Phase II Environmental Site Assessment Soil Sampling Report

Duwamish Waterway Park Addition - Tax Parcel 732-790-1215 1024 S. Elmgrove Street, Seattle, King County, Washington

Prepared for: City of Seattle Parks and Recreation 300 Elliott Avenue West Suite 100 Seattle, Washington 98119

June 24, 2021

Project Number 21-04001

Environmental Scientists, Planners and Consultants

800 5th Ave., Suite 101-313 Seattle, WA 98104 phone (425) 271-5629 www.ecocompliance.biz

Executive Summary

Eco Compliance Corporation was retained by the City of Seattle Parks and Recreation to conduct a Phase II Environmental Site Assessment (ESA) consisting of soil sampling at the property located at 1024 South Elmgrove Street (the Subject Property). The location of the Subject Property is shown on Figure 1.

A previous Phase I ESA was conducted for the Subject Property. The previous Phase I ESA identified the potential for impacted dredge spoils to have been deposited from the Duwamish Waterway onto the Subject Property.

The purpose of this sampling and analysis project is to document the nature and extent of potential soil impacts associated with potential dredge spoils from the Duwamish Waterway.

Detected concentrations of PCBs did not exceed the State of Washington Department of Ecology (DOE) Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Use.

Detected concentrations of the metals Antimony, Barium, Cadmium, Lead, Mercury, Selenium, or Silver did not exceed the State of Washington DOE MTCA Method A soil cleanup levels for Unrestricted Land Use. Concentrations of Arsenic exceeded the MTCA Method A Unrestricted Land use value of 20 mg/Kg in samples B1-4, B2, and B5. Concentrations of Chromium exceeded the MTCA Method A Unrestricted Land use value of 19 mg/Kg in samples B1-4, B2, B3-4, and B5; however the screening value used is for hexavalent chromium, trivalent chromium has a MTCA Method A Unrestricted Land use value of 2,000 mg/Kg. In the natural environment, total chromium detected tends to be predominantly trivalent chromium.

Table of Contents

<u>Section</u>	<u>Page</u>
Executive Summary	i#
1.0# Introduction	
1.1# Purpose	
1.2# Limitations and Exceptions of Assessment	1#
2.0# Background	2#
2.1# Site Description and Features	2#
2.2# Previous Investigations	
2.3# Pre-Field Preparation	2#
3.0# Geology and Hydrogeology	
3.1# Geologic Setting	
3.2# Site Geology	
3.3# Hydrogeology	
4.0# Sampling Activities	
4.1# Scope of Assessment	4#
4.2# Field Explorations and Methods	4#
4.3# Laboratory Analysis Methods	
5.0# Results and Conclusions	
5.1# Results	5#
5.2# Conclusions	
6.0# Signature	
7.0# References	

Tables

Table 1	Soil Sampling Results – Petroleum Hydrocarbons and Polychlorinated Biphenyls
Table 2	Soil Sampling Results - Metals Analysis
Table 3	Soil Sampling Results – Semivolatile Organic Compounds

Figures

Figure 1	Site Location Map
Figure 2	Site Plan

Appendix

Appendix A	Photographic Log
Appendix B	Borehole Log Forms
Appendix C	Laboratory Analytical and Chain of Custody Forms

1.0 Introduction

Eco Compliance Corporation was retained by the City of Seattle Parks and Recreation to conduct a Phase II Environmental Site Assessment (ESA) consisting of soil sampling at the property located at 1024 South Elmgrove Street (the Subject Property). The location of the Subject Property is shown on Figure 1.

This project was conducted pursuant to authorization of the scope of work, estimated costs and schedule, and terms and conditions outlined in the proposal dated June 17, 2021 and in general accordance with the scope of work and limitations of the American Society of Testing and Materials (ASTM) Standard Guide for Soil Sampling from the Vadose Zone, Designation D4700-91(2006) and the ASTM Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process, Designation E1903-19.

1.1 Purpose

The purpose of this soil sampling and analysis project is to document the nature and extent of potential soil impacts associated with the former use of the Subject Property as an automotive repair facility.

1.2 Limitations and Exceptions of Assessment

The property assessment described in this report should not be construed as a complete characterization of environmental regulatory compliance or of above and below ground environmental conditions. Eco Compliance Corporation utilized standard data collection techniques while completing the work; however, a comprehensive characterization of all sub-surface conditions is neither appropriate nor feasible. Therefore, reliance by the Client on the information presented in this report shall be consistent with the limitations expressed herein, and subject to the project scope of work and terms of the contract between Eco Compliance Corporation and the Client.

The services provided were in accordance with the standard of care and skill ordinarily exercised by members of the profession currently participating in the same locality under similar conditions. No other representation, expressed or implied, and no warranty or guarantee is included or intended in this report.

The investigation described herein and this report are not intended to be submitted to a regulatory agency and is for the Client use only. A field investigation and resulting report intended for submittal to a regulatory agency would require much more in-depth descriptions of the field, laboratory, quality control and other materials and methods along with operation under an agency-approved work plan for the scope of work. In the interest of efficiency for both schedule and budget, these activities were not conducted as part of this scope of work.

2.0 Background

2.1 Site Description and Features

The Subject Property consists of a portable toilet rental facility with a concrete masonry unit (CMU) building in the northwest portion, a wood and steel frame storage building in the central-northern portion of the property, and a steel frame and steel panel building in the southeast portion of the Subject Property. Portable toilets, hand wash stations, and service trucks are stored throughout the property. Service truck maintenance is performed in the southern portion of the northwestern building. Storage and employee areas are located in the northern portion of the main building with offices and a conference room upstairs. Repairs and maintenance of the portable toilets and hand wash stations is performed in the southeast portion of the Subject Property.

The property is located in a mixed commercial/industrial and residential area of King County, consisting of commercial businesses, single-family housing and the Duwamish Waterway Park. The Duwamish Waterway is located adjacent and to the north of the Subject Property.

2.2 Previous Investigations

Eco Compliance Corporation performed a Phase I ESA of the Subject Property dated June 15, 2021. The previous Phase I ESA identified the potential for impacted dredge spoils to have been deposited from the Duwamish Waterway onto the Subject Property.

The purpose of this sampling and analysis project is to document the nature and extent of potential soil impacts associated with potential dredge spoils from the Duwamish Waterway.

2.3 Pre-Field Preparation

Prior to conducting field activities, a project-specific health and safety plan (HASP) was developed outlining the various hazards associated with the proposed scope of work. The HASP was developed to cover risks of exposure to potential contaminants as well as biological hazards and physical hazards associated with the performance of the work and the equipment used to complete the work. Additional pre-field activities included coordination with the laboratory and other tasks necessary to ensure a seamless and problem-free field mobilization.

3.0 Geology and Hydrogeology

3.1 Geologic Setting

The Subject Property is located within the Puget Lowland Physiographic Province of the State of Washington. The Puget Lowland region is a wide low-lying area between the Cascade Range to the east and the Olympic Mountains to the west. The region extends from the San Juan Islands in the north to past the southern end of the Puget Sound (WADNR).

Local geology consists of Quaternary sediments, dominantly glacial drift, including alluvium. According to the Environmental Data Resources, Inc. (EDR) GeoCheck Physical Setting Source Summary, the dominant soil composition in the vicinity of the Subject Property is classified as, Urban Land- Alterwood Complex, 0 to 5 percent slopes. Parent material includes glacial drift and/or glacial outwash over dense glaciomarine deposits. This soil consists of deep, moderately well-drained soils consisting of loam. The soil extends to a depth of 60 inches. Permeability is very low to moderately low, and the available water capacity is very low. Depth to densic material is approximately 20 to 39 inches; the depth to bedrock is typically greater than 60 inches.

3.2 Site Geology

During borehole advancement, the type of soil encountered included fine-grained sands and gravely/course grained sands. Soils were brown to dark, greyish brown.

3.3 Hydrogeology

Depth to groundwater is approximately nine feet below ground surface as encountered in borehole B1. The regional groundwater flow direction is expected to be north and east towards the Duwamish Waterway.

