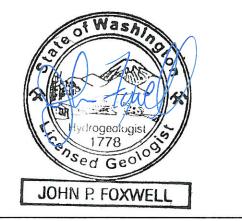


Phase II Environmental Site Investigation Buse Timber & Sales 3812 28th Place Northeast Everett, WA 98201

> Prepared for: SPE and IOS JV Holdings, LLC

> > December 9, 2021 Alterra-064


Phase II Environmental Site Investigation Buse Timber & Sales 3812 28th Place Northeast Everett, WA 98201

> Prepared for: SPE and IOS JV Holdings, LLC

> > December 9, 2021 Alterra-064

fredu

Jie Xu, PE Project Manager

John Foxwell, LHg Principal

Table of Contents

1.0	INTRODUCTION	1
	1.1 Site Description	1
	1.2 Previous Investigations	1
	1.3 Phase II ESA Sampling Plan Development	3
	1.4 Geology and Hydrogeology	3
2.0	FIELD ACTIVITIES	4
	2.1 Preparatory Activities	4
	2.2 Soil Sampling	4
	2.3 Grab Groundwater Sampling	4
	2.4 Sediment Sampling	5
	2.5 Investigation-Derived Waste Disposal	5
3.0	LABORATORY ANALYTICAL PROGRAM	5
4.0	FINDINGS	7
	4.1 Field Observation During Explorations	7
	4.2 Soil and Groundwater Investigation	7
	4.3 Drainage Sediment Investigation1	2
5.0	CONCLUSIONS	2
	5.1 Recommendations	3
6.0	REFERENCES	5

Tables

- 1 Soil Results: TPH
- 2 Soil Results: VOCs
- 3 Soil Results: Chlorinated Phenols and Metals
- 4 Soil Results: Dioxins/Furans
- 5 **Groundwater Results**
- 6 Sediment Results: TPH, PAHs, PCBs, Chlorinated Phenols, and Metals
- 7 Sediment Results: Dioxins/Furans

Figures

- Site Location Map 1
- 2 Site Vicinity Map
- 3 Site Plan
- 4 Boring Location Map
- 5 Total Petroleum Hydrocarbon Concentrations in Soil
- 6 Total Petroleum Hydrocarbon Concentrations in Drainage Sediment
- 7 Dioxins/Furans in Soil
- 8 Dioxins/Furans in Sediment

Appendices

- Boring Logs А
- В Laboratory Report

1.0 Introduction

Apex Companies, LLC (Apex) has prepared this Phase II Environmental Site Assessment (ESA) for SPE and IOS JV Holdings, LLC to provide the results of soil, groundwater, and drainage sediment sampling and analysis for the Buse Timber & Sales Inc. (the Site) located at the 3812 28th PI NE in Everett, Washington 98201 (Figure 1).

The scope of the Phase II ESA was completed at several areas at the Site where Recognized Environmental Conditions (RECs) were identified based on the findings of the Phase I ESA for the Site (Apex, 2021).

1.1 Site Description

The Site consists of two parcels of land (Parcel No. 29050400300600 and 29050900201500) comprising approximately 60.48 acres (Figure 2). Buse Timber & Sales Inc. has operated as a lumber mill at the since the mid-1940s. Current operations include a sawmill facility, log storage, and 11 buildings including the main office, kilns, and maintenance and storage buildings (Figure 3). Log storage is located on the southern end of the Site, milling activities and lumber storage are located in the center of the Site. Operations and log storage areas are paved. The north end of the Site is unpaved and undeveloped. The Site is situated on generally flat terrain at a surface elevation of approximately 1 foot above mean sea level (amsl). The nearest body of water is the Union Slough located north and west adjacent to the Site. There is a drainage ditch encircling the Site that discharges any collected water to Union Slough through a tide gate at the north end of the Site. Surrounding properties generally consist of commercial or industrial businesses.

1.2 Previous Investigations

A number of previous environmental investigations have been conducted to document conditions at the Site. This section presents a summary of the findings of the previous investigations. This information was used to develop the scope of work for the Phase II ESA.

1990 Investigation. In 1990, the Washington Department of Ecology (Ecology) completed a Preliminary Assessment (PA) for the Buse Mill site. Elevated concentrations of pentachlorophenol (PCP) and tetrachlorophenol (TCP) were detected in drainage sediment samples near the former dip tank. Samples were not analyzed for dioxins. The PA concluded that there were no significant threats to human health and the environment. However, it did recommend sampling of the drainages and ranking under Ecology's Washington Ranking Method guidelines. Follow-up sampling was completed in site drainages, and PCP and TCP were not detected.

1994 Investigation. A Screening Site Inspection Report was prepared for the Site by URS on behalf of EPA (URS, 1994). This report summarized the results of a limited sampling event that included surface and subsurface soil, storm drain sediment, and drainage sediment sampling, and sediment sampling at the Site and nearby slough/river. Samples were tested for polychlorinated biphenyls (PCBs), semi-volatile organic compounds (SVOCs), metals, chlorinated phenols, and/or PCP. Dioxin analyses were not completed as part of this work.

No exceedances of background concentrations were found for the surface or subsurface soils. Samples collected from catch basins and in the North ditch (near the storm drain outfall) exceeded background concentrations of PCBs, lead, and mercury; however, none of these concentrations were significantly above background or Ecology Model Toxics Control Act (MTCA) Method A cleanup levels. PCP was detected at concentrations exceeding background levels in samples collected from the storm drains (one storm drain located approximately 100 ft east of the former dip tank) and storm drain outfall.

1998 Investigation and 2010 Update. Exponent conducted a Phase II ESA in August 1998 (Exponent, 1998) to address RECs identified in Exponent's April 1998 Phase I ESA. Boring locations are shown on Figure 4. The investigation consisted of sampling sediments in the drainage ditches surrounding the Site, sampling the storm drain system, and assessing soil and groundwater impacts at the Site. Samples were tested for Total Petroleum Hydrocarbons (TPH) and VOCs. Select soil and groundwater samples were tested for chlorinated phenols. One soil sample was analyzed for dioxins/furans. Detected concentrations of all analytes MTCA were below cleanup levels.

2018 Limited Site Investigation (LSI). In August 2018, Terracon conducted an LSI (Terracon, 2018b) to assess the potential presence of compounds of concern in subsurface soil and groundwater at the Site that may have originated from the RECs identified in the 2018 Phase I ESA prepared by Terracon (Terracon, 2018a). Boring locations are shown on Figure 4. This LSI included advancing six (6) soil borings (B1 through B6) and collecting soil and/or groundwater samples from each boring. The LSI results/findings are summarized as follows:

- Soil samples collected from B1 and B2 had concentrations of arsenic and/or chromium which exceeded their respective MTCA Method A cleanup levels. However, based on the additional analysis of the highest chromium concentration, the concentrations of chromium do not appear to be hexavalent chromium.
- Soil samples collected from B5 and B6 had concentrations of dioxins and furans. Although these concentrations are below their respective MTCA Method B cleanup level, they exceed the natural background concentrations of 5.2 ng/kg for dioxin and furan mixtures in soil.
- Only one groundwater sample was collected, from boring B2. This sample had concentrations of arsenic which exceeded the MTCA Method A cleanup level. The remaining groundwater sample results were either non-detected or below the MTCA Method A or MTCA Method B cleanup levels.

Terracon concluded that the operations at the Site with a vehicle maintenance area, wash-down area, diesel underground storage tank (UST) area, fire pond, and documented dioxins and furans appear to have previously contributed and may potentially continue to contribute to the release of select chemicals of concern to soils and/or groundwater. With the exception of arsenic in soil and groundwater, Terracon concluded that conditions representative of a large-scale release were not present.

It appears that arsenic concentrations identified in soil and groundwater are consistent with the current Site use. While there are arsenic exceedances to the MTCA cleanup level, Terracon inferred that they are limited to the Site soil and

groundwater within the limits of the Site boundary. Therefore, unless the Site use is proposed to change, Terracon did not recommend any additional investigations at this time.

1.3 Phase II ESA Sampling Plan Development

Apex completed a Phase I ESA for the Site in June 2021 (Apex, 2021). RECs were identified by Apex during the Phase I ESA. Based on the results of the Phase I ESA, the locations and rationale for the scope of the Phase II ESA are summarized below.

Identified REC, HREC, or Data Gap	Assessment Rationale
	Soil and/or Groundwater
Vehicle Maintenance	Assess TPH detected in groundwater at Terracon B2
Former Log Pond Fill	Characterize large fill area not previously characterized
Current Lube Building	Assess feature not previously assessed
Current Mechanics Shop	Assess for dioxins based on Terracon B5 results
Hog Fuel Mixing area	Assess surface soils in waste handling area.
Current Dip Tank	Assess soil and groundwater at current dip tank
Current Washdown Area	Characterize stained area at outlet to washdown and separator vault
Current AST area	Assess feature not previously assessed
Former Main Plant Drain	Assess feature not previously assessed
Former PCP Dip Tank	Assess soil and groundwater at former dip tank
Former UST Area	Assess soil and groundwater former UST area
AST Area	Assess feature not previously characterized
	Surface Soil/Drainage Sediment
Tide Gate	Characterize drainage sediments at outfall
East Drainage	Characterize drainage sediments after removal
West Drainage	Characterize ditch with limited existing data
East Drainage	Characterize ditch with limited existing data
South Drainage	Characterize ditch with limited existing data

1.4 Geology and Hydrogeology

The Site is located at Everett, Washington, which is in the central part of the Puget Sound Lowland. The geologic unit for this Site is Qyal, a Holocene aged younger alluvial and estuarine deposit (Minard, 1985). These deposits lie in and along the present streams near the water table. The sediment is largely sand, silt, and clay with considerable amounts of organic matter. Thickness of the younger alluvial and estuarine deposits probably exceeds 30 meters. The alluvium overlies deposits from the last Pleistocene glaciation.

The Site is located in the delta region of the Snohomish River, adjacent to and south of Union Slough on Smith Island north of the Snohomish River. According to historical information, the static water level at the Site is probably within a

range of 10 to 15 feet below ground surface (bgs). The depth to the water table varies due to tidal and river flow influences. The Site is relatively flat, with a general slope less than 5 degrees towards the northeast.

2.0 Field Activities

Field sampling activities included surface soil sampling, direct-push soil explorations for soil and groundwater samples, and drainage sediment sampling. Direct-push explorations (SB-1 through SB-14) and surface soil samples (SS-1 through SS-3) were completed between June 30 and July 1, 2021. Sediment samples were collected on July 2, 2021. Direct-push explorations were completed by Holocene Drilling with track mounted direct-push equipment (Geoprobe[™] 7822DT). Boring logs for each boring are included in Appendix A.

2.1 Preparatory Activities

Prior to conducting the subsurface investigation, Apex notified Washington 811 to coordinate notification to public utility operators of the proposed subsurface investigation activities. Private utility locates to mark private utilities and subsurface features were completed by CNI Locates of Lake Bonney, Washington. A site-specific Health and Safety Plan (HASP) was prepared and reviewed during the daily tailgate meeting each day before work commenced.

2.2 Soil Sampling

Apex field-screened and collected soil samples continuously during drilling, using a core barrel lined with a clear acetate liner. Apex logged and described soil types in general conformance with the unified soil classification system (USCS) and observed for physical visual/olfactory evidence of contamination. The soil samples were field screened for volatile organic compounds (VOCs) using a calibrated photoionization detector (PID) and sheens were documented when observed.

Soil samples were prepared for laboratory analysis by sampling directly from the liners using a Terra Core[™] soil sampler for VOCs and filling laboratory-provided glass jars for all other soil analyses. Each soil sample was uniquely labeled to identify its location, depth, date, and time of collection. The samples were collected with EPA Method 5035 sample preservation or transferred to laboratory-supplied sample containers and filled to eliminate headspace. Soil samples were then placed in a cooler with ice and shipped to Pace National Laboratory under chain of custody (COC) protocol.

2.3 Grab Groundwater Sampling

Groundwater was encountered in all borings except for SB-14. Groundwater samples were collected from temporary wells constructed of polyvinyl chloride (PVC) casing and screen. Grab groundwater samples were collected with a peristaltic pump. The bottles were labeled, chilled on ice, and transported under proper COC protocol to Pace National Laboratory of Mount Juliet, Tennessee.

After sampling was completed, each borehole was backfilled with hydrated bentonite and the boring was patched to match the existing surface (bare ground or asphalt).

2.4 Sediment Sampling

Sediment samples were collected on July 2, 2021 from an inflatable raft. A Russian peat corer was used for sample collection. Composite and discrete sediment samples were collected from select locations within the drainages. Sediment sampling locations are shown on Figure 6.

Three 3-point composite sediment samples were collected to represent the west drainage area (locations DR-2 through DR-4), east drainage area (DR-5 through DR-7), and south drainage area (DR-8 through DR-10). One discrete sample (DR-1) was collected near the tide gate to characterize sediment at the outfall. Sediment composite sub-samples were collected in equal aliquots from a depth of 0 to 12 inches below mud line (bml). The aliquots were placed into a stainless-steel bowl and homogenized. Each of the homogenized samples were then placed into laboratory-supplied sample containers, properly labeled, and submitted to the laboratory for analysis. The discrete sample analyzed (DR-1) was also collected from the 0 to 12-inch blm interval, placed into laboratory-supplied sample containers, properly labeled, and submitted to the laboratory for analysis.

2.5 Investigation-Derived Waste Disposal

Three 55-gallon drums (one containing soil cuttings and two containing decontamination/purged water) were generated and temporarily stored in a designated area on the Site. The drums were labelled with the project name, generator name, contact number, general contents, and date. Waste disposal is pending.

3.0 Laboratory Analytical Program

The laboratory analytical program includes analyses for Site Chemicals of Potential Concern (COPCs) in soil, groundwater, and drainage sediment. COPCs were identified based on prior results, chemical use history, and mill operations. The laboratory analytical plan for each portion of the Property is summarized below. Sampling results are summarized on Figures 5 through 8. Groundwater was collected from all boring locations except for SB-14.

Sample Area	Sample Location	Exploration Depth (ft)	Analysis of Samples
Vehicle Maintenance	SB-1	20	TPH-Dx; VOCs; Chlorinated phenols;
			Metals.
Former Log Pond Fill	SB-2, SB-3, SB-9	Ranging from 15 to 25	TPH-Dx; VOCs; Chlorinated phenols;
			Dioxins/Furans

Sample Area	Sample Location	Exploration Depth (ft)	Analysis of Samples				
Current Lube Building/Mechanics Shop	SB-4, SB-5	10	TPH-Dx; VOCs; Dioxins/Furans				
Hog Fuel Mixing Area	SB-6; SS-1 through SS-3	15	TPH-Dx; VOCs; Chlorinated phenols; Dioxins/Furans				
Current Dip Tank	SB-7	10	TPH-Dx; Chlorinated phenols				
Current Washdown Area	SB-8	10	TPH-Dx				
Current AST area	SB-9	25	TPH-Dx; VOCs				
Former Main Plant Drain	SB-10	20	TPH-Dx; Dioxins/Furans				
Former PCP Dip Tank	SB-11, SB-12	Ranging from 10 to 25	TPH-Dx; Chlorinated phenols; Dioxins/Furans				
Former UST Area	SB-13	25	TPH-Dx; VOCs				
AST Area	SB-14	10	TPH-Dx				

Sample Area	Sample Location	Analysis of Samples
Tide Gate	DR-1	TPH-Dx; PAHs; PCBs; Dioxins/Furans
West Drainage	DR-2 through DR-4	TPH-Dx; PAHs; PCBs; Dioxins/Furans
East Drainage	DR-5 through DR-7	TPH-Dx; PAHs; PCBs; Dioxins/Furans
South Drainage	DR-8 through DR-10	TPH-Dx; PAHs; PCBs; Dioxins/Furans

DR-1, collected at the location of the tide gate, was a discrete sample. For the west, east, and south drainages, a composite sample was prepared from each drainage sub-sample (DR-2 to 4, etc.). Splits of individual sub-samples were retained in the event that follow-up analyses were requested.

Laboratory analyses were completed by Pace National Laboratory of Mt. Juliet, Tennessee. Soil, groundwater, and ambient air sampling results were analyzed for using one or more of the methods listed below.

- Diesel and oil range petroleum hydrocarbons (TPH-Dx) using NW TPH Methods;
- Polynuclear aromatic hydrocarbons (PAHs) using EPA 8270 SIM;
- Dioxins and furans using EPA 8290;
- PCBs using EPA 8082;
- Phenolic compounds, including PCP, using EPA 8270;
- Metals (arsenic, barium, cadmium, chromium, copper, lead, nickel, selenium, silver, mercury, zinc) using EPA 6000/7000 series methods; and
- VOCs in soil and groundwater using EPA Method 8260C, with EPA 5035 preservation for soil.

Groundwater samples were analyzed for TPH-Dx with and without silica gel cleanup. Silica gel cleanup removes biogenic polar organics, which interfere and result in a high bias.

4.0 Findings

The findings of the 2021 Phase II ESA are presented below. Tables 1 through 5 summarize the laboratory results and Figures 5 through 8 show the key sample results for each media sampled. Boring logs are included in Appendix A. Laboratory data is included in Appendix B.

4.1 Field Observation During Explorations

Soils encountered in the explorations consisted of varying gradations of silty clay, sand, and gravel to the total depth explored (approximately 25 feet bgs). Localized silty clay layers were observed in several borings between 0 and 7 feet bgs. Sandy clay or silty sand layers were observed in several deeper borings between 10 and 25 feet bgs.

