	te: 11/9/2 0	19	SeqNo: 109	97203	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	1.82	0.0649	2.000	0	90.9	70	130				
1,2-Dichloropropane	1.81	0.500	2.000	0	90.6	70	130				
Methyl methacrylate	1.84	0.400	2.000	0	91.8	70	130				
Dichlorobromomethane	1.82	0.300	2.000	0	90.8	70	130				
1,4-Dioxane	1.77	0.400	2.000	0	88.3	70	130				
cis-1,3-dichloropropene	1.53	0.400	2.000	0	76.3	70	130				
Toluene	1.46	0.400	2.000	0	72.9	70	130				
trans-1,3-dichloropropene	1.48	0.500	2.000	0	74.1	70	130				
1,1,2-Trichloroethane (TCA)	1.80	0.500	2.000	0	89.8	70	130				
Tetrachloroethene (PCE)	1.79	0.200	2.000	0	89.7	70	130				
Dibromochloromethane	1.70	0.500	2.000	0	85.0	70	130				
1,2-Dibromoethane (EDB)	1.70	0.200	2.000	0	84.9	70	130				
Chlorobenzene	1.76	0.200	2.000	0	87.8	70	130				
Ethylbenzene	1.78	0.400	2.000	0	89.1	70	130				
m,p-Xylene	3.43	0.800	4.000	0	85.9	70	130				
o-Xylene	1.77	0.400	2.000	0	88.6	70	130				
Styrene	1.64	0.400	2.000	0	82.2	70	130				
Bromoform	1.84	0.200	2.000	0	92.1	70	130				
1,1,2,2-Tetrachloroethane	1.92	0.300	2.000	0	96.1	70	130				
1,3,5-Trimethylbenzene	1.69	0.300	2.000	0	84.3	70	130				
1,2,4-Trimethylbenzene	1.66	0.300	2.000	0	82.8	70	130				
Benzyl chloride	1.64	0.500	2.000	0	82.2	70	130				
4-Ethyltoluene	1.72	0.400	2.000	0	85.8	70	130				
1,3-Dichlorobenzene	1.61	0.300	2.000	0	80.7	70	130				
1,4-Dichlorobenzene	1.53	0.300	2.000	0	76.5	70	130				
1,2-Dichlorobenzene	1.53	0.400	2.000	0	76.7	70	130				
1,2,4-Trichlorobenzene	1.79	0.300	2.000	0	89.6	70	130				
Hexachlorobutadiene	1.79	1.00	2.000	0	89.6	70	130				
Naphthalene	2.02	0.100	2.000	0	101	70	130				
2-Hexanone	1.79	1.00	2.000	0	89.4	70	130				
4-Methyl-2-pentanone (MIBK)	1.78	1.00	2.000	0	89.0	70	130				

Revision v1 Page 17 of 25

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Franciscan West Seattle

Volatile Organic Compounds by EPA Method TO-15

Sample ID: LCS-R55202	SampType: LCS			Units: ppbv		Prep Da	te: 11/9/2 0)19	RunNo: 552	202	
Client ID: LCSW	Batch ID: R55202					Analysis Da	te: 11/9/20)19	SeqNo: 109	97203	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
CFC-113	2.28	0.400	2.000	0	114	70	130				
Heptane	1.77	0.400	2.000	0	88.4	70	130				
Surr: 4-Bromofluorobenzene	3.94		4.000		98.6	70	130				

Sample ID: MB-R55202	SampType: MBLK			Units: ppbv		Prep Date	e: 11/9/20)19	RunNo: 552	202	
Client ID: MBLKW	Batch ID: R55202					Analysis Date	e: 11/9/2 0)19	SeqNo: 109	7204	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics	ND	1.00									
Propylene	ND	0.400									
Dichlorodifluoromethane (CFC-12)	ND	0.400									
Chloromethane	ND	0.500									
Dichlorotetrafluoroethane (CFC-114)	ND	0.400									
Vinyl chloride	ND	0.107									
1,3-Butadiene	ND	0.500									
Bromomethane	ND	0.500									
Trichlorofluoromethane (CFC-11)	ND	0.400									
Chloroethane	ND	0.400									
Acrolein	ND	0.500									
1,1-Dichloroethene (DCE)	ND	0.400									
Acetone	ND	1.00									
Isopropyl Alcohol	ND	1.00									
Methylene chloride	ND	2.00									
Carbon disulfide	ND	1.50									
trans-1,2-Dichloroethene	ND	0.200									
Methyl tert-butyl ether (MTBE)	ND	0.400									
n-Hexane	ND	0.400									
1,1-Dichloroethane	ND	0.200									
Vinyl acetate	ND	1.00									
cis-1,2-Dichloroethene	ND	0.200									