4.0 Sampling Activities

4.1 Scope of Assessment

A total 12 soil samples were collected from each of six borings advanced in the northeast portion of the Subject Property and submitted the laboratory for analysis. A photographic log of field investigations conducted is included in Appendix A.

4.2 Field Explorations and Methods

A total three soil samples were collected utilizing a hand auger. Soils encountered were described for the texture, structure, color, and any staining, discoloration, and / or odors were noted in the field notes. A total nine soil samples were collected from each of four borings advanced utilizing a GeoProbe® hydraulic push-type rig operated by Holt Drilling. Soil samples were field-screened and any staining, discoloration, and / or odors were noted on a Borehole Log form. Soil sample locations are identified on Figure 2. Borehole log forms are included in Appendix B.

Soil samples were packaged in new laboratory-provided four ounce glass jars. Samples were labeled and transmitted to Friedman & Bruya Laboratories, an environmental laboratory certified by the State of Washington utilizing a chain of custody and an ice chest packed with ice as a preservative. Analysis was requested on an expedited 24-hour turnaround basis.

4.3 Laboratory Analysis Methods

The laboratory was requested to analyze soil samples collected to characterize the potential compounds of concern by the following methods:

- Resource Conservation and Recovery Act (RCRA) eight (8) Metals by EPA Method 6020;
- Polycyclic Aromatic Hydrocarbons by EPA Method 8270;
- Polychlorinated Biphenyls (PCBs) by EPA Method 8082; and
- Total Petroleum Hydrocarbons-diesel range (TPHd) by Method NWTPH-Dx.

Metals analysis was originally scoped and intended to be for Target Analyte List (TAL) metals by EPA Method 6010; however, the laboratory informed Eco Compliance Corporation following submittal of the samples the analysis would be performed by the newer Method 6020. Additionally the TAL list was not going to be able to be completed in the requested, expedited turnaround time and therefore metals analysis was reduced to the RCRA eight list with the addition of antimony.

5.0 Results and Conclusions

5.1 Results

Results of petroleum hydrocarbon and PCB analysis is presented on Table 1. Concentrations of petroleum hydrocarbons were not detected above the respective laboratory detection limit of 50 mg/Kg for diesel-range hydrocarbons and 250 mg/Kg for motor oil range hydrocarbons. Concentrations of PCBs were not detected above the respective laboratory detection limit of 0.02 mg/Kg with the exception of Aroclor 1254 and Aroclor 1260 which were detected at 0.13 mg/Kg and 0.11 mg/Kg respectively in B3-4, 0.035 mg/Kg and 0.026 mg/Kg respectively in B5, and 0.029 mg/Kg and 0.026 mg/Kg in B6-10.

Results of metals analysis is presented on Table 2. Concentrations of Mercury, Selenium, and Silver were not detected above their respective laboratory detection limits. Concentrations of Antimony ranged from below the detection limit of 2 mg/Kg to 27.4. Concentrations of Arsenic ranged from below the detection limit of 1 mg/Kg to 82.6 mg/Kg. Concentrations of Barium ranged from 16.0 mg/Kg to 543 mg/Kg. Concentrations of Chromium ranged from 5.65 mg/Kg to 37.1 mg/Kg. Concentrations of Lead ranged from below the detection limit of 1 mg/Kg to 1 mg/Kg to 178 mg/Kg.

Results of Semivolatile Organic Compound analysis is presented on Table 3. Concentrations of Acenaphthylene were not detected above their respective detection limit. Concentrations of Naphtalene, 2-Methylnaphthalene, 1-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, and Benzo(g,h,i)perylene ranged from 0.051 mg/Kg to 0.64 mg/Kg. Concentrations of Carcinogenic Polyaromatic Hydrocarbons (cPAHs) consisting of Benzo(a)anthracene, Chysene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene and Dibenzo(a,h)anthracene ranged from 0.022 mg/Kg to 0.94 mg/Kg. Laboratory results for all compounds analyzed are presented in Appendix C.

5.2 Conclusions

Detected concentrations of PCBs did not exceed the State of Washington Department of Ecology (DOE) Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Use.

Detected concentrations of the metals Antimony, Barium, Cadmium, Lead, Mercury, Selenium, or Silver did not exceed the State of Washington DOE MTCA Method A soil cleanup levels for Unrestricted Land Use. Concentrations of Arsenic exceeded the MTCA Method A Unrestricted Land use value of 20 mg/Kg in samples B1-4, B2, and B5. Concentrations of Chromium exceeded the MTCA Method A Unrestricted Land use value of 19 mg/Kg in samples B1-4, B2, B3-4, and B5; however the screening value used is for hexavalent chromium, trivalent chromium has a MTCA Method A Unrestricted Land use value of 2,000 mg/Kg. In the natural environment, total chromium detected tends to be predominantly trivalent chromium.

Concentrations of cPAHs were evaluated using the Toxic Equivalent Concentration (TEC) values as outlined in WAC 173-340-708(8)(e)(iii). Total PAH concentrations exceeded the MTCA Method A Unrestricted value of 0.1 mg/Kg in B1-4, B2, B5, and B6-4 at concentrations of 1.0538 mg/Kg, 0.8426 mg/Kg, 0.4623 mg/Kg, and 0.1687 mg/Kg respectively. Total PAH concentrations did not exceed the MTCA Method A Industrial value of 2 mg/Kg.

The soil sampling and analysis detailed herein was conducted for the purpose of documenting the nature and extent of potential soil impacts associated with the former use of the Subject Property and the potential for contaminated dredge spoils to have been deposited on the Subject Property. The results of this investigation have determined soil at the Subject Property is not impacted with petroleum hydrocarbons or PCBs above the MTCA Method A Unrestricted Land use screening value.

Concentrations of Arsenic, Chromium, and cPAHs are present in B1-4, B2, and B5. Elevated chromium concentrations are present in B3-4 when compared to hexavalent chromium, but not when compared to trivalent chromium. A risk determination may need to be performed on the speciation of hexavalent to trivalent chromium in these samples. Sample B6-4 contained cPAHs at concentrations exceeding the MTCA Method A Unrestricted land use screening value.

Soils in the area of borehole B1, B2, and B5 should be managed during excavation and / or redevelopment activities. Field screening and disposal of the Arsenic and Chromium impacted soil would be sufficient. Soil mixing methods may be sufficient to address the concentrations of cPAHs present in borings B1, B2, B5 and shallow portions of B6.

6.0 Signature

Mr. David McAlister performed all work associated with this Phase II ESA including the oversight of drilling contractors, field staff, and laboratory reports. The signature of Mr. McAlister is included in this Section of the report.

Pa mallinto /

David C. McAlister L. G. State of Washington Licensed Geologist #3369

7.0 References

- American Society for Testing and Materials (ASTM) 2006. Practice D4700-91(2006) Standard Guide for Soil Sampling from the Vadose Zone.
- American Society for Testing and Materials (ASTM) 2019. Practice E1903-19 Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.

Google Earth - http://earth.google.com/

- P.G. Schruben, R.E. Arndt and W.J. Bawiec, *Geology of the Conterminous U.S. at* 1:2,500,000 *Scale a digital representation of the* 1974 *P.B. King and H.M. Beikman Map*, USGS Digital Data Series DDS 11 (1994).
- Eco Compliance Corporation. *Phase I Environmental Site Assessment / Duwamish Waterwway Park Addition* – *Tax Parcel 732-790-1215 / 1024 Elmgrove Street, Seattle, King County, Washington.* June 15, 2021.