Field screening information is included in the logs. Field screening indications of contamination (PID, sheen, and odor) generally were not observed at the sampling locations. When observed, PID readings ranged from <5 parts per million (ppm) to 6 ppm, with the highest readings observed at SB-5 at 6.0 feet bgs.

The direct-push borings were completed up to 25 feet bgs. Groundwater was encountered across the Site at varying depths between 7 and 24 feet as noted on the boring logs. At SB-8, shallow, perched water was encountered at a depth of 3 feet.

4.2 Soil and Groundwater Investigation

The soil and groundwater investigation results are discussed below according to each area of the Buse Mill where the data was collected. The soil and groundwater results are compared to the applicable MTCA Method A cleanup level for unrestricted land use. Where a MTCA Method A Cleanup level has not been established for a particular compound, the respective MTCA Method B Cleanup Level is applied for comparison. Soil dioxins/furans concentrations were reported in 2,3,7,8-Tetrachloro dibenzo-p-dioxin (TCDD) Total Toxicity Equivalence Quotient (TEQ) and compared to the Washington State background concentrations and MTCA Method B cleanup levels. In Washington, 2,3,7,8 TCDD Total TEQ of 5.2 pg/g or less in soil are considered below regional background concentrations.

The soil and groundwater sampling results for each area of the site are summarized below. Samples were analyzed for a range of parameters as summarized in Section 3. Most soil samples were analyzed for TPH-Dx. All analytical results are tabulated on Tables 1 through 5. Selected soil results are summarized on Figures 4 through 8. Laboratory reports are included in Appendix B.

4.2.1 Vehicle Maintenance Area

SB-1 was completed at the northwestern, downgradient corner of the vehicle maintenance area. SB-1 was completed to approximately 20 feet bgs. A grab groundwater sample was collected at approximately 15 feet bgs.

Soil Samples. Samples collected from 2 to 3 feet bgs and 6 to 7 feet bgs were analyzed for TPH-Dx (with silica gel cleanup). The SB-1 sample from 2 to 3 feet bgs was also analyzed for VOCs, chlorinated phenols, and metals. Concentrations of TPH-Dx, metals, and VOCs were detected. None of the detected concentrations exceeded cleanup levels.

Groundwater Sample. One grab groundwater sample was collected from a depth of approximately 15 feet bgs at SB-1 and analyzed for TPH-Dx, VOCs, and chlorinated phenols. TPH-Dx was analyzed with and without silica gel cleanup. Concentrations of TPH-Dx were detected when analyzed without silica gel cleanup. When silica gel cleanup was utilized, concentrations of DRO and RRO were not detected. VOCs and chlorinated phenols were not detected.

4.2.2 Former Log Pond Fill Area/ Current AST Area

SB-2, SB-3 and SB-9 were collected from the former log pond fill area. SB-9 is also in proximity to the current aboveground storage tank (AST) area.

Soil Samples. Each sample from this area was analyzed for TPH-Dx with silica gel cleanup. Soil samples from SB-2 and SB-9 were also analyzed for VOCs from multiple locations and intervals from this sample group. Select soil samples were also analyzed for chlorinated phenols and dioxins/furans. Chlorinated phenols compounds were not detected. Concentrations of TPH-Dx, VOCs, and dioxins/furans were detected. None of the detected concentrations exceeded cleanup levels.

Groundwater Samples. Groundwater samples were collected from SB-2, SB-3, and SB-9 and analyzed for TPH-Dx and chlorinated phenols. In SB-2 and SB-3, TPH-Dx was detected above cleanup levels when analyzed without silica gel cleanup. TPH-Dx was not detected above cleanup levels when silica gel cleanup was used. TPH-Dx was largely not detected in the groundwater samples from SB-9. Chlorinated phenols were not detected in groundwater samples from SB-9.

4.2.3 Current Lube Building/Mechanics Shop Area

SB-4 and SB-5 were completed near the current lube building and mechanic shop area. The current lube building and mechanic shop were constructed after a former fire pond in this area was backfilled.

Soil Samples. Each sample from this area was analyzed for TPH-Dx. Soil samples were also analyzed for VOCs from multiple locations and intervals from this sample group. Select soil samples were also analyzed for dioxins/furans.

Only trace concentrations of TPH-Dx and VOCs were detected. None of the detected concentrations exceed cleanup levels. In the shallow interval (~2 to 4 feet deep) at SB-4 and SB-5, dioxins/furans were detected, but at concentrations below background concentrations and cleanup levels.

Groundwater Samples. Groundwater samples were collected from SB-4 and SB-5 and analyzed for TPH-Dx only. Significant concentrations of TPH-Dx were detected in each of these samples. TPH-Dx was detected above cleanup levels when analyzed without silica gel cleanup. TPH-Dx was not detected above cleanup levels when silica gel cleanup.

4.2.4 Hog Fuel Mixing Area

The hog fuel mixing area is used to mix oil-water separator sludges with wood waste and sold for hog fuel. This area is located at the southern portion of the Site. Direct push boring SB-6 and surface soil sampling (SS-1 through SS-3) were completed at a downgradient area of this mixing area.

Soil Samples. Each sample from this area was analyzed for TPH-Dx and VOCs. Only trace concentrations of TPH-Dx and VOCs were detected. None of the detected concentrations exceed cleanup levels. Surface soil samples (SS-1 through SS-3) were analyzed for dioxins/furans. Concentrations of dioxins in SS-1 through SS-3 expressed as Total 2,3,7,8 TEQ exceeded background concentrations, the 2,3,7,8 Dioxin Total TEQ in SS-1 exceeds the MTCA Method B cleanup level, and the Total HxCDD concentrations exceeds the same cleanup level.

Groundwater Sample. A groundwater sample was collected from SB-6 and analyzed for TPH-Dx only. Significant concentrations of TPH-Dx were detected in the sample. The detected concentration exceeded the MTCA Method A groundwater cleanup level by a factor of between 1.5 and 2. However, the TPH-Dx concentrations were significantly reduced to either below detection limits or below cleanup levels after being analyzed with silica gel cleanup.

4.2.5 Current and Former Dip Tank Areas

The current dip tank area is located approximately 70 feet south of the former dip tank area. A relatively minor amount of Buse's wood products is treated with a water-based anti-stain/brightener, which is completed at the current dip tank. The boring (SB-7) was completed to assess if any potential contamination originated from former/current dip tank operation.

Historically, wood treatment using PCP occurred at the former dip tank until at least 1986. Wood treatment with PCP was also reported to be limited (most Buse products are sold untreated). This dip tank reportedly did not have a cover or secondary containment. Borings SB-11 and SB-12/12A were completed to assess the former dip tank area. Groundwater was not encountered at SB-12; SB-12A was re-drilled at approximately one foot away from SB-12 to a total depth of 25 feet for groundwater sampling.

Soil Samples. Each sample from this area was analyzed for TPH-Dx and chlorinated phenols. Select soil samples were also analyzed for dioxins/furans. TPH-Dx was mostly not detected. None of the detected concentrations exceed cleanup levels. Chlorinated phenols compounds were not detected. Dioxins were detected in the shallow interval (~3 to 4 feet deep) at SB-11 and SB-12. Detected concentrations were below background concentrations and cleanup levels.

Groundwater Samples. Groundwater samples were collected from SB-7, SB-11 and SB-12A and analyzed for TPH-Dx. Samples collected from SB-11 and SB-12A were also analyzed for chlorinated phenols.

In sample SB-11W, collected at 6.8 feet bgs, PCP, 2,4,5- trichlorophenol and 2,4,6-pentachlorophenol were detected in groundwater. The detected concentrations of pentachlorophenol ($58.4 \mu g/L$) exceed the MTCA Method B cleanup level for cancer risks ($0.22 \mu g/L$). Chlorinated phenols were not detected in the sample SB-11 collected at 22 feet bgs. Chlorinated phenols were not detected in the sample from SB-7. Because the data were not collected from a monitoring well, turbidity from this shallow discrete sample may be the result of the detected PCP. In samples collected from SB-12, in the same area at deeper depths (22 feet bgs), PCP, 2,4,5- trichlorophenol and 2,4,6-pentachlorophenol were not detected.

In SB-7 and SB-11, TPH-Dx was detected above cleanup levels when analyzed without silica gel cleanup. TPH-Dx was not detected above cleanup levels when silica gel cleanup was used. TPH-Dx was also detected in the sample collected from SB-12A when analyzed without silica gel cleanup, but below the MTCA Method A groundwater cleanup level. The TPH-Dx concentrations were significantly reduced to either below detection limits or below cleanup levels after silica gel cleanup.

4.2.6 Former Main Plant Drain Area

According to historical investigations, there used to be a main plant storm drain located near the current dry shed building at the central portion of the Site. SB-10 was completed in the area for assessment as the feature was not previously characterized.

Soil Samples. Each sample from this area was analyzed for TPH-Dx. Select soil samples were also analyzed for dioxins/furans. Only trace concentrations of TPH-Dx were detected. None of the detected concentrations exceed cleanup levels. Dioxins were detected in the shallow interval (~3 to 4 feet deep) at SB-10. Detected concentrations were below background concentrations and cleanup levels.

Groundwater Sample. A groundwater sample was collected from SB-10 and analyzed for TPH-Dx. Concentrations of TPH-Dx were detected in the sample as estimated values, but they were below the MTCA Method A groundwater cleanup level. The TPH-Dx concentrations were significantly reduced to below detection limits after being analyzed with silica gel cleanup.

4.2.7 Current Washdown Area

The Site currently has a vehicle washdown area located at the southwestern portion of the Site. Heavy duty vehicles are frequently washed in this area. The wastewater from the washdown flows to a separator vault nearby. SB-8 was completed at a low point near the outlet to the washdown area to characterize any potential containment/releases originated from the washdown operation.

Soil Samples. Each sample from this area was analyzed for TPH-Dx. TPH-Dx was detected. None of the detected concentrations exceed cleanup levels.

Groundwater Sample. A groundwater sample was collected from SB-8 and analyzed for TPH-Dx. The detected TPH-Dx concentrations exceeded the MTCA Method A groundwater cleanup level by a factor of between 2 and 3. However, the TPH-Dx concentrations were significantly reduced to either below detection limits or below cleanup levels after silica gel cleanup.

4.2.8 Former UST Area

The Site formerly operated a UST system at the northeastern portion of the Site. The USTs were believed to be installed circa 1964 and removed in 1996, without complete documentation to Ecology. No releases or spills associated with these USTs were reported. However, no tank removal documentation was available for review. The boring (SB-13) was completed to characterize the vicinity of the former UST system.

Soil Samples. Each sample from this area was analyzed for TPH-Dx and VOCs. Concentrations of TPH-Dx and VOCs were detected below cleanup levels.

Groundwater Sample. A groundwater sample was collected from SB-13 and analyzed for TPH-Dx and VOCs. VOCs were detected at concentrations below cleanup levels. Concentrations of TPH-Dx were detected in the sample as estimated values, but they were below the MTCA Method A groundwater cleanup level. The TPH-Dx concentrations were significantly reduced after silica gel cleanup.

4.2.9 AST Area

The Site formerly operated ASTs near the northwestern entrance of the Site. This area is redeveloped with secondary containment for current AST storage. The boring (SB-14) was completed to characterize the feature and assess if any potential contamination originated from former AST operation.

Soil Samples. Each sample from this area was analyzed for TPH-Dx. Only trace concentrations of TPH-Dx were detected. None of the detected concentrations exceed cleanup levels.

Groundwater Sample. Groundwater was not encountered at this location; therefore, no groundwater sample was collected (SB-14).

4.3 Drainage Sediment Investigation

Two discrete drainage sediment samples (DR-1 near the tide gate and DR-10 near the waste mixing area) and three composite samples (West Drainage, East Drainage, South Drainage) were collected and analyzed for TPH-Dx, PAHs, PCBs, chlorinated phenols, and metals (sample DR-10 was analyzed for dioxins only). Soil dioxins/furans concentrations were reported in 2,3,7,8 TCDD TEQ. The drainage sediment results are compared to Natural Background Concentrations and Freshwater Sediment Management Standards from WAC 173-204. In Washington, Total 2,3,7,8 dioxin TEQ of 4 pg/g or less in sediment is considered below regional background concentrations.

Concentrations of TPH-Dx, PAHs, PCBs, and metals were not detected, or they were detected below cleanup levels, with one exception. Mercury was detected at a concentration of 6.65 mg/kg, which is minimally above the Washington Sediment Cleanup Objective.

In the east drainage sample, the detected dioxin Total 2,3,7,8 TEQ was 113 pg/g, which is more than 25 times greater than the 4.0 pg/g Washington sediment background concentration. All but one of the remaining samples had TEQs greater than 4 pg/g, ranging from 3.22 to 7.65 pg/g, significantly lower than the east drainage sample. Discrete sample DR-10 was the only sample with a TEQ less than the 4.0 pg/g Washington sediment background concentration.

5.0 Conclusions

TPH-Dx is widely detected at the site. However, based on the analyses completed with and without silica gel cleanup of TPH in groundwater, TPH-Dx concentrations are largely biased high as a result of biogenic compounds present from degrading wood product residuals (chips, sawdust, etc.). The available information indicates that TPH-Dx (diesel and oil range petroleum hydrocarbons) do not represent a risk at the site.

Chlorinated phenols, PCBs, VOCs, and metals, when present in any media, were largely below cleanup levels. Exceptions include:

- PCP was detected in a single shallow groundwater sample at SB-12A (near the former dip tank), but not in adjacent sample SB-11, collected from deeper intervals.
- Mercury within the East Drainage sample.
- Concentrations of arsenic in Terracon borings B-1 and B-2.

The available information indicates that sources of chlorinated phenols, PCBs, VOCs, and metals are not present at the site.

Dioxin concentrations in soil and drainage sediment appear to be the most significant environmental condition at the site. Dioxin results from the 2018 Terracon Phase I ESA and the 2021 Phase II ESA are summarized on Figures 7 and 8.

Soil. In soil, concentrations of dioxins across the facility are largely below background concentrations and cleanup levels. Dioxin concentrations at Terracon sample B5-2.5, near the former fire pond, exceeded the background concentration and detected concentrations from the 2021 Phase II ESA at SS-1 and SS-2 exceed MTCA Method B cleanup levels. SS-3, in this same area, exceeds the background concentration.

Sediment. The east drainage formerly received the majority of the facility stormwater runoff, so it is not unexpected that dioxin concentrations were highest in this location. Sediment remediation was completed in 2003 in the east drainage, indicating the worst material may have already been removed. Dioxins are the primary issue, and mercury concentrations in the East Drainage should also be considered. The other drainage sediment data collected (TPH, PAHs, PCBs, other metals) do not indicate adverse conditions under Washington Sediment Management standards.

5.1 Recommendations

Soil, groundwater, and drainage sediment contain wood waste and residuals that interfere with TPH analysis. Future chemical analysis should continue to use silica gel cleanup for an accurate representation of the TPH that is present.

While concentrations of TPH and VOCs were below cleanup levels at the former UST area, the detected concentrations of petroleum in groundwater are a release from a UST system that is reportable under Washington Administrative Code (WAC) 173-340. Requirements for UST decommissioning in Washington include confirmation sampling and groundwater characterization (when groundwater is impacted). These requirements have not been met and are should be completed in order for the site to be in compliance with UST regulations.

Based on the 2018 Terracon investigation, an arsenic release was reported based on detected concentration of arsenic above MTCA Method A cleanup levels. Sampling completed in this area during this Phase II ESA did not detect arsenic at concentrations above cleanup levels. Soil and groundwater sampling should be completed in order to verify if this was an actual release, or the result of variability in arsenic concentrations.

The single location where PCP was detected in groundwater at the former dip tank (SB-11) does not appear to represent a source of contamination. In a deeper groundwater sample (SB-12) collected within the area of the former dip tank and adjacent to SB-11, PCP was not detected. The data indicate that variability due to turbidity likely bias the sample and PCP was not detected in the deeper groundwater sample at SB-12. Groundwater samples collected in 1998 at the dip tank did not detect PCP. Together, these data suggest a source of PCP is not present at the former dip tank area. Additional sampling at the former dip tank is not recommended at this time.

Concentrations of dioxins near the waste mixing donut are present above background concentrations and samples SS-1 and SS-2 exceed MTCA Method B cleanup levels. Dioxin concentrations in sediment sample DR-10 indicate

that the south drainage may not have been impacted by the detected concentrations of dioxins. The detected concentrations of dioxins near SS-1 and SS-3 require further evaluation, including determining the extent of dioxins in this area and risk assessment.

Concentrations of dioxins in all but one drainage sample exceeded the sediment background concentration. The discrete sample collected from the east drainage (DR-10) is the only drainage sediment sample with detected concentrations below background concentrations. These concentrations require further evaluation. Sediment cleanup levels are not promulgated for dioxins. Remedial decision making is based on ecological risk assessment using site-specific bioassay. Detailed characterization of the drainages to determine the extent of dioxins in the drainages and ecological risk assessment should be completed.

