

January 18, 2022

Mr. Panjini Balaraju Washington State Department of Ecology Toxics Cleanup Program, Southwest Regional Office P.O. Box 47775 Olympia, Washington 98504-7775

Sent via e-mail to PBAL461@ECY.WA.GOV

Subject: Groundwater Monitoring Report, September 2021

Lumen Longview Facility

1305 Washington Way, Longview, Washington 98632

Dear Mr. Balaraju:

Tetra Tech, Inc. (Tetra Tech) on behalf of Lumen Technologies, Inc. (Lumen) is providing this summary of the groundwater sampling event conducted on September 21, 2021 at the Lumen Facility in Longview, Washington. Groundwater monitoring events are being conducted as a continuation of the Groundwater Monitoring Plan developed in 2008 under the Voluntary Cleanup Program. Groundwater monitoring was conducted generally in accordance with the March 2015 Final Direct-Push Sampling Plan (Tetra Tech 2015) and approved by the Washington State Department of Ecology (Ecology).

Groundwater Levels

The depth to groundwater was measured using an electronic static water-level indicator that was lowered into each well. Depth to groundwater was measured to the nearest hundredth of a foot from the top of the well casing. Static water levels ranged from 1.53 to 1.65 feet above mean sea level (amsl) and are summarized in the table below and shown on Figure 1. Groundwater levels were approximately 2.18 to 2.22 feet lower than observed in March 2020 (the last monitoring event).

SEPTEMBER 21, 2021 GROUNDWATER ELEVATIONS

Location	Surveyed Top of Casing (ft amsl)	September 21, 2021 Depth to Water (ft)	September 21, 2021 Groundwater Elevation (ft amsl)
MW-01	15.64	14.03	1.61
MW-02	16.17	14.61	1.56
MW-03	15.02	13.37	1.65
MW-04	14.55	12.99	1.56
MW-05	14.75	13.22	1.53

Notes:

ft Fe

ft amsl Feet above mean sea level

MW Monitoring well

Based on groundwater elevation data shown on Figure 1, the direction of groundwater flow appears to be southwest, with a gradient of approximately 0.0015 foot/foot. Historically, groundwater flow direction has typically ranged from west to northwest. Sitewide groundwater levels during this event and the March 2020 event are more uniform than typically observed and there is a flatter than normal gradient.

Groundwater Samples from Permanent Monitoring Wells

Groundwater samples were obtained from all five permanent monitoring wells at the facility. Per the groundwater monitoring plan, a field duplicate sample is collected during every other sampling event; because a field duplicate was not collected during the March 2020 sampling event, a field duplicate was collected during this event. After groundwater level measurements were documented, field personnel collected groundwater samples using a peristaltic pump. New dedicated tubing was used to collect the sample at each well. In accordance with the monitoring plan, low-flow sampling procedures were used. Sampling flow rates were kept below 500 milliliters per minute for purging and groundwater sample collection.

A calibrated YSI ProSeries Professional Plus multiparameter water quality meter was used to measure field parameters during well purging prior to sampling. A HACH 2100Q meter was used to measure turbidity. Water quality parameters measured with the YSI ProSeries Professional Plus included pH, dissolved oxygen, oxidation-reduction potential, temperature, and specific conductance. Low-flow pumping continued until field parameters stabilized within acceptable parameter limits before samples were collected. Attachment A includes the logs of field parameters measured during the low-flow sampling.

Groundwater Sample Analysis

Once obtained, groundwater samples were labeled in accordance with Tetra Tech standard operating procedures, placed in a cooler, and chilled to below 4 degrees Celsius. Samples were shipped to ALS Laboratories (ALS), located at 1317 S. 13th Avenue in Kelso, Washington. Samples were delivered following standard chain-of-custody protocol. The chain-of-custody form is included with the laboratory analytical reports in Attachment B.

ALS analyzed the samples for total petroleum hydrocarbons-diesel range organics (TPH-DRO) and total petroleum hydrocarbons-residual range organics (TPH-RRO) by Northwest Total Petroleum Hydrocarbons-Diesel Extended Range Methodology (Ecology 1997), without silica gel cleanup.

ALS analyzed the samples for polycyclic aromatic hydrocarbons (PAH) by U.S. Environmental Protection Agency (EPA) Method 8270-Selected Ion Monitoring (SIM). The PAH samples were requested to be filtered with a 0.7-micron (μ m) filter before analysis. However, the laboratory did not filter the samples. The PAH sample reanalysis on the filtered samples was performed outside of the holding time; therefore, all detected results for PAHs were qualified with a "J" to indicate that the results are estimated.

Groundwater Sample Analytical Results

Table 1 presents groundwater analytical results for the samples collected during the September 21, 2021 event. The data were reviewed by a qualified chemist in accordance with Tetra Tech standard operating procedure (SOP) 203-1 (Tetra Tech 2019) and met the quality control limits of the analytical methods. Samples analyzed for PAHs required reanalysis as these samples were not filtered prior to extraction as requested by Tetra Tech. The reanalysis was performed outside of the holding time; therefore, all detected results for PAHs were qualified with a "J" to indicate that the results are estimated.

The method blanks had low-level detections of 2-methylnaphthalene, benz(a)anthracene, dibenzofuran, naphthalene, TPH-DRO, and TPH-RRO. Based on method blank detections, the low-level detected results of the listed constituents were qualified as not detected at the reporting limit per the National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2020). The method reporting limit for TPH-RRO (520 to 530 micrograms per liter [μg/L]) exceeds the Model Toxics Control Act (MTCA) Method A cleanup level for groundwater of 500 μg/L. However, the TPH-RRO concentrations in these samples are either attributable to laboratory contamination or are likely present in the groundwater samples at concentrations below the cleanup level. The maximum TPH-DRO and TPH-RRO result reported by the laboratory was 690 μg/L in sample MW-01. However, the laboratory noted for the results for TPH-DRO and TPH-RRO in sample MW-01 that the chromatographic fingerprint does not resemble a petroleum product. The remainder of the results for the chemicals not listed above are usable as reported by the laboratory.

Low concentrations of PAHs were detected in all monitoring well samples; Table 1 also summarizes these results. There are no total PAH or compound-specific MTCA Method A cleanup levels for PAHs. The MTCA Method A cleanup level for the carcinogenic PAHs of 0.1 μ g/L is based on the benzo(a)pyrene toxic equivalent quotient (BaP TEQ). Table 1 also shows the BaP TEQ results, which are based on the individual PAH analytical results multiplied by a toxicity equivalent factor (TEF). All BaP TEQ results were below the MTCA Method A cleanup level. All the constituents that are part of the BaP TEQ calculation were not detected for samples MW-02 through MW-05, thus the BaP TEQ results were also non-detect and below the MTCA Method A cleanup level. The BaP TEQ result of 0.0035 μ g/L in sample MW-01 was also below the MTCA Method A cleanup level. The original unfiltered BaP TEQ result in sample MW-01 is 0.0085 μ g/L, which is also below the MTCA Method A cleanup level of 0.1 μ g/L.

Table 2 summarizes the historical results for TPH-DRO and TPH-RRO for each monitoring well sample. Table 3 summarizes the historical results for BaP TEQ and total PAHs for each monitoring well sample.

Conclusions and Recommendations

For the September 2021 sampling event, analytical results from all six monitoring well samples, including one field duplicate, were below MTCA Method A cleanup levels for BaP TEQ.

Because of method blank contamination, the TPH-RRO results for MW-02 through MW-05 are reported as not detected at the reporting limit. The reporting limit exceeds the MTCA Method A cleanup level for TPH-RRO. However, the TPH-RRO concentrations in these samples are either attributable to laboratory contamination or are likely present in the groundwater samples at concentrations below the cleanup levels.

The results for TPH-DRO and TPH-RRO in sample MW-01 exceeded their respective MTCA Method A cleanup levels. However, the laboratory noted that the chromatographic fingerprint for these results does not resemble a petroleum product, which may mean that the detection is not related to the current diesel spill remediation.

The results from September 2021 were similar to other fall season sample results, when all concentrations were below the 500 μ g/L cleanup level for TPH-DRO and TPH-RRO. Results from September 2021 were also similar to those from the last sampling event in March 2020. Continued low groundwater TPH concentrations at downgradient wells MW-04 and MW-05 indicate that the TPH plume is stable and not migrating downgradient at significant concentrations.

Tetra Tech recommends that groundwater sampling at the five monitoring wells continue every 18 months to monitor plume stability and continued attenuation of contaminant concentrations to below MTCA Method A cleanup levels. These groundwater sampling events would alternate between spring and fall to obtain groundwater concentration data from high and low groundwater conditions. This monitoring schedule was discussed with Ecology's Mr. Steve Teel and Tetra Tech Engineer, Mr. Dave Berestka during a teleconference on March 22, 2017. Accordingly, the next groundwater monitoring events will be conducted in spring 2023 and fall 2024.

If you have any questions or concerns, please contact me at (303) 312-8813 or mark.reisig@tetratech.com.

Sincerely,

Mark Reisig

Program Manager Tetra Tech, Inc.

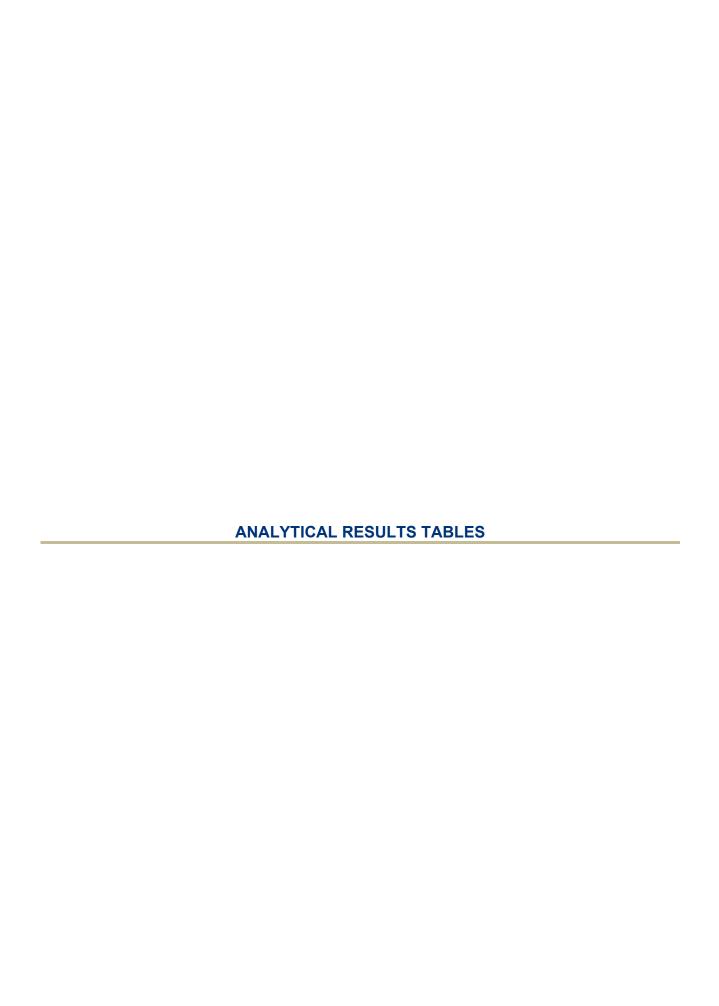
Mark R. Peising

cc: Joe Robertson, Regional Environmental Health and Safety Manager, Lumen

Attachments:

A Low-Flow Groundwater Sampling Parameter Forms

B Laboratory Analytical Report and Chain-of-Custody Record


References

Tetra Tech. 2015. Direct-Push Groundwater Investigation and Sampling Plan: CenturyLink Longview facility, Longview, Washington. March 2.