Tables

TABLE 1

Soil Sampling Results - Petroleum Hydrocarbons and Polychlorinated Biphenyls 1024 South Elmgrove Street Seattle, Washington

	D d	T	PH					PCBs				
Sample	Depth (bgs)	NWT	PH-Dx				EPA	Method 8082				
	(bgs)	Diesel	Motor Oil	Aroclor 1221	Aroclor 1232	Aroclor 1016	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268
MTCA A UI	nrestricted	2,000	2,000.00		1 Total							
MTCA A In	dustrial	2,000	2,000.00		10 Total							
B1-4	4	ND (<50)	ND (<250)	ND (<0.02)								
B1B-4	4	ND (<50)	ND (<250)	ND (<0.02)								
B1B-10	10	ND (<50)	ND (<250)	ND (<0.02)								
B2	2	ND (<50)	ND (<250)	ND (<0.02)								
B3-4	4	ND (<50)	ND (<250)	ND (<0.02)	0.13	0.11	ND (<0.02)	ND (<0.02)				
B3-5	5	ND (<50)	ND (<250)	ND (<0.02)								
B3-10	10	ND (<50)	ND (<250)	ND (<0.02)								
B4	5	ND (<50)	ND (<250)	ND (<0.02)								
B4-10	10	ND (<50)	ND (<250)	ND (<0.02)								
B5	2	ND (<50)	ND (<250)	ND (<0.02)	0.035	0.026	ND (<0.02)	ND (<0.02)				
B6-4	4	ND (<50)	ND (<250)	ND (<0.02)								
B6-10	10	ND (<50)	ND (<250)	ND (<0.02)	0.029	0.026	ND (<0.02)	ND (<0.02)				

Note:

bgs - Below Ground Surface

All results in Milligrams per Kilogram (mg/Kg)

TPHs- Total Petroleum Hydrocarbons

PCBs- Polychlorinated biphenyls

ND(<5.0) - Not Detected at the detection limit indicated

NA - Not Analyzed

TABLE 2Soil Sampling Results - Metals Analysis1024 South Elmgrove Street Seattle, Washington

Sample	Depth	Antimony	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
MTCA A Unre	stricted	N/A	20	N/A	2	19	250	2	N/A	N/A
MTCA A Indu	strial	N/A	20	N/A	2	19	1,000	2	N/A	N/A
B1-4	4	27.4	82.6	61.8	ND (<1)	22.6	99.1	ND (<1)	ND (<1)	ND (<1)
B1B-4	4	ND (<2) ^{ca}	2.36	525	ND (<1)	5.65	3.69	ND (<1)	ND (<1)	ND (<1)
B1B-10	10	ND (<2) ^{ca}	1.50	16.0	ND (<1)	9.26	2.16	ND (<1)	ND (<1)	ND (<1)
B2	2	19.9	33.8	88.4	ND (<1)	37.1	103	ND (<1)	ND (<1)	ND (<1)
B3-4	4	ND (<2) ^{ca}	12.0	161	1.11	24.7	178	ND (<1)	ND (<1)	ND (<1)
B3-5	5	ND (<2) ^{ca}	5.02	41.5	ND (<1)	10.7	13.8	ND (<1)	ND (<1)	ND (<1)
B3-10	10	ND (<2) ^{ca}	ND (<1)	28.9	ND (<1)	9.74	1.91	ND (<1)	ND (<1)	ND (<1)
B4	5	2.31 ^{ca}	5.48	61.9	ND (<1)	10.2	41.5	ND (<1)	ND (<1)	ND (<1)
B4-10	10	ND (<2) ^{ca}	ND (<1)	13.4	ND (<1)	6.83	ND (<1)	ND (<1)	ND (<1)	ND (<1)
В5	2	10.8	21.4	73.3	ND (<1)	21.1	53.4	ND (<1)	ND (<1)	ND (<1)
B6-4	4	ND (<2) ^{ca}	3.79	543	ND (<1)	6.13	17.4	ND (<1)	ND (<1)	ND (<1)
B6-10	10	ND (<2) ^{ca}	4.74	428	ND (<1)	9.73	117	ND (<1)	ND (<1)	ND (<1)

Note:

Resource Conservation and Recovery Act (RCRA) 8 Metals Analyzed by EPA Method 6020

Results presented in milligrams per kilogram of soil (mg/Kg)

Bold - Detected above the MTCA A Unrestricted Level

Bold Red - Detected above the MTCA A Industrial Level

ND(<5.0) - Not Detected at the detection limit indicated

N/A - Not Applicable

Chromium value shown is for hexavalent chromium, trivalent chromium values are 2,000 mg/Kg for unrestricted and Industrial use.

Table 3Soil Sampling Results - Semivolatile Organic Compounds1024 South Elmgrove Street Seattle, Washington

Comm10	Depth				Sem	ivolatile Organ	ic Compoun	ds by EPA Meth	od 8270			
Sample	(bgs)	Naphtalene	2-MN	1-MN	Acenaphthylene	Acenaphthene	Flourene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	B(g,h,i)perylene
MTCA A Uni	restricted	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MTCA A Industrial		5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B1-4	4	0.051	ND (<0.05)	ND (<0.05)	ND (<0.05)	0.17	0.10	1.1	0.22	1.5	1.4	0.40
B1B-4	4	0.23	0.39	0.30	ND (<0.01)	ND (<0.01)	ND (<0.01)	0.12	0.024	0.033	0.043	0.013
B1B-10	10	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)
B2	2	0.085	0.085	0.086	ND (<0.05)	0.11	0.10	0.91	0.20	1.1	1.1	0.32
B3-4	4	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	0.10	ND (<0.05)	0.14	0.12	ND (<0.05)
B3-5	5	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)
B3-10	10	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)
B4	5	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)
B4-10	10	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)
B5	2	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	0.068	ND (<0.05)	0.43	0.083	0.64	0.58	0.19
B6-4	4	0.24	0.40	0.31	ND (<0.05)	ND (<0.05)	ND (<0.05)	0.15	ND (<0.05)	0.067	0.098	0.11
B6-10	10	0.32	0.51	0.40	ND (<0.05)	ND (<0.05)	ND (<0.05)	0.20		0.13	0.13	ND (<0.05)

Commlo	Depth	Total TEC			Semivolatile	Organic Compo	ounds by EPA	Method 8270		
Sample	(bgs)	PAHs ^a		B(a)Anth	Chrysene	B(a)pyrene	B(b)fluor	B(k)fluor	I(1,2,3-cd)P	D(a,h)anth
MTCA A Uni	restricted	0.1 ^b	TEC Factor	0.1	0.01	1.0	0.1	0.1	0.1	0.1
MTCA A Ind	ustrial	2 ^b	TEC Factor	0.1	0.01	1.0	0.1	0.1	0.1	0.1
B1-4	4	1.0538		0.72	0.78	0.79	0.94	0.34	0.45	0.11
B1B-4	4	0.0303		0.034	0.030	0.022	0.046			
B1B-10	10	ND (<0.01)		ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)
B2	2	0.8426		0.56	0.63	0.63	0.80	0.25	0.36	0.093
B3-4	4	0.0932		0.065	0.071	0.076	0.10	ND (<0.05)	ND (<0.05)	ND (<0.05)
B3-5	5	ND (<0.01)		ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)
B3-10	10	ND (<0.01)		ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)
B4	5	ND (<0.05)		ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)	ND (<0.05)
B4-10	10	ND (<0.01)		ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<0.01)
B5	2	0.4623		0.30	0.33	0.35	0.42	0.16	0.21	ND (<0.05)
B6-4	4	0.1687		0.09	0.09	0.15	0.17	ND (<0.05)	0.090	ND (<0.05)
B6-10	10	0.0910		0.082	0.075	0.071	0.11	ND (<0.05)	ND (<0.05)	ND (<0.05)

Note:

Results presented in milligrams per kilogram of soil (mg/Kg)

Bold - Detected above the MTCA A Unrestricted Level

Bold Red - Detected above the MTCA A Industrial Level

2-MN - 2-Methylnaphthalene

1-MN - 1-Methylnaphthalene

B(g,h,i)perylene - Benzo(g,h,i)perylene

B(a)Anth - Benzo(a)anthracene

B(a)pyrene - Benzo(a)pyrene

B(b)fluor - Benzo(b)fluoranthene

B(k)fluor - Benzo(k)fluoranthene

I(1,2,3-cd)P - Indeno(1,2,3-cd)pyrene

D(a,h)anth - Dibenz(a,h)anthracene

ND (<5.0) - Not Detected at the detection limit indicated

N/A - Not Applicable

^{fb} - Analyte was also detected in the laboratory method blank

^b - MTCA Method A cleanup standard for carcinogenic PAHs based on Benzo(a)pyrene. WAC 173-340-708(8)(e)(iii)

