ENVIRONMENTAL AND GEOTECHNICAL ASSESSMENT REPORT OF FINDINGS Lignin Parcel, GP West Site Bellingham, Washington

Prepared for: RMC Architects LLC and Port of Bellingham

Project No. 190239-001-1.4 • November 24, 2020 FINAL

Prepared under Integrated Planning Grant Agreement No. TCPIPG-1921-BellPo-00001

earth + water

ENVIRONMENTAL AND GEOTECHNICAL ASSESSMENT REPORT OF FINDINGS Lignin Parcel, GP West Site

Bellingham, Washington

Prepared for: RMC Architects LLC and Port of Bellingham

Project No. 190239-001-1.4 • November 24, 2020 FINAL

Aspect Consulting, LLC

November 24, 2020

Steve Germiat, LHG, CGWP Principal Hydrogeologist sgermiat@aspectconsulting.com

November 24, 2020

Erik Andersen, PE Principal Geotechnical Engineer eandersen@aspectconsulting.com

V:\190239 Port of Bellingham Millworks Project\Deliverables\Report of Findings_Lignin Parcel\POB MIllworks Report of Findings Env_Geotech_Final.docx

Contents

1	Project Ov	verview and Goal for Assessment	1
2	Backgrou 2.1 Indust 2.2 Previo 2.2.1 2.2.2 2.3 Subsu 2.3.1 2.3.2	Ind for Lignin Parcel trial History bus Subsurface Investigations Prior Environmental Investigation Prior Geotechnical Investigation urface Conditions Geology Groundwater Conditions	2 3 3 4 4 4 5
3	Environm 3.1 Supple 3.2 Soil Q 3.2.1 3.2.2 3.3 Groun 3.4 Clean	ental Assessment Findings emental Sampling and Analysis Conducted uality within Lignin Parcel cPAHs Metals ndwater Quality within the Lignin Parcel up Action Planning for the Lignin Parcel	6 7 7 8 9 9
4	Geotechn 4.1 Seism 4.1.1 4.1.2 4.2 Buildir 4.2.1 4.2.2 4.2.3 4.3 Tempo 4.4 Perma 4.5 Earthy 4.5.1 4.5.2 4.6 Peoper	ical Assessment Findings hic Hazards Liquefaction Ground Response ng Foundations and Floor Slabs Deep Foundations Ground Improvement Floor Slabs orary Shoring and Construction Dewatering anent Subsurface Drainage work Considerations General Reuse of On-Site Soil	.10 .11 .11 .12 .12 .12 .13 .14 .14 .15 .15 .15 .16
4	Geotechn 4.1 Seism 4.1.1 4.1.2 4.2 Buildir 4.2.1 4.2.2 4.2.3 4.3 Tempo 4.4 Perma 4.5 Earthw 4.5.1 4.5.2 4.6 Recor	ical Assessment Findings hic Hazards Liquefaction Ground Response ng Foundations and Floor Slabs Deep Foundations Ground Improvement Floor Slabs orary Shoring and Construction Dewatering anent Subsurface Drainage work Considerations General Reuse of On-Site Soil mmendations for Further Study	.10 .11 .11 .12 .12 .12 .13 .14 .14 .15 .15 .15 .16 .16
4	Geotechn 4.1 Seism 4.1.1 4.1.2 4.2 Buildir 4.2.1 4.2.2 4.2.3 4.3 Tempo 4.4 Perma 4.5 Earthw 4.5.1 4.5.2 4.6 Recor Reference	ical Assessment Findings	.10 .11 .11 .12 .12 .12 .13 .14 .14 .15 .15 .15 .15 .16 .16 .16

List of Tables

- 1 Soil Quality Data for Lignin Parcel
- 2 Groundwater Quality Data for Lignin Parcel

List of Figures

- 1 Site Location Map
- 2 Site Exploration Map
- 3 Bedrock Elevation Contour Map
- 4 Distribution of Soil Contaminant Exceedances

List of Appendices

- A Logs for New Soil Borings
- B Data Validation Report and Laboratory Data Report

Project Contacts

This Report of Findings is prepared in accordance with Integrated Planning Grant Agreement No. TCPIPG-1921-BellPo-00001 between the Washington State Department of Ecology and the Port of Bellingham. Contacts for the Integrated Planning Grant Project are as follows:

- Port of Bellingham Project Manager: Brian Gouran
- Port of Bellingham Billing Contact: Alan Birdsall
- Department of Ecology Project Manager: Margo Thompson
- Department of Ecology Financial Manager: Lydia Lindwall
- Department of Ecology Technical Advisor: Ali Furmall
- Department of Ecology GP West Site Manager: John Guenther

1 Project Overview and Goal for Assessment

In early 2019, the Washington State Department of Ecology (Ecology) selected the Port of Bellingham (Port) as a recipient of a Toxics Cleanup Healthy Housing Integrated Planning Grant (IPG) to fund early project planning efforts for the approximately 3-acre Lignin Parcel located at the corner of Cornwall and Laurel Streets within the Bellingham Waterfront District (Figure 1). The Lignin Parcel is part of the former Georgia-Pacific mill property, which is now the Georgia-Pacific West (GP West) cleanup site (Site) that requires remediation under the Model Toxics Control Act (MTCA) prior to redevelopment. The Port has been conducting environmental investigation and remediation at the Site since 2009 under legal agreements with Ecology.

For the past year, the Port has been working with a local development partner (Millworks, LLC) to evaluate the feasibility of a food campus and affordable/workforce housing at the Lignin Parcel. The Millworks group envisions a campus setting that includes food retail, processing and manufacturing, aggregation and distribution as well as commercial kitchen space supporting catering and artisanal food companies. Also anticipated on the Parcel is a multi-story mixed-use building with offices, classrooms, community event space, and workforce affordable housing. The project fits with the overall community goals of reactivation of the Site while providing much needed affordable housing.

The Port is using the IPG to advance the Millworks redevelopment concept by completing focused environmental investigations, site surveys, coordination with development partners and community stakeholders, and parcel layout/programming.

Task 1 of the IPG included focused environmental assessment, geotechnical/geophysical investigation, and Parcel-specific survey with the goal of advancing environmental and geotechnical characterization of the Lignin Parcel in preparation for redevelopment for affordable housing and other intended uses. A Work Plan for the Environmental and Geotechnical Assessment (Work Plan; Aspect Consulting [Aspect], 2020) was reviewed and approved by Ecology and describes the scope work for the Task 1 environmental and geotechnical assessments completed.

The subsequent sections of this Report are as follows:

- Section 2 Background for Lignin Parcel
- Section 3 Environmental Assessment Findings
- Section 4 Geotechnical Assessment Findings
- Section 5 References cited in this Report

2 Background for Lignin Parcel

The approximately 3-acre Lignin Parcel is located within the 36-acre Chlor-Alkali Remedial Action Unit (RAU) of the GP West cleanup Site. The 3 acres is part of the Reserve Tract of the Waterfront Binding Site Plan and is currently not an independent tax parcel; however, the Port may create a parcel or parcels encompassing the area on a subsequent Specific Binding Site Plan, and the term Lignin Parcel is applied to the subject property in this Report. Figure 2 shows the extents of the Lignin Parcel, including the former Lignin Warehouse structure that was demolished in May 2020, along with the subsurface explorations relied upon for the environmental and geotechnical assessments in this Report.

2.1 Industrial History

In 1926, the San Juan Pulp Company opened the first pulp mill on 5 acres of filled tideland adjacent to Bellingham Bay. It was designed to make use of pulp logs and fiber leftovers from a local wood box plant and several lumber mills. Three years later, the business was reorganized as the Puget Sound Pulp and Timber Company. In 1958, Puget Sound Pulp and Timber acquired the adjacent tissue manufacturing operations of Pacific Coast Paper Mills. In 1963, the company merged with the Georgia-Pacific Corporation who owned and operated the mill until the Port acquired it in 2005. Georgia-Pacific operated the pulp mill until 2001 and, under lease to the Port, operated the tissue mill until 2007.

The Georgia-Pacific mill manufactured bleached sulfite pulp for internal production of tissue and toweling, and for sale as market pulp. The mill contained six individual plants producing primarily sulfite pulp, Permachem pulp, sulfuric acid, chlorine, sodium hydroxide, alcohol, and lignosulfonate products. Lignin materials produced as biproducts in the pulping process were converted through various production steps into commercial products including chromium-containing oil-well drilling mud thinners, vanilla flavoring, animal feeds, adhesives, pharmaceuticals, dust retardants, fuel pellets, solvents, ferromagnetic liquids, and many other products.

On the Lignin Parcel, the lignin warehouse¹ (warehouse) was used for storage of the manufactured lignin-containing products. Waste liquors from the lignin processes were stored in a series of above-ground storage tanks ranging size from 30,000 to 150,000 gallons located on the western portion of the Parcel. Although materials containing hexavalent chromium were used in manufacture of lignin-based drilling mud products, all handling of those materials occurred within the Lignin Plant area north of the BNSF railroad (Aspect, 2004); there is no evidence for storage of materials containing hexavalent chromium on the Lignin Parcel, and the existing environmental sampling and analysis data from the Parcel (described below) are consistent with that.

¹ The lignin warehouse was demolished in May 2020.

2.2 Previous Subsurface Investigations

2.2.1 Prior Environmental Investigation

Prior to the Port's purchase of the entire Site, Georgia-Pacific completed a Phase 2 Environmental Site Assessment (ESA) for the Pulp and Tissue Mill portion of the Site. The Phase 2 ESA included soil and groundwater sampling and analysis on the Lignin Parcel² to evaluate potential impacts associated with the spillage of dry lignin products and/or waste liquor during historical loading of rail cars and/or release of lignin products from the overhead conveyor between the warehouse and rail spur (Aspect, 2004).

The 2004 characterization of the Lignin Parcel included drilling soil borings to a depth of approximately 15 feet with soil sampling to a maximum depth of 8 feet at five locations, and collection of four surface soil samples. These explorations were designated LW-SB01 through LW-SB06 (soil borings), LW-MW01 (monitoring well), and LW-SS01 through LW-SS04 (surface samples) at the locations shown on Figure 2. Boring LW-MW01 was located within the waste liquor tank area and was also completed as a groundwater monitoring well positioned near the downgradient (western) edge of the Parcel. Boring LW-SB01 was located south of the warehouse, and LW-SB02 was located adjacent to its western entrance. Borings LW-SB03 and LW-SB04 were located adjacent to the warehouse's northwestern and northern edges, in the vicinity of the conveyor and dry product storage tanks. Surface soil samples LW-SS01, LW-SS02, and LW-SS03 were collected along the rail spur located west of the warehouse (spillage of dry products was reported in this area by former Georgia-Pacific employees), and surface soil sample LW-SS04 was collected in the northeastern corner rail entrance (Figure 1).

In total, 14 soil samples were analyzed for total metals including hexavalent chromium, and semivolatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs). One sample from each boring and the four surface soil samples were also analyzed for formaldehyde. Had field evidence of hydrocarbon or volatile organic compound (VOC) contamination been observed during soil sample collection, the corresponding soil samples would have been also tested for total petroleum hydrocarbons (TPH, in the gasoline, diesel, and oil ranges), VOCs, and, if heavy oil was suspected, for polychlorinated biphenyls (PCBs). No field screening indications of hydrocarbons/VOCs was observed during the sampling, so these additional analyses were not performed (Aspect, 2004). Table 1 includes the 2004 soil quality data.

The 2004 characterization also included installation and groundwater sampling of monitoring well LW-MW01. The groundwater sample was analyzed for metals, SVOCs including PAHs, VOCs, PCBs, and a range of conventional parameters. Following the Port's acquisition of the property from Georgia-Pacific in 2005, groundwater samples were collected from well LW-MW01 for metals analysis in September 2009 and March 2010 as part of the Port's Remedial Investigation (RI) for the Site. Table 2 presents the groundwater quality data for the Lignin Parcel.

² Termed the Lignin Warehouse site (Mill B) in Aspect (2004).

2.2.2 Prior Geotechnical Investigation

A geotechnical engineering study (GeoEngineers, 2007) was completed in support of a potential relocation of the BNSF railroad main line traversing the Site along the western edge of the Lignin Parcel. As part of that study, three geotechnical soil borings—designated BB-1, BRR-1, and BRR-2 (Figure 2)—were drilled on the Lignin Parcel. These borings encountered, from the surface down: fill, beach/intertidal deposits, and Chuckanut formation (bedrock). The geologically unconsolidated fill and beach/intertidal deposits are generally unsuitable for foundation support for a new building; the underlying Chuckanut formation is competent and suitable for foundation support. The reported depths below ground surface to the top of the Chuckanut formation varied from 20.5, 29, and 46.5 feet, in BRR-1, BRR-2, and BB-1, respectively.

2.3 Subsurface Conditions

This section describes the current understanding of the geologic and groundwater conditions underlying the Lignin Parcel based on the prior and current investigations.

2.3.1 Geology

Material underlying the Lignin Parcel is characterized by fill placed over a wedge of unconsolidated materials all overlying the generally southward-sloping bedrock surface, as described below.

Fill

Geologic mapping of the Site indicate it is underlain by artificial fill (Lapen, 2000). The entirety of the Site including the Lignin Parcel was built on land formed by historical filling of a tidal flat area of the Whatcom Creek Delta starting in the early 1900s. The fill material comprising the Lignin Parcel primarily includes dredge fill placed hydraulically during 1912 and 1913 by the U.S. Army Corps of Engineers.

Fill material observed during the exploration activities consists primarily of silty sand (SM) with variable gravel and fines contents. Fragments of debris consisting of woody material or bricks were commonly encountered within the fill. The collective explorations indicate fill material extending to depths of about 5 to 12 feet below the ground surface (bgs) across the Parcel, corresponding to approximate elevation 8 to 13 feet above the North American Vertical Datum of 1988 (NAVD88).

The fill material has low shear strength, high compressibility, moderate hydraulic conductivity, and is susceptible to liquefaction.

Beach/Intertidal Deposits

Underlying the fill is a sequence of native marine beach/intertidal deposits ranging from about 10 to more than 35 feet thick. The beach/intertidal deposits generally consist of very loose to loose, sand (SP) or silty sand (SM) and commonly stratified with clay, sandy clay, or gravelly clay (CL). Our current assessment's 15-foot-deep explorations terminated in these deposits.

Beach/Intertidal deposits have low shear strength, moderate compressibility, low to moderate hydraulic conductivity, and are susceptible to liquefaction.

Chuckanut Formation Bedrock

The unconsolidated soil units pinch out to the north and east of the Lignin Parcel to bedrock of the Chuckanut formation consisting of sandstone, shale, conglomerate, and coal (GeoEngineers, 2007; Lapen, 2000). Bedrock was not encountered by the termination depth (15-feet bgs) during the current assessment exploration activities.

GeoEngineers (2007) describes the Chuckanut formation bedrock encountered within the vicinity of the Lignin Parcel to consist of weathered sandstone that varied from friable decomposed rock to a less decomposed, sound rock. GeoEngineers (2007) stated that the bedrock could be drilled with a mud-rotary tri-cone bit; however, it was difficult to penetrate using a hollow-stem-auger drill rig. To our knowledge, rock-coring methods of explorations have not been conducted in the vicinity of the Lignin Parcel.

Bedrock surface elevations were estimated across the Lignin Parcel based on previous mapping by W.D. Purnell and Associates (1977) and supplemented by boring data from GeoEngineers (2007). Figure 3 presents the currently estimated bedrock surface elevation contours for the Lignin Parcel area using the collective information. The bedrock surface is estimated to be at a maximum elevation of around -5 feet NAVD88 in the northern portion of the Site and a minimum elevation of around -40 feet NAVD88 in the southern portion of the Parcel. These elevations correspond to depths of about 20 feet bgs in the northern portion and about 50 feet bgs in the southern portion of the Parcel, indicating a steep southwestward-sloping bedrock surface. Purnell (1977) maps the bedrock surface diving to an elevation below -120 feet NAVD88 (depths of 140+ feet bgs) approximately 400 to 500 feet southwest of the Lignin Parcel.

The Chuckanut formation typically has little primary porosity and limited groundwater movement through fractures. Chuckanut formation bedrock has high shear strength, very low compressibility, and is not susceptible to liquefaction.