Tetra Tech. 2019. SOP 203-1, Laboratory Analytical Data Verification. January.

United States Environmental Protection Agency (EPA). 2020. National Functional Guidelines for Organic Superfund Methods Data Review. (https://www.epa.gov/sites/default/files/2021-03/documents/nfg for organic superfund methods data review november 2020.pdf). Accessed on December 13, 2021.

Washington State Department of Ecology (Ecology). 1997. Analytical Methods For Petroleum Hydrocarbons. (https://fortress.wa.gov/ecy/publications/documents/97602.pdf). Accessed on December 13, 2021.

TABLE 1 **GROUNDWATER SAMPLE ANALYTICAL RESULTS LUMEN LONGVIEW, WASHINGTON FACILITY**

Analy	rte	TPH-DRO	TPH-RRO	Total PAHs	BaP TEQ
MTCA Method A Clea	500	500	NA (ug/L)	0.1	
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Location	Date				
MW-01	9/21/2021	690 Z	690 Z	0.045 J	0.0035 J
MW-02	9/21/2021	260 U	520 U	0.0035 J	0.020 U
MW-03	9/21/2021	270 U	530 U	0.0078 J	0.020 U
MW-04	9/21/2021	270 U	530 U	0.0142 J	0.020 U
MW-04 DUP 9/21/2021		270 U	530 U	0.0148 J	0.020 U
MW-05	9/21/2021	270 U	530 U	0.0134 J	0.020 U

Notes:

Bold values indicate the concentration exceeds the MTCA Method A cleanup level.

μg/L Micrograms per liter

BaP TEQ Benzo(a)pyrene Toxic Equivalent Quotient

DUP Duplicate

The result is an estimated value

MTCA Model Toxics Control Act Method A for groundwater Not applicable (no applicable MTCA standard) NA

PAH

Polycyclic aromatic hydrocarbon
Total petroleum hydrocarbons diesel range organics TPH-DRO Total petroleum hydrocarbons residual range organics TPH-RRO Undetected at the method reporting limit shown

Ζ The chromatographic fingerprint does not resemble a petroleum product

TABLE 2 HISTORICAL GROUNDWATER SAMPLE RESULTS – DRO AND RRO LUMEN LONGVIEW, WASHINGTON FACILITY

Analyte	Date	Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05
	3/25/1992	Bailer	82	112	50 U		
ļ	12/16/2003	Bailer	250 U	250 U	250 U		
ļ	8/10/2006	Bailer	50 U	140	50 U		
	9/23/2008	Bailer				50 U	140
	2/26/2010	Bailer				25 U	100
ļ	9/2/2011	Bailer				73	120
ļ	2/26/2013	Bailer				1,700	51 U
	6/3/2013	Bailer	50 U	66	50 U	210	50 U
ļ	12/5/2013	Bailer	97	72	47	1,500	100
TPH-DRO	3/27/2014	Bailer	63	87	250 U	550	47
TFTI-DICO	6/25/2014	Bailer	50	33	260 U	1,100	260 U
(MTCA Method A	9/10/2014	Bailer	240	90	36	790	48
Cleanup Level =	3/5/2015	Low Flow	22	82	20	20	27
500 μg/L)	7/20/2015	Low Flow	22	77	21	24	30
ļ	12/18/15	Low Flow	38	83	46	96	120
ļ	3/31/16	Low Flow	41	1,500	58	30	30
ļ	7/7/2016	Low Flow	24	330	22	34	21
ļ	10/13/2016	Low Flow	23	130	39	39	48
ļ	12/09/2016	Low Flow	37	120	63	70	67
ļ	5/04/2017	Low Flow	42	570	47	24	23
ļ	11/16/2018	Low Flow	48	96	61	60	77
ļ	3/19/2020	Low Flow	280 U	280 U	280 U	270 U	280 U
	9/21/2021	Low Flow	690 Z	260 U	270 U	270 U	270 U
	3/25/1992	Bailer	200 U	200 U	200 U		
ļ	8/10/2006	Bailer	250 U	250 U	250 U		
ļ	9/23/2008	Bailer				250 U	250 U
ļ	2/26/2010	Bailer				140	200
ļ	9/2/2011	Bailer				350	210
ļ	2/26/2013	Bailer				11,000	220
ļ	6/3/2013	Bailer	150	100 U	100 U	1,600	100 U
ļ	12/5/2013	Bailer	440	120	120	11,000	170
ļ	3/27/2014	Bailer	370	63	500 U	3,900	190
TPH-RRO	6/25/2014	Bailer	340	62	21	8,400	51
ļ	9/10/2014	Bailer	1,500	140	120	6,600	82
(MTCA Method A	3/5/2015	Low Flow	43	70	37	48	53
Cleanup Level = 500 μg/L)	7/20/2015	Low Flow	52	71	49	52	42
ουυ μg/L)	12/18/15	Low Flow	84	160	81	81	82
l l	3/31/16	Low Flow	83	340	110	54	53
l l	7/7/2016	Low Flow	44	140	41	33	34
	10/13/2016	Low Flow	94	130	98	90	100
	12/09/2016	Low Flow	140	180	130	110	110
l l	5/04/2017	Low Flow	86	200	54	37	31
l l	11/16/2018	Low Flow	130	140	240	110	380
l l	3/19/2020	Low Flow	550 U	550 U	550 U	540 U	550 U
1	0/10/2020	LOW I IOW					

Notes:

All concentrations in micrograms per liter (µg/L).

Bold values indicate the concentration exceeds the MTCA Method A cleanup level.

For wells with duplicate samples, the highest value reported is shown for each constituent.

MTCA Model Toxics Control Act Method A for groundwater

TPH-DRO Total petroleum hydrocarbons diesel range organics

TPH-RRO Total petroleum hydrocarbons residual range organics

Not sampled

--Ј U Z The result is an estimated value

Undetected at the method reporting limit shown

The chromatographic fingerprint does not resemble a petroleum product

TABLE 3 HISTORICAL GROUNDWATER SAMPLE ANALYTICAL RESULTS -**BAP TEQ AND TOTAL PAH LUMEN LONGVIEW, WASHINGTON FACILITY**

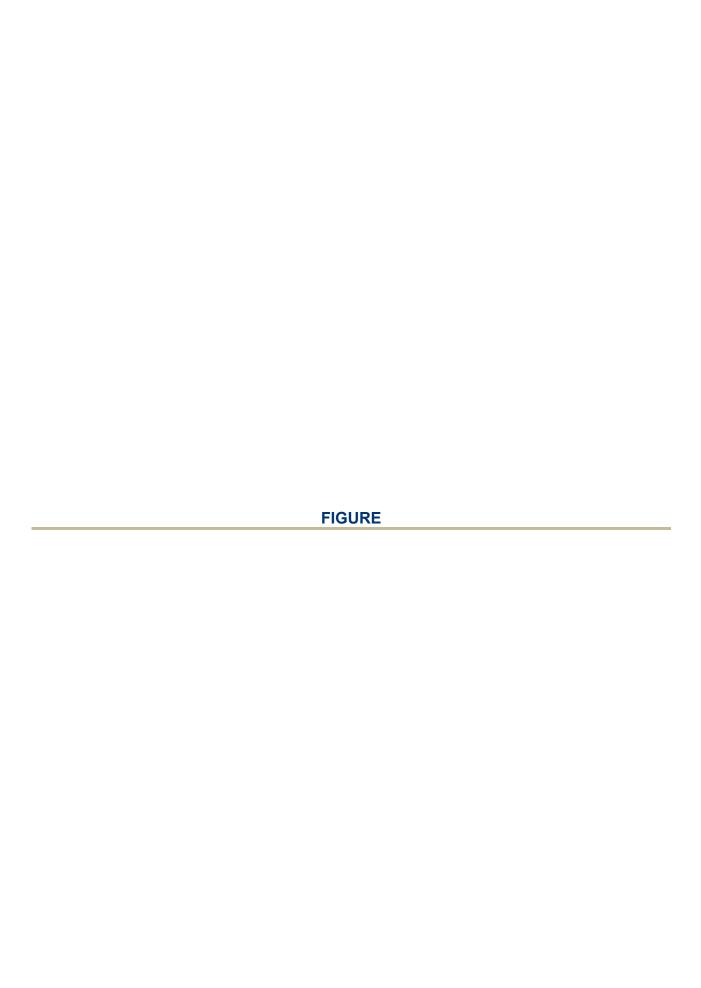
Analyte	Date	Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05
BaP TEQ	6/3/2013	Bailer	2.2	0.1 U	0.1 U	0.36	0.1 U
	12/5/2013	Bailer	0.20	0.027	0.074	1.4	0.0062
Unfiltered analysis	3/27/2014	Bailer	0.37	0.080	0.049	0.27	0.073
(MTCA Method A Cleanup Level = 0.1	6/25/2014	Bailer	0.39	0.012	0.00033	0.40	0.0054
μg/L)	9/10/2014	Bailer	0.14	0.090	0.0037	0.39	0.0051
	12/5/2013	Bailer	0.00033		0.00068	0.00084	-
	3/27/2014	Bailer	0.019 U	0.019 U		0.019 U	0.019 U
	6/25/2014	Bailer	0.020 U			0.200 U	-
	9/10/2014	Bailer	0.00030	0.00027		0.020 U	-
D-D TEO	3/5/2015	Low Flow	0.00074	0.00038	0.019 U	0.00044	0.00029
BaP TEQ	7/20/2015	Low Flow	0.00029	0.020 U	0.021 U	0.021 U	0.021 U
Filtered analysis	12/18/2015	Low Flow	0.0065	0.00029	0.019 U	0.00050	0.00039
, , , , , , , , , , , , , , , , , , , ,	3/31/2016	Low Flow	0.00035	0.020 U	0.020 U	0.00026	0.020 U
(MTCA Method A	7/7/2016	Low Flow	0.020 U	0.020 U	0.00027	0.00035	0.020 U
Cleanup Level = 0.1	10/13/2016	Low Flow	0.0026 U	0.0026 U	0.00028	0.00040	0.00041
μg/L)	12/09/2016	Low Flow	0.00028	0.020 U	0.00032	0.00032	0.020 U
	5/04/2017	Low Flow	0.00026	0.020 U	0.00020	0.00023	0.00024
	11/16/2018	Low Flow	0.00020	0.00026	0.00020	0.00023	0.00019
	3/19/2020	Low Flow	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
	9/21/2021	Low Flow	0.0035 J	0.020 U	0.020 U	0.020 U	0.020 U
Total PAHs	6/3/2013	Bailer	16	1.6	0.1 U	8.7	0.1 U
	12/5/2013	Bailer	1.7	0.83	0.85	16	2.4
Unfiltered analysis	3/27/2014	Bailer	3.5	1.3	0.50	3.1	0.80
(No MTCA Method A	6/25/2014	Bailer	3.9	2.3	0.12	4.8	0.37
Cleanup Level)	9/10/2014	Bailer	1.2	1.5	0.049	6.0	5.5
	12/5/2013	Bailer	0.028		0.043	0.52	
	3/27/2014	Bailer	0.018	0.21		0.080	0.064
	6/25/2014	Bailer	0.063			0.11	-
	9/10/2014	Bailer	0.012	0.041		0.42	
	3/5/2015	Low Flow	0.046	0.58	0.013	0.24	0.26
Total PAHs	7/20/2015	Low Flow	0.0077	0.019	0.0056	0.29	0.15
Filtered analysis	12/18/2015	Low Flow	0.039	1.9	0.019 U	9.7	8.5
i intered analysis	3/31/2016	Low Flow	0.0035	0.032	0.020 U	0.041	0.0092
(No MTCA Method A	7/7/2016	Low Flow	0.020 U	0.019	0.0092	2.2	0.024
Cleanup Level)	10/13/2016	Low Flow	0.0083	0.034	0.016	0.68	2.8
	12/09/2016	Low Flow	0.0028	0.0070	0.029	4.7	1.1
	5/04/2017	Low Flow	0.015	0.70	0.01	0.017	0.0096
	11/16/2018	Low Flow	0.039	0.107	0.044	0.794	0.068
	3/19/2020	Low Flow	0.0082	0.078	0.0107	0.014	0.0101
	9/21/2021	Low Flow	0.045 J	0.0035 J	0.0078 J	0.01428 J	0.0134 J