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

^a - Total toxic equivalent concentration (TEC) of carcinogenic PAHs (Benzo[a]anthracene, Chysene, Benzo[a]pyrene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Indeno[1,2,3-cd]pyrene and Dibenzo[a,h]anthracene). WAC 173-340-708(8)(e)(iii) and -708(8)(e)(iii). Figures

OURCE: Google Earth, 2021	TITLE: Site Location Map									
_	LOCATION:	LOCATION: Duwamish Waterway Park Addition								
— N —	1024 S. Elmgrove Seattle, Washington									
I		Ess Compliance Comparation	CHECKED:	D.McAlister	FIGURE:					
		Eco Compliance Corporation 800 5 th Avenue, Suite 101-313 Seattle, WA 98104	DRAFTED:		1					
		562-489-7908 DirtyProperty.com	FILE: DATE:	02/24/2021						

Appendix A

Photographic Log

Appendix A – Photographic Log

1024 S. Elmgrove Street Seattle, Washington

Photo: 1

Description:

Drilling equipment setup and staging.

Orientation:

Facing north

Photo: 2

Description:

Borehole location B6 along the Duwamish Waterway.

Orientation:

Facing north

Appendix A – Photographic Log

1024 S. Elmgrove Street Seattle, Washington

Appendix A – Photographic Log

1024 S. Elmgrove Street Seattle, Washington

Photo: 6

Description:

Soil core extracted from borehole location B3.

Orientation:

Facing north

Appendix B

Borehole Log Forms

800 5th Avenue, Suite 101-313 Seattle, WA 98104 (425) 271-5629 Ecocompliance.biz

FIELD SOIL LOG: **DRILLING /**

Geologist: D. McAlister Boring No: B1

WELL CONSTRUCTION

Client:	City of S	Seattle Pa	rks and F	Recreation	Location: 1024 S. Elmgrove Seattle, WA	Мар:				
				Addition	,,,,,					
	n/Datum:		,		Subcontractor: Holt Drilling					
	g Date(s)		6/23/		Hammer Weight: N/A		Se	e Attache	ed	
	g Method				Memo:					
Drop He			N/A		Angle:					
DTW: 1		et bgs	Sta							
L										
Depth Below Surface (ft.)	Blows/ 6 in On Sampler Recovery	PID Reading (ppm)	Unified Classification	Soil D	escription	Sampler and Bit	Annular Fill	Well Construction Details		
-				Wood chips & bare soil surface						
- 0										
-			SM	Silty Sand. Yellowish Brown (10YR 5/4) po	oorly graded sub-angular fine sand,					
- 2				low toughness. Moist.						
- ,				~	<u>B1@740</u>					
- 4					<u>B1B-4@920</u>					
				Second borehole location s	teped out three feet to the east.					
- 6										
- 8										
- °			SM	Silty Sand. Very Dark Grayish Brown (10Y	R 3/2) poorly graded sub-angular fine sand,					
- 10				low toughness. Wet.						
- 10					<u>B1B-10@926</u>					
- 12				Total depth of borehole =	10 feet below ground surface					
- '2										
- 14										
- 16										
- 18										
- 20										
- 22										
- 24										
-										
- 26										
-										
- 28										
-										
- 30										
F										
<u> -</u>										
-										

800 5th Avenue, Suite 101-313 Seattle, WA 98104 (425) 271-5629 Ecocompliance.biz

FIELD SOIL LOG: DRILLING /

Geologist: D. McAlister Boring No: B2

WELL CONSTRUCTION

Client	:	City of S	eattle Pa	irks and F	Recreation	Location: 1024 S. Elmgrove Seattle, WA				
Projec	ct:	Duwami	sh Water	way Park	Addition					
		/Datum:				Subcontractor: Holt Drilling				
		Date(s)		6/23/	/2021	Hammer Weight: N/A		Se	e Attach	ed
		Method		Hand Au		Memo:				
Drop I			•	N/A						
DTW:				Static	N/A	Angle:				
DTW.	13		`							
Depth Below Surface (ft.) Blows/ 6 in On Reacovery PID Classification Classification							Sampler and Bit	Annular Fill		Construction Details
-					Wood chips & bare soil surface					
-	0									
_				SM	Silty Sand. Yellowish Brown (10YR 5/4) p	poorly graded sub-angular fine sand				
	2				with medium cobles. Low toughness. Mo					
E					marmedium cobies. Low loughness. MO	<u>B2@815</u>				
-	4				Defined. Tatal denth of here					
-					Refusal. Total depth of bore	hole = 2 feet below ground surface				
-	6									
-										
-	8									
	10									
-										
	12									
-										
- ,	14									
-	14									
- ,	10									
-	16									
-										
-	18									
-										
- 2	20									
- ,										
- 2	22									
- 2	24									
-										
- 2	26									
 -										
- 2	28									
<u> </u>										
	30									
- `										
<u>-</u>										
-										

800 5th Avenue, Suite 101-313 Seattle, WA 98104 (425) 271-5629 Ecocompliance.biz

Client: City of Seattle Parks and Recreation

Project: Duwamish Waterway Park Addition

FIELD SOIL LOG: DRILLING /

Location: 1024 S. Elmgrove Seattle, WA

Geologist: D. McAlister Boring No: B3

Map:

WELL CONSTRUCTION

Elevation/Datum: N/A Subcontractor: Holt Drilling See Attached Sampling Date(s): 6/23/2021 Hammer Weight: N/A Sampling Method: Direct Push (Geoprobe) Memo: Drop Height: N/A Angle: DTW: 1st__ N/A Static N/A Βï PID Reading (ppm) Well Construction Details Blows/ 6 in On Depth Below Surface (ft.) Sampler and Classification Sampler Recovery Soil Description Jnified Annular Asphalt Surface 0 SM Silty Sand. Yellowish Brown (10YR 5/4) poorly graded sub-angular fine sand, 2 with small cobbles. Low toughness. Moist. B3-4@823 4 <u>B3-5@936</u> Second borehole location steped out one foot to the east 6 8 Silty Sand. Very Dark Grayish Brown (10YR 3/2) poorly graded sub-angular fine sand, SM low toughness. Moist. 10 B3-10@936 Total depth of borehole = 10 feet below ground surface 12 14 16 18 20 22 24 26 28 30

800 5th Avenue, Suite 101-313 Seattle, WA 98104 (425) 271-5629 Ecocompliance.biz

Client: City of Seattle Parks and Recreation

FIELD SOIL LOG: DRILLING /

Location: 1024 S. Elmgrove Seattle, WA

Geologist: D. McAlister Boring No: B4

Map:

WELL CONSTRUCTION

Project: Duwamish Waterway Park Addition Elevation/Datum: N/A Subcontractor: Holt Drilling See Attached Sampling Date(s): 6/23/2021 Hammer Weight: N/A Sampling Method: Direct Push (Geoprobe) Memo: Drop Height: N/A Angle: DTW: 1st <u>N/A</u> Static N/A Blows/ 6 in On Sampler Recovery Βï PID Reading (ppm) Well Construction Details Depth Below Surface (ft.) Sampler and Classification Soil Description Unified Annular Asphalt Surface 0 SM Silty Sand. Yellowish Brown (10YR 5/4) poorly graded sub-angular fine sand, 2 with small cobbles. Low toughness. Moist. B4@847 4 6 8 SP Sand. Very Dark Grayish Brown (10YR 3/2) poorly graded sub-angular fine sand, low toughness. Moist. 10 B4-10@948 Total depth of borehole = 10 feet below ground surface 12 14 16 18 20 22 24 - 26 28 30