Revision v1 Page 18 of 25

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Franciscan West Seattle

Volatile Organic Compounds by EPA Method TO-15

Sample ID: MB-R55202	SampType: MBLK			Units: ppbv		Prep Da	ite: 11/9/20	119	RunNo: 552	?02	
Client ID: MBLKW	Batch ID: R55202					Analysis Da	te: 11/9/20	119	SeqNo: 109	7204	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
(MEK) 2-Butanone	ND	1.00									
Ethyl acetate	ND	1.00									
Chloroform	ND	0.200									
Tetrahydrofuran	ND	0.400									
1,1,1-Trichloroethane	ND	0.400									
Carbon tetrachloride	ND	0.0657									
1,2-Dichloroethane	ND	0.200									
Benzene	ND	0.0895									
Cyclohexane	ND	0.400									
Trichloroethene (TCE)	ND	0.0649									
1,2-Dichloropropane	ND	0.500									
Methyl methacrylate	ND	0.400									
Dichlorobromomethane	ND	0.300									
1,4-Dioxane	ND	0.400									
cis-1,3-dichloropropene	ND	0.400									
Toluene	ND	0.400									
trans-1,3-dichloropropene	ND	0.500									
1,1,2-Trichloroethane (TCA)	ND	0.500									
Tetrachloroethene (PCE)	ND	0.200									
Dibromochloromethane	ND	0.500									
1,2-Dibromoethane (EDB)	ND	0.200									
Chlorobenzene	ND	0.200									
Ethylbenzene	ND	0.400									
m,p-Xylene	ND	0.800									
o-Xylene	ND	0.400									
Styrene	ND	0.400									
Bromoform	ND	0.200									
1,1,2,2-Tetrachloroethane	ND	0.300									
1,3,5-Trimethylbenzene	ND	0.300									
1,2,4-Trimethylbenzene	ND	0.300									
Benzyl chloride	ND	0.500									

Revision v1 Page 19 of 25

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Franciscan West Seattle

Volatile Organic Compounds by EPA Method TO-15

Sample ID: MB-R55202	SampType: MBLK			Units: ppbv			te: 11/9/20		202		
Client ID: MBLKW	Batch ID: R55202					Analysis Da	te: 11/9/20)19	SeqNo: 109	97204	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Ethyltoluene	ND	0.400									
1,3-Dichlorobenzene	ND	0.300									
1,4-Dichlorobenzene	ND	0.300									
1,2-Dichlorobenzene	ND	0.400									
1,2,4-Trichlorobenzene	ND	0.300									
Hexachlorobutadiene	ND	1.00									
Naphthalene	ND	0.100									
2-Hexanone	ND	1.00									
4-Methyl-2-pentanone (MIBK)	ND	1.00									
CFC-113	ND	0.400									
Heptane	ND	0.400									
Surr: 4-Bromofluorobenzene	3.35		4.000		83.7	70	130				