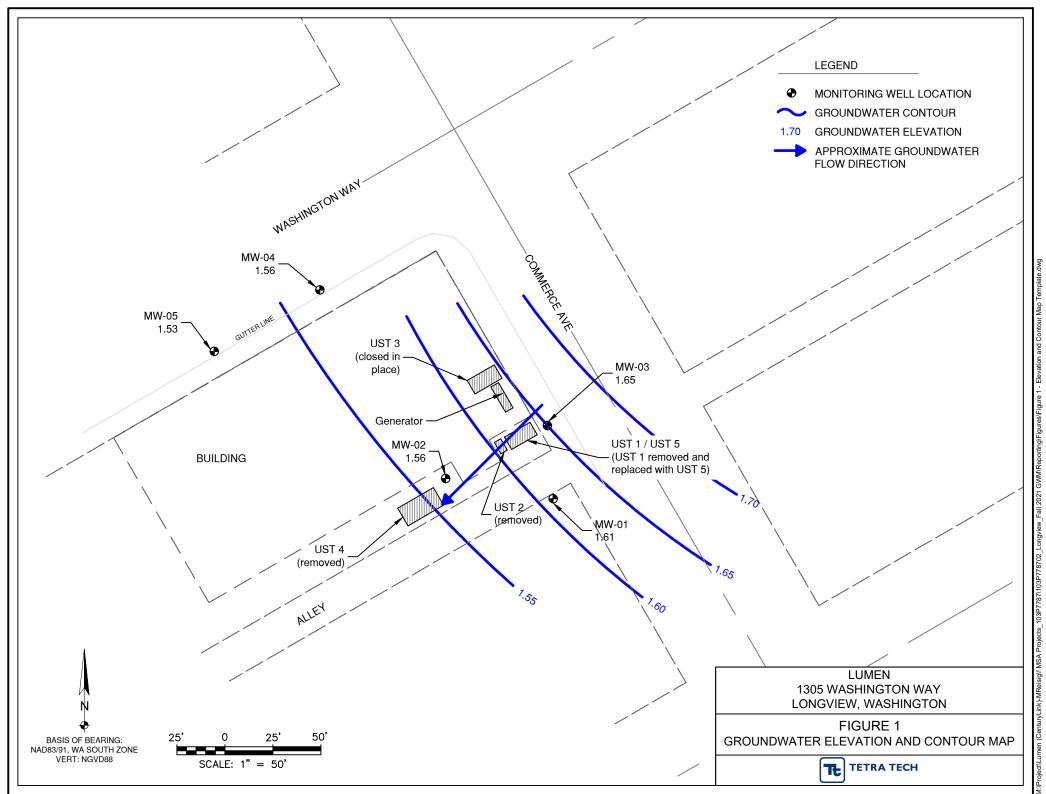
Notes:

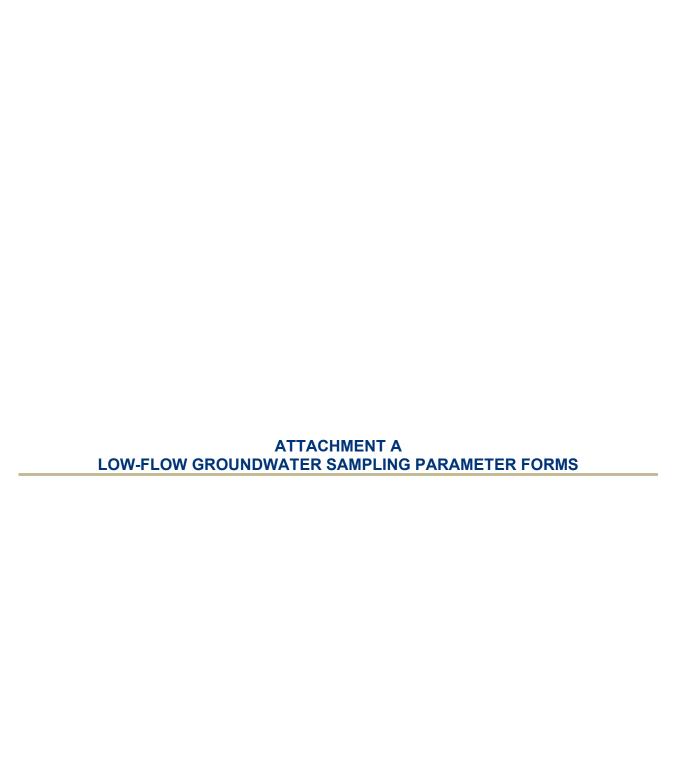
Bold values indicate the concentration exceeds the MTCA Method A cleanup level.

For wells with duplicate samples, the highest value reported is shown for each constituent.

Micrograms per liter


PAH


Not analyzed


Estimated Concentration
Undetected at the method reporting limit shown

Benzo(a)pyrene Toxic Equivalent Quotient
Model Toxics Control Act Method A for groundwater BaP TEQ MTCA

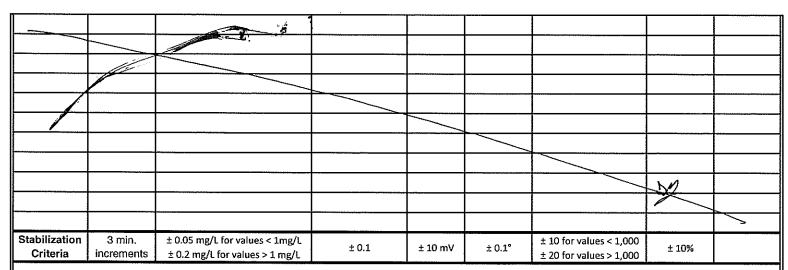
Polycyclic aromatic hydrocarbon

w	ell Name:	MW-01				Screen Interval:			
Well	Location:	South Side of Building				Sample Depth:	~16 ft b	Joc. Toc	ļ.
	Project:	Lumen (CenturyLink) -	Longview			Static Water Level:	19:02 A F	xlow TOC Cu	ith tobin
		canion (ountary chiny	Longviou			Depth to LNAPL:	NA		J
Sam	nple Date:	9/21/21				Total Depth of Casing:	19.59'	19.59'	
Sampling P	ersonnel:	D. Gibson		<u> </u>		Begin Purge (Time):	1000	1744	
					Cas	ing Diameter (inches):	4	•	
s	ample ID:	MW-01		_		Purge Method:	Peristaltic	· I.,	
Sam	nple Time:	1815		_]	Actua	al Final Purge Volume:	~7,750	wr-	
Dur	plicate ID:	VA		<u> </u>	lmn	niscible Layer Present:	No		
Field QC Des	signation:	NA]					
			· · · · · · · · · · · · · · · · · · ·						
			Water Quality						
Time D	Discharge Rate	Dissolved Oxygen (mg/L)	pН	Eh/ORP (mV)	Temp (C°)	Sp. Cond (µmhos/cm)	Turbity (NTU)	Depth to Water (ft)	
	(mL/min)			(1117)			(11.0)	17 4101 (11)	
1751 2	? <i>5</i> 0	2.6% 0.25 mg/L	6.81	227.3	15.9	292.0	9.65	14.02	
1754 2	250	2.0% 0.20 mg/L	4.82	223.1	<u>15.7</u>	289.0	8.99	14.02	
1757 2	250	1.8% 0.18 mg/4	4.83	218.5	15.7	288.3	7.67	14.02,	
1800 2	250	1.7% O.17 mall	6.85	214.2	15.G	<i>1</i> 89.3	7.64	14.63	
1803	256	1.5% 0.15 mall	6.86	210.9	15.5	288.0	1.77	14.03	1
1806 2	150	1.5%, 0.15 maje	<i>ن.</i> 86	208.0	15.6	287.9	5.6\	14.64	
1809 2	50	1.4%, p.14 mg/L	4.98	204.8	الا.لو	287.0	6.22	14.04	<u> </u>
1812 2	<u>కం</u>	1.3% 0.13 mall	4.89	202.3	15.5	289.4	6.81	14.64	
1815 2	.≤o	1.2% 0.12	4.91	200.1	15 <i>5</i>	286.	6.27	14.04	
		, O							4
									_
							W		4
							2		4
						į			1

1	<u> </u>			<u> </u>		1		T
			1	•		1		
			-		•		W	·
					• •			

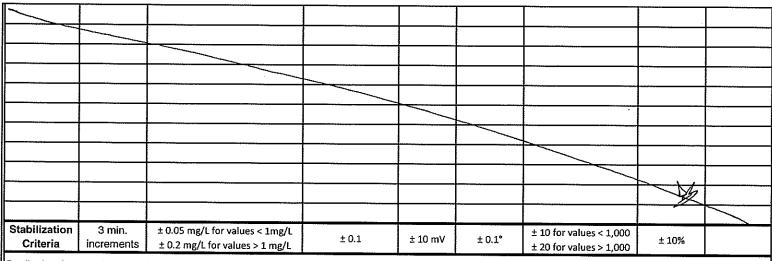
		-						

					W.M., L		V	
Stabilization Criteria	3 min. increments	± 0.05 mg/L for values < 1mg/L ± 0.2 mg/L for values > 1 mg/L	± 0.1	± 10 mV	± 0.1°	± 10 for values < 1,000 ± 20 for values > 1,000	± 10%	


Qualitative Observations: Well cover missing bolls.

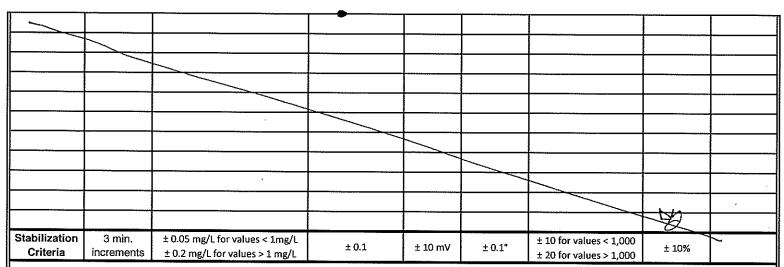
Initially unable to get tobing past 214 feet below Tax. However, I was able to move tobing to appropriate depth during lake attempt.