6.0 References

- Apex Companies, LLC (Apex), 2021. Draft Phase I Environmental Site Assessment, Buse Timber & Sales, 3812 28th Place Northeast, Everett, WA 98201. September 14, 2021.
- Washington Department of Ecology (Ecology), 1990. Preliminary Assessment Report, Buse Timber & Sales, Inc., Everett, Washington. October 1990.
- Exponent, 1998. Draft Phase II Environmental Site Assessment, Buse Timber & Sales, Everett, Washington. August 21, 1998.
- Exponent, 2010. Buse Timber and Sales Phase II Update, Buse Timber & Sales, Everett, Washington. December 6, 2010.
- Minard, J.P., 1985. U.S. Geological Survey Miscellaneous Field Studies Map MF-1743, scale 1:24,000. Geologic map of the Marysville quadrangle, Snohomish County, Washington. 1985.
- Terracon Consultants, Inc. (Terracon), 2018a. Phase I Environmental Site Assessment, Buse Timber & Sales, 3812 28th Place Northeast, Everett, Washington 98201. June 20, 2018.
- Terracon, 2018b. *Limited Site Investigation, Buse Timber & Sales, 3812 28th Place Northeast, Everett, Washington 98201.* September 17, 2018.
- URS Consultants, Inc. (URS), 1994. Screening Site Inspection Report, Buse Timber & Sales, Everett, Washington. August 19, 1994.

Table 1 - Soil Results: TPH Buse Timber & Sales Everett, Washington

					ydrocarbons (TPH) Silica Gel Cleanup
				Diesel Range	Residual Range
Area	Somple Leastion ID	Depth (feet)	Date	Organics	Organics ons in mg/kg
Area	Sample Location ID	(feet)	od A Cleanup Level	2,000	2,000
	SB-1(0-5)	2-3	07/01/2021	4.51 J	38.1
Vehicle Maintenance	SB-1(5-10)	6-7	07/01/2021	8.79 J	67.3
	SB-2(0-5)	4-5	07/01/2021	<4.80	<12.0
	SB-2(5-10)	8-9	07/01/2021	<5.88	<14.7
Former Log Pond Fill	SB-3(0-5)	3-4	07/01/2021	<4.97	<12.4
	SB-3(5-10)	8.5-9.5	07/01/2021	<6.68	5.61 J
_	SB-4(0-5)	3-4	07/01/2021	<4.94	<12.3
Current Lube	SB-4(5-10)	6-7	07/01/2021	<5.01	<12.5
Building/Mechanics Shop Area	SB-5(0-5)	2.5-3.5	07/01/2021	23.5	56.5
	SB-5(5-10)	6-7	07/01/2021	10.7	58.6
Hog Fuel Mixing Area	SB-6(0-5)	3-4	07/01/2021	<5.77	8.72 J
	SB-6(5-10)	8-9	07/01/2021	<7.29	<18.2
Current Dip Tank	SB-7(0-5)	3-4	06/30/2021	<7.05	6.19 J
	SB-7(5-10)	6-7	06/30/2021	<8.52	<21.3
Current Washdown	SB-8(0-5)	2-3	06/30/2021	38.5	92.4
Area	SB-8(5-10)	8-9	06/30/2021	<6.28	<15.7
Former Log Pond	SB-9(0-5)	3-4	07/01/2021	6.74 J	28.2
Fill/Current AST Area	SB-9(5-10)	8-9	07/01/2021	3.83 J	31.3
Former Main Plant	SB-10(0-5)	3-4	06/30/2021	<6.09	5.51 J
Drain	SB-10(5-10)	6.5-7.5	06/30/2021	5.93 J	49.9 J
	SB-11(0-5)	3-4	06/30/2021	<6.99	<17.5
	SB-11(5-10)	7-8	06/30/2021	<7.75	<19.4
Former PCP Dip Tank	SB-12(0-5)	3.5-4.5	06/30/2021	64.6	119
	SB-12(5-10)	8-9	06/30/2021	6.53 J	39.7
	SB-13(0-5)	3-4	06/30/2021	<6.33	6.10 J
Former UST Area	SB-13(5-10)	6.5-7.5	06/30/2021	6.06 J	37.3
	SB-13(10-15)	13.5-14.5	06/30/2021	<6.27	<15.7
	SB-14(0-5)	3-4	06/30/2021	<5.62	11.4 J
Former AST Area	SB-14(5-10)	7-8	06/30/2021	3.29 J	13.9 J
	SS-1		07/01/2021	13.2	175
Waste Mixing Doughnut			07/01/2021	10.0	101
	SS-3		07/01/2021	16.7	151

Notes:

1. mg/kg = Milligrams per kilogram.

2. Bold values indicate the compound was detected above method detection limits.

3. < = Analyte was not detected above the reporting limit shown.

4. Shaded results exceed the Model Toxics Control Act (MTCA) Method A for unrestricted land use.

5. Soil cleanup levels from the MTCA Method A for unrestricted land use chapter 173-340 WAC (February 2021 update).

6. -- = Value not available.

7. J = Result is estimated.

Hartenum Feet FA Current Like Buildparkermen (Parker Merg Autor Parker Merg Autor		Vehicle	Former Log		Former I			Formor Log Pr	and Fill/Current	Former UST		
Series Series<				Current Lube	Building/Mechan	ics Shop Area	Hog Fuel N	lixing Area				
Degin freed 2.3 4.4 6.7 6.7 1.4 6.8 3.4 6.8 6.75 low Wateh Dugais Compound (VCU) by 2800 mmag.	Sample Location ID:	SB-1(0-5)	SB-2(0-5)	SB-4(0-5)	SB-4(5-10)	SB-5(5-10)	SB-6(0-5)	SB-6(5-10)	SB-9(0-5)	SB-9(5-10)	SB-13(5-10)	Method A
Wattin Quartel Compounds (VPCs) by 12800 mays - - - - <td></td> <td>2-3</td> <td>4-5</td> <td>3-4</td> <td>6-7</td> <td>6-7</td> <td>3-4</td> <td>8-9</td> <td>3-4</td> <td>8-9</td> <td>6.5-7.5</td> <td>Level</td>		2-3	4-5	3-4	6-7	6-7	3-4	8-9	3-4	8-9	6.5-7.5	Level
Actions 0.512 -0.0710 40.783 -0.0770 40.784 -0.243 -0.143 -0.277 40.814 40.277 40.814 40.27	Date:	07/01/2021	07/01/2021	07/01/2021	07/01/2021	07/01/2021	07/01/2021	07/01/2021	07/01/2021	07/01/2021	06/30/2021	
Any-loniné-0.0283-0.0178-0.0184 <td></td>												
barbone0.00560.005710.001730.001730.001730.001730.001730.001730.00175 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Bonechansen 40,028 40,078 40,076 40,078 40												
Immontheme 0.0058 <th0.0058< th=""> <th0.0058< th=""> 0.0058</th0.0058<></th0.0058<>												0.05
Banucham 40,058 40,05	Bromodichloromethane											
Balybarnen sekuptenzen <td>Bromoform</td> <td></td> <td>< 0.0355</td> <td>< 0.0369</td> <td></td> <td>< 0.0330</td> <td></td> <td>< 0.0689</td> <td>< 0.0365</td> <td></td> <td><0.132</td> <td></td>	Bromoform		< 0.0355	< 0.0369		< 0.0330		< 0.0689	< 0.0365		<0.132	
mace.Subplementance0.0178<	Bromomethane											
Interlayingeration 0,0171 0,00770 0,00783 0,00789 0,00783												
Caton Transhoring 0.00719 0.00739 0.00889 0.0073 0.00886 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 0.00889 <th0.00889< th=""> 0.00889 <th0.00889< th=""></th0.00889<></th0.00889<>												
Cholochersene0.00360.00350.00360.00360.00330.00390.00380.00350.00330.013												
Chinochomenten0.00360.00350.00370.00370.00370.00360.00330.00370.00360.00330.00370.00360.00330.00370.00360.00330.00350.00330.0035<												
Chinochame0.007140.007360.007070.008690.008850.00865 <td>Chlorodibromomethane</td> <td></td>	Chlorodibromomethane											
Cheoresham -0.0254 -0.0178 -0.0185 -0.0249 -0.0249 -0.0155 -0.0255	Chloroethane											
2.Cherobusen -0.0058 -0.0038 -0.0039 -0.00499 -0.00589 -0.0038 -0.0039 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0058 -0.0353 -0.0153 -0.0153 -0.0153 -0.0173 -0.0073	Chloroform											
4Chabcabane 0.0114 0.00713 0.00730 0.00661 0.00673 0.00730 0.00863 0.0087 0.00864 0.0085 0.00873 0.00733 0.00733 0.00733 0.00733 0.00733 0.00733 0.00733 0.00730 0.00865 0.00855 0.00856 0.00855 0.00856 0.00836 <	Chloromethane											
12.Diconscience -0.0668 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0868 -0.0133 -0.0770 -0.0066 -0.0973 -0.0770 -0.0066 -0.0973 -0.0770 -0.0066 -0.0973 -0.0770 -0.0066 -0.0973 -0.0770 -0.0066 -0.0977 -0.0133 -0.0770 -0.0066 -0.0087 -0.0770 -0.0066 -0.0087 -0.0770 -0.0066 -0.0087 -0.0073 -0.00770 -0.0066 -0.0085 -0.0033 -0.0038 -0.0033 -0.0038 -0.0033 -0.0038 -0.0033 -0.0038 -0.0033 -0.0038 -0.0033 -0.0038 -0.0033 -0.0033 -0.0038 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033												
12.Dib.consentance 0.00688 0.00738 0.00738 0.00738 0.00738 0.00737 0.00738 0.00737 0.00739 0.00730 0.00739 0.00730												
Disconstanteme -0.0114 -0.00710 -0.00730 -0.00787 -0.0138 -0.00730 -0.0078 -0.0138 -0.00730 -0.0078 -0.0138 -0.00730 -0.0078 -0.0138 -0.00730 -0.00780 -0.0138 -0.00730 -0.00780 -0.0138 -0.00730 -0.00780 -0.0138 -0.00730 -0.00780 -0.0138 -0.00730 -0.00780 -0.0138 -0.00730 -0.00780 -0												
12.Dehotopharpane -0.0114 -0.0070 -0.0088 -0.0138 -0.00738												
13.Dichtorebanzene -0.0114 -0.00710 -0.00780 -0.0138 -0.00730 -0.00860 -0.0038 -0.00730 -0.0087 -0.0138 -0.00730 -0.00860 -0.00184 -0.00730 -0.00860												
Dichlosofithusomethane <0.00656 <0.00556 <0.00359 <0.00389 <0.00689 <0.00365 <0.00383 <0.00389 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.00385 <0.0038		<0.0114	<0.00710			< 0.00659					<0.0263	
11-Dickloreshtnen 0.00586 0.00389 0.00330 0.00499 0.00489 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00385 0.00333 0.00499 0.00133 0.00265 0.00333 0.00197 0.0133 0.00263	1,4-Dichlorobenzene											
12.Delthromehnen 0.00586 0.00389 0.00330 0.00499 0.00499 0.00689 0.00333 0.00133	Dichlorodifluoromethane											
1.1.Dichtongehene <0.00586 <0.00389 <0.00380 <0.00330 <0.00499 <0.00689 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00333 <0.00356 <0.00353 <0.00353 <0.00353 <0.00353 <0.00333 <0.00356 <0.00353 <0.00333 <0.00397 <0.01333 <0.00333 <0.00356 <0.00353 <0.00330 <0.0097 <0.0133< <0.00333 <0.00370 <0.00356 <0.00353 <0.00330 <0.0097 <0.0133< <0.00333 <0.00370 <0.00356 <0.00357 <0.00350 <0.00330 <0.00397 <0.00380 <0.00330 <0.00397 <0.00380 <0.00330 <0.00397 <0.00330 <0.00330 <0.00330 <0.00330 <0.00330 <0.00330 <0.00330 <0.00330 <0.00330												
cis:12-Dehloroprobene <000568 <000355 <000375 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000575 <000375 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <000577 <0000577 <000578 <000577<												
trans-12.Dickhorgehnen 0.0114 0.00770 0.00780 0.00770 0.00780 0.00770 0.00780 0.00843 0.00733 0.00783 </td <td></td>												
12-Dichloropropane <0.0114 <0.00710 <0.00730 <0.0099 <0.0038 <0.00370 <0.0086 <0.00230 <0.00230 <0.00730 <0.0099 <0.00380 <0.00370 <0.00860 <0.00230 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130 <0.00140 <0.00130 <0.00140 <0.00130 <0.00140 <0.00130 <0.00140 <0.00130 <0.00140 <0.00130 <0.00140 <0.00130 <0.00140 <0.00130 <0.00140 <0.00130 <0.00140 <0.00130 <0.00130 <0.00140 <0.00130 <0.00130 <0.00130 <0.00130 <0.00130												
1,2-Dichloropropane <0.0174 <0.00738 <0.00730 <0.00859 <0.00859 <0.00899 <0.00730 <0.00866 <0.0283 <- cis.1.3-Dichloropropane <0.00584												
cisi:13-0indiroignopene <0.00568	1,1-Dichloropropene											
trans.12.bichlorg/nopene <0.0174 <0.00730 <0.00580 <0.00597 <0.133 <0.00730 <0.00880 <0.00330 <0.00273 <0.00580 <0.00350 <0.00140 <0.00154 <0.00580 <0.00350 <0.00355 <0.00355 <0.00140 <0.00173 <0.00173 <0.00173 <0.00277 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173 <0.00173	1,3-Dichloropropane											
2.2-Dichloropropane c0.00588 c0.00355 c0.00385 c0.00380 c0.00489 c0.00885 c0.00385 c0.00387 disopropylEher c0.00588 c0.00355 c0.00380 c0.0019 c0.00276 c0.00164 c0.00173 c0.00375 c0.00385 c0.00380 c0.0019 c0.00889 c0.00356 c0.00380 c0.0019 c0.0089 c0.00356 c0.00330 c0.0049 c0.00889 c0.00356 c0.00330 c0.0049 c0.0089 c0.00356 c0.0133 c0.0132 c0.0134 c0.0135 c0.0134 c0.0135 c0.0138 c0.0136 c0.013												
disporpy/Ether < 0,0027 < 0,00142 < 0,00132 < 0,00199 < 0,00276 < 0,00140 < 0,00173 < 0,0057 < - Ethyberzzne < 0,00568												
Ethylenzene <0.00568 <0.00358 <0.00380 <0.00300 <0.00499 <0.00689 0.00241 <0.00433 <0.0132 <0 Hexachioro-1,3-Butaiene <0.00568												
Hexachloro-1.3-Butadiene <0.0568 <0.0355 <0.0369 <0.0385 <0.0300 <0.0489 <0.0365 <0.0364 <0.0171 <0.1132 Jespropylouzene <0.0158												
p-isopropyloluone <0.0114 0.00721 <0.0738 0.00644 J 0.0393 <0.00997 <0.0138 0.0849 0.00717 J <0.2023 2-Butanone (MEK) 0.0387 <0.0158	Hexachloro-1,3-Butadiene											
2-butanone (MEK) 0.387 J+ 0.158 J+ 0.202 J+ 0.179 J+ 0.249 J+ 0.447 J+ 0.209 J+ 0.270 J+ 0.374 J+ - Methylene Chloride <0.0568	Isopropylbenzene	<0.00568	< 0.00355	< 0.00369	< 0.00385	< 0.00330	< 0.00499	<0.00689	0.0024 J	<0.00433	< 0.0132	
Methylene Chloride < 0.0568 < 0.0355 < 0.0369 < 0.0385 < 0.0330 < 0.0499 < 0.0689 < 0.0365 < 0.0433 < 0.132 0.02 4-Methyl-2-Pentanone (MIBK) < 0.0568	p-lsopropyltoluene											
4+Methyl-2-Pentanone (MIBK) <0.0568 <0.0355 <0.0385 <0.0385 <0.0385 <0.0385 <0.0385 <0.0385 <0.0385 <0.0385 <0.00180 <0.00173 <0.00357 <0.00173 <0.00527 <0.00173 <0.00527 <0.00173 <0.00527 <0.0114 Naphthalene <0.0224												
Methyltert-Butyl Ether <0.00227 <0.00142 <0.00148 <0.00154 <0.00132 <0.00199 <0.00276 <0.00146 <0.00173 <0.00577 0.1 Naphthalene <0.0284												
Naprithalene < 0.0284 < 0.0178 < 0.0185 < 0.0193 < 0.0165 < 0.0249 < 0.0183 < 0.0216 < 0.0658 < 0.0138 n-Propylbenzene < 0.0114												
n-Propylbenzene <0.0114 <0.00710 0.00226 0.00305 <0.00659 <0.00977 <0.0138 <0.00730 <0.00866 <0.0263 Styrene <0.0284												
Styrene <0.0284 <0.0178 <0.0185 <0.0193 <0.0165 <0.0249 <0.0345 <0.0183 <0.0216 <0.0688 <-1 1,1,1_2.Tetrachloroethane <0.00568	n-Propylbenzene											-
1,1,2,2-Tetrachloroethane <0.00356	Styrene	<0.0284	<0.0178	<0.0185	<0.0193	<0.0165	<0.0249	<0.0345	<0.0183	<0.0216	<0.0658	
1,12_Trichlorotrifluoroethane <0.00568 <0.00355 <0.00369 <0.00385 <0.00330 <0.00499 <0.00689 <0.00365 <0.00433 <0.0132 Tetrachloroethene <0.00568	1,1,1,2-Tetrachloroethane											
Tetrachloroethene <0.00356 <0.00355 <0.00369 <0.00385 <0.00380 <0.00399 <0.00499 <0.00689 <0.00365 <0.00433 <0.0132 0.11 Toluene 0.0157 0.00757 0.00673 0.00173 0.00173 0.00173 0.00173 0.00173 0.00173 0.00173 0.00173 0.00173 <0.0183	1,1,2,2-Tetrachloroethane											
Toluene 0.0157 0.00757 0.00673 J 0.0411 0.0202 0.0477 0.00783 J 0.0447 0.0249 <0.0263 7 1,2,3-Trichlorobenzene <0.0284												
1,2,3-Trichlorobenzene <0.0284												
1,2,4-Trichlorobenzene <0.0284 <0.0178 <0.0185 <0.0193 <0.0165 <0.0249 <0.0345 <0.0183 <0.0216 <0.0680 <0.0132 2 1,1,1-Trichlorobethane <0.00568												
1,1,1-Trichloroethane <0.00568 <0.00355 <0.00369 <0.00385 <0.00380 <0.00499 <0.00689 <0.00365 <0.00433 <0.0132 2 1,1,2-Trichloroethane <0.00568												
Trichloroethene <0.00227 <0.00142 <0.00148 <0.00154 <0.00132 <0.00199 <0.00276 <0.00146 <0.00173 <0.00527 0.03 Trichlorofluoromethane <0.00568	1,1,1-Trichloroethane											2
Trichlorofluoromethane <0.00568 <0.00355 <0.00369 <0.00385 <0.00380 <0.00399 <0.00499 <0.00689 <0.00365 <0.00433 <0.0132 1,2,3-Trinchloropropane <0.0284												
1,2,3-Trichloropropane <0.0284 <0.0178 <0.0185 <0.0193 <0.0165 <0.0249 <0.0345 <0.0183 <0.0216 <0.0658 1,2,4-Trimethylbenzene <0.0114	Trichloroethene											
1,2,4-Trimethylbenzene <0.00114 <0.00710 <0.00738 0.0166 0.00405 J <0.00997 <0.0138 0.00387 J <0.00866 <0.0263 1,2,3-Trimethylbenzene 0.0038 J <0.00710	Trichlorofluoromethane											
1,2,3-Trimethylbenzene 0.0038 J <0.00710 <0.00738 0.00314 J <0.00659 <0.00997 0.00516 J <0.00730 0.00327 J <0.0263 1,3,5-Trimethylbenzene <0.0114												
1,3,5-Trimethylbenzene <0.0114 <0.00710 <0.00738 0.00339 <0.00659 <0.00997 <0.0138 <0.00730 <0.00866 <0.0263 Vinyl Chloride <0.00568												
Vinyl Chloride <0.00568 <0.00355 <0.00369 <0.00385 <0.00380 <0.00380 <0.00499 <0.00689 <0.00365 <0.00433 <0.0132												
	Vinyl Chloride											
	Xylenes, Total											9

Notes:

1. mg/kg = Milligrams per kilogram.