Sample ID: 1911060-001AREP							Prep Da	te: 11/9/2 0	019	RunNo: 552	202	
Client ID: BATCH	Batch ID:	R55202					Analysis Da	te: 11/9/2 0	019	SeqNo: 109	97206	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics		70.2	1.00						70.39	0.316	30	
Propylene		29.8	0.400						29.29	1.86	30	Е
Dichlorodifluoromethane (CFC-12)		0.520	0.400						0.5151	0.866	30	
Chloromethane		0.877	0.500						0.8620	1.71	30	
Dichlorotetrafluoroethane (CFC-114)		ND	0.400						0		30	
Vinyl chloride		ND	0.107						0		30	
1,3-Butadiene		ND	0.500						0		30	
Bromomethane		ND	0.500						0		30	
Trichlorofluoromethane (CFC-11)		ND	0.400						0		30	
Chloroethane		ND	0.400						0		30	
Acrolein		ND	0.500						0		30	
1,1-Dichloroethene (DCE)		ND	0.400						0		30	
Acetone		6.19	1.00						5.989	3.36	30	

Revision v1 Page 20 of 25

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Franciscan West Seattle

Volatile Organic Compounds by EPA Method TO-15

Sample ID: 1911060-001AREP	SampType: REP			Units: ppbv		Prep Da	te: 11/9/2 0	19	RunNo: 552	202	
Client ID: BATCH	Batch ID: R55202					Analysis Da	te: 11/9/2 0	19	SeqNo: 109	7206	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropyl Alcohol	1.46	1.00						1.258	15.1	30	
Methylene chloride	4.29	2.00						4.396	2.46	30	
Carbon disulfide	ND	1.50						0		30	
trans-1,2-Dichloroethene	ND	0.200						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.400						0		30	
n-Hexane	1.94	0.400						1.781	8.71	30	
1,1-Dichloroethane	ND	0.200						0		30	
Vinyl acetate	ND	1.00						0		30	
cis-1,2-Dichloroethene	ND	0.200						0		30	
(MEK) 2-Butanone	ND	1.00						0		30	
Ethyl acetate	ND	1.00						0		30	
Chloroform	ND	0.200						0		30	
Tetrahydrofuran	ND	0.400						0		30	
1,1,1-Trichloroethane	ND	0.400						0		30	
Carbon tetrachloride	0.0705	0.0657						0.07140	1.21	30	
1,2-Dichloroethane	ND	0.200						0		30	
Benzene	0.989	0.0895						0.9523	3.83	30	
Cyclohexane	1.22	0.400						1.165	4.37	30	
Trichloroethene (TCE)	ND	0.0649						0		30	
1,2-Dichloropropane	ND	0.500						0		30	
Methyl methacrylate	ND	0.400						0		30	
Dichlorobromomethane	ND	0.300						0		30	
1,4-Dioxane	ND	0.400						0		30	
cis-1,3-dichloropropene	ND	0.400						0		30	
Toluene	6.57	0.400						6.511	0.967	30	
trans-1,3-dichloropropene	ND	0.500						0		30	
1,1,2-Trichloroethane (TCA)	ND	0.500						0		30	
Tetrachloroethene (PCE)	0.372	0.200						0.3732	0.371	30	
Dibromochloromethane	ND	0.500						0		30	
1,2-Dibromoethane (EDB)	ND	0.200						0		30	
Chlorobenzene	ND	0.200						0		30	

Revision v1 Page 21 of 25

Date: 11/21/2019

Work Order: 1911061

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Franciscan West Seattle

Volatile Organic Compounds by EPA Method TO-15

Sample ID: 1911060-001AREP	SampType: REP			Units: ppbv		Prep D	ate: 11/9/20)19	RunNo: 552	202	
Client ID: BATCH	Batch ID: R55202					Analysis D	ate: 11/9/20)19	SeqNo: 109	97206	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	1.10	0.400						1.058	3.79	30	
m,p-Xylene	5.37	0.800						5.210	3.01	30	
o-Xylene	2.19	0.400						2.112	3.75	30	
Styrene	ND	0.400						0		30	
Bromoform	ND	0.200						0		30	
1,1,2,2-Tetrachloroethane	ND	0.300						0		30	
1,3,5-Trimethylbenzene	0.599	0.300						0.5801	3.12	30	
1,2,4-Trimethylbenzene	2.12	0.300						2.024	4.83	30	
Benzyl chloride	ND	0.500						0		30	
4-Ethyltoluene	ND	0.400						0		30	
1,3-Dichlorobenzene	ND	0.300						0		30	
1,4-Dichlorobenzene	ND	0.300						0		30	
1,2-Dichlorobenzene	ND	0.400						0		30	
1,2,4-Trichlorobenzene	ND	0.300						0		30	
Hexachlorobutadiene	ND	1.00						0		30	
Naphthalene	0.422	0.100						0.4198	0.452	30	
2-Hexanone	ND	1.00						0		30	
4-Methyl-2-pentanone (MIBK)	ND	1.00						0		30	
CFC-113	ND	0.400						0		30	
Heptane	1.26	0.400						1.241	1.87	30	
Surr: 4-Bromofluorobenzene	4.11		4.000		103	70	130		0		