	Wall Name	NAW OO		1		Caraca Interval	***************************************		1
147	Well Name:	South Side of Building		1		Screen Interval:	* *		
, w	Project:			1		Sample Depth:			
	Project:	Lumen (CenturyLink) -	Longview	Static Water Level:				below Toc (Chrigat Min
	Samuela Datas	al .1				Depth to LNAPL:			
li e	Sample Date:	6 k		1		Total Depth of Casing:			
sampiini 	g Personnel:	A. Gibson		1	0	Begin Purge (Time):	**************************************		
	Sample ID:	MW 00]	Cas	sing Diameter (inches):			
6	Sample Time:			1	Antuu	Purge Method: al Final Purge Volume:			
ll .	Duplicate ID:			1		niscible Layer Present:		W.C.	
II	Designation:			1	111111	inscible Layer Present:	140		
FIEIG GO	Designation.	<u>INA</u>		J					
			Water Quality	Information					
Time	Discharge	Dissolved Oxygen (mg/L)	pH	Eh/ORP	Temp (C°)	Sp. Cond (µmhos/cm)	Turbity	Depth to	
	Rate			(mV)			(NTU)	Water (ft)	
1632	(mL/min)	44.190, 4.17 mg/L	4.87	221.5	18.1	£ 440.2	0.63	1466	
1635	215	44.2%, 4.22 mg/L	6.91	213.4	17.8	435.7	0.69 0.59	14.67	
1633	215	37.6% 360 mg/L	4.89	209.1	17.8	431.0	0.38	14.67	
1671	215	32.6% 3.07 mg/c	6.89	2048	17.7	425.9	0.7S	14.61	
१८४५	215	28.8% 2.74 mil	6.27	201.4	17.4	426.5	6.58	14.67	
1647	215	269%, 2.5%	6.86	1987.0	17.4	4(1.7.	o.85	14.68	
1650	215	25.1% . 2.40	(4.87)	194.3	17.3	411.6	0.55	14.68	
1653	215	20.990, Z.01 mg/L	<u>4.</u> 85	195.1	17.3	408.4	0.74	14.69	
الهجالو	215	19.7% 1.87 male	6.85	194.0	17.2	405.6	0.43	14.69	
1659	215	17.9% 1.72 mil	6.84	193.2	17.2	403.6	0.76	14.69	
1702	215	17.2% 1.66 mg/h	4.83	1926	17.2	40Z.0	<i>0</i> .39	14.69	
ا که ۱	215	17.2% 1.66 male	6.84	192.3	ا. דر	406.4	6.28	14.69	
		NAV.							- Anna Carlos
							M		
							-	-	



Qualitative Observations: NA

				1				1	1
	Well Name:			_		Screen Interval:		. 1	
,		East Side of Building		1		Sample Depth:	16 Cet	bebu Tox	_
	Project:	Lumen (CenturyLink) -	Longview			Static Water Level:	1337 ft	· below Toc	[with tobing]
			_	_		Depth to LNAPL:]
	Sample Date: 9 21/21			<u> </u>	,	Total Depth of Casing:			
Sampli	ng Personnel:	D. Gibson]		Begin Purge (Time):	1035		
				7	Cas	sing Diameter (inches):	2		
	Sample ID:	MW-03		_		Purge Method:	Peristaltic		
	Sample Time:	1/08		_	Actua	al Final Purge Volume:	~7,920 n	nL	
	Duplicate ID:	NA			lmn	niscible Layer Present:	N٥		
Field Q0	C Designation:	HSIMSD							
			Water Quality	Information					
Time	Discharge	Dissolved Oxygen (mg/L)	pН	Eh/ORP	Temp (C°)	Sp. Cond (µmhes /cm)	Turbity (NTU)	Depth to Water (ft)	
	Rate (mL/min)			(mV)		763	(1410)	water (it)	
1041	240	10.3% 1.00 mall	7.3\	2288	16.1	369.3	11.1	13.39	
104	240	6.3% o.61 mall	7.11	211.3	160.1	343.4	5.18	13.4	
1049	240	5.9% 0.58 DL	7.66	203.0	(c.)	361.0	4.05	13.39	
1052	240	5.1% 0.51 male	7.01	ר.רףו	16.1	360.6	3.53	13.39	
1055	240	5.0% , 0.49 mall	6.99	190.4	16.1	361.7	2.31	13.39	
1659	240	4.6% . 0.42 me L	6.97	189 0	He.	361.1	1.78	\3.39	
1102	240	4.0%, 0.38 mill	690	180.0	16.1	361.4	1.54	\3.39	
1105	240	3.2% p.31 mgl	4.95	175.6	16.0	359.4	1.02	13.39	
1108	240	3.4% 0.34 mall	6.95	1725	16.1	758,5	1.22	13.39	
1.00	- 	7.1.7. 1.0.3. 5		1112	1.36.71				
				1					
1				†					1
				<u> </u>				1 2	
							†		-
			<u> </u>			1	L	, ,	<u>ii</u>


Qualitative Observations: NA

15

Well Name:	MW-04			· · · · · · · · · · · · · · · · · · ·	Screen Interval:			
Well Location:	North Side of Building				Sample Depth:			
Project:	Lumen (CenturyLink) -	1 onaview		Static Water Leve			ow TOC (wil	k tubina
	Eumon (Oontaryemmy	2011941041	Depth to LNAP					ک
Sample Date:	9 21 21		_	,	Total Depth of Casing:	19.73'		
Sampling Personnel:	N. Gibson				Begin Purge (Time):	1438		
			-	Cas	ing Diameter (inches):	2		
Sample ID:	MW-04				Purge Method:	Peristaltic		
Sample Time:			_	Actua	al Final Purge Volume:	~8,640.	mL.	
Duplicate ID:	MW-04 DVP			lmn	niscible Layer Present:	No		
Field QC Designation:	Field deplicate		_					
							,	
		Water Quality				r =		
Time Discharge Rate	Dissolved Oxygen (mg/L)	Hq	Eh/ORP (mV)	Temp (C°)	Sp. Cond (µmhes/cm)	Turbity (NTU)	Depth to Water (ft)	
(mL/min)			/		. 70		(,	
1446 240	89% 0.87 mg/L	6.77	217.6	K1	371.4	2.89	13.01	- The state of the
1450 Z40	8.8%, 0.86 majl	6.63	218.5	16.1	369.8	2.80	13.01	
1453 240	8.7% 0.86 nate	6.60	216.9	16.1	367.8	1.29	13.01	
1456 z40	8.8%, 0.87 maje	4.59	215.0	16.\	366.8	0.62	13.01	
1459 240	9.4%, 0.93 mally	<u> </u>	213.3	16.\	364.2	1.27	13.01	
150Z 240	9.5%, 0.93 216	6.58	211-6	16.1	367.8	0.64	13.01	
1505 240	9.6%, 0.94 mall	6.60	210.0	16.0	367.2	0.5	13.01	
1508 240	1040/0, 1.02	lo.60	209.4	16.1	367.9	0.44	13.01	
1511 246	10.7% 1.06 mg/L	6.58	207.6	16.1	361.8	20.90	13.01	- Walter
1514 240	10.60%, 1.64 mg/L	4.59	206.6	16.1	361.8	0.43	13.01	-
	<u> </u>			` .				
		-					<u> </u>	
			 			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	
							<u> </u>	1

Qualitative Observations: Nature in Cabing.

Ĺ

	Well Name:	MW-05				Screeń Interval:			
V	Well Location:	North Side of Building				Sample Depth:	مال (دیا	belowToc	
	Project:	Lumen (CenturyLink) -	Longview			Static Water Level:	13.22ab	Low TOC C	with tobing
		Lamon (Oomary Lamy)				Depth to LNAPL:	AU		
	Sample Date:	9/21/21		Total Depth of Casing					
Sampli	ng Personnel:	D. Gibson]		Begin Purge (Time):	133000 1	<i>3</i> 45	
				3	Cas	ing Diameter (inches):	2		
	Sample ID:	MW-05		Purge Method:					
	Sample Time:	1408				al Final Purge Volume:		mL	
	Duplicate ID:	NA			lmn	niscible Layer Present:	No.		
Field QC	C Designation:	NA]					
	Diaghagas	Dissolved Owens (mall)	Water Quality	Information Eh/ORP	Temp (C°)	Sp. Cond (µmhes/cm)	Turbity	Depth to	
Time	Discharge Rate (mL/min)	Dissolved Oxygen (mg/L)	pН	(mV)	remp (C)	Sp. Cond (printes/cm)	(NTU)	Water (ft)	
1356	250	3.9%, 0.39 mg/L	<i>હ.હ</i> 9	2295	l . .4	479.5	1.25	13.24	
1359	250	4.0% 0.40 mate	6.63	226.6	16.4	478.3	0.56	13.24	
14.2	250	4.1%, 0.41 male	6.62	273.3	16.4	476.0	که، ه	13.24	
1405	260	3.9% 0.39 m	6.61	219.6	16.4	478.1	0.61	13.24	
1408	260	3.9% 0.39 mg/L	6.63	216.1	اله.4	473.3	o. 68	13.24	
		0					<u></u>		
				<u> </u>					1
									-
		Ŷ.		1					
		4							-
									-
								1	
				 					1
-		<u> </u>	<u> </u>	ļ <u> </u>	<u> </u>		1	<u> </u>	Д

Qualitative Observations: Water in cabing.

October 29, 2021

Service Request No:K2111119

Mark Reisig Tetra Tech, Inc. 1560 Broadway **Suite 1400** Denver, CO 80202

Laboratory Results for: Lumen (Century Link)-Longview

Dear Mark,

Enclosed are the results of the sample(s) submitted to our laboratory September 23, 2021 For your reference, these analyses have been assigned our service request number **K2111119**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview Date Received: 09/23/2021

Sample Matrix: Ground Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Six ground water samples were received for analysis at ALS Environmental on 09/23/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270D, 10/28/2021:The analysis of samples was initially performed within the recommended holding time. Reanalysis was required due to samples not being filtered prior to extraction as client requested. The reanalysis was performed 29 days past the recommended holding time. The results from the second analysis were reported.

Method 8270D, 10/28/2021:The spike recovery of Carbazole for Laboratory Control Sample (LCS) was outside the lower control criterion. The analyte in question was not detected in the associated field samples above the MRL. The error associated with reduced recovery indicated a potential low bias. The data was flagged to indicate the problem.

Semivoa GC:

Method NWTPH-Dx, 10/17/2021: The upper control criterion was exceeded for diesel range organics in Continuing Calibration Verification (CCV) KQ2121142-02. The field samples analyzed in this sequence were ran multiple times with similar results. Since the apparent problem indicated a potential slight high bias, the data quality was not significantly affected. No further corrective action was required.