2. Bold values indicate the compound was detected above method detection limits.

<= Analyte was not detected above the reporting limit shown.
 Shaded results exceed the Model Toxics Control Act (MTCA) Method A for unrestricted land use.

5. Soil cleanup levels from the MTCA Method A for unrestricted land use chapter 173-340 WAC (February 2021 update).

-- = Value not available.
 J = Result is estimated.

8. UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

9. J+ = Result is estimated and may be biased high.

Table 3 - Soil Results: Chlorinated Phenols and Metals Buse Timber & Sales Everett, Washington

						Former Log										T	
						Pond											
	Vehicle					Fill/Current											
	Maintenance	Former Lo	g Pond Fill	Current	Dip Tank	AST Area		Former PCP Dip Tank Waste Mixing Doughnut			hnut						
Sample Location ID:	SB-1(0-5)	SB-2(0-5)	SB-3(5-10)	SB-7(0-5)	SB-7(5-10)	SB-9(5-10)	SB-11(0-5)	SB-11(5-10)	SB-12(0-5)	SB-12(5-10)	SB-12A(0-5)	SB-12A(5-10)	SS-1	SS-2	SS-3	Puget Sound Background Metals	MTCA Method A Cleanup
Depth (feet):	2-3	4-5	8.5-9.5	3-4	6-7	8-9	3-4	7-8	3.5-4.5	8-9	3.5-4.5	8-9				Concentration	Level
Date:	07/01/2021	07/01/2021	07/01/2021	06/30/2021	06/30/2021	07/01/2021	06/30/2021	06/30/2021	06/30/2021	06/30/2021	07/01/2021	07/01/2021	07/01/2021	07/01/2021	07/01/2021		
Chlorinated Phenols by EP	PA Method 8270	E in mg/kg															
4-Chloro-3-Methylphenol	<1.08	< 0.399	<1.11	<0.587	<0.709	<0.445	<0.582	<0.645	<0.588	<0.675	<1.41	<0.670	<1.31	<0.690	<1.17		
2-Chlorophenol	<1.08	< 0.399	<1.11	<0.587	<0.709	<0.445	<0.582	<0.645	<0.588	< 0.675	<1.41	<0.670	<1.31	<0.690	<1.17		
2,4-Dichlorophenol	<1.08	< 0.399	<1.11	<0.587	<0.709	<0.445	<0.582	<0.645	<0.588	< 0.675	<1.41	<0.670	<1.31	< 0.690	<1.17		
Pentachlorophenol	<1.08	< 0.399	<1.11	<0.587	<0.709	<0.445	<0.582	<0.645	<0.588	< 0.675	<1.41	<0.670	<1.31	<0.690	<1.17		
2,4,6-Trichlorophenol	<1.08	< 0.399	<1.11	<0.587	<0.709	<0.445	<0.582	<0.645	<0.588	< 0.675	<1.41	<0.670	<1.31	< 0.690	<1.17		
2,4,5-Trichlorophenol	<1.08	< 0.399	<1.11	<0.587	< 0.709	<0.445	<0.582	<0.645	<0.588	< 0.675	<1.41	<0.670	<1.31	< 0.690	<1.17		
Metals by EPA Method 602	0B and 7471B i	in mg/kg															
Arsenic	18.4	-					-									7	20
Barium	51.4	-					-						-				
Cadmium	<1.62	-					-						-			1	2
Chromium	66.7	-					-						-			48	2000
Lead	10.4	-														24	250
Selenium	0.809 J												-				
Silver	<0.808	-															
Mercury	0.0765	-					-						-		-	0.07	2

Notes:

1. mg/kg = Milligrams per kilogram.

pg/g = Picograms per gram.

3. Bold values indicate the compound was detected above method detection limits.

4. < = Analyte was not detected above the reporting limit shown.

5. Shaded results exceed the Model Toxics Control Act (MTCA) Method A for unrestricted land use.

6. Soil cleanup levels from the MTCA Method A for unrestricted land use chapter 173-340 WAC (February 2021 update).

7. -- = Value not available.

8. J = Result is estimated.

Table 4 - Soil Results: Dioxins/Furans Buse Timber & Sales Everett, Washington

Former Lo	a Pond Fill			Former Main Plant Drain	Former PC	P Dip Tank	Waste Mixing Doughnut				
		Ŭ									MTCA
SB-2(0-5)	SB-3(5-10)	SB-4(0-5)	SB-5(0-5)	SB-10(0-5)	SB-11(0-5)	SB-12(0-5)	SS-1	SS-2	SS-3	Natural Background	Method B Cleanup
4 E	9 5 0 5	2.4	0505	2.4	2.4	2545				Dioxins/Furans	Level
-					-						
		07/01/2021	01/01/2021	00/30/2021	00/30/2021	00/30/2021	0110112021	07/01/2021	07/01/2021		
		<0.12	<0.10	<0.13	0 13 .	<0.12	0 151 J	<0.12	0.093		
<0.12	<0.12	<0.10	0.33 J			0.3 J		-			
<0.11	<0.14	<0.13	0.28 J	0.14 J	0.28 J	0.29 J	2.70 J	3.45 J	1.25 J		
0.618 J	0.14 J	0.12 J	1.28 J	<0.17	4.53 J	0.46 J	30.2	34.7	14.5		
0.352 J	0.23 J	<0.11	0.59 J	0.29 J	0.72 J	0.42 J	9.09	6.21	4.12 J		
3.82 J	2.79 J	1.56 J	8.58	5.48	35.7	5.49	217	335	106		
16.7	34.7	14.3	62.1	176	121	48.1	1140	1370	441		
0.27 J	<0.11	0.17 J	0.61 J	<0.29	1.96 J	1.91 J	1.34 J	2.72	1.25 J		
<0.13	<0.12	<0.12	0.25 J	<0.13	0.52 J	0.43 J	0.929 J	4.78 J	1.57 J		
<0.12	<0.11	<0.11	0.46 J	0.13 J	0.72 J	0.74 J	1.09 J	4.3 J	1.39 J		
0.12 J	<0.11	<0.12	0.31 J	<0.11	0.75 J	0.37 J	3.89 J	19.1	<5.7 UK		
<0.092	<0.094	<0.11	0.33 J	<0.10	0.67 J	0.3 J	4.89 J	9.95	3.86 J		
<0.096	<0.099	<0.11	0.45 J	<0.10	0.747 J	0.32 J	<3.8 UK	5.98	<2.3 UK		
<0.11	<0.11	<0.13	0.19 J	<0.12	<0.11	<0.14	0.141 J	1.33 J	0.44 J		
2.33 J	0.124 J	0.32 J	3.07 J	0.997 J	35.4	1.14 J	106	248	64.5		
<0.12	<0.12	<0.13	0.27 J	0.16 J	0.81 J	0.12 J	3.92 J	10.3	2.63 J		
1.89 J	0.14 J	0.98 J	3.81 J	72.2	32.3	2.63 J	123	197	49.8		
3.63 J	1.93 J	0.61 J	5.79	2.61 J	20.5	4.17 J	188	131	85.2		160
0.364	0.244	0.217	1.07	0.399	2.48	1.09	11.8	18.5	6.66	5.2	13
	SB-2(0-5) 4-5 07/01/2021 thod 8290A in j <0.12 <0.12 <0.12 <0.12 <0.13 0.352 J 3.82 J 16.7 0.27 J <0.13 <0.12 0.12 J <0.092 <0.096 <0.11 2.33 J <0.12 1.89 J 3.63 J	4-5 8.5-9.5 07/01/2021 07/01/2021 thod 8290A in pg/g <0.12	Former Log Pond Fill Building/Mecha SB-2(0-5) SB-3(5-10) SB-4(0-5) 4-5 8.5-9.5 3-4 07/01/2021 07/01/2021 07/01/2021 4-5 8.5-9.5 3-4 07/01/2021 07/01/2021 07/01/2021 thod 8290A in pg/g	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Former Log Pond FillBuilding/Mechanics Shop AreaPlant DrainSB-2(0-5)SB-3(5-10)SB-4(0-5)SB-5(0-5)SB-10(0-5)4-58.5-9.53.42.5-3.53.407/01/202107/01/202107/01/202106/30/2021thod 8290A in pg/g07/01/202107/01/2021<0.12	Former Log Pond Fill Building/Mechanics Shop Area Plant Drain Former PC SB-2(0-5) SB-3(5-10) SB-4(0-5) SB-5(0-5) SB-10(0-5) SB-11(0-5) 4-5 8.5-9.5 3-4 2.5-3.5 3-4 3-4 07/01/2021 07/01/2021 07/01/2021 06/30/2021 06/30/2021 thod 8290A in pg/g 0.12 <0.10	Former Log Pond Fill Building/Mechanics Shop Area Plant Drain Former PCP Dip Tank SB-2(0-5) SB-3(5-10) SB-4(0-5) SB-5(0-5) SB-10(0-5) SB-11(0-5) SB-12(0-5) 4-5 8.5-9.5 3-4 2.5-3.5 3-4 3-4 3.5-4.5 07/01/2021 07/01/2021 07/01/2021 06/30/2021 06/30/2021 06/30/2021 4-5 8.5-9.5 3-4 2.5-3.5 3-4 3-4 3.5-4.5 07/01/2021 07/01/2021 07/01/2021 06/30/2021 06/30/2021 06/30/2021 4.5 8.5-9.5 3-4 2.5-3.5 3-4 3.4 3.5-4.5 07/01/2021 07/01/2021 07/01/2021 06/30/2021 06/30/2021 06/30/2021 4.5 0.11 <0.12	Former Log Pond Fill Building/Mechanics Shop Area Plant Drain Former PCP Dip Tank Wass SB-2(0-5) SB-3(5-10) SB-4(0-5) SB-5(0-5) SB-10(0-5) SB-11(0-5) SB-12(0-5) SB-12(0-5) SS-1 4-5 8.5-9.5 3-4 2.5-3.5 3-4 3-4 3.5-4.5 07/01/2021 07/01/2021 07/01/2021 07/01/2021 06/30/2021 06/30/2021 06/30/2021 07/01/2021 07/01/2021 4.5 8.5-9.5 3-4 2.5-3.5 3-4 3-4 3.5-4.5 0.7/01/2021 07/01/2021 07/01/2021 06/30/2021 06/30/2021 07/01/2021 07/01/2021 40.12 <0.12	Former Log Pond Fill Building/Mechanics Shop Area Plant Drain Former PCP Dip Tank Waste Mixing Dougl SB-2(0-5) SB-3(5-10) SB-4(0-5) SB-5(0-5) SB-10(0-5) SB-11(0-5) SB-12(0-5) SS-1 SS-2 4-5 8.5-9.5 3-4 2.5-3.5 3-4 3-4 3.5-4.5 07/01/2021 07/01/2021 07/01/2021 07/01/2021 06/30/2021 06/30/2021 06/30/2021 07/01/2021 07/01/2021 <0.12	Former Log Pond Fill Building/Mechanics Shop Area Plant Drain Former PCP Dip Tank Waste Mixing Douptut SB-2(0-5) SB-3(5-10) SB-4(0-5) SB-5(0-5) SB-10(0-5) SB-11(0-5) SB-12(0-5) SS-1 SS-2 SS-3 4-5 8.5-9.5 3-4 2.5-3.5 3-4 3-4 3.5-4.5 07/01/2021 07/01/2021 07/01/2021 07/01/2021 07/01/2021 06/30/2021 06/30/2021 07/01/2021 07/01/2021 07/01/2021 <0.12	Former Loc Pond Fill Building/Mechanics Shop Area Plant Drain Former PCP Dip Tank Waste Mixing Doupt SB-2(0-5) SB-3(5-10) SB-4(0-5) SB-5(0-5) SB-10(0-5) SB-11(0-5) SB-12(0-5) SS-1 SS-2 SS-3 Natural Background Dioxins/Furans 4-5 8.59.5 3.4 2.53.5 3.4 3.4 3.54.5 - </td

Notes:

1. pg/g = Picograms per gram.

2. Bold values indicate the compound was detected above method detection limits.

3. < = Analyte was not detected above the detection limit shown.

4. Shaded results exceed the Model Toxics Control Act (MTCA) Method B Cancer soil cleanup level and the natural background concentration for dioxins/furans.

5. Soil cleanup levels from the MTCA Method B Cancer 173-340 WAC (February 2021 update).

6. Natural background concentration for dioxins/furans from Washington Ecology's technical memorandum Natural Background for Dioxins/Furans in WA Soil (August 2010).

7. -- = Value not available.

8. J = Result is estimated.

9. UK = Estimated maximum possible concentration (EMPC). Diphenylether interference present caused dibenzofuran detected to become a "non-detect" with an elevated detection limit.