NOTES:

Revision v1 Page 22 of 25

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample Log-In Check List

С	lient Name:	LIBBY	Work Order Numb	per: 1911061		
Lo	ogged by:	Clare Griggs	Date Received:	11/5/2019	3:25:00 PM	
<u>Cha</u>	nin of Cust	<u>ody</u>				
1.	Is Chain of C	sustody complete?	Yes 🗸	No 🗌	Not Present	
2.	How was the	sample delivered?	Client			
Log	<u>ı In</u>					
3.	Coolers are p	present?	Yes	No 🗸	na 🗆	
			Air Samples			
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square		
5.		Is present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required ✓	
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗹	
7.	Were all item	ns received at a temperature of >0°C to 10.0°C*	Yes	No 🗆	NA 🗸	
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆		
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗹	No \square		
10.	Are samples	properly preserved?	Yes 🗸	No 🗌		
11.	Was preserv	ative added to bottles?	Yes	No 🗸	NA 🗌	
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗸	
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗸	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌		
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No 🗌		
17.	Were all hold	ling times able to be met?	Yes 🔽	No 🗌		
Spe	cial Handl	ing (if applicable)				
-		otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
	Person	Notified: Date:				
	By Who	•		one Fax	☐ In Person	
	Regardi	ing:				
		nstructions:				