	1 (OE V. () Our			
Approved by		Date	10/29/2021	

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-01		Lal	b ID: K2111	119-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
1-Methylnaphthalene	0.0015	J	0.0013	0.020	ug/L	8270D
2-Methylnaphthalene	0.0024	J	0.0013	0.020	ug/L	8270D
Acenaphthylene	0.0023	J	0.0011	0.020	ug/L	8270D
Anthracene	0.0013	J	0.00082	0.020	ug/L	8270D
Benz(a)anthracene	0.0039	J	0.00097	0.020	ug/L	8270D
Benzo(a)pyrene	0.0026	J	0.0011	0.020	ug/L	8270D
Benzo(b)fluoranthene	0.0041	J	0.00083	0.020	ug/L	8270D
Benzo(g,h,i)perylene	0.0041	J	0.00086	0.020	ug/L	8270D
Benzo(k)fluoranthene	0.0016	J	0.00094	0.020	ug/L	8270D
Carbazole	0.0030	J	0.0011	0.020	ug/L	8270D
Chrysene	0.0026	J	0.00076	0.020	ug/L	8270D
Dibenzofuran	0.0013	J	0.00096	0.020	ug/L	8270D
Fluoranthene	0.0064	J	0.00082	0.020	ug/L	8270D
Indeno(1,2,3-cd)pyrene	0.0026	J	0.00089	0.020	ug/L	8270D
Naphthalene	0.0041	J	0.0014	0.020	ug/L	8270D
Phenanthrene	0.0057	J	0.0011	0.020	ug/L	8270D
Pyrene	0.0072	J	0.0010	0.020	ug/L	8270D
Diesel Range Organics (C12 - C25 DRO)	690	Z	12	260	ug/L	NWTPH-Dx
Residual Range Organics (C25 - C36 RRO)	690	Z	20	520	ug/L	NWTPH-Dx
CLIENT ID: MW-02		Lal	b ID: K2111	119-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
2-Methylnaphthalene	0.0015	J	0.0013	0.020	ug/L	8270D
Acenaphthene	0.0014	J	0.0012	0.020	ug/L	8270D
Acenaphthylene	0.0021	J	0.0011	0.020	ug/L	8270D
Benz(a)anthracene	0.0028	J	0.00097	0.020	ug/L	8270D
Dibenzofuran	0.0010	J	0.00096	0.020	ug/L	8270D
Naphthalene	0.0024	J	0.0014	0.020	ug/L	8270D
Diesel Range Organics (C12 - C25 DRO)	170	J	12	260	ug/L	NWTPH-Dx
Residual Range Organics (C25 - C36 RRO)	120	J	20	520	ug/L	NWTPH-Dx
CLIENT ID: MW-03		Lal	b ID: K2111	119-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
1-Methylnaphthalene	0.0013	J	0.0013	0.020	ug/L	8270D
2-Methylnaphthalene	0.0029	J	0.0013	0.020	ug/L	8270D
Acenaphthene	0.0020	J	0.0012	0.020	ug/L	8270D
Acenaphthylene	0.0019	J	0.0011	0.020	ug/L	8270D
Anthracene	0.0011	J	0.00082	0.020	ug/L	8270D
Benz(a)anthracene	0.0020	J	0.00097	0.020	ug/L	8270D
Dibenzofuran	0.0012	J	0.00096	0.020	ug/L	8270D
Naphthalene	0.0040	J	0.0014	0.020	ug/L	8270D
		_				

0.0011

0.020

ug/L

8270D

0.0015

Phenanthrene

SAMPLE DETECTION SUMMARY

3	AWIPLE DE LE	CHON 5	UWWARY			
CLIENT ID: MW-03						
Analyte	Results	Flag	MDL	MRL	Units	Method
Diesel Range Organics (C12 - C25 DRO)	130	J	12	270	ug/L	NWTPH-Dx
Residual Range Organics (C25 - C36 RRO)	110	J	21	530	ug/L	NWTPH-Dx
CLIENT ID: MW-04		La	b ID: K2111	119-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
2-Methylnaphthalene	0.0016	J	0.0013	0.020	ug/L	8270D
Acenaphthene	0.011	J	0.0012	0.020	ug/L	8270D
Acenaphthylene	0.0032	J	0.0011	0.020	ug/L	8270D
Benz(a)anthracene	0.0020	J	0.00097	0.020	ug/L	8270D
Naphthalene	0.0028	J	0.0014	0.020	ug/L	8270D
Diesel Range Organics (C12 - C25 DRO)	23	J	12	270	ug/L	NWTPH-Dx
Residual Range Organics (C25 - C36 RRO)	52	J	21	530	ug/L	NWTPH-Dx
CLIENT ID: MW-04 DUP		La	b ID: K2111	119-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
2-Methylnaphthalene	0.0015	J	0.0013	0.020	ug/L	8270D
Acenaphthene	0.010	J	0.0012	0.020	ug/L	8270D
Acenaphthylene	0.0020	J	0.0011	0.020	ug/L	8270D
Anthracene	0.0014	J	0.00082	0.020	ug/L	8270D
Benz(a)anthracene	0.0021	J	0.00097	0.020	ug/L	8270D
Fluorene	0.0014	J	0.0011	0.020	ug/L	8270D
Naphthalene	0.0030	J	0.0014	0.020	ug/L	8270D
Diesel Range Organics (C12 - C25 DRO)	120	J	12	270	ug/L	NWTPH-Dx
Residual Range Organics (C25 - C36 RRO)	98	J	21	530	ug/L	NWTPH-Dx
CLIENT ID: MW-05		La	b ID: K2111	119-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
2-Methylnaphthalene	0.0013	J	0.0013	0.020	ug/L	8270D
Acenaphthylene	0.0017	J	0.0011	0.020	ug/L	8270D
Anthracene	0.0021	J	0.00082	0.020	ug/L	8270D
Benz(a)anthracene	0.0020	J	0.00097	0.020	ug/L	8270D
Dibenzofuran	0.0010	J	0.00096	0.020	ug/L	8270D
Fluorene	0.0096	J	0.0011	0.020	ug/L	8270D
Naphthalene	0.0022	J	0.0014	0.020	ug/L	8270D
Diesel Range Organics (C12 - C25 DRO)	140	J	12	270	ug/L	NWTPH-Dx
D 11 1D 0 1 (005 000 DD0)	0.0		0.4		/1	NUATOUS

21

530

ug/L

NWTPH-Dx

96

Residual Range Organics (C25 - C36 RRO)

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: Tetra Tech, Inc. Service Request:K2111119

Project: Lumen (Century Link)-Longview/103P778702

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2111119-001	MW-01	9/21/2021	1815
K2111119-002	MW-02	9/21/2021	1705
K2111119-003	MW-03	9/21/2021	1108
K2111119-004	MW-04	9/21/2021	1514
K2111119-005	MW-04 DUP	9/21/2021	1514
K2111119-006	MW-05	9/21/2021	1408

ALS

CHAIN OF CUSTODY

119581

	11011100
001	SR#_ <i>KJ////19</i>
	COC Set 1 of 1
	COC#

over to the C. No Alassa States Colonia, John Colonia, John Colonia, State Coloni	1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068
nviranmental	and the state of t

Page 1 of 1

	2000 25 20 22 20 20	500 0 K V0 KC									www.	aisgiol	bal.co	m 	_		ray	je i oi i
Project Name Lymon (Centraline) - Long		umber: 103	<u> </u>	-	_	5	9	<u>5</u>										
Project Manager Hark Reisia	J] _		 `		ļ	T	Т		,					
Tetra Tech) 				NE X					l								
1560 Brandway St. S	wite 1400. D	Denver Co	80202] ¥		Ş	표							١			
Phone # (303) 312-8813	omail	-			3	N.	lter S	3							1			
Sampler Signature	Sampler	Printed Name	etrotech.		l a	AH.	E / E	X										
Double K. El	- Dan	iche G			NUMBER OF CONTAINERS	8270D / PAH SIM	Filter SVM / Filter SVM	NWTPH-Dx / NW_TPH	F	2	3	4	ю	Remarks				
CLIENT SAMPLE ID	LABID	Date		Matrix			<u> </u>	Ĺ,	<u> </u>									
1. MW-01		92121	1815	GM.	5	X	X	X		_					_			
2. MW-02		11	1705		5	Щ	Ц	Ц										
3. HW-03			1/08		15			Ц						MSINSL				
4. MW-04			1514		5			Ш						· ·	╛			
5. HW-04 DUP			1514		5													
6. MW-05		V	1408	1	5	V	₩	V										
7															1			
8.				Ī	 										7			
9.													V					
10.															7			
Report Requirements	Inve	oice Info	rmation				4	h		A	A			Circle wh	vhich	metals are to be analyzed		
I. Routine Report: Method Blank, Surrogate, as required	P.O.#_\ Bill To	1\83252 :	2,											e B Ca Cd Co C	Cr (Cu Fe Pb Mg Mn Mo Ni K Ag	•	
II. Report Dup., MS, MSD				L								Sb	Ва			Cu Fe Pb Mg Mn Mo Ni K A)
as required	Turnar	ound De	quireme	nte S	pecia	IInst	ructi	ons/	Com	mer	its:			*Indicate Stat	ite l	Hydrocarbon Procedure: AK CA \	VI (Northwest) Other(Circ	cle One)
III. CLP Like Summary (no raw data)			48 hr.						ι.	111							·· ·	
IV. Data Validation Report	24 5 X Si	Day tandard			Retur	Tripye	\un	υSĝ	p 10	offl	'							
V. EDD		Requested Rep	ori Dale				<i>\</i> 3											
Relinquished By:		Received	Ву:		Re	linq	uish	ned	Ву:				K	Received By:	······································	Relinquished By:	Received By:	:
Signature Danick Gibson Printed Name	Signature	FEDEX			ature							gnai		Movo	<u></u>	Signature	Signature	
	Printed Na	ame		Print	ed Na	me			,		P	rinted #1	d Na	me		Printed Name	Printed Name	
Tetra Tech	Firm			Firm								/		· · · · · · · · · · · · · · · · · · ·		Firm	Firm	
9/24/21 1300 Date/Time												0	1/2	3121 103	0			
Date/Time	Date/Time	}		Date	/Time	:					D	ate/⊺	ime	<u> </u>		Date/Time	Date/Time	

PMVlask

· Vicani		1	Cooler Receipt	and	Prese	rvati	ion Fo	rm				rw.	in ye
Client	etra Fec	<u> </u>				1		quest K2	1 /	11119			/
Received:	9/23/21	Opened: _	9/23/21	By:		<u>z</u>	Unloa	•	97	23/2/	By:	R	
1. Samples we	ere received via?	USPS	Fed Ex	UPS)HL	PD	X	Cour	rier Ho	and Deliv	vered	
2. Samples we	re received in: (ci	rcle) C	ooler Box		- Envelope		Othe					NA	
3. Were custod	ly seals on coolers'		NA (Y) N		-		where?		7	FILE	3		
If present, w	ere custody seals i	ntact?	N (Y)			•	signed an				(N	N	
4. Was a Tempe	4. Was a Temperature Blank present in cooler? NA (Y) N If yes, notate the temperature in the appropriate column below:												
_	•		e sample bottle contair	_		•		• •	-				
			cified temperature ran							NA	\sqrt{Y}	N	
If no, were they received on ice and same day as collected? If not, notate the cooler # below and notify the PM. (NA) Y N													
	sue samples were		Frozen Partially Th		Thaw			•		\bigcirc			
		1				W. 1 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1				Samue		······································	
	658.69:					25 25 25 20 36 2		PM					
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID / N	Α	Out of indicate	of tem; e with		Notified out of ten	1 p	Tracking	Numbe	r NA	Filed
3.0		11/01	244						e	28404	1880	1450	
2.6		10	14004			******				28406	11880	a Wal	
			12M O			· · · · · · · · · · · · · · · · · · ·			 	~ <u> </u>	1600	1 (14)	
					m						·····		
										WARE TO SERVICE THE SERVICE TH			
6. Packing ma	terial: Inserts	Pagaina (P.	bble Wrap Gel Pack	<u> </u>									
	dy papers properly		The same of the sa	s we	(Ice) I	ry ice	e Sleev	es		>T.4	ΛĐ		
	les received in goo	,	,							NA NA	\mathcal{O}	N	
			s, preservation, etc.)?							NA NA	20	Ø Ø	
10. Did all sam	ple labels and tags	agree with cu	stody papers?							NA	(\mathcal{O})	N	
			umes received for the							NA	(Y)	N	
			EN SOP) received at the			H? In	dicate in	the table b	pelow	(NA)	Υ -	N	
		hout headspac	e? Indicate in the tabl	e below	·.					(ÑA)	Y	N	
14. Was C12/R	es negative?	·····								NA	(Y)	N	
Sa	mple ID on Bott	le	Sample	ID on	coc			-		Identified I	av.		
) ne		M 141-124		7 .	zala	(4)	Flina	ilo.	170m		110 la	no tel
1	ond,		10/14/- C	121	2)	` }	a lass	9 his	11114 1111	Thon +	1	ICZ IX	a Lel
					<u> </u>	0/		X	ALIC	THONT		LL 2 11	MICI
ý							f						
			Bottle Count	Head-				Vo	lume	Reagent i	ot		-
	Sample ID		Bottle Type	space	Broke	pН	Reag		ided	Numbe		nitials	Time
													_
Notes, Discre	epancies, Resol	utions:											
			***************************************				•						
			·										