2.3.2 Groundwater Conditions

Across the broader Site, the three hydrostratigraphic units of primary interest include, from surface down: the Fill Unit, a low-permeability Aquitard representing the historical tide flat surface that fill was placed upon, and a deeper sand unit under artesian conditions referred to as the Lower Sand Unit (Aspect, 2013). Within the Lignin Parcel, the Beach-Intertidal deposits lacked a consistent silty (low-permeability) horizon and it does not appear that an aquitard unit exists beneath the fill across the entire Parcel.

During the current exploration activities in early August 2020 (dry season), groundwater was measured at depths ranging from about 3 to 10 feet bgs, representing a water table elevation of about 10 to 13 feet NAVD88. At monitoring well LW-MW01, located along the western boundary of the Lignin Parcel (Figure 2), depth to the water table ranged between 4.2 and 5.6 feet bgs (elevations 9.9 to 11.3 feet NAVD88) when measured in 2004, 2009, and 2010. During the August 2020 field data collection, depth to water was measured at 6.5 feet bgs in LW-MW01 (elevation 9.0 feet NAVD88), confirming the dryseason condition. The water table depth is expected to be shallower along the eastern and northeastern sides of the Parcel. Groundwater in the Fill Unit and underlying unconsolidated deposits flows generally westward with discharge to the Whatcom Waterway.

3 Environmental Assessment Findings

This section describes the supplemental environmental soil sampling and analysis conducted under the IPG and then, integrating the new and prior data, the updated understanding of contaminant conditions for Lignin Parcel soil and groundwater.

3.1 Supplemental Sampling and Analysis Conducted

In accordance with the Work Plan, supplemental soil sampling and analysis was conducted from six direct-push soil borings to a depth of 15 feet on August 3, 2020. No groundwater sampling was conducted in this environmental assessment, with the expectation that groundwater monitored natural attenuation (MNA) performance monitoring will be conducted for the Lignin Parcel in accordance with a monitoring plan to be developed and approved by Ecology following finalization of the Chlor-Alkali RAU CAP.

The assessment's six new soil borings (LW-SB101 through LW-SB106) included two advanced through the floor slab of the former warehouse and four outside of it at locations depicted on Figure 2. The soil borings were completed by a state-licensed resource-protection well driller from Cascade Drilling of Woodinville, Washington. A state-licensed geologist from Aspect conducted geologic logging and soil sampling for the borings. In accordance with the Work Plan's Inadvertent Discovery Plan (IDP), Aspect's geologist watched for indications of potential archaeological materials during logging of the soil cores. No such materials were observed. Appendix A includes boring logs for the six new borings.

At each of the six boring locations, a surface soil sample was collected from the upper 1foot interval beneath pavement/floor slab grade. There were no field screening³ indications of contamination in any of the borings; therefore, deeper soil samples were collected from each boring from just below the water table observed during drilling and at a depth approximately 3 to 4 feet below the water table.

The soil samples were submitted to OnSite Environmental in Redmond, Washington, an Ecology-accredited analytical laboratory, for analysis of the following constituents that had exceedances of cleanup levels in soil during the prior sampling on the Parcel:

- Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc)
- Polycyclic aromatic hydrocarbons (PAHs)
- Diesel-/oil-range total petroleum hydrocarbons (TPH)

The environmental sampling and analysis were performed in accordance with the Work Plan's Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP) (Aspect, 2020). Aspect's field geologist also conducted the field work in accordance with

³ Visual and olfactory observations, and photoionization detector (PID) readings, as described in the Work Plan's Sampling and Analysis Plan (Appendix A in Aspect, 2020).

Aspect's site-specific Health and Safety Plan that included hygiene and social distancing protocols specific to COVID-19.

3.2 Soil Quality within Lignin Parcel

The Lignin Parcel soil contaminant conditions are evaluated relative to soil cleanup levels established in Ecology's Draft Cleanup Action Plan (DCAP) for the Chlor-Alkali RAU that encompasses the Parcel (Ecology, 2020). The soil cleanup levels are for an unrestricted land use, which assume a residential child lifetime direct contact exposure and account for contaminant leaching to groundwater. Table 1 presents the collective Parcel soil data compared against cleanup levels, with shading of detected concentrations exceeding cleanup levels. The DCAP has yet to go through public comment and be finalized, and there is a small chance that the cleanup levels could change in that process.

Contaminants exceeding cleanup levels in Lignin Parcel soil include carcinogenic polycyclic aromatic hydrocarbons (cPAHs), selected metals, and, in shallow soil at the LW-SB01 location, soil pH. Concentrations of semivolatile organic compounds (SVOCs) other than cPAHs and of formaldehyde were less than respective soil cleanup levels in each of the 15 historical soil samples collected.

Diesel- and oil-range TPH concentrations were also below the cleanup level in each of the 18 soil samples collected in August 2020 (Table 1). However, TPH was detected in surface soil samples at three of the six boring locations—LW-SB102 (801 mg/kg⁴), LW-SB104 (199 mg/kg), and LW-SB104 (76 mg/kg)—and in the 10-foot soil sample collected from boring LW-SB104 (95 mg/kg), which would restrict options for potential reuse of the soil if excavated as per Ecology guidance (Ecology, 2016).

Figure 4 shows the spatial distribution of locations with detected cPAH and metals concentrations exceeding soil cleanup levels, as described briefly below.

3.2.1 cPAHs

Total cPAH (TEQ⁵) concentrations exceeding the cleanup level were detected in soil samples collected around the former warehouse on the west and north sides (0.8 to 29 mg/kg) and on the south side (0.47 mg/kg). cPAH concentrations in soils collected beneath the former warehouse floor slab were less than the cleanup level. Based on the current data, Figure 4 depicts the estimated extent of cPAH-contaminated soils within the Lignin Parcel.

The highest cPAH concentrations occur in shallow soils adjacent to the former railroad spur on the west side of the former warehouse and are attributable to creosote-treated railroad ties on the spur. The only sample location for which cPAHs exceeded the soil

⁴ Reported TPH concentrations are the summation of diesel- and oil-range concentrations in accordance with Ecology policy.

⁵ Total toxic equivalent concentration of benzo(a)pyrene calculated in accordance with MTCA (WAC 173-340-708(e)).

cleanup level at a depth greater than 4 feet was LW-SB03 located near the northwest corner of the former warehouse (1.0 mg/kg in the 4-to-8-foot-depth sample; Table 1).

The soil cleanup level for total cPAHs (TEQ) (0.19 mg/kg) in unsaturated and saturated soils⁶ is based on human direct contact with soils.⁷ The detected cPAHs in some soil samples also exceed higher concentrations predicted to pose a risk via leaching to groundwater (6.2 mg/kg for unsaturated soil, 0.31 mg/kg for saturated soil; Aspect, 2013). However, cPAHs are hydrophobic compounds with low solubility and mobility in the environment, particularly in soils with relatively high organic carbon content as exist beneath the Lignin Parcel. Consistent with those characteristics, cPAHs were not detected in the groundwater samples collected from monitoring well LW-MW01 located along the Parcel's western boundary (Table 2), suggesting that the cPAH concentrations in soil are protective of groundwater in accordance with MTCA (WAC 173-340-747(9)).

3.2.2 Metals

The heavy metals⁸ cadmium, chromium, copper, lead, nickel, and zinc were detected in one or more soil samples at concentrations exceeding respective soil cleanup levels, all of which are based on soil leaching to groundwater (not direct contact⁹). Most locations sampled have an exceedance of one or more metals as indicated on Figure 4. Of the various metals, copper and zinc have the most widespread exceedances. Concentrations of copper and zinc are commonly elevated in urban soils as a result of vehicle traffic (copper in brake pads, zinc in tires) as well as building materials (copper in plumbing and wiring, zinc in galvanized metal).

Copper concentrations exceeding the 36 mg/kg soil cleanup level were detected at 10 of the 14 sample locations. Copper concentrations greater than two times the cleanup level (72 mg/kg) were limited to surface soils at two locations: LW-SS02 on the west side of the former warehouse (88 mg/kg) and LW-SB106 within its footprint (650 mg/kg).

Zinc concentrations exceeding soil cleanup levels (100 mg/kg for unsaturated soil; 85 mg/kg for saturated soil) were detected at 7 of the 14 sample locations, with concentrations greater than 200 mg/kg limited to shallow soils (Table 1). The maximum concentration (1,450 mg/kg) occurred in surface soil at LW-SS04 located adjacent to the former warehouse's northern edge (Figure 4).

The other soil metals exceedances—cadmium, chromium, nickel, and lead—are collocated with copper and/or zinc exceedances in shallow soil, except for the cadmium exceedance (11 mg/kg) in shallow soil at the LW-MW01 location (Table 1).

⁶ Unsaturated and saturated soils occur above and below, respectively, the groundwater table.

⁷ Soil cleanup levels based on direct contact apply to a depth of 15 feet as per MTCA.

⁸ The soil metals analyses were run by EPA Method 6010 whereas the Work Plan Quality Assurance Project Plan indicated EPA Method 200.8 as the method. Method 200.8 is for water matrices and was an error in the Work Plan.

⁹ Soil concentrations protective of groundwater for the metals cadmium, hexavalent chromium, copper, nickel and zinc (saturated soil only) are calculated/predicted to be below natural background soil concentrations and thus are set at natural background in accordance with MTCA.

As stated above, all of the soil cleanup levels for metals are based on soil leaching to groundwater. As discussed in Section 3.3, chromium was the only metal detected in Lignin Parcel groundwater at concentrations exceeding groundwater cleanup levels during the GP West Site RI sampling (Aspect, 2013), suggesting that the concentrations of metals other than chromium in Lignin Parcel soil are protective of groundwater in accordance with MTCA (WAC 173-340-747(9)).

3.3 Groundwater Quality within the Lignin Parcel

During the 2004 groundwater sampling of well LW-MW01, TPH, PAHs, other SVOCs, VOCs, PCBs were generally not detected, and the concentrations detected were less than screening levels applied in the RI (Aspect, 2013). However, each of the heavy metals analyzed in the groundwater sample exceeded cleanup levels.¹⁰ The 2009-2010 groundwater data from well LW-MW01 showed substantial improvement in metals concentrations relative to 2004; however, total chromium exceedances persisted (Table 2).

Groundwater pH at LW-MW01 also showed a substantial decline between 2004 and 2009-2010, but the 2010 measurement (pH = 8.9) was slightly above the pH 8.5 cleanup level. The slightly higher dissolved oxygen and lower temperature measured at the well in Spring 2010 versus Fall 2009 is likely indicative of cooler, more oxygen-rich recharge infiltrating to the Fill Unit groundwater during the intervening wet season (Table 2).

3.4 Cleanup Action Planning for the Lignin Parcel

Ecology's DCAP for the Chlor-Alkali RAU includes a cleanup action that addresses the full 36 acres including the 3-acre Lignin Parcel (Ecology, 2020). The DCAP focuses on the RAU's primary contaminant of concern—highly concentrated mercury in the area of Georgia-Pacific's historical chlorine plant located more than 1,000 feet south of the Lignin Parcel. The Lignin Parcel has not been impacted by mercury contamination from the former chlorine plant operations.

The DCAP's selected cleanup action for the Lignin Parcel currently includes two primary elements:

- Capping (containment) of the cPAH-contaminated soil on the west side of the former warehouse
- Groundwater monitoring in well LW-MW01 to document performance for the natural attenuation of residual alkaline pH and associated dissolved metals concentrations in achieving cleanup levels

Because the proposed cleanup action would contain contaminated materials throughout the RAU, an environmental covenant would be placed on the RAU including the Lignin Parcel. The covenant, similar to that in place now on the Pulp and Tissue Mill RAU

¹⁰ The reporting limit for hexavalent chromium was elevated (Aspect, 2004), but subsequent samples collected in 2009 and 2010 confirmed no concentrations above the cleanup level (Table 2).

immediately to the northwest of the Parcel, would require inspection and maintenance of the environmental cap in perpetuity.

At the time the DCAP was originally developed, there was not a defined project in the vicinity of the Lignin Parcel. Now that planning for a mixed use redevelopment of the Lignin Parcel, including residential use, is in process, the Port and Ecology can formulate a parcel-specific strategy for integrating cleanup and redevelopment of the Lignin Parcel, to optimize protectiveness for the future use and cost-effectiveness. For example, depending on the earthwork concepts for the redevelopment, it may prove to be more practicable to remove the cPAH-contaminated soils, which occur at shallow depth, during redevelopment instead of capping it as currently contemplated under the RAU's DCAP. Removal of contaminated soil could be accomplished most cost effectively when the redevelopment earthwork is occurring, so that efficiencies with site excavation, backfill, and final grading could be realized. Removing instead of capping the contaminated soils would increase the permanence of the RAU's cleanup remedy and have an added benefit of limiting long-term institutional controls on the Lignin Parcel. However, changing from soil containment to removal would represent a change to the RAU's current DCAP and thus would require close coordination with Ecology as the redevelopment project's planning progresses. It would also require design-level soil sampling to more precisely delineate the extent of cPAH-contaminated soils.

At the time of this Report, Ecology is preparing the DCAP for public comment in accordance with MTCA. Ecology will then address public comments and issue a final CAP. Thereafter, the Port will conduct remedial design for the selected cleanup action, including pre-remedial design investigations (PRDI) to refine design parameters and inform constructability for cleanup of the mercury-contaminated areas of the RAU. The design process will involve preparation of PRDI Work Plan(s), PRDI Data Report(s), Engineering Design Report(s), and Construction Plans and Specifications for the Port's competitive bidding and contracting of the construction elements of the selected cleanup action, which may be divided into multiple projects for contracting and execution. The remedial design is anticipated to be a multi-year process culminating in a Consent Decree between Ecology and the Port that requires completion of the final cleanup action design.

It may be possible to complete remediation of the Lignin Parcel with a process separate from the more involved mercury cleanup activities within the Chlor-Alkali RAU. This potentially could include defining the Lignin Parcel as its own RAU within the GP West Site, subject to agreement with Ecology and appropriate legal documentation.

4 Geotechnical Assessment Findings

This section presents preliminary geotechnical design and construction considerations for the redevelopment concept. Our main conclusions and recommendations include:

• The Site is underlain by weak and compressible fill and beach deposits that range between 20 and 47 feet in thickness where explored. These weak and compressible deposits are underlain by competent Chuckanut formation bedrock. Below the groundwater level, the loose fill and beach deposits are susceptible to liquefaction-triggered strength loss and associated permanent ground deformation during a design-level earthquake. To mitigate these hazards, we recommend the new buildings either be supported on deep foundations that penetrate the fill and beach deposits and reach the underlying bedrock or be constructed over improved ground. Depending on serviceability requirements, at-grade floor slabs may also need to be structurally supported or built over improved ground.

• We understand that building concepts do not presently include below-grade parking or basement areas, but this could change. If basements are to be added, the design would need to consider the relatively shallow depth to groundwater (approximately 5 feet). A relatively water-tight basement could be constructed utilizing with interlocking steel sheet piling basement walls with welded interlocking joints, and a buoyancy-compensated concrete floor slab with waterproofing admixtures. Temporary shoring and dewatering would be needed during construction.

4.1 Seismic Hazards

The Site is located in a seismically active region and will experience strong ground shaking during earthquakes. New buildings will be designed to account for the effects of earthquake ground shaking in accordance with the current applicable codes.

4.1.1 Liquefaction

Liquefaction occurs when loose, saturated, and relatively cohesionless soil deposits temporarily lose strength and stiffness as a result of earthquake shaking. Primary factors controlling the triggering of liquefaction include intensity and duration of strong ground motion, characteristics of subsurface soils, *in situ* stress conditions, and the depth to groundwater.

The loose, saturated granular deposits underlying this Site could liquefy during a designlevel earthquake. Potential effects of soil liquefaction include temporary reduction of shallow foundation bearing capacity, downdrag loads on deep foundations, vertical ground settlement, and permanent lateral ground movement. Liquefaction-induced permanent ground deformation could range from several inches to a couple of feet and would vary across the Site due to the varying thickness of the liquefiable fill and beach deposits. This hazard will need to be fully evaluated during the detailed building design phase.

4.1.2 Ground Response

Based on the presence of potentially liquefiable soils, we preliminarily designate the Site as seismic Site Class F in accordance with the 2018 International Building Code (IBC; ICC, 2018) and American Society of Civil Engineers (ASCE) 7-16, *Minimum Design Loads for Buildings and Other Structures Loads* (ASCE, 2017). For a Site Class F site, a site-specific ground response analysis is required. However, if a building on a Site Class F site has a fundamental period less than 0.5 seconds, the code allows for a Site Class E designation in lieu of a site-specific ground response analysis.