19. Additional remarks:

Item Information

Revision v1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

RAN AHA			Air Ch	ain of	Cust	od	ly F	₹e	cor	d 8	k La	abo	ora	tory	Serv	/ices	Agre	ement			
Fren	non	Seattle Tel: 2	mont Ave N. v, WA 98103 06-352-3790	Date: [[5/19			Page:		of:	1		Lot	orator	y Proje	ct No (li	nternal):	19	101	0	
San Paris Pa	maligate	Fax: 2	06-352-7178	Project Na	, .	Francisca	n West S	www.minerenant	***************************************			d1.648244444	Sp	ecial R	emari	15:				1	, j
Client: Libby Environm	antal			Project No	# 1784 1885 1885 1885 1815 1815 1815 1815 18	18-	********************	# * * * * * * * * * * * * * * * * * * *	mulacina de la vertica de	. 61 7 126777 2777 26	\$	**********	A.	ao	lde	d b	u c. s	Swif4	-via	emai	Page 22 of 22
tear, and an enterior of the first process, one are of the first process one one one of the	(CILAI	A LOCK COLD AND THE THE THE PART AND THE PER				ttre,		*****************	epus epus epus (.8544.8544.8544.8	***************************************				11-6	4-19	57	D	emai	ang
Address:	化异丙基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	America and production datas and off agencies and a	**************************************	Location:		rice	VVI	**************************************			**********		~								ц.
City, State, Zip:	gerakuran k. aks, assabb) erimber mpapink paks kitari Veri		in months of the second of	Collected b	THE THE PART LANGUE AND ADDRESS OF THE PARTY			THE PERSON NAMED OF THE PE		yang yan tirang a			1							ubmitted to	
Telephone:	***************************************	27 - 322 - 1 - 222 - 45, 2017 NA, 28 N, 4, 4 NA, 33 PA, 53 PA, 50 MAN, 400	was and the second	Reports to	American no		* •	***************************************		D4491479.447)			loth	erwise	reque	sted.	700	K to Dispo	se L	Hold (fees	nay apply)
Fax:				Email (PM)	libb	1 CGW	cus 1 00	on		тт		,	knalysis					***************************************	WW.		Internal
	Consistent (filter)	Sample Date &	Sample Type	Container	Fill Time /	Initial Evacuation Pressure	Field Initial Sample Pressure	Field Final Sample Pressure	VDCs TO15 SCAN	VOCS TO15 SCAN LL	VOCS TO15 SIM	Siloxanes TO15	O15	115	-	Gases 3C					Final Pressure
Sample Name	Canister / Flow Reg Serial #	Time	(Matrix) *	Type **	Flow Rate	(mtorr)	(* Hg)	(" Hg)	VOCs T	VOCs I	VOCs T	Siloxan	Sulfur Ext. TO	APH TO15	Helium	Major		1	Comments		("Hg)
550-BR	4691 co#2	115/19	5	1L 10min 10/22/2019 4/5/14 4/5/17								(3)							-3		
55 O- 3V	5021	1/5/15		1L	10min	10mtorr	-30	-4						0	•••••			ante el ecencio nalmente de la c	MANAGEMENT MENTING PROPERTY OF THE		1-4
370 3.0	CO#2	1026	5	***************************************		10/22/2019	UISIA	18/19	+					<u>(X)</u>				PARAMETER (400):07:1	~~~~~	***************************************	
550-512 550-63	4902 com2	1122	5	1L	10min	10mtorr 10/22/2019	4514	-2 11/5/M	f					(X)							-3
4	F1, . 17,000						-Approxima	Fresheite													
5	**************************************	Farth					-5,3800	£* 3.50°												and the second s	
* Matrix Codes: AA = Ambient Ai		rAir L≖La	ndfill S	= Subslab / S	oil Gas		25 - 600 - 1 Avenue -	**********************					*****************************	******************		******	*****************	22472247224722472	******** *** ***** ****** *****	Turn-	Around Time:
I represent that I am authori	** Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client naterms on the front and backside of this Agreement.									***************************************			dlar Ba verif		lien	t's agi	reement	to eacl	of the	St	
Relinquished x	15/19	Oate/Time /52 Date/Time	5	nyy na inanana amin'ny faritana m	Name of the last age	x L L	1-1	V.	Mark on the second	nghi shusadh sad	11	Date/T	//	9	t stopper to a year to	appy minimus as a side of the	28 M. 18 M. 28	152	5	2	Day ext Day
Relinquished Date/Time Received x											-ment 1				***************************************				Same I	(specify)	

Air Chain of Custody Record & Laboratory Services Agreement
All Chall of Custody Record & Editoratory Control of