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702

Sample Name: MW-01 Date Collected: 09/21/21

Lab Code: K2111119-001 **Date Received:** 09/23/21

Sample Matrix: Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE EBRUNO

NWTPH-Dx WVANDERHOFF TPOTTSCHMIDT

Sample Name: MW-01 Date Collected: 09/21/21

Lab Code:K2111119-001.R01Date Received: 09/23/21Sample Matrix:Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE CWILLIAMS

Sample Name: MW-02 Date Collected: 09/21/21

Lab Code: K2111119-002 **Date Received:** 09/23/21

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE EBRUNO NWTPH-Dx WVANDERHOFF SSMITH

Sample Name: MW-02 Date Collected: 09/21/21

Lab Code:K2111119-002.R01Date Received: 09/23/21Sample Matrix:Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE CWILLIAMS

Sample Matrix:

Ground Water

Analyst Summary report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702

Sample Name: MW-03 Date Collected: 09/21/21

Lab Code: K2111119-003 **Date Received:** 09/23/21 **Sample Matrix:** Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE EBRUNO
NWTPH-Dx WVANDERHOFF SSMITH

Sample Name: MW-03 Date Collected: 09/21/21

Lab Code: K2111119-003.R01 **Date Received:** 09/23/21

Sample Matrix: Ground Water

Analysis Method Extracted/Digested By Analyzed By
8270D WSTRUBLE CWILLIAMS

Sample Name: MW-04 Date Collected: 09/21/21

Lab Code:K2111119-004Date Received: 09/23/21Sample Matrix:Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE EBRUNO

NWTPH-Dx WVANDERHOFF TPOTTSCHMIDT

Sample Name: MW-04 Date Collected: 09/21/21

Lab Code:K2111119-004.R01Date Received: 09/23/21Sample Matrix:Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE CWILLIAMS

Analyst Summary report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702

 Sample Name:
 MW-04 DUP
 Date Collected: 09/21/21

 Lab Code:
 K2111119-005
 Date Received: 09/23/21

Sample Matrix: Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE EBRUNO NWTPH-Dx WVANDERHOFF SSMITH

Sample Name: MW-04 DUP Date Collected: 09/21/21

Lab Code: K2111119-005.R01 **Date Received:** 09/23/21

Sample Matrix: Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE CWILLIAMS

Sample Name: MW-05 Date Collected: 09/21/21

Lab Code:K2111119-006Date Received: 09/23/21Sample Matrix:Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE EBRUNO NWTPH-Dx WVANDERHOFF SSMITH

Sample Name: MW-05 Date Collected: 09/21/21

Lab Code: K2111119-006.R01 **Date Received:** 09/23/21

Sample Matrix: Ground Water

Analysis Method Extracted/Digested By Analyzed By

8270D WSTRUBLE CWILLIAMS

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 Date Collected: 09/21/21 18:15

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

 Sample Name:
 MW-01
 Units: ug/L

 Lab Code:
 K2111119-001
 Basis: NA

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	0.0015 ј	0.020	0.0013	1	10/28/21 11:41	10/27/21	*
2-Methylnaphthalene	0.0024 J	0.020	0.0013	1	10/28/21 11:41	10/27/21	*
Acenaphthene	ND U	0.020	0.0012	1	10/28/21 11:41	10/27/21	*
Acenaphthylene	0.0023 ј	0.020	0.0011	1	10/28/21 11:41	10/27/21	*
Anthracene	0.0013 J	0.020	0.00082	1	10/28/21 11:41	10/27/21	*
Benz(a)anthracene	0.0039 Ј	0.020	0.00097	1	10/28/21 11:41	10/27/21	*
Benzo(a)pyrene	0.0026 Ј	0.020	0.0011	1	10/28/21 11:41	10/27/21	*
Benzo(b)fluoranthene	0.0041 J	0.020	0.00083	1	10/28/21 11:41	10/27/21	*
Benzo(g,h,i)perylene	0.0041 J	0.020	0.00086	1	10/28/21 11:41	10/27/21	*
Benzo(k)fluoranthene	0.0016 Ј	0.020	0.00094	1	10/28/21 11:41	10/27/21	*
Carbazole	0.0030 J	0.020	0.0011	1	10/28/21 11:41	10/27/21	*
Chrysene	0.0026 Ј	0.020	0.00076	1	10/28/21 11:41	10/27/21	*
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	10/28/21 11:41	10/27/21	*
Dibenzofuran	0.0013 J	0.020	0.00096	1	10/28/21 11:41	10/27/21	*
Fluoranthene	0.0064 Ј	0.020	0.00082	1	10/28/21 11:41	10/27/21	*
Fluorene	ND U	0.020	0.0011	1	10/28/21 11:41	10/27/21	*
Indeno(1,2,3-cd)pyrene	0.0026 Ј	0.020	0.00089	1	10/28/21 11:41	10/27/21	*
Naphthalene	0.0041 J	0.020	0.0014	1	10/28/21 11:41	10/27/21	*
Phenanthrene	0.0057 ј	0.020	0.0011	1	10/28/21 11:41	10/27/21	*
Pyrene	0.0072 J	0.020	0.0010	1	10/28/21 11:41	10/27/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluoranthene-d10	77	42 - 133	10/28/21 11:41	
Fluorene-d10	85	42 - 131	10/28/21 11:41	
Terphenyl-d14	69	32 - 129	10/28/21 11:41	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project:Lumen (Century Link)-Longview/103P778702Date Collected:09/21/21 17:05Sample Matrix:Ground WaterDate Received:09/23/21 10:30

 Sample Name:
 MW-02
 Units: ug/L

 Lab Code:
 K2111119-002
 Basis: NA

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	ND U	0.020	0.0013	1	10/28/21 12:07	10/27/21	*
2-Methylnaphthalene	0.0015 J	0.020	0.0013	1	10/28/21 12:07	10/27/21	*
Acenaphthene	0.0014 Ј	0.020	0.0012	1	10/28/21 12:07	10/27/21	*
Acenaphthylene	0.0021 J	0.020	0.0011	1	10/28/21 12:07	10/27/21	*
Anthracene	ND U	0.020	0.00082	1	10/28/21 12:07	10/27/21	*
Benz(a)anthracene	0.0028 Ј	0.020	0.00097	1	10/28/21 12:07	10/27/21	*
Benzo(a)pyrene	ND U	0.020	0.0011	1	10/28/21 12:07	10/27/21	*
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	10/28/21 12:07	10/27/21	*
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	10/28/21 12:07	10/27/21	*
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	10/28/21 12:07	10/27/21	*
Carbazole	ND U	0.020	0.0011	1	10/28/21 12:07	10/27/21	*
Chrysene	ND U	0.020	0.00076	1	10/28/21 12:07	10/27/21	*
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	10/28/21 12:07	10/27/21	*
Dibenzofuran	0.0010 J	0.020	0.00096	1	10/28/21 12:07	10/27/21	*
Fluoranthene	ND U	0.020	0.00082	1	10/28/21 12:07	10/27/21	*
Fluorene	ND U	0.020	0.0011	1	10/28/21 12:07	10/27/21	*
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	10/28/21 12:07	10/27/21	*
Naphthalene	0.0024 Ј	0.020	0.0014	1	10/28/21 12:07	10/27/21	*
Phenanthrene	ND U	0.020	0.0011	1	10/28/21 12:07	10/27/21	*
Pyrene	ND U	0.020	0.0010	1	10/28/21 12:07	10/27/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluoranthene-d10	80	42 - 133	10/28/21 12:07	
Fluorene-d10	87	42 - 131	10/28/21 12:07	
Terphenyl-d14	72	32 - 129	10/28/21 12:07	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 **Date Collected:** 09/21/21 11:08

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

 Sample Name:
 MW-03
 Units: ug/L

 Lab Code:
 K2111119-003
 Basis: NA

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	0.0013 ј	0.020	0.0013	1	10/28/21 12:34	10/27/21	*
2-Methylnaphthalene	0.0029 Ј	0.020	0.0013	1	10/28/21 12:34	10/27/21	*
Acenaphthene	0.0020 Ј	0.020	0.0012	1	10/28/21 12:34	10/27/21	*
Acenaphthylene	0.0019 Ј	0.020	0.0011	1	10/28/21 12:34	10/27/21	*
Anthracene	0.0011 J	0.020	0.00082	1	10/28/21 12:34	10/27/21	*
Benz(a)anthracene	0.0020 ј	0.020	0.00097	1	10/28/21 12:34	10/27/21	*
Benzo(a)pyrene	ND U	0.020	0.0011	1	10/28/21 12:34	10/27/21	*
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	10/28/21 12:34	10/27/21	*
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	10/28/21 12:34	10/27/21	*
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	10/28/21 12:34	10/27/21	*
Carbazole	ND U	0.020	0.0011	1	10/28/21 12:34	10/27/21	*
Chrysene	ND U	0.020	0.00076	1	10/28/21 12:34	10/27/21	*
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	10/28/21 12:34	10/27/21	*
Dibenzofuran	0.0012 J	0.020	0.00096	1	10/28/21 12:34	10/27/21	*
Fluoranthene	ND U	0.020	0.00082	1	10/28/21 12:34	10/27/21	*
Fluorene	ND U	0.020	0.0011	1	10/28/21 12:34	10/27/21	*
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	10/28/21 12:34	10/27/21	*
Naphthalene	0.0040 Ј	0.020	0.0014	1	10/28/21 12:34	10/27/21	*
Phenanthrene	0.0015 Ј	0.020	0.0011	1	10/28/21 12:34	10/27/21	*
Pyrene	ND U	0.020	0.0010	1	10/28/21 12:34	10/27/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluoranthene-d10	80	42 - 133	10/28/21 12:34	
Fluorene-d10	88	42 - 131	10/28/21 12:34	
Terphenyl-d14	74	32 - 129	10/28/21 12:34	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 **Date Collected:** 09/21/21 15:14