800 5th Avenue, Suite 101-313 Seattle, WA 98104 (425) 271-5629 Ecocompliance.biz

Client: City of Seattle Parks and Recreation

Project: Duwamish Waterway Park Addition

FIELD SOIL LOG: DRILLING /

Location: 1024 S. Elmgrove Seattle, WA

Geologist: D. McAlister Boring No: B5

Map:

WELL CONSTRUCTION

Elevation/Datum: N/A Subcontractor: Holt Drilling See Attached Sampling Date(s): 6/23/2021 Hammer Weight: N/A Sampling Method: Hand Auger Memo: Drop Height: N/A Angle: DTW: 1st_ N/A Static_ N/A Blows/ 6 in On Sampler Recovery Βï PID Reading (ppm) Well Construction Details Depth Below Surface (ft.) Sampler and Classification Soil Description Unified Annular Wood chips & natural vegetation surface 0 SM Silty Sand. Yellowish Brown (10YR 5/4) poorly graded sub-angular fine sand, 2 with medium cobles. Low toughness. Moist. B5@850 4 Refusal. Total depth of borehole = 2 feet below ground surface 6 8 10 12 14 16 18 20 22 24 26 28 30

800 5th Avenue, Suite 101-313 Seattle, WA 98104 (425) 271-5629 Ecocompliance.biz

FIELD SOIL LOG: **DRILLING /**

Geologist: D. McAlister Boring No: B6

WELL CONSTRUCTION

Client:	City of S	eattle Pa	rks and F	Recreation	Location: 1024 S. Elmgrove Seattle, WA		Мар:		
Project:	Duwami	sh Water	way Park	< Addition					
Elevatio	on/Datum:	N/A			Subcontractor: Holt Drilling				
	ng Date(s)		6/23/	/2021	Hammer Weight: N/A		Se	e Attach	ed
	ng Method			Push (Geoprobe)	Memo:				
Drop H		-	N/A	(Angle:				
DTW: 1		S	Static	N/A	, anglo.				
Depth Below Surface (ft.)	Blows/ 6 in On Sampler Recovery	PID Reading (ppm)	Unified Classification	Soil	Description	Sampler and Bit	Annular Fill		Construction Details
-				Wood chips & bare soil surface					
0 _				· · · ·					
			SM	Silty Sand. Yellowish Brown (10YR 5/4) p	oorly graded sub-angular fine sand,				
2 -				with medium cobbles. Low toughness. M					
				Ŭ	B6-4@910				
- 4									
- 6									
-									
- 8 -			SP	Sand. Very Dark Grayish Brown (10YR 3	(2) poorly graded sub-angular fine sand				
_			01	low toughness. Moist. Low Recovery ma					
10 _)				<u>B6-10@913</u>		-		
_				Total depth of borehole :	= 10 feet below ground surface				
12 _	2						-		
_									
14 _							-		
_							-		
16 	i						-		
							-		
- 18	3								
E									
- 20)								
E									
- 22	2								
E									
- 24	L						-		
<u> </u>							-		
- 26	;								
-									
- 28	3								
-									
- 30)								
F									
-									
1-	1		1	1			11		

Appendix C

Laboratory Analytical and Chain of Custody Forms

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 24, 2021

David McAlister, Project Manager Eco Compliance 800 5th Avenue, Suite 101-313 Seattle, WA 98104

Dear Mr McAlister:

Included are the results from the testing of material submitted on June 23, 2021 from the DWWP Addition, F&BI 106402 project. There are 54 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures ECP0624R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 23, 2021 by Friedman & Bruya, Inc. from the Eco Compliance DWWP Addition, F&BI 106402 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Eco Compliance</u>
106402 -01	B1-4
106402 -02	B1B-4
106402 -03	B1B-10
106402 -04	B2
106402 -05	B3-4
106402 -06	B3-5
106402 -07	B3-10
106402 -08	B4
106402 -09	B4-10
106402 -10	B5
106402 -11	B6-4
106402 -12	B6-10

The 6020B calibration standard failed the acceptance criteria for antimony in samples B1B-4, B1B-10, B3-4, B3-5, B3-10, B4, B4-10, B6-4, and B6-10. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/21 Date Received: 06/23/21 Project: DWWP Addition, F&BI 106402 Date Extracted: 06/23/21 Date Analyzed: 06/23/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogata

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
B1-4 106402-01	<50	<250	86
B1B-4 106402-02	<50	<250	86
B1B-10 106402-03	<50	<250	86
B2 106402-04	<50	<250	86
B3-4 106402-05	<50	<250	86
B3-5 106402-06	<50	<250	87
B3-10 106402-07	<50	<250	87
B4 106402-08	<50	<250	84
B4-10 106402-09	<50	<250	85
B5 106402-10	<50	<250	85

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/21 Date Received: 06/23/21 Project: DWWP Addition, F&BI 106402 Date Extracted: 06/23/21 Date Analyzed: 06/23/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
B6-4 106402-11	<50	<250	84
B6-10 106402-12	<50	<250	95
Method Blank 01-1485 MB	<50	<250	85

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-01 106402-01.143 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Barium Cadmium Chromium Mercury Selenium Silver	61.8 <1 22.6 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-4 06/23/21 06/23/21 06/24/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-01 x5 106402-01 x5.071 ICPMS2 SP
Analyte: Antimony	Concentration mg/kg (ppm) 27.4		
Arsenic Lead	82.6 99.1		
ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1B-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-02 106402-02.144 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony	<2 ca		
Arsenic	2.36		
Barium	525		
Cadmium	<1		
Chromium	5.65		
Lead	3.69		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1B-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-03 106402-03.145 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony	<2 ca		
Arsenic	1.50		
Barium	16.0		
Cadmium	<1		
Chromium	9.26		
Lead	2.19		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-04 106402-04.146 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Barium Cadmium Mercury Selenium	33.8 88.4 <1 <1 <1 <1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2 06/23/21 06/23/21 06/24/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-04 x5 106402-04 x5.072 ICPMS2 SP
Analyte: Antimony	Concentration mg/kg (ppm) 19.9		
Chromium Lead	37.1 103		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-05 106402-05.149 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony Arsenic	4.90 ca 12.0		
Barium	161		
Cadmium	1.11		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-4 06/23/21 06/23/21 06/24/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-05 x5 106402-05 x5.073 ICPMS2 SP
Analyte: Antimony	Concentration mg/kg (ppm) <10		
Chromium Lead	$24.7\\178$		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-5 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-06 106402-06.150 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony Arsenic Barium Cadmium Lead Mercury Selenium Silver	<2 ca 5.02 41.5 <1 13.8 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-5 06/23/21 06/23/21 06/24/21 Soil	Client: Project: Lab ID: Data File: Instrument:	Eco Compliance DWWP Addition, F&BI 106402 106402-06 x5 106402-06 x5.074 ICPMS2 SD
Analyte:	mg/kg (ppm) Dry Weight Concentration mg/kg (ppm)	Operator:	SP
Antimony Chromium	<10 10.7		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-07 106402-07.151 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony	<2 ca		
Arsenic	<1		
Barium	28.9		
Cadmium	<1		
Chromium	9.74		
Lead	1.91		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-08 106402-08.152 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony Arsenic Barium Cadmium Lead Mercury Selenium Silver	2.31 ca 5.48 61.9 <1 41.5 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client ID:	B4	Client:	Eco Compliance
Date Received:	06/23/21	Project:	DWWP Addition, F&BI 106402
Date Extracted:	06/23/21	Lab ID:	106402-08 x5
Date Analyzed:	06/24/21	Data File:	106402-08 x5.075
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte: Antimony Chromium	Concentration mg/kg (ppm) <10 10.2	Operator.	51