Our recent experience is that buildings greater than five stories tall may have fundamental periods of vibration greater than 0.5 seconds. If ground improvement below

a building is used to mitigate liquefaction triggering, then the Site can be designated Site Class D. Geotechnical and structural engineering coordination will be needed to assess seismic risk during the detailed design phase of the project.

4.2 Building Foundations and Floor Slabs

The loose fill and beach deposits underlying the Site are compressible and susceptible to liquefaction. Grade-supported buildings over these soils will have a high potential for settlement under static loads and would likely sustain significant damage (or could even collapse) due to soil liquefaction during design-level earthquake ground shaking. Multi-story (three or more levels) buildings should be supported on deep foundations. Single- to two-story buildings could be supported similarly, or on rafted structural slabs combined with ground improvement.

The suitability of deep foundations vs. shallow foundations over improved ground will depend on building loads and performance requirements.

4.2.1 Deep Foundations

Deep foundations that bypass the fill and beach deposits and transfer loads to the underlying bedrock can be utilized to support new buildings. Deep foundations will not mitigate liquefaction triggering, but rather they will mitigate the effects of liquefaction (building settlement). The deep foundation design would need to consider liquefactioninduced downdrag loads imposed on the foundations by the surrounding settling soil.

In our opinion, there are several types of deep foundation systems that may be suitable for the Site considering the anticipated building sizes. These systems include driven piles, driven grout piles, and auger-cast piles.

Suitable types of driven piles include open or closed-end steel pipe piles or driven Hpiles. Two benefits of driven piles are that they do not produce spoils and their capacities can be measured in the field during driving. Closed-end pipe piles can also be inspected for damage during or following driving. One potential disadvantage of displacement piles (such as closed-end steel pipe piles) at this Site is that pile driving "refusal" conditions will likely develop within about one or two pile diameters of the top of the Chuckanut formation. Where the depth to bedrock is less than about 25 feet, displacement piles may not be deep enough to develop lateral fixity. Open-end pipe piles will develop a soil plug that will tend to act like a closed end; however, a drilling and driving technique can be employed to disturb soil ahead of the pile tip to make for easier driving, and to remove soil and prevent a plug from developing. Low-displacement H-piles will develop a greater embedment depth into the Chuckanut formation. Pile driving will generate noise and vibrations, which we do not anticipate to be a major concern at this Site.

Driven grout piles are proprietary 'hybrid' deep foundation system installed by a regional contractor. Driven grout piles are installed by 1) driving a displacement mandrel through the subsurface to the design depth or specified driving resistance and 2) retracting the mandrel while pumping grout to create a grout-filled shaft. Reinforcement (typically a rebar cage) is then wet-set into the freshly grouted shaft. Similar to a driven displacement pile, driven grout piles will likely meet with "refusal" conditions very close to the top of the Chuckanut formation.

Auger-cast piles are constructed by rotating a continuous flight of hollow-stem auger to a specified depth. Once the specified depth is reached, grout is pumped through the hollow stem as the auger is slowly withdrawn, creating a column of grout. Steel reinforcement is then wet-set into the freshly grouted column. One advantage of auger-cast piles is that the auger will likely achieve greater penetration into the Chuckanut formation, compared to displacement piles. Potential disadvantages of auger-cast piles are 1) they will produce spoils that will have to be dealt with; 2) their axial compressive capacities cannot be verified during installation; and 3) their quality is highly dependent on the skill and experience of the contractor.

For planning purposes, we estimate that deep foundation lengths will vary between about 25 and 50 feet in length, with pile lengths increasing from northeast to southwest across the Site. A summary of the advantages and disadvantages of the deep foundations discussed above are presented in Table 3 below.

Deep Foundation System	Advantages	Disadvantages
Driven displacement piles (i.e., closed-end steel pipe piles)	Densifies soil during driving; spoils are not produced; pile capacity can be verified during driving; piles can be inspected for damage	We likely meet with driving refusal at the top of the Chuckanut formation; pile driving produces noise and vibration
Driven open-end steel pipe piles	Open ended pipe piles can be socketed into the Chuckanut formation with a drill- and-drive operation; pile capacity can be verified during driving	Drill and drive operation will produce spoils; pile driving produces noise and vibration
Driven H-piles	Can potentially penetrate into Chuckanut formation; spoils are not produced; pile capacity can be verified during driving	Pile driving produces noise and vibration
Driven Grout Piles	Densifies soil during driving; spoils are not produced; pile capacity can be verified during driving	Will likely meet driving refusal at the top of the Chuckanut formation; pile driving produces noise and vibration
Auger-cast piles	Auger can be advanced into the Chuckanut formation	Produces spoils; quality is dependent on contractor skill and experience; capacity cannot be verified during installation

Table 3. Advantages and Disadvantages of Various Deep Foundation Systems

4.2.2 Ground Improvement

Shallow foundations and/or rafted slabs combined with ground improvement will be feasible for lighter buildings (1 or 2 stories) at the Site. Ground improvement consists of modifying weak or marginal *in-situ* soils to create a stiffer soil mass with improved engineering characteristics, such as higher bearing capacity, lower compressibility under loads, and reduced liquefaction susceptibility. Ground improvement is typically achieved through densification and/or replacing a portion of the *in-situ* soils with stiffer materials. In our opinion, the subsurface conditions may be suitable for ground improvement using stone columns or rammed aggregate piers (RAPs).

Stone columns and RAPs consist of columns of compacted angular crushed rock installed within a soil mass. The stone columns/RAPs are typically 20 to 36 inches in diameter and are installed by vibrating a mandrel or probe through the subsurface to the desired depth. Once the desired depth is reached, the mandrel/probe is retracted as crushed rock is injected and compacted in lifts.

If installed on close enough spacing, the stone columns/RAPs can effectively mitigate liquefaction triggering because 1) they densify the surrounding soil; 2) the columns themselves are not liquefiable; and 3) the columns are free draining and provide a path for pore water pressures generated in the surrounding soils during earthquake shaking to dissipate. When the stone columns/RAPs are installed below shallow foundations, their high stiffness relative to the surrounding weak soil attract most of the applied foundation loads, thereby reducing the loads imposed on the surrounding weak soil and reducing settlement.

With ground improvement, liquefaction triggering will be substantially mitigated but some ground deformation could still occur during an earthquake. Therefore, where ground improvement is utilized, it may be necessary to support buildings on heavily reinforced mat foundations to help distribute the building loads, improve building performance, and mitigate structural damage.

Our conceptual ground improvement below buildings (where deemed feasible) consists of 30-inch diameter (minimum) stone columns/RAPs spaced in a 6- to7-foot triangular grid pattern below a mat foundation. The stone columns/RAPs would extend at least 10 feet beyond the edges of the mat foundation and would extend to the top of the bedrock between 25 and 50 feet bgs. With this concept, we expect the mat foundation can be designed for an allowable bearing pressure on the order of 3 to 4 kips per square foot (ksf).

Aspect will be available to support the design team with a critical cost/benefit evaluation of this alternative compared with deep foundations.

4.2.3 Floor Slabs

Where building serviceability requirements will not allow for differential slab settlement and associated cracking (such as where heavy forklifts would operate), concrete floor slabs will need to be structurally designed as pile supported or as rafted structural mats over improved ground. In non-critical areas, conventional slab-on-grade construction would be feasible.

4.3 Temporary Shoring and Construction Dewatering

In the event that building concepts evolve to include permanent basements, this section provides general recommendations for temporary shoring and construction dewatering.

Excavations deeper than about 5 feet bgs will encounter groundwater and saturated soil conditions. Therefore, we recommend a relatively watertight shoring system consisting of interlocking steel sheet piling.

This system would utilize interlocking steel sheet piling augmented with internal bracing or external ground anchors (tieback anchors) for lateral support, if necessary. Construction dewatering would be completed using a well point or deep well system and excavation would be accomplished "in the dry." The elements of this system and likely construction sequence, are described below.

- Heavy walled Z-section steel sheet piling would be installed using either vibratory or press-in methods to the required depth for stability and groundwater control. We expect the tips of the sheet piles would extend approximately 20 feet below the bottom of the excavation.
- **2**. The dewatering system would be installed around the interior perimeter of the sheet piling, within the corrugated pockets (i.e., fluting) of the sheets.
- **3.** Excavation would begin and the dewatering system would be put into operation as the excavation comes within a few feet above the groundwater level.
- **4.** The excavation would continue down to the planned bottom. One or more levels of internal bracing or tieback anchors, if required, would be installed as the excavation is advanced.
- 5. Once the excavation has reached the target depth, a thick concrete slab (tremie slab) would be placed. The thickness of the slab needs to be sufficient to counteract upward buoyant forces on the floor slab.
- 6. Dewatering would continue until the permanent basement walls and floor are completed. Minor leakage would be managed using interior sumps and submersible pumps. Groundwater collected by the dewatering system would require treatment to meet water quality standards prior to discharge.

A shoring deformation monitoring program will need to be undertaken during construction to monitor shoring wall performance and deformation of adjacent sidewalks, streets, and the adjacent BNSF railroad.

4.4 Permanent Subsurface Drainage

For buildings constructed entirely above grade, we expect that conventional subsurface drainage consisting of perimeter footing drains will be feasible. For buildings with basements extending below groundwater, we recommend they be designed and constructed with a relatively watertight basement system as described above. Minor leakage into the basement would be managed using interior sumps and pumps.

4.5 Earthwork Considerations

4.5.1 General

In our opinion, the couple feet of remedial excavation that will be necessary to clean up the Site can be accomplished with conventional tracked excavators and dozers. The same is true for excavations that extend deeper, such as for a basement. However, due to the Site history, it should be expected that unknown or relic buried structures, foundations, and utilities will be encountered during construction.

Site earthwork must consider environmental factors and be accomplished in a manner that satisfies the environmental requirements for site development.

4.5.2 Reuse of On-Site Soil

The on-site soils have appreciable fines (soil particles passing the No. 200 sieve), which makes them susceptible to disturbance from construction traffic and difficult to compact, especially during wet weather. In our opinion, the on-site soils are not suitable for reuse as structural fill beneath and around foundations, slabs, pavements, or walls. Environmental factors are also expected to limit their suitability for reuse.

For planning purposes, all excavated soil should be exported from the Site and all structural fill that is required should be clean imported granular soil.

4.6 Recommendations for Further Study

The preliminary conclusions and recommendations presented in this report are based on limited data from existing environmental explorations completed at the Site, and our experience with similar redevelopment projects. Additional geotechnical explorations and laboratory testing will be necessary to verify and further characterize the subsurface conditions, inform foundation and/or ground improvement design, and to further evaluate groundwater conditions and construction dewatering (if required). Depending on the selected foundation systems and building characteristics (i.e., fundamental periods), a site-specific ground response analysis may be required to develop seismic design response spectra.

5 References

- American Society of Civil Engineers (ASCE), 2017, Minimum Design Loads for Buildings and Other Structures.
- Aspect Consulting, LLC (Aspect), 2004, Phase II Environmental Assessment, Georgia-Pacific Bellingham Operations, September 3, 2004.
- Aspect Consulting, LLC (Aspect), 2013, Remedial Investigation, Georgia-Pacific West Site, Bellingham, August 5, 2013, Volume 1 of RI/FS.
- Aspect Consulting, LLC (Aspect), 2020, Work Plan for Environmental and Geotechnical Assessment, Lignin Parcel, GP West Site, Bellingham, Washington, July 23, 2020.
- GeoEngineers Inc., 2007, Geotechnical Engineering Services, City of Bellingham
 Railroad Relocation Feasibility Analysis Project, Bellingham, Washington, July
 17, 2007. Appendix D to Washington State, Bellingham Waterfront Rail
 Relocation Project, Final Report, prepared by HDR Inc., October 2007.
- Lapen, T.J., 2000, Geologic Map of the Bellingham 1:100,000 Quadrangle, Washington, Washington State Department of Natural Resources, Washington Division of Geology and Earth Resources, Open File Report 2000-5, December 2000.
- International Code Council (ICC), 2018, 2018 International Building Code (IBC).
- Washington State Department of Ecology (Ecology), 2016, Guidance for Remediation of Petroleum Contaminated Sites, Ecology Publication No. 10-09-057, Revised June 2016.
- Washington State Department of Ecology (Ecology), 2020, Draft Cleanup Action Plan, Chlor-Alkali Remedial Action Unit, Georgia-Pacific west Site, Bellingham, Washington, in preparation.
- W.D. Purnell and Associates (Purnell), 1977, Bedrock Contour Map for Bellingham Millsite, November 19, 1977. Reproduced on Figure 4-3 in Aspect (2013).

Limitations

Work for this project was performed for RMC Architects Inc. (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