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

 Sample Name:
 MW-04
 Units: ug/L

 Lab Code:
 K2111119-004
 Basis: NA

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	ND U	0.020	0.0013	1	10/28/21 13:00	10/27/21	*
2-Methylnaphthalene	0.0016 J	0.020	0.0013	1	10/28/21 13:00	10/27/21	*
Acenaphthene	0.011 ј	0.020	0.0012	1	10/28/21 13:00	10/27/21	*
Acenaphthylene	0.0032 Ј	0.020	0.0011	1	10/28/21 13:00	10/27/21	*
Anthracene	ND U	0.020	0.00082	1	10/28/21 13:00	10/27/21	*
Benz(a)anthracene	0.0020 Ј	0.020	0.00097	1	10/28/21 13:00	10/27/21	*
Benzo(a)pyrene	ND U	0.020	0.0011	1	10/28/21 13:00	10/27/21	*
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	10/28/21 13:00	10/27/21	*
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	10/28/21 13:00	10/27/21	*
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	10/28/21 13:00	10/27/21	*
Carbazole	ND U	0.020	0.0011	1	10/28/21 13:00	10/27/21	*
Chrysene	ND U	0.020	0.00076	1	10/28/21 13:00	10/27/21	*
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	10/28/21 13:00	10/27/21	*
Dibenzofuran	ND U	0.020	0.00096	1	10/28/21 13:00	10/27/21	*
Fluoranthene	ND U	0.020	0.00082	1	10/28/21 13:00	10/27/21	*
Fluorene	ND U	0.020	0.0011	1	10/28/21 13:00	10/27/21	*
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	10/28/21 13:00	10/27/21	*
Naphthalene	0.0028 ј	0.020	0.0014	1	10/28/21 13:00	10/27/21	*
Phenanthrene	ND U	0.020	0.0011	1	10/28/21 13:00	10/27/21	*
Pyrene	ND U	0.020	0.0010	1	10/28/21 13:00	10/27/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluoranthene-d10	79	42 - 133	10/28/21 13:00	
Fluorene-d10	86	42 - 131	10/28/21 13:00	
Terphenyl-d14	72	32 - 129	10/28/21 13:00	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 **Date Collected:** 09/21/21 15:14

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

 Sample Name:
 MW-04 DUP
 Units: ug/L

 Lab Code:
 K2111119-005
 Basis: NA

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	ND U	0.020	0.0013	1	10/28/21 13:26	10/27/21	*
2-Methylnaphthalene	0.0015 Ј	0.020	0.0013	1	10/28/21 13:26	10/27/21	*
Acenaphthene	0.010 Ј	0.020	0.0012	1	10/28/21 13:26	10/27/21	*
Acenaphthylene	0.0020 ј	0.020	0.0011	1	10/28/21 13:26	10/27/21	*
Anthracene	0.0014 Ј	0.020	0.00082	1	10/28/21 13:26	10/27/21	*
Benz(a)anthracene	0.0021 ј	0.020	0.00097	1	10/28/21 13:26	10/27/21	*
Benzo(a)pyrene	ND U	0.020	0.0011	1	10/28/21 13:26	10/27/21	*
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	10/28/21 13:26	10/27/21	*
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	10/28/21 13:26	10/27/21	*
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	10/28/21 13:26	10/27/21	*
Carbazole	ND U	0.020	0.0011	1	10/28/21 13:26	10/27/21	*
Chrysene	ND U	0.020	0.00076	1	10/28/21 13:26	10/27/21	*
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	10/28/21 13:26	10/27/21	*
Dibenzofuran	ND U	0.020	0.00096	1	10/28/21 13:26	10/27/21	*
Fluoranthene	ND U	0.020	0.00082	1	10/28/21 13:26	10/27/21	*
Fluorene	0.0014 ј	0.020	0.0011	1	10/28/21 13:26	10/27/21	*
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	10/28/21 13:26	10/27/21	*
Naphthalene	0.0030 ј	0.020	0.0014	1	10/28/21 13:26	10/27/21	*
Phenanthrene	ND U	0.020	0.0011	1	10/28/21 13:26	10/27/21	*
Pyrene	ND U	0.020	0.0010	1	10/28/21 13:26	10/27/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluoranthene-d10	82	42 - 133	10/28/21 13:26	
Fluorene-d10	88	42 - 131	10/28/21 13:26	
Terphenyl-d14	73	32 - 129	10/28/21 13:26	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 **Date Collected:** 09/21/21 14:08

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

 Sample Name:
 MW-05
 Units: ug/L

 Lab Code:
 K2111119-006
 Basis: NA

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	ND U	0.020	0.0013	1	10/28/21 13:52	10/27/21	*
2-Methylnaphthalene	0.0013 J	0.020	0.0013	1	10/28/21 13:52	10/27/21	*
Acenaphthene	ND U	0.020	0.0012	1	10/28/21 13:52	10/27/21	*
Acenaphthylene	0.0017 ј	0.020	0.0011	1	10/28/21 13:52	10/27/21	*
Anthracene	0.0021 J	0.020	0.00082	1	10/28/21 13:52	10/27/21	*
Benz(a)anthracene	0.0020 Ј	0.020	0.00097	1	10/28/21 13:52	10/27/21	*
Benzo(a)pyrene	ND U	0.020	0.0011	1	10/28/21 13:52	10/27/21	*
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	10/28/21 13:52	10/27/21	*
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	10/28/21 13:52	10/27/21	*
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	10/28/21 13:52	10/27/21	*
Carbazole	ND U	0.020	0.0011	1	10/28/21 13:52	10/27/21	*
Chrysene	ND U	0.020	0.00076	1	10/28/21 13:52	10/27/21	*
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	10/28/21 13:52	10/27/21	*
Dibenzofuran	0.0010 J	0.020	0.00096	1	10/28/21 13:52	10/27/21	*
Fluoranthene	ND U	0.020	0.00082	1	10/28/21 13:52	10/27/21	*
Fluorene	0.0096 Ј	0.020	0.0011	1	10/28/21 13:52	10/27/21	*
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	10/28/21 13:52	10/27/21	*
Naphthalene	0.0022 Ј	0.020	0.0014	1	10/28/21 13:52	10/27/21	*
Phenanthrene	ND U	0.020	0.0011	1	10/28/21 13:52	10/27/21	*
Pyrene	ND U	0.020	0.0010	1	10/28/21 13:52	10/27/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluoranthene-d10	77	42 - 133	10/28/21 13:52	
Fluorene-d10	82	42 - 131	10/28/21 13:52	
Terphenyl-d14	72	32 - 129	10/28/21 13:52	

Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 Date Collected: 09/21/21 18:15

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

Sample Name: MW-01 Units: ug/L

Lab Code: K2111119-001 **Basis:** NA

Semi-Volatile Petroleum Products by GC/FID

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Diesel Range Organics (C12 - C25 DRO)	690 Z	260	12	1	10/26/21 17:57	9/27/21	*
Residual Range Organics (C25 - C36 RRO)	690 Z	520	20	1	10/26/21 17:57	9/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	98	50 - 150	10/26/21 17:57	
n-Triacontane	96	50 - 150	10/26/21 17:57	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 Date Collected: 09/21/21 17:05

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

Sample Name: MW-02 Units: ug/L

Lab Code: K2111119-002 **Basis:** NA

Semi-Volatile Petroleum Products by GC/FID

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Diesel Range Organics (C12 - C25 DRO)	170 ј	260	12	1	10/17/21 03:53	9/27/21	
Residual Range Organics (C25 - C36 RRO)	120 J	520	20	1	10/17/21 03:53	9/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	73	50 - 150	10/17/21 03:53	
n-Triacontane	87	50 - 150	10/17/21 03:53	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 Date Collected: 09/21/21 11:08

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

Sample Name: MW-03 Units: ug/L

Lab Code: K2111119-003 **Basis:** NA

Semi-Volatile Petroleum Products by GC/FID

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Diesel Range Organics (C12 - C25 DRO)	130 Ј	270	12	1	10/17/21 04:15	9/27/21	
Residual Range Organics (C25 - C36 RRO)	110 J	530	21	1	10/17/21 04:15	9/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	92	50 - 150	10/17/21 04:15	
n-Triacontane	112	50 - 150	10/17/21 04:15	

Analytical Report

Client: Service Request: K2111119 Tetra Tech, Inc.

Date Collected: 09/21/21 15:14 **Project:** Lumen (Century Link)-Longview/103P778702

Sample Matrix: Ground Water **Date Received:** 09/23/21 10:30

Sample Name: MW-04 Units: ug/L Lab Code:

K2111119-004 Basis: NA

Semi-Volatile Petroleum Products by GC/FID

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extract	ed Q
Diesel Range Organics (C12 - C25 DRO)	23 Ј	270	12	1	10/25/21 18:48 9/27/21	*
Residual Range Organics (C25 - C36 RRO)	52 J	530	21	1	10/25/21 18:48 9/27/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	92	50 - 150	10/25/21 18:48	
n-Triacontane	90	50 - 150	10/25/21 18:48	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 Date Collected: 09/21/21 15:14

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

 Sample Name:
 MW-04 DUP
 Units: ug/L

 Lab Code:
 K2111119-005
 Basis: NA

Semi-Volatile Petroleum Products by GC/FID

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Diesel Range Organics (C12 - C25 DRO)	120 Ј	270	12	1	10/17/21 05:19	9/27/21	
Residual Range Organics (C25 - C36 RRO)	98 J	530	21	1	10/17/21 05:19	9/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	96	50 - 150	10/17/21 05:19	
n-Triacontane	115	50 - 150	10/17/21 05:19	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702 **Date Collected:** 09/21/21 14:08

Sample Matrix: Ground Water Date Received: 09/23/21 10:30

Sample Name: MW-05 Units: ug/L

Lab Code: K2111119-006 **Basis:** NA

Semi-Volatile Petroleum Products by GC/FID

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Diesel Range Organics (C12 - C25 DRO)	140 Ј	270	12	1	10/17/21 05:40	9/27/21	
Residual Range Organics (C25 - C36 RRO)	96 J	530	21	1	10/17/21 05:40	9/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	97	50 - 150	10/17/21 05:40	
n-Triacontane	119	50 - 150	10/17/21 05:40	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

QA/QC Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702

Sample Matrix: Ground Water

SURROGATE RECOVERY SUMMARY Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analysis Method: 8270D **Extraction Method:** EPA 3511

		Fluoranthene-d10	Fluorene-d10	Terphenyl-d14
Sample Name	Lab Code	42-133	42-131	32-129
MW-01	K2111119-001	77	85	69
MW-02	K2111119-002	80	87	72
MW-03	K2111119-003	80	88	74
MW-04	K2111119-004	79	86	72
MW-04 DUP	K2111119-005	82	88	73
MW-05	K2111119-006	77	82	72
Method Blank	KQ2121144-04	78	86	73
Method Blank	KQ2121144-05	80	87	62
Lab Control Sample	KQ2121144-03	82	86	64
MW-03	KQ2121144-01	84	86	73
MW-03	KQ2121144-02	83	86	74

QA/QC Report

Client: Tetra Tech, Inc. **Service Request:** K2111119 **Project:** Lumen (Century Link)-Longview/103P778702 **Date Collected:** 09/21/21 **Sample Matrix:** Ground Water **Date Received:** 09/23/21 Date Analyzed: 10/28/21 **Date Extracted:** 10/27/21