	(C.N.)			4			Air Ch	ain or	Custi	u	уг	160	LUI	u	OK I	.au	UI	all	JI y	JEI VI	CC3 F	18100	Henr
Franciscan West Seattle Project Norm Libby Environmental Project Norm Locations In State, Tipe Contended by: Seports to (PM): S	Fren	10n	Seattle, Tel: 20	WA 98103 06-352-3790	Date:	5/19			Page:		of:							(Inter	nal):	1911	106		25
Matrix Code: A = Ambient Air A = Indicator Are Landfill S = Subship / Solid Gas Landfill Solid Gas	Ai	nalytic	Fax: 20	06-352-7178			Franciscar	West Se	eattle					3	Specia	l Rema	rks:					150	of .
																							e 24
Matrix Code: A = Ambient Air A = Indicator Are Landfill S = Subsidial / Solid Case Container Code: Container Code:	Client: Libby Environme	ental			Project No:																		ag
Reports to (PM)	Address:				Location:																		- 1
Matrix Codes A = Ambient Ar Memory Memor	City, State, Zip:				Collected b	y:								Δ	ir sam	nles ar	e disp	osed o	of one we	ek after re	port is subi	nitted to clie	nt unless
Sample Name Carister / Flow Sample Date & Sample Dat	Telephone:				Reports to	(PM):																old (fees may	apply)
Sample Name Carolater / Now Sample Date & Sample Type Sample Type Type Sample Type Type Type Sample Type Type Type Sample Type Type Type Type Type Type Type Typ					Email (PM)	: libb	109m	ail-c	on														
Carioter / Flow Sample Table Carioter / Flow Sample Type Contailor Fill Time / Organization Fill Time / Organization Fill Time / Organization Fill Time / Organization Flow Rate Contailor Flow Rate Flow Rate Contailor Flow Rate	rax:						Internal						Т	Analys	sis		Т	П					Internal
Sample Name Canister / Flow Reg Seral # Time Container Flow Container Flow Flow Rate Container Flow Flow Rate Container Flow Rate Flow Rate Container Flow Rate Co							Initial	Field Initial	Field Final	CAN	CAN LL	Σ	15		015		3C						
33 35 36 37 37 38 38 38 38 38 38		Caristan / Flour	Sample Date &	Sample Type	Container	Fill Time /	Evacuation	Sample	Sample		TO15 S	TO15 S	nes TO	T015	Ext. To	STO E	r Gases						Pressure
10 10 10 10 10 10 10 10	Sample Name				TAUSED BEING THE TO	100	10	Transport Control	(" Hg)	VOCs	VOCs	VOCs	Siloxa	Sulfur	Sulfur	Heliu	Majo			Co	omments		("Hg)
Sociation Soci	1	4691	11/57/9				10mtorr	- 30	-4														-3
SO - SN SO - SN SO - SN SO - SN SN - SN SN - SN SN - SN - SN	55D-BR		* Date	5	1L	10min	10/22/2019	4/5/K	11/5/19	4													
10min 10/22/2019 1/5/19 10/22/2019 1/5/19 10/22/2019 1/5/19 10/22/2019 1/5/19 10/22/2019 1/5/19 10/22/2019 1/5/19 10/22/2019 1/5/19 1	2	Flow Reg.	1810											1	+		+						71
4902	550-5N		"75/19 ₀₀₀		1L	10min	10/22/2019	Fressure	Pressure	7													7
* Matrix Codes: AA = Ambient Air)			Date	10010		7				-	+	+	+						
* Matrix Codes: AA = Ambient Air	3 -10- £3		"/57/9		11	10min		Pressure	Pressure	4													-3
* Matrix Codes: AA = Ambient Air IA = Indoor Air L= Landfill S = Subslab / Soil Gas * Container Codes: BV = 1 Liter Bottle Vac GL = GL Canister L= LL Canister CVL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement Belinquished Canister Date/Time Canister Date/Time Date/Time	220,60		1122	5	1.	10111111	10/22/2019	4519	"/S/M														
* Matrix Codes: AA = Ambient Air IA = Indoor Air L = Landfill S = Subslab / Soil Gas ** Container Codes: BV = 1 Liter Bottle Vac GL = GL Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement. Relinquished Date/Time Received Date/Time Date/Time Same Day Same Day Same Day	4	FIOW RAG	5.51579																				
* Matrix Codes: AA = Ambient Air IA = Indoor Air L = Landfill S = Subslab / Soil Gas * Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement. Relinquished Date/Time Date/Time Date/Time Date/Time Same Day Same Day		Caniste	Cate					Pressure	Pressure	>													
* Matrix Codes: AA = Ambient Air IA = Indoor Air L = Landfill S = Subslab / Soil Gas ** Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement. Relinquished Date/Time Date/Time Date/Time Date/Time Date/Time S = Subslab / Soil Gas Turn-Around Time: S = Sorbent Tube TB = Tedlar Bag S tandard Date/Time Date/Time 2 Day Next Day Same Day Same Day	ic .	Flow Peg	. Tirne	-			Dak	Dars.	Date	0	-				+		+						
* Matrix Codes: AA = Ambient Air IA = Indoor Air L = Landfill S = Subslab / Soil Gas ** Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag ** Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag ** Standard ** I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement. ** Pate		Cenisie	Date				Pressure	Pressure	Pressure	9													
** Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag ** Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag ** Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag ** Standard		Flow Req	Time				Date	Date	Cate	9	8.											_	
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement. Relinquished Received Received Received Date/Time Date/Time Date/Time Same Day Sandard Standard Standard Standard Standard Date/Time Standard Standard Standard Date/Time Standard Standard Standard Standard Date/Time Standard Standard Standard Date/Time Standard Standard Standard Standard Date/Time Standard Standard Date/Time Standard Standard Date/Time Standard Standard Standard Date/Time Standard Standard Date/Time	* Matrix Codes: AA = Ambient Ai	r IA = Indoo	or Air L = La												D							1	
Relinquished Relinquished Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Same Day	** Container Codes: BV = 1 Liter B	ottle Vac 6L	= 6L Canister													d Cli	ent's	agre	ement	to each	of the	Star	ndard
Received Date/Time 2 Day	I represent that I am authori	ized to enter i side of this Ag	nto this Agree reement.	ement with	r remont	мпанунса						verified Chefit's agreement to each of the							3 Da	ву			
Relinquished Date/Time Received Date/Time Same Day	Relinquished	141		/			Received	/ /					Date	/Time	110	5					_	2 Da	зу
Relinquished Date/Time Same Day	×	15/19	152	1			×h	1-6	V			(//	5/	′ / `	/				152	S	Nex	t Day
x (specify)	Relinquished		Date/Time				Received						Date	/Time								Same Da	у
	х						х																(specify)