TABLES

										Current Explorations											
			<u> </u>						Curr	ent Explora								Curr	ent Explora	TIONS	1
			Location	LW-SB101	LW-SB101	LW-SB101	LW-SB102	LW-SB102	LW-SB102	LW-SB103	LW-SB103	LW-SB103	LW-SB104	LW-SB104	LW-SB104	LW-SB105	LW-SB105	LW-SB105	LW-SB106	LW-SB106	LW-SB106
			Depth	1 ft	10.5 ft	13.5 ft	1 ft	8 ft	11 ft	1 ft	7.3 ft	11 ft	1.5 ft	5 ft	10 ft	1.5 ft	7 ft	12 ft	2 ft	8 ft	11.5 ft
			Sample Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
			Date	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020
Analyta	Linit	Unsaturated Soil	Saturated Soil																		
Analyte	Unit	Cleanup Level	Cleanup Level																		<u> </u>
Metals							-														
Arsenic	mg/kg	20	20	10 U	12 U	12 U	11 U	12 U	13 U	11 U	12 U	12 U	11 U	13 U	15 U	11 U	13 U	13 U	14 U	13 U	12 U
Cadmium	mg/kg	1	1	0.52 U	0.62 U	0.60 U	0.54 U	0.61 U	0.64 U	0.53 U	0.60 U	0.60 U	0.56 U	0.63 U	0.75 U	0.54 U	0.65 U	0.65 U	0.68 U	0.63 U	0.60 U
Chromium	mg/kg	5200	260	21	17	29	31	13	17	14	17	26	58	16	38	19	26	15	150	17	14
Chromium (VI)	mg/kg	48	48																		
Copper	mg/kg	36	36	24	10	25	34	5.8	6.4	23	14	16	30	7	35	16	49	10	650	7.7	13
Lead	mg/kg	250	81	120	6.2 U	6.0 U	74	6.1 U	6.4 U	5.3 U	6.0 U	6.0 U	18	6.3 U	19	5.4 U	66	6.5 U	140	6.3 U	6.0 U
Mercury	mg/kg	24	24	0.26 U	0.31 U	0.30 U	1.2	0.30 U	0.32 U	0.26 U	0.30 U	0.30 U	0.28 U	0.31 U	0.37 U	0.27 U	0.33 U	0.33 U	0.34 U	0.32 U	0.30 U
Nickel	mg/kg	48	48	18	22	34	34	14	17	17	24	23	32	15	42	25	33	22	28	17	21
Zinc	mg/kg	100	85	130	36	44	65	16	21	51	63	34	55	18	75	26	110	22	230	22	28
Total Petroleum Hydrocarbons	(TPH)																				
Diesel Range Organics	ma/ka			26 U	31 U	30 U	31 J	31 U	32 U	26 U	30 U	30 U	29	31 U	37 U	27 U	33 U	33 U	34 U	32 U	30 U
Oil Range Organics	ma/ka			120	62 U	60 U	770	61 U	64 U	53 U	61 U	60 U	170	63 U	76	54 U	65 U	65 U	68 U	63 U	60 U
Diesel + Oil Range Organics	ma/ka	2000	2000	133	62 U	60 U	801 J	61 U	64 U	53 U	61 U	60 U	199	63 U	95	54 U	65 U	65 U	68 U	63 U	60 U
Polycyclic Aromatic Hydrocarb	oons (PAHs)																				
1-Methylnaphthalene	ma/ka	35	35	0.035 U	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.03	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.079	0.0084 U	0.0080 U
2-Methylnaphthalene	ma/ka	320	320	0.035 U	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.008511	0.007011	0.0081 11	0.0080 U	0.054	0.008311	0.010 U	0.007211	0.008711	0.008711	0.089	0.008411	0.0080 11
Acenaphthene	ma/ka	5.2	0.26	0.05	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.069	0.0087	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Acenaphthylene	ma/ka			0.074	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.0075 U	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Anthracene	mg/kg	71	3.5	0.14	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.013	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.04	0.0084 U	0.0080 U
Benzo(g,h,i)pervlene	mg/kg			0.24	0.0083 U	0.0080 U	0.04	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.011	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Fluoranthene	mg/kg	52	2.6	0.57	0.0083 U	0.0080 U	0.14	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.043	0.0083 U	0.010 U	0.0072 U	0.019	0.0087 U	0.027	0.0084 U	0.0080 U
Fluorene	mg/kg	7.4	0.37	0.065	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.014	0.0075 U	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.033	0.0084 U	0.0080 U
Naphthalene	mg/kg	3.5	0.17	0.06	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.014	0.041	0.0083 U	0.013	0.0072 U	0.058	0.0087 U	0.24	0.015	0.0080 U
Phenanthrene	mg/kg			0.45	0.0083 U	0.0080 U	0.089	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.072	0.0083 U	0.010 U	0.0072 U	0.027	0.0087 U	0.13	0.0084 U	0.0080 U
Pyrene	ma/ka	330	16	0.59	0.0083 U	0.0080 U	0.17	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.042	0.0083 U	0.010 U	0.0072 U	0.02	0.0087 U	0.021	0.0084 U	0.0080 U
Benz(a)anthracene	mg/kg			0.32	0.0083 U	0.0080 U	0.044	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.016	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Benzo(a)pyrene	mg/kg			0.33	0.0083 U	0.0080 U	0.051	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.012	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Benzo(b)fluoranthene	mg/kg			0.64	0.0083 U	0.0080 U	0.07	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.02	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Benzo(i,k)fluoranthene	mg/kg			0.16	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.0075 U	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Benzo(k)fluoranthene	mg/kg																				
Chrysene	mg/kg			0.48	0.0083 U	0.0080 U	0.058	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.024	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.014	0.0084 U	0.0080 U
Dibenzo(a.h)anthracene	ma/ka			0.046	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.0075 U	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Indeno(1,2,3-cd)pyrene	mg/kg			0.23	0.0083 U	0.0080 U	0.036 U	0.0081 U	0.0085 U	0.0070 U	0.0081 U	0.0080 U	0.01	0.0083 U	0.010 U	0.0072 U	0.0087 U	0.0087 U	0.0091 U	0.0084 U	0.0080 U
Total cPAHs TEQ	mg/kg	0.19	0.19	0.47	0.0063 U	0.0060 U	0.068	0.0061 U	0.0064 U	0.0053 U	0.0061 U	0.0060 U	0.018	0.0063 U	0.0076 U	0.0054 U	0.0066 U	0.0066 U	0.0070	0.0063 U	0.0060 U
Other Semivolatile Organic Co	mpounds (SV	/OCs)																			
1.2.4-Trichlorobenzene	ma/ka	0.26	0.013																		
1.2-Dichlorobenzene	mg/kg	0.77	0.039																		
1.3-Dichlorobenzene	mg/kg																				
1.4-Dichlorobenzene	mg/kg	1	0.051																		
2.4.5-Trichlorophenol	ma/ka	1900	93																		
2.4.6-Trichlorophenol	mg/kg	0.3	0.015																		
2.4-Dichlorophenol	mg/kg	3.8	0.2																		
2.4-Dimethylphenol	mg/kg	14	0.73																		
2,4-Dinitrophenol	mg/kg	5.6	0.4																		
2.4-Dinitrotoluene	ma/ka	0.12	0.01																		
2.6-Dinitrotoluene	mg/kg	80	3500																		
2-Chloronaphthalene	mg/kg	6400	6400																		
2-Chlorophenol	ma/ka	4.8	0.24																		
2-Methylphenol	mg/kg	4000	4000																		
2-Nitroaniline	ma/ka	800	800																		
2-Nitrophenol	ma/ka																				
3,3'-Dichlorobenzidine	mg/ka	0.47	0.1																		
3-Nitroaniline	mg/ka																				
4,6-Dinitro-2-methylphenol	mg/kg																				
4-Bromophenyl phenyl ether	mg/kg																				
4-Chloro-3-methylphenol	mg/kg																				
4-Chloroaniline	mg/kg	5	5																		

Table 1

Environmental and Geotechnical Assessment Page 1 of 4

			Current Explorations Current Explorations																		
	Location	LW-SB101	LW-SB101	LW-SB101	LW-SB102	LW-SB102	LW-SB102	LW-SB103	LW-SB103	LW-SB103	LW-SB104	LW-SB104	LW-SB104	LW-SB105	LW-SB105	LW-SB105	LW-SB106	LW-SB106	LW-SB106		
			Depth	1 ft	10.5 ft	13.5 ft	1 ft	8 ft	11 ft	1 ft	7.3 ft	11 ft	1.5 ft	5 ft	10 ft	1.5 ft	7 ft	12 ft	2 ft	8 ft	11.5 ft
			Sample Type	N	N	N	N	N	N	N	N	N	N	N	N	N	Ν	N	N	N	N
							08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020	08/03/2020
		Unsaturated Soil	Saturated Soil																		
Analyte	Unit	Cleanup Level	Cleanup Level																		
4-Chlorophenyl phenyl ether	mg/kg																				
4-Methylphenol	mg/kg	400	400																		
4-Nitroaniline	mg/kg																				
4-Nitrophenol	mg/kg																				
Benzoic acid	mg/kg	320000	320000																		
Benzyl alcohol	mg/kg	8000	8000																		
Benzyl butyl phthalate	mg/kg	1.6	0.079																		
Bis(2-chloro-1-methylethyl) ether	mg/kg	14	14																		
Bis(2-chloroethoxy)methane	mg/kg																				
Bis(2-chloroethyl) ether	mg/kg	0.015	0.01																		
Bis(2-ethylhexyl) phthalate	mg/kg	35	1.8																		
Carbazole	mg/kg																				
Dibenzofuran	mg/kg	80	80																		
Diethyl phthalate	mg/kg	22	1.2																		
Dimethyl phthalate	mg/kg																				
Di-n-butyl phthalate	mg/kg	72	3.6																		
Di-n-octyl phthalate	mg/kg	5300	270																		
Hexachlorobenzene	mg/kg	0.63	0.26																		
Hexachlorobutadiene	mg/kg	3.5	0.17																		
Hexachlorocyclopentadiene	mg/kg	480	480																		
Hexachloroethane	mg/kg	1.9	0.096																		
Isophorone	mg/kg	11	0.62																		
Nitrobenzene	mg/kg	29	1.5																		
N-Nitroso-di-n-propylamine	mg/kg	0.01	0.01																		
N-Nitrosodiphenylamine	mg/kg	1.6	0.079																		
Pentachlorophenol	mg/kg	0.58	0.1																		
Phenol	mg/kg	2900	160																		
Conventionals (including other me	etals)																				
Formaldehyde	mg/kg	16000	16000																		
Iron	mg/kg	56000	56000																		
Manganese	mg/kg	11000	11000																		
рН	pH units	2.5 - 11	2.5 - 11																		

Notes:

Bold - detected. Blue Shaded - Detected result exceeded cleanup level

U - Analyte not detected at or above Reporting Limit (RL) shown. J - Estimated value

Sample Type: N - Normal sample. FD - Field duplicate sample.

							Drior Evr	Jorations				Prior Explorations						
Locati											IW-SB02			F11			1.W-8803	1.W-8804
			Dopth	25-4ft	5-65ft	0 - 4 ft	4 - 8 ft	0 - 4 ft	LW-3B02	10 - 4 ft	LW-3603	0 - 4 ft	1 - 8 ft	0-05#	0-05ft	0 - 0.5 ft	0-05#	0 - 0.5 ft
			Sample Type	2.5 - 4 IL N	N 5-0.5 11	N 0-41	4-01C N	N N	4-01C	N N	N	N 0-41	N	N N	6 - 0.5 IL FD	0 - 0.5 m	0-0.5 IL N	N 0 - 0.5 IL
			Date	07/16/2004	07/16/2004	07/21/2004	07/21/2004	07/21/2004	07/21/2004	07/23/2004	07/23/2004	07/22/2004	07/22/2004	07/20/2004	07/20/2004	07/20/2004	07/20/2004	07/20/2004
		Upsaturated Soil	Saturated Soil												0112012001			
Analyte	Unit	Cleanup Level	Cleanup Level															
Metals				<u> </u>	1	I	I	I	1	I	1			1	I		I	<u> </u>
Arsenic	ma/ka	20	20	3011	611	10.11	611	2011	611	611	511	5.11	611	1011	1011	10	1011	1011
Cadmium	mg/kg	1	1	11 J	0.7.1	0.6U	0.2 U	0.6 U	0.3 U	0.7	0.2 U	0.2 U	0.3	0.5 U	0.5 U	1	0.6	1.4
Chromium	ma/ka	5200	260	35	25	43	39	48.9	35.3	844	390 J	140 J	60.4 J	24.9	25.9	173	1560	722
Chromium (VI)	mg/kg	48	48	0.12 U	0.132 U	0.6	0.521	0.127 U	0.138 U	0.121 U	0.116 U	0.123 U	0.146 U	0.112 U	0.108 U	0.105 U	0.124 U	0.123
Copper	mg/kg	36	36	31 J	13.7 J	72.7	29.1	49.1	20.8	58	31.3 J	23.4 J	39 J	36.6	35.1	88.4	66.5	53.3
Lead	mg/kg	250	81	40	9	171	16	15	7	97	19 J	5 J	13 J	6	6	54	53	80
Mercury	mg/kg	24	24	0.08	0.06 U	0.25 J	0.08 J	0.23 J	0.08 J	0.27	0.08	0.04	0.06	0.19 J	0.18 J	0.57 J	0.34 J	0.29 J
Nickel	mg/kg	48	48	27	25	46	35	46	25	48	32	28	41	30	34	52	24	36
Zinc	mg/kg	100	85	66	33.5	61 J	61.7 J	74 J	37.6 J	251	81.9 J	91.8 J	58.9 J	71 J	75 J	377 J	489 J	1450 J
Total Petroleum Hydrocarbons	<u>(TPH)</u>	· · · · · ·	1	r	T	1	1	1	T	1	T	r		T	1	1	1	
Diesel Range Organics	mg/kg																	
Oli Range Organics	mg/kg	2000	2000															
Diesei + Oli Range Organics	nig/kg	2000	2000											I				
1-Methylpaphthalene		35	35	0.020	0.008211	0.026	0.008411	0.046	0.026	0.02211	0.04	0.009	0.012	0.006811	0.0068.11	0.022	0.063	0.007611
2-Methylnaphthalene	mg/kg	320	320	0.046	0.0082 U	0.020	0.0084 U	0.08	0.041	0.022 U	0.088	0.019	0.022	0.0068 U	0.0068 U	0.042	0.14	0.015
Acenaphthene	ma/ka	5.2	0.26	0.0092 U	0.0082 U	0.0082 U	0.0084 U	0.0089 U	0.0084 U	0.066	0.1	0.0073 U	0.0092 U	0.0068 U	0.0068 U	0.24	2.4	0.0091
Acenaphthylene	mg/kg			0.0092 U	0.0082 U	0.0082 U	0.0084 U	0.0089 U	0.0084 U	0.022 U	0.0076 U	0.0073 U	0.0092 U	0.0068 U	0.0068 U	0.039	0.049	0.015
Anthracene	mg/kg	71	3.5	0.0092 U	0.0082 U	0.016	0.0084 U	0.0089 U	0.0084 U	0.067	0.18	0.0073 U	0.0092 U	0.0068 U	0.0068 U	0.3	2.4	0.046
Benzo(g,h,i)perylene	mg/kg			0.012	0.0082 U	0.0082 U	0.0084 U	0.0089 U	0.0084 U	0.2	0.23	0.0073 U	0.0092 U	0.0068 U	0.0068 U	0.57	15	0.022
Fluoranthene	mg/kg	52	2.6	0.048	0.015	0.037	0.03	0.037	0.012	0.68	0.9	0.0073 U	0.0092 U	0.016	0.011	2.7	22	0.11
Fluorene	mg/kg	7.4	0.37	0.0092 U	0.0082 U	0.0082 U	0.0084 U	0.0089 U	0.0084 U	0.024	0.069	0.0073 U	0.0092 U	0.0068 U	0.0068 U	0.082	0.57	0.011
Naphthalene	mg/kg	3.5	0.17	0.02	0.0091	0.012	0.0093	0.025	0.011	0.022 U	0.3	0.0073 U	0.0092 U	0.0068 U	0.0068 U	0.048	0.17	0.014
Phenanthrene	mg/kg		40	0.066	0.014	0.09	0.048	0.053	0.024	0.24	0.63	0.0073 U	0.0092 U	0.018	0.012	1.1	8.8	0.084
Pyrene Banz(a)anthrasana	mg/kg	330	16	0.071	0.018	0.08	0.054	0.05	0.016	0.52	0.81	0.025	0.0092 U	0.012	0.0081	2.3	20	0.085
Benz(a)anthracene	mg/kg			0.024	0.0082 0	0.027	0.012	0.016	0.0084 0	0.41	0.71	0.0073 U	0.0092 0	0.0068 U	0.0068 U	1.8	1/	0.038
Benzo(b)fluoranthene	mg/kg			0.026	0.0082 U	0.025	0.012	0.022	0.011	0.63	0.76	0.0073 U	0.0092 0	0.0008 U	0.006811	2.4	22	0.049
Benzo(i k)fluoranthene	mg/kg				0.0002 0	0.020	0.012				0.55	0.0073 0	0.0092 0	0.0000 0	0.0000 0			
Benzo(k)fluoranthene	ma/ka			0.03	0.0082 U	0.02	0.0093	0.036	0.016	0.53	0.72	0.0073 U	0.0092 U	0.0068 U	0.0068 U	2.1	16	0.073
Chrysene	mg/kg			0.059	0.0082 U	0.048	0.018	0.046	0.023	0.42	0.69	0.027	0.0092 U	0.01	0.0068 U	1.9	17	0.053
Dibenzo(a,h)anthracene	mg/kg			0.0092 U	0.0082 U	0.0082 U	0.0084 U	0.0089 U	0.0084 U	0.058	0.081	0.0073 U	0.0092 U	0.0068 U	0.0068 U	0.25	1.5	0.0076 U
Indeno(1,2,3-cd)pyrene	mg/kg			0.0092 U	0.0082 U	0.0082 U	0.0084 U	0.0089 U	0.0084 U	0.18	0.24	0.0073 U	0.0092 U	0.0068 U	0.0068 U	0.56	13	0.02
Total cPAHs TEQ	mg/kg	0.19	0.19	0.0373	0.00742 U	0.0336	0.0164	0.0322	0.0157	0.81	1.00	0.00575	0.0083 U	0.0052	0.0061 U	3.11	28.95	0.0703
Other Semivolatile Organic Cor	npounds (S\	/OCs)	1	T	1	T	T	T	1	T	1	T	Т	1	T	1	T	
1,2,4-Trichlorobenzene	mg/kg	0.26	0.013	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
1,2-Dichlorobenzene	mg/kg	0.77	0.039	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
1,3-Dichlorobenzene	mg/kg	4	0.051	0.092 0	0.49 0	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
2.4.5 Trichlorophonol	mg/kg	1000	0.051	0.092 0	0.49 0	0.062 0	0.065 0	0.089 0	0.084 0	0.073 0	0.075 0	0.073 0	0.092 0	0.066 0	0.066 0	0.066 0	0.073 0	0.075 0
2,4,5-Trichlorophenol	mg/kg	0.3	93	0.46 U	2.50	0.41 U	0.42 0	0.44 0	0.42 0	0.37 U	0.38 U	0.37 0	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
2 4-Dichlorophenol	mg/kg	3.8	0.015	0.400	15U	0.410	0.42.0	0.27 U	0.42.0	0.22 U	0.30 0	0.22 U	0.28 U	0.040	0.040	0.040	0.22 U	0.30 0
2.4-Dimethylphenol	ma/ka	14	0.73	0.28 U	1.5 U	0.24 U	0.25 U	0.27 U	0.25 U	0.22 U	0.23 U	0.22 U	0.28 U	0.2 U	0.2 U	0.2 U	0.22 U	0.23 U
2,4-Dinitrophenol	mg/kg	5.6	0.4	0.92 U	4.9 U	0.82 U	0.85 U	0.89 U	0.84 U	0.73 U	0.75 U	0.73 U	0.92 U	0.68 U	0.68 U	0.68 U	0.73 U	0.75 U
2,4-Dinitrotoluene	mg/kg	0.12	0.01	0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
2,6-Dinitrotoluene	mg/kg	80	3500	0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
2-Chloronaphthalene	mg/kg	6400	6400	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
2-Chlorophenol	mg/kg	4.8	0.24	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
2-Methylphenol	mg/kg	4000	4000	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
2-Nitroaniline	mg/kg	800	800	0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
	mg/kg	0.47	0.1	0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
3,3-DICHIOFODENZIQINE	mg/kg	0.47	0.1	0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 0	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
4 6-Dinitro-2-methylobenol	mg/kg			0.00 0		0.49 0	0.510	0.03 0	0.310	0.44 0	0.45 0	0.44 0	0.00 0	0.410	0.410	0.410	0.44 0	0.45 0
4-Bromophenyl phenyl ether	mg/kg			0.92.0	0.4911	0.02.0	0.03.0	0.089.0	0.040	0.730	0.07511	0.730	0.020	0.060	0.06811	0.06811	0.730	0.751
4-Chloro-3-methylphenol	ma/ka	1		0.18 U	0.98 U	0.16 U	0.17 U	0.18 U	0.17 IJ	0.15 U	0.15 U	0.15 U	0.18 U	0.14 U	0.14 U	0.14 U	0.15 U	0.15 U
4-Chloroaniline	ma/ka	5	5	0.28 U	1.5 U	0.24 U	0.25 U	0.27 U	0.25 U	0.22 U	0.23 U	0.22 U	0.28 U	0.2 U	0.2 U	0.2 U	0.22 U	0.23 U
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