Table 5 - Groundwater Results Buse Timber & Sales Everett, Washington

	Maintenance	Former Lo	g Pond Fill	Building/Mecha	anics Shop Area	Hog Fuel Mixing Area	Current Dip Tank	Washdown Area	AST Area	Former Main Plant Drain	Former PC	P Dip Tank	Former UST Area	<u> </u>
Samula Landia ID	SB-1W	SB-2W	SB-3W	SB-4W	SB-5W	SB-6W	SB-7W	SB-8W	SB-9W	SB-10W	SB-11W	SB-12A-W	SB-13W	MTC/ Method Cleanu
Sample Location ID: Depth (feet): Date:	15.2 07/01/2021	12.7 07/01/2021	12.3 07/01/2021	6.8 07/01/2021	6.4 07/01/2021	11.7 07/01/2021	9.7 06/30/2021	2.9 07/01/2021	21.3 07/01/2021	16.5 07/01/2021	6.8 06/30/2021	22 07/01/2021	23.5 06/30/2021	Leve
o tal Petroleum Hydrocarbons (TPH) by NWTF iesel Range Organics esidual Range Organics	H-Dx in µg/L 208 246 Ј	1110 1450	541 884	983 1250	1450 1620	860 J- 673 J-	2840 J+ 2350	1060 1440	76.6 J <250	125 J 248 J	1460 1740	152 J 222 J	122 J <250	500 500
otal Petroleum Hydrocarbons (TPH) by NWTP esel Range Organics	H-Dx with Silica <200	Gel Cleanup in 163 J	μg/L 288	195 J	127 J	92.5 J-	140 J	91.8 J	<200	<200	196 J	<200	<200	500
esidual Range Organics hlorinated Phenols by EPA Method 8270E in J		<250	148 J <10.0	109 J	<250	<250 UJ	<250	<250	<250	<250	165 J	<250	<250	500
Chloro-3-Methylphenol Chlorophenol 4-Dichlorophenol	<10.0 <10.0 <10.0	<10.0 <10.0 <10.0	<10.0 <10.0 <10.0	-		-	<10.0 UJ <10.0 UJ <10.0 UJ		<10.0 <10.0 <10.0	-	<10.0 UJ <10.0 UJ <10.0 UJ	<10.0 <10.0 <10.0	-	-
entachlorophenol 4,6-Trichlorophenol	<10.0 <10.0 <10.0	<10.0 <10.0	<10.0 <10.0 <10.0				<10.0 UJ <10.0 UJ	-	<10.0 <10.0 <10.0	-	58.4 J 0.869 J	<10.0 <10.0 <10.0	-	
4,5-Trichlorophenol olatile Organic Compounds (VOCs) by 8260D	<10.0	<10.0	<10.0			-	<10.0 UJ	-	<10.0	-	2.87 J	<10.0	-	
cetone crylonitrile	<1.00 UJ <0.500		-	-		-		-					3.53 J- <0.500	
romobenzene	<0.0400 <0.500		-	-		-		-	-	-			0.05 <0.500	5
romodichloromethane	<0.100		-	-		-		-		-			<0.100	
Bromoform Bromomethane	<1.00 <0.500		-	-	-	-		-		-	-		<1.00 <0.500	
-Butylbenzene ec-Butylbenzene	<0.500 <0.500		-	-	_	_		-	-	-	-		<0.500 0.231 J	-
ert-Butylbenzene Carbon Tetrachloride	<0.200 <0.200		-	-	_	_		-	-	-	-		<0.200 <0.200	-
Chlorobenzene Chlorodibromomethane	<0.100 <0.100		-	-		-		-		-			<0.100	-
Chloroethane	<0.200		-					-		-			<0.200	
Chloroform Chloromethane	<0.100 <0.500		-	-	-	-		-	-	_	-		<0.100 <0.500	-
2-Chlorotoluene I-Chlorotoluene	<0.100 <0.200		-			-				-			<0.100 <0.200	-
,2-Dibromo-3-Chloropropane ,2-Dibromoethane	<1.00 <0.100		-			-		-		-			<1.00 <0.100	 0.0
Dibromomethane	<0.200		-					-	-	-			<0.200	
,2-Dichlorobenzene ,3-Dichlorobenzene	<0.200 <0.200		-	-		-		-	-	-			<0.200 <0.200	-
,4-Dichlorobenzene Dichlorodifluoromethane	<0.200 <0.100		-			-		-		-			<0.200 <0.100	
,1-Dichloroethane ,2-Dichloroethane	<0.100 <0.100		-	-		-		-	-	-			<0.100 <0.100	
,1-Dichloroethene	<0.100		-					-		-			<0.100	
cis-1,2-Dichloroethene rans-1,2-Dichloroethene	<0.100 <0.200		-	-		-		-		-			<0.100 <0.200	-
I,2-Dichloropropane I,1-Dichloropropene	<0.200 <0.100		-	-		-		-	-	-			<0.200 <0.100	
1,3-Dichloropropane cis-1,3-Dichloropropene	<0.200 <0.100		-	-		-		-		-			<0.200 <0.100	
rans-1,3-Dichloropropene 2,2-Dichloropropane	<0.200 <0.100		-			-		-		-			<0.200 <0.100	
di-Isopropyl Ether	<0.0400		-					-	-	-			<0.0400	
Ethylbenzene Hexachloro-1,3-Butadiene	<0.100 <1.00		-	-	-	-		-	-	-			<0.100 <1.00	700
sopropylbenzene b-lsopropyltoluene	<0.100 <0.200		-	-		-		-		-			0.544 0.193 J	
2-Butanone (MEK) Methylene Chloride	<1.00 <1.00		-	-		-		-		-			<1.00 <1.00	
4-Methyl-2-Pentanone (MIBK)	<1.00		-	-	-	-		-	-	-	-		<1.00	
Vethyl tert-Butyl Ether Naphthalene	<0.0400 <0.500		-	-		-		-	-	-			<0.0400 1.94	20 160
n-Propylbenzene Styrene	<0.200 <0.500		-			-		-		-			0.766 <0.500	-
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	<0.100 <0.100		-	-		-		-		-			<0.100 <0.100	-
1,1,2-Trichlorotrifluoroethane	<0.100		-	-		-		-	-	-			<0.100	
Fetrachloroethene Foluene	<0.100 <0.200	-	-	-		-		-	-	-			<0.100 0.204	5 1,00
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	<0.500 <0.500		-			-		-		-			<0.500 <0.500	-
I,1,1-Trichloroethane I,1,2-Trichloroethane	<0.100 <0.100		-		-	-		-		-			<0.100 <0.100	200
Frichloroethene Frichlorofluoromethane	<0.0400 <0.100		-					-		-			<0.0400 <0.100	5
1,2,3-Trichloropropane	<0.500		-	-				-	-	-			<0.500	-
,2,4-Trimethylbenzene ,2,3-Trimethylbenzene	<0.200 <0.200		-	-		-		-		-			<0.200 0.942	-
,3,5-Trimethylbenzene /inyl Chloride	<0.200 <0.100		-							-			0.844 <0.100	0.2
(ylenes, Total Bromochloromethane	<0.260 <0.200		-	-		-		-		-			0.204 J <0.200	1,00
Carbon Disulfide	<0.500		-					-		-			0.587	
rans-1,4-Dichloro-2-Butene P-Hexanone	<0.200 <1.00	-	-	-		-		-		-	-		<0.200 <1.00	-
I-Hexane odomethane	<0.200 <0.500		-			-		-		-			0.148 J <0.500	-
	<0.500	 od detection limit	 s.	-	-	-		-	-	-	-	-	<0.500	-
wores: 1. gg/L = Micrograms per liter. 2. Bold values indicate the compound was deter 3. <= Analyte was not detected above the repol 4. Shaded results exceed the Model Toxics Cor 5. Groundwater cleanup levels from the MTCA I 6	ting limit shown. trol Act (MTCA) I lethod A chapter	Method A cleanu	p level for grour											

Table 6 - Sediment Results: TPH, PAHs, PCBs, Chlorinated Phenols, and Metals Buse Timber & Sales Everett, Washington

Reactal Range Organics 1460 <th< th=""><th></th><th>Tide Gate</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		Tide Gate						
Date Orioz2021 07/02/2021 07/02/2021 07/02/2021 Concentrations Decision Sediment Cleanup Dipetitive Cleanup Screening Dipetitive Total Petroleum Hydrocarbons (PH) by MWTPH-Dx with Silics Gol Cleanup in mg/kg - 340 610 Desel Range Organics 1669 <1270	Sample Location ID:	DR-1	-	-		Natural		•
Total Percelum Hydrocathons (TPH) by N/TPH-0x in mg/kg Img/sg Img/sg<		07/02/2021	07/02/2021	07/02/2021	07/02/2021			· ·
Disest Range Organics 1 289 <th<< td=""><td></td><td>H-Dx in ma/ka</td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>		H-Dx in ma/ka						
Total Enclosum right process (TPH) by WITPH Dx with Silics Gel Cleanup in mg/kg - 3.600 4.400 Fill Statulation - 3.600 4.400 - <	Diesel Range Organics		<507	454	12.9 J		340	510
Diesel Range Organics 106 J <007 305 <14.5 - 340 510 Polycycle Aromatic Hydrocarbons (PAHs) by EPA Method 82205-SIM in mg/kg - - 3.800 4.400 Polycycle Aromatic Hydrocarbons (PAHs) by EPA Method 82205-SIM in mg/kg -					26.3 J		3,600	4,400
Beachual Engog Organics 659 1730 113.J 3.600 4.400 Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Mithol 8270E SMI m mg/g	Total Petroleum Hydrocarbons (TPH) by NWTF		a Gel Cleanup i	n mg/kg	-	-		
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method \$2705-SW in mg/kg - - - Acenaphthene <0.344								
Anthreame					13.3 J		3,600	4,400
Acenaphthylene -0.344 -0.793 -0.557 -0.349 Benzo(a)anthracene -0.344 -0.793 -0.557 -0.349 Benzo(a)anthracene -0.344 -0.793 -0.557 -0.349 Benzo(b)huranthene -0.344 -0.793 0.166 J -0.349 Benzo(b)huranthene -0.344 -0.793 0.0557 -0.349 Chysene -0.344 -0.793 -0.557 -0.349 Fluoranthene -0.344 -0.793 -0.557 -0.349 Fluoranthene -0.344 -0.793 0.259 J -0.349 Fluoranthene -0.344 -0.793 0.537 -0.349 Holdmithene <1.15					0.040			
Acanaphtylene -0.344 -0.793 -0.557 -0.349 Benzo(a)prine -0.344 -0.793 -0.557 -0.349 Benzo(b)prine -0.344 -0.793 -0.557 -0.349 Benzo(b)fuoranthene -0.344 -0.793 -0.557 -0.349 Chysene -0.344 -0.793 -0.557 -0.349 Benzo(b)fuoranthene -0.344 -0.793 -0.557 -0.349 Dibertic, hinthracene -0.344 -0.793 -0.557 -0.349 Fluorene -0.344 -0.793 -0.557 -0.349 Prine -0.344 -0.793 0.637 -0.349 Ventrene -0.344 -0.793 0.637 -0.349								
Benzo(a)pure Benzo(a)pure Benzo(b)fluoranthene -0.344 -0.793 -0.557 -0.349 Benzo(b)fluoranthene -0.344 -0.793 0.066 J -0.349 Benzo(b)fluoranthene -0.344 -0.793 0.0567 -0.349 Benzo(b)fluoranthene -0.344 -0.793 -0.557 -0.349 Chrysene -0.344 -0.793 -0.557 -0.349 Fluoranthene -0.344 -0.793 -0.557 -0.349 Fluoranthene -0.344 -0.793 -0.557 -0.349 Fluoranthene -0.344 -0.793 -0.557 -0.349 Ploranthene -0.344 -0.793 0.657 -0.349 Preme -0.344 -0.793 0.657 -0.349 Preme -0.344 -0.793 0.657 -0.349 Preme -0.344 -0.793 0.657 -0.349								
Benzolphymen c0.344 c0.783 c0.557 c0.349 Benzolphuoranthene c0.344 c0.783 0.064 J c0.349 Benzolphuoranthene c0.344 c0.783 c0.557 c0.349 Chysene c0.344 c0.783 c0.557 c0.349 Dibenz(a,h)panthracene c0.344 c0.793 c0.557 c0.349 Fluoranthene c0.344 c0.793 c0.557 c0.349 Fluoranthene c0.344 c0.793 c0.557 c0.349 Fluoranthene c1.15 c2.64 c1.86 c1.16 Preme c0.344 c0.793 0.31 J c0.349 Vertheringhythinghthalene c1.15 c2.64 c1.86 c1.16								
Benzolghüppenhene -0.344 <0.783 0.164 J <0.349 Benzolghüpenhene <0.344								
Benzo[h]perylene -0.344 <0.783 0.308 J <0.349 Benzolk/fluoranthene <0.344								
Benzy (Kubornithene 40,344 <0,733 <0.557 <0.349 Chrysene <0.344	Benzo(g,h,i)perylene							
Dibs/spin/spin/spin/spin/spin/spin/spin/spi	Benzo(k)fluoranthene							
Fluoranihane 0.344 0.733 0.259 J <0.349 Fluorane 0.344 <0.793	Chrysene	<0.344	<0.793	<0.557	< 0.349			
Fluorene <0.344 <0.793 <0.557 <0.349 - - - - Indeno(1,2,3-cd)pynene <0.344	Dibenz(a,h)anthracene	< 0.344	<0.793	<0.557	< 0.349			
Indeno(1,2,3-cd)pyrene <0.344 <0.793 <0.557 <0.349 Naphthalene <1.15	Fluoranthene							
Naphthalene <1.15 <2.64 <1.86 <1.16 - - - Phenanthrene 0.334 <0.793	Fluorene							
Phenanthrene <0.344 <0.793 0.31 J <0.349 Pyrene <0.344								
Pyrene <0.344 <0.793 0.637 <0.349 1-Metty/inphthalene <1.15								
1-Methylnaphthalene <1.15 <2.64 <1.86 <1.16 2-Methylnaphthalene <1.15								
2-Methylnaphthalene <1.15 <2.64 <1.86 <1.16 2-Chloronaphthalene <1.15	,							
2-Chloronaphthalene <1.15 <2.64 <1.86 <1.16 Polychlorinated Biphenyls (PCBs) by EPA Method 8082A in mg/kg 17 30 POID <0.128					-			
Total PAHs <1.15 <2.64 1.68 <1.16 17 30 Polychorinated Biphenyls (PCBs) by EPA Method 8062A in my/kg PCB <0.128 <0.301 <3.22 <1.90 PCB 1016 <0.128 <0.301 <3.22 <1.90 PCB 1232 <0.128 <0.301 <3.22 <1.90 PCB 1232 <0.128 <0.301 <3.22 <1.90 PCB 1242 <0.0644 <0.151 <1.61 <0.954 PCB 1260 <0.0644 <0.151 <1.61 <0.954		-			-			
Polychlorinated Biphenyls (PCBs) by EPA Method 8082A in mg/kg PCB 1221 <0.128 <0.301 <3.22 <1.90 PCB 1232 <0.128 <0.301 <3.22 <1.90 PCB 1242 <0.128 <0.301 <3.22 <1.90 PCB 1242 <0.0644 <0.151 <1.61 <0.954 PCB 1260 <0.0644 <0.151 <1.61 <0.954 PCB 1260 <0.0144 <0.0151 <1.61 <0.954 PCB 1260 <0.0644 <0.151 <1.61 <0.954 PCB 1260 <0.011 2.55 <0.128 <0.301 <3.22 <1.90 0.111 2.5 <0.111 <0.25 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
PCB 1221 <0.128 <0.301 <3.22 <1.90 PCB 1232 <0.128			-					
PCB 1232 <0.128 <0.301 <3.22 <1.90 PCB 1242 <0.128	PCB 1016	<0.128	< 0.301	<3.22	<1.90			
PCB 1242 <0.128 <0.301 <3.22 <1.90 PCB 1248 <0.0644	PCB 1221	<0.128	< 0.301	<3.22	<1.90			
PCB 1248 <0.0644 <0.151 <1.61 <0.954 PCB 1254 <0.0644	PCB 1232	<0.128	< 0.301	<3.22	<1.90			
PCB 1254 <0.0644 <0.151 <1.61 <0.954 PCB 1260 <0.0644	PCB 1242			-				
PCB 1260 <0.0644 <0.151 <1.61 <0.954 Total PCBs <0.128								
Total PCBs <0.128 <0.301 <3.22 <1.90 0.11 2.5 Chlorinated Phenols by EPA Method 8270E in mg/kg								
Chlorinated Phenols by EPA Method 8270E in mg/kg 4-Chloro-3-Methylphenol <34.4								
4-Chloro-3-Methylphenol -34.4 <44.3			<0.301	<3.2Z	<1.90		0.11	2.0
2-Chlorophenol <34.4			<44.3	<60.3	<37.9			
2,4-Dichlorophenol <34.4								
Pentachlorophenol <34.4 <44.3 <60.3 <37.9 1.2 >1.2 2,4,6-Trichlorophenol <34.4	2,4-Dichlorophenol							
2,4,6-Trichlorophenol <34.4 <44.3 <60.3 <37.9	Pentachlorophenol	<34.4	<44.3	<60.3			1.2	>1.2
Metals by EPA Method 6020B and 7471B in mg/kg Arsenic 16.0 24.2 J+ 19.3 15.7 11 14 120 Barium 114 277 81.2 148 Cadmium <3.75 <8.87 1.43 J 0.345 J 0.8 2.1 5.4 Chromium 60.5 37.4 J 54.7 66.2 62 72 88 Copper 50.3 89.1 90.3 54.0 45 400 1200 Lead 12.0 13.8 J+ 30.9 20.9 21 360 >1300 Nickel 48.7 41.7 63.1 52.3 50 26 110 Selenium <9.36 <22.2 <16.6 0.88 J 11 >20 Silver <1.87 <4.43 <3.32 <1.81 0.24 0.57 1.7	2,4,6-Trichlorophenol	<34.4	<44.3	<60.3	<37.9			
Arsenic 16.0 24.2 J+ 19.3 15.7 11 14 120 Barium 114 277 81.2 148 Cadmium <3.75			<44.3	<60.3	<37.9			
Barium 114 277 81.2 148 Cadmium <3.75	Metals by EPA Method 6020B and 7471B in mg							
Cadmium <3.75 <8.87 1.43 J 0.345 J 0.8 2.1 5.4 Chromium 60.5 37.4 J 54.7 66.2 62 72 88 Copper 50.3 89.1 90.3 54.0 45 400 1200 Lead 12.0 13.8 J+ 30.9 20.9 21 360 >1300 Nickel 48.7 41.7 63.1 52.3 50 26 110 Selenium <9.36 <22.2 <16.6 0.88 J 11 >20 Silver <1.87 <4.43 <3.32 <1.81 0.24 0.57 1.7								
Chromium 60.5 37.4 J 54.7 66.2 62 72 88 Copper 50.3 89.1 90.3 54.0 45 400 1200 Lead 12.0 13.8 J+ 30.9 20.9 21 360 >1300 Nickel 48.7 41.7 63.1 52.3 50 26 110 Selenium <9.36								
Copper 50.3 89.1 90.3 54.0 45 400 1200 Lead 12.0 13.8 J+ 30.9 20.9 21 360 >1300 Nickel 48.7 41.7 63.1 52.3 50 26 110 Selenium <9.36								
Lead 12.0 13.8 J+ 30.9 20.9 21 360 >1300 Nickel 48.7 41.7 63.1 52.3 50 26 110 Selenium <9.36								
Nickel 48.7 41.7 63.1 52.3 50 26 110 Selenium <9.36								
Selenium <9.36 <22.2 <16.6 0.88 J 11 >20 Silver <1.87								
Silver <1.87 <4.43 <3.32 <1.81 0.24 0.57 1.7								
	Silver							
Zinc 124 156 J 702 134 93 3200 >4200	Zinc							
	Mercury Notes:	0.110 J	0.170 J	0.665	0.130 J	0.2	0.66	0.8

Notes:

1. mg/kg = Milligrams per kilogram.