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B4-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-09 106402-09.153 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony	<2 ca		
Arsenic	<1		
Barium	13.4		
Cadmium	<1		
Chromium	6.83		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B5 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-10 106402-10.154 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	21.4		
Barium	73.3		
Cadmium	<1		
Lead	53.4		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B5 06/23/21 06/23/21 06/24/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-10 x5 106402-10 x5.076 ICPMS2 SP
Analyte: Antimony	Concentration mg/kg (ppm) 10.8		
Chromium	21.1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-11 106402-11.155 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony	<2 ca		
Arsenic	3.79		
Barium	543		
Cadmium	<1		
Chromium	6.13		
Lead	17.4		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-12 106402-12.156 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony Arsenic Barium Cadmium Chromium Mercury Selenium Silver	<2 ca 4.74 428 <1 9.73 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client ID:	B6-10	Client:	Eco Compliance
Date Received:	06/23/21	Project:	DWWP Addition, F&BI 106402
Date Extracted:	06/23/21	Lab ID:	106402-12 x25
Date Analyzed:	06/24/21	Data File:	106402-12 x25.087
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte: Antimony Lead	Concentration mg/kg (ppm) <50 117		51

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 I1-393 mb I1-393 mb.069 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony	<2		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Wei	Client: Project: Lab ID: Data File: Instrument: ght Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-01 1/25 062311.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recov 65 d 78 d 62 d 74 d 86 d 97 d	50 50 50 50 50 50	Upper Limit: 150 150 150 150 150 150
Compounds:	Concentr mg/kg (p		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylem	$\begin{array}{cccc} \text{ne} & <0.04 \\ & <0.04 \\ & 0.14 \\ 0.14 \\ 0.16 \\ 1.1 \\ 0.22 \\ 1.5 \\ 1.4 \\ 0.72 \\ 0.73 \\ 0.74 \\ 0.$	5 5 7 0 2 2 8 9 4 4 5 1	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1B-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-02 1/5 062310.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 29 34 65 68 61 82	Lower Limit: 50 50 50 50 50 50	Upper Limit: 150 150 150 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$\begin{array}{c} 0.23\\ 0.39\\ 0.30\\ <0.01\\ <0.01\\ <0.01\\ 0.12\\ 0.024\\ 0.033\\ 0.043\\ 0.034\\ 0.030\\ 0.022\\ 0.046\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 0.013\end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1B-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-03 1/5 062309.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 61 68 66 67 71 89	Lower Limit: 50 50 50 50 50 50	Upper Limit: 150 150 150 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene ene cene cene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry We	Client: Project: Lab ID: Data File: Instrument: eight Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-04 1/25 062312.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recc 79 91 87 90 nol 95 106	$\begin{array}{cccc} d & & 50 \\ \end{array}$	Upper Limit: 150 150 150 150 150 150 150
Compounds:	Concent mg/kg		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene 0. ene 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ene 0. ene 0. cene 0. cene 0.	11 10 91 20 1	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-05 1/25 062321.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	100 d	$24 \\ 37 \\ 38 \\ 45 \\ 11 \\ 50$	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentratio mg/kg (ppm		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	$\begin{array}{rcrcrc} \text{ne} & <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ 0.10 \\ <0.05 \\ 0.14 \\ 0.12 \\ 0.065 \\ 0.071 \\ 0.076 \\ \text{ne} & 0.10 \\ \text{ne} & <0.05 \\ \text{rene} & <0.05 \\ \text{rene} & <0.05 \\ \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-5 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-06 1/5 062313.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol		Lower Limit: 50 50 50 50 50 50 50	Upper Limit: 150 150 150 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene ene cene cene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-07 1/5 062314.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 63 73 65 70 85 84	$\begin{array}{c} {\rm Lower} \\ {\rm Limit:} \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 5$	Upper Limit: 150 150 150 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene ene rene cene	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received:	B4 06/23/21		Client: Project:	Eco Compliance DWWP Addition, F&BI 106402
Date Extracted:	06/23/21		Lab ID:	106402-08 1/25
Date Analyzed:	06/23/21		Data File:	062317.D
Matrix:	Soil		Instrument:	GCMS12
Units:		n) Dry Weight	Operator:	VM
	0 0 11	, , ,	1	TT
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol		58 d	50	150
Phenol-d6		63 d	50	150
Nitrobenzene-d5		59 d	50	150
2-Fluorobiphenyl	1	63 d	50	150
2,4,6-Tribromopher	nol	61 d 67 d	50	150
Terphenyl-d14		67 d	50	150
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.05		
2-Methylnaphthale	ene	< 0.05		
1-Methylnaphthale	ene	< 0.05		
Acenaphthylene		< 0.05		
Acenaphthene		< 0.05		
Fluorene		< 0.05		
Phenanthrene		< 0.05		
Anthracene		< 0.05		
Fluoranthene		< 0.05		
Pyrene		< 0.05		
Benz(a)anthracene		< 0.05		
Chrysene		< 0.05		
Benzo(a)pyrene		< 0.05		
Benzo(b)fluoranthe	ene	< 0.05		
Benzo(k)fluoranthe	ene	< 0.05		
Indeno(1,2,3-cd)pyr		< 0.05		
Dibenz(a,h)anthrac	cene	< 0.05		
Benzo(g,h,i)peryler		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B4-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-09 1/5 062315.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 67 75 72 75 85 86	Lower Limit: 50 50 50 50 50 50 50	Upper Limit: 150 150 150 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene ene rene cene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B5 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-10 1/25 062316.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 72 d 87 d 79 d 87 d 87 d 90 d 97 d	$\begin{array}{c} {\rm Lower} \\ {\rm Limit:} \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 5$	Upper Limit: 150 150 150 150 150 150
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	$\begin{array}{rcrcr} \text{ne} & <0.05 \\ <0.05 \\ 0.068 \\ <0.05 \\ 0.43 \\ 0.083 \\ 0.64 \\ 0.58 \\ 0.30 \\ 0.33 \\ 0.35 \\ \text{ne} & 0.42 \\ \text{ne} & 0.16 \\ \text{rene} & 0.21 \\ \text{sene} & <0.05 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-11 1/25 062318.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		% Recovery: 33 d 36 d 68 d 74 d 67 d 84 d	Lower Limit: 50 50 50 50 50 50 50	Upper Limit: 150 150 150 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ene eene eene	$\begin{array}{c} 0.24\\ 0.40\\ 0.31\\ < 0.05\\ < 0.05\\ < 0.05\\ 0.15\\ < 0.05\\ 0.067\\ 0.098\\ 0.088\\ 0.094\\ 0.15\\ 0.17\\ < 0.05\\ 0.090\\ < 0.05\\ 0.11\end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry V	Veight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-12 1/25 062320.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	4 4 6 8 nol 6	covery: 0 d 6 d 5 d 0 d 8 d 2 d	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:		ntration g (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylem	nne <	0.32 0.51 0.40 0.05 0.05 0.05 0.20 0.05 0.13 0.082 0.075 0.071 0.11 0.05 0		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 01-1482 mb 1/5 062308.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 80 88 85 85 88 nol 87 106	Lower Limit: 50 50 50 50 50 50 50	Upper Limit: 150 150 150 150 150 150
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrace	$\begin{array}{rcl} \text{ene} & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & \\ \text{ene} & <0.01 \\ & \\ \text{ene} & <0.01 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-01 1/6 062306.D GC7 IJL
Surrogates: TCMX	% Recovery: 76	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1B-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-02 1/6 062307.D GC7 IJL
Surrogates: TCMX	% Recovery: 69	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1B-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-03 1/6 062308.D GC7 IJL
Surrogates: TCMX	% Recovery: 80	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-04 1/6 062309.D GC7 IJL
Surrogates: TCMX	% Recovery: 83	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-05 1/6 062311.D GC7 IJL
Surrogates: TCMX	% Recovery: 86	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 0.13 0.11 <0.02 <0.02		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-5 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-06 1/6 062312.D GC7 IJL
Surrogates: TCMX	% Recovery: 66	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-07 1/6 062313.D GC7 IJL
Surrogates: TCMX	% Recovery: 95	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-08 1/6 062314.D GC7 IJL
Surrogates: TCMX	% Recovery: 96	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B4-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-09 1/6 062315.D GC7 IJL
Surrogates: TCMX	% Recovery: 87	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B5 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-10 1/6 062317.D GC7 IJL
Surrogates: TCMX	% Recovery: 86	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 0.035 0.026 < 0.02 < 0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6-4 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-11 1/6 062318.D GC7 IJL
Surrogates: TCMX	% Recovery: 74	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6-10 06/23/21 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 106402-12 1/6 062319.D GC7 IJL
Surrogates: TCMX	% Recovery: 85	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 0.029 0.026 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/23/21 06/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Eco Compliance DWWP Addition, F&BI 106402 01-1483 mb 1/6 062305.D GC7 IJL
Surrogates: TCMX	% Recovery: 94	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/21 Date Received: 06/23/21 Project: DWWP Addition, F&BI 106402