Duplicate Matrix Spike Summary Polycyclic Aromatic Hydrocarbons by GC/MS SIM

 Sample Name:
 MW-03
 Units:
 ug/L

 Lab Code:
 K2111119-003
 Basis:
 NA

Analysis Method: 8270D **Prep Method:** EPA 3511

			Matrix Sp	oike	Duplicate Matrix Spike					
			KQ212114	4-01		KQ212114	44-02			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1-Methylnaphthalene	0.0013 J	2.51	2.78	90	2.49	2.78	90	57-113	<1	30
2-Methylnaphthalene	0.0029 J	2.49	2.78	90	2.47	2.78	89	58-111	<1	30
Acenaphthene	$0.0020 \; \mathrm{J}$	2.71	2.78	97	2.66	2.78	96	63-121	2	30
Acenaphthylene	0.0019 J	2.71	2.78	97	2.67	2.78	96	61-118	1	30
Anthracene	0.0011 J	3.23	2.78	116	3.20	2.78	115	69-125	<1	30
Benz(a)anthracene	0.0020 J	2.93	2.78	105	2.89	2.78	104	71-127	1	30
Benzo(a)pyrene	ND U	2.97	2.78	107	2.93	2.78	105	69-132	1	30
Benzo(b)fluoranthene	ND U	2.96	2.78	106	2.94	2.78	106	65-139	<1	30
Benzo(g,h,i)perylene	ND U	2.82	2.78	102	2.78	2.78	100	63-129	2	30
Benzo(k)fluoranthene	ND U	2.89	2.78	104	2.86	2.78	103	65-137	1	30
Carbazole	ND U	1.36	2.78	49 *	1.33	2.78	48 *	70-130	2	30
Chrysene	ND U	2.92	2.78	105	2.88	2.78	104	75-130	2	30
Dibenz(a,h)anthracene	ND U	3.01	2.78	108	2.97	2.78	107	61-138	1	30
Dibenzofuran	0.0012 J	2.76	2.78	99	2.52	2.78	91	62-127	9	30
Fluoranthene	ND U	2.49	2.78	90	2.47	2.78	89	69-125	<1	30
Fluorene	ND U	2.74	2.78	99	2.70	2.78	97	66-123	1	30
Indeno(1,2,3-cd)pyrene	ND U	3.15	2.78	113	3.11	2.78	112	62-142	1	30
Naphthalene	0.0040 J	2.54	2.78	91	2.51	2.78	90	45-123	1	30
Phenanthrene	0.0015 J	2.64	2.78	95	2.63	2.78	95	65-124	<1	30
Pyrene	ND U	2.94	2.78	106	2.89	2.78	104	59-134	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project:Lumen (Century Link)-Longview/103P778702Date Collected:NASample Matrix:Ground WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:KQ2121144-04Basis: NA

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	ND U	0.020	0.0013	1	10/28/21 09:55	10/27/21	
2-Methylnaphthalene	0.0016 Ј	0.020	0.0013	1	10/28/21 09:55	10/27/21	
Acenaphthene	ND U	0.020	0.0012	1	10/28/21 09:55	10/27/21	
Acenaphthylene	ND U	0.020	0.0011	1	10/28/21 09:55	10/27/21	
Anthracene	ND U	0.020	0.00082	1	10/28/21 09:55	10/27/21	
Benz(a)anthracene	0.0018 Ј	0.020	0.00097	1	10/28/21 09:55	10/27/21	
Benzo(a)pyrene	ND U	0.020	0.0011	1	10/28/21 09:55	10/27/21	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	10/28/21 09:55	10/27/21	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	10/28/21 09:55	10/27/21	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	10/28/21 09:55	10/27/21	
Carbazole	ND U	0.020	0.0011	1	10/28/21 09:55	10/27/21	
Chrysene	ND U	0.020	0.00076	1	10/28/21 09:55	10/27/21	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	10/28/21 09:55	10/27/21	
Dibenzofuran	0.00098 Ј	0.020	0.00096	1	10/28/21 09:55	10/27/21	
Fluoranthene	ND U	0.020	0.00082	1	10/28/21 09:55	10/27/21	
Fluorene	ND U	0.020	0.0011	1	10/28/21 09:55	10/27/21	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	10/28/21 09:55	10/27/21	
Naphthalene	0.0027 ј	0.020	0.0014	1	10/28/21 09:55	10/27/21	
Phenanthrene	0.0012 ј	0.020	0.0011	1	10/28/21 09:55	10/27/21	
Pyrene	ND U	0.020	0.0010	1	10/28/21 09:55	10/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluoranthene-d10	78	42 - 133	10/28/21 09:55	
Fluorene-d10	86	42 - 131	10/28/21 09:55	
Terphenyl-d14	73	32 - 129	10/28/21 09:55	

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project:Lumen (Century Link)-Longview/103P778702Date Collected:NASample Matrix:Ground WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:KQ2121144-05Basis: NA

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	ND U	0.020	0.0013	1	10/28/21 09:28	10/27/21	
2-Methylnaphthalene	0.0015 Ј	0.020	0.0013	1	10/28/21 09:28	10/27/21	
Acenaphthene	ND U	0.020	0.0012	1	10/28/21 09:28	10/27/21	
Acenaphthylene	ND U	0.020	0.0011	1	10/28/21 09:28	10/27/21	
Anthracene	ND U	0.020	0.00082	1	10/28/21 09:28	10/27/21	
Benz(a)anthracene	0.0018 J	0.020	0.00097	1	10/28/21 09:28	10/27/21	
Benzo(a)pyrene	ND U	0.020	0.0011	1	10/28/21 09:28	10/27/21	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	10/28/21 09:28	10/27/21	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	10/28/21 09:28	10/27/21	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	10/28/21 09:28	10/27/21	
Carbazole	ND U	0.020	0.0011	1	10/28/21 09:28	10/27/21	
Chrysene	ND U	0.020	0.00076	1	10/28/21 09:28	10/27/21	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	10/28/21 09:28	10/27/21	
Dibenzofuran	0.0011 J	0.020	0.00096	1	10/28/21 09:28	10/27/21	
Fluoranthene	ND U	0.020	0.00082	1	10/28/21 09:28	10/27/21	
Fluorene	ND U	0.020	0.0011	1	10/28/21 09:28	10/27/21	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	10/28/21 09:28	10/27/21	
Naphthalene	0.0022 Ј	0.020	0.0014	1	10/28/21 09:28	10/27/21	
Phenanthrene	ND U	0.020	0.0011	1	10/28/21 09:28	10/27/21	
Pyrene	ND U	0.020	0.0010	1	10/28/21 09:28	10/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluoranthene-d10	80	42 - 133	10/28/21 09:28	
Fluorene-d10	87	42 - 131	10/28/21 09:28	
Terphenyl-d14	62	32 - 129	10/28/21 09:28	

QA/QC Report

Client:Tetra Tech, Inc.Service Request:K2111119Project:Lumen (Century Link)-Longview/103P778702Date Analyzed:10/28/21Sample Matrix:Ground WaterDate Extracted:10/27/21

Lab Control Sample Summary Polycyclic Aromatic Hydrocarbons by GC/MS SIM

 Analysis Method:
 8270D
 Units:
 ug/L

 Prep Method:
 EPA 3511
 Basis:
 NA

Analysis Lot: 744142

Lab Control Sample KQ2121144-03

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1-Methylnaphthalene	2.45	2.78	88	47-119
2-Methylnaphthalene	2.42	2.78	87	48-120
Acenaphthene	2.80	2.78	101	63-121
Acenaphthylene	2.67	2.78	96	58-124
Anthracene	3.22	2.78	116	68-127
Benz(a)anthracene	2.85	2.78	102	74-124
Benzo(a)pyrene	2.86	2.78	103	75-131
Benzo(b)fluoranthene	2.86	2.78	103	73-136
Benzo(g,h,i)perylene	2.74	2.78	99	63-127
Benzo(k)fluoranthene	2.78	2.78	100	74-134
Carbazole	1.43	2.78	52 *	68-135
Chrysene	2.83	2.78	102	74-132
Dibenz(a,h)anthracene	2.92	2.78	105	59-135
Dibenzofuran	2.70	2.78	97	56-132
Fluoranthene	2.45	2.78	88	70-127
Fluorene	2.68	2.78	96	68-121
Indeno(1,2,3-cd)pyrene	3.08	2.78	111	63-136
Naphthalene	2.49	2.78	89	52-115
Phenanthrene	2.63	2.78	95	64-126
Pyrene	2.87	2.78	103	72-127

Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

QA/QC Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project: Lumen (Century Link)-Longview/103P778702

Sample Matrix: Ground Water

SURROGATE RECOVERY SUMMARY Semi-Volatile Petroleum Products by GC/FID

Analysis Method: NWTPH-Dx **Extraction Method:** EPA 3510C

		o-Terphenyl	n-Triacontane
Sample Name	Lab Code	50-150	50-150
MW-01	K2111119-001	98	96
MW-02	K2111119-002	73	87
MW-03	K2111119-003	92	112
MW-04	K2111119-004	92	90
MW-04 DUP	K2111119-005	96	115
MW-05	K2111119-006	97	119
MW-03	KQ2118889-01	93	113
Method Blank	KQ2118889-04	88	107
Lab Control Sample	KQ2118889-02	91	103
Duplicate Lab Control Sample	KQ2118889-03	98	108

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project Lumen (Century Link)-Longview/103P778702 Date Collected: 09/21/21

Sample Matrix: Ground Water Date Received: 09/23/21

Date Analyzed: 10/17/21

Replicate Sample Summary

Semi-Volatile Petroleum Products by GC/FID

Sample Name: MW-03 Units: ug/L

Lab Code: K2111119-003 **Basis:** NA

Duplicate Sample

KQ2118889-

	Analysis			Sample	01			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Diesel Range Organics (C12 - C25 DRO)	NWTPH-Dx	280	13	130 J	140 J	134	7	30
Residual Range Organics (C25 - C36 RRO)	NWTPH-Dx	560	22	110 J	120 J	111	9	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client: Tetra Tech, Inc. Service Request: K2111119

Project:Lumen (Century Link)-Longview/103P778702Date Collected:NASample Matrix:Ground WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:KQ2118889-04Basis: NA

Semi-Volatile Petroleum Products by GC/FID

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Da	ate Extracted	Q
Diesel Range Organics (C12 - C25 DRO)	80 Ј	250	11	1	10/16/21 23:37	9/27/21	
Residual Range Organics (C25 - C36 RRO)	72 J	500	19	1	10/16/21 23:37	9/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	88	50 - 150	10/16/21 23:37	
n-Triacontane	107	50 - 150	10/16/21 23:37	

QA/QC Report

Client: Tetra Tech, Inc. **Service Request:**

K2111119

Project:

Lumen (Century Link)-Longview/103P778702

Date Analyzed:

10/16/21

Sample Matrix: Ground Water **Date Extracted:**

09/27/21

Duplicate Lab Control Sample Summary Semi-Volatile Petroleum Products by GC/FID

Analysis Method:

NWTPH-Dx

Units:

ug/L

Prep Method:

EPA 3510C

Basis:

NA

Analysis Lot:

742854

Lab Control Sample KQ2118889-02

Duplicate Lab Control Sample

KQ2118889-03

		Spike			Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Diesel Range Organics (C12 - C25 DRO)	3240	3200	101	3460	3200	108	46-140	7	30
Residual Range Organics (C25 - C36	1470	1600	92	1530	1600	96	45-159	4	30
RRO)									