9/9/2020 V:\190239 Port of Bellingham Millworks Project\Deliverables\Report of Findings_Lignin Parcel\T1 - Soil Data

					Prior Explorations						Prior Explorations							
			Location	LW-MW01	LW-MW01	LW-SB01	LW-SB01	LW-SB02	LW-SB02	LW-SB03	LW-SB03	LW-SB04	LW-SB04	LW-SS01	LW-SS01	LW-SS02	LW-SS03	LW-SS04
			Depth	2.5 - 4 ft	5 - 6.5 ft	0 - 4 ft	4 - 8 ft	0 - 4 ft	4 - 8 ft	0 - 4 ft	4 - 8 ft	0 - 4 ft	4 - 8 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			Sample Type	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N
			Date	07/16/2004	07/16/2004	07/21/2004	07/21/2004	07/21/2004	07/21/2004	07/23/2004	07/23/2004	07/22/2004	07/22/2004	07/20/2004	07/20/2004	07/20/2004	07/20/2004	07/20/2004
		Unsaturated Soil	Saturated Soil															
Analyte	Unit	Cleanup Level	Cleanup Level															
4-Chlorophenyl phenyl ether	mg/kg			0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
4-Methylphenol	mg/kg	400	400	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
4-Nitroaniline	mg/kg			0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
4-Nitrophenol	mg/kg			0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
Benzoic acid	mg/kg	320000	320000	0.92 U	4.9 U	0.82 U	0.85 U	0.89 U	0.84 U	0.73 U	0.75 U	0.73 U	0.92 U	0.68 U	0.68 U	0.68 U	0.73 U	0.75 U
Benzyl alcohol	mg/kg	8000	8000	0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
Benzyl butyl phthalate	mg/kg	1.6	0.079	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Bis(2-chloro-1-methylethyl) ether	mg/kg	14	14			0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Bis(2-chloroethoxy)methane	mg/kg			0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Bis(2-chloroethyl) ether	mg/kg	0.015	0.01	0.18 U	0.98 U	0.16 U	0.17 U	0.18 U	0.17 U	0.15 U	0.15 U	0.15 U	0.18 U	0.14 U	0.14 U	0.14 U	0.15 U	0.15 U
Bis(2-ethylhexyl) phthalate	mg/kg	35	1.8	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	1.0	0.98	0.073 U	0.092 U	0.068 U	0.068 U	0.36	1.4	0.14
Carbazole	mg/kg			0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.14	1.1	0.075 U
Dibenzofuran	mg/kg	80	80	0.0092 U	0.0082 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.22	0.075 U
Diethyl phthalate	mg/kg	22	1.2	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Dimethyl phthalate	mg/kg			0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.37	0.073 U	0.075 U
Di-n-butyl phthalate	mg/kg	72	3.6	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Di-n-octyl phthalate	mg/kg	5300	270	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Hexachlorobenzene	mg/kg	0.63	0.26	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Hexachlorobutadiene	mg/kg	3.5	0.17	0.18 U	0.98 U	0.16 U	0.17 U	0.18 U	0.17 U	0.15 U	0.15 U	0.15 U	0.18 U	0.14 U	0.14 U	0.14 U	0.15 U	0.15 U
Hexachlorocyclopentadiene	mg/kg	480	480	0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
Hexachloroethane	mg/kg	1.9	0.096	0.18 U	0.98 U	0.16 U	0.17 U	0.18 U	0.17 U	0.15 U	0.15 U	0.15 U	0.18 U	0.14 U	0.14 U	0.14 U	0.15 U	0.15 U
Isophorone	mg/kg	11	0.62	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Nitrobenzene	mg/kg	29	1.5	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
N-Nitroso-di-n-propylamine	mg/kg	0.01	0.01	0.18 U	0.98 U	0.16 U	0.17 U	0.18 U	0.17 U	0.15 U	0.15 U	0.15 U	0.18 U	0.14 U	0.14 U	0.14 U	0.15 U	0.15 U
N-Nitrosodiphenylamine	mg/kg	1.6	0.079	0.092 U	0.49 U	0.082 U	0.085 U	0.089 U	0.084 U	0.073 U	0.075 U	0.073 U	0.092 U	0.068 U	0.068 U	0.068 U	0.073 U	0.075 U
Pentachlorophenol	mg/kg	0.58	0.1	0.46 U	2.5 U	0.41 U	0.42 U	0.44 U	0.42 U	0.37 U	0.38 U	0.37 U	0.46 U	0.34 U	0.34 U	0.34 U	0.37 U	0.38 U
Phenol	mg/kg	2900	160	0.18 U	0.98 U	0.16 U	0.17 U	0.18 U	0.17 U	0.15 U	0.15 U	0.15 U	0.18 U	0.14 U	0.14 U	0.14 U	0.15 U	0.15 U
Conventionals (including other m	etals)			•		•	•			•				•	•		•	
Formaldehyde	mg/kg	16000	16000		261	6.51			36.4	19.7			150 J	9.26	11.1	18.1	15.8	11.7
Iron	mg/kg	56000	56000	11500	13900	18400	20300	32800	16100	26000	20300	18600	26600	25600	28500	39500	42400	29500
Manganese	mg/kg	11000	11000	265	174	2780	611	481	286	585	450	318	518	452	500	544	461	468
рН	pH units	2.5 - 11	2.5 - 11	8.51	7.67	11.85	10.38	8.06	8.05	7.45	10.36	7.58	8.44	7	6.85	7.49	5.21	7.76

Notes:

Bold - detected. Blue Shaded - Detected result exceeded cleanup level

U - Analyte not detected at or above Reporting Limit (RL) shown. J - Estimated value

Sample Type: N - Normal sample. FD - Field duplicate sample.

		Location	LW-MW01	LW-MW01	LW-MW01	LW-MW01
		Sample Type	Ν	FD	Ν	N
		Date	7/27/2004	7/27/2004	10/1/2009	3/30/2010
		Groundwater				
Analyte	Unit	Cleanup Level				
Dissolved Metals	<u> </u>					
Arsenic	ua/l	8	17	17.0	3 95	23
Cadmium	ug/L	79	12	11.0	0.074	0.047
Chromium	ug/L	260	1 170	1 1 1 0	633	792
Chromium (VI)	ug/L	50	224 U	224 U	50 U	50 U
Copper	ug/L	3.1	75	78	3.08	2,99
Lead	ug/L	8.1	34	32	0 132	0.133
Mercury	ug/L	0.059	0.3	0.2	0.00197	0.00225
Nickel	ug/L	8.2	64	63	5.53	5 11
Zinc	ug/L	81	110	100	4.4	33
Total Potroloum Hydrocarbons (01	110	100		0.0
Gasoline Range Organics		1000	250 111	250 111		
	ug/L	1000	250 03	250 UJ		
Oil Range Organics	ug/L		200 U	200 U		
Diosol + Oil Pango Organico	ug/L	500	500 U	500 U		
Polycyclic Aromatic Hydrocarbo	De (DAL	500	500 0	500 0		l
Aconomitteene		22	0.10.11	0.10.11	[[
Acenaphinene	ug/L	3.3	0.10 U	0.10 0		
Acenaphinylene	ug/L	0.6	0.10 0	0.10 0		
Antiniacene Benzo(a h.i)pendeno	ug/L	9.0	0.10	0.10 0		
Benzo(g,n,i)peryiene	ug/L	0.0	0.10 0	0.10 U		
Fluorantnene	ug/L	3.3	0.10 0	0.10 U		
Fluorene	ug/L	3	0.15	0.10 U		
Phenanthrene	ug/L	45	0.10 U	0.10 U		
Pyrene	ug/L	15	0.10 U	0.10 U		
	ug/L		0.10 0	0.10 U		
2-Methylnaphthalene	ug/L		0.11	0.10 U		
Naphthalene	ug/L	1.4	0.10 U	0.10 U		
Benz(a)anthracene	ug/L		0.10 U	0.10 U		
Benzo(a)pyrene	ug/L		0.10 U	0.10 U		
Benzo(b)fluoranthene	ug/L		0.10 U	0.10 U		
Benzo(k)fluoranthene	ug/L		0.10 U	0.10 U		
Chrysene	ug/L		0.10 U	0.10 U		
Dibenzo(a,h)anthracene	ug/L		0.10 U	0.10 U		
Indeno(1,2,3-cd)pyrene	ug/L		0.10 U	0.10 U		
Total cPAHs TEQ	ug/L	0.02	0.15 U	0.15 U		
Other Semivolatile Organic Com	pounds	(SVOCs)				•
1,2,4-Trichlorobenzene	ug/L		1.0 U	1.0 U		
1,2-Dichlorobenzene	ug/L		1.0 U	1.0 U		
1,3-Dichlorobenzene	ug/L		1.0 U	1.0 U		
1,4-Dichlorobenzene	ug/L		1.0 U	1.0 U		
2,4,5-Trichlorophenol	ug/L		5.0 U	5.0 U		
2,4,6-Trichlorophenol	ug/L		5.0 U	5.0 U		
2,4-Dichlorophenol	ug/L		3.0 U	3.0 U		
2,4-Dimethylphenol	ug/L		3.0 U	3.0 U		
2,4-Dinitrophenol	ug/L		25 U	25 U		
2-Chloronaphthalene	ug/L		1.0 U	1.0 U		
2-Chlorophenol	ug/L		1.0 U	1.0 U		
2-Methylphenol	ug/L		1.0 U	1.0 U		
2-Nitroaniline	ug/L		5.0 U	5.0 U		
2-Nitrophenol	ug/L		5.0 U	5.0 U		

	Location	LW-MW01	LW-MW01	LW-MW01	LW-MW01	
		Sample Type	Ν	FD	Ν	Ν
		Date	7/27/2004	7/27/2004	10/1/2009	3/30/2010
		Groundwater				
Analyte	Unit	Cleanup Level				
2.4-Dinitrateluono			5011	5011		
2.4-Dinitrotoluene	ug/L		5.0 0	5.0 0		
2.0-Dinitioloidene	ug/L		5.0 0	5.0 0		
3.Nitroanilino	ug/L		5.0 U	5.0 U		
4.6-Dipitro-2-mothylphonol	ug/L		15 1	15 11		
4,0-Dimitio-2-methyphenol	ug/L		10 1	1011		
4 Chloro 2 mothylphonol	ug/L		1.0 0	2.011		
4 Chloroapilino	ug/L		2.0 0	2.0 0		
4 Chlorophopyl phopyl othor	ug/L		3.0 0	3.0 0		
4 Mothylphonol	ug/∟		1.0 0	1.0 0		
4-Methyphenol	ug/∟		0.1 5.0.11	7.Z		
4-Nitrophonol	ug/∟		5.0 0	5.0 0		
4-INITOPRENOI	ug/L		5.0 0	5.0 0		
Benzul alaahal	ug/L		5.0.11	10 0		
	ug/L		5.0 U	5.0 U		
Benzyl butyl phthalate	ug/L		1.0 0	1.0 0		
Bis(2-chloro-1-methylethyl) ether	ug/L		1.0 0	1.0 0		
Bis(2-chloroethoxy)methane	ug/L		1.0 U	1.0 U		
Bis(2-chloroethyl) ether	ug/L		2.0 U	2.0 0		
Bis(2-ethylhexyl) phthalate	ug/L		1.0 U	1.1 U		
	ug/L		1.0 U	1.0 U		
Dibenzoturan	ug/L		1.0 U	1.0 U		
Diethyl phthalate	ug/L		1.0 U	1.0 U		
Dimetnyi phthalate	ug/L		1.0 U	1.0 U		
Di-n-butyl phthalate	ug/L		1.0 U	1.0 U		
Di-n-octyl phthalate	ug/L		1.0 U	1.0 U		
Hexachlorobenzene	ug/L		1.0 U	1.0 U		
Hexachlorobutadiene	ug/L		2.0 U	2.0 U		
Hexachlorocyclopentadiene	ug/L		5.0 U	5.0 U		
Hexachloroethane	ug/L		2.0 U	2.0 U		
Isophorone	ug/L		1.0 U	1.0 U		
Nitrobenzene	ug/L		1.0 U	1.0 U		
N-Nitroso-di-n-propylamine	ug/L		2.0 U	2.0 U		
N-Nitrosodiphenylamine	ug/L		1.0 U	1.0 U		
Pentachlorophenol	ug/L		2.6 J	2.6 J		
Phenol	ug/L		28	26		
Volatile Organic Compounds (VC	DCs)					
1,1,1,2- I etrachloroethane	ug/L		5.0 UJ	5.0 UJ		
1,1,1-Irichloroethane	ug/L		5.0 UJ	5.0 UJ		
1,1,2 - Trichlorotrifluoroethane	ug/L		10 UJ	10 UJ		
1,1,2,2- I etrachloroethane	ug/L		5.0 UJ	5.0 UJ		
1,1,2-Trichloroethane	ug/L		5.0 UJ	5.0 UJ		
1,1-Dichloroethane	ug/L		5.0 UJ	5.0 UJ		
1,1-Dichloroethene	ug/L		5.0 UJ	5.0 UJ		
1,1-Dichloropropene	ug/L		5.0 UJ	5.0 UJ		
1,2,3-Trichlorobenzene	ug/L		25 UJ	25 UJ		
1,2,3-Trichloropropane	ug/L		15 UJ	15 UJ		
1,2,4-Trichlorobenzene	ug/L		25 UJ	25 UJ		
1,2,4-Trimethylbenzene	ug/L		5.0 UJ	5.0 UJ		
1,2-Dibromo-3-chloropropane	ug/L		25 UJ	25 UJ		
1,2-Dibromoethane (EDB)	ug/L		5.0 UJ	5.0 UJ		
1,2-Dichlorobenzene	uq/L		5.0 UJ	5.0 UJ		