Bold values indicate the compound was detected above method detection limits.
 < = Analyte was not detected above the reporting limit shown.
 Shaded results exceed the Sediment Management Standards.

5. Natural Background Concentrations and Sediment Management Standards from WAC 173-204 and Washington Ecology's Sediment Cleanup User's Manual (December 2019 update).

6. -- = Value not available.
 7. J = Result is estimated.

8. J+ = Result is estimated and may be biased high.

Table 7 - Sediment Results: Dioxins/Furans Buse Timber & Sales Everett, Washington

	Tide Gate	South Drainage					
Sample Location ID:	DR-1	DR-10	WEST DRAINAGE	EAST DRAINAGE	SOUTH DRAINAGE	Puget Sound Natural Background Dioxins/Furans	MTCA Method B Cleanup Level
Date:	07/02/2021	07/02/2021	07/02/2021	07/02/2021	07/02/2021	Bloxino/Furano	Lovoi
Dioxins/Furans by EPA Method 8290A in pg/g						•	
2,3,7,8-TCDD	0.13 J	0.21 J	<0.29	1.27 J	0.173 J		
1,2,3,7,8-PeCDD	1.33 J	0.95 J	0.97 J	16.3	0.98 J		
1,2,3,4,7,8-HxCDD	1.37 J	1.05 J	1.12 J	18.3	1.20 J		
1,2,3,6,7,8-HxCDD	17.6	3.48 J	9.78 J	237	6.98		
1,2,3,7,8,9-HxCDD	4.40 J	2.54 J	3.28 J	64.9	3.14 J		
1,2,3,4,6,7,8-HpCDD	136	43.6	88.2	2130	74.1		
OCDD	740	284	382	11800	378		
2,3,7,8-TCDF	1.67 J	3.79	1.63 J	16.3	2.66		
1,2,3,7,8-PeCDF	0.60 J	0.89 J	0.71 J	6.84	0.74 J		
2,3,4,7,8-PeCDF	1.00 J	<1.1 UK	0.88 J	10.1	1.02 J		
1,2,3,4,7,8-HxCDF	2.28 J	1.32 J	2.12 J	36.0	1.84 J		
1,2,3,6,7,8-HxCDF	2.90 J	0.838 J	2.18 J	47.3	1.58 J		
2,3,4,6,7,8-HxCDF	2.81 J	0.837 J	2.12 J	34.3	1.60 J		
1,2,3,7,8,9-HxCDF	0.13 J	<0.098	0.35 J	2.28 J	0.14 J		
1,2,3,4,6,7,8-HpCDF	91.5	11.9	69.5	2030	37.2		
1,2,3,4,7,8,9-HpCDF	3.25 J	0.617 J	2.56 J	53.9	1.34 J		
OCDF	95.2	17.4	59.6	2120	35.8		
Total TEQ (ND = 1/2 DL)	7.65	3.39	5.39	113	4.65	4	13
Total HxCDD	95.6	34.9	57.4	1550	54.1		160

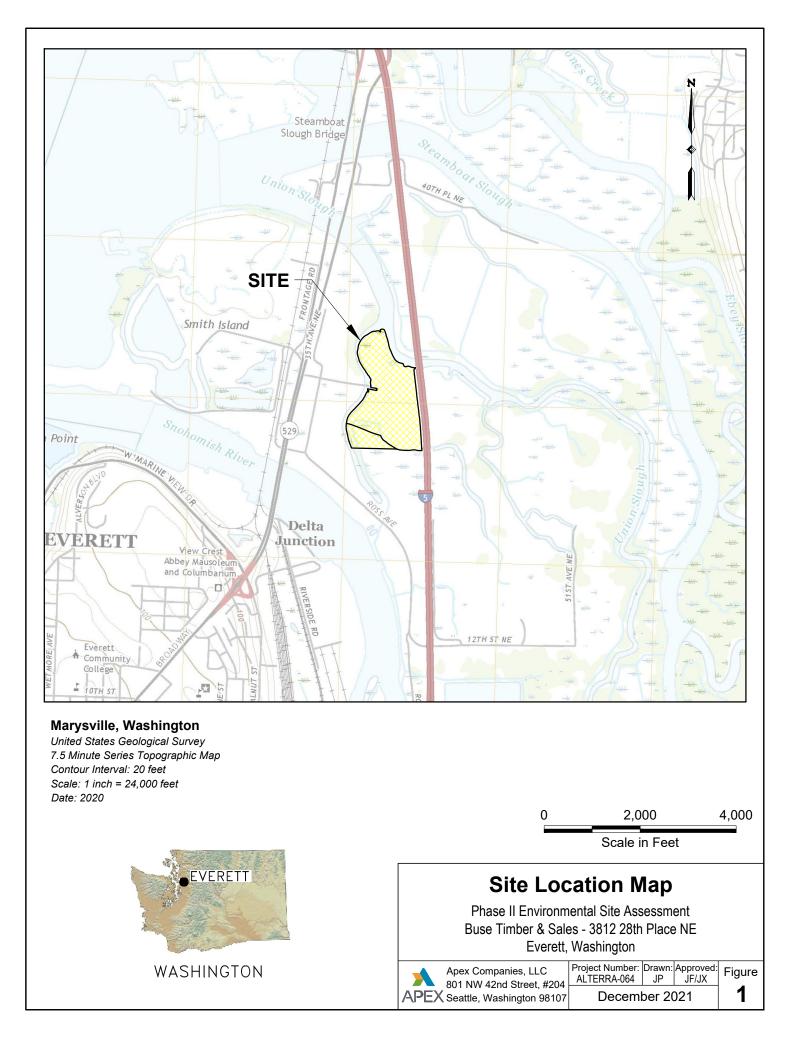
Notes:

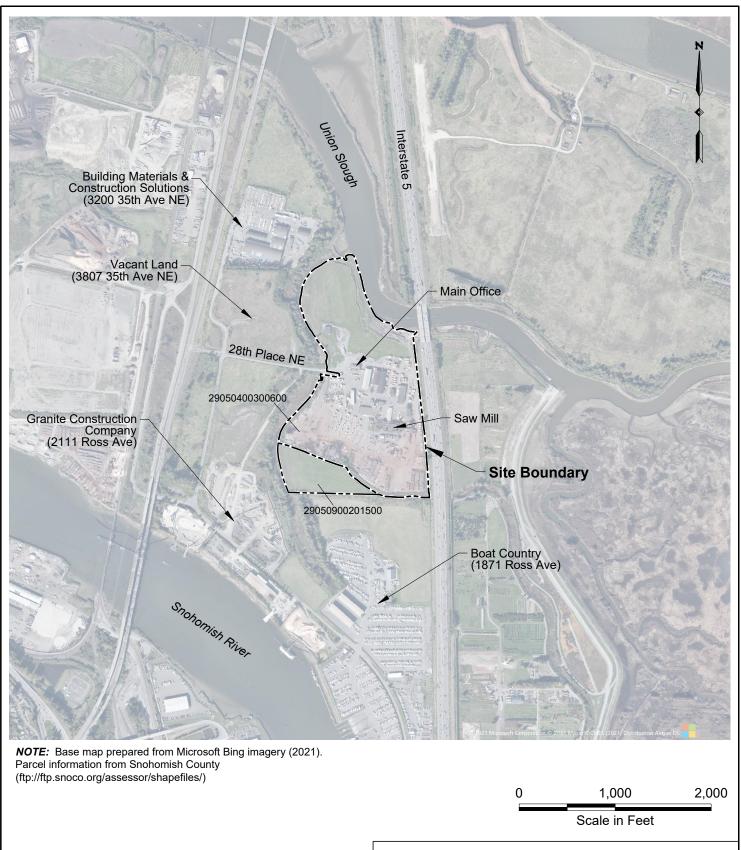
1. pg/g = Picograms per gram.

2. Bold values indicate the compound was detected above method detection limits.

3. < = Analyte was not detected above the detection limit shown.

4. Shaded results exceed the Model Toxics Control Act (MTCA) Method B Cancer soil cleanup level and the natural background concentration for dioxins/furans.

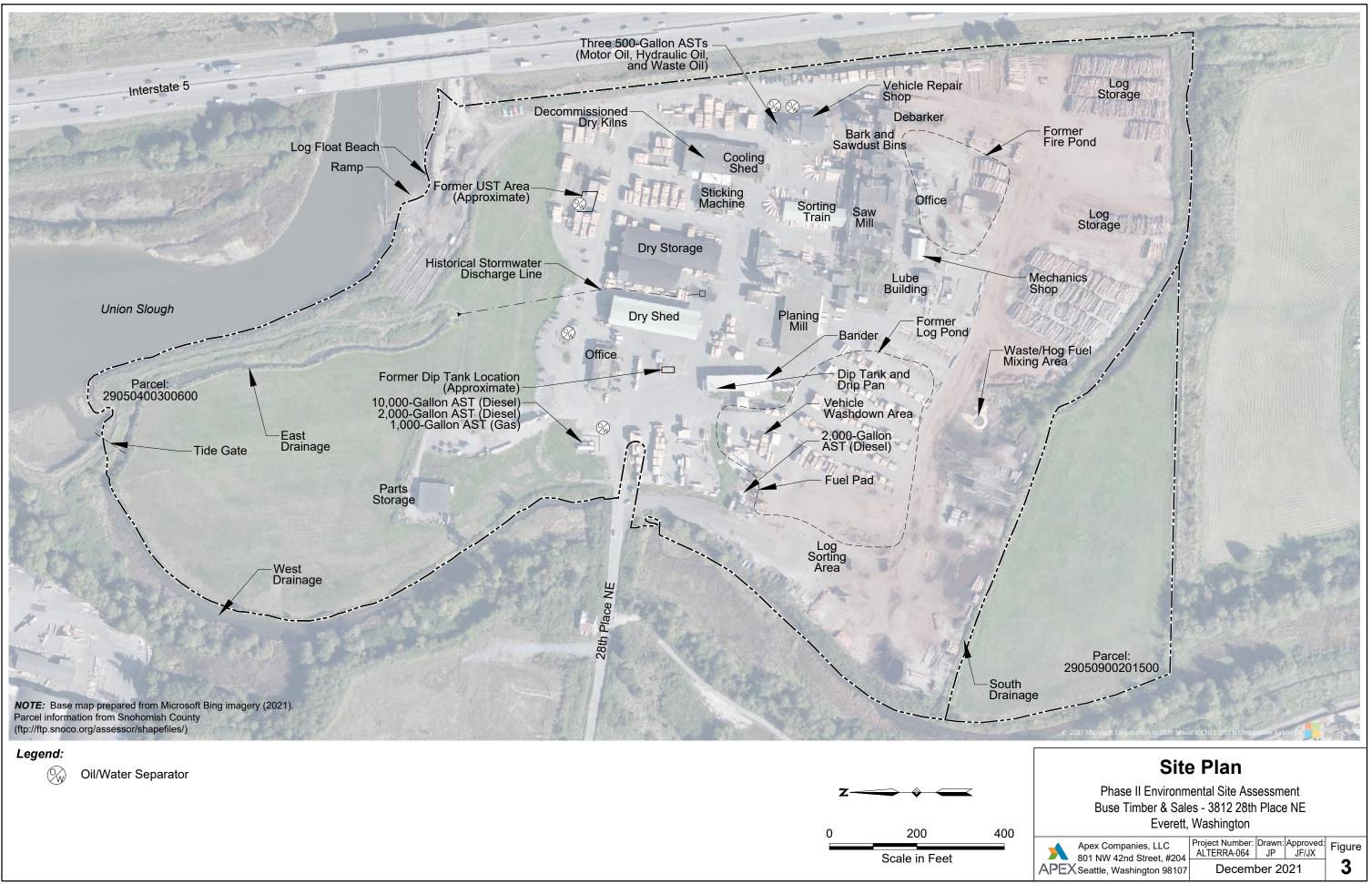

5. Natural Background Concentrations from Washington Ecology's Sediment Cleanup User's Manual (December 2019 update).

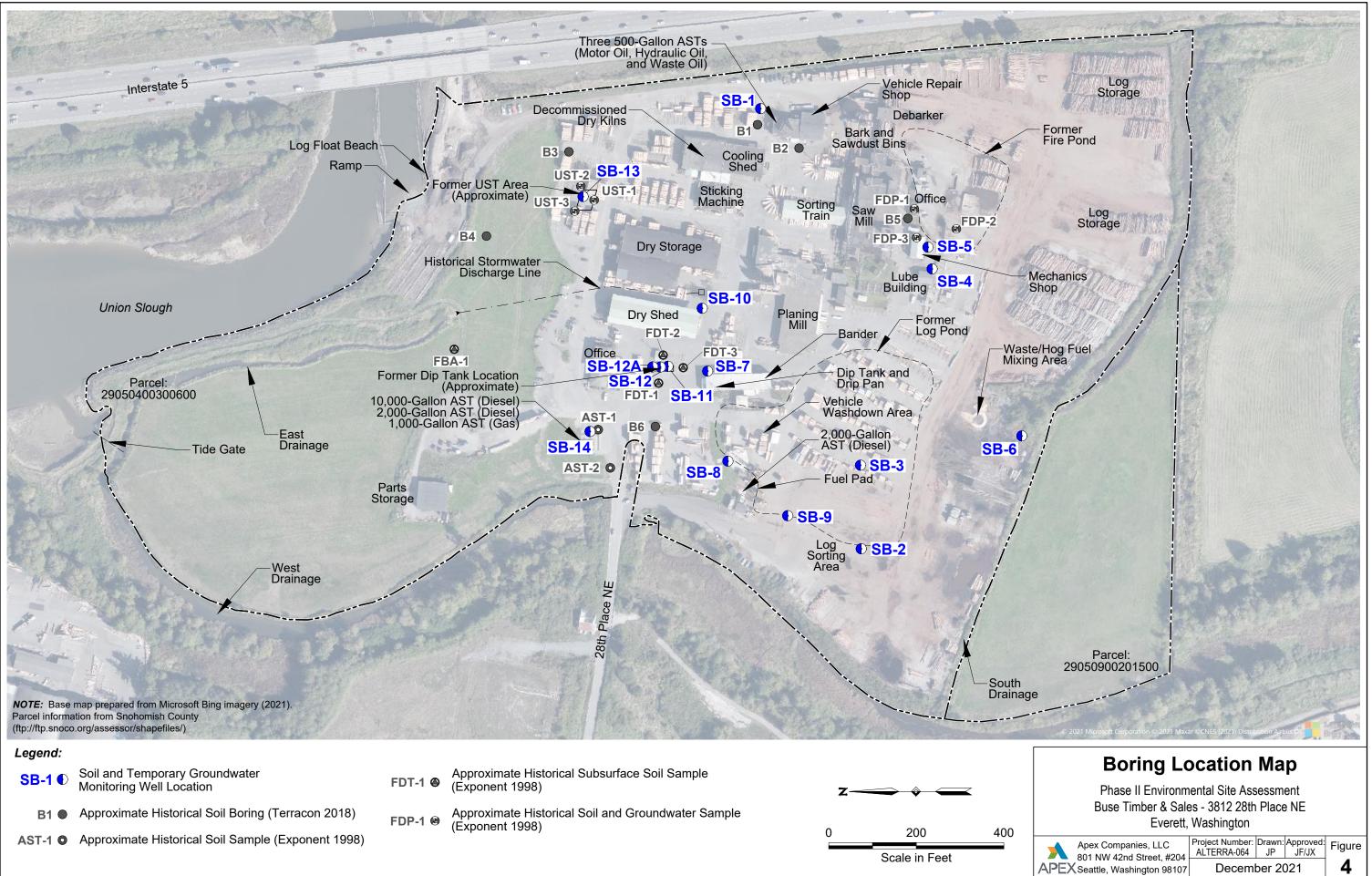

6. Soil cleanup levels from the MTCA Method B Cancer 173-340 WAC (February 2021 update).

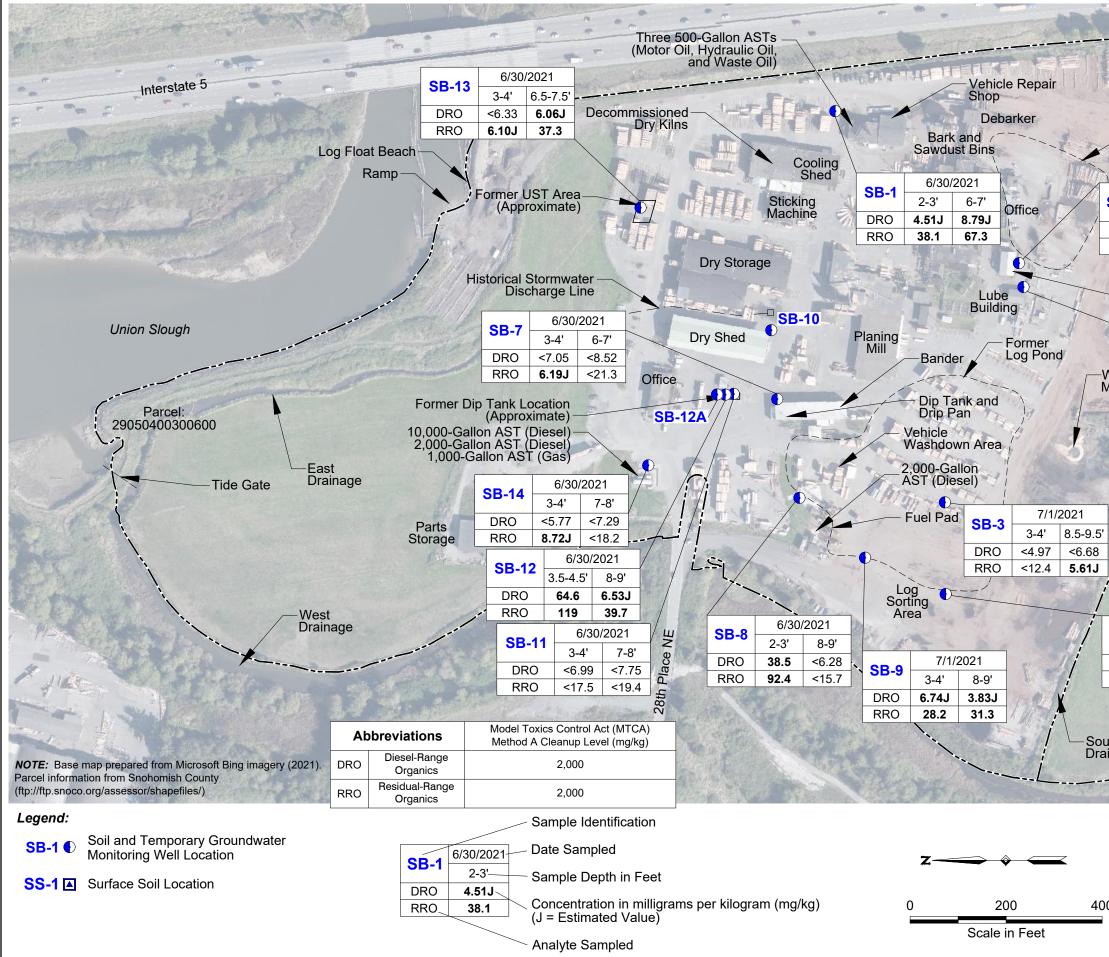
7. -- = Value not available.