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	106402-01 (Matri	x Spike)					
	Reporting	Spike	Sample Result	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	69	100	96	64-133	4
Laboratory Code:	Laboratory Contr	ol Samp	le Percent	_			
	Reporting	Spike	Recover		tance		
Analyte	Units	Level	LCS	Crit			
Diesel Extended	mg/kg (ppm)	5,000	98	58-1	147		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/21 Date Received: 06/23/21 Project: DWWP Addition, F&BI 106402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 106377-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Antimony	mg/kg (ppm)	20	<5	100	94	75 - 125	6
Arsenic	mg/kg (ppm)	10	<5	97	93	75 - 125	4
Barium	mg/kg (ppm)	50	58.6	101	110	75 - 125	9
Cadmium	mg/kg (ppm)	10	<5	107	102	75 - 125	5
Chromium	mg/kg (ppm)	50	24.3	104	114	75 - 125	9
Lead	mg/kg (ppm)	50	<5	95	92	75 - 125	3
Mercury	mg/kg (ppm	5	<5	99	98	75 - 125	1
Selenium	mg/kg (ppm)	5	<5	102	99	75 - 125	3
Silver	mg/kg (ppm)	10	<5	104	102	75 - 125	2

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Control Sample							
Percent							
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Antimony	mg/kg (ppm)	20	101	80-120			
Arsenic	mg/kg (ppm)	10	88	80-120			
Barium	mg/kg (ppm)	50	100	80-120			
Cadmium	mg/kg (ppm)	10	101	80-120			
Chromium	mg/kg (ppm)	50	113	80-120			
Lead	mg/kg (ppm)	50	95	80-120			
Mercury	mg/kg (ppm)	5	101	80-120			
Selenium	mg/kg (ppm)	5	95	80-120			
Silver	mg/kg (ppm)	10	97	80-120			

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/21 Date Received: 06/23/21 Project: DWWP Addition, F&BI 106402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

1 D

,

Laboratory Code: 106402-07 1/5 (Matrix Spike)

			Sample	Percent	
Analyte	Reporting Units	Spike Level	Result (Wet wt)		Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	< 0.01	60	50 - 150
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	68	50-150
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	67	50-150
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	71	50-150
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	70	50-150
Fluorene	mg/kg (ppm)	0.83	< 0.01	73	50-150
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	76	50 - 150
Anthracene	mg/kg (ppm)	0.83	< 0.01	78	50-150
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	84	50-150
Pyrene	mg/kg (ppm)	0.83	< 0.01	81	50-150
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	85	50 - 150
Chrysene	mg/kg (ppm)	0.83	< 0.01	84	50-150
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	85	50-150
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	87	50-150
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	86	50-150
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	82	50-150
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	81	50-150
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	73	50-150

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Code: Laborator	y Control San	nple 1/5				
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	78	80	61-102	3
2-Methylnaphthalene	mg/kg (ppm)	0.83	80	82	62-108	2
1-Methylnaphthalene	mg/kg (ppm)	0.83	78	81	62-108	4
Acenaphthylene	mg/kg (ppm)	0.83	83	85	61-111	2
Acenaphthene	mg/kg (ppm)	0.83	82	84	61-110	2
Fluorene	mg/kg (ppm)	0.83	83	85	62-114	2
Phenanthrene	mg/kg (ppm)	0.83	85	86	64-112	1
Anthracene	mg/kg (ppm)	0.83	86	87	63-111	1
Fluoranthene	mg/kg (ppm)	0.83	93	92	66-115	1
Pyrene	mg/kg (ppm)	0.83	93	100	65-112	7
Benz(a)anthracene	mg/kg (ppm)	0.83	90	93	64-116	3
Chrysene	mg/kg (ppm)	0.83	89	92	66-119	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	89	91	62-116	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	93	93	61-118	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	88	91	65-119	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	97	101	64-130	4
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	94	98	67-131	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	94	99	67-126	5

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/21 Date Received: 06/23/21 Project: DWWP Addition, F&BI 106402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 106402-01 1/6 (Matrix Spike) 1/6

	Reporting	Spike	Sample Result	Percent Recovery	Percent Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	78	74	29 - 125	5
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	86	82	25 - 137	5

Laboratory Code: Laboratory Control Sample 1/6

, i i i i i i i i i i i i i i i i i i i	Reporting	Spike Level	Percent Recovery	Acceptance
Analyte	Units	0.07	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	82	55-137
Aroclor 1260	mg/kg (ppm)	0.25	94	51 - 150

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$\frac{d}{d}$	Soil 1 X Soil 1 X	9:26 AM 9:26 AM 9:26 AM 9:26 AM 9:38 AM 9:38 AM 9:48 AM 9:48 AM	BU VATUR	hed by	Friedman & Bruya, Inc. 3012 16 th Avenue West
NAME $X X X X X X X X X X X X X X X X X X X$	Soil 1 Soil 1	9:26 AM 9:26 AM 9:26 AM 9:26 AM 9:28 AM 9:38 AM 9:38 AM 9:38 AM 9:38 AM		$\begin{array}{c} 0.5 \\ 0.5 \\ 0.6 \\ 0.6 \\ 0.8 \\$	Friedman & Bruya, Inc.
NAME $X X X X X X X X X X X X X X X X X X X$	Soil 1 Soil 1	9:26 AM 9:26 AM 9:26 AM 9:26 AM 9:38 AM 9:38 AM 9:38 AM 9:38 AM 9:38 AM 9:38 AM 9:38 AM	IGNATURE		
$7 \times 7 \times$	Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1	9:26 AM 9:26 AM 8:15 AM 9:36 AM 9:36 AM 9:38 AM 9:38 AM 9:48 AM 9:48 AM		10 00 00 00 00 00 00 00 00 00 00 00 00 0	CV
$\begin{array}{c c} & & & \\ & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1	9:26 AM 9:26 AM 8:15 AM 8:23 AM 9:36 AM 9:38 AM 9:38 AM 9:38 AM 9:38 AM		80 po 20 20 20	ل لا
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1	9:26 AM 9:26 AM 8:23 AM 9:36 AM 9:36 AM 9:38 AM 9:38 AM		80 20 20	MM 34-10
$\begin{array}{c c} \\ \hline \\ $	Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1	9:26 AM 9:26 AM 8:23 AM 9:36 AM 9:38 AM		40 20 20	BARANDY BU
	Soil 1 Soil 1 Soil 1 Soil 1 Soil 1 Soil 1	9:26 AM 9:26 AM 8:15 AM 8:23 AM 9:36 AM		06 05 97	BM 3-10
	Soil 1 Soil 1 Soil 1 Soil 1	9:26 AM 9:26 AM 8:15 AM 8:23 AM		20	B3-2
× 7 7 7 7 K 4 7	Soil 1 Soil 1 Soil 1	9:26 AM 9:26 AM		LO L	B3-4
ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア		9:26 AM		2	the B2
× ×		but as th		63	B18-10
				62	B18-4
	Soil I	7. 40 AM	6/23/21	01	B1-4
NWTPH-Dx NWTPH-Gx BTEX EPA 8021 VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 Metals	Sample #of Type Jars	Time Sampled	Date Sampled	Lab ID	Sample ID
ANAL					
No	Project Specific RLs - Yes /		⁾ mea goo scic.	nail <u>dmealiste</u>	Phone 714-423-3796 Emaildmealister Omcages sci.com
INVOICE TO SAMPLE DISPOSAL Dispose after 30 days	KS	REMARKS	4	, WA 95014	City, State, ZIP Seattle,
Rush charges authorized by	P AWITIN	Dwwp	\$	ste 101-313	19
PO# Standard Turnaround RUSH 24 H	PROJECT NAME	PROJE		nn Ce	Company ECU Compliance
TURNAROUND TIME	SAMPLERS (signature)	SAMPL		Alister	Report To Dave McAlister