Aspect Consulting

		Location	LW-MW01	LW-MW01	LW-MW01	LW-MW01
		Sample Type	Ν	FD	Ν	Ν
		Date	7/27/2004	7/27/2004	10/1/2009	3/30/2010
		Groundwater				
Analyte	Unit	Cleanup Level				
1.2-Dichloroethane (EDC)	ua/l	1	50111	50111		
1.2-Dichloropropape	ug/L		5.0.03	5.0.03		
1.3.5-Trimethylbenzene	ug/L		5.0.03	5.0.03		
1.3-Dichlorobenzene	ug/L		5.0.03	5.0.03		
1.3-Dichloropropane	ug/L		5.0 00	5.0.00		
1.4-Dichloro-2-Butene	ug/L		25 111	25 111		
1.4-Dichlorobenzene	ug/L		5.0111	5.0111		
2 2-Dichloropropane	ug/L		5.0.03	5.0.00		
2-Butanone	ug/L		25 111	25 111		
2-Chloroethyl Vinyl Ether	ug/L		25 05	25 05		
2-Chlorotoluene	ug/L		5011	5011		
	ug/L		25 11	25 11		
4 Chlorotoluono	ug/L		5011	5.011		
4 Mothyl 2 poptopopo	ug/L		25 11	3.0 03		
	ug/L		25 UJ	25 UJ		
Acelone	ug/L		250 J	250 LL		
Acrolent	ug/L		250 UJ	250 UJ		
Renzene	ug/L		5.0 UJ	5.0 UJ		
Bromohonzono	ug/L		5.0 UJ	5.0 UJ		
Bromobleromethane	ug/L		5.0 UJ	5.0 UJ		
Bromodiableromethane	ug/L		5.0 UJ	5.0 UJ		
Bromodichioromethane	ug/L		5.0 UJ	5.0 UJ		
Bromoetnane	ug/L		10 UJ	10 UJ		
Bromomothana	ug/L		5.0 UJ	5.0 UJ		
	ug/L		5.0 UJ	5.0 UJ		
Carbon disullide	ug/L		5.0 UJ	5.0 UJ		
	ug/L		5.0 UJ	5.0 UJ		
Chloroothana	ug/L		5.0 UJ	5.0 UJ		
Chloroform	ug/L		5.0 UJ	5.0 UJ		
Chloromothana	ug/L		5.0 UJ	5.0 UJ		
	ug/L		5.0 UJ	5.0 UJ		
cis-1,2-Dichloropenene (DCE)	ug/L		5.0 UJ	5.0 UJ		
CIS-1,3-Dichloropropene	ug/L		5.0 UJ	5.0 UJ		
Dibromocnioromethane	ug/L		5.0 UJ	5.0 UJ		
	ug/L		5.0 UJ	5.0 UJ		
Ethylbenzene	ug/L		5.0 UJ	5.0 UJ		
	ug/L		25 UJ	25 UJ		
Nothulana ablarida	ug/L		5.0 UJ	5.0 UJ		
Mathadiadida	ug/L		10 UJ	10 UJ		
	ug/L		5.0 UJ	5.0 UJ		
n-Butylbenzene	ug/L		5.0 UJ	5.0 UJ		
n-Propyidenzene	ug/L		5.0 UJ	5.0 UJ		
p-isopropyltoluene	ug/L		5.0 UJ	5.0 UJ		
Sec-Butylbenzene	ug/L		5.0 UJ	5.0 UJ		
	ug/L		5.0 UJ	5.0 UJ		
tert-Butylbenzene	ug/L		5.0 UJ	5.0 UJ		
Teluere	ug/L		5.0 UJ	5.0 UJ		
	ug/L		5.0 UJ	5.0 UJ		
trans-1,2-Dichloroethene	ug/L		5.0 UJ	5.0 UJ		
Trans-1,3-Dichloropropene	ug/L		5.0 UJ	5.0 UJ		
Tricnioroethene (TCE)	ug/L		5.0 UJ	5.0 UJ		
I richlorofluoromethane	ug/L		5.0 UJ	5.0 UJ		

Aspect Consulting

Table 2. Groundwater Quality Data for Lignin Parcel

Project 190239, Lignin Parcel, GP West Site, Bellingham, Washington

		Location	LW-MW01	LW-MW01	LW-MW01	LW-MW01
		Sample Type	Ν	FD	Ν	Ν
		Date	7/27/2004	7/27/2004	10/1/2009	3/30/2010
		Groundwater				
Analyte	Unit	Cleanup Level				
Vinyl acetate	ug/L		25 UJ	25 UJ		
Vinyl chloride	ug/L		5.0 UJ	5.0 UJ		
Xylenes (total)	ug/L		5.0 UJ	5.0 UJ		
Naphthalene	ug/L	1.4	25 UJ	25 UJ		
Polychlorinated Biphenyls (PCB	s)					
Aroclor 1016	ug/L		0.10 UJ	0.10 UJ		
Aroclor 1221	ug/L		0.10 UJ	0.10 UJ		
Aroclor 1232	ug/L		0.10 UJ	0.10 UJ		
Aroclor 1242	ug/L		0.10 UJ	0.10 UJ		
Aroclor 1248	ug/L		0.10 UJ	0.10 UJ		
Aroclor 1254	ug/L		0.10 UJ	0.10 UJ		
Aroclor 1260	ug/L		0.10 UJ	0.10 UJ		
Total PCBs	ug/L		0.10 UJ	0.10 UJ		
Conventional Chemistry Parame	ters (ind	luding other dis	solved metals	s)		•
Calcium	mg/L				55.9	
Iron	mg/L		19.8	20.4	0.311	
Magnesium	mg/L				5.49	
Manganese	mg/L		0.381	0.404	0.141	
Potassium	mg/L				7.25	
Sodium	mg/L				308	
Formaldehyde	ug/L		6 U	7 U		
Nitrate + Nitrite	mg/L		0.500 U	0.500 U		
Nitrate as Nitrogen	mg/L		0.500 U	0.500 U		
Nitrite as Nitrogen	mg/L		0.500 U	0.500 U		
Sulfate	mg/L		233	216		
Total Suspended Solids	mg/L		56.2	42.7		
Field Parameters	-					•
Conductivity	us/cm		2,850		1,476	1,175
Dissolved Oxygen	mg/L		1.62		0.43	0.6
ORP	mVolts		-418.3		-365.5	-306.3
рН	pH units	6.2 - 8.5	10.8		8.4	8.9
Practical Salinity (Calculated)	PSU		1.5		0.7	0.6
Temperature	deg C		17.52		18	11.54
Turbidity	NTU		252		10	20

Notes:

Bold - detected. Blue Shaded - Detected result exceeded cleanup level

U - Analyte not detected at or above Reporting Limit (RL) shown. J - Estimated value

Sample Type: N - Normal sample. FD - Field duplicate sample.

FIGURES

Basemap Layer Credits || Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

Path: T:/projects_8/Port_of_Bellingham/Delivered/Lignin Parcel Integrated Planning/04 Distribution of Soil Contaminant Exceedances Map.m

APPENDIX A

Field Exploration Program

A.Field Exploration Program

This Appendix describes the field exploration, sampling, and sample handling protocols conducted for the environmental assessment.

A.1. Direct Push Soil Borings

Aspect subcontracted with Cascade Drilling Inc. of Woodinville, Washington, a state licensed resource protection well driller, to complete the six soil borings using a direct push (i.e., Geoprobe) rig with collection of continuous soil core from which soil samples were collected. The soil core was retrieved from the borehole in 5-foot-long disposable 1.5-inch-diameter plastic liners.

An Aspect geologist oversaw the drilling activities and visually classified the soils in accordance with ASTM Method D2488 and recorded soil descriptions, field screening results, and other relevant details (e.g., staining, debris, odors, etc.) on a boring log form. In addition to visual and olfactory observations, the field representative will screened soil samples using a photoionization detector (PID) to monitor the presence of volatile organic compounds (VOCs). Boring logs for the six new borings are included in this Appendix.

The soil samples selected for chemical analysis based on criteria presented in the Work Plan were removed from the sampler using a stainless-steel spoon and placed in a stainless-steel bowl for homogenization with the stainless-steel spoon. Gravel-sized material greater than approximately 0.5-inch was removed from the sample during mixing. A representative aliquot of the homogenized soil was then placed into certifiedclean jars supplied by the analytical laboratory.

Once complete, each soil boring was properly decommissioned with hydrated granular bentonite in accordance with Chapter 173-160 WAC.

No. 200 Sieve	n 50% ¹ of Coarse Fraction 1 on No. 4 Sieve	≤5% Fines		GW	Well-graded GRAVEL Well-graded GRAVEL WITH SAND Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND	MC=Natural Moisture Content PSGEOTECHNICAL LAB TESTSPS=Particle Size Distribution FCEFC=Fines Content (% < 0.075 mm) GHHydrometer TestAL=Hydrometer Test Limits C=C=Consolidation Test StrStrength TestOC=Organic Content (% Loss by Ignition) Comp=Proctor Test K=Hydraulic Conductivity TestSG=Specific Gravity Test	
ined on	Aore tha Retainec	Fines		GM	SILTY GRAVEL SILTY GRAVEL WITH SAND	Organic Chemicals CHEMICAL LAB TESTS	
50%1 Retai	Gravels - N	≧15%		GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	TPH-Dx = Diesel and Oil-Range Petroleum Hydrocarbons TPH-G = Gasoline-Range Petroleum Hydrocarbons VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds	
- More than	e Fraction	Fines		SW	Well-graded SAND Well-graded SAND WITH GRAVEL	PAHs = Polycyclic Aromatic Hydrocarbon Compounds PCBs = Polychlorinated Biphenyls <u>Metals</u> RCRA8 = As, Ba, Cd, Cr, Pb, Hg, Se, Ag, (d = dissolved, t = total)	
ed Soils	of Coars 4 Sieve	≤5% F	≤5%		SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL	MTCA5 = As, Cd, Cr, Hg, Pb (d = dissolved, t = total) PP-13 = Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl, Zn (d=dissolved, t=total)
Coarse-Grain	50% ¹ or More Passes No.	Fines		SM	SILTY SAND SILTY SAND WITH GRAVEL	PID = Photoionization Detector FIELD TESTS Sheen = Oil Sheen Test SPT ² SPT ² = Standard Penetration Test NSPT = Non-Standard Penetration Test DCPT = Dynamic Cone Penetration Test	
	Sands -	≧15%		sc	CLAYEY SAND CLAYEY SAND WITH GRAVEL	Descriptive Term BouldersSize Range and Sieve Number Larger than 12 inchesCOMPONENT DEFINITIONSCobbles=3 inches to 12 inchesDEFINITIONS	
) Sieve	lys Par F0%			ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL	Coarse Gravel = 3 incres to 3/4 incres Fine Gravel = 3/4 incres to No. 4 (4.75 mm) Coarse Sand = No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand = No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand = No. 40 (0.425 mm) to No. 200 (0.075 mm)	
s No. 200	s and Cla			CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL	Silt and Clay = Smaller than No. 200 (0.075 mm) % by Weight Modifier % by Weight Modifier ESTIMATED ¹ (1) - <	
lore Passe	Silt			OL	ORGANIC SILT SANDY or GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND	<1 = Subtrace 15 to 25 = Little PERCENTAGE 1 to <5 = Trace 30 to 45 = Some 5 to 10 = Few >50 = Mostly Dry = Absence of maisture ducty doubt to the touch MOISTURE	
ils - 50%1 or M	ys More			мн	ELASTIC SILT WITH GRAVEL ELASTIC SILT SANDY OF GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL	Slightly Moist = Perceptible moisture, disty, diry to the tottor CONTENT Moist = Damp but no visible water CONTENT Very Moist = Water visible but not free draining Very below water table	
Grained Soi	lits and Cla			СН	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL	Non-Cohesive or Coarse-Grained SoilsRELATIVE DENSITYDensity³SPT² Blows/FootPenetration with $1/2"$ Diameter RodVery Loose= 0 to 4 $\geq 2'$ Very Loose= 0 to 4 $\geq 1000000000000000000000000000000000000$	
Fine-(S I	Liquid		он	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL	Loose = 5 to 10 1' to 2' Medium Dense = 11 to 30 3" to 1' Dense = 31 to 50 1" to 3" Very Dense = > 50 < 1"	
Highly	Organic Soils			PT	PEAT and other mostly organic soils	Cohesive or Fine-Grained Soils CONSISTENCY Consistency³ SPT² Blows/Foot Manual Test Very Soft = 0 to 1 Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Soft = 2 to 4 Penetrated 1/4" to 1" easily by thumb. Easily molded. Medium Stiff = 5 to 8 Penetrated 21/4" with effort by thumb. Molded with strong pressure	
"WITH SILT name; e.g. GRAVEL" r gravel. • "	T" or "WITF , SP-SM ● neans 15 1 Well-grade	I CLA "SILT to 30 d" m	NY" means IY" or "CL % sand a leans app	5 to 15% AYEY" me nd gravel roximatel	6 silt and clay, denoted by a "." in the group srans >15% silt and clay • "WITH SAND" or "WITH • "SANDY" or "GRAVELLY" means >30% sand and y equal amounts of fine to coarse grain sizes • "Poorly	Stiff=9 to 0Foldaded $\sim 1/4$ with effort by thumb.Very Stiff=16 to 30Indented $\sim 1/4$ " with effort by thumb.Hard=> 30Indented with difficulty by thumbnail.	
graded" m contains la Soils were ASTM D24 laboratory	eans unec ayers of the described 88. Where tests as a	and and indi	amounts o soil types identified cated in t priate. Ref	of grain si s; e.g., SM I in the fie he log, so fer to the	zes • Group names separated by "/" means soil //ML. id in general accordance with the methods described in ils were classified using ASTM D2487 or other report accompanying these exploration logs for details.	Observed and Distinct Observed and Gradual Inferred	
,					-		

Aspect

10.0.0

Estimated or measured percentage by dry weight
 (SPT) Standard Penetration Test (ASTM D1586)
 Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

Exploration Log Key

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/190239 - MILLWORKS LIGNIN PARCEL.GPJ September 9,

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/190239 - MILLWORKS LIGNIN PARCEL.GPJ September 9, 2020

APPENDIX B

Data Validation Report and Laboratory Data Report

DATA VALIDATION REPORT

Lignin Parcel Soil Sampling August 2020 SDG 2008-031

Prepared by:

Aspect Consulting, LLC 710 Second Ave, Suite 550 Seattle, WA 98104

Project No. 190239 • August 2020

V:\190239 Port of Bellingham Millworks Project\Deliverables\Report of Findings_Lignin Parcel\Appendix B - Lignin Parcel Soil 2020-08 DV Report.docx

Contents

1	Introduc	tion1
2	Data Va	lidation Findings for SDG 2008-0311
	2.1 San	nple Receipt and Preservation2
	2.2 Dies	sel and Heavy Oil (NWTPH-Dx)2
	2.2.1	Holding Times2
	2.2.2	Method Blanks
	2.2.3	Surrogates2
	2.2.4	Laboratory Control Sample2
	2.2.5	Lab Duplicate2
	2.2.6	Other2
	2.2.7	Overall Assessment3
	2.3 PAH	ls (SW8270E-SIM)3
	2.3.1	Holding Times3
	2.3.2	Method Blanks3
	2.3.3	Surrogates3
	2.3.4	Matrix Spikes/Matrix Spike Duplicates3
	2.3.5	Overall Assessment3
	2.4 Met	als (SW6010D, SW7471B)3
	2.4.1	Holding Times3
	2.4.2	Method Blanks
	2.4.3	Laboratory Control Samples3
	2.4.4	Overall Assessment3
3	Qualifie	d Data Summary4
4	Acronyr	ns and Definitions5

1 Introduction

This report summarizes the findings of the United States Environmental Protection Agency (USEPA) Stage 2A data validation performed on analytical data for soil samples collected in August 2020 for the Lignin Parcel project. This data quality review is divided into sections by sample delivery group (SDG). A complete list of samples and analyses for each SDG is provided in the Sample Index at the beginning of each section.

Samples were sent to OnSite Environmental in Redmond, Washington. The analytical methods are summarized in Table 1 below:

Analysis	Method	Lab	Validation Level
Diesel and Heavy Oil	NWTPH-Dx	OnSite Environmental	2A
PAHs	SW8270E-SIM	OnSite Environmental	2A
Metals	SW6010D	OnSite Environmental	2A
Mercury	SW7471B	OnSite Environmental	2A

Table 1. Analytical Methods

Data assigned a J/UJ qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be considered when interpreting sample concentrations. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. Data qualifiers have been incorporated into the project chemistry database to reflect the validation in this report.

2 Data Validation Findings for SDG 2008-031

Samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Name	Sample Date	NWTPH-Dx	SW8270E-SIM	SW6010D	SW7471B
LW-SB101-S1-1.0	8/3/2020	Х	Х	Х	Х
LW-SB101-S2-10.5	8/3/2020	Х	Х	Х	Х
LW-SB101-S3-13.5	8/3/2020	Х	Х	Х	Х
LW-SB102-S1-1.0	8/3/2020	Х	Х	Х	Х
LW-SB102-S2-8.0	8/3/2020	Х	Х	Х	Х
LW-SB102-S3-11.0	8/3/2020	Х	Х	Х	Х
LW-SB103-S1-1.0	8/3/2020	Х	Х	Х	Х

Table 2. Sample Index

Sample Name	Sample Date	NWTPH-Dx	SW8270E-SIM	SW6010D	SW7471B
LW-SB103-S2-7.3	8/3/2020	Х	Х	Х	Х
LW-SB103-S3-11.0	8/3/2020	Х	Х	Х	Х
LW-SB104-S1-1.5	8/3/2020	Х	Х	Х	Х
LW-SB104-S2-5.0	8/3/2020	Х	Х	Х	Х
LW-SB104-S3-10.0	8/3/2020	Х	Х	Х	Х
LW-SB105-S1-1.5	8/3/2020	Х	Х	Х	Х
LW-SB105-S2-7.0	8/3/2020	Х	Х	Х	Х
LW-SB105-S3-12.0	8/3/2020	Х	Х	Х	Х
LW-SB106-S1-2.0	8/3/2020	Х	Х	Х	Х
LW-SB106-S2-8.0	8/3/2020	Х	Х	Х	Х
LW-SB106-S3-11.5	8/3/2020	Х	Х	Х	Х

2.1 Sample Receipt and Preservation

All samples were received in good condition and in the correct containers. Temperature upon receipt was within standard acceptable range.