				T		Air Cl	i	£ C		1			-1.0				-	_			_	
Fre	mor	Tel:	remont Ave N. le, WA 98103 206-352-3790 206-352-7178	Date: [15/10	Air Ch	iain c	Page:	τοι	of:	Ked	cor			NA ASTE		itor	1/		es 1	Agree	emen
		N N N N N		Project Na	ame:	Francisca	an West	Seattle						ecial R			41.4	200	001/	CC	nhatt.	0 M 0
Client: Libby Enviro	nmental			Project No	ó:								0	110	W-	-un	aly	515	per :	50	nli4/k	J my
Address:				Location:							•••••											
City, State, Zip:				Collected																		
Telephone:																				rt is sub	mitted to clie	ent unless
				Reports to			• • •						othe	erwise	reque	ested.	7	OK to D)ispose	Он	lold (fees ma	y apply)
Fax:				Email (PM	1): 1,06	y CSN Internal	reul.	con	_			A	nalysis									Termoni
Sample Name	Canister / Flow Reg Serial #	Sample Date & Time	Sample Type (Matrix) *	Container Type **	Fill Time / Flow Rate	Initial Evacuation Pressure (mtorr)	Field Initial Sample Pressure (" Hg)		VOCs TO15 SCAN	VOCs TO15 SCAN LL	VOCs TO15 SIM	Siloxanes TO15	015	APH TO15	Helium	Major Gases 3C			Comm	nents		Final Pressure ("Hg)
550-BR	4691 Canister CO#2 Flory Reg.	115719 Dele	5	1L	10min	10mtorr Pressure 10/22/2019 Date	- 30 WS/19	-4 "(51/2	¥			0.		9		_						-3
550-51 550-63	5021 Canister CO#2 Flow Reg	"/5/19 _{bate}	5	1L	10min	10mtorr Pressure 10/22/2019 Date	-30 U/8/9	-4 14/19	+					0								-4
550- £3	4902 Canster CO#2 Flow Reg	"/57/9 ₀₄₀	5	1L	10min	10mtorr Pressure 10/22/2019	-30 45119	-2 Pressure	4					3								-3
4	Conister Flow Peg.	Date Time				Date	Pressura Dan	Freasure Date														
5	Capiater Flow Reg	Date Lime				Pressure Date	Pressure Dele	Pressure Oats														
* Matrix Codes: AA = Ambient		Air L = Lan	ndfill S =	Subslab / So	oil Gas													BER			Turn-Aro	und Time:
Religioushed	rized to enter int	to this Agreen		nister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar h Fremont Analytical on behalf of the Client named above, that I have vere Received Date/Time x						erific	ed CI	ient'	's agı	eemen			he	Stand 3 Day 2 Day	dard			
Relinquished	D	ate/Time			Received		••••••			Da	te/Tim	e	177 [525 Next Day									

(specify)

Same Day