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ph. (206) 285-8282	Vest 2029	ې 	<u> </u>					•		B6~10	B6-4	Sample ID		Phone 714-423-3796 Eme	City, State, ZIP Seaffle, wa	Address goo Sth Ave	Company ECO Compliance	Report To Dave Ma Alisty	106402	
MAPLE CHAIN OF CUSTODY ME OLICS (A VID VID SAMPLERS (signature) NUTO Neget Colspan="2" PROJECT NAME PO # NUNOICE TO PROJECT NAME SAMPLE DISTO Project Specific FLs. No ANALYSES REQUESTED ANALYSES REQUESTED Numbed Time SAMPLE DISTO SAMPLE DISTO SAMPLE DISTO SAMPLE DISTO SAMPLE DISTO ANALYSES REQUESTED Note: Samples TIME Sample ANALYSES REQUESTED Note: Samples Note: Samples Samples Samples Note: Samples Note: Samples Note: Samples PEINT NAME <th c<="" td=""><td>sceived by:</td><td>sceived by: UV/Q slinquished by:</td><td>elinquished by:</td><td>DIS</td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td>Lab ID</td><td></td><td>ul Amenhater</td><td></td><td></td><td>ime</td><td>ŧ.</td><td></td></th>	<td>sceived by:</td> <td>sceived by: UV/Q slinquished by:</td> <td>elinquished by:</td> <td>DIS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>Lab ID</td> <td></td> <td>ul Amenhater</td> <td></td> <td></td> <td>ime</td> <td>ŧ.</td> <td></td>	sceived by:	sceived by: UV/Q slinquished by:	elinquished by:	DIS							5		Lab ID		ul Amenhater			ime	ŧ.	
AMPLE CHAIN OF CUSTODY ME CG/25/61 VID: Top SAMPLERS (signature) PO $\#$ PROJECT NAME PO $\#$ Prace π PO $\#$ D $\omega \omega$ (° Md_i H^{inn} INVOICE TO SAMPLE DISTO SAMPLE DISTO Project Specific FLS: Yes / No NO ANALYSES REQUESTED Sample signature in NOICE TO		le p	2-2	NATURE							¢	6/23/21	Date Sampled		a mca jusei.	Y	-313				
ME OG/Q3/81 VID Page # INVOICE TO Standard Turnaroun INVOICE TO INVOICE TO Standard Turnaroun Standard Turnaroun ANALYSES REQUESTED X Metals Other X YPCBs EPA 8082 Metals Other VOCs Gamples Metals Standard Turnaroun No X Metals Other Samples Samples No Ft ST Gard Linne Glass Samples Samples No		l.									9:13 AM	9:10 Am	Time Sampled		Im Project S	- REMAR	- Dwc	PROJE	SAMPLI	SAMPLE	
ME OG/Q3/81 VID Page # INVOICE TO Standard Turnaroun INVOICE TO INVOICE TO Standard Turnaroun Standard Turnaroun ANALYSES REQUESTED X Metals Other X YPCBs EPA 8082 Metals Other VOCs Gamples Metals Standard Turnaroun No X Metals Other Samples Samples No Ft ST Gard Linne Glass Samples Samples No		Wil	ß								50.1	5,1	Sample Type		pecific RL	Sy	or Addi	T NAME	SRS (signa	CHAIN	
ME OG/QS/81 VID VID VID INVOICE TO INVOICE TO Standard Turnaroun ANALYSES REQUESTED X POBs EPA 8082 X Y PCBs EPA 8082 X X Metals X Metals Samples Other COMPANY Samples Samples Samples COMPANY Complex Complex Complex			lanen	PRIN									# of Jars				tion		(ure)	OF	
ME OG/QS/81 VID VID VID INVOICE TO INVOICE TO Standard Turnaroun ANALYSES REQUESTED X POBs EPA 8082 X Y PCBs EPA 8082 X X Metals X Metals Samples Other COMPANY Samples Samples Samples COMPANY Complex Complex Complex		Ra	5	NTN							$\not\prec$	\times	NWTPH-Dx		<u>s / 1</u>				Jan .	CUS	
ME OG/QS/81 VID VID VID INVOICE TO INVOICE TO Standard Turnaroun ANALYSES REQUESTED X POBs EPA 8082 X Y PCBs EPA 8082 X X Metals X Metals Samples Other COMPANY Samples Samples Samples COMPANY Complex Complex Complex		E		AME	•			 					NWTPH-Gx		lo					Ö	
ME OG/Q3/81 VTD VTD Page # 2 PO # INVOICE TO INVOICE TO Standard Turmaroun RUSH_24/M ANALYSES REQUESTED Samples eather 30 days Other X X X Matal X X X Matal Samples received at the samples COMPANY Samples received at the samples		μ p						 												Ŋ	
VT2_Page # Page # TURNAROUND 1 bandard Turnaroum tUSH SAMPLE DISPO SAMPLE DISPO Sher wher bher Page # SAMPLE DISPO Not Samples Not Sample at (C/2.3/21 C/2.3/21											~			AV						_	
VT2_Page # Page # TURNAROUND 1 bandard Turnaroum tUSH SAMPLE DISPO SAMPLE DISPO Sher wher bher Page # SAMPLE DISPO Not Samples Not Sample at (C/2.3/21 C/2.3/21							<u>،</u>							ALY		INV			1	F	
VT2_Page # Page # TURNAROUND 1 bandard Turnaroum tUSH SAMPLE DISPO SAMPLE DISPO Sher wher bher Page # SAMPLE DISPO Not Samples Not Sample at (C/2.3/21 C/2.3/21											L			SES		OICI		PO #		6	
VT2_Page # Page # TURNAROUND 1 bandard Turnaroum tUSH SAMPLE DISPO SAMPLE DISPO Sher wher bher Page # SAMPLE DISPO Not Samples Not Sample at (C/2.3/21 C/2.3/21		A CA	60	CO									1,0143	REQU		or				23/	
VT2_Page # Page # TURNAROUND 1 bandard Turnaroum tUSH SAMPLE DISPO SAMPLE DISPO Sher wher bher Page # SAMPLE DISPO Not Samples Not Sample at (C/2.3/21 C/2.3/21		H H	Conne	ſ₽Aŀ		San								JEST						2	
VT2、DC Page # 2 0 TURNAROUND 1 ndard Turnarounn SH 24 份 charges authorize E SAMPLE DISPO pose affer 30 days hive Samples ireceived at (6/2.3/21 6/2.3/21			. Amo	YY		nple		 						U BL	Of Ar	D	Rusł	RI			
173 DOD ** 2 of 2 WAROUND TIME "ges authorized by: after 30 days Samples Samples Notes Crived at 2 of 6/23/21 10:40 m 6/23/21 10:40 m			٢												her	SAI	ı chai	anda JSH_	Page	<u>.</u>	
and a stees		6/23/21	6/23/24	DATE		ceived at							Ne		Samples	MPLE DISPC after 30 days	rges authoriz	rd Turnarour 乙以份	NAROUND	S.	
The Alexandrew Market Bark The The The Alexandrey Construction of the Alexandrey Construction			10:40 A	TIME									ites)SAL	ed by:	đ	TIME	у Ј	

i. U