2.2 Diesel and Heavy Oil (NWTPH-Dx)

2.2.1 Holding Times

Samples were analyzed within the requisite holding time. No qualification or action was needed.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.2.3 Surrogates

All surrogate %R values were within laboratory specified control limits. No qualification or action was needed.

2.2.4 Laboratory Control Samples

All LCS and %R were within the laboratory specified control limits. No qualification or action was needed. Note that OnSite does not normally include LCS data for NWTPH-Dx analyses in the report. The lab provided this data via email.

2.2.5 Lab Duplicates

All LD RPD were within the laboratory specified control limits. No qualification or action was needed.

2.2.6 Other

The laboratory flagged the Diesel Range Organics result in sample LW-SB102-S1-1.0 as "N" to indicate that hydrocarbons in the lube oil range are impacting the diesel range result. The result was qualified as estimated (J).

2.2.7 Overall Assessment

Accuracy was acceptable based on the LCS %R. Precision was acceptable based on the LD RPD values. The data are of known quality and are acceptable for use as qualified.

2.3 PAHs (SW8270E-SIM)

2.3.1 Holding Times

Samples were analyzed within the requisite holding time. No qualification or action was needed.

2.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.3.3 Surrogates

All surrogate %R values were within laboratory specified control limits. No qualification or action was needed.

2.3.4 Matrix Spikes/Matrix Spike Duplicates

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.3.5 Overall Assessment

Accuracy was acceptable based on the MS/MSD %R. Precision was acceptable based on the MSD RPD values. The data are of known quality and are acceptable for use as qualified.

2.4 Metals (SW6010D, SW7471B)

2.4.1 Holding Times

Samples were analyzed within the requisite holding time. No qualification or action was needed.

2.4.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.4.3 Laboratory Control Samples

All LCS %R were within the laboratory specified control limits. No qualification or action was needed.

2.4.4 Overall Assessment

Accuracy was acceptable based on the LCS %R. The data are of known quality and are acceptable for use as qualified.

3 Qualified Data Summary

Qualified sample results are listed below. Results just flagged non-detect (U) by lab with no further qualification necessary are not listed.

Table 3. Qualified Data Summary									
Sample ID	Method	Analyte	Qualifier	Reason					
LW-SB102-S1-1.0	NWTPH-Dx	Diesel Range Organics	J	Overlap from lube oil range					

Data Qualifiar	Definition
Data Qualifier	Definition
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Table 4. Data Qualifier Definitions

4 Acronyms and Definitions

%D - Percent Difference %R - Percent Recovery ASTM - American Standard Test Method COC - Chain of Custody EB - Equipment Blank EPA – Environmental Protection Agency FB - Field Blank FD - Field Duplicate HCID – Hydrocarbon Identification LCS - Laboratory Control Sample LCSD – Laboratory Control Sample Duplicate LD - Laboratory Duplicate MB – Method Blank MDL – Method Detection Limit MS - Matrix Spike MSD - Matrix Spike Duplicate

NWTPH - Northwest Total Petroleum Hydrocarbon PCB - Polychlorinated Biphenyl PFAS - Polyfluoroalkyl Substances PPCP - Pharmaceuticals and Personal Care Products QAPP - Quality Assurance Project Plan QC – Quality Control RL - Reporting Limit **RPD** – Relative Percent Difference SDG – Sample Delivery Group SM - Standard Methods SVOC - Semi-Volatile Organic Compound SW - Solid Waste TB – Trip Blank TCLP - Toxicity Characteristic Leaching Procedure TPH - Total Petroleum Hydrocarbon VOC - Volatile Organic Compound

August 13, 2020

Steve Germiat Aspect Consulting Dexter Horton Building 710 2nd Avenue, Suit 550 Seattle, WA 98104

Re: Analytical Data for Project 190239 Laboratory Reference No. 2008-031

Dear Steve:

Enclosed are the analytical results and associated quality control data for samples submitted on August 5, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: August 13, 2020 Samples Submitted: August 5, 2020 Laboratory Reference: 2008-031 Project: 190239

Case Narrative

Samples were collected on August 3, 2020 and received by the laboratory on August 5, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB101-S1-1.0					
Laboratory ID:	08-031-01					
Diesel Range Organics	ND	26	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil	120	53	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	LW-SB101-S2-10.5					
Laboratory ID:	08-031-02					
Diesel Range Organics	ND	31	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	62	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
	LW-SB101-53-13.5					
Laboratory ID.	00-031-03	20		0 7 00	0 7 00	
Luba Oil Banga Organics		30		8-7-20	8-7-20	
Lube Oli Range Organics	Boroont Booovory	Control Limito		0-7-20	0-7-20	
o Torphonyl		50 150				
0-Terphenyr	30	50-750				
Client ID:	LW-SB102-S1-1.0					
Laboratory ID:	08-031-04					
Diesel Range Organics	31	27	NWTPH-Dx	8-7-20	8-7-20	N
Lube Oil	770	54	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	LW-SB102-S2-8.0					
Laboratory ID:	08-031-05					
Diesel Range Organics	ND	31	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	IW 60400 60 44 0					
	09 021 06					
Laburatory ID.	00-031-00	20		9 7 20	9 7 20	
Lube Oil Range Organics		5∠ 64	ΝΝΛ/ΤΡΗ₋Ων	0-1-20 8-7-20	0-1-20 8-7-20	
Surrogate:	Dercent Decovery	Control Limito		0-1-20	0-1-20	
o-Ternhenvl	no no	50-150				
	32	00-100				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB103-S1-1.0					
Laboratory ID:	08-031-07					
Diesel Range Organics	ND	26	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	53	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	LW-SB103-S2-7.3					
Laboratory ID:	08-031-08					
Diesel Range Organics	ND	30	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
	LW-SB103-53-11.0					
Laboratory ID.	00-031-09	20		0 7 00	0 7 00	
Luba Oil Banga Organics		30		8-7-20	8-7-20	
Lube Oll Range Organics	Boroont Booovory	Control Limito		0-7-20	0-7-20	
o Torphonyl		50 150				
0-Terphenyi	04	50-150				
Client ID:	LW-SB104-S1-1.5					
Laboratory ID:	08-031-10					
Diesel Range Organics	29	28	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil	170	56	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	LW-SB104-S2-5.0					
Laboratory ID:	08-031-11					
Diesel Range Organics	ND	31	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	63	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	I W-SB104-S2-10.0					
Laboratory ID.	08_031_12					
Diesel Range Organics	ND	37		8-7-20	8-7-20	
Lube Oil	76	75		8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits		0-1-20	0-1-20	
o-Ternhenvl	R6	50-150				
	00	00 100				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB105-S1-1.5					
Laboratory ID:	08-031-13					
Diesel Range Organics	ND	27	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	54	NWTPH-Dx	8-7-20	8-7-20	
Surrogate: o-Terphenyl	Percent Recovery 92	Control Limits 50-150				
Client ID: Laboratory ID:	LW-SB105-S2-7.0 08-031-14					
Diesel Range Organics	ND	33	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	65	NWTPH-Dx	8-7-20	8-7-20	
Surrogate: o-Terphenyl	Percent Recovery 91	Control Limits 50-150				
Client ID: Laboratory ID:	LW-SB105-S3-12.0 08-031-15					
Diesel Range Organics	ND	33	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	65	NWTPH-Dx	8-7-20	8-7-20	
Surrogate: o-Terphenyl	Percent Recovery 101	Control Limits 50-150				
Client ID: Laboratory ID:	LW-SB106-S1-2.0 08-031-16					
Diesel Range Organics	ND	34	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	68	NWTPH-Dx	8-7-20	8-7-20	
Surrogate: o-Terphenyl	Percent Recovery 96	Control Limits 50-150				
Client ID: Laboratory ID:	LW-SB106-S2-8.0 08-031-17					
Diesel Range Organics	ND	32	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	63	NWTPH-Dx	8-7-20	8-7-20	
Surrogate: o-Terphenyl	Percent Recovery 97	Control Limits 50-150				
Client ID: Laboratory ID:	LW-SB106-S3-11.5 08-031-18					
Diesel Range Organics	ND	30	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	60	NWTPH-Dx	8-7-20	8-7-20	
Surrogate: o-Terphenyl	Percent Recovery 91	Control Limits 50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0807S2					
Diesel Range Organics	ND	25	NWTPH-Dx	8-7-20	8-7-20	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-7-20	8-7-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				

			So		Source Percent		nt Recovery		RPD	PD	
Analyte	Res	sult	Spike Level		Result	Recover	ry Limits	RPD	Limit	Flags	
DUPLICATE											
Laboratory ID:	08-03	31-07									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA		
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA		
Surrogate:											
o-Terphenyl						94 9	92 50-150				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB101-S1-1.0					
Laboratory ID:	08-031-01					
Naphthalene	0.060	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	0.074	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	0.050	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	0.065	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	0.45	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	0.14	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	0.57	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	0.59	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	0.32	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	0.48	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	0.64	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	0.16	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	0.33	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	0.23	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	0.046	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	0.24	0.035	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	46 - 113				
Pyrene-d10	72	45 - 114				
Terphenyl-d14	78	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB101-S2-10.5					
Laboratory ID:	08-031-02					
Naphthalene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	46 - 113				
Pyrene-d10	70	45 - 114				
Terphenyl-d14	70	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB101-S3-13.5					
Laboratory ID:	08-031-03					
Naphthalene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	64	45 - 114				
Terphenyl-d14	70	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB102-S1-1.0					
Laboratory ID:	08-031-04					
Naphthalene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	0.089	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	0.14	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	0.17	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	0.044	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	0.058	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	0.070	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	0.051	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	0.040	0.036	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	46 - 113				
Pyrene-d10	73	45 - 114				
Terphenyl-d14	79	49 - 121				

10

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB102-S2-8.0					
Laboratory ID:	08-031-05					
Naphthalene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	72	45 - 114				
Terphenyl-d14	72	49 - 121				

11

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB102-S3-11.0					
Laboratory ID:	08-031-06					
Naphthalene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0085	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	46 - 113				
Pyrene-d10	70	45 - 114				
Terphenyl-d14	78	49 - 121				

12

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB103-S1-1.0					
Laboratory ID:	08-031-07					
Naphthalene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0070	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	46 - 113				
Pyrene-d10	74	45 - 114				
Terphenyl-d14	80	49 - 121				

13

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB103-S2-7.3					
Laboratory ID:	08-031-08					
Naphthalene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0081	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	46 - 113				
Pyrene-d10	72	45 - 114				
Terphenyl-d14	76	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB103-S3-11.0					
Laboratory ID:	08-031-09					
Naphthalene	0.014	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	0.069	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	0.014	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	46 - 113				
Pyrene-d10	74	45 - 114				
Terphenyl-d14	75	49 - 121				

15

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB104-S1-1.5					
Laboratory ID:	08-031-10					
Naphthalene	0.041	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	0.054	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	0.030	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	0.0087	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	0.072	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	0.013	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	0.043	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	0.042	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	0.016	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	0.024	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	0.020	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	0.012	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	0.010	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	0.011	0.0075	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	46 - 113				
Pyrene-d10	62	45 - 114				
Terphenyl-d14	68	49 - 121				

16

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB104-S2-5.0					
Laboratory ID:	08-031-11					
Naphthalene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0083	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	46 - 113				
Pyrene-d10	71	45 - 114				
Terphenyl-d14	75	49 - 121				

17

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB104-S3-10.0					
Laboratory ID:	08-031-12					
Naphthalene	0.013	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	46 - 113				
Pyrene-d10	63	45 - 114				
Terphenyl-d14	68	49 - 121				

18
Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB105-S1-1.5					
Laboratory ID:	08-031-13					
Naphthalene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0072	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	46 - 113				
Pyrene-d10	65	45 - 114				
Terphenyl-d14	71	49 - 121				

19

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB105-S2-7.0					
Laboratory ID:	08-031-14					
Naphthalene	0.058	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	0.027	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	0.019	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	0.020	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	54	46 - 113				
Pyrene-d10	55	45 - 114				
Terphenyl-d14	58	49 - 121				

20

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB105-S3-12.0					
Laboratory ID:	08-031-15					
Naphthalene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0087	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	46 - 113				
Pyrene-d10	74	45 - 114				
Terphenyl-d14	76	49 - 121				

21

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB106-S1-2.0					
Laboratory ID:	08-031-16					
Naphthalene	0.24	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	0.089	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	0.079	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	0.033	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	0.13	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	0.040	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	0.027	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	0.021	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	0.014	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0091	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	46 - 113				
Pyrene-d10	63	45 - 114				
Terphenyl-d14	77	49 - 121				

22

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB106-S2-8.0					
Laboratory ID:	08-031-17					
Naphthalene	0.015	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0084	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	46 - 113				
Pyrene-d10	68	45 - 114				
Terphenyl-d14	69	49 - 121				

23

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB106-S3-11.5					
Laboratory ID:	08-031-18					
Naphthalene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	46 - 113				
Pyrene-d10	71	45 - 114				
Terphenyl-d14	73	49 - 121				

24

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0806S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Fluorene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Anthracene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Pyrene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Chrysene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	8-6-20	8-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	46 - 113				
Pyrene-d10	78	45 - 114				
Terphenyl-d14	80	49 - 121				

25

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

0 0					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-03	31-07									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0689	0.0737	0.0833	0.0833	ND	83	88	51 - 115	7	26	
Acenaphthylene	0.0693	0.0730	0.0833	0.0833	ND	83	88	53 - 121	5	24	
Acenaphthene	0.0705	0.0761	0.0833	0.0833	ND	85	91	52 - 121	8	25	
Fluorene	0.0698	0.0724	0.0833	0.0833	ND	84	87	58 - 127	4	23	
Phenanthrene	0.0712	0.0723	0.0833	0.0833	ND	85	87	46 - 129	2	28	
Anthracene	0.0729	0.0731	0.0833	0.0833	ND	88	88	57 - 124	0	21	
Fluoranthene	0.0715	0.0700	0.0833	0.0833	ND	86	84	46 - 136	2	29	
Pyrene	0.0685	0.0676	0.0833	0.0833	ND	82	81	41 - 136	1	32	
Benzo[a]anthracene	0.0906	0.0857	0.0833	0.0833	ND	109	103	56 - 136	6	25	
Chrysene	0.0750	0.0767	0.0833	0.0833	ND	90	92	49 - 130	2	22	
Benzo[b]fluoranthene	0.0758	0.0708	0.0833	0.0833	ND	91	85	51 - 135	7	26	
Benzo(j,k)fluoranthene	0.0733	0.0726	0.0833	0.0833	ND	88	87	56 - 124	1	23	
Benzo[a]pyrene	0.0762	0.0758	0.0833	0.0833	ND	91	91	54 - 133	1	26	
Indeno(1,2,3-c,d)pyrene	0.0805	0.0767	0.0833	0.0833	ND	97	92	52 - 134	5	20	
Dibenz[a,h]anthracene	0.0769	0.0742	0.0833	0.0833	ND	92	89	58 - 127	4	17	
Benzo[g,h,i]perylene	0.0772	0.0745	0.0833	0.0833	ND	93	89	54 - 129	4	21	
Surrogate:											
2-Fluorobiphenyl						73	78	46 - 113			
Pyrene-d10						74	72	45 - 114			
Terphenyl-d14						78	78	49 - 121			