8. J = Result is estimated.

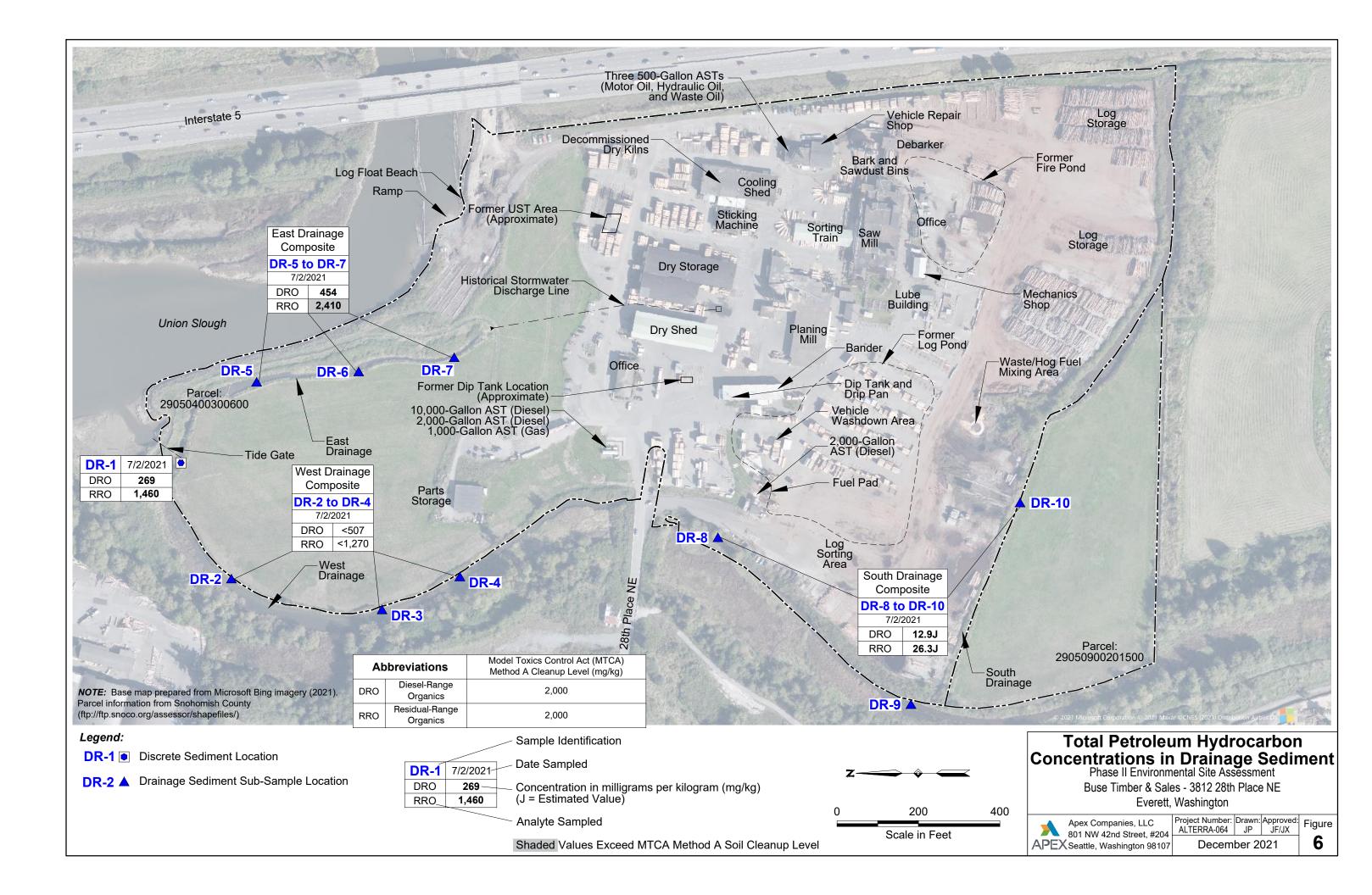
9. UK = Estimated maximum possible concentration (EMPC). Diphenylether interference present caused dibenzofuran detected to become a "non-detect" with an elevated detection limit.

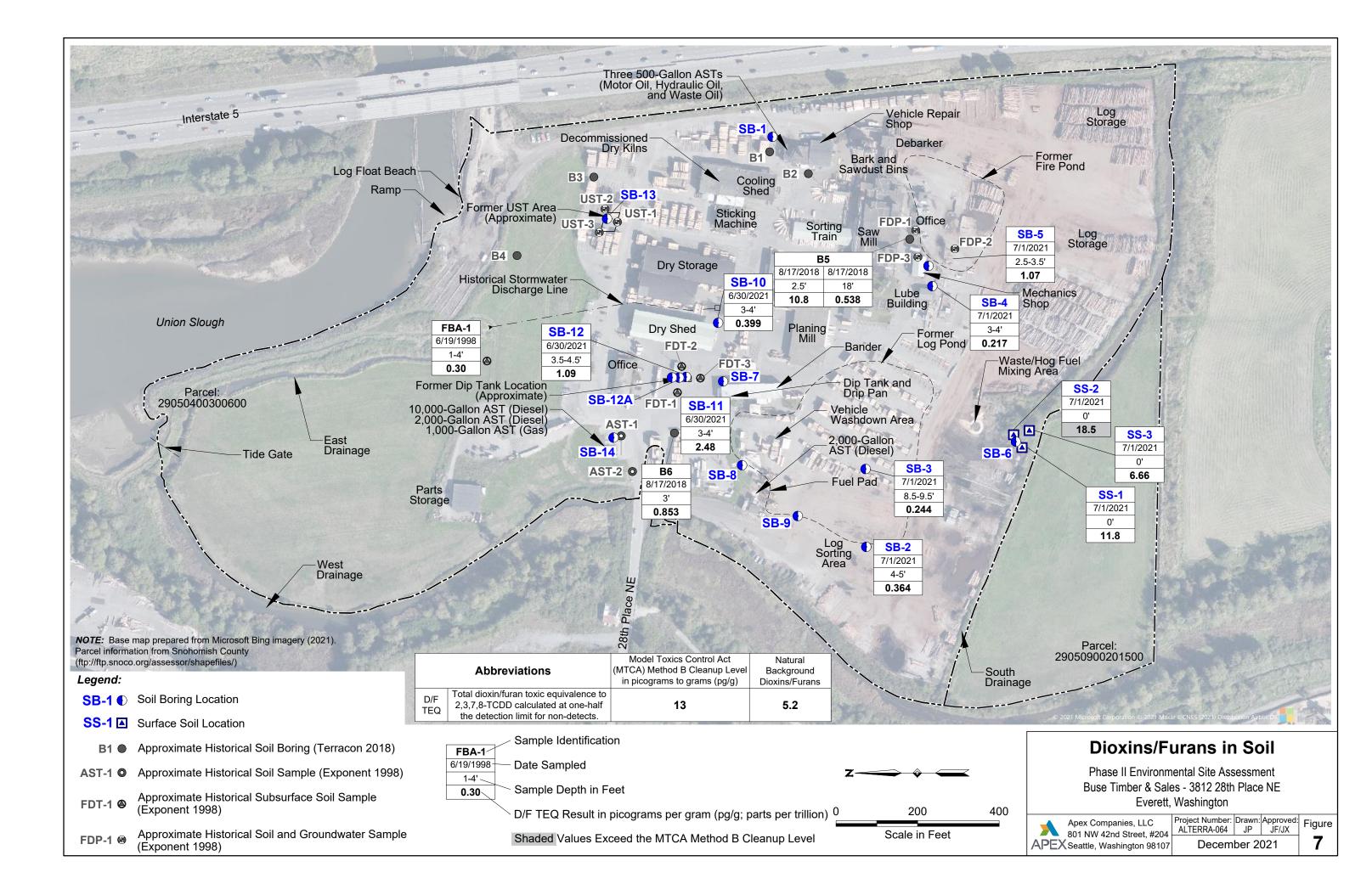


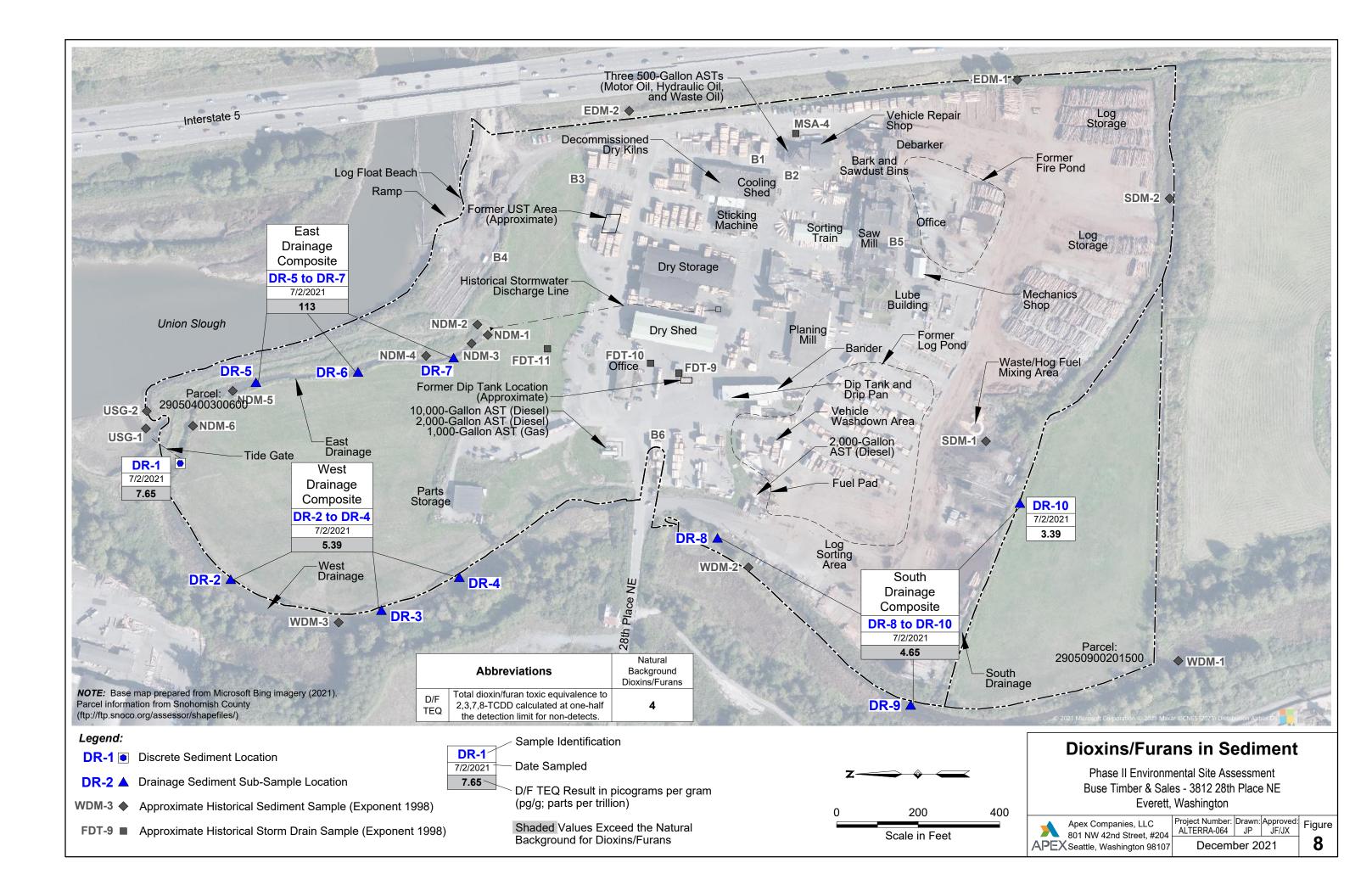



Site Vicinity Map

Phase II Environmental Site Assessment Buse Timber & Sales - 3812 28th Place NE Everett, Washington


Apex Companies, LLC 801 NW 42nd Street, #204 APEX Seattle, Washington 98107 APEX Seattle, Washington 98107





		Log Storage				
-	Former Fire Pone	d				
SB-5	7/1/2 2.5-3.5'	2021				
DRO RRO	23.5 56.5	10.7 58.6				
Me Sh	echanics op	SB-4 DRO	7/1/20 3-4' <4.94	21 6-7' <5.01		
Waste/I Mixing	Hog Fuel Area	RRO	<12.3	<12.5 7/1/202 ⁻ 0'	1	
	1		DRO RRO	10.0 101		
			SS-3 DRO RRO	7/1/202 ⁻ 0' 16.7 151		
SB	-6 3-4'		: SS-1 DRO	7/1/202 ⁻ 0' 13.2	1	
DR RR	0 8.72	J <18.2	RRO	175		
SB-2 DRO RRO	7/1/2 4-5' <4.8	2021 8-9' <5.88 <14.7				
uth ainage	2905	Parcel: 090020150	0		Rendering Street	
		tal Petr				
Total Petroleum Hydrocarbon Concentrations in Soil Phase II Environmental Site Assessment Buse Timber & Sales - 3812 28th Place NE Everett, Washington						
00 /-	801	ex Companies, I NW 42nd Stre attle, Washingte	LLC P eet, #204	roject Numbe	r: Drawn: Approved: Figure	

Appendix A

Boring Logs

Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, and grain size, and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

MAJOR CONSTITUENT with additional remarks; color, moisture, minor constituents, density/consistency.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and push probe explorations is estimated based on visual observation and is presented parenthetically on test pit and push probe exploration logs.