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB101-S1-1.0					
Laboratory ID:	08-031-01					
Arsenic	ND	10	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.52	EPA 6010D	8-5-20	8-5-20	
Chromium	21	0.52	EPA 6010D	8-5-20	8-5-20	
Copper	24	1.0	EPA 6010D	8-5-20	8-5-20	
Lead	120	5.2	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.26	EPA 7471B	8-7-20	8-7-20	
Nickel	18	2.6	EPA 6010D	8-5-20	8-5-20	
Zinc	130	2.6	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB101-S2-10.5					
Laboratory ID:	08-031-02					
Arsenic	ND	12	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.62	EPA 6010D	8-5-20	8-5-20	
Chromium	17	0.62	EPA 6010D	8-5-20	8-5-20	
Copper	10	1.2	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.2	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.31	EPA 7471B	8-7-20	8-7-20	
Nickel	22	3.1	EPA 6010D	8-5-20	8-5-20	
Zinc	36	3.1	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB101-S3-13.5					
Laboratory ID:	08-031-03					
Arsenic	ND	12	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.60	EPA 6010D	8-5-20	8-5-20	
Chromium	29	0.60	EPA 6010D	8-5-20	8-5-20	
Copper	25	1.2	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.0	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.30	EPA 7471B	8-7-20	8-7-20	
Nickel	34	3.0	EPA 6010D	8-5-20	8-5-20	
Zinc	44	3.0	EPA 6010D	8-5-20	8-5-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

0 0 1 1	,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB102-S1-1.0					
Laboratory ID:	08-031-04					
Arsenic	ND	11	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.54	EPA 6010D	8-5-20	8-5-20	
Chromium	31	0.54	EPA 6010D	8-5-20	8-5-20	
Copper	34	1.1	EPA 6010D	8-5-20	8-5-20	
Lead	74	5.4	EPA 6010D	8-5-20	8-5-20	
Mercury	1.2	0.54	EPA 7471B	8-7-20	8-7-20	
Nickel	34	2.7	EPA 6010D	8-5-20	8-5-20	
Zinc	65	2.7	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB102-S2-8.0					
Laboratory ID:	08-031-05					
Arsenic	ND	12	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.61	EPA 6010D	8-5-20	8-5-20	
Chromium	13	0.61	EPA 6010D	8-5-20	8-5-20	
Copper	5.8	1.2	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.1	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.30	EPA 7471B	8-7-20	8-7-20	
Nickel	14	3.0	EPA 6010D	8-5-20	8-5-20	
Zinc	16	3.0	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB102-S3-11.0					
Laboratory ID:	08-031-06					
Arsenic	ND	13	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.64	EPA 6010D	8-5-20	8-5-20	
Chromium	17	0.64	EPA 6010D	8-5-20	8-5-20	
Copper	6.4	1.3	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.4	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.32	EPA 7471B	8-7-20	8-7-20	
Nickel	17	3.2	EPA 6010D	8-5-20	8-5-20	
Zinc	21	3.2	EPA 6010D	8-5-20	8-5-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

0 0 11	,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB103-S1-1.0					
Laboratory ID:	08-031-07					
Arsenic	ND	11	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.53	EPA 6010D	8-5-20	8-5-20	
Chromium	14	0.53	EPA 6010D	8-5-20	8-5-20	
Copper	23	1.1	EPA 6010D	8-5-20	8-5-20	
Lead	ND	5.3	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.26	EPA 7471B	8-7-20	8-7-20	
Nickel	17	2.6	EPA 6010D	8-5-20	8-5-20	
Zinc	51	2.6	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB103-S2-7.3					
Laboratory ID:	08-031-08					
Arsenic	ND	12	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.60	EPA 6010D	8-5-20	8-5-20	
Chromium	17	0.60	EPA 6010D	8-5-20	8-5-20	
Copper	14	1.2	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.0	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.30	EPA 7471B	8-7-20	8-7-20	
Nickel	24	3.0	EPA 6010D	8-5-20	8-5-20	
Zinc	63	3.0	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB103-S3-11.0					
Laboratory ID:	08-031-09					
Arsenic	ND	12	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.60	EPA 6010D	8-5-20	8-5-20	
Chromium	26	0.60	EPA 6010D	8-5-20	8-5-20	
Copper	16	1.2	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.0	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.30	EPA 7471B	8-7-20	8-7-20	
Nickel	23	3.0	EPA 6010D	8-5-20	8-5-20	
Zinc	34	3.0	EPA 6010D	8-5-20	8-5-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB104-S1-1.5					
Laboratory ID:	08-031-10					
Arsenic	ND	11	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.56	EPA 6010D	8-5-20	8-5-20	
Chromium	58	0.56	EPA 6010D	8-5-20	8-5-20	
Copper	30	1.1	EPA 6010D	8-5-20	8-5-20	
Lead	18	5.6	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.28	EPA 7471B	8-7-20	8-7-20	
Nickel	32	2.8	EPA 6010D	8-5-20	8-5-20	
Zinc	55	2.8	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB104-S2-5.0					
Laboratory ID:	08-031-11					
Arsenic	ND	13	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.63	EPA 6010D	8-5-20	8-5-20	
Chromium	16	0.63	EPA 6010D	8-5-20	8-5-20	
Copper	7.0	1.3	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.3	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.31	EPA 7471B	8-7-20	8-7-20	
Nickel	15	3.1	EPA 6010D	8-5-20	8-5-20	
Zinc	18	3.1	EPA 6010D	8-5-20	8-5-20	

Client ID: Laboratory ID:	LW-SB104-S3-10.0					
	08-031-12					
Arsenic	ND	15	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.75	EPA 6010D	8-5-20	8-5-20	
Chromium	38	0.75	EPA 6010D	8-5-20	8-5-20	
Copper	35	1.5	EPA 6010D	8-5-20	8-5-20	
Lead	19	7.5	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.37	EPA 7471B	8-7-20	8-7-20	
Nickel	42	3.7	EPA 6010D	8-5-20	8-5-20	
Zinc	75	3.7	EPA 6010D	8-5-20	8-5-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

	,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB105-S1-1.5					
Laboratory ID:	08-031-13					
Arsenic	ND	11	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.54	EPA 6010D	8-5-20	8-5-20	
Chromium	19	0.54	EPA 6010D	8-5-20	8-5-20	
Copper	16	1.1	EPA 6010D	8-5-20	8-5-20	
Lead	ND	5.4	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.27	EPA 7471B	8-7-20	8-7-20	
Nickel	25	2.7	EPA 6010D	8-5-20	8-5-20	
Zinc	26	2.7	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB105-S2-7.0					
Laboratory ID:	08-031-14					
Arsenic	ND	13	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.65	EPA 6010D	8-5-20	8-5-20	
Chromium	26	0.65	EPA 6010D	8-5-20	8-5-20	
Copper	49	1.3	EPA 6010D	8-5-20	8-5-20	
Lead	66	6.5	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.33	EPA 7471B	8-7-20	8-7-20	
Nickel	33	3.3	EPA 6010D	8-5-20	8-5-20	
Zinc	110	3.3	EPA 6010D	8-5-20	8-5-20	

Client ID: Laboratory ID:	LW-SB105-S3-12.0					
	08-031-15					
Arsenic	ND	13	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.65	EPA 6010D	8-5-20	8-5-20	
Chromium	15	0.65	EPA 6010D	8-5-20	8-5-20	
Copper	10	1.3	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.5	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.33	EPA 7471B	8-7-20	8-7-20	
Nickel	22	3.3	EPA 6010D	8-5-20	8-5-20	
Zinc	22	3.3	EPA 6010D	8-5-20	8-5-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

0 0 11	,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-SB106-S1-2.0					
Laboratory ID:	08-031-16					
Arsenic	ND	14	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.68	EPA 6010D	8-5-20	8-5-20	
Chromium	150	0.68	EPA 6010D	8-5-20	8-5-20	
Copper	650	1.4	EPA 6010D	8-5-20	8-5-20	
Lead	140	6.8	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.34	EPA 7471B	8-7-20	8-7-20	
Nickel	28	3.4	EPA 6010D	8-5-20	8-5-20	
Zinc	230	3.4	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB106-S2-8.0					
Laboratory ID:	08-031-17					
Arsenic	ND	13	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.63	EPA 6010D	8-5-20	8-5-20	
Chromium	17	0.63	EPA 6010D	8-5-20	8-5-20	
Copper	7.7	1.3	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.3	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.32	EPA 7471B	8-7-20	8-7-20	
Nickel	17	3.2	EPA 6010D	8-5-20	8-5-20	
Zinc	22	3.2	EPA 6010D	8-5-20	8-5-20	

Client ID:	LW-SB106-S3-11.5					
Laboratory ID:	08-031-18					
Arsenic	ND	12	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.60	EPA 6010D	8-5-20	8-5-20	
Chromium	14	0.60	EPA 6010D	8-5-20	8-5-20	
Copper	13	1.2	EPA 6010D	8-5-20	8-5-20	
Lead	ND	6.0	EPA 6010D	8-5-20	8-5-20	
Mercury	ND	0.30	EPA 7471B	8-7-20	8-7-20	
Nickel	21	3.0	EPA 6010D	8-5-20	8-5-20	
Zinc	28	3.0	EPA 6010D	8-5-20	8-5-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0805SM2					
Arsenic	ND	10	EPA 6010D	8-5-20	8-5-20	
Cadmium	ND	0.50	EPA 6010D	8-5-20	8-5-20	
Chromium	ND	0.50	EPA 6010D	8-5-20	8-5-20	
Copper	ND	1.0	EPA 6010D	8-5-20	8-5-20	
Lead	ND	5.0	EPA 6010D	8-5-20	8-5-20	
Nickel	ND	2.5	EPA 6010D	8-5-20	8-5-20	
Zinc	ND	2.5	EPA 6010D	8-5-20	8-5-20	
Laboratory ID:	MB0807S1					
Mercury	ND	0.25	EPA 7471B	8-7-20	8-7-20	

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-0	31-07									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Cadmium	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Chromium	12.9	11.9	NA	NA		Ν	IA	NA	8	20	
Copper	21.7	22.5	NA	NA		Ν	IA	NA	3	20	
Lead	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Nickel	16.2	16.0	NA	NA		Ν	IA	NA	1	20	
Zinc	48.5	50.9	NA	NA		Ν	IA	NA	5	20	
Laboratory ID:	07-031-07										
Mercury	ND	ND	NA	NA		Ν	IA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	07-0	31-07									
Laboratory ID.	MS	MSD	MS	MSD		MS	MSD				
Arsenic	82.4	85.3	100	100	ND	82	85	75-125	3	20	
Cadmium	42.1	43.4	50.0	50.0	ND	84	87	75-125	3	20	
Chromium	101	102	100	100	12.9	88	89	75-125	0	20	
Copper	64.6	66.7	50.0	50.0	21.7	86	90	75-125	3	20	
Lead	230	234	250	250	ND	92	93	75-125	2	20	
Nickel	103	105	100	100	16.2	87	89	75-125	2	20	
Zinc	133	137	100	100	48.5	84	89	75-125	4	20	
Laboratory ID:	07-0	31-07									
Mercury	0.483	0.544	0.500	0.500	0.0255	92	104	80-120	12	20	
Laboratory ID:	SB08	05SM2									
Arsenic	83	3.6	1(00	N/A	8	34	80-120			
Cadmium	42	2.8	50	0.0	N/A	8	86	80-120			
Chromium	90	0.9	10	00	N/A	g	91	80-120			
Copper	44	4.9	50	0.0	N/A	g	90	80-120			
Lead	2	43	2	50	N/A	g	97	80-120			
Nickel	93	3.9	10	00	N/A	g	94	80-120			
Zinc	8	5.2	10	00	N/A	8	85	80-120			
Laboratory ID:	SB08	307S1									
Mercury	0.5	512	0.5	500	N/A	1	02	80-120			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

34

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
LW-SB101-S1-1.0	08-031-01	5	8-6-20
LW-SB101-S2-10.5	08-031-02	19	8-6-20
LW-SB101-S3-13.5	08-031-03	17	8-6-20
LW-SB102-S1-1.0	08-031-04	7	8-6-20
LW-SB102-S2-8.0	08-031-05	18	8-6-20
LW-SB102-S3-11.0	08-031-06	21	8-6-20
LW-SB103-S1-1.0	08-031-07	5	8-6-20
LW-SB103-S2-7.3	08-031-08	17	8-6-20
LW-SB103-S3-11.0	08-031-09	16	8-6-20
LW-SB104-S1-1.5	08-031-10	11	8-6-20
LW-SB104-S2-5.0	08-031-11	20	8-6-20
LW-SB104-S3-10.0	08-031-12	33	8-6-20
LW-SB105-S1-1.5	08-031-13	7	8-6-20
LW-SB105-S2-7.0	08-031-14	23	8-6-20
LW-SB105-S3-12.0	08-031-15	23	8-6-20
LW-SB106-S1-2.0	08-031-16	27	8-6-20
LW-SB106-S2-8.0	08-031-17	21	8-6-20
LW-SB106-S3-11.5	08-031-18	17	8-6-20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	10 LW-SB104-51-1.5	9 LW-SB103-S3-11,0	8 L.W-SB103-52-7.3	7 LW-SB103-51-1.0	6 LW-SB102-S3-11.0	5 LW-SB102-52-8.0	4 LW-SB102-SI-1.0	3 LW-SB101-53-13,5	2 LW-SB101-52-10,5	LW-SB101-51-1,0	Lab ID Sample Identification	A. FITTS	S. GERMIAT	LIGNIN PARCEL	190239	ASPECT	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	Environmental Inc
Reviewed/Date					ONE ONE	ASPECT	Company	8/3/20 13:19 S J	8/3/20 11:51 S	8/3/20 11:48 5	8/3/20 11:46 5	8/3/20 12:42 5	\$/3/20 12:40 S	8/3/20 12:23 5	8/3/20 8:55 S	8/3/20 8:50 S	1 S Sh: 8 at 12/8	Date Time Sampled Sampled Matrix	(other)	ontaine	X Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request	Chain of
					8/5/20 1155	8/4/20 11:30	Date Time	×	×	×	×	×	×	×	×	×	X	NWTP NWTP NWTP Volatili Haloge	PH-HCIE PH-Gx/E PH-Gx PH-Dx () es 8260 enated PA 801		Laboratory Number:	Custody				
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV					No pesticide analysia	Comments/Special Instructions	× × ×	X X	X X X		XXX	XX	×××	XX	X X X	XX	Semiv (with lo PAHs I PCBs Organ Organ Chlorin Total F Total N TCLP HEM (As, Hg	olatiles ow-leve 8270D/ 8082A ochlorir ephosp hated A RCRA M ATCA M Metals oil and Cd,	8270D, I PAHs) SIM (Iov ne Pesti herus F cid Her letals grease) Cr,	/SIM w-level) cides 80 resticides bicides	081В 19-8270 8151А РЬ, л			08-031	Page 1 of 2

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		18 LW-SB106-53-11.5	17 LW-SB106-52-8.0	16 LW-SB106-SI - 2.0	15 LW-SB105-53-12.0	14 LW-SB105-52-7.0	13 LW-SB105-SI-1,5	12 LW-SB104-S3-10.0	11 LW-SB104-52-5.0	Lab ID Sample Identification	Sampled by: A. FITTS	Project Manager: S. GER MIAT	LIGNIN PARCEL	rroject Number:	ASPECT	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	invinonmental Inc	
Reviewed/Date						ASPECT	Company		8/3/209:59 5 2	S 55:6 0C/2/8	8/3/20 9:51 S	8/3/20 10:48 5	8/3/2010:46 S	8/3/20 10:43 5	8/3120 13:43 5	8/3/20 13:29 5 1	Date Time B Sampled Sampled Matrix	(other)	ntaine	X Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Turnaround Request	Chain of C	
					5511 av513	8/4/20 11:30	Date Time		×	×	×	×	×	×	×	X	NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Dx (Acid / SG Clean-up) Volatiles 8260C Halogenated Volatiles 8260C EDB EPA 8011 (Waters Only)								ustody	
No Pesticide analy Data Package: Standard Level III Level III					No Pesticide analy	Comments/Special Instructions		×	×	× ×	×	×	×	×	×	Semiv (with la PAHs i PCBs Organ Organ Chlorin Total F Total N TCLP	olatiles & bw-level 3270D/S 8082A ochlorine pphosph nated Ac RCRA Me MCRA Me Metals bil and g	3270D/S PAHs) IM (low Pestic Pestic Petals Petals Petals Petals	08-031		Page					
ata Deliverables (EDDs)	vel IV					rsis				××	×	×	××	×	××	X X	<u>As</u> , (<u>]+g</u> % Moi:	cd, c	.r, C	Lu, P	»Ь, Л	/i,Z			of	