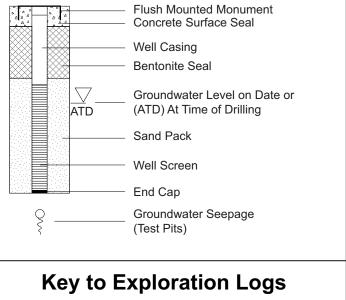
SAND and GRAVEL	Standard Penetration Resistance <u>in Blows/Foot</u>	SILT or CLAY <u>Density</u>	Standard Penetration Resistance <u>in Blows/Foot</u>	Approximate Shear Strength <u>in TSF</u>
Very loose Loose Medium dense Dense Very dense	0 - 4 4 - 10 10 - 30 30 - 50 >50	Very soft Soft Medium stiff Stiff Very Stiff Hard	0 - 2 2 - 4 4 - 8 8 - 15 15 - 30 >30	<0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0

Moisture

Dry	Little perceptible moisture.	Not identified in description	0 - 5
SI. Moist	Some perceptible moisture, probably below optimum.	Slightly (clayey, silty, etc.)	5 - 12
Moist	Probably near optimum moisture content.	Clayey, silty, sandy, gravelly	12 - 30
Wet	Much perceptible moisture, probably above optimum.	Very (clayey, silty, etc.)	30 - 50

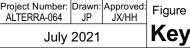
Sampling Symbols

BORING AND PUSH-PROBE SYMBOLS


- Recovery
- No Recovery
- **Temporarily Screened Interval**
- Photoionization Detector Reading PID
- W Water Sample
- Sample Submitted for Chemical Analysis
- NS No Sheen
- SS Slight Sheen
- MS Moderate Sheen
- HS Heavy Sheen
- **Biogenic Film** BF

TEST PIT SOIL SAMPLES

- Grab (Jar) X Bag
- - Shelby Tube

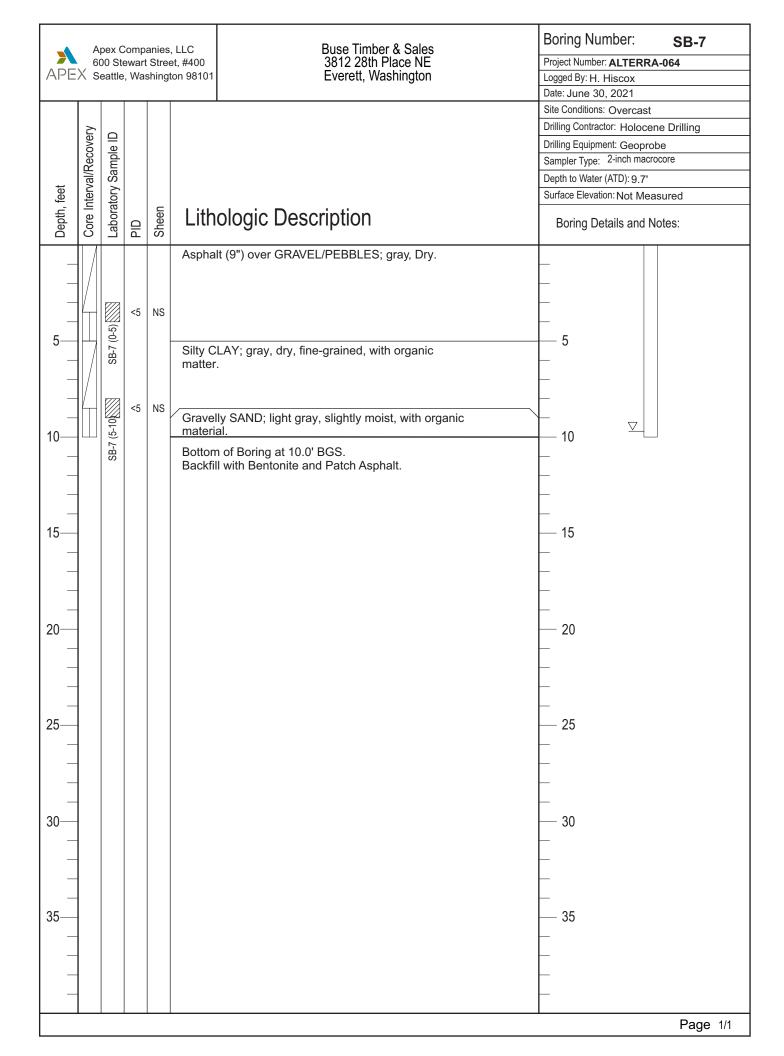

Groundwater Observations and **Monitoring Well Construction**

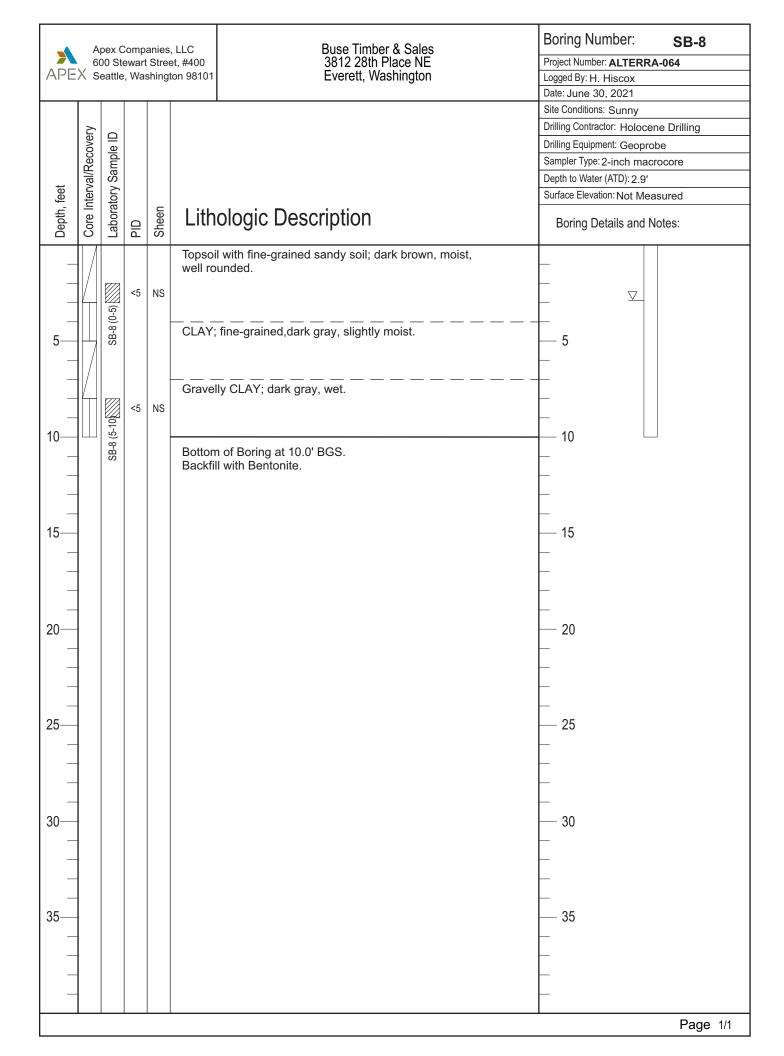
Minor Constituents

Buse Timber & Sales 3812 28th Place NE Everett, Washington

Estimated Percentage

APE	6	00 Ste	ewart	anies, Stree shingt	, LLC et, #400 on 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number:SB-1Project Number:ALTERRA-064Logged By:H. HiscoxDate:June 30, 2021
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lith	ologic Description	Site Conditions: Sunny Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 15.2' Surface Elevation: Not Measured Boring Details and Notes:
		SB-1 (0-5)	<5	NS	high pl	t (10") over sandy/silty CLAY; dark gray, slightly moist, asticity, fine-grained, with odor. g odor, slightly moist.	 5
		SN (5-10)					 10
			<5	NS		/silty CLAY; dark blueish gray, wet, fine-grained.	 15
 20			<5	NS			20
 25	-				Bottom Backfil	of Boring at 20.0' BGS. I with Bentonite and Patch Asphalt.	 25
	-						 30
	-						 35
-							Page 1/1


APE	6	00 Ste	ewart	anies, Stree shingt	LLC et, #400 on 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-2 Project Number: ALTERRA-064 Logged By: H. Hiscox Date: July 1, 2021
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lith	ologic Description	Site Conditions: Overcast Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 12.7' Surface Elevation: Not Measured Boring Details and Notes:
 5		SB-2 (0-5)	<5	NS	and tar	t (7") over cobbles and gravel over silty SAND; dark brown n, dry, fine-grained. LAY; dark gray, slightly moist, high plasticity, fine-grained.	5
 10 15		Silty SAND; dark grayish blue, wet.				AND; dark grayish blue, wet.	10
20					Bottom Backfil	n of Boring at 15.0' BGS. I with Bentonite and Patch Asphalt.	 20
25— — — 30—	-						25 30
 35							 35
	-						 Page 1/1


APE	6	00 Ste	ewart	anies, Stree shingt	, LLC et, #400 on 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-3 Project Number: ALTERRA-064 Logged By: H. Hiscox Date: July 1, 2021
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	DID	Sheen	Lith	ologic Description	Site Conditions: Sunny Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 12.3' Surface Elevation: Not Measured Boring Details and Notes:
	Core	SB-3 (5-10) SB-3 (0-5)	GId <5	SN	Asphal tan, dr Clay lo Silty C Sandy Bottom	It (6") over cobbles and gravel over SAND; dark brown and y, fine-grained.	Boring Details and Notes: 5 10 20 25 30
	-						

APE	6	00 Ste	ewart	Stree	, LLC et, #400 ton 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-4 Project Number: ALTERRA-064 Logged By: H. Hiscox Date: July 1, 2021 Site Conditions: Overcast
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lith	ologic Description	Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 6.8' Surface Elevation: Not Measured Boring Details and Notes:
		SB-4 (0-5)	<5	NS		t (10") over cobbly GRAVEL; white. ens (4"); dark brown, fine-grained, with organic al.	5
		SB-4 (5-10)	<5	NS	Silty S/	AND; fine-grained, white/tan/dark gray, dry.	
	-				Bottom Backfill	of Boring at 10.0' BGS. with Bentonite and Patch Asphalt.	 15
 20	-						 20
	-						 25
	-						 30
	-						 35
	-						

APE	6	00 Ste	ewart	anies, Stree shingt	, LLC et, #400 con 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-5 Project Number: ALTERRA-064 Logged By: H. Hiscox Date: July 1, 2021
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lith	ologic Description	Site Conditions: Sunny Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 6.4' Surface Elevation: Not Measured Boring Details and Notes:
		SB-5 (0-5)	<5	NS	moist,	It (7") over silty SAND; dark brown with light gray, slightly fine-granied, moderate plasticity, well rounded.	 5
 10		SB-5 (5-10)	6	NS		unded. n of Boring at 10.0' BGS. I with Bentonite and Patch Asphalt.	 10
 15	-				Duokin		 15
20	-						20 20
25	-						25
30	-						30
35— — — —	-						- 35

APE	6	00 Ste	ewart	anies, Stree shingt	LLC et, #400 on 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-6 Project Number: ALTERRA-064 Logged By: H. Hiscox Date: July 1, 2021
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Litho	ologic Description	Site Conditions: Sunny Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 11.7' Surface Elevation: Not Measured Boring Details and Notes:
		SB-6 (5-10) SB-6 (0-5)	<5	NS NS	Silty CL	AY; light gray, slightly moist, fine-grained, high plasticity.	5 5 10 10
					Bottom and Pa	n of Boring at 15.0' BGS. (Backfill with Bentonite atch Asphalt.	15 20 20 25 30 35
-	-						Page 1/1

APE	6	pex C 00 Ste eattle	ewart	Stree	, LLC et, #400 on 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-9 Project Number: ALTERRA-064 Logged By: H. Hiscox Date: July 1, 2021	
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lith	ologic Description	Site Conditions: Overcast Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 21.3' Surface Elevation: Not Measured Boring Details and Notes:	
			<u>a</u>	05	Aspha poorly	t (9") over gravelly SAND; light tan, coarse-grained, sorted.		
 5		SB-9 (0-5)	<5	NS	SAND materia		5	
 10		SB-9 (5-10)	<5	NS	Silty C occasi	LAY; dark brown, slightly moist, fine-grained, with onal organic material.	 	
		SB-9	<5	NS				
15— — —			<5	NS			15 	
20			<5	NS	Sandy	CLAY; fine-grained, dark grayish blue, wet.	20 ⊽	
25— — —	Bottom of Boring at 25.0' BGS. Backfill with Bentonite and Patch Asphalt.						25	
 30	-						 30 	
	-						 35	
	<u> </u>						Page 1/1	

APE	6	00 Ste	ewart	Stree	, LLC et, #400 con 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-10 Project Number: ALTERRA-064 Logged By: H. Hiscox Date: June 30, 2021
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lith	ologic Description	Site Conditions: Overcast Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 16.54' Surface Elevation: Not Measured Boring Details and Notes:
		SB-10 (0-5)	<5 <5	NS	fine-gra	t (9") over sandy CLAY; gray with black flecks, dry, ained. 	5
 10 		SB-10 (5-10)	?		— Bottor Redril	n of Boring at 10.0' BGS. led to 20.0' for groundwater sample.	10 10
15— — — 20— —					Bottom Backfil	n of Boring at 20.0' BGS. I with Bentonite and Patch Asphalt.	15 20 20
 25 							25 25
30— — — 35—							30
							Page 1/1

APE	60	00 Ste	ewart	Stree	, LLC et, #400 con 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-11 Project Number: ALTERRA-064 Logged By: H. Hiscox Date: June 30, 2021				
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lith	ologic Description	Site Conditions: Overcast Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 6.8' Surface Elevation: Not Measured Boring Details and Notes:				
 5		SB-11 (0-5)	<5	NS	fine-gra		5				
10	Slaveny CLAT, dark gray, sightly most, poorly sol CLAY; dark gray, dry, fine-grained, poorly sorted.										
 15 							15 				
20— — — 25—							20 25				
30							 30 				
 35 							 35 				
	Page 1/1										

APE	60	00 Ste	ewart	anies, Stree shingt	, LLC et, #400 on 98101	Buse Timber & Sales 3812 28th Place NE Everett, Washington	Boring Number: SB-12/12A Project Number: ALTERRA-064 Logged By: H. Hiscox Date: June 30, 2021-July 1, 2021
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lith	ologic Description	Site Conditions: Overcast Drilling Contractor: Holocene Drilling Drilling Equipment: Geoprobe Sampler Type: 2-inch macrocore Depth to Water (ATD): 22.0' Surface Elevation: Not Measured Boring Details and Notes:
 5		SB-12 (0-5)	<5	NS	Silty C	t (12") over gravelly SAND; light gray, dry, coarse-grained. LAY; dark brown, slightly moist, fine-grained, with c material (wood).	 5
 10	Image: Second system <5						 10
		SB	<5	NS	Moved	n of Boring SB-12 at 10.0' BGS. d equipment 1 foot and redrilled to 25.0' (7/1/21) bundwater sample (SB-12A).	 15
20			<5	NS	Silty SA	AND; dark gray, wet, soft.	 20
25			<5 NS		Bottom	of Boring at 25.0' BGS.	▽ 25
 30					Backfil	l with Bentonite and Patch Asphalt.	30
35— 							35 35
							Page 1/1

	A	pex C	comp	anies,	LC Buse Timber & Sales	Boring Number: SB-13
	60	00 Ste	ewart	Street	#400 3812 28th Place NE	Project Number: ALTERRA-064
APE,	XS	eattle	, Was	shingto	n 98101 Everett, Washington	Logged By: H. Hiscox
						Date: June 30, 2021
						Site Conditions: Sunny
	Х					Drilling Contractor: Holocene Drilling
	ver					Drilling Equipment: Geoprobe
	000	ple				Sampler Type: 2-inch macrocore
	/Re	am				
ا بر	val	S S				Depth to Water (ATD): 23.5'
fe	ntei	ator				Surface Elevation: Not Measured
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Lithologic Description	Boring Details and Notes:
					Asphalt (8") over sandy CLAY; dark brown, slightly moist,	
_	/	0-2)			fine-grained, with small wood chips and rounded clasts.	,
	/	13 (
		- B				
-		SB-13 (0-5)	<5	NS		
_			5			
5—	Щ					— 5
Ŭ	/					
-	/				- Strong odor.	
_	\parallel / \parallel		<5	NS		
		10)				
-		SB-13 (5-10)				
10—	Щ	3-13				- — — — 10
	/	S			Silty CLAY; dark brown/gray, slightly moist.	
	/					
-						
					- Strong odor.	
	$\left - \right $			NO	3 • • • 3	
			<5	NS		
15—	\vdash					· — — — 15
		15)			Silty CLAY; dark brown.	
	/	SB-13 (10-15)				
-		13	<5	NS -	- Slight odor.	
_		SB	.0			_
~~						
20—					Sandy CLAY; dark gray, slightly moist, well sorted.	20
_	/				candy of r, dan gray, orginity molet, wer concer.	
			<5	NS		
-						
_						
25—						25
						20 —
-					Bottom of Boring at 25.0' BGS. (Backfill with	<u>–</u>
					Bentonite and Patch Asphalt.	<u> </u>
						L
						Γ
_						<u>–</u>
30—						30
~						
-						
_						<u>–</u>
						<u> </u>
_						— 35
						-
 35 						

	۵	nex C	omn	anies	, LLC	Buse Timber & Sales	Boring Number:	SB-14
	60	00 Ste	ewart	Stree	et, #400	Buse Timber & Sales 3812 28th Place NE	Project Number: ALTER	RA-064
APE	X se	eattle	, Was	shingt	ton 98101	Everett, Washington	Logged By: H. Hiscox	
							Date: June 30, 2021	
							Site Conditions: Overca	st
	2						Drilling Contractor: Holo	cene Drilling
	N S	u a					Drilling Equipment: Geop	orobe
	sec.	ldu					Sampler Type: 2-inch m	acrocore
	Core Interval/Recovery	Laboratory Sample ID					Depth to Water (ATD): No	ot Encountered
Depth, feet	ter	ory					Surface Elevation: Not M	
th, t	드	orat		eu	Lith	ologic Description		
)ep	l S	-ab(Π	Sheen		ologic Description	Boring Details and	Notes:
	\square	_	<u> </u>	0,				
_	/				Asphal	It (8") over silty CLAY; light gray, slightly moist, fine-grained.		
] /							
	/							
	1 /		<5	NS				
-	1/	SB-14 (0-5)					-	
5—	H	0					<u> </u>	
_	/	B-1-					_	
_	/	0			— Small	amount of organic material (wood chips) present in clay.		
			<5	NS				
		()						
-		SB-14 (5-10)					-	
10—		B-14					10	
_		S			Bottom	n of Boring at 10.0' BGS.	<u> </u>	
_					Backfil	I with Bentonite and Patch Asphalt.		
							L	
	1							
15—							<u> </u>	
-							<u> </u>	
_							<u> </u>	
_								
_								
0							00	
20	1						20	
-	1							
-							—	
-							<u> </u>	
_							_	
25—							25	
-								
-							—	
-							-	
-							–	
30—							30	
_							L	
_							L	
-								
-							-	
35—							35	
-							–	
_							L	
_								
-								
								Page 1/1

Appendix B

Laboratory Report